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Immunological checkpoint inhibitors have been immensely successfully applied in

the treatment of cancer, however, a portion of tumor patients can’t benefit from

checkpoint therapy. The low PD-1/CTLA-4 positive rate and involvement of multiple

immunosuppressive pathways are thought to be one of the reasons for treatment

failure in non-responding patients. A new immune checkpoint molecule, HHLA2,

which was widely expressed in PD-1 negative human tumors, may be a promising

target for the improvement of recent immune therapy. Yet, the prognostic value and

transcriptional regulatory mechanisms of HHLA2 remains unclear. In this study, we

aimed to evaluate the prognostic value and transcriptional regulation mechanism of

HHLA2 according to clinical and experimental data from multiple databases, including

cBioPortal, TCGA, Cistrome, TIMER, Oncomine, Kaplan-Meier, GeneXplain. It was found

that the expression of HHLA2 was significantly elevated in renal tumors, and significantly

decreased in colorectal tumors. Pan-cancer survival analysis indicates that HHLA2 was

an independent prognostic factor in 9/20 of human cancers. Especially in renal clear cell

carcinoma (P = 3.0E-7). Through plotting survival curve in Kaplan-Meier Plotter, it was

found that hypomethylation of HHLA2 DNA was a favorable prognostic factor for KIRC

patients. Yet, the copy number variant of HHLA2 was not significantly correlated with the

overall survival of KIRC patients. Finally, by analyzing the motif of HHLA2 co-expression

genes, we identified 15 transcription factors that may be involved in the regulation

of the HHLA2 co-expression network. Among these transcription factors, BATF in B

lymphocyte and SMAD in monocyte were confirmed to be able to directly bind to HHLA2

DNA according to chip-seq experimental data from Cistrome database.

Keywords: HHLA2, immune checkpoint, B7, PD-1, expression profiling

INTRODUCTION

Recently, immunotherapy has shown remarkable therapeutic effects in anti-tumor therapy. Among
them, the immune checkpoint inhibitors blocking the immunosuppressive receptor of T cells is
an effective solution (1). In the opinion of recent studies, the interaction between the B7 and
CD28 family plays a central role in regulating T lymphocyte function. The B7-1/B7-2 molecule
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on the surface of the cell membrane of antigen presenting
cell (APC) binds to the CD28 molecule on the surface of T
lymphocyte, providing an initial costimulatory signal for the
activation of T lymphocyte. After this costimulatory signal,
coinhibitory molecule (such as CTLA-4 and PD-1) of CD28
family on the surface of T lymphocyte binds to B7-1/B7-
2 to inhibit T lymphocyte activation (2, 3), this interaction
mediated T lymphocyte co-stimulation and co-suppression
lay the foundation of the regulation of anti-tumor immune
responses (4, 5).

Over the past decade, a series of studies have revealed the
important immune function of other molecules belonging to
B7 and CD28 families, including B7h/ICOS (6), PD-L1/PD-
L2/PD-1 (7), B7-H3 (8). Among them, PD-1/PD-L1 inhibitors
have achieved great success in clinical trials (9), which has
rapidly changed the treatment landscape for non-small-cell lung
cancer (NSCLC) (10). Two FDA-approved PD-L1 inhibitors are
being evaluated for the first-line treatment of NSCLC (11–14).
However, since PD-1 is only expressed in part of NSCLC, finding
new broader expressed immune checkpoint will be important for
improving the response rate of immunotherapy (15).

Human endogenous retro virus-H Long repeat-associating 2
(HHLA2) is a newly discovered immune checkpoint molecule
belonging to the B7-CD28 family (16, 17). Previous studies
confirmed that it participates in the regulation of T-lymphocyte
function, but previous studies didn’t reach an agreement on the
function of HHLA2. The first reported high-quality research
concluded that HHLA2 (B7-H5) is a costimulatory molecule that
acts to promote T lymphocyte proliferation and secret related
cytokines by binding to CD28H receptors on T lymphocyte (16).
Subsequent research provides a different conclusion of HHLA2
function, Zhao et al. (17) reported that HHLA2 may be a co-
inhibitory ligand for T lymphocyte, which inhibits the anti-tumor
function of T lymphocyte. In addition, the heterogeneity of
HHLA2 function was also observed in the co-culture experiment,
the T lymphocytes from different donors showed a different
response to the HHLA2 protein in cytokine production (17). This
contradictory phenomenon is interesting, but also confusing for
the further researches on HHLA2 (18–21).

To contribute to the understanding of these discrepancies,
we investigated the expression profiling and prognostic value of
HHLA2 in human cancer according to multiple public databases
and investigated what transcription factor may be associated with
the dysregulation of HHLA2 in KIRC, our finding may be helpful
for the further study on HHLA2.

MATERIALS AND METHODS

Expression Profiling of HHLA2 in Human
Cancers
Two large-scale databases (GEPIA, Oncomine) was used to
explore the expression pattern of HHLA2 in human cancers.
Gene expression profiling interactive analysis (GEPIA) (http://
gepia.cancer-pku.cn) is an interactive web server for analyzing
the RNA sequencing expression data of 9,736 tumors and
8,587 normal samples from TCGA and GTEx projects (22).

The Oncomine datasets (23) (http://www.oncomine.org) is a
web application for bioinformatics services that includes 715
independent data sets and 86,733 samples that provide greater
scale, high quality, consistency, a standardized analytical method
for gene expression profile analysis.

Pan-Cancer Survival Analysis
The Kaplan-Meier plotter (24) (http://kmplot.com//analysis) is
capable of assessing the prognostic effect of 54,675 genes on
using 10,461 cancer samples. To investigate the prognostic role
of HHLA2 in human cancers, the Kaplan-Meier Plotter was used
to determine the prognostic significance. The forest plot was
constructed by RevMan software (25). UCSC Xena browser (26,
27) was used for evaluating the correlation between expression
level of HHLA2mRNA, methylation status, copy number variant
of HHLA2 DNA and the overall survival time in kidney clear
cell carcinoma.

To validate the prognostic role of HHLA2 in KIRC, we
carefully conducted searches in public data platforms including
the GEO database and the ArrayExpress database. The datasets
meeting following criteria were used as validation cohorts:
Datasets with survival associated clinical information. Datasets
from human tumor samples. The genechip used in the
datasets includes the probe of HHLA2. After detailed and
careful searching, two independent clinical cohorts (GSE40435,
GSE22541) containing tumor staging information were used
for validation.

Potential Transcription Regulatory
Mechanism of HHLA2
The cBioPortal for Cancer Genomics (http://www.cbioportal.
org) provides a Web resource analyzing, visualizing genomics
data. The cBioPortal was used for extracting co-expression
genes of HHLA2 in KIRC (28, 29). The geneXplain platform
(http://genexplain.com/transfac) is a tool for a broad range of
bioinformatics applications. Motif enrichment function in this
platform was used for the identification of potential transcription
factors of co-expression gene network of HHLA2 with the
TRANSFAC database (30–32). TFmapper (33) is used to identify
whether transcription factors bind directly to the HHLA2
promoter according to cistrome database. The Cistrome data
browser (34, 35) integrates human and mouse cis-regulatory
experiment information from ChIP-seq, DNase-seq, and ATAC-
seq chromatin analysis. The miRWalk (36, 37), miRDB (38, 39),
TargetScan (40) are comprehensive online resource for miRNA
and target predictions. They were used to identify potential
microRNAs. The common part of three predictions results was
regarded as potential microRNAs targeting on HHLA2 mRNA.

Functional Annotation of Co-expression
Gene Network of HHLA2
Kyoto Encyclopedia of Genes and Genomes (41) (KEGG) and
gene ontology (42) (GO) is a commonly used database of
functional annotations for gene list. MetaScape is an excellent
integrated analytics platform that integrates multiple annotation
datasets. The functional enrichment analysis of this study was
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applied by this platform to understand this function of HHLA2
co-expression genes (43).

RESULT

The Expression Level of HHLA2 Was
Significantly Elevated in Renal Cancers
and Decreased in Colorectal Cancers
The Cancer Genome Atlas (TCGA) datasets is a comprehensive
database containing 11,000 patient samples. GEPIA website
(TCGA data) and SAGE (Figure 1) were used to draw a body
map to show the expression distribution of HHLA2 in human
tissue (Figure 2A). Then, the pan-cancer expression profiling
of HHLA2 was visualized according to TCGA data by TIMER
platform (Figure 2C). It was found that HHLA2 is widely
expressed in multiple human tissues, and it abounds in renal,
colorectal tissue. Next, we investigated whether the expression
of HHLA2 is elevated in human cancer compared with normal
tissue. Using Oncomine (23) database(P < 10E-4, fold Change
> 2), which contains 715 datasets and 86,733 samples, we
found that HHLA2 is over-expressed in the 7/134 human tumor
datasets, and under-expressed in 10/134 datasets (Figure 2B).
The most common over-expression cancer type in this study is
renal cancer, the most common under-expression cancer type is
colorectal cancers.

Pan-Cancer Survival Analysis of HHLA2
mRNA Expression Revealed a Unique
Prognostic Role of HHLA2 in Renal Clear
Cell Carcinoma
RNA-Seq data of 7,462 samples from Kaplan Meier plotter
datasets (24) was used for pan-cancer survival analysis.
The significant prognostic significance of HHLA2 was
determined in 10/20 tumors in this pan-cancer analysis
(Supplementary Table 1). Overview of these results was shown
in Figure 3, there is an obvious heterogeneity between different
cancer types.

Our result shows that it is hard to determine whether the
prognostic role of HHLA2 is favorable or unfavorable. However,
in the result of pan-cancer survival analysis, we observed a
unique and evident prognostic role of HHLA2 in kidney clear cell
carcinoma comparing to other human cancers.

We further extended these results using two independent
KIRC cohorts from the GEO database (GSE40435, GSE22541).
All of these cohorts showed that the expression of HHLA2 was
higher in low pathological grade than the high pathological
grade (Figure 4). This was consistent with our result
that overexpression of HHLA2 was a protective factor for
KIRC patients.

Combing with the result of expression profiling analysis,
HHLA2 abounds in human normal and malignant tissue,
however only differentially expressed in some tumor types
(KIRC, COAD etc.) (Supplementary Table 1), the subsequent
studies will focus on the unique role of HHLA2 in renal clear
cell carcinoma.

FIGURE 1 | The figure shows the distribution of HHLA2 in various human

tissues.

Survival Analysis for Kidney Clear Cell
Carcinoma (KIRC) Patients Revealed
Methylation Status of HHLA2 DNA Was
Associated With the Prognosis of KIRC
Patients
The previous studies showed that copy number variant of
HHLA2 DNA may be involved in the dysregulation of HHLA2
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FIGURE 2 | Pan-cancer expression profiling analysis of HHLA2. (A) Interactive body map of HHLA2 mRNA expression constructed by GEPIA (TCGA), the darker color

corresponds to the higher gene expression level. Red means the median expression of HHLA2 from tumor samples, and the green is from normal samples. (B) The

length of the bar corresponds to the number of studies show significant over or under expression of HHLA2 vs. normal tissue (the number of significantly differently

expressed GEO clinical cohorts). (C) The boxplot shows the pan-cancer expression profiling of HHLA2 in human cancers. The below row refers to the standard

abbreviations of tumor in TCGA. The color refers to the tumor (red) or normal (blue). P-value Significant Codes: 0 ≤ ***< 0.001 ≤ **< 0.01 ≤ *< 0.05 ≤. < 0.1.

expression level in breast cancer (44). So, we will investigate
whether DNA variant of HHLA2 have a similar effect on KIRC
patients. Our result shows that the expression of HHLA2 was
correlated with the methylation status of HHLA2 DNA in KIRC,
but not copy number variant (Figure 5A). Then, we investigate
whether DNA change was correlated with the prognosis of KIRC.
Survival analysis showed that the hypomethylation of HHLA2
DNA and overexpression of HHLA2 mRNA were favorable
prognostic factors for KIRC patients. However, there was no
significant correlation betweenHHLA2 copy number variant and
patient prognosis (Figures 5B–D).

Functional Annotation of Co-expression
Gene Network of HHLA2
Co-expression gene analysis is a systematic approach for
analyzing the potential regulatory pattern of the complex
system (45). Co-expression genes of renal clear cell carcinoma

were extracted from cBioPortal and Gene expression omnibus
(GEO) datasets (accession ID: GSE2109) (16). The co-expression
gene of HHLA2 with the absolute value of the Pearson
correlation coefficient > 0.4 was used to draw Venn plot
(Figure 6A). The intersection of these gene lists was regarded
as the potential co-expression gene of HHLA2 (Figure 6A,
Supplementary Table 2). To investigate the potential function
of co-expression genes, MetaScape (43) was used for functional
enrichment. The most statistically significant terms were shown
in Figure 6B. The enrichment result shows that the SLC-
mediated transmembrane transport might be associated with the
co-expression genes of HHLA2.

Transcription and Post-transcription
Regulation of HHLA2 Co-expression Genes
Taken together, the above finding indicated HHLA2 is
significantly over-expressed in KIRC, this dysregulation
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FIGURE 3 | Forest plot shows the result of pan-cancer survival analysis. The upper subgroups are composed of studies whose P-value is <0.05, the below

subgroups are more than 0.05.

FIGURE 4 | The boxplot shows the correlation between the expression of HHLA2 and the pathological grade in KIRC (left:from GSE22541, right: GSE40435). The

label at the top of the picture corresponds to the pathological stage of the patient.

may be derived from post-transcription or transcription
regulation. So, we investigate what transcription
factors might play an upstream regulation role of the
HHLA2 co-expression network. Using the geneXplain

platform, 15 transcription factors were identified
(Supplementary Table 3).

Next, we further investigated whether the identified
transcription factors can directly bind to the HHLA2 DNA.
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FIGURE 5 | The Heatmap and Kaplan Meier curves of expression level, methylation status, copy number variant of HHLA2. (A) The heatmap shows the expression

level, methylation status, copy number variant of HHLA2 in the TCGA database, determined by UCSC Xena. (B–D) Kaplan Meier plot shows the over-expression and

hypomethylation of HHLA2 is favorable prognostic factor for KIRC patients.

Chip-seq is a commonly used experimental technique for
studying protein-DNA interactions (46). Cistrome data browser
is a comprehensive database that integrates human and mouse
transcription factors ChIp-seq, DNase-seq, and ATAC-seq
experiment information. We used Cistrome data’s Chip-seq data
to confirm that BATF, GATA3, HSF1, HOXC9, SMAD1 can
directly bind to HHLA2 DNA.

The evidence that BATF can bind HHLA2 DNA is
derived from B Lymphocyte and Lymphoblastoid, SMAD1
is derived from Monocyte and Haematopoietic Progenitor
Cell, and GATA3 is found in normal organs such as
breast and brain. HOXC9 is found in brain and HSF1 is
found in the breast. Detailed results can be found in the

Supplementary Table 4. Because previous studies suggested
that HHLA2 is expressed in monocyte and B lymphocytes
(34, 35), so we speculate that BATF is involved in the regulation
of HHLA2 expression in B lymphocytes and that SMAD1 is
in monocytes.

In addition, using miRDB (38, 39), mirWalk (36, 37),
and TargetScan (40) databases, we also investigated what
microRNAs were involved in the post-transcription regulation of
HHLA2.Using strict screening criteria (TargetScan: context++

score percentile > 98, context++ score < −0.4, miRDB: Score
> 70, mirWalk: P-value < 0.01), two microRNAs (hsa-miR-
3116 hsa-miR-6870-5p) that might bind to HHLA2 mRNA were
identified (Supplementary Figure 1).
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FIGURE 6 | Venn plot and Metascape enrichment result of co-expression genes of HHLA2. (A) The intersection of Venn plot is considered to be co-expressed genes

of HHLA2. (B) The bar plot of HHLA2 co-expression gene enrichment term.

DISCUSSION

HHLA2 is a newly identified gene of the B7/CD28 family.
Previous studies have reported that it was widely expressed in
patients with PD-1-negative NSCLC, which suggests HHLA2
might be promising immunotherapy target for tumor patients
who do not response to PD-1 related therapy (15). Our results
are consistent with the previous reports that HHLA2 is widely
expressed in a number of human tumors including kidney,
Colon et al. Overall, according to expression profiling analysis
of Oncomine and TCGA, HHLA2 expression was significantly
elevated in most of the kidney cancers associated studys and
decreased in colorectal cancer datasets.

In the terms of prognostic role, since the over-expression
of immune checkpoint stimulator was always associated with
a better survival time of tumor patients, these two opposite
conclusions about HHLA2 function make the exact prognostic
role of HHLA2 still uncertain.

Our study indicated that HHLA2 was a significant prognostic
factor in a portion of tumors, but obvious heterogeneity
prognostic value was observed on different kinds of tumors,
part of them are protective and others are unfavorable or no
significant prognostic factors.

Interestingly, a unique prognostic role of HHLA2 was
observed in renal clear cell carcinoma compared with other
tumor types. In a further study with KIRC as a case, we found
that overexpressed or hypomethylation of HHLA2 is a favorable
prognostic factor for KIRC, however, there was no significant
correlation between copy number variant of HHLA2 and the
prognosis of KIRC patients. Our finding was not consistent
with previous report that elevated expression of HHLA2 may
be associated with abnormal copy-number variant of HHLA2
DNA in basal breast cancer (44). We are unable to reconcile
this discrepancy due to the lack of information on the primary
antibody applied in that study.

In general, HHLA2, as a newly identified immune checkpoint
molecule, little is known about the prognostic significance of
HHLA2, recent publishing studies were still on “preliminary

research stage” and “clinical validation stage” (47, 48), further
evidence from in vivo and in vitro experimental evidence
is needed for the understanding of the immune function of
HHLA2, before this experimental evidence, the prognostic role
should be discussed in detail, this was directly associated with the
next research direction of HHLA2 and whether it is a promising
prognostic marker or a new immunotherapeutic target.

According to our results, we proposed some inspiring insights
and hypothesis for the research of HHLA2.

I) Our result revealed that the prognostic significance of HHLA2
was with slight evidence in portion of tumors. Although
some of the previous studies reported significant prognostic
value of HHLA2 in a variety of tumors (47, 48), due to
the lack of blind method, relatively small sample size and
subjective quantitative method, high risk of bias may exist in
part of the previous reports. Therefore, in the future, more
rigorous researches and meta-analysis with high-qualified
evidence are needed to determine the prognostic value of
HHLA2, especially in KIRC, and whether it is correlated with
tumor types.

II) Our results showed that HHLA2 was a favorable prognostic
marker for KIRC with strong evidence, however, the favorable
role was not always observed in previous studies. Our finding
was consistent with the first biological experimental report
about the function of HHLA2 (16), but was contrary to
part of previous researches (47, 48), so, why is the favorable
prognostic value of HHLA2 unique and evident for KIRC?
Further studies which are focused on the correlation between
characteristic of KIRC and the function of HHLA2 will
contribute to the understanding of the heterogeneous immune
function of HHLA2.

III) Gene expression dysregulation always corresponds to an
important biological function in most cases. According to our
result, HHLA2 played an evident protective prognostic role
and was significantly overexpressed in KIRC, the biological
mechanism behind this phenomenon is needed to note,
further in vivo and in vitro experiment focused on this
phenomenon may be helpful to understand how HHLA2
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is interacting with tumor cells. In addition to the function
of HHLA2 in KIRC, the potential mechanism involved in
dysregulated expression of HHLA2 is also noteworthy, our
result provided a possible explanation for this question,
inconsistent with the previous report on breast cancer (44),
the epigenetic modification but not copy number variant may
be responsible for the dysregulated expression of HHLA2
in KIRC.

Our study is the first to report the potential transcriptional
regulation mechanism of HHLA2 in bioinformatic view. Our
result showed that BATF in B lymphocyte and SMAD in
monocytes might be responsible for the dysregulation of HHLA2
in KIRC. Further studies of the BATF/HHLA2 axis and the
SMAD/HHLA2 axis may help to further understand the role of
HHLA2 in the human immune system.
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The development of immunological therapies that incorporate peptide antigens
presented to T cells by MHC proteins is a long sought-after goal, particularly
for cancer, where mutated neoantigens are being explored as personalized cancer
vaccines. Although neoantigens can be identified through sequencing, bioinformatics
and mass spectrometry, identifying those which are immunogenic and able to promote
tumor rejection remains a significant challenge. Here we examined the potential of
high-resolution structural modeling followed by energetic scoring of structural features
for predicting neoantigen immunogenicity. After developing a strategy to rapidly and
accurately model nonameric peptides bound to the common class I MHC protein
HLA-A2, we trained a neural network on structural features that influence T cell receptor
(TCR) and peptide binding energies. The resulting structurally-parameterized neural
network outperformed methods that do not incorporate explicit structural or energetic
properties in predicting CD8+ T cell responses of HLA-A2 presented nonameric peptides,
while also providing insight into the underlying structural and biophysical mechanisms
governing immunogenicity. Our proof-of-concept study demonstrates the potential
for structure-based immunogenicity predictions in the development of personalized
peptide-based vaccines.

Keywords: structure, neoantigen, peptide, MHC, modeling, Rosetta, neural network, personalized vaccines

INTRODUCTION

The development of immunological therapies that incorporate peptide antigens presented to T
cells by major histocompatibility complex (MHC) proteins is a long sought-after goal, particularly
for cancer. Although early cancer vaccine studies relying on non-mutated shared antigens were
disappointing (1), advances in sequencing and bioinformatics have led to the identification of
“neoantigens” with non-synonymous mutations that differentiate tumors from healthy tissues
[reviewed in (2)]. Vaccination using such neoantigens has in some cases led to promising outcomes
(3, 4), and neoantigens are now also being explored as ameans to improve the safety, specificity, and
efficacy of other immunotherapies. A significant challenge remains, however, in identifying those
mutated peptides that are immunogenic and can thus promote anti-tumor immune responses.

Following sequencing, potential neoantigens have been identified via bioinformatic approaches
that predict processing and presentation by MHC proteins, and more recently, via mass
spectrometry (5, 6). Mutations at anchor residues which improve the binding of a peptide
to an MHC protein have been associated with immunogenicity and tumor rejection (7–9). In
these cases, T cells not eliminated by negative selection may exist that efficiently recognize
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the neoantigen; indeed, in viruses, recent findings suggest that
for peptides presented by class I MHC proteins, peptide binding
affinity is the best predictor of immunogenicity (10). However, in
the more common instances in which mutations occur outside
of anchor residues and do not strongly impact peptide-MHC
binding, T cells that efficiently recognize the wild-type peptide
will have been deleted or otherwise tolerized. In these instances,
an immunogenic neoantigenmust possess structural and physical
properties distinct enough to promote efficient recognition by T
cells that ignore the wild-type peptide (i.e., the single mutation
must result in a peptide that is “sufficiently different” from its
wild-type counterpart to overcome self-tolerance).

However, it is becoming increasingly understood that, even
after taking tolerance mechanisms into account, not all well-
presented peptides are strongly immunogenic (11, 12), suggesting
the existence of peptide features that influence T cell recognition
independently of peptide processing and presentation. For
example, recent work suggests that immunogenic peptides are
enriched in hydrophobic (including aromatic) amino acids at
positions often contacted by T cell receptors (TCRs) (13, 14).
Efforts at incorporating features that influence T cell recognition
into neoantigen prediction tools are in development (14–18),
and these complement well-developed tools for predicting MHC
binding (19–23). The immune epitope database (IEDB) and
NetTepi servers, for example, incorporate positional enrichment
of hydrophobic amino acids into class I MHC immunogenicity
prediction tools (13, 18, 24). Other physicochemical features
that have been considered include amino acid charge and
size, wild-type and mutant sequence divergence, and sequence
entropy (15, 17).

Despite these advances, the mechanisms by which
physicochemical features of peptides influence TCR binding
have not been widely considered. For example, enrichment
in hydrophobic amino acids at potential TCR contact sites
for immunogenic peptides can be interpreted in the context
of protein biophysics: burial of exposed hydrophobic surface
promotes protein binding through the hydrophobic effect, which
is almost universally favorable, requiring only that a hydrophobic
group dock into another hydrophobic environment (25–27).
Burying charges, on the other hand, requires overcoming
energetically expensive desolvation penalties and thus high
structural precision between atoms of opposing charge (28–30).
Because of this, TCRs with architectures that permit precise
charge complementarity will occur less frequently than those
that can accommodate a hydrophobic (or aromatic) group (31).
This leads to the prediction that neoantigens whose mutations
replace centrally located, charged amino acids with hydrophobic
or aromatic amino acids will be immunogenic, as some studies
have indeed reported (32). Likewise, introduction of charges
can reduce immunogenicity, as has also been reported (33) and
commonly seen in studies of T cell specificity using peptide
libraries [e.g., (34)].

Yet for a peptide bound to an MHC protein, the impact of
features such as exposed hydrophobic surface and charges are
determined by the peptide’s conformation within the binding
groove, as well as the size and position of the various amino
acid side chains. Thus, efforts to predict peptide immunogenicity

should be strengthened by approaches that account for the
structural properties of peptide/MHC complexes (8, 16, 35).

Here, we explored how considering structurally-determined
physical features can improve efforts at predicting peptide
immunogenicity. We developed a rapid procedure for accurately
modeling large numbers of peptides bound to the common
class I MHC protein HLA-A∗0201 (HLA-A2), which was applied
to a curated dataset incorporating thousands of immunogenic,
non-immunogenic, and non-HLA-A2 binding peptides. We
included non-HLA-A2 binding peptides as we aimed to capture
both peptide binding to the MHC protein as well as TCR
binding to the peptide/MHC complex, as both contribute to
immunogenicity and both are governed by structural and
physicochemical features. Indeed, strong TCR binding can
compensate for weak peptide-MHC binding and vice versa (11,
12, 36); considering both elements together permits capturing the
impact of both. We then trained a neural network on energetic
features that are encoded not by peptide sequence, but by
the modeled three-dimensional structures of the peptide/HLA-
A2 complexes. The network recovered known features of
immunogenic peptides such as enrichment in hydrophobicity,
and, as assessed by the ability to predict CD8+ T cell responses,
against the training data outperformed other models and
prediction tools based only on sequence characteristics. Deployed
against a set of HLA-A2-presented nonameric neoantigens, the
network not only permitted predictions of immunogenicity, but
yielded testable hypotheses about how the mutations influenced
immunogenicity. From this proof-of-concept study we identify
clear avenues for improvement and scale up.

RESULTS

Development and Performance of a Rapid
Peptide/MHC Modeling Strategy
To develop a rapid structural modeling strategy, we compiled
a list of peptide/MHC structures within the Protein Data Bank
(PDB). We restricted our analysis to high resolution, HLA-
A2 structures presenting nonamers with good electron density.
We focused on nonamers as these are the most represented
in the PDB and relatively constrained in class I MHC peptide
binding grooves. Additionally, nonameric, HLA-A2 data are the
most represented in immunological databases. As we intended
to emphasize structural differences emerging from amino acid
mutations, we further narrowed our database by pairing each
peptide/HLA-A2 complex with at least one other in which
the peptide differed by only a single amino acid, either as a
substitution or transposition. Our final database contained 53
structures presenting distinct peptide epitopes (Table S1).

To simulate a realistic setting where many peptides need to
be evaluated, we prioritized modeling speed over complexity.
As has been noted previously (37), nonameric peptides bound
to class I MHC proteins adopt relatively conserved backbone
conformations. We therefore modeled each complex in our
database by threading the desired peptide sequence into our
template HLA-A2 structures, followed by Monte-Carlo-based
conformational sampling and energy minimization for side
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chains and the peptide backbones utilizing Rosetta (38, 39). This
approach required approximately 10min per model on 2016-
vintage CPU hardware. We considered three different templates
to compare the effect starting coordinates had onmodel accuracy:
HLA-A2 presenting the HTLV1 Tax11−19 peptide (PDF 1DUZ;
peptide sequence LLFGYPVYV) (40), the MART127−35 tumor
antigen (PDB 3QFD; peptide sequence AAGIGILTV) (41), and
a Toxoplasma gondii epitope (PDB 5FA3; peptide sequence
GLLPELPAV) (42). These three structures were chosen based on
their resolution (<1.9 Å) and variations around the nonameric
backbone conformation. The modeling procedure performed
similarly with all three templates, yielding full atom root mean
square deviations (RMSD values) between 1.86 and 2.08 Å,
and Cα RMSD values between 0.87 and 1.15 Å (Figure 1A;
Table S1). Other approaches to model peptides in class I
MHC binding grooves have incorporated docking, molecular
dynamics simulations, protein threading, or combinations of
these methods. These other methods have reported Cα or full-
atom RMSD values between model and experiment within the
approximate range of 1–2 Å (8, 16, 37, 43–50). Our approach thus
compares favorably with or even outperforms other efforts.

Of the three templates considered, the models generated
from 3QFD were the closest to the crystal structures; the
average backbone RMSD of models derived from 3QFD was
significantly lower (p = 0.0006 and 0.018 when compared
to results with the 1DUZ and 5FA3 templates, respectively)
(Figure 1A). Results from the 3QFD template were thus used for
all further comparisons and modeling efforts.

The greatest discrepancy between modeled and actual
structures was an unusual register-shifted peptide (LAGIGILTV)
which, compared to the native peptide (AAGIGILTV), left the
p1 (or “A”) pocket of the HLA-A2 molecule empty in the
crystal structure, resulting in the nonameric peptide adopting
a decameric configuration (41) (Figure 1B). Our modeling
procedure was not able to sample such dramatic conformational
shifts, and thus the model of this peptide resembled more
traditional nonameric peptide/MHC structures.

Given recent attention on the role of exposed surface features
in the immunogenicity of MHC-presented peptides, we asked
how our modeling procedure recovered peptide hydrophobic
solvent accessible surface area (hSASA). After comparing models
and structures, the Pearson correlation coefficient between
predicted and experimental hSASA was 0.66 (Figure 1C). Our
rapid modeling procedure thus provides a good approximation
of peptide structural properties within the binding groove of
HLA-A2 and the changes that occur upon mutation.

Experimental Test of the Peptide/MHC
Modeling Strategy
To further test the rapid modeling procedure, we crystallized
and determined the three-dimensional structures of three new
peptide/HLA-A2 complexes. The peptide ILNAMIAKI is a
melanoma neoantigen identified in a recent study (51). We
determined the structure of ILNAMIAKI bound to HLA-A2, as
well as those of the corresponding wild-type peptide ILNAMITKI
and another single amino acid variant, ILNAMIVKI (Table 1).

FIGURE 1 | Rapid structural modeling for peptide/HLA-A2 complexes. (A)
Modeling performance as indicated by peptide Cα and full atom (FA) RMSD
values for modeled vs. crystallized peptide/HLA-A2 complexes. Boxes
illustrate the 1st and 3rd quartiles, with a horizontal line at the median.
Whiskers show 1.5 times the interquartile range. Red stars indicate mean
values. Results for three templates (3QFD, 1DUZ, and 5FA3) are shown. The
3QFD template performed the best and was used for all further modeling
efforts. (B) Structural images of representative models and their corresponding
structures. The top shows the model of NLVPAVATV, which superimposes on
the crystal structure with a full atom RMSD of 1.08 Å. The bottom shows the
model of LAGIGILTV, which superimposes on the structure with a full atom
RMSD of 2.59 Å. For the latter case, the leucine at position 1 forces the
nonameric peptide to bind in a register-shifted decameric configuration, with
the p1 leucine in the B rather than A pocket. Our modeling procedure did not
permit such drastic conformational sampling. (C) Correlation between exposed
peptide hydrophobic surface area in the models vs. the crystallographic
structures. The two sets of data correlate with a R value of 0.66.
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TABLE 1 | X-ray data collection and refinement statistics.

ILNAMIAKI/HLA-A2 ILNAMITKI/HLA-A2 ILNAMIVKI/HLA-A2

Data collection

Resolution (Å)* 30.89–2.15 (2.23–2.15) 41.82–1.90 (1.97–1.90) 31.57–1.79 (1.84–1.79)

Space group P1 P1 P 21 21 21

Unit cell dimensions (Å) 50.68, 63.67, 75.18 58.43, 84.11, 85.36 49.56, 74.64, 122.85

Unit cell angles (◦) 81.47, 75.85, 77.23 90.01, 90.06, 90.02 90, 90, 90

Unique reflections* 47,203 (4,655) 123,624 (11,774) 42,624 (2,553)

R-merge 0.205 (0.684) 0.096 (0.290) 0.167 (0.203)

I/σ* 5.7 (1.3) 10.8 (4.3) 22.2 (2.6)

Data completeness* 97.9% (96.3%) 96.7% (92.6%) 97.6% (87%)

Refinement

R-work, R-free 0.19, 0.23 0.16, 0.19 0.17, 0.20

R-free test set 4711 (10.00%) 12476 (10.1%) 1955 (4.59%)

Wilson B-factor (Å2) 24.0 15.1 22.6

Total number of atoms 6,853 14,303 3,626

Bond lengths RMSD (Å) 0.005 0.003 0.008

Bond angles RMSD (◦) 1.02 0.661 0.927

Ramachandran (favored, allowed, outlier) 98%, 2%, 0% 98%, 2%, 0% 98%, 2%, 0%

PDB ID Code 6PTB 6PTE 6OPD

*Values in parentheses are statistics for the highest resolution shells.

We also subjected the three complexes to themodeling procedure
described above. In the structures, the peptides all adopt the
typical nonameric conformation, with a bulge initiating at Asn3
and continuing through Ile6. There are no systematic changes
in response to the differences at position 7. The sidechains of
Met5 and Lys8 extend away from the peptide backbone, with
some variations in torsion angles across the three structures (seen
as well in the multiple copies in the asymmetric units for the
structures with ILNAMITKI and ILNAMIAKI) (Figure 2A). The
models compared well with the crystallographic structures. One
discrepancy was found at the backbone of Ala4, which impacted
the geometry of the subsequent Met5 side chain. Nonetheless,
the position and extension of the Met5 side chain were
well captured, as was the similarly extended Lys8 side chain
(Figure 2B). The peptide Cα RMSD values between structures
and models were between 0.7 and 0.8 Å, and the full atom
RMSD values were between 1.7 and 2.0 Å. These values are
consistent with the results found when comparing modeled
to previously determined experimental structures (Figure 1A)
and confirm that our modeling scheme can reproduce major
structural features of peptide/HLA-A2 complexes.

Collecting a Peptide Dataset to Relate
Peptide Structural Features to CD8+ T Cell
Responses
To test whether consideration of structural features could lead to
improved immunogenicity predictions, we developed a peptide
database that contains immunogenic and non-immunogenic
peptides. We again emphasized nonameric, HLA-A2 restricted
peptides for consistency with our modeling strategy and as data
for HLA-A2-presented nonamers is most represented in various
immunological databases.

While the IEDB has records for immunogenic peptides, it
contains limited data on peptides that are poorly immunogenic
yet still well-presented by MHC proteins. To account for such

peptides, we relied on lists of peptides identified via proteomic
analyses of human HeLa cells (52, 53), yielding a dataset of
2756 nonameric, HLA-A2-presented self-peptides. While this
dataset will necessarily include peptides that would be efficiently
recognized by TCRs, we rationalized it would be dominated
by peptides that bind well to the MHC protein but are
not well-recognized (i.e., in a host, peptides that might pass
positive selection but not would not drive negative selection).
To this set of self-peptides, we added 155 well-characterized
immunogenic peptides listed in the IEDB, selected by filtering
for HLA-A2-presented human nonamers with IFN-γ ELISPOT
response frequencies of 50 or higher in order to minimize
false positives. The immunogenic peptide dataset primarily
included epitopes from viral sources, although humans and
other organisms were also represented (Table S2). The dataset
included multiple amino acid variants of various peptides,
which we rationalized would be important when aiming to
predict the immunogenicity of mutant peptides and their
wild-type counterparts.

We completed our dataset by adding 1044
HLA-A2-incompatible peptides selected from IEDB training
sets. Incorporating non-HLA-A2 binding peptides ensured that

our efforts addressed both TCR and MHC binding, as both
directly contribute to immunogenicity and are dependent upon

structure-determined energetic features. Accounting for both

TCR and MHC binding together is necessary for predicting
immunogenicity, as a peptide that binds weakly to an MHC
protein could still prove immunogenic by possessing optimal
features for TCR binding and vice versa (11, 12, 36). Moreover,
peptide mutations can influence both TCR and MHC binding
simultaneously, as seen with differential T cell recognition of
some “anchor fixed” shared tumor antigens (41, 54).

Amino acid distributions for the immunogenic, HeLa, and
HLA-A2-incompatible peptides are shown in Figure 3A. To
further ask if our dataset reflected previously noted distinctions
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FIGURE 2 | Experimental test of the peptide/MHC modeling strategy. (A) Structures of the ILNAMIAKI, ILNAMITKI, and ILNAMIVKI peptides in the binding groove of
HLA-A2 as determined by X-ray crystallography. The peptides are colored green, pink, or yellow as indicated; this color scheme is maintained throughout the figure.
The left panel shows all three structures superimposed. Peptide amino acids are indicated, with “X” used to indicate the various amino acids at position 7. The right
panel shows 2Fo-Fc electron density maps contoured at 1σ for peptides from each peptide/HLA-A2 structure. (B) Comparison of the models of each peptide/HLA-A2
complex with the crystallographic structures. For each panel, the backbone at Ala4 is highlighted with an asterisk and the Cα and full atom (FA) RMSD values for each
structure/model pair are indicated.

between immunogenic and non-immunogenic peptides, we
evaluated the hydrophobicity of the peptides in the immunogenic
and HeLa self-peptide pools. Using the Wimley-White interface
hydropathy index (55), we determined the mean hydrophobicity
for each peptide position in the two pools. Comparing the results
for the two showed that certain positions across the peptides
were statistically more likely to be more hydrophobic in the
immunogenic than the HeLa self-peptide pool, with the most
pronounced differences at positions 4, 7, and 8 (Figure 3B).
These results, including the distinctiveness of positions 4, 7, and
8, are consistent with previous observations (13, 14) and support
the conclusion that our peptide pools appropriately encompass
both immunogenic and non-immunogenic peptides.

A Neural Network to Predict
Immunogenicity From Structure-Derived
Parameters Outperforms Other
Approaches
Using our structural modeling procedure and the database
of peptides, we next constructed an artificial neural network

to predict the immunogenicity of nonameric peptides bound
to HLA-A2, relying on structural and energetic features
determined from three-dimensional models as the network
inputs. Using our rapid modeling scheme, we first generated
structural models of all 3,955 peptide/HLA-A2 complexes. To
describe the conformation-dependent physical properties of
the peptides in the binding groove, we used the 18 terms
in the Talaris2014 energy function to evaluate the energy of
each modeled peptide/HLA-A2 complex (39, 56). The terms,
listed in Table S3 and described in Alford et al. (56), account
for features such as energies of attraction, repulsion, and
solvation; energies of side chain and backbone hydrogen bonds;
and energies and probabilities of side chain and backbone
conformations. We also selected nine terms from the same
energy function for all nine positions in the peptide, choosing
terms that emphasized atomic-level features and avoiding those
descriptive of particular amino acids (e.g., tyrosine planarity).
To the nine amino-acid level terms, we also added total and
hydrophobic solvent accessible surface areas. Overall, 117 terms
that describe each modeled peptide/HLA-A2 complex were used
as network inputs.
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FIGURE 3 | Characteristics of peptides in the training set. (A) Sequence logos
of immunogenic peptides (top), HeLa self-peptides (middle), and HLA-A2
non-binding peptides (bottom). (B) Comparison of the hydrophobicity of each
peptide position in the immunogenic and self-peptide datasets (shown as the
difference between the immunogenic and self-peptide datasets) as determined
using the Wimley-White hydropathy index. Values less than zero (below
dashed line) indicate greater hydrophobicity in the immunogenic dataset.
P-values are indicated where the differences are statistically significant.

As with previous efforts in predicting immunogenicity, we
used a binary classification system for each peptide in our dataset,
classifying peptides identified from the IEDB as immunogenic
(score of 1) and the HeLa and non-HLA-A2 binding peptides
as non-immunogenic (score of 0). The network output is thus

a score, from zero to one, indicating the degree of confidence
in immunogenicity.

In developing the neural network, we used a nested 5-fold
cross-validation procedure that eliminated redundant terms. The
final model consisted of the 18 terms for the entire peptide/MHC
complex and seven for each amino acid in the peptide, yielding
81 terms for network inputs, with five hidden neurons and two
constant bias nodes (Figure 4; Table S3). The average cross-
validated area under the curve (AUC) in a receiver operating
characteristic (ROC) plot was 0.69 (the AUC values in the ROC
plots predict the probability that the neural network will more
favorably score an immunogenic peptide compared to a non-
immunogenic peptide). After training with the entire dataset, the
final neural network classified all peptides used with a total AUC
of 0.73 (Figure 5A).

To assess the added value of structural and energetic
information, we developed a control neural network trained
on the same 3,955 peptides but encoded by a sparse matrix
that considered only peptide sequence. In this head-to-
head comparison, the structurally-parameterized network
outperformed the sequence-only network (AUC of 0.73
vs. 0.61), demonstrating conclusively that incorporating
structural and energetic features improves predictions compared
to considering sequence alone. As a further control, we
developed another sequence-based network that considered
only amino acid hydropathy values. The hydropathy network
outperformed the sequence-only network (AUC of 0.64
vs. 0.61), but still did not match the performance of the
structurally-parameterized network.

For comparison to other tools, we evaluated the same
3,955 peptides with the IEDB immunogenicity and the NetTepi
immunogenicity prediction tools (13, 18, 24). IEDB classified
the peptides with an AUC of 0.58, whereas NetTepi yielded a
value of 0.54. Although not designed to predict immunogenicity,
peptide-MHC binding predictions are often used in this fashion
when assessing putative neoantigens, largely due to experience
from viral antigens (10). Consistent with earlier findings
(7), predictions using NetMHCpan 4.0 (19) did not perform
well, yielding AUC values of 0.51 in affinity mode and 0.46
in ligand-likelihood mode. Overall then, whether compared
with a simpler sequence-based neural network, a network
capturing solely amino acid hydrophobicity, existing sequence-
based immunogenicity tools, or predictions of peptide-HLA-A2
binding affinity, the structure-based network performed the best
in predicting immunogenicity.

Significance of Structure-Derived
Energetic Network Inputs for Classifying
Immunogenicity
Although interpreting the weights of inputs used within
a neural network is difficult due to the complexity and
non-linear nature of the models, the weights of structural
features used within the model can provide clues to their
contributions in the evaluation of immunogenicity. For MHC
binding, the structure-based network considered the impact
of anchor residues 2 and 9 by assessing terms such as
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FIGURE 4 | Process and architecture of the structure-based immunogenicity neural network. (A) The process begins with a peptide sequence, which is used to
generate a model of the peptide/HLA-A2 three-dimensional structure. (B) Analysis of the modeled structure yields energetic and topographical information, which are
used as inputs for the structure-based immunogenicity neural network. (C) Trained neural network architecture, with 81 structure-derived inputs shown on the left
(seven for each peptide position, 18 for the overall complex). A single hidden layer is present with five hidden neurons, along with two constant bias nodes. Black lines
give positive weights, gray lines negative weights, with line width indicating weight magnitude.

FIGURE 5 | Performance of the structure-based neural network in categorizing peptide immunogenicity. (A) Performance of the structure-based neural network
compared to control sequence-only and hydropathy-only neural networks, the IEDB and NetTepi immunogenicity prediction servers, and NetMHCpan 4.0 in evaluating
the training data as demonstrated by a receiver operating characteristic curve. The area under the curve (AUC) for each approach gives the probability that the
approach will more favorably score an immunogenic peptide than a non-immunogenic peptide. The structure-based neural network performed the best. (B) Against a
neoantigen dataset of 291 nonameric peptides not used for training the structure-based network performed less favorably but still outperformed the other approaches.

favorable van der Waals interactions at these positions in
order to quantify how compatible an epitope was with
HLA-A2. The network also focused on the interactions
surrounding peptide position 3, likely considering peptide-
MHC interactions in this tightly packed region of the HLA-A2
binding groove.

Consistent with the hypothesis that solvent exposed residues
provide information regarding peptide immunogenicity by
promoting TCR binding, the network emphasized hydrophobic
SASA. Notably, the weights for hydrophobic SASA and
hydrophobic solvation energy values at positions 5, 7, and 8
were in the top 10% of all weights in the neural network.

These positions are typically “TCR facing” in HLA-A2-presented
nonameric peptides. Indeed, in the structural models used for
evaluating the modeling, positions 5, 7, and 8 had high degrees
of solvent exposure, and crystallographic structures of TCRs
bound to nonameric peptide/HLA-A2 complexes show that these
positions on average burymore than 80% of their exposed surface
upon receptor binding (Figure S1).

One notable result from our analysis was that, excluding
the non-HLA-A2 binding peptides, the average computed
energies of the immunogenic complexes (as determined by the
Talaris2014 total energy score used in the structural modeling)
was higher than the non-immunogenic complexes. Although
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the difference was small (average of −560 Rosetta energy units
for immunogenic complexes vs. −562 for non-immunogenic
complexes), the energy reflects the entire peptide/MHC complex,
of which the peptide is only approximately 2% by mass.
Scoring only the peptides (in the context of the binding groove)
recapitulated this trend (average of 11 Rosetta energy units
for immunogenic peptides vs. 9.6 for non-immunogenic), and
the difference was statistically significant (p = 0.0017). We
believe this to be an indicator of how structure and energy
can influence the immunogenicity of neoantigens: amino acid
substitutions that impart a higher energy onto a peptide/MHC
(for example, by removing exposed charges and/or increasing
exposed hydrophobic surface area) yield ligands that have more
energy to release upon TCR binding, translating into stronger
binding affinities.

As a separate test of this hypothesis, we computed the total
and hydrophobic SASA for the models of the immunogenic and
non-immunogenic peptides (again excluding the non-HLA-A2
binding peptides). Although the difference in total SASA was
insignificant, the exposed hydrophobic solvent accessible surface
area of the immunogenic peptides was higher than the non-
immunogenic peptides (244 Å2 vs. 224 Å2; p = 9 × 10−7).
Exposing hydrophobic surface to water raises free energy via the
hydrophobic effect, with widely used estimates relating 1 Å2 of
exposed hydrophobic surface to 25–50 cal/mol in free energy
(57–59). The surface area analysis is consistent with the results
from the Rosetta scoring and supports our interpretation that
immunogenicity can arise from peptide substitutions that yield
higher energies and subsequently stronger TCR binding affinities.

Testing Performance on Data Not Used in
Training
Our structure-based neural network outperformed sequence-
based tools when classifying the training data. Ideally, large test
sets of neoantigens would be available for further evaluation.
Unfortunately, the number of well-categorized neoantigens is
still small, and further reduced by our restriction on nonamers
presented by HLA-A2. A recent survey identified ∼1,400
potential neoantigens (60), 291 of which were nonameric
peptides presented by HLA-A2 (Table S4). Of these, 17 were
reported as immunogenic. Although the numbers are small, in
evaluating these peptides, the structure-based neural network
outperformed sequence-based approaches when considering
the impact of a mutation on immunogenicity (Figure 5B).
Performance was only marginally favorable (AUC of 0.60), but
again the dataset is small, and these epitopes are not curated or
vetted to the same extent as those recorded in the IEDB.

Evaluation of Select Neoantigens and Their
Wild-Type Counterparts
To illustrate how structural information can help inform the
determination of immunogenicity and provide hypotheses for
testing and improving our approach, we examined structural
models of mutant peptides and their wild-type counterparts,
choosing select epitopes that could demonstrate the principles

encoded by our structure-based assessments as well as highlight
areas for improvement.

The LIIPFIHLI epitope was identified in a study of
heterologous T cell recognition of melanoma neoantigens, and
incorporates a cysteine to phenylalanine substitution at position
5 (32). The structural models show the position 5 side chain
to be almost fully extended, with the phenylalanine mutant
resulting in the exposure of an additional 90 Å2 of hydrophobic
surface area, which could promote stronger TCR binding due
to the hydrophobic effect (Figure 6A). The structure-based
neural network indeed predicted the mutation would improve
immunogenicity, with an increase in score of 0.14.

ALGALTVWL was identified in a study of neoantigens in
breast cancer (61). This epitope replaces an unfavorable histidine
in the primary HLA-A2 anchor residue at position 9 with a
preferred leucine, and thus improves peptide binding to the
MHC protein. Demonstrating how our approach captures not
only TCR binding to the peptide/MHC complex but also peptide
binding to MHC, the neural network correctly predicted the
leucine variant to be more immunogenic than the wild-type
peptide with the position 9 histidine, with an increase in the
immunogenicity score of 0.19. Structurally, the model predicts
the leucine at position 5 and tryptophan at position 8 to be
solvent exposed, likely responsible for forming interactions with
neoantigen-specific TCRs (Figure 6B).

QLMQLIEPA was identified in a large-scale study of
neoantigens in melanoma (62). The peptide substitutes a
glutamate for a glycine at position seven of the peptide. The
neural network predicted the mutated peptide would be less
immunogenic than the wild-type peptide, with a change in
score of −0.16. Indeed, no T cell responses were identified with
QLMQLIEPA. The modeling indicates the new glutamate would
be fully exposed (Figure 6C), which as discussed above would
likely require close charge complementarity by an incoming TCR,
consistent with the reduced likelihood of immunogenicity.

Lastly, ALIDLSSGL was identified in the same study as
QLMQLIEPA (62). The peptide incorporates a leucine to a
proline substitution at position 5 of the peptide. The neural
network predicted the neoantigen to be more immunogenic
than the wild-type peptide; however, no T cell responses were
identified with the peptide. This false positive may be due to a
conformational impact of the proline mutation: the structural
modeling predicts that bothmutant and wild-type peptides adopt
very similar pathways through the HLA-A2 binding groove,
with a minor impact on the position of Asp4 (Figure 6D).
However, a proline substitution could impact the peptide
backbone in a fashion not captured by our modeling scheme,
possibly indicating a need for more exhaustive conformational
sampling in the structural modeling as discussed below.

DISCUSSION

Identifying immunogenic peptides in cellular immunity remains
a challenge, particularly in the development of personalized
“neoantigen” vaccines based on individual tumor genomes.
Here, we tested the hypothesis that immunogenicity predictions
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FIGURE 6 | Examination of modeled structures of select neoantigens and their wild-type counterparts. (A) The neoantigen LIIPFIHLI substitutes a phenylalanine for a
cysteine at position 5. The position 5 side chain is predicted to extend from the top of a bulge in the peptide, and the mutation results in an increase in exposed
hydrophobic surface of 90 Å2. (B) The neoantigen ALGALTVWL substitutes a leucine for a histidine at position 9, “fixing” the second primary anchor residue and
improving peptide binding to HLA-A2. The leucine at position 5 and tryptophan at position 8 are predicted to extend up from the peptide backbone to form
interactions with T cell receptors. (C) The neoantigen QLMQLIEPA substitutes a glutamate for a glycine at position 7. The glutamate 7 side chain in the mutant peptide
is predicted to be fully exposed, increasing exposed charged surface area as indicated by the surface area representation for the position 7 side chain. (D) The
neoantigen ALIDLSSGL replaces a proline with a leucine at position 5 of the peptide. No conformational consequences are predicted for the mutation.

for peptides presented by class I MHC proteins could be
improved by considering features encoded by the structure
of the peptide/MHC complex, rather than by features of
the peptide amino acid sequence alone. Our hypothesis was
predicated on the notion that immunogenicity is influenced
by both peptide binding to the MHC protein as well as TCR
binding to the peptide/MHC complex. Prediction methods for
the former are well-developed, whereas prediction methods
for the latter are in their infancy. Some peptide features that
possibly promote TCR binding have been identified (13–17),
but we suggest these and other important features are best
interpreted, and ultimately predicted, by examining structures
and their physicochemical properties and energies. Identifying
these features and the magnitudes required are particularly
important for tumor neoantigens, as the bar for establishing
“difference from self” for neoantigens is higher than for antigens
from viruses or other pathogens due to the various tolerance
mechanisms that limit self-reactivity.

To explore our hypothesis, we developed a rapid and
accurate procedure for modeling the structures of nonamers
bound to the class I MHC protein HLA-A2. Our procedure
performed well-compared to previously published methods
and was suitably rapid for use with large peptide databases.
Following this, we assembled a database of immunogenic and

non-immunogenic peptides, including in the latter HLA-A2-
incompatible peptides predicted to be very weak binders. We
used the structural modeling procedure to model the nearly 4,000
peptide/HLA-A2 complexes in this database. We then trained
an artificial neural network for predicting immunogenicity that
relied on energetic features determined by the structures. As
potential terms to be incorporated, we included features such as
van der Waals interactions, hydrophobic solvation, Coulombic
potentials, hydrogen bond energies, side chain rotamer energies,
as well as solvent accessible surface areas. We designed our
approach to capture both peptide binding to the MHC protein as
well as TCR binding to the peptide/MHC, as both are determined
by structural and physicochemical features, and in determining
immunogenicity, strong TCR binding can compensate for weak
peptide-MHC binding and vice versa (11, 12, 36).

Our structural approach outperformed other prediction tools,
including comparisons with sequence-based neural networks
trained on the same peptide datasets. Our model also
outperformed publicly available immunogenicity prediction
tools, as well as predictions based on peptide-MHC binding
affinity. Beyond immunogenicity prediction, an important added
benefit of our approach is the availability of structural models to
aid in interpreting results. The utility of these models is found
when comparing results for mutant peptides and their wild-type
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counterparts, as the models can indicate the types of structural
alterations that impact TCR recognition of a mutated vs. wild-
type peptide/MHC complex. In cases in which the mutation
improves immunogenicity by enhancing peptide binding to the
MHC protein, the models still provide indications about which
peptide features may be important for TCR recognition.

A key observation that emerged from our analysis is
that, excluding non-HLA-A2 binders, immunogenic peptides
possessed higher total energies than non-immunogenic
complexes. We believe this result is an important indicator
of how structure and energy can influence immunogenicity
beyond simply enhancing peptide affinity for the MHC protein:
amino acid substitutions that impart a higher energy onto a
peptide/MHC complex yield ligands that have more energy
to release upon TCR binding, thus translating into stronger
TCR binding affinities. Higher energy would, for example, be
imparted by removing exposed charges or increasing exposed
hydrophobic surface area. Given a compatible TCR, this
high energy would be released upon binding, contributing
to a favorable TCR-peptide/MHC binding free energy,
i.e., better TCR binding affinity. From this interpretation,
neoantigens have a greater likelihood of being immunogenic
not simply when they are chemically or structurally “different”
from a corresponding wild-type peptide, but different in
ways that promote strong TCR binding. In addition to
helping explain immunogenicity, this interpretation connects
immunogenicity to well-understood physical attributes of
biomolecular recognition, and is consistent with studies on
the composition and structural properties of protein-protein
interfaces and how they differ from other protein surfaces, as
well as the properties of “hot spots” in protein-protein interfaces
(63, 64).

Although we consider our results promising, improvements
are necessary before a structural modeling/energetic scoring
methodology can be widely deployed. Our rapid modeling
procedure, while matching or even exceeding the performance of
previous approaches, did not capture all the observed structural
changes that occur in response to peptide modification. We
expect that incorporating more exhaustive conformational
sampling will yield superior models. Although this will
increase computational time, this impact will be offset
by ongoing improvements in computing hardware and
sampling methods. Growth in the number of crystallographic
structures of peptides bound to class I MHC proteins,
particularly structures of closely related peptide pairs, will
help benchmark the accuracy of structural modeling. Our
study was limited to nonamers and HLA-A2, primarily because
of the large amount of structural and immunological data
available for nonamer/HLA-A2 complexes. In the absence
of more structural data, extension to peptides of other
lengths and other HLA haplotypes will call for even more
sophisticated modeling.

Another area for methodological improvements is in
the energy functions and other terms used to evaluate
peptide/MHC models. We relied upon an energy function
and set of terms frequently used in the analysis and design
of protein structures. As with modeling procedures, more

complex means to assess protein structures and energies are
available, and these undergo regular refinements. Incorporation
of additional or more sophisticated energetic terms (e.g.,
electrostatic surface potentials, more accurate approaches to
computing solvation energies, and consideration of changes in
peptide flexibility that occur upon mutation) could thus also
be explored.

Attention should also be focused toward generating datasets
that can be used to train models aiming to predict peptide
immunogenicity (65). Epitopes with verified, strong immune
responses can be found in the IEDB as we relied upon here,
and efforts such as the Cancer Antigenic Peptide Database
aim to tabulate immunogenic neoantigens (66). However,
experimentally validated immunogenic neoantigens remain rare,
and some efforts aimed at building CTL epitope databases
prioritize peptide processing and MHC presentation over
T cell recognition (67). Additionally, prediction tools also
require knowledge of non-immunogenic epitopes, particularly
those that bind well to MHC proteins yet do not favor
TCR binding. We relied on a list of self-peptides which we
hypothesized would be dominated by such epitopes, but to
some extent would also include ones that are well-recognized
by TCRs. This would include not only self-peptides that
would drive negative selection, but as our peptide list was
derived from immortalized HeLa cells (52, 53), it also likely
includes various HPV epitopes and associated neoantigens.
The fact that we recovered previously identified positional
differences in hydrophobicity between immunogenic and non-
immunogenic peptides suggests that the influence of such
peptides in our self-dataset is small. However, a better accounting
of peptides (ideally derived from healthy tissues) which bind
well to class I MHC proteins yet do not promote strong
immunogenicity when tested across multiple T cell populations
is needed.

Lastly, our prediction efforts were centered on the ability
to elicit strong CD8+ T cell responses. Eliciting CD8+ T
cell responses remains a goal of peptide-based vaccine
efforts for both pathogens and cancer (68), and CD8+

T cell activity is associated with antitumor immunity
(69). However, additional factors will influence successful
peptide-based vaccines. A deeper understanding of the
strengths and types of responses associated with successful
antitumor immunity will further allow prediction efforts
to improve.

In conclusion, we have explored the potential for large-
scale structure-based modeling and energetic scoring for
predicting peptide immunogenicity, with an emphasis on
cancer neoantigens. Our approach outperformed other
approaches and although it is a proof-of-concept, the
avenues for improvement are clear and actionable. The
structural modeling allows for insights into immunogenicity
lacking from other approaches. Furthermore, because it
is fully atomistic, the approach can grow to incorporate
complexities not addressable via sequence considerations
alone, such as those arising from peptides incorporating
post translational modifications or non-standard
amino acids.
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MATERIALS AND METHODS

Structural Modeling of HLA-A2 Presented
Peptides
Structural modeling of peptide/HLA-A2 complexes was
performed with PyRosetta using the Talaris2014 energy
function (38, 39). The desired peptide sequence was
computationally introduced into HLA-A2, using PDB IDs
1DUZ, 3QFD, and 5FA3 as templates (40–42). This was
followed by 50 Monte Carlo-based simulated annealing
sidechain and peptide backbone minimization steps using the
LoopMover_Refine_CCD protocol, generating 10 independent
decoys per peptide from each starting template. The large
number of resulting packing operations introduced some
minor variability when scoring the models. Therefore,
the unweighted score terms for the three lowest scoring
trajectories were averaged and used for neural network
inputs. Solvent accessible surface area calculations were
performed with PyRosetta and Discovery Studio using a
1.4 Å radius probe. The modeling procedure is available as
Supplementary File 1.

Dataset Collection
Our structural database for evaluating modeling strategies
consisted of high resolution (<3.0 Å) nonameric peptide/HLA-
A2 structures within the PDB. Structures in this dataset were
selected for strong electron density as determined by visual
inspection using Coot for calculating 2Fo-Fc density maps (70).
Our final database contained 53 structures presenting different
peptide epitopes.

The neural network training set contained 3,955 nonameric
peptides collected from published sources. For self-peptides
categorized as non-immunogenic we used lists of peptides
identified via mass spectrometry analysis of human HeLa
cells transfected with soluble HLA-A2 (52, 53). HLA-A2
incompatible nonamers were obtained from IEDB training
sets (24). Immunogenic peptides were selected from IEDB
to ensure quality of data and minimize false positives by
selecting only HLA-A2-restricted nonamers with a positive
IFNγ ELISpot with a response frequency starting at 50. The
test dataset was derived from a recent review of neoantigens
(60), again selecting only nonamers presented by HLA-
A2 for evaluation, resulting in a dataset consisting of 291
candidate neoantigens.

ARTIFICIAL NEURAL NETWORK TRAINING

Two-layer feed-forward networks were trained with the
scaled conjugate gradient back-propagation trainscg tool
in MATLAB 2017b. Training and evaluation of neural
network architectures was performed using a nested 5-
fold cross-validation procedure (23). The peptides in the
training dataset were randomly split into five sets of training,
validation, and test data. The splitting was performed such
that all sets had approximately the same distribution of
non-binding, self, and immunogenic peptides. With the
binary classification of immunogenic or non-immunogenic

(with non-immunogenic incorporating self and non-binding
peptides), the training data were used to perform feed-
forward and back propagation. The validation set defined
the stopping criteria for the network training, and the test
set evaluated performance via AUC. Sets were rotated to
ensure each was used in training, validation, and testing. To
maintain an equal distribution of classifiers and eliminate
bias for non-immunogenic peptides, immunogenic peptides
in the training sets, but not testing or validation sets, were
randomly oversampled.

The structure-based neural network architecture used was
a conventional feed-forward network with an input layer
containing 80–117 neurons, one hidden layer with 1–10 neurons,
and a single neuron output layer. The neurons in the input
layer describe structural and structure-derived energetic features
of the nine amino acids in the peptide sequence, with each
amino acid represented by up to 11 neurons. The remaining
18 neurons describe global structural and structure-derived
energetic features of the entire peptide/HLA-A2 complex. The
structural and energetic features were those that comprise the
Talaris2014 energy function (39) or derived from the structure
as listed in Table S3 [described in (56)]. For each of the
five training and test sets, a series of network trainings were
performed each with a different number of hidden neurons (2,
3, 4, 6, 8, and 10) and a different number of input neurons.
Finally, a single network with the highest test performance
was selected.

For control networks that considered peptide sequence or
amino acid hydropathy values, we encoded peptide sequences
in 20 × 9 sparse matrices encoding peptide sequence or 1 ×

9 matrices containing Wimley-White hydropathy values (55)
corresponding to the amino acid at each position. These matrices
were used to train networks of the same architecture (except
they relied on 180 or 9 input nodes) subject to the same cross
validation procedure.

Protein Crystallization and Structure
Determination
Purified complexes of ILNAMIVKI, ILNAMIAKI, and
ILNAMITKI with HLA-A2 were generated by refolding
recombinant heavy chain and β2-microglobulin from bacterially-
produced inclusion bodies according to standard procedures
(71), followed by purification using anion exchange and
size-exclusion chromatography. Peptides were synthesized
commercially by AAPTEC at >90% purity. Crystals of the
ILNAMIVKI complex were grown by hanging-drop vapor
diffusion at 23◦C in 20% PEG 8000, 100mM MES pH 6.5,
200mM magnesium acetate. Crystals of the ILNAMITKI
complex were grown at 23◦C in 20% PEG 3350, 100mM
HEPES pH 7.5. Crystals of the ILNAMIAKI complex were
grown at 4◦C in 15% PEG 3350, 100mM MES pH 6.5.
Crystals were harvested and cryoprotected in ∼15% glycerol
and ∼85% mother liquor and then immediately frozen in
liquid nitrogen.

Data for the ILNAMIVKI complex were collected at the 22ID
beamline at the Advanced Photon Source at Argonne National
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Laboratories. Data for ILNAMITKI and ILNAMIAKI complexes
were collected at the 23ID-D beamline at the Advanced Photon
Source. For the ILNAMIVKI and ILNAMITKI structures, data
integration and scaling were performed using the HKL2000
suite. Integration and scaling of the ILNAMIAKI data were
performed with DIALS (72). The structures were solved by
molecular replacement using Phaser in PHENIX (73), with PDB
3PWL used as a search model for ILNAMIVKI and ILNAMIAKI
(74), while 1TVH was used as a search model for ILNAMITKI
(75). Peptides were deleted from search models prior to
molecular replacement. Multiple steps of restrained refinement
were performed using PHENIX Refine (76). Evaluation of
models and fitting to maps were performed using Coot (70).
MolProbity was used to evaluate structures during and after
refinement (77).

DATA AVAILABILITY

The experimental structural data generated for this study can be
found in the Protein Data Bank under accession numbers 6OPD,
6PTB, and 6PTE.

AUTHOR CONTRIBUTIONS

TR developed the modeling, scoring, and prediction approaches.
GK analyzed data and performed control analyses. JD analyzed
data and compared to published results. GK, AS, LD, and
AA performed X-ray crystallography. BB oversaw and directed
the research. The manuscript was written and edited by
all authors.

FUNDING

Supported by NIH grant R35GM118166 to BB and a Notre
Dame Research Like a Champion award to LD. TR and JD were
supported by NIH grants TR001107 and TR001108. GK was
supported by NIH grant TR002529.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2019.02047/full#supplementary-material

REFERENCES

1. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond

current vaccines. Nat Med. (2004) 10:909–15. doi: 10.1038/nm1100

2. Bräunlein E, Krackhardt AM. Identification and characterization of

neoantigens as well as respective immune responses in cancer patients. Front.

Immunol. (2017) 8:1702. doi: 10.3389/fimmu.2017.01702

3. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An

immunogenic personal neoantigen vaccine for patients with melanoma.

Nature. (2017) 547:217–21. doi: 10.1038/nature22991

4. Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P, Löwer M, et al.

Personalized RNA mutanome vaccines mobilize poly-specific therapeutic

immunity against cancer.Nature. (2017) 547:222–6. doi: 10.1038/nature23003

5. Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm

S, et al. Direct identification of clinically relevant neoepitopes presented on

native human melanoma tissue by mass spectrometry. Nat Commun. (2016)

7:13404. doi: 10.1038/ncomms13404

6. Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W, Sidney J, et al.

Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic

cells enables more accurate epitope prediction. Immunity. (2017) 46:315–26.

doi: 10.1016/j.immuni.2017.02.007

7. Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, et al.

Genomic and bioinformatic profiling of mutational neoepitopes reveals new

rules to predict anticancer immunogenicity. J Exp Med. (2014) 211:2231–48.

doi: 10.1084/jem.20141308

8. Toor JS, Rao AA, McShan AC, Yarmarkovich M, Nerli S, Yamaguchi K, et al.

A recurrent mutation in anaplastic lymphoma kinase with distinct neoepitope

conformations. Front Immunol. (2018) 9:99. doi: 10.3389/fimmu.2018.

