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Editorial on the Research Topic

Interactions of the Nervous SystemWith Bacteria

Recent evidence that microbes influence mood and behavior via the gut-brain axis has opened
up new avenues for research into neurological disorders. Hence, many studies now employ
multidisciplinary approaches assessing for changes in microbial diversity, neuroinflammation as
well as alterations in neuronal circuitry that impact brain function in health and disease. Such
collaborative research was virtually unheard of in previous decades but holds remarkable promise
for identifying novel pathways and therapeutic targets within the gastrointestinal tract to treat brain
disorders. This editorial highlights these exciting developments in neuroscience, microbiology, and
immunological research by examining 13 articles focused on how the nervous system interacts
with bacteria in preclinical and clinical settings. A common theme is the dissection of complex
interactions between the nervous system and bacteria as well as the resulting influences on
inflammatory pathways, symptoms, or behavior in patient studies and mouse models. Specifically,
neuronal-microbial interactions in the context of nervous system disorders ranging from autism,
Attention Deficit Hyperactivity Disorder, Alzheimer’s Disease and Major Depressive Disorder to
migraine and epilepsy are investigated. Overall, we propose that via leveraging our understanding
of the gut-brain axis, the modulation of gut microbes leading to significant benefits for brain health
can become a reality.

The recent years have seen substantial progress in the understanding of gut-brain interactions.
Today, evidence ismounting that themicrobiota-gut-brain axis is a key contributor to healthy brain
development and function. Accordingly, gastrointestinal (GI) problems and microbial dysbiosis
have been linked to several neurological and neuroinflammatory disorders. Consequently, targeting
gut microbiota composition to regulate peripheral and central inflammation could serve as means
of developing novel treatments or disease modifying strategies for several key neuroinflammatory
conditions. This is a rapidly emerging field of neuroscience research and is highlighted in the
current issue.

This Research Topic is dedicated to understanding the influence of microbes on brain health.
Alterations in the gut microbiota may affect gut-brain signaling via neuronal, endocrine and
immunological mechanisms, thereby influencing a range of neuronal network activities and
ultimately host behaviors. Zhao et al. showed that emotional behavior is among those behaviors
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affected. Antibiotic-treated mice with a lower richness
and diversity of microbiota display increased anxiety-like,
depression-like, and aggressive behaviors (Zhao et al.). These
effects on behavior may be caused by a dysregulation of
the immune and endocrine system. In line with this, a link
between altered microbiota composition and immune system
abnormalities was also reported by Sauer and Grabrucker. In
their study, a deficiency in the essential trace metal, zinc, changed
the composition of the microbiota. Of interest, zinc deficiency
has been linked to depression-like behavior in rodents. In this
study, the microbial changes were accompanied by increased
inflammatory cytokine levels. Furthermore, this study reported
abnormal GI morphology and increased GI permeability
in these mice, hinting that an increase in intestinal barrier
permeability may mediate pro-inflammatory processes (Sauer
and Grabrucker).

Relevant to the findings of Sauer and Grabrucker, the role
of microbes in modifying the permeability of the mucosal
epithelium lining the GI tract was discussed in a review of
microbiome-derived neurotoxins by Lukiw. How microbiota
might impact the properties of the mucus membrane in the GI
tract could also be important in brain disorders. Lukiw discussed
the role of the zinc metalloproteinase (also known as B. fragilis
Toxin; BFT or fragilysin), which is released by Bacteroides fragilis
microbes. Fragilysin cleaves tight junction components such
as cadherins which can alter the permeability of mucosal and
blood-brain barriers. This action would also alter neuro-immune
interactions and is age-related and progressive. An important
part of the epithelial barrier of the GI tract is the mucus biofilm,
which provides a supportive environment for specific microbial
populations. Because patients with many neurological diseases
have GI issues andmicrobial dysbiosis, Herath et al., reviewed the
evidence for mucus as a potential treatment target in the context
of neurological disease (Herath et al.). This review outlined a
range of pathways by which gene mutations associated with
brain disorders could influence the GI tract’s mucus and its
microbial populations.

Sharna and colleagues investigated neuro-immune
interactions in a mouse model of autism expressing a gene
mutation in the nervous system (Sharna et al.). Surprisingly,
the weight of the caecum (the equivalent of the human
appendix) was reduced in these mice. When analyzing the
enteric nervous system in the caecum, mutant mice had
more neurons overall and a higher proportion of neurons
synthesizing the major inhibitory neurotransmitter (nitric
oxide) of the gut. In the same study, Sharna and coauthors
found changes in the gut immune system. In these mice,
macrophages were labeled with Iba-1 (a marker of microglia in
the brain) in the gut-associated lymphoid tissue of the caecal
patch. Mutant mice had more Iba-1 labeled macrophages,
and these macrophages were smaller and rounder in shape.
Interestingly, this could indicate increased immune activity in
the autism model. More broadly, these findings suggest that
communication between the nervous system and immune
cells could be altered in neurological disorders such as autism,
and that the gut microbiota plays a key role in regulating
such interactions.

Further evidence of the nervous system’s interactions and
inflammatory pathways in brain disorders include a role for
lipopolysaccharide (LPS), lifestyle factors, and both the oral and
GI microbiome in Alzheimer’s Disease. The accumulation of gut
bacteria-derived LPS in neurons is associated with Alzheimer’s
disease. Lukiw et al. report that LPS entry into human neurons is
facilitated by amyloid beta-42 (Aβ42) and discuss the associated
pathogenic role of LPS in neurons of Alzheimer’s disease brains
(Lukiw et al.). The encapsulation of neurons by LPS reduces
the release of mRNA from the neuronal nuclei, likely via the
interaction of Aβ42 with nuclear pore complexes. Therefore,
manipulating the gut microbiome by diet and pre/probiotics to
reduce neurotoxic effects within the CNS is an exciting avenue
for future research. In line with these findings, Askarova and
colleagues brought together a wide range of research to link
the brain-gut-microbiota axis and Alzheimer’s Disease (Askarova
et al.). These authors noted that several lifestyle factors linked
to Alzheimer’s disease also drive microbiome changes, such as
dietary habits, sedentary behavior, and disturbances in circadian
rhythms. Changes in the oral microbiome in addition to chronic
periodontitis have also been associated with Alzheimer’s Disease
(Paganini-Hill et al., 2012; Harding et al., 2017; Liu et al., 2019;
Panza et al., 2019; Olsen and Singhrao, 2020). Given the potential
for factors within the gastrointestinal tract to contribute to
the development of neuroinflammation and neurodegeneration,
further studies are warranted.

Gut microbiota profiles may contribute to behavioral
symptoms associated with a range of neurological disorders,
including attention-deficit/hyperactivity disorder (ADHD) and
major depressive disorder (MDD). Wan et al. investigated the
gut microbiota in children with ADHD. Their results of a
case-control study reveal that specific bacteria are significantly
increased or decreased in children with ADHD and align
with alterations in neurotransmitter metabolic pathways (Wan
et al.). However, as Isaiah et al. point out, in addition to
the gut signaling to the brain, the reverse (i.e., brain-to-gut
signaling) may occur as well (Isaiah et al.), a phenomenon
that is currently understudied in the context of ADHD. Yong
et al. discussed the role of the microbiota-gut-brain axis, stress,
and lifestyle factors for major depressive disorder (MDD)
(Yong et al.). The antidepressive effects of probiotics and
potential biological mechanisms (including the production of
metabolites) to benefit gut health were compared in clinical
and animal studies. In addition, Westfall and Pasinetti discussed
the role of dietary polyphenols as a possible diseases-modifying
treatment for depression (Westfall and Pasinetti). Their review
highlighted that synbiotics that combine probiotics with dietary
polyphenols such as those found in fruits, tea, herbs, cereal,
or wine might be a novel therapy for MDD. This may occur
via modulation of multiple metabolic pathways, including the
breakdown of kynurenic acid and tryptophan (with influences
on glutamatergic activity and microglial function in the brain),
serotonergic mechanisms, and immune pathways, including via
interferon-gamma and inflammasome activation. Importantly,
these authors highlight that the heterogeneity of MDD must
be taken into consideration when evaluating the potential
therapeutic effects of probiotics.
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Migraine is a common, recurrent, and disabling neurological
disorder that is associated with alterations in the neurovascular
and immunological system. The changes in the nervous system
activity that occur in the setting of migraine are commonly
associated with gut disorders such as irritable bowel syndrome
and inflammatory bowel disease. Chen and others examined
the potential for interactions between the nervous system and
bacteria in their study of fecal samples from 108 elderly
women with and without migraine, which revealed a significant
decrease in species diversity and metabolic functions in the gut
microbiota of migraine sufferers. These findings suggest that
monitoring harmful bacteria such as Clostridium could help with
alteration of migraine frequency and potentially even prevention
of disease (Chen et al.). Future randomized control trials that
assess the efficacy of controlled delivery of “safer” and “less
inflammatory” microbiota as a means of controlling migraine
frequency are warranted.

Epilepsy is another neurological disorder for which a role
for the microbiome is understudied. The ketogenic diet is
commonly used to treat medically refractive seizures and
epilepsy. Importantly the anti-seizure effects of the ketogenic
diet are thought to be mediated by the gut microbiome (Olson
et al., 2018). Altering the gut bacteria is thought to regulate
seizure frequency and modify disease severity. Rubin and Glazer
outlined a potential role for subclinical infection with Bordetella
pertussis (BP) in epilepsy (Rubin and Glazer). This work
highlighted that cases of subclinical infection are vastly more
prevalent than reported pertussis cases and describe incidences
of epilepsy occurring after BP infection. Further research into
the relationship between epilepsy and BP infection, including BP

screening, medical history, and pertussis vaccination is required
to assess for an association between BP and seizures.

In summary, this Research Topic brings together evidence for
microbial influences in a range of neurological, neuropsychiatric
and neurodegenerative disorders including autism, Alzheimer’s
Disease, Major Depressive Disorder, migraine, and epilepsy. Gut
microbiota are thought to influence not only local immunological
processes, but also exert effects on the CNS through the
disruption of the gastrointestinal mucosal barrier and BBB. The
future of gut-brain research holds promise for identifying novel
therapeutic approaches to treat many disabling CNS conditions
traditionally considered to be associated with dysfunction of the
CNS itself. Further research into how modifying gut microbes
influence processes in the brain has enormous potential.
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The etiology of epilepsy remains unknown in 14–39% of cases across multiple continents (Banerjee
et al., 2009). Given the increased risk for seizures and epilepsy in children after symptomatic
Bordetella pertussis (BP) infection (Olsen et al., 2015), an association recognized for nearly a
century (Eley, 1930), we briefly review the evidence and propose a role for subclinical BP colonizing
infections in epilepsy.

Subclinical BP infections are vastly more prevalent than reported pertussis (Ward et al., 2005).
In multiple countries with high BP vaccination rates, evidence of subclinical BP infection is
demonstrated in 4.8–7.1% of asymptomatic individuals by nasal swab PCR (Klement et al., 2003;
Zhang et al., 2014; Naeini et al., 2015), and in 6.6–14.1% by serology indicative of infection
during the past year (de Melker et al., 2006; De Greeff et al., 2010; Palazzo et al., 2016). Based on
serology, investigators in the United States (US) acellular BP vaccine trial estimated the number of
undocumented BP infections at 1 to 10 million cases in the US annually from 1997 to 1999 (Ward
et al., 2005), years when the CDC reported approximately 7,000 cases per year (http://www.cdc.
gov/pertussis/surv-reporting/cases-by-year.html), a ratio of up to 1,400 subclinical BP infections
for every reported pertussis case.

Multiple lines of evidence support the hypothesis that subclinical nasopharyngeal BP colonizing
infections have unrecognized clinical consequences including epilepsy. B. pertussis secretes
pertussis toxin, which compromises the blood-brain barrier in human brain endothelium models
(Kugler et al., 2007), as seen in epilepsy (Oby and Janigro, 2006). Murine respiratory BP infection
induces inflammatory cytokines in the brain (Loscher et al., 2000), and intracerebroventricular
pertussis toxin lowers drug-induced seizure thresholds (Durcan and Morgan, 1991), though
findings documented inmice should be interpreted with caution. At the neuronal level, mechanistic
plausibility is supported in that pertussis toxin increases excitatory neuronal glutamate release
(Cullen et al., 1994) and decreases Gi/o receptor-mediated neuroinhibitory GABA activity (Padgett
and Slesinger, 2010), as well as GABA receptor binding (Moss and Vaughan, 1988). In summary,
mechanisms by which pertussis infection may play a causal role in epilepsy include immunologic
and inflammatory responses to pertussis infection, direct action of pertussis toxin on neurons, and
a combination of these factors.

Clinical observation also supports the association between BP and epilepsy. In children < 2
years of age admitted to the hospital with pertussis, new seizures were reported in 2.3%, and
encephalopathy in 0.5% of patients (Halperin et al., 1999). In BP-associated encephalopathy,
elevated antibody titers to BP toxins have been demonstrated with 10-fold higher concentrations
in CSF compared with serum, indicating entry of BP antigens to the CNS (Grant et al., 1998). In
Denmark between 1978 and 2011, the incidence of epilepsy at 10 years of age was 1.7% for patients
with a history of hospital-diagnosed pertussis, and 0.9% in a matched cohort [HR 1.7 (95% CI, 1.3–
2.1)] (Olsen et al., 2015). Almost all of the increased epilepsy risk occurred in the first 1.5 years after
clinical pertussis, and did not vary with age at pertussis diagnosis.
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Investigating the hypothesis that subclinical BP colonizing
infections are a cause of epilepsy could begin by screening
patients presenting with an initial idiopathic seizure. Subjects
and controls could be tested for serum BP antibody titers and
nasopharyngeal BP by swab PCR. In future BP-seizure risk
analyses, BP vaccination status should be accounted for to avoid
the confounding effects of vaccine-induced BP immunoglobulins
on estimates of BP exposure history. The particular form of BP
vaccination is also important since the diphtheria, tetanus toxoid
and whole-cell pertussis vaccine (DTP) has been associated with
febrile seizures (but not epilepsy) (Barlow et al., 2001), while the
combination acellular pertussis vaccine (DTaP) has not (Huang
et al., 2010). Of note, some historically reported associations
between pertussis vaccination and neurologic disorders may be
due to early unmasking of genetically determined disease such
as Dravet syndrome in those with sodium channel gene SCN1A
mutations (McIntosh et al., 2010). Since these mutations may
occur without a prior family history, referral for specialty testing
should be considered to help identify all potential causes of new
onset seizures.

As subclinical BP colonizing infections are prevalent in
highly BP-vaccinated populations, and non-human primate
studies demonstrate the failure of DTP and DTaP to prevent

nasopharyngeal BP colonization (Warfel et al., 2014), evidence
suggests that current pertussis vaccines do not prevent
nasopharyngeal BP colonization. Since the number of subclinical
BP infections may be more than 1,000 times greater than
clinically reported cases as noted above, it would not be
surprising to observe a minimal or even lack of epilepsy risk
reduction following DTP and DTaP vaccination.

In light of the available evidence, we suggest that a causal role
for subclinical BP colonizing infection in epilepsy is plausible and
worthy of further investigation. Regression analysis of epilepsy
risk, incorporating BP screening assays, medical history, and
pertussis vaccination status would be a compelling first step
in assessing the potential relationship between epilepsy and
subclinical BP infection.
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Psychiatric Mood Disorders
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The pathophysiology of depression is multifactorial yet generally aggravated by stress
and its associated physiological consequences. To effectively treat these diverse risk
factors, a broad acting strategy is required and is has been suggested that gut-brain-
axis signaling may play a pinnacle role in promoting resilience to several of these
stress-induced changes including pathogenic load, inflammation, HPA-axis activation,
oxidative stress and neurotransmitter imbalances. The gut microbiota also manages
the bioaccessibility of phenolic metabolites from dietary polyphenols whose multiple
beneficial properties have known therapeutic efficacy against depression. Although
several potential therapeutic mechanisms of dietary polyphenols toward establishing
cognitive resilience to neuropsychiatric disorders have been established, only a handful
of studies have systematically identified how the interaction of the gut microbiota with
dietary polyphenols can synergistically alleviate the biological signatures of depression.
The current review investigates several of these potential mechanisms and how
synbiotics, that combine probiotics with dietary polyphenols, may provide a novel
therapeutic strategy for depression. In particular, synbiotics have the potential to
alleviate neuroinflammation by modulating microglial and inflammasome activation,
reduce oxidative stress and balance serotonin metabolism therefore simultaneously
targeting several of the major pathological risk factors of depression. Overall, synbiotics
may act as a novel therapeutic paradigm for neuropsychiatric disorders and further
understanding the fundamental mechanisms of gut-brain-axis signaling will allow full
utilization of the gut microbiota’s as a therapeutic tool.

Keywords: gut-brain-axis, neuroinflammation, polyphenols, resilience, probiotics, synbiotics

INTRODUCTION

Major depressive disorder (MDD) is a recurrent psychological disorder with numerous
pathophysiological characteristics that result in prolonged periods of sadness and emptiness
coupled with anhedonia, elevated anxiety and eventual cognitive dysfunction (Pellegrino et al.,
2013). Depression is a significant global affliction present in more than 350 million people
(World Health Organization [WHO], 2018), 16 million whom reside in the United States
accounting for 6.7% of the total population (National Institute of Mental Health, 2017). Based on
clinical observations, depression is defined as a multifactorial disorder with several heterogeneous
neuropathological indications including reduction in the size and density of γ-amino butyric acid

Frontiers in Neuroscience | www.frontiersin.org 1 November 2019 | Volume 13 | Article 119611

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01196
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.01196
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01196&domain=pdf&date_stamp=2019-11-05
https://www.frontiersin.org/articles/10.3389/fnins.2019.01196/full
http://loop.frontiersin.org/people/590890/overview
http://loop.frontiersin.org/people/107895/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01196 November 2, 2019 Time: 13:12 # 2

Westfall and Pasinetti Microbiome and Mood Disorders

(GABA) neurons in the prefrontal cortex and limbic regions
(Savitz et al., 2014), according to the “gliocentric theory,”
abnormalities in glial density and functioning (Czeh and Nagy,
2018), imbalances in monoamine neurotransmitters in synaptic
clefts (Meyer et al., 2006) and loss of hippocampal volume
and neuronal loss in the hypothalamus (Manaye et al., 2005).
The classical cause of depression is defined as a deficiency in
noradrenaline and serotonin in the hippocampus and frontal
cortex, and this remains to be a prominent hypothesis due to the
efficacy of pharmacological monoaminergic reuptake blockers
toward improving mood status (Taylor et al., 2005). Despite
this understanding, the fundamental neurobiological changes in
depression remain elusive and at present are loosely attributed
to the interaction of genetic predispositions and environmental
factors (Bleys et al., 2018). It is known that chronic psychological
or physical stress induce a battery of depressive phenotypes
through mechanisms related to abnormalities in hypothalamic-
pituitary-adrenal (HPA) axis signaling including hypersecretion
of C-reactive protein from the hypothalamus, impaired negative
feedback of the HPA axis and hypercortisolemia (Pruessner et al.,
2003). However, without a causal pathological etiology to define
the manifestation of depression, therapeutic development has
become rooted in the alleviation of depressive-like symptoms
and such therapies remain inconsistent between patients, invoke
significant side effects and result in a large proportion of patients
being unresponsive to them (Kupfer, 2005).

An emerging trend in the pathology of chronic neurological
diseases including depression- and anxiety-like disorders is
the concept of a multifactorial causation due to multisystem
abnormalities. The concept of cognitive resilience has recently
gained traction as a viable therapeutic strategy for these
multifactorial chronic diseases and is defined as the ability
to physiologically adapt to external stresses in order to
maintain normal psychological and physical functioning and
avoid pathological states that can drive disease (Aburn et al.,
2016). Considering that the epidemiological cause of anxiety
and depression include the interaction of environmental
stresses and genetic disposition in a variety of physiological
systems, a treatment regime incorporating probiotics and
natural polyphenols may prove to be superior compared to
classical pharmacological treatments as probiotics promote the
production of a diverse host of bioactive metabolites from
the dietary polyphenols capable of simultaneously ameliorating
multiple risk factors of depression and anxiety.

POLYPHENOLS IN NEUROPSYCHIATRIC
DISORDERS

Dietary polyphenols expand the definition of prebiotics, which
were previously believed to contain various fibrous foods that
predominantly generate the short-chain fatty acids (SCFAs)
propionate, acetate and butyrate following fermentation by the
gut microbiota. Diets rich in SCFAs or that include prebiotics
that promote SCFA production such as fructooligosaccharides
(FOS), galactooligosaccharides (GOS) or inulin, have been shown
to have multiple beneficial immune- and metabolic- effects that

can ultimately improve cognition (Bourassa et al., 2016; Stilling
et al., 2016; Dinan and Cryan, 2017). Although extremely effective
at promoting neurological health, the range of SCFA activity is
limited compared to the variety of polyphenols and their gut-
derived metabolites making dietary polyphenols an emerging
therapeutic option in neurological conditions.

Polyphenols are a broad category of heterogeneous botanicals
composed of hydroxylated phenyl moieties found abundantly in
fruits, tea, herbs, cereals and wine (Vinson et al., 2001). Many
polyphenol-rich botanicals are considered to be adaptogenic:
stress-modifying phytochemicals that increase organisms’ non-
specific resistance to stress by increasing their ability to adapt and
survive to external stressors and stimuli (Panossian, 2017). Due to
their heterogeneous nature, individual polyphenols have distinct
biological activities; however, as they are found in combination
in nature, they inherently have synergistic activity that must be
considered when designing polyphenolic pharmaceutical agents.
Indeed, many natural occurring polyphenolic mixtures have been
shown to have extensive beneficial effects on cognition and mood
in both healthy and diseased subjects (Table 1).

Much of the interindividual variability of the aforementioned
clinical studies can be explained by the polyphenols’
bioavailability, which is dependent on their fermentation
by the gut microbiota and consequent secondary xenobiotic
biotransformation in the liver. There are several comprehensive
reviews exploring the prebiotic activity of polyphenols and how
ingestion of polyphenols can beneficially alter the composition
of the gut microbiota (Cardona et al., 2013; Westfall et al., 2018a)
so this topic will not be discussed in further detail here. However,
fewer studies have indicated how the specific metabolites
produced by the gut microbiota from dietary polyphenol sources
can impact the potential biological signature of depression.

MICROBIOTA AND THE
GUT-BRAIN-AXIS

The gut microbiota is a synergistic community of
microorganisms residing in the gastrointestinal tract (GIT)
composed of trillions of bacterial cells classified into thousands
of species, each with a distinct metabolic profile (Qin et al.,
2010). The two predominant phyla constituting approximately
98% of the gut microbiota are the Firmicutes and Bacteroidetes,
with the remainder belonging to the phyla Proteobacteria,
Verrucomicrobia, Fusobacteria, Cyanobacteria, Actinobacteria,
and others (Backhed et al., 2004). The composition of the gut
microbiota is highly amenable to diet, antibiotic usage, hygiene,
pharmaceuticals and stress and changes in the composition
of the gut microbiota result in dysbiosis, or imbalances in the
composition of the gut microbiota and/or its metabolism (Aziz
et al., 2013). Dysbiosis has been shown to influence the onset
and/or progression of a battery of chronic diseases including
metabolic syndrome, inflammatory bowel disease, depression,
cardiovascular disease and neurodegeneration (Quigley, 2017).

The gut-brain-axis (GBA) is a bidirectional neuroendocrine
system linking the GIT, including the microbiota, and the brain.
The GBA consists of the enteric (ENS), peripheral (PNS) and
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TABLE 1 | Effect of complex polyphenolic substances on markers of depression.

Dietary
Polyphenol

Contents Biological Effect References

Concord Grape
Juice (CGJ)

Flavanols Flavones Quercetin
Phenolic Acids
Proanthocyanidins
Anthocyanins

In aging rats, grape juice fed ad libitum at concentrations of 10% enhanced
cognitive performance and dopamine release while at 50%, improved motor
function

Shukitt-Hale et al., 2006

In older adults with memory decline, 6–9 ml/kg of concord grape juice for 12 weeks
significantly improved cognitive function, but not depressive symptoms

Krikorian et al., 2010a

In healthy middle-aged working women, 355 ml of CGJ consumption daily for
12 weeks significantly improved spatial memory and driving performance

Lamport et al., 2016

In 20 healthy young adults, 230 ml of purple grape juice improved reactive time,
increased calm ratings, elicited a positive effect on memory reaction time

Haskell-Ramsay et al.,
2017

A biosynthetic epicatechin metabolite derived from grapes,
3′-O-methyl-epicatechin-5-O-β-glucuronide, promotes basal synaptic transmission
and long-term potentiation in hippocampal slices through mechanisms associated
with CREB signaling

Wang J. et al., 2012

Cocoa Catechins Anthocyanins
Proanthocyanins Flavanols
Epicatechin

Dark chocolate fed to rats exposed to air pollution of Mexico city prevented the
associated neuroinflammation, COX-2 expression, IL-1β and CD14 mRNA
expression in the dorsal vagal complex

Villarreal-Calderon et al.,
2010

Administration of a cocoa polyphenolic extract (22.9 mg/kg/day) to rats after heat
exposure protected animals against the associated cognitive impairments as
measured in the Morris Water Maze, associated with reduced free radical
production by leukocytes

Rozan et al., 2007

In healthy subjects, consumption of a dark chocolate drink mix containing 500,
250, or 0 mg of polyphenols over 30 days improved measured of mood

Pase et al., 2013

In the Cocoa, Cognition and Aging (CoCoA) study, consumption of an enriched
cocoa flavanol drink containing high (990 mg), medium (520 mg) or low (45 mg)
levels of cocoa flavanols per day over 8 weeks improved cognitive function in 90
elderly adults with mild cognitive impairment in a dose-dependent manner

Desideri et al., 2012;
Mastroiacovo et al., 2015

Blueberries Anthocyanins After 8 weeks of feeding a 2% blueberry supplements diet to aged rats,
anthocyanins were found to cross the BBB and improve memory performance

Andres-Lacueva et al.,
2005

In 9 older adults consuming a wild blueberry juice for 12 weeks, improved paired
associate learning and word recall was observed with a trend suggesting reduced
depressive symptoms

Krikorian et al., 2010b

In healthy older adults supplemented for 12 weeks with 30 ml of blueberry
concentrate providing 387 g of anthocyanins, significant increases in brain activity
were observed associated with improved working memory

Bowtell et al., 2017

Another study demonstrated that acute administration of a flavonoid-rich blueberry
extract in both young adults and children improved positive effect on mood

Khalid et al., 2017

Coffee Flavanols Caffeic Acid
Chlorogenic Acid

In aged rats, coffee at an equivalent dose of 5 cups per day, but not caffeine,
improved the aged animals’ psychomotor control and working memory

Shukitt-Hale et al., 2013

In a pilot clinical trial, decaffeinated coffee enriched with chlorogenic acids had a
greater impact on cognitive performance than regular decaffeinated coffee

Cropley et al., 2012

Green Tea Catechins (-)-epigallocatechin
gallate (EGCG)

In a cross-sectional study involving 1003 elderly Japanese subjects, green tea
consumption was associated with attenuated cognitive impairment

Kuriyama et al., 2006;
Wang Y. et al., 2012

In an elderly population with clinical mild cognitive impairment, 16 weeks of
treatment with a combination of green tea extract with L-theanine, a protein found
in green tea, improved memory and selective attention associated with elevated
brain theta waves, which is an indicator of cognitive alertness

Park et al., 2011

One study involving 27 elderly subjects showed that 2 g/day of green tea powder
containing 220.2 mg of catechins did not impact cognitive impairment, despite
having a positive effect on oxidative stress

Ide et al., 2016

central (CNS) nervous systems, neuroendocrine connections,
humoral pathways, cytokines, neuropeptides and other signaling
molecules derived from the gut microbiota itself or produced
by the enterochromaffin cells in the gut epithelium in response
to the gut microbiota (Mayer et al., 2014). There are several
independent and distinct pathways that contribute to the
GBA’s bidirectional signaling including inflammatory mediators,

metabolic signaling, oxidative stress markers, stress modulators,
neurohormone factors and direct neuronal communication
through the vagus nerve (Kohler et al., 2016; Westfall et al., 2017).

One of the major mechanisms of GBA signaling influencing
neurological health is inflammation. The gut microbiota
influences inflammation in several ways beginning with
management of the epithelial barrier’s integrity, constituting
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the host’s first line of physical defense against invading
pathogens. The gut microbiota maintains the thick layer of
highly glycosylated mucus on the gut epithelium that promotes
the production of tissue repair factors and antimicrobial
proteins (Rakoff-Nahoum et al., 2004). In addition, toll-like
receptor (TLR)2 signaling, activated by various gram-positive
bacterial ligands such as lipoteichoic acid found on Lactobacillus
plantarum strains, is required for the microbiota-mediated
protection of the epithelial barrier and formation of tight
junctions (Podolsky et al., 2009). A healthy gut microbiota also
regulates the expansion of invading pathogens, some of which
harbor immune-activating ligands. Pattern recognition receptors
(PRRs), specifically the TLRs and Nod-like receptors (NLRs),
on host immune effector cells recognize a variety of antigens
known as pathogen-associated molecular patterns (PAMPs)
on bacteria, fungi, etc. that normally maintain the GIT’s basic
immune tone; however, if activated in excess, initiate an innate
immune response. The gut microbiota can also influence the
cytokine profile of dendritic cells, which is critical to determine
the fate of naïve CD4+ T helper (Th)0 cells into Th1, Th2,
Th17 or regulatory T cells (Treg) in secondary lymphoid tissues
(Barberi et al., 2015), which determines the inflammatory
tone in the periphery and brain. It was previously shown
that the ratio of Firmicutes to Bacteroidetes determines the
balance of Th17 and Treg cells while Bifidobacterium breve, B.
infantis, and L. salivarius were each shown to dose-dependently
inhibit the differentiation and activity of early precursor
dendritic cells (Round and Mazmanian, 2010). In addition,
fecal transplant from inflammatory bowel disease patients into
gnotobiotic mice was shown to alter the balance of gut Th17
and RAR-related orphan receptor (ROR)γT+ cells favoring
elevated numbers of proinflammatory Th17 cells, ultimately
exasperating the colitis phenotype in mice (Britton et al., 2019).
Although there is little information about the specific gut
bacteria that regulate the immune system, one study showed
that Bacteroides fragilis, which produces a specific bacterial
polysaccharide, directly impacts the cellular and physical
maturation of the immune system including correcting T cell
deficiencies and Th1/Th2 imbalances observed in germ-free mice
(Mazmanian et al., 2005).

Apart from inflammatory signaling, the gut microbiota can
communicate with the brain through direct nervous afferents.
The ENS is the brain of the GIT governing its activity and
homeostasis. From the ENS, afferent sensory pathways innervate
the nucleus of the solitary tract (NTS) in the brainstem, which
integrates the GIT-derived sensory information with autonomic
and homeostasis-related functions in the GIT (Browning and
Mendelowitz, 2003). Vagal efferents release acetylcholine to
excite enteric neurons and inhibit gastric functions, which
is a major contributor to symptomatic GIT dysfunctions in
response to stress (Travagli et al., 2006). In addition, the vagus
nerve originating in the NTS/dorsal vagal complex innervates
several key visceral organs including the heart, lungs and
GIT through the cholinergic system (Pavlov et al., 2003). Of
particular importance, vagal efferents are known to have counter-
inflammatory roles through the activation of nicotinic receptors
on macrophages, downregulation of T cells and downregulation

tumor necrosis factor (TNF)α production via α7-nAChR-
agonistic signaling (Ghia et al., 2006). This demonstrates the
complexity of the vagal connections and how dysbiosis may have
a broad influence on the general inflammatory state in the body.

Finally, the gut microbiota is fundamental in managing the
availability of neurotransmitters both through their synthesis
in the epithelial lining and the metabolism of their precursors
in the GIT lumen. An important study conducted by Asano
et al. (2012) demonstrated that the gut microbiota is critical
for the production of catecholamines in the luminal space. In
addition, Clostridium ssp. are required for the biotransformation
of catecholamines into their bioactive form owing to their
β-glucuronidase enzymes (Asano et al., 2012). It was later
determined that several microbiota species produce dopamine
including Bacillus cereus, B. subtilis and Staphylococcus aureus
(Wall et al., 2014). The gut microbiota is also critical in managing
the bioavailable levels of tryptophan and consequently the
synthesis of serotonin. Indeed, 95 % of all serotonin synthesis
occurs in the GIT, which influences its availability in the brain
(O’Mahony et al., 2015). There is also evidence suggesting that
L. plantarum can produce acetylcholine (Stanaszek et al., 1977),
Bifidobacteria and Lactobacillus spp. can produce micromolar
concentrations of GABA (Barrett et al., 2012) and histamine may
be produced by several gram-negative species (Devalia et al.,
1989). In most of these instances, there also indications that
these neurohormone producing species could invoke behavioral
effects in animals. For example, the GABA-producing L. brevis
FPA 3709 can significantly reduce depressive-like behavior
in rats as effectively as the known antidepressant fluoxetine
(Ko et al., 2013).

The GBA is an integrated and complex bidirectional
communication system (Westfall et al., 2017) that is heavily
impacted by the composition of the gut microbiota and
its metabolites. Modulation of the basal GBA signaling
by dietary polyphenols can have important consequences
for the prevention and management of neuropsychiatric
disorders by simultaneously attenuating multiple risk factors
including inflammation, neuronal innervation through ENS-
CNS communication and bioavailability of neurotransmitters
and their precursors.

THE GUT MICROBIOTA IN
NEUROPSYCHIATRIC DISORDERS

The first indication that the gut microbiota can influence a
psychiatric disorder was found with irritable bowel syndrome
(IBS) (Mulak and Bonaz, 2004); however, this understanding
has since been expanded to several other conditions including
depression and anxiety (reviewed in Inserra et al., 2018). For
example, germ-free mice have reduced anxiety compared to
specific pathogen free mice, which is correlated to reduced
brain-derived neurotrophic factor (BDNF) expression in
the amygdala (Arentsen et al., 2015). This corroborates an
earlier study that showed how antibiotic treatment could
promote exploratory behavior and hippocampal expression
of BDNF linking the composition of the gut microbiota
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directly with neurochemical and neurobehavioral effects
(Bercik et al., 2011). These early animal studies have since
been extended to demonstrate that the gut microbiota of
depressed patients is significantly altered, potentially causatively
driving symptoms of depression. In a cohort of 10 individuals
with severe depression, comparative metaproteomic analyses
revealed that there are significant variations in the phyla
Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria
extending to altered abundances in 16 families including
reduced Bifidobacteriaceae and Prevotellaceae with elevated
Enterobacteriaceae and Ruminococcaceae (Chen Z. et al.,
2018). A clinical study of 35 patients with major depression
showed that depressive symptoms were associated with
reduced gut microbiota richness and diversity while a fecal
transplant from depressed patients into germ-free mice
could reconstitute the depressive phenotype indicating that
the gut microbiota causatively promotes depression (Kelly
et al., 2016). In a similar cohort, significant variations in
the phyla Firmicutes, Actinobacteria, and Bacteroidetes were
observed in clinically depressed patients and again, fecal
transplantation into mice could transfer the phenotype
(Zheng et al., 2016). Interestingly, there are reported
gender differences in the gut microbiota composition of
depressed patients where female patients have a characteristic
increase in the phyla Actinobacteria, male patients have
reduced Bacteroidetes and both genders display disrupted
Firmicutes homeostasis and elevated Collinsella spp. abundance
(Chen J.J. et al., 2018).

There have also been intervention studies to understand
how supplementation with psychobiotics, probiotics that can
impact neuropsychiatric conditions, may influence depressive
and anxiety phenotypes. In wild-type mice fed a western-style
diet incorporating 33% fat and 49% refined carbohydrates, a
phenotype resembling elevated anxiety and memory deficits
was observed though prevented by treatment with L. helveticus
R0052 (Ohland et al., 2013). In a study of 124 healthy
volunteers (mean age 62 years), those who consumed a mix
of psychobiotics (L. helveticus and B. longum) exhibited less
anxiety and depression than controls (Dinan and Cryan, 2013).
In a more recent study with cohort of 79 participants with
self-reported mood measures, a probiotic preparation also
containing L. helveticus and B. longum did not significantly
alter the mood or depression scores compared to the placebo
group, however this could be from the heterogeneity, severity
or chronicity of the treatment cohort (Romijn et al., 2017).
In a large cohort of pregnant women, supplementation with
L. rhamnosus HN001 lead to significantly less postpartum
depression and anxiety compared to placebo controls (Slykerman
et al., 2017). In another cohort of patients diagnosed with
both IBS and major depression, a twice daily dose of Bacillus
coagulans MTCC 5856 was administered and treated patients
demonstrated reduced depressive phenotypes on multiple scales
(Majeed et al., 2018). This accumulation of fecal transplant
and psychobiotic intervention studies demonstrate that through
the GBA, variations in the composition and consequently
metabolism of the gut microbiota has potential therapeutic
efficacy for the treatment of neuropsychiatric conditions.

To amplify this effect, psychobiotics can be administered
in conjunction with dietary polyphenols, as a synbiotic,
increasing the production of bioactive metabolites acting on the
aforementioned GBA mechanisms.

THE GUT MICROBIOTA INCREASES
BIOAVAILABILITY OF DIETARY
POLYPHENOLS

Interaction of the Gut Microbiota With
Dietary Polyphenols
The interaction of gut bacteria with dietary polyphenols has
a two-fold impact on health. First, dietary polyphenols act as
prebiotics enhancing the growth of specific beneficial bacterial
species that elicit health benefits (Cardona et al., 2013; Duenas
et al., 2015; Ozdal et al., 2016). Second, autochthonous gut
microbiota can increase the production of bioactive phenolic
acids derived from dietary polyphenols increasing their beneficial
biological activity (Espin et al., 2017). The former prebiotic
effect of botanicals has been extensively described in several
reviews (Cardona et al., 2013; Duenas et al., 2015; Ozdal et al.,
2016) so will not be further elaborated here; however, the
biotransformation of dietary polyphenols by the gut microbiota
creating a diverse host of bioactive phenolic acids is a developing
understanding, especially toward the promotion of cognitive
resilience to depression and anxiety. The gut microbiota
contains approximately 1014 bacterial cells, 10 times more than
mammalian cells present in the human body, which contributes
to its huge metabolic potential (Kardum and Glibetic, 2018).
In this sense, the gut microbiota can be considered as both a
metabolic and an endocrine organ that is critically important for
numerous biological activities.

Only 5–10% of dietary polyphenols are absorbed in the
small intestine where they subsequently undergo phase I
biotransformation (i.e., oxidation) in the endothelial cells and
phase II biotransformation (i.e., conjugation) in hepatocytes
liberating water-soluble conjugate metabolites (Manach et al.,
2005) (Figure 1). The remaining polyphenols transit through
the small intestine into the colon where the gut microbiota with
their specific enzymatic makeup facilitate the bioconversion of
various polyphenols and their intermediate metabolites (Braune
and Blaut, 2016; Espin et al., 2017). In their natural form, dietary
polyphenols are present as conjugates with sugars or organic
acids that need to first be liberated before absorption. In the
colon, microbial enzymes de-conjugate polyphenols producing
the less-polar aglycone forms that can be either absorbed or
processed though subsequent microbial reactions in the colon
(Murota et al., 2018). There are three major catabolic mechanisms
elicited by the gut microbiota to produce bioactive phenolic acids:
hydrolysis (O-deglycosylations and ester hydrolysis), cleavage
(C-ring cleavage, delactonization, demethylation) and reduction
(dehydroxylation and double bond reduction) (reviewed in Espin
et al., 2017). Indeed, several studies have identified specific
enzymes in various gut microbiota that conduct these reactions;
however, it must be recognized that ultimately, it is a combination
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FIGURE 1 | Bioavailability of dietary polyphenols is primarily determined by the composition of the gut microbiota. As consumed, only 5% of dietary polyphenols are
absorbed where consequently, Phase I and Phase II biotransformation takes place in the epithelial cells and liver which generates a limited battery of bioavailable
metabolites. Upon reaching the lower colon, the gut microbiota breaks down the remaining dietary polyphenols through their endogenous enzymatic activity
increasing their relative bioavailability for downstream processing by Phase I and Phase II biotransformation.

of reactions conducted by several microbiota species that produce
the final bioactive phenolic acids, a process known as cross-
feeding (Duda-Chodak et al., 2015).

One study reported that in rats, 85% of blueberry
anthocyanins reached the colon, though 69% disappear
from the GIT after 4 h indicating that dietary anthocyanins are
heavily metabolized by the gut microbiota (Kahle et al., 2006).
Further, an anthocyanin-rich extract from black currants only
demonstrated metabolic benefits in the presence of an intact
gut microbiota (Esposito et al., 2015). Another study showed
that mulberry anthocyanins were specifically transformed
by S. thermophilus (46.2%) and L. plantarum (43.6%) into
chlorogenic acid, cypto-chlorogenic acid, caffeic acid and ferulic
acid: all phenolic acids with potent anti-inflammatory benefits
(Cheng J.R. et al., 2016). Anthocyanins can also be broken down
into protocatechuic acid, further into the bioactive phenolic
acid cyanidin-3-glucoside (Vitaglione et al., 2007) and finally
into 3-hydroxycinnamic acid, which has potent anti-depressive
effects possibly through mechanisms implicating inflammation
(Hanske et al., 2013).

Since there is high interpersonal variability in the composition
of the gut microbiota, production of bioactive metabolites is
also highly variable making the physiological health benefits
of dietary polyphenols unpredictable in diseased populations
whose display dysbiosis. As such, to standardize the physiological
benefits of dietary polyphenols, they can be delivered together
with probiotics (i.e., synbiotics) normalizing the production
of bioactive metabolites, which can then be optimized toward
having a beneficial effect. Some authors have identified that these
interactions between specific gut microbial species and dietary

polyphenols may have negative impacts on the host (Galati and
O’Brien, 2004; Nunes et al., 2008), however the vast majority of
the interactions are positive, and increase the bioavailability of
the ingested polyphenols to elicit beneficial health effects.

Synbiotics Increase the Bioavailability of
Polyphenolic Metabolites Enhancing
Their Biological Effect
There are only a handful of studies investigating the impact
of synbiotics on cognition, and even fewer that utilize a
polyphenolic prebiotic. In general, clinical studies with synbiotics
are inconclusive as there are a broad cohort diversities
and inadequate regulation of treatment regimens as was
demonstrated with meta-analyses on IBS patients (Ford et al.,
2018), ulcerative colitis (Asto et al., 2019), and diabetes (Zheng
et al., 2019). Nevertheless, a few notable studies have been
conducted to date demonstrating the potential of synbiotics
to act as powerful therapeutic agents in the management
of neurological disorders. In a study of a healthy elderly
population, patients were separated into either placebo or
synbiotic groups where the latter were exposed to two daily doses
of a FOS and a probiotic formulation containing L. paracasei,
L. rhamnosus, L. acidophilus, and B. lactis. Although there
were no significant differences in the depression scores, the
synbiotic did improve inflammatory markers of the healthy
elderly individuals, notably with an increase in the anti-
inflammatory IL-10 cytokine, associated to improvements in
cognition (Louzada and Ribeiro, 2018). In a separate study, a
cohort of 75 hemodialysis patients were administered a synbiotic
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containing L. acidophilus, B. bifidum, B. lactis, and B. longum
with the prebiotics FOS, GOS and inulin. In a subset of patients
with depressive symptoms, the synbiotic significantly reduced
the depressive score compared to both the probiotic-alone
and placebo groups, which correlated to an increase in BDNF
serum levels (Haghighat et al., 2019). In one comprehensive
animal study, the effects of probiotic (L. paracasei), prebiotic
(xylooligosaccharide) and synbiotic treatment on chronic high-
fat diet (HFD) induced obesity and insulin resistance was
evaluated including measures of the associated HFD-induced
cognitive decline. Interestingly, all treatment groups reduced
HFD-associated inflammation, hippocampal oxidative stress,
apoptosis and microglial activation. Although there were
no statistical differences between the prebiotic or probiotic
groups with the synbiotic, the synbiotic did have a trending
beneficial effect on multiple measures of hippocampal activity
including dendritic spine density, soma area and apoptosis
measures, which could be potentially amplified with the use
of a more complex prebiotic formula such as a polyphenol
(Chunchai et al., 2018). Although interesting, these synbiotic
studies only utilize the traditional fiber-based prebiotics, and
to the author’s knowledge, only one study to date has tested
how a polyphenol-rich synbiotic can affect multiple markers
of cognition, using an Alzheimer’s Disease (AD) model in
Drosophila. In this study, a synbiotic that was previously
shown to enhance production of polyphenolic metabolites
(Westfall et al., 2018a) and promote longevity in Drosophila
melanogaster (Westfall et al., 2018b) was shown to rescue the
AD phenotype in humanized transgenic Drosophila (Westfall
et al., 2019). In particular, the synbiotic-derived metabolites
provided potent anti-inflammatory and antioxidant activity while
reestablishing metabolic homeostasis. Of particular interest,
when considering all of the AD risk factors as a whole, the
synbiotic consistently rescued all of the risk factors to a greater
or same extent as its components establishing its combinatorial
activity. Despite the lack of studies truly investigating the
combinatorial action of synbiotics containing polyphenolic
prebiotics, below is a description of potential polyphenolic
precursors that are known to require the gut microbiota
to produce its full extent of metabolites and elicit potential
beneficial effects on cognition and mechanisms associated
with depression.

Roasted green coffee beans contain a high level of
hydroxycinnamates, which are partially bioavailable yet
extensively metabolized, mainly by the colonic microbiota. In
subjects who drank a roasted coffee blend containing 269.5 mg
of chlorogenic acids, the majority of metabolites in the urine
(75.7%), composed of dihydrohydroxycinnamic acids and
feruloylglycine, were of colonic origin (Gomez-Juaristi et al.,
2018b). The same group identified that the polyphenolic-rich
yerba mate was mainly metabolized by the colonic microbiota
with up to 81 % of the metabolites composed of dihydroferulic
acid, dihydrocaffeic acid and dihydrocoumaric acids (Gomez-
Juaristi et al., 2018a). Another example is ester hydrolysis of
chlorogenic acid to release caffeic acid, which was determined to
be carried out by B. animalis by a specific enzyme identified as
Balat_0669 (Raimondi et al., 2015).

The urolithins are an important class of bioactive microbial
metabolites derived from ellagitannin and ellagic acid precursors.
Several bacterial species have been identified that produce
their intermediate metabolites including Gordonibacter
urolithinfaciens and G. pamelaeae (Selma et al., 2014); however
it has recently been shown that a new class of microbiota
species, the Eggerthellaceae family, is essential to produce the
final urolithin metabolite isourolithin A (Selma et al., 2017;
Beltran et al., 2018). It is well known that the microbial-
derived urolithins have potent anti-inflammatory effects. In
human colonic fibroblasts, urolithins, but not their ellagitannin
precursor, inhibited nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) translocation into the nucleus and
consequent activation of downstream inflammatory events
(Gonzalez-Sarrias et al., 2010). These effects were extended to
indicate the microbial-derived urolithins are neuroprotective
and pomegranate’s anti- AD’s neuroprotective ability was
attributed to the production of microbial-derived urolithins
(Yuan et al., 2016).

Catechins and epicatechins are major constituents of grape
seed extracts and the production of their bioactive metabolites
is dependent on the presence of the microbiota (Ou et al., 2014).
In two grape-seed extracts containing either 70% monomers and
28% procyanidins or 21% monomers and 78% procyanidins,
the growth of Lactobacillus and Enterococcus spp. were elevated
while the Clostridium histolyticum group was inhibited indicating
that specific gut bacteria are responsible for the metabolism of
grape seed flavan-3-ols. These changes in the gut microbiota
were associated with increases in 4-hydroxyphenylacetic acid,
phenylpropionic acid, phenylacetic acid and 4-hydroxybenzoic
acid (Cueva et al., 2013). Eggerthella lenta JCM 9979 was
shown to facilitate the C-ring cleavage of epicatechins and
catechins and the subsequent 4’-dehydroxylation to produce
different intermediate metabolites (Takagaki and Nanjo, 2015).
L. plantarum IFPL935 was found to be important in the first
step of catechin and procyanidin catabolism involving ring
fission, however did not impact the production of phenolic
metabolites unless in the context of a complete microbiota
indicating that there is another microbe using the metabolic
intermediate of L. plantarum to produce the bioactive metabolites
(Barroso et al., 2013).

The natural flavonoid, quercetin, is also heavily processed
by the gut microbiota. In an in vitro anaerobic fermentation
model, the fecal microbiota was shown to deconjugate rutin,
isoquercetin and a mixture of quercetin glucuronides through
deglycosylation, ring fission and dehydroxylation reactions to
produce the metabolites 3,4-dihydrophenylacetic acid and 3-
hydroxyphenylacetic acid (Aura et al., 2002). In an elderly
Japanese population, interindividual variations in quercetin
concentrations with respect to fecal microbiota compositions
were observed and the level of quercetin consumption was
negatively correlated with the abundance of Sutterellaceae and
Oscillospiraceae spp. and positively correlated with the families
Fusobacteriaceae and Enterobacteriaceae (Tamura et al., 2017).

When considering neurological diseases, it is important not
only to understand the bioavailability of the phenolic acids in the
colon and plasma, but also in the brain where their activity is
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warranted. Grape seed polyphenol extract (GSPE) is a rich source
of flavan-3-ols including catechin, epicatechin, and anthocyanins
which were shown to produce a variety of bioavailable phenolic
acids both in the plasma and brain (Ho et al., 2013; Wang
et al., 2015). Importantly, the production of bioactive phenolic
acids derived from the anthocyanin-rich GSPE is dependent on
the microbiota, and two of the microbiota-derived metabolites
3-hydroxybenzoic acid and 3-(3′-hydroxyphenyl)propionic acid
accumulate in micromolar concentrations in the brain where
they can interfere with the assembly of amyloid-beta peptides
(Wang et al., 2015). We also found that after moderate
wine consumption in rats, there is an accumulation of the
polyphenol metabolite quercetin-3-O-glucuronide in the brain,
which specifically reduced the generation of amyloid-beta
from primary neuron cultures generated from the Tg2576
AD mouse model (Ho et al., 2013). At the same time,
this metabolite significantly improved AD-type deficits in
hippocampal formation basal synaptic transmission. Going
further, a Bioactive Dietary Polyphenol Preparation (BDPP)
containing GSPE, concord grape juice and resveratrol was shown
to attenuate sleep deprivation-induced contextual memory
deficits. Supplementation of BDPP lead to the accumulation of
malvidin-3-O-glucoside and quercetin-3-O-glucuronide in the
brain where the former activated target of rapamycin (mTOR)
signaling and the latter cAMP response element-binding protein
(CREB) signaling (Zhao et al., 2015). Combining malvidin-
3′-O-glucoside with another BDPP metabolite, dihydrocaffeic
acid (DHCA) significantly promoted cognitive resilience to
stress-induced depression by modulating neuronal plasticity and
peripheral inflammation in stressed rats. Mechanistically, DHCA
was shown to inhibit DNA methylation on CpG-rich interleukin
(IL)-6 sequences while malvidin-glucoside increased histone
acetylation of the regulatory sequences that modulate synaptic
plasticity (Wang J. et al., 2018).

Despite the small number of studies on the specific activity of
synbiotics including a polyphenol-rich prebiotic on the specific
mechanisms of depression, it can be concluded that the gut
microbiota is essential for producing the full battery of plasma-
and brain-bioactive polyphenolic metabolites that have potential
neuroprotective activity. Below is a description of how some of
the individual microbial-derived polyphenolic metabolites can
impact different mechanisms that lead depression, strengthening
the argument for the use of synbiotics as depressive therapies.

GUT-BRAIN-AXIS MECHANISMS
LINKING POLYPHENOLIC MICROBIAL
METABOLISM TO DEPRESSION

Gut Microbiota-Anti-inflammatory
Effects Modulate Depression
Neuroinflammation Implicates Neurological Changes
in MDD
Chronic neuroinflammation is a major risk factor for
neurological diseases as it leads to changes in brain structure
and synaptic plasticity resulting in neural deficits (Maes,

1999). Neuroinflammation also modulates neurotransmitter
concentrations by upregulating monoamine transporters,
reducing synaptic reuptake of monoamines and reducing
monoamine synthesis by decreasing tetrahydrobiopterin
availability, a cofactor necessary for both tyrosine and tryptophan
hydroxylases (Miller and Raison, 2016). The elevated release
of cytokines observed with neuroinflammation also drives
glutamatergic neurotransmission inducing excitotoxicity and
consequently neuronal death (Haroon et al., 2014). Although
neuroinflammation is not specific to depression, it does account
for a large part of its pathophysiology and anti-inflammatory
medication has been successful in alleviating some depressive
symptoms (Kohler et al., 2014; Ebada, 2017). As previously
described, stress is a major risk factor for depression and
neuroinflammation could explain, in part, how stress induces
the psychological impairment characteristic of depression.
Neuroinflammation, especially elevation in interferon(IFN)-α
and IL-6 cytokines, inhibits negative-feedback regulation of
the HPA axis, therefore maintaining hypercortisolemia in the
context of chronic stress. This elevated glucocorticoid release
exasperates the stress response and reduces sensitivity of
peripheral immune cells to anti-inflammatory feedback (Frank
et al., 2012). Hence, neuroinflammation, when coupled with a
reduction in neuroprotection and neuronal repair due to elevated
glucocorticoid levels, may be among the initial pathological
markers of depression and controlling neuroinflammation
with a dietary regime incorporating synbiotics could be a
viable prophylactic approach for preventing the onset and/or
progression of depression.

Several associations between inflammatory conditions and
susceptibility to depression have been made. Patients with
rheumatoid arthritis, cancer, autoimmune diseases or other
chronic inflammatory conditions are predisposed to depression
(Pollak and Yirmiya, 2002). Also, several inflammatory markers
have also been used as diagnostic indicators of MDD (Musselman
et al., 2001; Vogelzangs et al., 2012). Based on post-mortem
studies, depressed patients were found to have area-dependent
elevation in proinflammatory cytokine mRNA and protein
expression, which is linked to the prominent downregulation in
both number and density of oligodendrocytes in areas associated
with the depressive phenotype (Mechawar and Savitz, 2016).
Depressed suicide completers in particular have elevated mRNA
and protein levels of TNF-α, IL-1β and IL-6 in the prefrontal
cortex (Pandey et al., 2012), consistent with elevated TLR
expression in macrophages and microglia in the corresponding
areas (Pandey, 2017).

In depressed patients, there is also evidence of increased
blood-brain-barrier (BBB) permeability (Bechter et al., 2010)
and through a compromised BBB, cytokines and chemokines
infiltrate the CNS, stimulating microglia and astrocyte activation
(Wohleb et al., 2016). In a mouse preclinical repeated social
stress model, BBB impairment in the nucleus accumbens
region was observed in stress-susceptible mice and confirmed
in postmortem depressed patients as observed with decreased
expression of a key tight-junction protein, claudin 5. This loss
of barrier integrity was associated with elevated infiltration of
cytokines and subsequent expression of depression-like behaviors
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(Menard et al., 2017). The circumventricular organs (CVOs)
border the brain’s ventricular spaces and lack the typical tight
junction integrity of the BBB (Petrov et al., 1994). TLRs
on macrophage-like cells in the CVOs are uniquely activated
by systemic inflammation and can increase production of
proinflammatory mediators. One CVO in particular, the area
postrema, is highly interconnected with the nucleus of the
solitary tract and dorsal motor nucleus of the vagus nerve
(Maolood and Meister, 2009), directly linking inflammatory
signals from the GIT with compromised BBB integrity through
the CVOs. A compromised BBB also allows the infiltration
of peripheral immune cells, including monocytes, dendritic
cells and T lymphocytes, into the brain (Najjar et al., 2013).
Stress can bias myeloid lineage cells to increase their trafficking
ability promoting their increased infiltration into the brain
parenchyma (Wohleb et al., 2013). This elevated trafficking
could be due to elevated expression of key immune adhesion
molecules in specific brain regions after stress. As such both
intercellular adhesion molecule (ICAM)-1 and vascular cell
adhesion molecule (VCAM)-1 were observed to be increased
on endothelial cells in the prefrontal cortex and hypothalamus
following a repeat social defeat paradigm in mice, which parallels
the patterns of macrophage trafficking and microglial activation
in the brain. Once in the brain, these infiltrated monocytes
alter behavior and promote microglial reactivity exasperating the
neuroinflammatory response (Ataka et al., 2013).

Compromised Gut-Brain-Axis Signaling Instigates
Neuroinflammation
A stable and healthy commensal microbiota plays a cardinal
role in maintaining the host’s immune status (Bercik et al.,
2011). On one side, the gut microbiota is immunomodulatory
(Round and Mazmanian, 2009; El Aidy et al., 2015), while on the
other side, the immune system works to shape the composition
and diversity of the intestinal microbiota (Hooper et al., 2012).
Incorporation of dietary polyphenols dually impacts the gut
microbiota-mediated immunomodulatory effects as they alter
both the composition of the gut microbiota with their prebiotic
activity while providing precursors for the production of many
microbial-derived metabolites that have protective influences on
the gut barrier, the first line of immune modulation.

As a first line of defense, the gut microbiota maintains the
integrity of the intestinal epithelium, which prevents infiltration
of bacteria and other immune-triggering substances into the
host’s circulation. The microbiota accomplishes this through
a variety of mechanisms including maintaining tight junction
proteins, production of the mucus layer and secretion of
antibactericial proteins and factors, such as IgA, to fend off
invading pathogens (Daulatzai, 2014). A major gut-derived
mediator of inflammation is lipopolysaccharide (LPS), which
through TLR4 signaling activates NF-κB-mediated transcription
of proinflammatory cytokines from monocytes and macrophages
(Tanti et al., 2012). GIT-mediated inflammation stimulates
barrier breakdown and consequently, elevated infiltration of LPS
and other bacterial components. One study specifically showed
that elevated GIT permeability with an increased translocation
of LPS from gram-negative bacteria plays a significant role in

the pathophysiology of MDD (Maes et al., 2008). LPS dose-
dependently increases IL-1β levels in the dorsal vagal complex,
as well as in the hypothalamus, hippocampus, cerebellum,
neocortex and pituitary gland (Hansen et al., 2000). Indeed, a
single injection of LPS is associated with elevated systemic and
central inflammatory mediators and significant cognitive deficits
(Kahn et al., 2012), while chronic LPS injections over 5 days
in female mice at 1 month intervals induces chronic anhedonia
(Kubera et al., 2013).

Interestingly, the gut microbiota has also been associated
with deficits in BBB integrity. Germ-free mice have increased
BBB permeability and lower expression of occludin and
claudin-5 in different brain regions implicated in depression
including the frontal cortex, hippocampus and the striatum
(Braniste et al., 2014). This group also confirmed that mono-
colonization of germ-free mice with the butyrate producing
Clostridium tyrobutyricum elevated occludin expression in the
frontal cortex and hippocampus while reducing BBB permeability
(Braniste et al., 2014).

The vagus nerve is also an important player in the
bidirectional communication between the gut microbiota and the
brain as it monitors the physiological homeostasis of the GIT
and connects it to the cognitive and emotional centers in the
CNS (Carabotti et al., 2015). One of the major functions of vagal
afferents is activation of the HPA axis, which coordinates the
adaptive responses of the organism with external stressors, and
directly links the health of the microbiota and GIT to depressive
phenotypes (Howland, 2014). The vagus nerve also implements
an inflammatory reflex where pathogenic species that induce
proinflammatory cytokines can activate afferent sensory vagal
fibers synapsing in the nucleus tractus solitarius. Efferent vagal
signals communicate with the periphery and HPA axis to reduce
inflammatory tone by inhibiting the release of TNF-α by splenic
nerves (Breit et al., 2018). Notably, there are also receptors on the
vagal afferents for various cytokines and TLRs, which can initiate
the synthesis and release of inflammatory cytokines from cells
within the CNS (Dantzer et al., 2008).

Gut-Derived Polyphenols Reduce Neuroinflammation
There is ample information supporting the anti-inflammatory
activity of polyphenols and their metabolites in the context
of neurological disorders. However, most studies neglect to
integrate the importance of the gut microbiota in producing the
polyphenolic bioactives thereby underestimating their full anti-
inflammatory potential. Ferulic acid is a hydroxycinnaminic acid
produced as a microbial metabolite from several Lactobacillus
species (Tomaro-Duchesneau et al., 2012) and the production
of many of its bioactive metabolic products (dihydroferulic
acid or vanillic acid) is dependent on the gut microbiota.
Ferulic acid has been shown to have potent implications in
depression. Ligusticum officinale is an anti-inflammatory plant
used in oriental medicine which is rich in ferulic acid and
potently can attenuate NF-κB activation in BV2 microglial cells
following LPS stimulation (Zeni et al., 2017). In another study
utilizing a defeat stress paradigm, ferulic acid at 1 mg/kg reduced
oxidative stress and neuroinflammatory markers in the blood,
hippocampus and cerebral cortex of mice (Lenzi et al., 2015). In
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an outbred ICR mouse model, ferulic acid, in combination with
the bioavailability enhancer piperine, reduced immobility in the
tail suspension and forced swim test by 60% possibly by inhibiting
monoamine oxidase activity in the frontal cortex, hippocampus
and hypothalamus (Li et al., 2015). Going further, in a model
of chronic unpredictable mild stress, ferulic acid ameliorated
depressive-like behaviors possibly through the upregulation of
BDNF, postsynaptic protein PSD95 levels, and synapsin I in the
prefrontal cortex and hippocampus (Liu Y.M. et al., 2017).

Epicatechin, catechin and the proanthocyanidins are the
main flavan-3-ols metabolized by the gut microbiota that
also elicit beneficial anti-inflammatory effects. Catechin
pretreatment to the chemotherapeutic agent Doxorubicin in
rats dose-dependently prevented neurodegeneration while at
100 mg/kg, reduced memory deficits by decreasing oxidative
stress, acetylcholinesterase activity and neuroinflammation
in the hippocampus (Cheruku et al., 2018). In a rat model of
traumatic brain injury, catechin treatment was shown to be
neuroprotective by dually protecting both BBB integrity and
excessive neuroinflammation (Jiang et al., 2017). A major green
tea catechin, (-)-epigallocatechin gallate (EGCG) has many
neuroprotective abilities, neuroinflammation being just one of
them. Pretreatment of outbred ICR mice with EGCG for 3 weeks
(1.5 and 3 mg/kg/day) prior to LPS injection for 7 days prevented
the LPS-induced memory impairment and apoptotic neuronal
cell death. This included preventing astrogliosis associated
with the LPS injections and the consequent production of
inflammatory mediators (Lee et al., 2013). In a similar model,
EGCG rescued LPS-induced inhibition of adult neurogenesis by
restoring proliferation and differentiation of neural stem cells in
the dentate gyrus and modulating neuroinflammation through
the TLR4-NFκB pathway (Seong et al., 2016).

There is also ample evidence that quercetin can reduce
neuroinflammation and as previously indicated, the urolithin
metabolic products derived from quercetin have more bioactivity
than quercetin itself. In a rat cardiopulmonary resuscitation
model of depression, quercetin inhibited ROS generation,
neuroinflammation and metalloproteinase-2 protein expression
corresponding to recovering left ventricular ejection fraction
reduced by the depression paradigm (Wang D. et al., 2018).
Mice undergoing chronic unpredictable stress for 21 days were
simultaneously treated with 30 mg/kg of quercetin, which
alleviated both anxiety and depression behavioral dysfunctions.
Simultaneously, quercetin treatment reduced the stress-induced
elevation in oxidative stress markers and proinflammatory
markers (Mehta et al., 2017). Adriamycin is a chemotherapeutic
agent that induces depression- and anxiety-like behaviors
in rats. Quercetin (60 mg/kg), alleviated the anxiety and
depressive behaviors while attenuating brain oxidative stress
and suppressing the excessive corticosterone induction in rats
treated with Adriamycin (Merzoug et al., 2014). Quercetin
was also shown to reduce depressive behavioral deficits in
olfactory bulbectomized rats by simultaneously reducing the
oxidative, inflammatory and stress-induced changes in the
cerebral cortex and hippocampus. This group suggested that
quercetin may elicit its neuroprotective effects through a
microglial inhibitory pathway as subclinical amounts of quercetin

potentiated the activity of minocycline, a known microglial
inhibitor (Rinwa and Kumar, 2013).

The known anti-inflammatory action of resveratrol has been
translated to be beneficial in various neuroinflammatory models
of depression. Resveratrol inhibits several proinflammatory
mediators, modifies eicosanoid synthesis and inhibits
enzymes including cyclooxygenase (COX)2, NF-κB, AP-1,
TNFα, IL-6 and vascular endothelial growth factor (VEGF)
(Namasivayam, 2011). In a social defeat paradigm, resveratrol
at 30 mg/kg body weight per day blocked neuroinflammation
in the locus coeruleus, but not neurotransmitter release,
associated with reduced anhedonia to the sucrose preference test
(Finnell et al., 2017).

Caffeic acid is among the main constituents in coffee that
have been shown in vitro and in vivo to have beneficial effects in
modulating neuroinflammation (Hall et al., 2015). The derivative
of caffeic acid, caffeic acid phenethyl ester, also has a battery
of neuroprotective activities including anti-inflammatory and
immunomodulatory properties (Noelker et al., 2005) whose
production is dependent on the gut microbiota (Peppercorn
and Goldman, 1971). Indeed, a negative correlation between the
level of coffee consumption and depression has been recorded
(Pham et al., 2014). In mice, caffeic acid (4 mg/kg) was shown
to have antidepressant-like activity independent of monoamine
transduction suggesting that caffeic acid works through a non-
monoameringeric system (Takeda et al., 2002). Caffeic acid,
at a dose of 30 mg/kg body weight in mice, prophylactically
inhibited LPS-induced sickness behavior specifically by reducing
cytokine production in serum and brain thus eliciting a protective
effect against neuropathologies associated with depression
(Basu Mallik et al., 2016).

The anti-inflammatory activity of polyphenols is well known,
albeit interesting as a potential therapeutic application in
depression. The activity of polyphenols, however, may only
be considered in the context of the gut microbiota. As
demonstrated previously, the diversity and richness of the
gut microbiota is critical to determine the bioavailability
of dietary polyphenols, which in their parent form, remain
relatively inactive. Likewise, combining dietary polyphenols
with optimized probiotic formulation as a synbiotic, would
increase the production of specific metabolites whose anti-
inflammatory mechanisms could be elucidate and optimized for
the treatment of depression.

Activated Microglia Impact Depressive
Neuropathology
Microglia are the principle immune mediators in the CNS and
their improper activation is associated with neuroinflammation
and clinical psychiatric phenotypes (Steiner et al., 2008).
In a resting state, microglia conduct immunosurveillance,
mediating brain homeostasis and innate immune responses
against a range of pathogenic insults primarily through
phagocytosis (Hanisch and Kettenmann, 2007). However, under
conditions of stress or elevated peripheral inflammation, the
microglia transform into an activated state where there is
an upregulation of the major histocompatibility complexes
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(MHCs) and complement receptors stimulating the production
of large amounts of inflammatory cytokines and chemokines
(Hanisch and Kettenmann, 2007).

Recently, depression has been described as a microglia-
associated disorder with many depressed patients suffering
from excessive microglial activation (Yirmiya et al., 2015).
In preclinical depression models following a stress paradigm,
elevated numbers of activated microglia in the hippocampus,
prefrontal cortex, nucleus accumbens and amygdala have
been reported (Biesmans et al., 2013; Hinwood et al.,
2013). In rats subjected to a mild stress paradigm for
12 weeks as a model of depression, significant microglial
activation in the hippocampus was observed (Wang J.
et al., 2018). In suicide completers, there is evidence of
elevated microgliosis (Steiner et al., 2008, 2011), which
has been confirmed with postmortem enrichment of the
microglial ionized calcium binding adaptor molecular
(IBA)1 marker in the dorsal anterior cingulate cortex of
depressed suicide victims (Torres-Platas et al., 2014). In
addition, an association between reactive microglia and major
depression was shown in a positron emission tomography
study demonstrating that the density of translocator protein-
18, a mitochondrial protein expressed almost exclusively
in activated microglia, was significantly elevated by 30% in
the prefrontal cortex, anterior cingulate cortex and insula
of patients with major depression (Setiawan et al., 2015).
This was confirmed in a recent study in mild to major
depression patients where translocator protein 18 was
more highly expressed in the anterior cingulate cortex and
insula of major depression patients with suicidal thoughts
(Holmes et al., 2018).

Gut-Brain-Axis Signaling Abrogates Microglial
Activation
The first study showing that the gut microbiota can
influence microglial dynamics was conducted by Erny
et al. (2015), which showed distinct variations in the
microglial transcriptomes of germ-free versus specific
pathogen free mice. In particular, many genes involved in
cellular activation were down-regulated in the microglia of
germ-free animals while flow cytometry analyses indicated
that these microglia were immature. Further, this group
showed that chronic treatment with SCFAs could reverse
the microglial immaturity and malformation observed in
germ-free mice indicating the importance of microbial-
derived metabolites in shaping the microglial responses (Erny
et al., 2015). One study showed that repeated treatment of
sodium butyrate attenuated LPS-induced depressive behaviors
while simultaneously attenuating microglial activation in
the hippocampus, possibly through epigenetic regulation
of various promoter elements (Yamawaki et al., 2018).
Another study also compared microglial activation between
conventional and germ-free mice subjected to a LPS stressor.
Using a cytometric bead array analysis from hippocampal
and prefrontal cortex samples, germ-free mice demonstrated
attenuated production of cytokines in both these areas,
which correlated to the observed increase in microglial

activation in conventional, but not germ-free mice. Further,
the microglia in germ-free mice lacked MHCII markers,
CD44 and CD62L, confirming their inability to be stimulated
(Campos et al., 2016).

Microbial-Derived Polyphenolic Metabolites Inhibit
Microglial Activation
Phenolic acids produced by the gut microbiota also modulate
microglial activation. In the AD APP/PS1 mouse model, a
pomegranate extract was shown to reduce microgliosis and
amyloid-beta plaque deposition in association with reduced
anxiety-like behavior and increased memory performance.
This effect was attributed to two polyphenolic compounds,
punicalagin and ellagic acid, and likely its bioactive microbial-
derived metabolite EGCG (Rojanathammanee et al., 2013).
Similar to EGCG, resveratrol was shown in neuron-glial primary
cultures to inhibit LPS-induced microglial activation and
subsequent production of TNFα, nitric oxide and IL-1β likely
through modulation of inflammasome signaling (Zhang et al.,
2013). In a follow up study, resveratrol reduced hypoxia-induced
microglial activation in BV-2 cells, consequently reducing
proinflammatory factor release by inhibiting hypoxia-induced
NF-κB inhibitor (IkB)-α degradation (Zhang et al., 2015).
Chronic constriction injury causes significant glial activation
and neuroinflammation in the spinal trigeminal nucleus.
Resveratrol treatment after the constriction injury showed
an inhibitory effect on the associated microglia and astrocyte
activation while reducing the production of inflammatory
cytokines through a mechanism implicating MAPK activation
(Yang et al., 2016). Quercetin invokes a dose-dependent
decrease in nitric oxide production in BV2 microglial cells
1 h prior to LPS treatment. Mechanistically, the authors
observed that quercetin suppressed cPLA2 phosphorylation,
an activity that was shown to prevent microglia-induced
neurotoxicity in differentiated SH-SY5Y neuroblast cells
(Chuang et al., 2016). Quercetin was also shown to inhibit
obesity-induced hypothalamic inflammation by inhibiting
microglia-mediated inflammatory responses, likely through
mechanisms involving heme oxygenase induction. These
results were verified in vivo where microglial activation
markers in the hypothalamus of high fat diet fed obese mice
were reduced in quercetin-supplemented animals (Yang
et al., 2017). Various anthocyanin-rich extracts, particularly
from the purple basal, were also shown to attenuate nitrite
release from microglial cells stimulated by LPS (Strathearn
et al., 2014). Anthocyanins inhibit LPS-induced microglial
activation in BV2 microglial cells by inhibiting NF-κB
translocation into the nucleus and consequently cytokine
release including nitric oxide and prostaglandin E2 release
(Jeong et al., 2013).

Similar to the investigation on the anti-inflammatory
activity of polyphenolic metabolites, many of the dietary
polyphenols discussed for the management of microglial
activation require the activity of the gut microbiota to produce
the appropriate bioactive metabolites. With an appropriately
designed synbiotic formulation, multiple bioactive polyphenolic
metabolites may be produced with multiple actions promoting
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neuroprotection against exasperated microglial activation,
consequently protecting against depressive-like phenotypes.

Inflammasome Activity Drives
Neuroinflammation in Depression
The importance of the inflammasome and sterile
inflammation in translating psychological stressful stimuli
into neuroinflammatory responses has become recently
recognized (Herman and Pasinetti, 2018). Pharmacological
inhibition (Zhang et al., 2015) or genetic depletion (Iwata et al.,
2016) of the inflammasome’s assembly abolishes the depressive
phenotype in response to various stress models. There are several
inflammasome complexes in the body; however, the nod-like
receptor pyrin containing 3 inflammasome (NLRP3), implicated
specifically in caspase-1 activation, is found predominantly in
the microglia under conditions of mild chronic stress (Pan et al.,
2014), but can also be induced in neurons under conditions
of severe stress (Zendedel et al., 2016). Indeed, NLRP3 gene
expression was found elevated in PBMCs of patients with major
depression corresponding with elevated serum levels of IL-1β

and IL-18, supporting the clinical applicability of inflammasome
activation in depression.

The inflammasome can be activated through sterile
inflammation making the inflammasome an intracellular
sensor to cellular stress and damage instead of direct pathogenic
load. Canonical inflammasome activation requires two activating
signals. The first signal stimulates the transcription of Nlrp3,
IL-1β and IL-18 proinflammatory cytokines and is under the
control of the PRRs, TLR or NLR, and the subsequent activation
of the NF-κB transcriptional program. As such, damaged
neurons or psychological stressors release danger associated
molecular patterns (DAMPs) including high mobility group box
1 (HMGB1), mtDNA, ATP and the S100 proteins which trigger
TLR-associated pathways and present a major risk factor for
depression (Fleshner et al., 2017). Each DAMP has a different
affinity for either TLRs, or other PRRs such as RAGE (receptor of
advanced glycation end products) or P2X7 (reviewed in Franklin
et al., 2018) that leads to the same downstream inflammatory
cascades including assembly and activity of the inflammasome.
The second signal, such as ATP release, instigates assembly
of the NLRP3 multimeric complex including recruitment
of the apoptosis speck-like (ASC) protein and pro-caspase-
1 (Lechtenberg et al., 2014). The assembled proteasome is
responsible for the catalytic cleavage of pro-IL-1β and pro-IL-18
by activated caspase-1 leading to inflammatory-driven cellular
damage, autophagy and pyroptosis (Gurung et al., 2014).

The stress-induced production of IL-1β is critical for
the development of depressive-like behaviors. In a chronic
unpredictable stress model in rats, IL-1β mRNA and protein
levels produced from inflammasome activation were found
elevated in the prefrontal cortex, but not in the serum or
CSF (Pan et al., 2014). Interestingly, Nlrp3-null mice are
resilient to restraint stress-induced depressive-like behaviors
including the associated microglial activation or reduced
hippocampal neurogenesis (Alcocer-Gomez et al., 2016).
Following a foot-shock paradigm, HMGB1 was found to be

specifically upregulated in the hippocampus and associated
with elevated chemokine and cytokine production (Cheng Y.
et al., 2016). Similarly, S100b is elevated in the plasma of major
depression patients, and overexpression of S100 is associated
with depressive-like behaviors observed with the forced swim
test in mice (Stroth and Svenningsson, 2015).

The Gut Microbiota and Related Polyphenolic
Metabolites Regulate Inflammasome Activation
Recently, the microbiota-inflammasome hypothesis of major
depression was proposed (Figure 2) (Inserra et al., 2018).
This theory suggests that there is a feedback loop where the
gut microbiota-induced production of peripheral inflammation
reduces the integrity of the BBB leading to inflammasome
activation and consequently, imparts depressive symptoms
while simultaneously disrupting the composition of the gut
microbiota. A variety of microbial pathogens that can activate the
NLRP3 inflammasome have been identified including Salmonella
typhimurium, Escherichia coli, and Shigella flexneri (Brodsky and
Monack, 2009); yet the mechanisms that drive this activation
remain to be fully characterized. The gut bacteria can either
directly activate the inflammasome, or indirectly. Through direct
activation, inflammasome receptors will recognize bacterial
antigens instigating the canonical inflammatory cascades while
indirect activation involves sensing changes in the host’s
response to infection known as “patterns of pathogenicity.” The
latter includes changes in oxidative stress, potassium efflux or
lysosomal destabilization (Storek and Monack, 2015) which can
be sensed by the sterile inflammatory response. In one study,
specific gut microbiota species were shown to stimulate IL-1β

release through inflammasome signaling following spinal cord
injury including the Enterobacteriaceae family and in particular,
the pathobiont Proteus mirabilis. This study suggested that these
selective members of the gut microbiota could stimulate newly
recruited monocytes to induce NLRP3-dependent IL-1β release,
promoting inflammation in the intestine and further studies
may demonstrate their importance in the depressive clinical
phenotypes (Seo et al., 2015).

There are several indications that polyphenol
supplementation can reduce inflammasome activation. In
line with its aforementioned anti-inflammatory activities, EGCG
has been shown to impact inflammasome signaling in multiple
models. In a contrast-induced model of renal failure, EGCG
downregulated Nlrp3 gene expression through a pathway
involving a known inflammatory regulator heme oxygenase-
1 (Gao et al., 2016). In another study, prophylactic EGCG
treatment attenuated lupus nephritis symptoms and several
inflammatory pathological targets leading to tangible preclinical
benefits (Tsai et al., 2011). In endothelial cells, palmitate-induced
oxidative stress lead to the strong upregulation of the NLRP3
inflammasome associated IL-1β release and apoptosis, an effect
that was ameliorated by EGCG supplementation through
mechanisms involving AMPK signaling (Wu et al., 2014).

Quercetin also shows promising ability to attenuate
inflammasome-induced inflammation. In a spinal cord injury
model in rats, quercetin significantly decreased ROS production,
inhibited NLRP3 inflammasome activation and reduced
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FIGURE 2 | Gut microbiota activated inflammasome signaling leads to phenotypes specific to depression. Sterile inflammatory responses involving inflammasome
signaling is a key mechanism of stress-induced depression and the gut microbiota has been shown to impact inflammasome signaling at several levels. Symbionts,
or beneficial bacteria, have been shown to promote gut barrier integrity, and guide T-cell regulation toward an anti-inflammatory phenotype (green). Pathobionts, or
bacteria with a negative effect, have the opposite effect, compromising the gut barrier integrity, activating immune response through the release of pathogen
associated molecular patterns (PAMPs) and pushing T cell development toward a proinflammatory state (red). Overall, these effects lead to inflammasome activation
in the periphery and the microglia that ultimately promote the development of depression.

inflammatory cytokine levels (Jiang et al., 2016). In vitro, the
LPS-producing E. coli O157:H7 induced significant upregulation
of NLRP3 assembly along with caspase-1 activation and oxidative
stress. Quercetin protected NLRP3 activation upon E. coli
infection in Caco-2 epithelial cells demonstrating its potential to
protect the GIT epithelial barrier against pathogenic insults (Xue
et al., 2017). Another study suggested that quercetin specifically
inhibited NLRP3, and not NLRP1, inflammasome activation
by interfering with ASC oligomerization in a dose-dependent
manner resulting in lower IL-1β release (Domiciano et al.,
2017). Finally, in a streptozotocin-induced diabetes nephropathy
model, quercetin suppressed NLRP3 inflammasome activation
via, in part, its anti-hyperuricemic effects (Wang C. et al., 2012)
demonstrating quercetin’s inflammasome-inhibition action
in vivo. Apigenin, a natural flavone, normalized the expression
levels of NLRP3 and IL-1β following microglial activation
caused by chronic unpredictable stress in the prefrontal cortex
of rats via upregulation of peroxisome proliferator-activated
receptor (PPAR)γ receptors (Li et al., 2016). Grape seed-
derived procyanidins, rich in apigenin, significantly attenuated

gout pain in CD-1 mice caused by macrophage-mediated
inflammation and inflammasome activation (Liu H.J. et al.,
2017). Finally, in macrophages, apigenin was shown to inhibit
LPS-induced production of cytokines primarily through the
inhibition of caspase-1 activity and disruption of the NLRP3
inflammasome assembly as well as inhibiting ERK1/2 activation
(Zhang et al., 2014).

Several polyphenols have been shown to attenuate the onset
of sterile inflammatory cascades. For example, resveratrol can
normalize P2X7R expression in a model of chronic pain in
rats (Wu et al., 2017). Resveratrol was also shown to exhibit
a hepatoprotective effect in diabetic rats mostly through the
modulation of RAGE receptor expression (Khazaei et al.,
2016). In vitro, GSPE attenuated the advanced glycation end
products (AGE)-modified bovine serum albumin insult in
HUVEC cells by attenuation of surface RAGE expression
(Zhang et al., 2013). A GSPE extract was also shown
to reduce encephalopathy associated with chronic diabetes
through modulation of the AGE/RAGE/NF-κB pathway in the
hippocampus (Lu et al., 2010). In a long-term high-fructose fed
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model of neurodegeneration in rats, therapeutic supplementation
with 6% polyphenol rich grape powder for 12 weeks reduced
RAGE expression and tau hyperphosphorylation (Liao et al.,
2017). Apigenin and diosmetin, both grape-derived polyphenols,
potently and dose-dependently inhibited AGE-induced nitric
oxide and TNFα release (Chandler et al., 2010). Finally,
there has been some evidence suggesting that quercetin can
modulate the RAGE/NF-κB cascade as quercetin attenuated
atopic dermatitis symptoms, including downregulation of
cytoplasmic HMGB1, RAGE and nuclear NF-kB translocation
(Karuppagounder et al., 2015).

Tryptophan Metabolism
Serotonin depletion is one of the most robust blood markers
of severe depression (Anderson et al., 1990) and the classical
“serotonin hypothesis” describes how diminished serotonin levels
play a causative role in depressive phenotypes. However, this
hypothesis has been routinely challenged in recent years as the
serotonin hypothesis has failed to be substantiated. Diets depleted
in tryptophan, the precursor to serotonin synthesis, fail to show
any alterations in mood in healthy participants (Smith et al.,
1997) indicating that reduced serotonin is neither necessary nor
sufficient to cause depression. If this is true, then why are reduced
levels of plasma serotonin such a strong biochemical marker of
depression? The answer may be the reallocation of tryptophan
toward its pro-inflammatory kynurenine degradative pathway, a
transition that is dependent on the gut microbiota.

There are two competing pathways for tryptophan
metabolism, the methoxyindole and kynurenine pathways.
Along the methoxyindole pathway, only 1–5% of dietary
tryptophan is synthesized into serotonin, which occurs namely
in the enterochromaffin cells in the GIT tract, producing 95%
of the body’s serotonin (Gershon and Tack, 2007). In the GIT,
serotonin is responsible for controlling motility, secretion and
absorption of nutrients, intestinal transit time and colonic tone.
Approximately 10–20% of the tryptophan allocated toward
serotonin development will directly pass through the BBB
initiating serotonin synthesis in the brain (Gal and Sherman,
1980). The remaining tryptophan is metabolized along the
kynurenine pathway, which forms several metabolites important
for the pathophysiology of depression. The balance of tryptophan
metabolism is determined by the activation of the rate-limiting
enzymes of kynurenine production, which under normal
physiological conditions is controlled by the availability of
tryptophan itself and the kynurenine pathway remains stabilized
(Cervenka et al., 2017). However, under pathophysiological
conditions, elevated inflammation and stress can disrupt the
balance of kynurenine production.

The rate-limiting enzymes of tryptophan metabolism are
indoleamine- 2,3-dioxygenase (IDO) found in all extrahepatic
tissues including the brain and tryptophan-2,3-dioxygenase
(TDO) found in the liver. Of particular importance, IDO,
inducible by IFNγ, is found in the astrocytes, microglia,
endothelial cells and macrophages (Gal and Sherman, 1980).
TDO, however, is more heavily influenced by corticosteroids
produced by the stress response (O’Mahony et al., 2015)
linking HPA activation with tryptophan metabolism. There are

two competing pathways that further metabolize kynurenine
and the resultant metabolites, namely kynurenic acid (KA)
and quinolinic acid (QA), are potent neuro- and immuno-
modulatory factors. KA is regarded as neuroprotective as its
primary function is to antagonize the glycine co-agonist site on
NMDA receptors to prevent excitotoxicity (Kessler et al., 1989).
On the other hand, QA is neurotoxic, agonizing the same site
on the NMDA receptors promoting excitotoxicity (Guillemin,
2012). In the brain, KA is mostly produced in the astrocytes
while QA by the microglia and macrophages (Guillemin et al.,
2005). Under a state of chronic inflammation, the elevation
in corticosterones and inflammatory cytokines increase the
peripheral and central production of kynurenine, consequently
reducing serotonin production in the brain (Li et al., 2017).
In addition, proinflammatory cytokines activate the enzyme
kynurenine-3-monooxygenase, which shifts the metabolism
of kynurenine from KA to QA increasing the production
kynurenine’s more neurotoxic downstream metabolites.

Elevated brain QA has been recorded in brains of patients
with inflammatory neurological diseases (Stone, 2001) and in
depressed patients that attempted suicide for up to 2 years
after their attempt (Bay-Richter et al., 2015). In the serum
of patients with major depression, there is a reduced ratio
of KA to QA (Savitz et al., 2015) associated with an inverse
correlation to hippocampal volume, a canonical marker of MDD.
Additionally, one of the intermediates between kynurenine
and QA, 3-hydroxykynurenine, a potent free-radical generator,
directly causes neuronal apoptosis, in addition to activating
inflammasome activity (Okuda et al., 1998).

Unfortunately, the development of pharmaceutical
interventions to modulate the kynurenine pathway have
been unsuccessful. Blocking the activity of IDO or TDO enzymes
will leave too much circulating tryptophan to potentially toxic
levels, while blocking kynurenine-3-monooxygenase to prevent
QA production will skew the KA/QA balance too in favor
of KA, which can reduce overall NMDA receptor activity.
Further, modulation of IFNγ, or other activators of IDO or
TDO, is not specific, and will have widespread side effects
(reviewed in Jeon and Kim, 2017). Based on the limitations of
pharmacological intervention for kynurenine pathway activity,
strategies utilizing the gut microbiota and its ability to produce
microbial polyphenolic metabolites may prove successful.

Tryptophan and the Gut Microbiota
The availability of tryptophan is dependent both on diet
and importantly, the composition of the gut microbiota as
some species utilize tryptophan for the local synthesis of
serotonin while others break it down with their endogenous
tryptophanase enzyme into the microbial metabolite indole
(O’Mahony et al., 2015). Indeed, germ-free animals have elevated
circulating tryptophan levels (El Aidy et al., 2012) and elevated
circulating tryptophan is associated with increased serotonin
levels in the hippocampus (Clarke et al., 2013). Interestingly,
the tryptophanase activity of B. fragilis was linked to the
pathology of autism spectrum disorders (Hsiao et al., 2013). In
another study, administration of B. infantis resulted in reduced
serotonin metabolite (5-HIAA) concentrations in the frontal
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cortex (Desbonnet et al., 2008). Further, L. johnsonii reduced
serum kynurenine concentrations by 17% while correspondingly
elevating serotonin levels by 1.4-fold, a result associated
with the ability of L. johnsonii to suppress IDO activity
(Valladares et al., 2013).

Serotonin production in the GIT tract directly connects
the gut to neurological signaling as approximately 90% of
the dietary tryptophan is metabolized along the kynurenine
pathway (O’Mahony et al., 2015), which has a dramatic
impact on central serotonin availability. As such, studies have
shown that peripherally produced serotonin has neuroactivity,
which is critical in many neuropsychiatric conditions including
depression (O’Mahony et al., 2015). Interestingly, a fecal
microbiota transplant from patients with major depression into
germ-free rats induced alterations in tryptophan metabolism,
anhedonia and anxiety-like behavior (Kelly et al., 2016)
directly linking the gut microbiota composition to depressive-
like symptoms.

Polyphenols Impacting Tryptophan Metabolism
There are several instances where polyphenols or their
metabolites were shown to modulate signaling through the
kynurenine pathway. A bolus dose of resveratrol (5 g) in humans
significantly reduced tryptophan levels 2.5 and 5 h after treatment
in healthy volunteers resulting in a 1.33- and 1.30-fold increased
the in kynurenine to tryptophan ratio, respectively (Gualdoni
et al., 2016). However, in a preclinical study, neither IDO activity
nor serotonin levels were correlated with resveratrol-mediated
protective effects on social-stress-induced cytokine release or
depressive-like behavior (Finnell et al., 2017). Polyphenols
present in black tea, notably catechins and epicatechins,
increased kynurenine levels in healthy volunteers resulting in
a higher kynurenine to tryptophan ratio (Gostner et al., 2015).
Similarly, EGCG dose-dependently inhibited IDO mRNA and
protein expression in human colorectal cells, in correlation
with reduced IFNγ levels, possibly through modulating the
phosphorylation status and hence activity of STAT1 (Ogawa
et al., 2012). In contrast, a group of flavone polyphenols where
shown to inhibit IDO activity, but not mRNA expression, in
human neuronal stem cells with apigenin having the greatest
inhibitory activity and genistein and quercetin the lowest (Chen
et al., 2012). It is clear that polyphenols impact tryptophan
metabolism; however some of the effects seem inconsistent,
likely due to the variable bioavailability of the polyphenols
dependent on the composition of the microbiota. Nevertheless,
development of synbiotic strategies to optimize the production of
polyphenolic metabolites may successfully modulate the activity
of the kynurenine pathway to regulate serotonin levels in the
brain of depression patients.

Neurogenesis and Synaptic Plasticity in
Depression
Most animal models of depression are focused on stress-induced
inflammatory models that result in neurodegeneration of specific
brain areas and consequently, a depressive phenotype. However,
under natural conditions, although neuroinflammation does play
a major role in depression, reduced neurogenesis is another major

pathological concern (Mahar et al., 2014). Many groups believe
that suppressed neurogenesis leads to depression (Kim, 2016) and
that this fact is underestimated based on the use of animal models
as adult neurogenesis in humans is higher compared to rodents
(Spalding et al., 2013). Chronic stress impairs hippocampal
neurogenesis, which consequently impacts HPA axis regulation
(Dranovsky and Hen, 2006). This feedforward mechanism
exacerbates affective behavioral responses, while predisposing
an individual to subsequent depressive episodes (Mahar et al.,
2014). Indeed, elevated microglial activity is associated with
reduced hippocampal neurogenesis, which could account for the
canonical loss of hippocampal volume associated with depression
(Kempermann, 2002).

BDNF is a neurotrophic factor that is a key modulator of
hippocampal neurogenesis. BDNF binds to the tropomyosin
receptor kinase B (TrkB) whose downstream signaling pathways
play an important role in the structural plasticity induced by
depression. Several studies have implicated BDNF levels in
multiple brain areas with the pathophysiology of depression
with decreased levels in the dentate gyrus and the CA3 of the
hippocampus and prefrontal cortex or elevated levels in the
nucleus accumbens promoting depressive phenotypes (reviewed
in Zhang et al., 2016). As such, TrkB receptor agonists such as
7,8-dihydroxyflaone and receptor antagonists such as ANA-12
have antidepressant effects (Jang et al., 2010), which indicates
the sensitivity of physiology to variable levels of BDNF. In a
chronic unpredictable stress model of depression, depressive
symptoms were correlated to reduced BDNF levels in the
hippocampus resulting in the mounting decrease in hippocampal
CA1 pyramidal neurons (Qiao et al., 2017). Studies have shown
that peripheral levels of BDNF can stimulate overall hippocampal
neurogenesis (Schmidt and Duman, 2010) indicating that
peripheral physiological effects, such as that mitigated by the gut
microbiota, could potentially have antidepressant effects through
modulating neurogenesis.

Indeed, there is evidence suggesting that the gut microbiota
can alter the expression of neurotrophins such as BDNF
in the hippocampus and proteins involved in their synaptic
transmission such as synaptophysin and PSD-95 in the striatum
(Bercik et al., 2011). Treatment of post-weaned mice with
antibiotics was shown to reduce anxiety-like behaviors while
promoting cognitive deficits and significantly reducing BDNF
levels in the adult brain (Desbonnet et al., 2015). Similarly,
depleted microbiota in adult mice also lead to significant
depletion of BDNF in the brain, associated with greater
susceptibility to depressive-like phenotypes (Hoban et al., 2016).
All of these studies indicate that the gut microbiota plays
a significant role in managing the levels of BDNF in the
brain; however only a handful of studies have investigated how
supplementation with probiotics can alter these levels. In one
study, supplementation with L. helveticus NS8 reduced restraint-
stress induced behavioral and pathophysiological markers of
depression, specifically including elevated levels of hippocampal
BDNF (Liang et al., 2015). In an aged model of Fisher rats,
L. pentosus var. plantarum C29 restored age-reduced loss of
motor activity and reduced BDNF levels, while simultaneously
ameliorating variations of Akt, mTOR and NF-κB in the
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hippocampus (Jeong et al., 2015). Similarly, in aged mice, L. brevis
OW38 reduced the associated inflammaging and increased
the spontaneous alternation behavioral phenotype through the
restoration of BDNF expression (Jeong et al., 2016). Recently,
C57BL/6J mice subjected to a 5-week chronic unpredictable
stress paradigm were supplemented with Bifidobacterium longum
subsp. infantis E41 and Bifidobacterium breve M2CF22M7, which
together reduced the depressive phenotype partially through
rescuing BDNF levels in the brain (Tian et al., 2019). A similar
study also showed that supplementation with Clostridium
butyricum could reduce the depression phenotype and reduced
BDNF levels in male C57BL/6J mice undergoing the same
stress paradigm (Sun et al., 2018). In contrast, in a randomized
controlled clinical trial, 79 patients with moderate scores of
self-report mood measures were allocated to take a mixture

of L. helveticus and B. longum for 8 weeks. Although there
was significant improvement in the depression score (60%),
there was no variation in several plasma biomarkers including
BDNF (Romijn et al., 2017) indicating that there is a complex
relationship between the composition of the gut microbiota and
its effect on neurogenesis and neuroplasticity metabolites.

Likewise, a positive relationship between the consumption
of polyphenols with markers of neurogenesis including BDNF
has been observed. Several polyphenol-rich natural extracts have
been shown to be key modulators of neuroplasticity (Sangiovanni
et al., 2017) while many isolated polyphenols have been shown to
promote neurite outgrowth in vitro including resveratrol, EGCG,
ferulic acid, caffeic acid and quercetin derivatives, through
mechanisms involving BDNF activity (reviewed in Moosavi
et al., 2016). A low-dose unfractionated green tea polyphenol

FIGURE 3 | Mechanisms connecting gastrointestinal dysbiosis with biological signature of depression. Depression is a multifaceted disorder with several
coordinating pathologies, most which can be modulated by gut microbiota modifying agents including dietary polyphenols. The main gut-brain-axis mechanisms
through which polyphenols and their microbial-derived metabolites can elicit a positive effect on depression are stress (yellow), serotonin regulation (green),
inflammation (red) and metabolism (blue), effects which are shown as purple arrows. GC, glucocorticoids; ACTH, adrenocorticotropic hormone; CRH, corticotropin
releasing hormone; 5HT, serotonin; Trp, tryptophan; IDO, indolamine-2,3-dioxygenase; KA, kynuric acid; QA, quinolinic acid; cAMP, cyclic adenosine
monophosphate; PKA, protein kinase A; BDNF, brain derived neurotrophic factor; DAMPs, danger associated molecular patterns; MAMPs, microbe associated
molecular patterns; PPARγ, peroxisome proliferator activated receptor gamma; GSKβ, glycogen synthase kinase 3 beta; InR, insulin receptor; AKT, Protein kinase B;
AMPK, 5′ AMP-activated protein kinase; PGC1, proliferator-activated receptor gamma coactivator; UCP2, uncoupling protein 2; ROS, reactive oxygen species.
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preparation (<0.1 µg/ml) or a low-dose of one of its active
ingredients EGCG (<0.5 µM) potentiated the neuritogenic
ability of a low concentration of BDNF in PC12 cells (Gundimeda
et al., 2014). In an oxidative stress model of anxiety in rats,
GSPE (15 g/L/day) treatment over 3 weeks significantly reduced
anxiety-like behavior while restoring, among other markers,
BDNF levels indicating that oxidative-stress induced changes in
behavior can be rescued by grape seed polyphenol treatment
(Allam et al., 2013). In a rat model of posttraumatic stress
with a single-prolonged stress through foot shock, grape powder
administered at 15 g/L for 3 weeks following the stress protocol
reduced anxiety-like behavior while preventing the loss of BDNF
levels in the amygdala of affected animals (Solanki et al., 2015).
Finally, in a human intervention study, subjects were given a
single dose of whole coffee fruit concentrate powder, green coffee
caffeine powder, grape seed extract powder or green coffee bean
extract powder. It was found that the grape seed extract powder
and the green coffee caffeine powder increased the levels of BDNF
in the serum by 31% while the whole coffee fruit concentrate
powder increased BDNF levels by 143% (Reyes-Izquierdo et al.,
2013). As indicated earlier in this review, all of these extracts are
modulated by the gut microbiota. It can therefore be predicted
that there is a synergistic impact of the dietary polyphenols with
the gut microbiota in modulating the plasma and presumably
peripheral and central levels of BDNF.

CONCLUSION

Depression is a multifactorial disorder reflecting an
accumulation of several pathophysiological conditions including
neuroinflammation, elevated microglia activation, an imbalance
of tryptophan metabolites and altered BDNF levels. Due to
its complexity, no single pharmacological agent targeting one

specific aspect of depression’s etiology would be sufficient to
ameliorate such a diverse set of risk factors. Recently the gut
microbiota’s interaction with dietary polyphenols has been
shown to produce a large battery of bioactive metabolites
with the ability to simultaneously modulate the multiple risk
factors of depression. As each of the microbial-derived bioactive
metabolites produced by a single polyphenol-rich botanical
have the potential to overlap or complement the bioactivity
of other metabolites produced by the same botanical, the
possibility of synergistic and multiplexed activity against multiple
depression risk factors is enhanced (Figure 3). As demonstrated
in this review with the support of mechanistic studies, this
synbiotic approach may instigate a paradigm shift in the
treatment regime of depression as probiotic and polyphenol-
rich botanical supplementation is a cost-effective, long-term
treatment option with limited side effects that may be more
robust that traditional pharmacological paradigms that target
specific depression risk factors.
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Zinc is an essential trace metal for bacteria of the intestinal flora. Approximately 20%
of dietary zinc – intake is used by intestinal bacteria. The microbiome has recently
been described as an important factor for healthy brain function via so-called gut-
brain interactions. Similarly, zinc deficiency has been associated with neurological
problems such as depression, mental lethargy and cognitive impairments in humans
and animal models. However, the underlying pathomechanisms are currently not well
understood and a link between zinc deficiency and altered microbiota composition
has not been studied. Especially during pregnancy, women may be prone to low zinc
status. Thus, here, we investigate whether zinc deficiency alters gut-brain interaction in
pregnant mice by triggering changes in the microbiome. To that end, pregnant mice
were fed different diets being zinc-adequate, deficient in zinc, or adequate in zinc
but high in zinc uptake antagonists for 8 weeks. Our results show that acute zinc-
deficient pregnant mice and pregnant mice on a diet high in zinc uptake antagonists
have an altered composition of gastro-intestinal (GI) microbiota. These changes were
accompanied by alterations in markers for GI permeability. Within the brain, we found
signs of neuroinflammation. Interestingly, microbiota composition, gut pathology, and
inflammatory cytokine levels were partially rescued upon supplementation of mice with
zinc amino-acid conjugates (ZnAA). We conclude that zinc deficiency may contribute
to abnormal gut-brain signaling by altering gut physiology, microbiota composition and
triggering an increase of inflammatory markers.

Keywords: Zn, microbiota, gastrointestinal, gut-brain, postpartum depression, mood disorder, immune disease,
trace metal

INTRODUCTION

Zinc is one of the most prevalent trace metal ions in the body and plays a major
role in the functions of the brain, immune system and endocrine system (Sauer et al.,
2016). In humans, acute zinc deficiency is associated with the occurrence of skin
lesions, anorexia, diarrhea, growth retardation, depressed wound healing, altered immune
function, sensory impairments, and behavioral changes such as lethargy and depression
(Aggett and Harries, 1979; Chasapis et al., 2012). Especially the ability to precipitate
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depression hints toward an interesting gut-brain interaction,
given that zinc required for cognitive processes is ultimately
taken up via the gastrointestinal (GI) system (Vela et al., 2015;
Rafalo et al., 2016).

Low zinc status has been associated with several mood
disorders including major depressive disorders and bipolar
depression (Cope and Levenson, 2010). Depression is a mental
disorder caused by changes in brain chemistry affecting thought
processes, emotions, behaviors and overall physical health
(Bondy, 2002). Interestingly, zinc status may be a biomarker
of mood disorder (Styczeń et al., 2017). Several studies show
that zinc deficiency induces depression while supplementing zinc
improves mood as well as cognitive function in humans with
depression and animal models (Piao et al., 2017).

Clinical studies have reported a reduction of blood zinc
concentration in depressed patients (McLoughlin and Hodge,
1990; Maes et al., 1997; Siwek et al., 2013; Swardfager et al., 2013;
Pfaender and Grabrucker, 2014) A recent meta-analysis found
that depression in subjects was associated with significantly lower
peripheral blood zinc concentration (Swardfager et al., 2013).
Interestingly, lower zinc blood concentrations were also reported
in women with postpartum depression (Etebary et al., 2010).

In animal models, acute zinc deficiency often was reported
to result in depression-like behavior (Hagmeyer et al., 2014).
The administration of low zinc diets leads to the development
of depressive-like behavior in mice and rats (Tassabehji et al.,
2008; Watanabe et al., 2010; Młyniec and Nowak, 2012;
Młyniec et al., 2012, 2013a,b), assessed through measuring
immobility time in the forced swim test (Corniola et al.,
2008; Tassabehji et al., 2008; Whittle et al., 2009; Watanabe
et al., 2010; Młyniec et al., 2012, 2013b) or tail suspension
test (Młyniec and Nowak, 2012), indicating that zinc deficiency
contributes to the development of this behavior. However,
the underlying molecular pathomechanisms are still not well
known. On a molecular level, zinc has been associated with the
GPR39 receptor modulating monoaminergic and glutamatergic
neurotransmission, NMDA receptor signaling (Paoletti et al.,
2009), glucocorticoids (Nowak, 2001), and BDNF levels, which
are all affected in depression (Młyniec et al., 2015). Further,
zinc deficiency can disrupt energy metabolism and contributes to
chronic inflammation (Bao et al., 2010). There is a tight interplay
between zinc levels and inflammation (Prakash et al., 2015),
with decreased zinc associated with a pro-inflammatory state.
In particular, increased levels of circulating pro-inflammatory
cytokines, which may lead to the activation of brain-resident
microglia may contribute to neurobiological changes seen in
depression (Wohleb et al., 2016) such as dysfunction of the
monoamine system, impaired neurogenesis, and alterations in
synaptic function (Horowitz and Zunszain, 2015) that result in
abnormalities in regional brain activity.

While zinc deficiency negatively affects mood possibly
triggering the development of depressive-like symptoms,
evidence is mounting that zinc supplementation can be used to
improve depressive symptoms in humans and animal models
(Nowak et al., 2003; Siwek et al., 2010; Petrilli et al., 2017).
Zinc supplementation exhibits antidepressant-like effects
in both preclinical and clinical studies (Nowak et al., 2003;

Siwek et al., 2009). In addition, the results of several randomized
controlled trials show effectiveness of zinc as adjunctive therapy
in depressed individuals (Nowak et al., 2003; Siwek et al., 2009;
Sawada and Yokoi, 2010; Lai et al., 2012; Ranjbar et al., 2014;
Solati et al., 2015). Similarly, the treatment of animal models
for depression with zinc showed antidepressant effects, and zinc
supplementation enhanced the effectiveness of antidepressants
(Rafalo et al., 2016).

Zinc is also an essential trace metal for bacteria of the
intestinal flora. A comparison between germ-free rats and rats
with pathogen-free intestinal flora revealed that approx. 20% of
the dietary intake of zinc was used by intestinal bacteria (Smith
et al., 1972). Intriguingly, changes in gut microbiota have been
implicated in a variety of conditions including depression (Dinan
and Cryan, 2017). In a recent study, depression was reported
associated with decreased gut microbiota richness and diversity
(Kelly et al., 2016). A feedback loop between depressive states
and dysregulation of the microbiome was suggested. An open
question is, whether zinc deficiency alone may correspondingly
alter the gut microbiome as demonstrated in mice in which
chronic depression- and anxiety-like behaviors were induced by
olfactory bulbectomy (Park et al., 2013).

In mice, the offspring of mice with zinc deficiency during
pregnancy show autism-like behavior (Grabrucker et al., 2014,
2016). Intriguingly, in humans, maternal postpartum depression
is associated with the presence of autistic traits in the offspring at
18 months of age (Salvanos et al., 2010). Pregnant women are at
increased risk of developing zinc deficiency as the required daily
intake almost doubles in this period (Grabrucker, 2016). Further,
supplementation of folic acid, high levels of calcium and iron, as
well as a diet high in phytates may lower the bioavailability of zinc
(Sauer et al., 2017) during pregnancy.

Thus, here, we investigated whether dietary-induced acute
zinc deficiency during pregnancy can elicit alterations in the gut
microbiota composition in pregnant mice, which may translate
into increased inflammatory signaling and ultimately induce
changes in brain function in mice. We included a diet adequate
in zinc but enriched in zinc uptake inhibitors (folic acid, phytic
acid, high Ca/Fe) for comparison with a diet deficient in zinc
in our study. We further investigated whether rescuing zinc
levels using zinc amino-acid conjugates (ZnAA) ameliorates
the observed alterations and thus may be a potential future
prevention strategy. ZnAAs have advantages in overcoming
especially low bioavailability of zinc (Sauer et al., 2017) and are
currently available on the market as a mineral supplement for
animals, where they are safe and effective and may be used in
human studies in future.

MATERIALS AND METHODS

Materials
PBS with Ca2+/Mg2+ was purchased from PAA.
Paraformaldehyde was purchased from Merck, and D-Saccharose
from Carl Roth. Unless otherwise indicated, all other chemicals
were obtained from Sigma-Aldrich. Primary antibodies were
purchased from the following companies: Thermo Fisher
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Scientific (ZO-1 polyclonal antibody, 61-7300, mouse specific;
FABP2 polyclonal antibody, PA5-18700, mouse specific), Abcam
(Anti-Claudin 3 polyclonal antibody, ab15102, mouse specific;
Anti-GFAP monoclonal antibody [GF5], ab10062, mouse
specific), Origene (monoclonal antibody to Escherichia coli LPS
(J5 LPS)[Clone ID: 2D7/1], BM1091, besides E. coli J5 LPS,
the antibody has also been found to react with K. pneumoniae,
S. sonnei, and S. typhimurium LPS, the antibody detects LPS
and LPS with modifications), Cell signaling Technologies (IL-6
(D5W4V) XP monoclonal antibody, #12912, mouse specific),
Sigma Aldrich (Anti-Iba1/AIF1 monoclonal antibody, MABN92,
mouse specific) and Merck Millipore (Anti-NR2B polyclonal
antibody, 06-600, mouse specific). Alexa Fluor conjugated
secondary antibodies were obtained from Invitrogen/Life
Technologies Europe. Secondary HRP conjugated antibodies
were purchased from Dako. Zinc amino acid complexes (ZnAAs)
were obtained from Zinpro Corporation (Eden Prairie, MN,
United States). Special diets for mice were purchased from
Ssniff diets, Germany.

Animals
8-week old C57BL/6JRj mice were purchased from Janvier Labs
and housed upon arrival in the animal facility in plastic cages
under standard laboratory conditions and provided with food
and water available ad libitum. The housing room was maintained
at 22◦C, with lights automatically turned on/off in a 12 h rhythm
(lights on at 7 am). After 2 weeks of acclimation, mice were
divided into 4 groups: the control group (3 females) was fed with
standard laboratory food (41 mg/kg zinc) (diet 1), the second
group (3 females) was fed a zinc-deficient diet (19 mg/kg zinc)
(diet 2). The third group received the standard laboratory food
(41 mg/kg zinc), with increased levels of phytates (9.5 mg/kg),
folic acid (1.9 mg/kg), Ca (1.13 mg/kg) and Fe (503 mg/kg)
(diet 3). The fourth group was given diet 3 with 41 mg/kg
ZnAA supplement (Sauer et al., 2017). Mice were given access to
distilled, demineralized drinking water ad libitum. After 5 weeks,
animals became pregnant and were maintained for 3 weeks of
pregnancy on the respective diet. All animal experiments were
performed in accordance with the guidelines and regulations
for the welfare of experimental animals issued by the Federal
Government of Germany and by the local ethics committee
(Ulm University). The protocol used was approved by the
Regierungspräsidium Tübingen, state of Baden-Württemberg,
and the Ethics Committee of Ulm University (ID Number: 1257).

Measurement of Trace Metal
Concentrations
The Zn-concentration of solutions was measured by flame atomic
absorption spectrometry (AAS) at the Department of Clinical
Chemistry (ZE klinische Chemie) of the University Hospital Ulm
using a PinAAcle 900T from Perkin Elmer.

Immunohistochemistry
Frozen brain sections were cut at 14 µm thickness with
a cryostat (Leica CM3050 S) and stored at −80◦C until
further use. Prior to fluorescent staining, sections were thawed

for 20 min in a hydrated staining chamber, fixed in 4%
paraformaldehyde (PFA)/4% sucrose/PBS for 20 min and washed
three times in PBS for 5 min each. Then, sections were
treated with 1x PBS with 0.2% Triton X-100 for 20 min
at RT and 1 × PBS with 0.05% Triton X-100 for 10 min
at RT. To prevent unspecific antibody binding, blocking was
performed with blocking solution (BS) (10% FBS in 1x PBS)
for 1 h at RT. Primary antibodies were diluted in BS and
incubated overnight at 4◦C in a humid chamber. Subsequently,
sections were washed 1 × PBS with 0.05% Triton X-100
for 10 min and then incubated in a humidity chamber with
secondary antibody (alexa488 or alexa568) in BS for 2 h at
37◦C in darkness. After washing of tissue with 1 × PBS
plus 0.05% Triton X-100 for 5 min each for three times,
and additionally 5 min in 1× PBS, brain sections were
counterstained with DAPI (4′,6-Diamidin-2-phenylindol) for
5 min at RT. After washing with aqua bidest, sections were
mounted with Vecta Mount. Fluorescence images were obtained
using an inverted confocal microscope (Zeiss LSM710) and
an ImageXpress Micro Spinning Disc Confocal High-Content
Imaging System (Molecular Devices), and analyses of signal
intensities were performed with ImageJ 1.48r. For quantitative
analysis, signals were thresholded and signal intensities of
GFAP/IL-6 immunoreactivity in the vicinity of DAPI labeled
cell nuclei measured using the selection tool to determine
cytoplasmic protein levels. Exposure times and threshold values
were equal for all groups. Brain sections from three animals
per group were used and signal intensities from 10 cells
from three sections per animal measured in the hippocampal
CA1+ CA2 area.

Protein Biochemistry
Liver tissue was immersed in Hepes Sucrose buffer (10 mM
Hepes, 0.32 M Sucrose) and disrupted using a sonicator
(Fisherbrand sonic dismembranator 120). To obtain homogenate
from GI tissue, gut mucus was removed by gently squeezing
it out of the intestine with the blunt point of tweezers, and
tissue was submerged in PBS. Afterward the cleaned tissue
was lysed in modified RIPA buffer (150 mM sodium chloride,
50 mM Tris–HCl, pH 7.4, 1 mM ethylenediaminetetraacetic
acid, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1%
sodium dodecylsulfate) plus added protease inhibitor cocktail
(complete EDTA-free Protease Inhibitor Cocktail tablets,
Roche). Tissue samples in lysis buffer were disrupted with a
sonicator (Fisherbrand sonic dismembrator 120). Afterward
the obtained homogenate was incubated for 2 h at 4◦C on
a rotator. Besides semi-quantitative measurement of protein
levels, the resulting lysate allows for the analysis of LPS in
tissue. All materials used for lysate preparation were sterile
and endotoxin-free.

LPS analysis was performed according to Sturm et al. (1984).
The optional step of “baking” the nitrocellulose membrane
after transfer was not performed due to simultaneous detection
of ACTIN. Therefore, more diffuse LPS banding patterns are
observed representing higher molecular weight LPS molecules.
Using this protocol, the detection of LPS is limited to molecules
having side chain lengths of approx. 30 repeat units and greater.

Frontiers in Neuroscience | www.frontiersin.org 3 November 2019 | Volume 13 | Article 129537

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01295 November 28, 2019 Time: 13:44 # 4

Sauer and Grabrucker Altered Gut-Brain Interaction in Zinc-Deficient Mice

Western Blotting
Protein concentrations were determine by Bradford protein assay
and Pierce BCA Protein assay, and equal concentrations loaded
per lane. Proteins were separated by SDS-PAGE and blotted onto
nitrocellulose membranes (GE Healthcare). Immunoreactivity
was visualized using horseradish peroxidase (HRP)-conjugated
secondary antibodies and Pierce SuperSignal ECL substrate
(Thermo Fisher Scientific).

Western Blot Quantification
Evaluation of bands from Western blots (WBs) was performed
using ImageJ. Three independent experiments were performed
and blots imaged using a UVITEC Alliance Q9 Advanced system.
The individual bands were selected and the integrated density
was measured. All WB bands were normalized to β-Actin and
the ratios averaged and tested for significance. Mean β-Actin
signals were measured and compared between groups to exclude
effects of the treatments on the proteins used for normalization.
No significant differences in β-Actin levels were detected for any
treatment group.

Microbiome Analysis
DNA Extraction
DNA extraction of murine fecal samples was performed using
the Mo Bio PowerFecal DNA Isolation Kit according to the
manufacturer′s protocol. The resulting DNA concentration
was measured on a Nanodrop 2000. Purity was assessed by
calculating the measured A260/A280 ratio. DNA samples with
an A260/A280 ratio between 1.7 to 2.0 were considered pure and
subsequently used for microbiome profiling.

Pyrosequencing of 16S rDNA Region V3–V5
Primers were designed to target conserved sequences around
the variable region 3–5 (V3–V5) of bacterial 16S rDNA. All
bacterial taxonomic profiling via Illumina MiSeq was performed
by Eurofins Genomics (Ebersberg, Germany).

Pyrosequencing Data Processing and Taxonomic
Classification
All reads with errors were removed from the data set. Processing
of remaining reads was performed using minimum entropy
decomposition (MED), while splitting up the marker gene
dataset into Operational Taxonomic Units (OTUs). Assignment
of taxonomic information to each OTU was performed by BLAST
aligning of cluster representative sequences to the NCBI sequence
database. As a minimal requirement for reference sequences,
only sequences with a sequence identity of 80% across at least
80% of a representative sequence were chosen. For each OTU
a specific taxonomic assignment was transferred, selected from
a set of best matching reference sequences. Using the QIIME
software (version 1.8.0), taxonomic assignments and OTUs were
processed further.

Gene Expression Analysis (qRT-PCR)
Total RNA from murine brain tissue was isolated with the RNeasy
Lipid Tissue Kit (Qiagen) according to the manufacturer’s

protocol. Elution of total RNA was performed with sterile RNAse-
free water. RNA concentration was measured with the Take3 plate
on the Synergy H1 plate reader (Biotek). RNA purity was assessed
by A260/A280 absorbance ratio. For each biological replicate the
same amount of RNA was used per run. Quantitative RT-PCR
was performed using the QuantiFast SYBR Green RT-PCR kit
(Qiagen) and QuantiTect Primers (Qiagen) in a total volume of
10 µl. Thermal cycling and fluorescent detection were performed
using the QuantStudioTM 7 Flex Real-Time PCR System (Applied
Biosystems), measuring the SYBR Green I reporter dye signal.
Transcript levels were normalized to the housekeeping gene
Hmbs. All cycle threshold values (ct) were calculated by the
QuantiStudio Real-Time PCR software. All PCR reactions were
run in triplicates.

qRT PCR Quantification
Relative quantification is based on internal reference genes to
determine virtual mRNA levels of target genes. Ct values were
transformed into virtual mRNA levels according to the formula:
virtual mRNA level = 10 ∗ ((ct(target) − ct(standard))/slope of
standard curve).

LAL Chromogenic Endotoxin
Quantitation
Bacterial endotoxins in murine liver tissue samples were
measured with the Pierce LAL (Limulus Amebocyte Lysate)
Chromogenic Endotoxin Quantitation Kit (Thermo Fisher)
according to the manufacturer′s protocol. All materials used for
endotoxin measurement in samples were sterile and endotoxin-
free (e.g., Fisherbrand DNase/RNase and pyrogen free 1.5 ml
tubes, Eppendorf ep Dualfilter T.I.P.S R© SealMax). Liver samples
were homogenized in Hepes Sucrose buffer using a sonic
dismembrator (Fisherbrand) and diluted in endotoxin-free water
for the assay. Absorbance levels of standards and samples were
measured at 405 nm with the Synergy H1 plate reader (Biotek).
With the help of a standard curve, endotoxin levels [endotoxin
units/ml (EU/ml)] in liver samples were calculated.

Statistics
Statistical analysis was performed with Sigmaplot 11.0 and
GraphPad Prism 5. Data are shown as mean ± SEM. For
multiple-group comparisons, analysis of variance (ANOVA) was
performed. If groups showed significant differences post hoc
tests for within-group comparisons were performed (Tukey test).
For comparisons of two independent groups, student’s t-tests
were used. Statistically significant differences are indicated in the
figures by ∗p ≤ 0.05, ∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.001.

RESULTS

Low Levels of Zinc and Low Zinc
Bioavailability Both Lead to Acute Zinc
Deficiency in Mice
To understand the relationship of zinc deficiency, microbiome,
and brain physiology, female wild type C57BL/6 mice (10 weeks
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FIGURE 1 | Whole-blood Zn levels of mice measured by AAS in three animals
per group. Animals on a control diet (35 ppm) show average zinc levels of
66.7 µmol/l. After 8 weeks on a zinc-deficient diet (<5 ppm), significantly
lower zinc levels are measured. Mice on a diet with control zinc levels
(35 ppm) but the bioavailability of zinc lowered due to the presence of
antagonists of absorption (Zn inhibitor) similarly to mice on a zinc-deficient diet
show a significant reduction in whole-blood zinc levels.

of age) were fed 3 different diets for 8 weeks. Mice received either
a control diet with adequate supply of all necessary nutrients
including zinc (Control diet), a diet low in zinc (Zn deficient
diet) that was shown to produce mild zinc deficiency before
(Grabrucker et al., 2016), or the control diet with increased levels
of Zn uptake inhibitors (phytates, Ca and Fe, and folic acid) (Zn
inhibitor diet). Average whole-blood zinc levels were investigated
in three animals per group (Figure 1). A reduction of zinc in
whole-blood does not only reflect decreased zinc levels of a fast
exchanging pool of plasma zinc but indicates a zinc deficiency
affecting also intracellular zinc levels of blood cells and most likely
several other tissues.

The results show that animals on a standard control diet
had average whole-blood zinc levels around 67 µmol/l. As
expected from previous studies (Grabrucker et al., 2014, 2016),
a zinc-deficient diet significantly reduced zinc levels compared
to mice on the control diet (one way ANOVA, F(2,6) = 8.739,
p = 0.017, Post hoc analysis: Control vs. Zinc deficient, p = 0.0461).
Interestingly, the presence of additional phytates, folic acid, and
Ca and Fe ions (zinc uptake antagonists) also led to a significant
reduction in zinc levels (Figure 1) (Control vs. Zinc inhibitor,
p = 0.0307). Thus, the presence of high phytate levels such as
found in a plant-rich diet and folic acid and mineral (Ca, Fe)
supplements significantly lowers zinc bioavailability in the diet
to a level comparable to a zinc depleted diet in these experiments.

Low Dietary Levels or Bioavailability of
Zinc Result in Altered Microbiota
Composition in Pregnant Mice
Next, to investigate whether low dietary zinc availability over a
period of 8 weeks is sufficient to induce alterations in the gut
microbiota composition of mice, we performed pyrosequencing

of 16S rDNA of fecal samples. A microbiome profile of mice
from all different groups was established (Figure 2). The results
show that both Zn deficient diet and the Zn inhibitor diet lead
to significantly different microbiota composition in pregnant
mice (Figure 2A). However, the microbiota composition was also
different between Zn deficient diet and the Zn inhibitor diet.
Thus, in the presence of zinc uptake antagonists, some microbiota
are still successfully able to compete for zinc. In general, on
phylum level, Verrucomicrobia were the most prevalent in
control mice. In mice on a zinc-deficient diet, Verrucomicrobia
levels are dramatically reduced and Firmicutes become by far
the most prevalent microbiota phylum. In mice on a diet with
adequate zinc levels but the presence of zinc uptake antagonists,
Verrucomicrobia levels are similar to control mice but Firmicutes
increase as well. A significantly higher number of different species
was detected in the microbiome of animals on a zinc-deficient
diet compared to animals on control diet (one way ANOVA,
p = 0.002, Post hoc analysis: Control vs. Zinc deficient, p = 0.0167)
(data not shown).

In detail (Figure 2B), a significant difference was found in
the phylum Actinobacteria (one way ANOVA, p = 0.00003).
While no difference was found between control and Zn inhibitor
diet, mice on Zn deficient diet had significantly higher levels of
Actinobacteria compared to controls and mice on Zn inhibitor
diet (Tukey post hoc analysis: Control vs. Zinc deficient, p < 0.01;
Control vs. Zinc inhibitor, p < 0.01). In addition, levels of
Bacterioidetes were significantly different (one way ANOVA,
p = 0.00004). Mice on Zn deficient diet showed significantly
increased levels compared to control and Zn inhibitor diet
(Tukey post hoc analysis: Control vs. Zinc deficient, p < 0.01;
Zinc deficient vs. Zinc inhibitor, p < 0.01). Further, both Zinc
deficient and Zinc inhibitor diets significantly increase the level
of Firmicutes compared to the control diet (one way ANOVA,
p = 0.00003; Tukey post hoc analysis: Control vs. Zinc deficient,
p < 0.01; Control vs. Zinc inhibitor, p < 0.01). The increase was
significantly higher in mice on a zinc-deficient diet (Zinc deficient
vs. Zinc inhibitor, p < 0.01).

In contrast, both Zinc deficient and Zinc inhibitor diets
significantly decrease the level of Proteobacteria compared to
the control diet (one way ANOVA, p = 0.0003; Tukey post hoc
analysis: Control vs. Zinc deficient, p < 0.01; Control vs. Zinc
inhibitor, p < 0.01). The decrease was significantly higher in
mice on a zinc inhibitor diet (Zinc deficient vs. Zinc inhibitor,
p < 0.01). Zinc depleted diet, but not the diet with adequate
zinc levels and presence of zinc uptake inhibitors dramatically
reduced the amount of Verrucomicrobia (one way ANOVA,
p = 0.0006; Tukey post hoc analysis: Control vs. Zinc deficient,
p < 0.01; Zinc deficient vs. Zinc inhibitor, p < 0.01). The number
of unclassified reads was significantly higher in mice on a zinc-
deficient diet (Figure 2C).

Based on the alterations observed on the phylum level, we
conclude that the phylum Proteobacteria is very sensitive to
zinc depletion as already lower bioavailability of zinc leads
to a significant decrease of this phylum. However, within
the phylum, not all classes respond similarly. For example,
while Epsilonproteobacteria and Betaproteobacteria are highly
reduced by zinc restriction, Deltaproteobacteria slightly increase
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FIGURE 2 | Continued
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FIGURE 2 | DNA was extracted from feces from three animals per group and microbiota composition analyzed using 16s microbiome profiling. (A,B) On phylum
level, significant differences were detected. (A) Using the obtained sequence information, single species and their relative amounts were identified. Each phylum was
assigned a color. Both, relative abundance and the composition of species are different between the three groups. Verrucomicrobia is the most prevalent phylum in
control mice. On a zinc-deficient diet, Verrucomicrobia levels are reduced and Firmicutes are the most prevalent phylum. Mice on the Zn inhibitor diet show an
intermediate microbiome with Verrucomicrobia levels similar to controls but also an increase in Firmicutes. (B) While no difference was found between the control
and Zn inhibitor diet, mice on Zn deficient diet had significantly higher levels of Actinobacteria compared to controls and mice on the Zn inhibitor diet. Levels of
Bacterioidetes were significantly increased in mice on Zn deficient diet compared to the control and Zn inhibitor diet. Zn deficient and Zn inhibitor diets significantly
increase the level of Firmicutes. The increase was significantly higher in mice on a Zn deficient diet. The level of Proteobacteria significantly decreases in mice on Zn
deficient and Zn inhibitor diet. The decrease was significantly higher in mice on a Zn inhibitor diet. Zn deficient but not Zn inhibitor diet significantly reduces the
amount of Verrucomicrobia. (C) The number of unclassified reads was significantly higher in mice on a zinc-deficient diet. (D) Left panel: Proteobacteria are highly
sensitive to zinc depletion with a significant decrease occurring both on Zn deficient and Zn inhibitor diet. Although Epsilonproteobacteria and Betaproteobacteria are
significantly reduced by zinc restriction, Deltaproteobacteria increase. Middle panel: Verrucomicrobia are not altered under the Zn inhibitor diet, but significantly
reduced in mice on a Zn deficient diet. Bacterioidetes, especially Bacteriodia, significantly increase on a Zn deficient diet. Right panel: Firmicutes significantly
increase under Zn deficient and Zn uptake inhibition. (E) Lachnospiraceae are significantly increased on a Zn deficient diet. Ruminococcaceae are more
characteristic of a Zn inhibitor diet. (F) A more than fivefold increase in mice on Zn deficient or Zn inhibitor is found in the genus Bifidobacterium (Bifidobacterium
pseudolongum), Olsenella, Asaccharobacter (Asaccharobacter WCA-131-CoC-2), Eggerthella (Eggerthella YY7918), Enterorhabdus (Enterorhabdus mucosicola),
Odoribacter (Odoribacter laneus), Eubacterium (Eubacterium plexicaudatum), Anaerostipes (Anaerostipes butyraticus), and Lachnoclostridium (Lachnoclostridium
scindens). The most significant and largest increase was seen in the genus Murimonas (Murimonas intestine) under Zn deficient conditions. Ruminococcus
(Ruminiclostridium cellobioparum) display the largest increase under Zn uptake inhibition. Bacteria of the genus Acetatifactor, Desulfonispora, Ercella, Sporobacter,
Holdenmanella, Kiloniella, Rhodospirillum, Caldimones, and Xenophilus were highly reduced or absent in mice on Zn deficient and Zn inhibitor diet.

(Figure 2D). In contrast, the phylum Firmicutes thrives under
low zinc conditions (Figure 2D). Verrucomicrobia can cope
with low bioavailability of zinc and seem to have mechanisms
of zinc intake that successfully compete with the presence of
uptake inhibitors. However, under zinc-depleted conditions, the
presence of the phylum in the gut microbiome is drastically
reduced. Bacterioidetes, especially the class Bacteriodia, are
more successful in populating the gut microbiome under zinc
depletion (Figure 2D).

Given that the loss of Proteobacteria and an increase in
Firmicutes occurs in both zinc restricted diets, we closer analyzed
the composition of Firmicutes to investigate, which bacteria
increase in numbers or are newly found in the GI tract of
these mice (Figure 2E). We found that especially the Firmicutes
family Lachnospiraceae benefits from zinc depleted conditions,
while Ruminococcaceae are more characteristic for a diet high
in zinc uptake antagonists. Changes in the occurrence of
members of the Lachnospiraceae have been associated with
chronic inflammation of the gut (Manichanh et al., 2006;
Berry et al., 2012).

Finally, we analyzed the different microbiomes on
genus level (Figure 2F). Among 223 different genera, we
highlight those that show a more than 5-fold increase in
mice on zinc-deficient or zinc inhibitor diet and those
being lost from the microbiome in both zinc deficient or
zinc inhibitor diets. We found an increase in the genus
Bifidobacterium mostly due to an increase in Bifidobacterium
pseudolongum, Olsenella, Asaccharobacter due to an increase
in Asaccharobacter WCA-131-CoC-2, Eggerthella due to an
increase in Eggerthella YY7918, Enterorhabdus due to an
increase in Enterorhabdus mucosicola, Odoribacter due to an
increase Odoribacter laneus, Eubacterium due to an increase in
Eubacterium plexicaudatum, Anaerostipes due to an increase
Anaerostipes butyraticus, and Lachnoclostridium due to an
increase Lachnoclostridium scindens. A very large increase
was found in the genus Murimonas, especially Murimonas
intestine under zinc-deficient conditions, which may be a
potent biomarker for zinc deficiency (Figure 2F). The genus

Ruminococcus, especially Ruminiclostridium cellobioparum
shows a specific increase in mice on the zinc inhibitor
diet (Figure 2F).

The genus Turicibacter, Allobaculum, Marvinbryantia, and
Butyrivibrio only appeared in the microbiome of mice on zinc-
deficient or zinc inhibitor diets (not shown).

Low Dietary Levels or Bioavailability of
Zinc Result in Altered Gut Physiology
Enterorhabdus mucosicola was originally isolated from inflamed
ileal samples of TNFdeltaARE mice (Clavel et al., 2009). In addition,
both E. plexicaudatum and E. mucosicola are associated with
inflamed gut mucosa and intestinal epithelial barrier dysfunction.
Further, Egerthella YY7918 is closely related to the type strain
Eggerthella lenta VPI0255. Eggerthella lenta has been to be part of
the normal human intestinal microbiome and has been associated
with infections of the gastrointestinal tract (Gardiner et al., 2015).
Therefore, next, we evaluated markers of intestinal physiology
and “leakiness”.

We selected three markers, FABP2 (Intestinal fatty acid-
binding protein 2), CLAUDIN3, and ZONULIN1 (HP1)
(Figures 3A–C). FABP2 is a cytosolic protein found in small
intestine epithelial cells where it participates in the uptake,
intracellular metabolism, and transport of long-chain fatty acids.
CLAUDIN3 is a cell adhesion protein found at tight junctions
between gut epithelial cells. ZONULIN1 is a physiological
modulator of intercellular tight junctions and alterations in the
ZONULIN regulated pathways have been associated with both
intestinal and extra-intestinal autoimmune and inflammatory
disorders (Fasano, 2011). ZONULIN1 and FABP2 have been
proposed as markers of gut dysbiosis and gut permeability
integrity (Stevens et al., 2018), with a decrease in FABP2 and
an increase in ZONULIN1 linked to increased gut permeability
(Fasano, 2012).

While we found no significant differences in the lysate
from the entire small intestine for FABP2 (Figure 3A), mice
on a zinc-deficient diet had significantly reduced levels of
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FIGURE 3 | (A–C) Gastro-intestinal epithelium was isolated from three mice per group and protein lysates analyzed using Western blotting. (A) No significant
differences in FABP2 were detected. (B) Mice on a Zn deficient diet had significantly reduced levels of CLAUDIN3. (C) ZONULIN1 was significantly increased in mice
on Zn inhibitor diet. (D) Liver tissue was isolated from three mice per group and protein lysates analyzed for the levels of E. coli lipopolysaccharide (LPS) using
Western blotting. A significant increase in liver LPS is visible in mice on a Zn deficient and Zn inhibitor diet. (E) LPS levels were measured by LAL assay from three
mice per group in triplicates. The results show significantly increased LPS levels in liver lysate from mice on Zn deficient and Zn inhibitor diet compared to controls.

CLAUDIN3 (Figure 3B) (one way ANOVA, p = 0.0084; Tukey
post hoc analysis: Control vs. Zinc deficient, p = 0.0068),
and mice on Zinc inhibitor diet showed a trend toward
a reduction. ZONULIN1 was significantly increased in mice
on Zinc inhibitor diet (Figure 3C) (one way ANOVA,
p = 0.0046; Tukey post hoc analysis: Control vs. Zinc
inhibitor, p = 0.0082) compared to controls and mice on zinc-
deficient diet (Tukey post hoc analysis: Zinc deficient vs. Zinc
inhibitor, p = 0.0069).

The detoxification of microbial products from gut-derived
microbiota is a function of the liver. Analyzing liver tissue
of mice for the levels of E. coli lipopolysaccharide (LPS),
we found a significant increase in liver LPS in mice on
a zinc-deficient and zinc inhibitor diet (one way ANOVA,

p = 0.0054; Tukey post hoc analysis: Control vs. Zinc
deficient, p < 0.05; Control vs. Zinc inhibitor, p < 0.01)
(Supplementary Figure S1A and Figure 3D). To validate
this data, we additionally measured E. coli LPS (endotoxin)
levels in mouse liver using a Limulus Amebocyte Lysate
(LAL) based assay. The results confirm significantly increased
levels of LPS in liver of mice on a zinc-deficient and
zinc inhibitor diet (one way ANOVA, p = 0.047; post hoc
analysis: Control vs. Zinc deficient, p = 0.041; Control vs.
Zinc inhibitor, p = 0.0143) (Supplementary Figure S1B and
Figure 3E). Thus, altered microbiota composition together
with an increased intestinal permeability may be responsible
for increased translocation of bacterial LPS into the systemic
circulation (Szabo et al., 2010).
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Low Dietary Levels or Bioavailability of
Zinc Result in Increased Inflammation in
Pregnant Mice
Given that an increase of ZONULIN1 and loss of CLAUDIN3
have been associated with increased gut permeability and
inflammation, we next analyzed whether we can detect signs of
(neuro)inflammation in the brain of pregnant mice with low
zinc status. To that end, we analyzed tissue for the expression
levels of GFAP and IL-6. Glial fibrillary acidic protein (GFAP) is
an established marker for the activation of astrocytes following
injury or stress (Zhang et al., 2017). Expression of IL-6 was
reported being induced in both astrocytes and microglia in
response to LPS and increased levels in the brain are related
to inflammatory and pathological situations (Erta et al., 2012).
Our results show a significant increase in GFAP expression
levels in brains of mice subjected to zinc deficiency and lowered
bioavailability in the diet compared to control mice (one way
ANOVA, p = 0.0044; Tukey post hoc analysis: Control vs. Zinc
deficient, p = 0.0447; Control vs. Zinc inhibitor, p = 0.0036)
(Figure 4A). The number of GFAP positive cells was not
significantly altered (Figure 4A, lower panel).

The levels of IL-6 were significantly elevated in brain tissue of
both mice on zinc-deficient diet and mice with sufficient dietary
zinc levels but presence of zinc uptake inhibitors compared
to controls (one way ANOVA, p = 0.028; Tukey post hoc
analysis: Control vs. Zinc deficient, p = 0.04547; Control vs. Zinc
inhibitor, p = 0.038557) (Supplementary Figure S2A). However,
measuring IL-6 levels in brain sections by IHC suffers from

specificity and sensitivity issues. Therefore, to further validate the
data from IHC, we assessed IL-6 expression on the transcription
level. The results show a significantly higher concentration of IL-
6 mRNA in the brain of pregnant mice on a zinc-deficient diet
(t-test, p = 0.0041) compared to controls (Figure 4B). Besides,
we detected the increased expression of further inflammatory
marker genes in pregnant mice on a zinc-deficient diet such
as significantly higher levels of IL-1b (p = 0.0034), S100β

(p = 0.0185), and CCL2 (p = 0.0109, t-tests) (Supplementary
Figure S2B). The increased IL-6 transcription translates into
increased IL-6 on protein level, further quantified by western
blotting (t-test, p = 0.0283) (Figure 4C).