00099

9. Fritsch EF, Rajasagi M, Ott PA, Brusic V, Hacohen N, Wu CJ. HLA-binding

properties of tumor neoepitopes in humans. Cancer Immunol Res. (2014)

2:522–9. doi: 10.1158/2326-6066.CIR-13-0227

10. Croft NP, Smith SA, Pickering J, Sidney J, Peters B, Faridi P, et al. Most viral

peptides displayed by class I MHC on infected cells are immunogenic. Proc

Natl Acad Sci USA. (2019) 116:3112–7. doi: 10.1073/pnas.1815239116

11. Feltkamp MCW, Vierboom MPM, Kast WM, Melief CJM. Efficient

MHC class I-peptide binding is required but does not ensure MHC

class I-restricted immunogenicity. Mol Immunol. (1994) 31:1391–401.

doi: 10.1016/0161-5890(94)90155-4

12. Ochoa-Garay J, McKinney DM, Kochounian HH, McMillan M. The

ability of peptides to induce cytotoxic T cells in vitro does not strongly

correlate with their affinity for the H-2Ld molecule: implications for

vaccine design and immunotherapy. Mol Immunol. (1997) 34:273–81.

doi: 10.1016/S0161-5890(97)00019-9

13. Calis JJA,MaybenoM, Greenbaum JA,Weiskopf D, De Silva AD, Sette A, et al.

Properties of MHC class I presented peptides that enhance immunogenicity.

PLoS Comput Biol. (2013) 9:e1003266. doi: 10.1371/journal.pcbi.1003266

14. Chowell D, Krishna S, Becker PD, Cocita C, Shu J, Tan X, et al.

TCR contact residue hydrophobicity is a hallmark of immunogenic

CD8+ T cell epitopes. Proc Natl Acad Sci USA. (2015) 112:E1754–E62.

doi: 10.1073/pnas.1500973112

15. Tung C-W, Ziehm M, Kämper A, Kohlbacher O, Ho S-Y. POPISK: T-cell

reactivity prediction using support vector machines and string kernels. BMC

Bioinform. (2011) 12:446. doi: 10.1186/1471-2105-12-446

16. Pang Y-P, Elsbernd LR, Block MS, Markovic SN. Peptide-binding groove

contraction linked to the lack of T cell response: using complex structure

and energy to identify neoantigens. ImmunoHorizons. (2018) 2:216–25.

doi: 10.4049/immunohorizons.1800048

17. Kim S, Kim HS, Kim E, Lee MG, Shin EC, Paik S, et al. Neopepsee:

accurate genome-level prediction of neoantigens by harnessing sequence and

amino acid immunogenicity information. Ann Oncol. (2018) 29:1030–6.

doi: 10.1093/annonc/mdy022

18. Trolle T, Nielsen M. NetTepi: an integrated method for the prediction of

T cell epitopes. Immunogenetics. (2014) 66:449–56. doi: 10.1007/s00251-014-

0779-0

19. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-

4.0: Improved peptide–MHC class I interaction predictions integrating eluted

ligand and peptide binding affinity data. J Immunol. (2017) 199:3360–8.

doi: 10.4049/jimmunol.1700893

20. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural

networks: application to the MHC class I system. Bioinformatics. (2016)

32:511–7. doi: 10.1093/bioinformatics/btv639

21. Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus

method for the major histocompatibility complex class I predictions.

Immunogenetics. (2012) 64:177–86. doi: 10.1007/s00251-011-0579-8

22. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S.

SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics.

(1999) 50:213–9. doi: 10.1007/s002510050595

Frontiers in Immunology | www.frontiersin.org 12 August 2019 | Volume 10 | Article 20472425

https://www.frontiersin.org/articles/10.3389/fimmu.2019.02047/full#supplementary-material
https://doi.org/10.1038/nm1100
https://doi.org/10.3389/fimmu.2017.01702
https://doi.org/10.1038/nature22991
https://doi.org/10.1038/nature23003
https://doi.org/10.1038/ncomms13404
https://doi.org/10.1016/j.immuni.2017.02.007
https://doi.org/10.1084/jem.20141308
https://doi.org/10.3389/fimmu.2018.00099
https://doi.org/10.1158/2326-6066.CIR-13-0227
https://doi.org/10.1073/pnas.1815239116
https://doi.org/10.1016/0161-5890(94)90155-4
https://doi.org/10.1016/S0161-5890(97)00019-9
https://doi.org/10.1371/journal.pcbi.1003266
https://doi.org/10.1073/pnas.1500973112
https://doi.org/10.1186/1471-2105-12-446
https://doi.org/10.4049/immunohorizons.1800048
https://doi.org/10.1093/annonc/mdy022
https://doi.org/10.1007/s00251-014-0779-0
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.1093/bioinformatics/btv639
https://doi.org/10.1007/s00251-011-0579-8
https://doi.org/10.1007/s002510050595
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Riley et al. Structure Based Prediction of Immunogenicity

23. Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus

S, et al. Reliable prediction of T-cell epitopes using neural networks

with novel sequence representations. Protein Sci. (2003) 12:1007–17.

doi: 10.1110/ps.0239403

24. Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, et al. The immune

epitope database and analysis resource in epitope discovery and synthetic

vaccine design. Front Immunol. (2017) 8:278. doi: 10.3389/fimmu.2017.00278

25. Dill KA. Dominant forces in protein folding. Biochemistry. (1990) 29:7133–55.

doi: 10.1021/bi00483a001

26. KauzmannW. Some factors in the interpretation of protein denaturation.Adv

Protein Chem. (1959) 14:1–63. doi: 10.1016/S0065-3233(08)60608-7

27. Southall NT, Dill KA, Haymet ADJ. A view of the hydrophobic effect. J Phys

Chem B. (2002) 106:521–33. doi: 10.1021/jp015514e

28. Sheinerman FB, Norel R, Honig B. Electrostatic aspects of protein-

protein interactions. Curr Opin Struct Biol. (2000) 10:153–9.

doi: 10.1016/S0959-440X(00)00065-8

29. Bosshard HR, Marti DN, Jelesarov I. Protein stabilization by salt

bridges: concepts, experimental approaches and clarification of some

misunderstandings. J Mol Recognit. (2004) 17:1–16. doi: 10.1002/jmr.657

30. Blevins SJ, Pierce BG, Singh NK, Riley TP, Wang Y, Spear TT, et al.

How structural adaptability exists alongside HLA-A2 bias in the human

αβ TCR repertoire. Proc Natl Acad Sci USA. (2016) 113:E1276–E85.

doi: 10.1073/pnas.1522069113

31. Singh NK, Riley TP, Baker SCB, Borrman T, Weng Z, Baker BM. Emerging

concepts in TCR specificity: rationalizing and (Maybe) predicting outcomes. J

Immunol. (2017) 199:2203–13. doi: 10.4049/jimmunol.1700744

32. Strønen E, Toebes M, Kelderman S, van Buuren MM, Yang W, van Rooij

N, et al. Targeting of cancer neoantigens with donor-derived T cell receptor

repertoires. Science. (2016) 352:1337–41. doi: 10.1126/science.aaf2288

33. Ding YH, Baker BM, Garboczi DN, Biddison WE, Wiley DC. Four

A6–TCR/peptide/HLA-A2 structures that generate very different

T cell signals are nearly identical. Immunity. (1999) 11:45–56.

doi: 10.1016/S1074-7613(00)80080-1

34. Hausmann S, Biddison WE, Smith KJ, Ding YH, Garboczi DN, Utz U,

et al. Peptide recognition by two HLA-A2/Tax11–19–specific T cell clones

in relationship to their MHC/peptide/TCR crystal structures. J Immunol.

(1999) 162:5389–97.

35. YadavM, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al.

Predicting immunogenic tumour mutations by combining mass spectrometry

and exome sequencing. Nature. (2014) 515:572–6. doi: 10.1038/nature14001

36. Bowerman NA, Crofts TS, Chlewicki L, Do P, Baker BM, Christopher

Garcia K, et al. Engineering the binding properties of the T cell

receptor:peptide:MHC ternary complex that governs T cell activity. Mol

Immunol. (2009) 46:3000–8. doi: 10.1016/j.molimm.2009.06.012

37. Schueler-Furman O, Elber R, Margalit H. Knowledge-based structure

prediction of MHC class I bound peptides: a study of 23 complexes. Fold

Design. (1998) 3:549–64. doi: 10.1016/S1359-0278(98)00070-4

38. Chaudhury S, Lyskov S, Gray JJ. PyRosetta: a script-based interface for

implementing molecular modeling algorithms using Rosetta. Bioinformatics.

(2010) 26:689–91. doi: 10.1093/bioinformatics/btq007

39. O’Meara MJ, Leaver-Fay A, Tyka MD, Stein A, Houlihan K, DiMaio F,

et al. Combined covalent-electrostatic model of hydrogen bonding improves

structure prediction with rosetta. J Chem Theory Comput. (2015) 11:609–22.

doi: 10.1021/ct500864r

40. Khan AR, Baker BM, Ghosh P, Biddison WE, Wiley DC. The structure and

stability of an HLA-A∗0201/octameric tax peptide complex with an empty

conserved peptide-N-terminal binding site. J Immunol. (2000) 164:6398–405.

doi: 10.4049/jimmunol.164.12.6398

41. Borbulevych OY, Insaidoo FK, Baxter TK, Powell DJ, Jr., Johnson LA, Restifo

NP, et al. Structures of MART-1(26/27–35) Peptide/HLA-A2 complexes

reveal a remarkable disconnect between antigen structural homology and

T cell recognition. J Mol Biol. (2007) 372:1123–36. doi: 10.1016/j.jmb.2007.

07.025

42. Remesh SG, Andreatta M, Ying G, Kaever T, Nielsen M, McMurtrey C, et al.

Unconventional peptide presentation by major histocompatibility complex

(MHC) class I Allele HLA-A∗02:01: BREAKING CONFINEMENT. J Biol

Chem. (2017) 292:5262–70. doi: 10.1074/jbc.M117.776542

43. Tong JC, Tan TW, Ranganathan S. Modeling the structure of bound peptide

ligands to major histocompatibility complex. Protein Sci Publ Protein Soc.

(2004) 13:2523–32. doi: 10.1110/ps.04631204

44. Raveh B, London N, Schueler-Furman O. Sub-angstrom modeling of

complexes between flexible peptides and globular proteins. Proteins Struc

Funct Bioinform. (2010) 78:2029–40. doi: 10.1002/prot.22716

45. Rosenfeld R, Zheng Q, Vajda S, DeLisi C. Computing the structure

of bound peptides: application to antigen recognition by class I major

histocompatibility complex receptors. J Mol Biol. (1993) 234:515–21.

doi: 10.1006/jmbi.1993.1607

46. SezermanU, Vajda S, DeLisi C. Free energymapping of class IMHCmolecules

and structural determination of bound peptides. Protein Sci A Public Protein

Soc. (1996) 5:1272–81. doi: 10.1002/pro.5560050706

47. Rognan D, Lauemøller SL, Holm A, Buus S, Tschinke V. Predicting binding

affinities of protein ligands from three-dimensional models: application to

peptide binding to class I major histocompatibility proteins. J Medic Chem.

(1999) 42:4650–8. doi: 10.1021/jm9910775

48. Park M-S, Park SY, Miller KR, Collins EJ, Lee HY. Accurate structure

prediction of peptide–MHC complexes for identifying highly immunogenic

antigens.Mol Immunol. (2013) 56:81–90. doi: 10.1016/j.molimm.2013.04.011

49. Bui HH, Schiewe AJ, Von Grafenstein H, Haworth IS. Structural prediction of

peptides binding to MHC class I molecules. Proteins Struc Funct Genet. (2006)

63:43–52. doi: 10.1002/prot.20870

50. Fagerberg T, Cerottini J-C, Michielin O. Structural prediction of

peptides bound to MHC class I. J Mol Biol. (2006) 356:521–46.

doi: 10.1016/j.jmb.2005.11.059

51. Robbins PF, Lu Y-C, El-Gamil M, Li YF, Gross C, Gartner J, et al.

Mining exomic sequencing data to identify mutated antigens recognized

by adoptively transferred tumor-reactive T cells. Nat Med. (2013) 19:747.

doi: 10.1038/nm.3161

52. Trolle T, McMurtrey CP, Sidney J, Bardet W, Osborn SC, Kaever T,

et al. The length distribution of class I–restricted T cell epitopes is

determined by both peptide supply and MHC allele–specific binding

preference. J Immunol. (2016) 196:1480–7. doi: 10.4049/jimmunol.15

01721

53. McMurtrey C, Trolle T, Sansom T, Remesh SG, Kaever T, Bardet W, et al.

Toxoplasma gondii peptide ligands open the gate of the HLA class I binding

groove. eLife. (2016) 5:e12556. doi: 10.7554/eLife.12556

54. Madura F, Rizkallah PJ, Holland CJ, Fuller A, Bulek A, Godkin AJ,

et al. Structural basis for ineffective T-cell responses to MHC anchor

residue-improved “heteroclitic” peptides. Eur J Immunol. (2015) 45:584–91.

doi: 10.1002/eji.201445114

55. White SH, Wimley WC. Membrane protein folding and stability:

physical principles. Ann Rev Biophys Biomol Struc. (1999) 28:319–65.

doi: 10.1146/annurev.biophys.28.1.319

56. Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park

H, et al. The rosetta all-atom energy function for macromolecular

modeling and design. J Chem Theory Comput. (2017) 13:3031–48.

doi: 10.1021/acs.jctc.7b00125

57. Nicholls A, Sharp KA, Honig B. Protein folding and association: insights

from the interfacial and thermodynamic properties of hydrocarbons. Proteins.

(1991) 11:281–96. doi: 10.1002/prot.340110407

58. Sharp K, Nicholls A, Fine R, Honig B. Reconciling the magnitude of the

microscopic and macroscopic hydrophobic effects. Science. (1991) 252:106–9.

doi: 10.1126/science.2011744

59. Sharp KA, Nicholls A, Friedman R, Honig B. Extracting hydrophobic

free energies from experimental data: relationship to protein

folding and theoretical models. Biochemistry. (1991) 30:9686–97.

doi: 10.1021/bi00104a017

60. Bjerregaard A-M, Nielsen M, Jurtz V, Barra CM, Hadrup SR, Szallasi Z, et al.

An analysis of natural T cell responses to predicted tumor neoepitopes. Front

Immunol. (2017) 8:1566. doi: 10.3389/fimmu.2017.01566

61. Zhang X, Kim S, Hundal J, Herndon JM, Li S, Petti AA, et al. Breast cancer

neoantigens can induce CD8+ T-cell responses and antitumor immunity.

Cancer Immunol Res. (2017) 5:516–23. doi: 10.1158/2326-6066.CIR-16-0264

62. Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan

K, Bliskovsky VV, et al. Isolation of neoantigen-specific T cells from

Frontiers in Immunology | www.frontiersin.org 13 August 2019 | Volume 10 | Article 20472526

https://doi.org/10.1110/ps.0239403
https://doi.org/10.3389/fimmu.2017.00278
https://doi.org/10.1021/bi00483a001
https://doi.org/10.1016/S0065-3233(08)60608-7
https://doi.org/10.1021/jp015514e
https://doi.org/10.1016/S0959-440X(00)00065-8
https://doi.org/10.1002/jmr.657
https://doi.org/10.1073/pnas.1522069113
https://doi.org/10.4049/jimmunol.1700744
https://doi.org/10.1126/science.aaf2288
https://doi.org/10.1016/S1074-7613(00)80080-1
https://doi.org/10.1038/nature14001
https://doi.org/10.1016/j.molimm.2009.06.012
https://doi.org/10.1016/S1359-0278(98)00070-4
https://doi.org/10.1093/bioinformatics/btq007
https://doi.org/10.1021/ct500864r
https://doi.org/10.4049/jimmunol.164.12.6398
https://doi.org/10.1016/j.jmb.2007.07.025
https://doi.org/10.1074/jbc.M117.776542
https://doi.org/10.1110/ps.04631204
https://doi.org/10.1002/prot.22716
https://doi.org/10.1006/jmbi.1993.1607
https://doi.org/10.1002/pro.5560050706
https://doi.org/10.1021/jm9910775
https://doi.org/10.1016/j.molimm.2013.04.011
https://doi.org/10.1002/prot.20870
https://doi.org/10.1016/j.jmb.2005.11.059
https://doi.org/10.1038/nm.3161
https://doi.org/10.4049/jimmunol.1501721
https://doi.org/10.7554/eLife.12556
https://doi.org/10.1002/eji.201445114
https://doi.org/10.1146/annurev.biophys.28.1.319
https://doi.org/10.1021/acs.jctc.7b00125
https://doi.org/10.1002/prot.340110407
https://doi.org/10.1126/science.2011744
https://doi.org/10.1021/bi00104a017
https://doi.org/10.3389/fimmu.2017.01566
https://doi.org/10.1158/2326-6066.CIR-16-0264
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Riley et al. Structure Based Prediction of Immunogenicity

tumor and peripheral lymphocytes. J Clin Invest. (2015) 125:3981–91.

doi: 10.1172/JCI82416

63. Birtalan S, Fisher RD, Sidhu SS. The functional capacity of the natural

amino acids for molecular recognition. Mol BioSyst. (2010) 6:1186–94.

doi: 10.1039/b927393j

64. Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol.

(1998) 280:1–9. doi: 10.1006/jmbi.1998.1843

65. Eklund AC, Szallasi Z. Computational prediction of neoantigens: do we

need more data or new approaches? Ann Oncol. (2018) 29:799–801.

doi: 10.1093/annonc/mdy070

66. Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. Database

of T cell-defined human tumor antigens: the 2013 update. Cancer Immunity.

(2013) 13:15. Available online at: https://cancerimmunolres.aacrjournals.org/

content/canimmarch/13/3/15

67. Llano A, Williams A, Overa A, Silva-Arrieta S, Brander C. Best-characterized

HIV-1 CTL epitopes: the 2013 update. In: Yusim K, Korber B, Brander C,

Barouch D, de Boer R, Haynes BF, Koup R, Moore JP, Walker BD, editors.

HIV Molecular Immunology 2013. Los Alamos, NM: Theoretical Biology and

Biophysics Group; Los Alamos National Laboratory (2013). p. 3–19.

68. Cosma G, Eisenlohr L. CD8+ T-cell responses in vaccination:

reconsidering targets and function in the context of chronic antigen

stimulation [version 1; referees: 2 approved]. F1000Res. (2018) 7:508.

doi: 10.12688/f1000research.14115.1

69. Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent advances in targeting

CD8 T-cell immunity for more effective cancer immunotherapy. Front

Immunol. (2018) 9:14. doi: 10.3389/fimmu.2018.00014

70. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and

development of Coot. Acta Crystallogr Section D. (2010) 66:486–501.

doi: 10.1107/S0907444910007493

71. Davis-Harrison RL, Armstrong KM, Baker BM. Two different T cell receptors

use different thermodynamic strategies to recognize the same peptide/MHC

ligand. J Mol Biol. (2005) 346:533–50. doi: 10.1016/j.jmb.2004.11.063

72. Winter G, Waterman DG, Parkhurst JM, Brewster AS, Gildea RJ, Gerstel M,

et al. DIALS: implementation and evaluation of a new integration package.

Acta Crystallogr Section D. (2018) 74:85–97. doi: 10.1107/S20597983170

17235

73. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Echols N, Headd JJ, et al. The

Phenix software for automated determination of macromolecular structures.

Methods. (2011) 55:94–106. doi: 10.1016/j.ymeth.2011.07.005

74. Borbulevych OY, Piepenbrink KH, Baker BM. Conformational

melding permits a conserved binding geometry in TCR recognition

of foreign and self molecular mimics. J Immunol. (2011) 186:2950–8.

doi: 10.4049/jimmunol.1003150

75. Borbulevych OY, Baxter TK, Yu Z, Restifo NP, Baker BM. Increased

immunogenicity of an anchor-modified tumor-associated antigen is due

to the enhanced stability of the peptide/MHC complex: implications for

vaccine design. J Immunol. (2005) 174:4812–20. doi: 10.4049/jimmunol.174.

8.4812

76. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW,

Mustyakimov M, et al. Towards automated crystallographic structure

refinement with phenix.refine. Acta Crystallogr Section D. (2012) 68:352–67.

doi: 10.1107/S0907444912001308

77. Chen VB, Arendall WB, III, Headd JJ, Keedy DA, Immormino

RM, Kapral GJ, et al. MolProbity: all-atom structure validation for

macromolecular crystallography. Acta Crystallogr Section D. (2010) 66:12–21.

doi: 10.1107/S0907444909042073

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Riley, Keller, Smith, Davancaze, Arbuiso, Devlin and Baker. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Immunology | www.frontiersin.org 14 August 2019 | Volume 10 | Article 20472627

https://doi.org/10.1172/JCI82416
https://doi.org/10.1039/b927393j
https://doi.org/10.1006/jmbi.1998.1843
https://doi.org/10.1093/annonc/mdy070
https://cancerimmunolres.aacrjournals.org/content/canimmarch/13/3/15
https://cancerimmunolres.aacrjournals.org/content/canimmarch/13/3/15
https://doi.org/10.12688/f1000research.14115.1
https://doi.org/10.3389/fimmu.2018.00014
https://doi.org/10.1107/S0907444910007493
https://doi.org/10.1016/j.jmb.2004.11.063
https://doi.org/10.1107/S2059798317017235
https://doi.org/10.1016/j.ymeth.2011.07.005
https://doi.org/10.4049/jimmunol.1003150
https://doi.org/10.4049/jimmunol.174.8.4812
https://doi.org/10.1107/S0907444912001308
https://doi.org/10.1107/S0907444909042073
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


ORIGINAL RESEARCH
published: 05 November 2019

doi: 10.3389/fimmu.2019.02472

Frontiers in Immunology | www.frontiersin.org 1 November 2019 | Volume 10 | Article 2472

Edited by:

John M. Maris,

University of Pennsylvania,

United States

Reviewed by:

María Marcela Barrio,

Fundación Cáncer, Argentina

Aparna Rao,

University of Pittsburgh, United States

*Correspondence:

Rongxiu Li

rxli@sjtu.edu.cn

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Immunology

Received: 20 May 2019

Accepted: 03 October 2019

Published: 05 November 2019

Citation:

Zhang Y, Lin Z, Wan Y, Cai H, Deng L

and Li R (2019) The Immunogenicity

and Anti-tumor Efficacy of a Rationally

Designed Neoantigen Vaccine for

B16F10 Mouse Melanoma.

Front. Immunol. 10:2472.

doi: 10.3389/fimmu.2019.02472

The Immunogenicity and Anti-tumor
Efficacy of a Rationally Designed
Neoantigen Vaccine for B16F10
Mouse Melanoma
Yan Zhang 1, Zhibing Lin 1, Yuhua Wan 1, Huaman Cai 1, Li Deng 2 and Rongxiu Li 1,2,3*

1 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University,

Shanghai, China, 2 Shanghai HyCharm Inc., Shanghai, China, 3 Engineering Research Center of Cell and Therapeutic

Antibody, Ministry of Education, Shanghai, China

Tumor neoantigens are ideal targets for cancer immunotherapy as they are recognized

by host immune system as foreigners and can elicit tumor-specific immune responses.

However, existing strategies utilizing RNA or long peptides for the neoantigen vaccines

render limited immune responses since only 20–30% of neoantigens predicted in silico

to bind MHC I molecules are capable of eliciting immune responses with the majority

of responding T cells are CD4+. Therefore, it warrants further exploration to enhance

neoantigen-specific CD8+ T cells responses. Since neoantigens are naturally weak

antigens, we asked whether foreign T help epitopes could enhance their immunogenicity.

In present study, we chose 4 weak B16F10 neoantigens as vaccine targets, and fused

them to the transmembrane domain of diphtheria toxin, namely DTT-neoAg. Strikingly,

the vaccine elicited anti-tumor CD8+ T cells responses and enhanced tumor infiltration of

both T cells and NK cells. Impressively, DTT-neoAg vaccine significantly deterred tumor

growth with the inhibition rate reached 88% in the preventive model and 100% in the

therapeutic model at low dose of tumor challenge. Furthermore, after second challenge

with higher dose of tumor cells, 33.3% of the immunized mice remained tumor-free for

6 months in the therapeutic model. Because DTT is a non-toxic domain of diphtheria

toxin, it may be not of great concern in terms of safety as a Th epitope provider. Thus,

the fusion strategy employed by this studymay become a feasible and powerful approach

for development of personalized cancer vaccines.

Keywords: cancer vaccine, immune response, tumor neoantigen, B16F10 melanoma, helper T cell, cytotoxic T

lymphocytes

INTRODUCTION

Genomic mutations altering signal transduction pathways that control cell proliferation or
apoptosis can cause development of cancers (1). The mutated proteins can give rise to novel
antigens, so called neoantigens when they are processed and presented to T cells (2). Neoantigen-
specific T cells are found in tumors as well as in peripheral blood of cancer patients (3), and
they are the principle mechanism that underlies clinical responses to many standard treatments
and immunotherapeutic interventions including checkpoint blockade (4) and adoptive T cell
transfer (5).
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Tumor neoantigens are attractive targets for cancer vaccine
design (6). Both preclinical (7–11) and early phase clinical studies
(12–14) found that neoantigen-based poly-epitope vaccines can
substantially expand the tumor-specific T cell pools, and steer
the immune system to the selective destruction of cancers with
limited off-target toxicities, which leads to cancer regression and
long-term tumor-free survival.

With the advance of next generation sequencing technology,
non-synonymous mutations can be identified by whole exome
sequencing, and their expression can be determined by RNA-
Seq (8). Nevertheless, to choose the right neoantigen epitopes for
the vaccine design is not an easy task at all as over 90 percent
of neoantigens are patient-specific (2) and multiple neoantigens
are needed to address clonal heterogeneity of tumors (15). In
addition, only a limited fraction of non-synonymous mutations
can naturally lead to activation of neoantigen specific CD4+

(16, 17) or CD8+ (18–20) T cells. These cells are detectable within
tumor-infiltrating lymphocytes or in peripheral blood.

Candidate mutation peptides with high affinity to MHC I
molecules can be identified with high confidence by sensitive
computation algorithms (21). However, only 20–30% of MHC
I neo-antigen peptides can stimulate T cell responses by
vaccination. Surprisingly, over 90% of the immunogenic MHC
I peptides elicit CD4+ T cell responses (7, 8, 22). Although it
has been confirmed that some of the neoantigen-specific CD4+

T cells are able to kill tumor cells, the majority of tumor-specific
killer T cells identified in patients have been of CD8+ T cells
origin (23).

In this study, we asked whether fusion of low-immunogenic
neoantigens to DTT, a membrane translocation domain of
diphtheria toxin, could enhance antigen-specific immune
responses, in particular, CD8+ cytotoxic T cell responses.
DTT has been shown to enhance immune responses to self-
molecules (24, 25). Indeed, we found MHC I-binding mutation
peptides of B16F10 melanoma that failed to elicit cytotoxic
T cell responses become highly immunogenic when they are
fused to DTT. In addition, we show that the fusion antigens
can elicit tumor-specific CD8+ cytotoxic T lymphocytes when
formulated with CpG and Alum adjuvants, and enhance CD8+

T cells and NK cells’ infiltrating into tumor. This strategy would
significantly expand the pool of candidate neoantigens, improve
the effectiveness of the neoantigen vaccines and reduce the cost
of patient-oriented vaccine design.

MATERIALS AND METHODS

Mice, Mouse Melanoma Cell Line,
Adjuvants
C57BL/6 mice (female, 6–8 weeks old, average weight 20 g)
were purchased from Slaccas Laboratory Animal Inc. (Shanghai,
China), and were housed in a climate controlled facility.
All animal studies were performed in accordance with the
guidelines approved by the Institutional Animal Care and
Use Committee of Shanghai Jiao Tong University. Mouse
melanoma cell line B16F10 was purchased from the Cell
Bank of Chinese Academy of Sciences (Shanghai, China),

and cultured in DMEM (Gibco, USA) supplemented with
10% FBS (Gibco, USA), 100 U/mL penicillin and 100µg/mL
streptomycin (Gibco, USA) at 37◦C under a humidified
atmosphere of 5% CO2. Aluminum hydroxide gel (Alum) was
purchased from Invitrogen (Invitrogen, USA). CpG ODN1826
(TCCATGACGTTCCTGACGTT) was synthesized by HuaGene
(Shanghai, China). All chemical reagents were of analytical grade.

Neoantigen Selection
Four neoantigens were selected for this study based on a recent
report from the laboratory of Sahin (7). These neoantigens are
expressed in B16F10, and can bind to MHC I, but they are not
immunogenic. For validation their existence in our working cell
line, the mutated gene fragments were amplified from B16F10
genomic DNA, subjected to Sanger sequencing, and the cognate
mutations were confirmed (data not shown).

Expression Vector Construction
Four neoantigens, each contains 27 amino acids with the mutant
positioned in the center. The neoantigens are fused in tandem
via SG linkers. The DNA fragment encoding the neoantigen
fusion was chemically synthesized and cloned into pUC57
(Huagene, Shanghai, China). DTT DNA fragment encoding the
amino acid residues 202–378 of diphtheria toxin was previously
described (25). The DTT fragment and the neoantigen fusion
fragment were connected by GGGGSGGGGS linker sequence
with DTT at N-terminal. The corresponding DNA fragment
was generated by overlapping PCR with primers listed in
Supplementary Table 1. DTT was amplified from pUC19-DTT
with primers DTT-F and DTT-R. Neoantigen fusion gene was
amplified from pUC57-neoAg with primers neoAg-F and neoAg-
R. DTT-neoantigen fusion was generated by PCR with DTT and
neoantigen fusion fragments as templates, DTT-F and neoAg-
R as primers. The resulting recombinant DTT-neoAg fragment
was double-digested with BamH I and Xho I, and cloned into
pGEX-6p-1. DTT-wtAg construct was generated in the same way
as described above except that the mutant residues are replaced
with wild type residues. The neoantigen fragment was also fused
to the C-terminal of CTB, the resulting recombinant protein
CTB-neoAg was used as an ELISA coating antigen for detection
of antibodies against neoantigens in mouse sera vaccinated
with DTT-neoAg.

Protein Expression and Purification
pGEX-DTT-neoAg and pGEX-DTT-wtAg were transformed into
E. coli BL21(DE3), respectively. A single colony was inoculated
into 3mL LB media with 50µg/mL ampicillin, cultured
overnight at 37◦C. The culture was expanded into 500mL
of LB media until OD600 nm reached 0.6. IPTG (isopropyl-
ß-D-thiogalactoside) was then added to a final concentration
of 0.5mM. The culture was incubated at 16◦C for 24 h. The
cells were harvested by centrifugation, and the cell pellets were
resuspended in phosphate-buffered saline (PBS) and lysed by
sonication (60 cycles of 5 s on ice). The lysate was subject
to centrifugation at 12 000 × g for 30min at 4◦C, and the
supernatant was applied to GST affinity columns. GST tag
was removed by PreScission protease cleavage at 4◦C for 20 h,
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in 50mM Tris-HCl, 140mM NaCl, 1mM EDTA, and 1mM
dithiothreitol, pH 7.4. The protein samples were analyzed by 15%
ExpressPlus PAGE gels (GenScript, Nanjing, China).

Mice Immunization
Female C57BL/6 mice (6–8 weeks of age, 5–10 per group) were
injected subcutaneously into the lateral flank with 30 µg DTT-
neoAg or DTT-wtAg, 300 µg Alum, and 30 µg CpG, formulated
in 200 µL PBS. The control group of mice were administered
with 300 µg Alum and 30 µg CpG. Each mouse received three
injections at one- or 2-week intervals. Blood samples were drawn
from orbital sinus 1 week after injection.

ELISA for Antibody Detection
To detect antibodies against neoAg, ELISA plates were incubated
overnight at 4◦C with 100 ng CTB-neoAg, or DTT, or CTB-
wtAg in 100 µL sodium carbonate buffer, pH 9.6. The non-
specific binding sites were blocked with 100 µL 3% skim
milk in PBS + 0.05% Tween 20 at room temperature for 1 h.
Subsequently, the mouse sera with indicated dilution were added
to the wells and incubated for 1 h at room temperature. The
bound antibodies were detected using goat anti-mouse IgG-
HRP, or goat anti-mouse IgG1-HRP, or IgG2a-HRP, or IgG2b-
HRP, or IgG3-HRP, or IgM-HRP (1:5,000 dilutions, Shanghai
Immune Biotech Co. Ltd., Shanghai, China) using 3,3′,5,5′-
tetramethylbenzidine (TMB, TIANGEN, Shanghai, China) as
substrate. The absorbance at 450 nm was measured by EnSpire
2300 ELISA reader (PerkinElmer, Waltham, MA, USA). The
antibody titers are defined as the reciprocals of the highest
dilution yielding an optical density of 0.2 or greater than that of
pre-immune mouse sera.

Tumor Challenge
For the prophylactic tumor model with DTT-neoantigen
vaccination, C57BL/6 mice (n = 5–6, 6–8-weeks old) were
subcutaneously immunized on day 0, 12, 24. 9 days after the
third immunization, the mice were subcutaneously (s.c.) injected
with 1 × 105 B16F10 cells in 100 µL of PBS into the right flank.
In prophylactic tumor model with neoantigen peptides (neoAg-
pep) or DTT-wtAg vaccination, C57BL/6 mice (n = 6–8, 6–8-
weeks old) were subcutaneously immunized on day 0, 10, 20. 7
days after the third immunization, the mice were subcutaneously
(s.c.) injected with 1× 105 B16F10 cells in 100µL of PBS into the
right flank.

For the therapeutic tumor model, 6–8 weeks old C57BL/6
mice (n = 5–10) were first s.c. inoculated with 2.5 × 104 B16F10
cells in 100 µL of PBS. Then they were administered with
indicated vaccines 7 days after tumor cell injection and boosted
twice at 1-week intervals. Animal appearance and behavior were
monitored on a daily basis. Tumor sizes were measured every
2–3 days by calipers, and calculated using equation: volume =

[(length)× (width)2]/2 in mm3. Ninety days after the first tumor
challenge, the tumor-free mice were re-challenged s.c. with 7.5
× 104 B16F10 cells on the left flank and monitored for tumor
growth. Seven days after the rechallenge, the mice were injected
s.c. with indicated vaccines three times at 1-week intervals. Mice

were sacrificed when tumor volumes reached 2,000 mm3 and
recorded as death.

T Cells Proliferation and the Subset
Analysis
Single cell suspensions were prepared with immunized mouse
spleens and treated with ACK lysis buffer (0.15mM NH4Cl,
10mM KHCO3, 0.1mM disodium EDTA, pH 7.2). The cells
were plated in a 96-well flat plate at 1 × 105 cells/well in
100 µL of RPMI-1640 medium supplemented with 10% FCS,
and stimulated with 30µg/mL CTB-neoAg protein or 5µg/mL
Con A. After 72 h, the culture was treated with CCK-8 solution
followingmanufacture’s instruction (YEASEN, Shanghai, China).
The optical density (OD) of cells at wavelength 450 nm was
measured with OD at 650 nm as a reference. Stimulation index
(SI) was calculated as the ratio of optical density (OD) 450 nm of
stimulated cells to that of unstimulated cells.

To detect CD8+ T cells, freshly isolated spleen lymphocytes
were stimulated with 30µg/mL CTB-neoAg protein for
72 h. Unstimulated cells were used as negative control. The
lymphocytes were stained with anti-mouse CD3ε antibody-FITC
and anti-mouse CD8 antibody-PerCP-Cy5.5, and analyzed using
a FACS Calibur instrument (Beckman Coulter, USA).

For CD19+ B cell analysis, the freshly isolated spleen
lymphocytes were stainedwith anti-mouse CD19 antibody-FITC.
To measure Fop3+/CD4+ ratio, tumor-infiltrating lymphocytes
or spleen lymphocytes were isolated from DTT-neoAg-treated
mice or PBS-treated mice and stained with anti-mouse CD3ε
antibody-APC (BD Biosciences) and CD4 antibody-FITC (BD
Biosciences). Tumor infiltrating leucocytes were prepared from
subcutaneous B16F10 tumors when tumor volumes reached 1500
mm3. Tumor tissues were ground and filtered through a 70-
µm cell strainer. The TILs are purified by a tumor infiltrating
lymphocytes separation solution according to the manufacturer’s
protocol (Beijing Solarbio Science and Technology Co., Beijing,
China). Then intracellular FoxP3+ staining was performed
according to the manufacturer’s protocol (Mouse Foxp3 Buffer
Set, BD). The samples were analyzed using a FACS Calibur
instrument (Beckman Coulter, USA). All experiments were
repeated three times and the average values were calculated.

Intracellular Cytokine Staining
The mutation-specific IFN-γ+ T cells were detected by
intracellular cytokine staining (ICS), and analyzed by flow
cytometry. Bone marrow-derived dendritic cells (BMDCs) were
obtained by culturing bone marrow cells of naïve C57BL/6
mice in RPMI-1640 medium containing 10% FBS, GM-CSF
(20 ng/mL) and IL-4 (20 ng/mL) (Sino Biological, Beijing, China)
for 6 days as previously described (26). BMDCs were loaded with
or without 50µg/mL DTT-neoAg overnight.

Splenocytes harvested from DTT-neoAg-immunized mice
were incubated for 5min at room temperature in ACK Lysing
Buffer (0.15mM NH4Cl, 10mM KHCO3, 0.1mM disodium
EDTA, pH 7.2) and then washed in RPMI-1640 medium (Gibco-
BRL) with 10% fetal bovine serum (FBS). The splenocytes
(3 × 106) were co-incubated with DTT-neoAg-loaded BMDCs
(3 × 105) for 48 h while splenocytes co-incubated with BMDCs
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served as a negative control. Cells were further incubated
for 6 h at 37◦C in the presence of Brefeldin A (3.0µg/mL,
Sino Biological, Beijing, China). The splenocytes were treated
with phorbol 12-myristate 13-acetate (PMA, 81 nM) and
Ionomycin (1.34µM, Thermo Fisher Scientific) served as a
positive control. The cells were then harvested and stained
with anti-CD3ε antibody-PerCP-Cy 5.5 (BD Biosciences), anti-
CD4 antibody-FITC (BD Biosciences), and anti-CD8 antibody-
PE (BD Biosciences) followed by anti-IFN-γ antibody-APC
(BD Biosciences) staining after Cytofix/Cytoperm treatment
according to the manufacturer’s protocol (BD Biosciences).
Subsequently, the samples were analyzed on a CytoFLEX flow
cytometer (Beckman Coulter), and the data were analyzed using
FlowJo software.

Cytotoxicity Assay
Cytotoxic T lymphocyte assay was performed as previously
described (27). Briefly, spleen lymphocytes or TILs stimulated
with 30µg/mL CTB-neoAg protein for 72 h in the presence of
20 units/mL rhIL-2 (ExCell Bio, Shanghai, China) were used as
effector cells. The stimulated lymphocytes were co-cultured with
B16F10 (target cells) at different effector to target ratios (50:1,
20:1, and 10:1) for 4 h at 37◦C. Fifty microliter of the culture
supernatant was used to assess cytotoxic activity by CytoTox96
non-radioactive cytotoxicity assay kit (Promega, Madison, WI,
USA) according to the manufacturer’s instructions.

IFN-γ Assay
Splenocytes were isolated from immunized mice, stimulated with
30µg/mL CTB-neoAg in 24-well culture plates (5 × 105/well, in
500 µL media) at 37◦C with 5% CO2. The culture media were
collected at indicated time points. The IFN-γ concentrations
were measured by ELISA kit (R&D Systems, USA).

Quantitative PCR Assay
Total tumor RNA were prepared using TRIzol reagent
(Invitrogen). cDNA were reverse-transcribed using
PrimeScriptTM RT reagent Kit with gDNA Eraser (Takara,
Dalian, China). Real-time PCR was performed using the TB
GreenTM Premix Ex TaqTM II according to the manufacture’s
protocol (Takara, Dalian, China). The mRNA levels of IFN-
γ, IL-12, IL-4, and IL-10 in each sample were calculated
using the 2−11ct method. The primer sequences are listed in
Supplementary Table 2.

Immunohistochemistry Analysis
Immunohistochemistry was performed as described previously
(8). Tumor tissues, livers, kidneys, or lungs were fixed in
4% paraformaldehyde and embedded in paraffin. The paraffin-
embedded tissues were cut into 4 µm-slides, stained with
hematoxylin and eosin (H&E) or rat anti-mouse CD8 antibody
(Santa Cruz Biotechnology Inc., Dallas, TX, USA) or anti-
mouse NK1.1 antibody (Bio Legend, USA) according to the
manufacture’s protocol. Immunohistochemical detection was
performed following the instruction ofMaxVisionTM kit (Fuzhou
Maixin Biological Inc., Fuzhou, China). Five different fields for

each slice were selected under 200 × magnification to quantify
the percentages of CD8+ cells by Image J.

Statistical Analyses
All data were analyzed using GraphPad Prism 7.0 software
and were presented as mean ± standard deviation (SD). The
statistical significance between two groups was analyzed by a
two-tailed, unpaired Student’s T-test. The survival curves were
generated using the Kaplan-Meier method and the statistical
significance between two groups were analyzed using the log-
rank test. ∗indicates P < 0.05, ∗∗indicates P < 0.01, ∗∗∗indicates
P < 0.001, ∗∗∗∗indicates P < 0.0001, and ns indicates no
significant difference.

RESULT

The Design of Vaccine Immunogen
DTT-neoAg
Activation of effector CD4+ T cells is a hallmark of sustained
and protective immunity induced by vaccination (28). For
neoantigen-based cancer vaccine, antigen-specific CD4+ T cell
effectors can lead to tumor regression through direct cytotoxic
mechanisms (29) or activation of macrophages (30). Due to
immune tolerance, self-molecule proteins are not recognized by
T cell receptors under normal physiological conditions (31). This
self-tolerance can be bleached by insertion or fusion of a foreign
helper T cell epitope into the self-molecules (32). In our previous
studies, we found insertion of a neutralizing epitope peptide
of TNF α or EGFR into a membrane translocation domain of
Diphtheria toxin, named DTT, can induce TNFα- or EGFR-
specific antibody responses by virtual of its several universal Th
epitopes (25, 33).When formulated with Th1-inducing adjuvants
such as poly I/C or CpG, EGFR-specific cytotoxic T lymphocytes
were activated which conferred antitumor immunity in mouse
tumor models (33). Moreover, fusion of self-protein domains to
DTT also induced antibody responses toward self-proteins such
as EGFR, TNF α, VEGF, FXI (24, 25, 33, 34). In this study, we
applied DTT fusion strategy to neoantigen-based vaccine design,
and tested the immunogenicity of those tumor neoantigens
predicted in silico to possess good affinity to MHC I molecules,
but experimentally failed to elicit any tumor-specific cytotoxic
T cell responses.

We chose four MHC I-binding, non-immunogenic mutation
peptides identified in a previous report by Sahin (7) as a
part of vaccine immunogen. These neoantigen peptides are
encoded by genes of Pi4k2b, Ddb1, Pcdhga11, Atp11a, and the
corresponding mutations are verified in our laboratory B16F10
cell line. Indeed, these 27aa neoantigen peptides failed to elicit
anti-tumor immune response when formulated with Alum and
CpG (Figures S1B,C).The mutation peptides are linked together
by GS linkers (7) and fused to the C-terminal of DTT as shown in
Figure 1A. The recombinant immunogen is named DTT-neoAg.

An E. coli expression vector was constructed for DTT-NeoAg.
For control experiments, an expression vector of corresponding
wild-type peptide antigens, named as DTT-wtAg, was also
constructed. The sequences of neoantigens and their wild-types
were provided in the Supplementary Table 3. For detection
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FIGURE 1 | Design and expression of DTT adjuvant-based neoantigen vaccine. (A) A schematic diagram of DTT-neoAg and DTT-wtAg. M1, M2, M3, and M4 are the

mutation peptide of Pi4k2b, Ddb1, Pcdhga11 and Atp11a, respectively. W1, W2, W3, and W4 are the corresponding wild type peptides. Each mutation peptide is 27

amino acid residues in length with the mutated residue positioned in the central (position 14). The horizontal stripe box stands for the linker sequence

(GGGGSGGGGS) and the diagonal stripe box stands for the linker sequence (GS). (B) 15% SDS-PAGE analysis of the purified recombinant proteins.

of neoAg-specific antibody responses by ELISA and in vitro
expansion of neoAg-specific T cells, an expression vector was
constructed for neoAg fused to C-terminal of Cholera Toxin B
chain, named as CTB-neoAg.

The DTT-neoAg and DTT-wtAg were expressed in E. coli
as soluble GST-tagged recombinant proteins. After GST-affinty
purification, the GST tag was removed by PSP cleavage and GST
affinity column chromatography (Figure 1B).

DTT-neoAg Induces Neoantigen-Specific
Antibody and Antitumor Cellular Immune
Responses in Mouse
We immunized C57BL/6 mice with DTT-neoAg formulated with
Alum adjuvant and CpG (Figure 2A). The control mice were
administered with PBS + Alum + CpG. One week after the
third injection, ELISA was performed to measure the antibody
responses against neoAg.We observed robust antibody responses
in DTT-neoAg treated mice (Figure 2B), but not in PBS treated
mice, with the antibody titers at the levels of 6× 105 (Figure 2C).

Because antibody responses depend on B cells, we tested
whether the vaccine can increase the number of B lymphocytes in
spleen. Seven days after the third immunization, the splenocytes
of DTT-neoAg or PBS-treated mice were labeled with CD19
antibody, and analyzed by flow cytometry. We found that the
percentage of CD19+ lymphocytes in DTT-neoAg-treated mice
was 47.47 ± 1.04%, while in the PBS-treated mice was 38.87
± 1.82% (Figure 2D). Therefore, the B cells of DTT-neoAg-
immunized mice were increased significantly in comparison with
those of the PBS group mice.

We further analyzed the antibody subclasses in DTT-neoAg-
treated mouse sera (Figure 2E), and found that the subclasses
of IgGs were primarily IgG1 and IgG2b. The other subclasses
including IgM, IgG2a, and IgG3 were at below detection levels.
As the ratio of IgG1/IgG2b was >1, we conclude that immune
responses induced by DTT-NeoAg is biased toward Th2 type.

To examine the cellular immune responses of DTT-neoAg
vaccination, we stimulated the splenocytes of each group of
mice with CTB-neoAg in vitro for 72 h, and measured the
cell proliferation by CCK8 kit. Significant cell proliferation
was observed in the splenocytes of DTT-neoAg-treated mice
(Figure 2F) with the average stimulation index 3 times that of
PBS-treated ones (Figure 2G). The cell proliferation was similar
when both groups of the splenocytes were stimulated with Con A
(Figure 2G). These data indicated that DTT-neoAg vaccine can
induce mutation-specific T cell memory responses.

We next evaluated the cytotoxicity of DTT-neoAg-treated
splenocytes by LDH release assay after in vitro stimulation
with CTB-neoAg. At effector-target ratios of 50:1 and 20:1,
the percentages of cell lysis were 49.65 ± 4.19 and 17.29 ±

9.33%, respectively (Figure 2H). For the splenocytes of PBS-
treated mice, the percentages of cell lysis were 11.62 ± 6.06
and 6.64 ± 4.33%, respectively. These data indicated that DTT-
neoAg vaccination elicit robust cytotoxic immune responses
against B16F10.

DTT-neoAg Vaccination Significantly
Inhibits Tumor Growth in a Prophylactic
Mouse Tumor Model
Further to assess whether the vaccine-elicited immune responses
render tumor growth inhibition, we challenged the vaccinated
mice subcutaneously with 1 × 105 B16F10 in the right flank 9
days after the third immunization (Figure 3A). While tumors
were palpable in all of mice treated with PBS + adjuvant on day
10 after tumor challenge, the DTT-neoAg-treated mice were all
tumor-free. Tumors were detected in 4 of 6 mice treated with
DTT-neoAg on day 16 after the tumor challenge. More strikingly,
one DTT-neoAg-treated mouse was tumor-free until 30 days
after tumor inoculation. Furthermore, the tumors in DTT-
neoAg-treated mice grew much slower than those of PBS-treated
ones. On day 18, the average tumor volumes of PBS-treated mice
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FIGURE 2 | DTT-neoAg induces neoantigen-specific antibodies and antitumor cellular immune responses in mouse. The statistical significances were determined by

Student’s T test. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. (A) A schematic diagram of the experimental design. (B–D) Female C57BL/6 mice (n = 5) were

immunized subcutaneously on day 0, 12, 24 with DTT-neoAg vaccine. One week after the third immunization, mouse sera were collected by orbital blood sampling,

(Continued)
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FIGURE 2 | and the antibody responses were analyzed by ELISA. (B) ELISA with sera in 1:100 dilution and with indicated coating antigens. (C) The antibody titers

against the neoantigen. (D) The percentage of CD19+ B cells in the lymphocytes of immunized mice. Seven days after the third immunization, the splenocytes of the

vaccinated mice were stained with anti-CD19-FITC, and the percentage of CD19+ B cells in the lymphocytes was analyzed by flow cytometry. (E) The antibody

subclass analyses. The sera were 1:100 diluted. (F–H) DTT-neoAg vaccine induced cellular immune response. Six to eight weeks old female C57BL/6 mice (n = 3)

were immunized with DTT-neoAg or PBS formulated with Alum + CpG, respectively, at 2-week intervals. Seven days after the third immunization, the splenocytes

were stimulated with CTB-neoAg or PBS for 72 h. Cell proliferation (F) and stimulation indices (G) were measured by CCK8 kit. (H) The splenocytes from

DTT-neoAg-treated mice or PBS-treated mice were stimulated with CTB-neoAg (30µg/mL) for 72 h, and were used as effector cells, then co-cultured with target cells

B16F10 at indicated ratios for 4 h at 37◦C. The percentage of cell lysis was determined by LDH assay.

FIGURE 3 | Anti-tumor effects of DTT-neoAg vaccination in the prophylactic mouse melanoma model. The data are means ± SEM, ****P < 0.0001; ***P < 0.001; **P

< 0.01; *P < 0.05, Student’s T-test. (A) The treatment schedule. C57BL/6 mice (n = 5) were immunized with DTT-neoAg or PBS formulated with Alum + CpG on day

0, day 12 and 24. Nine days after the third immunization, 1 × 105 B16 F10 cells were s.c. administered into the right flank of the mice. (B) The tumor growth curves.

(C) On day 22 after the tumor challenge, tumors weights were measured. (D) Tumor inhibition rate of PBS-treated or DTT-neoAg-treated mice.

was 2278 ± 349.2 mm3 while that of DTT-neoAg was 177.7 ±

66.53 mm3, a growth reduction by more than 80% (Figure 3B).
On day 22, the average tumor weight was 0.7 ± 0.27 g for
DTT-neoAg treated-mice in contrast with that of PBS-treated
ones which was 6 ± 0.27 g (Figure 3C). Therefore, DTT-neoAg
vaccine reduced the tumor growth by 88% (Figure 3C).

In order to prove that DTT is necessary to elicit the immune
response against neoAg, and only an immune response specific
to neoAg can inhibit tumor, we s.c. injected 1 × 105 B16F10
in the right flank of mice, 7 days after the third immunization

with neoAg-pep + adjuvant or DTT-wtAg + adjuvant, or
PBS + adjuvant (Figure S1A). Seven days after the challenge,
tumors were detected in all of the PBS-treated mice, neoAg-pep-
treated mice and DTT-wtAg-treated mice. Meanwhile, the tumor
volumes of PBS-treated mice, neoAg-pep-treated mice and DTT-
wtAg-treated mice were 12.2 ± 2.74, 11.31± 3.24, and 16.81 ±

2.97 mm3, respectively. On day 17, the average tumor volumes of
PBS group, neoAg-pep group, andDTT-wtAg were 1801± 378.8,
1514± 251.2, and 1439± 133.6 mm3, respectively. Overall, there
was no significant difference in the growth curves of each group
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FIGURE 4 | Anti-tumor effects of DTT-neoAg vaccination in the therapeutic mouse melanoma model. The data are means ± SEM, ****P < 0.0001; ***P < 0.001; **P

< 0.01; *P < 0.05, Student’s T-test. (A) The treatment schedule. (B,C) C57BL/6 mice (n = 6–13) were s.c. administered with 2.5 × 104 B16F10 cells into the right

flank of the mice. Seven days after challenge, mice were immunized with DTT-neoAg, DTT-wtAg, or PBS formulated with Alum + CpG three times at 1-week intervals.

(B) The tumor growth curves for individual mouse. Green line: DTT-wtAg-treated mice, and black line: PBS-treated mice. (C) The Kaplan-Meier survival plot. The

statistical significance was determined by Log-rank test. *P < 0.05. (D,E) On day 90, the tumor-free mice in PBS-treated group and neoAg-treated group were

re-challenged with 7.5 × 104 B16F10 cells in the left flank. One week after the re-challenge, mice were immunized with PBS or neoAg formulated with Alum + CpG for

3 times at weekly intervals. (D) The Kaplan-Meier survival plot. The statistical significance was determined by Log-rank test. *P < 0.05. (E) The tumor growth curves.

(Figure S1B). The median survival rates of the three groups were
all 19 days (Figure S1C). Therefore, both neoAg-pep and DTT-
wtAg failed to inhibit tumor growth in the prophylactic mouse
tumor model.

DTT-neoAg Vaccination Inhibits Tumor
Growth in the Therapeutic Mouse Tumor
Model
B16F10 melanoma cell line is highly aggressive when implanted
into a syngeneic host (35). Therefore, to examine therapeutic

efficacy of DTT-neoAg vaccine, we s.c. injected a low dose of
2.5 × 104 B16F10 cells in the right flanks of mice to allow
sufficient time for the vaccine to induce anti-tumor immunity.
Seven days after the tumor challenge, mice were administered
with the indicated vaccines and boosted twice at 1 week

intervals (Figure 4A). Tumors were detected in some of the

PBS-treated mice as early as 18 days after tumor challenge
(Figure 4B). On day 43, 37.8% of PBS-treated mice developed
tumors. Tumors were detected in 16.7% of DTT-wtAg-treated
mice on 15 days, 3 days earlier than those of PBS group
of mice (Figure 4B), and on day 32, 50% of the mice had
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FIGURE 5 | Antibody responses and cellular immune responses elicited by DTT-neoAg vaccination in tumor challenged mice. The statistical significance was

determined by Student’s T-test. ***P < 0.001; **P < 0.01; *P < 0.05. (A–D) C57BL/6 mice (n = 6–13) were administered s.c. with 2.5 × 104 B16 F10 cells into the

right flank of the mice. Seven days after tumor challenge, mice were immunized three times at weekly intervals with DTT-neoAg, DTT-wtAg, or PBS, formulated with

(Continued)
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FIGURE 5 | Alum + CpG. (A) The mouse sera were collected on day 7 after the third immunization. The antibody responses were measured by ELISA with the sera

1:100 diluted and with the indicated coating antigens. (B) The anti-neoAg antibody titers were measured by ELISA. (C) Analysis of anti-neoAg antibody subclasses.

(D) Anti-sera from DTT-wtAg-treated mice crossreact with neoAg. The sera were collected from mice immunized with DTT-wtAg after the third immunization, and the

antibody specificity was analyzed by ELISA with sera 1:100 diluted and CTB-wtAg or CTB-neoAg as a coating antigen. (E) The splenocytes from indicated mice were

stimulated in vitro with CTB-neoAg for 3 days. The stimulation indices was measured by CCK8 assay. (F) The cytotoxic T lymphocytes induced by DTT-neoAg

vaccination. The splenocytes from DTT-neoAg-treated, or DTT-wtAg-treated, or PBS-treated mice were stimulated with CTB-neoAg for 3 days, and used as effector

cells. B16F10 cells were used as target cells. The splenocytes and B16F10 cells were co-cultured at indicated ratios for 4 h at 37◦C. The percentage of cell lysis was

measured by LDH assay. Asterisks indicate statistically significant differences between DTT-neoAg-treated and DTT-wtAg-treated mice. (G) INF-γ production by in

vitro neoAg-stimulated splenocytes of DTT-neoAg vaccinated mice. The splenocytes were stimulated with CTB-neoAg for 72 or 84 h, and the INF-γ in the culture

supernatant was analyzed using a mouse IFN-γ ELISA kit. (H) CD8+ memory T cells induced by DTT-neoAg vaccination. The splenocytes of the vaccinated mice were

in vitro stimulated with CTB-neoAg for 72 h, stained with anti-CD3ε-FITC anti-CD8-PerCP-Cy5.5, and the percentage of CD8+ T cells in CD3+ T cells was analyzed

by flow cytometry. (I) The splenocytes of DTT-neoAg-treated mice were incubated with antigen-loaded DC for 48 h, then Golgi-stop was added; 6 h later, the cells

were harvested and stained with anti-CD3ε-PerCP-Cy5.5, anti-CD4- FITC, anti-CD8-PE Ab. After permeabilization, intracellular cytokines were stained with

anti-IFN-γ-APC antibody and analyzed by flow cytometry.

tumors. In contrast, all DTT-neoAg-treated mice were tumor-
free on day 90, and the overall survival of the DTT-neoAg-
immunized group was significantly prolonged when compared
to two control groups. The survival rates for PBS and DTT-
wtAg groups were similar (Figure 4C). Moreover, mice of the
control groups appeared weak, unresponsive, less active, and
arched since day 14 while DTT-neoAg-treated mice behaved
normal. These data suggest that DTT-neoAg induce therapeutic
and mutation-specific antitumor immunity.

We next challenged the tumor-free mice with a higher dose
of B16F10 cells to evaluate therapeutic efficacy of DTT-neoAg
vaccine. The tumor-free, PBS-treated or DTT-neoAg-treated
mice were challenged with 7.5 × 104 B16F10 cells on the
left flanks on day 90. These mice were vaccinated three more
times 7 days after the second tumor challenge as indicated in
Figure 4A. Strikingly, 33.33% of the mice treated with DTT-
neoAg were tumor-free even on day 120, whereas all the mice in
the PBS-treated group developed tumors, and died within 32 days
(Figure 4D). The average survival days of the tumor-bearing,
DTT-neoAg-treated mice was 34.5, which is 8.5 days longer than
that of PBS-treated group (Figure 4D). Consistently, the tumor
growth was markedly reduced in DTT-neoAg-immunized mice
when compared with that of PBS-immunized mice (Figure 4E).
Taken together, these data indicated that DTT-neoAg vaccine
confer therapeutic benefit to tumor bearing mice.

DTT-neoAg Vaccination Induces Humoral
and Cellular Immune Responses in Tumor
Challenged Mice
Since DTT-neoAg vaccination provided efficient tumor control
in the therapeutic tumor model, we assessed the antibody
responses and cellular immune responses in tumor bearing mice
elicited by the vaccine. We measured antibodies against DTT
and neoAg by ELISA, and found that both anti-DTT and anti-
neoAg antibodies were robust with antibody titers up to 1.5 ×

105 (Figures 5A,B). As the ratios of IgG1 to IgG2a were >1,
the induced immunity was biased toward Th2 type (Figure 5C).
Compared to the sera from mice treated with DTT-neoAg
before the tumor challenge, more IgG2a (12% vs. 6%) and less
IgG1 (37% vs. 54%) were generated when DTT-neoAg vaccine
was applied after the tumor challenge, suggesting that immune
response shifted toward Th1 type of immunity in therapeutic

setting (Figure S2A). However, the class switch was not complete
in mice of the therapeutic tumor model as the IgM subclass was
present in the mouse sera.

In mice treated with DTT-wtAg vaccine, robust antibody
responses against wtAg were observed with weak cross activities
to neoAg (Figure 5D). This result is consistent with a T7 phage-
based vaccine targeting multiple neoepitopes including Atp11a
mutations (36). Since DTT-wtAg vaccination failed to inhibit
tumor growth, the antitumor immunity induced by DTT-neoAg
was mutation-specific.

We then evaluated the cellular immune responses induced by
DTT-neoAg vaccine. Thus, the splenocytes were stimulated with
CTB-neoAg for 72 h, the cell proliferations as well as the cytotoxic
activities were measured. As shown in Figure 5E, significant
cell proliferations were observed only in splenocytes of DTT-

neoAg-treated mice. The stimulation index was almost 3 times

that of DTT-wtAg or PBS treated mice, which indicated that
DTT-neoAg induced mutation-specific cellular responses. Again,

significant cytotoxic activities were observed only in DTT-neoAg
treated mice (Figure 5F). The percentage of neoAg-specific cell

lysis was 49.46 ± 2.07% at effector/target ratio of 50:1, and 29.58
± 4.27% at lower ratio of 20:1 (Figure 5F).

Further to examine whether the cytotoxic activities were
conferred by CD8+ T cells, we first measured the amount
of INF-γ in the culture media of the splenocytes stimulated
with CTB-neoAg, and found that DTT-neoAg-vaccinated mice
splenocytes secret twice amount of INF-γ as compared to that

of PBS treated mice splenocytes (Figure 5G). In addition, the

percentage of CD8+ CD3+ lymphocytes in DTT-neoAg-treated

mice was increased from 26.8 ± 3.81% to 38.42 ± 4.94%
by CTB-neoAg stimulation (Figure 5H). Next, we labeled the
splenocytes of DTT-neoAg-treated mice stimulated in vitro by
DTT-neoAg with CD8 antibodies, and found that ∼4.5% of
the CD8+ T cell population expressed IFN-γ, which was 2-fold
higher than that of the same splenocytes stimulated with control
DTT (Figure 5I), indicating that neoantigen-specific CTLs were
induced by the vaccine. In contrast with RNA and long-
peptide neoantigen vaccines in preclinical and early phase clinical
studies showing that immune responses were predominantly
of CD4+ T cells (7, 8), DTT fusion strategy significantly
enhanced immunogenicity of neoantigens as well as the
CTL responses.
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FIGURE 6 | DTT-neoAg vaccination increases tumor necrosis and enhances CD8+ T cells infiltration. The statistical significances were determined by Student’s T-test.

****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. Frozen sections of B16F10 tumor tissues isolated from mice immunized with DTT-neoAg or PBS as in

Figure 3D. (A–D) The relative expression levels of IFN-γ, IL-12, IL-4, IL-10 in the tumor tissues were determined by RT-PCR, respectively. (E,G) B16F10 tumors from

(Continued)
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FIGURE 6 | indicated mice (n = 3) were collected and sectioned when the volumes reached 2,000 mm3. (E) The tissues sections were stained with anti-CD8

antibody. The density of CD8+ T cells were quantified by Image J. Numbers in the panel indicate average values of three samples per group, quantified by Image J. (F)

The TILs from DTT-neoAg-treated mice or PBS-treated mice were stimulated with CTB-neoAg (30µg/mL) for 72 h, and were used as effector cells, then co-cultured

with target cells B16F10 at indicated ratios for 4 h at 37◦C. The percentage of cell lysis was determined by LDH assay. (G) H&E staining of B16F10 tumor sections

from indicated mice. Red arrows indicate the necrosis area, scale bar length is 100µm.

FIGURE 7 | DTT-neoAg vaccination enhances NK1.1+ cell infiltration and reduces Foxp3+/CD4+ ratio in TILs and spleens. The statistical significances were

determined by Student’s T-test. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. (A) B16F10 tumors from indicated mice (n = 3) were collected and sectioned

when the tumor volumes reached 1,500 mm3. The tissues sections were stained with anti-NK1.1 antibody. The density of NK1.1+ cells were quantified by Image J.

Numbers in the panel indicate average values of three samples per group, quantified by Image J. (B) The splenocytes from DTT-neoAg or PBS vaccinated mice were

isolated and stained with anti-CD3ε-APC, anti-CD4- FITC. After permeabilization, cells were stained with anti-Foxp3-PE antibody and analyzed by flow cytometry.

DTT-neoAg Vaccination Enhances
Intra-tumor Th1 Immunity and Causes
Tumor Necrosis
To characterize the immune responses in the tumor tissues,
we measured the cytokine levels by RT-PCR and CD8+ T
cell infiltration by immunohistochemistry analyses. As shown
in Figures 6A–D, tumor tissues from DTT-neoAg-treated
mice expressed markedly higher levels of IFN-γ and IL-4

than PBS-treated mice while the levels of IL-12 and IL-

10 were similar. The levels of INF-γ in DTT-neoAg-treated

mice were increased by 40-fold in comparison with those of

PBS-treated mice (Figure 6A), and the levels of IL-4 were

increased by 2.7-fold (Figure 6C). Both IL-12 (Figure 6B)

and IL-10 (Figure 6D) were detected, although the levels

were low and show no significant difference between the

experimental groups.
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FIGURE 8 | Toxicity evaluation of DTT-neoAg. (A) The body weight of the two groups were measured at 7 days after each immunization. (B) Morphology evaluation by

H&E. Two hundred and ten days after the third immunization, the kidneys, livers, and lungs of DTT-neoAg-immunized mice were collected and analyzed by H&E.

Furthermore, the percentage of CD8+ T cells in the tumor
lesions of DTT-neoAg immunized mice was 11.48 ± 0.35%, a 2-
fold increase as compared with that of the PBS-treated mice (5.25
± 0.41%) (Figure 6E).

To verify whether tumor-infiltrating lymphocytes have anti-
tumor cytotoxic activity, we isolated TILs from tumor tissues
of DTT-neoAg-treated or PBS-treated mice. The TILs were
stimulated with CTB-neoAg for 72 h, and the cytotoxic activities
were measured. Indeed, significant cytotoxic activities were
observed in TILs of DTT-neoAg-treated mice. The percentage
of neoAg-specific cell lysis was 45.21 ± 0.67% at effector/target
ratio of 50:1, but of the PBS group was only 21.37 ± 0.61%

at ratio of 50:1 (Figure 6F). In addition, extensive necrosis and
hemorrhage were observed in tumor sections of DTT-neoAg-
immunized mice (Figure 6G), but not in those of the PBS-treated
mice. These data indicated that DTT-neoAg induced amix of Th1
and Th2 immunity in tumors.

DTT-neoAg Vaccination Promotes NK Cells
Infiltration into Tumor and Reduces
Foxp3+/CD4+ Ratio in TILs and Spleens
Further to assess the effect of the DTT-neoAg vaccination
on cellular immune composition of TILs, we measured the
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percentage of NK cells in the tumor tissues and FoxP3+/CD4+

ratio in the TILs. The percentage of NK1.1+ cells in the tumor
lesions of DTT-neoAg immunized mice was 3.67 ± 0.38%, a 7-
fold increase as compared with that of the PBS-treated mice (0.51
± 0.04%) (Figure 7A).

The FoxP3+/CD4+ ratio in the TILs of DTT-neoAg-
vaccinated mice was lower than that of PBS-treated mice
(Figure S3A), although they were statistically not significant. The
ratio of Foxp3+/CD4+ (5.43 ± 0.59%) in the spleens of mice
treated with DTT-neoAg was markedly decreased as compared
to that of PBS-treated mice (15.62 ± 3.39%) (Figure 7B).
These data indicate that DTT-neoAg vaccine can alter cellular
immune composition of the tumor microenvironments as well
as the spleens.