Although more extensive analyses need to be done in the
future, the obtained data hint at a physiologic relevant impact
of dietary zinc restriction during pregnancy on the brain
of pregnant mice.

Supplementation of Maternal Diet With
ZnAAs Prevents Several Alterations
Induced by Low Bioavailability of Zinc
Recently, we have investigated the mechanisms of uptake and
absorption of ZnAAs (Sauer et al., 2017). ZnAAs are zinc
supplements with zinc stably conjugated in an amino acid
backbone. These ZnAAs were taken up by cells, not through
classical zinc transporter proteins but amino acid transporters.
Therefore, ZnAAs showed a significant advantage compared to
inorganic zinc salts such as ZnCl2 as a supplement, since ZnAAs
do not compete with other metals for zinc transporters and seem

FIGURE 4 | (A) Brain sections from three animals per group were used for immunohistochemistry. DAPI (labeling cell nuclei) and GFAP was visualized and
fluorescent signal intensities from 10 cells in the hippocampus from three sections per animal measured. Mean values show the average of three animals per group.
Upper panel: A significant increase in GFAP expression levels can be detected in the brains of mice subjected to zinc deficiency and lowered bioavailability (Zn
Inhibitor) compared to control mice. Lower panel: No significant difference in the number of GFAP positive cells per optic field of view (OFV) was found. Scale
bar = 100 µm. (B) Whole-brain total RNA lysate from three animals per group was used to analyze the expression of IL-6 on gene level normalized to Hmbs.
A significantly higher IL-6 expression was found in the brain of zinc-deficient mice. (C) Whole-brain protein lysate from three animals per group was used to analyze
IL-6 expression on protein level normalized to ACTIN. Significantly higher IL-6 levels are found in the brain of zinc-deficient mice.
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FIGURE 5 | (A) Whole-blood Zn levels of mice measured by AAS in three animals per group. Mice were fed ZnAA supplemented diet (diet 4, Zn Inhibitor + ZnAA). At
the end of pregnancy (8 weeks treatment in total), mice on a diet with control zinc levels (35 ppm) but bioavailability of zinc lowered due to the presence of
antagonists of absorption (Zn inhibitor) show significantly lower whole-blood zinc levels compared to mice on the same diet with the addition of ZnAAs.
(B) Pyrosequencing of 16S rDNA of fecal samples shows that the abundance of Proteobacteria is significantly higher in mice on Zn inhibitor + ZnAA diet compared
to mice on Zn inhibitor diet. The levels were still significantly lower compared to mice on the control diet. (C) Left panel: On species level, the almost 10-fold increase
in Ruminiclostridium cellobioparum seen in mice on Zn Inhibitor diet was partially prevented. Right panel: Bacteria of the genus Christensiella, Anaerotruncus,
Faecalibacterium, Acetatifactor, Desulfonispora, Ercella, Sporobacter, Holdenmanella, Kiloniella, Rhodospirillum, Caldimones, Brachymonas, Xenophilus, and
Desulfovibrio were highly reduced or absent in mice on Zn inhibitor diet. Supplementation with ZnAA was able to prevent the reduction/loss for Christensiella,
Anaerotruncus, Faecalibacterium, Acetatifactor, Desulfonispora, Holdenmanella, Rhodospirillum, Brachymonas, and Desulfovibrio. (D) GI epithelium was isolated
from three mice per group and protein lysates analyzed using Western blotting. Supplementation with ZnAA was able to prevent the significant increase of
ZONULIN1 observed in mice on Zn Inhibitor diet. Data for Control and Zn Inhibitor diet has been reused from Figure 3C. (E) Liver LPS is significantly increased in
mice on Zn inhibitor diet, but not in mice on Zn inhibitor + ZnAA diet. (F) Brain sections from three animals per group were used for immunohistochemistry. DAPI
(labeling cell nuclei) and GFAP or IL-6 were visualized and fluorescent signal intensities from 10 cells in the hippocampus from three sections per animal measured.
Mean values show the average of three animals per group. (F) A significant increase in GFAP expression levels can be detected in the brains of mice on the Zn
Inhibitor diet compared to control mice. Dietary supplementation with ZnAA slightly, but non-significantly decreased GFAP expression levels.

to be less accessible for folic acid or phytic acid. Therefore, here,
we supplemented a diet rich in zinc uptake antagonists (diet 3,
Zn Inhibitor) using ZnAAs to investigate whether the observed
changes can be prevented by dietary zinc supplementation.

Mice were fed a ZnAA supplemented diet (diet 4, Zn
Inhibitor + ZnAA) for 8 weeks. At the end of pregnancy,
the average whole-blood zinc levels were investigated and
compared to mice on the same diet with low bioavailability

of zinc but without zinc supplementation and controls. The
results show that the addition of ZnAAs to the diet leads
to significantly higher zinc levels compared to mice on the
diet with low bioavailability of zinc (t-test, p = 0.0225)
(Figure 5A) and no significant difference can be seen compared
to controls (p = 0.0736).

Next, we examined if alterations in microbiota composition
are normalized by zinc supplementation. We again performed
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pyrosequencing of 16S rDNA of fecal samples and investigated
the microbiome of mice fed ZnAA supplemented diet
(Figure 5B). The results show that on phylum level, the
abundance of Proteobacteria was significantly higher in mice
supplemented with ZnAA compared to mice on a diet with
lowered bioavailability of zinc. However, the levels did not
reach those of mice on a control diet (one way ANOVA,
p = 0.0004; Tukey post hoc analysis: Control vs. Zinc Inhibitor,
p < 0.01; Control vs. Zinc inhibitor + ZnAA, p < 0.01;
Zinc Inhibitor vs. Zinc inhibitor + ZnAA, p < 0.01). We
could not detect further rescue effects on phylum level.
Instead, supplementation with ZnAA seemed to generate
a new microbiota composition, which was significantly
different from controls and mice on the Zn Inhibitor diet
(Supplementary Figure S3A). Therefore, we focused on
the most prominent alterations observed in mice on a diet
with low bioavailability of zinc on genus and species level
and compared these to mice on the same diet, but with
supplementation of ZnAAs. An almost 10-fold increase in
Ruminococcus (R. cellobioparum) was observed under the
low bioavailability of zinc. Supplementation with ZnAAs
was able to partially prevent this increase (Figure 5C,
left panel) (one way ANOVA, p = 0.0005; Tukey post hoc
analysis: Control vs. Zinc Inhibitor, p < 0.01; Control vs.
Zinc inhibitor + ZnAA, p < 0.01; Zinc Inhibitor vs. Zinc
inhibitor+ ZnAA, p < 0.01). Bacteria of the genus Christensiella,
Anaerotruncus, Faecalibacterium, Acetatifactor, Desulfonispora,
Ercella, Sporobacter, Holdenmanella, Kiloniella, Rhodospirillum,
Caldimones, Brachymonas, Xenophilus, and Desulfovibrio
were highly reduced or absent in mice on Zn inhibitor diet.
On genus level, supplementation with ZnAA was able to
prevent many of these losses (Figure 5C, right panel) (one way
ANOVA followed by Tukey post hoc analysis). For example, no
decrease in the Faecalibacterium genus that may be beneficial
to the host concerning inflammatory processes (Sokol et al.,
2008) was seen.

Interestingly, supplementation with ZnAA was able to prevent
the loss of ZONULIN1 observed in mice on Zn Inhibitor diet
(Figures 3C, 5D) (one way ANOVA, p = 0.0219; Tukey post hoc
analysis: Control vs. Zinc Inhibitor, p = 0.0186; Control vs. Zinc
inhibitor + ZnAA, p = 0.34). In addition, the levels of liver LPS
decreased and were no longer significantly different from mice
on control diet (Figure 5E) (one way ANOVA, p = 0.0065; Tukey
post hoc analysis: Control vs. Zinc Inhibitor, p < 0.01; Control vs.
Zinc inhibitor+ ZnAA, p = 0.05738).

In the brain, we could not observe a significant effect on
astrocyte activation, as animals on Zinc inhibitor + ZnAA diet
still showed a significant increase in GFAP expression, although
slightly less compared to mice on Zinc inhibitor diet (one
way ANOVA, p = 0.0044; Tukey post hoc analysis: Control vs.
Zinc Inhibitor, p = 0.0039; Control vs. Zinc inhibitor + ZnAA,
p = 0.0219) (Figure 5F). In contrast, while mice on Zinc
inhibitor diet had significantly increased IL-6 brain tissue levels,
we detected no difference between Controls and mice on Zinc
inhibitor diet supplemented with ZnAAs (Supplementary Figure
S3B). Thus, zinc supplementation was able to prevent an increase
in IL-6 brain levels.

DISCUSSION

Zinc deficiency plays a role in the etiology of depressive disorders
in mouse models and humans. Several studies have reported an
inverse relationship between low zinc levels and higher Hamilton
Depression Rating Scale scores in patients (Maes et al., 1994).
Interestingly, zinc deficiency also impairs the efficacy of several
antidepressants (Tassabehji et al., 2008; Młyniec and Nowak,
2012; Młyniec et al., 2012). However, the mechanisms behind are
not fully understood.

Further abnormalities have been independently reported in
animal models and human patients with depression such as
alterations in the gut microbiota composition and increased
inflammatory responses and chronic inflammation. Several
studies in the past revealed a link between depression and
altered gut microbiota composition. From these a motif emerged,
where significant alterations in the abundance of gut microbiota
within the phyla Bacteroidetes, Firmicutes, Proteobacteria,
and Actinobacteria were reported in patients diagnosed with
major depressive disorder, but also in relevant rodent models
(Winter et al., 2018).

With regards to inflammation, it was found that patients
with major depressive disorder show all of the key features
of an inflammatory response such as increased expression of
pro-inflammatory cytokines and chemokines, cytokine receptors,
and soluble adhesion molecules in peripheral blood and
cerebrospinal fluid (CSF) (Miller and Raison, 2016). Especially,
increased expression of IL-1β, IL-6, TNF, Toll-like receptor
3 (TLR3) and TLR4, has been found in post-mortem brains
(Maes, 1995; Brambilla et al., 2014; Drago et al., 2015) and
consistent with this, activation of IL-6, IL-8 and type I IFN-
induced signaling pathways has been reported (Brambilla et al.,
2014). A meta-analysis found that IL-1β, IL-6, TNF and
C-reactive protein (CRP) in peripheral blood are the most
reliable biomarkers of inflammation in patients with depression
(Miller et al., 2009).

Here, we sought to establish a link between maternal zinc
deficiency, altered microbiota composition, and inflammation.
Zinc deficiency was reported before to affect microbiota
composition. For example, similar to the result reported here, a
decrease in Veruccomicrobia and an increase in Firmicutes has
been observed (Mayneris-Perxachs et al., 2016). The low relative
abundance of Verrucomicrobia populations and a decrease
in beneficial bacteria was correlated with zinc deficiency in
further studies (Lopez and Skaar, 2018). In addition, low
zinc status as well as zinc supplementation were reported to
affect gut microbiota in chicken (Reed et al., 2015, 2018).
However, to our knowledge, the effects of zinc deficiency on the
microbiome of pregnant mice in light of the observed behavioral
alterations in the offspring of zinc-deficient mothers has not been
investigated so far.

Using pyrosequencing of 16S rDNA of fecal samples, we
obtained microbiota profiles from animals on four different
diets: a control diet, a diet low in zinc, a diet with low
bioavailability of zinc induced by elevated concentrations of
other dietary components such as Fe, Ca, and folic acid that
are commonly prescribed to pregnant women, and a diet with
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low bioavailability that was supplemented with zinc in the form
of ZnAA to overcome inhibition by zinc uptake antagonists
present in this diet (Sauer et al., 2017). Although no clear
cut-off values between hypozincemia and zinc deficiency are
established for mice, we consider the status of mice on a zinc-
deficient diet and diet with zinc uptake inhibitors as mild zinc
deficient. This is based on the fact that in many cases, in
human studies, hypozincemia cannot be picked up in blood
samples and blood/plasma zinc content is generally considered
a poor measure of marginal zinc deficiency in humans (King,
1990; Wood, 2000). However, in our study, both animals on
the zinc-deficient diet and diet with uptake inhibitors show
significantly reduced zinc levels in blood. On the other hand,
severe zinc deficiency was shown to induce gross anatomical
malformation in pups from rats with severe zinc deficiency
(Hurley et al., 1971). The pups born from pregnant mice in
this study did have similar birth weight, no malformations and
no statistically significant difference in the number of pups was
detected in the different treatment groups compared to controls.
Therefore, we conclude that the zinc deficiency we created was
not severe but mild.

While both mice on a zinc-deficient diet and mice on a diet
low in the bioavailability of zinc showed low tissue zinc levels
and alterations in gut microbiota composition, the observed
alterations in microbiota were not identical.

Mice on a zinc-deficient diet showed an increase in the
phylum Actinobacteria and Bacteroidetes. Actinobacteria belong
to the dominant commensal communities in humans and mice
(Qin et al., 2010) and are generally regarded as pathobionts.
Under certain circumstances, they are known to promote
disease. In particular, Actinobacteria are associated with chronic
inflammatory conditions and, for example, an increase in
Actinobacteria has been associated with Inflammatory Bowel
Disease (Frank et al., 2007; Morgan et al., 2012). However, mice
on a diet with low bioavailability of zinc showed no such increase
in Actinobacteria and Bacteroidetes.

Both groups of mice, however, showed an increase in
Firmicutes and a decrease in Proteobacteria. In previous studies
using mouse models for stress and depression-like behavior, an
increase in Actinobacteria (Bangsgaard Bendtsen et al., 2012),
both an increase and a decrease in Bacteroidetes (Aoki-Yoshida
et al., 2016; Bharwani et al., 2016), an increase in Firmicutes
(Aoki-Yoshida et al., 2016), as well as a decrease in Proteobacteria
(Galley et al., 2014; Aoki-Yoshida et al., 2016) has been reported.
Therefore, although different in some aspects both mice on a
zinc-deficient diet and mice on a diet low in the bioavailability
of zinc show alterations similar to those reported in models for
stress and depression-like behavior.

The differences may originate in the competition between
gut microbiota and enterocytic zinc uptake transporters for
zinc. In mice on a zinc-deficient diet, a low amount of zinc is
available for both. In contrast, in the diet with low bioavailability
of zinc, zinc levels are normal but zinc uptake by enterocytic
zinc transporters is inhibited through the antagonists present
in the diet. Some microbiota may have an advantage over
enterocytic zinc transporters with respect to inhibition by
antagonists and may still be able to access sufficient amounts

of zinc. For example, the phylum Verrucomicrobia was hardly
affected by low bioavailability of zinc but reacted strongly
to low general zinc levels. Further, due to low zinc levels,
some families of bacteria may gain an advantage either by
less demand for zinc, more sufficient intake mechanisms, or
lack of competition through more zinc sensitive bacteria. For
example, bacteria in the phylum Firmicutes were significantly
increased in both zinc restricted diets. In addition, the presence
of the zinc uptake inhibitors phytic acid, Ca, Fe, and folic
acid may additionally influence microbiota. Therefore, it is
not expected that a zinc-deficient diet and a diet with low
bioavailability will alter microbiota composition in identical
ways. However, besides shared and unique features in microbiota
composition, both groups of animals show a reduction in tight
junction markers and increased liver LPS levels. Thus, the shared
aberrations from an established gut microbiota composition
and/or low availability of zinc for GI cells are associated with
pathological changes, such as increased permeability in the GI
system in these mice.

Several studies support the idea that intestinal barrier
dysbiosis leads to inflammatory responses in peripheral tissues
and may ultimately drive inflammation in the brain. Therefore,
we investigated the brain for characteristic alterations using
GFAP and IL-6 as markers. We detected significantly higher
GFAP expression in the brain of mice on zinc-restricted
diets. Increased GFAP expression is a marker for activation
on astrocytes and inflammation (Zhang et al., 2017). Our
results are in line with previous reports that acute stress
increases GFAP expression in the hippocampus of rodents
(Lambert et al., 2000). Zinc deficiency may physiologically act as
an acute stressor.

IL-6 plays a key role in the development of stress-associated
depression-like behaviors in mice (Chourbaji et al., 2006). IL-6
signaling can result from activation of inflammatory pathways
and alterations in IL-6 levels in the brain were demonstrated
contributing to depression symptomatology (Hodes et al., 2016).
Indeed, IL-6 is consistently reported as elevated in the blood
of patients with depression (Haapakoski et al., 2015) and has
been proposed as a predictive biomarker. Therefore, here, we
assessed IL-6 levels in the brain mice. Our data show increased
IL-6 tissue levels on mRNA and protein levels in response to
low zinc status in pregnant mice. These results are in line
with previously reported results showing up-regulation of cell
activation markers in THP1 cells, a model for human monocytes,
that coincided with increased IL-6 responses following LPS
stimulation (Wong et al., 2015). In addition, a decreased zinc
status in aged mice was associated with increased IL-6 expression
levels (Wong et al., 2015).

Finally, supplementation of the diet with low bioavailability of
zinc with ZnAAs was investigated to validate the contribution of
zinc deficiency to the observed alterations and to understand the
usability of ZnAAs for zinc supplementation during pregnancy.
Supplementation with ZnAAs was able to prevent a significant
drop in zinc levels in the maternal blood. In terms of
microbiota composition, the presence of the ZnAA supplement
is not expected to create a similar condition as observed in
controls due to the presence of zinc uptake antagonists and
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increased zinc levels. However, supplementation with ZnAA
may reverse some effects caused by lowered bioavailability of
zinc due to the presence of the antagonists. Indeed, ZnAA
supplementation ameliorated the decrease in Proteobacteria. In
addition, supplementation with ZnAAs prevented the decrease
in Actinobacteria and Bacteroidetes, which was specific for this
diet. However, it leads to an increase of both phyla as observed
in the zinc-deficient diet before. Both phyla, therefore, seem
to respond very sensitive to zinc levels and possibly contain
species that thrive in low zinc conditions and others that
strive with high zinc levels. Therefore, it is more important to
investigate alterations on the genus and species level. Here, ZnAA
supplementation ameliorated alterations observed before in
several genera such as Anaertruncus, Acetifactor, Desulfonispora,
Holdemanella, Rhodospirillum, and Desulfovibrio.

In terms of GI pathology, we could no longer detect an
increase in ZONULIN1 levels in ZnAA supplemented mice and,
in line with this, no significant increase in liver LPS. Thus,
effects on gut physiology seem indeed to be dependent on zinc
availability much more than on microbiota composition and it
can be assumed that alterations in microbiota composition are
a consequence of altered GI function or dependent on dietary
factors only, or both. The reduction in GI abnormalities and
liver LPS are expected to decrease pro-inflammatory processes
in the mice. While we could not detect a normalization of
GFAP expression, IL-6 protein levels in brain tissue were indeed
normalized. While IL-6 levels in the brain of humans are
difficult to measure, a reduction of IL-6 levels in plasma after
zinc supplementation has been reported also in humans before
(Bao et al., 2010). The data further confirms that ZnAAs are
not only increasing zinc levels in animals but that they are
biologically active.

Taken together, we conclude that both low levels of zinc
or the presence of zinc uptake inhibitors that are commonly
found in western diets and supplements for pregnant women
alter the microbiome of pregnant mice. This may not only play
a role in the observed autism-like phenotype of the offspring
of mice with zinc deficiency during pregnancy but may also
directly influence brain functionality through altered gut-brain
signaling. Low zinc status was associated with changes in the
intestinal epithelial barrier and an increase in liver LPS hints
at increased leakiness of the gut in response to these changes.
Finally, this may contribute to increased inflammation as we
have observed higher GFAP and IL-6 levels in the brain of
mice. Acute zinc deficiency was linked to depression and a
role of microbiota dysbiosis and inflammation suggested. Our
results obtained from pregnant mice do not exclude that similar
alterations may occur independent of pregnancy in response to
low zinc status. Based on our results, as low availability of zinc

during pregnancy influences both microbiota and inflammatory
status, a link between maternal zinc deficiency and postpartum
depression seems plausible.
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Młyniec, K., Budziszewska, B., Reczyński, W., Doboszewska, U., Pilc, A., and
Nowak, G. (2013a). Zinc deficiency alters responsiveness to antidepressant

Frontiers in Neuroscience | www.frontiersin.org 14 November 2019 | Volume 13 | Article 129548

https://doi.org/10.3945/ajcn.2009.28836
https://doi.org/10.3945/ajcn.2009.28836
https://doi.org/10.1038/ismej.2012.39
https://doi.org/10.1038/ismej.2012.39
https://doi.org/10.1016/j.psyneuen.2015.10.001
https://doi.org/10.1038/tp.2014.46
https://doi.org/10.1007/s00204-011-0775-1
https://doi.org/10.1007/s00204-011-0775-1
https://doi.org/10.1016/j.nbd.2006.05.001
https://doi.org/10.1016/j.nbd.2006.05.001
https://doi.org/10.1099/ijs.0.003087-0
https://doi.org/10.1097/MCO.0b013e32833df61a
https://doi.org/10.1016/j.brainres.2008.08.040
https://doi.org/10.1016/j.brainres.2008.08.040
https://doi.org/10.1113/JP273106
https://doi.org/10.1016/j.jad.2015.03.032
https://doi.org/10.7150/ijbs.4679
https://doi.org/10.1152/physrev.00003.2008
https://doi.org/10.1111/j.1749-6632.2012.06538.x
https://doi.org/10.1073/pnas.0706625104
https://doi.org/10.1186/1471-2180-14-189
https://doi.org/10.1186/1471-2180-14-189
https://doi.org/10.1128/JCM.02926-14
https://doi.org/10.1201/9781315372402-8
https://doi.org/10.3389/fnbeh.2016.00037
https://doi.org/10.3389/fnbeh.2016.00037
https://doi.org/10.1093/brain/awt303
https://doi.org/10.1093/brain/awt303
https://doi.org/10.1016/j.bbi.2015.06.001
https://doi.org/10.3389/fnbeh.2014.00443
https://doi.org/10.1016/j.ynstr.2016.03.003
https://doi.org/10.1016/j.ynstr.2016.03.003
https://doi.org/10.1111/nyas.12781
https://doi.org/10.1002/tera.1420040211
https://doi.org/10.1002/tera.1420040211
https://doi.org/10.1016/j.jpsychires.2016.07.019
https://doi.org/10.1016/j.jpsychires.2016.07.019
https://doi.org/10.1093/jn/120.suppl-11.1474
https://doi.org/10.1016/j.jad.2011.06.022
https://doi.org/10.3109/10253890009001133
https://doi.org/10.3109/10253890009001133
https://doi.org/10.1016/j.chom.2018.05.008
https://doi.org/10.1016/j.chom.2018.05.008
https://doi.org/10.1016/0278-5846(94)00101-m
https://doi.org/10.1016/0278-5846(94)00101-m
https://doi.org/10.1016/0165-0327(94)90117-1
https://doi.org/10.1016/0165-0327(94)90117-1
https://doi.org/10.1016/S0006-3223(96)00365-4
https://doi.org/10.1136/gut.2005.073817
https://doi.org/10.3945/ajcn.116.131797
https://doi.org/10.3945/ajcn.116.131797
https://doi.org/10.1111/j.1600-0447.1990.tb03077.x
https://doi.org/10.1016/j.biopsych.2008.11.029
https://doi.org/10.1038/nri.2015.5
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01295 November 28, 2019 Time: 13:44 # 15

Sauer and Grabrucker Altered Gut-Brain Interaction in Zinc-Deficient Mice

drugs in mice. Pharmacol. Rep. 65, 579–592. doi: 10.1016/s1734-1140(13)
71035-1

Młyniec, K., Budziszewska, B., Reczyński, W., Sowa-Kućma, M., and Nowak, G.
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Kućma, M., et al. (2012). Time course of zinc deprivation-induced alterations
of mice behavior in the forced swim test. Pharmacol Rep. 64, 567–575.
doi: 10.1016/s1734-1140(12)70852-6

Młyniec, K., Gaweł, M., Librowski, T., Reczyński, W., Bystrowska, B., and Holst,
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Human gastrointestinal (GI)-tract microbiome-derived lipopolysaccharide (LPS): (i) has
been recently shown to target, accumulate within, and eventually encapsulate neuronal
nuclei of the human central nervous system (CNS) in Alzheimer’s disease (AD) brain; and
(ii) this action appears to impede and restrict the outward flow of genetic information
from neuronal nuclei. It has previously been shown that in LPS-encased neuronal nuclei
in AD brain there is a specific disruption in the output and expression of two AD-relevant,
neuron-specific markers encoding the cytoskeletal neurofilament light (NF-L) chain
protein and the synaptic phosphoprotein synapsin-1 (SYN1) involved in the regulation
of neurotransmitter release. The biophysical mechanisms involved in the facilitation of
the targeting of LPS to neuronal cells and nuclei and eventual nuclear envelopment
and functional disruption are not entirely clear. In this “Perspectives article” we discuss
current advances, and consider future directions in this research area, and provide novel
evidence in human neuronal-glial (HNG) cells in primary culture that the co-incubation of
LPS with amyloid-beta 42 (Aβ42) peptide facilitates the association of LPS with neuronal
cells. These findings: (i) support a novel pathogenic role for Aβ42 peptides in neurons via
the formation of pores across the nuclear membrane and/or a significant biophysical
disruption of the neuronal nuclear envelope; and (ii) advance the concept that the
Aβ42 peptide-facilitated entry of LPS into brain neurons, accession of neuronal nuclei,
and down-regulation of neuron-specific components such as NF-L and SYN1 may
contribute significantly to neuropathological deficits as are characteristically observed
in AD-affected brain.

Keywords: Alzheimer’s disease (AD), brain microbiome, dysbiosis, gastrointestinal (GI) tract, lipopolysaccharide
(LPS), neurofilament light (NF-L), synapsin-1 (SYN1), the thanato-microbiome (the post-mortem microbiome)
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OVERVIEW

The highest known density of microorganisms anywhere
in the biosphere is in the human GI-tract microbiome at
about ∼1011 microorganisms per gram of GI-tract content
(Angelucci et al., 2019; Castillo-Álvarez and Marzo-Sola, 2019;
Fox et al., 2019). This vast number represents a remarkably
complex and highly dynamic source of microbes; of the
approximate ∼1,800 different microbial phyla that make up the
GI-tract microbiome, the overwhelming majority are facultative
anaerobic bacteria with archaea, fungi, microbial eukaryotes,
protozoa, viruses, and other microbes making up the remainder
(Bhattacharjee and Lukiw, 2013; Fox et al., 2019; Tierney
et al., 2019). One major species of bacteria in the human
GI-tract microbiome, about ∼100-fold more abundant than
Escherichia coli in certain GI-tract regions is Bacteroides
fragilis, an obligate, anaerobic, non-spore forming Gram-
negative, rod-shaped enterotoxigenic bacterium. B. fragilis: (i)
generates a remarkable array of highly neurotoxic exudates;
and (ii) produces a particularly virulent, pro-inflammatory LPS
glycolipid subtype (BF-LPS) that accumulates in Alzheimer’s
disease (AD) brain (Sears, 2009; Fathi and Wu, 2016;
Lukiw, 2016a,b; Wexler and Goodman, 2017; Zhao et al.,
2017a,b,c; Allen et al., 2019). Besides BF-LPS, B. fragilis-derived
neurotoxins include small non-coding RNA (sncRNA), bacterial
amyloids, endo-, exo-, and enterotoxins such as fragilysin,
and truncated LPS molecules known as lipooligosaccharides
(LOS). These neurotoxins have recently been shown to be
capable of transversing normally restrictive gastrointestinal
(GI) tract and blood-brain barriers (BBBs) in transgenic
murine models of AD (Varatharaj and Galea, 2017; Sweeney
et al., 2018; Tulkens et al., 2018; Barton et al., 2019; Erdö
and Krajcsi, 2019; Panza et al., 2019; Sweeney and Lowary,
2019). Both the GI-tract and BBB may become weakened
with aging or following surgery, disease or trauma (Sweeney
et al., 2018; Sweeney and Lowary, 2019). For example,
BF-LPS and the B. fragilis-derived enterotoxin fragilysin very
effectively disrupt cell-cell adhesion, in part by E-cadherin
cleavage and/or the action of LPS binding protein and
Toll-like receptor 4 (TLR4), and subsequent LPS internalization,
followed by translocation of neurotoxins into the systemic
circulation, past the BBB and on into the parenchyma
of the brain [Wu et al., 1998; Holton, 2008; Tsukamoto
et al., 2018; Barton et al., 2019; Jeon et al., 2019; Lukiw,
2019 (submitted)].

LPS ACCUMULATION IN AD BRAIN

Multiple, independent research laboratories have reported:
(i) the association of LPS and microbial-derived amyloid with
AD brain (Zhao and Lukiw, 2015; Zhao et al., 2015); (ii)
the remarkable affinity of specific LPS isoforms with AD
brain parenchyma (Lukiw, 2016a,b); (iii) that Gram-negative
bacterial molecules associate with AD neuropathology (Zhan
et al., 2016); (iv) that microbiome-derived E. coli LPS and
B. fragilis LPS associate the hippocampal CA1 region of AD
brain (Zhao et al., 2017a,b,c); (v) of LPS accumulation within

neocortical neurons of the AD brain that impair transcriptional
output (Zhao et al., 2017a,b,c); (vi) that there is a strong
association of LPS with neuronal nuclei and the specific
LPS-mediated impairment of expression of the neurofilament
light (NF-L) chain gene expression (Lukiw et al., 2018);
(vii) of LPS association with the amyloid plaques, neurons
and oligodendrocytes in AD brain (Zhan et al., 2018); and
(viii) a significantly reduced expression of the AD-relevant
synaptic components such as synapsin-1 (SYN1) in LPS-treated
human neuronal-glial (HNG) cells in primary culture (Zhao
et al., 2019). Most recently, it has been shown that LPS has
a very strong affinity for, and association with, the neuronal
nuclear envelope of the HNG cells in primary culture. This
is also observed in the superior temporal lobe neocortex
(Brodmann area A22; Wernicke’s area) and the hippocampal
CA1 region of AD-affected brain (Lukiw, 2016a,b; Zhao et al.,
2017a,b,c, 2019; Lukiw et al., 2018; Ticinesi et al., 2019;
Figure 1). Interestingly in moderate-to-late-stage AD LPS
totally encapsulates neuronal nuclei in the AD brain with the
subsequent restriction in the output of genetic information
from those neuronal nuclei (Lukiw et al., 2018; Zhao and
Lukiw, 2018a,b; Zhao et al., 2019). Interestingly, gene expression
profiling showed a long-lasting deficit in neuron- and synaptic-
specific gene expression and signaling in the hippocampus and
neocortex of both transgenic murine models for AD and in
patients with mild cognitive impairment or AD (Colangelo et al.,
2002; Counts et al., 2014; Jaber et al., 2019; Parra-Damas and
Saura, 2019).

FIGURE 1 | Human neuronal-glial (HNG) cells (transplantation grade) in
primary co-culture were used to study the dynamics of amyloid-beta 42
(Aβ42) peptide-mediated entry of lipopolysaccharide (LPS) into neurons
(Bhattacharjee and Lukiw, 2013; Zhan et al., 2018; Zhao and Lukiw, 2018a,b;
Zhao et al., 2019). (A) HNG cells are a primary co-culture of neuronal
[β-tubulin III (βTUBIII)-stained; red; λmax = 690 nm] and glial (GFAP-stained;
green; λmax = 520 nm) human brain cells; HNG cells are also stained for
nuclei (DAPI-stained; blue; λmax = 470 nm); cells shown are ∼2 weeks in
culture; HNG cells are about ∼60% neurons (red) and about ∼40% astroglial
(green) at ∼65% confluence; human primary neuronal and glial “support” cell
co-cultures are utilized, because human neuronal cells do not culture well by
themselves (Cui et al., 2010; Zhao et al., 2017c); HNG cells were exposed to
50 nM LPS for 36 h in the presence or absence of 10 nM Aβ42 peptides;
other LPS concentrations at similar times displayed analogous trends; yellow
scale bar (lower right) ∼50 µm. (B) Affinity of LPS for the neuronal nuclear
envelope (white arrows); LPS (red; λmax = 690 nm); β-tubulin III
(βTUBIII)-stained (green; λmax = 520 nm) and nuclei (blue; λmax = 470 nm)
stained HNG cells; white arrows indicate punctate and perinuclear clustering
of LPS and LPS affinity for the nuclear envelope as has been previously
reported (Hill and Lukiw, 2015; Zhan et al., 2016, 2018; Yang and Chiu,
2017; Zhao et al., 2017a,b); yellow scale bar (lower right) = 20 µm.
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Aβ42 PEPTIDES AND LPS IN AD NEURONS

Recent evidence shows that LPS-type glycolipids not only have
an unusually high affinity for neuronal nuclear membranes but
also that amyloid-β 42 (Aβ42) peptides significantly facilitate LPS
access and translocation into human neuronal cells and across
neuronal nuclear envelopes in HNG cells in primary co-culture
(Figures 2A–L). There are several possible explanations for
the facilitation of LPS entry into, and their association with,
neuronal membranes and neuronal nuclei by Aβ42 peptides or
Aβ42 oligomers and these include:

Pore Formation by Aβ42 Peptides
Amyloid peptides (both Aβ40 and Aβ42) form a remarkable
number of heterotypic structures and configurations under
pathological conditions. These include: (i) the self-assembly and
deposition of multiple types of fibrillar and globular structures
and polymorphic assemblies both in solution and on membrane
surfaces; and (ii) the formation of heterogeneous ionic pores
spanning the lipid bilayer that is linked to the pathogenicity of
these molecules. These later findings are supported by multiple
independent reports regarding the capability of Aβ42 peptides
[2 hydrophobic amino acid residues (isoleucine and alanine)
longer (at the C-terminal) than Aβ40] to form up to 2.4-
nm diameter pores through lipid bilayer membranes (Lashuel
et al., 2002; Connelly et al., 2012; Sciacca et al., 2012; Ullah
et al., 2015; Di Scala et al., 2016; Jang et al., 2016; Davidson,
2019; Hicks et al., 2019; Nguyen et al., 2019; Sun et al., 2019;
Österlund et al., 2019). Interestingly, the slightly longer and
more hydrophobic Aβ42-based peptide assemblies in oligomeric
preparations have been observed to form voltage-independent,
non-selective ion channels in contrast to Aβ40 peptide-based
oligomers, fibers, and monomers which do not generally support
pore structure formation (Bode et al., 2017, 2019; Nguyen et al.,
2019). Although LPS is intrinsically heterogeneous and over time
tends to form aggregates of∼1–4 mDa or greater, smaller LOS or
LPS monomers in the range of ∼50 to ∼100 kDa appear to have
little difficulty in transversing ∼2.4 nm diameter pores to reach
their final destination within the nucleoplasm (Zimmer et al.,
1988; Millipore Sigma; Lipopolysaccharides1).

Membrane Disruption by Aβ42 Peptide
Oligomers
As recently visualized by atomic force, transmission electron
microscopy, mobility-mass spectrometry and liquid surface
X-ray scattering there is a remarkable influence of Aβmonomers,
short fibrillar Aβ oligomers, globular non-fibrillar Aβ oligomers
and full-length Aβ fibrils on lipid bilayer membrane integrity
and stability (Bode et al., 2019; Nguyen et al., 2019; Österlund
et al., 2019; Vander Zanden et al., 2019). Abundant evidence
indicates an Aβ oligomeric fibril-induced reorganization of
membrane lipid packing and the induction of membrane
destabilization and lipid disorganization by globular non-fibrillar
Aβ oligomers (Di Lorenzo et al., 2019; Vander Zanden et al.,

1https://www.sigmaaldrich.com/technical-documents/protocols/biology/
lipopoly-saccharides.html (last accessed November 5, 2019)

2019). Scanning electron microscopy (SEM) and thioflavin-T
fluorescence assay have revealed: (i) that LPS and/or LPS-binding
protein (LBP) have strong disruptive effects on the structural and
biophysical organization of Aβ peptides and amyloidogenesis
in Parkinson’s disease (Montagne et al., 2017; Pretorius et al.,
2018); and (ii) that LPS strongly induces NF-kB signaling,
inflammatory responses, neuroinflammation, the generation of
Aβ42 peptides and amyloidogenesis in transgenic murine models
of AD (Gu et al., 2018; Jeon et al., 2019; Sheppard et al.,
2019). Conversely, as evidenced by atomic force and electron
microscopy imaging, short fibrillar Aβ42 oligomers appear to
have a profound detergent-like, highly-localized, solubilizing
effect on lipid membrane bilayers and this may predispose
to hydrophobic interaction with LPS already present in the
parenchyma of AD brain (Bode et al., 2019).

Highly Specialized Features of Neuronal
Nuclear Membranes
Used for highly regulated nucleocytoplasmic transport, the
nuclear envelope of typical neuronal cells contain about
∼10,000 nuclear pore complexes/transporters (significantly
more than the ∼3,000 nuclear pores of a typical eukaryotic
cell), and each ∼110 MDa nuclear pore complex (NPC)
consists of about ∼1,000 nucleoporin proteins (Cooper, 2000;
Kabachinski and Schwartz, 2015; Davidson, 2019; Lin and
Hoelz, 2019; Sun et al., 2019). The affinity of LPS for any
NPC component or any nucleoporin protein is not well
understood and is an understudied area of both the neurobiology,
microbiology and neuropathology of the human central nervous
system (CNS). The perinuclear accumulation of LPS and
LPS-mediated envelopment of human neuronal nuclei (Zhao
et al., 2017a,b,c), and the restriction of the outflow of neuron-
specific information, such as thosemRNAs encoding the neuron-
specific neurofilament light (NF-L) chain protein and SYN1
(Zhao et al., 2019), underscore the novel pathogenic potential of
LPS in supporting dysfunction in neuronal cytoarchitecture and
the capacity for efficient inter-neuronal signaling by disrupting
SYN1 availability and hence synaptic integrity. In addition, LPS
strongly associates with amyloid plaques (Zhan et al., 2018)
and perinuclear LPS, and encasement of neuronal nuclei by
LPS may also contribute to the biophysical blockage of exit
of mRNA through the NPC into the cytoplasm in AD brain
(Zhao et al., 2019). Interestingly, using stable isotope labeling
of amino acids in cell culture and quantitative proteomics, it
has recently been shown that the interactome of the 695 amino
acid beta-amyloid precursor protein βAPP695, which is the direct
precursor to Aβ42 peptide, interacts strongly with the NPC and
nucleoporin proteins in neuronal cells (Andrew et al., 2019). This
suggests some novel roles for both βAPP695 and Aβ42 peptide
in both NPC function and amyloid peptide processing and
generation. The unique phospholipid composition of the inner
nuclear neuronal membrane (that encases the genome) and
the outer neuronal nuclear membrane that together form the
nuclear envelope, their extremely high ratio of phospholipid
to cholesterol, the biophysics of nuclear lipid membrane
remodeling and lipid raft formationmay predispose the neuronal
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FIGURE 2 | Increased affinity of LPS for neuronal nuclei in the presence of Aβ42 peptide. Panels (A–L) show LPS-neuronal interactions in the presence or absence
of Aβ42 peptide; (A–F) in the absence of Aβ42 peptide and (G–L) in the presence of Aβ42 peptide. LPS preferentially associates with human neuronal nuclei both in
Alzheimer’s disease (AD) and in LPS-addition experiments (Zhao et al., 2017a,b,c; Zhao and Lukiw, 2018a,b). Panels (A,D) show LPS (red) affinity for a polar region
of a single DAPI-stained neuronal nucleus (blue). Panels (B,E) show single neuronal nucleus stained with neuron-specific β-tubulin III (green). Panels (C,F) show
merged stain indicating LPS affinity for the polar region involving a single DAPI-stained neuronal nucleus. Panels (G,J) show the presence of Aβ42 significantly
increases the affinity of LPS for single DAPI-stained neuronal nucleus. Panels (H,K) show single neuronal nucleus stained with neuron-specific β-tubulin III (green).
Panels (I,L) show merged stain indicating LPS affinity for the neurite and soma of a single DAPI-stained neuronal nuclei. The results suggest that LPS is stimulated to
associate with DAPI-stained neuronal nuclei in the presence of the hydrophobic Aβ42 peptide; neither Aβ40 peptide or β-actin showed comparable “association”
effects (Zhao et al., 2017a,b,c; Lukiw et al., 2018); yellow scale bar (lower right) = 50 µm.

nuclear envelope to the potential interaction between amyloid
peptides and LPS, and with NPC nucleoporin proteins.

Other Interactions Between LPS and
Aβ42 Peptides
Lipopolysaccharide (LPS) is a type of prokaryotic
glycoconjugate-glycolipid comprised of three major domains:
(i) an ‘‘O’’ antigen consisting of an ‘‘O polysaccharide’’; (ii) a
‘‘core’’ polysaccharide domain (the innermost hydrophilic
domain of the three regions of LPS); and (iii) a hydrophobic
‘‘lipid A’’ domain. The ‘‘core’’ polysaccharide domain contains
an oligosaccharide covalently attached directly to the ‘‘lipid
A’’ moiety and commonly contains sugars such as heptose,
3-deoxy-D-mannooctulosonic acid as well as non-carbohydrate

components that include phosphate, amino acids linkages and
ethanolamine components characteristic of each Gram-negative
bacterial genus and species (Whitfield and Trent, 2014; Tulkens
et al., 2018). Both the 50–100 kDa LPS monomer (especially
the ‘‘lipid A’’ domain responsible for much of the toxicity
of Gram-negative bacteria) and the 4.5 kDa Aβ42 peptide
monomer are highly hydrophobic and this alone may favor
their mutual interaction with the lipid bilayer of neuronal
membranes (National Institutes of Health, PubChem, 2019). As
mentioned earlier, Aβ42-based oligomers are highly disruptive
toward lipid bilayer membranes, but whether the chaotropic
actions of LPS and Aβ42 peptide are additive or synergistic
is unknown as their specific interactions are currently not
well understood.
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UNANSWERED QUESTIONS

While Aβ42 peptides clearly support LPS entry into neurons
it is not clear why neuronal membranes are specifically
targeted for these actions and/or why other cellular plasma
membranes (lipid bilayers) are not preferred or involved to
a lesser extent; perhaps this has something to do with the
unique neuronal membrane proteolipid composition and/or the
electrical activity of these cell types or other unique neuronal
features including Aβ42 peptide-mediated pore formation (see
above; Nguyen et al., 2019; Österlund et al., 2019). While LPS
has been shown to completely envelope neuronal nuclei in
the superior temporal lobe neocortex (Brodmann area A22)
in both aging, and especially in AD brain, there is emerging
evidence that the end result of this biophysical occlusion of
nuclear pores is the restriction of outflow of genetic information,
i.e., messenger RNA (mRNA) through these nuclear pores,
however some other pathogenic mechanism may be involved
(Clement et al., 2016; Lukiw et al., 2018; Zhao et al., 2019;
Cornelison et al., 2019). Very recently it has been demonstrated
that there is an LPS-induced translocation of cytosolic NF-κB
into the cell nucleus (Bagaev et al., 2019) and LPS-induced
neuronal hypertrophy (Tellez-Merlo et al., 2019) but these
potentially pathogenic and neuroinflammatory outcomes require
further investigation. It would be very useful to know at
what point an induced disruption along the gut-brain axis
and LPS-signaling pathways might be beneficial in the clinical
management of AD.

A HUMAN BRAIN MICROBIOME?

There exists the intriguing and enigmatic possibility, as
has been suggested for other major organ groups, that the
human brain and/or CNS might have its own, as yet poorly
characterized microbiome (Bhattacharjee and Lukiw, 2013;
Hill et al., 2014a,b; Köhler et al., 2016; Emery et al., 2017;
Zhao et al., 2017b,c; Roberts et al., 2018; Zhao and Lukiw,
2018a,b; Zhou and Bian, 2018; Javan et al., 2019; Mazmanian,
2019). Currently, it is understood that microbes can enter
the brain and CNS through the BBB which becomes leaky
via physical damage, disease and/or aging, and/or via nerves
that innervate both the brain and the gut (Roberts et al.,
2018; Javan et al., 2019). Very recent studies indicate the
presence of bacteria in the human and mouse brain at
the BBB under noninfectious or non-traumatic conditions.
Microbes have been identified via morphological criteria and
ultrastructural imaging analysis with high bacterial counts
found in the human hippocampus and prefrontal cortex, but
low bacterial counts in other brain anatomical regions such
as the striatum (Roberts et al., 2018; Javan et al., 2019).
Significantly increased bacterial populations have been observed
in association with neurological deterioration in AD brain
tissues compared with controls (Emery et al., 2017). Other
supportive studies come from investigations involving the
human thanatomicrobiome—the microbiome of death—that
reflects the post-mortem microbial changes which vary by

organ and as a function of time and temperature (Zhao
et al., 2017a,b,c; Zhou and Bian, 2018; Javan et al., 2019).
Further support for the idea that a microbiome may already be
present in the brain arises when considering that microbes (or
microbial-derived neurotoxins) in the GI tract would need to
travel a significant distance to reach the brain compartments
post-mortem vs. the extremely rapid proliferation of bacteria
in the brain shortly after death. This might contribute locally
to the presence of bacterial-derived neurotoxins such as LPS
and other microbial-derived molecules in brain tissues (Hill
et al., 2014a,b; Lukiw, 2016a,b; Zhan et al., 2016; Emery et al.,
2017). Put another way, post-mortem microscopic examination
of the post-mortem brain routinely detects bacteria far more
rapidly than the bio-physiological capability of microbes to
transit from the GI-tract across the systemic circulation into
the brain or other CNS compartments (Roberts et al., 2018;
Javan et al., 2019).

FUTURE DIRECTIONS

The remarkable affinity of the glycoconjugate LPS, the major
component of the outer membrane of Gram-negative bacteria
such as B. fragilis and E. coli, for the neuronal nuclear envelope
in human brain cells and tissues was first described just ∼2 years
ago (Zhao et al., 2017a,b,c; Zhan et al., 2018). The mean
abundance of GI-tract-sourced LPS can be increased by either an
up-regulation in the biosynthesis of LPS itself or via an increase
in the number of Gram-negative bacteria capable of generating
and releasing LPS in part through the process of dysbiosis.
Because both the de novo induction of LPS and bacterial division
times of ∼15–20 min are relatively rapid microbiological-
pathological events, it seems also that the production of LPS
can be a rapidly undertaken and perhaps even exponential
biological event (Raetz andWhitfield, 2002; Whitfield and Trent,
2014; Sweeney and Lowary, 2019). Interestingly, growth rates
in the GI-tract microbiome for Gram-negative bacteria have
been shown to be dependent on ingested dietary fiber, and
the relative proportion of B. fragilis in the GI tract can for
example decrease 2–3-fold after a fiber-laden meal while a high-
fat-cholesterol (HFC)meal has the opposite effect (Heinritz et al.,
2016; Huang and Liu, 2019). Indeed, dietary modification by
increasing both soluble and/or insoluble fiber intake has been
shown to decrease the abundance of B. fragilis in the GI-tract
microbiome on a time-scale of hours-to-days after the ingestion
of the fiber-enriched meal itself (Simpson and Campbell, 2015;
Chen et al., 2017; Dhillon et al., 2019; Huang and Liu, 2019;
Parada Venegas et al., 2019). Dietary manipulation, probiotics
and prebiotic supplementation and increased ingestion of fiber
is one research area urgently requiring more study, because
the management of diet could yield real and more effective
therapies for both the treatment of neurodegeneration and
malignancy (Rios-Covian et al., 2017; Poeker et al., 2018;
Dhillon et al., 2019; Huang and Liu, 2019). It should be
mentioned that under realistic physiological conditions the
∼1,800 phyla of bacteria of the GI-tract microbiome are
together most likely capable of generating an extremely complex
neurotoxic cocktail of exudates, and at this point in time we
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are analyzing just a very small number of GI-tract derived
neurotoxins from a vast neurotoxic pool of huge abundance and
bewildering biological complexity (Hicks et al., 2019; Tierney
et al., 2019).

SUMMARY

Over the last few years, the GI-tract microbiome-brain axis has
emerged as a focus of increasing interest in the establishment
of a neurophysiological and neurobiological basis for age-
related, developmental, neurodegenerative, neuroinflammatory
and psychiatric disease. The microorganisms which constitute
the human GI-tract microbiome have potential to secrete some
of the most neurotoxic and inflammation-inducing substances
known, including bacterial glycolipid lipopolysaccharide (LPS)
from abundant, anaerobic, GI-tract resident Gram-negative
bacteria (Whitfield and Trent, 2014; Batista et al., 2019;
Patrick et al., 2019; Ticinesi et al., 2019). As a particularly
abundant commensal, non-motile, non-spore forming obligatory
anaerobic, Gram-negative bacillus of the human GI-tract
microbiome, Bacteroides fragilis (B. fragilis), releases an intensely
pro-inflammatory species of LPS (BF-LPS), amongst the most
pro-inflammatory substances known, that in HNG cells in
primary culture induces the pro-inflammatory transcription
factor NF-kB (p50/p65) complex (Lukiw, 2016a,b; Zhao and
Lukiw, 2018a,b; Batista et al., 2019; Sweeney and Lowary, 2019).
LPS translocation into the nucleoplasm and access to neuronal
nuclei are greatly facilitated in the presence of Aβ42 peptides
(Figures 1, 2). LPS-triggered NF-kB (p50/p65) up-regulation
is associated with: (i) the induction of pro-inflammatory,
pathogenic microRNA-regulated gene expression programs in
the AD brain; these microRNAs have multiple NF-kB (p50/p65)
recognition features in their immediate promoters (Pogue and
Lukiw, 2018); and (ii) multiple independent laboratories have
provided evidence that GI-tract derived glycolipids such as
LPS associated with the pro-inflammatory, cytoarchitectural
and/or synaptic neuropathology of AD brain and transgenic
murine models of AD (Bhattacharjee and Lukiw, 2013; Hill and
Lukiw, 2015; Zhan et al., 2016, 2018; Lukiw et al., 2018; Zhao
et al., 2019). Many of these noxious biopolymers are potent
enterotoxins which can neutralize cadherins and other cell-cell
adhesion molecules, inducing leakage through the GI-tract
epithelial barrier, which normally is largely impermeable,
allowing neurotoxin access to the systemic circulation and
subsequent translocation across the BBB (Leshchyns’ka and
Sytnyk, 2016; Sweeney et al., 2018; Jeon et al., 2019; Sweeney
and Lowary, 2019). Clinically, the detection of these GI-tract
microbiome-derived neurotoxins in blood serum may be of
prodromal, prognostic and/or diagnostic value as biomarkers
for the onset and/or propagation of neurological disease or
malignancy; or of forensic value in the determination of temporal
aspects of the post-mortem interval (Li and Yu, 2017; Zhou and
Bian, 2018).

Lastly, obligate anaerobic bacteria such as Bacteroides fragilis
make up the largest proportion of Gram-negative microbes
in the human GI-tract microbiome. In a recent study of
2,100 human donors, the most recent estimate is that all

together microbial constituents of this microbiome harbor at
least 22.3 million non-redundant prokaryotic genes in contrast
to the 26.6 thousand protein-encoding transcripts of the human
genome (Venter et al., 2001; Tierney et al., 2019). Hence, GI-tract
microbial genes outnumber host genes by about 840-to-1, which
represents staggering genetic complexity (Fields et al., 1994;
Venter et al., 2001; Tierney et al., 2019). With this comes
a GI-tract microbial proteome of remarkable proportion and
speciation that includes highly neurotoxic and pro-inflammatory
exudates such as LPS (Hicks et al., 2019; Roy Sarkar and Banerjee,
2019). It is tempting to speculate that we are just scratching
the surface of our understanding of the potential impact of
these prokaryotic GI-tract microbiome-derived genes and their
extruded neurotoxic molecules on our own host gene signaling
and expression systems which are likely to have a tremendous
impact and relevance to both human health and disease.
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Shin Jie Yong, Tommy Tong, Jactty Chew and Wei Ling Lim*

Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia

The accumulating knowledge of the host-microbiota interplay gives rise to
the microbiota-gut-brain (MGB) axis. The MGB axis depicts the interkingdom
communication between the gut microbiota and the brain. This communication process
involves the endocrine, immune and neurotransmitters systems. Dysfunction of these
systems, along with the presence of gut dysbiosis, have been detected among clinically
depressed patients. This implicates the involvement of a maladaptive MGB axis in the
pathophysiology of depression. Depression refers to symptoms that characterize major
depressive disorder (MDD), a mood disorder with a disease burden that rivals that of
heart diseases. The use of probiotics to treat depression has gained attention in recent
years, as evidenced by increasing numbers of animal and human studies that have
supported the antidepressive efficacy of probiotics. Physiological changes observed
in these studies allow for the elucidation of probiotics antidepressive mechanisms,
which ultimately aim to restore proper functioning of the MGB axis. However, the
understanding of mechanisms does not yet complete the endeavor in applying
probiotics to treat MDD. Other challenges remain which include the heterogeneous
nature of both the gut microbiota composition and depressive symptoms in the clinical
setting. Nevertheless, probiotics offer some advantages over standard pharmaceutical
antidepressants, in terms of residual symptoms, side effects and stigma involved. This
review outlines antidepressive mechanisms of probiotics based on the currently available
literature and discusses therapeutic potentials of probiotics for depression.

Keywords: microbiota-gut-brain axis, gut microbiota, major depressive disorder, probiotics, inflammation

Abbreviations: 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, 5-hydroxytryptamine (serotonin); 5-HTP, 5-
hydroxytryptamine; BBB, blood-brain barrier; BDNF, brain-derived neurotropic factor; CgA, salivary chromogranin
A; CORT, corticosterone; CREB, cAMP response element binding protein; CRP, C-reactive protein; CUMS, chronic
unpredictable mild stress; DA, dopamine; DC, dihydroxyphenylacetic acid; EIF2, eukaryotic initiation factor 2; GABA,
gamma-aminobutyric acid; GLP-1, glucagon-like peptide-1; GPx, glutathione peroxidase; GR, glucocorticoid; H2O2,
hydrogen peroxide; HPC, hippocampus; HVA, homovanillic acid; IBS, irritable bowel syndrome; IDO, indolamine 2,3-
dioxyhydrogenase; IFN, interferon; IgA, immunoglobin A; IL, interleukin; KA, kynurenic acid; KYN, kynurenine; LPS,
lipopolysaccharides; MAOA, monoamine oxygenase A; MCP-1, monocyte chemotactic protein-1; MDD, major depressive
disorder; MR, mineralocorticoid; MS, maternal separation model; NE, norepinephrine; PFC, prefrontal cortex; PGE2,
prostaglandin E2; REM, rapid eye movement; SCFA, short-chain fatty acids; SNRI, serotonin-noradrenaline reuptake
inhibitor; SOD, superoxide dismutase; SSRI, selective serotonin reuptake inhibitor; TLR, toll-like receptor; TNF-α, tumor
necrosis factor-α; Tph1, tryptophan hydroxylase 1; TRANCE, TNF-related activation-induced cytokine; TRP, tryptophan.
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INTRODUCTION

Approximately 1014 microbes, also known as gut microbiota,
reside in the human gastrointestinal tract. The majority of these
microbes belong to the Firmicutes, Bacteroidetes, Actinobacteria
and Proteobacteria phyla. The gut microbiota flourishes in a
symbiotic alliance with the host and, as such, has eminent
regulatory effects on the host physiology. The gut microbiota
actively engages with the proper development and functioning
of both the immune system and brain. This is mediated by the
microbiota–gut–brain (MGB) axis that lays the foundation for
the intricate communicative pathways between gut microbiota
and the nervous, immune and endocrine systems. However,
the diversity and richness of gut microbiota are susceptible to
change based on the host’s lifestyle. An adverse change induces
a gut dysbiosis which disrupts the symbiosis maintained by
the MGB axis. Indeed, a gut dysbiosis has been linked to
various health conditions, such as obesity, IBS, schizophrenia,
Parkinson’s disease and MDD (Sherwin et al., 2016; Thursby and
Juge, 2017; van de Guchte et al., 2018).

Major depressive disorder is currently the leading cause of
disability worldwide and is expected to outrank heart diseases as
the number one disease burden by 2030 (Reddy, 2010; Tucci and
Moukaddam, 2017). According to the Diagnostic and Statistical
Manual of Mental Disorders-5, MDD is diagnosed when a person
experiences most of the following symptoms for at least 2 weeks:
depressed mood, anhedonia, excessive guilt, suicidal ideation,
changes in appetite and sleep, psychomotor retardation, poor
concentration and fatigue. Among these criteria, either depressed
mood or anhedonia (or both) must be present for a diagnosis of
MDD (American Psychiatric Association, 2013). In this review,
the term “depression” would be used to refer to symptoms that
characterize MDD.

A causal relationship potentially exists between the gut
microbiota and MDD. Germ-free (GF) rodents developed
depressive-like behaviors following fecal microbiota
transplantation from MDD patients, but not from healthy people
(Kelly et al., 2016; Zheng et al., 2016). As compared to healthy
individuals, MDD patients have a different gut microbiota
profile. The decrease in Faecalibacterium, Bifidobacterium,
Lactobacillus (Aizawa et al., 2016), and Dialister (Kelly et al.,
2016), and increase in Clostridium, Streptococcus, Klebsiella,
Oscillibacter, Allistipes (Naseribafrouei et al., 2014; Jiang et al.,
2015; Lin et al., 2017; Rong et al., 2019), Eggerthella, Holdemania,
Gelria, Turicibacter, Paraprevotella, and Anaerofilum (Kelly et al.,
2016) genera have been found among MDD patients. This shift
in the gut microbiota composition may contribute to a shift in
the regulation of the host physiology (Luan et al., 2017). It is,
thus, worthwhile to tackle MDD from the MGB axis standpoint,
with an emphasis on the gut microbiota.

Probiotics are microbes (usually lactic acid bacteria such as
Lactobacilli and Bifidobacteria) that benefit the host physiology
upon ingestion. Probiotics are marketed in the form of capsules,
powder or fermented products. The global market size of
probiotics amount to billions and is increasing annually due to
consumers’ interest in optimizing their health with functional
foods (Di Cerbo and Palmieri, 2015). Probiotics have been

utilized to modulate the MGB axis in an attempt to treat
diseases, including MDD. Meta-analyses and systematic reviews
have already supported the efficacy of probiotics in reducing
clinical depression and depressive-like symptoms in MDD
patients and healthy individuals, respectively (Huang et al., 2016;
Pirbaglou et al., 2016; Wang et al., 2016; McKean et al., 2017;
Wallace and Milev, 2017).

To what extent are probiotics viable tools to treat
MDD/depression? This review addresses this question by
first outlining the workings of MGB axis and process by which
this axis becomes maladaptive, leading to the development
of depression. Antidepressive mechanisms of probiotics are
further elucidated by drawing parallels between the physiological
outcomes that accompanied the behavioral changes to the
MGB axis from animal and human research. Lastly, in light
of the heterogeneous nature of both the gut microbiota
composition and depression subtypes in the clinical setting,
challenges and potentials in translating probiotics for clinical
use are discussed.

THE MGB AXIS AND DEPRESSION

Signaling Pathways of the MGB Axis:
Neural and Humoral Routes
The first point of contact between the gut microbiota and host
nervous system is likely via the enteric nervous system (ENS).
The ENS has been described as “the second brain” due to
its neuronal complexity on par with the brain and its ability
to function as an independent, discrete unit to regulate gut-
related activities and the immune system (Furness, 2012; Breit
et al., 2018). Without gut microbiota, the excitability of enteric
neurons would likely be attenuated, based on data observed in
GF mice (McVey Neufeld et al., 2013). Through the ENS, gut
microbiota and the brain communicate bidirectionally through
neural and humoral (systemic circulation) pathways (Luan et al.,
2017). Parasympathetic vagus afferents carry neural information
from internal organs, including the gut, to the brain (Breit
et al., 2018). The vagus nerve also consists of motor neurons
that innervate nearly all enteric neurons (Powley, 2000). This
enables the brain to influence the activity of ENS to some
extent, particularly the state of intestinal permeability and gut
inflammation. Sympathetic spinal nerves also connect enteric
neurons to the brain, albeit to a lesser extent than vagal
nerves (Lomax et al., 2010; Breit et al., 2018). Additionally, the
humoral route allows microbial metabolites to enter the systemic
circulation and exert its effects elsewhere, including the brain.
Likewise, the brain also sends chemical messengers, such as
cytokines and glucocorticoids, via the humoral route to regulate
the gut physiology (Luan et al., 2017).

Signaling Mechanisms of the MGB Axis:
Immune, Endocrine, and
Neurotransmitter Systems
The gastrointestinal tract contains approximately 70% of the
immune system (Vighi et al., 2008). Immune cells express TLRs
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that respond to foreign antigens, such as LPS, as they penetrate
the intestinal mucosal barrier. This promptly triggers production
of inflammatory cytokines, mainly ILs, tumor necrosis factor
(TNF)-α and IFN-γ (Sherwin et al., 2016). These cytokines
enter the brain through various pathways. The humoral pathway
enables cytokines to enter circumventricular organs or permeable
regions of the BBB or bind to carrier proteins that cross the BBB.
The neural pathway allows gut cytokines to stimulate specific
brain areas such as the brainstem, hypothalamus and limbic
structures via vagus and spinal afferents. The cellular pathway
allows cytokines to be transported into the brain by the action of
monocytes or macrophages. These cytokines could also bind to
receptors on astrocytes and microglia, and subsequently trigger
cytokine production within the brain (Schiepers et al., 2005;
Miller and Raison, 2016).

When proinflammatory signals reach the brain, the
hypothalamic-pituitary-adrenal (HPA) axis, a sympathetic-
neuroendocrine system, is activated to restore homeostasis. In
response to stress, the hypothalamic paraventricular nucleus
(PVN) synthesizes and releases corticotropin-releasing factor
(CRF) to stimulate the anterior pituitary gland to release
adrenocorticotropic hormone (ACTH) into the systemic
circulation. ACTH stimulates the adrenal cortex to release
glucocorticoids (cortisol in humans and corticosterone in
rodents) which inhibit the release of CRF, establishing a negative
feedback loop. Glucocorticoids are core effectors of the HPA
axis that travel by the humoral route to exert its adaptive effects
elsewhere; for instance, to reduce gut inflammation (Tsigos and
Chrousos, 2002; Schiepers et al., 2005).

Furthermore, neurotransmitters in the brain serve
indispensable roles in maintaining proper brain functions.
Neurotransmitters such as GABA, glutamate (Glu), serotonin
(5-HT), DA, NE, histamine and acetylcholine (ACh) are
known to be synthesized by the gut microbiota (Oleskin et al.,
2016). Notably, Lactobacillus, a prominent probiotic genus,
produces multiple neurotransmitters in a species-dependent
manner in vitro (Table 1). It should be noted that gut-derived
neurotransmitters are functionally different from brain-derived
neurotransmitters (Mittal et al., 2017). The bioavailability of
precursors for these neurotransmitters is also regulated by the
gut microbiota. For example, carbohydrate-fermenting microbes
secrete butyrate (a SCFA) that stimulates 5-HT synthesis from
intestinal enterochromaffin cells (ECs) (Reigstad et al., 2015;
Yano et al., 2015; Lund et al., 2018). In contrast, Clostridia
metabolites, such as 4-cresol and 4-hydroxyphenylacetate
(4-HPA), inhibit dopamine-β-hydroxylase (an enzyme that
converts DA to NE in the brain) (Shaw, 2017). These microbial
neuroactive molecules likely modulate local ENS signaling,
which ultimately influence the MGB axis (Karl et al., 2018).

Dysregulated MGB Axis in Depression:
Chronic Stress Response Loop
Acute psychological stress increases the release of ACh from
cholinergic nerves (Saunders et al., 1997; Kiliaan et al., 1998)
and glucocorticoids from the HPA axis (Alonso et al., 2012;
Zheng et al., 2013; Vanuytsel et al., 2014), both of which

loosen tight junctions of the intestinal barrier (Figure 1).
Other stressors such as poor diet, sleep deprivation, antibiotics,
environmental pollutants and excessive exercise also increase the
intestinal permeability (Karl et al., 2018). Additionally, exposure
to stress stimulates sympathetic spinal nerves to release NE
into the gut which expedites quorum sensing systems and
iron uptake of bacteria, leading to increased virulence and
growth of pathogenic bacteria (e.g., Escherichia coli, Salmonella,
Campylobacter, etc.) (Lomax et al., 2010; Freestone, 2013). These
factors facilitate penetration of bacteria and their toxins, such
as LPS, through the weakened intestinal barrier. Administration
of LPS increased proinflammatory cytokines and caused anxiety
and depression in healthy males in a dose-dependent manner
(Grigoleit et al., 2011). This phenomenon is only transient due
to the adaptive response of the immune system and HPA axis.
However, chronic stress prevents this homeostatic restoration
and causes prolonged inflammation and HPA axis overactivity,
both of which aggravate the disrupted intestinal barrier. During
this process, chronic inflammation renders the immune system
insensitive to inhibitory signals from glucocorticoids (de Punder
and Pruimboom, 2015). Excess proinflammatory cytokines, in
turn, disrupt the negative feedback inhibition of circulating
glucocorticoids of the HPA axis (Schiepers et al., 2005; Miller
et al., 2009). Indeed, MDD patients often show increased
intestinal barrier permeability (Stevens et al., 2018; Calarge et al.,
2019; Ohlsson et al., 2019) and elevated serum antibodies against
LPS (Maes et al., 2008).

Excessive glucocorticoids hyperactivate monoamine oxidases
(MAOs; enzymes that degrade 5-HT, NE, and DA) (Grunewald
et al., 2012). An overactive HPA axis can also induce gut
dysbiosis (Murakami et al., 2017) and impairment of brain
neurotransmitter systems (Pacak et al., 1993; Smith et al., 1995;
Lopez et al., 1998; Hewitt et al., 2009). Higher baseline levels of
cortisol, an indicator of an overactive HPA axis, were detected
in more than 70% of MDD patients (Vreeburg et al., 2009;
Lok et al., 2012). Proinflammatory cytokines and glucocorticoids
upregulate indoleamine 2,3-dioxygenase (IDO) and tryptophan-
2,3-dioxygenase (TDO) enzymes, respectively (Schimke et al.,
1965; Young, 1981). Both enzymes metabolize TRP into KYN
and quinolinic acid, which reduce the bioavailability of TRP to
cross the BBB, thereby lowering 5-HT synthesis (Reus et al.,
2015). This is evidenced by low plasma TRP levels that were also
correlated to a heightened proinflammatory state found in MDD
patients (Maes et al., 1993, 1994). Furthermore, proinflammatory
cytokines can decrease levels of DA, 5-HT and NE in the brain
by upregulating their reuptake via presynaptic transporters and
downregulating enzymatic cofactors required for their synthesis
(Miller and Raison, 2016). Indeed, administration of cytokines
consistently induced neurotransmitter imbalances in the brain
and behavioral changes that are reminiscent of depression in
animals and humans (Miller et al., 2009). Similarly, higher
levels of proinflammatory cytokines were observed in depressed
individuals as reported using meta-analyses of the data available
in the literature (Howren et al., 2009; Dowlati et al., 2010).

A stress-induced inflamed gut adversely alters the relative
abundances of preexisting bacteria in the gut (Figure 1). Acute
psychological stress stimulated the release of inflammatory
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TABLE 1 | The neurotransmitters produced by probiotics and their regulatory functions.