Toxicity Evaluation of DTT-neoAg Vaccine
We monitored the appearance and behavior of the immunized
mice for 7 months since the beginning of the experiments,
and found no significant difference between the DTT-neoAg-
immunized and non-immunized mice in terms of weight loss,
ruffing of fur, and feeding behavior (Figure 8A). Furthermore,
no significant changes were observed in histologies of kidneys,
livers, and lungs (Figure 8B) based onH&E staining of the tissues
thereof, indicating that the vaccine was safe at least in a short
term after treatment. Longer term of safety concern warrants
further assessment.

DISCUSSION

Self-antigens shared by cancer patients have been used in the
development of cancer vaccine, yet the clinical outcomes were
disappointing (31). One reason is that the self-antigens usually
elicit low immune responses as they are subjected to central
tolerance (15). Another reason is that they are usually expressed
in normal tissues although at very low levels. Therefore, the
antigens are not entirely specific to the tumor (15). So far, only
one therapeutic vaccine (sipuleucel-T) has been approved by
the US Food and Drug Administration for the treatment of
prostate cancer (37). Recently, cancer vaccines targeting multiple
tumor neoantigens have demonstrated remarkable therapeutic
outcomes by virtue of higher specificity (12, 13). However,
the majority of tumor neoantigens are weak immunogens (2).
To achieve sufficient therapeutic benefits, a large number of
neoantigens are required for the vaccine design (12), which
limit their application to those cancers having high mutation
loads. In this study, we show that fusion of neoantigens to a Th
epitope carrier protein, DTT, can enhance the immunogenicity
of weak neoantigens as well as antitumor efficacy thereof. The
effects of tumor regression conferred by the fusion vaccine
were comparable to those of highly immunogenic neoantigen
vaccines (7–10). Therefore, our strategy significantly expand the
pool of effective vaccine targets, which should benefit cancer
patients with intermediate/low mutation burdens such as Ovary
cancer, Prostate cancer, low grade Glioma, Chronic lymphocytic
leukemia, and Acute myeloid leukemia (2, 38, 39).

CTL responses play pivotal roles in the success of antitumor
immunity by vaccination. Current neoantigen-based cancer

vaccines confer therapeutic benefits largely through neoantigen-
specific CD4+ T cells (8). Various strategies have been attempted
to improve CTL responses such as nanomaterial-based as well
as DNA-based vaccination. Nanomaterial vaccines promote
antigen uptake and prolong the presentation time on APC (9,
10, 39), while DNA vaccines promote antigen processing and
presentation (11, 40). Nevertheless, these strategies have not
been successfully used for the weak neoantigens. DTT possesses
several T help epitopes which enhance both antibody and CTL
responses (41). It is well-recognized that interactions of the B
cells with activated CD4+ Th cells is required for induction of
high affinity antibody responses (42). The priming, expansion,
and memory formation and survival of CD8+ cytotoxic T
lymphocytes are known to require CD4+ T cells which help
increase expression level of antigen-presentation machinery,
costimulatory molecules and cytokines by antigen-presenting
cells (APCs) (43–45). We show here that DTT stimulate
neoantigen-specific CTL responses, and confer therapeutic
benefits in a mouse melanoma model. Of note, the Th epitopes
of DTT are recognized by over 70% of human population (41),
which indicates that the fusion strategy would benefit a large
population of cancer patients.

Diphtheria toxoid and CRM197, a catalytic inactive mutant of
Diphtheria toxin have long been used as a vaccine carrier and
adjuvant in clinical applications with excellent safety records.
Since DTT is a non-toxic domain of the toxin molecule, its
safety would not be of great concern as a vaccine adjuvant.
It has been shown that pre-immunization of diphtheria toxoid
promotes DC migration and recruitment to lymph nodes
thereby improves the anti-tumor effect of vaccines (46). Since
many people have previously been immunized with DT, DTT-
containing vaccine would rapidly induce a memory recall
response of CD4+ T cells (47). These could help neoAg rapidly
elicit antigen specific CTL responses. Our data demonstrated
that DTT-neoAg design is easier and more feasible for
clinical cancer immunotherapy than current neoantigen-based
vaccine approaches.
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Targeting CD8+ T cells to recurrent tumor-specific mutations can profoundly contribute

to cancer treatment. Some of these mutations are potential tumor antigens although

they can be displayed by non-spliced epitopes only in a few patients, because of the low

affinity of the mutated non-spliced peptides for the predominant HLA class I alleles. Here,

we describe a pipeline that uses the large sequence variety of proteasome-generated

spliced peptides and identifies spliced epitope candidates, which carry the mutations

and bind the predominant HLA-I alleles with high affinity. They could be used in adoptive

T cell therapy and other anti-cancer immunotherapies for large cohorts of cancer

patients. As a proof of principle, the application of this pipeline led to the identification

of a KRAS G12V mutation-carrying spliced epitope candidate, which is produced by

proteasomes, transported by TAPs and efficiently presented by the most prevalent HLA

class I molecules, HLA-A∗02:01 complexes.

Keywords: proteasome, peptide splicing, adoptive T cell therapy targets, antigen presentation, cancer epitopes,

KRAS, tumor immunology

INTRODUCTION

Activating CD8+ T cells to recurrent tumor-specific mutations is one of a number of cutting-
edge strategies to treat cancer. It can be achieved by immunotherapy approaches such as adoptive
T cell therapy (ATT), peptide vaccination and dendritic cell (DC) vaccination. Neoepitopes that
carry cancer recurrent mutations and efficiently bind common Human Leukocyte Antigen class I
(HLA-I) variants are ideal targets for tumor immunology vaccination of large cohorts of patients.
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Peptide epitopes are generally produced by proteasomes,
which are the final effectors of the ubiquitin-proteasome
system (1). Epitope production is the first step of the antigen
processing and presentation (APP) pathway, which accounts for
the epitope translocating into the endoplasmic reticulum (ER)
lumen throughmediation by transporters associated with antigen
processing (TAPs), binding to the peptide loading complex,
trimming by exopeptidases, binding to the HLA-I complex,
and transport to the cell surface for recognition by cytotoxic
T lymphocytes (CTLs) (2).

There are several proteasome isoforms that can be involved
in APP. The most active proteasome isoform is a large (26S)
protease consisting of a 20S proteasome core coupled to one
or two 19S regulatory complexes. The 19S subunit contains the
ubiquitin recognition and removal system as well as an unfolding
activity, the 20S form is the actual protease. The 20S proteasome
is constituted of four rings; two α rings at the apexes; and two β

rings forming the central chamber. Each ring has seven distinct
subunits. Each β ring carries three catalytic (i.e., β1, β2, and β5)
subunits, which have distinct preferences for peptide sequence
motifs (1). Human cells can express different isoforms of
catalytic subunits, which are incorporated in distinct proteasome
isoforms. Standard proteasomes (s-proteasomes) contain β1, β2,
and β5 subunits. Immunoproteasomes (i-proteasomes) contain
β1i, β2i, and β5i subunits and are constitutively present
in immune cells, such as mature DCs, as well as in cells
exposed to an inflammatory milieu (3). Tumors express various
intermediate-type proteasome isoforms, in which standard- and
immuno-subunits are assembled in one proteasome complex
(4, 5). 20S proteasome is also functional alone in cells or coupled
to other regulatory subunits such as PA28 αβ (3, 6, 7).

Proteasomes can break proteins and release the peptide
fragments or re-ligate them, thereby forming “spliced peptides,”
which have sequences that do not recapitulate the linear sequence
of the parental protein (3, 8, 9). Spliced peptides may represent a
sizeable portion of the peptide pool bound to HLA-I molecules—
i.e., the HLA-I immunopeptidome—of tumor and non-tumor
human cell lines (10–12). This hypothesis is currently a matter of
debate since different analytical approaches obtained discordant
results (10–16). According to our previous analysis, however,
several antigens displayed by HLA-I immunopeptidomes are
represented only by spliced peptides. The antigens represented
by spliced peptides seem to be longer, more hydrophobic and
more basic than those represented by non-spliced peptides.
Antigens that are represented by both spliced and non-spliced
peptides show antigenic hot spots, i.e., antigenic areas fromwhich
both spliced and non-spliced peptides derive (12). HLA-I-bound
spliced peptides are generally less abundant than non-spliced
peptides (10–12, 17). Proteasome-generated spliced epitopes can
trigger specific CTL responses ex vivo/in vivo against tumor- and
type 1 diabetes-associated antigens (17, 18) as well as pathogens
(19). ATT targeting a spliced epitope successfully treated a
melanoma patient (20, 21).

Proteasome-catalyzed peptide splicing (PCPS; see Figure 1A)
can occur by combining two non-contiguous sequences of the
same molecule (cis PCPS) or of two distinct molecules (trans
PCPS). The latter seems to be efficiently catalyzed in vitro by

purified proteasomes (22–24) and may constitute a large portion
of the HLA-I associated spliced immunopeptidomes (11).

Although the role of spliced peptides in central tolerance still
has to be investigated, the theoretically large sequence variability
of spliced peptides makes them attractive for anti-cancer
immunotherapy (25). Indeed, some of the most recurrent driver
mutations in tumors often cannot be efficiently represented
by canonical non-spliced peptides bound to the predominant
HLA-I variants because of antigen sequence restrictions. On
the contrary, they might be represented on the cell surface by
tumor-specific spliced epitopes. Therefore, the identification of
tumor antigen-specific spliced epitopes might represent a unique
opportunity to treat a large cohort of patients.

We here present a pipeline combining in silico and in vitro
approaches. It successfully identifies tumor-specific spliced and
non-spliced epitope candidates, which can be further validated
as targets for anti-cancer immunotherapies, as illustrated by the
HLA-A∗02:01+ KRAS G12V+ spliced epitope candidate here
described (Figure 1B).

MATERIALS AND METHODS

Antigen Selection and Spliced Epitope
Candidate Identification
To rank antigens that are over-represented in HLA-I
immunopeptidomes by spliced and non-spliced peptides
according to their protein characteristics, we generated a
simple model based on the following characteristics: length,
hydrophobicity index, isoelectric point, and instability index.

We first calculated these characteristics for all proteins in
the Uniprot Reference human proteome database. Next, we
analyzed the previously published HLA-I immunopeptidomes of
GR-LCL, HCC1143 and HCT116 cell lines (12). All identified
spliced and non-spliced peptides were mapped to their antigen(s)
of origin, thereby determining a set of represented antigens.
Among those antigens not represented in the MS-detected HLA-
I immunopeptidomes, there are likely many antigens that would
be represented if we considered larger HLA-I immunopeptidome
datasets. For this reason, we compared the characteristics of the
represented antigens to the characteristics of all proteins (control
set). The aim was to determine a combination of the four selected
protein characteristics that has the largest difference between the
represented antigen set and the control set.

We define the feature sum (f ) as: f =
∑

pi ci, where c is
the vector of the four selected features (length, hydrophobicity
index, isoelectric point and instability index) and p is the vector
of factors ranging from −1 to 1. A factor of −1 would favor
presentation, while a factor of 1 would disfavor presentation.
We use Bayesian inference in a Markov Chain Monte Carlo
scheme to determine the factors that result in a distribution of
f for represented antigens (F1), which is most different to the
distribution of f for control proteins (F0). The difference between
the densities Fdiff = F1-F0 indicates which f is favoring (positive
values) or disfavoring (negative values) protein representation.
Next, we calculated Fdiff (f) for a set of candidate antigens
(BRAF, KRAS, HRAS, NRAS, TP53, CDK4, IDH1, TYR) using

Frontiers in Immunology | www.frontiersin.org 2 November 2019 | Volume 10 | Article 25724445

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Mishto et al. Pipeline Identifying Spliced Neoepitope Candidates

FIGURE 1 | Proteasome-catalyzed peptide splicing and the in silico/in vitro pipeline to identify tumor-specific spliced epitope candidates. (A) Proteasome-generated

spliced peptides can be formed by: (i) cis PCPS, when the two splice-reactants derive from the same polypeptide molecule, the ligation can occur in normal order, i.e.,

following the orientation from N- to C-terminus of the parental protein (normal cis PCPS), or in reverse order (reverse cis PCPS); (ii) trans PCPS, when the two

splice-reactants originate from two distinct protein molecules or two distinct proteins. PSP-P1 and PSP-P1’ are the C-terminal residue of the N-terminal

splice-reactant and the N-terminal residue of the C-terminal splice-reactant, respectively. The splice-reactants are separated by the intervening sequence. (B)

Representation of the steps of the in silico – in vitro pipeline proposed here. Through its application, we identified an HLA-A*02:01+ KRAS G12V+ spliced epitope

candidate (center gray frame).

the Kolmogorov-Smirnov distance. To do so, we sampled
(N = 1,000) from the posterior distribution of factors resulting
in distributions of Fdiff for each candidate antigen. Antigens
with the highest Fdiff have characteristics that lead to more likely
representation of those antigens in HLA-I immunopeptidomes.

Peptide Synthesis and Proteasome
Purification
All peptides were synthesized using Fmoc solid phase chemistry
(Supplementary Table 2). 20S proteasome was purified from
peripheral blood as follows: (i) 10ml peripheral blood was

homogenized, lysed and centrifuged; (ii) the supernatant was
fractionated by ammonium sulfate precipitation (35% and then
75%); (iii) the latter pellet was fractioned by chromatography
on DEAE-Sephacel; (iv) the selected fractions were separated
by 10–40% sucrose gradient and followed by (v) anion
exchange chromatography on Mono Q in an Akta-FPLC
system; (vi) the selected fractions (2–4mL) were further
purified by DEAE-Affi-gel-blue chromatography. In each of
the (ii–vi) steps, the fractions were monitored by degradation
assays of standard short fluorogenic substrate Suc-LLVY-AMC.
Proteasome concentration was measured by Bradford staining
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and verified by Coomassie staining of an SDS-Page gel, as shown
elsewhere (26). The purity of the preparation using this protocol
has been previously shown (27).

In vitro Digestions and MS Measurements
Synthetic polypeptides (40µM) were digested by 3 µg 20S
proteasomes in 100 µl TEAD buffer for different time points (0–
20 h) at 37◦C, as previously described (27). We performed three
independent experiments, each of them measured either 3 times
(for the 0–4 h kinetics) or 2 times (for 20 h digestions) by mass
spectrometry (MS).

The identification of target peptide products was carried out
by targeted MS using a mass to charge ratio (m/z) inclusion
list. The inclusion list was comprised of all theoretically possible
8–12mer spliced and non-spliced peptide products derived
from KRAS2−35 G12V synthetic polypeptide substrate, which
carried the G12V mutation and were predicted to bind HLA-
A∗02:01 complex with IC50 ≤ 100 nM (see below). The same
principle was applied for the peptide products derived from
the wild type KRAS2−35 G12 synthetic polypeptide substrate
(Supplementary Table 1). To this end, 20 h in vitro digestions
with 20S proteasomes were measured by Fusion Lumos Mass
Spectrometer (Thermo Fisher Scientific). Prior to measurement,
the samples were diluted with the loading buffer (2% acetonitrile,
0.05% Trifluoroacetic acid) containing human insulin (Sigma-
Aldrich) to a final substrate concentration of 25µM and insulin
concentration of 2µM. Insulin was used as a coating polymer
to prevent binding of peptides to the glass vials used for
measurements and to improve reproducibility between technical
replicates. Eightµl of those dilutions (corresponding to 200 pmol
of substrate initially present in the sample) were injected. Samples
were loaded and separated by a nanoflow HPLC (RSLC Ultimate
3000) on an Easy-spray C18 nano column (30 cm length,
75µm internal diameter) coupled on-line to a nano-electrospray
ionization Fusion Lumos mass spectrometer (Thermo Fisher
Scientific). Peptides were eluted with a linear gradient of 5–55%
buffer B (80% ACN, 0.1% formic acid) over 88min at 50◦C at
a flow rate of 300 nl/min. The instrument was programmed
within Xcalibur 3.1.66.10 to acquireMS data in a Data Dependent
Acquisition mode using Top 20 precursor ions. We acquired
one full-scan MS spectrum at a resolution of 120,000 with an
automatic gain control (AGC) target value of 1,000,000 ions and
a scan range of 300–1,600 m/z with maximum injection time
set to 50ms and intensity threshold set to 50,000. The MS/MS
fragmentation was conducted using HCD collision energy (35%)
with an orbitrap resolution of 30,000 at 1.4 m/z isolation window
with Fixed First Mass set to 105 m/z. The AGC target value was
set up at 100,000 with a maximum injection time of 128ms. A
dynamic exclusion of 30 s and 1–7 included charged states were
defined within this method.

In vitro proteasome-mediated digestion kinetics (0–4 h) and
the 20 h digestions were measured by LC-MS/MS as follows:
Prior to measurement, samples were diluted with the loading
buffer and insulin as described above. Eight µl (i.e., 200 pmol
substrate) of those dilutions were loaded. Samples were loaded
and separated by a nanoflow HPLC (RSLC Ultimate 3000)
on an Easy-spray C18 nano column (30 cm length, 75µm

internal diameter; Dr. Maisch) coupled on-line to a nano-
electrospray ionization Q Exactive Hybrid-Quadrupol-Orbitrap
mass spectrometer (Thermo Fisher Scientific). Peptides were
eluted with a linear gradient of 5–55% buffer B (80% ACN, 0.1%
formic acid) over 88min at 50◦C at a flow rate of 300 nl/min.
The instrument was programmed within Xcalibur 3.1.66.10 to
acquire MS data in a Data Dependent Acquisition mode using
Top 20 precursor ions. We acquired one full-scan MS spectrum
at a resolution of 70,000 with an automatic gain control (AGC)
target value of 1,000,000 ions and a scan range of 350∼1,600
m/z. The MS/MS fragmentation was conducted using HCD
collision energy (30%) with an Orbitrap resolution of 35,000
at 2 m/z isolation window with Fixed First Mass set to 110
m/z. The AGC target value was set up at 100,000 with a
maximum injection time of 128ms. For Data Dependent Scans
the minimum AGC target value and the Intensity threshold
were set to 2,600–20,000 accordingly. A dynamic exclusion
of 25 s and 1–6 included charged states were defined within
this method.

Spliced and Non-spliced Peptide
Identification and Quantification As Well as
Computation of SCS-P1 and PSP-P1
Peptides were identified using the Mascot version 2.6.1
(Matrix Science) search engine. Mass spectra were searched
against a customized database that includes all theoretically
possible spliced and non-spliced peptides (28). M oxidation,
N-terminal acetylation and NQ deamidation were set as variable
modification. For the peptide identification in the Orbitrap
Q Exactive measurements, we set as mass tolerances for MS
and MS/MS 6 ppm and 20 ppm, respectively. For the peptide
identification in the Fusion Lumos measurements, we set as mass
tolerances for MS and MS/MS 5 ppm and 0.03 Da, respectively.

Peptide hits were filtered using an ion score cut-off of 20, a
q-value cut off of 0.05 and a delta score between two spliced
peptide hits or between a top scoring spliced peptide and a lower
scoring non-spliced peptide of 30% (12). Mascot Distiller’s label-
free quantification toolbox was used to automatically extract
MS ion peak areas of all identified peptides for all five time
points (0–4 h) and all three technical replicates simultaneously.
Biological replicates were processed separately. The resulting
peptide kinetics were filtered for peptide synthesis artifacts and
non-reproducible peptide kinetics between technical replicates.
Furthermore, peptides that showed unrealistic generation kinetic
behavior (such as alternating MS ion peak areas between
consecutive time points) were removed. In the final analysis,
only peptides that were detected and quantified in two biological
replicates were considered.

KRAS5−6/8−14 G12V and KRAS5−14 G12V generation
kinetics were manually quantified by extraction of an
ion chromatogram (XIC) corresponding to the peptides
monoisotopic peaks, using instrument precursor tolerance
and retention time information (from the identified peptides
in the 20 h digestions) via Mascot Distiller, followed by
determination of the area under the peak at each time point in the
kinetics series.
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Absolute peptide quantification was carried out through
the application of the method QPuB on detected MS ion
peak areas for each peptide product, as described elsewhere
(see Data availability section). In the specific case of the two
epitope candidates KRAS5−6/8−14 G12V and KRAS5−14 G12V,
we computed their amount using a titration curve of the
cognate synthetic peptides since their amount was too low
to be estimated with high confidence using QPuB. Synthetic
peptide concentration for titration ranged from 0 to 10 pmol
injected. Each titration sample wasmeasured twice and right after
measuring in vitro digestion samples.

SCS-P1 (site specific cleavage strength after amino acid residue
P1) and PSP-P1 (frequency of peptide splicing catalyzed using
the C-terminus of the N-terminal splice-reactant as splicing
site) were calculated based on the absolute amount of each
product (resulting from QPuB) identified in the proteasome-
catalyzed digestions (23). Briefly, for each time point and each
amino acid in the substrate, the sum over all product (non-
spliced and spliced peptides) amount that have the corresponding
substrate amino acid at their C-terminus has been computed and
normalized, so that they add up to 100%, resulting in SCS-P1.
For each time point and each amino acid in the substrate, the
sum over all spliced peptide amount that have the corresponding
substrate amino acid at their C-terminus of the N-terminal
splice-reactant was computed and normalized, so that they add
up to 100%, resulting in PSP-P1.

TAP Assay
The transport efficiency of target peptides
(Supplementary Table 2) into the ER lumen mediated by
TAPs was carried out as previously described (29) although
some modifications were introduced. These include the use
of a fluorescent peptide tracer and the use of microsomes
rather than Streptolysin O permeabilized cells. Briefly, peptides
were dissolved in DMSO and different concentrations were
distributed in a final volume of 10 µl DMSO. At the same
time, a mixture of 10mM ATP, 100mM Tris-HCl pH7.5 and
5mM MgCl2 and fluorescent tracer peptide was prepared. 60
µl of this mixture was added to the 10 µl competing peptide
mixture to a final volume of 70 µl. This was prewarmed
to 37◦C and 30 µl of pre-warmed microsomes were added.
Microsomes were derived from LCL721 cells, as previously
described (29).

The mixture was incubated for 20min at 37◦C followed
by cell lysis with lysis mixture (0.5% TX100, 5mM MgCl2
in 100mM Tris-HCl pH7.5) at 4◦C. After at least 30min
incubation at 4◦C, DNA was pelleted and the supernatant
transferred to a new vial including ConA-beads. After at
least 30min incubation on ice, cells were washed four times
with lysis mixture and the last time with 100mM Tris-HCl
pH7.5 before transfer to 96 wells plates (Corning) followed
by fluorescence measurements in a plate reader. To detect
background signals, a sample without competing peptide and
ATP was included and fully performed as described above. This
signal was subtracted from the detected signal. The curves were
normalized to the highest value set at 100% and EC50 values
were calculated.

HLA-I–Peptide Binding Affinity Prediction
and Measurement
The binding affinity between theoretical spliced and non-
spliced peptides and HLA-A∗02:01 was predicted using the
NetMHCPan 3.0 algorithm (30). We restricted the prediction to
8–12 mer peptides and imposed an IC50 cut-off of 100 nM. The
binding affinity between the synthetic peptides andHLA-A∗02:01
complexes was measured using purified HLA-I molecules, as
described elsewhere (10).

HLA-I-Peptide Crystal Structure and
Analysis
The ectodomains of HLA-A∗02:01 (residues 21–274) and human
β2-microglobulin (hβ2m) (residues 1–99) were expressed in
Escherichia coli BL21 DE3 cells as inclusion bodies after
4 h induction with 1mm isopropyl 1-thio-d-galactopyranoside
(IPTG) at A600 of 0.6. Cells were harvested by centrifugation
(5,000 × g for 20min), resuspended in lysis buffer (100mM
Tris-HCl, pH7.0, 5mM EDTA, 5mM DTT, 0.5mM PMSF),
and broken through a microfluidizer (Microfluidics). Inclusion
bodies were collected from cell lysate (50,000 × g for
30min at 4◦C), washed 3 times in 100mM Tris-HCl, pH7.0,
5mM EDTA, 5mM DTT, 2M urea, 2% (w/v) Triton X-
100 plus 1 time in 100mM Tris-HCl, pH7.0, 5mM EDTA,
2mM DTT), and finally dissolved in 50mM Tris-HCl, pH7.0,
5mM EDTA, 2mM DTT, 6M guanidine HCl) for the
following refolding.

Refolding was performed in a 100ml system. Briefly,
1.2mg of hβ2m was loaded dropwise into refolding
buffer (0.1M Tris-HCl, pH8.0, 2mM EDTA, 400mM
l-arginine, 5mM oxidized glutathione, 5mM reduced
glutathione) and stirred for 1 h at 4◦C. Then, 6mg of
HLA-A∗02:01 mixed with 1.2mg of individual peptide
(Supplementary Table 2) was added dropwise into the
refolding system and stirred at 4◦C for up to 72 h. The
refolding system was concentrated to 0.5mL for size exclusion
chromatography using a Superdex S200 Increase 10/300
GL column in 20mM Tris-HCl pH7.5, 150mM NaCl.
Fractions containing refolded HLA-A∗02:01-β2m-peptide
complexes were pooled and concentrated to 5–10 mg/ml for
subsequent crystallization.

Thick plate-like or 3-dimensional crystals of HLA-A∗02:01-
β2m-peptide complexes were obtained by setting drop vapor
diffusion at 1:1–1.5 ratio with 30% PEG 4000, 0.1M Tris-HCl,
pH8.5, 0.2M lithium sulfate at room temperature after 3 days.
The crystals were flash frozen in crystallization solution plus
glycerol (25% v/v) using liquid nitrogen.

Diffraction data for HLA-A∗02:01-β2m-peptides were
collected remotely at beam line 9.2 at the Stanford Synchrotron
Radiation Light source and processed to 1.40–1.55 Å resolution,
using HKL2000. Phases were obtained by molecular replacement
with Phaser MR in ccp4 using the protein coordinates from a
former HLA-A∗02:01-β2m-peptide structure (Protein Data Bank
code 5ENW) (31). The model was built with COOT (32) and
refined with REFMAC5 (33). Data collection and refinement
statistics are shown in Supplementary Table 3.
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Statistical Analysis
If not stated otherwise, all statistical tests have been done in
R and differences in distributions have been tested using the
Kolmogorov-Smirnov test.

Dataset and Software Availability
A summary of the RAW files of the LC-MS/MS measurements
of the in vitro digestions accessible via repository is reported
in the following Mendeley dataset: http://doi.org/10.17632/
63rj3xczmb.1.

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE (34) partner
repository with the dataset identifier PXD015580.

The HLA-I immunopeptidome elution MS files
used in the first step of the pipeline are available
at the PRIDE repository with the dataset identifier
PXD000394 (files: 20120321_EXQ1_MiBa_SA_HCC1143_1.raw,
20120321_EXQ1_MiBa_SA_HCC1143_2.raw, 20120322_EXQ1
_MiBa_SA_HCC1143_1_A.raw, 20120515_EXQ3_MiBa_SA_
HCT116_mHLA-1.raw, 20120515_EXQ3_MiBa_SA_HCT116_
mHLA-2.raw, 20120617_EXQ0_MiBa_SA_HCT116_1_mHLA_
2hr.raw, 20120617_EXQ0_MiBa_SA_HCT116_2_mHLA_2hr.
raw) and at the Datadryad.org archive (doi: 10.5061/dryad.r984n)
and were generated by Bassani et al. (35) andMommen et al. (36).

QPuB software is available at GitHub (https://github.com/
QuantSysBio/QPuB).

RESULTS

Prioritization of KRAS as Antigen
Over-represented on Cell Surface
Antigens represented by spliced peptides in HLA-I
immunopeptidomes tend to be preferentially long, hydrophobic
and basic, thereby suggesting that the chemical and physical
characteristics of antigens can impinge upon spliced peptide
generation and presentation (12, 24). To select suitable antigens
from which a spliced epitope candidate might be derived, we
first investigated which combination of protein features may
result in more likely potential over-representation in HLA-I
immunopeptidomes by spliced and non-spliced peptides.

Accordingly, we used a previously published HLA-I spliced
and non-spliced immunopeptidome database (12), which
includes 13,666 unique non-spliced and 1,318 unique spliced
peptides, as well as 7,328 represented antigens. With this
dataset, we developed a simple model based on protein
length, hydrophobicity, isoelectric point and instability index to
determine the possible over-representation of a given antigen by
spliced and non-spliced peptides in HLA-I immunopeptidomes.
These characteristics were previously described to influence the
probability of observing peptides of a protein being presented
in HLA-I immunopeptidomes determined by antigen gene
expression level and antigen abundance as key determinants
for efficient presentation (12, 37). However, we here opted to
focus on protein intrinsic characteristics that are conserved
independently of cell types and cell status, to obtain a model for
antigen selection that can be generalized.

Combining these four selected protein characteristics yielded
a distribution of known represented antigens, which can be
compared to the feature distribution of all proteins (Figure 2A).
Proteins with feature values that show a higher density for
represented antigens compared to all proteins are more likely
to be favored for antigen presentation than those proteins with
feature values that show a lower density for represented antigens
compared to all proteins (Figure 2A). We therefore aimed to find
a combination of features that maximizes the difference between
the two distributions. We defined a model calculating a feature
sum

∑
pi ci, where pi are factors ranging from −1 (favoring

representation) to 1 (disfavoring representation) and ci are the
protein characteristic values.

Using Bayesian inference, we estimated the factors that
provide the largest distance between the resulting feature sum
distributions for represented antigens compared to all proteins.
We found that protein length favors representation. On the
contrary, very hydrophobic or instable proteins are disfavored
during representation. The isoelectric point appeared to have
minor influence (Figure 2B).

As proof-of-principle, we focused our analysis on a series
of major tumor antigens - BRAF, KRAS, HRAS, NRAS, TP53,
CDK4, IDH1, TYR - which all carry recurrent oncogenic
mutations. We calculated the feature sums for those eight
antigens and determined corresponding density differences for
each of those feature sums, which allowed us to rank the
candidate antigens (Figure 2C). Among them, HRAS and KRAS
are the two antigens that are most likely over-represented
in HLA-I immunopeptidomes as compared to the whole
proteome (Figure 2C).

Prioritization of KRAS G12V neoantigen as
Source of Potentially Antigenic
HLA-A∗02:01-Bound Tumor-specific
Spliced Peptides
HRAS and KRAS are two GTPases that function as molecular
switches in regulatory pathways responsible for proliferation and
survival. In particular, KRAS is frequently mutated in cancers
with an average of 22% cancers carrying a KRAS mutation,
a frequency that rises to 33–61% in colorectal cancer and
pancreatic adenocarcinoma (38). The mutations often occur in
the KRAS G12 and G13 residues, which impairs the KRAS
GTPase activity and renders the mutants persistently in the
GTP-bound active form, thereby promoting tumorigenesis and
tumor malignancy (39). KRAS G12/13 is a driver in tumors
and in combination with its high frequency in cancers makes
KRAS an ideal target for immunotherapies. For example, ATT
using multiple T cell Receptors (TCRs), which recognize HLA-
A∗02:01+ spliced epitopes carrying KRAS mutations, could treat
around 30% of pancreatic adenocarcinoma patients and a large
portion of colorectal carcinoma patients. The efficacy of ATT
has been demonstrated in a xenograft mouse model (40) and
a metastatic colorectal cancer patient (41) by targeting non-
spliced epitopes carrying KRAS G12D mutations and presented
by HLA-A∗11:01 or -C∗08:02 molecules, respectively.
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FIGURE 2 | Prioritization of KRAS G12V as source of potentially antigenic HLA-A*02:01-bound spliced peptides. (A) Illustration of a model to select antigens with

features more likely to be over-represented in HLA-I immunopeptidomes. Protein length, hydrophobicity, isoelectric point and instability are used to calculate a protein

feature sum for all represented antigens. The resulting distribution (orange line) is compared to the feature sum distribution based on all human proteins (gray line). The

difference between these two distributions (red line) indicates which features favor and disfavor the representation of antigens in HLA-I immunopeptidomes. (B)

Marginal posterior distributions of the estimated factors that maximize the difference between feature sum distribution of represented antigens vs. all proteins. (C)

Ranking of selected tumor-associated antigens BRAF, KRAS, HRAS, NRAS, TP53, CDK4, IDH1, TYR as antigens with features over-represented in HLA-I

immunopeptidomes. (D) Progressive reduction of the theoretical number of spliced and non-spliced epitope candidates, thereby narrowing down to those carrying

KRAS G12V/D/R or G13D mutations (in silico derived from the KRAS2−35 sequence) and predicted to bind HLA-A*02:01 with IC50 ≤ 100 nM.

All these features define KRAS as an attractive tumor antigen

to be further investigated using our pipeline. We investigated in

silico the sequence surrounding residues 12 and 13 of KRAS wild
type, G12V/D/R and G13D antigens. All spliced and non-spliced

peptides that could be theoretically generated were computed.
From this list, we removed all peptide candidates not carrying

the target mutations, as well as those candidates shorter than 8

residues or longer than 12 residues, which is the length range
most often observed in HLA-I immunopeptidomes (Figure 2D).
Since the HLA-A∗02:01 allele is the predominant allele in
Caucasian populations, we predicted the binding affinity of this
HLA-I variant to the remaining peptides using the NetMHCPan

3.0 algorithm (30). Finally, we filtered out all peptides that
were predicted to bind with IC50 > 100 nM. None of the non-
spliced epitope candidates passed this step, whilst 54 spliced
epitope candidates had the required features. Among them, 47
can theoretically carry the KRAS G12V mutation (Figure 2D).

Identification of KRAS G12V+ Spliced
Epitope Candidates Generated by
Proteasomes
The majority of the HLA-I-restricted epitopes are produced
by proteasomes. Their production can be verified through in
vitro digestion of synthetic polypeptides by 20S proteasomes,
as measured by MS. Because of the high frequency of putative
HLA-A∗02:01+ spliced epitope candidates carrying the KRAS
G12V mutation (KRAS G12V+), we focused on this mutation
and digested the synthetic KRAS2−35 wild type and G12V
polypeptides with 20S standard proteasomes for 20 h. The
digestions were measured by targeted MS, which used a m/z
inclusion list of target spliced epitope candidates identified
in the previous pipeline step (Supplementary Table 1), and
confirmed that one spliced epitope candidate, KRAS5−6/8−14

G12V [KL][VVGAVGV], is generated by proteasomes under
these conditions (Figure 3). This spliced peptide could be
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FIGURE 3 | MS/MS spectra of the KRAS5−6/8−14 G12V spliced epitope candidate. MS/MS spectrum of the peptide KRAS5−6/8−14 G12V [KL][VVGAVGV] identified in

the in vitro digestion of the synthetic polypeptide KRAS2−35 G12V and the MS/MS spectrum of the cognate synthetic peptide (left panels). The peptide sequence is

shown with the corresponding b-, a- and y-ions identified. The G12V mutation is depicted in bold. In the spectra, assigned peaks for b-, a-, and y-ions are reported in

color. Ion neutral loss of ammonia is symbolized by *. Red marked peaks are assigned in both in vitro digestion detected MS/MS spectrum and synthetic peptide

MS/MS spectrum, whereas blue marked peaks are assigned only in one of the two spectra. The extracted ion chromatogram for the peptide identified in the in vitro

digestion and the synthetic counterpart is plotted and indicates matching retention times for both peptides (right panels).

generated by the removal of one of the three V residues in the
KRAS sequence, i.e., it could be reported as KRAS5−6/8−14 G12V,
KRAS5−7/9−14 G12V, or KRAS5−8/10−14 G12V. We will refer to
it as KRAS5−6/8−14 G12V for the sake of simplicity.

Notably, this spliced peptide is not present in the reaction at
t = 0 and the 20 h reaction containing the synthetic polypeptide
substrate in absence of proteasomes (data not shown). The
cognate spliced peptide KRAS5−6/8−14 G12 [KL][VVGAGGV] is
not produced by 20S proteasomes whilst processing the synthetic
wild type KRAS2−35 polypeptide.

In the KRAS2−35 G12V polypeptide digestion, we also
identified the non-spliced epitope candidate KRAS5−14 G12V
[KLVVVGAVGV] (Supplementary Figure 1). The spontaneous
response of peripheral blood mononuclear cells (PBMCs) of
pancreatic adenocarcinoma patients against this latter epitope
candidate was previously described (42). Although this peptide
was filtered out in the early steps of our pipeline because it has
a predicted HLA-A∗02:01 binding affinity IC50 > 100 nM, we
compared this epitope candidate to the KRAS5−6/8−14 G12V
spliced epitope candidate in the next validation steps.

Spliced Peptide and KRAS5–6/8–14 G12V
Spliced Epitope Candidate Production
Kinetics by Proteasomes
To be a robust epitope candidate, a peptide should be
produced in vitro by proteasomes in a detectable amount
and with consistent kinetics. Correspondence between in vitro
experiments carried out with purified 20S proteasomes and

in cellulo and in vivo experiments has been demonstrated in
various studies investigating both viral and tumor epitopes
(4, 5, 9, 17, 19, 21, 43–50). Therefore, we performed digestion
kinetics (0–4 h) of the synthetic KRAS2−35 wild type and G12V
polypeptides with 20S standard proteasomes. The samples were
measured by MS to identify all digestion products (via MS/MS).
Quantification of peptides was performed using QPuB, a method
that uses detected MS ion peak areas to estimate the absolute
amount of each spliced and non-spliced peptide products (see
Data Availability section), and by comparison with synthetic
peptide titration for the two epitope candidates.

In the synthetic KRAS2−35 G12V polypeptide digestion, we
identified and successfully quantified 131 peptide products.
65.6% were non-spliced, 31.3% cis spliced and 3.1% trans spliced
peptides (Figure 4A). The length distribution of the non-spliced,
cis spliced and trans spliced peptides did not significantly differ
and its median was 10 amino acid residues (Figure 4B). N-
and C-terminal splice-reactants had a median length of 7 and
3 amino acid residues, respectively (Figure 4C). The intervening
sequences of cis spliced peptides had a median length of 5 amino
acid residues (Figure 4C). From the quantitative point of view,
cis and trans spliced peptides represent proximately 17.0 and
0.1% of the peptide abundance, respectively (Figure 4D). On
average, a trans spliced peptide is less abundant than a cis spliced
peptide, which is less abundant than an average non-spliced
peptide (Figure 4E).

Through the application of QPuB to the synthetic KRAS2−35

wild type and G12V polypeptide digestions, we could also
compute how frequently proteasomes cleaved the substrate after
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FIGURE 4 | Spliced peptide characteristics and kinetics in KRAS2−35 G12V polypeptide degradation. (A–D) Results of the analysis of in vitro digestions of the

synthetic KRAS2−35 G12V polypeptide substrate by 20S proteasomes (two biological replicates each measured three times). Spliced and non-spliced peptide

products were identified by MS and quantified by applying QPuB. Only peptides identified in both biological replicates with reproducible kinetics have been analyzed.

(A) Number of non-spliced, cis spliced, and trans spliced peptides identified in the reactions. (B) Length distribution of non-spliced peptides, cis spliced and trans

spliced peptides. (C) Length distribution of N- and C-terminal splice-reactants of cis spliced peptides as well as of their intervening sequences. (D) Total amount of

spliced and non-spliced, as well as cis spliced and trans spliced peptides quantified by applying QPuB to in vitro kinetics. (E) Abundance of an average spliced and

non-spliced, as well as cis spliced or trans spliced, peptides in the in vitro kinetics over the digestion time. In (B,C), violin plots indicate the fragment length

distribution. Red lines indicate the median. When statistically significant, p-values are reported.

each of its individual residues (substrate cleavage strength, i.e.,
SCS-P1) or used each residue for the PCPS reaction (proteasome-
generated spliced peptide P1 positions, i.e., PSP-P1). From this
analysis we confirmed our previous hypothesis (23), whereby
proteasomes splice at sites at which the substrates are less
frequently cleaved at (and vice versa), as emerged by comparing
SCS-P1 and PSP-P1 (Figures 5A,B).

The quantitative analysis of the KRAS2−35 synthetic substrate
degradation (Figure 5C) also showed that the KRAS5−6/8−14

G12V spliced epitope candidate is produced in amounts smaller
than the average amount of spliced peptides (Figures 4E, 5D shall
be compared).

KRAS5–6/8–14 G12V Spliced Epitope
Candidate Is a TAP Substrate and
Efficiently Binds Hla-A∗02:01
The production of a peptide by proteasomes is not sufficient
alone to incur presentation on the cell surface. There are several
other steps in the APP pathway that can direct the peptide
fate, such as peptide transport into the ER lumen mediated
by TAPs and peptide binding to HLA-A∗02:01 complex. We
studied the KRAS5−6/8−14 G12V [KL][VVGAVGV] spliced
epitope candidate in comparison with the KRAS5−14 G12V

[KLVVVGAVGV] non-spliced epitope candidate. We also
extended the study to four control peptides. Two peptides -
peptide #1 YLVVVGAVGV and peptide #2 KLVVVAVGV -
shared a large portion of the KRAS5−6/8−14 G12V and KRAS5−14

G12V epitope candidate sequences (Figure 6A). The other two
control peptides are unrelated peptides predicted to bind to
the HLA-A∗02:01 complex (peptides #3 FLHEDLEKI and #4
FLHEDTEKI; see Supplementary Table 2).

To quantify the efficiency of peptide transport into the ER
lumen by TAP, we measured the competition between the target
peptides and a fluorescent reference peptide for TAP-dependent
translocation into free microsomes. The reference peptide has
an N-linked glycosylation consensus sequence and peptide
glycosylation is used to monitor entry into ER microsomes
and as an isolation handle (29). KRAS5−6/8−14 G12V epitope
candidate is efficiently transported by TAPs as the KRAS5−14

G12V non-spliced epitope candidate is. Peptide #1, which has
a K to Y substitution at position 1 as compared to KRAS5−14

G12V peptide, is transported by TAP as efficiently as the non-
spliced epitope candidate. In contrast, peptide #2, which has the
removal of residue G in position 6 as compared to KRAS5−14

G12V peptide and a G to V substitution at position 5 as compared
to KRAS5−6/8−14 G12V peptide, is not competing with the
reference peptide and thus ignored by TAP. This suggests a role
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FIGURE 5 | Substrate cleavage- and splicing-site preferences and generation kinetics of the KRAS5−6/8−14 G12V and KRAS5−14 G12V epitope candidates. (A)

Relative usage of the substrate sites for cleavage (SCS-P1), and splicing (PSP-P1) in the in vitro digestion kinetics of the synthetic KRAS2−35 G12V polypeptide

substrate by 20S proteasomes (two biological replicates each measured three times). Mean and SD of biological replicates (bars) are shown. (B) Scatter plot of

SCS-P1 and PSP-P1, which depicts the absence of direct correlation between splicing and cleavage frequencies. In (A,B) spliced and non-spliced peptide products

were identified by MS/MS in the in vitro digestion kinetics of synthetic polypeptide KRAS2−35 G12V with 20S proteasomes, and were quantified by applying QPuB

based on their MS ion peak area. SCS-P1 and PSP-P1 were computed using the average amount of all time points of each peptide product. (C,D) Abundance of the

synthetic polypeptide substrate KRAS2−35 (C) as well as the KRAS5−6/8−14 G12V and KRAS5−14 G12V epitope candidates (D) in the in vitro digestions with 20S

proteasomes (three biological replicates each measured 3–4 times). Spliced and non-spliced peptide products were identified by MS/MS and quantified based on

their MS ion peak area, using titration of synthetic peptides as reference.

FIGURE 6 | KRAS5−6/8−14 G12V epitope candidate is efficiently transported by TAPs and strongly binds HLA-A*02:01 complex. (A) Sequence comparison between

KRAS5−6/8−14 G12V [KL][VVGAVGV] and KRAS5−14 G12V [KLVVVGAVGV] epitope candidates as well as their modified versions (peptides #1 YLVVVGAVGV and #2

KLVVVAVGV). Common sequences among peptides are color-coded. (B) Transport efficiency into the ER lumen mediated by TAPs of KRAS5−6/8−14 G12V and

KRAS5−14 G12V epitope candidates, their modified versions (peptides #1 and #2) and two unrelated peptides (peptides #3 and #4; Supplementary Table 2). The

EC50 was computed using a competing peptide as reference. We here report the EC50 values obtained upon subtracting the peptide transport in absence of ATP. (C)

Predicted and measured binding affinities of the peptides to the HLA-A*02:01 complex. Binding affinity prediction was carried out with the NetMHCPan 3.0 algorithm.

In (B,C) mean and SD of biological replicates (bars) are shown.

of the residue G at the center of the peptides in TAP-mediated
transport. The other two control peptides are not substrates for
TAP (Figure 6B).

Once a peptide arrives in the ER lumen, its binding affinity to
the specific HLA-I molecule determines whether it will ultimately
be presented. Therefore, we measured the binding affinity of the
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same six peptides previously tested in the TAP assay and the
HLA-A∗02:01 complex in a cell-free system utilizing purified
HLA-I molecules. The KRAS5−6/8−14 G12V epitope candidate
was confirmed to efficiently bind the HLA-A∗02:01 complex, in
contrast to the KRAS5−14 G12V non-spliced epitope candidate,
which had a measured IC50 larger than 300 nM (and larger than
predicted). The measured and predicted IC50 of the control
peptides was quite similar and the peptides appear to be good
binders (Figure 6C).

Conformation of KRAS5–6/8–14 G12V and
KRAS5−14 G12V Epitope Candidates Within
HLA-A∗02:01 cleft
Once a peptide is bound to HLA-I complexes and presented
at the cell surface, it can be recognized by TCRs of CD8+ T
cells. The conformation of the peptide in the HLA-I groove
is paramount not only for HLA-I-peptide affinity and stability,
but also for the TCR-HLA-I-peptide interaction. To study
this aspect, we individually refolded and crystallized HLA-
A∗02:01 with spliced epitope candidate KRAS5−6/8−14 G12V,
non-spliced epitope candidate KRAS5−14 G12V, as well as two
control peptides (peptides #1 and #2), in which either the
N-terminal residue or one of the central residues was substituted,
as compared to the epitope candidates (Figures 7A–K). The
crystal structures of these individual HLA-I-peptide complexes
were determined at resolutions ranging from 1.4 to 1.58 Å
by molecular replacement using PDB ID 5ENW as a search
model (Supplementary Table 3). The global superposition of
all these four peptide-HLA-I complexes in the peptide binding
groove reveals a similar binding orientation with a root mean
square deviation value (rmsd) of 0.124 Å. The electron densities
for all four peptides are also well-defined over the entire
peptide length.

Some structural differences in individual peptide binding were
observed when comparing the 9 mer peptides (KRAS5−6/8−14

G12V [KL][VVGAVGV] and peptide #2 KLVVVAVGV) with
the 10 mer peptides (KRAS5−14 G12V [KLVVVGAVGV] and
peptide #1 YLVVVGAVGV). Comparison of peptides with
a same length generally only reveals a single amino acid
change in a similar orientation or the addition of a side
chain, e.g., when V replaces G in peptide #2 as compared
to KRAS5−14 G12V peptide (Figures 7A–D). Specifically, while
the N-terminal and C-terminal ends of all four peptides
match perfectly, structural superposition reveals conformations
in the middle portions of peptide KRAS5−6/8−14 G12V and
peptide #2 unique from the remaining two peptide ligands
(KRAS5−14 G12V and peptide #1). In the latter two cases, the
middle portions of the peptides containing P4, P5, and P6
residues bulge out of the binding pockets to accommodate both
peptide ends inside the peptide-binding groove of the HLA-I
molecule (Figures 7C,D,G,H).

We next evaluated at the detailed interactions between HLA-
A∗02:01 and individual peptides. Throughout these interfaces,
extensive hydrophobic and hydrogen bonding networking is seen
with the majority of peptide residues participating in the contact
with HLA-I residues Y7, F9, M45, E63, K66, V67, H70, T73, T80,

L81, Y84, Y99, Y116, T143, K146, W147, V152, Y159, W167,
Y171 (Figures 7E–H).

In the HLA-I-peptide #1 complex, the N-terminal P1
Y residue makes hydrophobic contact with T163, which
is missing in all the other three peptide complexes and
may explain the significantly higher binding affinity of 10
mer peptide #1 compared to 10 mer KRAS5−14 G12V
peptide (Figure 7H). The A and F pockets forming the
peptide binding groove of HLA-I are mostly composed of
hydrophobic residues and some 12 polar and 21 van der
Waals contacts were, throughout the peptide length in all
complexes, observed between the peptide moiety and HLA-
A∗02:01.

While the HLA-I interaction interface seems to be conserved
in both spliced peptide KRAS5−6/8−14 G12V and non-spliced
peptide KRAS5−14 G12V, the binding affinity of KRAS5−6/8−14

G12V peptide toward HLA-A∗02:01 is higher compared
to the KRAS5−14 G12V peptide (Figure 6C). Hence, to
understand this differential affinity of these peptides for HLA-
A∗02:01, we compared the crystal structures of KRAS5−6/8−14

G12V and KRAS5−14 G12V peptides and modified variants
(peptide #1 and #2) bound to HLA-A∗02:01 complexes in
more detail (Figures 7I–K). The superpositions of either
KRAS5−6/8−14 G12V peptide and peptide #2 or KRAS5−14 G12V
peptide and peptide #1 do not show any relevant differences
(Figures 7I,J).

In contrast, although the structural superposition of
KRAS5−6/8−14 G12V and KRAS5−14 G12V peptides bound
to HLA-A∗02:01 molecules reveals a similar type of HLA-I
interaction network at their N-terminal and C-terminal regions,
their structural arrangements deviate in their middle portions.
Due to this, the spliced peptide KRAS5−6/8−14 G12V makes
several unique interactions with HLA-A∗02:01. Firstly, in the
structure of HLA-A∗02:01 complexed with spliced peptide
KRAS5−6/8−14 G12V, the P6 A residue makes both hydrogen
bonding and van der Waals contacts with the side chain of
T73 residue of HLA-I, whereas the P6G residue of KRAS5−14

G12V is not in contact with HLA-A∗02:01 and its P7A residue
maintains only hydrophobic interactions with T73.

Another difference between both these complexes is at their
C-termini. In the HLA-I-KRAS5−14 G12V peptide complex, the
HLA-A∗02:01 K146 residue adopts a different orientation, due
to which it interacts with only the terminal P� residue. In
the HLA-I-KRAS5−6/8−14 G12V complex, the amino group of
K146 forms a hydrogen bond with both the carbonyl oxygen
of the P�-1 residue and the terminal P� residue. Furthermore,
though KRAS5−14 G12V is longer [10 amino acids, compared to
KRAS5−6/8−14 G12V (9 amino acids)] and reorganizes its central
region in the HLA binding groove, this structural rearrangement
does not favor any additional contacts with HLA-A∗02:01.
From our structural analysis, we can predict that the higher
affinity of the spliced KRAS5−6/8−14 G12V peptide, compared to
KRAS5−14 G12V peptide, might be due to these two additional
hydrogen bonding contacts between the spliced peptides P6A
residue and the T73 of HLA-A∗02:01, as well as the spliced
peptides P�-1 residue and the K146 residue of the HLA-A∗02:01
molecule (Figure 7K).
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FIGURE 7 | HLA-A*02:01-KRAS G12V peptides binding mode. Binding mode of spliced epitope candidate KRAS5−6/8−14 G12V [KL][VVGAVGV], non-spliced epitope

candidate KRAS5−14 G12V [KLVVVGAVGV], peptides #1 YLVVVGAVGV and #2 KLVVVAVGV to HLA-A*02:01 complex. (A–D) 2Fo-Fc electron density map contoured

at 1σ for KRAS5−6/8−14 G12V peptide (A), peptide #2 (B), non-spliced peptide KRAS5−14 G12V (C), and peptide #1 (D). (E–H) Binding of spliced peptide

(Continued)
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FIGURE 7 | KRAS5−6/8−14 G12V (E; green sticks), peptide #2 (F; yellow sticks), non-spliced peptide KRAS5−14 G12V (G; brown sticks), and peptide #1 (H; cyan

sticks) to HLA-A*02:01 protein (gray molecular surface). (I–K) Overlay of KRAS5−6/8−14 G12V and peptide #2 binding to HLA-A*02:01 (I), KRAS5−14 G12V peptide

and peptide #1 (J), as well as KRAS5−6/8−14 G12V and KRAS5−14 G12V peptides (K) binding to HLA-A*02:01 molecule. All peptides are shown as sticks and in

(A–D), peptide residues are labeled with one-letter amino acid codes. In (E–K), the residues of HLA-A*02:01 that are extended in the peptide binding interface are

labeled with single-letter amino acid codes. In (B,F,I), * indicates the alternate conformations for residues V4 and V5 of peptide #2. In (C,G,J–K), *indicates the

alternate conformations for residues V3 of KRAS5−14 G12V peptide.

Potential Recognition of KRAS5–6/8–14 G12V
and KRAS5−14 G12V Epitope Candidates
Within HLA-A∗02:01 Cleft by Different TCRs
Once the peptide binds to a HLA-I molecule, it gets displayed
for TCR recognition, which can then induce effective immune
responses. Using structure as a tool, we tried to determine
the mode of TCR-HLA-I-peptide interaction. Our evaluation
of HLA-I-KRAS5−6/8−14 G12V and HLA-I-KRAS5−14 G12V
peptide complexes provides a link to the potential cross
recognition by a given CD8+ T cell clone. The middle portion
of both spliced and non-spliced epitope candidates containing
P4 and P5 residues does not make ample contacts with the
HLA-A∗02:01 molecule but has limited flexibility in the crystal
structure, otherwise this would not have been solved in the
structure (Figures 8A,B). In the HLA-A∗02:01-KRAS5−14 G12V
peptide complex, the middle portion that bulges out from the
binding groove makes it more accessible for TCR recognition
(Figure 8B). The side chain of P4V and P5V residues are facing
in an upward direction and can be easily accommodated into the
binding pocket located over the central peptide, formed by the
most structurally diverse CDR loops, CDR3α and CDR3β of the
TCR. Similarly, in the HLA-I-KRAS5−6/8−14 G12V complex, the
side chain of the P4V residue is available to mediate hydrophobic
contact for TCR recognition. Also, in both complexes there
is a possibility of hydrogen bonding interactions between the
main chain carbonyl and amide groups of P4 and P5 residues
with the TCR (Figures 8A–C). Hence, our analysis of the crystal
structure suggests that both the spliced KRAS5−6/8−14 G12V
and the non-spliced KRAS5−14 G12V epitope candidates can be
contacted by the same TCR at their P4 site, thereby promoting
cross reactivity.

On the other hand, even though some potential TCR
cross reactivity exists toward both spliced and non-spliced
epitope candidates, the structural superposition of both peptide
complexes revealed deviation in their peptide conformation at
the region where the TCR interaction is expected to happen
(Figure 8C). Hence, depending on the direction that the TCR
encounters in the HLA-I-peptide complex, there might be
a definite possibility of having TCRs that exhibit preference
or exclusive binding toward either the non-spliced or the
spliced epitope, rather than recognizing both of them. As the
KRAS5−6/8−14 G12V possess three peptide residues, P4V, P5V,
and P6G, that can mediate both hydrogen bonding and van der
Waals contacts with a TCR, whilst the spliced peptide contains
only P4V and P5G residues; hence, we can speculate that TCRs
more likely will have selectivity and specificity for one of the two
epitope candidates.

DISCUSSION

Epitope discovery is an essential first step for antigen-
targeted immunotherapies against cancer, infection and some
autoimmune diseases. In the last decade, several studies proposed
strategies to achieve this, especially in light of anti-cancer
immunotherapies. The majority of these studies identify epitope
candidates in HLA-I immunopeptidomes eluted from cells.
Although this strategy guarantees that the identified epitope is
presented at the cell surface, it cannot include all targetable
epitopes because of its relative low sensitivity (51). TCRs can still
be considered more sensitive than MS-based methods and can
sense even a few epitope molecules bound to HLA-I molecules
to trigger cytotoxic responses. There are several examples of
epitopes that were not identified by analytical methods based
on HLA-I immunopeptidomes of cells, but were well-recognized
by specific CTLs. The pipeline that we proposed here tries to
circumvent this problem. While starting from a large number
of theoretical epitope candidates, the pipeline narrows them
down to a few selected candidates step by step. One of the
advantages of our strategy is that its sequential steps could
be exchanged and adapted to the specific requirements of a
given application. For instance, in this study we developed a
model to rank antigens by their potential over-representation
in HLA-I immunopeptidomes considering four protein features,
without including any cell-specific assays, such as transcriptome
or intracellular proteome analysis. If such data was available,
our pipeline could use more complex algorithms, such as that
published by Pearson et al. (37), and likely reach a more in-depth
antigen selection.

The same principle of flexible structure and interchangeable
steps could be applied to the “in vitro selection” section of our
pipeline. In this study, we tested in vitro three steps of the HLA-I
APP pathway: proteasome-mediated generation; TAP-mediated
transport into the ER lumen; and the efficient binding to the
selected HLA-I variant. While some epitopes may be presented
by HLA-I molecules in a proteasome- and TAP-independent
fashion, the majority of HLA-I-restricted epitopes depends on
these two steps.

Efficient binding to the selected HLA-I molecule is, on the

contrary, mandatory. However, although a threshold of 500 nM

would capture ∼85% of all HLA-I-bound peptides (52, 53), it
is still an open question what the optimal IC50 threshold is to
define a “good epitope target” for ATT. The most determining
factor could be the off-rate of peptide binding, a feature that
we likely determine indirectly via IC50, because poor and good
peptides have been reported to have similar on-rates but different
off-rates (54).
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FIGURE 8 | Potential recognition of KRAS5−6/8−14 G12V and KRAS5−14 G12V epitope candidates within HLA-A*02:01 cleft by different TCRs. (A,B) Side view of

binding mode of spliced epitope candidate KRAS5−6/8−14 G12V [KL][VVGAVGV] (A; green sticks), non-spliced epitope candidate KRAS5−14 G12V [KLVVVGAVGV] (B;

brown sticks) into the HLA-A*02:01 binding grove displaying the peptide residues exposed for TCR recognition. (C) Structural superposition of KRAS5−6/8−14 G12V

and KRAS5−14 G12V peptides complexed with HLA-A*02:01 molecule revealing the conformational deviation at their middle region where TCR interaction is expected

to happen. In all three panels, the HLA-A*02:01 protein is shown as gray molecular surface and peptide residues as sticks. In (A,B), peptide residues exposed for TCR

recognition are labeled. In all panels, some of the residues of HLA-A*02:01 that are extended in the peptide binding interface are labeled.

Of course, the “in vitro selection” section of our pipeline could
enlist other APP steps such as tapasin-dependency, cytosolic
peptidase and ERAP trimming, etc. (2, 55), which could be
selectively chosen based on tumor features and the known APP
pathway of the target antigen.

Our pipeline identifies epitope candidates which shall further
be validated by isolating specific CTL clones and their TCRs and
using them to confirm that the epitope candidates are produced
in cellulo and eventually in vivo. There are several strategies
to this end. For example, the KRAS5−6/8−14 spliced epitope
candidate here identified has been validated in collaboration
with Blankenstein et al. (56). Specific TCRs have been isolated
from humanized ABabDII mice (57), cloned into expressing
vectors and transduced into human PBMCs. Transduced human
CD8+ T cells selectively recognized the KRAS5−6/8−14 spliced
epitope. They also recognized human cancer cell lines expressing
KRAS G12V antigen and HLA-A∗02:01 complex and release
IFNγ. They do not recognize a cancer cell line expressing the
wild type KRAS G12 protein and the HLA-A∗02:01 complex.
These outcomes validated the KRAS5−6/8−14 spliced epitope
candidate as a genuine epitope (56). We tried to identify
the KRAS5−6/8−14 G12V spliced and the KRAS5−14 G12V
non-spliced epitope candidates through the MS measurement
of the HLA-I immunopeptidomes of the SW480 pancreatic
adenocarcinoma cell line, which expresses the HLA-A∗02:01
complex and the KRAS G12V mutated protein (42). Despite
CTL clones could recognize both epitope candidates presented

by cancer cell lines (42, 56), none of the two peptides was
identified in the SW480-derived HLA-I immunopeptidomes
(data not shown), thereby confirming the usefulness of the
pipeline described here.

Another advantage of our pipeline is its ability to select
and identify proteasome-generated spliced epitope candidates,
which we and other groups have found to represent a sizeable
pool of immunologically relevant epitopes, especially within
the framework of anti-cancer immunotherapies (3, 11, 12,
20, 21, 44, 58). The PCPS reaction was shown to generate
a large number and a significant amount of spliced peptides
in the in vitro processing of KRAS2−35 neoantigen by 20S
proteasomes. This suggests that we might have previously
underestimated PCPS frequency in the in vitro proteasome
digestions, likely due to the low MS sensitivity available at that
time (23).

The benefit of including these unconventional epitopes in
our pipeline is evident. The recurrent KRAS G12V mutation
can be efficiently presented by HLA-A∗02:01 complexes only
through spliced peptides. TCRs specific to this spliced epitope
candidate could be used to treat around 15–20% of colorectal
cancer and pancreatic adenocarcinoma by ATT. According to
our analysis, the G12V mutation promotes not only the binding
affinity of the KRAS5−6/8−14 G12V spliced epitope candidate
to HLA-A∗02:01 complex, but also the splicing reaction at
that site, since we did not identify the KRAS5−6/8−14 G12
spliced peptide in the in vitro digestion of wild type KRAS2−35
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G12 by 20S proteasomes. The KRAS5−6/8−14 G12V sequence
[KL][VVGAVGV] cannot be generated by any other human
protein by peptide hydrolysis or cis peptide splicing (data
not shown), thereby defining it as a unique neoepitope. In
the KRAS2−35 G12V polypeptide digestion, we also identified
the non-spliced epitope candidate KRAS5−14 G12V, which was
shown to be recognized by PBMCs of pancreatic adenocarcinoma
patients (42). For a cancer-targeted strategy, it would be
informative to perform in vitro digestions using proteasome
isoforms recapitulating those present in the target cancer,
since they vary from tumor to tumor with implications for
the quantity (and perhaps the quality) of peptide produced
(4, 5, 27). Both KRAS5−6/8−14 G12V and KRAS5−14 G12V
epitope candidates are efficiently transported by TAP into
the ER lumen, which is then no bottleneck. The non-spliced
epitope candidate, however, binds HLA-A∗02:01 less efficiently
than the spliced epitope candidate with an IC50 larger than
300 nM, which could be higher than the binding affinity
currently suggested for immunodominant epitopes. According
to analysis of the HLA-A∗02:01-peptide crystal structures, the
two epitope candidates differ in the region exposed to TCRs.
Therefore, we would expect that unique CD8+ T cell clones
could recognize these, although cross-reactive TCRs cannot be
excluded. In the case of cross-reactivity, the immunodominance
of the spliced epitope over the non-spliced epitope might
be favored by the higher binding affinity to HLA-A∗02:01
complex. We do not have enough information about the
other steps of their APP pathways, including production
by cancer-associated proteasome isoforms, to conclude about
presentation in cancer patients. Yet, our pipeline allows
identification of potential new neoepitopes derived from peptide
splicing that are unique for a driver in oncogenesis, KRAS G12V.
Such epitopes could be critical in new vaccination approaches for
the related tumors.
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A low percentage of actinic keratoses progress to develop into cutaneous squamous

cell carcinoma. The immune mechanisms that successfully control or eliminate the

majority of actinic keratoses and the mechanisms of immune escape by invasive

squamous cell carcinoma are not well-understood. Here, we took a systematic approach

to evaluate the neoantigens present in actinic keratosis and cutaneous squamous

cell carcinoma specimens. We compared the number of mutations, the number of

neoantigens predicted to bind MHC class I, and the number of neoantigens that are

predicted to bind MHC class I and be recognized by a T cell receptor in actinic keratoses

and cutaneous squamous cell carcinomas. We also considered the relative binding

strengths to bothMHC class I and the T cell receptor in a fitness cost model that allows for

a comparison of the immune recognition potential of the neoantigens in actinic keratosis

and cutaneous squamous cell carcinoma samples. The fitness cost was subsequently

adjusted by the expression rates of the neoantigens to examine the role of neoantigen

expression in tumor immune evasion. Our analyses indicate that, while the number

of mutations and neoantigens are not significantly different between actinic keratoses

and cutaneous squamous cell carcinomas, the predicted immune recognition of the

neoantigen with the highest expression-adjusted fitness cost is lower for cutaneous

squamous cell carcinomas compared with actinic keratoses. These findings suggest a

role for the down-regulation of expression of highly immunogenic neoantigens in the

immune escape of cutaneous squamous cell carcinomas. Furthermore, these findings

highlight the importance of incorporating additional factors, such as the quality and

expression of the neoantigens, rather than focusing solely on tumor mutational burden,

in assessing immune recognition potential.

Keywords: neoantigen, actinic keratosis, cutaneous squamous cell carcinoma, MHC class I, T cell receptor,

cancer, immunoediting
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INTRODUCTION

In the Medicare fee-for-service population, there were over
one million cutaneous squamous cell carcinomas (cuSCCs)
diagnosed in 2012 in the United States, and the incidence
is increasing (1). While most cuSCC tumors are successfully
treated with excision,∼4% of cuSCC patients develop metastases
and 2% die from cuSCC (2). Especially in sun-rich states, the
high incidence of cuSCC, coupled with the risk of metastasis
and death, results in similar estimates of death from cuSCC
as melanoma (3). Immunotherapy using immune checkpoint
inhibition with the drug cemiplimab has recently been FDA-
approved for the treatment of locally advanced, unresectable,
and metastatic cuSCC; however, only ∼50% of cuSCC patients
respond to cemiplimab treatment (4). Therefore, it is critical
to improve our understanding of the immune recognition of
cuSCC, in order to advance the prevention and treatment options
for this disease.

Actinic keratoses (AKs) are generally considered to result
from cumulative ultra-violet light-induced DNA mutations,
and a small percentage of these precursor lesions progress
to invasive cuSCC over time (5). However, despite ongoing
research, there is not yet a clear understanding of what
allows some AKs to progress to cuSCC. Lesion progression
involves mutations in the epithelial cells which allow malignant
transformation. In addition, mutations in the tumor cells
generate neoantigens which may be recognized by the naturally-
occurring or therapeutically-induced immune response, and
thus the immune response modulates tumor development.
The interaction between cancer and the immune system is
explained by the cancer immunoediting model, which has
three phases (6). In the elimination phase, the immune
system destroys the developing tumor before the tumor
becomes clinically apparent. The elimination phase can result
in complete elimination or residual cancer cell variants that
resist elimination and enter the equilibrium phase. In the
equilibrium phase, the immune response controls tumor growth.
Editing of the immunogenicity of the tumor occurs in the
equilibrium phase as a consequence of selective pressure from
the immune response. Tumor cell variants that are no longer
recognized by the immune system enter the escape phase and
manifest as clinically apparent tumors. Examples of immune
escape include the loss of tumor antigens or the loss of
the ability to present the tumor antigens on MHC class I.
The immunoediting process has recently been demonstrated
in early stage, untreated non-small cell lung cancer (7).
Tumors with intact MHC class I had a significant decrease
in expressed neoantigens compared with non-neoantigenic,
somatic mutations, and only tumors with intact MHC class I
and immune cell infiltration exhibited a decrease in expressed
neoantigens (7).

Cancer immunoediting is also observed in response to
therapeutically-induced immune responses from immuno-
therapy with immune checkpoint inhibitors. Immune checkpoint
receptors are expressed on T cells after activation and
function as part of a homeostatic mechanism to turn off T
cell responses (8). While immune checkpoint receptor-ligand

interactions are helpful in constricting T cell responses after
an infection is cleared, some tumors co-opt this mechanism
to avoid eliciting a T cell response. Immune checkpoint
inhibition therapy blocks this inhibitory signal and improves
immune-mediated tumor destruction. Several studies have
demonstrated an association of higher tumor mutational burden
with improved response to immune checkpoint inhibition in
melanoma and non-small cell lung cancer (9–13). A subset
of these studies also analyzed the number of neoantigens and
found that the number of neoantigens was also positively
correlated with the response to immunotherapy (9, 11–13).
However, these results have not been consistent across all
cancers. Multiple myeloma patients were found to have an
inverse relationship between progression-free survival and
the tumor mutational burden and neoantigens (14). These
opposing results suggest that there are likely additional factors
influencing the relationship between neoantigens and the
response to immunotherapy.

One possible factor suggested by McGranahan et al. is the
homogeneity of the tumor neoantigens. Their group found that
in lung cancers, in addition to the number of neoantigens,
the degree of homogeneity of the tumor was highly associated
with the survival of the patient (9). They found that the
more homogenous the neoantigen presence was in the tumor,
the greater the patient survival (9). Another factor is defined
by Łuksza et al. as the “fitness cost of the tumor,” which
is directly proportional to MHC class I binding and T-cell
receptor (TCR) recognition potential (15). An increased fitness
cost was found to highly correlate with improved response to
immunotherapies, suggesting that, in addition to the number of
mutations and neoantigens, the strength of these neoantigens
is important in predicting the immune response (15). This
finding is corroborated by Anagnostou et al. who demonstrated
the changes in the neoantigens found in tumors before and
after immunotherapy (16). In this study, the overall number
of neoantigens increased from the original tumor to the post-
treatment tumor; however, the strength of retained and gained
neoantigens was less than the strength of the neoantigens that
were lost (16). These results again suggest that the ability of
a tumor to grow in the face of a competent immune system
requires changes not only in the number of neoantigens but in
their quality.

There have been a few analyses of the differences in
tumor mutational burden between pre-cancerous and cancerous
lesions (17–19). Two of these analyses compared the tumor
mutational burden between Barrett’s esophagus and esophageal
adenocarcinomas and found that the tumor mutational burden
increased from the pre-cancerous to the cancerous lesion in
paired samples (17, 18). A single study investigated the tumor
mutational burden in AKs and cuSCCs (19), but, to our
knowledge, there are no reports of the number of neoantigens
or the fitness costs of these neoantigens in AK or cuSCC. In order
to address these gaps, we have compared the neoantigen burden
and fitness cost between AKs and cuSCCs. Understanding what
allows the immune system to keep AKs in equilibrium while
it fails to do so with cuSCCs may help to explain which AKs
progress to cuSCCs.
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TABLE 1 | Summary of the samples available from each patient.

Patient ID 1 2 3 4 5 6 8 10 12

WES normal skin X X X X X X X X

WES saliva x x x x x x X

WES AK X X X X X X X

WES cuSCC X X X, X X X X

RNAseq normal skin x x x x x x x

RNAseq AK x X X x X x x x x

RNAseq cuSCC X X x, x X X x x x

X denotes any samples used in our analyses, and x denotes samples available that were

not used.

METHODS

Datasets
Whole exome sequencing (WES) data with an average coverage
of 135×± 22 (mean± s.d.) (Illumina Hi-Seq) and RNAseq data
average of 64 million reads per sample (Illumina Hi-Seq) from
Chitsazzadeh et al. was used for this analysis (19). Datasets from
7AK samples and 7 cuSCC samples from 9 different patients were
kindly provided by Dr. Ken Tsai and Dr. Kimal Pajapakshe. Eight
out of the 9 patients also had a normal skin sample which was
used for comparison. For the remaining patient (patient 12), a
saliva sample was used in place of the normal skin. These samples
and the patients they come from are summarized inTable 1. Note
that the AK and cuSCC samples from an individual patient are
separate lesions.

Neoepitope Prediction
WES and RNAseq data files for normal skin, AK, and cuSCC
samples were obtained as FASTQ files. WES and RNAseq FASTQ
files underwent quality control using FastQC (20) and were
trimmed for quality using Trimmomatic (21) IlluminaClip
with the following parameters: seed_mismatches = 2,
palindrome_clip_threshold = 30, simple_clip_threshold =

10, leading = 10, trailing = 10, winsize = 4, winqual = 15.
Trimmed WES reads were mapped to the GRCh38.p7 reference
genome using HISAT2 v. 2.1.0 (22). SAM files were converted to
BAM and coordinate sorted using SAMtools v. 1.4 (23). WES
BAM files were processed according to Broad Institute GATK
(Genome Analysis Toolkit) best practices (24–26). Read groups
were added with Picard Toolkit’s AddOrReplaceReadGroups and
optical duplicates marked with Picard Toolkit’s MarkDuplicates
(v.2.18.1, http://broadinstitute.github.io/picard/). Base quality
scores were recalibrated with GATK (v.4.0.3.0) BaseRecalibrator.
The BAM files were then converted to pileup format using
Samtools 1.3.1 (23). To determine the neoantigens present in
the AKs compared to the cuSCCs, first, high confidence single
nucleotide polymorphisms (SNPs) and indels were called using
VarScan2 version 2.3.9 with minimum coverage of 10, minimum
variant allele frequency of 0.08, and somatic p-value of 0.05 (27).
Somatic mutations were separated from those SNPs that fell
within 1 bp of an indel position, as these were likely to be false
positives due to alignment errors. The variants were annotated
using the Variant Effect Predictor tool from Ensembl version

90.9 (28, 29). Finally, peptides were identified and prioritized
from these variants using pVACtools version 3.0.5 (30, 31).
For every variation in amino acid, all possible peptides were
generated in which the changed amino acid was included at
every position in a sequence. Sequences of 21 amino acids were
considered. The non-mutated sequence corresponding to each
of these possible neoepitopes was also extracted for comparison
sake. These steps were done as outlined in the EpitopeHunter
pipeline from Narang et al. (32).

HLA Typing
HLA typing was completed for three major MHC class I genes
(HLA-A, -B, and -C) using POLYSOLVER (POLYmorphic loci
reSOLVER) version 1.0 (33). POLYSOLVER aligns reads from the
WES data in the HLA region of each sample and then aligns these
regions to a library of all known HLA alleles. Then, a Bayesian
classification approach is used to determine the two alleles for
each gene for each patient.

Predicting MHC Class I Binding Epitopes
Prediction of the potential epitopes that would effectively bind to
MHC class I was completed with the NetMHCpan server version
4.0 (34). Neoantigens of only 9 amino acids were considered.
Scores were calculated for both the mutated peptides and their
wild-type counterparts. Each was scored based on its dissociation
constant to each of the alleles predicted by POLYSOLVER.
The top binding potential for each neoantigen was selected
independently for the wild-type and mutant peptides. These
binding probabilities were then used to determine an “amplitude”
(A) using the methods outlined by Łuksza et al. (15). Only
neoantigens with a maximum dissociation constant of 500 nM
were considered, and the ratio of the dissociation constants (Kd)
for the wild-type (WT) compared to the mutant (MT) peptides
was calculated as shown here:

A = KWT
d /KMT

d

For wild-type peptides with exceptionally high predicted
dissociation constants, an adjustment is made to account for
the lack of accuracy of netMHCpan at predicting dissociation
constants above the range in which it was trained. This
adjustment is described in detail in the paper of Łuksza et al. and
will therefore not be discussed further here (15).

Predicting Neoantigen TCR Recognition
Prediction of TCR recognition potential, R, was calculated as
described by Łuksza et al. (15). A BLOSUM62 similarity matrix
was used to assess the sequence similarity between a neoantigen
and peptide sequences that are known T cell antigens from
the Immune Epitope Database (IEDB) (35). The same set of
IEDB sequences was used as was optimized by Łuksza et al. for
evaluation of neoantigens inmelanoma and small cell lung cancer
(15). The sequence similarity was then used in place of binding
energies, and the TCR recognition potential was calculated as:

R = Z(k)−1
∑

e∈IEDB

exp[−k(a− |s, e|)]
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Where |s,e| is the sequence similarity, a is the horizontal
displacement of the binding curve, and k sets the steepness of
the curve at a. Based on the model fit by Łuksza et al., the
parameters a and k were set to 26 and 4.87, respectively (15).
These parameters were optimized for both melanoma and lung
cancer patients and shown to have consistent predictive value
in both cancers. This gives us confidence that they can likewise
be used with predictive value for cuSCC without the need to
introduce a new training set. Finally, Z(k) is the partition function
over the unbound state and all bound states, calculated as follows:

Z
(
k
)
= 1+

∑

e∈IEDB

exp[−k(a− |s, e|)]

Fitness Cost Calculation
Given the TCR recognition potential (R) and the MHC-binding
amplitude (A), the fitness cost (F) of the neoantigens was
calculated as described by Łuksza et al. (15):

F = A× R

Rather than taking the negative of this value as was done by
Łuksza et al., we have left this value as a positive and will refer to it
as the fitness cost. The greater the fitness cost, the more immune
recognition and immune-mediated destruction we predict for
the tumor. We have chosen to look at both the average and
the maximum fitness cost for the neoantigens in each tumor to
avoid presupposing that the single strongest neoantigen is of sole
importance in the tumor recognizability.

Recognizing that to be visible to the immune system,
neoantigens must be expressed, the fitness cost was then adjusted
for the magnitude of expression of the given neoantigen.
Transcriptome assembly and read count quantifications were
completed with Salmon version 0.11.3 (36) normalized to reads
per kilobase of transcript per million mapped reads (RPKM).
Using RNAseq data, the expression of each neoantigen with non-
zero fitness cost was calculated as a fraction of the total read
counts for these neoantigens. This fraction was multiplied by the
amplitude and TCR recognition potential to generate an adjusted
fitness cost.

Statistical Analysis
Statistical Analyses were performed using STATA version 14
(STATAcorp; College Station, TX). P-value calculations were
done using a Wilcoxon Rank Sum calculation. Correlation
between variables were calculated as Spearman’s Rho
correlation coefficients.

HLA Mutations and Expression
To determine the role of HLA mutations and expression on the
neoantigen profile of the tumor samples, somatic mutations were
identified within the coding regions for HLA-A, B, and C. The
mutations identified were then compared to the regions encoding
the peptide binding groove. The regions encoding the peptide
binding groove are found on exons 2 and 3. HLA coding regions
and peptide binding groove regions were determined by the
NCBI Gene database (37). MHC class I pathway members, TAP1,

TAP2, or B2M were also interrogated for mutations. RPKM-
normalized RNAseq expression levels of HLA-A, B, and C as
well as TAP1, TAP2, and B2M were fit with a linear regression
against the adjusted maximum fitness cost. The mutation’s effect
on the expression of the gene was evaluated by calculating the
average expression and the standard deviation of the specific gene
across all samples. For the mutations found in HLA-B for patient
2 cuSCC and in HLA-C for patient 5 AK, the expression value
was compared to the average expression of the respective HLA
gene. A value within two standard deviations from the mean was
considered unaffected by the mutation.

Cell Enrichment Type Analysis
We used the xCell web service to deconvolute the diverse
cell populations present in the cuSCC and AK samples (38).
This program uses a gene signature-based method to estimate
the proportions of different cell types in a bulk-RNA-sequence
sample. RPKM gene expression data was used to estimate the
fraction of the tumor sample made up by different cell types. In
this work, the specific focus was on the immune-related cell types.
Linear regressions were fit to the adjusted maximum fitness cost
against the expression level of each of the following: T cell subsets
(CD4T cells, CD8T cells, CD8 central memory T cells, CD8
effector memory T cells, CD8 naïve T cells, regulatory T cells),
dendritic cell populations (immature DCs and conventional
DCs), and natural killer (NK) cells. A Bonferroni correction was
completed on the p-values from these correlations to adjust for
the number of comparisons.

RESULTS

Analysis of Mutation and Neoantigen
Counts
Somatic mutations and neoantigens were identified and
filtered using the methods described. As previously shown by
Chitsazzadeh et al. the mutational burden varied widely over
both the AK and cuSCC samples (19). For cuSCCs there was
an average of 2,861 mutations with a range of 389–11,504 and
for AKs there was an average of 424 mutations with a range of
346–1,697 (Table 2, Figure 1A). While the maximum number
of mutations was higher for the cuSCC samples than the AK
samples, there was no statistically significant difference in the
average number of mutations (p= 0.3379).

The number of binding neoantigens was defined as those
neoantigens predicted by NetMHCpan to have a dissociation
constant for MHC class I of <500 nM. AK and cuSCC
samples both had large ranges of binding neoantigens (88–
442 and 45–3,600, respectively), but there was no statistically
significant difference in the average number observed for the two
populations (Table 2, Figure 1B, p = 0.336). These data show
that neoantigens predicted to bind MHC class I are present in
both AK and cuSCC samples.

The number of neoantigens can be further refined by selecting
only those with a non-zero predicted TCR recognition potential.
We will refer to these as “immunogenic neoantigens.” Again, a
large range was observed (21–112 for AKs, 8–965 for cuSCCs),
but no statistically significant difference was present (Table 2,
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TABLE 2 | Summary of the number of somatic mutations, 21 base pair peptides

(predicted from only non-synonymous mutations), 9 base pair binding

neoantigens, and immunogenic neoantigens for each patient sample.

Sample Somatic

mutations

Peptides

(21 mer)

Possible

neoantigens

(9 mer)

Binding

neoantigens

Immunogenic

neoantigens

Patient 1

AK

50 2 26 0 0

Patient 2

AK

1,697 1,191 15,480 442 112

Patient 2

cuSCC

2,540 2,185 28,403 190 41

Patient 3

AK

617 317 4,121 85 21

Patient 3

cuSCC

5,385 2,941 38,231 1,297 339

Patient 4

AK

75 2 27 2 0

Patient 4

cuSCC1

83 12 156 2 1

Patient 4

cuSCC2

47 1 13 0 0

Patient 5

AK

346 197 2,561 88 28

Patient 5

cuSCC

11,504 7,678 99,799 3,600 965

Patient 6

cuSCC

389 245 3,185 45 8

Patient 8

cuSCC

82 12 157 7 0

Patient 10

AK

133 24 312 2 0

Patient 12

AK

53 0 0 0 0

Binding neoantigens are those neoantigens with <500 nM dissociation constant from

MHC class I, and immunogenic neoantigens are those neoantigens with a non-zero

TCR-binding potential.

Figure 1B, p = 0.3185). These data show that the number of
neoantigens can be further refined by incorporating predicted T
cell recognition to yield a smaller subset of neoantigens, which
are predicted to be immunogenic.

As shown in Figure 1C, there was a strong correlation between
the somatic mutations and both the binding and immunogenic
neoantigens (Spearman’s rho correlation coefficients of 96
and 92%, respectively). However, these correlations represent
different associations. The slope of the somatic mutation to
binding neoantigen correlation was 0.31 (95% CI of 0.27–
0.34), and the slope of the somatic mutation to immunogenic
neoantigen correlation was 0.08 (95% CI of 0.07–0.09). Given
that there was no overlap for the 95% confidence intervals,
we can conclude that the difference in these slopes was
statistically significant. While both the number of binding and
immunogenic neoantigens increase with an increase in the
number of somatic mutations, the increase in the number of
immunogenic neoantigens is less than the increase in the number
of binding neoantigens. These data shown that the immunogenic

FIGURE 1 | (A) Comparison of the number of somatic mutations in each of

the samples for AK and cuSCC. (B) In blue, comparison of the number of

neoantigens predicted to have an MHC class I dissociation constant of

<500 nM (termed Binding Neoantigens) in AK and cuSCC. In red, comparison

of the number of neoantigens predicted to have an MHC class I dissociation

constant of <500 nM and a non-zero TCR recognition potential (termed

Immunogenic Neoantigens) in AK and cuSCC. (C) Correlation between the

number of somatic mutations and the number of binding neoantigens (blue)

and immunogenic neoantigens (red). Each data point represents an AK or

cuSCC sample. Numbers for AK and cuSCC indicate the patient sample from

Table 1 used for the analyses. Note that the AK and cuSCC samples from an

individual patient are separate lesions.

neoantigens are a much smaller subset than those with predicted
MHC binding capacity.

Analysis of Neoantigen Fitness Cost
To continue our comparison of the neoantigens present in
AKs compared to those in cuSCCs, we analyzed only those

Frontiers in Immunology | www.frontiersin.org 5 November 2019 | Volume 10 | Article 27996465

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Borden et al. Neoantigens in Actinic Keratosis and Cutaneous SCC

samples with more than one immunogenic neoantigen (AKs
from patients 2, 3, and 5 and cuSCCs from patients 2, 3, 5, and
6) as this enabled us to look at the comparative strengths of
the neoantigens in each population. Note that patient 4 had one
immunogenic neoantigen in one of the cuSCC samples. However,
this patient was not included in the subsequent analyses as the
TCR binding and fitness cost of this neoantigen were 1.77 ×

10−4 and 2.36 × 10−5, respectively. These values were 2 orders
of magnitude smaller than the averages for all the other samples
included, and thus, this sample was excluded.

To examine the percent of neoantigens recognized by the
immune system in the AK and cuSCC samples comparatively,
we took the ratio of the number of immunogenic neoantigens to
the number of binding neoantigens. The ratios were similar for
both AKs and cuSCCs (averages of 0.273 and 0.231, respectively,
Figure 2A). However, if a more stringent criteria for the binding
of the TCR was applied where the binding to the TCR must
be ≥0.01, the average for AKs was 0.0290 and the average for
the cuSCCs was 0.0147, which was a statistically significant
difference (p = 0.033, Figure 2B). Since a greater percentage of
the mutations in AKs are theoretically visible to the immune
system, there may be greater immune recognition of these lesions
despite the lack of difference in their mutational rates.

Next, we considered the relativeMHC class I binding potential
for the neoantigens in AKs compared to cuSCCs. TheAK samples
had a slightly higher average MHC class I dissociation constant
(195 nM) than did the cuSCCs (179 nM), which was statistically
significant (Figure 3A, p = 0.0497). This indicates that, on
average, the neoantigens from AKs were predicted to bind MHC
class I with lower affinity than those from cuSCC. Considering
this factor alone, it would seem to suggest that the AKs should
be less visible to the immune system than the cuSCCs. However,
as T cells that recognize self-antigens are eliminated during T cell
development, Łuksza et al. propose that if the binding of the wild-
type peptide is high, it is likely that the T cell that would recognize
this antigen has already been deleted (15). To adjust for this, the
amplitude was calculated as the ratio of the dissociation constant
for the wild-type peptide:MHC to the dissociation constant for
the mutant peptide:MHC. As explained by Łuksza et al., the
amplitude reflects the relative probability that a neoantigen will
be bound to MHC class I times the relative probability that
the corresponding wild-type peptide will not be bound (15).
In all cases except AK #5, the amplitude is <1.0, indicating
that on average the wild-type peptides were predicted to bind
MHC class I with greater affinity that the mutated peptides or
neoantigens. The average amplitudes for AK and cuSCC were
similar (Figure 3B, p= 0.4795), suggesting that any difference in
the MHC binding potential of the two groups is eliminated when
the relative binding of the wild-type peptide is accounted for.
Finally, the average TCR recognition potential was 0.121 for AK
and 0.078 for cuSCC (Figure 3C, p = 0.0771). While the trend is
toward a higher TCR recognition potential for AK than cuSCC, at
our sample size this variable is unable to definitively differentiate
the two groups.

The fitness cost of the neoantigens was defined as the
amplitude times the TCR recognition potential. The fitness cost
predicts the immune recognition potential of the neoantigen,

FIGURE 2 | (A) Ratio of immunogenic neoantigens to binding neoantigens

for AK and cuSCC. (B) Ratio of those immunogenic neoantigens with a TCR

recognition potential of ≥0.01 to the binding neoantigens. Numbers for AK

and cuSCC indicate the patient sample from Table 1 used for the analyses.

*p < 0.05.

such that an increased fitness cost is predicted to have greater
immune-mediated destruction. The average fitness cost for AK
was 0.109, while the average for the cuSCC was 0.048; this
difference was not statistically significant (p= 0.288, Figure 4A).
However, given that T cell-mediated immune responses are
mounted to one or a few “immunodominant” antigenic peptides,
another important factor to consider is the neoantigen with the
highest fitness cost. The maximum fitness cost had a very large
range for the cuSCCs (0.604–15.309) compared to a smaller
range (2.791–6.941) for AKs (Figure 4B). Despite the lack of
statistically significant difference between the maximum fitness
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FIGURE 3 | (A) Average dissociation constant (Kd) for mutant (MT)

peptide:MHC in AK and cuSCC. (B) Average amplitude of MHC binding

calculated as the ratio of the dissociation constant (Kd) for wild-type (WT)

peptide:MHC to the dissociation constant (Kd) of the mutant (MT)

peptide:MHC in AK and cuSCC. (C) Average TCR recognition potential for AK

and cuSCC. Numbers for AK and cuSCC indicate the patient sample from

Table 1 used for the analyses. *p < 0.05.

costs of AKs and cuSCCs (p = 1.0), it is notable that some of the
cuSCCs had neoantigens with a greater fitness cost than those of
the AKs.

In an attempt to explain why some cuSCCs had neoantigens
with a high fitness cost, suggesting that these cuSCCs had
neoantigens with high immune recognition potential yet escaped
immune-mediated destruction, we adjusted the fitness cost values
based on the expression of the neoantigens using the RPKM-
normalized RNAseq data. There was a trend for an increased
adjusted average fitness cost in AKs (0.00344) compared with

cuSCCs (0.00023) (Figure 4C, p = 0.08). When evaluating
the neoantigen with the maximum fitness cost after adjusting
for expression, adjusted maximum fitness cost for AKs (0.22)
was significantly increased compared with cuSCCs (0.014)
(Figure 4D, p = 0.03). Taken together these data demonstrate
that while cuSCCs have neoantigens with immune recognition
potential, these neoantigens are not expressed, resulting in
a higher adjusted maximum fitness cost in AKs compared
to cuSCC.

Analysis of HLA Mutations and Immune
Infiltration
We analyzed HLA-A, B, and C for bothmutations and expression
levels because recognition of neoantigens by the immune system
requires functional MHC class I proteins to be made and
expressed within the cell. Mutational analysis revealed two
somatic mutations within HLA coding regions for the HLA-
B gene in the cuSCC sample from patient 2 and the HLA-
C gene in the AK sample from patient 5. However, neither
of these mutations were within the peptide binding groove,
which suggests that these mutations do not alter peptide binding.
Additional analysis was performed to examine whether the
mutations affected the expression level. Expression of HLA-B
for patient 2 cuSCC was within one standard deviation of the
mean expression and expression of HLA-C for patient 5 AK was
within two standard deviations of the mean, suggesting that these
mutations do not alter expression. Mutations in members of the
MHC class I pathway (TAP1, TAP2, and B2M) can also lead to the
loss of cell surface MHC class I expression and immune escape
(39). Therefore, we interrogated TAP1, TAP2, and B2M genes
for mutations, but no mutations in these genes were identified.
We used a linear regression analysis to determine if the rate
of expression of HLA (A, B, and C), TAP1, TAP2, or B2M
correlated with the adjustedmaximum fitness cost. No significant
correlation was found between the adjusted maximum fitness
cost and the normalized expression of any of the six proteins
analyzed (data not shown). This result suggests that there was
no meaningful impact of mutations in or expression of these
proteins on the fitness cost of the tumor.

Analysis was also done to compare the level of immune
infiltration (as determined by xCell analysis) to the neoantigen
strength. Linear regressions were fit to the adjusted maximum
fitness cost against the expression level of each of the following:
T cell subsets (CD4T cells, CD8T cells, CD8 central memory
T cells, CD8 effector memory T cells, CD8 naïve T cells,
regulatory T cells), dendritic cell populations (immature DCs and
conventional DC) and NK cells. There were trends for increased
CD4 and CD8T cell signatures in the tumor with increased
adjusted maximum fitness cost (data not shown). However, no
statistically significant associations were identified, which may in
part be due to the small sample size.

DISCUSSION

Given that a low percentage of AKs progress to cuSCCs,
it is important to understand what allows some of these
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FIGURE 4 | (A) Average fitness cost for AK compared to cuSCC. Fitness cost is defined as the MHC-binding amplitude multiplied by the TCR recognition potential.

(B) Maximum (Max) fitness cost for AK compared to cuSCC. Maximum fitness cost is defined as the highest calculated fitness cost across all neoantigens for each

lesion. (C) Adjusted average (Avg) fitness cost for AK compared to cuSCC. Adjusted fitness cost is defined as the MHC-binding amplitude multiplied by the TCR

recognition potential multiplied by the ratio of RPKM expression for the individual neoantigen to the sum of the RPKM expression of all neoantigens. (D) Maximum

adjusted fitness cost for AK compared to cuSCC. Maximum adjusted fitness cost is defined as the highest calculated fitness cost after adjustment for RNA

expression. Numbers for AK and cuSCC indicate the patient sample from Table 1 used for the analyses. *p < 0.05.

precursor lesions to escape immune surveillance and become
invasive cuSCC, while others AKs remain in equilibrium or
are eliminated. An improved understanding of immunoediting
in AKs and cuSCCs may aid clinical decision making and
assist the development of preventive or treatment strategies.
Chitsazzadeh et al. found, and we confirmed, that the maximum
number of somatic mutations is greater in the cuSCCs than the
AKs (though the large range prevents a statistically significant
difference in the average number) (19). This finding is also
consistent with work showing that esophageal adenocarcinomas
have higher rates of mutations than the precursor Barrett’s
esophagus lesions (17, 18). To our knowledge, our study is the
first to identify neoantigens in AKs and cuSCCs and compare
the quality of neoantigens between precursor and invasive,
cancerous lesions. A limitation of our analyses was the small
sample size; unfortunately, no other publicly-accessible WES
and RNAseq datasets were found for AK and cuSCC samples
in PubMed, NCBI dbGaP or Google Scholar. We identified
binding neoantigens (based on predicted MHC binding) and
immunogenic neoantigens (based on predicted MHC binding
and TCR recognition potential) in both AKs and cuSCC
with similar findings to the number of somatic mutations.
The maximum number of both binding and immunogenic

neoantigens is higher in cuSCCs than AKs, but there was not a
statistically significant difference in the average number. These
findings indicate that there must be some factor other than
the number of mutations and neoantigens that influences the
immune-evasion potential of the tumor.

There was variation in the number of mutations and
neoantigens across the different samples. This magnitude of
variation is consistent with a prior study that has shown large
differences in somatic mutations even in those tumors with
high mutational burdens (40). Our results are also consistent
with previous work reporting a small number of mutations that
form binding neoantigens (41). For a mutation to lead to a
neoantigen it must be in a coding region of the DNA, change the
amino acid sequence, and meaningfully bind the MHCmolecule.
Because of these criteria, only a small number of the mutations
accumulated in a tumor will create binding neoantigens and an
even smaller number of these will be able to be recognized by
the immune system as immunogenic neoantigens (as is reflected
in Table 2).

One significant difference observed between the cuSCCs and
the AKs is the percentage of their neoantigens that are highly
recognized by TCRs. The cuSCCs on average had a lower
percentage of binding neoantigens that are also predicted to be
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highly recognized by the TCRs. Thus, the presence of a greater
numbers of neoantigens in cuSCCs may not directly correlate to
the visibility of that lesion to the immune system. Rather, the
increased percentage of neoantigens that are recognized in AKs
compared to cuSCCs indicates that the TCR recognition of the
neoantigens predicted to bind MHC may be an important factor
in determining the success of immunosurveillance. This finding
corroborates the work of Anagnostou et al. who demonstrated
that, after immunotherapy, the number of neoantigens increased,
but the strength of those neoantigens decreased (16).

When considered separately, neither predicted MHC binding
nor predicted TCR recognition of neoantigens appears to account
for a difference in immune evasion of cuSCC compared with AK.
The predicted affinity of neoantigens binding MHC in cuSCC is
slightly higher on average than in AK, which would suggest that
the immune system should be able to recognize the cuSCCs more
readily. However, this difference is eliminated when the relative
binding of the corresponding wild-type peptide is considered.
This suggests that the negative selection of self-reactive T cells
is one important factor to consider in determining the ability
of the immune system to recognize the tumors. We observed a
trend for a difference in TCR recognition potential between AKs
and cuSCCs (p = 0.0771), suggesting that, perhaps, with a larger
sample size, this might prove to be a statistically significant factor
in determining immune recognition. However, with our current
sample size, it is not possible to determine if TCR recognition
potential alone is able to explain the difference in immune
evasion between the pre-cancerous and cancerous lesions.

Predicted MHC binding and TCR recognition potential were
then combined into an overall fitness cost, as has been done by
Łuksza et al. (15), but the average and maximum fitness costs
were found to have no statistically significant difference between
AKs and cuSCCs. Surprisingly, the range of the maximum fitness
costs included higher values for the cuSCCs than the AKs.
This result seemed to contradict the expected result that the
cuSCCs should have enhanced immune evasion mechanisms
than the AKs, as they have escaped immune recognition to
develop into invasive cancers. We then incorporated RNAseq
expression data into our calculation since a neoantigen of any
strength cannot be recognized by the immune system unless it is
appreciably expressed by the cell. When the expression data was
incorporated, the maximum fitness cost for AKs was significantly
increased compared with cuSCCs, and there was a trend for
increased average fitness cost for AKs compared with cuSCCs.
These results suggest that, although the cuSCCs accumulate
many potentially immunogenic neoantigens (many of which
are stronger than the immunogenic neoantigens of the AKs),
these neoantigens are not appreciably expressed. This leads us to
hypothesize that down-regulating the expression of these strong
neoantigens is a mechanism of immune evasion for cuSCCs that
may allow them to escape the immune system whereas the AKs
fail to do so. Consistent with this hypothesis, Rosenthal et al.
demonstrated that there are higher rates of gene suppression in
those genes with mutations that formed neoantigens compared
to genes with non-neoantigenic mutations (7). The work of
Matsushita et al. also corroborates our finding by showing that
a strong neoantigen is downregulated in those tumors which

succeed in growing in an immunocompromised host compared
to an immunodeficient host (42). Their work also corroborates
the suggestion that it is the maximum strength neoantigen that
is of most importance in determining the immune detection of
the tumor.

By identifying and comparing the quality of neoantigens in
AKs and cuSCCs, we show that cuSCCs have lower rates of
predicted TCR recognition of neoantigens that bind MHC class
I than do AKs. Additionally, when expression is considered,
many of the strong neoantigens from cuSCCs are insufficiently
expressed, causing the maximum fitness cost (and by extension,
immune recognition) to be lower for cuSCCs than for AKs.
Our findings shed light on why tumor mutational burden
alone may not accurately predict the anti-tumor immune
response in treatment with immune checkpoint inhibition (9–
13). Our results also suggest a role for the down-regulation of
highly immunogenic neoantigens in the escape of cuSCCs from
immune recognition.
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Tumor-infiltrating lymphocytes (TIL) are considered enriched for T cells recognizing
shared tumor antigens or mutation-derived neoepitopes. We performed exome
sequencing and HLA-A∗02:01 epitope prediction from tumor cell lines from two
HLA-A2-positive melanoma patients whose TIL displayed strong tumor reactivity.
The potential neoepitopes were screened for recognition using autologous TIL by
immunological assays and presentation on tumor major histocompatibility complex
class I (MHC-I) molecules by Poisson detection mass spectrometry (MS). TIL from the
patients recognized 5/181 and 3/49 of the predicted neoepitopes, respectively. MS
screening detected 3/181 neoepitopes on tumor MHC-I from the first patient but only
one was also among those recognized by TIL. Consequently, TIL enriched for neoepitope
specificity failed to recognize tumor cells, despite being activated by peptides. For the
second patient, only after IFN-γ treatment of the tumor cells was one of 49 predicted
neoepitopes detected by MS, and this coincided with recognition by TIL sorted for
the same specificity. Importantly, specific T cells could be expanded from patient and
donor peripheral blood mononuclear cells (PBMC) for all neoepitopes recognized by TIL
and/or detected on tumor MHC-I. In summary, stimulating the appropriate inflammatory
environment within tumors may promote neoepitope MHC presentation while expanding
T cells in blood may circumvent lack of specific TIL. The discordance in detection
between physical and functional methods revealed here can be rationalized and used
to improve neoantigen-targeted T cell immunotherapy.
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INTRODUCTION

Tumor-infiltrating lymphocytes (TIL) in patients with metastatic
malignant melanoma are thought to be enriched for T cells
that can recognize antigens expressed by the patient’s tumor.
In line with this, therapy with autologous TIL, expanded to
large numbers ex vivo and reinfused to melanoma patients, can
induce long-lasting clinical responses in a large proportion (40–
70%) of patients (1). Different categories of tumor-associated
antigens (TAA) are recognized by TIL, and initial efforts focused
on broadly expressed TAA shared between patients. Such TAA
include both differentiation antigens that are found in the normal
melanocytic counterparts and aberrantly expressed antigens such
as cancer-testis antigens that are normally expressed only in
immune privileged sites. Therapeutic approaches with T cells
transduced with T cell receptors (TCR) recognizing these types
of shared TAA, exemplified by NY-ESO-1, MART-1, gp100, and
MAGE-A3, have resulted in clinical regressions of metastatic
lesions in a limited number of treated patients, sometimes
with severe side effects caused by cross-reactivity to normal
tissues (2, 3).

Recently, the focus of the research field has shifted toward
tumor-specific antigens associated with somatic mutations
(neoantigens/neoepitopes), which are in the majority of cases
unique for each patient. This development has been spurred by
advancements in next-generation sequencing (NGS) techniques
that have made it possible to almost routinely identify all tumor-
associated mutations, including both shared mutations in driver
genes (e.g., Ras, p53) and patient-unique passenger mutations.
Passenger mutations are not part of oncogenesis, but tend
to accumulate during tumor progression especially in tumors
caused by UV or carcinogen exposure, typically exemplified by
melanomas, and lung cancers.

Neoepitopes resulting from mutations are attractive cancer
immunotherapy targets. The mutation is not present during the
selection in the thymus and thus exempt from central tolerance.
Thus, neoepitopes are seen as “foreign” non-self. In addition,
the mutations are truly tumor-specific and there is less risk for
ON-target, OFF-tumor side effects although cross-reactivities
to epitopes in other proteins can probably occur. Several lines
of evidence have indicated that neoepitope frequency can be
decisive in determining the capacity of patient’s T cells to reject
their tumors. Thus, an association between mutational load and
clinical outcome in patients treated with antibodies blocking
the checkpoint molecules CTLA4 and PD-1 has been described
(4, 5). In addition, a connection between clinical efficacy of
TIL adoptive cell therapy (ACT) and the presence of T cells
specific for tumor-derived mutations in the infused TIL has been
suggested (6, 7). Furthermore, ACT performed with TIL enriched
for neoepitope-specific T cells has resulted in successful clinical
outcomes (8, 9).

In this study, we used two peptide libraries containing
in silico-predicted T cell neoepitopes derived from whole
exome sequencing data of early passage tumor cell lines
from two HLA-A2∗02:01-positive melanoma patients. The
predicted neoepitopes were screened for their ability to activate
autologous TIL in functional assays and for their presence on

MHC-I by mass spectrometry (MS). This combined approach
revealed a significant discordance between the immunologic
and physical detection methods, with neoepitopes recognized by
autologous TIL not being detected by MS, and vice versa. Here,
this discrepancy is examined. Peptide recovery and detection
sensitivity for MS are characterized in addition to TIL functional
assays including assessment of specificity, avidity, and activation
capacity, as well as neoepitope immunogenicity. Our results
highlight the difficulties to be faced when aiming to target
tumors with neoepitope-specific, T cell-based immunotherapy
and suggest strategies on how to improve such therapy.

MATERIALS AND METHODS

Patients
Patient ANRU is a male born in 1975 who was operated in
November 2014 for stage III axillary lymph node metastatic
melanoma from which a tumor line and TIL cells were isolated.
He had a relapse with CNS metastases in 2015, for which he
was operated and received local radiotherapy. Since then, he is
tumor free and has received no systemic therapy. Patient KADA
is a male born in 1938 who was operated in 2011 for stage
III axillary lymph node metastasis from which a tumor line
and TIL cells were isolated. He has had no systemic treatment
and has since then remained recurrence free. The protocol for
patient participation was approved by the local Ethics Committee
(Dno. 2011/143-32/1 and 2015/1862-32) and the Institutional
Review Board. Both patients signed a written informed consent
in accordance with the Declaration of Helsinki.

Cells and Tissues
Original SK-OV-3, HLA-A2∗02:01-transfected SK-OV-3 and
T2 cell lines were grown in RPMI supplemented with FCS
(10%), penicillin (100U/ml; LifeTechnologies), and streptomycin
(100µg/ml; LifeTechnologies). PBMC were prepared from
healthy blood donor buffy coats by Ficoll-Hypaque (GE
Healthcare) density-gradient centrifugation, according to the
manufacturer’s instructions.

Monocytes and CD8+ T cells were isolated using CD14+
or CD8+ magnetic-bead-based isolation (Miltenyi Biotec),
respectively, according to the manufacturer’s instructions.
Monocytes were matured into dendritic cells (DC) using a two-
step protocol as described previously (10).

Resected tumors from twoHLA-A2∗02:01-positive melanoma
patients (acronym ANRU and KADA) were used for generation
of tumor cell lines and expansion of TIL. Tumor cell lines were
established by mechanical dissociation of tumor tissue by cutting
and grinding through a 70-µm cell strainer (Corning). Tumor
cells were cultured in RPMI (LifeTechnologies) supplemented
with FCS (20%), penicillin (100 U/ml; LifeTechnologies),
and streptomycin (100µg/ml; LifeTechnologies). Tumor
cells were monitored frequently for growth and medium
was changed/cultures were expanded when necessary. Where
indicated, tumor cells were first cultured for 24 h using standard
culture conditions and were thereafter exposed to IFN-γ
(25 ng/ml; R&D Systems) for 72 h.
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TIL were expanded as described by Poschke et al. (11), by
first stimulating expansion from tumor fragments with IL-2 alone
and thereafter performing a rapid expansion protocol (REP) by
stimulation with IL-2 and anti-CD3 antibodies in the presence of
irradiated PBMC as feeder cells. All TIL and T cells, including co-
cultures, were cultured in CellGro R© plus human AB-serum (2%;
The Blood Bank, Karolinska University Hospital).

Exome Sequencing Data Analysis
See Supplementary Materials and Methods.

Expression Analysis of Mutated Genes and
Alleles
To coarsely estimate expression of mutated genes in the
absence of whole transcriptome data for the tumor cell lines,
publicly available RNA-seq profiles of seven melanoma cell lines
[GSE46817 (12, 13)] and averaged reads per kilo base per million
mapped reads (RPKM) expression values were collected and
analyzed. Genes with mean RPKM >1 and a low standard
deviation were considered expressed.

To verify transcription of selected genes and mutated/wild-
type alleles, total RNA from ANRU and KADA tumor cell lines
was isolated using the RNeasy Mini kit (Qiagen) and quality and
quantity were measured on an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). To confirm expression
of the mutated alleles, isolated RNA was treated with DNase
(Thermo Fisher Scientific, Waltham, MA USA) and converted
to cDNA using SuperScriptTM III reverse transcriptase (RT;
Thermo Fisher Scientific) and oligo(dT)15 primers. For each
sample, a control without the reverse transcriptase was included
to detect possible contaminating genomic DNA. The selected
genes were amplified using MyTaq DNA polymerase (Bioline,
London, UK) and PCR primers listed in Supplementary Table 4.
The PCR products were sent for Sanger sequencing (Eurofins
MWG GmbH, Ebersberg, Germany) and allelic expression was
assessed from the resulting electropherograms.

To quantify total expression of selected genes and the
common melanoma tumor-associated antigens MART-1 and
gp100, relative to housekeeping genes GAPDH and β-actin
[primers from Radonić et al. (14)], quantitative PCR (qPCR) was
performed using the LightCycler R© 480 SYBR Green I Master
and a Roche LightCycler R© 480. Amplification efficiency was
verified with serial dilutions of template cDNA. All samples were
amplified in triplicate and resulting Cp values were averaged.

Peptides and Peptide Libraries
Neoepitopes with a predicted affinity of <50 nM and mean
RPKM of at least 1 were ordered as crude micro-scale
peptide libraries (JPT Peptide Technologies). The KADA library
contained 181 peptides and the ANRU library contained 49
peptides. Neoepitope peptides found to activate TIL or that were
found on tumor MHC-I were thereafter ordered in larger scale
and higher purity, as were corresponding wild-type peptides.

Analysis of MHC-I Presentation Machinery
The analysis of MHC presentation machinery was performed as
previously described (15) by Western blot staining for peptide

processing components (TAP1 and 2, Tapasin, MHC-I heavy
chain, LMP2 and 10, and β2m) in untreated and IFN-γ-treated
tumor cells, confirmed also by quantitative PCR.

Isolation of Peptide-HLA Class I
Complexes From Melanoma Cell Lines
See Supplementary Materials and Methods.

Immune Peptidome Analysis by MS
All Poisson detection MS methodology and liquid
chromatography (LC) data independent acquisition (DIA)
MS methodologies have been described in detail previously (16–
18). In brief, mass spectra were collected on a quadrupole-TOF
(Sciex 6600+) instrument in a DIA format. The m/z region
400–680 was split into 11 minimally overlapping windows
of variable width designed to transmit equal ion fluxes with
MHC-I immune peptidomes. MS data were collected in a series
of a single full-range MS spectrum followed with 11 MS/MS
spectra for each transmitted window. The MS/MS spectra were
compared with reference patterns obtained from synthetic
peptides using an algorithm based on the theory of sampling
a Poisson process (18). High LC-MS sensitivity was promoted
using electrospray ionization with 20µm ID alkane modified
polystyrene-divinylbenzene monolithic columns [fabricated
in-house (19)] at flow rates of roughly 10 nl/min. Elution
positions of the synthetic peptides relative to shared endogenous
immune peptides using the same column configuration were also
determined, and this provides a restrictive map for the elution
positions of the neoepitope candidates in the tumor DIA MS
data (Supplementary Figure 5).

TIL Functional Assessment
Recognition of tumor cells or neoepitope-pulsed antigen-
presenting cells (APC; SK-OV-3) by TIL was assessed in
co-cultures using a TIL:tumor cell/APC ratio of 5:1 in 96-well
U-bottom plates. Recognition of neoepitope peptides by TIL was
first tested using pools of 5 (ANRU) or 10 (KADA) peptides. For
pools that activated TIL, each peptide was tested individually.
Known shared TAA epitopes (MART-1: ELAGIGILTV,
MAGE-A4: GVYDGREHTV, MAGE-A10: GLYDGMEHL,
gp100: IMDQVPFSV, tyrosinase: YMDGTMSQV, NY-ESO-
1: SLLMWITQV) or viral epitopes (CMV pp65 antigen:
NLVPMVATV, HCV NS3 antigen: KLVALGINAV, HIV p17
antigen: SLYNTVATL, Influenza M1 antigen: GILGFVFTL) were
included as controls.

Peptide recognition was analyzed by pulsing of HLA-
A2-transfected SK-OV-3 cells with 10µg/ml total peptide
concentration (resulting in 2 or 1µg/ml of each peptide in the
5- and 10-peptide pools, respectively) in PBS for 1 h at 37◦C
before washing and co-culture. Original untransfected SK-OV-
3 were included as negative controls. For KADA, due to too
high background stimulation by SK-OV-3-A2+ cells, peptide
pools (10µg/ml) were added directly to KADA TIL, which
then served as APC themselves. Thereafter, single peptides from
pools that activated KADA TIL were analyzed using HLA-A2-
transfected SK-OV-3 as APC, as described. Where indicated,
MHC-I was blocked by pre-incubating tumor cells or APC for
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30min at 37◦C with 20µg/ml anti-HLA-ABC antibody (clone
W6/32, BioLegend) or anti-HLA-A2 antibody (clone BB7.2,
AbD Serotec) before addition of TIL. CD3/CD28 Dynabeads
(LifeTechnologies) were used as positive control according to the
manufacturer’s instructions.

Readouts for TIL activation were degranulation measured
as surface expression of CD107a and cytokine production as
measured by intracellular or secreted IFN-γ by FACS or ELISA,
respectively. Experiments aiming to determine T cell functional
avidity were performed by titrating peptides in eight steps of
10-fold dilutions from 100µg/ml directly on TIL.

In experiments where CD107a and dextramer staining was to
be performed, co-cultures were incubated for 5 h before being
harvested for staining. In experiments with CD107a staining
but without dextramer staining, GolgiPlugTM and GolgiStopTM

(BD Bioscience) were added after 2 h co-culture, and cells were
harvested after an additional 4 h co-culture.

In experiments where IFN-γ ELISA analysis of supernatants
was to be performed, co-cultures were incubated for 24 h.

Flow Cytometry
All antibodies and other flow cytometry reagents were used
according to the manufacturer’s instructions, unless otherwise
stated. All had been titrated for optimal signal-to-noise ratio
and staining was, unless specified differently, performed in PBS
supplemented with 0.1% albumin. Data for all flow cytometry
were acquired on a NovoCyte (ACEA Biosciences) or a BD
LSR II (BD Biosciences) and analyzed using FlowJo Software
(TreeStar) as geometric MFI or percent positive cells compared
to the parent population.

Staining was performed for T cells specific for known shared
tumor-associated antigen T cell epitopes (MART-1, NY-ESO-
1, MAGE-A3, Tyrosinase, gp100, and MAGE-A1; Melanoma
Dextramer R© Collection 1 kit, Immudex) or for neoepitope-
specific T cells (custom-ordered PE-labeled neoepitope/HLA-
A2∗02:01 dextramers, Immudex). Cell surface expression was
analyzed for CD8 (clone SK1, APC-Cy7, BioLegend), CD3 (clone
UCHT1, PE-Cy7, BioLegend), MHC-I (clone W6/32, APC,
BioLegend), and HLA-A2 (clone BB7.2, PE, BioLegend). All
staining protocols included a dead cell marker (staining in PBS
only; LIVE/DEAD R© fixable Aqua Dead cell stain, InVitrogen).

Detection of activated T cells was performed by staining with
CD107a antibody (clone H4A3, FITC, BioLegend), which was
added to stimulated TIL/T cell cultures at experiment setup (20).

When dextramer staining was performed, dextramers were
always added first, then CD8 staining and last dead cell labeling.
In experiments where intracellular staining was performed,
cells were stained for dead cells, then CD3 and CD8, before
fixation and permeabilization using CytoPerm/CytoFixTM (BD
Biosciences) and intracellular staining for IFN-γ (clone 4S.B3,
PE, Biolegend).

HLA-A2 Stabilization Assay
HLA-A2 stabilization assays were performed using T2 cells that
were harvested, washed, resuspended in serum-free RPMI and
thereafter seeded at 200,000 cells/well in 96 U-bottom plates
(TPP R©). Peptides were added in serial dilution of 1.5–100µg/ml

and incubated overnight in room temperature and then an
additional 2.5 h at 37◦C. The cells were then harvested and
stained for HLA-A2 as described above. HLA-A2 stabilization
data were normalized according to the formula (gMFI (peptide)
– gMFI (no peptide))/gMFI (no peptide).

Generation of Neoepitope-Specific TIL
Lines or Stimulation of
Neoepitope-Specific Cells From PBMC
TIL were sorted for neoepitope specific T cells by labeling
with custom PE-labeled neoepitope dextramers, as described.
The dextramer-stained cells were enriched by MACS by
binding to anti-PE microbeads (Miltenyi Biotec), following
the manufacturer’s instructions. Both enriched and depleted
populations were immediately subjected to a REP to expand TIL.
As control, unsorted TIL were subjected to REP in parallel.

To expand neoepitope-specific cells from patient or HLA-
A2+ donor blood, DC were loaded with neoepitope peptides
as described for SK-OV-3 cells above. The DC were co-
cultured with autologous CD8+ T cells in a 1:5 ratio for
14 days in CellGro R© supplemented with 20 IU/ml IL-2
(Proleukine, Novartis).

Immunoassays
ELISA for IFN-γ (MabTech) was performed according to the
manufacturer’s instructions. Standard curves were plotted as
four-parameter sigmoidal curves and unknowns were calculated
and plotted using GraphPad Prism (GraphPad).

RESULTS

Recognition of Tumor Cells and Common
Melanoma TAA by TIL
Tumor cell lines and corresponding TIL were generated from two
HLA-A∗02:01-positive melanoma patients (KADA and ANRU).
Both TIL recognized autologous tumor cells and responded with
degranulation and production of IFN-γ, which was measured by
FACS as increased cell surface CD107a and intracellular IFN-
γ (Supplementary Figure 1A) or by ELISA as secreted IFN-γ
in supernatants [Figure 1A (KADA) and Figure 1D (ANRU)].
The activation was partly decreased by blocking HLA-A2 (BB7.2
mAb) and more pronouncedly by total blocking of MHC-I
(W6/32 mAb) on tumor cells (Supplementary Figure 1A).

Next, we evaluated whether activation of TIL was due
to recognition of some of the TAA commonly expressed by
melanoma [Figure 1A (KADA) and Figure 1D (ANRU)] by co-
culture of TIL and peptide-pulsed HLA-A2-transfected SK-OV-
3 target cells. KADA TIL were only activated by a control
peptide derived from the Influenza M1 matrix protein, while
ANRU TIL were activated by peptides from both MART-1 and,
althoughweaker, gp100. This specificity of ANRUTIL forMART-
1 and weakly for gp100 was confirmed by FACS analysis using a
panel of dextramers for common melanoma antigens (MART-
1, NY-ESO-1, MAGE-A3, Tyrosinase, gp100, and MAGE-A1;
Supplementary Figure 1B). Of note, both these peptides were
tested in their modified form, optimized for better HLA-A2
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FIGURE 1 | Recognition of autologous tumor cells or peptides from shared tumor-associated antigens, from mutated genes, or from viruses by tumor-infiltrating
lymphocytes. Tumor-infiltrating lymphocytes (TIL) and primary tumor cell lines were expanded from tumors of patients KADA and ANRU. The ability of TIL to recognize
corresponding tumor cells or HLA-A2-transfected SK-OV-3 target cells pulsed with peptides from common tumor-associated antigens or viruses (A, KADA; D, ANRU),
or HLA-A2-transfected SK-OV-3 cells pulsed with neoepitope peptides derived from mutated genes in tumor cells, in the absence or presence of anti-HLA-A2 (BB7.4)
or -MHC-I (W6/32) blocking monoclonal antibodies (B, KADA; E, ANRU; only recognized peptides shown), or HLA-A2-transfected SK-OV-3 pulsed with neoepitope
peptides compared to corresponding wild-type peptides (C, KADA; F, ANRU), and respond with IFN-γ secretion was assessed after 24 h by ELISA. Unpulsed
HLA-A2-transfected SK-OV-3 target cells were used as a no peptide control and pulsed original SK-OV-3 cells (Ctrl) were used as a no HLA-A2 control as indicated.

TABLE 1 | Selection of mutated peptides predicted to bind HLA-A2 with high
affinity from whole exome sequences of tumor cell lines.

Mutation type Prediction category Patient

KADA ANRU

SNV Non-synon. mutations 2554 323

Predicted HLA-A2 peptides 1713 182

Ordered HLA-A2 peptides 165 37

DNV,TNV Non-synon. mutations 120 9

Predicted HLA-A2 peptides 37 7

Ordered HLA-A2 peptides 12 0

InDels Non-synon. mutations 571 611

Predicted HLA-A2 peptides 211 177

Ordered HLA-A2 peptides 4 12

Total Non-synon. mutations 3244 943

Predicted HLA-A2 peptides 1961 366

Ordered HLA-A2 peptides 181 49

SNV, single-nucleotide variant; DNV, double-nucleotide variant; TNV, triple-nucleotide

variant; InDels, insertion/deletions.

binding, while the native peptides have a much lower affinity for
HLA-A2 (Table 2) and also a decreased ability to activate T cells
(Figure 1F).

Identification of Somatic Mutations in
Tumor Cells
Exome sequencing was performed for tumor cell lines and
normal tissue (PBMC) from patients KADA and ANRU. A large

number of somatic mutations including single-, double-, and
triple-nucleotide variants as well as insertions and deletions were
found for both tumor cell lines (Supplementary Table 1). Many
of these were found to be non-silent with potential to result in
neoepitopes (Table 1). The amino acid sequences encoded by the
mutated alleles, plus 9 preceding and tailing residues, were fed
into the NetMHCpan 2.8 algorithm to predict HLA-A∗02:01-
binding epitopes allowing for 9- or 10-mers as output. The net
result was 1961 candidate neoepitopes for KADA and 366 for
ANRU (Table 1) with a predicted affinity of Kd ≤ 1µM for HLA-
A2∗02:01. The number of peptides to screen for ability to activate
TIL was further restricted by including only peptides that had the
highest predicted affinity of Kd ≤ 50 nM for HLA-A2∗02:01 and
that originated from proteins that are expressed by melanoma
cells (mRNA expression RPKM ≥1 in a transcriptome dataset
of 7 melanoma cell lines, data not shown). This rendered 181
and 49 peptides that were used to stimulate KADA and ANRU
TIL, respectively.

Recognition of Mutated Neoepitope
Peptides by TIL
TIL were screened for induction of IFN-γ secretion against the
181 and 49 selected mutated peptides in pools of either 10
(KADA) or 5 (ANRU), and individual peptides from positive
pools were subsequently identified. For KADA, this resulted
in the identification of five peptides, containing mutations
from genes KDELR2, CCT4, MYLIP, SVIL, and WDR75, which
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were able to activate autologous TIL (Figure 1B, Table 2).
All were 9-mer peptides, except SVIL that was a 10-mer.
However, the corresponding 9-mer SVIL peptide, which was
excluded due to predicted HLA-A2 binding affinity just below
cutoff criteria (Table 2), was ordered later and shown to active
TIL even better than the 10-mer (Figure 1C), pointing out
the limitation of MHC-binding predictions. For ANRU, three
peptides containing mutations that activated autologous TIL
were identified (Figure 1E, Table 2). These peptides were 9- and
10-mers containing the same mutation from the gene ETV6 and
a 9-mer containing a mutation from the gene NUP210. For both
donors, the responses were decreased by blocking HLA-A2 or
MHC-I on target cells.

Next, we interrogated whether TIL could distinguish between
mutated and corresponding wild-type peptides. Of note,
none of the wild-type peptides were able to activate TIL
[Figure 1C (KADA) and Figure 1F (ANRU)], even if the
predicted binding of the mutated and the wild-type peptide
was very similar in most cases (Table 2). The predictions
were confirmed by HLA-A2 stabilization assays performed
on T2 cells (Supplementary Figure 2). Thus, recognition of
neoepitopes is highly specific, and tolerance to wild-type
antigens has not been broken. Furthermore, the discrimination
between mutated and corresponding wild-type peptides from
KADA and ANRU resides mainly on the TCR side of the
MHC/peptide/TCR interaction.

Presentation of Mutated Peptides on
Tumor Cell MHC-I by MS
Immune peptidomes for each of the tumor lines were obtained
from affinity-purified (W6/32) peptide-HLA class I complexes.
Employing Poisson LC-DIAMS, the immune peptidome MS/MS
spectra were compared to the fragmentation patterns and
elution positions for the 181 and 49 synthetic peptide candidate
neoepitopes (Table 1).

For KADA, patterns were obtained for 136 of the 181 synthetic
peptides with the 45 unobserved peptides either containing
cysteine residues (n = 23) or being very hydrophobic (n
= 11) or unobserved for undetermined reasons (n = 11).
Two peptides from the predicted KADA neoepitopes could
be detected (AGPS and ENC1; Figures 2A,C). The cysteine-
containing CCT4 neoepitope recognized by TIL was detected
using nanospray MS3 with Poisson detection (Figure 2E) (18).
The KDELR2 neoepitope recognized by TIL was too hydrophobic
for either our LC-MS or nanospray analysis and could not
be analyzed. It is noteworthy that corresponding wild-type
epitopes could also be detected for ENC1 (Figure 2B) and
CCT4 (Figure 2F), but not so for AGPS (Figure 2D), which
was calculated to be an HLA-A∗0201 non-binder (Table 2,
Supplementary Figure 2A).

For ANRU, fragmentation patterns were obtained for 38 of the
49 peptides in the ordered library with two of the unobserved
peptides being rich for cysteines, seven being very hydrophobic,
and two being undetected for unknown reasons. However, none
of the candidate neoepitopes, or MART-1 could be detected on
ANRU tumor cell MHC-I by MS (data not shown). The ETV6

10-mer was among those epitopes that were too hydrophobic to
be detected.

A high-purity isotope-labeled MYLIP peptide was added
to the KADA sample to determine if the failure to detect
TIL-activating peptides by MS reflected insufficient sensitivity.
To address the potential for sample handling losses prior
to adding the quantitation peptide, HLA class I complexes
were tracked by native Western blots throughout the affinity
isolation procedure and shown to be efficiently captured
(Supplementary Figure 3A). Spiking 100 attomoles of isotope-
labeled mutant MYLIP neoepitope into peptide–HLA complexes
from 500,000 KADA cells generated unambiguous Poisson
detection (Supplementary Figure 3B) with a peak amplitude of
1,300 counts per second (cps). The reference MS and MS/MS
spectra for the natural isotope MYLIP neoepitope can be
scaled by the ion signal and elution profile and reinserted
into the MS data, showing that the MYLIP peptide would
be readily detected with only 10 copies (eight attomoles) per
cell (Supplementary Figure 3C). This result argues against low
sensitivity as a reason for failure to detect this peptide on
the KADA tumor cell line. Also, the inability to detect the
MART-1 peptide by MS was investigated by quantitative spiking
a high purity but unlabeled sample of the native MART-
1 9mer, AAGIGILTV. This MART-1 peptide, reported to be
naturally processed and presented on HLA-A2, was added at 10
attomoles and gave similar detection sensitivity as the MYLIP
peptide (Supplementary Figure 3D). However, AAGIGILTV is
not predicted to bind HLA-A∗02:01 well (Table 2) and has been
shown to generate an unstable complex with a short half-life (21).
If MART-1 complexes are generated at a high rate, they could
activate TIL but may not survive the isolation procedure required
for MS analysis.

To confirm that the genes containing the mutated peptides
that were recognized by TIL, but not presented on the tumor cells,
were indeed expressed by the tumor cells, mRNA levels of each
of the genes (total expression of mutated and germline alleles)
were compared to β-actin (Table 2). All of the mutated proteins
that were recognized by TIL or that were presented by tumor
cell MHC-I were clearly expressed. Furthermore, the RNA level
of the mutated compared to the germline allele was analyzed,
and as expected, both the mutated and the wild-type alleles were
expressed (Table 2, Supplementary Table 2). Of note, however,
the expression levels of all mutated genes were substantially lower
than those of MART-1 and gp100 in ANRU cells, whose levels
were more than 71-fold and 591-fold, respectively, higher than
that of β-actin.

Assessment of the Frequency and Avidity
of Neoepitope-Specific T Cells in TIL
To detect and measure the frequency of neoepitope-specific
TIL within the total TIL population, neoepitope-specific PE-
conjugated peptide/MHC dextramers were custom ordered. In
KADA TIL (Figure 3A), stained populations could clearly be
detected for KDLER2, MYLIP, and SVIL epitopes. Staining with
CCT4 dextramers was very weak and, for WDR75 dextramers,
virtually absent. Furthermore, dextramers were produced also for

Frontiers in Immunology | www.frontiersin.org 6 December 2019 | Volume 10 | Article 27667677

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


W
ickström

etal.
Tum

or
Im

m
unopeptidom

e:
Functional-vs.-P

hysicalD
etection

TABLE 2 | Analysis of predicted HLA-A2 binding mutated or tumor associated peptides that trigger activation of tumor-infiltrating lymphocytes and/or are detected in pMHC complexes by MS.

Patient Mutated epitope Mutated

position

Mutated

sequence

Wild type

sequence

Predicted

HLA-A2

binding by

mutated

epitope

(nM)

Predicted

HLA-A2

binding by

wild type

epitope

(nM)

Expression

of mutant

allele

Expression

of gene

compared

to β-actin

(fold)

Detection of

mutant

epitope on

tumor cells

by MS

Detection of

wild type

epitope on

tumor cells

by MS

Expression

of gene

compared to

β-actin

after IFNγ

treatment

(fold)

Detection of

mutant

epitope on

tumor cells

after IFNγ

treatment

Detection of

wild type

epitope on

tumor cells

after IFNγ

treatment

KADA AGPS 9mer# 2 ALWDRVVDL APWDRVVDL 18.12 18335.02 65% 3.28 Yes No 4.14 Yes No

ENC1 9mer# 3 YLSELLQTV YLPELLQTV 2.25 3.1 58% 0.72 Yes Yes 1.47 Yes Yes

KDELR2 9mer 4 ILWIFSIYL ILWTFSIYL 16.96 4.95 67% 8.07 ND ND 11.39 ND ND

CCT4 9mer 1 FLLDSCTKL SLLDSCTKL 4.31 23.02v 48% 12.45 Yes Yes 22.79 Yes Yes

MYLIP 9mer 2 RLDAVLMEV RPDAVLMEV 5.75 6090.18 52% 0.16 No No 0.36 No No

SVIL 9mer 5 YLTDKDFEF YLTDEDFEF 75.01 156.56 35% 0.62 No No 0.43 No No

SVIL 10mer 5 YLTDKDFEFA YLTDEDFEFA 13.53 14.11 35% 0.62 No No 0.43 No No

WDR75 9mer 1 FMFVNSLLL SMFVNSLLL 7.36 62.76 37% 5.18 No No 9.67 No No

Flu M1 9mer NA£ NA GILGFVFTL NA 15.03 NA NA NA NA NA NA NA

ANRU ETV6 9mer 1 VLWDYVYQL LLWDYVYQL 2.24 2.16 55% 0.92 No No 3.68 Yes Yes

ETV6 10mer 1 VLWDYVYQLL LLWDYVYQLL 4.8 4.34 55% 0.92 ND ND 3.68 ND ND

NUP210 9mer 8 AIDAALTFV AIDAALTSV 17.01 34.36 42% 1.78 No No 2.17 No No

MART 10mer 2* ELAGIGILTV EAAGIGILTV 375.16 7627.98 NA 71.4 NA No 28.91 NA No

MART 9mer NA¤ NA AAGIGILTV NA 3448.53 NA 71.4 NA No 28.91 NA No

gp100 9mer 2* IMDQVPFSV ITDQVPFSV 5.47 188.19 NA 591 NA ND 175 NA ND

#Undetected by TIL activation.
£Viral peptide without mutations.
¤Unmutated peptide.
*Heteroclitic peptide with optimized aminoacid at mentioned position.

NA, Not applicable; ND, Not determined.
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FIGURE 2 | Detection of mutated peptides presented on the tumor cell surface. LC-DIAMS Poisson detection plots for neoepitopes from mutated (A) and wild-type
(B) ENC1 and mutated (C) and wild-type (D) AGPS from 500,000 cells. Top black traces are extracted ion chromatograms for m/z of the doubly charged precursor
ion in units of counts per second. The inverted traces (blue) are Poisson chromatograms showing the number of events, scaled 10-fold (as a convenience in plotting),
that can be embedded at fixed cutoff probability in the MS/MS spectrum of the DIA window containing the precursor m/z (17). Nanospray MS3 Poisson detection of
cysteine-containing neoantigen peptide CCT4 (E) or the corresponding wild-type peptide (F) was performed from 1.5 million cells, as marked with a 0-offset Poisson
peak (18).

AGPS and ENC1, the neoepitopes detected on KADA cell MHC-
I exclusively by MS. In line with the TIL stimulation results, the
AGPS dextramer did not bind TIL at all, while ENC1 showed a
weak level of staining, impossible to separate from background
staining. In ANRU TIL, on the other hand (Figure 3A), all the
custom dextramer stainings (ETV6 9- and 10-mer, NUP210)
resulted in well-defined populations, comparable to the staining
seen with the MART-1 dextramer (Supplementary Figure 1A).

The weak CCT4 dextramer staining indicated that the
interaction of the specific T cells with the MHC/peptide
complex was of lower avidity. In addition, functional
avidity of the specific T cells was assessed by titrating
the peptides directly onto TIL and measuring the
activation as IFN-γ secretion [Supplementary Figure 3E

(ANRU) and Supplementary Figure 3F (KADA) and
Supplementary Table 3]. These titration curves indicate
that the activation of specific T cells by MHC-bound
CCT4, KDLR2, SVIL 10-mer, ETV6 10-mer, and wild-
type MART-1 peptides is of lower functional avidity

that requires micromolar concentrations of peptide
for activation.

Ability of Neoepitope-Specific T Cells to
Recognize Autologous Tumor Cells
We next aimed to test the capacity of TIL-derived neoepitope-
specific T cells to recognize the autologous tumors from which
they were derived. We first attempted to enrich neoepitope-
specific T cells from TIL by sorting neoepitope dextramer-
stained TIL using anti-PE-coupled magnetic beads. The selected
cells were subjected to a round of rapid expansion, as were
unsorted TIL as a control. For KADA, only the population
specific for KDELR2 and SVIL epitope could be effectively
enriched by this approach (79 and 13% dextramer-stained cells
in the sorted TIL vs. 1.1 and 0.3% in the unsorted, respectively).
Although some enrichment was achieved also for the other
neoepitope-specific T cell populations from KADA, the enriched
TIL populations still contained a high proportion of dextramer-
negative cells, probably due to the low starting frequency of
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FIGURE 3 | Frequencies of neoantigen-specific T cells in TIL and assessment
of their ability to recognize autologous tumor cells. HLA-A2/mutated peptide

(Continued)

FIGURE 3 | dextramers were produced for peptides found to activate TIL
and/or found to be presented on tumor cell MHC-I. The dextramers were used
to stain tumor-infiltrating lymphocytes (A), and anti-PE beads were used to
enrich for stained cells followed by a rapid-expansion protocol. Thereafter,
recognition of KADA (B) and ANRU (C) tumor cells by the sorted TIL was
assessed by IFN-γ ELISA with or without IFN-γ pretreatment of the tumor. Only
the specificities that could be significantly enriched by the sorting are shown.
Unsorted cells were used as a control. The tumor cells were analyzed for
neoepitope expression by MS and presented as LC-DIAMS Poisson detection
plots for mutant ETV6 in untreated (D) and IFN-γ-treated ANRU tumor cells (E)
with the arrow in the latter indicating detection. The total TIL population (F.
ANRU) was co-cultured with untreated or IFN-γ pretreated autologous tumor
cells, or with the different neoepitope peptides, analyzed by dextramer staining
for the same epitope and for cell surface CD107a. As negative control, TIL
alone were used and stained as described above. Dot plots are gated on
lymphocytes/singlets/live cells and frequency indicates % dextramer+ out of
CD8+ cells (A) and gated in the same way plus on CD8+ and frequency
indicates % dextramer+CD07a− or dextramer+CD107a+ of CD8+ cells (F).

the dextramer-targeted TIL (<0.2%). For ANRU, enrichment
could be performed for all neoepitope dextramers with 16–
34% (NUP210:28%, ETV6 9-mer: 16%, ETV6 10-mer: 34%)
dextramer-stained cells in sorted TIL vs. 2.1–4.8% (NUP210:
5.1%, ETV6 9-mer: 2.2%, ETV6 10-mer: 2.3%) in unsorted
TIL. Sorted TIL were co-cultured with autologous tumor cells
and analyzed for tumor recognition. All enriched neoepitope-
specific T cells were also functionally enriched as they recognized
their corresponding peptide with increased efficiency (data
not shown). However, disappointingly, none of the enriched
neoepitope-specific populations recognized tumor cells better
than unsorted TIL [Figure 3B (KADA) and Figure 3C (ANRU)].
These results were in line with the MS results. However, MART-
1-specific TIL were successfully enriched (63% dextramer-stained
cells in sorted TIL vs. 3.6% in unsorted TIL) and recognized
the autologous tumor better than unsorted TIL (Figure 3C).
Nevertheless, the MART-1 epitope was not detected by MS on
tumor MHC-I. The reason for this may be the short half-life of
the MART-1/MHC complex as already discussed.