Neurotransmitter Regulatory functions Probiotics References

Gamma-aminobutyric acid (GABA) • Hippocampal neurogenesis
• HPA axis regulation
• Mood

L. brevis
L. rhamnosus
L. reuteri
L. paracasei
L. plantarum
L. bulgaricus
L. helveticus
L. casei

Komatsuzaki et al. (2005), Luscher et al. (2011),
Stromeck et al. (2011), Barrett et al. (2012), Liao
et al. (2013), Lin (2013), Oleskin et al. (2014), Yunes
et al. (2016)

Serotonin (5-HT) • Impulsivity
• Aggression
• Appetite
• Circadian rhythm
• Learning
• HPA axis regulation
• Mood

L. plantarum
L. helveticus

Özogul (2011), Özoğul et al. (2012), Oleskin et al.
(2014), Carhart-Harris and Nutt (2017)

Dopamine (DA) • Motivation
• Concentration
• Psychomotor speed
• Ability to experience pleasure
• Mood

L. plantarum
L. helveticus
L. casei
L. bulgaricus

Dunlop and Nemeroff (2007), Özogul (2011),
Oleskin et al. (2014)

Norepinephrine (NE) • Aggression
• Cognitive function
• Sleep
• Sympathetic activity
• HPA axis regulation
• Mood

L. helveticus
L. casei
L. bulgaricus

Leonard (2001), Montgomery and Briley (2011),
Oleskin et al. (2014)

Glutamate (Glu) • Gastrointestinal reflexes
• Intestinal motility
• HPA axis regulation
• Mood

L. rhamnosus
L. reuteri
L. plantarum
L. paracasei
L. helveticus
L. casei
L. bulgaricus

Weingand-Ziadé et al. (2003), Zalán et al. (2009),
Stromeck et al. (2011), Zareian et al. (2012),
Julio-Pieper et al. (2013), Oleskin et al. (2014)

Histamine • Motivation
• Learning
• Memory
• Appetite
• Sleep
• Sympathetic activity
• Mood

L. plantarum
L. reuteri

Kano et al. (2004), Özoğul et al. (2012), Thomas
et al. (2012), Torrealba et al. (2012), Hemarajata
et al. (2013)

Acetylcholine (ACh) • Cognition
• Synaptic plasticity
• Analgesia
• Sleep
• HPA axis regulation
• Mood

L. plantarum Rowatt (1948), Girvin and Stevenson (1954), Pytka
et al. (2016)

mediators that were correlated with the lowered abundance
of Coprococcus, Pseudobutyrivibrio, Dorea, and Lactobacillus in
mice. This, in turn, allowed the proliferation of Clostridium
species in the gut (Bailey et al., 2011). The gut microbiota
of chronic-stressed mice also deviated from the baseline,
whereby an increase in proinflammatory bacteria, such as
Helicobacter and Streptococcus, and a decrease in butyrate-
producing bacteria, such as Roseburia and Lachnospiraceae
species, were observed (Gao et al., 2018). Altered gut microbiota
composition consequently exacerbates gut inflammation and
further increases intestinal permeability and production of
proinflammatory cytokines (van de Guchte et al., 2018). The
precise mechanism underlying vulnerability of certain bacteria

to inflammation remains poorly understood. It is hypothesized
that inflammation disrupts β-oxidation of intestinal epithelial
cells (IECs, both enterocytes and colonocytes) to increase oxygen
content in the gut lumen. This promotes formate oxidation that
favors the growth of facultative anaerobes, such as E. coli, that are
pathogenic and inflammatory at the cost of obligate anaerobes,
such as Bacteroides and Firmicutes (Hughes et al., 2017).

A dysregulated gut microbiota translates to a shift in
the production of neuroactive metabolites and alters host
neurotransmitter circuitry. This corresponds with disrupted
levels of neurotransmitters in the brain of GF mice (Diaz Heijtz
et al., 2011; Neufeld et al., 2011; Clarke et al., 2013; Pan et al.,
2019). Altered neurotransmitter profile (e.g., GABA, Glu, 5-HT,
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FIGURE 1 | The maladaptive microbiota–gut–brain (MGB) axis in the pathophysiology of depression. Chronic exposure to stressors (e.g., psychological, poor
nutrition) triggers prolonged release of (1) norepinephrine that alters gut microbiota composition by shifting to one that is enriched with pathogenic bacteria, and (2)
acetylcholine and glucocorticoids that increase intestinal barrier permeability. The increased intestinal permeability allows bacteria and their toxins to enter systemic
circulation, triggering stress responses from the HPA axis and immune system that, when excessive; (3) leads to chronic inflammation and HPA axis overactivity; (4)
aggravate intestinal permeability; (5) alter composition of gut microbiota; and (6) disrupt neurotransmitter systems. Altered gut microbiota also results in an inflamed
gut and (7) a shift in the production of bioactive molecules that regulate host neurotransmitter systems and gut motor functions. As a proof of concept, these five
factors (in the circle) that depict the maladaptive MGB axis are often detected in MDD patients. Lastly, the constant negative emotions displayed by depressed
patients further trigger a stronger reaction or sensitivity to various stressors.

DA, and NE) has been associated with the pathophysiology of
depression. Therefore, pharmaceutical antidepressants function
to restore synaptic levels of neurotransmitters (Harald and
Gordon, 2012). In addition, impaired neurotransmitter systems
within the ENS may alter gut motor function. This has direct
implications as gut motility is a determining factor in the
size and diversity of gut microbiota (Quigley, 2011). Therefore,
chronic stress sets up a vicious cycle of increased intestinal
permeability, chronic inflammation, hyperactive HPA axis,
altered gut microbiota profile and neurotransmitter imbalances –
forming a maladaptive MGB axis (Figure 1). Furthermore, MDD
patients perceive stress as more threatening and challenging to
cope with compared to healthy individuals (Farabaugh et al.,
2004; Salomon et al., 2009). These negative emotions can increase
their sensitivity to stressors, such as an elevated cortisol response
(Mendonca-de-Souza et al., 2007). To restore this malfunctioned
axis, probiotics have been demonstrated by meta-analyses and
systematic reviews as a potential treatment for MDD/depression
(Huang et al., 2016; Pirbaglou et al., 2016; Wang et al., 2016;
McKean et al., 2017; Wallace and Milev, 2017). Potential
antidepressive mechanisms of probiotics are elucidated in the
following section.

DELINEATING THE ANTIDEPRESSIVE
MECHANISMS OF PROBIOTICS

Probiotics secrete a wide range of signaling molecules that
operate via distinct pathways to exert their effects, be
it antidepressive, immunomodulatory or modulation of

neurotransmission (Luan et al., 2017). This review classifies
probiotic-associated signaling molecules into four types:
neurotransmitters, bacterial secreted proteins, butyrate and
other bioactive molecules (Figure 2). Some probiotics can
secrete signaling molecules of different types. In this regard, the
mechanisms of individual probiotics will be presented in the
order of pertinence and similarity to each other.

Lactobacillus rhamnosus
Lactobacillus rhamnosus JB-1, the typical experimental strain
of L. rhamnosus, was formerly referred to as Lactobacillus
reuteri. Orally administered L. rhamnosus reduced depressive-
like behaviors in normal, healthy mice (Bravo et al., 2011) and
chronic-stressed mice (McVey Neufeld et al., 2018). Postpartum
women (Slykerman et al., 2017) and obese individuals (Sanchez
et al., 2017) that were supplemented with L. rhamnosus
reported lower depressive thoughts compared to the control
group. In vagotomized rats, behavioral and physiological
benefits of L. rhamnosus were abolished (Bravo et al., 2011).
This substantiates the vagus nerve as an essential conduit
in the signaling pathway of L. rhamnosus. Introduction of
L. rhamnosus into the gut lumen heightened the firing
rate of vagus nerve and enteric neurons in mice (Perez-
Burgos et al., 2013, 2014). These findings suggest that
L. rhamnosus signals to the brain via the neural route,
which may influence the central GABAergic system and
HPA axis to manifest an antidepressive effect (Figure 2A).
However, it is unclear whether neurotransmitters, cytokines
or other molecules are involved in the neural signaling
of L. rhamnosus.
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FIGURE 2 | Signaling mechanisms underlying antidepressive effects of probiotics mediated through secretion of (A) Neurotransmitters: L. rhamnosus and L. casei
secrete GABA that may signal central GABAergic system and HPA axis via the neural route. L. brevis secretes GABA that enhances sleep. L. helveticus secrete 5-HT
that may signal the central 5-HT system via the neural route. L helveticus also secretes NE that may affect the central NE system. L. reuteri secretes histamine that
decreases secretion of proinflammatory cytokines by IECs. This may reduce circulating inflammatory markers, such as LPS, IL-6 and corticosterone, and
subsequently prevent the inflammation-induced decrease in hippocampal BDNF. (B) Butyrate: L. plantarum produces butyrate that strengthens intestinal barrier and
diffuses through the circulation to regulate BDNF expression and reduce inflammation in the brain. The latter consequently regulates the HPA axis and its regulator,
the DA system. C. butyricum produces butyrate that influences central 5-HT and BDNF systems and stimulates L cell to secrete GLP-1 into the bloodstream which
increases expression of GLP-1 receptors. F. prausnitzii produces butyrate that strengthens the intestinal barrier. B. infantis and L. paracasei promote growth of
butyrate-producing bacteria. Through butyrate, B. infantis upregulates Tph1 activity of EC which increases circulating 5-HT and strengthens intestinal barrier to lower
IDO activity and increase circulating TRP, both of which affect the central 5-HT system and BDNF expression. Through butyrate, L. paracasei may influence the
central 5-HT system and BDNF expression. (C) Bacterial secreted proteins: L. gasseri secretes gassericins that increase parasympathetic activity to facilitate sleep
and improves gut microbiota composition. B. longum secretes serpins that alter neural activities in the brain via the neural route. L. paracasei secretes lactocepins
that decrease proinflammatory chemokines in IECs. This lowers IDO activity which, in turn, affects the central 5-HT system and BDNF expression. (D) Other
bioactive molecules: B. infantis secretes bioactive factors (likely polysaccharides) that decrease circulating IL-6 which affects the central NE system. L. reuteri
secretes H2O2 that decreases IDO activity and circulating KYN, and dgk that inhibits the initiation of proinflammatory pathways. B. breve converts albiflorin into BZA
which affects the Glu system via the humoral route. L. kefiranofaciens secretes exopolysaccharides that have immunomodulatory and antibacterial properties, which
may potentially prevent HPA axis overactivity. 5-HT, 5-hydroxytryptamine or serotonin; BDNF, brain-derived neurotrophic factor; DA, dopamine; BZA, benzoic acids;
dgk, diacylglycerol kinase; ECs, enterochromaffin cells; EPS, exopolysaccharide; GABA, gamma-Aminobutyric acid; GLP-1, glucagon-like peptide-1; Glu, glutamate
or glutaminergic; H2O2, hydrogen peroxide; HPA, hypothalamic-pituitary-adrenal; IECs, intestinal epithelial cells; IDO, indoleamine 2,3-dioxygenase; IL-6,
interleukin-6; KYN, kynurenine; NE, norepinephrine; LPS, lipopolysaccharides; Tph1, tryptophan hydroxylase 1; TRP, tryptophan.
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Microbial GABA, Central GABAergic System, and
HPA Axis
Glutamine is a precursor to Glu while Glu is a precursor to
GABA. Reduced levels of GABA and Glx (Glu + glutamine)
have been consistently reported in cortical regions of MDD
patients (Sanacora et al., 1999; Hasler et al., 2007; Bhagwagar
et al., 2008; Moriguchi et al., 2018; Godlewska et al., 2019).
A dysfunctional glutaminergic system, that is partly responsible
by a decreased GABAergic tone, is also implicated in MDD
(Murrough et al., 2017). N-acetyl aspartate (NAA) is regarded
as a marker for neuronal vitality. In MDD patients, decreased
NAA levels in the PFC and hippocampus have been detected
(Gonul et al., 2006; Olvera et al., 2010; Lefebvre et al.,
2017). These neurochemical (i.e., Glx, NAA, and GABA)
levels in the PFC and hippocampus of mice increased when
administered with L. rhamnosus (Janik et al., 2016), implicating
its antidepressive potential.

Intake of L. rhamnosus altered the central mRNA expression
of GABAA and GABAB receptors while reducing depressive-
and anxiety-like behaviors in mice. These effects were also
dependent on an intact vagus nerve (Bravo et al., 2011).
With prebiotics, L. rhamnosus intake decreased hippocampal
GABAAα2 mRNA expression in stressed mice (McVey Neufeld
et al., 2017). L. rhamnosus produced GABA and Glu efficiently
from microbial glutamate decarboxylase and glutaminase,
respectively, in vitro (Stromeck et al., 2011; Liao et al.,
2013; Lin, 2013). These biosynthetic machineries utilized
by microbes to synthesize Glu and GABA are mutual in
neurons (Mathews and Diamond, 2003), which support the
interkingdom communication of microbial GABA (Lyte, 2011).
It was demonstrated in vitro that gut microbial GABA can
cross the intestinal barrier via H+/GABA symporter (Thwaites
et al., 2000; Nielsen et al., 2012). The microbial GABA may
subsequently interact with GABA receptors and transporters that
are widely expressed on enteric neurons and vagus afferents
(Hyland and Cryan, 2010).

Administration of L. rhamnosus reduced stress-induced
plasma corticosterone levels in mice that averted depression
(Bravo et al., 2011; McVey Neufeld et al., 2018). This could be
due to the innervation of PVN neurons by GABAergic synapses
that can be desensitized by acute stress (Hewitt et al., 2009).
Inhibited GABA signals allow continuous release of CRF by
PVN neurons, which ultimately leads to cortisol overproduction
and HPA axis overactivity (Cullinan et al., 2008). Impairment of
GABA receptors also inhibits hippocampal neurogenesis, which
has been shown to activate the HPA axis and induce depression
in mice (Earnheart et al., 2007; Schloesser et al., 2009). Such
effects may be possibly prevented by the production of GABA
by L. rhamnosus.

Lactobacillus casei Strain Shirota
Individuals with low mood reported feeling happier
after consuming milk containing L. casei, but not the
placebo (Benton et al., 2007). Intake of mixed-species
probiotics that included L. casei also reduced clinical
depression and depressive-like symptoms in MDD

patients (Akkasheh et al., 2016) and healthy individuals
(Steenbergen et al., 2015; Mohammadi et al., 2016),
respectively. Similar to L. rhamnosus, evidence suggests
that L. casei may also regulate the HPA axis via the neural
route (Figure 2A).

Microbial GABA and HPA Axis
Intake of L. casei stimulated vagus afferents and decreased
both the activity and quantity of CRF-expressing cells in
PVN of rats (Takada et al., 2016). Intragastric injection of
L. casei downregulated the activity of sympathetic efferents
to adrenal glands and liver, and this effect ceased upon
vagotomy (Tanida et al., 2014). In clinical trials, L. casei
supplementation lowered salivary cortisol levels, feelings of
stress and frequency of abdominal- and flu-related symptoms
in stressed individuals (Kato-Kataoka et al., 2016; Takada et al.,
2016). These studies imply that L. casei prevents HPA axis
overactivity via the vagus nerve, which may consequently lower
stress-related feelings and illnesses. L. casei produced GABA
in vitro (Oleskin et al., 2014), indicating a possibility that it may
share an antidepressive mechanism of L. rhamnosus. Stressed
individuals that consumed L. casei showed improvements in
mental health and gut microbiota composition, characterized
by increased Lactobacillus and Bifidobacterium populations
(Rao et al., 2009; Kato-Kataoka et al., 2016). As most
of the antidepressive probiotics belong to Lactobacillus and
Bifidobacterium genera, the potential antidepressive capacity of
L. casei is highly supported.

Lactobacillus brevis
Similar to L. rhamnosus and L. casei, L. brevis produces GABA
via glutamate decarboxylase in substantial amounts (Yokoyama
et al., 2002; Siragusa et al., 2007; Barrett et al., 2012; Ko et al.,
2013; Yunes et al., 2016). This indicates that L. brevis may share
a mutual mechanism of action with L. rhamnosus and L. casei
(Figure 2A). Although L. brevis has been shown to influence
neither the central GABAergic system nor the HPA axis, L. brevis
appears to promote sleep.

Microbial GABA and Sleep
Milk fermented with L. brevis had increased GABA content.
This L. brevis-fermented milk demonstrated an antidepressive
potency on par with fluoxetine, a SSRI, in depressed rats
(Ko et al., 2013). Intriguingly, intake of L. brevis-produced
GABA improved sleep duration in mice (Han et al.,
2017). Another study also showed that dietary L. brevis
enhanced sleep quality and voluntary physical activity in
mice (Miyazaki et al., 2014). GABA is the main inhibitory
neurotransmitter that is widely associated with sleep, and
GABA receptors are frequent targets for pharmaceutical drugs,
such as benzodiazepine, to treat insomnia (Gottesmann,
2002). GABA-enriched foods and GABA extract have also
been shown to improve sleep quality in insomniacs (Byun
et al., 2018) and healthy individuals (Yamatsu et al., 2015).
Therefore, L. brevis has therapeutic value for insomnia,
which reflects one of the diagnostic criteria for MDD
(American Psychiatric Association, 2013).
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Lactobacillus reuteri
Treatment of L. reuteri ameliorated depressive-like behaviors in
chronic-stressed (Marin et al., 2017) and immobilization-stressed
mice (Jang et al., 2019). The former study further elucidated the
mechanism of L. reuteri which involves regulation of IDO, a rate-
limiting enzyme of immune cells that catabolizes TRP to KYN
(Reus et al., 2015). It is also well documented that L. reuteri
exhibits anti-inflammatory activities (Thomas et al., 2012; Gao
et al., 2015; Ganesh et al., 2018). It is, thus, conceivable that
L. reuteri may also prevent activation of IDO by proinflammatory
cytokines (Reus et al., 2015).

Microbial Hydrogen Peroxide and Kynurenine
Pathway
The etiology of depression is partly attributed to a dysregulated
KYN/TRP pathway (Reus et al., 2015). An elevated ratio of
plasma KYN/TRP often correlates positively with the depression
severity in human (Maes et al., 2002; Gabbay et al., 2010; Baranyi
et al., 2013; Zhou et al., 2019). It was demonstrated that L. reuteri
intake improved behaviors of depressed mice by reversing the
stress-induced (1) decrease in fecal H2O2 levels and Lactobacillus
populations, and (2) increase in intestinal IDO1 expression and
plasma KYN levels (Marin et al., 2017). KYN administration
attenuated this antidepressive effect, which indicates that
L. reuteri ameliorates depression by reducing plasma KYN levels.
This study also showed that L. reuteri generated high amounts
of H2O2 in vitro, and the author proposed that H2O2 is the
key metabolite in mediating antidepressive effect of L. reuteri
(Marin et al., 2017). This is because H2O2 catalyzes peroxidase-
mediated reactions that inhibit IDO activity (Freewan et al.,
2013). H2O2 is transported by aquaporin-3 transporters that
are expressed on IECs (Thiagarajah et al., 2017) and immune
cells (Moon et al., 2004). These findings suggest that microbial
H2O2 can potentially cross the intestinal barrier to suppress IDO
activity in immune cells, which would lower circulating KYN
levels (Figure 2D).

Microbial Histamine, Diacylglycerol Kinase, and
Brain-Derived Neurotrophic Factor (BDNF)
Expression
Lactobacillus reuteri possesses histidine decarboxylase that
converts dietary L-histidine to histamine, which inhibits
the production of TNF-α in vitro (Thomas et al., 2012;
Hemarajata et al., 2013). The microbial histamine suppressed
proinflammatory cytokine activities in IECs via the histamine-2
receptor signaling pathway in mice. This effect disappeared when
the histidine decarboxylase gene of L. reuteri was inactivated by
mutagenesis (Gao et al., 2015). Intriguingly, microbial histamine
also activated histamine-1 receptors to initiate downstream
proinflammatory pathways in mice (Ganesh et al., 2018).
However, the substrate for this pathway, diacylglycerol, is
metabolized to phosphatidic acid by diacylglycerol kinase
produced by L. reuteri. Thus, L. reuteri secretes both histamine
and diacylglycerol kinase that act on histamine receptors to
produce an anti-inflammatory effect (Ganesh et al., 2018).
Orally administered L. reuteri simultaneously alleviated colitis
and behaviors indicative of anxiety and depression in stressed

mice. These effects were also accompanied by a decrease in
colon inflammation and blood levels of LPS, interleukin-6 (IL-
6) and corticosterone. In the same study, this reduction in
peripheral inflammation prevented the infiltration of activated
microglia into the hippocampus and increased hippocampal
BDNF expression (Jang et al., 2019; Figure 2A). BDNF
has been extensively studied for its vital role in neuronal
function and its causal link to depression. Antidepressants
such as SSRI and ketamine also increase hippocampal BDNF
expression as part of their mechanism of action (Bjorkholm and
Monteggia, 2016). Furthermore, this anti-inflammatory effect
of L. reuteri may prevent IDO activation by proinflammatory
cytokines (Reus et al., 2015).

Lactobacillus plantarum
Lactobacillus plantarum supplementation decreased depressive-
like symptoms in chronic-stressed mice (Liu Y.W. et al.,
2016; Dhaliwal et al., 2018) and stressed adults with mild
depression (Lew et al., 2018), though the latter study did not
reach statistical significance. Following L. plantarum intake,
reduction in plasma corticosterone levels and inflammation
were seen in mice with reduced depressive-like behaviors (Liu
Y.W. et al., 2016). Another study reported that mice fed
with L. plantarum displayed an increase in cecum SCFAs
levels (acetic and butyric), and a decrease in intestinal
permeability and level of MAOs in the brain (Dhaliwal et al.,
2018). These physiological changes can be unified into a
mutual mechanism that L. plantarum likely mitigates systemic
inflammation (Figure 2B).

Butyrate, Intestinal Barrier, and BDNF Expression
Chronic-stressed mice fed with L. plantarum exhibited
reduced depressive-like behaviors, coupled with an increase in
butyrate and butyrate-producing bacteria, such as Lactobacillus,
Bacteroidetes, and Roseburia (Dhaliwal et al., 2018). L. plantarum
synthesizes butyrate via fatty acid synthase II–thioesterase, a
glutamine-mediated butyrogenic pathway (Botta et al., 2017).
Butyrate can enter IECs through cholesterol-rich microdomains
and/or monocarboxylate transporter 1 protein (Suzuki et al.,
2008; Goncalves et al., 2011; Nedjadi et al., 2014), and promote
synthesis and assembly of tight junction proteins of IECs (Bordin
et al., 2004; Ohata et al., 2005; Peng et al., 2009; Wang et al., 2012;
Yan and Ajuwon, 2017). Butyrate also has anti-inflammatory
properties; for instance, butyrate inhibited proinflammatory
activities of IECs in vitro (Elce et al., 2017) and interacted
with IECs to regulate host T cell responses (Lew et al., 2018;
Xu et al., 2018). Butyrate may also diffuse into the systemic
circulation to exert anti-inflammatory effects on various organs
and tissues, including the brain (McNabney and Henagan, 2017;
Matt et al., 2018). Indeed, butyrate has been shown to normalize
behavior of depressed rodents through epigenetic regulations
of hippocampal BDNF expression (Han et al., 2014; Wei et al.,
2014; Sun et al., 2016). These outcomes are consistent with the
finding that L. plantarum intake increased hippocampal BDNF
expression and cecum butyrate levels in chronic stress-induced
depressed mice (Dhaliwal et al., 2018).
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HPA Axis and Central DA System
Lactobacillus plantarum supplementation decreased MAOs levels
in brain tissues of mice with reduced depression (Dhaliwal et al.,
2018). This is in line with another finding that L. plantarum
intake in mice increased levels of DA and its metabolites
(HVA and 3,4-dihydroxyphenylacetic acid, DOPAC) in the
PFC, along with reduced depressive-like behaviors (Liu Y.W.
et al., 2016). However, another study showed that L. plantarum
increased DA levels in the striatum of mice while alleviating
anxiety-like behaviors (Liu W.H. et al., 2016). These studies
suggest that L. plantarum likely affects the central DA system
in a context-dependent manner. It was also proposed that
L. plantarum increases DA levels in the PFC to prevent HPA
axis overactivation (Liu Y.W. et al., 2016). DA neurons in the
PFC and ventral tegmental area (VTA) form the mesocortical
pathway which regulates reward-seeking behaviors (Pariyadath
et al., 2016) and the HPA axis (Sullivan and Dufresne, 2006).
Glucocorticoids from the HPA axis can also influence the
DA system either directly or indirectly, via epigenetic control
and MAOs inhibition, respectively (Feenstra et al., 1992;
Grunewald et al., 2012; Butts and Phillips, 2013). Taken together,
L. plantarum may regulate both the DA system and HPA axis by
attenuating glucocorticoid-induced MAOs activity.

Faecalibacterium prausnitzii (Previously
Known as Fusobacterium prausnitzii)
Recently, it was discovered that oral gavage of F. prausnitzii
exerted antidepressive and anxiolytic effects in chronic-stressed
mice (Hao et al., 2019). F. prausnitzii, as the sole species of
Faecalibacterium genera (Duncan, 2002), represents around 5%
of the total human gut microbiota (Hold et al., 2003). Low
populations of F. prausnitzii correlated with the disease severity
of those with MDD (Jiang et al., 2015) and bipolar depression
(Evans et al., 2017). In a recent large cohort study, fecal levels
of F. prausnitzii correlated negatively with depressed mood
and positively with quality of life (Valles-Colomer et al., 2019).
Therefore, F. prausnitzii seems to have pertinent contributions
to mental health.

Butyrate, Microbial Anti-inflammatory Molecules, and
Peripheral Inflammation
Faecalibacterium prausnitzii produces butyrate in large quantities
from fermenting glucose and fiber (Duncan, 2002; Hold et al.,
2003). F. prausnitzii also secretes microbial anti-inflammatory
molecules that suppress the proinflammatory nuclear factor
(NF)-κB pathway in IECs (Sokol et al., 2008; Quevrain
et al., 2016a,b). These immunomodulatory effects are consistent
with neurochemical changes observed in F. prausnitzii-treated
depressed mice, whereby cecum SCFAs and plasma IL-10
levels increased, while corticosterone and IL-6 levels decreased
(Hao et al., 2019). Moreover, intragastric administration of
F. prausnitzii decreased colonic cytokine levels and intestinal
permeability in mice with colitis (Laval et al., 2015; Martin
et al., 2015). Thus, butyrate produced by F. prausnitzii potentially
strengthens the intestinal barrier (similar to L. plantarum;
Figure 2B). However, whether local immunomodulatory effects
of F. prausnitzii extend to the brain remains unknown.

Nevertheless, the ability of F. prausnitzii to attenuate gut
inflammation is sufficient to reduce depressive- and anxiety-like
behaviors in mice (Hao et al., 2019).

Lactobacillus helveticus
Lactobacillus helveticus intake enabled the recovery of chronic-
and subchronic-stressed rodents from their state of depression
(Liang et al., 2015; Maehata et al., 2019). Probiotic sticks
containing L. helveticus, in addition to Bifidobacterium longum,
reduced clinical depression and depressive-like symptoms in
MDD patients (Kazemi et al., 2019) and healthy individuals
(Messaoudi et al., 2011), respectively. Most of the animal and
human studies also showed that L. helveticus intake enhanced
memory and, sometimes, attention and learning (Ohland et al.,
2013; Chung et al., 2014; Luo et al., 2014; Liang et al., 2015;
Ohsawa et al., 2018). Cognitive impairments, such as poor
memory and concentration, represent one major cluster of MDD
symptoms (Sharpley and Bitsika, 2014). Evidence suggests that
L. helveticus may modulate the central NE system and HPA axis
to improve cognition, and the central 5-HT system and BDNF
expression to reduce depression (Liang et al., 2015) (Figure 2A).

Microbial NE, Central NE System, and HPA Axis
Supplementation of L. helveticus improved memory and
cognitive performance in chronic-stressed rats, comparable to
the SSRI citalopram-treated rats. This memory improvement
correlated with increased plasma IL-10 and hippocampal NE
levels, and reduced plasma corticosterone and ACTH levels
(Liang et al., 2015). A previous study also showed that
ingestion of L. helveticus enhanced memory and mitigated
gut inflammation in neuroinflammation-induced rats (Luo
et al., 2014). However, another study reported that memory
improvement in L. helveticus-treated mice did not correlate with
the state of gut inflammation (Ohland et al., 2013). Despite
this discrepancy, it is well established that the hippocampal NE
system and HPA axis both interact to regulate hippocampal
glucose metabolism for memory consolidation (Osborne et al.,
2015). This mechanism may be affected by microbial NE as
L. helveticus produced NE in vitro in amounts that exceed the
human bloodstream (Oleskin et al., 2014). It was also shown
in vivo that gut bacteria are responsible for converting conjugated
NE into its biologically active form (Asano et al., 2012). This
neuroactive NE likely influences the MGB axis, but the exact
mechanism remains unknown (Lyte, 2011).

Microbial 5-HT and Central 5-HT-BDNF System
Liang et al. (2015) showed that elevated hippocampal 5-HT levels
correlated with reduced depression severity in L. helveticus-fed
rats. The same study also demonstrated that treatment with SSRI
citalopram alleviated depression and increased hippocampal
BDNF expression and 5-HT levels (Liang et al., 2015). Hence, the
antidepressive mechanism appears similar between L. helveticus
and citalopram. Cultures of L. helveticus produced 5-HT at
concentrations close to that in the human bloodstream (Oleskin
et al., 2014). As shown in vivo, the gut microbiota has an
indispensable function in deconjugating glucuronide-conjugated
5-HT to generate their free, biologically active counterparts in
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considerable amounts (Hata et al., 2017). It is hypothesized that
gut luminal 5-HT may sensitize 5-HT 3A receptors of enteric
neurons by stimulating the glial cell-derived neurotrophic factor
of IECs (Hata et al., 2017). 5-HT3 receptors are also expressed
on IECs (Hasler, 2009) and vagal afferents (Hillsley and Grundy,
1998). Therefore, it can be speculated that L. helveticus influences
the central 5-HT circuitry via the neural route. This is supported
by a recent study showing that L. helveticus intake increased
expression of 5-HT 1A receptors in the nucleus accumbens while
restoring behaviors of depressed mice (Maehata et al., 2019).

Chronic-stressed mice that ingested L. helveticus displayed
an increase in hippocampal BDNF levels (Liang et al., 2015)
and neurogenesis in the nucleus accumbens (Maehata et al.,
2019). Nucleus accumbens is a brain region implicated in
reward behavior. The central BDNF and 5-HT systems are
synergistic, whereby 5-HT upregulates hippocampal BDNF–
TrkB signaling to increase expression and synthesis of BDNF. The
elevated BDNF, in turn, facilitates neurogenesis of 5-HT neurons
(Martinowich and Lu, 2008; Bjorkholm and Monteggia, 2016).
Therefore, L. helveticus likely increases hippocampal BDNF
levels via modulation of 5-HT circuitry, in a similar manner to
SSRIs (Liang et al., 2015).

Lactobacillus paracasei
Dietary intervention of heat-killed L. paracasei prevented mood
deterioration in times of stress in healthy individuals (Murata
et al., 2018). In corticosterone-induced depressed mice, oral
gavage of either live or heat-killed L. paracasei exhibited
antidepressive efficacy equivalent to or better than fluoxetine.
The same study also showed that live and heat-killed L. paracasei
operated via different mechanisms. Live L. paracasei increased 5-
HT levels whereas heat-killed L. paracasei increased DA levels
in the brain (Wei et al., 2019). The signaling mechanism of
L. paracasei appears independent of the HPA axis (Wei et al.,
2019) or vagus afferents (Tanida and Nagai, 2011). The remaining
evidence suggests that L. paracasei potentially functions via an
immune-mediated humoral pathway.

Lactocepin, Butyrate, and Central 5-HT-BDNF
System
Lactobacillus paracasei secretes lactocepin, a PrtP-encoded serine
protease, that selectively degrades proinflammatory chemokines
in inflamed ileal tissue of mice (von Schillde et al., 2012).
Lactocepin is most likely a heat-labile cell surface protein unique
to L. paracasei (Hoermannsperger et al., 2009; von Schillde
et al., 2012). Mice fed with live L. paracasei exhibited lower
inflammatory markers in serum, such as increased IL-10 and
glutathione peroxidase and decreased TNF-α and MCP-1 (Huang
et al., 2018). Another study showed that oral gavage of live
L. paracasei with its bacterial products prevented adverse effect of
stress on intestinal permeability in rats (Eutamene et al., 2007).
This can be linked to a suppressed IDO activity, resulting in
higher TRP bioavailability for 5-HT synthesis in the brain (Reus
et al., 2015). Following this, it was shown that live L. paracasei
delivered via gavage increased 5-HT and 5-HIAA (the main
metabolite of 5-HT) levels in the hippocampus and striatum of
mice (Huang et al., 2018; Wei et al., 2019). As 5-HT facilitates

BDNF synthesis (Martinowich and Lu, 2008), the upregulated
central 5-HT expression presumably explains the accompanying
increase in hippocampal BDNF expression of mice alleviated of
depression from L. paracasei intake (Wei et al., 2019). Therefore,
L. paracasei may upregulate the central 5-HT-BDNF system
(similar to L. helveticus; Figure 2C).

Treatment of live L. paracasei also increased fecal
Bifidobacterium populations while normalizing behaviors of
depressed mice (Wei et al., 2019). The gut microbiota profile,
inflammatory markers and levels of acetate and butyrate were
improved in IBS patients supplemented with live L. paracasei
(Bertani et al., 2017; Cremon et al., 2018). Reduction in
systemic inflammation, coupled with an improvement in
hippocampal function, was also observed in obese rats fed with
live L. paracasei (Chunchai et al., 2018). Thus, live L. paracasei
may facilitate the colonization of butyrate-producing bacteria
to reduce systemic inflammation (similar to L. plantarum) and
increase 5-HT secretion from ECs (similar to Bifidobacterium
infantis; Figure 2B).

Bifidobacterium infantis
In naïve rats, intake of B. infantis was shown to alter depression-
related biomarkers (Desbonnet et al., 2008). The same group
later showed that chronic-stressed mice no longer displayed
depressive-like behaviors after B. infantis intake (Desbonnet
et al., 2010). In flood victims with IBS, B. infantis consumption
did not affect their IBS symptoms but improved their mental
health instead (Murata et al., 2018). B. infantis did not
influence corticosterone levels in mice (Desbonnet et al., 2008,
2010), implying that the effect of B. infantis is likely to be
independent of the HPA axis. Evidence suggests that B. infantis
has immunomodulatory effects that regulate the central NE
system (Desbonnet et al., 2010). A recent study also provided
support for the antidepressive mechanism of B. infantis that
involves the hippocampal 5-HT system (Tian et al., 2019).

Bioactive Factors, IL-6, and Central NE System
Bifidobacterium infantis treatment manifested two physiological
changes in vivo. First, B. infantis decreased plasma IL-6 levels
in mice (Desbonnet et al., 2008, 2010) and patients with
inflammatory conditions (Groeger et al., 2013). In depressed
mice, the IL-6 release also correlated positively with the severity
of depression (Desbonnet et al., 2010). Second, B. infantis
increased NE levels in the murine brainstem (Desbonnet et al.,
2010) containing the majority of NE neurons (Schwarz and Luo,
2015). Therefore, B. infantis likely regulates plasma IL-6 and
central NE system to exert an antidepressive effect.

Bifidobacterium infantis secretes bioactive factors (probably
polysaccharides) that enhance transepithelial resistance of IECs
(Ewaschuk et al., 2008). Other studies involving rodents also
showed that B. infantis treatment enhanced the intestinal
barrier by strengthening the formation of tight junction
proteins and anti-inflammatory activities of immune cells
(Lomasney et al., 2014; Zuo et al., 2014; Javed et al.,
2016). Indeed, bacterial DNA translocation from the gut
lumen into the circulation was reduced in B. infantis-fed
rodents (Osman et al., 2006; Gómez-Hurtado et al., 2012).
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Bacterial DNA is a potent inducer of TLRs which facilitate
the release of proinflammatory cytokines, including IL-6
(Gutierrez et al., 2016). Administration of IL-6 induced
depression in mice, and this outcome was prevented by
pharmaceutical blockage of NE neurons in the brainstem
(Kurosawa et al., 2016). Hence, B. infantis potentially modulates
the NE system via an immune-mediated humoral route to
reduce depression (Figure 2D). This mechanism appears
to be independent of the vagus nerve as oral gavage of
B. infantis also decreased proinflammatory cytokine (including
IL-6) levels in vagotomized mice with an inflamed colon
(van der Kleij et al., 2008).

Butyrate, TRP, and Central 5-HT-BDNF System
Treatment of B. infantis upregulated mRNA expression of Tph1
in RIN14B cells, a cell line that mimics ECs (Tian et al.,
2019). Tph1 converts TRP to 5-hydroxytryptophan (5-HTP) and
aromatic amino acid decarboxylase subsequently converts 5-HTP
to 5-HT. B. infantis-fed mice displayed reduced depressive-
like behaviors, along with an increase in TRP biosynthesis
and hippocampal 5-HT and 5-HTP levels. In the same study,
B. infantis increased cecum butyrate levels and the abundance
of butyrate-producing Bifidobacterium. The elevated butyrate
levels also correlated with increased hippocampal 5-HTP and
PFC BDNF levels (Tian et al., 2019). This could be due to
the ability of butyrate and other SCFAs to increase Tph1
activity of ECs, thereby promoting 5-HTP and 5-HT secretions
(Reigstad et al., 2015; Yano et al., 2015; Lund et al., 2018).
This is consequential as ECs contribute about 95% of the
bodily 5-HT (El-Merahbi et al., 2015), and that mice with a
gut microbiota had 2.8-fold higher plasma 5-HT levels than
GF mice (Wikoff et al., 2009). The evidence for the ability
of 5-HT to cross the BBB is conflicting (Brust et al., 2000;
Wakayama et al., 2002; Nakatani et al., 2008; El-Merahbi et al.,
2015). In contrast, 5-HTP readily crosses the BBB and can
be converted into 5-HT. Therapeutic 5-HTP has also been
shown to treat clinical depression with a potency equivalent
to or better than SSRIs (Birdsall, 1998; Jangid et al., 2013;
Jacobsen et al., 2016).

Furthermore, B. infantis intake increased plasma TRP levels
in healthy rats (Desbonnet et al., 2008), but another study
with chronic-stressed rats reported otherwise (Desbonnet et al.,
2010). The author then suggested that B. infantis regulates TRP
metabolism differently, depending on the rat strain (Desbonnet
et al., 2010). Therapeutic TRP can improve symptoms of
mood, sleep and cognitive disorders as TRP readily passes
through BBB to regulate numerous brain functions, such as
5-HT synthesis (Richard et al., 2009). The elevated plasma
TRP levels from B. infantis intake is most likely a result
of reduced proinflammatory cytokines (Desbonnet et al.,
2008, 2010), which reduces IDO activity and prevents over-
catabolism of TRP (Reus et al., 2015). Thus, B. infantis may
upregulate the hippocampal 5-HT system via modulation of
peripheral 5-HTP, 5-HT and/or TRP levels. As 5-HT promotes
BDNF synthesis (Martinowich and Lu, 2008), this presumably
explains the concomitant increase in BDNF levels in PFC
of rats ameliorated of depression with B. infantis treatment

(Tian et al., 2019). Taken together, L. helveticus, L. paracasei
and B. infantis upregulate the central 5-HT-BDNF system as
their mutual antidepressive mechanism, although via different
pathways (Figure 2B).

Clostridium butyricum
Treatment of C. butyricum improved depressive-like
behaviors in chronic-stressed mice. These treated mice
also showed upregulated central 5-HT, BDNF and GLP-
1 receptors in the brain (Sun et al., 2018). Remarkably,
the combination of C. butyricum with antidepressants
reduced depression in about 70% of treatment-resistant
MDD patients, of which 30% achieved remission (Miyaoka
et al., 2018). These studies support the antidepressive
efficacy of non-pathogenic C. butyricum. It should be
noted that certain strains of C. butyricum are pathogenic
which may cause botulism and necrotizing enterocolitis
(Cassir et al., 2016).

Butyrate, Central 5-HT-BDNF System, and GLP-1
Clostridium butyricum, as a resident of healthy gut microbiota,
produces butyrate from carbohydrate fermentation (Araki et al.,
2002; He et al., 2005; Liu J. et al., 2015). Treatment of
C. butyricum increased central 5-HT levels and BDNF expression
in mice with reduced depression (Sun et al., 2018). Another
study also reported that C. butyricum intake upregulated
neurogenesis-related pathways, such as BDNF, via butyrate
production in mice (Liu J. et al., 2015). Additionally, intragastric
inoculation of C. butyricum increased intestinal secretion of
GLP-1 and the central expression of GLP-1 receptors in
mice alleviated from depression (Sun et al., 2018). This effect
may also be mediated by butyrate as SCFAs can bind to
receptors expressed on intestinal L cells to stimulate GLP-1
secretion into the bloodstream (Tolhurst et al., 2012). GLP-1
is known for appetite and glucose control, but the activation
of central GLP-1 receptors has been shown to regulate the
central 5-HT system and reduce anxiety- and depressive-
like behaviors in rats (Anderberg et al., 2016). Therefore,
antidepressive mechanism of C. butyricum potentially involves
a butyrate-mediated upregulation of central BDNF-5-HT system
(similar to L. paracasei and B. infantis) and GLP-1 receptor
expression (Figure 2B).

Lactobacillus kefiranofaciens
Lactobacillus kefiranofaciens is isolated from kefir, a type of
fermented milk. Oral gavage of L. kefiranofaciens improved
behaviors of chronic-stressed, depressed mice. These treated
mice also showed several physiological alterations. Levels of
circulating TRP, splenic IL-10 and beneficial gut bacteria
(e.g., Lachnospiraceae, Bifidobacteriaceae, and Akkermansia)
increased, and KYN/TRP ratio, splenic IL-6 and IFN-γ levels
and Proteobacteria abundance decreased (Sun et al., 2019).
What factors mediate such broad effects of L. kefiranofaciens
on the TRP/KYN pathway, immune system, HPA axis and gut
microbiota remain unclear, but exopolysaccharide is potentially a
candidate (Figure 2D).
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Exopolysaccharide, Peripheral Inflammation, and Gut
Microbiota
The only known metabolite of L. kefiranofaciens is an
exopolysaccharide called kefiran (Maeda et al., 2004; Xing et al.,
2017). The intake of kefiran modulated the gut mucosal immune
system of mice (Vinderola et al., 2006), which could potentially
account for changes in splenic cytokines seen in depressed mice
(Sun et al., 2019). Kefiran was also shown to protect human
enterocyte cell lines from adhesion and damage inflicted by
toxins of pathogenic bacteria (Santos et al., 2003; Medrano
et al., 2008). A further study discovered that L. kefiranofaciens
produces a novel exopolysaccharide (not kefiran) that is
bactericidal toward enteropathogens Listeria monocytogenes and
Salmonella enteritidis (Jeong et al., 2017a). It may be possible
that the antibacterial effects of this exopolysaccharide extend
to other species in the gut microbiota. This supports the
finding that L. kefiranofaciens supplementation ameliorated
depressive-like behaviors in chronic-stressed mice by regulating
gut microbiota content, which included the decreased abundance
of Proteobacteria, a phylum that includes pathogens such as
Salmonella (Sun et al., 2019). Other mice studies also supported
the role of L. kefiranofaciens in modulating gut microbiota
composition (Jeong et al., 2017b; Xing et al., 2018). Collectively,
these changes in gut microbiota profile prevent gut dysbiosis that
could lead to chronic inflammation, HPA axis overactivity and
depression (Jeong et al., 2017b).

Bifidobacterium breve
Bifidobacterium breve treatment improved symptoms of
depression in innately anxious mice (Savignac et al., 2014),
chronic-stressed mice (Tian et al., 2019) and schizophrenic
patients with depression (Okubo et al., 2019). B. breve
supplementation also improved mood and cognition in elderly
people with mild cognitive impairment (Kobayashi et al., 2019).
However, none of the accompanying physiological changes
among these studies overlapped, making it difficult to identify
an exact mechanism of B. breve. In spite of this, one study
demonstrated that antidepressive mechanism of B. breve involves
the generation of benzoic acid (Zhao et al., 2018; Figure 2D).

Benzoic Acid and Central Glu System
Among the 18 bacterial strains isolated from gut microbiota,
B. breve was the most efficient converter of albiflorin to benzoic
acid via microbial carboxylesterase, at the rate of 75% as
compared to L. casei, Lactobacillus acidophilus and B. longum
at about 5%. The same study further showed that orally
administered benzoic acid alleviated depression in mice (Zhao
et al., 2018). Benzoic acid readily crosses the intestinal barrier and
BBB to inhibit D-amino acid oxidase that catabolizes D-serine,
a co-agonist of N-methyl-D-aspartate receptor (NMDAR, a
type of Glu receptor) (Zhao et al., 2018). Both D-serine and
NMDARs are therapeutic targets in neuropsychiatric disorders,
such as depression, schizophrenia and cognitive impairment
(Durrant and Heresco-Levy, 2014). Indeed, a dysfunctional Glu
system is linked to the pathophysiology of depression (Pytka
et al., 2016). In line with this, B. breve intake increased Glu

synapses in chronic-stressed mice while treating its depressive-
like behaviors (Tian et al., 2019).

Bifidobacterium longum
Bifidobacterium longum treatment decreased depressive-like
symptoms in innately anxious mice (Savignac et al., 2014) and IBS
patients with mild to moderate depression and/or anxiety (Pinto-
Sanchez et al., 2017). B. longum supplementation also presented
anxiolytic efficacy in numerous human and animal studies
(Bercik et al., 2010, 2011; Allen et al., 2016; Orikasa et al., 2016).
However, B. longum did not affect the gut inflammatory state in
animals and humans, indicating a lack of immunomodulatory
function (Bercik et al., 2010, 2011; Pinto-Sanchez et al., 2017).
Other physiological changes, such as BDNF expression and
plasma KYN/TRP ratio, seen in B. longum-treated mice and
humans were inconsistent (Bercik et al., 2010, 2011; Orikasa et al.,
2016; Pinto-Sanchez et al., 2017). Collectively, these data suggest
that brain neural activity and HPA axis are possible targets of
B. longum signaling mechanisms (Figure 2C).

Serpin, Central Neural Activity, and HPA Axis
Both in vitro and in vivo studies showed that B. longum weakened
the excitability of murine myenteric neurons (Bercik et al., 2011;
Khoshdel et al., 2013). Mice with inflamed intestines that were
fed with B. longum demonstrated reduced anxiety-like behaviors,
and this effect ceased upon vagotomy (Bercik et al., 2011).
Intriguingly, B. longum intake also alleviated anxiety in colon-
inflamed mice that were vagotomized before treatment (Bercik
et al., 2010). The author postulated that vagus afferents are an
essential conduit when B. longum signals enterocytes, but not
colonocytes (Bercik et al., 2011). The genome of B. longum
encodes serpin, a serine protease inhibitor (Ivanov et al., 2006;
Mkaouar et al., 2016). Serpin can inhibit the activation of enteric
neurons by suppressing the secretion of elastase-like proteases
from IECs (Ivanov et al., 2006; Buhner et al., 2018). These studies
support the premise that B. longum interacts with the host via
the neural pathway (similar to L. rhamnosus). Following this,
the neural activity and HPA axis of the brain may be altered.
Individuals consuming B. longum had increased neural activity
in the PFC and decreased neural activity in the amygdala and
fronto-limbic regions (Allen et al., 2016; Pinto-Sanchez et al.,
2017). Anomalies in the anatomy and activity of the amygdala
and PFC are also commonly observed among depressed patients
(Liu W. et al., 2017). Furthermore, B. longum intake exerted
simultaneous glucocorticoids-lowering and anxiolytic effects in
humans and mice (Allen et al., 2016; Orikasa et al., 2016),
suggesting that B. longum potentially modulates the HPA axis.

Lactobacillus gasseri
Supplementation of L. gasseri improved mood (Sashihara et al.,
2013) and depressive-like symptoms (Sawada et al., 2017) in
stressed individuals. However, no studies have evaluated the effect
of L. gasseri on clinically depressed individuals. Interestingly,
L. gasseri is the only dietary probiotic which showed consistent
sleep-enhancing effects in humans (Nishida et al., 2017a,b;
Sawada et al., 2017). Irregular sleeping patterns are frequently
associated with MDD (American Psychiatric Association, 2013;

Frontiers in Neuroscience | www.frontiersin.org 12 January 2020 | Volume 13 | Article 136171

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01361 December 27, 2019 Time: 17:6 # 13

Yong et al. Probiotics for Treatment of Depression

Wallace and Milev, 2017), supporting the use of L. gasseri as a
potential treatment for MDD-related sleep disturbances.

Gassericins, Gut Microbiota, and Parasympathetic
Activity in Sleep
Stressed individuals that were given probiotic-based milk
containing either heat-killed or live L. paracasei showed
alterations in the gut microbiota profile. Heat-killed L. gasseri
decreased Bacteroides vulgatus and increased Dorea longicatena
populations (Nishida et al., 2017a), whereas live L. gasseri
decreased growth of inflammatory Enterobacteriaceae and
Veillonella (Sawada et al., 2017). Both studies also showed
that L. gasseri enhanced sleep quality of participants. Another
study reported that heat-killed L. gasseri (in milk) increased the
population of Clostridium cluster IV group and SCFAs levels
in individuals with altered bowel movements (Sawada et al.,
2016). Using a similar methodology, decreased Clostridium
cluster IV and increased Bifidobacterium populations were
found in another group of participants (Sugawara et al.,
2016). Taken together, these results suggest that heat-killed
L. gasseri does not have a specific microbial target, but
rather modifies the preexisting gut microbiota that is unique
to each individual. Nevertheless, these changes in the gut
microbiota composition favor an anti-inflammatory state
(Sawada et al., 2016; Sugawara et al., 2016; Nishida et al.,
2017a). L. gasseri likely alters the gut microbiota profile
through its unique, heat-resistant gassericins A and T with
potent antibacterial properties against enteric pathogens
(Pandey et al., 2013).

Heat-killed L. gasseri decreased expression of leukocytic
stress-responsive microRNAs and salivary cortisol levels in
stressed individuals (Nishida et al., 2017b). L. gasseri intake
also prevented downregulation of EIF2-related genes in IBS
patients (Nobutani et al., 2017). These studies suggest that
L. gasseri confers protection against detrimental effects of stress.
Moreover, heat-killed L. gasseri intake promoted parasympathetic
nerve activity while improving sleep quality of stressed
individuals (Nishida et al., 2017b). In healthy individuals,
administration of either live or heat-killed L. gasseri increased
their parasympathetic activity (Otomi et al., 2015; Sugawara et al.,
2016). Therefore, L. gasseri may modify the gut microbiota profile
in such a way that lowers gut inflammation and stress response,
which may consequently promote parasympathetic activity to
facilitate sleep (Figure 2C).

CHALLENGES AND PERSPECTIVES FOR
PROBIOTICS AS TREATMENT FOR
DEPRESSION

The existence of different gut microbiota compositions,
depression subtypes and probiotic formulations complicate
treatment outcomes and necessitate an individualized approach
when using probiotics to treat depression. Despite these
challenges, probiotics confer some benefits over antidepressant
drugs, and there are more promising candidate probiotics that
can potentially treat depression.

Heterogeneity of Gut Microbiota
Composition
Several factors are known to influence the gut microbiota
composition, such as diet, medications, genetics, age,
geographical location and smoking (Thursby and Juge,
2017). Recently, approximately 1000 gut-derived putative
bacterial species that do not belong to any existing genus were
discovered in humans (Almeida et al., 2019). Such tremendous
diversity complicates the understanding of how introduced
probiotics affect the overall gut microbiota. One study showed
that tolerability of individuals’ gut microbiota toward the
colonization of probiotics ranges from permissive to resistant
(Zmora et al., 2018). This appears to depend on the baseline
abundance of probiotic species in the host gut microbiota. For
instance, those who were permissive toward the colonization of
Lactobacillus had prior low levels of Lactobacillus populations
before treatment (Zmora et al., 2018). Similarly, B. longum
colonized the gut for a longer period in 30% of users who initially
had low levels of B. longum (Maldonado-Gomez et al., 2016).
Another study showed that the antidepressive effect of multi-
species probiotics (MSP) only manifests when the administered
MSP successfully colonized the gut of rats (Abildgaard et al.,
2019). This is consistent with the observation that lower levels of
two main probiotic genera, Lactobacillus and Bifidobacterium, are
commonly found in individuals with MDD (Aizawa et al., 2016).

Despite most studies supported the effectiveness of probiotic
supplements in reducing depression, not all randomized
controlled trials reported the same outcome (Table 2). For
instance, L. rhamnosus did not affect scores of anxiety,
depressions, sleep, cognition, inflammatory and stress responses
among healthy adults (Kelly et al., 2017). L. rhamnosus also
did not affect perceptions of wellbeing, anxiety and stress
among healthy older adults (Ostlund-Lagerstrom et al., 2016).
In healthy individuals, L. helveticus exhibited no antidepressive
effect (Chung et al., 2014; Ohsawa et al., 2018). These results
imply that probiotics are less efficacious among the healthy
population, which agree with a meta-analysis that reported
an insignificant effect of probiotics on mood, particularly in
healthy individuals (Ng et al., 2018). Therefore, probiotics could
be generally more effective in colonizing gut microbiota of
depressed individuals that are different from healthy people
(Jiang et al., 2015; Zheng et al., 2016). In some cases, probiotic
colonization may be optional for their effects to manifest.
For instance, heat-killed L. paracasei benefited the human and
animal host, in terms of neurochemical and behavioral changes
(Corpuz et al., 2018; Murata et al., 2018; Wei et al., 2019).
Some probiotics, such as L. reuteri, L. paracasei, L. plantarum,
L. gasseri, L. kefiranofaciens, B. breve, and B. infantis, promoted
the colonization of other beneficial microbes that contributed
to the reduction of depressive-like symptoms in animals (Marin
et al., 2017; Dhaliwal et al., 2018; Jang et al., 2019; Sun et al., 2019;
Tian et al., 2019; Wei et al., 2019).

Heterogeneity of Depression
Major depressive disorder is characterized by depressed mood
and/or anhedonia, in addition to excessive guilt, suicidal ideation,
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TABLE 2 | Selected preclinical and clinical studies on the behavioral and physiological effects of single-species probiotics.

Probiotic species Model Behavioral changes Physiological changes References

Lactobacillus
rhamnosus

Normal, healthy BALB/c male mice ↓ Anxiety
↓ Depression
↑ Memory
No effect on locomotion

↓ Stress-induced ↓ in plasma CORT levels
↓ GABAAa2 mRNA expression in the PFC and amygdala
↓ GABAB1b mRNA expression in the HPC, amygdala and locus coeruleus
↑ GABAAa2 mRNA expression in the HPC
↑ GABAB1b mRNA expression in cortical regions (cingulate and prelimbic)

Bravo et al. (2011)

BALB/c male mice subjected to MS ↓ Depression ↓ Stress-induced ↑ in plasma CORT levels
↑ Recovery toward basal corticosterone levels

McVey Neufeld
et al. (2018)

Healthy human males (aged 22–33,
mean ≈ 23–25 years)

No effect on mood and
anxiety

No changes in cortisol response to stress, plasma levels of IL10, IL1β, IL6, IL8 and
TNFα, and whole blood levels of TLR-4

Kelly et al. (2017)

Pregnant women (14–16 weeks
gestation)

↓ Anxiety
↓ Depression

N/A Slykerman et al.
(2017)

(With prebiotics)
Obese individuals (aged 18–55, mean
≈ 35–58 years)

↓ Depression
↓ Food cravings
↑ Satiety

N/A Sanchez et al.
(2017)

Lactobacillus casei
strain Shirota

Healthy middle-age human adults
(aged 48–79, mean ≈ 62 years)

↓ Depression in those with
low mood

N/A Benton et al. (2007)

Individuals with chronic fatigue
syndrome (aged 18–65 years)

↓ Anxiety
No effect on depression

↑ Fecal Lactobacillus and Bifidobacteria populations Rao et al. (2009)

Healthy students under stressful
examination (aged < 40, mean ≈
23 years)

↓ Stressful feelings
No effect on anxiety

↓ Salivary cortisol levels
↓ Gastrointestinal symptoms
↓ Fecal Bacteroidaceae populations
↑ Diversity of the gut microbiota
Prevented changes in expression of approx. 100 stress-responsive genes

Kato-Kataoka et al.
(2016)

Lactobacillus brevis Sprague–Dawley male depressed rats ↓ Depression N/A Ko et al. (2013)

ICR male mice ↑ Sleep duration N/A Han et al. (2017)

C3H-HeN male mice ↑ Sleep duration
↑ Wheel-running

N/A Miyazaki et al.
(2014)

Lactobacillus
reuteri

C57BL/6J, C57BL/6N, and BALB/cJ
male mice subjected to CUMS

↓ Depression ↓ Stress-induced ↑ in intestinal IDO1 expression
↓ Stress-induced ↑ in KYN levels
↑ Stress-induced ↓ in fecal H2O2 levels
↑ Stress-induced ↓ in Lactobacillus populations

Marin et al. (2017)

C57BL/6 male mice subjected to
immobilization stress

↓ Anxiety
↓ Depression

↓ Stress-induced ↑ in activated microglia infiltration into the HPC
↓ Stress-induced ↑ in colon shortening, myeloperoxidase activity and IL-6 expression
in the colon
↓ Stress-induced ↑ in blood CORT, IL-6, and LPS levels
↓ Stress-induced colitis
↓ Stress-induced ↑ in Proteobacteria populations
↑ Stress-induced ↓ in HPC BDNF expression
↑ Stress-induced ↓ in Bacteroidetes, Firmicutes, and Actinobacteria populations

Jang et al. (2019)

Lactobacillus
plantarum

MS vs. naïve male C57BL/6J mice ↑ Locomotion
In naïve mice:
↓ Anxiety
In MS mice:
↓ Depression
↓ Anhedonia

↓ Stress-induced ↑ in CORT in MS mice
↑ DA, DOPAC, and HVA in the PFC of MS and naïve mice
↓ 5-HIAA and no change in 5-HT levels in the PFC of MS mice
↑ 5-HT levels in the PFC of naïve mice
↓ 5-HIAA levels in the PFC of naïve mice
↑ IL-10, ↓ IL-6 and no effect on TNF-α levels in the serum of MS mice

Liu Y.W. et al.
(2016)
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TABLE 2 | Continued

Probiotic species Model Behavioral changes Physiological changes References

Germ-free C57BL/6JN male mice ↓ Anxiety
↑ Locomotion
No effect on depression

↑ 5-HT and DA levels in the striatum, but not the PFC or HPC
No effects on serum GR levels

Liu W.H. et al.
(2016)

Swiss albino male mice subjected to
CUMS or sleep-deprivation stress

↓ Anxiety
↓ Depression
↑ Memory
↑ Learning
↑ Locomotion

↓ Stress-induced ↑ in malonaldehyde, MAOs and nitrate levels in the brain
↓ Stress-induced ↑ in serum levels of TNF-α, CORT, and LPS
↑ Stress-induced ↓ in glutathione and HPC BDNF levels
↑ Abundance of Lactobacillus
↓ Stress-induced ↓ abundance of Bacteroidetes and Roseburia
↑ Fecal acetic and butyric acid levels
Prevented stress-induced ↑ in permeability of BBB and intestinal barrier, and
Enterobacteriaceae levels

Dhaliwal et al.
(2018)

MDD patients undergoing SSRI
medications (mean age ≈ 39 years)

↑ Memory
↑ Attention
↑ Learning
No effect on depression
and stress

↓ Plasma KYN levels
↑ 3-hydroxykynurenine/KYN ratio
No changes in plasma levels of TNF-α, IL-6, IL-1β, and cortisol

Rudzki et al. (2019)

Stressed human adults with mild levels
of depression (aged 18–60, mean ≈
31 years)

↓ Anxiety
↓ Stress
↑ Memory
↑ Learning
↓ Depression (not stat. sig)

↓ Plasma IFN-γ and TNF-α levels
↓ Plasma IL-1β and cortisol levels (not stat. sig.)

Lew et al. (2018)

Faecalibacterium
prausnitzii

Sprague–Dawley male rats subjected to
CUMS

↓ Anxiety
↓ Depression

↓ Stress-induced ↓ in plasma levels of CORT, CRP, and IL-6
↑ SCFAs levels in the cecum
↑ Stress-induced ↓ in plasma IL-10 levels

Hao et al. (2019)

Lactobacillus
helveticus

Sprague–Dawley male rats subjected to
chronic restraint stress

↓ Anhedonia
↓ Anxiety
↑ Locomotion
↑ Memory

↓ Stress-induced ↑ in CORT and adrenocorticotropic hormone levels
↓ Stress-induced ↓ in plasma IL-10 levels
↑ Stress-induced ↓ in HPC BDNF expression
↑ Stress-induced ↓ in 5-HT and NE levels in the HPC
No changes in stress-induced ↓ in plasma IFN-γ and TNF-α levels

Liang et al. (2015)

Sprague–Dawley male rats with
hyperammonemia-induced
neuroinflammation

↓ Anxiety
↑ Memory
↑ Learning

↓ Stress-induced ↑ in KA/KYN ratio
↓ Stress-induced ↑ in PGE2 levels in the cerebellum and HPC
↓ Stress-induced ↑ in IL-1β levels in the cerebellum, HPC, and PFC
↓ 5-HT levels in the cerebellum and HPC
↑ Stress-induced ↓ in KYN/TRP ratio
No effect in stress-induced ↑ in 5-HIAA levels in the HPC, cerebellum, and PFC

Luo et al. (2014)

C57BL/6J male mice subjected to
sub-chronic social defeat stress

↓ Anhedonia
↓ Anxiety

↑ Stress-induced ↓ in dopamine D3 and serotonin 1A receptors expression
Restore stress-induced changes in gene expression in the nucleus accumbens
No effects on serum CORT levels and gut microbiota composition

Maehata et al.
(2019)

Healthy elderly humans (aged 60–75,
mean ≈ 65 years)

↑ Memory
↑ Attention
↑ Learning
No effects on stress levels
and depression

No effects on plasma levels of BDNF and whole blood viscosity Chung et al. (2014)

Healthy middle-aged humans (aged
50–70, mean ≈ 58 years)

↑ Memory
↑ Attention
No effects on depression

N/A Ohsawa et al.
(2018)
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Probiotic species Model Behavioral changes Physiological changes References

Lactobacillus
paracasei

CORT-induced depressed male
C57BL/6J mice
(live or heat-killed L. paracasei)

↓ Depression
↓ Anhedonia
↓ Anxiety

↑ Stress-induced ↓ abundance of Bifidobacterium (live)
↑ Stress-induced ↓ in 5-HT levels in the HPC, PFC, and striatum (live)
↑ Stress-induced ↓ DA levels in the HPC and PFC (heat-killed)
↑ Stress-induced ↓ in BDNF levels and MR and GR receptors expression in the HPC
No effect on serum CORT levels, both basal and in response to stress

Wei et al. (2019)

Senescence-accelerated female
SAMP8 mice (heat-killed L. paracasei)

Prevented age-related
cognitive decline

↓ 5-HT-degrading enzymes, particularly MAOA, levels in the HPC
↑ 5-HT levels in brain tissues and serum
↓ BDNF expression and CREB phosphorylation in the HPC
No effect on the gene expression of 5-HT-synthesis-related enzyme

Corpuz et al. (2018)

Senescence-accelerated male and
female SAMP8 mice (live L. paracasei)

Prevented age-related
cognitive decline and
anxiety

↓ Serum TNF-α and MCP-1 levels
↑ Levels of DA, DC, 5-HT and 5-HIAA levels in the striatum and HPC
↑ Levels of serum BDNF, IL-10, SOD, and GPx

Huang et al. (2018)

Healthy females under examination
stress (heat-killed L. paracasei)
(aged > 18, mean ≈ 21 years)

Prevented decline in mood
and immunity

↓ Frequency of common cold in those susceptible
No effect on salivary secretory IgA concentrations

Murata et al. (2018)

Bifidobacterium
infantis

Naïve Sprague–Dawley male rats No effect on depression ↓ Plasma IFN-γ, TNF-α, IL-10, and IL-6 levels
↓ 5-HIAA levels in the frontal cortex
↓ DOPAC levels in the amygdaloid cortex
↓ NE levels in the HPC (not stat. sig.)
↑ Plasma TRP and KYN levels
No effects in baseline CORT levels

Desbonnet et al.
(2008)

Sprague Dawley male rats subjected to
MS

↓ Depression ↓ Stress-induced ↑ in plasma IL-6 and corticotrophin-releasing factor mRNA
expression in the amygdala
↑ Stress-induced ↓ in NE levels in the brainstem
No effects on plasma TRP/KYN ratio and baseline CORT concentrations

Desbonnet et al.
(2010)

Male adult C57BL/6J mice subjected to
CUMS

↓ Depression
↓ Anhedonia
↓ Anxiety

↓ Stress-induced ↑ Veillonellaceae and Desulfovibrio populations
↑ 5-HT and 5-HTP levels in the HPC
↑ Expression of Tph1 mRNA in RIN14B cells (in vitro)
↑ BDNF levels in the PFC
↑ Stress-induced ↓ in cecum butyrate levels
↑ Alpha diversity of gut microbiota
↑ Glutamatergic synapse
↑ Phenylalanine/tyrosine/TRP biosynthesis
No effect on spleen regulatory T cells

Tian et al. (2019)

Clostridium
butyricum

C57BL/6 male mice subjected to
CUMS

↓ Depression
No effect on locomotion

↑ Stress-induced ↓ in brain levels of 5-HT and BDNF
↑ Stress-induced ↓ in intestinal GLP-1 secretion and cerebral expression of GLP-1
receptor

Sun et al. (2018)

(With SSRIs or SNRIs)
Treatment-resistant MDD patients
(mean age ≈ 42–44 years)

↓ Depression N/A Miyaoka et al.
(2018)

Lactobacillus
kefiranofaciens

Kunming male mice subjected to
CUMS

↓ Depression
↓ Anhedonia

↓ Stress-induced ↑ in serum CORT levels and KYN/TRP ratio
↓ IL-6 and IFN-γ levels in the spleen
↓ Abundance of Proteobacteria
↑ Stress-induced ↓ serum TRP levels
↑ IL-10 levels in the spleen
↑ Abundance of anti-inflammatory Actinobacteria, Bacteroidetes, Lachnospiraceae,
Coriobacteriaceae, Bifidobacteriaceae, and Akkermansia

Sun et al. (2019)
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Bifidobacterium
breve

Innately anxious BALB/c male mice ↓ Depression
↓ Anxiety
No effect on locomotion

No effect on CORT levels, both baseline and in response to stress Savignac et al.
(2014)

Male adult C57BL/6J mice subjected to
CUMS

↓ Depression
↓ Anhedonia
↓ Anxiety

↓ Chronic stress-induced CORT release
↓ Stress-induced ↑ Veillonellaceae populations
↑ Expression of Tph1 mRNA in RIN14B cells (in vitro)
↑ BDNF levels in the PFC
↑ Stress-induced ↓ in alpha diversity of the gut microbiota
↑ Glutamatergic synapse
↑ Phenylalanine/tyrosine/TRP biosynthesis
No effect on spleen regulatory T cells

Tian et al. (2019)

Schizophrenic individuals with anxiety
and depression (aged > 20, mean ≈
41–46)

↓ Depression
↓ Anxiety

↑ Relative abundance of Parabacteroides
↑ Serum IL-22 and TRANCE expression
No effects on Bifidobacterium populations and serum levels of IL-6 and TNF-α

Okubo et al. (2019)

Elderly humans with mild cognitive
impairment (mean age ≈ 83 years)

↑ Mood
↑ Memory
↑ Attention
↑ Learning

N/A Kobayashi et al.
(2019)

Bifidobacterium
longum

Innately anxious BALB/c male mice ↓ Depression
↓ Anxiety
No effect on locomotion

No effect on CORT levels, both baseline and in response to stress Savignac et al.
(2014)

Healthy human males (aged 18–40,
mean ≈ 25 years).