Analysis of Neoepitope Presentation on
MHC-I and Activation of Specific TIL After
IFN-γ Treatment of Tumor Cells
We next asked if the lack of neoepitope presentation by tumor
MHC-I and the concurrent inability of neoepitope-specific TIL
to recognize these cells could be due to an inefficient peptide
processing and presentation machinery. IFN-γ-treated KADA
and ANRU tumor cells showed markedly increased expression
of MHC-I surface antigens by FACS [Supplementary Figure 4A

(KADA) and Supplementary Figure 4B (ANRU)], and
components of the peptide presentation machinery (APM)
by Western blot (TAP1 and 2, Tapasin, MHC-I heavy chain,
LMP2 and 10 and β2m; Supplementary Figure 4C) and
RT-qPCR (data not shown). Therefore, we investigated if pre-
treatment of tumor cells with IFN-γ would affect the expression
of the mutated genes or the presentation of the neoepitopes
on MHC-I. The mRNA expression levels in untreated vs.
IFN-γ-treated cells did not display any dramatic upregulation
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of any of the neoepitopes (Table 2) but interestingly there was
a clear decrease of both MART-1 and gp100 expression after
IFN-γ treatment. Although most of the neoepitopes were still
not detected by MS, the 9-mer ETV6, which was not present
on untreated ANRU cells (Figure 3D), could be detected by MS
analysis on ANRU tumor cell MHC-I after IFN-γ treatment
(Figure 3E). The same cytokine-inducible upregulation was true
for the ETV6 9-mer wild-type peptide (Table 2). The ETV6
10-mer could, as mentioned before, not be analyzed by MS due
to their hydrophobic nature.

Next, the ability of neoepitope-specific TIL to recognize IFN-
γ-treated tumor cells was assessed. This was first interrogated
using the dextramer-sorted neoepitope-specific TIL populations.
For KADA, there was an increased recognition of IFN-γ-treated
tumor cells compared to untreated tumor cells by TIL enriched
by KDELR2 dextramers (Figure 3B), which, as mentioned, could
not be analyzed by MS due to its hydrophobicity. For ANRU,
in line with the MS results, the same was true for TIL enriched
by ETV6 9- or 10-mer dextramers, while the MART-1-sorted
TIL recognized untreated and IFN-γ-treated tumor cells to the
same high extent (Figure 3C). Since the sorting of neoepitope
specific TIL was less efficient for several epitopes, we next
investigated the recognition of IFN-γ-treated tumor cells starting
from the total TIL population. Unsorted ANRU TIL, which has a
high frequency of neoepitope specific T cells, were co-cultured
with IFN-γ-treated and -untreated tumor cells (Figure 3A).
Neoepitope-specific T cells were identified with dextramers after
co-culture. The activation was analyzed as degranulation by
measuring CD107a surface expression and by comparing the
brightness of the dextramer staining, since activation is known
to lead to decreased levels of the TCR on the cell surface. In
line with the MS-results, ETV6 dextramer-stained cells expressed
CD107a and displayed decreased levels of dextramer-staining
when cultured with IFN-γ-treated tumor cells (Figure 3F). In
addition, and in contrast to both the MS results and the results
with the dextramer-sorted cells, in this experiment, NUP210-
dextramer-positive cells recognized the tumor demonstrated by
tumor-induced activation of degranulation (Figure 3F).

To better characterize the relation between MS sensitivity
and TIL response, IFN-γ-treated ANRU cells were
loaded with NUP210 peptide at a lower concentration
than was required to activate IFN-γ production by TIL
(Supplementary Figures 3G,H). MS sensitivity was substantially
greater than biological assay as detailed therein.

Generation of Neoepitope-Specific T Cells
From Blood
Since we found two neoepitopes, from mutated AGPS and
ENC1, that were expressed on ANRU tumor MHC-I, but
that were not recognized by TIL, we wanted to determine
whether these epitopes were selectively non-immunogenic for
the patient, broadly non-immunogenic, or, alternatively, if we
could expand neoepitope-specific T cells from healthy donors.
To test these possibilities, CD8+ T cells derived from blood from
patient KADA (Figure 4A) or three healthy HLA-A2+ donors
(Figures 4B–D) or from patient ANRU (Figure 4E) and three

other HLA-A2+ healthy donors (Figures 4F–H) were stimulated
with autologous monocyte-derived DC pulsed with peptides.
The CD8+ T cells were screened for ability to recognize each
peptide that had either been found to activate TIL or to be
presented on the tumor cell MHC-I. Of note, for KADA, all of
the peptide-stimulated PBMC cultures had detectable neoepitope
specific CD8+ T cells, shown by dextramer-positive populations.
For KDELR2 and WDR75, a high frequency of strongly stained
cells was detected, and for AGPS, ENC1, MYLIP, and SVIL,
the staining was strong and distinct, although the frequencies
of stained cells were low. For CCT4, however, few cells were
stained and the staining was also weak, suggesting that cells had
expanded but were of lower affinity, similarly to the situation
in KADA TIL. In addition, in the healthy donors, most of the
neoepitope-specific T cell populations could be expanded in at
least one donor, except for WDR75 (Figures 4B–D and data not
shown). In contrast, in mock stimulated (unpulsed DC) cultures,
there was no staining with any of the dextramers for any of
the individuals. For ANRU, all the peptides expanded specific
cells in ANRU PBMC, resulting in clearly defined dextramer-
stained populations. In all three healthy donors, both NUP210
and MART-1 stimulations resulted in clear dextramer-positive
populations (Figures 4F–H).

Thus, all themutated peptides were found to be immunogenic,
even for T cells derived from the blood of both donors
(KADA and ANRU) from which the autologous tumor cell lines
were derived. Importantly, the blood was drawn from these
patients long after the tumor was removed, and they were both
cancer free at the time. Therefore, it is not surprising that
there were no tumor-specific cells found in mock-stimulated
blood. Of particular importance, however, even the MS-defined
neoepitopes that were unable to activate the autologous KADA
TIL (AGPS and ENC1) could expand T cells from both KADA
PBMC and from HLA-A2+ donor PBMC.

We also investigated if the neoepitope specific CD8+ T cells,
derived from ANRU PBMC or from the three healthy HLA-A2+
donors, could recognize the ANRU tumor cells. Therefore, the
stimulated CD8+ (DC pulsed with peptides) were re-stimulated
with ANRU tumor cells and recognition was measured by
FACS as increased CD107a expression/degranulation [Figure 4I
(ANRU) and Figures 4J–L (healthy donors)]. A portion of
the ANRU neoepitope and MART-1-specific CD8+ T cells
recognized the autologous tumor observed by dextramer
and CD107a double-positive cells. All three healthy donors’
CD8+ T cells stimulated either with DC pulsed with the
NUP210 or the MART-1 epitope could also recognize the
ANRU tumor. As a positive control, for each neoepitope,
stimulated CD8+ cells were re-stimulated with the peptide,
which resulted in activation of CD8+ T cells for each epitope
(data not shown).

DISCUSSION

Infiltrating CD8+ T cells mediate the predominant immune
response in malignant melanoma (22). Accordingly, infusion
of in vitro-expanded TIL which are dominated by CD8+
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FIGURE 4 | Expansion of neoepitope peptide-specific T cells from PBMC. Dendritic cells from KADA (A) or ANRU (E) were loaded with their respective TIL-activating
and/or tumor-presented peptides and used to stimulate autologous CD8T cells. The same experiment was performed using three healthy donors for each peptide set
(B–D, KADA neoepitopes; F–H, ANRU neoepitopes and MART-1). After 10 days of expansion, the cells were stained with corresponding HLA-A2/peptide dextramers
and analyzed by flow cytometry. Dot plots are gated on lymphocytes/singlets/live cells and frequency indicates %dextramer+ out of CD8+ cells. For ANRU epitopes,
the function of the neoepitope specific T cells was assessed by re-stimulation with ANRU tumor cells and evaluated by CD107a staining (I, ANRU; J–L, healthy
donors). Only positive stainings are shown. Dot plots are gated on lymphocytes/singlets/live cells/CD8+ cells and frequency indicates % dextramer+CD07a− or
dextramer+CD107a+ of CD8+ cells.

T cells commonly produces complete and long-lasting
regressions of metastatic lesions (1). There is, however,
limited information on the precise specificity of the tumor-
derived T cells that mediate tumor rejection in melanoma
patients, and the extent to which important tumor epitopes
are derived from broadly expressed shared tumor antigens
or from private mutated tumor epitopes. We followed two
parallel but distinct strategies to discover immunogenic
neoeptitopes: one based on peptide reactivity of T cells isolated
from the patient’s tumor, the other on physical detection
of putative neoepitopes presented on the surface of the
tumor cells.

We performed whole exome sequencing of early passage
tumor cell lines originated from two stage III/IV metastatic
melanoma patients, to identify mutated epitopes based on in
silico predicted HLA-A2 binding and expected expression in
melanoma. Similar to others (23), we focused on MHC-I HLA-
A02:01 restricted epitopes, motivated by more developed and
precise algorithms for predicting T-cell epitopes for MHC-I and
in particular for HLA-A02:01. In addition, Swedish patients with
advanced melanoma have a higher prevalence for HLA-A02:01,
in particular in those patients with a poor prognosis (24).

The TIL were derived from two long-term survivors (KADA
and ANRU), indicating an ongoing immune response. Their
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TIL demonstrated strong reactivity against autologous tumor
lines, providing us with an efficient tool for screening the
predicted neoepitope library, in a similar fashion to what has
been performed before by others (23). This resulted in the
identification of a total of eight neoantigen epitopes (five from
KADA and three from ANRU) with the ability to activate IFN-
γ release and degranulation by autologous TIL. The finding
that only 8 out of 230 mutated neoepitopes predicted to bind
MHC-I were recognized by the patients’ TIL confirms similar
observations from others (23, 25).

One might expect that the presence in TIL of T cell clones
specific for these eight epitopes, all originating from proteins
that were highly expressed at the mRNA level in the tumor cells,
would signify that those same epitopes should be presented on
MHC-I on the surface of the tumor cells. This was, however, not
the case, as shown by MS analysis of those peptides that were
actually presented in association with MHC-I on tumor cells. In
fact, the 10,000-fold greater rate of cellular protein turnover vs.
pMHC turnover mandates that few, if any, peptides derived from
a given protein are expressed on the cell surface complexed to
MHC-I (26).

Conventionally, discrepancies between T cell recognition and
MS detection are attributed to poor MS sensitivity. The lack of
false negatives associated with the data-independent acquisition
format (see Figures 2, 3 and Supplementary Figure 3), the
tracking of MHC-I complexes during the affinity isolation, the
calibration of MS sensitivity into the single attomole (10−18

mole) level by the addition of internal standards, and the
recovery and MS detection peptides, loaded onto tumor cells
at concentrations below TIL recognition, are however hard to
reconcile with neoepitope detection failing due to MS sensitivity.
This said, peptide–MHC-I complex instability and the reduced
sensitivity with cysteine-containing or very hydrophobic peptides
are limitations of our current MS methodology. The approach
of identifying peptides that activate T cells by functional assays
and in parallel detecting peptides presented on tumor cell
MHC-I by MS provided us with a unique methodological
comparison. Several important conclusions can be drawn from
this comparison, pointing at strengths and limitations of each of
these two methods.

First, we can conclude that our MS approach allows detection
of three HLA-A2 restricted neoepitopes presented on the
melanoma cells (AGPS, ENC1, CCT4; Table 2). For one of
these (CCT4 from the KADA tumor), we were able to show
recognition by the autologous TIL and expansion of specific T
cells from patient peripheral blood. In spite of this, we were
unable to specifically sort out the T cell clones recognizing the
neoepitope CCT4, most likely explained by poor binding to the
peptide/MHC dextramer resulting in difficulties in enriching this
T cell population, leaving us with no possibility to prove the
expected tumor recognition by these CCT4 specific T cells.

For the two other epitopes identified by MS as presented on
KADA tumor MHC-I (AGPS, ENC1), we could unequivocally
demonstrate that these epitopes were not recognized by the
autologous TIL. Since these epitopes were demonstrated to be
immunogenic after culturing PBMC with peptide-loaded DCs,
one explanation for the absence of reactivity is a low level of

antigen. We expect that DC cross-presentation of phagocytosed
cellular debris cannot display a substantial fraction of MHC-
I-binding peptides from the tumor’s full proteome and the
likelihood of cross-presenting DC activating neoepitope-specific
CD8T cells decreases as the abundance of the mutant source
protein decreases. When abundance is under the threshold for
priming and expansion by cross-presenting DCs in draining
lymphoid tissues, the full repertoire of circulating and lymphoid-
resident T cells may not be activated, expanded, and deployed
for neoepitope recognition. Lack of epitope recognition may also
reflect immunodominance, where immune responses target only
a few antigenic peptides of the many displayed, thereby curtailing
natural responses against non-dominant epitopes and/or be a
consequence of ineffective cross-presentation of the epitopes
(27–29). There is no obvious dominance of KADATIL responses,
however. Peripheral tolerance mechanisms mediated by MDSC
and regulatory T cells in melanoma patients may also limit the
ability of TIL to respond to these antigens (30). Heterogeneity
of neoantigen expression, resulting in T cells reactive with
individual, sub-clonal mutations (presence in only a subset of
tumor cells) and not with clonal mutations (presence in all tumor
cells) may also explain the absence of reactivity against certain
epitopes (31).

Immunogenicity of a neoepitope has been reported to arise
both due to changes in anchor residues (32) and TCR contacts
(33). In our study, the majority of neoepitopes that could activate
TIL had not gained binding affinity to HLA-A2 compared to
the corresponding wild-type peptide; only for the AGPS and
MYLIP peptides from the KADA tumor was an increased binding
observed, as confirmed by HLA-A2 stabilization assays. Also,
the corresponding wild-type epitope could not activate TIL,
indicating that tolerance to the wild-type antigen has not been
broken. These findings are therefore in line with those of Fritsch
and collaborators (34), who found mutations located in the
TCR-facing residues of the neoepitopes rather than the anchor
residues when analyzing 40 neoepitopes of human cancers that
induced immune responses associated with regression or long-
term disease stability.

As expected (15), IFN-γ resulted in increased levels of MHC-I
on the tumor surface and of various components of the MHC-
I APM. In addition, MHC presentation of a neoepitope derived
from the protein ETV6 was detected by MS in IFN-γ-treated,
but not in untreated ANRU tumor cells. This may be explained
either by the observed total increase in MHC-I, or alternatively
and more likely by an altered peptide repertoire induced by IFN-
γ-mediated increase in the expression of the immune proteasome
(LMP2 and 10) which we found to have a markedly enhanced
expression. In line with the ETV6 peptide being presented, we
could also detect an enhanced recognition of the tumor cells
by dextramer-sorted TIL specific for this peptide compared
to unsorted TIL. Such a cytokine-inducible epitope display is
consistent with the importance of an intact antigen presentation
and IFN-γ signature for immunotherapy to be efficient (35). Also,
IFN-γ-treated KADA tumor cells, but not the untreated tumor
cells, showed increased stimulation of TIL enriched for T cells
specific for the KDELR2 epitope. We were, however, unable to
confirmwithMS theMHC-I presentation of the KDELR2 epitope
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FIGURE 5 | Neoepitopes detected by reverse immunology vs. mass
spectrometry. With reverse immunology TIL reactivity against 5/181 (KADA)
and 3/49 (ANRU) of the predicted neoepitopes were observed. With mass
spectrometry 3/136 (KADA, not all peptides could be analyzed) and 1*/38
(ANRU, not all peptides could be analyzed) of the predicted neoepitopes were
detected on the cell surface. KADA epitopes are in Bold, ANRU epitopes are
in Italic. *Detected after IFNγ treatment of the tumor.

on IFN-γ-treated tumor cells due to the hydrophobic nature of
this epitope. IFN-γ-treated tumor cells were also recognized by
TIL specific for the neoepitope NUP210, but the activation only
resulted in degranulation, not in IFN-γ production.

Several other possible explanations may account for the
discrepancies between TIL recognition of tumor cells and
MS detection of the peptides on tumor MHC-I, which are
summarized in Figure 5. A better understanding of the basis of
these divergent results are essential for future developments of
optimal methods for clinical application. Since TIL were blocked
by MHC-I antibody, our data argue strongly against non-specific
activity and favor the interpretation that TIL are activated by
an epitope/MHC-I complex. One possibility is that part of the
results could be explained by cross-reactivity of TCR on the TIL
with unidentified peptides on the surface of the tumor cells. The
high concentrations (µM) of peptides used for screening in the
absence of external bioforces that occur in vivo and normally
tune TCR recognition, fostering antigen discrimination and low
copy number pMHC activation of T cells, encourage such TCR
cross-reactivity (36, 37).

Another likely explanation for discrepancies between TIL
screening result and the MS method lies in limitation in terms
of sensitivity for our MS method for known physicochemical
challenging peptides and very weak binders. This limitation is
likely to explain our difficulties to detect by MS two of the
TIL detected epitopes (KDELR2 and MART-1), and limits the
usefulness of the MS detection method for such peptides. That
said, those outliers are readily flagged as problematic prior to
MS analysis. MART-1 is of particular interest, since this epitope
is extensively used as a prototype for tumor antigen, also in
clinical trials with TCR-modified T cells (38). While MART-1
transcriptional rates are extremely high, the wtMART-1 peptide
has orders of magnitude lower affinity for HLA-A2 than the
heteroclitic MART-1 counterpart and an unusual TCR binding to

MART-1 peptide/HLA-A2 complexes has been documented (39).
The latter will foster TCR cross-reactivity, likely also accounting
for discordance in TAA heteroclitic MART-1 binding to TIL
and their stimulation in the absence of MS detection of native
MART-1 on the ANRU tumor cells.

The advantage of the MS approach is that a positive
identification can give unequivocal proof for the MHC-I
presentation on the patient’s tumor, even when the patient’s
TIL are not available or are not reactive. This is exemplified
by the AGPS and ENC1 neoepitopes that were detected by
MS as being presented on the tumor lines. When analyzed
for immunogenicity by stimulating T cells from PBMC with
autologous monocyte-derived DC pulsed with peptide, our
results clearly showed that specific T cell populations could be
expanded from patient (KADA and ANRU) or normal donor
PBMC using autologous monocyte-derived DC. In addition,
a population of these specific T cells could recognize and
respond with degranulation upon re-stimulation. That only a
part of the expanded cells responded could be due to lower
affinity of neoepitope-specific T cells derived from blood (40,
41). Notwithstanding, these findings have important therapeutic
implications, and clinical applications where MS detected
neoepitope-specific T cells are expanded from blood by either in
vitro stimulation or by vaccination hold great promise for clinical
developments. In our ongoing clinical trial (NCT01946373), we
are applying a combination of ACTwith TIL and a tumor vaccine
composed of autologous tumor lysate pulsed monocytic DCs.
The results above have motivated us to consider extending our
clinical trial to involve ACT with autologous TIL or peripheral
blood enriched for neoepitope-specific T cells, followed by a
boost of this neoepitope-specific response by a DC tumor vaccine
derived from the same mutated epitopes. This type of approach
has recently been spurred by results from others, demonstrating
T cell activation following administration of DC-, peptide-, or
RNA-based tumor antigens to cancer patients (42, 43).
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Tumor progression is typically accompanied by an accumulation of driver and passenger

somatic mutations. A handful of those mutations occur in protein coding genes

which introduce non-synonymous polymorphisms. Certain substitutions may give rise

to novel, tumor-associated antigens or neoantigens, presentable by cancer cells

to the host adaptive immune system. As antigen recognition is the core of an

effective immune response, the identification of patient tumor specific antigens derived

from transformed cells is of importance for immunotherapeutic approaches. Recent

technological advances in DNA sequencing of tumor genomes, advances in gene

expression analysis, algorithm development for antigen predictions and methods for

T-cell receptor (TCR) repertoire sequencing have facilitated the selection of candidate

immunogenic neoantigens. In this regard, multiple research groups have reported

encouraging results of neoantigen-based cancer vaccines that generate tumor antigen

specific immune responses, both in mouse models and clinical trials. Additionally,

both the quantity and quality of neoantigens has been shown to have predictive

value for clinical outcomes in checkpoint-blockade immunotherapy in certain tumor

types. Neoantigen recognition by vaccination or through adoptive T cell therapy may

have unprecedented potential to advance cancer immunotherapy in combination with

other approaches. In our review we discuss three parameters regarding neoantigens:

computational methods for epitope prediction, experimental methods for epitope

immunogenicity validation and future directions for improvement of those methods.

Within each section, we will describe the advantages and limitations of existing methods

as well as highlight pressing fundamental problems to be addressed.

Keywords: neoantigen, TCR, WES, HLA-allele, MHC-I epitope

INTRODUCTION

Successful targeting of immune checkpoints including cytotoxic T lymphocyte-associated protein
4 (CTLA-4) and programmed cell death protein 1 (PD-1) has achieved durable regressions in
a wide range of human cancers (referred to as checkpoint blockade). They include melanoma
(1, 2), renal cell carcinoma (3), lung (4), bladder (5), and ovarian cancers (6), and microsatellite
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unstable malignancies (7, 8). Despite different mechanisms of
action, both approaches have resulted in the activation and
proliferation of tumor-reactive T cells (9). T cells recognize
peptides presented on the major histocompatibility complex
(MHC) of tumor cells. Tumor specific antigens which arise
due to mutations in coding regions are collectively referred to
as “neoantigens.” Neoantigens have a diversity of properties.
They can differ from their wild type sequences by SNV,
relative expression levels in the tumor, MHC affinity, differential
recognition by T-cell receptors (TCRs) and elicitation of
heightened cytotoxic and cytokine responses. Theoretically,
T cells recognizing neoantigens may have not been deleted
or tolerized so they have the potential to become primed.
Moreover, unlike tumor-associated antigens (TAA) that are
shared between tumor cells and normal tissue (e.g., Melan
A/MART-1) neoantigens have a selective potential to elicit tumor
exclusive T cell responses which makes them key elements for
inclusion in cancer vaccines and as the basis for adoptive T cell
transfer approaches (10–14). Indeed, initial attempts to target
overexpressed TAA have met limited success in clinical trials
potentially due to central and peripheral tolerance mechanisms
which removes high-affinity TCRs that would otherwise potently
recognize these TAA (15, 16). Unleashing immune responses
against tumor-specific clonal mutations can achieve tumor
regression through recognition by antigen-specific T cells (17–
22). Furthermore, as a tumor’s mutational landscape evolves with
ongoing immunotherapy, the immune systemmay accommodate
by changing the specificity of infiltrating T cell clones (23–25).
Efficient approaches to identify and characterize immunogenic
tumor neoantigens are central for these types of therapies.

Thus, far, MHC-I affinity is the only parameter which can
be predicted with some reliability using neoantigen peptide
and patient HLA allele sequences in silico, by using several
computational tools. Our group recently proposed the concept
of “neoantigen quality” (26, 27). This concept combines
biophysical, chemical and computationally inferred properties of
a neoantigen that make it more likely to induce a productive
immune response against the tumor. These properties may
include affinity of a neoantigen to MHC, avidity of the
peptide-MHC complex to the recognizing TCR, type of T
cells responding to the neoantigen and sequence similarity
to known highly immunogenic epitopes (Figure 1). Recent
studies from our group have shown that this parameter
is a critical aspect in segregating responders to checkpoint
therapy, but is not usually considered in algorithms of
neoantigen prediction.

T cells are primed by antigen presenting cells (APC) that
have taken up tumor antigens and processed them into smaller
peptides that are eventually presented on MHC class I and
II molecules (Figure 1). Intracellularly, antigens arise from
proteins targeted for degradation by the 80S proteasome.
Peptides of 9-12 amino acid residues in length are transported
from the cytosol by specialized protein machinery (transporter
associated with antigen presentation, TAP) and loaded on
MHC-I molecules within the endoplasmic reticulum (28–30).
Alternatively, antigens can arise from extracellular sources;
captured necrotic or apoptotic cells and other vesicles that are

FIGURE 1 | Molecular basis for antigen recognition. Antigen-presenting cells

(APC) express MHC-I complex that contains an antigenic peptide (Ag) with its

groove. MHC-I consist of two proteins, a conserved β2-microglobulin and a

variable α-chain. The MHC-I-Ag complex is recognized by the T-cell receptor

(TCR). Each TCR defines a clonal T cell population. Additional interactions,

such as the CD8 protein—MHC-I, are not essential for Ag recognition, but are

required for efficient T cell activation.

cross-presented on professional APC such as dendritic cells (DC)
(30, 31). As a tumor grows, tissue resident and migratory DC
subsets capture tumor cell debris and convey them to draining
lymph nodes (32–34). There, APC prime naïve T cells and
educate them to recognize the harvested antigens (35, 36).
Depending on the APC subset, nature of antigen and type
of processing pathway, different responses can be achieved,
either CD4+ T cell responses (Th1, Th2, Th17, and Treg) or
cytotoxic CD8+ T cell responses (37, 38). The majority of
APC prime naïve CD4+ T cells through MHC-II presented
peptides, while the cross-presenting XCR1+ DC subset uniquely
primes naïve CD8+ T cells (39, 40). The latter appear to be
essential for successful immunotherapy regimens (41–43). After
priming, reactive and expanded T cells can infiltrate the cancer
site and eliminate these cells. Overall, proper antigen selection,
processing, and T cell priming are at the heart of successful
immune responses.

With the recognition that neoantigens can be a significant
pool of tumor derived antigens depending upon the underlying
mutational status of the tumor, the field has turned its
attention to developing and optimizing neoantigen targeted
immune therapies. There are generally two approaches:
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neoantigen vaccines and neoantigen targeted adoptive T cell
therapies. Several clinical trials have been completed and/or are
currently ongoing to enhance tumor-specific responses through
neoantigen vaccination to induce expansion of neoantigen-
specific CD4+ and CD8+ T cells. Vaccination techniques
employ different neoantigen formulations such as peptides
(13, 44, 45) combined with different adjuvants (46–49), mRNA
(50, 51), DNA or as expressed in viral or bacterial vectors.
Another interesting approach targets neoantigens to specific
receptors expressed specifically by the cross-presenting APC
cDC1. Here antigens are fused in frame to antibodies targeting
the XCR1 receptor (52). Thus, far, vaccine-based approaches
have demonstrated successful immunization of patients (53, 54),
although CD4+ as opposed to CD8+ T cells are preferentially
generated. Cell-based vaccination is also under investigation.
In vitro expanded, neoantigen-pulsed dendritic cells have been
evaluated for autologous injection in patients (46, 55–58)
confirming immunogenicity (57, 58). Another approach focuses
on the adoptive T cell transfer of expanded T cells purified

from the patient’s tumor or peripheral blood mononuclear cells

(PBMC) either non-specifically or through selection in vitro.
Some strategies have successfully utilized neoantigen-specific
CD4+ and CD8+ cytotoxic T cells to eradicate solid tumors
(59, 60). In another example, autologous T cell transfer of
CD8+ T cells, specific to clonal neoantigens derived from cancer
driver mutations, e.g., KRAS, has led to nearly complete tumor
regression (61).

Mutation burden, neoantigen burden and quality
have been demonstrated to be predictive for outcome
of checkpoint blockade (26, 62–70). A few studies have
highlighted the importance of neoantigens in shaping
tumor evolution during immunotherapy with antibodies
that target checkpoint molecules such as CTLA-4 and PD-1
(71, 72). However, neoantigen prediction approaches are not
aligned with some utilizing solely gene expression (73, 74) or
combining transcriptomics with genomics (75). The successful
characterization of immunogenic neoantigens is critical to
optimizing approaches that target these key epitopes. In this
review we critically discuss current tools and methods for their
selection (76).

THE LANDSCAPE OF NEOANTIGENS

Neoantigens arise from multiple genetic and epigenetic
aberrations (Figure 2). Well-characterized sources of
neoantigens are somatic missense and indel mutations, or
other genomic rearrangements, such as gene fusions. Frameshift
neoantigens may prove to be more immunogenic than missense
ones due to the lack of similarity to sequences in the human
coding genome and are currently under active investigation
(77, 78). Neoantigens derived from gene fusions have recently
passed the immunogenicity test (12), and may be of special
significance when mutational burden is low. Correct detection
of somatic mutations is essential to identify neoantigens

FIGURE 2 | Potential sources of “non-self” tumor neoantigens. Genomic alterations such as point mutations (A), indels (B) and gene fusions (E) can result in the

generation of missense and frameshift neoantigens. Splicing aberrations such as the retention of cancer-specific exons (C) and introns (D) can also lead to frameshift

neoantigens. Epigenetic changes can alter the expression levels of immunogenic genomically-encoded proteins (F) including viral proteins from integrated

chronically-infected cells (EBV, HPV), cancer-testis antigens (e.g., MAGE-A4) and proteins derived from LINE and HERV elements. Post-transcriptional changes (G),

including translation of upstream open reading frames (uORF), stop codon readthrough and protein modifications, such as methylation, phosphorylation and

acetylation, can generate tumor specific neoantigens as well.

Frontiers in Immunology | www.frontiersin.org 3 January 2020 | Volume 11 | Article 278889

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Roudko et al. Prediction and Validation of Tumor-Associated Neoantigens

incorporated within these alterations (17, 79, 80). Neoantigens
can also arise from transcriptome-based aberrations, including
cancer-specific gene overexpression, alternative exon splicing,
intron retention, premature transcription ending, readthrough
the stop-codon by ribosomes and from upstream open reading
frames (uORF) (Figure 2). Virus-induced cancers, e.g., HPV+,
EBV+, generate strong immune responses due to presentation
of viral antigens (81) and as such can be considered as cancer-
specific antigens. Transcript-specific changes in exon usage
(82, 83), intron retention (84), and transcription end usage
were recently shown to produce cancer-specific neoantigens.
Translation-based neoantigens, originating from uORF regions,
cryptic short ORFs in non-coding RNAs still await their
discovery on a pan-cancer level. Whole genome sequencing,
deep RNAseq gene expression analysis, whole-cell and MHC-
eluate mass-spectrometry will be necessary for a determination
of the complete landscape of such neoantigens (85). Finally,
cancer-specific post-translational protein modifications, e.g.,
phosphorylation, acetylation, methylation, citrullination, and
etc., can be a potential source of neoantigens as well (86, 87).
Aberrant over activity of protein kinases, histone acetylases,
and methylases is well-known in multiple cancers. This
can result in frequent modifications of non-natural protein
targets or cancer-specific proteins, which may in turn produce
immunogenic, tumor-specific neoantigens (88, 89) (Figure 2).
It is important to point out that T cells with the capacity to
recognize these modified antigens likely have escaped central
tolerance and thus represent a large pool of T cell clones
that could be harnessed to attack cancer cells. Technological
advances in mass-spectrometry peptide detection from cancer
MHC-I eluates will be essential for neoantigen discovery of this
class (90).

ON A COMPUTATIONAL HUNT FOR
NEOANTIGENS

Somatic Mutation Calling
Despite the broad range of potential sources of neoantigens in
cancer cells, the process of selection of genomically encoded
antigens that are of immunological significance remains to
be well-established. Many computational pipelines have been
developed to predict neoantigens from cancer genomes (91, 92).
A joint effort referred to as the Tumor Neoantigen Selection
Alliance (TESLA; supported by the Parker Institute for Cancer
Immunotherapy and the Cancer Research Institute) to find the
right predictive algorithms for targeting neoantigens (based upon
NSVs) through large scale validation is ongoing. At this time, a
“typical” neoantigen pipeline includes the following steps:

• Whole exome or genome sequencing (WES orWGS) of tumor
and matched normal DNA samples by Illumina short read
sequencing platform.

• Quality control of sequencing reads.
• Alignment to the reference genome.
• Base quality recalibration and indel realignment.
• Comparison of normal and tumor alignments to call

somatic mutations.

• Conversion of coding DNA somatic mutations to
corresponding mutated peptide sequences.

• HLA-allele typing.
• Assessment of HLA-allele and mutated epitope (9–11mer)

affinity to call neoantigens.
• Expression analysis of putative neoantigens, e.g., RNAseq,

when possible.

Multiple tools exist to check the quality of sequencing reads with
the most commonly used being FastQC (93, 94). Alternative
tools are included in the Genome Analysis Toolkit (GATK)
bundle. To perform read alignment, Novoalign (95), BWA
(96), bowtie (97), STAR (98) are the most favored aligners.
For a typical WES (or WGS) dataset BWA is a commonly
used aligner. Base quality recalibration and indel realignment
around clusters of putative somatic mutations are both integral
tools of GATK and have been shown to reduce the false
positive rates of mutation calling (99). Collectively, these “pre-
processing” steps output aligned, cleaned, equilibrated ∗.bam
files of tumor and matched normal samples. These matched
datasets are fed to a combination of mutation callers to predict
somatic mutations in tumor samples. A wide range of somatic
mutation callers exist to date, such as Mutect (100), Varscan2
(101), VarDict (102), SomaticSniper (103), Strelka, and FastD
(104). Many comparative studies have been performed to call
mutations (105–108) (Figure 3A). Some key observations are
noted below.

• A combination of multiple algorithms vs. a single mutation
caller significantly lowers the false positive rate (108–110).

• Calling somatic mutations from additional sequencing such
as of RNAseq of the same tumor sample and determining
overlap may help to reduce the false positive rate. However,
it may increase the rate of false negatives due to transient gene
expression and variable read coverage (111).

• PCR-free WES protocols [KAPA HyperPrep Kit (112)]
produce less bias in tumor allele frequencies but achieve it
at the expense of reduced total genome loci coverage and of
lowered total power of somatic mutation calling (109).

• Exome capture kits (Agilent SureSelect, NimbleGen SeqCap,
Illumina TrueSeq, and Illumina Nextera) introduce
sequencing coverage biases due to differences in capture
probes. This makes it potentially hard to compare final
mutation calls obtained from different WES kits of the same
sample of DNA, resulting in increased false negative rates for
somatic mutation calls (113–116).

• Sequencing read coverage drops significantly in GC-rich
regions, decreasing the sensitivity of tumor allele detection
in these loci. Correcting for GC-bias may help to rescue
certain mutations and improve tumor allele frequency
estimations (114).

• Maintaining high tumor purity of the sample before
DNA sequencing is essential. High levels of normal DNA
“contamination” decreases sensitivity of tumor mutation
calling (105, 109, 114).

• The quality of the sample is important, e.g., fresh tissue
samples are better than FFPE. It is highly advisable
to avoid excessive sample handling known to introduce
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FIGURE 3 | Potential sources of somatic mutation irreproducibility (A), suggested experimental design for comprehensive annotation of tumor mutational burden and

tumor microenvironment, (B) and possible roads for innovation at the MHC-I antigen TCR interfaces (C).

random DNA mutations, e.g., adenine/cytosine deamination,
guanine oxidation, which can impact the results of Illumina
sequencing. Otherwise the somatic mutation false positive
rates increase (105, 109).

Overall, using fresh or fresh-frozen samples with high

tumor purity (>80%), sticking to one WES protocol,

introducing a low number of PCR cycles, following GATK

pre-processing recommendations, and applying several somatic

mutation callers can benefit the generation of a reproducible,
“harmonized” lists of somatic mutations (117). Calling somatic

mutations from RNAseq of samples with high tumor content

(>80%) can further refine the list of expressed mutations.
Consensus on unified somatic calling pipelines will be essential
to improve the overall prediction of neoantigens and detection
of the shared ones.

HLA-Allele Typing
The next step in a neoantigen calling pipeline is HLA-allele
typing. CD8+ T cells see antigens presented on the MHC-I
complex, which is composed of conserved β2-microglobulin and
a variable α-chain. The latter subunit is highly polymorphic and
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encoded within the HLA gene, which is represented by three
loci on human chromosome 6: HLA-A, HLA-B, and HLA-C.
Thus, HLA allele assignment consists of the gene name (A,
B, or C) followed by a set of digits separated by colons: the
first two digits specify serological activity (A∗01, B∗03, etc.)
and the second two digits indicate protein sequence (A∗01:05,
B∗03:05, etc.). Due to the high level of polymorphism of
each gene, precise HLA-allele typing at protein level resolution
from WES and RNAseq reads is a complicated task (118).
Multiple tools were developed to address this problem such
as PHLAT (119), seq2HLA (120), Optitype (121), Polysolver
(122), HLAMatchmaker (123), HLAreporter (124), HLAforest
(125), HLAminer (126), xHLA (127). Each tool differs in its
performance, utilized set of input parameters and analyzed
sequencing dataset (RNAseq or DNAseq). Comparative studies
were performed and showed that Optitype has both greater
specificity and selectivity (128). However, it is important to keep
in mind that the quality of WES/RNAseq is critical for any
successful HLA typing. Indeed, due to the highly polymorphic
nature of HLA genes, WES capture kits vary in the capturing
efficiency of DNA from those regions (Figure 3A). This technical
variability in capturing clearly affects downstream results in
allele determination. Thus, careful examination of WES/RNAseq
read coverage in HLA gene regions is imperative for making
optimal predictions.

Prediction of Neoantigen HLA-Allele
Interactions
In the final step, the researcher performs predictions of
tumor antigenic epitope- HLA-allele interactions to identify
neoantigens from the total pool of mutated peptides. Several tools
and programs which are undergoing constant modification, are
dedicated to this problem; NetMHC-pan being the one most
widely used. NetMHC utilizes a combination of several artificial
neural-networks (ANNs) to predict peptide affinity to selected
HLA alleles. Initially NetMHCwas trained on viral antigens from
IEDB [https://www.iedb.org, (129–134)], therefore rendering a
bias toward the selection of viral-like epitopes. Despite its general
popularity, users should always keep in mind the biases these
classification methods can introduce. For example, viral epitopes
were originally described for the most frequent HLA-alleles, e.g.,
HLA∗A02:01, HLA∗B07:02. Thus, netMHC based predictions
for tumor epitopes are a priori better for highly frequent HLA-
alleles than for low-frequency HLA-alleles. One way to overcome
this issue is to improve predictions by training the algorithm
on peptides eluted from MHC complexes of mono-allelic cancer
cell lines and identified by mass-spectrometry analysis (135).
However, mass-spectrometry itself has limited ability to detect all
possible eluted antigens, thus the false negative rate can be high
(90, 136, 137). Data from mass spectrometry analyses indicates
that only a small fraction of neoepitopes is presented on the cell
surface, likely due to a combination of such systematic biases
and real biophysical effects in the processing machinery (138–
140). Taken together, there is an urgent need for novel, unbiased
methods to generateMHC-I complexes for every HLA-allele with
broadly diversified antigen sequences in order to design novel
classification tools (Figure 3C).

Apart from class I epitopes, class II restricted neoantigens
are receiving increased interest. Class II neoantigens are those
epitopes presented by the MHC-II complex and recognized by
CD4+ T cells. Despite the recognition that MHC-II is significant
for tumor neoantigen presentation and priming of CD4+ T
cells (141) and for immunotherapy outcomes (142), the accuracy
and precision of MHC-II epitope predictions are poor when
compared to class I (143). The main difficulties with designing
such classification tools are associated with the “openness” of
the peptide-binding groove of HLA class II, which permits
binding of a highly degenerate set of peptides, and therefore
increasing the size of datasets needed for accurate machine
learning-based model training. However, these obstacles provide
an opportunity for more creative efforts to develop algorithms to
predict such neoantigens.

Identification of Immunogenic
Neoantigen-Reactive T Cells
Not every neoantigen presented on MHC-I complexes will have
the capacity to induce CD8+ T cell responses (79). What defines
neoantigen immunogenicity? Conventionally, an immunogenic
neoantigen must prime and stimulate T cells efficiently. This
occurs through (i) interaction of the neoantigen-MHC-I complex
with a TCR on one or several T cell clones, and (ii) induction of T
cell priming. This process generally results in either TNF-α, IFN-
γ, or double TNF-α and IFN-γ cytokine responses, IL-2 release
and T cell proliferation, and the acquisition of cytolytic activity
in the case of CD8+ T cells. As reviewed above, vaccination
has led to the priming and expansion of neoantigen-specific T
cells in humans. These responses can be enumerated through
assays which measure production of cytokines upon re-exposure
to peptides (through ELISA type assays or intracellular staining)
or binding to synthetic tetrameric or dextrameic complexes of
peptide-MHC (pMHC) molecules. The latter method relies on
in vitro folding of the MHC-I complex (144, 145) with peptide
or UV-cleavable substrate (146) which is later exchanged for the
peptide of interest (147).

Neoantigen-specific T cells with effector function have been
identified within PBMC following vaccination or even after
spontaneous induction (148), tumor infiltrating lymphocytes
(149) and can even be differentiated from progenitors through
in vitro priming approaches (150). A concerted effort is being
made to expand potent neoantigen-reactive T cells for the
purpose of adoptive cell therapy or to identify high avidity
neoantigen-reactive TCRs which can bemodified and transduced
into a primary T cells. For example, to overcome thymic
negative selection, which decreases TCR diversity in vivo
(151), humanized mice can be used to select the most-optimal
neoantigen-reactive TCRs (152). Tetramer-purified, neoantigen-
reactive T cell clones can also be expanded from these sources
or human blood or TILs in single-cell fashion and their TCRs
sequenced. The selected TCRs can be used for recombinant
TCR reconstitution (153) and characterization in vitro, for
additional modification to improve TCR avidity and stability
(129, 130) and then adapted for adoptive T cell transfer using
a cancer patient’s own T cells (131). In this regard tetramer
staining can be applied to identify neoantigen-specific TCRs
in a high-throughput manner (132). One discovery platform
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generates in vitro translated, DNA-barcoded pMHC complexes
from a chemically synthesized DNA library (133). Once tetramer-
positive T cells are purified, their interacting TCRs and DNA-
barcoded antigens are identified through single-cell sequencing.
Moreover, the same platform can be repurposed to characterize
all possible peptide specificities for each HLA-allele of MHC-
I and MHC-II complexes. Indeed, the ability to (i) start
from a randomized DNA library of putative epitopes and (ii)
characterize folding potential of produced pMHC complexes
in large scale could yield invaluable information to train novel
classification algorithms. Despite the obvious advantage of
tetramer staining in identifying neoantigen-reactive T cells, this
tool provides limited information on the functional status of
purified T cells and their cytotoxic capacity (134). The recent
development of T-scan screening technology holds promise
to overcome this issue (154). Likewise, a recently developed
method referred to as imPACT Isolation Technology identifies
pre-existing T cell clones that recognize tumor neoantigens
(155). Such approaches lay the foundation for multi-group
collaborations to synthesize neoantigen-specific T cells for
personalized adoptive T cell therapies (155).

Collectively, the identification of immunogenic neoantigens is
a multi-step process that requires significant time, cost and labor
to accomplish. Personalized neoantigen-based immunotherapies
suffer from such drawbacks, sometimes requiring up to 3 months
to manufacture the a short list of “best” candidates (156). A
potential solution to this pipeline problem is to target shared
neoantigens, that are highly recurrent, clonal, and broadly
immunogenic across cancer patients. However, whether such
immunogenic shared antigens are sufficiently available across
broad cancer types remains to be determined. Prioritizing
such antigens whenever possible is important, as any “off-
the shelf ” strategies that can be developed will significantly
reduce the cost and increase the efficiency of neoantigen-specific
cancer immunotherapies.

CONCLUDING REMARKS

We review the available tools for the computational prediction
and experimental validation of tumor-associated neoantigens,
discussing approaches for somatic mutation detection, HLA
allele typing, and prediction of peptide-MHC interactions. We
have made an effort to highlight the biases associated with
particular approaches and suggest possible ways to minimize
their influence. We also outline technologies for identifying
immunogenic neoantigens. Future developments that could
improve these strategies are suggested in Figure 3. Firstly,

harmonization of somatic mutation calling can improve
reproducibility across different platforms and sequencing
centers. Secondly, in vitro assays for folding and characterization
of pMHC complexes starting from randomized peptide
libraries can improve existing prediction tools. Applying
the same approach for peptide-MHC-II complexes may also
improve MHC-II classification tools (157). Finally, single-cell
identification of TCR-antigen interacting pairs will provide
information on the principles of TCR-neoantigen interactions,

making it possible to develop predictive methods for this type
of interaction (158). The latter will be an invaluable tool for
immunogenic neoantigen selection for vaccine designs, refining
immunotherapy outcome predictions, or selecting the most
avid TCR for adoptive recombinant T cell therapies. We believe
the field of neoantigen-based immunotherapies of cancer is
undergoing a major renaissance. Equipped with powerful
sequencing technologies, sensitive computational tools for
neoantigen discovery and efficient high-throughput platforms
for characterization of their immunogenicity, scientists will have
the potential to bring novel disruptive immunotherapies to the
clinic to definitely improve outcomes of cancer patients.
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Despite recent advances in cancer immunotherapy, the process of immunoediting early in

tumorigenesis remains obscure. Here, we employ a mathematical model that utilizes the

Cancer Genome Atlas (TCGA) data to elucidate the contribution of individual mutations

and HLA alleles to the immunoediting process. We find that common cancer mutations

including BRAF-V600E and KRAS-G12D are predicted to bind none of the common HLA

alleles, and are thus “immunogenically silent” in the human population.We identify regions

of proteins that are not presented by HLA at a population scale, coinciding with frequently

mutated hotspots in cancer, and other protein regions broadly presented across the

population in which few mutations occur. We also find that 9/29 common HLA alleles

contribute disproportionately to the immunoediting of early oncogenic mutations. These

data provide insights into immune evasion of common driver mutations and a molecular

basis for the association of particular HLA genotypes with cancer susceptibility.

Keywords: immunoediting, immune evasion, neoantigens, HLA, cancer susceptibility, KRAS, BRAF, TP53

INTRODUCTION

The immune system is thought to play a dual role in carcinogenesis (1–3). First, when a proper
immune response is mounted, the immune system is capable of eliminating neoplastic cells
arising from early tumor-initiating events (immunoediting). In contrast, the immune system can
initiate signaling of wound healing pathways that can help foster an environment conducive to
tumorigenesis. The human leukocyte antigen (HLA) proteins present a snapshot of all nucleated
cell’s proteomes on the cell surface for surveillance by T cells. While an individual harbors six
distinct HLA Class I alleles (A, B, and C), a total of 13,145 unique Class I alleles have been
characterized to date at these highly polymorphic loci (4). Presentation of processed pathogen-
derived peptide by at least one of these HLA alleles is a prerequisite for the initiation of an adaptive
immune response. Each HLA allele possesses the ability to present a distinct set of peptides to
the immune system, based on the biophysical properties within the peptide binding groove which
restrict specificity to a limited set of available peptides. Peptide binding is largely dictated by two
HLA-facing anchor residues, which are restricted to a few amino acids at these positions (5).
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Recently, algorithms such as NetMHC have allowed the
prediction of binding affinity of peptide sequences to specific
HLA alleles, resulting in the correct prediction of >75% of
binders, with positive predictive values in the range of 90–
95% (6–10).

Presented neoantigens can be divided into two distinct
classes: group 1 resulting from mutations in the TCR-
facing residues and correspondingly less likely to change the
binding affinity of the peptide/HLA complex, and group 2
resulting from the anchor residues of the peptide, and thus
presenting a longer sequence of novel polypeptides to the
immune system, as compared to single-residue alterations
in group one antigens (5). A properly mediated interaction
between the HLA protein, presented peptide, and T cells
serves to maintain the genomic integrity of the organism
by eliminating cells harboring foreign genetic material both
from external pathogens and those arising from somatic
mutations. The tumor immunoediting theory predicts that
early pathogenic events giving rise to precancerous cell
growths can be eliminated by the adaptive immune system
unless cancer cells evolve the ability to escape this selective
pressure (11).

While it has become increasingly appreciated that the adaptive
immune system has the potential to play a significant role in
the elimination of existing tumors, its role in the clearance
of cancer cells during early initiating events has remained
difficult to study. Though it has been well demonstrated
that immunosuppression in humans is linked to an increased
incidence of cancer (12–15), it has remained difficult to quantify
early immunoediting events, and to attribute the clearance
of precancerous lesions in immunocompetent individuals to
clearance of tumor-derived neoantigens, as opposed to other
mechanisms such as the elimination of cells harboring cancer-
inducing viruses.

Here, using the large cohort of patients characterized by
the TCGA, we created an immunogenicity map of neoantigens
resulting from 125 consensus cancer-related genes then employ
a mathematical model to estimate early immunoediting events
by quantifying the underrepresentation of specific neoantigens
and their potential HLA pairs as a metric for prior clearance
of these neoantigens by the immune system. We also employ
an HLA presentation score to characterize population-scale
HLA presentation along the span of individual proteins
to uncover both “protected” (peptides derived from protein
regions highly represented across the population by HLA) and
“unprotected” regions (those not presented by common HLAs)
within proteins commonly mutated in cancer. Further, we
introduce an HLA-centric metric of immunoediting, allowing
the modeling of the degree of immunoediting in early
tumor initiating events that generate strongly immunogenic
antigens presented by MHC Class I at a population scale
occurring across various point mutations, histotypes, patients,
and HLA alleles. We have released a companion web application
that can be used to explore immunogenicity of tumor
neoantigens across the population and HLA presentation
along the span of individual proteins for the identification
of shared tumor neoantigens and tumor vaccine design
(http://reslnmaris01.research.chop.edu:3838/shinyNAP/).

RESULTS

HLA Immunogenicity Map Shows That
Common Mutations Generate Peptides
That Are Immunogenically Silent
To generate a map of immunogenicity across all frequently
observed single nucleotide mutations in cancer driver genes,
we filtered DNA sequencing data from the TCGA (7,300
subjects representing 33 cancer histologies) for all observed
mutations harbored in 125 consensus oncogenes and tumor
suppressor genes [(16), Table S1], resulting in 26,361 unique
variants (Figure S1). For each variant we then generated 17
mer amino acid sequences to cover all possible 9 mer peptides
resulting from amino acid sequences flanking the mutated site
(9 potential variants per mutation), and calculated binding
affinity using NetMHC-4.0 across 84 common HLA Class I
alleles (8), with the alleles studied estimated to represent at least
one allele in 99.4% of the US population (calculated based on
the ethnicity-adjusted allele frequency from the Bone Marrow
Registry) (17). This analysis generated ∼237,000 potential
neoantigens, each with a predicted MHC binding affinity across
all available HLA alleles, resulting in ∼20e6 binding affinities.
From these data we aggregated all neoantigens arising from each
individual mutation and filtered for neoantigens classified as
strong binders (≤0.5% rank binding for its HLA alleles), thereby
identifying those neoantigens most likely to induce an immune
response resulting in their immunoediting and elimination
during early tumorigenesis (Figure 1, Table S2; STAR methods
in Supplementary Material). We find that 211,852 of 2,214,324
(9.6%) aggregated mutant/HLA pairs derived from cancer driver
proteins are predicted to be strong binders.

Upon analyzing HLA binding by neoantigens derived from
each mutant variant, we observed that while the majority
of mutants produced binders across multiple HLA alleles, a
subset of mutations was predicted to not produce any strong
binders across all of the 84 HLA alleles studied, here defined
as immunogenically silent mutations. A total of 1,806 putative
neoepitopes (6.85% of characterized variants) were predicted not
to bind any of the 84 HLA alleles with high affinity (Figure 2A,
Table S2), including the common mutations BRAF V600E and
KRAS G12D, extending the observations of Marty et al. (18). For
each variant, we calculated the probability of a TCGA patient
carrying at least one allele capable of binding that variant (median
neoantigen presented across 26.5% of the population), and found
that the most common variants in the TCGA were enriched in
those mutations predicted to bind HLA less frequently across the
population (Figure 2A, Table S2, p = 0.00035), suggesting that
mutations generating neoantigens capable of being presented
with high affinity bymultiple, or more commonHLA alleles, have
a higher likelihood of being eliminated through immunoediting,
and thus are underrepresented in the TCGA. The highest ranking
of these, MAP3K1 D3727Y, is predicted to bind MHC with high
affinity in 94.5% of the population, producing various epitopes
with strong binding affinity to 50 of 84 HLA alleles tested, and
this mutation is only observed once in the entire TCGA dataset.
Analysis across all variants deriving the most commonly mutated
gene, TP53, reveals that common variants are highly enriched in
loci that are not capable of generating neoantigens (Figure 2B,
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FIGURE 1 | Pipeline for generating immunogenicity map. TCGA mutations imputed by MuSE and Somatic Sniper were filtered for those arising from 125

characterized driver mutations (16). 17 mer peptides sequences were generated for all possible 26,361 variants arising from (covering nine potential epitopes for each

variant) each variant/WT pair (∼237,000 pairs) and analyzed for MHC binding affinity using NetMHC 4.0 across 84 HLA alleles resulting in 20e6 binding affinities.

Peptide affinities were aggregated for all peptides arising from each variant and filtered for those that are strong binders (<0.5% rank), revealing 24,555 strong binders

and 1,806 immunogenically silent mutations.

p = 0.008). Furthermore, our analysis reveals a wide range in
the breadth of tumor neoantigens restricted to specific HLA
alleles, ranging from 3.5% of neoantigens arising from driver
genes bound by HLA-B∗37:01 to 18.6% of neoantigens bound by
HLA-B∗83:01 (Figure 2C).

Having identified immunogenically silent neoepitopes, we
hypothesized that HLA alleles evolved to preferentially present
particular protein motifs, which may leave other regions of
cancer proteins unprotected. We applied the algorithm used to
generate the immunogenicity map, calculating the presentation
scores of 9 mers starting at each amino acid along the span
of the entire protein across 84 HLA alleles and calculating
the percentage of the population predicted to present a given
peptide. We then determined the combined population-wide
presentation scores of the neighboring eight amino acids in either
direction to calculate the regional immunity of the protein to
represent all 9 mers centered at each amino acid position. We
generated immune presentation maps of TP53, PI3KCA, and
BRAF, and mapped this onto the frequency of point mutations
at each amino acid (Figures 3A–C). We find that common
hot-spot mutations frequently occur in protein domains that
score low in population-scale HLA presentation, while domains
that are widely protected rarely harbor recurring mutations,
suggesting that mutations in unprotected regions are enriched
in cancer due in part to consequent immune evasion. We also
mapped the presentation score of neoantigens in TP53 onto the
regional HLA presentation score (Figure 3D), observing a strong
overlap between presentation scores for individual neoantigens
and the corresponding wild-type protein scores, suggesting that
regional scores are a good predictor of the immunogenicity of
neoantigens, particularly group 1 neoantigens that do not alter
the HLA restriction of the peptide.

In addition to understanding the immune evasion of proteins
arising from unprotected domains of proteins, we sought to

apply regional HLA presentation to identifying shared tumor
epitopes derived from clinically-relevant oncogenes that can be
broadly therapeutically applicable across the widest population of
patients. We performed mass spectrometry on 16 neruoblastoma
tumors to characterize the ligandome and test the predictive
ability of the HLA regional scoring across the span of a
protein. We mapped the regional presentation score of the most
highly represented protein in the neuroblastoma ligandome,
NPY (29 MHC Class I peptides detected in 16 neuroblastomas),
finding a highly significant concordance between the empirically
detected peptides and those regions of the protein expected
to be highly presented (Figure 3E; p = 0.000011), and find
no peptides in the ligandome derived from the signal peptide
region (aa 1–28) which is cleaved from the full-length pro-
NPY protein. Based on the high degree of presentation across
the NPY protein across 68/84 HLA alleles, its high level of
differential expression (Figure S6), and its role in promoting
tumor growth (19), we prostulate that NPY is a promising
candidate for vaccination strategies. Surprisingly, we find that
despite the elevated population presentation score in the highly
presented regions, none of the peptides presented in these
regions are predicted to bind to HLA-A∗02:01, highlighting the
utility of a population-scale analysis of HLA presentation in
identifying broadly presented epitopes that may be overlooked
due to lack of presentation by the most common HLA alleles. We
next searched the neuroblastoma immunopeptidomics dataset
we created for peptides derived from the MYCN oncogene, a
major cancer driver in neuroblastoma, finding only a single
peptide (KATEYVHSL) presented on the relatively rare HLA-
C∗16:01 allele representing <5% of the population (Figure 3F).
Applying the HLA protein scoring map, we find that this peptide
is predicted to bind strongly to 10/84 HLA alleles, representing
31.9% of the population (ranking 15th of 456 peptides in
population binding score), and suggesting that this peptide can
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FIGURE 2 | Mutation frequency in TCGA inversely correlates with population-scale HLA binding. (A) Mutation frequency for 26,361 TCGA variants compared to the

proportion of the population predicted to bind a given neoantigens derived from that mutation reveals immunogenically silent mutations in 1,806 variants (6.85% of

mutation in the TCGA, including BRAF V600E and KRAS G12D highlighted) and enrichment of common driver mutations in those which are predicted to not bind any

HLA alleles (p = 0.0004). (B) TP53 mutations are enriched in those that are immunogenically silent or bind HLA alleles in a small portion of the population, and

mutations with high probability of binding at least one allele in a given patient are significantly underrepresented in the TCGA (p = 0.008). (C) Proportion of

characterized neoantigens bound by individual HLA alleles reveals broad range in diversity of binding from 3.5% of neoantigens arising from driver genes bound by

HLA-B*37:01 to 18.6% bound by HLA-B*83:01.

have significantly broader application as a therapeutic target
in this pediatric cancer population. This peptide overlaps with
the previously reported immunogenic HLA-A∗02:01 peptide
VILKKATEYV (20), suggesting that immunization using this
region of MYCN may have wider implications beyond HLA-
A∗02:01 patients. Using our analysis, we find that the highest
scoring MYCN peptide (TVRPKNAAL) has predicted binding
to 9 HLA alleles, representing 58.1% of the population, and we
expect analysis of more neuroblastoma tumor specimens will
validate this prediction. We further analyzed regional scores
across 17 and 33 mers, we find that these regions are predicted
to generate peptides binding to 73.1 and 85.4% of the population,
respectively (Figure 3F). We suggest that these tools can be used
to design and prioritize more broadly applicable therapeutic
targets and vaccines for cancer, particularly when paired with

ligandomics data (21). Analyses of population-scale presentation
along the span of individual proteins and of specific neoantigens
is available through the Shiny-NAP web application (http://
reslnmaris01.research.chop.edu:3838/shinyNAP/).

HLA Allelic Immunogenicity and Cancer
Susceptibility
We hypothesized that specific HLA alleles capable of generating
strongly bound neoantigens would be underrepresented in the
population of TCGA patients harboring those variants due to
early immune based elimination of neoplastic cells. To validate
this prediction, we inferred HLA haplotypes from individual
patient sequencing data using the PHLAT HLA typing algorithm
(22), resulting in 563 unique HLA alleles characterized across the
TCGA. To assure predication accuracy, we directly genotyped 15
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unique HLA allele calls with the lowest confidence predictions
using DNA from cancer cell lines and showed 100% concordance
(Table S3). We then used the immunogenicity map to determine
neoantigen binding across all TCGA driver mutations as defined
above (Table S4). To estimate the degree of immunoediting
across each HLA allele, we used the immunogenicity map to
generate a list of all predicted strong binders at each HLA
allele having greater than 5% population frequency in the TCGA
(29/84 alleles), subset the unique set of patients harboring
these mutations, and compared the frequency of their HLA
alleles to predicted in the TCGA population from the Bone
Marrow Registry data derived largely from younger adults
(Figure S2). Performing this analysis across 29 HLA alleles, we
calculated the magnitude of immunoediting for each allele by
the underrepresentation of that allele in the subset of patients
harboring strong neoantigens for that allele, as compared with
the predicted TCGA population frequency calculated from
the bone marrow registry data (Figure 4A). As a metric of
immunoediting by each allele, we calculated the proportion of
observed HLA frequencies in the neoantigen-harboring cases

compared to the population frequency, in which a proportion of
0 would represent perfect immunoediting of all early neoantigens
and 1 would represent no immunoediting (Figure 4B; STAR
methods in Supplementary Material).

We observe a wide range of immunoediting across the 29
HLA alleles, the highest of which was HLA-A∗68:01 with a
44% underrepresentation in the subset of patients harboring
predicted binders. We also found that many common HLA
alleles appear to not contribute significantly to immunoediting
in cancer. Nine of 29 HLA alleles were significantly associated
with a protective effect against early neoantigens (Figure 4,
Table S2; p= 7.7e−6-0.05, FDR= 0.0001–15.9%). Our modeling
suggests that individual HLA alleles have differential ability
to initiate an immune response capable of clearing early
oncogenes, and across differential breadths of variants. We
generated an immunoediting score to determine the degree
to which each HLA allele was protective, factoring both
breadth and magnitude (% neoantigens bound ∗ % allele
underrepresentation), and determined HLA-A∗68:01 to score
the highest in protectivity against mutations in cancer driver

FIGURE 3 | Continued
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Figure 3 | HLA presentation score by protein region reveals unprotected domains and protein regions broadly applicable as cancer vaccine candidates.

(A–C) Regional HLA presentation scores determined by calculating the fraction of the population capable of presenting a 9 mer epitope centered at each amino acid

location in p53, PI3K, and BRAF (gray bars). Each protein contains domains that are presented on HLA in the majority of the population and other domains that are

unprotected. Mutation frequency at each location overlaid (green lollipop plot) reveals that many common mutations are found in unprotected regions of the protein.

(D) Overlay of mutated neoantigen presentation score with regional presentation score for p53 shows strong correlation between regional protection of WT protein

(gray bars) with protection against mutated neoantigens (black lollipop plot). (E) Twenty nine peptides detected by ligandomics in 16 neuroblastoma tumors were

mapped onto the HLA population presentation scores. Empirically detected peptides were highly enriched in high-scoring regions of the protein (p = 0.000011).

(F) Analysis of MYCN HLA presentation across the span of the protein. Analysis of individual peptides (top) reveals the most highly presented peptide derived from

MYCN, TVRPKNAAL, to be presented on 9 HLA alleles, representing 58.1% of the population. KATEYVHSL peptide, detected by ligandomics is predicted to be

presented on 10 total HLA alleles (31.9% of the population). Analysis of 17 mer regions (middle) reveals a peptide LERQRRNDLRSSFLTLR generating peptides

predicted to bind 19 HLA alleles (73.1% of the population). Analysis of 33 mer regions reveals the highest scoring peptide

TVRPKNAALGPGRAQSSELILKRCLPIHQQHNY presented on 18 HLA alleles in 85.4% of the population, suggesting these as promising regions of the MYCN protein

for broadly applicable vaccination.
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Figure 4 | Immunoediting across HLA alleles. (A) Expected TCGA frequency for each allele as calculated from the Bone Marrow Registry and adjusted for ethnicity

(red) compared to observed HLA allele frequency in subset of the TCGA population harboring strong neoantigen/HLA binding pairs (blue). To calculate observed HLA

frequencies, predicted mutant binders are used to filter TCGA data and HLA frequencies are deduced from the subset of unique individuals. Decreased frequency in

TCGA binders compared to expected frequency is a surrogate metric for early immunoediting events that are responsible for having cleared early tumors and are thus

underrepresented in TCGA data. (B) Ratio of observed:predicted binders. Area below dotted line represents immunoediting frequency for each allele. Zero represents

complete immunoediting while 1 represents no contribution of immunoediting by a particular HLA allele. (C) Binding affinity between HLA alleles found to participate in

immunoediting of cancer neoantigens is stronger than non-contributing alleles (p = 0.015).

genes (Figure S3A, Table S2). We postulated that the binding
affinity between those HLA alleles and tumor neoantigens may
contribute to immunoediting. By comparing the nine HLA
alleles that contribute to immunoediting to the 21 alleles that

were found to not contribute significantly to immunoediting,
we find that the mean binding among neoantigens in the
alleles contributing to immunoediting is 982.8 nM, significantly
stronger than 1,612.6 nM in non-contributing alleles (Figure 4C,
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p = 0.015), suggesting that differential affinity for peptides
among HLA may contribute to their ability to initiate an anti-
tumor response against neoantigens. Furthermore, we scored the
contribution of these alleles at a population level as a metric for
how many neoantigens these alleles are editing at a population
scale by calculating the product of the immunoediting score
with the frequency of the HLA allele in the US population
(Figure S3B, Table S2), with HLA-A∗02:01 emerging as the most
significant contributor to population-scale immunoediting.

Immunoediting in TCGA Across Patients,
Tumors, and Point Mutations
We next focused on immunogenically silent mutations defined
above and showed that these are enriched in the TCGA dataset,
comprising 9.1% of observed mutations, while only representing
6.85% of all characterized variants (p = 2e−16). Indeed, we
find that 1,974 of 7,300 patients (27%) in the TCGA harbor
at least one immunogenically silent mutation. In addition
to immunoediting contributions of HLA alleles and evasion
through immunogenically silent mutations, we explored editing
events across individual patients, tumor types, and specific point
mutations. To model the degree of immunoediting across these
variables, we calculated the expected frequency with which
a given patient, tumor, or point mutation, should harbor at
least one HLA allele capable of binding the subset of strongly
binding neoantigens in that group, calculated the collective
probabilities of the subpopulation generating neoantigens, and
compared the observed frequencies to the predicted frequency
of binding to at least one HLA allele. To simplify the modeling
of predicted allele frequencies, we treated HLA allele frequencies
as independent events and disregarded linkage between HLA
alleles, thus slightly underestimating the expected frequencies
and biasing our prediction of immunoediting toward a more
conservative estimate. These analyses lend insight into tumor cell
extrinsic mechanisms for recurrent hot spot mutations in cancer
(Table S5). For example, while KRAS G12D is immunogenically
silent and is predicted to bind no common HLA allele with high
enough affinity to allow for recognition by T cells, the KRAS
G12A mutation is predicted to generate strong neoantigens
with four HLA alleles (HLA-A∗02:05, HLA-A∗02:06, HLA-
A∗69:01, and HLA-C∗03:03). KRAS G12A scored as the 2nd
most significantly underrepresented driver SNV of the 26,361
mutations analyzed in the TCGA and was not observed in
any patient tumor sample with any of the four predicted HLA
binders in its 35 occurrences (4.3 predicted neoantigen/HLA
pairs, Table S5, p= 0.01).

We also examined immunoediting contributions of group
1 and group 2 neoantigens (as defined above) in HLA-
A∗02:01 by comparing neoantigens arising from mutations
in the anchor positions at residues two and nine to those
mutations outside of these residues. We found no significant
difference in underrepresentation between group 1 and
2 neoantigens (Figure S4), suggesting that both types of
neoantigens participate in immunoediting in the context of
HLA-A∗02:01. Analyzing immunoediting across individual
patients, we found a subset of patients with disproportionate

degrees of immunoediting. The most significant of these,
uterine cancer patient TCGA-E6-A1LX, harbored 3.4-fold
fewer immunogenic neoantigens than predicted (p = 3.1e−10).
Interestingly, this patient also harbored 12 immunogenically
silent mutations (ranking 3rd highest in immunogenically silent
mutations out of 7300 TCGA patients, Table S6), suggesting
that this patient’s tumor had been subjected to significant
immunoediting of secondary mutations, yet was being driven
largely by immunogenically silent mutations. Although the
combined cases of uterine cancer taken together are the least
significantly immunoedited histology, a particular subset of
these patients are highly enriched among individuals with
the highest degree of immunoediting (five out of the top 10
immunoedited individuals in the TCGA), highlighting these
as interesting case studies for the mechanisms underlying
enhanced early immunoediting and eventual immune escape.
In our analysis across histologies, we find that glioblastoma is
the most significantly immunoedited in early tumor formation
(Figure S5; p = 0.008), in line with recent evidence that these
tumors do not arise in immune privileged sites (23, 24). Overall,
these data illustrate differential degrees of immunoediting
and immune evasion across TCGA patients, histologies, and
variants, suggesting that an enrichment in immunogenically
silent mutations may be driving the evolution of tumors in
otherwise immunocompetent individuals.

DISCUSSION

Here we describe a model for quantifying immunoediting during
early tumorigenesis that provides insight into immunologic
contributions to recurrent somatic mutation hotspots observed
in human cancer, as well as immunologic contributions to
cancer susceptibility. The model described herein employs
orthogonal methods to recent studies in demonstrating evidence
of immunoediting in the TCGA cohort (18, 25). Using an HLA-
based hypothesis, we converge on the conclusion that common
driver mutations evade the immune system and provide a
population-scale HLA-centric basis for their overrepresentation
in human cancer. In each of these studies, the immunoediting
process is demonstrated to be imperfect, which can in part be
explained by the false-positive predicted peptides included in
the analysis which dilute the contribution of peptides actually
presented, but also raises questions about disparities in immune
responses. Here we provide methods that can be employed to
elucidate immunoediting across HLA alleles, patients, individual
variants, and other genomic or clinical features. We think that
our HLA-centric population-scale model provides a baseline
of comparison against which we can estimate the degree of
immunoediting, with several examples of disparities across these
features highlighted in this manuscript.

This is the first report that we are aware of to map known
driver neoantigens across common HLA alleles, and quite
strikingly the most recurrent hotspot mutations in human cancer
are predicted to bind no common HLA allele with high enough
affinity to engage the adaptive immune system, highlighting an
immunologic mechanism underlying the evolutionary advantage
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of common mutations in addition to their oncogenic potency.
This is also the first report of which we are aware of to
quantify the contributions of individual HLA alleles to the
immunoediting process in cancer, revealing a high disparity
in immune protection against cancer across the HLA alleles.
Our data suggest that the ability of individual HLA alleles
to bind cancer neoantigens with high affinity is strongly
associated with its ability to contribute to cancer immunoediting.
Though our data support the cancer immunoediting theory,
we and others show that the immunoediting process leads to
incomplete elimination of neoantigens arising from early driver
mutations. Our findings suggest that a significant difference
in p/MHC binding affinities contributes to the disparity
in immunoediting among HLA alleles, but further studies
will be necessary to corroborate these findings and uncover
additional mechanisms contributing to these disparities. While
we demonstrate that a significant degree of immune evasion
may be attributed to immunogenically silent mutations, the
absence of complete immunoediting in patients not harboring
immunogenically silent mutations may be attributed to factors
including tumor intrinsic immune evasion, downregulation
of MHC, lack of T cell response of the proper magnitude
and quality, poor TCR repertoire, exclusion of T cells from
tissue, or peripheral tolerance. We believe that our model
can be coupled with genomic surrogates of these features
to interrogate these variables in future studies using tumor
genomic data.

Here we show that not all HLA alleles are found to be
significantly protective against the neoantigens that they present.
We postulate that alleles not found to significantly participate in
immunoediting may induce sublethal T cell responses or possess
biophysical and/or geometric properties that confer suboptimal
interactions with germline-encoded binding regions of the TCR.
Our findings that specific regions of cancer driver proteins are
unprotected by HLA presentation combined with the disparity
in binding across HLA alleles raises the question of whether
HLA alleles have evolved to confer protectivity against particular
viral domains that coincide with motifs found in cancer proteins,
and whether the unpresented areas remain unprotected due to
lack of evolutionary pressure on these motifs. These results also
raise the question of whether HLA presentation of group 2
neoantigens is associated with mutational signatures arising from
particular groups of DNA damage that generate variants with
more favorable binding properties in the anchor residues (26).
We have made available the tools for other investigators to test
these and other hypotheses (http://reslnmaris01.research.chop.
edu:3838/shinyNAP/).

We also present a tool for mapping the presentation scores
across the span of any given protein in the population. We find a
highly significant concordance between the peptides empirically
detected in the combined ligandome of 16 neuroblastoma tumors
carrying various HLA alleles, and the regions of the NPY
protein predicted to be most highly presented by HLA across
the population. Based on these results paired with the high
level of differential expression, and its role in promoting tumor
growth, we suggest that NPY is a promising candidate for vaccine
development for neuroblastoma patients. Using this tool, we also

suggest that current vaccination strategies used against MYCN
may have broader application across the population. As efforts
are being made to develop HLA-agnostic CAR T cells, specific to
only the peptide and not the MHC, we believe these tools will be
useful in identifying broader segments of the cancer population
likely to benefit from these immunotherapies.

As access to genomic data from cancer patients continues
to expand, and the peptide/MHC binding and T cell epitope
prediction tools improve, this model will benefit from additional
statistical power in stratifying subsets of the patient population
based onmolecular features occurring in smaller subpopulations.
Despite the fact that our model predicted no HLA alleles binding
to neoantigens derived from the KRAS G12D mutation, it was
recently reported by Tran et al. (27) that KRAS G12D neoantigen
GADGVGKSA is able to mediate a T cell response in the context
of HLA-C∗08:02. This antigen is predicted to be a weak HLA
binder (15,390 nM), highlighting the fact that T cell epitopes
are not always predicted using this algorithm, particularly on
rare alleles for which there are limited training data, and that
new methods will help identify neoantigens with non-canonical
motifs (28). Here, we restricted our analysis of immunoediting
by CD8T cells through MHC class I presentation of 9 mer
antigens only, and did not account for immunoediting that may
be triggered by other Class I antigens derived from additional
structural variants or non-canonical antigens, peptides of varying
lengths, Class II antigens, or the activities of the innate immune
system from NK cells or macrophages, as we were focused on
maintaining statistical power by using common HLA alleles and
the most common Class I peptides for which we were most
confident in being contributors to early tumorigenesis.

We find that the highest statistically significant
immunoediting takes place in glioblastoma, whereas, taken
together, sarcomas, pancreatic tumors, ovarian, adrenocortical
tumors and lymphomas show no significant evidence of
immunoediting. Given that the immunogenically silent KRAS
G12D mutation is pathognomonic of pancreatic cancer, our
findings may help explain the lack of efficacy of treatments such
as checkpoint inhibitors in pancreatic cancer (29) and the lack
of immunoediting observed in our analysis, as these tumors
are driven largely by an immunogenically silent mutation. We
suggest that our methods could ultimately be used to inform
the stratification of groups of patients most likely to respond
to immunotherapies such as checkpoint inhibitors based on
patient HLA and antigen immunogenicity, and to prioritize
shared antigens for vaccine development or HLA-agnostic
CAR strategies. This model can also be used to predict how an
individual’s HLA profile can determine the types of mutations
most likely to develop or be protected against.

Using the model of immunogenicity described herein, it
may be possible to infer physical properties of neoantigens that
elicit high immunoediting as compared to other neoantigens
that are presented but not eliminated by the immune system,
study the contributions of various molecular pathways across
tumor types and across individual patients that contribute
to variable degrees of immunoediting, and as a basis for
exploring the mechanisms by which specific HLA alleles may
contribute to cancer protection and predisposition. With alleles
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such as HLA-A∗68:01 emerging as disproportionately high
in their immunoediting score, we will be interested to see
whether contributions of HLA alleles to early immunoediting
will translate to improved abilities to induce T cell responses
against tumor neoantigens in patients, and whether such
alleles are associated with improved outcomes in patients
treated with modern immunotherapies. We suggest that the
immunogenicity map, HLA typing data, and immunoediting
model contained herein will facilitate investigation into
neoantigen immunogenicity at the level of HLA alleles,
mutations, patients, histologies, and aid in prioritization of
shared tumor epitopes for therapeutic development, and
further our mechanistic understanding of immune evasion in
tumor evolution.
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Table S1 | Driver oncogenes and tumor suppressor genes. List of 125 cancer

driver genes implicated in carcinogenesis, including oncogenes and tumor

suppressor genes that regulate cell fate, cell survival, and genome

maintenance (16).

Table S2 | Immunogenicity map of TCGA. Map of all characterized variants

derived from 125 cancer driver genes (Table S1) and their binding score across

each of 84 characterized HLA alleles. Binding score reported as the strongest

rank score from the aggregated pool of all peptides resulting from each variant to

particular HLA allele, with lower scores representing higher binding affinity relative

to binders of each HLA allele.

Table S3 | Validation of HLA genotyping. Comparison of HLA predictions across

15 HLA alleles as inferred from PHLAT algorithm from exome sequencing data of

three neuroblastoma cell lines compared to clinical genotyping performed using

next generation sequencing of amplified HLA loci.

Table S4 | TCGA mutations and patient HLA types. List of variants used to

analyze immunoediting across patients, variants, and histologies. Table populated

with all mutations in driver genes from the TCGA with matched HLA typing inferred

from PHLAT.

Table S5 | Immunoedited variants from TCGA. List of variants most

underrepresented when measured with population of patients harboring HLA

alleles predicted to bind neoantigens derived from variant (p ≤ 0.05). Frequency of

mutation is number of occurrences of mutation in Table S4. Percent of population

with binders is the probability of a TCGA subject harboring an HLA allele capable

of binding a neoepitope derived from the particular variant. Observed mutation is

frequency calculated from the number of patients with at least one HLA allele from

the set of those capable of binding the variant.

Table S6 | Immunoedited subjects from TCGA. List of subjects with highest

degrees of immunoediting in the TCGA (p ≤ 0.05). Expected binders calculated by

summing the probability of all individual variants in each patient being bound to an

HLA allele in the TCGA. Observed binders is the summed number of variant/HLA

pairs that generate at least one epitope across each variant. Observed/expected

represents the degree of underrepresentation of presented neoantigens in each

patient (0 being perfect immunoediting). Despite being ranked the lowest in

significance for immunoediting, uterine cancer represents 5 of the top 10 patients

with the most significant degrees of immunoediting. The most significantly

immunoedited subject also ranks 3 of 7,300 in number of immunogenically

silent mutations.

Figure S1 | Pipeline for inferring HLA type from TCGA and comparing to predicted

frequencies. BAM files for individual patients were converted to FASTQ and

processed using PHLAT to determine HLA type. HLA frequencies in TCGA were

determined using ethnicity-specific allele populations from Bone Marrow Registry

and compared to observed frequencies in TCGA. Patient HLA and mutation data

were combined to determine number of neoantigens in each individual, allowing

the comparison of predicted HLA frequencies to ethnicity-adjusted HLA

frequencies in the TCGA across individuals, mutations, and tumor histologies.

Figure S2 | Workflow for modeling immunoediting for individual HLA alleles

(example show for HLA-A∗02:01). All strong neoantigens predicted to bind given

HLA are aggregated and used to filter the TCGA dataset. Resulting mutations are

filtered for unique patients to remove patients harboring multiple binders to a single

allele. Frequency of unique patients harboring at least one strong neoantigen

binding to predicted HLA allele compared to ethnicity-adjusted predicted value for

TCGA frequency to determine level of immunoediting by specific HLA allele.

Figure S3 | HLA allele immunoediting scores and population editing scores.

Immunoediting scores represent overall ability of HLA alleles to edit mutations,

accounting for the repertoire of antigens they are able to bind and the level of

editing that they exhibit for that subset of antigens (calculated by % neoantigens

bound by allele ∗ % underrepresentation of HLA allele), with HLA-A∗68:01 scoring

highest in immunoediting of neoantigens arising from mutations in early driver

genes. Immunoediting population score is used to estimate the total

immunoediting contribution of HLA alleles across the US population (calculated by

the product of the immunoediting score with the US HLA allele frequency).

(A) Immunoediting scores in HLA alleles shown to be statistically significant.

(B) Population immunoediting scores in HLA alleles shown to be

statistically significant.

Figure S4 | Immunoediting of group 1 and group 2 neoantigens. Neoantigens

resulting from group 1 neoantigens (those with neoantigens occurring from
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mutation at positions outside of anchor residues) were compared with group 2

neoantigens (mutations occurring at anchor residues 2 and 9) in HLA-A∗02:01. No

significant difference in underrepresentation was found between groups 1 and 2 in

HLA-A∗02:01.

Figure S5 | Immunoediting by cancer histology. Combined observed binding

neoantigens compared to expected. Zero represents complete immunoediting

while one represents no contribution of immunoediting by a particular HLA allele.

Glioblastoma is the only significantly immunoedited histology in this analysis (p =

0.008). Uterine cancer is the least significantly immunoedited tumor, though is

highly enriched in individuals exhibiting high degrees of immunoediting (4/8 of the

most significantly edited patients in the TCGA, Table S6).

Figure S6 | NPY is highly differentially expressed in neuroblastoma and is a

promising target for vaccination. RNA-sequencing data from 153 neuroblastoma

tumors in TARGET (first column) compared to 1,643 normal tissues from GTEx

compiled by organ (subsequent columns) reveals high expression of NPY in

neuroblastoma as compared to normal tissues.
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Mutation-derived neoantigens are important targets for T cell-mediated reactivity toward

tumors and, due to their unique tumor expression, an attractive target for immunotherapy.

Neoepitope-specific T cells have been detected across a number of solid cancers with

high mutational burden tumors, but neoepitopes have been mostly selected from single

nucleotide variations (SNVs), and little focus has been given to neoepitopes derived from

in-frame and frameshift indels, which might be equally important and potentially highly

immunogenic. Clear cell renal cell carcinomas (ccRCCs) are medium-range mutational

burden tumors with a high pan-cancer proportion of frameshift mutations. In this study,

the mutational landscape of tumors from six RCC patients was analyzed by whole-exome

sequencing (WES) of DNA from tumor fragments (TFs), autologous tumor cell lines

(TCLs), and tumor-infiltrating lymphocytes (TILs, germline reference). Neopeptides were

predicted using MuPeXI, and patient-specific peptide–MHC (pMHC) libraries were

created for all neopeptides with a rank score < 2 for binding to the patient’s HLAs. T

cell recognition toward neoepitopes in TILs was evaluated using the high-throughput

technology of DNA barcode-labeled pMHC multimers. The patient-specific libraries

consisted of, on average, 258 putative neopeptides (range, 103–397, n = 6). In four

patients, WES was performed on two different sources (TF and TCL), whereas in two

patients, WES was performed only on TF. Most of the peptides were predicted from

both sources. However, a fraction was predicted from one source only. Among the total

predicted neopeptides, 16% were derived from frameshift indels. T cell recognition of 52

neoepitopes was detected across all patients (range, 4–18, n = 6) and spanning two to

five HLA restrictions per patient. On average, 21% of the recognized neoepitopes were

derived from frameshift indels (range, 0–43%, n = 6). Thus, frameshift indels are equally
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represented in the pool of immunogenic neoepitopes as SNV-derived neoepitopes. This

suggests the importance of a broad neopeptide prediction strategy covering multiple

sources of tumor material, and including different genetic alterations. This study, for the

first time, describes the T cell recognition of frameshift-derived neoepitopes in RCC and

determines their immunogenic profile.

Keywords: renal cell carcinoma, neoepitopes, neoantigens, frameshift mutations, T cell screening

INTRODUCTION

Tumor neoantigens are important targets for the immune
system to mediate tumor control. Tumor-specific mutations
give rise to altered proteins that are processed into short
peptides. These are presented at the cell surface in the context
of major histocompatibility complex (MHC) molecules, where
they serve as targets for cytotoxic T cell killing of the tumor (1).
Compared to shared tumor antigens, which can be expressed
at low levels in healthy tissue, neoantigens have the advantage
of being uniquely expressed in the tumor. Also, there is less
T cell tolerance toward neoantigens since the T cell repertoire
has not been negatively selected based on these sequences (2).
Therefore, neoantigens are attractive targets for immunotherapy.
Untargeted therapies, such as immune checkpoint inhibitors and
adoptive T cell transfer with tumor infiltrating lymphocytes,
have been shown to increase neoantigen reactive T cells, and
the clinical response correlates with the mutational burden and
predicted number of neoantigens (3–5). Neoantigens have also
been directly targeted in personalized therapies by adoptive
transfer of specifically expanded T cells (6, 7) and in personalized
neoepitope vaccines (8, 9). The challenge for these strategies
is, however, to determine which neoepitopes to preferentially
target in each patient. Neoantigen reactive T cells have been
detected across a number of solid cancers with high mutational
burdens, such as melanoma and non-small cell lung cancer
(10–12). The described neopeptides have, however, mainly been
derived from single nucleotide variations (SNVs) with less focus
on in-frame and frameshift indels, mutation types that are likely
to be immunogenic based on their large sequence variance to
the germline DNA. Even though the total number of frameshift
indels are lower than SNVs, they have been shown to give rise
to three times as many predicted high-affinity (IC50 < 50 nM)
neoantigens per mutation compared to SNVs and are highly
enriched for mutant-specific binding (i.e., neopeptides for which
the wild-type peptide is not predicted to bind the HLA) (13).
Hence, thismutation type is potentially highly relevant as a tumor
neoantigen target (14, 15).

Clear cell renal cell carcinomas (ccRCCs) are medium-
range mutational burden tumors that present with the highest
pan-cancer proportion of frameshift indels (13, 16). ccRCCs
appear to be immune sensitive, as suggested by high levels
of T cells infiltrating the tumor site (17), and clinical benefit
can be achieved using cytokine-based immunotherapies with
interferon-α and high-dose interleukin 2 (18, 19) and checkpoint
inhibitors (20, 21). Nevertheless, the tumor microenvironment
of ccRCCs is characterized as highly immunosuppressive

(22), which is reflected by the poor functional quality of T
cell responses observed, with implications for adoptive cell
therapy (23).

To our knowledge, as yet, no reports have described the
neoantigens recognized by T cells in ccRCC and investigated
the contribution of frameshift indels to T cell recognition
of neoantigens. Such investigation is critical for using
neoantigens as therapeutic targets and biomarkers of relevance
to immunotherapy in this cancer type. For that reason, we
evaluated the T cell recognition of neopeptides predicted from
SNVs, in-frame, and frameshift indels in six ccRCC patients
previously described in (23). The prediction was performed
with WES from two sources of tumor material (TCL and TF) to
include all potential neopeptides in our screenings.

MATERIALS AND METHODS

Patient and Healthy Donor Samples
Healthy donor samples were collected by approval of the
local Scientific Ethics Committee, with donor written informed
consent obtained according to the Declaration of Helsinki.
Healthy donor blood samples were obtained from the blood
bank at Rigshospitalet, Copenhagen, Denmark. All samples
were obtained anonymously. Peripheral blood mononuclear
cells (PBMCs) from healthy donors were obtained from whole
blood by density centrifugation on Lymphoprep (Axis-Shield
PoC, cat# 1114544) in Leucosep tubes (Greiner Bio-One, cat#
227288) and cryopreserved at −150◦C in fetal calf serum (FCS,
Gibco, cat#10500064)+ 10% dimethyl sulfoxide (DMSO, Sigma-
Aldrich, cat#C6164).

Tumor-infiltrating lymphocytes (TILs), tumor fragments
(TFs), and tumor cell lines (TCLs) from ccRCC patients were
obtained at the Department of Oncology and Center for Cancer
Immune Therapy, Copenhagen University Hospital, Denmark,
under approval by the Ethics Committee of the Capital Region
of Denmark and the Danish Data Protection Agency. Young
TIL cultures were obtained from resected tumor lesions from
individuals with ccRCC with a Fuhrman grade between 1
and 3 (23). Tumor lesions were resected following surgical
removal, and TFs were cultured individually in completemedium
[RPMI1640 + GlutaMAXTM (Gibco, cat#61870010) with 10%
human serum (Sigma-Aldrich, cat#H3667), 100 U/ml penicillin
(P/S, Sigma-Aldrich, cat#P0781), 100µg/ml streptomycin (P/S,
Sigma-Aldrich, cat#P0781), 1.25µg/ml fungizone (Bristol-Myers
Squibb), and 6,000 U/ml IL-2 (Proleukin, Novartis, cat#200-
02)] at 37◦C and 5% CO2, allowing TILs to migrate into the
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medium. TILs were expanded to reach >50 × 106 total cells
originating from∼48 individual fragments, which had expanded
to confluent growth in 2ml wells and eliminated adherent tumor
cells (average of ∼2 × 106 cells per well from each TF). TIL
cultures were further expanded using a standard rapid expansion
protocol (REP) as previously described (24). Briefly, TILs were
stimulated with 30 ng/ml anti-CD3 antibody (OKT-3, Ortho
Biotech) and 6,000 U/ml IL-2 in the presence of irradiated
(40Gy) allogeneic feeder cells (healthy donor PBMCs) at a
feeder/TIL ratio of 200:1. Initially, TILs were rapidly expanded
in a 1:1 mix of complete medium and REP medium [AIM-V
(Invitrogen) + 10% human serum, 1.25µg/ml fungizone, and
6,000 U/ml IL-2], but after 7 days, complete medium and serum
were removed stepwise from the culture by adding REP medium
without serum to maintain cell densities around 1–2 × 106

cells/ml. TIL cultures were cryopreserved at −150◦C in human
serum+ 10% DMSO.

DNA and RNA Extraction and Sequencing
Preparation
DNA and RNA were extracted and purified from TCLs, TFs, and
TILs (germline DNA reference) using the AllPrep DNA/RNA
Mini kit (Qiagen, cat#80204), with the addition of DNase
during RNA purification (Qiagen, 79254). Next, DNA/RNA
concentrations were analyzed by NanoDrop (Thermo Fischer
Technologies), and RNA RIN values were analyzed by 2100
Bioanalyzer (Agilent Technologies). DNA whole-exome and
RNA sequencing (RNAseq) were performed at the DTU Multi
Assay Core (DMAC).

Next-Generation Sequencing Data
Processing
Raw FASTQ files from whole WES and RNAseq were analyzed in
the followingmanner. First, both data sets were pre-processed for
quality using Trim Galore version 0.4.0 (25), which combines the
functions of Cutadapt (26) and FastQC 0.11.2 (27): trimming the
reads below an average Phred score of 20 (default value), cutting
out standard adaptors such as those from Illumina, and running
FastQC to evaluate data quality. Variant calling was performed
following the Genome Analysis Toolkit (GATK) best practice
guidelines for somatic variant detection (28). Reads were aligned
to the human genome (GRCh38) using the Burrows-Wheeler
Aligner (29) version 0.7.10 with default mem options and with
a reading group provided for each sample for compatibility with
the following steps. Duplicate reads were marked using Picard-
tools version 2.6.0 MarkDuplicates. Indel realignment and base
recalibration were performed with GATK version 3.3.0 to reduce
false-positive variant calls. SNV and indel calls were made using
GATKs build in a version of MuTect2 (30) designed to call
variants, both SNVs and indels, frommatched tumor and normal
samples. Kallisto 0.42.1 (31) was used to determine the gene
expression in transcript per million (TPM) from RNAseq data.

Neopeptide Prediction
The VCF output files from GATK’s MuTect2 was given as input
to the neopeptide predictor MuPeXI version 1.1 (32) together
with RNAseq expression values obtained from Kallisto. HLA

alleles of each patient were inferred from the WES data using
OptiType version 1.0 (33) with default settings after filtering
the reads aligning to the HLA region with RazerS version 3.4.0
(34). Identified mutations from TFs and TCLs were used to
predict 9, 10, and 11 amino acid peptides, sorted according to the
eluted ligand percentile rank (EL% Rank) score of the mutated
neopeptides using netMHCpan 2.8 (35). All neopeptides with
a rank score < 2 were selected for peptide synthesis, giving a
total of 1,545 neopeptides across all six patients. Additionally,
the tumor mutational burden of non-synonymous mutations
was determined from the MuPeXI output logfile summarizing
peptides originating from missense variant mutations, in-frame
insertions, and deletions, together with frameshift mutations.
Mutation types were determined by Ensembl’s variant effect
predictor as a dependency ofMuPeXI. The neopeptide prediction
has, prior to publication, been reanalyzed with MuPeXI 1.2.0
using netMHCpan 4.0 (36).

Peptides
All selected mutation derived and virus control peptides
were purchased from Pepscan (Pepscan Presto BV, Lelystad,
Netherlands) and dissolved to 10mM in DMSO.

MHC Monomer Production and Generation
of Specific Peptide–MHC Complexes
The production of MHCmonomers was performed as previously
described (37, 38). In brief, the heavy chains of the included
HLA types and human β2 microglobulin (β2m) light chain
were expressed in bacterial Bl21 (DE3) pLysS strain (Novagen,
cat#69451) and purified as inclusion bodies. After solubilization,
heavy-chain and β2m light-chain complexes were folded using
a UV-sensitive ligand (39, 40), biotinylated with BirA biotin-
protein ligase standard reaction kit (Avidity, 318 LLC-Aurora,
Colorado), and purified using size-exclusion column (Waters,
BioSuite125, 13µm SEC 21.5 × 300mm) HPLC (Waters 2489).
Specific peptide–MHC (pMHC) complexes were generated by
UV-induced peptide exchange (37, 39).

Detection of pMHC Specific T Cells by
DNA Barcode-Labeled Multimers
Patient-specific libraries of predicted neopeptides and virus
control peptides (size range 114–415 peptides) were generated
as previously described (41). Briefly, the pMHC complexes
generated above were coupled to a phycoerythrin (PE)- and
DNA barcode-labeled dextran backbone. Hence, a specific
peptide was given a unique DNA barcode together with a
PE-fluorescent label. ccRCC patient TILs and healthy donor
PBMCs were stained with an up-concentrated pool of all
multimers in the presence of 50 nM dasatinib, followed by
staining with a 5× antibody mix composed of CD8-BV510 (BD
563256, clone RPA-T8) or -BV480 (BD, cat#566121, clone RPA-
T8), dump channel antibodies [CD4-FITC (BD, cat#345768),
CD14-FITC (BD, cat#345784), CD19-FITC (BD, cat#345776),
CD40-FITC (Serotech, cat#MCA1590F), and CD16-FITC (BD,
cat#335035)], and a dead cell marker (LIVE/DEAD Fixable Near-
IR; Invitrogen, cat#L10119). Multimer binding T cells were
sorted as lymphocytes, single, live, CD8+, FITC−, and PE+ and
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pelleted by centrifugation. DNA barcodes were amplified from
the isolated cells and from a stored aliquot of multimer pool
(diluted 50,000× in the final PCR reaction, used as a baseline).
PCR products were purified with a QIAquick PCR Purification
kit (Qiagen, cat#28104) and sequenced at Sequetech (USA) using
an Ion Torrent PGM 316 or 318 chip (Life Technologies).
Sequencing data were processed by the software package
Barracoda (available online at http://www.cbs.dtu.dk/services/
barracoda). This tool identifies the DNA barcodes annotated for
a given experiment, assigns a sample ID and pMHC specificity
to each DNA barcode, and counts the total number of reads and
clonally reduced reads for each pMHC-associated DNA barcode.
Log2 fold changes in read counts mapped to a given sample
relative to the mean read counts mapped to triplicate baseline
samples are estimated using normalization factors determined
by the trimmed mean of M-values method. False discovery rates
(FDRs) were estimated using the Benjamini–Hochberg method.
At least 1/1,000 reads associated with a given DNA barcode
relative to the total number of DNA barcode reads in that given
sample was set as threshold to avoid false-positive detection of T
cell responses due to low number of reads in the baseline samples.
An estimated cell frequency was calculated for eachDNA barcode
from their read count fraction out of the percentage of CD8+

multimer+ T cells. DNA barcodes with a p< 0.001, which is equal
with FDR < 0.1%, and an estimated cell frequency > 0.005%,
were considered to be true T cell responses.

Detection of pMHC-Specific T Cells by
Fluorescently Labeled pMHC Tetramers
pMHCs for which T cell responses were detected with the
DNA-barcode labeled multimers were generated as fluorescently
labeled pMHC tetramers in a combinatorial manner as
previously described (42). Briefly, pMHC complexes were
multimerized on two different streptavidin-conjugated
fluorochromes to give a unique two-color combination.
The following streptavidin-conjugated fluorochromes were
used: PE (Biolegend, cat#405203), allophycocyanin (APC)
(Biolegend, cat#405207), phycoerythrin-cyanin 7 (PE-Cy7)
(Biolegend, cat#405206), PE-CF594 (BD, cat#562284), brilliant
ultraviolet (BUV)737 (BD, cat#564293), brilliant violet (BV)605
(BD, cat#563260), BV650 (BD, cat#563855), BUV395 (BD,
cat#564176), and BV421 (Biolegend, cat#405226). RCC patient
TILs were stained with tetramers, followed by a 5× antibody
mix composed of CD8-BV510 or -BV480, dump channel
antibodies (CD4-FITC, CD14-FITC, CD19-FITC, CD40-FITC,
and CD16-FITC), and a dead cell marker (LIVE/DEAD Fixable
Near-IR). Multimer positive T cells were gated as single, live,
CD8+, FITC− (dump channel), multimer color1+, multimer
color2+, and negative for the remaining colors, and defined by a
minimum of 10 dual-color positive events.

Flow Cytometry
All flow cytometry experiments were carried out on LSRFortessa
and FACSAria Fusion instruments (BD Biosciences). Data were
analyzed in FACSDiva Software version 8.0.2 (BD Biosciences)
and FlowJo version 10.4.2 (TreeStar, Inc.).

Determination of T Cell Diversity
T cell diversity was determined through the identification of
CDR3 sequences from bulk RNAseq data with MiXCR version
2.1.1 (43) with the optimized setting for this specific purpose
(44). The quality trimmed reads from RNAseq were used as
input to MiXCR, which identify specific clones with reference
to known CDR3 sequences from the ImMunoGeneTics (IMGT)
database. The clone count of each clone detected refers to the
reads aligning to this specific clone of the CDR3 reference
library. Shannon entropy (45) was calculated as a T cell diversity
measurement (46).

Self-Similarity Score
MuPeXI predicts the corresponding normal peptide for any
predicted neopeptide. For a neopeptide derived from SNVs, the
most similar normal peptide is identified from the unmutated
amino acid sequence in the reference proteome. However, for
a neopeptide derived from indels, the reference proteome is
searched for themost similar peptide with up to fourmismatches,
referred to as the nearest normal peptide (32). The self-similarity
score between a neopeptide and normal peptides was calculated
using the kernel similarity measure (47). In short, this similarity
is calculated from matching, at different length scales, all kmers
(a substring of length k) in one peptide to the kmers in the other
peptide using a Blosum similarity measure. The measure gives a
value between 0 and 1 for the similarity of two peptides, where a
value of 1 indicates a perfect match.

Statistical Analyses
The difference in the distribution of predicted peptides and
detected responses (Figure 1A) was analyzed with Fisher’s exact
test with the Freeman–Halton extension. The data presented in
Figure 2 were assessed for normal distribution with a Shapiro–
Wilk normality test with a significance level of 0.05. Data
were analyzed with a non-parametric Mann–Whitney U-test
or Kruskal–Wallis test with Dunn’s correction for multiple
comparisons. The correlations presented in Figure 3 were
analyzed using Spearman’s non-parametric correlation. These
statistical analyses were conducted using either GraphPad Prism
8.1.2 or R statistically software version 3.5.1.

RESULTS

Neopeptides Predicted From Two Sources
The mutational landscape of tumors from four of the six ccRCC
patients was analyzed byWES and RNAseq from TFs, autologous
TCLs, and TILs (germline reference). For two patients, TCLs
were not established, and the analysis was done on TF solely.
In silico extraction and prediction of neopeptides based on
tumor sequencing data was performed with MuPeXI (32). The
mutational burden ranged from 51 to 159 mutations in the six
patients (Table 1). From these, neopeptides were predicted as
9-, 10-, and 11-mer peptides with predicted binding capacity
to the patients’ HLAs. Based on available MHC monomers
produced in-house, we selected only the HLA types we could
cover for the generation of the peptide (p)MHC libraries. Based
on this, four to five HLA types per patient were included in the
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FIGURE 1 | Comparison of tumor cell lines and tumor fragments as sources for neopeptide prediction. (A) Distribution of predicted peptides (P) and detected

responses (R) across tumor cell lines (TCL), tumor fragments (TF), and tumor cell line-tumor fragment overlap (TCL+TF) in each patient. Distribution of peptides

analyzed with Fisher’s exact test with Freeman-Halton extension. (B) T cell responses in patient RCC12 detected against neoepitopes and virus control epitopes with

DNA barcode labeled multimers presented as —log10 of their significance level, distributed on HLA types. Dotted line at x = 3 [—log10(0.001)] represent the selected

threshold of FDR < 0.1%. Filled labels indicate responses verified by tetramer staining. (C) Examples of tetramer verification plots for two of the responses detected in

patient RCC12 against peptide 521 (C*0701) and peptide 282 (B*4402). (D) Distribution of responses, where the mutational event gave rise to more or less than 1

epitope in each patient.

neopeptide prediction. Binders were defined with a predicted
rank score below 2 using NetMHCpan 2.8. On average, 258
putative neopeptides were predicted per patient, ranging from
103 to 397 (Table 1).

In the four patients with two tumor sources available for
prediction, we conducted a comparison of the peptide origin. The
mutational landscape overlapped substantially with average 50%
of mutations detected in both tumor sources, and consequently,
more than half of the neopeptides were predicted from both

sources (57%, range 40–74%, n = 4). However, a proportion
of the neopeptides were only predicted from one source: 17%
from TF only (range, 8–27%, n = 4) and 26% from TCL only
(range, 18–34%, n = 4). A similar trend is observed in the
neoepitopes recognized by T cells (described in detail in the
following section) with 40% of the neoepitopes being predicted
from both sources (range, 22–57%, n = 4), whereas 20% were
predicted only from TF (range, 0–44%, n = 4) and 40% only
from TCL (range, 29–57%, n = 4) (Figure 1A). In three of
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FIGURE 2 | Characterization of the contribution of different mutation types to immunogenicity. (A), Distribution of frameshift indel (red), in-frame indel (light blue), and

single nucleotide variation (SNV) (dark blue) mutations in each patient across tumor mutational burden (M), predicted peptides (P), and detected responses (R). (B)

Percentages of immunogenic neoepitopes out of predicted peptides. NS difference found between mutation types (Mann-Withney U-test). (C) Examples of T cell

responses detected against SNV mutation (left) and frameshift indel (right) derived neoepitopes. (D) Illustration of the frameshift mutational events giving rise to T cell

responses in patients RCC04, 12, 16, and 17. (E) The difference in % eluted ligand (EL) rank scores between neoepitope and the corresponding wild-type. No

difference between non-immunogenic and immunogenic neopeptide within the same mutation type. However, ****p < 0.001 and *p = 0.0315 for comparison

between mutation types within the same immunogenicity group (Kruskal-Wallis test with Dunn’s correction). (F) Self-similarity score between neopeptide and the

corresponding wild-type. No difference between non-immunogenic and immunogenic neopeptides within the same mutation type. However, ****p < 0.001 and

****p < 0.001 for comparison between mutation types within the same immunogenicity group (Kruskal-Wallis test with Dunn’s correction).
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FIGURE 3 | Correlation between T cell diversity, functionality and immunogenicity. (A,B) Correlation between the number of detected responses (A) or the

accumulated estimated frequency (B) and T cell diversity in each patient. (C,D) Correlation between the number of detected responses (C) or the accumulated

estimated frequency (D) and the mean expression of immunological genes, measured as transcripts per million (TPM). The Spearman correlation coefficient is

denoted in each plot.

the four patients, there was no difference in the distribution
of peptides between predicted peptide and detected responses.
However, in patient 02, the distribution was significantly
different (Fisher’s exact test with Freeman–Halton extension,
p < 0.05). These results indicate the advantage of applying
multiple sources of tumor material for neopeptide prediction to
provide a comprehensive identification of T cell responses toward
potential neopeptides.

Neoepitope-Specific CD8+ T Cells Are
Detected in ccRCC Patients
The 1,545 predicted neopeptides were synthesized and used
to generate patient-specific libraries of DNA barcode-labeled
pMHCmultimers, as previously described (41). Included in each
library were HLA matching epitopes derived from common
viruses: influenza virus (FLU), Epstein–Barr virus (EBV), and
cytomegalovirus (CMV). This resulted in patient-specific library

sizes of 114 to 415 pMHC multimers that were used to stain
cryopreserved TILs from the corresponding RCC patient and
PBMCs from healthy donor controls. All CD8+ T cells binding to
a given pMHC multimer were selected and sorted based on their
positive PE signal. The associated DNA barcodes were amplified
and sequenced to reveal the neopeptide specificities recognized
within the TIL samples. T cell responses were defined as any
pMHC complex enriched in the sorted T cell fraction with a
p < 0.001 and an estimated cell frequency above 0.005%.

T cell responses toward 54 neopeptides were detected across
all patients, ranging from 4 to 18 responses per patient.
Figure 1B shows a representation of patient 12. Results from
the remaining patients are presented in Figure S1 and with
peptide information in Table S1. The recognized neopeptides
spanned two to five HLA restrictions and covered, on average,
76% of the HLAs screened for (range, 50–100%). A number
of the neopeptides were derived from the same mutational
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TABLE 1 | Overview of number of mutations, predicted neopeptides, and detected T cell responses for each of the six patients.

Mutations Predicted neopeptides Detected responses

TCL TF TCL/TF Total TCL TF TCL/TF Total TCL TF TCL/TF Total

RCC02 30 13 43 86 56 24 113 193 3 4 2 9

RCC04 – 138 – 138 – 397 – 397 – 18 – 18

RCC12 28 19 97 144 67 30 282 379 3 0 4 7

RCC16 24 21 38 83 52 51 88 191 2 2 3 7

RCC17 55 39 65 159 95 73 114 282 4 0 3 7

RCC19 – 51 – 51 – 103 – 103 – 4 – 4

TCL, tumor cell line; TF, tumor fragment.

event, resulting in peptides with varying degrees of overlap
in sequence. On average, 38% (range, 0–85.7%) of the T
cell responses were directed toward mutations where >1
neoepitope was recognized by T cells (Figure 1D). Furthermore,
in three of the six patients, T cell responses toward the
common virus epitopes were detected (ranging from one to
eight responses per patient) (Figure 1B, Figure S1). In the
healthy donor cohort, we detected T cell responses toward
several epitopes derived from common viruses, as expected.
However, low-frequency responses toward neoepitopes were
also detected.

The recognized neoepitopes were unique to each patient
and none originated from known shared mutations. In a
search of the COSMIC database, none of the mutations were
previously described in renal cell carcinoma (n = 6), and in
a broader search of kidney cancer [carcinoma (n = 4512),
leiomyoblastoma (n = 3), renal cell carcinoma (n = 6), Wilms
tumor (n = 1354), not specified (n = 106), and other (n
= 143)], only two mutations were reported with a frequency

above 1%: COL14A1 (1%, n = 2168) and PCDH11X (2.4%,

n= 2168).
Fluorescently labeled combinatorial encoding pMHC

tetramers were generated for the neoepitopes for which we
observed responses with the barcode-labeling method, and

these were used to validate the T cell reactivity for a number
of the T cell responses observed (filled symbols, Figure 1C

and Figure S1). Due to the combinatorial encoding of the

tetramers, peptides with great sequence similarity (<2 amino
acid difference) were not allowed in the same screen. This was,

for instance, the case in patient 16 for neoepitope 144 and 173

with one amino acid difference. Tetramers were only generated
for peptide 173, for which we detected T cell response toward,

and we, therefore, consider peptide 144 as indirectly validated. In

most cases, due to low cell numbers, the cells used for verification

screens were from another TIL expanded cell product than

the ones used in the original screen, whereby variation might
occur—especially as many of the detected responses were of

very low frequency. For patient 17 only, a CD107a sorted and
expanded cell culture was available, and we screened it with the

DNA barcode-labeled multimers. We detected T cell responses

toward some of the same neopeptides, as in the original TIL
sample (Figure S1).

Frameshift Indels Contribute to
Immunogenicity
The tumor mutational burden of the patients included several
non-synonymous mutation types: SNVs, frameshift indels, and
in-frame indels (deletions and insertions) (Figure 2A). As
expected, SNVs accounted for the largest fraction of mutations
in the tumors of all six patients and resulted in a greater number
of predicted neopeptides. The two other mutation types are
less frequent; on average, across all patients, 12% of mutations
and 16% of predicted neopeptides were frameshift indels (range,
9–15 and 9–25%), and 3% of mutations and 1% of predicted
neopeptides were in-frame indels (range, 1–6 and 0–2.5%). Only
neopeptides derived from SNVs (41/52, 79%) and frameshift
indels (11/52, 21%) were recognized by T cells in our screen.
There was no significant difference between the percentages of
immunogenic neoepitopes out of predicted peptides between the
two mutation groups (Figure 2B). However, a slightly increased
average fraction was observed for frameshift indels (4.5%, range
0–12%) compared to SNVs (3.2%, range 1–6%). Validation plots
of two responses toward each mutation type are presented in
Figure 2C. The position of the original mutation that resulted
in the frameshift varied between each event. In most cases, the
mutation was upstream of the predicted neoepitope, and only
a couple of neoepitopes were predicted at the mutation site
(Figure 2D).

Frameshift Indels Have Increased Binding
Capacity and Less Similarity to Self
The neoepitope predictor MuPeXI provides the corresponding
wild-type peptide for any predicted neopeptide but through
different means depending on the mutation type. For a
neopeptide derived from SNVs, it is simply the unmutated
amino acid sequence in the reference proteome. However,
frameshift indels result in an entirely changed amino acid
sequence. Instead, the reference proteome is searched for the
most similar peptide with up to four mismatches, which will
be defined as the nearest normal peptide to the neopeptide
(32). In the following, both types will be referred to as wild-
type peptides. We first investigated how both mutation types
change the MHC binding capacity compared to wild-type. The
prediction of neopeptides was performed with NetMHCpan
2.8. However, at the time of publication, a new version was
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available (NetMHCpan 4.0) (36). Therefore, a second prediction
of the current libraries was performed, and the % eluted ligand
rank scores from the two versions were compared (Figure S2A).
The outputs correlated well, with outliers representing a
difference in prediction algorithms between the two versions.
We continued with the prediction values from the newest
version of NetMHCpan and used it to compare the binding
capacity of neopeptides compared to wild-type peptide. The
predicted rank scores for neopeptides were generally lower than
the wild-type peptides (Figures S2B,C for individual patients).
This difference was calculated as a delta(EL %Rank) value
and divided into immunogenic and non-immunogenic peptides
based on the T cell responses detected with the barcode-
labeling method (Figure 2E). Within each mutation group,
there was no significant difference between peptides based on
their immunogenicity, even though, for both groups, slightly
higher average delta values were detected for the immunogenic
neoepitopes (SNVs: 2.6 and 5.4; frameshift indels: 9.4 and 16.7
for non-and immunogenic peptides, respectively). Furthermore,
between the two mutation types, frameshift mutations had
significantly enhanced MHC binding capacity compared to
SNVs, relative to their wild-type sequence. Next, we determined
the similarity between neopeptide and wild type using the kernel
similarity measure giving a score between 0 and 1, where a value
of 1 indicates a perfect match (47) (Figure 2F). This approach
has previously been shown to focus on the central part of
the peptide and could be an indication of similarity in T cell
recognition of the presented peptide (48). As before, there is no
significant difference within the same mutation group between
non-immunogenic and immunogenic neopeptides. However,
between the mutation types, neopeptides derived from frameshift
indels are significantly less similar to wild type compared to SNV
(SNVs: 0.96 and 0.97; frameshift indels: 0.9 and 0.89 for non- and
immunogenic peptides, respectively).

T Cell Diversity and Functionality
We next investigated the T cell tumor infiltration and associated
functional markers in the six ccRCC patients. The T cell
receptor (TCR) CDR3 sequences were detected from bulk
RNAseq data with MiXCR and T cell diversity was calculated
using the Shannon Entropy, taking the number of reads per
sample into account. Generally, few reads were detected, which
is expected when extracting TCR CDR3s from RNAseq data.
As a control measure, no TCRs were detected in the TCL
samples, except one clone with a single read (data not shown).
T cell diversity correlated with both the number of detected
responses and accumulated estimated frequency from the DNA
barcode screen (Figures 3A,B). The correlation was stronger for
the accumulated estimated frequency than for the number of
detected responses (Spearman correlation coefficient of 0.992
and 0.359, respectively), indicating T cell diversity as a potential
surrogate marker for the number of (neo)antigen-specific T
cells in the tumor. We further evaluated CD8 expression and
expression of the perforin-granzyme pathway associated with
CD8+ T cell activation. The mean expression of these genes
correlated with both the number of detected responses and
the accumulated estimated frequency from the DNA barcode

screen (Figures 3C,D). Again, a strong positive correlation
was observed for accumulated estimated frequency, whereas
a weak correlation was observed for the number of detected
responses (Spearman correlation coefficient of 0.982 and 0.167,
respectively), demonstrating that the cell frequencies are better
measurements relative to the number of recognized neopeptides.

DISCUSSION

This study details for the first time the identification and
characterization of neoepitopes in renal cell carcinoma. By
using a novel, high-throughput technology of DNA barcode-
labeled pMHC multimers, we identified a total of 52 neoepitope-
specific CD8+ T cell responses in TILs from six patients with
ccRCC. Renal cell carcinomas are known to harbor the highest
number of insertions and deletion of all cancers (ccRCCs scoring
highest of renal cell cancer subtypes), and in line with this,
mutational analyses revealed the presence of frameshift and in-
frame indel mutations in all six patients in the study cohort.
Although we detected no responses toward in-frame indels,
we observed a tendency of enrichment for T cell responses
toward frameshift indel-derived neoepitopes compared to SNV-
derived neoepitopes. This supports the notion that indels are
a highly immunogenic subgroup of mutations, given their low
self-similarity to the wild-type sequence and previous reports of
enrichedmutant-specific binding.We, therefore, advocate for the
inclusion of indel-derived neopeptides in T cell investigational
studies and neoepitope-based therapies, also in cancers with low
numbers of indels. Although neoepitope prediction pipelines
are undergoing intense development and optimization in these
years, no consensus exists with respect to the material source
for extraction of DNA and RNA for mutational mapping. Our
comparison of TFs and TCLs revealed a substantial overlap in the
mutational landscape identified based on the two sources (∼40%
overlap), but none of the source materials performed better than
the other in terms of identifying neoepitopes subjected to T cell
recognition. Since a large number of epitopes were predicted
from only one source or the other, it is advisable (when possible)
to include both material sources as input for mutational analyses.
A fraction of the variability that we observe between TFs and
TCLs might be evenly present between two individual biopsies.
Such tumor heterogeneity is well-documented, especially in
renal cell carcinoma (49, 50). In the current study, the TFs
and TCLs were generated from the same lumps of surgically
removed tumors. However, they might still be influenced by
tumor heterogeneity.

The neoepitopes detected in this study are all MHC class I
restricted. Within recent years, growing interest have been on
MHC class II neoantigens and the important role of CD4+

T cells in tumor recognition and in generating a strong anti-
tumor response (51, 52). Several cancer vaccines have shown to
generate immune responses to class II neoepitopes either alone
or in combination with class I neoepitopes (9, 53). CD4+ T
cells have also been suggested to be critical for tumor regression
during checkpoint inhibitor therapy (54). Still, limitations in both
in silico prediction algorithms and MHC-II multimer staining
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reagents make identification of neoepitope-specific CD4+ T cells
challenging (55).

Although the number of RCC patients evaluated in this study
is limited, the neoepitope screening presented here covers 1,545
predicted neoepitopes, derived from 572 SNV mutations and 99
frameshift/indel mutations, with ligands binding to 16 different
HLA class I molecules. Thus, despite the limited number of
patients analyzed, this represents a broad screening effort of
class I neoepitopes from both SNVs and frameshift mutations,
providing new insight into the neoepitope landscape in renal cell
carcinoma patients. In line with previous studies of neoepitopes
in other cancer types, all of the neoepitopes derived from
mutations were unique to the given patient. Thus, therapeutic
utilization in precision-targeted approaches will require patient-
specific mutational mapping and prediction of neoepitopes,
which can then be applied to tailor-made therapies such as
personalized cancer vaccines or adoptive transfer of expanded
neoepitope-specific patient TILs. The identification of virus-
specific bystander T cells in the TIL products of half of the
patients document the presence of therapeutically irrelevant T
cells in current treatment products and further supports the
rationale of developing precision-targeted therapies.
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Mutation-derived neoantigens are taking central stage as a determinant in eliciting

effective antitumor immune responses following adoptive T-cell therapies. These

mutations are patient-specific, and their targeting calls for highly personalized pipelines.

The promising clinical outcomes of tumor-infiltrating lymphocyte (TIL) therapy have

spurred interest in generating T-cell infusion products that have been selectively enriched

in neoantigen (or autologous tumor) reactivity. The implementation of an isolation step,

prior to T-cell in vitro expansion and reinfusion, may provide a way to improve the

overall response rates achieved to date by adoptive T-cell therapies in metastatic

cancer patients. Here we provide an overview of the main technologies [i.e., peptide

major histocompatibility complex (pMHC) multimers, cytokine capture, and activation

markers] to enrich infiltrating or circulating T-cells in predefined neoantigen specificities

(or tumor reactivity). The unique technical and regulatory challenges faced by such highly

specialized and patient-specific manufacturing T-cell platforms are also discussed.

Keywords: cancer immunotherapy, adoptive cell therapy (ACT), tumor-infiltrating lymphocyte (TIL), neoantigens,

enrichment

INTRODUCTION

In the new age of personalized immune-oncology, tumor-infiltrating lymphocytes (TILs) generated
from surgical resections, expanded in vitro and adoptively transferred, provide a unique
opportunity to harness the specificity and diversity of the patient’s endogenous T-cell repertoire.
Building on the promising clinical outcomes achieved by TIL therapy in melanoma and cervical
cancer (1, 2), efforts are now made to generate even more tailored T-cell products with predefined
antigen specificities and, potentially, with enhanced in vivo tumor reactivity. The success of
personalized adoptive cell therapies (ACTs) is therefore tightly linked to the identification of
tumor-associated antigens, which are essential for tumor control.

Against this background, cancer neoantigens deriving from private mutations represent an ideal
class of cancer antigens to target in that they are highly tumor-specific by nature, therefore reducing
the potential induction of central and peripheral tolerance (3, 4). Most studies predominantly
focus on single-nucleotide variants (SNVs) when referring to immunogenic tumor-specific mutant
peptides; however, small insertions and deletions (indels), gene fusions, and posttranslational
modifications (such as phosphorylation or glycosylation, which often alter the protein structure
and function) have also been recognized as important neoantigen sources, therefore expanding
the plethora of potential targets for cancer immunotherapy (5–9). Furthermore, non-canonical
major histocompatibility complex (MHC) peptides derived from annotated noncoding regions are
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emerging as critical immune regulators across cancer types and
able to elicit tumor-specific T-cell responses (10, 11).

Neoantigen discovery is a multistep process performed on
a patient-specific basis by cutting-edge preclinical pipelines
integrating variant calling, in silico filtering, and immunogenicity
evaluation, leading to private (and shared) neoantigen candidates
(12–14). Briefly, mutations are called by whole-exome or
whole-genome sequencing of tumor vs. germline DNA,
are further filtered by in silico prediction algorithms and
potentially tumor RNA sequencing immunopeptidomics,
primarily taking into account peptide-MHC binding affinity
and RNA expression as well as direct identification (15).
Additional peptide features, such as stability, clonality,
cleavage scores, variant allele frequency, dissimilarity to
self, or mutation coverage, are now also taken into account
as potential determinants of immunogenicity (16–18). The
downstream number of short-listed neoepitopes varies among
patients and tumor types and is further greatly reduced
following cellular immunogenicity evaluation. Depending
on the chosen experimental strategy, prioritized neoepitope
candidates are synthesized in the form of short or long
peptides, or mRNA encoding mutations, and screened for
T-cell reactivities from patients’ blood or tumor samples. In
this context, functional assays [such as interferon (IFN)-γ
ELISpot and CD137 assay] as well as peptide MHC (pMHC)-
multimer direct stainings are typically used as sensitive
readouts. Of note, cellular interrogation requires a significant
number of patients’ samples and often includes, prior to
screening, a round of antigen-specific T-cell expansion with
candidate neoepitope pools, which may alter the original
clonotypes’ composition.

Despite the variable mutational load across different
human malignancies (19) and the technical challenges,
tumor-infiltrating, as well as circulating, neoantigen-specific
CD8+ and CD4+ T-cells have now been identified and
characterized in several tumor types (20–25). Early clinical
data also suggest that neoantigen load has a predictive role
in patient response to checkpoint blockade and TIL ACT
immunotherapy (26–29).

Bulk infiltrating T-cell populations can be very heterogeneous,
and the frequency of private (and shared) tumor-associated
antigen specificities is generally low (20, 21, 30). Dissection of
melanoma and colorectal and lung cancers has highlighted that
a significant fraction of TILs can contain antiviral CD8+ T cells
[such as Epstein-Barr virus (EBV)- and cytomegalovirus (CMV)-
specific], extending observations that many tumor infiltrates
may be in fact not tumor-specific (30–32). A study by Scheper
et al. (33) has assessed the intrinsic tumor reactivity of TILs
in melanoma and ovarian and colorectal cancer, demonstrating
how indeed only a small fraction of the intratumoral CD8+ T-
cell receptor (TCR) repertoire is able to recognize autologous
cancer cells. Yet, the frequency of CD8+ in TILs correlates
with favorable prognosis, and increasing evidence has shown
how a relatively limited set of neoantigen-specific T-cells from
melanoma TILs can mediate tumor recognition, despite the
tumor cells harboring hundreds of somatic mutations (34–37).

Collectively, these data suggest that enriching TIL infusion
products for a few T-cell clonotypes specific for key immunogenic
neoantigens could guide more effective antitumor responses
in vivo.

One might argue that the need for available resected tumor
specimens, from which infiltrating T-cells are isolated ex vivo,
limits a broader application of standard TIL therapies to other
tumor types. In this regard, Cohen et al. (22) first provided a
simplified and noninvasive blood-based strategy as an alternative
to current TIL production by demonstrating that neoantigen
and self-antigen reactive T-cells can be reliably isolated from the
peripheral blood of melanoma patients. Detection of neoantigen-
specific CD8+ and CD4+ lymphocytes from peripheral blood
has been subsequently described in patients with relatively low
tumor mutation burden, such as ovarian and gastrointesinal
cancers (20, 38–40). However, circulating neoantigen-specific T-
cells share with their infiltrating counterpart very low detection
frequencies (ranging from 0.5 to 0.002%) (20, 22, 37, 41,
42), hence the need for specific enrichment strategies. Of
note, novel evidence has shown that the patient neoantigen-
reactive CD8+ TCR repertoire can be largely discordant (in
terms of specificity and functional avidity) between circulating
and infiltrating T-cells in ovarian cancer patients (20). In
particular, neoantigen-specific TILs exhibited on average higher
functional avidity than their peripheral blood lymphocyte (PBL)
counterpart. Further studies are therefore required to assess
whether PBL and TIL cultures can be an equally suitable source
for successful personalized T-cell therapies. Of note, it has
also been shown that non-tolerized CD8+ T-cell repertoires of
healthy donors were able to specifically recognize neoantigens
which were ignored by tumor-infiltrating T cells in melanoma
patients (43, 44).

Taken together, the selective enrichment of bulk TIL or PBL
cultures for private (and shared) tumor-antigen specificities may
improve the response rates achieved to date by adoptive T-cell
therapies. One can envision highly personalized and specialized
platforms, which integrate tumor-antigen identification and
the generation of T-cell infusion products with a predefined
reactivity composition (Figure 1). Here, we provide an overview
of the current toolbox of technologies for the tailored enrichment
of T-cell products in tumor-specific reactivities, addressing
main advantages and disadvantages of individual approaches.
A first general distinction can be made between techniques
which require T-cells to be reactivated with cognate antigen
(or autologous tumor) prior to downstream readout and
separation (i.e., cytokine production or surface activation marker
expression), and methods (such as pMHC multimer-based
labeling) in which unstimulated antigen-specific T-cells can be
directly selected. Different ways to restimulate antigen-specific
T-cells are beyond the scope of this review and have been
extensively discussed elsewhere (4, 45). A second distinction
can be made between antigen-specific purification pipelines
based on predefined specificities of interest and requiring a
thorough antigen discovery phase and tumor reactivity-based
pipelines which aim for a more “agnostic” enrichment in that
they do not require a priori target prediction and identification
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FIGURE 1 | General workflow for personalized enrichment of antigen-specific T-cells from bulk tumor-infiltrating lymphocyte (TIL) [or peripheral blood lymphocyte

(PBL)] cultures. T-cells can be isolated from the patient’s infiltrating or circulating lymphocyte populations. Following neoantigen discovery and validation,

antigen-specific T-cells are enriched by bulk cultures and expanded in vitro to meet the numbers required for reinfusion. FACS, fluorescence-activated cell sorting;

MACS, magnetic bead-activated cell sorting; WES, whole-exome sequencing; MS, mass spectrometry.

(Figure 2). The two main technologies for cell isolation are
fluorescence-activated and magnetic bead-activated cell sorting
(FACS and MACS, respectively), both of which are extensively
employed in preclinical research environments. Finally, we
will address some of the challenges and limitations that such
individualized T-cell manufacturing platforms necessarily entail
for clinical application from both a technical and regulatory point
of view.

CURRENT TOOLSET FOR THE
ENRICHMENT OF PREDEFINED
NEOANTIGEN SPECIFICITIES

Peptide Major Histocompatibility
Complex-Based Strategies
Labeling of a specific TCR by means of fluorochrome-conjugated
pMHC multimers allows to directly identify CD8+ T-cell
reactivities without restriction to functional parameters. MHC-
based reagents have rapidly evolved from single fluorescent-
labeled pMHC tetramers to increasingly advanced and optimized
staining protocols with higher detection sensitivity (46, 47).
For example, the screening of multiple T-cell reactivities
can be achieved by combinatorial multimer staining either
assigning a unique binary color code to each antigen specificity
(48, 49) or using a high number of possible fluorochrome
combinations (50). Several groups have speculated a possible
clinical implementation of MHC multimer-based approaches
in order to screen samples and generate neoantigen-enriched
therapeutic cellular products (22, 51–53).

Alternative pMHC multimeric reagents, such as Streptamers
and NTAmers, are built on reversible complexes and can
therefore rapidly dissociate in the presence of biotin or
imidazole, respectively (54–56). Antigen-specific T-cell staining
with reversible multimers not only improves conventional
pMHC reagents by reducing activation-induced T-cell death but

also allows pMHC monomer dissociation kinetic measurements
which have been shown to correlate with T-cell functionality
(55, 57, 58). These technologies could therefore further aid in the
precise selection of the “fittest” T-cell clonotypes within a single
antigen specificity.

A more recent addition to the pMHC multimer portfolio is
represented by a different labeling whereby DNA bar code tags
are attached to the multimer scaffold. T-cells are collectively
sorted based on one fluorescence, and distinct pMHCs are
retrospectively revealed by means of large-scale sequencing
of cognate bar codes (59). As a result, up to thousands of
unique specificities can be potentially identified simultaneously,
paving the way for high-throughput platforms and downstream
applications such as TCR redirected T-cell therapy (60, 61).
Of note, state-of-the-art microfluidic devices can help with
potential sample size limitation by allowing on-chip detection and
manipulation of multimer-sorted neoantigen-specific T cells for
downstream analysis and applications (38).

If on one hand, pMHC-based strategies have facilitated the
characterization of complex T-cell repertoires, on the other, they
present some limitations for clinical application. First of all,
the MHC restriction of the antigenic peptide has to be well-
characterized; they do not provide information on T-cell function
and are limited for CD4+ T-cell isolation (discussed below).
Most importantly, given that pMHC multimer production is
quite time-consuming and has to be manufactured under Good
Manufacturing Practice (GMP) conditions, generation of a
library of pMHC multimers on a patient-specific basis may
be cost prohibitive for clinical implementation. In this regard,
UV-based peptide exchange technologies (62) could aid the
rapid engineering and manufacturing of multiple distinct pMHC
reagents for individual patients.

Cytokine Capture
Cytokines secreted by previously activated T-cells can be retained
on the cell surface via a capture matrix, allowing the molecules
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FIGURE 2 | Toolset for personalized enrichment of T-cell infusion products. Current technologies can be grouped into neoantigen-specific purification strategies,

which rely on predictions and predefined epitope selection, and agnostic enrichment strategies based on coculture with autologous tumor or a priori identification of

tumor-reactive T-cells. The main advantages and disadvantages of each approach are listed. CD8+ (and CD4+) T-cells of interest can be isolated starting from tumor

infiltrating lymphocyte (TIL) or peripheral blood lymphocyte (PBL) cultures by fluorescence-activated (FACS) or magnetic bead-activated (MACS) cell sorting.

detection and the isolation of viable antigen-specific T-cells
via MACS (63, 64). In particular, IFN-γ secretion by activated
CD8+ (and CD4+) T-cells has long been associated with effective
tumor recognition and used as a functional readout to detect
tumor-reactive T-cells (65, 66). However, there are only a couple
of examples of preclinical isolation of tumor-specific T-cells
by means of IFN-γ capture (65). Jedema et al. (67) describe
a strategy to isolate leukemia-reactive CD8+ (and CD4+) T-
cells upon specific IFN-γ secretion to be used for adoptive
transfer. Another group has reported a GMP-grade isolation
of protocol of polyclonal and polyfunctional antigen-specific T-
cells from healthy donor PBLs, by IFN-γ labeling followed by
FACS, using NY-ESO-1 as a model system (68). Taken together,
fully automated IFN-γ-based T-cell enrichment procedures are
commercially available and could be more easily implemented
in a clinical pipeline. However, cytokine production is known to
be restricted to certain T-cell subsets; therefore, the enrichment
of antigen-specific T-cell frequencies uniquely based on cytokine
secretion profile might be incomplete.

Activation Markers
An alternative approach to direct labeling and cytokine detection
is the use of activation-induced surface markers, which are
upregulated upon antigen-specific TCR engagement. Expression
of some of these markers is independent of cytokine production
or T-cell phenotype, therefore potentially allowing the capture
of the total pool of functional and reactive T-cells. Several
surface markers have been suggested over time; however, only a
limited number has been selected and extensively characterized

because of reduced bystander activation, high specificity, and
upregulation kinetics (69, 70).

The tumor necrosis factor receptor (TNFR) family member
CD137 (or 4-1BB) has been initially characterized as a specific
marker of TCR-induced activation of viral-specific CD8+ T-
cells (70–72). Following antigen-specific stimulation, CD137
is upregulated on CD8+ T-cells, allowing the detection of
viable antigen-specific T-cells. CD137 surface expression is
now being extensively used as a marker to detect shared
as well as neoantigen-reactive circulating and infiltrating T-
cells, in combination with standard IFN-gamma ELISPOT
screening (34, 42, 73–75). For example, Parkhurst et al. (73)
isolated CD137+ TILs by FACS following restimulation with
dendritic cells (DCs) transfected with mutation-encoding RNA
and showed that the expanded CD137+ fraction had indeed
been enriched in neoantigen-specific T-cells. At this point in
time, anti-CD137 and anti-IFN-γ are among the few clinical-
grade commercially available antibodies for the selection of
antigen-specific T-cells; several companies though now provide
custom monoclonal antibody development and conjugation
under GMP guidelines.

On a different note, structural changes of activated integrins
upon early TCR engagement can be exploited as the inside-out
signal to detect functional T-cells (76). Dimitrov et al. (76)
have successfully applied this strategy in order to monitor
viral-specific T-cell responses within minutes, thereby stressing
the advantageous very short incubation time compared to
other activation markers. A parallel assessment of pMHC
multimer and activation-based sorting would be highly
informative in highlighting whether distinct markers are
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able to isolate overlapping populations of heterogeneous
antigen-specific T-cells.

CD4+ NEOANTIGEN T-CELL RESPONSES

Screening of naturally occurring or induced neoantigen T-cell
responses in patients with solid tumors has provided evidence
that both CD8+ and CD4+ T-cells recognize private mutated
epitopes (24, 77–80). Furthermore, a number of single-patient
case reports seem to indicate that neoantigen-specific CD4+

T-cells can mediate therapeutic immune responses to tumors
(36, 81–83). A breakthrough paper by Tran et al. (36) provided
the first demonstration of clinical activity of neoantigen-specific
CD4+ T-cell infusion in a metastatic cancer patient.