↓ Stress
↓ Anxiety
↓ Memory
↓ Attention
↑ Learning

↓ Salivary cortisol output and anxiety scores in response to stressor
↑ Neural activity of the PFC

Allen et al. (2016)

IBS patients with mild to moderate
depression and/or anxiety (median
age = 40 and 46.5 years)

↓ Depression
↑ Life quality
No effect on anxiety

↓ Responses to negative emotional stimuli in the amygdala and fronto–limbic regions
↓ Urine levels of methylamines and aromatic amino acids metabolites
No effect on fecal microbiota profiles, serum inflammatory markers (CRP, TNF-α,
IFN-γ, IL-1β, IL-6, IL-8, IL-10, IL12), BDNF, substance P and 5-HT levels

Pinto-Sanchez
et al. (2017)

Lactobacillus
gasseri

University male students with daily
strenuous exercise (aged < 30, mean
≈ 20 years)

↑ Mood in depressed
individuals

Prevent stress-induced ↓ in natural killer cell activity Sashihara et al.
(2013)

Medical (cadaver dissection course)
male students (aged 24)

↓ Depression
↓ Anxiety
↑ Sleep quality

↓ Salivary cortisol release
↓ Growth of inflammatory Enterobacteriaceae and Veillonella
Prevented the downregulation of EIF2-related genes of peripheral leukocytes

Sawada et al.
(2017)

Medical (cadaver dissection course)
students (heat killed L. gasseri) (aged
18–34, mean ≈ 21 years)

In men:
↓ Sleep latency
↑ Sleep duration
In women:
↓ Somatic symptoms

↓ Diarrhoea-like symptoms (in men)
↑ Fecal Bacteroides vulgatus levels
↓ Fecal Dorea longicatena levels
No effect on salivary stress markers (cortisol, CgA, and alpha amylase levels)

Nishida et al.
(2017a)

Medical students in pre-examination
(heat-killed L. gasseri) (mean age ≈
25 years)

↓ Sleep latency
↓ Sleep awakenings

↑ Ratio of parasympathetic/sympathetic nerve activity
↑ Stage N3 in the non-REM sleep period
↓ Stress-induced ↑ in salivary cortisol levels
↓ Stress-induced ↑ expression of stress-responsive microRNAs

Nishida et al.
(2017b)
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changes in appetite and sleep, psychomotor retardation, poor
concentration and fatigue (American Psychiatric Association,
2013). From these diagnostic criteria, approximately a thousand
combinations of symptoms (Ostergaard et al., 2011) and 19
depression subtypes (Harald and Gordon, 2012; Sharpley and
Bitsika, 2014) can be derived. These subtypes of depression
are often grouped as a single term, namely depression,
which should not be the case when evaluating therapeutic
potential of probiotics.

Some associations can be drawn by matching behavioral
benefits of probiotics to the characteristics of depression subtypes
(Table 2). For instance, the sucrose preference test in rodents
reflects the anhedonia subtype (Dedic et al., 2011). Probiotics that
have been shown to improve the outcome of this test include
L. helveticus (Liang et al., 2015), L. plantarum (Liu Y.W. et al.,
2016), L. paracasei (Wei et al., 2019), L. kefiranofaciens (Sun et al.,
2019), B. infantis (Tian et al., 2019), and B. breve (Tian et al.,
2019). Among these probiotics, L. plantarum (Liu Y.W. et al.,
2016) and L. paracasei (Wei et al., 2019) also modulated the
central DA system, whereas B. infantis and B. breve upregulated
tyrosine (precursor to DA) biosynthesis (Tian et al., 2019). An
impaired DA system represents the hallmark pathophysiology
of anhedonia (Dunlop and Nemeroff, 2007). This provides a
proof of concept that these probiotics may be effective in
treating anhedonia.

Somatic depression subtype is characterized by psychomotor
agitation/retardation (i.e., locomotion), changes in
weight/appetite, insomnia/hypersomnia and fatigue without
physical exertion (Sharpley and Bitsika, 2014). Probiotics that
improved locomotor activity of rodents include L. plantarum
(Liu W.H. et al., 2016; Dhaliwal et al., 2018), L. helveticus (Liang
et al., 2015) and L. brevis (Miyazaki et al., 2014). Intake of
L. brevis increased sleep duration in healthy mice (Miyazaki
et al., 2014; Han et al., 2017), and L. gasseri enhanced sleep
quality in medical students with mild depression (Nishida
et al., 2017a,b). L. rhamnosus supplementation modulated
appetite-associated genes and attenuated appetite in zebrafish
(Falcinelli et al., 2016, 2017). In combination with prebiotics,
L. rhamnosus exerted antidepressive effect and appetite control
in obese individuals (Sanchez et al., 2017). Hence, symptoms
of somatic depression are rather distinct and may be improved
differently with different probiotics.

Cognitive depression subtype is distinguished by poor
concentration and memory function as well as indecisiveness
(Sharpley and Bitsika, 2014). Behavioral assessments for memory
function in mice include the Morris water maze, Barnes maze
and other behavioral tests (Dedic et al., 2011). Administration
of probiotics including L. helveticus (Ohland et al., 2013; Luo
et al., 2014; Liang et al., 2015), L. plantarum (Dhaliwal et al.,
2018), and L. paracasei (Corpuz et al., 2018; Huang et al.,
2018) enabled animals to perform these memory test more
effectively. Attention, memory and learning behaviors in humans
are assessed by cognitive tests, such as the Stroop, verbal-learning
and digit-symbol tests. Improvements in these tests have been
shown with the intake of (1) L. helveticus (Chung et al., 2014;
Ohsawa et al., 2018) and B. longum (Allen et al., 2016) in healthy
adults; (2) L. plantarum in MDD patients (Rudzki et al., 2019)

and stressed adults with mild depression (Lew et al., 2018); and
(3) B. breve in elderly with mild cognitive impairment (Kobayashi
et al., 2019). Thus, some probiotics appear to improve cognition
regardless of depression.

Anxious depression subtype refers to major depression that
comorbid with high levels of anxiety (Harald and Gordon, 2012).
In mice, anxiety can be measured by behavioral tests, such as
the elevated plus maze and open field tests (Dedic et al., 2011).
In humans, anxiety is generally assessed with questionnaires.
Probiotics that exhibit anxiolytic effect include L. rhamnosus
(Bravo et al., 2011; Bharwani et al., 2017; McVey Neufeld et al.,
2017; Slykerman et al., 2017), L. helveticus (Ohland et al., 2013;
Luo et al., 2014; Liang et al., 2015), L. plantarum (Liu W.H. et al.,
2016; Liu Y.W. et al., 2016; Dhaliwal et al., 2018; Lew et al., 2018),
B. longum (Bercik et al., 2010, 2011; Savignac et al., 2014; Allen
et al., 2016) and B. breve (Savignac et al., 2014; Okubo et al.,
2019; Tian et al., 2019). Moreover, MSPs intake often decreased
depression and anxiety simultaneously in randomized controlled
trials (Mohammadi et al., 2016; Kouchaki et al., 2017; Jamilian
et al., 2018; Raygan et al., 2018; Ostadmohammadi et al., 2019;
Salami et al., 2019).

Conventional SSRIs that target the 5-HT system often fail
to treat anhedonic patients and, in some cases, worsen their
symptoms (Dunlop and Nemeroff, 2007). Antidepressant
drugs (e.g., SSRI and SNRI) are also ineffective against
other depression subtypes, namely the somatic (Tylee
and Gandhi, 2005), cognitive (Shilyansky et al., 2016)
and anxious depression (Ionescu et al., 2014). Therefore,
certain probiotics may serve as an adjuvant or alternative
treatment for MDD and its subtypes. A pilot study showed
that MSP, together with a magnesium supplement, decreased
depression in SSRI treatment-resistant patients (Bambling et al.,
2017). A clinical trial also reported that the combination
of B. longum and L. helveticus decreased depression in
MDD patients with prior use of standard antidepressants
(Kazemi et al., 2019).

Single-Species and Multi-Species
Probiotic
In studies that investigated behavioral effects of probiotics,
about 60% of animal studies and 50% of human studies used
single-species probiotics (SSPs) (Joseph and Law, 2019). Studies
with SSPs promote a better understanding of the function and
contribution of individual probiotic, which is difficult to measure
in MSPs. However, MSPs may have higher potency in humans.
In MDD patients, SSP (L. plantarum) did not reduce depression
but improved cognition (Lew et al., 2018), whereas MSPs had
repeatedly shown antidepressive efficacy (Akkasheh et al., 2016;
Bambling et al., 2017; Ghorbani et al., 2018; Kazemi et al.,
2019). MSPs often gave better therapeutic efficacy compared to
that of SSPs in gut-related disorders and pathogen infections,
which could be explained by an overall higher dosage (Chapman
et al., 2011, 2012). Indeed, MSPs with a higher dosage improved
symptoms of depression and anxiety in healthy individuals
compared to that of a lower dosage (Tran et al., 2019). MSPs are
also hypothesized to exhibit synergistic effects that would have an
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expanded effect on the host physiology (Chapman et al., 2012).
In contrast, SSPs are speculated to promote better colonization as
it does not have to compete for nutrient or adhesion sites in the
host (Chapman et al., 2011). This highlights the need for more
studies to understand how probiotics in MSPs interact with each
other and with existing gut microbiota, and which probiotic(s) is
suitable in formulation of MSPs for antidepressive efficacy.

Advantages of Probiotics as
Antidepressive Treatment
Probiotics are generally safe for consumption, except for
immune-compromised and critically sick individuals wherein
probiotics may cause sepsis, pneumonia, endocarditis and
allergies (Didari et al., 2014). Still, it has been viewed by some that
more human trials are required to establish the dosage efficacy
and long-term safety profile of probiotics (Kothari et al., 2018).
For antidepressant drugs such as SSRIs, side effects occur in
40-60% of users which include sexual dysfunction, suicidality,
emotional numbness and addiction (Read and Williams, 2018).
A meta-analysis data showed that users of antidepressant
drugs were associated with a 33% increased risk of mortality
(Maslej et al., 2017). On the other hand, probiotics possess
fewer side effects than antidepressant drugs. For instance,
rats fed with L. brevis-fermented milk exhibited comparable
antidepressive efficacy to fluoxetine-treated rats, but without
side effects of fluoxetine (decreased appetite and weight loss)
(Ko et al., 2013).

Antidepressant usage is also associated with stigma, such as
being perceived as emotionally weak and dependent on drugs,
which contributes to the disease severity and poor adherence to
treatment (Castaldelli-Maia et al., 2011). In a survey study, 77%
of depressed patients prefer to hide their use of antidepressant
medication from others (Martinez et al., 2018). However, the
prevalence of perceived stigma against antidepressants differs
based on the population studied (Castaldelli-Maia et al., 2011).
To this end, probiotics may help as an alternative treatment for
depression, given that probiotics have not been associated with
any perceived social stigma (Wallace and Milev, 2017).

Candidate Probiotics With Potential
Antidepressive Effect
Bifidobacterium pseudocatenulatum is known for its regulation of
obesity-related changes in metabolism and the immune system
(Cano et al., 2013; Moya-Perez et al., 2014, 2015; Sanchis-Chorda
et al., 2018). B. pseudocatenulatum intake reversed diet-induced
obesity, depression, high corticosterone and low hippocampal
5-HT levels in mice (Agusti et al., 2018). However, a high-fat
diet model is meant to study the pathophysiology of obesity
and type 2 diabetes (Winzell and Ahren, 2004; Wang and Liao,
2012). It is, thus, unclear if B. pseudocatenulatum would decrease
depression in mice without obesity. Another study showed that
anxiety-like behaviors diminished in chronic-stressed mice fed
with B. pseudocatenulatum, but depressive-like behaviors were
unevaluated (Moya-Perez et al., 2017). Therefore, further studies
are required to determine whether B. pseudocatenulatum has an
independent antidepressive effect.

Bacillus coagulans supplementation relieved symptoms of
both IBS and depression in patients diagnosed with IBS and
MDD. This clinical recovery is accompanied by a decrease in
serum myeloperoxidase, an inflammatory marker (Majeed et al.,
2018). However, patients might have experienced less depression
as a result of reduced IBS symptoms. Interestingly, B. coagulans
intake increased levels of circulating IL-10, fecal F. prausnitzii
and SCFAs in older adults (Nyangale et al., 2014, 2015). As
F. prausnitzii and butyrate are associated with antidepressive
properties (Hao et al., 2019), B. coagulans may also indirectly
reduce depression and improve gut health.

Bifidobacterium bifidum and L. acidophilus were often
included in the formulation of MSPs to treat depressive
symptoms in patients with MDD (Akkasheh et al., 2016;
Bambling et al., 2017; Ghorbani et al., 2018) and other health
conditions, such as polycystic ovarian syndrome, multiple
sclerosis and IBS (Kouchaki et al., 2017; Ostadmohammadi
et al., 2019; Zhang et al., 2019). Surprisingly, B. bifidum
and L. acidophilus have not been tested independently for
its antidepressive effect. B. bifidum intake improved mood
and reduced symptoms of abdominal pain, diarrhea and
constipation in patients with gastrointestinal disorders (Urita
et al., 2015). However, the mood elevation could be due to
recovery of gastrointestinal symptoms rather than effect of
probiotics solely. Both in vitro and in vivo models showed
that L. acidophilus protects the intestinal barrier integrity by
preventing pathogen adherence and release of proinflammatory
cytokines (Chen et al., 2009; Justino et al., 2015; Alamdary
et al., 2018; Lepine et al., 2018; Najarian et al., 2019). Taken
together, B. bifidum and L. acidophilus potentially exhibit
antidepressive effect and their direct influence on depression
warrants further investigation.

Bacteroides fragilis has been proposed as a potential probiotic,
although its pathogenicity needs to be taken into consideration.
B. fragilis secretes polysaccharide A and expresses sphingolipids
that benefit the host gut health and immune system (Troy
and Kasper, 2010; Tan et al., 2019). Bacteroides genus is
likely to be the largest GABA producer amongst human
gut microbiota, with B. fragilis produces GABA at low pH.
The same study also found that neural patterns of a typical
MDD patient correlated with low fecal levels of Bacteroides
(Strandwitz et al., 2019). Hence, antidepressive potential of
B. pseudocatenulatum, B. coagulans, B. bifidum, L. acidophilus,
and B. fragilis warrants further investigation. It is also
worth noting that Bifidobacterium adolescentis’s antidepressive
capability may be a new probiotic candidate (Jang et al.,
2019). Evidently, an increasing number of probiotics are
being presented as a potential treatment for depression. This
provides a wide repository of available probiotics, with different
species combinations, that can be assessed for clinical efficacy
against depression.

CONCLUSION

The MGB axis enables the bidirectional communication between
the gut microbiota and the brain. When this axis becomes
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maladaptive, the host physiology is adversely affected which may
lead to the development of depression. Probiotics have shown
clinical efficacy in the treatment of depression by modulating
the MGB axis. Yet, the complexity of gut microbiota and
heterogeneity of depression presents a challenge to explain the
underlying mechanisms that contribute to this clinical efficacy.
Nonetheless, cumulative evidence suggests the therapeutic
potential of probiotics for certain depression subtypes, with
fewer side effects and less stigma compared to standard
antidepressants.

Limitations of this review include: (1) inferences of probiotic
mechanisms were derived from preclinical and in vitro data; (2)
interactions of probiotics with other members of gut microbiota
were unexplored, therefore the mechanisms of MSPs was unable
to be explored; (3) strain-specific effects of bacterial species
were neglected; (4) potential applications for probiotics for
depression subtypes are hypothesized, however, clinical evidence
is limited; (5) effect sizes of probiotics as antidepressants was
not evaluated. Notwithstanding these caveats, this review adds
further understanding to the potential antidepressive effects and
therapeutic potentials of probiotics. Venema (2017) stated that it
is imperative to grasp the underlying molecular mechanisms of

the MGB axis, and which microbial populations are pertinent for
this intervention, to advance the marketability of probiotics.
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Migraine is a very common, multifactorial, and recurrent central nervous system disorder

that causes throbbing headache, photophobia, phonophobia, nausea, and disability.

Migraine occurs more often in females, and its complex physiopathology is not yet fully

understood. An increasing number of gastrointestinal disorders have been linked to the

occurrence of migraine suggesting that gut microbiotamight play a pivotal role in migraine

through the gut–brain axis. In the present work, we performed a metagenome-wide

association study (MWAS) to determine the relationship between gut microbiota and

migraine by analyzing 108 shotgun-sequenced fecal samples obtained from elderly

women who suffer from migraine and matched healthy controls. Notably, the alpha

diversity was significantly decreased in the migraine group at species, genus, and

Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous levels. Firmicutes,

especially the “unfriendly” Clostridium spp., were significantly enriched in the migraine

group. Conversely, the healthy controls held more beneficial microorganisms, such

as Faecalibacterium prausnitzii, Bifidobacterium adolescentis, and Methanobrevibacter

smithii. For functional modules, the migraine group was enriched in gut–brain modules

(GBMs) including kynurenine degradation and γ-aminobutyric acid (GABA) synthesis.

However, the healthy controls held higher gut metabolic modules (GMMs) including

glycolysis, homoacetogenesis, and GBMs including quinolinic acid degradation and

S-adenosyl methionine (SAM) synthesis. The differences in gut microbiota composition

and function between the migraine and healthy groups provided new information as well

as novel therapeutic targets and strategies for migraine treatment, which could help to

improve the early diagnosis of the disease, as well as the long-term prognosis and the

life quality of patients suffering from migraine.

Keywords: migraine, gut microbiota, elderly women, metagenome-wide association study, structural

characterization, functional modules

89

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2019.00470
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2019.00470&domain=pdf&date_stamp=2020-01-29
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wangqi1@genomics.cn
mailto:zhanglinlin@scut.edu.cn
https://doi.org/10.3389/fcimb.2019.00470
https://www.frontiersin.org/articles/10.3389/fcimb.2019.00470/full
http://loop.frontiersin.org/people/742039/overview
http://loop.frontiersin.org/people/742165/overview
http://loop.frontiersin.org/people/890953/overview
http://loop.frontiersin.org/people/100668/overview


Chen et al. Microbiota in Elderly Migraine Women

INTRODUCTION

Migraine can cause a severe unilateral throbbing headache
or a pulsing sensation, which are typically accompanied by
nausea, vomiting, and extreme sensitivity to light and sound,
thereby adversely affecting daily activities (MacGregor, 2017).
Constipation and mood changes also frequently occur together
with migraine (Vacca, 2019). Migraines usually begin in
adolescence or early adulthood, it is three times more common
in women (17%) than in men (5–8%), and it accounts for over
90% of patients with recurrent headache (MacGregor, 2017).
Multiple factors, including inheritance (Ulrich et al., 1999),
hormones (Sacco et al., 2012), dietary habits (Nazari and Eghbali,
2012), mental stress (Lipton et al., 2014), and gastrointestinal
disorders (Camara-Lemarroy et al., 2016), have been reported
as triggers of migraine. For the prognosis, some patients remit,
some experience recurrent episodes, and in others the condition
evolves into a chronic and more refractory state.

Human gut microbiome, which is considered as the second
genome and brain of human body (Li et al., 2014), is thought
to be closely related to migraine (Gonzalez et al., 2016). The
recent gut–brain axis theory (Carabotti et al., 2015) has proposed
a bidirectional communication between the central and enteric
nervous systems, linking the emotional and cognitive centers
of the brain with the peripheral intestinal functions. Studies
have found that irritable bowel syndrome (IBS) occurs in over
half of migraine patients (Lau et al., 2014), and inflammatory
bowel disease (IBD) patients are 2.7 times more likely to have
migraines (Dimitrova et al., 2013). The fact that both IBD and
IBS are severe gut disorders associated with gut permeability
and inflammation caused by gut microbes through the gut–
brain axis (Aggarwal et al., 2012) suggests an important role of
gut bacteria in migraine. In an uncontrolled observational study
on 1,020 patients, researchers found that multispecies probiotic
formulations can reduce the intensity and the frequency of
migraine attacks (Straube et al., 2018). However, another
randomized placebo-controlled study conducted on 63 patients
showed that the use of multispecies probiotics, compared with
placebo, does not significantly affect intestinal permeability
or inflammation (de Roos et al., 2017). These paradoxical
conclusions need further confirmation.

The diagnosis of a migraine is based on signs and symptoms
(Bartleson and Cutrer, 2010), such as with or without aura,
duration, unilateral, pulsating headache, inability to work, nausea
and vomiting, photophobia, and phonophobia. Diagnostic
uncertainty has been associated with diagnostic variation
(physicians giving different diagnoses to the same patient),
over-testing, suboptimal management, more hospitalizations and
referrals, and increased health care expenditure. In contrast to
traditional pharmacotherapy, which is marked by unavoidable
and often dangerous side effects (e.g., analgesics might cause
nervous disorders; Do et al., 2019), dietary intervention is
thought to be a promising safe therapeutic strategy to prevent
migraine through the regulation of gut microbes (Camara-
Lemarroy et al., 2016). Both the ketogenic diet (Gross et al., 2019)
and the traditional Chinese medicinal plant Gastrodia elata,
which is also used as food in China (Hua et al., 2019), have been

reported to regulate gut microbiota and to promote remission
from migraine. The few publications available, which are based
on probiotic treatment, however, are with different conclusions
about the effects of probiotics on migraine in humans (de Roos
et al., 2017; Straube et al., 2018).

In this work, we performed a metagenome-wide association
study (MWAS) based on shotgun-sequenced fecal samples
obtained from 108 elderly women consisting of 54 migraineurs
and 54 healthy subjects in order to shed some light over the
connections between gut microbiota composition and function
and migraine. The study aimed at discovering differences in gut
microbiota that could help to design strategies based on the
modulation of the gut microecology that could improve the long-
term prognosis of migraine and provide a guidance for early
diagnosis and management of this recurrent disease.

MATERIALS AND METHODS

Statement of Human Rights
The data used in this study were obtained from a previous study
(Xie et al., 2016) whose ethics statement was approved by the local
ethics committee, and an informed consent was collected from
each subject. All the procedures followed were in accordance with
the ethical standards of the responsible committee on human
experimentation (BGI-Shenzhen, China, Ethics Approval No.
BGI-IRB 14074).

Materials
The 108 stool samples, from 54 migraineurs and 54 matched 201
healthy controls, were shotgun sequenced during a former study
(Table S1) (Xie et al., 2016). All the samples and clinical indexes
were collected by Prof. Spector’s group at King’s College London.
Subjects were excluded if they had a history of chronic serious
infection, any current infection, and any type of malignant
cancer; individuals who had received antibiotic treatment within
1 month before participating in this study were also excluded.

Quality Control and Host Genome Filtering
The raw reads that had 50% low-quality bases (quality ≤ 20) or
more than five ambiguous bases were excluded. The remaining
reads were mapped to the human genome (hg19) by SOAP v2.22
(-m 100 -x 600 -v 7 -p 6 -l 30 -r 1 -M 4 -c 0.95), and the matching
reads were removed (Fang et al., 2018). The high-quality non-
human reads were defined as clean reads.

Acquisition of Gene Abundance and

Taxonomic Profiles From Metagenomic

Samples
The clean reads were aligned against the latest 11.4M human gut
microbial gene catalog (Xie et al., 2016) through SOAP v2.22 (-m
100 -x 600 -v 7 -p 6 -l 30 -r 1 -M 4 -c 0.9) to generate the gene
abundance profile. To obtain the taxonomic profiles, metaphlan2
(Truong et al., 2015) (–input_type fastq –ignore_viruses –nproc
6) was used to generate phyla, genera, and species profiles from
the clean reads.
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Calculation of Gut Microbiome Functional

Profiles
Putative amino acid sequences were translated from the gene
catalog (Xie et al., 2016) and aligned against the proteins or
domains in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) databases (release 79.0, with animal and plant genes
removed) using BLASTP (v2.26, default parameter, except -m 8
-e 1e-5 -F -a 6 -b 50). Each protein was assigned to a KEGG
orthologous (KO) group on the basis of the highest scoring
annotated hit(s) containing at least one segment pair scoring over
60 bits. The relative abundance profile of KOs was determined by
summing the relative abundance of genes from each KO using
the mapped reads per sample (Xie et al., 2016). The abundance
of each gut metabolic module (GMM) (-a 2 -d GMM.v1.07.txt -s
average) and gut neuroactive module (GBM) (default parameter)
were calculated as shown in the former article (Vieira-Silva et al.,
2016; Valles-Colomer et al., 2019).

Permutational Multivariate Analysis of

Variance of the Effect of Related Factors

on Gut Microbiome
To evaluate the effects of the clinical and lifestyle factors on
the microbiome, we performed the permutational multivariate
analysis of variance (PERMANOVA) of the gene abundance of
the samples. The Bray–Curtis distance and 9,999 permutations
in R (3.2.5, vegan package) were used.

Richness and Diversity Analysis
Alpha diversity (within samples) at species, genus, and KO levels
of the two groups was quantified by the Shannon index on the
basis of the relative gene abundance profile.

Differential Analysis of the Gut Microbiome

Between the Two Groups
MWAS was used to investigate the differences in taxon
composition between fecal microbiomes of healthy controls and
migraineurs. To investigate the specific differences in the gut
microbiome composition and function between the migraine
group and the healthy controls, first, the top 15 species, the
top 10 genera, and the top 5 phyla of each group were selected
according to their average relative abundances, and each of the
taxon was compared by Wilcoxon rank-sum test to compare
their differences between two groups (p < 0.05). Second, the
significantly different species, genera, phyla (Table S4), GMMs
(Table S5), andGBMs (Table S6) between two groups were tested
by Wilcoxon rank-sum test (p < 0.05). Third, the significantly
changed species analyzed above were further analyzed by
Spearman’s rank correlation (p< 0.05) according to their relative
abundances in all samples. Then the software Cytoscape 3.4.0 was
used to visualize the co-occurrence network of these species.

RESULTS

Characterization of the Gut Microbiomes
To investigate the characteristics of gut microbiome in
migraine patients, a metagenomic shotgun-sequencing study

was performed on a total of 108 fecal samples from 54
individuals with migraine and 54 healthy controls with matched
age and body mass index (BMI) (Figure S1). After removal
of low-quality and human DNA reads, an average of 7.27
gigabase pairs per sample were aligned to a gut microbiome
gene catalog comprising 11.4 million genes (Xie et al., 2016),
achieving an average of 77.6 ± 1.6% matched reads per
sample (Table S2).

PERMANOVA revealed significant differences in the gut
microbiome of the two groups (p = 0.0066, R2 = 0.014,
Table S1b). The alpha diversity was evidently decreased in the
migraine group at both genus (p = 0.036, Wilcoxon rank-sum
test, Figure 1A) and species (p = 0.048, Wilcoxon rank-sum
test, Figure 1B) levels, whereas the species richness was not
significantly different in the two groups at either level (genus, p=
0.64; species, p = 1.0; Wilcoxon rank-sum test, Figures S2A,B).
Similarly, the KO analysis showed an evident decrease of the
alpha diversity in the migraine group (p = 0.045, Wilcoxon
rank-sum test, Figure S2C), whereas the difference in species
richness between the two groups was not significant (p = 0.085,
Wilcoxon rank-sum test, Figure S2D). The data used in Figure 1

and Figure S1 are included in Table S3.

Differences of the Gut Microbiome

Between Two Groups
To investigate the differences in highly abundant bacteria in
the gut of the two groups, we chose the top 15 species, top
10 genera, and top 5 phyla. Interestingly, the migraine group
showed significantly higher levels of the phylum Firmicutes (p
= 0.0023, Figure S3) and a reduction in the level of the beneficial
genus Faecalibacterium (p = 0.0029, Figure 1C) relative to the
control group. At the species level (Figure 1D), Faecalibacterium
prausnitzii (p= 0.0029), Bifidobacterium adolescentis (p= 0.041),
and Methanobrevibacter smithii (p = 0.012) were significantly
enriched in the healthy controls.

To further illustrate the differences between the two
cohorts, 21 and 22 significantly enriched species (Figure 2,
p < 0.05, false discovery rate [FDR] = 0.14, Table S4) were
identified for the migraine group and the healthy controls,
respectively. The species enriched in the migraine group
were Blautia hydrogenotrophica, Clostridium asparagiforme,
Clostridium clostridioforme, Clostridium bolteae, Clostridium
citroniae, Clostridium hathewayi, Clostridium ramosum,
Clostridium spiroforme, Clostridium symbiosum, Eggerthella
lenta, Flavonifractor plautii, Lachnospiraceae bacterium, and
Ruminococcus gnavus. B. hydrogenotrophica metabolizes
H2/CO2 to acetate and contributes to the breakdown of plant
polysaccharides and proteins in the host (Bernalier et al.,
1996). Except for C. bolteae, an autism-associated bacterium
(Pequegnat et al., 2013), all the other Clostridium spp. enriched
in the migraine group have been reported to be correlated with
solid tissue inflammation (Elsayed and Zhang, 2004b), infection
(Finegold et al., 2005), and bacteremia (Elsayed and Zhang,
2004a). E. lenta and F. plautii can cause bacteremia (Wong
et al., 2014) and bloodstream infection (Berger et al., 2018),
respectively. R. gnavus, which degrades mucin (Crost et al.,
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FIGURE 1 | Reduced gut microbial diversity in migraineurs. Alpha-diversity (Shannon index) at the genus (A) and species (B) levels of the two cohorts (Tested by

two-tailed Wilcoxon-rank sum test). The top 10 genera (C) and top 15 species (D) (mean relative abundance higher than 3.09 and 1.83%, respectively) in the migraine

patients and the control individuals (two-tailed Wilcoxon-rank sum test, Tables S4B,C).
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FIGURE 2 | Differentially enriched species, control vs. migraine. The orientation of enrichment was determined by two-tailed Wilcoxon-rank sum test (U statistic of

two-tail Wilcoxon rank-sum test, p < 0.05, FDR< 0.29, Table S4C). The size of the nodes is consistent with the relative abundance of the species. Species were

colored according to the extent of enrichment. The edges between the nodes indicate positive (red) and negative (blue) Spearman’s correlation, respectively, the line

width represents the correlation coefficient calculated for the samples under comparison.

2016), is enriched in IBD patients (Hall et al., 2017) and can
cause bacteremia (Hansen et al., 2013).

The species significantly enriched in the controls were
Bacteroides clarus, Bacteroides intestinalis, Bacteroides salyersiae,
Bacteroides stercoris, Butyrivibrio crossotus, Clostridium sp.
L2_50, Coprococcus catus, Eubacterium hallii, Eubacterium
ramulus, Odoribacter splanchnicus, Peptostreptococcaceae
noname unclassified, Prevotella copri, Ruminococcus callidus,
Ruminococcus champanellensis, Ruminococcus obeum, and
Sutterella wadsworthensis. In this list, at least one bacterium
regarded as “unfriendly” can be found: O. splanchnicus, which
has been isolated from the crevicular spaces of dogs with
periodontitis (Hardham et al., 2008). However, many more
species regarded as beneficial were found in the healthy subjects
compared with the migraineurs. B. clarus is significantly
decreased in colorectal cancer (Watanabe et al., 2010; Liang
et al., 2017), and its enrichment in controls may be beneficial.
S. wadsworthensis protects against IBD (Wexler et al., 1996);
C. catus ferments fructose, lactate, and pyruvate to short-chain

fatty acids (SCFAs) (Holdeman and Moore, 1974); E. hallii
contributes to the intestinal propionate formation (Engels et al.,
2016) and improves insulin sensitivity (Udayappan et al., 2016);
E. ramulus produces propionic acid and dihydroxyphenylacetic
acid (Schneider and Blaut, 2000; Braune et al., 2001); R. obeum
plays an important role in the recovery process from Vibrio
cholerae infection (Lawson and Finegold, 2015). In addition,
species involved in polysaccharide degradation were also
enriched in the healthy controls. These were B. intestinalis,
which degrades arabinoxylan for energy acquisition (Wang
et al., 2016); B. crossotus, which metabolizes polysaccharides
into simpler sugars (Kelly et al., 2010); and R. callidus and R.
champanellensis, which degrade various plant hemicelluloses and
cellulose (Chassard et al., 2012).

Functional Alterations in the Gut

Microbiome of Migraineurs
Significantly different GMMs and GBMs between two groups
were analyzed (p < 0.05, Wilcoxon rank-sum test). Seven
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significantly changed GMMs between two groups were
observed (Figure 3A), and glutamate degradation II is the
only GMM that is significantly higher in the migraine group.
Serine degradation, homoacetogenesis, glycerol degradation,
mannose degradation, glycolysis (preparatory phase), and
pyruvate:ferredoxin oxidoreductase were the six GMMs found to
be enriched in the healthy controls. Serine is a major energy and
SCFAs contributor in the human body and can be degraded to
pyruvate by Escherichia coli (Su et al., 1989). Homoacetogenesis
produces acetate by consuming hydrogen (Ni et al., 2011).
Higher glycerol degradation can reduce the triglycerides synthesis
and phospholipids synthesis. Mannose, which has been reported
to impair tumor growth and to enhance chemotherapy,
can be degraded into fructose, which is then catabolized to
lactate, a precursor of SCFAs (Gonzalez et al., 2018). Glycolysis
(preparatory phase) consumes energy to convert glucose into two
3-carbon molecules (Kathagen et al., 2013). Pyruvate:ferredoxin
oxidoreductase is a key enzyme in metabolism that catalyzes
pyruvate to acetyl-CoA and CO2 (Furdui and Ragsdale, 2000).
Taken together, these results indicated that the gut microbiota
of the healthy controls were more active in energy metabolism
and SCFA synthesis, which might be beneficial in maintaining
their health.

Five significantly changed GBMs between two groups were
observed (Figure 3B). Glutamate degradation I, quinolinic acid
degradation, and S-adenosyl methionine (SAM) synthesis were
predominant in the control group, which meant that there was
a decrease in the levels of glutamate and quinolinic acid while an
increase in those of the SAM in the healthy controls. Glutamate
is a neurotransmitter in the healthy brain. Quinolinic acid is
an endogenous N-methyl-D-aspartate (NMDA) receptor agonist
and possesses neuroactive activity (Heyes et al., 1992). SAM
is a major methyl donor in the brain. Conversely, kynurenine
degradation and γ -aminobutyric acid (GABA) synthesis III were
enriched in the migraine group. Kynurenine is a metabolite of
tryptophan and can be degraded to quinolinic acid and kynurenic
acid, an NMDA antagonist, and is thought to be involved in the
pathophysiology and pathogenesis of schizophrenia. GABA is the
chief inhibitory neurotransmitter in the developmentally mature
mammalian central nervous system.

DISCUSSION

Migraine susceptibility is multifactorial with genetic, hormonal,
and environmental factors. The physiopathology of migraine
is complex and still not fully understood. Recent reports
demonstrate an increased frequency of gastrointestinal disorders,
such as Helicobacter pylori infection, IBS, gastroparesis,
hepatobiliary disorders, celiac disease, and alterations in the
microbiota have been linked to the occurrence of migraine
(Camara-Lemarroy et al., 2016). However, several case–control
studies based on probiotic treatment have different conclusions
(de Roos et al., 2017; Straube et al., 2018). Up to now, the precise
characteristics and changes of gut microbiome in migraine were
not fully elucidated. In this study, we presented the first set of
evidence obtained from human cohorts for a significant gut

FIGURE 3 | Significantly enriched GMMs (A) and GBMs (B) in each group

were analyzed by Wilcoxon rank sum test (p < 0.05). The Y-axis is the

significantly enriched GMMs and GBMs in two groups and X-axis is the

logarithm of relative abundance for each GMM and GBM. P-value was labeled.

microbiome dysbiosis from both compositional and functional
aspects in migraine.

Significant differences in the gut microbiota composition
were observed in our study. First, the migraine group showed
a significantly lower alpha diversity at species, genus, and KO
levels than did the healthy controls, which might be caused
by a significant depletion in some highly abundant bacteria in
migraine, such as Faecalibacterium, F. prausnitzii, B. adolescentis,
and M. smithii. F. prausnitzii is a major producer of butyrate
(Machiels et al., 2014), B. adolescentis exhibits strain-specific
effects in the alleviation of constipation (Wang et al., 2017),
and M. smithii, a predominant archaeon in the human gut, can
affect the specificity and efficiency of dietary polysaccharides to
influence host calorie harvest and adiposity (Samuel et al., 2007).
Notably, Firmicutes, the main bacterial phylum in the gut, was
significantly enriched in migraine. Second, some species thought
to be detrimental to human health, especially Clostridium spp.,
were significantly enriched in migraineurs. Third, the controls
held more beneficial microorganisms, such as B. adolescentis,
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F. prausnitzii, and Bacteroides intestinalis, suggesting that the
control subjects held a healthier gut microenvironment than
did migraineurs. Notably, some “unfriendly” species, such as
Odoribacter splanchnicus and Prevotella copri, were also elevated
in controls, suggesting the likelihood of susceptibility to intestinal
inflammation (Hardham et al., 2008) and arthritis (Scher et al.,
2013) in the seemingly healthy control subjects.

From a functional point of view, significant changes in GMMs
and GBMs between two groups were observed. Interestingly,
the migraineurs had less GMMs and GBMs enriched than
did the controls. The healthy controls held more modules
related to substrates metabolism, glycolysis (preparatory phase),
and SCFA production, whereas glutamate degradation II is the
only significantly changed GMM enriched in migraine. These
results suggested that migraineurs might suffer from metabolic
dysfunctions and insufficient SCFA synthesis.

For GBMs, kynurenine degradation and GABA synthesis III
were significantly higher in the migraine group. The higher
kynurenine degradation module observed in the migraine group
suggested the potential presence of elevated concentration of
its catabolites, that is, the neuroexcitatory quinolinic acid and
neuroinhibitory kynurenic acid, which can cause diseases in the
nervous and immune systems (Heyes et al., 1992). The higher
GABA synthesis observed in the migraine group indicated the
potential presence of higher levels of GABA in the brain, which
might be beneficial for health. Oral GABA administration was
reported to relieve anxiety (Abdou et al., 2006), improve mood
(Sakashita et al., 2019), and reduce symptoms of premenstrual
syndrome (Rapkin and Akopians, 2012). In addition, GABA also
supports the physiologic adjustment of pituitary gland function
and controls growth hormone secretion from the pituitary
gland (Acs et al., 1987), promotes muscle protein synthesis
(Olarescu et al., 2000), stabilizes blood pressure (Ma et al.,
2015), and relieves pain (Jasmin et al., 2004). On the contrary,
the higher capability of glutamate degradation I was observed
in the healthy group. Glutamate is the principal excitatory
neurotransmitter in the healthy brain and provides energy for
normal brain function, whose depletion is a common feature
of many neuropsychiatric conditions such as schizophrenia
(Zhou and Danbolt, 2014). In addition, higher quinolinic acid
degradation was observed in the control group. Quinolinic acid
is an NMDA antagonist, has a potent neurotoxic effect, and may
be involved in many psychiatric disorders and neurodegenerative
processes in the brain. These GBM changes reminded us that
the healthy volunteers might also have a risk in getting mental
disorders, although they have no significant signs. Higher
synthesis of SAM in controls indicated higher levels of SAM, an
antidepressant with few side effects (Young and Shalchi, 2005).
The functional redundancy, which was reported by Kang et al.
(2015), was also found in both migraine group and healthy
controls in our study, which meant that the gut microbiome
can self-regulate to relieve symptoms when their hosts suffered
from migraine. In addition, changes in some unhealthy gut
microbiome composition and function in the healthy group
might also indicate that migraine may still happen in seemingly
healthy people in the future.

In summary, our results revealed a significant decrease in
species diversity and metabolic functions in the gut microbiota
of migraine sufferers, which highlighted the importance of
maintaining species diversity to improve the gut microecosystem
stability. Additionally, the monitoring of harmful bacteria such
as Clostridium spp. could be a new strategy for early diagnosis
and timely prevention of migraine. In addition, proper probiotics
could be supplemented to migraineurs to treat their intestinal
dysbiosis or prevent them from gut disorders, which may reduce
the occurrence of migraine attacks. Our findings revealed that gut
microbiota can be a potential target for migraine management
and offered not only novel promising treatment strategies
but also an important functional basis for future research on
this disease.
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The microbiome of the human gastrointestinal (GI)-tract is a rich and dynamic source of

microorganisms that together possess a staggering complexity and diversity. Collectively

these microbes are capable of secreting what are amongst the most neurotoxic

and pro-inflammatory biopolymers known. These include lipopolysaccharide (LPS),

enterotoxins, microbial-derived amyloids and small non-coding RNA (sncRNA). One of

the major microbial species in the human GI-tract microbiome, about ∼100-fold more

abundant than Escherichia coli, is Bacteroides fragilis, an anaerobic, rod-shaped Gram-

negative bacterium that secretes: (i) a particularly potent, pro-inflammatory LPS glycolipid

subtype (BF-LPS); and (ii) a hydrolytic, extracellular zinc metalloproteinase known as

B. fragilis toxin (BFT) or fragilysin. Ongoing studies support multiple observations that

BF-LPS and BFT (fragilysin) disrupt paracellular barriers by cleavage of intercellular

proteins, such as E-cadherin, between epithelial cells, resulting in ‘leaky’ barriers. These

defective barriers, which also become more penetrable with age, in turn permit entry of

microbiome-derived neurotoxic biopolymers into the systemic circulation fromwhich they

can next transit the blood-brain barrier (BBB) and gain access into the brain. This short

communication will highlight some recent advances in this extraordinary research area

that links the pro-inflammatory exudates of the GI-tract microbiome with innate-immune

disturbances and inflammatory signaling within the human central nervous system (CNS)

with reference to Alzheimer’s disease (AD) wherever possible.

Keywords: Alzheimer’s disease (AD), Bacteroides fragilis and BFT (fragilysin), dysbiosis, lipopolysaccharide (LPS),

microbiome and microbial genetics, neurofilament light (NF-L), neuroinflammation, synapsin-2 (SYN2)
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OVERVIEW–THE HUMAN

GASTROINTESTINAL (GI) TRACT

MICROBIOME—BACTEROIDETES

The gastrointestinal (GI)-tract microbiome, the largest reservoir
of microbes in the human body, containing about 1014 microbial
cells, is a complex, dynamic and abundant source of bacteria,
methanogenic archaea, fungi, microbial eukaryotes, protozoa,
viruses, and other microorganisms. Together the GI-tract
microbiome possesses a remarkablemicrobiological diversity and
staggering genetic complexity of at least 1000 major bacterial
species. In the most recent estimate analyses of the GI-tract
metagenomes of ∼2100 donors well over 22.3 million non-
redundant prokaryotic genes were detected, and at least half of
all the genes identified were unique to an individual (Tierney
et al., 2019). When compared to the established human genome
content of 26.6 thousand protein-encoding transcripts of the
human genome sequencing project obtained about ∼18 years
ago (Fields et al., 1994; Venter et al., 2001; Hicks et al.,
2019) the number of microbial genes in the human GI-tract
microbiome alone outnumbers human genes by about 837 to
1 (Tierney et al., 2019). Another interesting fact is that of the
52 major divisions of bacteria identified to date, only 2 phyla
are known to predominate in the human GI-tract microbiome—
the Gram-negative Bacteroidetes (representing about ∼20–30%
of all GI-tract resident bacteria) and theGram-positive Firmicutes
(representing ∼70–80% of the total) with relatively minor
contributions by Actinobacteria (∼3%), Proteobacteria (∼1%),
Fusobacteria (∼0.1%) and Verrucomicrobia (0.1%). Collectively
these microorganisms represent: (i) “the microbial core” of the
human GI-tract microbiome (Sarkar and Banerjee, 2019; Ticinesi
et al., 2019); (ii) an extremely active, dynamic, and changing
ecosystem dependent on the host’s age, diet, environment,
ethnicity, and health and/or disease status (Sender et al., 2016;
Zhao and Lukiw, 2018a,b; Rinninella et al., 2019); (iii) a rich
source of commensal bacteria usually beneficial to human health
because of their abilities to metabolize and/or biosynthesize
complex sugars, polysaccharides, and dietary fiber into volatile
short chain fatty acids (SCFAs; including acetate, propionate,
butyrate, valerate and lactate and other nutrients). SCFAs
(i) normally function in the development, maintenance, and
homeostasis of the host immune, neuro-endrocrine and digestive
systems; and (ii) play important regulatory roles in glucose
homeostasis, lipid metabolism and anti-inflammatory signaling
in endothelial cells of the lining of the GI-tract, sometimes
known as the intestinal endothelium. Interestingly, there is
recent evidence that SCFAs can signal through G-protein coupled
receptors (GPCRs) at the cell surface, including GPCR41,
GPCR43, and GPCR109a and these activate signaling cascades
that control multiple immune functions. Recent transgenic
mouse studies support a key role of these GPCRs in the regulation
of intestinal inflammation (Sears, 2009; Fathi and Wu, 2016;
Lukiw, 2016a,b; Castillo-Álvarez andMarzo-Sola, 2019; Fox et al.,
2019; Parada Venegas et al., 2019).

Over 99% of the microbes in the human GI-tract are
facultative and obligate anaerobic bacteria; the most abundant
Gram-negative bacterial Phylum in the human GI-tract
microbiome are the Bacteroidetes, with a major Genus-species

being represented by the obligate Gram-negative anaerobe
Bacteroides fragilis. In some intestinal tract regions B. fragilis:
(i) are present at about ∼100-fold the abundance of the
Proteobacteria Escherichia coli; (ii) colonize the human GI-tract
at densities up to 8 × 1010 CFU per cm3, the highest density
of any microbial colonization known in nature (Sears, 2009;
Fathi and Wu, 2016; Rios-Covian et al., 2017; Patrick et al.,
2019; Rinninella et al., 2019); and (iii) reside and proliferate
exclusively in the GI-tract of mammals, suggesting a strong
adaptation to the pH, biophysical and microbial composition of
the gut environment (Bhattacharjee and Lukiw, 2013; Wexler
and Goodman, 2017; Poeker et al., 2018; Castillo-Álvarez and
Marzo-Sola, 2019).

GI-TRACT EXUDATES—BF-LPS AND

FRAGILYSIN

In the human GI-tract there are 2 predominant strains
of Bacteroides fragilis (B. fragilis) distinguished in part by
their biosynthetic capabilities to synthesize and secrete a
zinc-dependent metalloprotease toxin known as B. fragilis
toxin (BFT) or fragilysin. Strains of Bacteroides that do not
secrete BFT are called non-toxigenic B. fragilis while those
that do secrete are called enterotoxigenic B. fragilis (ETBF;
Allen et al., 2019). Relatively recently it has been established
that enterotoxigenic strains of B. fragilis (ETBF) can rapidly
proliferate in the mammalian GI-tract both in the absence
of adequate dietary fiber and in the presence of high-fat
cholesterol diets (Heinritz et al., 2016; Wexler and Goodman,
2017; Poeker et al., 2018; Zhao and Lukiw, 2018a,b). This
proliferation enhances the intestinal abundance of B. fragilis
and hence the potential of this Gram negative obligate
anaerobe to secrete its formidable array of neurotoxic exudates.
These primarily include: (i) the lipoglycan lipopolysaccharide
(LPS), a particularly potent, pro-inflammatory LPS glycolipid
subtype (BF-LPS); and (ii) the hydrolytic, extracellular zinc
metalloproteinase known as ETBF-secreted Bacteroides fragilis
toxin (BFT), also known as fragilysin. Recent characterization
of BF-LPS and fragilysin have shown them to be amongst the
most pro-inflammatory lipoglycans and enterotoxins known
(Vines et al., 2000; Sears, 2009; Lukiw, 2016a,b; Zhao and
Lukiw, 2018a,b; Batista et al., 2019; Sheppard et al., 2019).
Both BF-LPS and fragilysin can leak through the normally
protectivemucosal barriers of the GI-tract intestinal endothelium
to induce substantial inflammatory pathology both systemically
and after BBB transit into vulnerable CNS compartments,
including the neocortical parenchyma of the brain (Fathi
and Wu, 2016; Lukiw, 2016a,b; Zhao and Lukiw, 2018a,b;
Barton et al., 2019; Batista et al., 2019; Fox et al., 2019;
Sheppard et al., 2019; Zhao et al., 2019). Indeed, while
Bacteroides fragilis is an anaerobic, Gram-negative, rod-shaped
bacillus, and part of the normal microbiota of the human
colon and is generally commensal, this microbe can cause a
“smoldering” systemic infection if displaced into the bloodstream
or surrounding tissue following disease, trauma or surgery (Hill
et al., 2014a,b; Montagne et al., 2017; Tulkens et al., 2018; Erdo
and Krajcsi, 2019; Fox et al., 2019; Patrick et al., 2019; Sarkar
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and Banerjee, 2019; Sweeney et al., 2019). When the highly
toxic exudates of enterotoxigenic strains of B. fragilis escape
the microbial-dense environment of the human GI-tract they
can produce substantial systemic inflammatory pathology with
significant mortality and morbidity. B. fragilis proliferation is
associated with, and causative for, bacteremia, brain and intra-
abdominal abscess, cellulitis, colitis, diabetic ulcer, diarrhea,
necrotizing fasciitis, sepsis, peritonitis, septicemia, association
with and the development of multiple pro-inflammatory bowel

cancers, systemic infection and systemic inflammation, the
development of neurological diseases involving inflammatory
neurodegeneration, and those neurological disorders that display
a significantly elevated incidence of atypical developmental

programming against a background of aging (Leshchyns’ka and
Sytnyk, 2016; Agrawal et al., 2017; Shivaji, 2017; Zhao et al., 2019).
Very recently LPS-induced systemic inflammation has been
associated with synaptic loss and cognitive decline in multiple

human neurological disorders and in animal models, and a
role for LPS-mediated microglial release of pro-inflammatory
cytokines (such as IL-1β) based on both in vivo and primary

culture studies in vitro (Sheppard et al., 2019; Zhao et al., 2019).

GASTROINTESTINAL (GI)-TRACT AND

BLOOD BRAIN BARRIER (BBB)

DYSFUNCTION

Two anatomical gateways, including the gastrointestinal mucosa
that includes the “GI-tract barrier” and the “blood-brain barrier
(BBB),” each formed essentially by vascular epithelial and/or
endothelial cells and epithelial-endothelial-derived basement
membranes provide both a biophysical interface and a biological
compartmentalization of the GI-tract microbiome, the systemic
circulation, the brain parenchyma and distinct anatomical
regions of the brain such as the neocortex (Figure 1).
These barriers are a requisite for the essential maintenance
of homeostasis and the physiological environment of each
compartment; microorganisms of the GI-tract microbiome and
their neurotoxins that are able to transit the single layer
of epithelial cells have virtually unimpeded access into the
systemic circulation (Varatharaj and Galea, 2017; Logsdon et al.,
2018; Sweeney et al., 2019; Tulkens et al., 2018). Probably the
most important structural components of these barriers are
the multiple tight junctions between adjacent cells of vascular

FIGURE 1 | Highly schematicized depiction of the potential transfer of GI-tract microbiome-derived pro-inflammatory neurotoxins across the GI-tract barrier into the

systemic circulation, followed by translocation across the BBB into the brain parenchyma (see Hill et al., 2014a,b; Hill and Lukiw, 2015; Zhao and Lukiw, 2018a;

neocortical region shown; solid black arrows). Neurotoxins identified to date include Bacteroides fragilis lipopolysaccharide (BF-LPS) and enterotoxins such as the

Bacteroides fragilis-derived toxin (BFT) also known as fragilysin. The contribution of other pro-inflammatory neurotoxins such as GI-tract-derived amyloids and

bacterial sncRNAs are not well-understood and currently very little is known concerning their neurotoxicity and CNS-effects. BF-LPS, BFT (fragilysin), age, dietary

toxins, traumatic brain injury (TBI) and vascular disease are known to effectively disrupt endothelial cell-based biophysical barriers in part through the cleavage,

disruption and/or degeneration of cell-cell adhesion proteins (Wu et al., 1998; Clement et al., 2016; Zhao and Lukiw, 2018a,b; Sweeney et al., 2019). We speculate

that all of these neurotoxins together have potential to constitute a highly neurotoxic pro-inflammatory GI-tract microbiome-derived cocktail greatly detrimental to the

cytoarchitecture and signaling functions of neuronal and glial cells. Gram-negative bacterial-derived LPS and related neurotoxins have been recently observed within

the systemic circulation and brain parenchyma (Zhan et al., 2016, 2018; Zhao et al., 2017a,c, 2019; Zhao and Lukiw, 2018a), within and around neurons, and in the

later stages of AD completely encapsulating neuronal neocortical nuclei (Hill et al., 2014b,a; Hill and Lukiw, 2015; Zhao and Lukiw, 2018a,b; unpublished

observations); this later action appears to impair the exit of neuron-specific transcripts such as the neurofilament-light (NF-L) chain and synapsin-2 (SYN2) messenger

RNA (mRNA) from the neuronal nuclei; both NF-L and SYN2 mRNA abundance and expression are down-regulated in LPS-treated human neuronal-glial (HNG) cells in

primary culture and in AD brain (Lukiw et al., 2018; Zhao et al., 2019). Whether neurotoxins from the brain parenchyma of the neocortex can cross the BBB back into

the systemic circulation (dashed black arrows with question mark) is currently not well-understood; if so, these species may be useful serum biomarkers for both the

diagnosis and prognosis of AD and other types of inflammatory neurodegeneration; left panel = GI-tract microbiome magnification x ∼3000 (source:

http://www.Injnbio.com; http://www.lnjnbio.com/nd.jsp?id=20; permission to reproduce granted; last accessed 26 November 2019); right panel = 6-layered structure

of the human association neocortex; layers 3 and 5 are the pyramidal cell layers targeted by the AD process; other brain regions may also be affected; magnification x

∼20 (source: adapted and redrawn from Martinez-Conde, 2018; last accessed 26 November 2019).
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capillaries (Sweeney et al., 2018, 2019; Tulkens et al., 2018).
For example, the blood-brain barrier of the CNS can selectively
regulate its intracellular compartments and thereby isolate itself
from rapid biochemical or biophysical changes that may occur in
the systemic circulation.

The surface area of the human GI-tract barrier and the
BBB is remarkably large; for example although the interior
of the small intestine is only about ∼3.5 cm in diameter and
∼7m in length (due in large part to a concentrically folded
mucosa) it has a total absorptive surface area of ∼32 m2

(Helander and Fändriks, 2014; Sweeney et al., 2019). Similarly
the surface area of the 600 km of the human brain’s 5 um
diameter microvessels, representing the majority of the BBB,
corresponds to a total surface area of ∼25 m2 (Wong et al.,
2013). Hence the maintenance of these large and formidable
biophysical barriers is a very active and energy-intense biological
process (Wong et al., 2013; Varatharaj and Galea, 2017; Barton
et al., 2019; Erdo and Krajcsi, 2019; Sweeney et al., 2019). BF-
LPS, BFT (fragilysin) and other GI-tract microbiome-derived
exudates are remarkable in their capabilities: (i) of breaking down
the intercellular junctions of these barriers via their disruptive
actions on cadherins and other cell-cell adhesion molecules (Wu
et al., 1998;Wong et al., 2013; Sweeney et al., 2018); (ii) of altering
BBB integrity and permeability (Varatharaj and Galea, 2017;
Tulkens et al., 2018; Sweeney et al., 2019); (iii) of changing BBB
transport rates (Wong et al., 2013; Logsdon et al., 2018); (iv) of
modulating neuroimmune signaling or the transport of immune-
regulatory molecules (Erdo and Krajcsi, 2019); (v) of trafficking
dietary neurotoxins and pathogens into the brain (Sweeney et al.,
2019; Wong et al., 2013); and/or (vi) of inducing the release of
inflammatory and neuro-immune substances from the barrier
cells (Hill et al., 2014a,b; Köhler et al., 2016; Lukiw, 2016a,b;
Montagne et al., 2017; Varatharaj and Galea, 2017; Tulkens et al.,
2018; Sweeney et al., 2018, 2019; Erdo andKrajcsi, 2019; Fox et al.,
2019; Patrick et al., 2019; Sarkar and Banerjee, 2019).

Indeed, the most recent research evidence continues to
strengthen the idea that one major, and virtually unlimited,
source of pro-inflammatory neurotoxic signals in inflammatory
neurodegeneration such as those typified by the AD process
may originate from internally derived noxious exudates such
as those supplied via the diet and metabolized by the GI-tract
microbiome (Sweeney et al., 2018, 2019; Erdo and Krajcsi, 2019).
Because of aging, traumatic brain injury (TBI), cerebrovascular
deficits (some of which may be genetic), neurovascular pathology
or neuroinflammatory brain degeneration, neurotoxic molecules
can “leak” into the systemic circulation, prompting some
investigators to propose that progressive neurodegenerative
diseases such as AD supplied via the reflect a malfunction of
key biophysical barriers including those of the GI-tract and BBB,
and that AD is in fact a “defective barrier” disease (Bhattacharjee
and Lukiw, 2013; Montagne et al., 2017; Sweeney et al., 2018,
2019; Erdo and Krajcsi, 2019). The abundance of blood-borne
bacterial components including LPS, for example, represents
a variable component of the human blood serum that can
elicit variable systemic pro-inflammatory and innate-immune-
modulatory responses in the host, resulting in systemic-immune
activation by pathogen-associated molecular patterns (PAMPs),

a process sometimes referred to as “microbial translocation”
(Zhao et al., 2017a,b; Tulkens et al., 2018; Di Lorenzo et al.,
2019; Logsdon et al., 2018; Patrick et al., 2019). Multiple
recent reports further suggest that GI-tract dysbiosis and
“leaky gut syndrome” constitute a vastly under-appreciated,
under-studied and critical pathophysiological passageway for
transport of GI-tract microbiome-derived neurotoxins across
GI-tract and blood–brain biological barriers resulting in
an age-related progression from systemic inflammation to
neurovascular disease to CNS inflammation and degeneration
that progressively contribute to critical aspects of neuropathology
associated with age-related neurodegenerative disorders. These
include neuropathological disorders such as AD, anxiety,
autism spectrum disorder (ASD), depression, epilepsy, multiple
sclerosis, Parkinson’s disease (PD), prion disease, systemic
inflammatory response syndrome, and other incapacitating
and/or ultimately lethal neurological diseases of the human
CNS (Hill et al., 2014a,b; Köhler et al., 2016; Li and Yu, 2017;
Varatharaj and Galea, 2017; Zhao et al., 2017a,b, 2019; Griffiths
and Mazmanian, 2018; Di Lorenzo et al., 2019; Fox et al., 2019;
Patrick et al., 2019; Sarkar and Banerjee, 2019).

BF-LPS AND THE INDUCTION OF THE

PRO-INFLAMMATORY TRANSCRIPTION

FACTOR NF-κB AND microRNA-146a

The extruded lipopolysaccharide shed from the human GI-tract
microbiome-abundant Bacteroides fragilis (BF-LPS): (i) is one
of the most pro-inflammatory and neurotoxic lipoglycans
known (Sears, 2009; Fathi and Wu, 2016; Lukiw, 2016a,b;
Allen et al., 2019); (ii) is linked to synaptic loss and cognitive
decline in human patients and in animal models (Sheppard
et al., 2019); and (iii) is recognized by the Toll receptors TLR2,
TLR4, and/or CD14 microglial cell receptors, as are the pro-
inflammatory and hydrophobic 42 amino acid amyloid-beta
(Aβ42) peptides whose accumulation are a characteristic feature
of AD brain (Sears, 2009; Zhao et al., 2015; Zhao and Lukiw,
2015; Lukiw, 2016a,b; Batista et al., 2019; Sheppard et al., 2019).
Additional LPS-mediated pro-inflammatory actions, pathogenic
mechanisms and neurodegeneration-promoting activities
remain incompletely understood but remarkable progress is
being made both in transgenic animal models and in human
patient studies (Zhan et al., 2018; Zhao and Lukiw, 2018a,b;
Barton et al., 2019; Sarkar and Banerjee, 2019; Sheppard et al.,
2019; Wu et al., 2007). For example, LPS-induced synaptic loss
and the impairment of cognition appear to be in part the result of
a modified microglial activation, reactive oxidative species (ROS)
or cytokine generation and oxidative stress damage, disruption
of the intercellular adhesion proteins associated with the GI-tract
or blood-brain barriers, the ROS mediated oxidation, atrophy,
destruction and loss of synapse-related proteins, elevations
in neuroinflammatory signaling or any combination of these
events (Barton et al., 2019; Batista et al., 2019; Sheppard et al.,
2019; Wu et al., 2007). One recently described BF-LPS mediated
pathogenic and AD-relevant pathway is the robust activation of
NF-κB (p50/p65) in human brain cells in primary culture and
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induction of a pro-inflammatory signaling pathway involving an
NF-kB-regulated microRNA-146a, and the subsequent chronic
and pathogenic over-stimulation of innate-immune and neuro-
inflammatory pathways (Zhao and Lukiw, 2018b). These include
deficits in the innate-immune system modulator complement
factor H (CFH), decreases in the expression of the essential
presynaptic neuronal phosphoprotein synapsin-2 (SYN2) and
down-regulation of the neuron-specific neurofilament light chain
(NF-L) cytoskeletal protein (Lukiw et al., 2018; Zhan et al., 2018;
Zhao et al., 2019). These pathological signaling pathways appear
to strongly contribute to synaptic disorganization and decline,
neuronal atrophy and inflammation-mediated amyloidogenic
neuropathology which are all characteristic attributes of the
AD-affected brain.

UNANSWERED QUESTIONS

The neurobiological signaling connections between the GI-tract
microbiome and CNS disease remain incompletely understood.
Eighteen years after the elucidation and characterization of the
genes expressed in the human genome (Venter et al., 2001),
the staggering genetic complexity of the human GI-tract and
oral microbiomes have been analyzed with remarkable and
unexpected results (Tierney et al., 2019). It is truly extraordinary
that the potential contribution to human health and disease
by the GI-tract microbiome with a total mass, complexity and
diversity, and number of genes exceeding that of the liver could
have been almost completely overlooked as recent as just ∼10
years ago.

Several fundamental questions remain concerning
nature of the microorganisms of the GI-tract microbiome,
their compartmentalization within the GI-tract and their
potential effects on the neuropathology, neurobiology, and
the pathogenetics of inflammatory neurodegeneration and
neuropsychiatric disease. It will be further interesting to
discover: (i) the evolutionary history of the GI-tract microbiome
and for example, why just 2 of 52 bacterial phyla were selected
and evolved to be both dominant and symbiotic within the
entire human metagenome; (ii) what patterns of microbial
abundance, speciation, complexity, stoichiometry, dysbiosis and
GI-tract-derived mixtures of neurotoxins are the most effective
in promoting pathogenic inflammatory neuro-degeneration;
(iii) if the incidence of blood-borne GI-tract-derived toxic
elements in the systemic inflammation could be used as a
pathological biomarker or be of prognostic value for AD and
other progressive, age-related, neurodegenerative diseases;
(iv) what would be the contribution of combinations of the
microbial constituents including archaebacteria, fungi, protozoa,
viruses, and other GI-tract resident microbes of the GI-tract
microbiome to enhance neurological health; (v) the intriguing
possibility that the composition of the GI-tract microbiome
could be altered through diet, probiotics and/or prebiotics to
optimize human neurological health; (vi) if the penetration of
epithelial barriers by bacterial products occurs in the oral cavity
in periodontal disease with similar systemic effects; (vii) the
mechanism of the duality of GI-tract abundant Gram-negative
anaerobic bacteria such as B. fragilis in behaving in both
pro- and anti-inflammatory capacities, the role of capsular

polysaccharides and IL-10 secreting B and T cells in this
transition, and how the role of B. fragilis can switch from an
abundant beneficial microbe and commensal microorganism
to a highly neurotoxic one (Ramakrishna et al., 2019); and
(viii) perhaps most importantly, if medical researchers along
with neurologists and dieticians could devise a strategy,
perhaps through “personalized medicine,” that promotes the
lowering of noxious GI-tract microbes and their secretions
that would optimize life-long GI-tract microbiome function
and CNS health. This approach might minimize the risk of
developing AD and other highly incapacitating human diseases
as we age. Furthering our molecular-genetic and mechanistic
understanding of how different secreted components of the
GI-tract microbiome negatively affect the CNS may uncover
potential and novel strategic approaches for the GI-tract
microbiome-based modulation of neurological function, and
the more effective clinical management of terminal, age-related
neurological disorders.

CONCLUDING REMARKS

The appreciation of a potential contribution from the GI-
tract microbiome to human neurological health and devastating
behavioral, amnestic and cognitive disorders such as AD
is a relatively recent one (Bhattacharjee and Lukiw, 2013),
and gathering recent evidence continues to strengthen this
association (Johnson and Foster, 2018; Patrick et al., 2019;
Sarkar and Banerjee, 2019; Sheppard et al., 2019; Strandwitz
et al., 2019; Sweeney et al., 2019; Ticinesi et al., 2019; Tierney
et al., 2019; Zhao et al., 2019). Dietary manipulations of the
GI-tract microbiome including diets enriched in biologically
soluble and insoluble fiber, that seem to neutralize the
potentially neurotoxic secretions from Gram-negative bacilli
such as Bacteroides fragilis might provide a life-long resolution
to defer the development of human neuro-inflammatory
degenerative disease (Heinritz et al., 2016; Chen et al., 2017;
Poeker et al., 2018). It is becoming increasingly established
that the contribution of the GI-tract microbiome and GI-
tract microbiome-derived neurotoxins to pathogenic signaling
associated with inflammatory neurodegeneration is: (i) age-
related and progressive; (ii) contains multiple neurotoxic
components with capability to breach biophysical barriers; (iii)
constitute a virtually unlimited supply of BF-LPS, BFT (fragilysin)
and other neurotoxins; and (iv) that the GI-tract microbiome
comprises a “staggering” microbial genetic complexity, and the
recent finding that at least half of all the genes identified are
unique to each individual further underscores the interesting
parallel in the heterogeneity between GI-tract microbiome
composition and AD risk, onset and development (Patrick
et al., 2019; Strandwitz et al., 2019; Ticinesi et al., 2019;
Tierney et al., 2019). Of further recent interest is the potential
involvement of the GI-tract microbiota-brain axis with the
mental status of the host in that certain “psychotropic bacteria”
and their secreted array of “psychobiotics” appear to influence
the mental health of the host (Beck et al., 2019; Cheng
et al., 2019; Kelly et al., 2019). Given that AD was originally
referred to as a progressive and dementing “senile psychosis,”
efficacious manipulation of the GI-tract microbiome might
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not only attenuate inflammatory neurodegeneration, synaptic
disorganization and cognitive decline but also optimize healthy
neuroimmune, neuroendocrine, humoral and brain signaling
pathways that also promote well-being, anti-depressive and
anxiolytic behaviors in patients affected by the AD process.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Louisiana State University Institutional Review
Board—only post-mortem human tissues were used in these
studies. The ethics committee waived the requirement of written
informed consent for participation.

AUTHOR CONTRIBUTIONS

WL distilled the results from all laboratory experiments at the
LSU laboratories and performed literature searches of recent
peer-reviewed publications in this research area, compiled all
data, and wrote this manuscript.

FUNDING

Research on microRNAs, ethnobiology, botanical neurotoxins,
pro-inflammatory and pathogenic signaling in the Lukiw

laboratory involving the microbiome, the innate-immune
response, amyloidogenesis, synaptogenesis, and neuro-
inflammation in AD, prion and in other human neurological-
and plant-viroid-based diseases was supported through an
unrestricted grant to the LSU Eye Center from Research
to Prevent Blindness (RPB); the Louisiana Biotechnology
Research Network (LBRN) and NIH grants NEI EY006311,
NIA AG18031, and NIA AG038834 (WL). The content
of this manuscript was solely the responsibility of the
authors and does not necessarily represent the official
views of the National Institute on Aging, the National
Center for Research Resources, or the National Institutes
of Health.

ACKNOWLEDGMENTS

The research in this Perspectives article was presented in part at
the Vavilov Institute of General Genetics Autumn 2018 Seminar
Series (Институт общей генетики имени Вавилова Осень

2018 Семинар серии) in Moscow, Russia, October 2018, at
the Society for Neuroscience (SFN) Annual Meeting, Chicago
IL USA, November 2019. Sincere thanks are extended to Drs. L.
Cong, F. Culicchia, C. Eicken, K. Navel, A. I. Pogue, W. Poon,
E. Head, and the late Drs. J. M. Hill and P. N. Alexandrov for
helpful discussions in this research area, for short postmortem
interval (PMI) human brain and retinal tissues or extracts,
for initial bioinformatics and data interpretation, and to A.
I. Pogue and D. Guillot for expert technical assistance and
medical artwork.

REFERENCES

Agrawal, M., Ajazuddin Tripathi, D. K., Saraf, S., Saraf, S., Antimisiaris, S. G., et al.

(2017). Recent advancements in liposomes targeting strategies to cross blood-

brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control Release

260, 61–77. doi: 10.1016/j.jconrel.2017.05.019

Allen, J., Hao, S., Sears, C. L., and Timp, W. (2019). Epigenetic changes

induced by Bacteroides fragilis toxin. Infect. Immun. 87:e00447-18.

doi: 10.1128/IAI.00447-18

Barton, S. M., Janve, V. A., McClure, R., Anderson, A., Matsubara, J. A., Gore,

J. C., et al. (2019). Lipopolysaccharide induced opening of the blood brain

barrier on aging 5XFAD mouse model. J. Alzheimers Dis. 67, 503–513.

doi: 10.3233/JAD-180755

Batista, C. R. A., Gomes, G. F., Candelario-Jalil, E., Fiebich, B. L., and de

Oliveira, A. C. P. (2019). Lipopolysaccharide-induced neuroinflammation

as a bridge to understand neurodegeneration. Int. J. Mol. Sci. 20:E2293.

doi: 10.3390/ijms20092293

Beck, B. R., Park, G. S., Jeong, D. Y., Lee, Y. H., Im, S., Song, W. H., et al. (2019).

Multidisciplinary and comparative investigations of potential psychobiotic

effects of Lactobacillus strains isolated from newborns and their impact on

gut microbiota and ileal transcriptome in a healthy murine model. Front. Cell

Infect. Microbiol. 9:269. doi: 10.3389/fcimb.2019.00269

Bhattacharjee, S., and Lukiw,W. J. (2013). Alzheimer’s disease and themicrobiome.

Front. Cell. Neurosci. 7:153. doi: 10.3389/fncel.2013.00153

Castillo-Álvarez, F., Marzo-Sola, M. E. (2019). Role of the gut microbiota

in the development of various neurological diseases. Neurologia.

doi: 10.1016/j.nrl.2019.03.017. [Epub ahead of print].

Chen, T., Long, W., Zhang, C., Liu, S., Zhao, L., and Hamaker, B. R. (2017).

Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut

microbiota. Sci. Rep. 7:2594. doi: 10.1038/s41598-017-02995-4

Cheng, L. H., Liu, Y. W., Wu, C. C., Wang, S., and Tsai, Y. C. (2019). Psychobiotics

in mental health, neurodegenerative and neurodevelopmental disorders. J.

Food Drug Anal. 27, 632–648. doi: 10.1016/j.jfda.2019.01.002

Clement, C., Hill, J. M., Dua, P., Culicchia, F., and Lukiw, W. J. (2016). Analysis of

RNA from Alzheimer’s disease post-mortem brain tissues. Mol. Neurobiol. 53,

1322–1328. doi: 10.1007/s12035-015-9105-6

Di Lorenzo, F., De Castro, C., Silipo, A., and Molinaro, A. (2019).

Lipopolysaccharide structures of Gram-negative populations in the gut

microbiota and effects on host interactions. FEMS Microbiol. Rev. 43, 257–272.

doi: 10.1093/femsre/fuz002

Erdo, F., and Krajcsi, P. (2019). Age-related functional and expressional changes

in efflux pathways at the blood-brain barrier. Front. Aging Neurosci. 11:196.

doi: 10.3389/fnagi.2019.00196

Fathi, P., and Wu, S. (2016). Isolation, detection, and characterization of

enterotoxigenic Bacteroides fragilis in clinical samples. Open Microbiol. J. 10,

57–63. doi: 10.2174/1874285801610010057

Fields, C., Adams, M. D., White, O., and Venter, J. C. (1994). How many genes in

the human genome? Nat. Genet. 7, 345–346.

Fox, M., Knorr, D. A., and Haptonstall, K. M. (2019). Alzheimer’s disease and

symbiotic microbiota: an evolutionary medicine perspective. Ann. N Y. Acad.

Sci. 1449, 3–24. doi: 10.1111/nyas.14129

Griffiths, J. A., and Mazmanian, S. K. (2018). Emerging evidence linking

the gut microbiome to neurologic disorders. Genome Med. 10:98.

doi: 10.1186/s13073-018-0609-3

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6 February 2020 | Volume 10 | Article 22103

https://doi.org/10.1016/j.jconrel.2017.05.019
https://doi.org/10.1128/IAI.00447-18
https://doi.org/10.3233/JAD-180755
https://doi.org/10.3390/ijms20092293
https://doi.org/10.3389/fcimb.2019.00269
https://doi.org/10.3389/fncel.2013.00153
https://doi.org/10.1016/j.nrl.2019.03.017
https://doi.org/10.1038/s41598-017-02995-4
https://doi.org/10.1016/j.jfda.2019.01.002
https://doi.org/10.1007/s12035-015-9105-6
https://doi.org/10.1093/femsre/fuz002
https://doi.org/10.3389/fnagi.2019.00196
https://doi.org/10.2174/1874285801610010057
https://doi.org/10.1111/nyas.14129
https://doi.org/10.1186/s13073-018-0609-3
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Lukiw GI-Tract Microbiome-Derived Pro-inflammatory Neurotoxins

Heinritz, S. N., Weiss, E., Eklund, M., Aumiller, T., Heyer, C. M., Messner, S., et al.

(2016). Impact of a high-fat or high-fiber diet on intestinal microbiota and

metabolic markers in a pig model. Nutrients 8:E317. doi: 10.3390/nu8050317

Helander, H. F., and Fändriks, L. (2014). Surface area of the digestive

tract - revisited. Scand. J. Gastroenterol. 49, 681–689. doi: 10.3109

/00365521.2014.898326

Hicks, M., Bartha, I., di Iulio, J., Venter, J. C., and Telenti, A. (2019). Functional

characterization of 3D protein structures informed by human genetic diversity.

Proc. Natl. Acad. Sci. U.S.A. 116, 8960–8965. doi: 10.1073/pnas.1820813116

Hill, J. M., Bhattacharjee, S., Pogue, A. I., and Lukiw, W. J. (2014b). The

gastrointestinal tract microbiome and potential link to Alzheimer’s disease.

Front. Neurol. 5:43. doi: 10.3389/fneur.2014.00043

Hill, J. M., Clement, C., Pogue, A. I., Bhattacharjee, S., Zhao, Y., and Lukiw, W. J.

(2014a). Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD).

Front. Aging Neurosci. 6:127. doi: 10.3389/fnagi.2014.00127

Hill, J. M., and Lukiw,W. J. (2015). Microbial-generated amyloids and Alzheimer’s

disease (AD). Front. Aging Neurosci. 7:9. doi: 10.3389/fnagi.2015.00009

Johnson, K. V.-A., and Foster, K. R. (2018). Why does the microbiome affect

behaviour? Nat. Rev.Microbiol. 16, 647–655. doi: 10.1038/s41579-018-0014-3

Kelly, J. R., Keane, V. O., Cryan, J. F., Clarke, G., and Dinan, T. G. (2019). Mood

and microbes: gut to brain communication in depression. Gastroenterol Clin.

North Am. 48, 389–405. doi: 10.1016/j.gtc.2019.04.006

Köhler, C. A., Maes, M., Slyepchenko, A., Berk, M., Solmi, M., and Lanctôt,

K. L., et al. (2016). The gut-brain axis, including the microbiome, leaky

gut and bacterial translocation: mechanisms and pathophysiological role

in Alzheimer’s disease. Curr. Pharm. Des. 22, 6152–6166. doi: 10.2174

/1381612822666160907093807

Leshchyns’ka, I., and Sytnyk, V. (2016). Synaptic cell adhesion molecules in

Alzheimer’s disease. Neural Plast. 2016:6427537. doi: 10.1155/2016/6427537

Li, D., and Yu, F. (2017). Peripheral inflammatory biomarkers and cognitive

decline in older adults with and without Alzheimer’s disease: a systematic

review. J. Gerontol. Nurs. 2017, 1–7. doi: 10.3928/00989134-20170519-01

Logsdon, A. F., Erickson, M. A., Rhea, E. M., Salameh, T. S., and Banks, W. A.

(2018). Gut reactions: how the blood-brain barrier connects the microbiome

and the brain. Exp. Biol. Med. 243, 159–165. doi: 10.1177/1535370217743766

Lukiw, W. J. (2016a). Bacteroides fragilis lipopolysaccharide and

inflammatory signaling in Alzheimer’s disease. Front. Microbiol. 7:1544.

doi: 10.3389/fmicb.2016.01544

Lukiw, W. J. (2016b). The microbiome, microbial-generated pro-inflammatory

neurotoxins, and Alzheimer’s disease. J. Sport Health Sci. 5, 393–396.

doi: 10.1016/j.jshs.2016.08.008

Lukiw, W. J., Cong, L., Jaber, V., and Zhao, Y. (2018). Microbiome-derived

lipopolysaccharide (LPS) selectively inhibits neurofilament light chain (NF-L)

gene expression in human neuronal-glial (HNG) cells in primary culture. Front.

Neurosci. 12:896. doi: 10.3389/fnins.2018.00896

Martinez-Conde, S. (2018).Cajal Institute (CSIC), Madrid Santiago Ramón y Cajal,

the Young Artist Who Grew Up to Invent Neuroscience. Scientific American.

Montagne, A., Zhao, Z., and Zlokovic, B. V. (2017). Alzheimer’s disease: a

matter of blood-brain barrier dysfunction? J. Exp. Med. 214, 3151–3169.

doi: 10.1084/jem.20171406

Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera,

R., Dijkstra, G., et al. (2019). Short chain fatty acids (SCFAs)-mediated gut

epithelial and immune regulation and its relevance for inflammatory bowel

diseases. Front. Immunol. 10:277. doi: 10.3389/fimmu.2019.00277

Patrick, K. L., Bell, S. L., Weindel, C. G., and Watson, R. O. (2019).

Exploring the “Multiple-hit Hypothesis” of neurodegenerative disease:

bacterial infection comes up to bat. Front. Cell Infect. Microbiol. 9:138.

doi: 10.3389/fcimb.2019.00138

Poeker, S. A., Geirnaert, A., Berchtold, L., Greppi, A., Krych, L., Steinert, R.

E., et al. (2018). Understanding the prebiotic potential of different dietary

fibers using an in vitro continuous adult fermentation model. Sci. Rep. 8:4318.

doi: 10.1038/s41598-018-22438-y

Ramakrishna, C., Kujawski, M., Chu, H., Li, L., Mazmanian, S. K., and

Cantin, E. M. (2019). Bacteroides fragilis polysaccharide A induces IL-10

secreting B and T cells that prevent viral encephalitis. Nat Commun. 10:2153.

doi: 10.1038/s41467-019-09884-6

Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A.

D., Gasbarrini, A., et al. (2019). What is the healthy gut microbiota

composition? A changing ecosystem across age, environment, diet,

and diseases. Microorganisms. 7:E14. doi: 10.3390/microorganisms70

10014

Rios-Covian, D., Salazar, N., Gueimonde, M., and de Los Reyes-Gavilan, C.

G. (2017). Shaping the metabolism of intestinal Bacteroides population

through diet to improve human health. Front. Microbiol. 8:376.

doi: 10.3389/fmicb.2017.00376

Sarkar, R. S., and Banerjee, S. (2019). Gut microbiota in neurodegenerative

disorders. J. Neuroimmunol. 328, 98–104. doi: 10.1016/j.jneuroim.2019.01.004

Sears, C. L. (2009). Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes.

Clin. Microbiol. Rev. 22, 349–369. doi: 10.1128/CMR.00053-08

Sender, R., Fuchs, S., and Milo, R. (2016). Revised estimates for the

number of human and bacteria cells in the body. PLoS Biol. 14:e1002533.

doi: 10.1371/journal.pbio.1002533

Sheppard, O., Coleman, M. P., and Durrant, C. S. (2019). Lipopolysaccharide-

induced neuroinflammation induces presynaptic disruption through a direct

action on brain tissue involving microglia-derived interleukin 1 beta. J.

Neuroinflam. 16:106. doi: 10.1186/s12974-019-1490-8

Shivaji, S. (2017). We are not alone: a case for the human microbiome in extra

intestinal diseases. Gut Pathog 9:13. doi: 10.1186/s13099-017-0163-3

Strandwitz, P., Kim, K. H., Terekhova, D., Liu, J. K., Sharma, A., Levering, J.,

et al. (2019). GABA-modulating bacteria of the human gut microbiota. Nat.

Microbiol. 4, 396–403. doi: 10.1038/s41564-018-0307-3

Sweeney, M. D., Sagare, A. P., and Zlokovic, B. V. (2018). Blood-brain barrier

breakdown in Alzheimer disease and other neurodegenerative disorders. Nat.

Rev. Neurol. 14, 133–150. doi: 10.1038/nrneurol.2017.188

Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R., and Zlokovic, B. V. (2019).

Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99,

21–78. doi: 10.1152/physrev.00050.2017

Ticinesi, A., Tana, C., and Nouvenne, A. (2019). The intestinal microbiome and its

relevance for functionality in older persons.Curr. Opin. Clin. Nutr. Metab. Care

22, 4–12. doi: 10.1097/MCO.0000000000000521

Tierney, B. T., Yang, Z., Luber, J. M., Beaudin, M., Wibowo, M. C., et al., (2019).

The landscape of genetic content in the gut and oral human microbiome. Cell

Host Microbe 26, 283–295.e8. doi: 10.1016/j.chom.2019.07.008

Tulkens, J., Vergauwen, G., Van Deun, J., Geeurickx, E., Dhondt, B., Lippens, L.,

et al. (2018). Increased levels of systemic LPS-positive bacterial extracellular

vesicles in patients with intestinal barrier dysfunction. Gut 69, 191–193.

doi: 10.1136/gutjnl-2018-317726

Varatharaj, A., and Galea, I. (2017). The blood-brain barrier in systemic

inflammation. Brain Behav. Immun. 60, 1–12. doi: 10.1016/j.bbi.2016.03.010

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G.,

et al. (2001). The sequence of the human genome. Science 291, 1304–1351.

doi: 10.1126/science.1058040

Vines, R. R., Perdue, S. S., Moncrief, J. S., Sentz, D. R., Barroso, L. A., Wright, R. L.,

et al. (2000). Fragilysin, the enterotoxin from Bacteroides fragilis, enhances the

serum antibody response to antigen co-administered by the intranasal route.

Vaccine 19, 655–660. doi: 10.1016/S0264-410X(00)00254-1

Wexler, A. G., and Goodman, A. L. (2017). An insider’s perspective:

Bacteroides as a window into the microbiome. Nat. Microbiol. 2:17026.

doi: 10.1038/nmicrobiol.2017.26

Wong, A. D., Ye, M., Levy, A. F., Rothstein, J. D., Bergles. D. E., and Searson, P. C.

(2013). The blood-brain barrier: an engineering perspective. Front. Neuroeng.

6:7. doi: 10.3389/fneng.2013.00007

Wu, S., Lim, K. C., Huang, J., Saidi, R. F., and Sears, C. L. (1998). Bacteroides fragilis

enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad.

Sci. U.S.A. 95, 14979–14984. doi: 10.1073/pnas.95.25.14979

Wu, S., Rhee, K. J., Zhang, M., Franco, A., and Sears, C. L. (2007). Bacteroides

fragilis toxin stimulates intestinal epithelial cell shedding and gamma-

secretase-dependent E-cadherin cleavage. J Cell Sci. 120(Pt 11), 1944–52.

doi: 10.1242/jcs.03455

Zhan, X., Stamova, B., Jin, L. W., DeCarli, C., Phinney, B., and Sharp, F. R. (2016).

Gram-negative bacterial molecules associate with Alzheimer disease pathology.

Neurology 87, 2324–2332. doi: 10.1212/WNL.0000000000003391

Zhan, X., Stamova, B., and Sharp, F. R. (2018). Lipopolysaccharide associates

with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease

brain: a review. Front. Aging Neurosci. 10:42. doi: 10.3389/fnagi.2018.

00042

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7 February 2020 | Volume 10 | Article 22104

https://doi.org/10.3390/nu8050317
https://doi.org/10.3109/00365521.2014.898326
https://doi.org/10.1073/pnas.1820813116
https://doi.org/10.3389/fneur.2014.00043
https://doi.org/10.3389/fnagi.2014.00127
https://doi.org/10.3389/fnagi.2015.00009
https://doi.org/10.1038/s41579-018-0014-3
https://doi.org/10.1016/j.gtc.2019.04.006
https://doi.org/10.2174/1381612822666160907093807
https://doi.org/10.1155/2016/6427537
https://doi.org/10.3928/00989134-20170519-01
https://doi.org/10.1177/1535370217743766
https://doi.org/10.3389/fmicb.2016.01544
https://doi.org/10.1016/j.jshs.2016.08.008
https://doi.org/10.3389/fnins.2018.00896
https://doi.org/10.1084/jem.20171406
https://doi.org/10.3389/fimmu.2019.00277
https://doi.org/10.3389/fcimb.2019.00138
https://doi.org/10.1038/s41598-018-22438-y
https://doi.org/10.1038/s41467-019-09884-6
https://doi.org/10.3390/microorganisms7010014
https://doi.org/10.3389/fmicb.2017.00376
https://doi.org/10.1016/j.jneuroim.2019.01.004
https://doi.org/10.1128/CMR.00053-08
https://doi.org/10.1371/journal.pbio.1002533
https://doi.org/10.1186/s12974-019-1490-8
https://doi.org/10.1186/s13099-017-0163-3
https://doi.org/10.1038/s41564-018-0307-3
https://doi.org/10.1038/nrneurol.2017.188
https://doi.org/10.1152/physrev.00050.2017
https://doi.org/10.1097/MCO.0000000000000521
https://doi.org/10.1016/j.chom.2019.07.008
https://doi.org/10.1136/gutjnl-2018-317726
https://doi.org/10.1016/j.bbi.2016.03.010
https://doi.org/10.1126/science.1058040
https://doi.org/10.1016/S0264-410X(00)00254-1
https://doi.org/10.1038/nmicrobiol.2017.26
https://doi.org/10.3389/fneng.2013.00007
https://doi.org/10.1073/pnas.95.25.14979
https://doi.org/10.1242/jcs.03455
https://doi.org/10.1212/WNL.0000000000003391
https://doi.org/10.3389/fnagi.2018.00042
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Lukiw GI-Tract Microbiome-Derived Pro-inflammatory Neurotoxins

Zhao, Y., Cong, L., Jaber, V., and Lukiw, W. J. (2017c). Microbiome-derived

lipopolysaccharide enriched in the perinuclear region of Alzheimer’s

disease brain. Front. Immunol. 8:1064. doi: 10.3389/fimmu.2017.

01064

Zhao, Y., Cong, L., and Lukiw, W. J. (2017a). Lipopolysaccharide (LPS)

accumulates in neocortical neurons of Alzheimer’s disease (AD) brain and

impairs transcription in human neuronal-glial primary co-cultures. Front.

Aging Neurosci. 9:407. doi: 10.3389/fnagi.2017.00407

Zhao, Y., Dua, P., Lukiw, W. J. (2015). Microbial sources of amyloid and

relevance to amyloidogenesis and Alzheimer’s disease (AD). J Alzheimers Dis

Parkinsonism. 5:177.

Zhao, Y., Jaber, V., and Lukiw, W. J. (2017b). Secretory products of the human

GI tract microbiome and their potential impact on Alzheimer’s disease (AD):

detection of lipopolysaccharide (LPS) in AD hippocampus. Front. Cell Infect.

Microbiol. 7:318. doi: 10.3389/fcimb.2017.00318

Zhao, Y., Lukiw, W. J. (2015). Microbiome-generated amyloid and potential

impact on amyloidogenesis in Alzheimer’s disease (AD). J. Nat. Sci. 1:e138.

Zhao, Y., and Lukiw, W. J. (2018a). Bacteroidetes neurotoxins and

inflammatory neurodegeneration. Mol. Neurobiol. 55, 9100–9107.

doi: 10.1007/s12035-018-1015-y

Zhao, Y., and Lukiw, W. J. (2018b). Microbiome-mediated upregulation

of microRNA-146a in sporadic Alzheimer’s disease. Front. Neurol. 9:145.

doi: 10.3389/fneur.2018.00145

Zhao, Y., Sharfman, N. M., Jaber, V. R., and Lukiw, W. J. (2019). Down-

regulation of essential synaptic components by GI-tract microbiome-derived

lipopolysaccharide (LPS) in LPS-treated human neuronal-glial (HNG) cells in

primary culture: relevance to Alzheimer’s disease (AD). Front. Cell Neurosci.

13:314. doi: 10.3389/fncel.2019.00314

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Lukiw. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8 February 2020 | Volume 10 | Article 22105

https://doi.org/10.3389/fimmu.2017.01064
https://doi.org/10.3389/fnagi.2017.00407
https://doi.org/10.3389/fcimb.2017.00318
https://doi.org/10.1007/s12035-018-1015-y
https://doi.org/10.3389/fneur.2018.00145
https://doi.org/10.3389/fncel.2019.00314
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


fnins-14-00127 February 15, 2020 Time: 17:4 # 1

ORIGINAL RESEARCH
published: 18 February 2020

doi: 10.3389/fnins.2020.00127

Edited by:
Andreas Martin Grabrucker,

University of Limerick, Ireland

Reviewed by:
Kiran Veer Sandhu,

University College Cork, Ireland
Silvia Turroni,

University of Bologna, Italy

*Correspondence:
Guang Yang

yangg301@sina.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Neuroendocrine Science,
a section of the journal

Frontiers in Neuroscience

Received: 16 October 2019
Accepted: 31 January 2020

Published: 18 February 2020

Citation:
Wan L, Ge W-R, Zhang S,

Sun Y-L, Wang B and Yang G (2020)
Case-Control Study of the Effects
of Gut Microbiota Composition on

Neurotransmitter Metabolic Pathways
in Children With Attention Deficit

Hyperactivity Disorder.
Front. Neurosci. 14:127.

doi: 10.3389/fnins.2020.00127

Case-Control Study of the Effects of
Gut Microbiota Composition on
Neurotransmitter Metabolic
Pathways in Children With Attention
Deficit Hyperactivity Disorder
Lin Wan1†, Wen-Rong Ge2†, Shan Zhang1, Yu-Lin Sun1, Bin Wang1 and Guang Yang1*

1 The First Medical Center of the Chinese PLA General Hospital, Beijing, China, 2 Beijing Friendship Hospital, Capital Medical
University, Beijing, China

Background: Attention-deficit/hyperactivity disorder (ADHD) is a neuropsychiatric
condition that may be related to an imbalance of neural transmitters. The gut microbiota
is the largest ecosystem in the human body, and the brain-gut axis theory proposes that
the gut microbiome can affect brain function in multiple ways. The purpose of this study
was to explore the gut microbiota in children with ADHD and assess the possible role of
the gut microbiota in disease pathogenesis to open new avenues for ADHD treatment.

Methods: A case-control design was used. We enrolled 17 children aged 6–12 years
with ADHD who were treated in the Pediatric Outpatient Department of the First Medical
Center of the Chinese PLA General Hospital from January to June, 2019. Seventeen
children aged 6–12 years were selected as the healthy control (HC) group. Fecal
samples of cases and controls were analyzed by shotgun metagenomics sequencing.
Alpha diversity and the differences in the relative abundances of bacteria were compared
between the two groups. Functional annotations were performed for the microbiota
genes and metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes
and Genomes (KEGG).

Results: There was no significant difference in the alpha diversity of gut microbiota
between the ADHD and HC groups. Compared with HCs, Faecalibacterium and
Veillonellaceae were significantly reduced in children with ADHD (P < 0.05), Odoribacter
and Enterococcus were significantly increased [linear discriminant analysis (LDA) > 2].
At the species level, Faecalibacterium prausnitzii, Lachnospiraceae bacterium, and
Ruminococcus gnavus were significantly reduced in the ADHD group (P < 0.05),
while Bacteroides caccae, Odoribacter splanchnicus, Paraprevotella xylaniphila, and
Veillonella parvula were increased (P < 0.05). Metabolic pathway analysis revealed
significant between-group differences in the metabolic pathways of neurotransmitters
(e.g., serotonin and dopamine) (P < 0.05).
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Conclusion: Composition differences of gut microbiota in subjects with ADHD may
contribute to brain-gut axis alterations and affect neurotransmitter levels, which could
contribute to ADHD symptoms.

Keywords: attention deficit hyperactivity disorder, child, gastrointestinal microbiome, shotgun metagenomics
sequencing, neurotransmitter

INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is a
neuropsychiatric disorder that occurs most frequently in
school-age children and is characterized as inattention with or
without excessive impulsivity and hyperactivity (Abramov et al.,
2019). Previous studies have reported that ADHD pathogenesis
may be associated with dysregulation of neurotransmitters
such as dopamine, serotonin (5-hydroxytryptamine, 5-HT),
and norepinephrine (Magula et al., 2019; Stewart et al., 2019;
Suzuki et al., 2019). Others have shown that the incidence of
ADHD may have a certain degree of heritability, and genes
related to dopamine, norepinephrine, and 5-HT transmission
have been found to be abnormally expressed in children with
ADHD (Banerjee and Nandagopal, 2015; Karmakar et al.,
2017; Kim et al., 2018). Although various theories have been
proposed, the pathogenetic mechanisms underlying ADHD
have not been fully clarified, which limits the development
of new treatments.

Gut microbiota alterations may be associated with
neurological conditions including Alzheimer’s disease, epilepsy,
and autism (Fan et al., 2019; Rude et al., 2019). Many researchers
have proposed the existence of bidirectional regulation of
the brain-gut axis, which involves gut microbiota metabolites
that affect neurotransmitter levels, thereby influencing brain
function (Melli et al., 2016; Khalil et al., 2019; Lacorte et al.,
2019). In addition, nervous system activity can also impact
gut microbiota composition. This bidirectional regulation
is accomplished via complex neuroendocrine pathways
(Khalil et al., 2019). The gut microbiota can adjust these
pathways by regulating the levels of neurotransmitters and
inflammatory factors and affecting the hypothalamic-pituitary-
adrenal axis (Bermúdez-Humarán et al., 2019). Therefore,
abnormal intestinal flora composition may lead to abnormal
neurotransmitter secretion, which may promote the development
of neuropsychiatric diseases.

We conducted a case-control study to analyze differences in
intestinal flora composition between children with ADHD and
healthy control (HC) children, explore ADHD pathogenesis, and
investigate potential new treatments for ADHD.

MATERIALS AND METHODS

Study Subjects
Seventeen children aged 6–12 (median 8 years) with ADHD
were selected from the Pediatric Outpatient Department of the
First Medical Center of the PLA General Hospital between
January and June, 2019. The inclusion criteria were: (1) The

Kiddie Schedule for Affective Disorders and Schizophrenia
(K-SADS, Present and Lifetime Version scales) was used to
diagnosis ADHD, and subjects met the diagnostic criteria for
ADHD in the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5) (Ng et al., 2019) based on
the opinion of an experienced child psychiatrist (GY or LW);
(2) no history of respiratory or digestive tract infection within
1 month; (3) no use of probiotics within 1 month; (4) no
history of digestive diseases or other chronic diseases; (5) body
mass index (BMI) < 20 kg/m2 (because obesity could cause gut
microbiota abnormalities) (Salah et al., 2019); and (6) no allergic
diseases such as allergic rhinitis or asthma. Seventeen children
from different families aged 6–12 years (median 8 years) were
selected as the HC group in the same period. The inclusion
criteria were the same except that there was no diagnosis
of ADHD based on DSM-5 criteria by K-SADS. All of the
participating children were born full-term with normal deliveries.
Subjects were excluded if they were on a special diet (e.g.,
vegetarian). All parents of the participating children completed
the Conners Parent Rating Scales (CPRS) to assess ADHD
symptom severity and exclude subjects with depressive or anxiety
symptoms. Participants maintained their regular dietary patterns
for a week, and a food diary was recorded for participants
from both groups during this period in order to exclude the
potential influence of any changes in diet on the intestinal
flora. Stool samples were collected at 8:00 am in the Pediatric
Outpatient Department and stored in a sterile plastic cup at
−80◦C prior to testing.

The study was approved by the PLA General Hospital
Ethics Committee (no. 2018-278). All subjects’ guardians
were informed about the intentions of this study, and gave
written informed consent was obtained in accordance with the
Declaration of Helsinki.

Sequencing and Analysis
DNA Sequencing
A total of 34 stool samples were collected from 17 ADHD patients
and 17 age-matched HCs. We applied shotgun metagenomic
sequencing to the whole genome of the microorganisms
for each specimen. Bead beating was performed to rupture
the bacteria, DNA was extracted with HiPure Stool DNA
kits (Angen Biotech Co., Ltd., Guangzhou, China), and
Qubit 4.0 software (Thermo Fisher Scientific, Waltham,
MA, United States) was used for quality assessment. The
library was prepared with a KAPA Hyper Prep Kit (KAPA
Biosystems, Wilmington, MA, United States) and paired-end
sequencing was performed on an Illumina NovaSeq platform
(Illumina, San Diego, CA, United States) with a reading length
of 150 bp (PE150).
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Species Abundance and Gene Function
Annotations
All genome sequencing data were preprocessed by KneadData1

to screen out low-quality short frame sequences and chimeric
sequences among the structural primer sequences (Bolger et al.,
2014). Bowtie2 (Langmead and Salzberg, 2012) was then used
to align the reads with the human genome for host sequence
contamination removal. This was carried out with human
reference genome hg19)2.

HUMAnN2 (version v0.11.2) was used to analyze the species
abundance, gene function, and metabolic pathways related to the
processed sequencing data (Franzosa et al., 2018). HUMAnN2
first used MetaPhlAn2 (version 2.7.7, Li et al., 2014) to match
the sequence with the established core genes to quickly locate
the species included in the microbiota. Sequences were then
compared with the pan-genome of the identified species and
mapped to corresponding phylogenetic levels. The abundance of
genes or gene families, and metabolic pathways were analyzed at
different phylogenetic levels of interest.

To determine the gene functional annotations, we employed
the Bowtie2 (version 2.3.4.3) to map the sequences after removing
low-quality sequences and host sequences, to Integrated Gene
Catalog databases and Kyoto Encyclopedia of Genes and
Genomes (KEGG).On this basis, gene abundance and alpha
diversity indexes were calculated, which involves using the
Shannon, Chao1, and Simpson indexes to calculate the entropy
values of gene abundance. Euclidean distance was also computed
as the measurement of beta diversity, followed by principal
component analysis (PCA) and permutational multivariate
analysis of variance (PERMANOVA). PCA was performed using
ade4 package and PERMANOVA was carried out using vegan
package (R version 3.5.3)3.

Bioinformatics Analysis
Chi-square tests were performed by SPSS 21.0 to compare
sex differences between the ADHD and HC groups, and
independent-sample t-tests were used to compare age, BMI, and
CPRS scores. Wilcoxon tests were used by SPSS 21.0 to assess
differences in species abundance and gene function between the
ADHD and HC groups. The LDA effect size (LEfSe) method was
used to determine the most differentially abundant taxa at the
genus and species levels between the two groups.

RESULTS

Comparison of Clinical Data Between
the ADHD and HC Groups
A total of 17 ADHD children were included in this study,
including 14 (82.3%) males and 3 (17.7%) females with a median
age of 8 (25th and 75th percentiles: 7, 10) and a mean BMI of
16.1 ± 1.2 kg/m2. The 17 HCs included 13 (76.5%) males and
4 (23.5%) females with a median age of 8 (7, 9.5) and a mean

1https://bitbucket.org/biobakery/kneaddata
2http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz
3https://www.r-project.org/

BMI of 15.9 ± 1.1 kg/m2. There was no significant difference
in the distributions of sex, age, or BMI between the two groups
(P > 0.05). More children in the ADHD group (12, 70.5%)
developed symptoms of constipation than in the HC group (2,
11.7%).The total CPRS scores were significantly different between
the ADHD and HC groups (10.3± 4.2 vs. 2.2± 0.63, respectively;
P < 0.05). There were no significant differences in the subscores
for psychosomatic symptoms (0.56 ± 0.34 vs. 0.53 ± 0.41) or
anxiety (0.42± 0.32 vs. 0.51± 0.35) (P > 0.05, Table 1).

Analysis of Intestinal Flora Diversity
The Shannon (9.67 ± 0.42 vs. 9.52 ± 0.25), Chao1 (61.5 ± 11.6
vs. 57.5± 9.8), and Simpson (0.89± 0.07 vs. 0.88± 0.06) indexes
were calculated to assess the alpha diversity of fecal microbiota in
the ADHD and HC groups. There were no significant differences
in index values between the two groups (Figure 1A). At the genus
level and the species level, PERMANOVA could not discriminate
the ADHD from the HC group due to significant individual
variation (Figures 1B,C).

Analyses of Fecal Bacterial Community
Abundance
At the genus level, Wilcoxon tests showed that Faecalibacterium
and Veillonellaceae were significantly reduced in the
ADHD group, while Odoribacter was significantly higher
(P < 0.05, Figure 2A). The LEfSe results also indicated that
Enterococcus was significantly increased in the ADHD group
(LDA > 2, Figure 2B).

At the species level, Wilcoxon tests showed that
Faecalibacterium prausnitzii, Lachnospiraceae bacterium,
and Ruminococcus gnavus were significantly decreased in
the ADHD group, while Bacteroides caccae, Odoribacter
splanchnicus, Paraprevotella xylaniphila, and Veillonella
parvula were significantly increased (P < 0.05, Figure 2C).
The results of LEfSe showed that Odoribacteraceae and

TABLE 1 | Descriptive data of the ADHD and HC groups.

ADHD (n = 17) HC (n = 17) P

Sex, n (%) 0.671

Male 14 (82.3%) 13 (76.5%)

Female 3 (15%) 4 (23.5%)

Age, years; median (25th
and 75th percentiles)

8 (7, 10) 8 (7, 9.5) 0.701

BMI, mean (SD) 16.1 (1.2) 15.9 (1.1) 0.652

Constipation, n(%) 12 (70.5%) 2 (11.7%) <0.05

ADHD symptom severity, mean (SD)

Total CPRS score 10.3 (4.2) 2.2 (0.63) <0.05

Conduct problems 3.1 (1.46) 0.16 (0.27) <0.05

Impulsive–hyperactivity 1.5 (0.59) 0.16 (0.22) <0.05

Hyperactivity 3.4 (0.65) 0.05 (0.21) <0.05

Learning problems 1.9 (0.57) 0.21 (0.34) <0.05

Psychosomatic 0.56 (0.34) 0.53 (0.41) 0.452

Anxiety 0.42 (0.32) 0.51 (0.35) 0.523

ADHD, attention-deficit/hyperactivity disorder; BMI, body mass index; CPRS,
Conners Parent Rating Scales; HC, healthy control.
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FIGURE 1 | (A) Comparison of alpha diversity indexes between the ADHD and HC groups. (B) Permutational multivariate analysis of variance (PERMANOVA) of
microbial communities of the participants at the genus level. (C) PERMANOVA of microbial communities of the participants at the species level.

FIGURE 2 | Comparison of different bacteria at the genus and species level between the ADHD and HC groups. (A) Wilcoxon test result at the genus level
(P < 0.05). (B) LEfSe result at the genus level (LDA > 2). (C) Wilcoxon test result at the species level (P < 0.05). (D) LEfSe result at the species level (LDA > 2).

Enterococcaceae were significantly increased in the ADHD
group, while Ruminococcaceae was significantly decreased
(LDA > 2, Figure 2D).

KEGG Analysis of Metabolism
A total of 6294 KEGG Orthology (KO) terms were used
to annotate the genes. Wilcoxon tests showed 91 KOs that
were significantly different between the two groups (P < 0.01,
Figure 3). These included terms related to the neurotransmitter
dopamine; the genes encoding the catalytic subunit of protein
phosphatase-1 (PP1), threonine synthase, and 6-pyruvoyl-
5,6,7,8-tetrahydropterin were significantly upregulated in the
ADHD group, while the gene encoding 4-hydroxy threonine-
4-phosphate dehydrogenase was significantly downregulated
(P < 0.05, Figure 4).

DISCUSSION

The mammalian intestinal tract contains more than 100 trillion
microorganisms; as the largest ecosystem in the body, it
influences host physiological functions (Agus et al., 2018). The
brain-gut axis theory proposes that there is a bidirectional
regulatory mechanism between the intestinal flora and
the brain. Children with ADHD may have abnormal
neurotransmission, and the intestinal flora may regulate
the level of neurotransmitters via complex neuroendocrine
pathways (Richarte et al., 2018). A systematic review revealed
two studies that assessed the correlation between ADHD and
intestinal flora (Lacorte et al., 2019). Both employed 16S rRNA-
sequencing technology and only analyzed the difference in gut
microflora (Jiang et al., 2018; Prehn-Kristensen et al., 2018).
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FIGURE 3 | Comparison of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotations between the ADHD and HC groups.

We also applied shotgun metagenomic sequencing to the whole
genomes of microorganisms for each specimen, and KEGG was
used to analyze the metabolic pathways and identify possible
pathogenetic mechanisms.

Similar to earlier reports (Jiang et al., 2018; Prehn-Kristensen
et al., 2018), we found obvious differences in the gut microbiota
of the ADHD and HC groups. Contrary to one study (Prehn-
Kristensen et al., 2018), we found the alpha diversity of
intestinal flora was not significantly different between groups,
but subjects with ADHD had significantly lower levels of
Faecalibacterium. However, unlike a previous report (Jiang
et al., 2018), we also found that the ADHD group had
significant decreases in Veillonellaceae, while Enterococcus and
Odoribacter were significantly increased. At the species level,
F. prausnitzii, L. bacterium, and R. gnavus were significantly
reduced in the ADHD group, while B. caccae, O. splanchnicus,
P. xylaniphila, and V. parvula were significantly increased.
Additionally, we found that children with ADHD were more
prone to constipation; consistent with our finding, previous
studies have reported that the imbalance of intestinal flora is
closely related to the occurrence of constipation (Huang et al.,
2018; Wen et al., 2018; Wang L. et al., 2019).

The pathogenesis of ADHD remains unclear. One research
group reported that abnormal levels of neurotransmitters are
involved in the disease process (Kovács et al., 2019). Based
on this theory, central nervous system (CNS) stimulants such
as methylphenidate hydrochloride are widely used as first-line
treatments for ADHD. The mechanism may involve inhibition
of presynaptic reuptake of noradrenaline and dopamine; higher
synaptic levels of these neurotransmitters may help to control
symptoms, but clinical treatment effects vary among patients
(Wigal et al., 2017).

Previous studies have shown that the gut microbiota could
affect the brain-gut axis and contribute to the pathogenesis

of neurological diseases including Parkinson’s, epilepsy, autism
spectrum disorders, and tic disorders (Zhao et al., 2017;
Kovács et al., 2019; Rude et al., 2019). Early intestinal flora
establishment can affect nervous system development, resulting
in anxiety behaviors and other mental health problems after
maturity, and treatment of pregnant female rats with low-
dose antibiotics has been shown to lead to an imbalance of
intestinal flora, with subsequent alterations in the behavior of
offspring (Borre et al., 2014; Leclercq et al., 2017; Zhao et al.,
2017). In another study where gut bacteria from patients with
schizophrenia were transplanted into germ-free mice, the mice
developed psychotic symptoms due to altered regulation of
the glutamine-glutamate-gamma-aminobutyric acid pathway by
the transplanted gut bacteria (Zheng et al., 2019). Similarly,
transplantation of intestinal flora from patients with Parkinson’s
disease into a germ-free Parkinson’s disease mouse model
significantly increased motor symptoms of the mice, which were
ameliorated by antibiotic treatment (Sampson et al., 2016).

According to the results of our experiment, we speculated
that the abnormality of intestinal flora might be one of the
bases of the onset of ADHD, combined with previous studies,
we proposed the following conjecture about its mechanism
of action. In this study, children with ADHD exhibited a
reduction of Faecalibacterium. This has been observed in both
animal and human studies and has been implicated in various
allergic diseases such as asthma, eczema, and allergic rhinitis
(Penders et al., 2007; Arrieta et al., 2015; Melli et al., 2016).
In clinical practice, atopic children have a 30–50% increased
risk of ADHD (Schans et al., 2017). We therefore speculate
that the reduction of this bacterial genus may generate allergies
via the brain-gut axis by affecting neurotransmitter release
and inducing the pathogenesis of ADHD. One study reported
that ADHD was more likely to be induced by diets high in
fat, protein, and sugar, which also decrease Faecalibacterium
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FIGURE 4 | Abnormal metabolic pathways of neurotransmitters in the ADHD
group.

levels (Howard et al., 2011). Faecalibacterium may exert anti-
inflammatory effects, and the abnormal levels may lead to
higher expression of inflammatory factors (Qiu et al., 2013;
Quévrain et al., 2016). Notably, children with ADHD have
significantly higher levels of inflammatory cytokines than normal
children (Mitchell and Goldstein, 2014). Inflammatory cytokines
can cross the blood–brain barrier (BBB) and affect nervous
system development and brain function (Wong et al., 2016). We
therefore hypothesized that Faecalibacterium dysregulation may

cause changes in inflammatory cytokine levels and participate in
ADHD pathogenesis.

We also found that the proportion of Enterococcus was
significantly increased in the ADHD group, and Enterococcus
has been reported to be closely related to neurotransmitter
release. One study demonstrated that Enterococcus abundance
is significantly increased in mice lacking the 5-HT transporter
(Singhal et al., 2019); deficiency of this transporter can lead to
decreased 5-HT levels, which is related to ADHD onset (Wang
et al., 2018). Interestingly, a study showed Enterococcus could
lead to excessive intestinal conversion of levodopa (the first-line
treatment for Parkinson’s disease) into dopamine, however,
peripheral dopamine cannot penetrate the BBB to enter the CNS,
thus reducing the effectiveness of levodopa (Maini Rekdal et al.,
2019). Furthermore, the abnormal increase in Enterococcus could
also cause excessive activation of tyrosine decarboxylase, which
increases the decarboxylation of tyrosine and phenylalanine in
the gastrointestinal tract, leading to decreased levels in the CNS
and subsequent low levels of levodopa (the drug precursor of
dopamine) (Maini Rekdal et al., 2019). Both of these pathways
can affect the concentration of dopamine in the CNS, which
may aggravate Parkinson’s symptoms (Maini Rekdal et al.,
2019). Previous studies have shown that ADHD onset is related
to decreased CNS levels of dopamine (Roncero and Álvarez,
2014; Ledonne and Mercuri, 2017). As above, we speculate that
the observed increase in Enterococcus may lower intracranial
dopamine and contribute to the development of ADHD. In
addition, our observation of a higher proportion of Odoribacter
in subjects with ADHD is similar to the results of a previous
study that found higher Odoribacter levels in individuals with
pediatric acute-onset neuropsychiatric syndrome (PAN) and
pediatric autoimmune neuropsychiatric disorders associated
with streptococcal infections (PANDAS) (Quagliariello et al.,
2018). Additionally, Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States (PICRUSt) analysis
of this study showed that the dopamine metabolic pathway
was significantly reduced in PAN and PANDAS (Quagliariello
et al., 2018). Odoribacter may cause abnormalities in dopamine
metabolism that contribute to ADHD. Previous studies
(Quagliariello et al., 2018; Maini Rekdal et al., 2019) found that
abnormal Enterococcus and Odoribacter levels were associated
with dysregulated neurotransmitter production. Abnormal levels
of these bacteria were also found in our study, suggesting a role
in the development of ADHD.

Finally, we performed KEGG analysis to determine the gene
functional annotations and abnormalities in metabolic pathways,
to verify the speculation of the role of gut microbiota in
the pathogenesis of ADHD. Reduced dopamine levels in the
CNS may contribute to ADHD pathogenesis. We identified
differences in the dopaminergic synaptic pathways between
the ADHD and HC groups; the gene encoding PP1 catalytic
subunit was significantly upregulated, which was considered
to increase synaptic sodium ion flux. Dopamine receptors are
transmembrane sodium/chloride-dependent transporters that
belong to the family of transporters of norepinephrine, 5-
HT, and dopamine, and are referred to as neurotransmitter:
sodium symporters (NSS) (Navratna and Gouaux, 2019).
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Prolonged sodium-related signal transduction results in the
excessive activation of NSS. Metabolic pathway alterations may
cause abnormal neurotransmitter transport and reduce their
concentrations in the CNS, which could contribute to ADHD.
Numerous studies have reported that vitamin B6 plays a key
role in nervous system development and neurotransmitter
production. A randomized controlled trial of 216 children with
ADHD and 216 healthy children found lower vitamin B6 levels
in children with ADHD (Wang L.J. et al., 2019). In line with this
finding, KEGG analysis indicated abnormalities in the metabolic
pathway of vitamin B6 in the ADHD group. The genes encoding
4-hydroxy threonine-4-phosphate dehydrogenase and threonine
synthase were significantly downregulated and upregulated,
respectively, which could lead to abnormal levels of pyridoxal
5′-phosphate, which is an important coenzyme of aromatic
amino acid decarboxylase (AADC) (Montioli et al., 2019).
AADC is a key enzyme of dopamine metabolism that converts
levodopa into dopamine in the CNS (Baek et al., 2018).
A decrease in its activity could lead to the reduction of
dopamine concentrations, which could contribute to ADHD
onset. In the folate metabolic pathway, a significant upregulation
of the gene encoding 6-pyruvoyl-5,6,7,8-tetrahydropterin could
promote the generation of tetrahydrobiopterin (BH4). However,
tryptophan hydroxylase is a rate-limiting enzyme that catalyzes
5-HT synthesis, with oxygen and BH4 as substrates (Opladen
et al., 2016; Scotton et al., 2019). Upregulation of the
gene encoding 6-pyruvoyl-5,6,7,8-tetrahydropterin may lead
to the conversion of excessive tryptophan into 5-HT in the
intestinal tract, and 5-HT has difficulty crossing the BBB,
resulting in decreased CNS 5-HT concentrations, which may
contribute to ADHD.

There are several limitations to this study. First, our
sample size was relatively small. Second, we did not perform
transplantation of intestinal flora to confirm that gut microbiota
composition affects ADHD symptoms.

CONCLUSION

In summary, our results demonstrate that gut microbiota
alterations occur in children with ADHD, which may contribute
to abnormal metabolism of neurotransmitters. We cautiously
speculated that the abnormal intestinal flora might be one of
contributing factors of ADHD, the underlying mechanism may
be related to changes in microbial functions that affect the

function of the neuroendocrine system, leading to reduced levels
of 5-HT and dopamine in the CNS, and ultimately to ADHD.
Further studies should be carried out to investigate the CNS
levels of dopamine and 5-HT, and animal studies are needed for
functional verification.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the PLA General Hospital Ethics Committee.
Written informed consent to participate in this study was
provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

LW and W-RG contributed equally to the manuscript. LW and
GY contributed to the study conception and design. W-RG, SZ,
Y-LS, BW, and LW organized the database. W-RG, Y-LS, SZ, LW,
and GY performed the statistical analysis. W-RG, LW, and GY
wrote the first draft of the manuscript. All authors wrote sections
of the manuscript, contributed to the manuscript revision, and
read and approved the submitted version.

FUNDING

This work was funded by the National Natural Science
Foundation of China (reference number 81671279) and National
Key Research and Development Project (2018YFC1002500).

ACKNOWLEDGMENTS

We would like to thank the medical staff at the First Medical
Center of the PLA General Hospital for their assistance. We
would also like to thank Aegicare (Shenzhen) Technology Co.,
Ltd., for providing strong technical support for this study.

REFERENCES
Abramov, D. M., Cunha, C. Q., Galhanone, P. R., Alvin, R. J., de Oliveira, A. M., and

Lazarev, V. V. (2019). Neurophysiological and behavioral correlates of alertness
impairment and compensatory processes in ADHD evidenced by the attention
network test. PLoS One 14:e0219472. doi: 10.1371/journal.pone.0219472

Agus, A., Planchais, J., and Sokol, H. (2018). Gut microbiota regulation of
tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724.
doi: 10.1016/j.chom.2018.05.003

Arrieta, M. C., Stiemsma, L. T., Dimitriu, P. A., Thorson, L., Russell, S., Yurist-
Doutsch, S., et al. (2015). Early infancy microbial and metabolic alterations

affect risk of childhood asthma. Sci. Transl. Med. 7:307ra152. doi: 10.1126/
scitranslmed.aab2271

Baek, J. S., Tee, J. K., Pang, Y. Y., Tan, E. Y., Lim, K. L., Ho, H. K., et al.
(2018). Improved bioavailability of levodopa using floatable spray-coated
microcapsules for the management of Parkinson’s disease. Neuromolecular
Med. 20, 262–270. doi: 10.1007/s12017-018-8491-0

Banerjee, E., and Nandagopal, K. (2015). Does serotonin deficit mediate
susceptibility to ADHD? Neurochem. Int. 82, 52–68. doi: 10.1016/j.neuint.2015.
02.001

Bermúdez-Humarán, L. G., Salinas, E., Ortiz, G. G., Ramirez-Jirano, L. J., Morales,
J. A., and Bitzer-Quintero, O. K. (2019). From probiotics to psychobiotics:

Frontiers in Neuroscience | www.frontiersin.org 7 February 2020 | Volume 14 | Article 127112

https://doi.org/10.1371/journal.pone.0219472
https://doi.org/10.1016/j.chom.2018.05.003
https://doi.org/10.1126/scitranslmed.aab2271
https://doi.org/10.1126/scitranslmed.aab2271
https://doi.org/10.1007/s12017-018-8491-0
https://doi.org/10.1016/j.neuint.2015.02.001
https://doi.org/10.1016/j.neuint.2015.02.001
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00127 February 15, 2020 Time: 17:4 # 8

Wan et al. Gut Microbiota Role in ADHD

live beneficial bacteria which act on the brain-gut axis. Nutrients 11:E890.
doi: 10.3390/nu11040890

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.
1093/bioinformatics/btu170

Borre, Y. E., O’Keeffe, G. W., Clarke, G., Stanton, C., Dinan, T. G., and Cryan, J. F.
(2014). Microbiota and neurodevelopmental windows: implications for brain
disorders. Trends Mol. Med. 20, 509–518. doi: 10.1016/j.molmed.2014.05.002

Fan, Y., Wang, H., Liu, X., Zhang, J., and Liu, G. (2019). Crosstalk between the
ketogenic diet and epilepsy: from the perspective of gut microbiota. Mediators
Inflamm. 2019:8373060. doi: 10.1155/2019/8373060

Franzosa, E. A., McIver, L. J., Rahnavard, G., Thompson, L. R., Schirmer, M.,
Weingart, G., et al. (2018). Species-level functional profiling of metagenomes
and metatranscriptomes. Nat. Methods 15, 962–968. doi: 10.1038/s41592-018-
0176-y

Howard, A. L., Robinson, M., Smith, G. J., Ambrosini, G. L., Piek, J. P., and
Oddy, W. H. (2011). ADHD is associated with a “Western” dietary pattern in
adolescents. J. Atten. Disord. 15, 403–411. doi: 10.1177/1087054710365990

Huang, L., Zhu, Q., Qu, X., and Qin, H. (2018). Microbial treatment in chronic
constipation. Sci. China Life Sci. 61, 744–752. doi: 10.1007/s11427-017-9220-7

Jiang, H. Y., Zhou, Y. Y., Zhou, G. L., Li, Y. C., Yuan, J., Li, X. H., et al. (2018).
Gut microbiota profiles in treatment-naïve children with attention deficit
hyperactivity disorder. Behav. Brain Res. 347, 408–413. doi: 10.1016/j.bbr.2018.
03.036

Karmakar, A., Goswami, R., Saha, T., Maitra, S., Roychowdhury, A., Panda, C. K.,
et al. (2017). Pilot study indicate role of preferentially transmitted monoamine
oxidase gene variants in behavioral problems of male ADHD probands. BMC
Med. Genet. 18:109. doi: 10.1186/s12881-017-0469-5

Khalil, M., Zhang, Z., and Engel, M. A. (2019). Neuro-immune networks in
gastrointestinal disorders. Visc. Med. 35, 52–60. doi: 10.1159/000496838

Kim, J. I., Yoo, J. H., Kim, D., Jeong, B., and Kim, B. N. (2018). The effects of
GRIN2B and DRD4 gene variants on local functional connectivity in attention-
deficit/hyperactivity disorder. Brain Imaging Behav. 12, 247–257. doi: 10.1007/
s11682-017-9690-2

Kovács, Z., D’Agostino, D. P., Diamond, D., Kindy, M. S., Rogers, C., and Ari, C.
(2019). Therapeutic potential of exogenous ketone supplement induced ketosis
in the treatment of psychiatric disorders: review of current literature. Front.
Psychiatry 10:363. doi: 10.3389/fpsyt.2019.00363

Lacorte, E., Gervasi, G., Bacigalupo, I., Vanacore, N., Raucci, U., and Parisi,
P. (2019). A systematic review of the microbiome in children with
neurodevelopmental disorders. Front. Neurol. 10:727. doi: 10.3389/fneur.2019.
00727

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with bowtie
2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Leclercq, S., Mian, F. M., Stanisz, A. M., Bindels, L. B., Cambier, E., Ben-Amram,
H., et al. (2017). Low-dose penicillin in early life induces long-term changes in
murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8:15062.
doi: 10.1038/ncomms15062

Ledonne, A., and Mercuri, N. B. (2017). Current concepts on the
physiopathological relevance of dopaminergic receptors. Front. Cell. Neurosci.
11:27. doi: 10.3389/fncel.2017.00027

Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., et al. (2014). An integrated
catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32,
834–841. doi: 10.1038/nbt.2942

Magula, L., Moxley, K., and Lachman, A. (2019). Iron deficiency in South African
children and adolescents with attention deficit hyperactivity disorder. J. Child
Adolesc. Ment. Health 31, 85–92. doi: 10.2989/17280583.2019.1637345

Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J., and Balskus, E. P.
(2019). Discovery and inhibition of an interspecies gut bacterial pathway for
Levodopa metabolism. Science 364:eaau6323. doi: 10.1126/science.aau6323

Melli, L. C., do Carmo-Rodrigues, M. S., Araújo-Filho, H. B., Solé, D., and de
Morais, M. B. (2016). Intestinal microbiota and allergic diseases: a systematic
review. Allergol. Immunopathol. 44, 177–188. doi: 10.1016/j.aller.2015.01.013

Mitchell, R. H., and Goldstein, B. I. (2014). Inflammation in children and
adolescents with neuropsychiatric disorders: a systematic review. J. Am. Acad.
Child Adolesc. Psychiatry 53, 274–296. doi: 10.1016/j.jaac.2013.11.013

Montioli, R., Battini, R., Paiardini, A., Tolve, M., Bertoldi, M., Carducci, C., et al.
(2019). A novel compound heterozygous genotype associated with aromatic

amino acid decarboxylase deficiency: clinical aspects and biochemical studies.
Mol. Genet. Metab. 127, 132–137. doi: 10.1016/j.ymgme.2019.05.004

Navratna, V., and Gouaux, E. (2019). Insights into the mechanism and
pharmacology of neurotransmitter sodium symporters. Curr. Opin. Struct. Biol.
54, 161–170. doi: 10.1016/j.sbi.2019.03.011

Ng, R., Heinrich, K., and Hodges, E. (2019). Associations between ADHD
subtype symptomatology and social functioning in children with ADHD,
autism spectrum disorder, and comorbid diagnosis: utility of diagnostic tools
in treatment considerations. J. Atten. Disord. doi: 10.1177/1087054719855680
[Epub ahead of print].

Opladen, T., Cortès-Saladelafont, E., Mastrangelo, M., Horvath, G., Pons,
R., Lopez-Laso, E., et al. (2016). The international working group on
neurotransmitter related disorders (iNTD): a worldwide research project
focused on primary and secondary neurotransmitter disorders. Mol. Genet.
Metab. Rep. 9, 61–66. doi: 10.1016/j.ymgmr.2016.09.006

Penders, J., Stobberingh, E. E., van den Brandt, P. A., and Thijs, C. (2007). The role
of the intestinal microbiota in the development of atopic disorders. Allergy 62,
1223–1236. doi: 10.1111/j.1398-9995.2007.01462.x

Prehn-Kristensen, A., Zimmermann, A., Tittmann, L., Lieb, W., Schreiber, S.,
Baving, L., et al. (2018). Reduced microbiome alpha diversity in young patients
with ADHD. PLoS One 13:e0200728. doi: 10.1371/journal.pone.0200728

Qiu, X., Zhang, M., Yang, X., Hong, N., and Yu, C. (2013). Faecalibacterium
prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in
treating TNBS-induced colitis. J. Crohns Colitis 7, e558–e568. doi: 10.1016/j.
crohns.2013.04.002

Quagliariello, A., Del Chierico, F., Russo, A., Reddel, S., Conte, G., Lopetuso,
L. R., et al. (2018). Gut microbiota profiling and gut-brain crosstalk in
children affected by pediatric acute-onset neuropsychiatric syndrome and
pediatric autoimmune neuropsychiatric disorders associated with streptococcal
infections. Front. Microbiol. 9:675. doi: 10.3389/fmicb.2018.00675

Quévrain, E., Maubert, M. A., Michon, C., Chain, F., Marquant, R., Tailhades,
J., et al. (2016). Identification of an anti-inflammatory protein from
Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s
disease. Gut 65, 415–425. doi: 10.1136/gutjnl-2014-307649

Richarte, V., Rosales, K., Corrales, M., Bellina, M., Fadeuilhe, C., Calvo, E., et al.
(2018). [The gut-brain axis in attention deficit hyperactivity disorder: the role
of the microbiota]. Rev. Neurol. 66, S109–S114.

Roncero, C., and Álvarez, F. J. (2014). The use of lisdexamfetamine dimesylate for
the treatment of ADHD and other psychiatric disorders. Expert Rev. Neurother.
14, 849–865. doi: 10.1586/14737175.2014.932691

Rude, K. M., Pusceddu, M. M., Keogh, C. E., Sladek, J. A., Rabasa, G., Miller, E. N.,
et al. (2019). Developmental exposure to polychlorinated biphenyls (PCBs)
in the maternal diet causes host-microbe defects in weanling offspring mice.
Environ. Pollut. 253, 708–721. doi: 10.1016/j.envpol.2019.07.066

Salah, M., Azab, M., Ramadan, A., and Hanora, A. (2019). New insights on obesity
and diabetes from gut microbiome alterations in Egyptian adults. OMICS 23,
477–485. doi: 10.1089/omi.2019.0063

Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E.,
et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in
a model of Parkinson’s disease. Cell 167, 1469–1480.e12. doi: 10.1016/j.cell.2016.
11.018

Schans, J. V., Çiçek, R., de Vries, T. W., Hak, E., and Hoekstra, P. J. (2017).
Association of atopic diseases and attention-deficit/hyperactivity disorder:
a systematic review and meta-analyses. Neurosci. Biobehav. Rev. 74(Pt A),
139–148. doi: 10.1016/j.neubiorev.2017.01.011

Scotton, W. J., Hill, L. J., Williams, A. C., and Barnes, N. M. (2019). Serotonin
syndrome: pathophysiology, clinical features, management, and potential
future directions. Int. J. Tryptophan Res. 12:1178646919873925. doi: 10.1177/
1178646919873925

Singhal, M., Turturice, B. A., Manzella, C. R., Ranjan, R., Metwally, A. A., Theorell,
J., et al. (2019). Serotonin transporter deficiency is associated with dysbiosis and
changes in metabolic function of the mouse intestinal microbiome. Sci. Rep.
9:2138. doi: 10.1038/s41598-019-38489-8

Stewart, A., Davis, G. L., Gresch, P. J., Katamish, R. M., Peart, R., Rabil,
M. J., et al. (2019). Serotonin transporter inhibition and 5-HT2C receptor
activation drive loss of cocaine-induced locomotor activation in DAT Val559
mice. Neuropsychopharmacology 44, 994–1006. doi: 10.1038/s41386-018-
0301-8

Frontiers in Neuroscience | www.frontiersin.org 8 February 2020 | Volume 14 | Article 127113

https://doi.org/10.3390/nu11040890
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1016/j.molmed.2014.05.002
https://doi.org/10.1155/2019/8373060
https://doi.org/10.1038/s41592-018-0176-y
https://doi.org/10.1038/s41592-018-0176-y
https://doi.org/10.1177/1087054710365990
https://doi.org/10.1007/s11427-017-9220-7
https://doi.org/10.1016/j.bbr.2018.03.036
https://doi.org/10.1016/j.bbr.2018.03.036
https://doi.org/10.1186/s12881-017-0469-5
https://doi.org/10.1159/000496838
https://doi.org/10.1007/s11682-017-9690-2
https://doi.org/10.1007/s11682-017-9690-2
https://doi.org/10.3389/fpsyt.2019.00363
https://doi.org/10.3389/fneur.2019.00727
https://doi.org/10.3389/fneur.2019.00727
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/ncomms15062
https://doi.org/10.3389/fncel.2017.00027
https://doi.org/10.1038/nbt.2942
https://doi.org/10.2989/17280583.2019.1637345
https://doi.org/10.1126/science.aau6323
https://doi.org/10.1016/j.aller.2015.01.013
https://doi.org/10.1016/j.jaac.2013.11.013
https://doi.org/10.1016/j.ymgme.2019.05.004
https://doi.org/10.1016/j.sbi.2019.03.011
https://doi.org/10.1177/1087054719855680
https://doi.org/10.1016/j.ymgmr.2016.09.006
https://doi.org/10.1111/j.1398-9995.2007.01462.x
https://doi.org/10.1371/journal.pone.0200728
https://doi.org/10.1016/j.crohns.2013.04.002
https://doi.org/10.1016/j.crohns.2013.04.002
https://doi.org/10.3389/fmicb.2018.00675
https://doi.org/10.1136/gutjnl-2014-307649
https://doi.org/10.1586/14737175.2014.932691
https://doi.org/10.1016/j.envpol.2019.07.066
https://doi.org/10.1089/omi.2019.0063
https://doi.org/10.1016/j.cell.2016.11.018
https://doi.org/10.1016/j.cell.2016.11.018
https://doi.org/10.1016/j.neubiorev.2017.01.011
https://doi.org/10.1177/1178646919873925
https://doi.org/10.1177/1178646919873925
https://doi.org/10.1038/s41598-019-38489-8
https://doi.org/10.1038/s41386-018-0301-8
https://doi.org/10.1038/s41386-018-0301-8
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00127 February 15, 2020 Time: 17:4 # 9

Wan et al. Gut Microbiota Role in ADHD

Suzuki, C., Ikeda, Y., Tateno, A., Okubo, Y., Fukayama, H., and Suzuki, H. (2019).
Acute atomoxetine selectively modulates encoding of reward value in ventral
medial prefrontal cortex. J. Nippon Med. Sch. 86, 98–107. doi: 10.1272/jnms.
JNMS.2019_86-205

Wang, L., Chen, C., Cui, S., Lee, Y. K., Wang, G., Zhao, J., et al. (2019). Adhesive
Bifidobacterium induced changes in cecal microbiome alleviated constipation
in mice. Front. Microbiol. 10:1721. doi: 10.3389/fmicb.2019.01721

Wang, L. J., Yu, Y. H., Fu, M. L., Yeh, W. T., Hsu, J. L., Yang, Y. H., et al. (2018).
Attention deficit-hyperactivity disorder is associated with allergic symptoms
and low levels of hemoglobin and serotonin. Sci. Rep. 8:10229. doi: 10.1038/
s41598-018-28702-5

Wang, L. J., Yu, Y. H., Fu, M. L., Yeh, W. T., Hsu, J. L., Yang, Y. H.,
et al. (2019). Dietary profiles, nutritional biochemistry status, and attention-
deficit/hyperactivity disorder: path analysis for a case-control study. J. Clin.
Med. 8:E709. doi: 10.3390/jcm8050709

Wen, W., Zhang, H., Shen, J., Wei, L., and Shen, S. (2018). Fecal microbiota
transplantation for patients with irritable bowel syndrome: a meta-analysis
protocol. Medicine 97:e12661. doi: 10.1097/MD.0000000000012661

Wigal, S. B., Childress, A., Berry, S. A., Belden, H., Walters, F., Chappell, P., et al.
(2017). Efficacy and safety of a chewable methylphenidate extended-release
tablet in children with attention-deficit/hyperactivity disorder. J. Child Adolesc.
Psychopharmacol. 27, 690–699. doi: 10.1089/cap.2016.0177

Wong, M. L., Inserra, A., Lewis, M. D., Mastronardi, C. A., Leong, L., Choo,
J., et al. (2016). Inflammasome signaling affects anxiety- and depressive-
like behavior and gut microbiome composition. Mol. Psychiatry 21, 797–805.
doi: 10.1038/mp.2016.46

Zhao, H., Shi, Y., Luo, X., Peng, L., Yang, Y., and Zou, L. (2017). The effect of fecal
microbiota transplantation on a child with Tourette syndrome. Case Rep. Med.
2017:6165239. doi: 10.1155/2017/6165239

Zheng, P., Zeng, B., Liu, M., Chen, J., Pan, J., Han, Y., et al. (2019). The
gut microbiome from patients with schizophrenia modulates the glutamate-
glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv.
5:eaau8317. doi: 10.1126/sciadv.aau8317

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Wan, Ge, Zhang, Sun, Wang and Yang. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2020 | Volume 14 | Article 127114

https://doi.org/10.1272/jnms.JNMS.2019_86-205
https://doi.org/10.1272/jnms.JNMS.2019_86-205
https://doi.org/10.3389/fmicb.2019.01721
https://doi.org/10.1038/s41598-018-28702-5
https://doi.org/10.1038/s41598-018-28702-5
https://doi.org/10.3390/jcm8050709
https://doi.org/10.1097/MD.0000000000012661
https://doi.org/10.1089/cap.2016.0177
https://doi.org/10.1038/mp.2016.46
https://doi.org/10.1155/2017/6165239
https://doi.org/10.1126/sciadv.aau8317
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


REVIEW
published: 18 March 2020

doi: 10.3389/fcimb.2020.00104

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1 March 2020 | Volume 10 | Article 104

Edited by:

Ashley Edwin Franks,

La Trobe University, Australia

Reviewed by:

Xingmin Sun,

University of South Florida,

United States

Xiaoming Bian,

University of Georgia, United States

*Correspondence:

Sholpan Askarova

shaskarova@nu.edu

Specialty section:

This article was submitted to

Microbiome in Health and Disease,

a section of the journal

Frontiers in Cellular and Infection

Microbiology

Received: 13 August 2019

Accepted: 27 February 2020

Published: 18 March 2020

Citation:

Askarova S, Umbayev B,

Masoud A-R, Kaiyrlykyzy A,

Safarova Y, Tsoy A, Olzhayev F and

Kushugulova A (2020) The Links

Between the Gut Microbiome, Aging,

Modern Lifestyle and Alzheimer’s

Disease.

Front. Cell. Infect. Microbiol. 10:104.

doi: 10.3389/fcimb.2020.00104

The Links Between the Gut
Microbiome, Aging, Modern Lifestyle
and Alzheimer’s Disease

Sholpan Askarova*, Bauyrzhan Umbayev, Abdul-Razak Masoud, Aiym Kaiyrlykyzy,

Yuliya Safarova, Andrey Tsoy, Farkhad Olzhayev and Almagul Kushugulova
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Gut microbiome is a community of microorganisms in the gastrointestinal tract. These

bacteria have a tremendous impact on the human physiology in healthy individuals

and during an illness. Intestinal microbiome can influence one’s health either directly by

secreting biologically active substances such as vitamins, essential amino acids, lipids

et cetera or indirectly by modulating metabolic processes and the immune system.

In recent years considerable information has been accumulated on the relationship

between gut microbiome and brain functions. Moreover, significant quantitative and

qualitative changes of gut microbiome have been reported in patients with Alzheimer’s

disease. On the other hand, gut microbiome is highly sensitive to negative external

lifestyle aspects, such as diet, sleep deprivation, circadian rhythm disturbance, chronic

noise, and sedentary behavior, which are also considered as important risk factors

for the development of sporadic Alzheimer’s disease. In this regard, this review is

focused on analyzing the links between gut microbiome, modern lifestyle, aging, and

Alzheimer’s disease.