Screening for MHC class-II-restricted T-cell has been long
under-appreciated because of the limited accuracy of neoantigen
prediction algorithms (84, 85). However, rapidly improving
prediction tools for MHC class-II ligands (86–90) and the
notion that TIL cultures can include a substantial fraction of
functional CD4+ T-cells calls for flexible strategies to enable the
enrichment of both CD4+ and CD8+ reactive compartments
from bulk populations and downstream therapeutic infusion.
In the framework of technologies validated for the CD8+

counterpart, MHC class-II multimers have so far progressed at
a lower rate because of technical issues with recombinant pMHC
class-II heterodimer production, and the assumption that CD4+

TCR binding affinity to cognate pMHC is significantly lower
(91–93). On the other hand, activation marker upregulation
following antigen restimulation offers the advantage of capturing
cytokine-independent and heterogeneous CD4+ T-cell responses
(71, 94). Indeed, CD137may allow the capture of both CD4+ and
CD8+ functional T-cells with high specificity (69, 95). However,
a few publications have described the use of alternative TCR-
dependent surface markers such as CD154 and CD134 (or OX-
40) to detect neoantigen-specific CD4+ T-cells (34, 74, 75). A
comprehensive comparison of activation-induced marker assays
has yet not been investigated. In addition, care should be taken
in discriminating regulatory T-cell from effector antigen-specific
CD4+ T-cells when exploiting activation markers. For instance,
the inverse expression of CD137 and CD154 has been described
to discriminate between activated regulatory and effector CD4+

T-cells ex vivo (96).

Agnostic Enrichment of Tumor-Reactive
Tumor-Infiltrating Lymphocytes
The identification and validation of patient-specific
immunogenic neoantigen specificities require advanced
technologies (such as high-throughput sequencing, mass
spectrometry, and synthetic peptide production) and adds
complexity and time (several weeks to months) to an already
labor-intensive TIL production pipeline. Less time-consuming
and unbiased methods are therefore being evaluated to generate
patient-specific T-cell products, which are clinically feasible for
adoptive transfer.

Coculture With Autologous Tumor
Using autologous tumor cells as targets circumvents the need
for screening of immunogenic private or shared tumor antigens,
while presenting to T-cells the complete range of naturally
presented tumor antigens. In TIL production history, IFN-
γ secretion has been exploited to prescreen which tumor
fragments to expand: only TILs showing tumor reactivity above a
predefined cutoff value were selected for downstream expansion
and infused (97).

The role of activation marker CD137 was initially investigated
by Ye et al. (98) for the quick and sensitive enrichment of
tumor-reactive TILs from ovarian cancer andmelanoma patients.
The authors showed that CD137+-sorted TILs demonstrated
increased reactivity against shared antigens following overnight
incubation in the presence of MHC-matched tumor cell lines.
Importantly, the CD137-enriched fraction resulted in enhanced
in vitro and in vivo antitumor reactivity (98). Seliktar-Ofir
et al. (99) presented proof of concept of a GMP-compatible
CD137-based separation method for personalized adoptive cell
therapy. Melanoma TILs were sorted by MACS based on
CD137 surface upregulation following overnight coincubation
with autologous tumor cultures (99). CD137+ TIL populations
showed increased in vitro antitumor reactivity and contained
a higher fraction of neoantigen and shared tumor antigen-
specific T-cells when compared to the starting unseparated
cultures. This approach might be limited by the establishment
of autologous primary tumor cell lines, for which the success
rate can be very low in tumors other than melanoma. In
this regard, Dijkstra et al. (100) have presented a proof-
of-concept study in which tumor-reactive T-cells from non-
small-cell lung cancer and colon rectal cancer patients can
be obtained by coculturing autologous PBLs with matched
tumor epithelial organoids. Organoids are 3D cultures of
primary solid tumors and can be established with a higher
success rate from very limited amounts of tumor biopsies or
surgical resections.

Considering the importance of costimulation in the context
of successful tumor-specific T-cell activation, antigen presenting
cells (APCs) should also be taken into account when establishing
ex vivo cocultures of T cells and autologous tumor. The
combination of natural or artificial APC with tumor lysate
preparations can provide a wide array of tumor antigens in
a more physiological costimulation context, therefore boosting
the downstream antitumor activity of adoptively transferred
T cells. Initial protocols used ex vivo-derived autologous
DCs, stimulated with a defined maturation cocktail and
pulsed with whole tumor lysate, to preferentially expand
TILs to treat patients with melanoma (101–103). However,
such strategies introduced additional time and numerous
cytokines required for DC cell generation and maturation
and prompted the quest for easily tailored and artificial APC
(aAPC) platforms. Clinical-grade aAPCs have now limitless
application potential: they can be coated with any number of
costimulatory molecules (such as CD80, CD86, and CD137L)
andmembrane-bound cytokines to elicit rapid and improved TIL
activation (104–106).
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A Priori Enrichment of Tumor-Reactive
Tumor-Infiltrating Lymphocytes
Efforts from several groups are focusing on improving the a priori
identification of tumor-reactive TILs solely based on phenotypic
profiling. The rationale behind this strategy lies in the fact that
naturally occurring tumor-reactive TILs are chronically exposed
to their cognate antigen in the tumor site, therefore expressing
a defined set of surface activation- and/or exhaustion-associated
markers, providing the opportunity for their direct isolation.

Initial evidence suggested that preselection of melanoma-
infiltrating or peripheral blood T-cells by PD-1 expression prior
to expansion could directly enrich tumor-reactive T-cells (39,
107). In another study, CD137 was identified as a better marker
than PD-1 for the prospective selection of naturally occurring
tumor-reactive fresh TILs in ovarian cancer (98). Building upon
these previous works, a defined set of tissue residency markers
(such as CD103, or integrin αE), necessary for recruitment and
retention of TILs in the tumor site, has been suggested as a
prospective marker of TIL tumor reactivity (108–110). Duhen
et al. (111) have shown that co-expression of CD103 and CD39
further enriches the TIL population for tumor-reactive CD8+

T-cells. CD103+ CD39+ TILs were sorted from tumor digests
and expanded in vitro, resulting in increased cytotoxicity toward
autologous tumor cells when compared to the respective single
positive populations (111).

CHALLENGES AND LIMITATIONS TO
CONSIDER FOR CLINICAL
IMPLEMENTATION

Compared to traditional biological molecules, personalized
adoptive T-cell platforms are developed on a patient-specific
basis, therefore presenting unique challenges not only for
preclinical developers and manufacturers but also for regulatory
authorities and healthcare providers. Starting from the initial step
of private tumor antigen discovery and validation, throughout
TIL (or PBL) enrichment and in vitro scale-up expansion,
individual processes, facilities, and technologies must be carefully
reviewed and adjusted according to clinical requirements.
Indeed, specific regulations may differ slightly among countries
and regions, but most challenges and limitations linked to clinical
implementation are shared.

Isolation Phase
Starting from the isolation step itself, one has to consider not only
the technical aspects of the sorting strategy but more importantly
its compatibility with regulatory requirements. The choice of a
FACS or MACS-based enrichment depends on several factors,
including the number of cells in the source material (TILs or
PBLs), the relative frequency of antigen-specific cells within,
the level of purity needed for the final product. On one hand,
magnetic beads are of lower technical complexity and clinical-
grade isolation kits are already commercially available, on the
other, FACS separation performs multiparameter analysis of
single cells, achieving resolution and purity levels, which are
not always possible by MACS. In addition, FACS analysis can

characterize in real time the sorted bulk T-cell population (in
terms of identity and purity), as a first in-process quality control.
However, FACS is still not routinely applicable under GMP
conditions, which require single-use and a closed fluidic system
for clinical implementation.

Expansion Phase
As the absolute cell counts of neoantigen-specific T-cells after
isolation are extremely low for direct reinfusion, a rapid
expansion procedure (namely, REP) of sorted cells is typically
performed with allogeneic irradiated feeder cells in the presence
of high-dose interleukin (IL)-2 and anti-CD3 (97). Depending
on the yield, the best scale-up closed-system expansion devices
and culture conditions can be optimized to meet the numbers
required for the adoptive transfer (typically in the order of 109

cells per patient). Several distributors supply culture bags or
gas-permeable flasks, sterile tubing accessories, and welding to
facilitate the conversion of research protocols to GMP closed
manufacturing processes, where the risk of cross contamination
has to be minimized.

Absolute numbers aside, critical parameters for a successful
ACT is ensuring that the final TIL product has maintained
purity, TCR clonal diversity, and tumor reactivity following in
vitro expansion. Indeed, during the REP phase, there can be
interclonal competition resulting in an increased or decreased
frequency of given specificities of interest compared to the
starting culture. In this sense, enriching for tumor-specific T-
cells at appreciable frequencies prior to up-scale would higher
the chances of obtaining a final TIL product with adequate tumor
reactivity upon infusion. The extensive expansion can also drive
progressive T-cell differentiation and phenotype changes which
may affect TIL in vivo persistence, homing, and proliferative
capacity shortly after transfer, as these cells reencounter
cognate antigens within the tumormicroenvironment (112–115).
Increased TIL proliferation and reactivity toward autologous
tumor have been recently reported in a study introducing CTLA-
4 blockade in vitro during the initial TIL pre-REP from ovarian
tumor fragments (26). As mentioned previously, cytokines used
during the in vitro manufacturing of the product can also
significantly affect TIL immune profiles. Alternative cytokines to
standard IL-2 have been tested during TIL REP (114) or during
initial priming period (e.g., IL-21) (116, 117).

An additional aspect to consider is that TILs may fail to
perform their expected therapeutic effector functions upon
infusion due to activation-induced cell death (AICD) and
exhaustion; both are peripheral tolerance mechanisms restricting
an escalating, therefore potentially damaging, immune response.
Melanoma TILs undergoing intense polyclonal TCR stimulation
during REP have been shown to be more sensitive to AICD when
cocultured in vitro with autologous tumor, whereas “younger”
and less differentiated TILs are less susceptible and have a better
in vivo tumor control (118–121). In a similar fashion, alternative
costimulatory pathways, such as through CD137 via the addition
of agonist antibodies during or following REP, can increase the
polyclonal expansion of infiltrating or circulating CD8+ TILs
while preserving their responsiveness (122–124).
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Overall, how infused antigen-specific TIL clonotypes persist in
vivo and respond to tumor antigen restimulation upon transfer
and how their gene signature correlates to clinical benefit should
be studied systematically on a larger number of patients receiving
the same infusion regimen.

General Improvements
Further pre-sensitization approaches could help increase
neoantigen-specific T-cell frequency in starting TIL (or PBL)
cultures and facilitate downstream sorting of the population of
interest. Our group has reported that the addition of synthetic
peptide pools of all predicted class-I neoantigens can improve
conventional TIL generation in ovarian cancer (20). Primed
TIL cultures were significantly enriched in neoepitope-specific
CD8+ T-cells as compared with standard TILs generated from
the same patients.

Finally, while it is tempting to focus on private neoantigens
deriving from single point mutations, driver genes (such as
RAS and BRAF) recurrently affected by mutation or fusion
events across individuals and cancer types would be expected
to yield semiprivate (or even “shared”) neoantigens. This
seems to be especially the case for hematological malignancies,
where immunogenic neoantigens have been reported to be
mutated in up to 30% of patients (125, 126), along with
case reports of mutation hot spots in solid tumors (127–130).
In addition, potential semiprivate neoantigens derived from
aberrant phosphorylation, resulting from dysregulated protein
kinase activity during transformation, can be detected with mass
spectrometry using relatively small amounts of patient samples
(9, 131, 132). The targeting of shared or semiprivate neoantigens

in solid tumors is a particularly desirable possibility which has

to be further investigated, considering it would contribute to
greatly reducing costs and production time of highly enriched T-
cell infusion products. Given the multistep and laborious nature
of these enriched T-cell therapies, which require coordination
between highly specialized healthcare centers and manufacturing
cell facilities, one has to ultimately consider if the added time
frame is clinically reasonable. An additional month to the
pipeline can result in significant patient dropout because of rapid
disease progression (133).

CONCLUDING REMARKS

The identification of neoantigens as drivers of successful
antitumor immunity is offering exciting new opportunities
for cancer immunotherapies, including making T-cell infusion
products highly individualized for more effective treatment.
Moving forward, patient-specific T-cell enrichment technologies
will need to be integrated into clinically compliant pipelines.
In this respect, the first Food and Drug Administration (FDA)
approval of the first adoptive cell therapy [i.e., chimeric antigen
receptor (CAR) T-cell therapy] represents a huge achievement in
the immune-oncology field and will hopefully pave the way for
further approvals of personalized immunotherapies.
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Somatic mutations in cancers affecting protein coding genes can give rise to potentially
therapeutic neoepitopes. These neoepitopes can guide Adoptive Cell Therapies and
Peptide- and RNA-based Neoepitope Vaccines to selectively target tumor cells using
autologous patient cytotoxic T-cells. Currently, researchers have to independently align
their data, call somatic mutations and haplotype the patient’s HLA to use existing
neoepitope prediction tools. We present ProTECT, a fully automated, reproducible,
scalable, and efficient end-to-end analysis pipeline to identify and rank therapeutically
relevant tumor neoepitopes in terms of potential immunogenicity starting directly from raw
patient sequencing data, or from pre-processed data. The ProTECT pipeline
encompasses alignment, HLA haplotyping, mutation calling (single nucleotide variants,
short insertions and deletions, and gene fusions), peptide:MHC binding prediction, and
ranking of final candidates. We demonstrate the scalability, efficiency, and utility of
ProTECT on 326 samples from the TCGA Prostate Adenocarcinoma cohort, identifying
recurrent potential neoepitopes from TMPRSS2-ERG fusions, and from SNVs in SPOP.
We also compare ProTECT with results from published tools. ProTECT can be run on a
standalone computer, a local cluster, or on a compute cloud using a Mesos backend.
ProTECT is highly scalable and can process TCGA data in under 30 min per sample (on
average) when run in large batches. ProTECT is freely available at https://www.github.
com/BD2KGenomics/protect.

Keywords: cancer, neoepitope, neoantigen, automated prediction, vaccine, cancer immunotherapy, adoptive
cell therapy
INTRODUCTION

Tumor recognition by the adaptive immune system has been described in the literature as early as
the 1980s. In 1987, Muul et al. described tumor infiltrating lymphocytes in a cohort of six melanoma
samples that showed high cytotoxicity towards fresh, autologous melanoma tumor cells (1).
However, at the time, T-cell responses were observed to be short lived, often lasting only a few
days. Later studies showed that tumors were capable of suppressing immune responses via different
mechanisms (2–5).
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Checkpoint blockade therapy has seen a great increase in
interest in the past few years with numerous drugs being
approved by the FDA for clinical treatment (6–8). Prevention
of PD-1:PD-L1 (9) and CTLA-4:B7.1/2 (10) binding via
monoclonal antibodies re-enables the immune attack against
the tumor; however, it can leave the patient open to development
of autoimmunity or other toxicities associated with unchecked
immune action (11, 12). The mutational load of a tumor (or
Tumor Mutational Burden) is a good predictor of response to
checkpoint therapy (13, 14). The observation that aberrations in
DNA Mismatch repair genes impair tumor growth (15) suggests
this effect is due to tumor “neoantigens” that act as markers for
immune targeting.

Tumor infiltrating lymphocytes (TILs) from patient tumors
can be activated and expanded in-vitro using minced autologous
tumor (16). TILs can also be activated using autologous dendritic
cells that are experimentally primed in-vitro with synthetically
generated, neoepitope-bearing peptides or with RNA vaccines
that contain coding transcripts for neoepitope-bearing peptides
(17, 18). These cells selectively target cell-surface MHC-
presented antigen produced by the tumor. Peptide vaccines
attempt to produce the same result by stimulating dendritic
cells in-vivo via synthetically produced peptides delivered
subcutaneously to the patient. Experimentally primed dendritic
cells and peptide vaccine therapies require prior knowledge of
the mutations in the tumor in order to identify the potentially
targetable sequence.

Bioinformatic analysis of tumor sequencing data can aid in the
selection of neoepitopes to target in vaccine and adaptive immune
system-based cancer therapies. pVAC-Seq (19) is an automated
pipeline that identifies neoepitopes generated from a pre-
computed, VEP-annotated (20) VCF file run with specialized
plug-ins that incorporate wildtype and mutant protein sequence.
Vaxrank (21) provides a ranked list of epitopes given an input
mutation VCF, RNA-Seq BAMs and the patient MHC haplotype.
Epidisco (22), the predecessor of Vaxrank, was capable of starting
from input FASTQs. INTEGRATE-Neo (23) identifies
neoepitopes from fusion genes provided in a pre-computed
BEDPE file. NeoepitopePred (24) provided a workflow for
epitope prediction from fusion genes and can be run through
the applets on the DNAnexus cloud platform. These tools all
require a user to previously align the sequencing data to a
reference of choice and call variants before following the same
logical paradigm of identifying mutant peptides and predicting
peptide:MHC (pMHC) affinity binding [often via netMHC (25)].
The pipelines differ in their degree of automation, input mutation
type and annotation, and presence or absence of a ranking schema.
There is a clear need for a fully automated pipeline from end-to-
end, beginning at the raw FASTQ files emitted by the sequencer
from DNA and RNA sequencing. Recently, NeoFuse (26) was
published, which automates fusion-gene-based neoepitope
prediction from paired RNA-seq, but this tool does not include
neoepitopes derived from single nucleotide variants (SNVs) or
short insertions and deletions (INDELs).

We developed ProTECT, a fully automated tool for the
Prediction of T-cell Epitopes for Cancer Therapy. We
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previously demonstrated the utility of ProTECT using an early
version to analyze externally called SNVs in a neuroblastoma
cohort (27). There we identified a potentially therapeutic
neoepitope from the ALK:R1275Q hotspot mutation and
proved that CD8+ cytotoxic T-cells could recognize it using in-
vitro MHC tetramer staining of peripheral blood mononuclear
cells from two HLA-matched donors. The full ProTECT
codebase, reported here, is completely self-contained. It accepts
an input trio of sequencing data from a patient consisting of the
paired tumor and normal DNA, and the tumor RNA reads in the
FASTQ format and processes the data from end-to-end
including alignment, in-silico HLA haplotyping, expression
profiling, mutation calling, and neoepitope prediction.

Here we evaluate the scalability, utility, and performance of
ProTECT using publicly available data. We use the 326 samples
from The Cancer Genome Atlas (TCGA) Prostate
Adenocarcinoma (PRAD) cohort (28) with trios of genomic
data (tumor DNA, normal DNA, and tumor RNA),
augmenting these data with eight previously published clinical
melanoma samples (29). The TCGA PRAD cohort has an
average of 21.5 exonic mutations per sample (30) and 31% of
all samples are predicted to contain a fusion transcript (31),
making it a good choice for detecting both SNV and fusion
neoepitopes. Further, it was previously evaluated for fusion-
gene-derived epitopes using INTEGRATE-Neo (23). The
melanoma dataset was reported to have between 219 and 598
missense exonic mutations per sample and was previously
analyzed by pVAC-Seq (19) as part of a clinical trial. We
compared ProTECT’s performance to the performance of these
other tools.
MATERIALS AND METHODS

Procurement of Input Data
Genomic Trio (tumor DNA, normal DNA, and tumor RNA)
BAM files containing sequences from 326 samples in the TCGA
Prostate Adenocarcinoma (PRAD) cohort were downloaded from
the Genomics Data Commons (GDC) at the National Cancer
Institute using the GDC data transfer tool. The downloaded BAM
files were converted back to FASTQ format as would be produced
by direct sequencing using the SamToFastq module from Picard
version 1.1251. MHCI haplotype calls using POLYSOLVER (32)
for all samples were obtained externally and used for MHC
haplotype prediction comparisons.

Genomic trios from three additional samples (Mel-21, Mel-
38, Mel-218) were downloaded from the NCBI short read archive
(SRA) (33) via Bioproject PRJNA278450/dbGaP accession
phs001005. These patients were diagnosed with stage III
resected cutaneous melanoma and had all previously received
ipilimumab. Data from seven A*02:01 restricted vaccines tested
for each patient were obtained from the supplementary
information of the original manuscript (29).
November 2020 | Volume 11 | Article 483296
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The input data for the INTEGRATE-Neo comparison
included haplotype and fusion calls from 240 samples in the
supplementary data of the INTEGRATE-Neo paper. The fusions
from supplementary Excel sheet 1 were parsed into individual
BEDPE format files and the epitopes from sheet 3 were
extracted into individual haplotype list files with one MHC
allele per line.

Indexes for the various tools were generated using the hg38
(GRCh38) reference sequence obtained from the UCSC genome
browser (34). GENCODE (35) v25 was chosen as the reference
annotation and was used in all relevant parts of the pipeline. Every
generic hg38 index used in the analysis is available in our AWS S3
bucket ‘protect-data’ under the folders ‘hg38_references’. These
indexes can be pulled by any user to run ProTECT locally. A
detailed list of commands used to create the various indexes is
available in the same bucket in the ‘README’.

Compute Resources Utilized
All TCGA-related analyses were conducted on a Mesos (36)
cluster with one leader (12 cpus, 62 GB RAM, 500 GB Local disk)
and eight identical agents (56 cpus, 250 GB RAM, 1.8 TB
local disk).

The Melanoma data was analyzed on the Amazon Web
Services EC2, and the data was stored securely using SSE-C
encryption on S3.

326-Sample PRAD Compute
The 326 samples were run in batches of 1, 2, 5, 10, 20, or 50
samples in order to gauge the efficiency and scalability of the
pipeline engine, Toil (37). Each batch size was run five times with
unique samples to normalize the runtime information. The
configuration file for each run was generated from a template
containing all the required tool options and paths to the input
reference files on the Network File System (NFS) storage server.
Each batch was run once on the Mesos cluster using all nodes
and an NFS-based Toil file job store to save the state of the
pipeline. The five single-sample batches were also run separately
without Mesos on individual nodes of the cluster using an NFS-
based Toil file job store to document the time taken per sample
on a single machine.

Comparison With pVAC-Seq
To compare our results with pVAC-Seq, we ran ProTECT on the
input samples on AWS EC2 using an S3-based cloud job store.
The input configuration for the run included paths to hg38-
mapped reference files from our S3 bucket ‘protect-data’ and
paths to the input FASTQ files in another secure bucket. The
results were stored on S3 in the same bucket as the input. This
analysis was conducted consistent with the mandatory cloud
data use limitations on the input dataset.

Comparison With INTEGRATE-Neo
To compare our results with INTEGRATE-Neo, we parsed the
data from the manuscript supplement into files acceptable by
ProTECT via a python script. The initial input configuration file
consisted of links to the fusion BEDPE format file for each of 240
samples, along with the haplotype and expression data called
Frontiers in Immunology | www.frontiersin.org 3133134
from the ProTECT 326 sample run. The final analysis included
fusion and inferred haplotype calls for 83 samples from
INTEGRATE-Neo along with ProTECT expression estimates.
All ProTECT runs were conducted on the Mesos cluster.
PIPELINE SPECIFICS

ProTECT consists of eight major sections: sequence alignment,
haplotyping, expression profiling, mutation calling, mutation
translation, MHC:peptide binding prediction, neoepitope
ranking, and reporting. Figure 1 shows the schema for the
run. Every tool used in the pipeline was hand-picked from
industry-standard choices and literature reviews. Some aspects
of the pipeline, notably TransGene and Rankboost, were
developed in-house due to a lack of publicly available
alternatives. Both tools are available as open-source
repositories on github.

The entire analysis from end-to-end is built to process data
against the same reference sequence and annotation. The user
provides links to the properly generated indexes for each tool in
the pipeline. We provide Gencode (35) version 19 annotated
references for hg19 and Gencode version 25 annotated references
for hg38 on our public AWS S3 bucket “protect-data”2. The
input for a ProTECT run is a single configuration file that lists
input files for each patient that will be processed and all the
options and links to indexes that will be used during the run.

While ProTECT is built for end-to-end processing of
sequencing trios per patient using our choice of software at
each step, we understand that researchers have personal
preferences for some software over others for mutation calling,
gene expression estimation, etc. We have engineered ProTECT
such that a user may run it with pre-computed SNVs, fusion
calls, gene expression, and HLA haplotypes, provided they are
formatted appropriately.

Sequence Alignment
DNA sequence alignment is carried out using the Burrows–
Wheeler aligner (BWA) (38). The reads are aligned with BWA-
mem to the provided BWA reference using default parameters.
The SAM file produced upon alignment is processed to properly
format the SAM header and is then converted to a coordinate-
sorted BAM file with a corresponding index.

RNA sequence alignment is carried out using the ultra-fast
aligner, STAR (39). The parameters for the run are optimized for
fusion detection via STAR-fusion (40).

Alternatively, ProTECT accepts pre-aligned BAM files as an
input if the MHC haplotype is provided as well. ProTECT
assumes that the user has aligned the DNA and RNA using the
same reference genome with the same genomic annotation.

Haplotyping
The HLA Haplotype of the patient is predicted using PHLAT
(41). The haplotype is predicted using each input source of
November 2020 | Volume 11 | Article 483296
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information (normal and tumor DNA, tumor RNA), and the
consensus haplotype is generated based on agreement between
any two of the three haplotype predictions. Due to limitations in
the tool, we only proceed with HLA-A, HLA-B, and HLA-C for
MHCI, and HLA-DPA/B and HLA-DRB for MHCII.

Expression Profiling
The gene-level and isoform-level expression is estimated using
RSEM (42) with default parameters.

Mutation Calling
SNVs are predicted on a per-chromosome basis using five
separate mutation prediction algorithms: MuTECT (43), MuSE
(44), RADIA (45), Somatic Sniper (46), and Strelka (47). The
choice of mutation callers was guided by the results from the
ICGC DREAM mutation calling challenge (48). All called
mutations are merged into a common file, and only events
supported by two or more predictors advance to the
translation step. Strelka additionally produces a callout for
short insertions and deletions (INDELs). These are also used to
identify neoepitopes.

Fusion calling occurs using STAR-Fusion (40) with default
parameters. Candidate fusions are annotated using Fusion-
Inspector3 along with an optional assembly step using
Trinity (49).
3Obtained from https://github.com/FusionInspector
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Mutation Translation
SNVs and INDELs are annotated using SNPEff (50). Mutations
identified in coding regions of the genome are processed using an
in-house translation tool, TransGene4. TransGene filters the
input SNPEff-produced VCF file to exclude non-expressed calls
based on the gene expression data obtained in the previous step.
SNVs and in-frame INDELs are directly injected into the amino
acid chain to produce the mutant sequence. Frameshift INDELs
are translated downstream of the mutation event till a stop codon
is found (or a user-defined threshold is reached). Events lying
within 27, 30, and 45 bp of each other (for 9-mer-, 10-mer-, and
15-mer-containing peptides respectively) are chained together
into an “immunoactive region” (IAR), or a region that will
potentially produce an immunogenic peptide. Separate
mutation events that are combined into a single immunoactive
region are phased using the RNA-Seq data to ensure that they
truly are co-expressed on the same haplotype.

Fusion IARs are generated using the breakpoints provided in
an input BEDPE file. TransGene uses provided junction
sequences or infers them from the input annotation file. The
predicted IAR contains (n − 1)*3 bp on either side of the fusion
junction from each donor for each n in 9-, 10-, and 15-mer.
Fusion calls are optionally filtered at this stage to remove events
arising from two mitochondrial genes or two immunoglobulin
genes since these are usually false positive events arising from
sequence similarity. Fusions can also be filtered for being
FIGURE 1 | A schematic description of the ProTECT workflow. ProTECT can process FASTQs all the way through the prediction of ImmunoActive Regions,
including alignment, HLA haplotyping, variant calling, expression estimation, mutation translation, and pMHC binding affinity prediction. ProTECT also allows users to
provide pre-computed inputs for various steps instead.
4Hosted at https://github.com/arkal/transgene
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potential transcriptional readthroughs (by default, two genes on
the same chromosome within 500 kb of each other are rejected)
or for having a 5′ lincRNA (under the assumption that these
events are unlikely to be translated).

MHC:Peptide Binding Prediction
The predicted neoepitopes are assayed against each of the MHCI
(9- and 10-mers) and MHCII (15-mers) predicted to be in the
patient’s HLA haplotype using the IEDB MHCI and MHCII
binding predictions tools.

The IEDB tools run a panel of methods (51–57) on each input
query (input peptide FASTQ + MHC allele) and provide a
consensus “percentile rank” that describes on average, how
well each peptide is predicted to bind against a background set
of 100,000 UniPROT derived peptides. Calls predicted to bind
within the top 5% of all binders are selected for further study.
The normal, unmutated (“wildtype”) counterpart peptide for
each selected neoepitope is then also assayed against the MHC(s)
identified to determine how well it binds, so that this can be
compared to the binding affinity of the mutant version.

Neo-Epitope Ranking
Neoepitope: MHC calls are consolidated by the candidate IAR of
origin. An in-house method, Rankboost5, first arranges the IARs
in descending order based on the best binding score of a
contained neoepitope and then uses the boosting strategy
described in Algorithm 1 to produce a final list of ranked
IARs. Candidates satisfying certain biologically relevant criteria
are boosted in rank based on user-specified weights. The features
considered are the total number of calls originating from the IAR
(npa) and ones with high predicted binding score (nph,
percentile rank <=1.0), the promiscuity of the region (nmhc,
i.e. the number of MHCs stimulated by peptides from the
region), the combined expression of the isoforms displaying a
neoepitope-generating mutation (TPM), the number of
neoepitopes in the region predicted to bind to an MHC better
than their wildtype counterpart, and the number of events where
a 10-mer and 9-mer subsequence of it both bind well to an MHC
(ovlp, this is only done for MHCI). Each candidate is assigned a
score from 0-1 for each feature that is multiplied by a user-
specified weight. The sum of the weighted score provides the
boost received by the candidate. Feature score functions were
generated based on empirical distributions of the features seen in
IARS predicted in other TCGA and internal datasets. The
algorithm iterates over the table of candidates three times and
performs per-candidate boosting, resulting in a ranked list of
epitopes in the sample. We ran our samples prioritizing overlap
and promiscuity (0.68 and 0.32 respectively) for MHCI calls and
set each covariate to 0.2 (equally important) for MHCII calls.

Algorithm 1. Pseudocode for the rank boosting strategy. W_x
describes the weight for covariate x, boost_x describes the score
for the candidate x from 0 to 1, npa = number of peptides
constituting an IAR, nph = number of strongly binding peptides
osted at https://github.com/arkal/rankboost
5H
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constituting the IAR, nMHC = number of MHCs predicted to
recognize a neoepitope from this IAR, TPM = expression of the
transcript harboring the IAR, and ovlp = number of events where
a 9-mer and 10-mer overlap and are predicted to bind to the
same MHC (only valid for MHCI).

For i in 1, 2, 3

∀ candidate in candidates

boost = W_npa * boost_npa + \

W_nph * boost_nph + \

W_nMHC * boost_nMHC + \

W_TPM * boost_TPM + \

W_ovlp * boost_ovlp

new_rank = old_rank * (1-boost)
RESULTS AND DISCUSSION

We ran three experiments to demonstrate our pipeline. The first
experiment was run on 326 samples from the TCGA PRAD
cohort and highlights the scalability, efficiency, and utility of
ProTECT. We also identify recurrent IARs in the cohort
(containing mutations that occurred in more than one case)
suggesting possible public neoepitopes for PRAD. The second
experiment compares ProTECT to the published SNV- and
INDEL-based neoepitope prediction pipeline, pVAC-Seq. The
third experiment compares ProTECT to the published fusion-
based neoepitope predictor, INTEGRATE-Neo. In all
experiments, ProTECT was run using a consensus of two out
of five mutation callers (as described above) and using all
TransGene fusion filters to remove inter-mitochondrial, inter-
immunoglobulin, 5′ lincRNA, and transcriptomic readthrough
events. Results were tabulated using a mix of python scripts and
manual curation on a local machine.

326 Sample Run
To describe the scalability, utility, and efficiency of ProTECT, we
ran ProTECT on a total of 326 genomic trios from the TCGA
PRAD cohort. We called a median of 79.5 SNVs and INDELs,
and seven fusion genes per sample, and accepted 20 and three
respectively for the production of IARs. We identified a median
of 11 IARs per sample. Of the 326 samples, only three samples
were predicted to have no IARs. These samples were observed to
have no expressed non-synonymous mutations or filter-passing
fusions. The entire metrics table is presented in Supplementary
Table 1, and the results are submitted as Supplementary File 1.

Figure 2 shows the results from running ProTECT with
different batch sizes on our local cluster (see section Compute
Resources Utilized). As the number of samples increases, we see an
expected increase in overall time, but the average time per sample
decreases drastically because our pipeline engine maximizes
resource utilization. We processed samples from end-to-end at a
rate of 24.6 min per sample (calculated as total time divided by
total number of samples) when run in a batch of 50 samples.
November 2020 | Volume 11 | Article 483296
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Recurrent Fusion-Gene-Derived IARs in PRAD
We detected the well-documented TMPRSS2-ERG fusion gene
(58–60) in 131 samples. We predicted at least one IAR each
arising from five of the 10 unique breakpoints called (Table 1).
Of the five breakpoints that do not result in an IAR, four of these
breakpoints are located in the 5′ UTR of TMPRSS2 and will not
result in a neoepitope. The 5th breakpoint has a 5′ intronic
breakpoint and a 3′ exonic one, and the resulting neoepitope
should contain the translated product from the last few bases of
TMPRRS2 Exon 1 and the first bases after the de novo splice
acceptor is reached in ERG. This case is not handled by
TransGene at this time, and so no neoepitope call was made.
One IAR of particular interest is DNSKMALNSEALSVVSED
from the junction chr21:41498119–chr21:38445621, which is
found in 37 of the 48 unique samples harboring that junction
(11% of the entire cohort). Peptides from this IAR are predicted
to bind well to HLA-A*02:01 (Allele Freq: 0.26) and HLA-
Frontiers in Immunology | www.frontiersin.org 6136137
C*07:01 (allele Freq: 0.17), alleles frequently seen in Caucasian
populations, which are highly represented in the TCGA cohort.
Similarly, we predict SGCEERGAAGSLISCE from 22/35 samples
with chr21:41507950–chr21:38445621, binding to C*07:01,
C*04:01, B*44:02 (allele frequencies 0.14, 0.12, 0.08
respectively). The distributions of MHC alleles detected in
patients harboring these events are shown in Supplementary
Figures 1 and 2, respectively. These events are potentially viable
candidates for public epitopes for patients with TMPRSS2-ERG
and could be pursued as vaccines for these cancers.

Recurrent SNV-Derived IARs in PRAD
We detected a number of recurrent mutations in the SPOP gene
concordant with previous reports (28, 61, 62). We detected seven
unique recurrent variants across 19 samples that map to three
different amino acid positions in the SPOP protein, p.F133C/V/I/
L, p.F102C/V, and p.W131G (Table 2). The mutation at position
133 might be of immunological interest since Leucine,
Isoleucine, and Valine have small hydrophobic side-chains and
may stimulate the same TCR depending on pMHC binding. This
hypothesis however, would require biological validation. Samples
with SPOP mutations lack ETV family fusions, suggesting that
vaccine therapies against SPOP and the TMPRSS2-ERG fusion
would target different populations of PRAD patients.

Comparison of HLA Haplotypes Between PHLAT
and POLYSOLVER
An important topic to highlight is HLA haplotypes called by
PHLAT (41). We compared our results to the POLYSOLVER
(32) calls, and consistent with prior work (63), we see that
PHLAT miscalled HLA-A*02:01 as HLA-A*01:81 in 33
samples. However, 29 of these samples are predicted to be
homozygous HLA-A*02:01 by POLYSOLVER so the effect of
this miscall will be to add information to the final ranked IARS
from one additional allele. Since most IARs contain peptides
predicted to bind to more than one allele, the noise produced by
this artifact should not adversely affect the scores generated via
the signal from calls against the correct partners. The remaining
four samples were predicted to be heterozygous HLA-A*02:01/
HLA-A*01:01 via POLYSOLVER, and ProTECT identified these
samples as HLA-*02:01/HLA-A*01:81. This is slightly worse
FIGURE 2 | Average runtimes on our cluster when ProTECT is run in a batch
of ‘n’ samples. Each batch of size ‘n’ is run with five unique sample sets, and
the range of runtimes is described by the whiskers at each datapoint. The
gray bar describes the result of running ProTECT on a single sample on one
machine. ProTECT takes considerably less time on average when run in a
large group.
TABLE 1 | Recurrent TMPRSS2-ERG breakpoints in the cohort.

Breakpoint Count 5’ breakpoint 3’ breakpoint Neoepitope Expected? IAR Count

21:41508081–21:38445621 122 5′ UTR Exon 2 No NA
21:41498119–21:38445621 48 Exon 2 Exon 2 Yes DNSKMALNS EALSVVSED 37
21:41507950–21:38445621 35 Exon 1 Exon 2 Yes*** SGCEERGAA GSLISCE 22
21:41508081–21:38474121 18 5′ UTR Intron 1 No NA
21:41506445–21:38445621 18 Intron 1 Exon 2 Yes* NA
21:41508081–21:38584945 11 5′ UTR 5’UTR No NA
21:41498119–21:38474121 7 Exon 2 Intron 1 Yes** DNSKMALNS LNSIDDAQL 7
21:41508081–21:38423561 7 5′ UTR Exon 3 No NA
21:41498119–21:38423561 4 Exon 2 Exon 3 Yes*** DNSKMALNS ELS 1
21:41494356–21:38445621 3 Exon 3 Exon 2 Yes*** SPSGTVCTS RSLISCE 3
Nove
mber 2020 | Volume 11 | Article 4
IARs from 21:41498119 to 21:38445621 and 21:41507950 to 21:38445621 are recurrent suggesting the viability of universal peptide vaccine candidates. We do not expect to see an IAR
from fusions with 5′UTR breakpoints. *TransGene cannot handle de novo splice acceptors. **An epitope will exist where the TMPRSS2 reads into the intron of ERG. ***A frameshift is seen
on the ERG side of the fusion.
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than the first case since we’re completely lacking HLA-A*01:01
peptide binding affinity predictions for all these samples. Overall,
67.5% of all samples had perfectly concordant haplotypes with
POLYSOLVER, 28.8% differed by one allele and 3.7% differed by
two (Figure 3). A large chunk of the second group consists of the
miscalls mentioned above. ProTECT allows users to provide pre-
computed MHC haplotype calls if they trust another external
caller more than PHLAT, or if they have haplotype information
from another source.

Comparison With Published Callers
Comparison With an SNV-Based Neoepitope
Predictor
We ran ProTECT on the eight melanoma samples from three
patients (one primary lymph node tumor each and multiple
metachronous tumors in two samples) (29) that were used to
benchmark pVAC-Seq (19). Carreno et al. predicted 11–28
expressed, HLA-A*02:01 binding candidate peptides per
Frontiers in Immunology | www.frontiersin.org 7137138
sample and synthesized seven unique peptide vaccines per
patient based on presence of the mutants in the metachronous
tumors and assessed binding of the predicted peptide to HLA-
A*02:01 in T2 assays. Three peptides per patient were found to
induce an immune reaction. ProTECT correctly identified the
expected immunogenic mutations in every reported mutation:
sample pair. In some cases, ProTECT even predicted the
expected variant in a metachronous tumor where the original
paper missed it (E.g. CDKN2A:E153K in the Lymph Node of
Mel-21) (Table 3). Overall, ProTECT ranked IARs containing
the validated variants relatively highly (in the top 15–20%,
median absolute rank of 11) except in Mel218. We cannot
definitively comment on the ranking in Mel218 since
ProTECT considers every mutant and MHC allele in the MHC
haplotype, while Carreno et al. only considered a curated list of
peptides against HLA-A*02:01. In addition to the validated
variants, we also provided a larger ranked set of possible
candidates that broaden the spectrum of testable epitopes. The
TABLE 2 | Recurrent mutants in the SPOP gene target three codons.

Variant Count Gene Mutant IAR Frequency

chr17:49619064A>C 5 SPOP p.F133V RFVQGKDWG V KKFIRRDFL 4
chr17:49619063A>C 3 SPOP p.F133C RFVQGKDWG C KKFIRRDFL 2
chr17:49619064A>T 2 SPOP p.F133I RFVQGKDWG I KKFIRRDFL 1
chr17:49619062G>T 2 SPOP p.F133L RFVQGKDWG L KKFIRRDFL 2
chr17:49619281A>C 2 SPOP p.F102C CPKSEVRAK C KFSILNAKG 2
chr17:49619282A>C 3 SPOP p.F102V CPKSEVRAK V KFSILNAKG 3
chr17:49619070A>C 2 SPOP p.W131G AYRFVQGKD G GFKKFIRRD 2
November 2020 | Volume 11 | Ar
The F133V/C/I/L mutant may be of interest as a universal neoepitope due to the similar chemical properties of Leucine, Isoleucine and Valine.
FIGURE 3 | HLA haplotypes called by ProTECT (using PHLAT) are fully concordant with POLYSOLVER haplotypes in only 67.5% of samples. 28.8% differ by one
call and 3.7% by 2 calls. A majority of the miscalled HLA-A alleles are a documented PHLAT artifact.
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data for all seven tested peptides is provided in Supplementary
Table 2, and all neoepitopes predicted by ProTECT in
Supplementary Table 3 and Supplementary File 2.

Comparison With a Fusion-Gene-Based Neoepitope
Predictor
We compared our fusion prediction accuracy with
INTEGRATE-Neo (23). INTEGRATE-Neo was demonstrated
on 321 samples from the TCGA PRAD cohort, and at least one
neoepitope was predicted from 161 samples. 240 of the 321
samples overlap with our 326 sample dataset, and this subset was
used for this experiment. None of the predicted neoepitopes in
this study have been validated using any biological experiments.
We first attempted to compare our fusions (called using STAR-
Fusion) with the fusion calls generated from INTEGRATE (64)
as fusion callers are known for having varied performance across
different datasets (65). As expected, the overlap between the
ProTECT and INTEGRATE calls was relatively low (595/1519,
with 120 unique calls in ProTECT), but a large chunk of the non-
overlapping calls were from events with one spanning read
support in INTEGRATE (Supplementary Figure 3). We see a
better overlap when we increase the minimum support to two
(an internal metric within ProTECT) and also find that 44 events
rejected for having one read support in INTEGRATE were
detected by STAR-Fusion (40) with >1 read support. Some of
the INTEGRATE-specific calls were picked up by ProTECT but
filtered out as low-read-evidence events. We further noticed that
the concordance between MHC haplotypes called by HLA
Miner (66) (used by INTEGRATE-Neo), PHLAT (41) (Used
by ProTECT), and POLYSOLVER (32) was very low
(Supplementary Figure 4). 61 of the unique HLAMiner
predictions across the cohort did not match any of the other
two callers, and 41 matched both. (Homozygous calls in a patient
were treated as one call.) Two alleles were shared exclusively
between ProTECT and INTEGRATE and only one between
INTEGRATE and POLYSOLVER. In order to conduct a more
Frontiers in Immunology | www.frontiersin.org 8138139
comparable analysis, we reran ProTECT with the INTEGRATE
fusion calls and the MHC haplotypes from the INTEGRATE-
Neo manuscript (182 neoepitopes from 720 fusions over 83
samples, Supplementary Figure 5). ProTECT rejected 100 of the
720 provided fusion events as transcriptional readthroughs (92
events) or for having a 5′ non-coding RNA partner (eight
events). ProTECT correctly identified 139/182 neoepitopes as
IARs and rejected the remaining for being in a rejected fusion (23
neoepitopes), scoring below the 5% predicted binding score
threshold (16 neoepitopes), having a 5′ breakpoint in the UTR
(three neoepitopes), or for having a 5′ non-coding partner (one
neoepitope) (Supplementary Table 4). On further inspection,
we noticed that the three neoepitopes arising from the 5′ UTR
breakpoints (TCGA-HC-7080, PRH1>>RP11-259O18.4 and
PRH1>>M6PR) could have been detected if the 5′ partner had
been annotated with a different gene (PRR4) at the same locus
(Supplementary Figure 6), an issue arising due to the differing
gene annotation GTFs used between the methods (Gencode v25
for ProTECT and Ensembl v85 for INTEGRATE). Interestingly,
this type of event occurred in one other sample (TCGA-EJ-8474,
C1QTNF3-AMACR>>NDUFAF2); however, INTEGRATE
called the overlapping call as well (AMACR>>NDUFAF2), and
since the epitopes were identical from both, ProTECT picked
them up under the correct call (Supplementary Figure 7). The
full set of results from running ProTECT on 83 INTEGRATE-
Neo inputs is provided in Supplementary File 3. Easing
ProTECT’s 5% filter would increase the number of false
positives called by too large a margin, so we stand by our
decision to reject the 16 neoepitopes missed due to this filter.
This experiment also highlights the modularity of ProTECT and
its flexibility in accepting pre-computed inputs to run only the
necessary steps to produce a ranked list of IARs.

Reproducibility
Every tool used the pipeline, from established aligners to the in-
house script used to translate mutations, is wrapped in a Docker
TABLE 3 | ProTECT ranks on eight metachronous tumors across three MELANOMA patients.

Sample and Source Mel 21 Mel 38 Mel 218

LN Skin (2012) Skin (2013) Abdominal Wall Axilla LN Breast LN

RNA 1 RNA 2

Collection date 1/30/2011 5/10/2012 6/6/2013 6/6/2013 4/16/2013 4/19/2012 2/14/2013 4/4/2005
Total Variants 1,532 2,140 1,681 1,679 1,213 1,121 1,259 2,176
Actionable Variants 332 400 393 391 219 216 224 449
Total IARs 105 137 114 116 73 80 86 155

Vaccine Candidates with ProTECT ranks NDC1:F169L (Reported as TMEM48 F169L) SEC24A:P469L EXOC8:Q656P

4 5 10 3 8 9 2 152

TKT:R438W AKAP13:Q285K PABPC1:R520Q

6 6 4 4 14 80 17 140

CDKN2A:E153K OR8B3:T190I MRPS5:P59L

21 – 18 17 11 13 14 26
November 2020 | Volume 11
Highlighted ranks describe instances where pVAC-Seq and ProTECT both call a neoepitope. Green: Dominant epitope (existing immunity, neoantigen processed from endogenous
protein), Orange: Subdominant epitope (immunity after vaccination, neoantigen processed from endogenous protein), Red: Cryptic epitope (immunity after vaccination, neoantigen not
processed from endogenous protein).
| Article 483296

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rao et al. ProTECT—Prediction of tumor neoepitopes
image (67) tagged with the appropriate tool version. Docker
allows a developer to wrap a piece of code and any requirements
into an image that can be instantiated into a container on any
other machine. The tool within the container will run in the same
manner on any machine, under the same environmental
constraints, barring minor differences that may arise from
asynchronous multiprocessing/multithreading. This way,
results from ProTECT run on different machines with the
same inputs will always be near-identical. The default versions
of each tool used by ProTECT are mentioned in the repository,
and users can containerize other versions of the same tools and
specify the new version to ProTECT at runtime.

Automation, Scalability, and Efficiency
ProTECT is built to be run end-to-end without any user
intervention. ProTECT is written in the Toil framework and will
attempt to run the pipeline on the given input samples in a
resource-efficient manner. The pluggable backend Toil APIs allow
ProTECT to run on a single machine, a grid engine cluster, or a
Mesos cluster setup on a local network or on AWS. Toil allows
users to deploy scripts on Azure and Google cloud as well;
however, ProTECT does not yet support these environments.

Users provide ProTECT a config file that details the input files
and the various indexes and versions of tools to use during the run.
ProTECT copies (or downloads) the files to a “file store” and then
queues a graph of jobs for each input sample culminating in a ranked
list of epitopes. The nodes in the graph are tuned to request an
appropriate number ofCPUs (formultithreaded jobs),memory, and
disk space. Toil ensures that these queued jobs are spawned in a way
that all available resources are utilized to the maximum extent. In
practice, this means that smaller, low-compute, low-memory, short-
duration jobs like variant calling, mutation translation, etc. from one
sample can run parallel to higher-compute, high-memory, long-
running jobs like alignment and haplotyping in another. The
processing time of any single sample is strongly influenced by the
long-running jobs but utilization of free compute to run queued
short-jobs reduced the overall per-sample runtime.
CONCLUSION

We have described an efficient, automated, and portable workflow
for the prediction of neoepitope candidates that can guide vaccine-
based or adoptive T-cell therapies. We have shown that ProTECT
scales well on a parallel processing environment and is highly
efficient processing samples in large batches. On average, we
processed a sample from end-to-end in 26.4 min when we ran
50 samples in a single batch on an eight-node cluster. We have
shown that ProTECT is comparable to existing callers and
improves on them by providing a ranked list of neoepitopes
arising from SNVs, INDELs, and fusion genes. None of the
currently published pipelines give results for all three types of
mutations. Positive results from a clinical trial were ranked highly
in our results, and we retrospectively identified additional events
that could have been used in the trial. We identified recurrent
epitopes arising from the well-documented TMPRSS2-ERG fusion,
Frontiers in Immunology | www.frontiersin.org 9139140
and these results suggest a peptide or RNA vaccine could be
developed for one of the common breakpoints. While designed for
use in the rapidly growing fields of cancer vaccines and Autologous
T-cell therapies, ProTECT can also be used to understand the link
between tumor mutational burden and response to checkpoint
blockade therapies. It is our fervent hope that improvements in
these fields will quickly establish neoepitope-targeted
immunotherapies as standard-of-care for cancer treatment.
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Successful outcome of immune checkpoint blockade in patients with solid cancers is in
part associated with a high tumor mutational burden (TMB) and the recognition of private
neoantigens by T-cells. The quality and quantity of target recognition is determined by the
repertoire of ‘neoepitope’-specific T-cell receptors (TCRs) in tumor-infiltrating
lymphocytes (TIL), or peripheral T-cells. Interferon gamma (IFN-g), produced by T-cells
and other immune cells, is essential for controlling proliferation of transformed cells,
induction of apoptosis and enhancing human leukocyte antigen (HLA) expression, thereby
increasing immunogenicity of cancer cells. TCR ab-dependent therapies should account
for tumor heterogeneity and availability of the TCR repertoire capable of reacting to
neoepitopes and functional HLA pathways. Immunogenic epitopes in the tumor-stroma
may also be targeted to achieve tumor-containment by changing the immune-contexture
in the tumor microenvironment (TME). Non protein-coding regions of the tumor-cell
genome may also contain many aberrantly expressed, non-mutated tumor-associated
antigens (TAAs) capable of eliciting productive anti-tumor immune responses. Whole-
exome sequencing (WES) and/or RNA sequencing (RNA-Seq) of cancer tissue, combined
with several layers of bioinformatic analysis is commonly used to predict possible
neoepitopes present in clinical samples. At the ImmunoSurgery Unit of the
Champalimaud Centre for the Unknown (CCU), a pipeline combining several tools is
used for predicting private mutations from WES and RNA-Seq data followed by the
construction of synthetic peptides tailored for immunological response assessment
reflecting the patient’s tumor mutations, guided by MHC typing. Subsequent
immunoassays allow the detection of differential IFN-g production patterns associated
with (intra-tumoral) spatiotemporal differences in TIL or peripheral T-cells versus TIL.
These bioinformatics tools, in addition to histopathological assessment, immunological
readouts from functional bioassays and deep T-cell ‘adaptome’ analyses, are expected to
advance discovery and development of next-generation personalized precision medicine
strategies to improve clinical outcomes in cancer in the context of i) anti-tumor vaccination
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strategies, ii) gauging mutation-reactive T-cell responses in biological therapies and
iii) expansion of tumor-reactive T-cells for the cellular treatment of patients with cancer.
Keywords: T-cells, antigens, TIL, neoepitopes, precision medicine, vaccination, T-cell receptor, immunotherapy
INTRODUCTION

‘Personalized immunotherapy is all the rage, but neoantigen
discovery and validation remains a daunting problem’ echoed
an Editorial in Nature Biotechnology 2017 (1). Advances in the
last three years in whole exome sequencing (WES), RNA
sequencing (RNA-Seq) and combinational peptide vaccination
trials combined with checkpoint inhibitors addressed some of
the unanswered questions and challenges in therapeutic
vaccinations using neoepitopes. Biologically and clinically
relevant immune responses happen in distinct immunological
contexts, they are dependent on antigen processing, presentation
and on the available T-cell receptor (TCR) repertoire that is
shaped by previous encounters with antigens. The immune
synapse between the major histocompatibility complex
(MHC)-peptide and TCR interaction is the center of T-cell
activation, which is orchestrated by cells of the innate and
adaptive immune response that guides and edit neoepitope-
specific T-cell responses. We will therefore review various
immune cell types that contribute to successful cellular
immune responses and expansion of neoepitope-directed T-
cells. Finally, we address in practical terms how neoepitopes
are identified in cancer tissue specimens starting with
immunohistology, WES, RNA-Seq and epitope prediction
algorithms using standard prediction programs.

Tumormutational burden (TMB) is a key factor in determining
the response of patients with cancer to immunotherapy with
immune checkpoint inhibitors (anti-programmed cell death 1
[PD-1] or anti-cytotoxic T lymphocyte-associated antigen 4
[CTLA-4]) (2–7). The ‘mutanome’, the summary of mutations
developing over the course of disease is unique from one patient to
another, thus making the TMB a unique biological signature
comprising of druggable targets and epitopes to elicit anti-cancer
immune responses. Alexandrov and colleagues elegantly showed
that varying degrees of TMB are associated with different cancer
types, and that disease-specificmutational signaturesmay either be
widespread (e.g. melanoma and lung cancer) or restricted (e.g.
pancreatic cancer) to certain parts of the genome – thus influencing
the number of mutant genes and inevitably the availability and
immunogenicity of neoantigens (8). A large proportion offavorable
clinical responses rely on a rich reservoir of tumor-infiltrating
lymphocytes (TIL) as well as circulating tumor-directed T-cells
and, therefore, TCRs which recognize neoepitopes presented by
human leukocyte antigen (HLA) molecules on tumor cells (9–19).
The number of mutations which are identified through
bioinformatics directly influence the repertoire size of
immunogenic targets that may induce T-cell responses and
potentially anti-tumor directed T-cell responses (Figure 1).
Although companion diagnostics for PD-1, programmed death-
ligand 1 (PD-L1) and CTLA-4 are actively used prior to initiating
org 2143144
immunotherapy to confirm expression in tumor tissue samples,
mutations in the HLA pathways may often be overlooked – which
will impair or abolish productive anti-cancer directed cellular
immune responses. In addition, other immunologically relevant
mutations or natural variations which may inherently affect
immune function and T-cell responses deserve equal attention if
these factors influence the quality and quantity of anti-cancer
directed immune responses. The TMB is still considered a key
factor in predicting clinical responsiveness or to gauge the
possibility of the immune system to productively react against
cancer cells. Yet the TMB represents only the substrate of
potential immune reactivity and the immune system is not
objectively considered and analyzed. The TMB is therefore
increasingly viewed as an important yet ‘imperfect’ surrogate
marker for clinical responsiveness and the corresponding
elements in orchestrating a cellular immune response, namely the
MHC genetic background as well as the T-cell receptor repertoire
capable of reacting to potential cancer neopitopes, are now
considered to be analyzed as well to gauge for immune response
analysis (20). The nature and the histological location ofT-cells that
serve to functionally test for immune recognitionof neoepitopes are
therefore also considered in this review. We will also highlight in
this review relevant findings from clinical and translational studies
pertaining to personalized cancer immunotherapy. We discuss
HLA mutations in tumor lesions from patients with cancer and
discuss how this information is necessary for designing
personalized immunotherapy clinical trials. Finally, we propose
the combined use of well-established techniques such as
immunohistochemistry (IHC) and flow cytometry in conjunction
withnext-generation sequencingmethods to assist inmakingbetter
informed clinical decisions for treatment regimens, a concept that
has been implemented at the ImmunoSurgery Unit and Anatomic
Pathology Clinical Service at the Champalimaud Centre for the
Unknown (CCU) and theChampalimaudClinical Centre (CCC) in
Lisbon, Portugal (Figure 2).
NEXT-GENERATION SEQUENCING:
THE FUEL OF PRECISION ONCOLOGY

Advances in next-generation sequencing (NGS) techniques such
as WES and RNA-seq form the bedrock of personalized
precision medicine in neoantigen-directed immuno-oncology
(22, 23). Immunoediting leading to neoantigen generation and
turnover in the tumor microenvironment (TME) influencing T-
cell infiltration and survival in patients with advanced cancer
(24–26). This also goes hand-in-hand with the MHC background
of the patient as well as the capacity to present the ‘best’
neoepitope candidates to evoke meaningful and clinically
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beneficial T-cell responses (27–29). Importantly, juxtaposition of
tumor-specific T-cells to the tumor cells themselves provides
promising prognosis, suggesting that the local ‘cell-cell’
interaction between neoepitope-specific lymphocytes and tumor
cells is clinically beneficial and desirable (30). Treatments affecting
the activity of cancer-associated fibroblasts (CAF) or tumor-
associated macrophages (TAM) (e.g. monoclonal antibodies such
as anti-CD47 or anti-CD40) redirect T-cells to these nominal target
cells which appear to be associated with improved anti-tumor
responses in a clinical setting (31–36). Furthermore, evolution of
the neoantigen landscape under treatment pressure, such as
standard chemotherapy, immune checkpoint blockade or active
cellular therapy/adoptive cell transfer (ACT) is an essential
determinant of how patient immune response patterns are
modulated and change over time (37, 38). In line with this,
neoantigen fitness – the propensity of mutated host targets which
differ significantly enough from the wildtype form to be able to
produce a biologically meaningful anti-tumor response, further
to their HLA-binding strength – can be mathematically modeled
to predict survival dynamics of patients and aid in the selection
of promising neoepitope candidates for immunotherapy protocols
(39). The fitness of a (cancer) cell clone is defined by several factors,
e.g. the recognition potential of the (immunodominant)
Frontiers in Immunology | www.frontiersin.org 3144145
neoepitopes by nominal anti-cancer directed TCRs that will aid to
estimate the future size of the cancer cell population. ‘Immuno-
dominance’ can be gaugedby comparing the affinity of thewildtype
and the corresponding mutant candidate target epitope that would
impose selective pressure on the clonal pool of available TCRs that
recognize the MHC-peptide complex.

Clinically, TIL therapy targeting individual neoepitopes has
been proven to be successful, with the capacity to promote
durable anti-tumor responses in patients with solid tumors (17,
40). Clinical responses appear to be associated with the frequency
of neoepitope-specific T-cells in the T-cell product (40). Mutant
KRAS-directed TIL and TCR transfer therapy has also shown
great clinical promise, albeit in an HLA allele-dependent manner
(41). In addition to neoantigens, non-coding regions of the
cancer genome giving rise to previously undefined, non-
mutated peptides with immunogenic properties can also be
mined for, using NGS strategies (42), as well as peptides
resulting from novel gene fusions (43). This pattern may differ
from patient to patient, necessitating the use of in-silico analyses
to select matching HLA-epitope sets for a personalized therapy
protocol. Thus, private and shared neoantigens as well as
hitherto unknown immunogenic peptides can trigger beneficial
clinical responses in patients with advanced cancer (16, 44, 45).
FIGURE 1 | Mutation analysis reveals immune-recognition profile in the TME. Whole-exome sequencing data allows for mining of private somatic mutations in tumor
samples compared to healthy (non-transformed) tissue or cells, which is unique to each patient. The stringency of the filtering parameters applied in bioinformatics
and statistical analysis of the sequencing data will greatly influence the number of mutations recovered, which are essential for downstream characterization of
immune responses of T-cell products. Highly stringent parameters may yield a lower number of mutations albeit with an exceptional level of accuracy. Nevertheless,
this approach suffers the risk of overlooking several infrequent mutations which also give rise to immunogenic (T-cell reactive) neoepitopes in the patient. On the
contrary, reducing the stringency levels of analysis may reveal rare mutations which facilitate the identification of potentially immunogenic molecular targets
recognized by certain TCRs capable of eliciting a biologically relevant anti-tumor immune response. The drawback in the latter scenario is that a high degree of false
positive hits may be obtained and included in the final list of legitimate cancer-associated somatic mutations. Thus, a balanced yet wholistic approach is required to
identify all immunogenic mutations in tumor tissue which will be instrumental in developing personalized cancer therapies.
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NGS readouts combinedwith recent advancements in immune-
based analysis of patient-derived tumor and blood samples are able
to provide a wealth of information concerning the presence of
dynamics of cancer-specific T-cells suitable for immunotherapy
development or for immuno-monitoring following treatment,
including neoepitope specificity and TCR tracking (14, 18, 46–
49). Neoepitope screening has enabled the identification of private
mutation-directed TIL from pancreatic cancer (18, 45, 50) and
glioblastoma (14) demonstrating that tumor histologies previously
considered poorly immunogenic may also contain a broad
repertoire of neoantigen-reactive immune cells (11, 16, 51–53).
Specific neoepitopes involved in eliciting productive immune
responses that promote tumor regression either by engaging
cellular cytotoxicity or by cytokine production (e.g. IFN-g) are
therefore particularly attractive for developing personalized
therapies within the framework of precision cancer medicine (54,
55). However, there is also a need to identify target neoepitopes
which are most likely to induce regulatory T-cell responses among
TIL to the effect of dampening productive anti-tumor reactivity in
patients (56).

Druggable mutations (e.g. those associated with ROS1, ALK,
tropomycin receptor kinase [TRK] and NTRK1/2/3 chromosomal
Frontiers in Immunology | www.frontiersin.org 4145146
fusions) which have been implicated to be responsible for clinical
responses in pediatric central nervous system (CNS) malignancies
provide a roadmap for how NGS is able to support precision
oncology based on selected small molecules (i.e. Entrectinib and
Larotrectinib) (57). Hitherto unknown mutational events can be
captured via NGS, possibly expanding the use of existing targeted
cancer drugs and, in addition, newly devised immunotherapeutic
strategies. These probable candidates can be tested for T-cell and
antibody reactivity in vitro, andpositive results can thenbe followed
up with more detailed analysis to enable the formulation of
personalized cancer vaccines (PCVs) or cellular immunotherapy
development (chimeric antigen receptor T-cells [CAR-T], TCR
transfer, ACT of TIL and/or memory B-cells), paving the way for
combination therapies, e.g. with tyrosine kinase inhibitors (TKIs)
and immune-based interventions.
PERSONALIZED CANCER VACCINES

Building on the therapeutic value of targeting cancer-associated
mutations, mutation-directed cancer immunotherapy based on
PCVs represent a highly specialized approach to induce clinically
FIGURE 2 | TMB-directed immunotherapy approaches at the Champalimaud Centre for the Unknown. The schematic shows strategies aimed at therapeutic
targeting of private (personalized and patient-specific) and shared (often driver) mutations. For personalized therapy, CD4+ and CD8+ T-cells from TIL or peripheral
blood expressing a highly diverse TCR ab repertoire recognizing a private neoepitopes can be procured. HLA-matched, healthy donor-derived TCRs have also been
shown to recognize patient-specific neoepitopes (21). Personalized cancer vaccines, comprising private neoepitopes as a peptide formulation or as RNA constructs,
promote durable immune responses in patients with advanced cancer. Autologous B-cells can be used as a source of APCs as well as cytokine producers, in
addition to their differentiation into plasma cells to secrete tumor antigen-specific antibodies in vivo. Approaches targeting shared mutations serve as excellent ‘off-
the-shelf’ options which can be used for larger groups of patients simultaneously. Cancer vaccines based on shared mutations are also clinically important, provided
the patients’ HLA profiles are matched to the epitope binding characteristics. Antibodies derived from tumor-infiltrating B-cells or from peripheral blood B-cells
targeting surface-bound shared neoantigens may mediating cellular cytotoxicity and aid in the development of CAR T-cells. Gene therapy to correct shared driver
mutations may promote tumor susceptibility to immune attack. Immune checkpoint blockade has been placed between the two domains as its clinical activity targets
both private and shared mutated targets. Similarly, NK, TCR gd T-cells and possibly NKT T-cells or MAIT-cells may be instrumental in patients presenting with private
and/or shared HLA pathway mutations and can be derived from allogeneic sources for treatment.
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relevant and specifically tailored anti-tumor immune responses
in patients with advanced malignancies (54, 58, 59). A central
point is whether epitopes can be presented by HLA class I or II
molecules based on their fitting into the epitope-binding groove
and be tailored in silico, or whether natural processing by
antigen-presenting cells (APCs) in the host or dendritic cell
(DC)-based vaccines would be more advantageous (e.g. if
antigens were delivered as “long peptides”) (60–62), or in a
vectored format (e.g. genetically-reengineered viruses and
bacteria) (63–68). A carefully selected panel of private and
shared cancer-related mutations (e.g. common driver
mutations in genes such as KRAS, SMAD4, TP53) identified by
WES that bind to the HLA class I and II restriction elements of
the patient constitute the formulation of some PCVs (27, 69–72).
New research based on high-throughput NGS data shows that
the hydrophobicity of predicted neoepitopes could, in part,
determine better HLA-binding capacity (28). Longer peptide
sequences are likely to contain both HLA class I and class II
peptides and would, therefore, activate tumor-directed CD8+ and
CD4+ T-cells facilitated by cross presentation of antigens in
antigen-presenting cells (i.e. DC, macrophages, B-cells as well as
tumor cells) (58, 73). PCV constituent peptides may also be used
as lead molecules to construct HLA tetramers or as T-cell
stimulants to screen for the presence of neoantigen-specific
TCRs in blood samples of patients with cancer (16, 44, 74).

A number of trials to test neoantigen-based PCVs in patients
with advanced cancer – including pancreatic cancer – have been
registered (58, 59, 75). PCV strategies which have been clinically
evaluated are based on direct delivery of messenger RNA
(mRNA) sequences of private neoepitopes to the lymph nodes
(76), dendritic cells loaded with the patient’s tumor lysate,
private mutated peptides (neoantigens) (12, 71, 77–80) or
clinical-grade neoepitope peptide sequences injected alongside
a strong adjuvant or immunostimulant (i.e. poly-ICLC) (69, 72).
Montanide®, which is based on antigens from Mycobacterium
tuberculosis (81–84), and QS-21, extract derived from the soap
bark tree Quillaja saponaria (85, 86), are also candidates for use
as adjuvants in PCVs based on previous clinical experience. Hu
and colleagues have comprehensively summarized and
elaborated on the current landscape in PCV development (23).

Pertaining to the clinical testing of cell-free, neoepitope-based
peptide vaccines, Keskin and colleagues recently reported a phase
1b PCV clinical trial in eight patients with glioblastoma, where
specific CD4+ T-cell responses to a mutation-bearing sequence
from Rho GTPase Activating Protein 35 (ARHGAP35), which is
naturally processed and presented to the immune system, were
demonstrated in one patient (72). Furthermore, the authors also
noted increased T-cell infiltration into the tumor – concomitant
with neoantigen-specific T-cell in peripheral blood – following PCV
administration. In a previous study, the authors had treated six
patients with advanced melanoma and showed, that despite
including HLA class I-binding peptides (for CD8+ T-cell
recognition) in the vaccine design, superior CD4+ T-cell responses
directed against the patients’ neoantigens was observed (69). There
is until this point not a convincing biological model for the
observation that presumed MHC class I binding peptides (87),
Frontiers in Immunology | www.frontiersin.org 5146147
delivered as 9mers, induce rather CD4+ T-cell responses as
compared to CD8+ T-cells; an observation that has been found to
be true in several vaccination studies using tumor-associatedmutant
targets (69). In a different study, in patients with glioblastoma, CD4+

T-cell responses were dominant in the case if mutant (nested) MHC
class I-restricted epitopes were used for vaccination. None of the
mutant epitopes elicited solely a CD8+ T-cell response (although
MHC class I epitope clusters were used), yet rather immune
responses restricted by CD4+ T-cells alone or by CD4+ and CD8+

T-cells were detected (88).
PCV-induced immune responses can also be enhanced with

anti-PD-1 therapy (62, 69, 76). The TCR repertoire identified in
clinically relevant and successful immune checkpoint therapy
responses is associated with different anatomical compartments
(89) as well as distinct T-cell markers in antigen-specific T-cells
including CD103+ T-cells (90) or – more recently with an stem-
cell like CD8+CD69-CD39- phenotype in TIL that is strongly
associated with clinical responses (90).