Keywords: Alzheimer’s disease, gut microbiome, aging, lifestyle, circadian rhythm

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by memory loss,
dramatic changes in character and behavior and an impossibility to carry out normal daily activities
in the latter stages of the disease. AD incidence increases with age and is shown to affect ∼10% of
people aged 65–75 and 32% of the elderly aged 80 and above (Alzheimer’s Association, 2013; Prince
et al., 2016). According to the World Health Organization (WHO) incidence of AD is worsening
every year, thus it is postulated that there could be a threefold increase in the number of AD
patients by 2050. Today it is believed that the pathophysiology of AD is driven by accumulation of
different forms of amyloid beta peptide (Aß) in the brain leading to neuro-inflammation, oxidative
stress, mitochondrial dysfunction, dysregulation of enzyme systems, and neuronal death. Yet,
triggering mechanisms of Aβ deposition in the brain are still being investigated. To date, <5%
of all AD cases have clear genetic evidence of increased production of Aβ. Mutations in three
genes serve to transmit AD via autosomal-dominant inheritance: the presenilin gene (PS1) on
chromosome 14, the presenilin 2 gene (PS2) on chromosome 1, and the amyloid precursor protein
gene (APP) on chromosome 21. This form of AD is referred to as a familial Alzheimer’s disease
(FAD) and is characterized by earlier onset of the symptoms (EOAD, <65 years). However, most
cases of AD have a late-onset of the symptoms (≥65 years) and an unclear genetic background
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(Panegyres and Chen, 2013, 2014). This type of dementia is called
sporadic late-onset AD (LOAD), and it is generally believed that
the development of this pathology in the elderly is as a result
of an interplay between genetic background and various factors
including lifestyle, stress levels, chronic diseases (cardiovascular
diseases, obesity, diabetes mellitus), and environment (Prince
et al., 2014; Wainaina et al., 2014).

One of the important factors that is influencing human
health and attracting increasing attention of scientists during
the last two decades is gut microbiome. There are ∼1,000
species and 7,000 strains of bacteria that inhabit the human
intestine (1,013–1,014 microorganisms in total), among which
the most common are bacteria attributed to Firmicutes (51%)
and Bacteroidetes (48%) (The Human Microbiome Project et al.,
2012). Firmicutes include both gram-positive and gram-negative
species such as those belonging to the genus Lactobacillus (gram-
positive), Eubacterium (gram-positive), Clostridium (gram-
positive). Bacteroidetes comprise of gram-negative bacteria of
the genus Bacteroides and Prevotella. The remaining 1% of
bacteria belong to other divisions such as Proteobacteria (gram-
negative, genus Escherichia in particular), Actinobacteria (gram-
positive, genus Bifidobacterium in particular), Fusobacteria
(gram-negative), Spirochaetes (gram-negative), Verrucomicrobia
(gram-negative), and Lentispherae (gram-negative) (Westfall
et al., 2017). Until recently, intestinal microbiome was considered
to be involved in processes that take place exclusively in
the intestine, such as fermentation of carbohydrates, synthesis
of vitamins (in particular vitamin B and K), and xenobiotic
metabolism as well as acting as a barrier to pathological bacteria.
However, over the last 15 years, the functions of the intestinal
microbiome have been revised owing to the establishment of
a direct link between density and species composition of the
intestinal microbiome and a number of pathological conditions
including diabetes, obesity, and cardiovascular diseases. These
diseases, in turn, are the established risk factors for the
development of sporadic AD, and there is data indicating that gut
microbiome influences brain functions (Westfall et al., 2017; Zhu
et al., 2017; Kowalski and Mulak, 2019). Moreover, recent studies
have revealed the significant differences in quantity and quality
of gut microbiome in AD patients compared to mentally healthy
individuals of the same age (Vogt et al., 2017; Larroya-García
et al., 2018; Zhuang et al., 2018).

On the other hand, negative lifestyle aspects, among people
living in our modern societies, are also considered important
risk factors for the development of LOAD (van Praag, 2018).
The most striking result of the epidemiological study above
is that radical increases in Alzheimer’s disease in Japan and
substantial increase in developing countries are associated with
changes in national diets (Grant, 2013). Furthermore, there are
many undesirable lifestyle factors in the modern society that may
contribute to AD development. These factors include unhealthy
diet, lack of sleep, circadian rhythm disturbance, chronic noise,
sedentary behavior etc., and, in turn, gut microbiome is highly
sensitive to these factors. From this point of view, studying the
links between modern lifestyle, gut microbiome and Alzheimer’s
disease is an important task that requires special attention.
Understanding the interplays between the human microbiome

and the brain, as well as the factors influencing these relations
may contribute to a deeper understanding of AD etiology
and may serve as a basis for the development of prophylactic
measures to prevent or slow down the progression of the disease.

BRAIN-GUT-MICROBIOTA AXIS AND

ALZHEIMER’S DISEASE

In the past 10 years, considerable information has been
accumulated on the action of microbiome on the central nervous
system (CNS) and “brain-gut-microbiota axis” conception was
proposed (Kowalski and Mulak, 2019). The CNS regulates the
permeability, secretion, motility, and immunity of the digestive
tract by exerting its effect on the enteric nervous system, muscle
tissue and the mucous layer of the intestine through the efferent
autonomic nervous pathways (Carabotti et al., 2015). In turn,
the intestinal microbiome is able to influence brain functions
through afferent signaling pathways and through the secretion
of biologically active substances (Burokas et al., 2015; Petra et al.,
2015). There is a number of published data showing the effects
of intestinal dysbiosis, caused by changes in diet, the use of
antibiotics, non-steroidal anti-inflammatory drugs as well as the
presence of pathogenic microorganisms, on cognitive functions
of the brain (Gareau, 2014; Jiang et al., 2017).

For example, acute stress and infection caused by conditional
pathogenic bacteria Citrobacter rodentium have been shown to
lead to memory disorders in C57BL/6 mice (Gareau et al., 2011).
In sterile Swiss-Webster mice, bred in conditions precluding
postnatal existence of bacteria in the intestine, a deficit of spatial
and working memory was observed independent of infection
and stress. This was accompanied by reduced neurotrophic brain
factor (brain-derived neurotrophic factor, BDNF) expression
(Gareau et al., 2011). BDNF is one of the key neurotrophins
that play an important role in synaptic plasticity, and there is
evidence of reduced BDNF levels in the brain and serum of
patients with Alzheimer’s disease (Michalski et al., 2015). On the
contrary, studies conducted by Neufeld et al. revealed increased
levels of BNDF in the central amygdale of sterile mice, reduced
expression of mRNA encoding the serotonin receptor (5HT1A)
and the NR2B subunit of the NMDA receptor (ionotropic
glutamate receptor, selectively binding N-methyl-D-aspartate) in
the dentate fascia of the hippocampus (Neufeld et al., 2011).

Wang et al. have demonstrated that in rats, intestinal dysbiosis
caused by the usage of ampicillin for 1month lowered the NMDA
receptor and mineralocorticoid levels in the amygdala, increased
the aggressiveness of the animals and caused impaired spatial
memory while the presence of the Lactobacillus fermentumNS9
strain in the intestinal microbiome normalized these parameters
(Wang et al., 2015). Another study by Liang et al. showed
that probiotic Lactobacillus helveticusNS8 significantly improved
cognitive impairment caused by chronic stress in Sprague-
Dawley rats bred under sterile conditions (Liang et al., 2015). L.
helveticus NS8 also reduced plasma levels of corticosterone and
adrenocorticotropic hormone and increased the content of the
anti-inflammatory cytokine IL-10, restored the level of serotonin
and norepinifrine, and increased expression of BDNF in the
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hippocampus (Liang et al., 2015). Similar data were obtained
by Luo et al. (2014) and Ohsawa et al. (2015). In addition,
the probiotic Bifidobacterium Longum 1714 improved cognitive
function in male BALB/c mice (Savignac et al., 2015).

Studies of stool samples obtained from transgenic mice
expressing the human APP gene and PS1 (CONVR-APPPS1,
an animal model of Alzheimer’s disease), showed significant
differences in the composition of the intestinal microbiome of
these animals compared to wildtype mice (Harach et al., 2017).
In 8-month-old CONVR-APPPS1 mice there was a significant
decrease in the number of Firmicutes, Verrucomicrobia,
Proteobacteria, and Actinobacteria, and an increase in the
content of bacteria belonging to the Bacteroidetes and Tenericutes
compared to wild type mice of similar age. In addition, there
was a significant decrease in Aβ deposits in the brain of
CONVR-APPPS1 mice bred under sterile conditions compared
to animals of the same genotype bred under standard conditions.
Microbiota obtained from the intestines of CONVR-APPPS1
mice bred under normal conditions when introduced into
intestines of mice bred under sterile conditions led to an increase
in pathological Aβ deposits in the central nervous system, while
fecal transplantation from wild-type mice did not lead to a
significant increase in Aβ levels in the brain.

Studies carried out on laboratory animals are confirmed by
clinical data obtained in the study of the intestinal microbiome
of the elderly. The association of brain amyloidosis with pro-
inflammatory intestinal bacterial taxa and peripheral markers
of inflammation in people of old age suffering from cognitive
disorders was shown (Cattaneo et al., 2016). The results of this
study demonstrated that, in dementia patients with amyloidosis,
an increased level of pro-inflammatory cytokines in the blood
(IL-6, CXCL2, NLRP3, and IL-1β) was accompanied by a
reduced content of E. rectale and an increased content of
Escherichia/Shigella in stool samples. A positive correlation was
also demonstrated between pro-inflammatory cytokines and the
number of pro-inflammatory intestinal bacteria belonging to
the Escherichia/Shigella taxon in stool samples, while a negative
correlation was found between pro-inflammatory cytokines and
the number of anti-inflammatory intestinal bacteria belonging to
the E. rectale taxon.

A study of the composition of the intestinal microbiome in
patients at the Alzheimer’s Disease Research Center (Wisconsin
Alzheimer’s disease Research Center, USA) revealed significant
differences in the composition of the intestinal microbiome
in patients with AD and healthy people at the phylum and
species levels (Vogt et al., 2017). These studies demonstrated
a decrease in the number of bacteria in the Firmicutes and
Actinobacteria phyla (in particular, bacteria of the genus
Bifidobacterium), and an increase in the number of bacteria
belonging to the Bacteroidetes and Proteobacteria phyla in the
intestinal microbiome of AD patients. In general, quantitative
differences were found between 13 genera of bacteria in AD
patients and healthy study participants. In addition, a differential
correlation was shown between the levels of individual bacterial
genera in the intestine and cerebrospinal markers of AD,
such as Aβ42/Aβ40, p-tau, as well as the Aβ/p-tau ratio
(Vogt et al., 2017). Studies conducted at Chongqing Medical

University (China) also revealed significant differences in the
composition of bacteria present in the bowels of patients with
AD in taxonomic groups such as Bacteroides, Actinobacteria,
Ruminococcus, Lachnospiraceae, and Selenomonadales (Zhuang
et al., 2018). However, qualitative changes in the intestinal
microbiome in Chinese patients differed somewhat from those
in the United States. Zhuang et al. showed a decrease in the
number of bacteria belonging to the phylum Bacteroidetes, while
the number of bacteria in the phylum Firmicutes remained
unchanged compared with healthy controls. These differences
may be related to a number of factors, including comorbidities,
ethnicity, lifestyle, and dietary preferences (Tasnim et al., 2017).

Irrespective of bacterial taxa, the functional composition
of the gut microbiota may also be important (Lozupone
et al., 2012). In this regards, Liu et al. conducted function
analysis of microbiome in AD patients, patients with amnestic
mild cognitive impairment (aMCI) and healthy controls (HC)
based on Kyoto Encyclopedia of Genes and Genomes (KEGG)
functional pathway (Liu et al., 2019a). They identified 5 altered
functional orthologs in AD patients using level 3 KEGG
pathways. For instance, in AD there were enriched orthologs
related to bacterial secretion system (membrane transport)
and lipopolysaccharide biosynthesis (glycan biosynthesis and
metabolism) compared to HC or aMCI subjects. In contrast, the
orthologs related to N-Glycan biosynthesis and phenylalanine,
tyrosine and tryptophan biosynthesis, and histidine metabolism
in amino acid metabolism were reduced in AD patients, but
enhanced in aMCI patients when compared to HC.

The results of these studies demonstrate that the changes
in the taxonomic and functional composition of the intestinal
flora are able to influence brain functions. Published data also
provide an evidence of the effect of intestinal microbiome on the
development of amyloid pathology and indicate the possible role
of intestinal microbiome as one of the factors of AD pathogenesis.
In turn, gut microbiome is a dynamic modifiable system highly
sensitive to lifestyle and aging. Thus, in the subsequent chapters
we discuss the modern lifestyle factors and aging-related gut
microbiome influence and their relations to AD pathology.

GUT MICROBIOME AND AGING

Since advanced age is a major risk factor for AD, age-related
physiological changes, including changes in the microbiome,
may play a certain role in the development of dementia. In this
regard, a number of studies have shown that the composition
of the gut microbiome undergoes significant changes with age
(Salazar et al., 2017; Nagpal et al., 2018). It was shown that
general age-related changes in the composition of the intestinal
microflora include an increase in the number of facultative
anaerobes, changes in species dominance, while, at the same time,
there is stability in the total number of anaerobes (Mariat et al.,
2009; Satokari et al., 2010). Hopkins and co-authors observed
that the levels of Bifidobacterium and Lactobacillus were lower
in the group of elderly people compared to those of young
individuals (Hopkins and Macfarlane, 2002). While the adult
organism contains 4–5 species of the genus Bifidobacterium,
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only one of the dominant species of this genus is found in
old age: Bifidobacterium adolescentis, or phenotypically close
Bifidobacterium angulatum and Bifidobacterium longum (Gavini
et al., 2001; Hopkins and Macfarlane, 2002). One of the possible
explanations for the reduced number of species and quantitative
composition of Bifidobacteria in the elderly people is the decrease
in their adhesion to the intestinal wall due to changes in
the chemical composition and structure of the colon mucous
membrane, causing restricted functionality and immunological
reactivity in the intestine as well as increased susceptibility
to gastrointestinal infections (He et al., 2001). In turn, the
bacteria Bifidobacterium and Lactobacillus are actively involved
in the production of aminobutyric acid (γ-Aminobutyric acid,
GABA) (Junges et al., 2018; Strandwitz, 2018). GABA is the most
important inhibitory mediator of the central nervous system of
humans and other mammals involved in neurotransmitter and
metabolic processes in the brain. It has been proven that the
level of aminobutyric acid in the intestine correlates with its
level in the CNS. Decrease in the number of Bifidobacterium
and Lactobacillus leads to brain dysfunction associated with
synaptogenesis disorders, depression, and cognitive impairment
(Strandwitz, 2018).

Many authors have noted that Bacteroides species
diversity changes with age (Bartosch et al., 2004; Layton
et al., 2006). In studies conducted by a group of scientists
under the leadership of Tongeren, Bacteroides/Prevotella,
Eubacteriumrectale/Clostridium coccoides, and Ruminococcus
prevailed in the microbiota of people aged between 70 and 100
years (van Tongeren et al., 2005). The growth of proteolytic
bacteria, such as Fusobacteria, Propionibacteria, and Clostridia,
was shown in the intestinal microbiota of elderly people leading
to the development of putrefactive processes, especially in
patients with post antibiotic therapy. This is confirmed by
data on the increase of proteolytic activity (Hopkins and
Macfarlane, 2002; Woodmansey et al., 2004). Also, an increased
number of pro-inflammatory enterobacteria, streptococci,
staphylococci, and yeast cells were found which may be
associated with an elevated level of serum antibodies to
commensal (normal) intestinal microflora, such as Escherichia
coli and Enterococcus faecalis.

UNHEALTHY NUTRITION LINKED TO

ALZHEIMER’S DISEASE AND GUT

MICROBIOME

So-called “Western diet” (WD), which is characterized by high
intake of saturated fats and added sugars (Weisburger, 1997),
is one of the symbols of the modern lifestyle and it is an
established risk factor for AD development (Grant, 1999, 2016;
Noble et al., 2017). For example, it has been demonstrated that
AD rates increased from 1% in 1985 to 7% in 2008 in Japan,
and this increase is associated with nutritional transition from
the traditional Japanese diet to a Western diet (Dodge et al.,
2012). In fact, preclinical experiments have confirmed that high
fat diet (HFD) may change the gut microbiota and contribute
to development of dementia (Studzinski et al., 2009; Nam et al.,

2017; Sah et al., 2017; Sanguinetti et al., 2018). These studies
demonstrated that HFD promoted cognitive impairment by
inducing oxidative stress and deteriorative neuronal apoptosis via
inactivation of Nrf2 signaling pathway (Studzinski et al., 2009;
Nam et al., 2017; Sah et al., 2017; Sanguinetti et al., 2018). Nam
and coauthors showed that HFD significantly increased amyloid
deposition and reduced cognition of 12-months old APP23 mice
(Nam et al., 2017). In this study, RNA-seq results showed that
genes related to immune response, such as Trem2 and Tyrobp in
HFD mice were upregulated, but expression of the genes related
to neuron projections and synaptic transmission was decreased.
The authors demonstrated that levels of 24 lipid sub-species in
the brain were significantly modulated by HFD.

In turn, recent study of microbiome-metabolome signatures
in 3xTg-AD mice genetically predisposed to AD and fed a
normal or fatty diet have demonstrated that high-fat feeding
and genetic predisposition to neurodegenerative disease share
common abnormalities in the gut microbiome (Sanguinetti
et al., 2018). The authors showed that HFD changed bacterial
composition in both colon and caecum, and also lead to reduced
abundance of the microorganisms compared to normal diet-fed
animals (ND). In this study, HFD mice had elevated abundances
of Firmicutes than Bacteroidetes at phylum levels, Rikenellaceae,
Lachnospiraceae, Enterococcaceaeand S24.7 at family level, as well
as elevated amount of fecal ribose. High level of Clostridium
and Staphylococcus were also found in the caecum. Study of
serum and fecal metabolites revealed a deficiency in unsaturated
fatty acids and choline, and an excess in ketone bodies, lactate,
amino acids, TMA, and TMAO in 3xTg-ADmice fed a fatty diet.
These metabolic changes were associated with high abundance
of Enterococcaceae, Staphylococcus, Roseburia, Coprobacillus, and
Dorea, and a low level of Bifidobacterium, which in turn are
related to cognitive impairment and cerebral hypometabolism.

SEDENTARY BEHAVIOR LINKED TO

ALZHEIMER’S DISEASE AND GUT

MICROBIOME

Sedentary lifestyle is becoming a significant public health
issue in many countries despite being linked to a number of
chronic health conditions (Owen et al., 2010). Accumulating
evidence indicates that sedentary behavior can be a risk factor
for cognitive decline (Wheeler et al., 2017), while physical
exercise may be an effective strategy for preventing dementia
(Fenesi et al., 2016). It has been shown that the mechanisms
underlying the neuroprotective influence of physical activity on
Alzheimer’s disease are: the production of antioxidant enzymes
and growth factors and decrease in ROS and neuroinflammation,
the concentration of Aβ plaques and tau protein in the brain
(Chen et al., 2016b).

There is also data indicating that exercise can influence
gut microbiome (Fernandez et al., 2018), and this effect is
especially prominent in obese people and sedentary women
(Allen et al., 2017; Bressa et al., 2017). In addition, recent
data has demonstrated that physical exercise and probiotics
are able to reduce the levels of Aß in the brain and slow
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down progression of AD symptoms in transgenic APP/PS1TG
mice (Abraham et al., 2019). The authors demonstrated that
physical training was capable of increasing abundance of
butyrate-producing bacteria i.e., Butyrivibrioproteoclasticus and
Marvinbryantiaformatexigens, and reducing pro-inflammatory
bacteria, such as Clostridium, Eubacterium, and Roseburia.
Moreover, exercise decreased the levels of H2O2 generating
bacteria L. johnsonii. It has been suggested that butyrate is a
key regulator of inflammatory processes that induces mucin
production and reduces the penetration of LPS from intestine
into the bloodstream. The authors also concluded that physical
activity or proper nutrition alone has a weak effect on dementia,
whereas together their effects become significant.

SLEEP DEPRIVATION LINKED TO

ALZHEIMER’S DISEASE AND INTESTINAL

MICROBIOME

Insufficient sleep is another important public health issue of
the twenty-first century (Chattu et al., 2018), and it has been
suggested that disrupted sleep may promote the development of
Alzheimer’s disease (Ju et al., 2013a,b; Shokri-Kojori et al., 2018).
For example, animal studies have demonstrated that acute sleep
deprivation significantly increases Aβ levels in brain interstitial
fluid (Kang et al., 2009), and, in contrast, natural, and anesthetic
sleep increases the interstitial space and subsequently enhances
convective exchange of cerebrospinal fluid with interstitial fluid
resulting in increased rate of Aβ clearance (Xie et al., 2013).
Clinical studies have also shown that healthy individuals have
morning decrease in Aβ42 in cerebrospinal fluid, but 24 h of
total sleep deprivation undoes this decrease (Ooms et al., 2014).
Similarly, it has been found that slow wave sleep disruption
correlates with an increase in Aβ40 level in cerebrospinal fluid
(Ju et al., 2017) and that one night of sleep deprivation induces Aβ

accumulation in the brains of healthy individuals (Shokri-Kojori
et al., 2018).

It is of our interest that chronic sleep disruption impacts
gut microbiome. A study in animals has revealed that chronic
sleep fragmentation alters taxonomic profiles of fecal microbiota
and induces systemic and adipose tissue inflammation and
insulin resistance (Poroyko et al., 2016). Similarly, randomized
within-subject crossover study conducted by Benedict et al.
demonstrated that partial sleep deprivation (PSD) in normal-
weight young individuals affects the human gut microbiota.
In particular, PSD increased Firmicutes:Bacteroidetes ratio
with a higher abundance of the families Coriobacteriaceae
and Erysipelotrichaceae, and lower abundance of Tenericutes
(Benedict et al., 2016). Contrary to this, Zhang at al. reported
that major microbial populations were not altered in sleep-
restricted rats and healthy human subjects (Zhang et al., 2017).
The authors concluded that the microbiome is largely resistant
to changes during sleep restriction and that sleep disruption
and microbial dysbiosis are independent health risk factors
(Zhang et al., 2017). However, in another research, better
sleep quality in healthy older adults was associated with better
neuropsychological test performance and higher abundance of

microbial phyla Verrucomicrobia and Lentisphaerae in the stool
samples (Anderson et al., 2017). Collectively, these studies
suggest that a lack of sleep combined with obesity, diabetes and
high-fat diet can be a risk factor for Alzheimer’s disease and is
associated with changes in the gut microbiome.

CIRCADIAN RHYTHMS, INTESTINAL

MICROBIOME AND ALZHEIMER’S

DISEASE

A phenomena known as “social jetlag,” or the mismatch between
social and biological clocks, is common in the modern society
and causes circadian rhythm disruption (CRD) (Farhud and
Aryan, 2018). One of the causes of CRD is light pollution,
which is a typical hallmark of the big cities (Chepesiuk, 2009).
It is a matter of fact that sleep deprivation and CRD is
one of the common and earliest signs of AD, and there is
increasing evidence that CRD might be a contributing factor in
AD pathogenesis (Wu et al., 2003; Musiek, 2015; Musiek and
Holtzman, 2016; Phan and Malkani, 2019). In support of this
notion, there is a study demonstrating that Aβ production is
regulated by circadian rhythms with peak concentrations of Aβ

occurring during wakefulness (Kang et al., 2009), which is in
agreement with the data discussed in the previous chapter. A
recent study has shown that targeted deletion of the core clock
gene Bmal1 in APPPS1-21 transgenic mice resulted in disruption
of daily hippocampal interstitial fluid Aβ oscillations, increased
expression of Apoe and promoted amyloid plaque accumulation
(Kress et al., 2018). In addition, it has been demonstrated
that the level of melatonin, one of the important regulators
of circadian system, is reduced in AD patients (Wu et al.,
2003). There is data indicating that melatonin and the circadian
rhythms regulate the intestinal microbial flora (Zhu et al., 2018;
Parkar et al., 2019), and that circadian rhythm disruption by
abnormal light–dark (LD) cycles results in the dysfunction of
the intestinal barrier and increases the number Ruminococcus
torques but reduces that of Lactobacillus johnsonii (Deaver
et al., 2018). In addition, circadian disruption affects functional
gene composition of gut microbiome leading to downregulation
of the genes involved in promoting host beneficial immune
responses and upregulation of the genes involved in the
synthesis and transportation of lipopolysaccharides (LPS)
(Deaver et al., 2018), which is similar to the changes of
the functional composition of the gut microbiome in AD
patients (Liu et al., 2019a).

CHRONIC NOISE STRESS, INTESTINAL

MICROBIOME AND ALZHEIMER’S

DISEASE

A large number of sources of noise pollution has appeared
in the human environment since the onset of post-industrial
era (Passchier-Vermeer and Passchier, 2000), thus making
chronic noise another hallmark of the modern lifestyle (Seidman
and Standring, 2010). Epidemiological and experimental
studies showed that chronic noise has been associated with
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cardiovascular diseases, hearing impairment, changes in the
immune system and birth defects (Passchier-Vermeer and
Passchier, 2000; Ising and Kruppa, 2004). Recently, an etiological
association between chronic noise exposure and Alzheimer
disease was proposed (Cui and Li, 2013). In 2018, a retrospective
cohort study conducted by Carey and coauthors demonstrated
positive association between residential levels of noise and air
pollution across London and incidence of dementia (Carey et al.,
2018). A number of animal studies have shown that chronic noise
induces tau pathology in the hippocampus and the prefrontal
cortex (Manikandan et al., 2006; Cui et al., 2009, 2012a,b). Also,
there is published data demonstrating upregulated expression
of amyloid precursor protein (APP) and its cleavage enzymes,
β- and γ-secretases upon chronic noise exposure (Cui et al.,
2015), and the involvement of the corticotropin-releasing factor
system in noise-induced alteration in Aβ production (Gai et al.,
2017). Furthermore, Cui and et al. reported that cognitive
impairment and Aβ accumulation in exposed-to-chronic-noise
young SAMP8 mice was associated with the dysregulation of
intestinal microbiota (Cui et al., 2018). The authors also found
downregulation of endothelial tight junction proteins both in the
intestine and brain and upregulation of serum neurotransmitter
and inflammatory mediator levels in the mice. Further analysis of
gut microbiota has revealed increased abundance of Firmicutes
and reduced quantity of Bacteroidetes on the phylum level,
whereas Candidatus Jettenia, Denitratisoma, and SM1A02 levels
were increased in noise exposed SAMP8 mice (the genus level)
(Cui et al., 2018). Taken together, the studies suggest that
chronic noise affects gut microbiome and can be one of the
AD triggers.

POSSIBLE MECHANISMS UNDERLYING

THE EFFECT OF GUT MICROBIOME ON

THE PATHOGENESIS OF ALZHEIMER’S

DISEASE

Reducing the number and species diversity of many beneficial
anaerobes such as Bifidobacterium and Lactobacillus, as well
as a shift in the diversity of the intestinal microbiota toward
conditional pathogenic and pathogenic microorganisms, results
in changes in local intestinal chemical and immunological
parameters and induces the translocation of the gut bacteria
into focal lymphoid tissue (Nagpal et al., 2018). These factors
contribute to an increase in permeability of the intestinal
and blood-brain barriers and the penetration of pathological
microflora and their metabolites into the brain (Tran and
Greenwood-Van Meerveld, 2013; Elahy et al., 2015).

On the other hand, intestinal bacteria are able to excrete
functional amyloid peptides and lipopolysaccharides (LPS) in
large quantities. Amyloid peptide in bacteria contributes to
various physiological processes on the surface of bacterial
cells, such as biofilm formation, adhesion, interaction with
other bacterial and eukaryotic cells, etc. Its structure and
biophysical properties are similar to human pathological amyloid
(Evans et al., 2018). For example, pro-inflammatory conditional
pathogenic bacteria of the intestine such as Escherichia coli,

Baccilus subtilis, Salmonella tyrhimurium, and Salmonella
enterica are able to secrete large amounts of the bacterial amyloid
peptide curli (Hufnagel et al., 2013; Schwartz and Boles, 2013).
The curli peptide, like Aβ, forms a secondary structure of β-
folded sheets and stains with thioflavin and Congo red (dyes
used to stain the brain’s amyloid plaques). It was shown that
the main structural subunit of the curli peptide, the precursor
of amyloid gA (gA amyloid precursor), has in its structure
sections similar to Aβ42, and that sections can be recognized
by the human TLR2 receptor (tall-like receptor 2) (Rapsinski
et al., 2015). Interaction of TLR2 with curli peptide or human
Aβ42 leads to the activation of bone marrow macrophages and
their production of pro-inflammatory cytokines, such as IL-6
and IL-1β (Rapsinski et al., 2015). In a similar study, microbial
amyloid was shown to be able to activate T-lymphocytes and
induce the production of pro-inflammatory interleukins IL-17A
and IL-22(Nishimori et al., 2012). These cytokines are able to
penetrate the blood-brain barrier and cause the production of
reactive oxygen species, activation of the TLR2/1 and NFÎB
signaling pathways in microglia and astrocytes, which is directly
related to neuroinflammation and neurodegeneration (Perriard
et al., 2015; Sun et al., 2015; Zhan et al., 2018). Besides
Chen et al. demonstrated that oral contamination of old rats
(previously subjected to antibiotic treatment) with wild E. coli
strain, capable of producing the functional curli peptide, led
to an increase in brain tissue microgliosis and astrogliosis and
increased expression of TLR2, IL6, and TNF (Chen et al.,
2016a).

In addition to the amyloid peptide, many intestinal bacteria
secrete LPS. LPS are the main components of the outer cell
wall of gram-negative bacteria and, in the case of penetration
from the intestinal cavity into the bloodstream, can cause
neuro-inflammatory reactions. Published data indicates that
the LPS level in the blood plasma of patients suffering from
sporadic lateral sclerosis and AD is three times higher than
the physiological age norm (Zhang et al., 2009). Post-mortem
studies revealed that the level of LPS in the neocortex and
hippocampus in patients with AD was two to three times
(and in some cases 26 times) higher than in older people
of the same age who did not suffer from cognitive disorders
(Zhao et al., 2017). Studies on laboratory animals showed that
intraventricular administration of LPS for 4 weeks can cause
chronic neuroinflammation, nerve cell death of II and III
layers of the entorhinal cortex and impairment of the long-
term synaptic plasticity of the neurons of the dentate gyrus of
the hippocampus, which is one of the characteristic signs of
damage to the temporal lobes of cerebral hemispheres inAD
(Hauss-Wegrzyniak et al., 2002).

There is also evidence that LPS secreted by bacteria
Bacteroidesfragilis can activate the pro-inflammatory
transcription factor NFÎB involved in the pathogenesis of
AD in human primary microglial cells (Zhao and Lukiw,
2018). NFÎB induces transcription of pro-inflammatory
miRNAs, such as miRNA-9, miRNA-34a, miRNA-125b,
miRNA-146a, and miRNA-155, activating neuro-inflammatory
mediators and inhibiting phagocytosis (Zhao and Lukiw,
2018). For example, micro-RNA-34a has been shown
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FIGURE 1 | Mechanisms underlying the effect of gut microbiome on the pathogenesis of Alzheimer’s disease.

to inhibit TREM2 expression (the triggering receptor
expressed on microglia/myeloid cells-2), thereby disrupting
the phagocytic ability of microglia and increasing Aβ42
accumulation (Bhattacharjee et al., 2016). In support of
this concept, the intraperitoneal administration of LPS to
mice line C57BL/6J led to an increase in Aβ42 level in the
brain and induced cognitive deficits (Kahn et al., 2012).
In vitro, endotoxins secreted by Escherichia coli strains
(E. coli) accelerated Aβ aggregation and fibril formation
(Asti and Gioglio, 2014). Jaeger and colleagues showed that
intraperitoneal administration of LPS disrupts Aβ transport
through the blood-brain barrier, increasing its influx and
decreasing efflux (Jaeger et al., 2009). It was also shown
that intraventricular infusion of LPS in combination with
ascorbic acid increased the immunoreactivity of intra-neuronal
beta-amyloid (Hauss-Wegrzyniak and Wenk, 2002).

Thus, the composition of gut microbiome changes
significantly with aging: the diversity of beneficial bacteria,
such as Lactobacillus and Bifidobacteria, decreases, and,
in a contrast, a number of “unhealthy” pro-inflammatory
bacteria, such as Propionibacteria, Fusobacteria, Shigella,
and Clostridia increases. Furthermore, unhealthy modern
lifestyle factors including high fat diet, sedentary behavior,
lack of sleep, circadian rhythm disturbance and chronic
noise alter the composition of gut microbiome in the same
way, thus, exacerbating negative impact of aging. In turn,

lack of probiotic strains affects synthesis and secretion of
the neurotrophic factors, such as BDNF, NMDA receptor
and GABA, while pro-inflammatory gut microbiota taxa are
capable of secreting bacterial amyloid and lipopolysaccharides,
which are considered to be neurotoxic. Since elderly people
experience impaired barrier functions of the intestinal wall
and the blood-brain barrier, these endotoxins are able to
penetrate from the intestinal cavity into the bloodstream, and
further into the brain tissue, and have a direct and/or systemic
negative effect on the structure and functions of the CNS
and promote the development of neuro-inflammation and
neurodegeneration (Figure 1).

ORAL MICROBIOME AND ALZHEIMER’S

DISEASE

There is new scientific evidence published recently that aside
the gut microbiome, oral microflora is also able to influence
brain functions (Orr et al., 2020). Numerous studies have shown
that periodontal disease is associated with neurodegeneration
and cognitive decline (Kamer et al., 2008; Cerajewska et al.,
2016; Wang et al., 2019). Chang and coauthors reported that
chronic periodontitis of 10 years duration was associated with
a 1.707-fold increase in the risk of developing AD (Chen
et al., 2017). A nationwide, retrospective, matched-cohort study
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in Taiwan showed that patients with chronic periodontitis
and gingivitis have a higher risk of developing dementia
compared to those with healthy gums (Tzeng et al., 2016).
Moreover, recent accumulating evidence has demonstrated a
causal relationship between oral microbiome and AD (Paganini-
Hill et al., 2012; Harding et al., 2017; Liu et al., 2019b; Panza
et al., 2019; Olsen and Singhrao, 2020). For example, P. gingivalis,
the most common periodontal bacteria causing periodontal
disease, was capable of inducing accumulation of amyloid-
beta plaques and neurofibrillary tangles following experimental
oral infection in mice (Dominy et al., 2019). In turn, serum
antibodies for P. gingivalis have been found to be elevated
in AD patients (Kamer et al., 2009), and protein-degrading
enzyme gingipain produced by P. gingivalis, was found in
the brain of Alzheimer’s patients (Singhrao and Olsen, 2019).
Dominy et al. have demonstrated that oral administration of
small-molecule inhibitors of gingipain block gingipain-induced
neurodegeneration, decreased P. gingivalis load in the mouse
brain and the host Aβ42 response to P. gingivalis brain infection
(Dominy et al., 2019). It was also found that chronic systemic
P. gingivalis infection causes Aβ accumulation in inflammatory
monocytes/macrophages via the activation of CatB/NF-κB
signaling (Kunkle et al., 2019).

In addition, there is data indicating the significant differences
in quantity and quality of oral microbiome in AD patients
compared to mentally healthy individuals of the same age.
For example, Liu et al. have demonstrated lower richness and
diversity of salivary microbiome in patients with Alzheimer’s
disease compared to healthy controls (Liu et al., 2019b). The
authors reported a relatively high level ofMoraxella, Leptotrichia,
and Sphaerochaeta and significantly decreased number of Rothia
in the saliva of AD patients (Liu et al., 2019b). However,
these authors emphasize the limitations of the study due to
the absence of many periodontal bacteria in saliva which
exist within the subgingival niche or dental plaques (Filoche
et al., 2009). Therefore, a comprehensive picture of the full
composition of oral microbiome in patients with AD requires
further research.

CONCLUSION

Recent studies strongly suggest that gut and oral microbiome is
capable of modulating the neurochemical and neuro-metabolic
signaling pathways of the brain through the formation of
a two-way communication axis involving the endocrine and
immune systems, and contribute to the development of neuro-
inflammation and neurodegeneration. In turn, there is a strong
correlation that exists between AD and modern lifestyle factors.
It is a fact that unhealthy diet, lack of sleep, circadian rhythm
disturbance, chronic noise, and sedentary behavior are linked
to neurodegeneration. By focusing on the mechanism for
interaction between lifestyle factors and AD, we can evaluate
the contribution of changing modern society to the increase
in prevalence of AD. However, tackling this issue is impossible
without understanding its intertwined relationship with other
aspects, and gut microbiome is crucial for this interaction. From
this point of view, the study of the composition of the intestinal
microbiome in patients with AD and healthy aging people is
of considerable interest. This could unearth novel associations
between intestinal microbiome, lifestyle, and dementia, and help
to develop practical recommendations for the prevention and
treatment of this severe pathology.
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The intrinsic nervous system of the gut interacts with the gut-associated lymphoid
tissue (GALT) via bidirectional neuroimmune interactions. The caecum is an understudied
region of the gastrointestinal (GI) tract that houses a large supply of microbes and is
involved in generating immune responses. The caecal patch is a lymphoid aggregate
located within the caecum that regulates microbial content and immune responses.
People with Autism Spectrum Disorder (ASD; autism) experience serious GI dysfunction,
including inflammatory disorders, more frequently than the general population. Autism
is a highly prevalent neurodevelopmental disorder defined by the presence of repetitive
behavior or restricted interests, language impairment, and social deficits. Mutations in
genes encoding synaptic adhesion proteins such as the R451C missense mutation
in neuroligin-3 (NL3) are associated with autism and impair synaptic transmission. We
previously reported that NL3R451C mice, a well-established model of autism, have altered
enteric neurons and GI dysfunction; however, whether the autism-associated R451C
mutation alters the caecal enteric nervous system and immune function is unknown. We
assessed for gross anatomical changes in the caecum and quantified the proportions
of caecal submucosal and myenteric neurons in wild-type and NL3R451C mice using
immunofluorescence. In the caecal patch, we assessed total cellular density as well as
the density and morphology of Iba-1 labeled macrophages to identify whether the R451C
mutation affects neuro-immune interactions. NL3R451C mice have significantly reduced
caecal weight compared to wild-type mice, irrespective of background strain. Caecal
weight is also reduced in mice lacking Neuroligin-3. NL3R451C caecal ganglia contain
more neurons overall and increased numbers of Nitric Oxide (NO) producing neurons
(labeled by Nitric Oxide Synthase; NOS) per ganglion in both the submucosal and
myenteric plexus. Overall caecal patch cell density was unchanged however NL3R451C

mice have an increased density of Iba-1 labeled enteric macrophages. Macrophages in
NL3R451C were smaller and more spherical in morphology. Here, we identify changes in
both the nervous system and immune system caused by an autism-associated mutation
in Nlgn3 encoding the postsynaptic cell adhesion protein, Neuroligin-3. These findings
provide further insights into the potential modulation of neural and immune pathways.

Keywords: caecum, mice, autism, neuroimmune, gut-associated lymphoid tissue
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INTRODUCTION

Emerging evidence suggests that altered communication
between the nervous system and inflammatory pathways is
associated with multiple diseases including autism. Both altered
inflammatory activity (Wei et al., 2011) and a maternal history
of autoimmune diseases, such as rheumatoid arthritis and celiac
disease, is associated with an increased risk of autism (Atladóttir
et al., 2010). The gut-associated lymphoid tissue (GALT) plays
a crucial role in mucosal immunity and microbial populations.
Caecal patches are lymphoid aggregates located at the blind
end of the caecum and contain various immune cells such as
macrophages and dendritic cells.

The precise role of the caecum is unclear, but it has been
suggested that the appendix in humans houses a ‘‘reserve
population’’ of commensal microbes (Randal Bollinger et al.,
2007). The caecal patch contributes to gut homeostasis and
is a major site for the generation of IgA-secreting cells that
subsequently migrate to the large intestine (Masahata et al.,
2014). Secretory IgA plays an important role in regulating the
activities and compositions of commensal bacteria populations
in animal models (Fagarasan et al., 2002; Suzuki et al., 2004;
Peterson et al., 2007; Strugnell and Wijburg, 2010). However,
whether caecal innervation and immune function are altered in
preclinical models of neural disorders is unknown.

Autism is a neurodevelopmental disorder affecting 1 in
59 children (Loomes et al., 2017; Baio et al., 2018). In
many autism patients, core features (impairments in social
interaction, communication, and repetitive and/or restrictive
behaviors) are present along with immunological dysfunction
(Marchezan et al., 2018) and gastrointestinal (GI) disorders
(Valicenti-McDermott et al., 2006; Buie et al., 2010; Coury
et al., 2012). Individuals with autism are four times more
likely to experience frequent GI symptoms including alternating
diarrhea and constipation, and abdominal pain compared to
children with typical development (McElhanon et al., 2014).
Interestingly, Inflammatory bowel disease (IBD) is present at
significantly higher rates in people with autism than the general
public (Kohane et al., 2012). Autism-associated GI dysfunction
includes increased GI permeability along with altered motility
(Horvath and Perman, 2002; Parracho et al., 2005; Kohane et al.,
2012; Neuhaus et al., 2018). Mice expressing the Neuroligin-3
R451C mutation exhibit autism-relevant behaviors including
impaired social interaction (Tabuchi et al., 2007; Etherton et al.,
2011), a heightened aggression phenotype (Burrows et al., 2015;
Hosie et al., 2019), impaired communication (Chadman et al.,
2008) and increased repetitive behaviors (Rothwell et al., 2014).
Furthermore, the robust aggression phenotype in these mice
is rescued by a clinically relevant antipsychotic, risperidone
(Burrows et al., 2015), highlighting that this model is useful for
preclinical studies. These mice also show altered GI motility, in
line with the notion that alterations in the nervous system may
also affect the ENS to result in GI dysfunction (Gershon and
Ratcliffe, 2004; Hosie et al., 2019).

Most research to date in animal models of autism has focused
on replicating the core traits of ASD, in addition to using invasive
techniques to highlight changes in neural network activity in

the brain (Tabuchi et al., 2007; Halladay et al., 2009; Lonetti
et al., 2010; Etherton et al., 2011; Patterson, 2011; Schmeisser
et al., 2012; Varghese et al., 2017; Hosie et al., 2018). Using
these approaches, it is well established that many gene mutations
identified in autism patients affect neuronal function. Here
we assessed whether the autism-associated R451C mutation in
Neuroligin-3 affects gross caecal morphology, enteric neuronal
populations or immune cells within the caecal patch.

METHODOLOGY

Animals
Adult male NL3R451C mice (8–14 weeks old) and wild type (WT)
littermate controls from two different colonies were used in this
study. Neuroligin 3 knockout mice (NL3−/−; 12 weeks old) were
also examined. NL3R451C mutant mice (B6;129-Nlgn3tm1Sud/J)
were originally obtained from Jackson Laboratories (Bar
Harbour, MI, USA) and maintained on a mixed background
(mbNL3R451C) strain at the Biomedical Sciences Animal Facility,
The University of Melbourne (Hosie et al., 2019). These
mice were then backcrossed onto a C57BL/6 background
for more than 10 generations (i.e., B6NL3R451C mice) and
maintained at the animal facility at RMIT University, Bundoora,
Australia. In contrast, NL3−/− mice (Radyushkin et al., 2009;
Leembruggen et al., 2019) were bred on a C57BL/6NCrl
background at the Florey Institute of Neurosciences and
Mental Health. All NL3R451C mice were culled by cervical
dislocation following RMIT University and The University
of Melbourne animal ethics guidelines (AEC# 1727, AEC#
1513519). NL3−/− mice were cervically dislocated and fresh
tissue was collected for other applications (AEC# 14095). All data
from mutant mice were compared with matched WT littermate
controls from the respective cohorts to remove environmental
and additional genetic factors (i.e., data from mbNL3R451C

animals were compared with mbWT mice; B6NL3R451C vs.
B6WT mice and C57BL/6NCrl NL3−/− mice vs. C57BL/6NCrl
WT littermates).

All mice from each cohort were housed in mixed genotype
groups of up to six per cage to minimize the impact of
environmental factors. This study was carried out following
the Basel Declaration and all experiments conducted at RMIT
University were approved by the RMIT University Animal Ethics
Committee and experiments conducted at The University of
Melbourne were approved by The University of Melbourne
Animal Ethics Committee.

Caecal Collection
The caecum was collected and weighed from B6NL3R451C,
mbNL3R451C mice and NL3−/−mice. The caecum from each
mouse was opened and pinned with the mucosa facing upwards
and submerged in 0.1 M PBS on a petri dish lined with
sylgard (Sylgard Silicone Elastomer, Krayden Inc., Denver, CO,
USA), enabling visualization of the lymphoid patch (i.e., the
caecal patch). Images of caecal tissue with a measuring scale
were captured and caecal area measured using ImageJ software
(ImageJ 1.52a, NIH, Bethesda, MD, USA).
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Wholemount Tissue Preparation
Caecal myenteric and submucosal plexus neurons were revealed
by microdissection using fine forceps and dissecting spring
scissors. The submucosal plexus was revealed by removing the
mucosal layer and carefully exposing neurons adjacent to the
circular muscle within the caecal tissue. To obtain the myenteric
plexus, the circular muscle was then peeled away from the
remaining caecal tissue. A small area of tissue (approximately
0.5 cm2) containing myenteric and submucosal plexuses was
transferred into a small Petri dish, submerged in 0.1 M PBS for
labeling by immunofluorescence.

Wholemount Immunofluorescence for
Neuronal Populations
Immunofluorescence staining was performed on wholemount
caecal tissue samples to assess for potential differences in
neuronal cell numbers between NL3R451C and WT mice.
Wholemount samples of myenteric and submucosal plexus were
incubated at room temperature (RT) for 30 min in 0.01% Triton
(to permeabilize the tissue for improved access by primary
and secondary antibodies) with 10% CAS-block (Invitrogen
Australia, Mt-Waverley, Australia; to reduce non-specific
binding of antibodies). Then, tissues were incubated with 30
µl primary antisera; human anti-Hu (1:5,000, a pan-neuronal
marker; a gift from Dr. V. Lennon, Mayo Clinic, Rochester,
MN, USA) and sheep anti-neuronal Nitric Oxide Synthase (NOS;
1:400; Abcam, Eugene, OR, USA) and kept at 4◦C overnight
in a sealed container. After incubation, caecal tissues were
washed with 0.1 M PBS (three washes of 10 min duration).
Secondary antisera (30 µl) were applied to the samples and
left for 2.5 h at RT on a shaker incubator (Digital Shaking
Incubator OM11, Ratek, Australia). Caecal tissues were mounted
using fluorescence mounting medium (DAKO Australia Private
Limited; Botany, NSW, Australia).

Imaging of Caecal Neuronal Populations
Images of caecal tissue containing the submucosal, myenteric
plexus were analyzed using ImageJ (ImageJ 1.52a, NIH, Bethesda,
MD, USA) and Imaris software (Imaris 64X 9.1.0; Bitplane
AG, UK). 10 myenteric ganglia and 10 submucosal ganglia
were selected from each wholemount caecal tissue sample
(n = 5 NL3R451C and n = 5 WT samples). From each ganglion,
the number of Hu and NOS stained cells were counted.

Caecal Patch Tissue Collection
Caecal tissues including caecal patch samples were fixed in 4%
formaldehyde solution at 4◦C overnight. The next day, tissue
samples were washed three times (10 min per wash) with
filtered 0.1 M PBS. The caecal patch was excised from the
caecal tissue using spring scissors. Caecal patch samples were
subsequently placed into a 30% sucrose solution in distilled water
overnight at 4◦C for cryoprotection. Caecal patches were placed
in a cryomold (Tissue-Tek Cryomold, Sakura, Finetek, USA)
filled with optimal cutting temperature compound (Tissue-Tek,
OCT compound, Sakura, Finetek, USA). Cryomolds containing
caecal patch samples were then snap frozen using liquid
nitrogen and tissue blocks stored at −80◦C. Frozen caecal

patch samples were sectioned at 6-micron thickness using a
cryostat (Leica CM1950 Clinical Cryostat, Leica Biosystems
Nussloch GmbH, Germany) and collected on positively charged
slides (Thermo Fisher Scientific, Waltham, MA, USA Menzel-
Glaser, SuperfrostR plus, New Hampshire, USA and stained for
Haematoxylin & Eosin (H&E) to assess for overall cell density.

Caecal Patch Image Analysis
Images were obtained using an Olympus slide scanner
microscope (VS120-S5; Olympus Australia Private Limited;
Melbourne, VIC, Australia) and the cell density within the caecal
patch was analyzed using ImageJ software (ImageJ v1.52a, NIH,
Bethesda, MD, USA). The entire area of each caecal patch was
selected to calculate the area of the caecal patch and cell numbers
within that area. The total number of cells was then divided by
the area of interest to calculate the number of cells per 100 µm2.

Caecal Patch Immunofluorescence
Immunofluorescence was also performed on cross-sections of
caecal patch tissue samples to assess for altered density and
morphology of macrophages. To observe a subpopulation of
immune cells within the caecal patch, immunofluorescence
for the immune cell marker Iba-1 (1:3,000, Abcam, USA)
was conducted. The sections were incubated for 30 min with
0.1% triton and 10% CAS-block at RT. Thirty microliters of
primary antibody was subsequently applied to each section
and kept at 4◦C overnight in a moisture sealed container.
After incubation, caecal patch sections were washed with
0.1 M PBS (3 × 10 min washes). Secondary antiserum was
applied to the samples and left for 2.5 h at RT on a shaker
incubator. Caecal sections were mounted using fluorescence
mounting medium (DAKO Australia Private Limited; Botany,
Australia) containing DAPI (4′,6-diamidino-2-phenylindole)
and stored at 4◦C overnight. Tissue samples were imaged using
a confocal electron microscope (Nikon Confocal Microscope:
A1; Version 4.10). A Z-series of images of caecal patch
sections (30 µm thickness) were captured and saved in the
ND2 file format. Imaris software (Imaris 64X 9.1.0; Bitplane
AG, UK) was used for 3D cellular reconstruction of Iba-1
labeled macrophages.

Statistical Analysis
Potential statistical differences between groups were identified
using Student’s t-tests.

RESULTS

Mouse body weight, caecal weight, and caecal tissue area were
assessed to determine if anatomical changes occur in the presence
of the autism-associated R451C mutation in mice. To address
whether the R451C mutation and the Nlgn3 gene itself plays a
broader role in caecal weight, ceacae from NL3R451C mice bred
on two different background strains were weighed, and caecal
weights from mice lacking Nlgn3 compared to WT littermates
were also compared.

The average body weight of WT (n = 39) and NL3R451C

(n = 34) mice was similar (26.38 ± 0.4 g and 26.46 ± 0.4 g, WT
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FIGURE 1 | Bodyweight, caecal weight, and caecal tissue area. (A) Pure C57BL/6 background wild type (WT) and NL3R451C mice (red) show similar body weights.
WT (n = 39) and NL3R451C (n = 34) mice; p = 0.88. (B) Caecal weight is reduced in NL3R451C C57BL/6 background mice; WT (n = 38) and NL3R451C (n = 36) mice.
(C) Similar caecal tissue area for WT (n = 15) and NL3R451C (n = 16) mice. (D) In mixed background mice (orange), no differences in body weight were found. WT
(n = 16) and NL3R451C (n = 21) mice; p = 0.30. (E) Caecal weight is also reduced in NL3R451C (orange) mixed background mice. WT (n = 14) and NL3R451C (n = 21)
mice). (F) Body weight is unchanged in a large cohort of WT (n = 70) and NL3−/− (n = 71) mice; p = 0.95. (G) Reduced caecal weight in NL3−/− (green) mice. WT
(n = 8) and NL3−/− (n = 8) mice. Student’s t-test *p < 0.05; ***p < 0.001. Each symbol indicates an individual mouse. Mixed background mice were bred on a mixed
Sv129/C57BL/6 genetic background; KO: NL3−/− mice (bred on C57BL/6NCrl mice).

and NL3R451C respectively; p = 0.88; Figure 1A). To determine if
the reduction in NL3R451C caecal weight was due to a reduction
in the size of the caecum itself, total caecal tissue area was
measured. No difference between the caecal area of WT (n = 15)
and NL3R451C (n = 16) mice was observed (7.99 ± 0.36 and
7.75 ± 0.5 cm2, respectively; p = 0.51; Figure 1B). To determine
if the R451C mutation affects caecal structure in mice, the
fresh caecal weight from 38 WT and 36 NL3R451C mice was
recorded. NL3R451C caecae were significantly lighter than WT
(0.65± 0.02 g and 0.54± 0.01 g, WT and NL3R451C respectively;
p = 0.0001; Figure 1C). A role for the Nlgn3 gene in influencing
caecal weight is supported by similar observations in NL3R451C

mice bred on a mixed background strain and in Nlgn3−/−

(NL3−/−) mice in which the Nlgn3 gene is deleted. In mice
expressing the R451C mutation bred on a mixed background
(mb) strain, the average body weight was similar (28.11 ± 1.01 g
and 27.1 ± 0.9 g, WT and mbNL3R451C n = 16 and n = 21,
respectively; p = 0.30; Figure 1D). Caecal weight was also reduced
in mb strain mutant littermates (0.69 ± 0.11 g, 0.49 ± 0.28 g;
WT (n = 14) and mbNL3R451C (n = 21), respectively; p < 0.0001;
Figure 1E). Bodyweight is unchanged in a large cohort of WT
(n = 70) and NL3−/− (n = 71) mice aged 10–12 weeks; p = 0.95;
Figure 1F. Similar to data from both the C57BL/6 and mb strains
of NL3R451C mice, KO (NL3−/−) mice also revealed a reduction
in caecal weight (1.16± 0.5 g and 0.61± 0.53 g;WT andNL3−/−,
respectively, n = 8 in each group; p = 0.02; Figure 1G). These
findings suggest a role for the Nlgn3 gene in regulating caecal
weight in mice.

To investigate whether the NL3R451C mutation alters neural
populations in the caecal submucosal and myenteric plexus,
immunofluorescence for the pan-neuronal marker Hu and NOS
(which labels approximately 20–40% of myenteric neurons
capable of synthesizing NO (Sang and Young, 1996), the major
inhibitory enteric neurotransmitter of the ENS) was conducted.
Wholemount preparations of WT (Figures 2A–C) and NL3R451C
(Figures 2D–F) submucosal plexus were labeled with Hu and
NOS to quantify neuronal subpopulations. The total number
of neurons (i.e., labeled by Hu) per submucosal ganglion was
increased in NL3R451C mice (5 ± 0.2 and 6 ± 0.2 neurons,
WT and NL3R451C, respectively, n = 5 in each group; p = 0.04;
Figure 2G). Similarly, NL3R451C mice showed increased numbers
of NOS immunoreactive neurons per ganglion (2 ± 0.2 and
3± 0.2 cells; WT and NL3R451C respectively, n = 5 in each group;
p = 0.003; Figure 2H). In submucosal neurons, there was also
an increased percentage of NOS neurons per ganglion in WT
and NL3R451C mice (43 ± 3% and 55 ± 3%; WT and NL3R451C

respectively; p = 0.02; Figure 2I).
Wholemount preparations of WT (Figures 3A–C) and

NL3R451C (Figures 3D–F) myenteric plexus were labeled with Hu
and NOS. Similar to findings in the submucosal plexus, more
myenteric neurons (labeled for Hu) were seen in NL3R451C mice
(11 ± 0.3 and 15 ± 1 neurons/ganglion, WT and NL3R451C

respectively, n = 5 in each group; p = 0.002; Figure 3G).
The number of NOS stained caecal myenteric neurons per
ganglion was also increased in NL3R451C mice (5 ± 0.3 and
9 ± 0.2 neurons/ganglion, WT and NL3R451C, respectively,
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FIGURE 2 | Caecal submucosal neuronal numbers and proportions. WT
caecal submucosal plexus ganglia labeled for Hu (A) Nitric Oxide Synthase
(NOS; B); and overlap illustrated in the merged image (C). NL3R451C caecal
submucosal plexus ganglia labeled for Hu (D) NOS (E); merge (F). Scale
bar = 20 µm. (G) The total number of Hu labeled neurons per ganglion. (H)
The total number of NOS stained cells per ganglion. (I) Proportions of NOS
stained neurons/ganglion; n = 5 in each group. Each symbol indicates an
individual mouse. Bars in boxplots indicate the mean and range of the data.
White arrows indicate neurons immunoreactive to both Hu and NOS.
Student’s t-test. *P < 0.05; **P < 0.01.

n = 5 in each group; p < 0.0001; Figure 3H). The percentage of
NOS stained neurons per myenteric ganglion was also increased
in NL3R451C mice (41 ± 1.3% and 58 ± 2.0%; WT and NL3R451C

respectively; p = 0.0001; Figure 3I). These data show that
the R451C mutation results in increased numbers of caecal
submucosal and myenteric neurons in mice.

To assess whether the R451C mutation alters the GALT
structure, we measured total cell density in H&E stained cross-
sections of the caecal patch of WT (Figures 4A,B) and NL3R451C

(Figures 4C,D) mice. Caecal patch cellular density was similar in
both genotypes (1276 ± 48 and 1428 ± 22 cells/100 µm2, WT
and NL3R451C mice respectively; n = 8 in each group; p = 0.28;
Figure 4E).

In healthy intestinal mucosa, mononuclear phagocytes
comprising both macrophages and dendritic cells are the most
abundant leukocyte population and play an important role in
maintaining homeostasis (Kühl et al., 2015). However, little
is known about the morphology and role of macrophages
associated with GALT in the intestine (den Haan and
Martinez-Pomares, 2013) such as the caecal patch. Caecal
patch samples were labeled with the pan-nuclear marker,
DAPI, and a pan-macrophage antiserum targeting the ionized

calcium-binding adaptor molecule 1 (Iba-1) to determine
whether the R451C mutation affects these immune cells in WT
(Figures 5A–D) and NL3R451C (Figures 5E–H) within the caecal
patch. NL3R451C caecal patch tissue had a higher density of Iba-1
stained cells (14 ± 0.7 cells/100 µm2, n = 5) compared to WT
mice (10.5 ± 1 cells/100 µm2, n = 4; p = 0.02; Figure 5I).
The volume of Iba-1 stained cells in WT was larger than in
NL3R451C mice (928.5 ± 97 µm3 and 559.7 ± 58 µm3; WT
(n = 4) and NL3R451C (n = 5), respectively; p = 0.01; Figure 5J).
Iba-1 stained cells in NL3R451C mice showed increased sphericity
(0.6 ± 0.04 and 0.7 ± 0.02 arbitrary units; WT (n = 4) and
NL3R451C (n = 5) respectively; p = 0.007; Figure 5K). These
results suggest that the autism-associated R451C mutation in
Nlgn3 alters macrophage density and morphology within the
caecal GALT.

DISCUSSION

The nervous system and the immune system are in constant
bidirectional communication (reviewed in Margolis et al., 2016).
Altered immune responses and gut dysfunction commonly
occur in individuals genetically susceptible to autism (Coury
et al., 2012). Altered neuronal communication in autism
(Betancur et al., 2009; Grabrucker et al., 2011; Huguet
et al., 2016), likely contributes to changes in the peripheral
nervous system, and therefore GI function (Hosie et al., 2019;
Leembruggen et al., 2019).

A main finding from this study is the clear reduction
of caecal weight in mice expressing the Neuroligin-3 R451C
mutation. Importantly, in addition to our findings on a pure
C57BL/6 genetic background, caecal weight was also reduced in
mice bred on a mixed background in a different animal facility.
These findings, therefore, confirm a persistent effect of the gene
mutation and rule out genetic susceptibility due to background
strain or environment. Furthermore, mice lacking Neuroligin-3
expression (NL3−/− mice) that were bred in a third animal
facility, and therefore experienced a different environment to
the two NL3R451C strains, also had reduced caecal weight.
Together, these findings suggest that the Nlgn gene plays a
role in caecal neuroimmune physiology and that the reduction
in weight is unlikely solely due to diet, microbial populations,
and other environmental factors. A reduction in caecal weight
has also been reported in a mouse model of obesity. For
example, obese mice fed a high-fat diet (diet-induced obese mice)
had caecal weights approximately 50% reduced compared to
controls, and this reduction was restored by antibiotic treatment
(Soto et al., 2018). Since obesity is associated with increased
inflammation, our observations in NL3R451C mice might also
indicate elevated inflammatory cytokine levels, which remain to
be assessed.

The reduced caecal weight in NL3R451C mice may indicate
changes in caecal mucus thickness. The hydrophilic mucus
layer that coats the GI tract plays an important role in innate
host defense (Mowat, 2003). Changes in the mucus thickness
could contribute to an altered immune response in the host
organism (Liévin-Le Moal and Servin, 2006; McGuckin et al.,
2009). Accordingly, altered mucus thickness along the GI tract
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FIGURE 3 | Caecal myenteric neuronal numbers and proportions. WT caecal submucosal plexus ganglia labeled for (A) Hu (green), (B) NOS (red) and (C) merge.
NL3R451C caecal submucosal plexus ganglia labeled for (D) Hu (green) (E) NOS (red), (F) merge. Scale bar = 20 µm. (G) The number of Hu+ neurons/ganglion.
(H) The number of NOS immunoreactive neurons/ganglion. (I) The percentage of NOS neurons/ganglion; n = 5 in each group. Each symbol indicates an individual
mouse. Bars in boxplots indicate the means and range of the data. White arrows indicate neurons immunoreactive to both Hu and NOS. Student’s t-test
**p < 0.01; ***p < 0.001.

FIGURE 4 | Caecal patch cell density. Haematoxylin and Eosin (H&E) stained transverse sections of caecal patches from WT (A,B) and NL3R451C (C,D) mice.
(E) There was no difference in overall caecal patch cell density in WT (n = 8) and NL3R451C mice (n = 8). Each symbol indicates an individual mouse. Bars in boxplots
indicate the mean and range of the data.
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FIGURE 5 | Caecal patch macrophage density and morphology. WT caecal patch tissue labeled for (A) DAPI and (B) Iba-1, (C) merge; (D) 3-D reconstruction of
Iba-1 labeled cell morphology. NL3R451C caecal patch tissue labeled for (E) DAPI (F) Iba-1, (G) merge, (H) 3-D reconstruction of Iba-1 labeled cell morphology.
(I) Density of Iba-1 stained cells in WT and NL3R451C caecal patch tissue. (J) Volume of Iba-1 stained cells in WT and NL3R451C caecal patch tissue. (K) Sphericity of
Iba-1 stained cells in WT and NL3R451C mice. Each symbol indicates an individual mouse (n = 4 WT and n = 5 NL3 R451C). Bars in boxplots indicate the mean and
range of the data. Student’s t-test *p < 0.05; **p < 0.01. Scale bars = 20 µm.

may contribute to GI dysfunction which is commonly observed
in children with autism. Based on studies in preclinical models
of other disorders, aberrant mucus production may be present
alongside other phenotypic traits. For example, caecal tissue
sampled from a mouse model of stroke (72 h after brain
injury) showed decreased numbers of mucus-producing goblet
cells compared to sham-treated mice (Houlden et al., 2016).
Reductions in goblet cell number and size were also reported in
mice during the development of ulcerative colitis (Van der Sluis
et al., 2006; Johansson et al., 2008). Although potential changes
in caecal weight were not correlated with these observations, a
thinning of the adherent mucus layer and reduced total mucus
volume within the caecum may contribute to the significant
reduction in caecal weight in NL3R451C mutant mouse strains
identified here.

The enteric nervous system (ENS) regulates GI motility and
secretion, as well as nutrient uptake and gut immune and
inflammatory processes (Goyal and Hirano, 1996). The two
main cell populations of the ENS are neurons and enteric
glial cells (EGCs; Jessen, 2004). Many studies have identified

enteric neuron pathologies in the context of inflammatory
disease (Marlow and Blennerhassett, 2006; Boyer et al., 2007;
Winston et al., 2013; Talapka et al., 2014; Rahman et al., 2015;
Li et al., 2016), but how alterations in the ENS might affect
inflammatory pathways remains largely unknown. Nevertheless,
altered neuronal activity has previously been implicated in
altering immune function, where reports investigating NO levels
in human colonic and rectal mucosal biopsies in active ulcerative
and Crohn’s disease showed elevated expression of Nitric oxide
synthase (NOS; Rachmilewitz et al., 1995; Ljung et al., 2006).

Changes in enteric neuronal numbers are reported in animal
models demonstrating GI dysfunction (Schneider et al., 2001;
de Fontgalland et al., 2014; Hosie et al., 2019). Our findings
that both submucosal and myenteric neuronal numbers are
increased in NL3R451C mice caecal tissue indicate that the R451C
mutation likely alters neuronal populations during development.
These results are in agreement with our previous report showing
increased jejunal neuronal numbers in adult NL3R451C mice bred
on amixed genetic background (Hosie et al., 2019). In addition to
a potential developmental effect, these findings suggest that the
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NL3R451C mutation may influence caecal function. Specifically,
we speculate that the R451C mutation could alter the rhythmic
caecal ‘‘churning’’ of waste that occurs post digestion and before
expulsion via the colon, however, this hypothesis remains to be
investigated. The contractile activity of the GI tract is neurally
regulated so given that the R451C mutation is expressed in
the gut in these models (Hosie et al., 2019), it would indeed
be of interest to assess whether NL3R451C mice show altered
caecal motility.

In addition to characterizing changes in enteric neuronal
populations in NL3R451C mice, we investigated the effects of the
autism-associated R451C mutation on macrophages in caecal
tissue using the pan-macrophage marker, Iba-1. NL3R451C mice
showed increased numbers of Iba1 stained cells in caecal
patch tissue compared to WT mice. Also, the volume of Iba-1
immunoreactive cells was decreased and are more spherical
in NL3R451C mutant mice compared to WT littermates. These
findings could indicate that macrophages within NL3R451C caecal
patch tissue are present in a more reactive state compared to
WT mice, with potential implications for immune pathways
in this model. Similar observations were reported in disease
conditions such as IBD, where both the number and morphology
of intestinal macrophages are altered (Mowat and Bain, 2011;
Bain and Mowat, 2014). Moreover, macrophages are integral to
the pathogenesis of Crohn’s disease (Smith et al., 2011).

In summary, to further assess the impact of the neuroligin-3
R451C mutation on both the enteric nervous system and
the immune responses within the caecum, experiments
should investigate changes in mucus properties, potential
alterations in the mucus-producing goblet cells of the
epithelium, inflammatory pathways, and caecal function;
including permeability and motility, in this model. Each of
these areas of investigation will yield valuable findings about
the fundamental role of the caecum in mice as well as the
pathophysiology resulting from this mutation.

CONCLUSION

This is the first study to assess the impact of the Neuroligin-3
R451C mutation on caecal structure at both an anatomical and
cellular level in mice. The observation that the Neuroligin-3
gene plays a role in regulating caecal weight across multiple
genetic backgrounds and environments identifies a new role
for the Nlgn3 gene in mice. This work also highlights the

caecum as a region of interest within the GI tract that may
play a central role in modulating neuro-immune interactions.
In the context of neurodevelopmental disorders, our findings
that an autism-associated mutation that affects nervous system
function also impacts GALT have implications for identifying
novel interactions between the enteric nervous system, microbes
located within the gut lumen, immune pathways and potential
therapeutic targets for GI dysfunction.
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A new paradigm in neuroscience has recently emerged – the brain–gut axis (BGA).
The contemporary focus in this paradigm has been gut → brain (“bottom-up”),
in which the gut-microbiome, and its perturbations, affects one’s psychological
state-of-mind and behavior, and is pivotal in neurodegenerative disorders. The
emerging brain → gut (“top-down”) concept, the subject of this review, proposes
that dysfunctional brain health can alter the gut-microbiome. Feedback of this
alternative bidirectional highway subsequently aggravates the neurological pathology.
This paradigm shift, however, focuses upon non-communicable neurological diseases
(progressive neuroinflammation). What of infectious diseases, in which pathogenic
bacteria penetrate the blood–brain barrier and interact with the brain, and what is
this effect on the BGA in bacterial infection(s) that cause chronic neuroinflammation?
Persistent immune activity in the CNS due to chronic neuroinflammation can lead to
irreversible neurodegeneration and neuronal death. The properties of cerebrospinal fluid
(CSF), such as immunological markers, are used to diagnose brain disorders. But
what of metabolic markers for such purposes? If a BGA exists, then chronic CNS
bacterial infection(s) should theoretically be reflected in the urine. The premise here is
that chronic CNS bacterial infection(s) will affect the gut-microbiome and that perturbed
metabolism in both the CNS and gut will release metabolites into the blood that are
filtered (kidneys) and excreted in the urine. Here we assess the literature on the effects
of chronic neuroinflammatory diseases on the gut-microbiome caused by bacterial
infection(s) of the CNS, in the context of information attained via metabolomics-based
studies of urine. Furthermore, we take a severe chronic neuroinflammatory infectious
disease – tuberculous meningitis (TBM), caused by Mycobacterium tuberculosis, and
examine three previously validated CSF immunological biomarkers – vascular endothelial
growth factor, interferon-gamma and myeloperoxidase – in terms of the expected
changes in normal brain metabolism. We then model the downstream metabolic
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effects expected, predicting pivotal altered metabolic pathways that would be reflected
in the urinary profiles of TBM subjects. Our cascading metabolic model should be
adjustable to account for other types of CNS bacterial infection(s) associated with
chronic neuroinflammation, typically prevalent, and difficult to distinguish from TBM, in
the resource-constrained settings of poor communities.