The rationale for increasing clinical responsiveness to PCV
with checkpoint inhibitors would be to mobilize mutation-
specific T-cells and PD-1+ B-cell populations specific for
cancer mutations (91–93). A different approach which may
improve fine-tuning of anti-tumor responses following PCV
treatment is the removal of non-productive inflammation
caused by interleukin 6 (IL-6). Generally important for
priming T-cell responses (94), IL-6 is a pleiotropic cytokine
implicated in the pathogenesis of several cancer histologies,
particularly gastrointestinal malignancies including pancreatic
cancer and colorectal cancer (95, 96), one of the key factors being
the suppression of productive immune responses in the TME
(97–101). Treatments targeting IL-6 are approved for clinical use
in patients with rheumatoid arthritis and Castleman’s disease
(102), although their use in patients with advanced cancer has yet
to be fully realized despite promising results from preclinical
models of solid tumors (94). Furthermore, IL-6 is among the
cytokines released in large amounts following T-cell therapies for
cancer (i.e., adoptive cell transfer ACT or CAR-T cell therapy)
(103). IL-6 can lead to upregulation of PD-1 and immune
exhaustion (104), while promoting interleukin 17 (IL-17)
production – which can be a disadvantage in patients with
cancer to subduing T-cell activity and augmenting tumor cell
proliferation (105–107). Combined targeting of IL-6 and the PD-
1/PD-L1 axis has shown reversal of immunosuppression in the
TME leading to immune activation and tumor rejection in
murine models of human cancer (108, 109). Other approaches
in increasing the amenability of the TME to therapeutic
intervention are to target the extracellular matrix and tumor
stroma which provide scaffold support for the cancer cells (110,
111) and TAMs which have a pro-tumor effect in the TME (112).

Recent peptide vaccine trials show the complex neoepitope
selection process and validation process – and underline also the
need for a more harmonized approach that will enable to
compare results across different studies to gauge T-cell
responses against the immunizing peptides. In a clinical study
for patients with melanoma (69), WES of the tumor was
conducted, validated by RNA-Seq and mutant (tumor)
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peptides were selected based on the patient’s HLA-A and -B
alleles followed by production of long-peptides representing up
to 20 neoepitopes per patient. The ‘private vaccine’ was
administered with an TLR3 adjuvant (poly-ICLC). MHC class
I binding was predicted via NetMHCpan v2.4 and neoepitopes
were selected with a hierarchy of criteria: i) frameshift mutations
where the algorithm predicted binding, ii) single nucleotide
variants (SNVs) where the algorithm predicted binding due to
the mutation being in an anchor residue, iii) SNVs where the
algorithm predicted binding due to the mutation being in
residues other than anchor residues, iv) frameshift mutations
where the algorithm did not predict binding and v) SNVs where
the algorithm predicted low binding. In addition to the criteria
listed above, oncogenes were prioritized and biochemical
constraints concerning peptide synthesis were considered.
‘Long peptides’ allow for antigen processing and presentation
for both CD4+ and CD8+ T-cells. The immunological readout
addressed biological and clinically relevant questions like
the frequency of peptide-specific T-cells (in vitro) upon
re-stimulation assays using peripheral blood mononuclear cell
(PBMCs) as immune effector cells showing that T-cell responses
could indeed be induced against each individual vaccine target
antigen. This point has practical implications: target antigen
peptides were screened for T-cell reactivity and the biological
readout is usually IFN-g production. Non detectable
IFN-g production could imply that – assuming that the
candidate peptide shows MHC binding – the frequency of
T-cells directed against the candidate epitope is either low or
that there are no peptide specific TCRs available in an individual
patient. Low T-cell frequencies specific for a candidate peptide
implies that these T-cells have not yet been expanded in vivo.
Such a candidate peptide may represent a viable neoepitope for
vaccination or T-cell expansion particularly if it is able to recruit
T-cells from a stem cell pool with promising expansion potential
and anti-cancer directed immune effector functions (90).
Different peptide testing formats were used to gauge for the
immune T-cell reactivity readout: a) peptides, b) minigenes (that
allow the use of surrogate antigen presenting cells in order to test
whether the peptides are naturally processed and presented,
assuming that these minigenes are similarly processed as
compared to the wildtype target tumor antigen), c) autologous
tumor cells in order to test whether tumor cells are recognized by
peptide-expanded T-cells since antigen processing and
presentation may be different in tumor cells as compared to
non-transformed cells as reviewed in Vigneron (113). This
example shows the critical steps in the workflow and decision
making process for which antigens should be selected
(oncogenes, frameshift mutations), the format for vaccination
(long peptides), the nature of the adjuvant and the question
whether candidate peptide-reactive T-cells recognize naturally
processed epitopes, the nature of the immune response, i.e.,
cytokine production (using intracellular cytokine staining to
gauge for polyfunctional T-cells), a CD107a induction assay (to
gauge for cytotoxicity), as well as a direct enumeration of MHC-
specific T-cells using soluble MHC-peptide complexes. The list
of different assays above reflects that peptide recognition may be
Frontiers in Immunology | www.frontiersin.org 6147148
tested positive in a specific biological readout (e.g. cytokine
production), but not in another (e.g. cytotoxicity). Of practical
interest is that MHC-class II peptide-tetramer guided
enumeration often underestimates antigen-reactive CD4+

T-cell numbers since the MHC-peptide interaction is fixed. In
contrast, the incubation time of candidate test peptides with
PBMCs is usually a few hours (and takes place at a different
temperature) – allowing to accommodate a more ‘promiscuous’
binding of peptide species to several MHC class II alleles.
Analysis of peptide-reactive T-cells with soluble MHC-peptide
complexes provides unbiased enumeration of MHC-peptide
reactive T-cells since it enables ex vivo analysis without the
need of in vivo T-cell expansion, it enables – via the co-staining
of T-cell differentiation and activation markers (that define in
which T-cell compartment the antigen-specific T-cells reside) –
to link the ex vivo analysis of antigen-specific T-cells with T-cell
homing, differentiation, maturation or functional markers
associated with cytokine production. This is clinically relevant
since tumor-reactive T-cells that – upon adoptive transfer – lead
to clinically relevant response reside preferentially in the central
memory T-cell subset and/or exhibit distinct activation (CD69-

CD39-) phenotypes (90). Examples of two vaccination trials with
peptides identified from glioblastomas addressed different,
clinically relevant points, namely whether the presence of
(candidate) antigen specific T-cells prior to vaccination would
predict successful vaccination outcomes and whether the nature
(mutant versus non-mutant targets) would make a difference in
regard to T-cells expansion (88). This first, rather complex,
clinical trial, was conducted using an ‘off-the-shelf’ cocktail of
non-mutant peptides of glioblastoma-associated antigens
targeting HLA-A2 and HLA-A24-positive patients, plus
candidate ‘private peptides’, either from mutant or non-mutant
‘private’ glioblastoma targets. Key observations were that
i) binding of some candidate peptides to MHC molecules was
confirmed by mass spectrometry, i.e., these peptides were found
to be naturally processed and presented, ii) mass spectrometry
allowed an unbiased analysis of the peptide repertoire displayed
by cancer cells, within the detection limits, yet requires
approximately 10e7 tumor cells for analysis (114), iii) MHC-
class I restricted CD8+ T-cell responses, usually residing in
precursor T-cells, to non-mutant epitopes prior to vaccination
predicted successful T-cell responses after vaccination, iv) some
peptide vaccine-induced T-cells recognized naturally processed
and presented epitopes on the patients’ autologous tumor cells,
v) vaccination with CD8+ T-cell epitopes induced CD4+ T-cell
responses, iv) some mutant vaccine epitope resulted in T-cells
recognizing wildtype and mutant target antigens, v) none of the
mutant epitopes evoked an exclusive CD8+ T-cell response, but
rather CD4+, or T-cell responses in CD4+ and in CD8+ T-cells,
vi) T-cells expanded from glioblastoma tissue harvested prior to
vaccination did not contain T-cells responding to the selected
candidate target epitopes, vii) no preferential expansion of
T-cells using mutant epitopes as compared to non-mutant
epitopes. A different clinical trial, also in patients with
glioblastoma, showed that T-cells induced by vaccination
infiltrated into tumor lesions after peptide vaccination (115).
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This demonstration is clinically very relevant since only a few
studies were able to demonstrate that T-cell clones elicited by
peptide vaccination – reacting against the immunizing peptide –
would then hone to the patient’s tumor and aid to mediate tumor
regression. This argues that it is necessary to obtain biopsies in
progressing and regressing tumor lesions from patients with
cancer who undergo peptide-based vaccination. Of particularly
clinical relevance is i) that patients who received corticosteroids
(which most patients with glioblastoma receive) during vaccine-
priming failed to generate IFN-g production to vaccine peptides,
ii) some vaccine-peptides induced T-cells reacting against
minigenes (coding for these targets, expressed as transgenes
into surrogate recipient targets cells), but not to tumor cells,
iii) that a round of in vitro stimulation was needed in order to
detect antigen-specific T-cells, reflecting most likely low antigen-
specific T-cell frequency, iv) peptide antigen-driven expansion
in vitro and subsequent single cell PCR sequencing allowed to
link TCR usage to peptide specificity. The identification of the
unique peptide-specific TCR CDR3 motif allowed to ‘trace back’
the antigen specific T-cells to time points prior to vaccination
(and post-vaccination samples) to the tumor sample used to
identify the private mutations, as well as to post-vaccination
tumor samples in case of tumor recurrence. Some mutant
peptide specific TCRs were not detected prior to vaccination in
PBMCs (which represent only 2% of the entire lymphocyte pool),
nor have they been found in the tumor specimen used for
mutational analysis, yet they were detectable in the tumor
recurrence, an observation that was also observed in a rather
more anatomically accessible basal cell cancer study (116). Such
antigen-specific T-cells are mediating anti-tumor responses and
their detection allow therefore a biologically relevant clue how
neoepitope-specific T-cell therapies could be improved: Anti-
cancer-directed T-cells after checkpoint inhibitor therapy were
not ‘rescued’ or epigenetically rewired in response to checkpoint
inhibitor therapies (117), yet rather ‘new’ T-cells were able to
access the tumor site upon checkpoint inhibitor treatment. This
phenomenon was dubbed ‘clonal replacement’ and would also
support the notion that peptide-induced T-cells are able to access
cancer lesions after vaccination (116). These observations are
reminiscent of anti-cancer directed vaccine trials almost
2 decades ago. Although vaccination with (non-mutant) tumor
associated antigens resulted in clinically relevant responses, the
regressing tumor lesions showed ‘spontaneous’ anti-cancer
immune reactivity, yet anti-cancer vaccine responses were not
detected in the regressing cancer lesions suggesting that tumor
vaccination aids to reinvigorate immune responses to private
cancer antigens – and that a competent TCR is a prerequisite to
achieve clinically meaningful T-cell responses (118). The
practical consequence of these observations is to perform 2 or
4 mm needle biopsies in accessible tumor lesions that would
allow to gauge for deep TCR sequence analysis and to trace
mutant-epitope specific T-cell clones. In addition, both studies
targeting glioblastoma epitopes showed that mutant peptide
epitopes favored expansion of cytotoxic CD4+ T-cells (115)
and even if peptides were used to target CD8+ T-cells, peptide
antigen-specific CD4+ T-cell expansion was observed in both
Frontiers in Immunology | www.frontiersin.org 7148149
studies (88). These and other clinical trial data were recently
excellently reviewed addressing the clinical utility of neoantigen
identification, peptide processing and MHC presentation of
candidate epitope targets for rational vaccine design (119).
IMMUNE FUNCTION AND PERSONALIZED
IMMUNOTHERAPY

Personalized immunotherapy is based on the capacity of the
immune system to recognize, to be activated, to clonally expand
and ultimately to kill off or to contain cancer cells. This involves
several biological pathways, including the recognition and
response to danger-associated molecular patterns (DAMPs) by
cognate receptors present on the surface of APCs, T-cells as well
as parenchymal cells (120). DAMPs are either released into the
environment [e.g. high-mobility group box 1 (HMGB1),
adenosine triphosphate, calreticulin; reviewed in (121)] or they
can be cell-bound (Fas ligand [FasL] (122), heat shock proteins
(123), MHC class I polypeptide-related proteins A/B [MICA/B])
(124, 125), and upon encountering the suitable receptor, elicit a
signaling program resulting in an pro-inflammatory response.
Although DAMPs can lead to non-productive inflammation
resulting in organ damage, they play nevertheless an essential
role in promoting cancer-directed immune responses and form
an integral component of personalized immunotherapy
strategies (126). Equally important is the epigenetic regulation
of DAMPs which aid to the successful orchestration of innate
and adaptive immune responses in PCV trials and clinically
relevant immune responses (127). The use of ‘in-built’,
molecularly defined adjuvants such as non-coding RNA may
also augment the capacity of immune cells to orchestrate a potent
anti-tumor immune responses in vivo, e.g. by activating the RNA
sensing molecule retinoic acid-inducible gene I (RIG-1) (128).
Indeed, RIG-I and a related intracellular RNA-sensing molecular
melanoma-differentiation factor 5 (MDA-5) have been discussed
as potential players in amplifying anti-tumor immune responses
following recognition of cancer-associated RNA structures (128,
129). Other players in immunosurveillance are the toll-like
receptors (TLR) 3 and 7, that are also involved in recognizing
RNA derived from pathogens, with TLR3-mediated immune
activation playing an essential role in the clinically relevant
immunogenicity of poly-ICLC, a synthetic, double-stranded
RNA-based polymer used as an adjuvant in the formulation of
personalized cancer vaccines (69, 72, 76).

In a similar manner, different microRNA species are likely to
be involved in immunomodulation and enhancement of local
immune surveillance in cancer lesions (13, 130–132). Although
the immunosuppressive TME may result in the downregulation
of microRNA species, an unbiased identification of promising
microRNAs and non-coding RNA sequences is possible via NGS
and would allow to test synthetically produced RNA sequences as
components in immuno-stimulation in PCV studies. MicroRNA
species may also subdue expression of neoantigen-encoding
genes, identifying microRNA using RNA-seq will therefore
reveal additional layers of genetic regulation interfering with
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optimal anti-tumor immune responses, yet it also opens new
molecularly defined ways to optimize anti-cancer directed
therapies in a more evidence-based fashion.

The stimulator of interferon genes (STING) pathway augments
as well anti-tumor cellular immune responses (previously reviewed
(133–135)), including potent B-cell activation and antibody
production (136). STING is encoded by the TMEM173 gene in
humans and acts as an intracellular DNA-sensing molecule (thus a
pattern recognition receptor [PRR]) requiring cyclic guanosine
monophosphate–adenosine monophosphate (GMP-AMP)
synthase recognition of cytosolic DNA involved in expression of
type I IFN-regulated pro-inflammatory genes. Activation of STING
leads to transcription of IFN-stimulated response elements (ISREs)
via TANK Binding Kinase 1 (TBK1) activation and interferon
regulatory factor 3 (IRF3) localization into the nucleus to initiate
gene transcription. Several clinical trials are underway, testing
STING pathway agonists to induce anti-tumor immune responses
in patients with cancer. A three-prime repair exonuclease 1
(TREX1) expression is involved in dampening STING-mediated
immune activation by eliminating damaged DNA from the cytosol
(135). However, it is possible that TREX1mutations in patients with
cancer may instead increase immune activation in cancer cell along
with STING stimulation. Mutations in the STING pathway have
been reported in patients with colorectal cancer, where STING-
deficient cancer cells were unable to produce interleukin 1b (IL-1b)
in response to DNA damage (137). Preclinical research showed that
STING-dependent immune activation was able to enhance
neoantigen vaccine responses and changed favorably the TME
immune profile (138–140). Thus, primary and secondary
immunodeficiencies defined by NGS can be identified molecularly
and should supplement the NGS information obtained from cancer
cells. STING variants may be naturally occurring genetic aberrations
(e.g. silencing mutations in TLRs or receptors recognizing DAMPs),
be associated with infections (e.g. human immunodeficiency virus
[HIV]) or with immunosuppressive therapies (e.g. solid organ/stem
cell transplantation and therapies used for patients with
autoimmune diseases (120, 141–144)). NGS readouts allow also to
visualize the mutational status of the STING pathway – among
other immune-activating genes – in validating neoantigen-directed
immune responses when designing PCVs and transgenic TCR-
based cancer treatments. A comprehensive panel of mutations and
natural variants in key molecules orchestrating the quality and
quantity of anti-cancer directed immune responses is screened
within the cancer NGS analysis in the ImmunoSurgery unit at the
Champalimaud Foundation (see below) in order to better define
immunological landscape of local and systemic immune responses
that may influence immunotherapeutic strategies.
ANTIGENPROCESSINGANDPRESENTATION
MACHINERYMUTATIONS IN THECONTEXT
OF IMMUNOTHERAPY

The antigen presentationmachinery (APM),mainly constituted by
the HLA class I and class II antigen processing and presentation
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pathway, are central to immune recognition and immune
surveillance. While the HLA class I pathway generally processes
and presents endogenous antigens derived from intracellular
pathogens or autoantigens (such as neoantigens in cancer), the
HLA class II pathway processes and presents exogenous antigens,
which could be host- or pathogen-derived. CD8+ T-cells are HLA
class I restrictedwhile CD4+T-cells recognizeHLA class II epitopes
(145).While all cells of the body (except erythrocytes) constitutively
express the HLA class I pathway (except in the CNS, where MHC
class I is downregulated); theHLA class II pathway can be activated
in the presence of IFN-g via transcription of the class II
transactivator, thus underlining the need for IFN-g in the TME
(146). The standard APM in human cells is shown in Figure 3.

The antigen processing and presentation machinery is of
major importance in immunosurveillance, as mutations
occurring in the HLA class I and class II pathways bear great
significance to cancer immunotherapy. Loss of MHC molecules
may lead to immune-escape which may entail the failure of
clinically relevant immune surveillance, loss of individual MHC
class I loci in cancer lesions prohibits targeted therapy using
PCV, since the identification of allelic losses limits naturally the
choice of peptides to be used in a PCV. Thus, detailed analysis of
the HLA haplotypes (HLA-A/B/C), is a prerequisite in selecting
the ‘best-fitting’ neoepitopes in the design of personalized cancer
vaccines as well as TCR-dependent T-cell therapies (28, 71, 147,
148). Downregulation of and loss-of-function mutations in the
HLA class I and II pathways abrogate or dampen immune
recognition of tumor cells in vivo (149–155), which goes along
with TME evolution in response to immune activation (26, 156).
Components of the HLA class I and class II pathways, if affected
by genetic aberrations, may lead to ‘tumor antigen loss variants’
(thus the inability to process and present immunologically viable
neoantigens) (157, 158). The ‘hyper progression’ effect described
in patients treated with checkpoint inhibitors may, in fact, reflect
an HLA loss in vivowhile subtle MHCmutations may also have a
similar deleterious effect on immune recognition by TIL if such
mutations affect the nature and diversity of the peptide repertoire
loaded onto the nominal MHC molecule. In accordance,
mutations in the canonical HLA class I pathway (HLA-A/B/C)
and its associated components in patients with cancer have been
previously described, e.g. transporter associated with Antigen
Processing 1/2 (TAP1/2), latent membrane protein 2/7 (LMP2/7)
and b2-microglobulin (151, 159–164). Some tumor cells may
also contain alternate splice forms of tapasin that can alter the
repertoire of peptides loaded into the MHC class I antigen
presentation pathway (165), mutations in the MHC class II
antigen processing and presentation pathway have also been
described (166, 167), yet they are not reported as frequently as
molecular defects in the HLA class I pathway. There has been
however much attention given to MHC class II expression in
various cancer types such as colorectal (168), cervical (169), lung
(170), breast (171), melanoma (172) and pancreatic cancer (173),
pointing also to the significance of CD4+-mediated anti-tumor
responses (174, 175). Components associated with HLA class II
peptide loading (the invariant chain [CLIP]), as well as the
“peptide editors”, HLA-DMA/DMB/DOA/DOB also play a
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significant role in producing meaningful CD4+ T-cell responses
(153, 168, 169) and are needed to present tumor antigen derived
epitopes to CD4+ T-cells either by cancer cells directly or APCs
in the TME cross-presenting tumor-associated antigens. This is
of clinical relevance since PCV enriched for CD8+ T-cell epitopes
tend to induce target-specific CD4+ T-cell responses as discussed
above. The loss of HLA class I expression and therefore
subsequent CD8+ T-cell responses in a patient with pancreatic
cancer has been observed to be compensated with HLA class II-
restricted CD4+ T-cells (with cytokine production and cytolytic
activity) (18) arguing that a molecular and immuno-histological
examination of cancer lesions should include the MHC class I as
Frontiers in Immunology | www.frontiersin.org 9150151
well as the MHC class II antigen processing and presentation
pathways that can be subject to therapeutic modulations, e.g.
using HDAC inhibitors.
A ROLE FOR UNCONVENTIONAL
NEOANTIGEN PRESENTATION
IN CANCER?

Reduced expression of HLA-E (non-canonical HLA class I) has
been linked to increased survival of patients with ovarian cancer
(176), while itmay also inhibit CD8+TIL activity.MICA andMICB
FIGURE 3 | Schematic representation of the HLA class I and II pathways and T-cell activation. The HLA class I pathway is also known as the intrinsic pathway as it
processes and presents endogenous antigens while antigens derived from the extracellular environment are processed and presented via the HLA class II (extrinsic)
pathway. LMP2/7 are immunoproteasome subunits necessary for generating short epitopes (7-11 amino acids along), which are then loaded on the HLA class I
molecule for presentation to CD8+ T-cells. The b2-microglobulin (b2M) is critical for the assembly and stable expression of HLA class I-peptide complexes on the cell
surface. On the other hand, HLA class II molecules first exist with the class II-associated invariant chain (CLIP) for stability, which is then removed with assistance
from the HLA-DMA/B complex, for loading of CD4+ T-cell epitopes generated via lysosomal degradation. Processed antigens are then presented by either HLA-II
(extrinsic pathway) or HLA-I (intrinsic pathway), to T-cells to initiate an immune synapse followed by activation of the latter. Indeed, as a result of cognate antigen
recognition, T-cells may produce one or a combination of effects: i) cellular proliferation (also involves IL-2), ii) increase in cytotoxicity (may be measured by surface
CD107a induction assay), iii) induction of 4-1BB expression and/or iv) production of cytokines, such as IFN-g, TNF-a, IL-2, IL-17c.
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are expressed in the gastrointestinal epithelium, thuswith relevance
for metastatic GI cancers, e.g. colorectal or pancreatic cancer. Both
MICAandMICBmolecules are stress induced and bind toNKG2D
in T-cell engagement, which could lead to activation of NK cells
(or–notmutually exclusive– activationofTCR gd+T-cells) instead
of the TCR ab+ T-cells. HLA-G is yet another non-classical HLA
class I member, whose expression is associated with a poor
prognosis for patients with cancer, including patients with
glioblastoma, colorectal and pancreatic cancer (177). Furthermore,
HLA-G can be found in soluble form in blood while also secreted
in exosomes; it can also be readily detected in IHC – thus making
it feasible also for immunodiagnostics. Non-classical HLA
molecules should also be considered in the development of anti-
tumor directed vaccination – and future preclinical developments
will target the identification of tumor-associated antigens
presented by non-classical MHC-molecules to anti-cancer directed
immune cells including the non-classical Major histocompatibility
complex class I-related (MR1) molecule (178).

The presentation of non-peptide antigens by the cluster of
differentiation 1 (CD1) family of molecules (a, b, c, d) – which is
related toHLA class I – leads to activation of unconventional T-cell
subsets, such as natural killer T-cells (NKT) (e.g. lipid antigens) and
TCR gd T-cells (e.g. phosphoantigens), with CD1d being the most
prominent member, expressed on epithelial cells – and epithelial
cancer cells. Expression of CD1 molecules in cancer are associated
with different clinical outcomes while associated with poor
prognosis in renal cell carcinoma (179), CD1d promotes NKT-
mediated cytolysis of cancer cells in lung adenocarcinoma (180). A
similar scenario exists for multiplemyeloma and B-cell lymphoma,
sinceCD1d is downregulated and associatedwith poor outcomes in
contrast to higher CD1d expression levels in PBMCs from healthy
individuals (181).

Nevertheless, neoantigen classes (and neoepitopes thereof) are
limited to protein-based structures at this juncture due to their
recognition by conventional HLA/TCR interactions involving
CD4+ and CD8+ T-cells (13, 38, 182). More research is necessary to
project a more concise picture of the role of non-peptide entities, e.g.
lipids and carbohydrates bearing cancer-associated molecular
abnormalities in augmenting productive immune responses in
patients. For example, overexpressed or aberrantly glycosylated
carbohydrates (e.g. gangliosides) is now hailed as a CAR-T target to
treat pediatric patients with solid tumors (183). Also, the recognition
of several pathogen-derived carbohydrate structures by conventional
T-cells has been previously reviewed (184). The clinical studies
associated with such therapeutic approaches could provide a
template for precision oncology methods e.g. investigating which
sugar moieties harboring abnormalities would be recognized by
specific T-cell subsets using NGS and immunological assays.
ACCOUNTING FOR LYMPHOCYTE CLASSES
IN PRECISION IMMUNOTHERAPYDESIGN

Multimodal studies have shown that the local immune landscape
as well as neoantigen expression are quintessential parameters in
determining and driving clinical responses in patients with cancer
Frontiers in Immunology | www.frontiersin.org 10151152
(13, 37, 185–188). Data from translational and clinical cancer
immunotherapy studies collectively advocate for the development
of ‘composite lymphocyte grafts’ comprising several immune-cell
types interacting with a broad array of neoantigen profiles and
subsequently a diverse set of effector functions with the unified
aim to minimize disease progression, while eliminating existing
cancer cell reservoirs in the patient (189, 190). Tumor infiltrating
immune cells as well as tissue resident cells contribute to shape
the immunological milieu, which is worthwhile to consider in
precision immunotherapy protocols.

T-cells can be harvested and expanded for immunotherapy
mainly from cancer tissue (TILs, inflamed tissue-derived cells),
and/or PBMCs (11, 19, 44, 47, 191–193), cells from pleural
effusions may also serve to isolate tumor-reactive T-cells (194) as
a possible T-cell source, as well as immune cells from
bronchoalveolar lavage (195), cerebrospinal fluid (196) or
bone marrow aspirates (197). This biological material is a yet
rather untapped source for future assessments in T-cell
immunotherapy trials.

Not only the nature of the tissue specimen, yet also the
different anatomical location of the T-cell harvest is critical if
T-cells are tested for recognition of neoepitopes, exemplified in
Figure 4. Not only the frequency of CD4/CD8+ T-cells changes
in relation from the tumor center to the tumor periphery, also
the epitope target specificity changes, mutant KRAS reactive
T-cells were detected in the tumor center, anti-mesothelin
reactive T-cells were found in the tumor periphery. For clinical
usage, it is important to emphasize that the location of the T-cell
harvest has to be documented along with caution that different
cancer tissue regions harbor different immune cell populations
with different neoepitope specificities. While this is not
surprising due to the tumor mutanome heterogeneity and
consequent TCR diversity, it has to be taken into practical
considerations as different areas of cancer specimens are
harvested to expand TIL for cellular therapy. While TIL
isolation and propagation for immunotherapy is feasible for
some cancer types, patients with certain malignancies may
present with cancer lesions that are – even with minimal
invasive procedures or biopsies – very difficult to access (198).
For those cases, PBMCs may be a viable and less invasive option,
since peripheral blood T-cells are easily accessible and can be
later used as a cell source for T-cell engineering to express a
specific TCR or CAR (199, 200). HLA-matched donor-derived
T-cells from donor PBMCs reactive to patient-derived
neoantigens also present a viable option for neoepitope
directed cellular immunotherapy (21).

There is also a different source of T-cells that can be
considered for anti-cancer directed cellular therapy and for
screening of neoepitope-reactive T-cell population, namely
tissue-resident memory T-cells (TRM), a population of non-
recirculating CD8+ T-cells, residing long-term in peripheral
tissues. TRMs contribute to tumor surveillance and to
protection against viral and bacterial infections (201, 202),
TRMs express a variety of homing markers that allow them to
recirculate in peripheral tissues, such as CD103 (ae integrin) and
CD49a (collagen-binding molecule antigen-1 (202–204), they
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produce Th1-type cytokines, namely IFN-g, tumor necrosis factor
alpha (TNF-a) and interleukin 2 (IL-2) upon stimulation (203,
205), yet may also elaborate Th17- or Th2-type cytokines (206–
208). The impact of TRM cells in tumor surveillance is also related
to the fact that TIL that express TRM cellular markers have been
identified in several human solid cancers (209–215) often in
correlation with improved clinical outcome (216–220). Therefore,
the presence of homing markers and TRM cells among TIL, in
addition to the tumor localization from where TIL are being
expanded merit more attention in clinical studies pertaining to
their role in neoantigen recognition, tumor surveillance and the
selection of TIL for improved cellular immunotherapy.
CONVENTIONAL CD4+ AND CD8+ T-CELLS

T-cells bearing the conventional TCRabhave been associated with
augmenting clinical responses in patients receiving
immunotherapy – both cell-based (191) and immune checkpoint
inhibitors (221) and,more recently, personalizedvaccines (78, 222).
Both CD8+ and CD4+ neoantigen-specific TCR ab responses in
hard-to-treat cancers such as glioblastoma (14, 72), pancreatic
malignancies (18), non-small-cell lung cancer (2, 3), melanoma
(69, 76), bile duct (40) and colorectal cancers (41) are now regarded
as vital to promote durable clinical responses in patients, further to
the presence of suitable neoepitope restricting HLA elements (27,
223). Much focus has been placed onCD8+ TILs inmediating anti-
tumor activity due to their cytotoxic capacity and responsiveness to
immune checkpoint blockade in view of their neoantigen-directed
Frontiers in Immunology | www.frontiersin.org 11152153
immune reactivity (224). In contrast, CD4+ T-cells are largely
attributed with helper functions, i.e., production of effectors
cytokines, such as IFN-g and TNF-a while responding to stimuli
providedby IL-2, IL-6, interleukin18 (IL-18), and IL-1b to list a few.
Nevertheless, the cytotoxic activity of some tumor-directed CD4+

T-cell subsets isnowconsideredan important armof theMHCclass
II restricted immune defense (174), particularly in patients with a
defective HLA-I pathway. Further to autologous TCRs, allogeneic
T-cells from HLA-matched healthy donors can either naturally
react to – as part of the naturally occurring TCR repertoire –
neoepitopes or they can be specifically selected and re-programmed
to specifically react toneoepitopes andkill cancer cellswithout overt
off-target toxicity (21, 225). Past and emerging studies consolidate
the utility of conventional T-cells as sources of TCRs strongly
reactive to peptide-HLA complexes based on the best-fitting
epitopes to transduce PBMCs for developing possible ‘off-the-
shelf’ TCRs options for patients with cancer expressing distinct
tumor-associated antigens and sharing the respective restricting
MHC allele (41, 226–230).
NON-CONVENTIONAL T-CELLS: TCR gd
AND INVARIANT NKT-CELLS

The relevance of TCR gd T-cell subsets has received a substantial
deal of attention in the last decade owing to clinically meaningful
observations of anti-cancer reactivity in several cancer types
(231–236). In patients with malignancies showing a defective
FIGURE 4 | T-cell phenotype and functional-spatial differences. TIL were expanded from different regions from a pancreas cancer lesion metastatic to the liver, 5
regions were harvested in different proximity to the tumor center. Note the different homing/maturation phenotype based on CD45RA/CCR7 expression, central
memory T-cells in the tumor periphery. Thus, the quality of the T-cell response (to neoepitopes) is also associated with the immune cell maturation status. Reactivity
to (mutant) KRAS or mesothelin was tested by pre-incubation of TIL for 5 days followed by IFN-gamma production analysis. Exclusive KRAS recognition in the tumor
center versus mesothelin recognition in the tumor periphery and in macroscopically cancer-negative tissue demonstrating that the selection of neoepitope specific
T-cells depends on the anatomical location.
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HLA system, TCR gd T-cells may have the upper hand in immune
recognition as they do not need the classical antigen presentation
machinery for antigen recognition and activation (237). TCR gd T-
cells participate in a wide array of immunological processes which
can activate or dampen the ensuing T-cell response, including the
production of IL-17 which has been implicated in the pathogenesis
of inflammatory disease as well as cancer (238–241). While several
differentgammachains areknown, twomaindelta chainshavebeen
described in humans TCR gd T-cells, namely Vd1 and Vd2,
although Vd3+ T-cells have been isolated from the liver (238,
242). As mentioned earlier, an important feature of TCR gd cells
is their expression of natural cytotoxicity receptors (NCRs), which
are also present onNK-cells, namelyNKG2D,NKp30 andDNAM-
1 (243, 244). The most commonly occurring subclass of these cells
are those expressing theVg9Vd2TCRwhich, viaNKG2D, can bind
to the HLA class I-like molecules MICA/B, akin to NK cells (244).
Daley and colleagues recently showed that gd T-cells outnumber
CD8+ T-cells in human pancreatic adenocarcinoma tissues, and
potentiallydampen the anti-tumor activity of conventionalTCRab
T-cells (245). Although anti-tumor gd T-cell subsets expressing
TCR Vg9Vd2 comprise a very small percentage in the tumor
microenvironment, approximately 30% of circulating gd T-cells
expressed Vg9. Apart from these, Vd1+ T-cell subsets have been
shown to mediate productive immune responses against
gastrointestinal tumors (246, 247), and are likely to be important
players – in addition to the much studied Vg9Vd2 subset – in
developing cellular immunotherapies for cancer (238).

In addition to TCR gd T-cells, invariant natural killer
(iNKT)–cells – bearing the invariant TCR V24a chain may
also be relevant in recognizing neoepitopes in cancer (248).
Alpha-galactosylceramide-driven activation of iNKT-cells
(afore-mentioned CD1d-mediated antigen presentation) in
patients with solid tumors has resulted in stable disease and
detectable immune responses, including in protocols involving
DCs pre-activated with alpha-galactosylceramide prior to
infusion into patients (248–250). iNKT-cells can also exhibit
cytolytic activity akin to NK-cells and cytotoxic CD8+ T-cells,
requiring the NCRs NKG2D and NKp44. Considering the
characteristics of ‘non-conventional’ T-cells and clinical studies
that support their individual use in immunotherapy (251), the
combination of these immune cells with ab T-cells should be
considered in order to augment anti-cancer directed T-cell responses.

While isolation and cultivation of autologous T-cells from
patients with cancer is a tailor-made drug development strategy,
it is also time-consuming and can only cater for a limited number
of patients at a time. Importantly, not all patients qualify for
surgery and tumor biopsies are not always sufficient for TIL
propagation after allocation for histopathological analysis.
Therefore, TCRs from peripheral blood T-cells – recognizing
shared or common cancer mutations – can be used to generate a
cellular product generation with heterologous expression in
patient T-cells. This approach has been shown to be successful
in a patient with metastatic colorectal cancer who received an
HLA-Cw08*02-restricted TCR targeting the KRASG12D driver
mutation (41). An integrated approach using NGS and
immunology may be able to identify new neoantigens which
Frontiers in Immunology | www.frontiersin.org 12153154
are shared among certain patient groups to be adapted for
developing transgenic TCR-based cellular drugs. The use of
mucosal associated invariant T-cells (MAIT) and their
respective targets for the potential use in personalized therapies
is not discussed here.
B-CELLS

Unlike T-cells, B-cells have received the least attention although
emerging evidence suggests that they should be accounted for in
future treatment regimens due to their association with beneficial
anti-tumor responses, including the production of cancer
antigen-specific antibodies (252–254). TIB (tumor infiltrating
B-cell) mediated responses, visualized by antibodies recognizing
KRAS mutations, have been described in patients with pancreas
adenocarcinoma (PDAC) (255), highlighting their clinical utility
in anti-tumor immune responses. NGS platforms can
supplement innovations in surgical oncology by the use of
fluorescently-labelled antibodies and imaging to precisely mark
the specific location of cancer disease for resection in the patient
(256) coupled with in vitro laser microdissection of specific intra-
tumoral regions of interest by identifying areas which are likely
to represent varying mutational cancer profiles and matching T-
cell reactivities (257). New data has revealed that an intact B-cell
compartment in patients with advanced melanoma undergoing
immune checkpoint blockade therapy (anti-PD-1, anti-CTLA-4
or both) are predictive of improved patient survival, given that
no immune-related adverse events (irAEs) occur (258). This
observation was associated with an increased proportion of
circulating CD21+ B-cells and plasmablasts after therapy. Also,
the role of antibodies in the recognition of cancer-specific
mutated proteins such as KRAS (255) as well as CMV- and
EBV-derived epitopes in the TME (259) and carbohydrates (183)
cannot be dismissed and warrant deeper insights in clinical
studies examining the role of TIBs in immune-recognition and
immunomodulation in the tumor. Antibodies binding to
neoantigens of interest can be used for designing CARs,
provided these neoantigens are expressed on the tumor-cell
surface (e.g. MUC4), for which TCRs in blood were recently
described (44). Waltari and colleagues recently showed how
combining NGS and immunoassays platforms, while
incorporating RNA-Seq and downstream bioinformatics
analysis followed by in vitro stimulation with CpG and clonal
expansion, can help identify and isolate memory B-cells from
blood with B-cell receptors (BCRs) for a specific antigen in
association with protection from disease which, in this case, was
influenza (260). A more recent study reported the use of RNA-
based Repertoire and Gene Expression by Sequencing (RAGE-
Seq) that was able to identify BCR and TCR species circulating in
blood of a patient with breast cancer that facilitated the tracking
of lymphocyte populations in different tissue compartments
(261). Thus, novel innovations in NGS techniques may also aid
the discovery of distinct neoantigen- and tumor-reactive
lymphocytes with clinical applicability. Neoepitope vaccination
strategies may also induce mutation-specific antibodies in
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antigen-driven expansion of B-cells that may also produce anti-
cancer directed cytokines (262), functional TIB (263) that are
associated with increased survival (264, 265) have been shown to
produce antibodies that target TAAs, including mutant KRAS
molecules (255). Thus, neoepitope-based vaccination immuno-
monitoring should also include screening of vaccine peptide-
specific humoral immune responses in the peripheral circulation
as well as in TIL, even if the vaccine peptides are designed for
MHC class I or -class II binding.

Laboratory-Based Platforms to
Complement NGS and Facilitate
Personalized Immuno-Oncology
A close collaboration with the pathology unit at healthcare
facilities and allowing their active involvement in all phases of
the clinical trial is crucial. Routine as well as specialized
immunohistology panels can be designed to aim at analyzing
HLA profiles in patients with cancer before, during and after
immunotherapy. Furthermore, antibodies that can differentiate
between misfolded and native HLA class I molecules on
paraffinized tissue samples would be an immense advantage,
since aberrant HLA class I molecules on the surface of tumor
cells are likely to be missed by CD8+ T-cells. Reagents that
recognize all components of the HLA class I pathway such as
TAP (151, 266), tapasin, b2-microglobulin-free HLA-A variants
(151, 267, 268), LMP2/7 (151) and b2-microglobulin (151) have
been described before, while those that recognize HLA class II
components are also commercially available. In addition,
immunostaining panels for histology, encompassing mutant
epitopes of cellular proteins which can identify cancer cells and
indicate whether druggable mutations are present in cancer
tissue would be of great clinical value. Expression of the TNF-
related apoptosis inducing ligand (TRAIL) molecules on the
surface of cancer cell may also be a good indicator of their
sensitivity to treatment-induced apoptosis (269). This approach
may, in fact, serve as a means of ‘companion diagnostics’ to
facilitate mutation-directed T-cell therapies. Circulating tumor
cells (CTCs) that may be present in liquid biopsies can also be
purified for immunocytochemistry (270–272). Two newly
published reports describe how stable HLA molecules with an
empty epitope-binding groove can be customized to bind
peptides of interest and leveraged to screen for the best-fitting
epitopes which induce an immune response (273, 274). Indeed,
all of these methods could be exploited to screen for best-fitting
neoepitopes using information arising from immunohistology
and NGS data and obtain a better personalized anti-cancer
vaccine and/or another treatment type, that may include pre-
incubation of TILs with neoepitopes (to increase the frequency of
TIL against mutant peptides). Multiparametric flow cytometry
constitutes an integral part of screening for cellular immune
responses and their physiological status is an addition to
qualifying them for release as cellular products for personalized
immunotherapy (55, 275). A wider panel of flow cytometry-
compliant antibodies which can assess lymphocyte subsets
present in cancer tissue based on phenotype and physiological
status (e.g. exhausted vs. active, cytotoxic potential, type of
Frontiers in Immunology | www.frontiersin.org 13154155
recognition including MHC class I/II, CD1, MIC1A/B, MR1
restricted T-cells) prior to processing for cell culture would be
an immense addition to clinical immunotherapy protocols
(Table 1), augmenting findings from immunohistology analysis
of tumor tissue. A dynamic set of flow cytometric analysis panels
for further characterization of cellular products over the course
of immune cell expansion for adoptive therapies will be of
practical help, linked with immunohistology data from the
resected tumor specimen. Ideally, functional T-cell data either
from ex vivo expanded T-cells for adoptive therapy, or T-cell data
obtained during immuno-monitoring in the context of peptide-
based vaccination will yield extended information which can be
amalgamated to the IHC data. Recent studies show that TP53
and KRAS mutations increase the expression of PD-L1 on tumor
cells (276, 277), indicating that the presence of shared mutations
can also be used as a companion diagnostic readout in
personalized immunotherapy protocols.
PEPTIDE-HLA STABILITY ASSESSMENT

In addition to predicted HLA-matched neoepitopes, the use of an
effective in vitro assay to measure the strength of peptide binding
and stability may be able to improve the decision-making in
selecting the most suitable neoantigens for personalized vaccine
design. The measurement of the stability and half-life dynamics
(also referred to as the ‘off-rate’), which informs of how long a
given peptide sequence can bind to the groove of the HLA
molecule, was previously shown in the context of the TAA
survivin (278), Mycobacterium tuberculosis protein TB10.4
(279, 280), HIV-1 epitopes (281), HA-1His autoantigen (282)
and recently using HLA-B07*02-restricted myeloperoxidase
(MPO) epitopes (226), allowing for the selection of strong
binders capable of inducing optimal T-cell recognition and
cytokine responses and/or cytotoxicity (283, 284). The half-life
of the peptide-HLA complex class I/II constitutes an important
parameter in dictating immunogenicity – the duration of time for
which the peptide-HLA complex can be stably be expressed on the
surface of theAPC (including transformed cells) and evoke a strong
CD4+ or CD8+ T-cell response (281, 283, 285–288). A recent study
demonstrated that the stability of the peptide appears to be a better
correlate of immunogenicity than affinity (287), and this may
suggest that highly stable epitopes (those with a long half-life) can
have a very strong affinity for their cognate HLA allele (283, 284,
289). The evaluation of peptide recognition defined by IFN-g
production – as a result from tumor mutanome analysis either in
the format of synthetic peptides or as minigenes – can be used to
gauge for biological activity in TIL as proficiency assay to gauge for
T-cell reactivity against commonly strongly expressed mutant or
non-mutant tumor associated antigens (290).

The absence of IFN-g in the TIL culture supernatants from
assays probing antigen reactivity does not necessarily imply that
the predicted peptides do not induce any type of effector
response by the candidate testing T-cells. For instance,
matching TCR-HLA immune synapses may also lead to
cytotoxicity instead of cytokine production, which can be
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determined by measuring surface CD107a induction or Fas
expression. Production of granulocyte-macrophage colony-
stimulating factor (GM-CSF) in lieu of cytotoxicity by CD8+

T-cells has been shown in the context of HLA-A1-restricted
melanoma epitopes (291). The absence of cytokine production
may also stem from the fact that the predicted neoepitope is not
naturally processed and presented to the immune system.
Alternatively, some of the TCRs which may recognize
predicted peptides are present in the general TCR repertoire of
the patient but they may not be present in the tissue sample
harvested to test for T-cell recognition of the predicted epitopes.
For instance, TIL may represent a rather focused and antigen-
specific enriched TCR repertoire (29, 292) and PBMCs from a
standard blood draw represent usually 2% of the entire T-cell
pool. One of the ‘gold’ standards in gauging anti-neoepitope-
specific T-cell responses is certainly whether peptide-reactive
T-cells – after sorting by tetramers, IFN-g–capture or by using
activation markers (e.g. CD137)-are able to recognize the
patient’s own tumor cells. This would strongly argue that
epitope-specific T-cells recognize as well naturally processed
and presented peptides – and that the selected candidate
epitopes are biologically relevant. A different ‘reversed’
procedure is the repetitive stimulation with autologous tumor
cells and the subsequently enriched T-cells are then tested for
epitope specific reactivity (18).
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‘REAL WORLD’ DATA: APPROACH AT THE
CHAMPALIMAUD CLINICAL CENTRE

The points discussed above guide the immunotherapy program
at the Champalimaud Foundation termed ‘ImmunoSurgery’ to
underline i) the seamless connection with the surgical team and
the subsequent examination of the resected tissue specimens
from a clinical pathologist. The tissue used to produce TIL – and
to perform tumor exome sequencing – requires documentation
and histopathological information about the functional loco-
regional diversity of the T-cell infiltrate into the tumor tissue
which can be further assessed by deep TCR sequencing, ii) that
T-cells expanded from surgical specimens are tested for
neoepitope specificities as defined by tumor mutanome
analysis and represent a ‘biological knife’.

The workflow used for tissue procurement, neoepitope
identification and T-cell screening is provided in Figure 5,
factors that may impact on the nature of neoepitopes,
neoepitope generation and factors shaping the responding T-cell
repertoire are compiled in Figure 6. Tumor-epitope identification
by WES and RNA-Seq is guided by careful selection of the tumor
area for genetic analysis. A more recent excellent review addressed
the clinical utility of neoantigen identification, peptide processing
and MHC presentation of candidate epitope targets for rational
vaccine design (119). Ideally, a tumor area that shows more than
TABLE 1 | Lymphocyte markers for use in IHC and flow cytometry studies to support clinical decision making in personalized cancer immunotherapy.

Lymphocytes Standard Analysis Additional Remarks

T-cells (TCR ab, TCR
gd, NKT, MAIT cells)

CD3, CD4, CD8, CD25, TCR Va/Vb, TCR Vg/
Vd, CD56, classical MAIT TCR Va 7.2

NKG2D Cytotoxic effector molecule (also applies to NK-cells)
PD-1 Immune checkpoint molecules
CTLA-4
LAG-3
TIM-3
IL-7R IL-7 receptor/CD127; for Treg identification
4-1BB CD137; activation marker
CD45RA To assess the memory phenotype of T-cells
CCR7
CXCR3 To assess the T-helper phenotype and tissue-penetration

capacity of T-cellsCCR4
CCR6
FoxP3 Transcription factor upregulated in activated T-cells and Tregs
Helios Aids in Treg identification
Perforin Cytolytic effector molecule
Granzyme, Granylysin Apoptosis-inducing effector molecule
CD8+CD69-CD39- CD8+ TIL with stem cell like properties and a CD69/CD39-

phenotype are associated with response to therapy
Cytokine receptors i.e., IL-6R,
IL-1bR, IL-18R, IL-21R

For T-cell activation by APCs, and may help identify high-
affinity antigen-specific cells

BTN3A1/CD277 Antigen presentation to gd T-cells
IL-17 Can be useful as a marker for potentially pathogenic gd T-cells
Fas Involved in apoptosis induction
FasL

B-cells (also act as
APCs)

CD19, CD20 CD21 May have positive prognosis for patients with cancer
FasL Involved in apoptosis induction
Fas
HLA class I pathway
components

HLA alleles, TAP, tapasin, LMP2/7, b2M; to predict response
to immunotherapy

HLA class II pathway
components

HLA-DR/DMA/DMB/DOA/DOB; to predict response to
immunotherapy

BTK Bruton tyrosine kinase; may impede anti-tumor responses
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80% of transformed cells is selected (Figure 7). In order to better
define the tumor specimen, a standard analysis for the immune-
contexture is carried out at our institution. A general (HLA-A, B
and C)MHC class I loss would exclude patients from entering into
peptide vaccination trials. CD3+, CD4+ and CD8+ T-cells are being
described along with the presence of CD68+ macrophages, the
presence of MHC class I antigens (HLA-A, B and C), the presence
of HLA-DR, the expression of tumor-associated antigens (e.g. NY-
ESO-1, mesothelin or survivin) to test for T-cell responses directed
against non-mutant target antigens, as well as molecules associated
with immune-suppression/evasion (e.g. PD-1, PDL-1 and CD47)
along with the description if immune cells reside within the tumor
or rather around, as single cells, or in clusters (Figure 8). The
immune microenvironment imposes a strong pressure in
untreated non-small-cell-lung cancers that subsequently show
different routes of immune evasion. Different qualities of
immune cell infiltration are associated with immune-editing
(and therefore the diversity of neoepitopes available for T-cell
expansion), MHC loss and defects in the antigen processing and
presentation pathways (293). This may be differently associated
Frontiers in Immunology | www.frontiersin.org 15156157
with distinct tumor locations, ideally, parallel immunohistological
sections are selected forWES and RNA-Seq. We combine different
platforms to identify mutations in tumor exome data, combining
the results of four different tools [Mutect2 (294), Varscan2 (295),
Strelka2 (296) and Lancet (297)] and keep only mutations that are
identified by at least two of these platforms. pVACtools takes
results from the exome sequencing, complemented with mutations
and fusions found in the transcriptomics data set which is then
combined with several prediction algorithms resulting in a
consensus ranking of neoantigens based on four criteria: rank of
peptide binding affinity to the nominal MHC allele, rank of fold
change betweenmutant and wild-type alleles, rank of mutant allele
expression and the rank of DNA variant allele fraction (298). We
test routinely two peptide formats to screen for cancer associated
antigens in TIL or in PBMCs, namely i) peptides with 15 residues
where the mutation is centered (and 7 amino flanking the
mutation) or ii) the full downstream protein sequence in case of
a frameshift. These different formats are used for immunoassays to
gauge for INF-g production in a 96-well format and supernatants
are harvested at days 3 and 7 (see Table 2 for references). Peptides
FIGURE 5 | PCV development and immuno-analyses workflow at the ImmunoSurgery Unit. Formalin-fixed paraffin-embedded (FFPE) or fresh-frozen tissue samples
prepared by the Pathology Unit at the CCC is submitted for WES of tumor DNA with the patient’s PBMCs as an internal control for downstream analysis, RNA-Seq
is also sometimes performed to tumor RNA. The WES and RNA-Seq raw data is then analyzed at the ImmunoSurgery Unit at the CCU to predict private mutations
followed by HLA class I and II binding prediction matched to the patients’ HLA restriction profile to select candidates for inclusion in the PCV formulation. Only HLA-
binding, neoepitope-containing peptides but not the wildtype counterparts are considered. The same and also 15-mer equivalent but non-clinical grade peptides,
alongside the corresponding native sequences, are used for gauging TIL and/or PBMCs reactivities based on IFN-g production (the peptide is at a concentration
1ug/mL tested with 10e4 responder T-cells; the fixed T-cell number allows to compare results obtained at different timepoints or from tissues harvested from different
tumor areas). This part of the immunological evaluation of the neoepitopes is used in the follow-up phase of the trial which aims to assess T-cell responses of
patients to the PCV and TIL therapies (possibly also for patients receiving immune checkpoint inhibitors). A different platform is an ELISA panel comprising the
patient’s neoepitopes in linear format to assess IgG reactivity using antibodies from serum as well as those secreted by TIB and PBMC-derived B-cell lines.
Neoepitopes are also screened for TIL recognition since TIL are routinely generated to gauge for differences in TIL versus PBMC recognition. This will allow to
describe whether selected neoepitopes are recognized in the tumor lesion that was used to identify the tumor neoepitopes (by NGS), it also allows to screen for
differences in TIL recognition from tumor lesions harvested at different anatomical sites or at different timepoints in the course of the disease.
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of different lengths tailored according to the MHC typing of the
patient are selected for candidates for PCVs based on i) if they are
driver mutations, ii) strong expression in RNAseq, iii) superior
binding of the mutant epitope as compared to the wildtype
sequence, iv) frameshift mutations and v) practical
considerations concerning peptide synthesis. If there are obvious
different areas in the tumor specimen (Figure 7), micro-dissection
of such areas is considered to estimate differences in tumor-
heterogeneity. We are currently testing whether neoepitope
directed T-cell responses are different in the primary cancer
lesion as compared to metastatic lesions – that are usually
harvested at a later time point during the cancer disease.
Recognition analysis of MHC class I or -class II restricted
epitopes defined by IFN-g production in PBMCs versus TIL as a
predictor of which neoepitopes are most likely immunogenic and
Frontiers in Immunology | www.frontiersin.org 16157158
also lead to clinically relevant responses in the course of a peptide-
based vaccination strategy can only be tested in a phase I clinical
trial that is currently being prepared.

In general, the resected cancer specimen is the result of
already immuno-edited cancer cell clones, areas of potential
neoantigen depletion and clinical tumor progress, despite the
presence of immune infiltrates (24). The timing of cancer lesion
harvest is also clinically relevant in the context for vaccination, if
we presume that the landscape of tumor mutations within the
same tumor lesion, and also at different spatiotemporal lesions,
represents an active process between cancer evolution and the
immune system. Not only tumor cells may be edited, also the
available T-cell repertoire undergoes selective pressure. Timing
of the tumor lesions for selection of vaccine epitopes determines
the mutational burden, yet also the TCR repertoire that changes
FIGURE 6 | Schematic representation of the general molecular paradigm of neoantigen recognition in the TME. The process of transcription of DNA to RNA and
then to protein (antigens) is prone to generate heterogeneity in the context of cancer, i.e., the same DNA molecule may be differentially transcribed (due to RNA
alternative splicing or mutations) and then translated to different proteins isotype (also as a result of post-translation modifications) or there might be gene fusions that
result in novel RNA transcripts. The heterogeneous expression of tumor antigens, as a result of spatial-temporal differences in DNA to antigen production, results in
different antigens being presented to the immune system by HLA complexes (as well as whole antigens) at the cell surface of a tumor cell and, therefore, contributing
to different sub-regional TMEs within the same tumor tissue sample. These are likely to be neoantigens, as they are not present in healthy (non-transformed) tissue.
The TCR diversity (“adaptome”) will also change depending on the specific TME, i.e., different TCRs will be encountered depending on intratumoral spatial
differences. Along the same lines, molecular structures associated with the microbiome present in the tumor tissue may cross-react with some T-cells, depending on
the presence of absence of TCRs that recognize such microorganisms. The possible cross-reactivity, if present, may favor the expansion of the relevant immune-cell
populations and, therefore, change the TCR repertoire.
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over time (314). These very basic considerations bear very
concrete consequences, i.e., usually tumor specimens are
collected to choose mutant target epitopes in vaccine trials
should be harvested for analysis after the most recent
Frontiers in Immunology | www.frontiersin.org 17158159
(standard) chemotherapy or immuno-therapy to reflect
potential changes in the neoantigen landscape. Some of these
practical considerations that are already currently discussed in
clinical decision making or considered in future clinical trials are
FIGURE 7 | Different immune-textures in cancer lesions. Starting point for WES and RNA-Seq. Definition and documentation of the immune cell infiltrate. Parallel
slices of the paraffin-embedded tissues are procured and subjected to DNA and RNA analysis. Note the different patterns of CD3+ T-cell clusters (left) versus
individual CD3+ T-cells in close proximity to tumor cells. RNA isolated from this tumor section would also allow for deep TCR-sequencing and allow to trace back
individual TCR CDR3 motifs in case if neoepitope specific TCRs are identified.
FIGURE 8 | Example of a standard immuno-histological analysis of a tumor sample at the Clinical Pathology Unit. Analysis of CD3+, CD4+ and CD8+ T-cell infiltrates
along with tumor-associated CD68+ macrophages. Testing for MHC class I (HLA-A, B and C) expression to screen whether transformed calls can be recognized by
CD8+ T-cells, general MHC class I loss would not support vaccination strategies of adoptive T-cell therapy targeting TCR alpha/beta T-cells as the immune effector
population. CD47, PD-1 and PDL-1 expression to gauge immune escape. Examination of commonly shared, non-mutant TAAs (NY-ESO-1, survivin, mesothelin) to
identify T-cell responses in TIL and in corresponding PBMCs. Expression analysis of TAAs aids in quality control concerning RNA-Seq (of the corresponding gene
coding for the TAA) and deep TCR analysis of T-cells reacting to TAAs.
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TABLE 2 | Examples of molecular analysis guiding future therapeutic decision making.

Analysis Examples of target genes Potential biological and clinical effects Potential practical consequences Reference

WES or RNAseq
Mutations in
immunological
response genes,
i) e.g. induced by
radiation, ii) germline
mutations, iii) or
natural variants that
impact on immune
function.

Immune responses genes in
innate or adaptive immune
responses including immune cell
signaling, e.g. C2, CD163L1,
FCgR2A

Gene variants or mutated genes edit
immune infiltration, quality and quantity
of the tumor-microenvironment

Despite identification of neoepitopes for neoepitope
vaccination therapy plus checkpoint inhibitors, the
innate or adaptive immune response may be
blunted. The anti-cancer vaccination effect may not
be achieved due to the incapacity to mount strong
and cancer antigen specific immune response.
Other therapeutic strategies are to be considered

(299, 300)

CHIP analysis,
WES and RNAseq

Not only mutations in bona fide
immune response genes, yet in
cancer-associated genes, i.e.
ARIDA, shape the quality of
immune responses and T-cell
infiltration

ARID1A aberrations may lead to
differential chromatin accessibility and
therefore to blunted anti-cancer directed
immune responses, e.g. by reduction of
overall IFN-gamma production,
diminished immune cell infiltration and
insufficient long- term immune memory
responses.

Awareness that immunological treatment strategies
may be challenging due to reduced IFN-gamma
production. Detailed molecular analysis may aid to
decipher how an effective anti-cancer directed
milieu could be achieved without ARIDA1A
interference

(301)

Deep TCR
sequencing,
TCRalpha, beta,
gamma and delta
chain. Bulk
sequencing may be
sufficient for most
clinical questions.
Single cell analysis
possible.

Detailed molecular description of
TCR infiltrate to objectively
describe the situation prior to
therapy. Different TCR repertoires
in spatiotemporal cancer lesions.

A focused TCR repertoire can represent a
relevant clonal immune response. Clonal
immuno-editing may occur and lead to
antigen – loss variants. ‘Clonal
replacement’ appears to be associated
with response to checkpoint inhibitors.

TCR convergence in PBMCs or tumor lesion
(biopsies) and/or clonal convergence as companion
diagnostics for immunological treatments.
Knowledge of neoepitope specific TCR allows to
follow antigen-specific reactivities. Broader TCR
repertoire may provide more possibilities to react to
neoepitopes imposed by the structural constraints
of the MHC – peptide complexes.
Long term neoepitope specific responses have
been identified in patients with melanoma after
peptide vaccination with different TCR clonotypes
(directed against the identical epitope, this allows to
link epitope-specific recognition with TCR diversity
and functional avidity.

(116, 302,
303)

Epitope specific
recognition
defined by IFN or
other cytokines in
TIL from surgically
removed tumor
specimens and
PBMCs

Either ‘private mutations’ or
commonly shared tumor –
associated antigens, i.e. NY-ESO-
1, mesothelin, or common
infectious pathogen antigens, e.g.
EBV or CMV, provide a
‘recognition fingerprint’ to follow
the immune response pattern in
immunological therapies

Standard chemotherapy or immunological
therapies shape the immune-competence
to indicator targets (private antigens,
TAAs or infectious disease targets).

Loss of anti-EBV or CMV recognition in peripheral
blood, or anti-tumor antigen directed T-cell
responses may represent one factor in the complex
decision making choosing second or third line
treatment therapies.

(259,
304–306)

Immuno-
histology, RNA
expression of
commonly shared
tumor associated
antigens

NY-ESO-1, survivin or mesothelin
expression

Commonly shared TAA-vaccines, e.g.
anti-survivin, mesothelin or NY-ESO-1 are
available. Anti-Mesothelin CARs or
transgenic TCRs. MHC class I or class II-
restricted NY-ESO-1 restricted TCRs are
in clinical trials.

Strong antigenic heterogeneity in solid tumors
defined by neoepitopes may still allow to use the
immunogenic cancer – testis antigen NY-ESO-1 if
sufficiently expressed. Mesothelin CARs have
shown to be associated with epitope spreading and
induce T-cell responses against private antigens.
Commonly shared TAAs may represent a cellular
‘first line’ treatment, enhancement possible with
checkpoint inhibitors.

(307–310)

WES and RNAseq
bulk or single
sequencing

Clonal spatiotemporal evolution in
metastatic cancer lesions

‘Immuno-edited’ tumor clones may be
eliminated during the course of the tumor
disease while progressing tumor clones
are ‘Immune-privileged’ despite the
presence of tumor-infiltrating
lymphocytes. Neoantigen depletion was
observed in tumors with high
Immunoscore and spatial proximity
between tumor cells and T-cells.

‘Immuno-edited’ tumor lesions may still be
accessible to commonly shared TAAs.
If neoepitope-directed therapies are contemplated,
a ‘fresh’ tumor biopsy after chemotherapy or
immunotherapy is advisable due to the tumor
evolution in order to obtain the most ‘updated’
antigenic profile.

(311)

WES in tumor
versus metastasis

Mutanome in association with
spatiotemporal differences.

Standard chemotherapy or
immunotherapy may drive private
mutations and clonal evolution: Treated
metastases exhibit private ‘driver’

Private mutations bear the risk of chemoresistance.
Obtain clinical material from the most recent cancer
lesions to assess spatiotemporal differences of

(312)

(Continued)
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listed in Table 2 where we also list the impact of tumor
mutations or mutations in immune response genes on anti-
cancer directed immune responses. The list of immune response
genes that are particularly scrutinized and reported in the course
of a standard WES is listed in the Supplementary Data Set 1.
Although a high mutational burden is generally viewed as
beneficial to elicit clinically relevant tumor responses, this may
be less accentuated if the tumor lesion is very heterogenous (3),
also reflected in the ‘hot’ and ‘cold’ areas in the same tumor
specimen (293). Also, a ‘low’ mutational burden does not
necessarily imply that neoepitopes within a tumor lesions are
not able to elicit biologically and clinically relevant T-cell
responses, as evidenced by glioblastoma-specific T-cell
expansion, discussed above, and that clonally expanded T-cells,
even in ‘low-mutational burden’ tumors (e.g. rhabdoid tumors)
show tumor-specific T-cell responses (315). The concordant
analysis of the tumor-associated neoepitope landscape does not
only allow to link immuno-histological detection of T-cell
responses with mutational events, it also enables the
spatiotemporal analysis of the molecular composition of the T-
cell repertoire with tumor mutations. The TCR landscape, defined
by deep TCR sequencing allows the identification of motifs in
TCRs infiltrating into tumor tissue as compared to non-
transformed tissue (292). A more detailed discussion of this
topic is not subject of this review. Yet it may allow to validate –
although most likely not at this point in a routine fashion –
whether MHC-peptide specific clonal TCRs are present
within cancer or tissue lesions by modeling T-cell MHC epitope
specificity (316) using yeast-display libraries of MHC-peptide
complexes tested for TCR recognition as shown for TIL in
colorectal adenocarcinoma (317). This has also been confirmed
for the identification of pathogen-specific epitopes – starting with
T-cell receptor sequences (318). Thus, ex vivo identification of
mutant epitope targets may be validated by the identification of
the nominal TCR ligands modeling the TCR and MHC-peptide
interaction which is beyond the scope of this review.
CONCLUSIONS

Prediction of the best neoepitope candidates for immunotherapy
is a multistep process combining several technology platforms
Frontiers in Immunology | www.frontiersin.org 19160161
ranging from NGS to histopathology and cellular assays.
The specifics of the predicted neoepitopes, e.g. defined by the
interaction with the nominal classical or non-classical
MHC molecules, play a central role in developing clinical
products in designing PCVs or in gauging TIL reactivities in
association with the spatiotemporal diversity. New findings from
translational and clinical research efforts would need to account
for different genetic backgrounds and TCR diversities in order
to objectively describe differences in immune cells capable of
reacting to tumor-associated antigens with the goal to advance
personalized cancer immunotherapy to expand potential
treatment modalities for patients with cancer.
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TABLE 2 | Continued

Analysis Examples of target genes Potential biological and clinical effects Potential practical consequences Reference

mutations more frequently as compared
to untreated metastases.

mutations in case if ‘druggable’ targets are
considered or neoepitope-directed therapies.

Immunological
landscape
analysis, RNAseq
and/or immuno-
histology

Cytokines, such as TGFbeta or
IL-17.

TGFbeta may be strongly immuno-
suppressive, promote desmoplastic
changes in the TME that further inhibit
anti-cancer immune responses, IL-17
may drive tumorigenesis.

A strong immuno-suppressive TME may counteract
anti-cancer directed immunotherapies, e.g. neo-
epitope-directed vaccination. Anti-TGFbeta directed
therapies could be considered, either in the format
of monoclonal antibodies or – in the case of active
cellular therapies, gene-edited (TGFbeta-receptor)
negative T-cells.
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141. Satgé D. A Tumor Profile in Primary Immune Deficiencies Challenges the
Cancer Immune Surveillance Concept. Front Immunol (2018) 9:1149–9. doi:
10.3389/fimmu.2018.01149

142. Haas OA. Primary Immunodeficiency and Cancer Predisposition Revisited:
Embedding Two Closely Related Concepts Into an Integrative Conceptual
Framework. Front Immunol (2019) 9:3136–6. doi: 10.3389/fimmu.2018.03136

143. de Jong D, Roemer MGM, Chan JKC, Goodlad J, Gratzinger D, Chadburn A,
et al. B-Cell and Classical Hodgkin Lymphomas Associated With
Immunodeficiency: 2015 SH/EAHP Workshop Report-Part 2. Am J Clin
Pathol (2017) 147:153–70. doi: 10.1093/ajcp/aqw216

144. Sánchez-Ramón S, Bermúdez A, González-Granado LI, Rodrıǵuez-Gallego
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