Keywords: gut-brain axis, tuberculous meningitis, immunological biomarker, metabolism, urinary profiling,
chronic neuroinflammation, bacterial infectious diseases

INTRODUCTION

A new paradigm in neuroscience has emerged in recent
years – the brain–gut axis (BGA) – involving bidirectional
communication between the brain and gut. This implicates
a variety of pathways, including the enteric nervous system
(ENS), central nervous system (CNS), gastrointestinal tract
(GIT), endocrine system/GI hormones, and immune response,
all integrated to orchestrate the bidirectional feedback loop
of the BGA. As averred by Hippocrates, the Greek physician
acknowledged by many as the father of modern medicine,
“All disease starts in the gut.” The gut-microbiome is made
up of innumerable microbes, which function in a mutualistic
relationship with the human host (Collins et al., 2012; Zhu
et al., 2017). Currently, scientific evidence supports the notion
that homeostatic imbalance is initiated in the gut-microbiome,
mediated by several microbe-derived molecules, in the gut–
brain (“bottom-up”) direction of communication (Foster and
Neufeld, 2013; Martin et al., 2018). Stable gut microbiota are
essential for normal gut physiology and contribute to appropriate
signaling along the BGA (Forsythe et al., 2010; Cryan and
Dinan, 2012; Schroeder and Bäckhed, 2016). Over the past
decade, however, neuroscience research on the BGA has focused
on how perturbations in the gut-microbiome affect the brain
in a feedback loop, centered on the premise of “you are
what you eat” and “gut feelings” (Moos et al., 2016; Sherwin
et al., 2016; Zmora et al., 2019). Considering the bottom-
up motif, particularly its perturbations in the gut-microbiome,
can have a clear and direct effect on the host’s psychological
state-of-mind (depression, anxiety, bipolar disorder), behavior
(autism) and also in the pathogenesis and/or progression of
various neurodegenerative diseases (Alzheimer’s, Parkinson’s,
and multiple sclerosis). These disorders associated with the
bottom-up direction of communication have been succinctly and
meticulously detailed in many topical research reviews (Mayer
et al., 2014; Konturek et al., 2015; Powell et al., 2017; Zhu et al.,
2017; Martin et al., 2018; Ambrosini et al., 2019). Perturbations
of the BGA associated with non-communicable neurological
diseases – to what degree, the precise mechanism involved,
and their appropriate therapy – are not yet well understood.
Many studies on the role of microbiota in the pathogenesis of
neurodegenerative/psychiatric diseases exist, however, and their
main findings are summarized in Table 1.

The focus of this review is on the brain–gut (“top-
down”) direction of the BGA. In particular, perturbations
of brain metabolism induced by invading bacteria and, as a
consequence, gut dysbiosis. Within the contemporary paradigm

of a perturbed BGA, most of the relevant research centers on non-
communicable neurological diseases, synonymous with a slow,
gradual progression of neuroinflammation. However, the link
between the brain–gut concept and CNS bacterial infection(s)
is less prevalent in the literature, and hence the focus of this
review. The most recent and comprehensive review of the
BGA was by Cryan et al. (2019). However, only a very small
section, amounting to half a page, discusses infections and the
brain, even though bacterial penetration of the blood–brain
barrier (BBB), and subsequent infection, leads to a cascade of
events within the brain, modulating a feedback effect on the
host gut-microbiome (Dando et al., 2014; Bauer et al., 2016;
Martin et al., 2018). Bacterial infection(s) of the CNS induce an
inflammatory response via glia mediators, pivotal to establishing
communication between the host’s immune system and the brain
(DiSabato et al., 2016) and, ultimately, generating sustained
feedback on the BGA (Geyer et al., 2019).

As a proof of a novel concept for the BGA, we use three
previously validated immunological CSF markers of tuberculous
meningitis (TBM) – vascular endothelial growth factor (VEGF),
interferon-gamma (IFN-γ), and myeloperoxidase (MPO) – to
model/predict the metabolic changes, and are the basis for
postulating a metabolic cascade, expected within the brain of
a TBM patient. It is well known that important diagnostic
and prognostic information related to alterations in metabolic
cascades and disruption of homeostasis can be characterized
through metabolite profiling of urine (An and Gao, 2015; Emwas
et al., 2015). Hence, logic dictates that if the BGA exists then
the impact of chronic CNS bacterial infection(s) (such as TBM)
should be reflected in the host’s urine.

BRAIN–GUT CONCEPT

According to the brain–gut (“top-down”) concept, the brain
can alter the community structure and function of the
gut-microbiome in a bidirectional interaction feedback loop,
characterized by continuous communication between the CNS
and the GIT (Zhu et al., 2017; Karol and Agata, 2019).
The GIT is a highly complex organ involved in multiple
dynamic physiological processes, while interacting with the gut-
microbiome – an extensive and diverse community of bacteria
(Parker et al., 2018). The brain nerves (e.g., vagus nerve), which
control unconscious tasks, run from the brainstem to the gut,
maintaining the physical bidirectional communication between
the CNS and intestinal wall. The brain-to-gut signaling pathway
affects host–bacteria interactions in the GIT by influencing
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TABLE 1 | Main findings from studies describing the role of microbiota in the pathogenesis of neurodegenerative/psychiatric diseases.

Disorders Main findings References

Neurodegenerative

Parkinson’s
disease (PD)

(i) Gut microbiota influence the activity of enteric neurons, affecting cellular α-synuclein (α-syn) secretion,
characterized by the accumulation and aggregation of α-syn in the substantia nigra (SN).

Braak et al., 2003

(ii) Gastrointestinal dysfunction is present in ∼80% of PD patients. Mulak and Bonaz, 2015

(iii) α-Synucleinopathy is suggested to be an early indicator of PD pathology. Nair et al., 2018

(iv) The vagal nerve, which serves as channel for α-syn from the ENS to the CNS, is crucial for the
communication between gut microbiota and the brain.

Ulusoy et al., 2013;
Scheperjans et al., 2015;
Fitzgerald et al., 2019

(v) Pathological hallmarks of PD are a loss of dopaminergic neurons in the SN and the presence of
cytoplasmic eosinophilic inclusions termed Lewy bodies (LBs).

Lebouvier et al., 2009

(vi) Immunolabeling with α-syn antibodies have become the reference standard in the assessment of LBs
and Lewy neurites in both the CNS and peripheral nervous system. Hence, α-synucleinopathy affects all
levels of the BGA.

Lebouvier et al., 2009

Alzheimer’s
disease (AD)

(i) AD is characterized by a deposition of amyloid beta (Aβ) followed by the formation of plaques,
characterized by a progressive decline in cognitive function.

Wang et al., 2014; Jouanne
et al., 2017

(ii) Gut microbiota produce amyloids which aid bacterial cell binding, and form part of the biofilm protecting
these from destruction by host immune factors.

Friedland and Chapman, 2017

(iii) Bacterial amyloid proteins exposure to the host, from the gut, may be detrimental since they prime of the
host’s immune system against endogenous production of neuronal amyloids in the brain.

Kowalski and Mulak, 2019

(iv) Bacterial lipopolysaccharides are increased in the neocortex and the hippocampus in AD. Zhao et al., 2017

(v) Calprotectin is indicative of inflammation and has be detected in elevated amounts in the CSF, brain and
fecal matter of AD patients.

Kowalski and Mulak, 2019

Multiple
sclerosis (MS)

(i) MS is a demyelinating disease, clinically associated with autoimmune disease. Progressive degradation of
the integrity of the epithelia that comprise cellular barriers essential to maintaining the integrity of both
intestine and CNS, have been associated in MS patients suffering from autoimmunity, resulting in paralysis
and other related symptoms of MS.

Ochoa-Repáraz and Kasper,
2014; Dendrou et al., 2015;
Ochoa-Repáraz et al., 2018

(ii) Clinical signs of MS are relapse of sensory, motor and cerebellar complications; while an acute disease
stage is a characteristic feature of the relapsing-remitting MS (the latter of which are often diagnosed with
neuronal dysfunction).

Johnston and Joy, 2001;
D’Amico et al., 2016; Connick
et al., 2018

(iii) Secondary-progressive MS develops and transcends into progressive neurological impairment. D’Amico et al., 2016

(iv) Dysbiosis affects the immunological responses of the host to the microbiota, as described in an
experiment where germ-free mice with an immune dysfunction, were characterized by an imbalance
between pro- and anti-inflammatory immune cells in the gut, where after colonization of the gut with
commensal microbes restored immune function.

Mazmanian et al., 2005; Kirby
and Ochoa-Repáraz, 2018;
Ochoa-Repáraz et al., 2018

Neuropsychiatric

Autism
spectrum
disorders (ASD)

(i) Dysbiosis in children with ASD has been show to contribute to both gastrointestinal and CNS
abnormalities.

Wang et al., 2011; Santocchi
et al., 2016

(ii) Short-chain fatty acid producing bacteria, and their metabolites, especially propionic acid, has been
indicated to adversely affect the CNS and contribute to autism behavior by modulating the BGA.

De Angelis et al., 2015

(iii) Behavioral abnormalities are accompanied by imaging abnormalities in the sensory and emotion
regulation regions of the brain.

Green et al., 2013

(iv) Abnormally elevated levels of lipopolysaccharides have also been associated with the pathogenesis of
autism.

Fattorusso et al., 2019

(v) 40% of ASD patients complain of GI symptoms; abnormalities such as chronic diarrhea, constipation,
vomiting, feeding problems, reflux and abdominal pain, as well as anxiety.

Mayer et al., 2014; Fattorusso
et al., 2019

(vi) Patients with ASD also have high fecal and urinary levels of bacterially derived p-cresol, and further
exposure to p-cresol has been shown to contribute to the severity of behavioral symptoms and cognitive
impairment in ASD.

Altieri et al., 2011; Persico and
Napolioni, 2013; Gabriele et al.,
2014

(vii) Optimized remedies that are practiced include rehabilitation, educational therapy and
psycho-pharmacological approaches.

Fattorusso et al., 2019

Depression,
anxiety, and
major
depressive
disorder (MDD)

(i) Pre-clinical studies of depression, anxiety and MDD indicate that the altered brain function associated
with these, can partly be attributed to disturbances in the gut microbiota composition.

Bercik et al., 2011; Park et al.,
2013; Jiang et al., 2015; Kelly
et al., 2016

(ii) Studies have shown that the microbiome has the capacity to influence on emotional behavior, and is
associated with various parameters relating to depression pathogenesis and severity.

Bercik et al., 2011; Clemente
et al., 2012; Cryan and Dinan,
2012

(iii) Hippurate, dimethylamine and dimethylglycine, all by-products of gut microbiota, have been detected in
abnormal concentrations in MDD patients which further substantiates the aforementioned observations.

Zheng et al., 2013, 2016

(iv) Increased severity in depression and anxiety have been noted following bacterial infection in patients. Naseribafrouei et al., 2014
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the enteric microbiota indirectly via an altered intestinal
permeability, or directly via signaling molecules released into
the gut lumen from immune and enterochromaffin cells, thereby
increasing motor, sensory and secretory modalities of the
GIT (Rhee et al., 2009; Grenham et al., 2011; Eisenstein,
2016). Those signaling systems that allow the brain, in this
crosstalk communication, to influence gut-microbiome functions
in the GIT, are: (1) the endocrine-immune system, (2) the
hypothalamus–pituitary–adrenal (HPA) axis, (3) the sympathetic
and parasympathetic arms of the autonomic nervous system
(ANS), and (4) enteric nervous system (ENS) (Rhee et al.,
2009; Grenham et al., 2011; Cong et al., 2015). These signaling
systems are interlinked systematically to form a complex reflex
network, with afferent and efferent fibers (O’Mahony et al.,
2011). Hence, activation of any of these signaling systems,
either alone or in combination, might influence the composition
and functionality of enteric microbiota (Rhee et al., 2009). For
instance, under conditions of chronic stress the brain recruits
these same mechanisms, by activation of the HPA axis in the
brain, to regulate cortisol secretion. Cortisol in turn affects
various immune cells (including cytokine secretion) locally in the
gut, subsequently inducing changes to microbiota composition,
and increasing the gastrointestinal permeability (de Punder and
Pruimboom, 2015; Kelly et al., 2015; Farzi et al., 2018). Hence, an
exceedingly complex array of signaling systems, all interlinked,
lies between the brain and gut in the “top-down” concept (Aziz
and Thompson, 1998; Collins and Bercik, 2009; O’Mahony et al.,
2009; Forsythe et al., 2014; Khlevner et al., 2018; Weltens et al.,
2018; Zhao et al., 2018).

The CNS is well shielded by the BBB, the major site of blood–
CNS exchange. The barrier comprises microvascular endothelial
cells, astrocytes and pericytes, and is tasked with the regulated
passage of molecules into and out of the brain (Abbott et al.,
2010; Sochocka et al., 2017b). Neurotropic bacteria are capable
of evading host defenses, gaining access to the CNS (Dando
et al., 2014), with >95% of brain abscesses caused by bacterial
infection(s) (Sonneville et al., 2017). Furthermore, the brain may
become particularly susceptible to bacterial infection(s), if the
BBB is chronically compromised by an initial infection (Mendes
et al., 1980; Cantiera et al., 2019). Various brain cells – microglia
(resident macrophages), endothelial, ependymal, neuronal and
glial (astrocytes and oligodendrocytes) – convey innate immune
molecules that prompt the recruitment of leukocytes into the
infected CNS compartments, in order to combat invading
neurotropic bacteria (Klein et al., 2017). This process results in
a series of initial neuroinflammatory events within the brain,
as well as phagocytosis of the infecting bacteria, in an attempt
to control disease progression. Neuroinflammation in the CNS
is mediated by the production of cytokines and chemokines,
that are pivotal in the coordinated communication between
the immune system and the brain (DiSabato et al., 2016). The
host’s inflammatory reaction in the CNS is initiated by the
recognition of the invading pathogens, which in turn leads to
the local production of mediators by the glial cells comprising
microglia and astrocytes (Grandgirard et al., 2013). Thus, acute
inflammatory feedback is triggered by rapid and early activation
of mediators released by activated glial cells in the CNS due

to the infectious agent. However, when the presence of an
infectious agent persists, a chronic state of inflammation within
the brain results (Sochocka et al., 2017a) and the activated
glial cells are altered beyond “normal” proportions, which
results in progressive neurodegeneration (Kempuraj et al., 2017;
Sochocka et al., 2017a). Pattern recognition receptor (Newton
and Dixit, 2012; Suresh and Mosser, 2013) activation initiates
the release of pro-inflammatory cytokines and chemokines, in
order to modulate the immune response, leading to pleocytosis
of white blood cells (Janowski and Newland, 2017). This in
turn triggers an increased BBB permeability and the influx
of leukocytes from the blood into the CNS at the site(s)
of infection (Waisman et al., 2015; Kempuraj et al., 2017).
Although this is the mechanism by which the brain attempts
to restore homeostasis and protect itself against the invading
pathogen (More et al., 2013), the chronic production of immune
cells induces neurodegeneration. Since activated microglia have
both neuroprotective and neurotoxic functions (Kim, 2003;
Nimmerjahn et al., 2005; Dando et al., 2014; Liechti et al.,
2015; Doran et al., 2016), various toxic molecules released by
the microglia during the immune response may also inflict
neuronal injury.

BACTERIAL INFECTIONS OF THE CNS
AND THEIR EFFECT ON THE
BRAIN–GUT AXIS

Most bacterial CNS infections present acutely, including subacute
and chronic forms. Common acute bacterial CNS infections
involve Streptococcus agalactiae, Gram-negative bacilli including
Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes,
Neisseria meningitidis, and Streptococcus pneumoniae (Durand
et al., 1993; Gray, 1997; Grandgirard et al., 2013; Zhou,
2019), while subacute and chronic bacterial CNS infections,
besides Mycobacterium tuberculosis, involve Borrelia burgdorferi,
Leptospira interrogans, Treponema pallidum, Mycobacterium
leprae. Microbial pathogens can gain entry into CNS by
penetrating the BBB or via the olfactory (Kristensson, 2011). The
nasopharynx is the usual portal of entry for major meningeal
pathogens. Pathogens penetrate the olfactory epithelium, and
could potentially cross epithelial barriers into the subarachnoid
space; compromising the epithelial tissue by exposure to bacterial
virulence factors, directly infecting the olfactory sensory neurons
(Dando et al., 2014; Rey et al., 2018). Meningeal invasion
subsequently follows via penetration of the cellular barriers of
the CNS. The putative cascade of events caused by bacterial
infection(s) of the brain that alter permeability of the gut –
discussed in detail below, ultimately leads to dysbiosis.

(1) Within the cascade, the first step of bacterial invasion
involves transitioning across the compromised BBB into
the subarachnoid space. Pathogens can cause disruption
of the BBB, which enables their passage into the brain.
The various host defenses are usually inadequate to
control the infection. Leukocytes traverse the BBB and
patrol the brain parenchyma under normal conditions.
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During inflammation, as result of infection, the BBB
junctions (adherens and tight) that regulate the flux of ions,
polar molecules, and macromolecules from the systemic
circulation can be compromised, thus traffic is greatly
increased at these junctions. Bacteria may cross the BBB
by transcellular penetration after bacterial adhesion to
endothelial cells or via infected leukocytes. Pinocytosis,
increased by leukocytes combating bacteria that might
have invaded following disruption of tight junctions
or via the “Trojan horse” mechanism – phagocytes
infected with the pathogen transverse the BBB (Kim,
2003; Pulzova et al., 2009). Leukocytes, activated by
inflammatory molecules released during infection, cross
the BBB by a multistep process that involves attachment to,
and invasion through, the post-capillary venule wall and
the surrounding endothelial and parenchymal basement
membranes which differ in their laminin composition and
permeability (Owens et al., 2008; Kristensson, 2011; Dando
et al., 2014). During infection of the CNS various acute
pathological events may occur which further compromise
the CNS. The brain parenchyma is populated by resident
immune cells, the microglia, which are highly specialized
tissue macrophages.

(2) Microglia cells, the primary immune effector cells in
the brain, continuously survey the brain parenchyma
and respond to very subtle alterations in their
microenvironment and in the brain’s structural integrity
(Nimmerjahn et al., 2005). Microglia are highly motile
immune effector cells in the brain that respond to neuronal
infection and damage. The role of microglia in a healthy
brain, along with immediate reaction to brain damage, is
paramount in response to the prevention of any kind of
major brain damage. Microglia are considered essential
for communication in the intrinsic immune system
of the CNS, as well for intercellular crosstalk between
astrocytes and neurons (Kreutzberg, 1996; Stollg and
Jander, 1999; Streit, 2002; Streit et al., 2004; Akiyoshi
et al., 2018). Microglia maintain CNS health via mediators
involved in the function of neurogenesis, modeling of
synapses, excitotoxicity prevention and regulation of
neuroinflammation. Short-chain fatty acids derived from
the gut-microbiome play a pivotal role in the function
and maturation of microglia. Hence, microglia are crucial
mediators in the interaction between the CNS and the gut
microbiota (Wang et al., 2018; Abdel-Haq et al., 2019).

(3) Bacterial cell wall material, enzymes, and toxins cause
direct injury to neurons and indirect damage by increasing
vascular permeability that causes edema and further
injury. Microglial cells respond to bacterial pathogens
and neuronal injury by the production of reactive oxygen
species (ROS), nitrous oxide, and peroxynitrite. Immune
response also contribute to neurotoxicity via release of
proteases and excitatory amino acids. Several signaling
molecules, such as catecholamines, serotonin, dynorphin
and cytokines, used by the host for neuronal and
neuroendocrine signaling, are also likely to be secreted into
the gut lumen (Rhee et al., 2009).

(4) Bacterial pathogens may target neurons and glial cells,
inducing inflammation and exerting direct cytopathic
effect due to the release of their products. Thereafter, brain
cell apoptosis begins to occur. For example, Pneumolysin
and hydrogen peroxide (H2O2) are direct triggers of
Streptococcus pneumoniae. H2O2 rapidly diffuses through
eukaryotic cell membranes to damage intracellular
targets thus increasing intracellular Ca2+, damaging
mitochondria, and causing the release and translocation
of mitochondrial apoptosis-inducing factor. Increased
intracellular ROS and Ca2+ precedes morphologic changes
that lead to brain cell apoptosis (Mitchell and Andrew,
1997; Lipton and Nicotera, 1998; Braun et al., 2002;
Janowski and Newland, 2017). Brain cell apoptosis leads
to neuronal injury in the form of brain manifestations,
such as: basal ganglia and thalami communication that
become obstructive, cranial nerve dysfunction, minor
focal neurological signs, infiltrates of inflammatory cells,
exudation of protein-rich fluid, and edema (Gray, 1997;
Hussein and Shafran, 2000; Van de Beek et al., 2004;
Østergaard et al., 2005; Al Khorasani and Banajeh, 2006;
Hähnel and Bendszus, 2009; Abdulrab et al., 2010).

(5) Pathogenic bacteria that causes meningitis exhibit
antiphagocytic capsular polysaccharide ability which
enables survival within the blood. Hence, changes in the
gut involves hematogenous dissemination of bacteria,
initiating meningitis via mucosal adhesion of the organism
and subsequent systemic invasion (Seib et al., 2009; Harvey
et al., 2011; Dando et al., 2014). The intestinal immune
system is tasked to maintain homeostasis within the
gut-microbiome via the processes of minimizing direct
contact between intestinal bacteria and the epithelial cell
surface (stratification), and confining penetrant bacteria to
intestinal sites and limiting their exposure to the systemic
immune compartment (compartmentalization) (Hooper
et al., 2012; Macpherson and McCoy, 2013). Mucosal
surfaces represent the major interface and constitute the
point of entry of most infectious pathogens, and are in
contact with potentially injurious antigens (Janeway et al.,
2001; Kaetzel, 2005).

(6) Stratification of intestinal bacteria on the luminal
side of the epithelial barrier also depend on secreted
immunoglobulin A (IgA). IgA specific for intestinal
bacteria is produced with the help of intestinal dendritic
cells that sample the small numbers of bacteria penetrating
the overlying epithelium. Some meningeal pathogens
produce proteases that cleave to human immunoglobulin
subclasses (e.g., IgA1), allowing adherence of bacterial
strains to mucosal surfaces and crossing the mucosal
barrier (Lorenzen et al., 1999; Hooper et al., 2012; Brooks
and Mias, 2018). IgA1 proteases separate the pathogen-
recognition (Fab) and host signaling (Fc) components
of the antibody, thereby severing communication with
host defense cells. This also leaves pathogens coated
with cleaved Fab fragments and camouflaged from the
immune system. IgA1 proteases disable this important
defense immune molecule allowing for direct escape of the
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invading pathogen from host immunity (Woof and Russell,
2011; Marshall et al., 2017). This communication/crosstalk
involving the gut microbiota from the CNS encompasses
several channels along various neural, enteric and immune
systems. Sensory and motor fibers from the vagus nerve
connect the gut and the brainstem, and serve as a conduit
for neural signals involving the microglia. Increased
CNS inflammation signals vagal efferent nerves to relay
information about the immune status of the brain to
the gut and the gut microbes. In the same manner, vagal
afferents transduce and relay information from the GIT
to the CNS, signaling microglia via increased production
of various pro-inflammatory cytokines that modulate
neuroinflammation (Goehler et al., 1999, 2005; Borovikova
et al., 2000; Forsythe et al., 2014; Abdel-Haq et al., 2019).

URINE REFLECTS DYSBIOSIS WITHIN
BACTERIAL CNS INFECTION(S)

The CNS can communicate with the gut via signaling molecules
carried by the CSF and blood, which in turn may alter gut
composition and physiology. Evidence for this communication
between the gut and the brain includes the following: (1) it
is well known that toxins or abnormal metabolites that enter
the bloodstream are ultimately removed from the blood, in
an attempt to maintain a state of cellular homeostasis, and
excreted via the urine (Li, 2015; Wu and Gao, 2015); (2)
biomarkers for various neurological diseases are detected using
body fluids including CSF, blood and urine (An and Gao,
2015). The CSF transfers waste products to the blood, which
is filtered by the kidneys, whereby blood-borne waste products
accumulate in the urine and are then excreted (Wu and Gao,
2015). It is also well known that various perturbations or other
physiological changes in the human body – such as an altered
microbiome, for instance – may change what is considered
a normal urinary metabolome fingerprint into a new disease-
specific fingerprint (Want et al., 2010; Emwas et al., 2015;
Wu and Gao, 2015). There exists well-described examples in
the literature of metabolites found in urine that are associated
with microbial metabolism or microbial–host co-metabolism and
found to change in response to diseases where gut dysbiosis is the
predominant perturbation (Holmes et al., 2011; Vernocchi et al.,
2016; Dumas et al., 2017; Malatji et al., 2019). Furthermore, urine
is considered the preferred sample matrix for the detection of
certain metabolites, which are otherwise difficult to detect from
a blood sample due to their low concentrations. Moreover, urine
collection is considered relatively non-invasive (Bouatra et al.,
2013; Li, 2015). For these reasons, the metabolomics of urine
has been successfully exploited for new biomarker discovery in
various diseases, including neuropsychiatric disorders, such as
schizophrenia, major depressive disorder, bipolar disorder, and
autism spectrum disorder (Yap et al., 2010; Cai et al., 2012; Zheng
et al., 2013; Chen et al., 2014), and various neurodegenerative
diseases, such as PD, AD, and MS (Luan et al., 2014). Based
on the premise that the urine contains the accumulation of all
end-product metabolites of the body, logic dictates that chronic

bacterial infection(s) of the CNS should, in principle, result
in persistent feedback on the gut via the BGA, communicated
via the CSF and blood, leading to dysbiosis and an altered
urinary metabolome.

In research on infectious diseases, urinary profiling has
received much attention, in particular regarding pulmonary
tuberculosis (TB) – a disease caused by Mycobacterium
tuberculosis (Mtb) – about which several studies have been
conducted using urine for the detection of clinically relevant
biomarkers (Banday et al., 2011; Bonkat, 2012; Das et al., 2015;
Luies and Loots, 2016; Luies et al., 2017; Preez et al., 2017;
Isa et al., 2018). The detection of lipoarabinomannan (LAM),
for instance, a Mycobacterium-specific liposaccharide from the
Mtb cell wall, is an example of the basis of a well-studied
commercial ELISA assay that shows promise for its diagnostic
use in urine with a reported sensitivity of 74% and specificity
of 86.9% in a study performed on 148 confirmed TB patients
(Tessema et al., 2001); a sensitivity of 80.3% and specificity of
99% in a study conducted on 132 confirmed TB patients (Boehme
et al., 2005); and a sensitivity of 44% and specificity of 89% in
a study conducted on 195 TB-positive patients in a high-HIV
prevalence setting (Mutetwa et al., 2009). Within TBM cases
(see Box 1), the direct LAM-ELISA assay of CSF has similarly
shown a sensitivity of 64% and specificity of 86.9% in a study
including 50 TBM cases in a high-HIV-prevalence setting (Patel
et al., 2009); and a sensitivity of 43% and specificity of 91% for
definite TBM cases in a study performed on CSF collected from
the 4th ventricle, post-mortem (Cox et al., 2015). However, Bahr
et al. (2015) determined that this LAM-based TB antigen test
yielded negative results for all the CSF samples (∼100) analyzed
in their study, of whom 18 had a confirmed diagnosis of TBM.
In a short communication the following year, Bahr et al. (2016)
voiced their concern about the reliability of the LAM assay for

BOX 1 | Tuberculous meningitis (TBM).
TBM, a severe infectious disease caused by Mtb, is a chronic form of bacterial
meningitis (BM), resulting in chronic neuroinflammation often associated with
irreversible neurological damage/dysfunction. TBM develops in severity in
progressive stages (TBM stages I, II and III), and a uniform case definition
(definite, probable and possible TBM) for diagnosis has been standardized
(Marais et al., 2010). TBM is the most common form of CNS-tuberculosis (TB)
(Van Well et al., 2009) and is considered severe due to its high associated
prevalence of mortality and morbidity (Rohlwink et al., 2019). Transmitted via
infectious aerosols into the lung, Mtb may enter the circulatory system,
traverse the BBB and then enter the brain meninges (Rock et al., 2008;
Nicholas et al., 2012). Microglia, the resident macrophages of the brain, are
the cells preferentially infected by the Mtb bacilli (Rock et al., 2005). The Rich
foci (Rich and McCordock, 1933), lesions that form in the meninges,
eventually rupture, spilling the Mtb microbes, cytokines and chemokines into
the subarachnoid space, resulting in infection and extensive inflammation of
the meninges (Dastur et al., 1995; Donald et al., 2005; Rock et al., 2008). The
pathogenesis of TBM is dynamic and Mtb bacteria exhibit a resilience that
allows them to survive hostile environments, which results in a persistent
neuroinflammatory response if not treated correctly and swiftly (de Carvalho
et al., 2010; Beste et al., 2011, 2013; Warner, 2015). Despite all efforts
toward improved solutions to curbing TB since the discovery of Mtb as the
causative agent in 1882, there is still a very limited understanding of Mtb
infection within the host, especially so for TBM, and hence the need for new
biomarkers better describing this.
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use on CSF for diagnosis of TBM, and also discussed the study by
Cox et al. (2015). Ultimately, the LAM-ELISA, like many other
TB diagnostic tests, is not sufficient as a stand-alone assay for a
definitive diagnosis of TB.

Of particular interest, as it pertains to our review, is that
bacterial antigen-specific assays perform particularly poorly
when used for diagnosing bacterial CNS infection from urine
collected from patients, even in documented septicemia cases
(Barnes et al., 1998). Barnes et al. postulated that the reason for
this is that these complex polysaccharide antigens break down
before excretion in urine. Using the well-tested LAM-ELISA
assay, Blok et al. (2014) analyzed urine collected from 21 TBM
cases and obtained a sensitivity of only 4.8% and specificity of
93.1%, and hence concluded that urinary LAM detection offers
little value for the diagnosis of TBM. Although LAM is detectable
in the urine of TB cases and the CSF of TBM patients, it is
almost undetectable in urine collected from patients with TBM.
A postulated reason for this inconsistency is the inability of LAM
to transgress the BBB. This hypothesis can likely be extended
to complex bacterial antigens in general, as supported by the
results of Barnes et al. (1998). We therefore conclude from these
Mtb-antigen-specific assay studies that the diagnosis of bacterial
infection(s) of the CNS, based on the detection of bacterial
antigens in urine, is not a viable option.

For this reason, we believe that the detection of the catabolic
components (metabolites) of complex signaling pathways is a
better option for the accurate and sensitive differential diagnosis
of bacterial CNS infection(s), using urine collected from patients.
Mason et al. (2016) provided proof-of-concept by using an
untargeted gas chromatography–mass spectrometry (GC-MS)
metabolomics approach to analyze the urine of 12 confirmed
TBM cases, 19 non-TBM cases (sick controls proven negative
for both TB and meningitis) and 29 controls. This explorative
study identified urinary metabolite markers that showed two
important changes in the TBM cases: (1) a dysfunctional host
metabolism, and (2) indicators of an altered host–microbe
response in TBM (Mason et al., 2016). The indicators of
dysfunctional host metabolism included: lipolysis and ketosis
(elevated 2-hydroxybutyric acid, 3-hydroxybutyric acid, 2-
methyl-3-hydroxybutyric acid, and acetoacetic acid); perturbed
energy metabolism (elevated branched-chain amino acid
derivatives, citric acid cycle intermediates and vanillylmandelic
acid); liver damage (from the presence of 4-hydroxyphenyllactic
acid and 4-hydroxyphenylacetic acid, and highly elevated
4-hydroxyphenylpyruvic acid). Of greater importance to this
review was the discovery of those markers serving as indicators
of an altered host–microbe response in TBM, as is discussed in
greater detail below.

First, Mtb-induced changes to tryptophan metabolism was
evident, due to the presence of elevated urinary concentrations
of indole-3-acetic acid, 5-hydroxyindole acetic acid, tryptophan,
kynurenic acid and quinolinic acid, accompanied by significantly
elevated levels of N-acetylanthranilic acid (the N-acetylated
product of anthranilic acid; Paul and Ratledge, 1970, 1971, 1973),
the latter of which is a novel microbial metabolite indicative
of gut microbiota involved in the perturbed host’s tryptophan
metabolism (Mason et al., 2016). Using a similar but more

sensitive metabolomics analytical platform (GC× GC–TOFMS),
Luies and Loots (2016) independently compared urine collected
from 46 confirmed TB adults to 30 TB-negative healthy controls,
and identified similar urinary markers indicative of the same
alterations for the host’s tryptophan metabolism. They attributed
these to the result of an inflammatory response due to releases of
cytokines, specifically IFN-γ. Hence, an inflammatory response
induced by Mtb-infection, whether in the lungs or brain, results
in the release of IFN-γ, which stimulates the upregulation
of tryptophan catabolism (Yoshida et al., 1981; Taylor and
Feng, 1991; Blumenthal et al., 2012; Hashioka et al., 2017; Lu
et al., 2017). The presence of increased urinary tryptophan
catabolites therefore contributes to a differential diagnosis
of Mtb-based infection, but they do not serve as uniquely
distinctive biomarkers.

Second, Mtb–host related metabolites were identified. In
particular, significantly elevated concentrations of methylcitric
acid were speculated to be likely to have originated from
the well-characterized methylcitrate cycle of Mtb (Muñoz-
Elías et al., 2006; Savvi et al., 2008). Interestingly, a positive
correlation between urinary quinolinic acid and methylcitric acid
concentrations was observed by Mason et al. (2016) in all the
TBM patients’ urine samples collected both before and after Mtb-
specific treatment commenced. Hence, the roles of quinolinic
acid and methylcitric acid in the host are intertwined during Mtb
infection, and its treatment.

Lastly, urinary metabolite markers associated with alterations
to the gut-microbiome were identified as a major consequence of
perturbed metabolism associated with TBM. Of the significant
urinary metabolites, those that are linked to gut microbiota
were identified as uracil, hippuric acid, 4-hydroxyhippuric acid,
phenylacetylglutamine and 4-cresol (Mason et al., 2016). Luies
and Loots (2016) also identified elevated urinary concentrations
of oxalic acid and rhamnulose, as evidence for an altered
gut-microbiome in pulmonary TB. In a follow-up study
by Luies et al. (2017), the failure of treatment of TB via
standard anti-TB combination therapy was characterized
by an imbalanced gut-microbiome, with the two largest
predictors for a poor treatment outcome being two altered
micobiome urinary markers [3,5 dihydroxybenzoic acid and
3-(4-hydroxy-3-methoxyphenyl)propionic acid]. Additionally,
another independent GC-MS metabolomics longitudinal
treatment study conducted on TB patient urine (Das et al.,
2015) showed a treatment-dependent trend of a deregulated
tyrosine–phenylalanine axis, also associated with an abnormal
microbiome. Considering these urinary TB metabolomics
studies, although not yet fully understood, strong evidence exists
for the association of TB disease and an altered microbiome,
detectable via altered metabolite markers present in urine
collected from TB patients.

Independent urinary metabolomics studies on pulmonary TB,
therefore, although not related to the CNS but still involving
an infectious disease distinguished by chronic inflammatory
response(s), support the findings of Mason et al. (2016) in
characterizing chronic neuroinflammation from TBM through
urinary profiling. Herein lies the strength of untargeted
metabolomics studies – the complementary evidence of three
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independent, open-minded analyses of metabolomics data
obtained from urine on a similar analytical platform with a
common, general hypothesis of the importance of the gut
microbiota. For the remainder of this review, we focus on TBM
and take a validated 3-marker CSF immunological signature of
TBM and discuss it in conjunction with previously identified,
altered urinary metabolomics markers of TBM.

VALIDATED 3-MARKER CSF
IMMUNOLOGICAL SIGNATURE OF TBM

Bacteriological confirmation of TBM from CSF is not always
possible, especially in children, so that diagnosis is mostly
based on a combination of clinical findings, CSF analysis and
radiological results (Marais et al., 2010). Since various biomarker-
based tests of the host have shown promise in extrapulmonary
pleural-TB diagnostics, it has been thought that these same tests
could also be used to diagnose TBM (Chegou et al., 2008).
Recent technology has allowed for the screening for many
such biomarkers, using as little as 3 µL of CSF via Luminex
multiplex cytokine-beaded arrays. With clinical application, host
biomarkers could potentially be added to the current TBM
diagnostic armamentarium, in order to provide an earlier and
more efficient diagnosis.

A preliminary 3-marker CSF biosignature, comprising VEGF,
IL-13 and cathelicidin LL-37 (cut-off values 42.92, 37.26, and
3221.01 pg/mL, respectively), correctly diagnosed childhood
TBM with a sensitivity and specificity of 52 and 95%, respectively
(Visser et al., 2015). The same 3-marker CSF biosignature, tested
on a different cohort of 23 children, however, revealed lower
sensitivity (30.4%), yet a similar specificity (91.7%), with different
cut-off values. In this same cohort of 23 children with TBM and
24 controls, VEGF, IFN-γ, and MPO provided good accuracy
with an AUC of 0.97, up to 91.3% sensitivity and up to 100%
specificity, with cut-off values of >9.4, >99.5, and >25,823
pg/mL, respectively (Manyelo et al., 2019). Hence, VEGF, IFN-
γ, and MPO in combinaton was validated by Manyelo et al.
(2019) as a 3-marker CSF immunological signature of TBM.
The background behind these three markers is now described,
in order to provide insights into how they led to our predictive
metabolic model.

VASCULAR ENDOTHELIAL GROWTH
FACTOR (VEGF)

VEGF, a 46 kDa glycosylated homodimeric cytokine protein,
is expressed intracellularly in several cell types, including
microglia (Cohen et al., 1996). It is a potent growth factor
inducer of vascular endothelial cell proliferation, vascular
permeability (Soker et al., 1997) and angiogenesis (Connolly,
1991; Yancopoulos et al., 2000). Endothelial changes associated
with VEGF include: (1) separation of intercellular tight
junction, (2) increased vesicle transport, and (3) formation of
vesico-vacuolar organelles, all of which results in increased
macromolecular transport over the endothelial barrier (Feng

et al., 1996; Wang et al., 2001). Classically associated with chronic
inflammatory diseases, such as rheumatoid arthritis (Fava et al.,
1994), VEGF is also associated with the increased permeability,
and subsequent dysfunction, of the BBB (Dobrogowska et al.,
1998; Proescholdt et al., 1999; Harrigan et al., 2002) and in
the pathogenesis of brain edema related to ischemia, trauma,
vasculitis and tumors (Van Bruggen et al., 1999; Viac et al., 1999).
VEGF exhibits direct neuroprotective effects during in vitro
ischemia (Jin et al., 2000). Another study showed that topical
application of VEGF on the cerebral cortex induces a reduction
of infarct size in a rat model of transient cerebral ischemia
(Hayashi et al., 1998).

In 2001, Van der Flier et al. showed no detectable CSF
VEGF concentrations in patients with viral meningitis (VM),
whereas 30% (11/37) of those patients with bacterial meningitis
(BM) displayed detectably elevated concentrations of CSF VEGF
(ranging from <25 to 633 pg/mL). Furthermore, elevated VEGF
has been associated with an upregulation of MMP-9 (Wang and
Keiser, 1998) – see Box 2 – which additionally contributes to
BBB disruption in BM (Paul et al., 1998). Van der Flier et al.
(2001) also indicated the VEGF index in BM (calculated as
[VEGFCSF/VEGFplasma]/[albuminCSF/albuminplasma]) to be 6.2
[0.6–42], which indicates that CSF VEGF is a result of intrathecal
production. This increase in CSF VEGF could be associated with:
(1) a change in mental status, (2) seizures, (3) an elevated CSF
WBC count (with neutrophils being the main source of VEGF),
(4) elevated CSF protein and higher CSF:serum albumin ratios
(marker of BBB breakdown), (5) severe BBB disruption, and,
eventually, (6) death.

Within TBM, VEGF is localized in the microvessels and
perivascular cells (Matsuyama et al., 2001). Tumor necrosis-alpha
(TNF-a), associated with pathogenesis of TBM (Tsenova et al.,
1999), is a known inducer of VEGF (Ryuto et al., 1996). In a
follow-up investigation conducted by Van der Flier et al. (2004),
the prevalence of elevated CSF VEGF concentrations in TBM
patients was 58% (15/26) (at 98 ± 31 pg/mL) with a calculated
VEGF index of 486 ± 976, the latter once again indicative of

BOX 2 | Matrix metalloproteinases (Kolb et al., 1998; Leib et al., 2000;
Shapiro et al., 2003; Lee et al., 2004).
MMPs are a large family of zinc-dependent proteolytic enzymes. Their main
function involves remodeling of the connective tissues by degrading
extracellular matrix molecules and are regulated by tissue inhibitors of
metalloproteinases. These many compounds are subdivided according to
their main substrates:

• Gelatinases: MMP-2, MMP-9.
• Collagenases: MMP-1, MMP-8, MMP-13.
• Stromelysins: MMP-3, MMP-10, MMP-11.

MMP-2 and MMP-9 digest type IV collagen and are subsequently implicated
in the breakdown of the BBB via dissolution of the basement membrane
underlying the endothelial cells. MMP-2 and MMP-9 production is strongly
correlated with the development of neurological sequelae and induced by
pro-inflammatory cytokines (IFN-γ) and other mediators (such as MPO). The
amount of MMP present in CSF varies, depending on the severity of
inflammation. MMP-2 and MMP-9 are detected in elevated amounts in the
CSF of meningitis cases (TBM, VM and BM), with MMP- 9 correlating strongly
with the number of neutrophils in VM.

Frontiers in Neuroscience | www.frontiersin.org 8 April 2020 | Volume 14 | Article 296144

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00296 April 17, 2020 Time: 19:21 # 9

Isaiah et al. CSF Metabolic Response to Mycobacterium

TABLE 2 | Summary of CSF VEGF concentrations in different types of meningitis.

TBM BM VM

CSF VEGF 142.8 pg/mL
[28.1–225.7]a

144.4 ± 75.1 pg/mLd

106 ± 50 pg/mL
[44.9–336]e

14.5 pg/mL
[8.7–86.5]a

47 ± 9 pg/mL
[<10–174]b

37.5 pg/mL
[<20–160]c

80.1 ± 49.5 pg/mLd

27.9 pg/mL
[7.9–48.7]a

27.6 ± 26.3 pg/mLd

aVisser et al. (2015). bVan der Flier et al. (2005). cCoenjaerts et al. (2004).
dMatsuyama et al. (2001). eHusain et al. (2008).

intrathecal production. Van der Flier et al. furthermore associated
the elevated concentrations of CSF VEGF in TBM with: (1)
significantly greater mononuclear cell counts; (2) elevated CSF
protein and higher CSF:serum albumin ratios; (3) not being
significantly correlated with the elevated ICP, decreased CSF
glucose nor with cerebral infarct on a CT scan; and (4) the
inhibition explained the clinical effect of adjuvant corticosteroid
therapy. In 2008, Hussain et al. similarly indicated significantly
increased CSF VEGF levels (106 ± 50 pg/mL [44.9–336
pg/mL]) in TBM, accompanied by a strongly positive correlation
between microvessel density and VEGF expression. Additionally,
the investigation revealed that in excised tuberculomas: (1)
VEGF expression was highest in regions of the granulomatous
reaction; (2) no VEGF was present in the areas of caseous
necrosis; (3) areas of caseation were devoid of angiogenesis;
and (4) inflammatory mononuclear cells were positive for
VEGF antigen (these included epitheloid cells, histiocytes
and macrophages). Furthermore, immunohistochemical staining
of excised tuberculoma demonstrated an elevated expression
of VEGF in the granulomatous areas, with positivity in
inflammatory mononuclear cells, Langhan’s giant cells, as well as
reactive astrocytes and fibrocytes.

Matsuyama et al. (2001) and Visser et al. (2015) both indicated
CSF VEGF to be significantly increased in TBM compared with
other types of meningitis (Table 2). Among the TBM cases,
CSF VEGF was additionally significantly higher in those patients
with hydrocephalus (196.3 ± 60.2 pg/mL vs. 119.8 ± 69.6
pg/mL) and there was a significant correlation with increased
CSF protein and CSF total cell counts (Matsuyama et al.,
2001). Visser et al. (2015) associated elevated CSF VEGF with
raised hydrocephalus and CSF protein (>1 g/L), along with
basal meningeal enhancement and hyperdensity in the basal
cisterns on non-contrast CT scans. Lastly, Matsuyama et al.
(2001) indicated that CSF VEGF localizes to microvessels and
perivascular cells in TBM.

MYELOPEROXIDASE

Myeloperoxidase (MPO), a heme enzyme (EC 1.11.1.7) and
pro-inflammatory mediator present in the primary granules of
polymorphonuclear leukocytes (PMNs), participates in oxygen-
dependent microbiocidal activity of PMNs and triggers oxidative
stress during acute and chronic inflammatory processes, resulting
in the production of ROS. MPO can be measured in CSF as

an index of inflammation (Liechti et al., 2014) and leukocyte
influx (Grandgirard et al., 2012). In a review by Ray and
Katyal (2016), MPO was clearly associated with the etiology of
neurodegenerative disorders.

MPO is synthesized in reaction to infection (Pohanka, 2013),
resulting in elevated ROS. The occurrence of oxidative stress in
meningitis patients is well-described in the literature (Koedel and
Pfister, 1999; Ray et al., 2000; Tsukahara et al., 2000; Christen
et al., 2001; Kastenbauer et al., 2002; Klein et al., 2006; Hamed
et al., 2009; Loro, 2009; Koedel et al., 2010; Mirić et al., 2010;
Barichello et al., 2011). Furthermore, significant increases in
MPO activity have been shown in BM-induced rats (Giridharan
et al., 2017), particularly within the hippocampus and frontal
cortex (Barichello et al., 2011, 2014). In a study of 59 pediatric
BM cases, Mirić et al. (2010) showed no significant correlation
between MPO and neutrophil count in CSF; however, CSF MPO
activity did correlate with various lipid peroxidation products.
Additionally, H2O2 levels in CSF were associated with elevated
BBB permeability, CSF albumin concentrations, and serum H2O2
concentrations. Lastly, it is important to note that MPO reacts
with cell matrix metalloproteinases (MMPs – see Box 2), or their
tissue inhibitors, and this is thought to contribute to the BBB
dysfunction seen in such cases.

Borelli et al. (1999) proved that purified MPO, in the
presence of H2O2, exerts a consistent killing effect on
Mtb, and that the MPO activity is both time and dose
dependent; it also requires chloride ions for efficacy. This
MPO–H2O2–Cl2 system produces hypochlorous acid (HOCl)
via activated leukocytes (Klebanoff, 2005), which in turn
serves as a strong, non-radical oxidant of a wide range
of biological compounds, although it is more selective than
hydroxyl radicals (Hampton et al., 1998), with the following
characteristics: (1) it has a preferred substrate selectivity
toward thiols and thioethers, (2) an ability to convert amines
to chloramines, (3) promotes chlorination of phenols and
unsaturated bonds, (4) oxidizes iron centers, (5) crosslinks
proteins, and (6) is membrane permeable. HOCl has also been
characterized as covalently modifying lipids and/or proteins,
resulting in local tissue damage and amplification of the
inflammatory cascade. Furthermore, HOCl, in the presence
of nitrite (NO2−) formed by stimulated PMNs, forms 3-
chlorotyrosine (3Cl-Tyr), and to a lesser degree, 3-nitrotyrosine
(3NO2-Tyr) and N-chlorotaurine (Eiserich et al., 1998). The
3Cl-Tyr is considered a specific marker of MPO-catalyzed
oxidation (Hazen and Heinecke, 1997), with GC-MS being
the preferred method for quantifying it (Hazen et al., 1997;
Winterbourn and Kettle, 2000). Other biomarkers of MPO-
derived HOCl include: chlorohydrins, protein carbonyls, anti-
HOP (hypochlorous acid-oxidized protein), antibodies, 5-
chlorocytosine, and glutathione sulfonamide. Each with their
advantages and disadvantages is described by Winterbourn
and Kettle (2000). Based on the analyses of CSF collected
from 79 confirmed pediatric BM cases, Rugemalira et al.
(2019) indicated that elevated ratios of 3Cl-Tyr:para-tyrosine
serves as a marker for MPO activation in CSF in pediatric
BM cases, and potentially also for grading the severity of
neuroinflammation. Furthermore, Rugemalira et al. (2019)
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also proved that 3NO2-Tyr can be used as a biomarker for
peroxynitrite formation and is associated with an unfavorable
outcome of BM. In a study of 59 children with confirmed
BM (Mirić et al., 2010), CSF MPO activity, although relatively
low, was significantly increased at baseline compared to
controls (n = 23), increasing even further by day 5 of
treatment. It was concluded that MPO may be involved in
the oxidative stress associated with BM, as well as potentially
contributing to BBB disruption. Marais et al. (2016) indicated
a significant increase in neutrophil-dependent inflammatory
response biomarkers, including MPO, in adult TBM and HIV
co-infection patients with paradoxical immune reconstitution
inflammatory syndrome. Lastly, Üllen et al. (2013) indicated
that BBB dysfunction associated with neuroinflammation caused
by MPO can be partially reversed by using para-aminobenzoic
acid (PABA) hydrazide, first shown by Forghani et al. (2012)
to effectively treat multiple sclerosis in mice. PABA (or vitamin
Bx) is non-essential for humans, but exhibits anti-fibrotic
properties. Fibrosis in the brain occurs via the proliferation
or hypertrophy of glial cells, such as microglia – microgliosis,
during neurotrauma caused by infection. Subsequently, PABA
may later be considered for its use as a possible adjunctive
therapeutic agent in TBM, since the inhibition of MPO has
been posited to be a valuable therapeutic approach to reduce
oxidative-stress-mediated damage in neurodegenerative diseases
(Green et al., 2004).

INTERFERON-γ

Interferon-γ (IFN-γ) is predominantly produced by CD4+ T
cells and functions by activating microglia, thereby stimulating
lymphocyte Th1 differentiation (Farrar and Schreiber, 1993)
and antimicrobial activity of the microglia (Mastroianni et al.,
1997), after infection. A plethora of literature studies report the
performance of IFN-γ release assays (IGRAs) for diagnosing TB
under different conditions. These studies are comprehensively
covered by systematic reviews and meta-analyses and include
applications to diagnosing: (1) latent Mtb infection (53 studies:
Diel et al., 2011); (2) latent Mtb infection in rheumatic patients
(11 studies: Ruan et al., 2016); (3) latent TB in patients with
autoimmune diseases under immunosuppressive therapy (17
studies: Wong et al., 2016); (4) active TB (27 studies: Sester et al.,
2011); (5) active TB among HIV-seropositive individuals (11
studies: Huo and Peng, 2016); (6) active TB in immunocompetent
children (15 studies: Laurenti et al., 2016), immunodiagnosis
of TB (75 studies: Pai et al., 2004); (7) active and latent
TB in HIV-positive populations (32 studies; Overton et al.,
2018); and (8) extra-pulmonary TB (22 studies: Zhou et al.,
2015). Similarly, several studies (Table 3) using IGRAs have
also been performed using CSF as a possible sample matrix
for diagnosing TBM, with the two main commercially used
IGRAs tested being T-SPOT.TB and QuantiFERON-TB. IGRAs
function by measuring the release of IFN-γ from T cells, after
in vitro stimulation with Mtb antigens, such as early secreted
antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-
10); they are influenced by (1) the antigenic load, (2) host

responsiveness to antigens, and (3) host–pathogen interactions
(Lu et al., 2017).

Consolidating from the literature, the CSF studies on IGRAs
as a diagnostic tool for TBM (Table 3), a weighted average of the
diagnostic performance of IGRAs (pooled from 326 TBM cases)
was calculated to give an overall average sensitivity and specificity
of 65 and 87%, respectively – insufficient for application as a
stand-alone diagnostic tool. On similar data, a meta-analysis of
6 studies from the literature, all using IGRAs conducted on CSF,
showed a pooled (156 cases) sensitivity of 77% (69–84%) and
specificity of 88% (74–95%) for TBM diagnostic applications
(Yu et al., 2016). Furthermore, IGRAs require 3–7 mL of
CSF, a volume often unobtainable, especially from children and
infants. Moreover, the measure of sensitivity and specificity is
dependent upon a pre-defined cut-off point which is currently
not yet standardized.

The use of IGRAs for the differential diagnosis of meningitis
has, however, yielded a practical outcome. Chonmaitree and
Baron (1991) analyzed CSF from 16 VM and 41 BM cases
and determined that elevated concentrations of IFN-γ were
present in 75 and 24% of these patient groups, respectively.
A review of the literature (1964–1991) by Chonmaitree and Baron
(1991) revealed a similar trend, showing elevated concentrations
of IFN-γ in 68% (133/196) of all VM patients (based on
11 studies), whereas in patients with BM, only 28% (59/189)
showed elevated IFN-γ in the pooled population (8 studies
used). Hence, patients with VM exhibit higher IFN-γ levels
than those with BM. Based upon quantified data in 50 patients
with VM, using a radioimmunoassay, Minamishima et al. (1991)
determined CSF IFN- γ to be on average 9.8 ± 7.5 UI/mL.
Minamishima et al. additionally suggested that IFN-γ produced
in the inflamed intrathecal space may be associated with the
pathogenesis of the disease, and associated the elevated CSF
IFN-γ levels with (1) CSF protein concentrations, (2) total cell
counts, and (3) number of febrile episodes. San Juan et al.
(2006), also using a radioimmunoassay on CSF collected from
patients, calculated a mean IFN-γ for definite (n = 12) and
probable (n = 8) TBM patients to be 28.7 ± 8.2 and 10.6 ± 2.8
UI/L, respectively. However, Ohga et al. (1994) showed only 3
out of the 13 BM patients investigated, and Kornelisse et al.
(1997) only 20 of 35 BM patients investigated, to have CSF
IFN-γ elevated to concentrations above the detection limit
of 10 pg/mL. In an analysis of 30 TBM patients, Lu et al.
(2016) determined, via ELISA, a mean CSF IFN-γ value for
patients with TBM to be 350.97 ± 372.94 pg/mL. Lu et al. also
determined that in 10 of these TBM patients the average CSF
IFN-γ levels were 500.48 pg/mL before treatment and 103.62
pg/mL following 4 weeks of treatment, indicating that while
IFN-γ decreased significantly (5-fold), it still remained elevated
compared to the norm, after 4 weeks of treatment (that is,
inflammation in the brain persisted). Mansour et al. (2005)
reported a highly elevated mean concentration of CSF IFN-
γ (794 ± 530 pg/mL) in 39 patients with TBM (all of whom
were HIV negative) prior to receiving medication, which was
correlated with markers of neuroinflamation in these individuals.
Mansour et al. (2005) also showed that the CSF IFN-γ remained
elevated for many weeks after treatment was begun in patients
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TABLE 3 | Performance of IGRAs on CSF from TBM cases as a stand-alone diagnostic tool.

References IGRA TBM cases (n) Sensitivity % (range) Specificity % (range)

Pan et al. (2017) T–SPOT.TB 53 61 (40–92) 97 (75–100)

Lu et al. (2017) T–SPOT.TB 61 62 (49–74) 73 (62–82)

Qin et al. (2015) T–SPOT.TB 12 92 (62–100) 93 (76–99)

Park et al. (2012) T–SPOT.TB 25 72 (51–88) 79 (66–89)

Kim et al. (2010) T–SPOT.TB 31 71 (51–86) 89 (72–98)

Patel et al. (2010) T–SPOT.TB 38 58 (41–74) 94 (83–99)

Thomas et al. (2008) T–SPOT.TB 10 90 (56–100) 100 (59–100)

Caliman-Sturdza et al. (2015) QuantiFERON-TB 63 84 98

Vidhate et al. (2011) QuantiFERON-TB 36 13 (2–40) 63 (35–85)

Weighted average diagnostic performance of IGRAs 329 65 87

with TBM, whereas in those cases diagnosed with VM and
BM the CSF IFN-γ returned to undetectable concentrations
within a couple of days post-treatment. Considering all of
the above, patients with VM and TBM exhibit a similar
increase in CSF IFN-γ levels, both far greater than in patients
with BM. This suggests that CSF IFN-γ could potentially be
used as a differential diagnostic marker for the exclusion of
BM. Furthermore, CSF IFN-γ levels in TBM cases remain
elevated for weeks following treatment, differentiating TBM
from VM. However, as described previously, in order to
acquire a definitive TBM diagnosis additional measures of CSF
parameters are needed.

In summary, the overall trend across all CSF VEGF studies
is a significantly higher concentration of VEGF in TBM patients
than in other cases of meningitis. Of further note, Van der Flier
et al. (2004) reports significantly increased CSF VEGF (178 ± 52
pg/mL) in TBM patients with nausea and vomiting, indicating
that elevated CSF VEGF has a potential direct impact on the
BGA, leading to a perturbed gut. CSF IFN-γ levels show a similar
increase in TBM and VM but less so in BM. Hence, CSF IFN-γ
levels could potentially be used for the exclusion of the diagnosis
of BM. The HOCl produced by the MPO–H2O2–Cl2 system
yields similar oxidative markers in both TBM and BM.

The addition of VEGF and MPO with IFN-γ, as part of a 3-
marker immunological biosignature of TBM in CSF (Manyelo
et al., 2019), has yielded a diagnostic measure with an AUC of
0.97, and a sensitivity and specificity of up to 91.3% and up
to 100%, respectively. Hence, this 3-marker biosignature yields
excellent results for diagnosis of TBM from a CSF sample.
But, what of the urinary metabolomics profile? If these three
immunological markers are present in the CSF of a TBM patient,
then a downstream metabolic effect, based upon the BGA, should
be reflected in the urine. This concept is explored in our proposed
predictive metabolic model that follows.

PROPOSED PREDICTIVE METABOLIC
MODEL OF TBM IN THE BRAIN BASED
UPON IFN-γ, MPO AND VEGF

Given the background of IFN-γ, MPO, and VEGF described
above, and the associated metabolic pathways of these signaling

compounds, we propose a predictive metabolic model for TBM
in the brain based upon previously published biochemistry
fundamentals. This model, illustrated in Figure 1, shows the
interaction of the overlapping metabolic cascades initiated by
TBM, and its associated 3-marker CSF immunological signature.

Our predictive metabolic model shows how increased levels
of VEGF result in a persistent metabolic burst caused by the
induction of angiogenesis (Stapor et al., 2014; Treps et al.,
2016), whereby glycolysis, and the release of glycogen from
astrocyte stores to fuel glycolysis, is increased significantly.
Secondary pathways that are subsequently upregulated include:
(1) the pentose phosphate pathway, that contributes to an
elevated synthesis of glutathione (Ben-Yoseph et al., 1996),
elevated xylulose-5-phosphate (also via phosphoenolpyruvate
in the glycolysis pathway) to fuel tryptophan catabolism
(Stephanopoulos and Simpson, 1997; Simpson et al., 1999; Maria
et al., 2018), and elevated purine and pyrimidine synthesis
(Zimmer, 1988, 1996); (2) the hexosamine pathway, which
contributes to increased O- and N-protein glycosylation,
imperative for the host’s immune response since glycosylation
controls cell migration, host defense, and antigenicity (Varki,
1993); (3) increased β-oxidation providing substrate in
the form of diacylglycerol from downstream catabolism of
dihydroxyacetone phosphate and activation of protein kinase C
from VEGF (Takahashi et al., 1999; Harhaj et al., 2006), ultimately
yielding increased acetyl-CoA; and (4) the boosted mitochondrial
citric acid (TCA) cycle, due to the increased acetyl-CoA. The
elevated TCA intermediate α-ketoglutarate (α-KG), previously
indicated to be a urinary marker of TBM (Mason et al., 2016),
contributes to glutamate synthesis and downstream glutathione
(GSH) production, the latter being a needed antioxidant,
synthesized in response to the elevated MPO.

Increased levels of IFN-γ, stimulated by Mtb-induced antigens
(Blumenthal et al., 2012; Lu et al., 2017), specifically upregulate
indoleamine dioxygenase (Yoshida et al., 1981; Taylor and Feng,
1991; Hashioka et al., 2017), the initial enzyme in the tryptophan
catabolic pathway. A massive burst in tryptophan catabolism
results in astrocyte-based kynurenic acid and microglia-based
quinolinic acid synthesis – also previously identified urinary
markers of TBM (Mason et al., 2016). Several enzymes
within the tryptophan metabolic pathway require pyridoxal-5-
phosphate (P-5-P), an active form of vitamin B6, as a cofactor.
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FIGURE 1 | Model predicting the downstream metabolic effects of VEGF, IFN-γ, and MPO in the brain, and the expected attendant urinary profile, in a TBM patient.
The bold red arrows indicate the major upregulated metabolic pathways, namely tryptophan catabolism, induced by upregulated indoleamine dioxygenase due to
IFN-γ, and increased metabolic burst (angiogenesis) via increased glycolysis. The red boxes enclose metabolic end-products within the Mtb-infected brain – protein
glycosylation, α-ketoglutarate, quinolinic acid, kynurenic acid, 3-chlorotyrosine and glutathione sulfonamide – which are the predicted metabolic brain markers of
TBM. The blue arrows indicate the transport of important metabolic components. The dashed black line, indicating oxidation of glucose to gluconolactone,
represents a transient pathway that occurs when insulin is depleted, as indicated. 6-PG, 6-phosphogluconate; R5P, ribulose-5-phosphate; UDP-GlcNAc,
UDP-N-acetylglucosamine; PEP, phosphoenolpyruvate; DHAP, dihydroxyacetone phosphate; DAG, diacylglycerol; TCA cycle, tricarboxylic acid (citric acid) cycle;
α-KG, α-ketoglutarate; Glu, glutamate; Gln, glutamine; GSH, glutathione (reduced); P-5-P, pyroxidal-5-phosphate (vitamin B6).

Deficiency of P-5-P diverts tryptophan metabolism from
production of NAD to the excessive formation of xanthurenic
acid (Oxenkrug, 2013), and subsequently apoptosis. One of
the mechanisms of insulin resistance is inflammation-induced
upregulation of tryptophan metabolism in combination with
P-5-P-deficiency-induced diversion of tryptophan metabolism
leading to formation of xanthurenic acid and other kynurenine
derivatives that affect insulin activity (Oxenkrug, 2013). It
has been shown that reduced insulin levels may lead to
uncontrolled glucose metabolism – previously described in
individuals with diabetes (American Diabetes Association, 2013),
pulmonary TB (Preez et al., 2017) and, recently, in runners
after a marathon (Stander et al., 2018), all of which are
associated with a severe inflammatory response. As depicted
in our model, uncontrolled glucose metabolism can result
in glucose being oxidized via glucose oxidase to produce
gluconolactone, in addition to hydrogen peroxide, previously
reported to occur in both diabetes and pulmonary TB
(Preez et al., 2017). The gluconolactone subsequently becomes
siphoned into the pentose phosphate pathway via hydrolysis
to form gluconic acid and phosphorylation with ATP to
produce 6-phosphogluconate lactone (Dickens and Glock, 1951;

Rohatgi et al., 2014). The consequential elevated H2O2, and
its interaction with raised MPO, leads to the activation of
various oxidative stress pathways (Hampton et al., 1998; Podrez
et al., 2000; Klebanoff, 2005), as depicted in Figure 1, and
described above. The two final urinary markers of elevated
MPO and of HOCl, via the MPO–H2O2–Cl2 system, are
predicted to be glutathione sulfonamide and 3-chlorotyrosine
(Winterbourn and Kettle, 2000).

Furthermore, the burst from both the glycolysis (via pyruvate)
and tryptophan catabolism (via hydration of kynurenine to
form alanine; Kotake and Nakayama, 1941) pathways yields
increasingly elevated levels of extracellular lactate. This lactate
pool is essential in the lately proposed astrocyte–microglia lactate
shuttle (AMLS, Mason et al., 2015), since lactate plays a dual role
of being a preferred source of energy in the brain during TBM
as well as also being neuroprotective (Mason, 2017), diverting
lactate away from neurons (thereby deactivating neurons to
protect them) toward activated microglia in an attempt to
eradicate the immediate insult/infection. This increase in lactate
in TBM is predicted to be localized in the brain for immediate use
and is not expected to be present in elevated amounts in the urine
of TBM patients.
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The predictive metabolic model presented here, although
speculative, is based upon three validated immunological
markers of TBM. The subsequent activated metabolic pathways
in the brain are based upon biochemistry fundamentals and
supported by the literature, as discussed. The end-product
metabolites that act as metabolic markers of TBM are expected
to cross the BBB and travel in the blood circulation and
interact with the gut. The principal limitation of our model
is that, in its current form, it can predict only the end-
product metabolites from the TBM-infected brain, with the
assumption that no other systemic co-infection is present.
The complex interactions with the gut microbiota are poorly
understood and require further research. However, based upon
previous urinary metabolomics studies reported in this review,
experimental evidence is emerging that points toward an altered
gut metabolism. Hence, changes in gut metabolism became the
fourth component of our proposed urinary metabolic profile
of a TBM patient. The specifics of the complex relationship
between host and gut-microbiome and the details of the altered
metabolic profile of the gut under pathophysiological states
remain a hot topic.

CONCLUSION

The significance of this review is that it takes a newly
established paradigm within the neurosciences – the BGA – and
critically examines the literature from a relatively unexplored
niche perspective – chronic neuroinflammation caused by CNS
bacterial infection(s) of the brain, using TBM as an example.
We posit that if the BGA exists then chronic neuroinflammation
within the brain caused by pathogenic bacteria (Mtb) will
influence the gut microbiota, and the ideal biofluid to analyze
this, reflecting the associated systemic changes, is urine. We
support our postulate with data from published studies on
urinary metabolomics, as follows.

First, the strength of untargeted urinary metabolomics is
clearly demonstrated in the literature. A previous untargeted
urinary metabolomics study conducted on TBM cases, by
Mason et al. (2016), yielded data that, when analyzed in a
non-biased, holisitic manner, resulted in a putative urinary
metabolic signature characterizing TBM that was interpreted in a
hypothesis-generating perspective. Independently, using similar
analytical platforms in metabolomics, Das et al. (2015) and Luies
and Loots (2016) examined urinary metabolomics profiles of
pulmonary TB patients, and came to similar conclusions – the
most significant of which, in the context of this review, were
that infection by Mtb results in an altered gut-microbiome and
this is substantiated by altered microbiome markers in the urine
of these patients.

Second, we take an independent, and initially unrelated,
study that closely examined the immunological profile of TBM,
in which three specific immunological markers in the CSF
associated with neuroinflammation – VEGF, IFN-y, and MPO –
were validated as diagnostic markers of TBM. We explored the

background behind this 3-marker CSF immunological signature
of TBM, in the context of its influence on the gut-microbiome and
the subsequently altered urinary metabolome, using previously
discovered urinary metabolites in TBM patients as proof (such as
α-KG, and the tryptophan catabolites 3-hydroxykynurenic acid
and quinolinic acid) (Mason et al., 2016). By extension, we also
predict other metabolic pathways that would be expected to be
changed within our model.

Third, we combined the sciences of immunology and
metabolomics to create a novel integrated predictive metabolic
model of TBM in the brain. By integrating relevant information
from systems biology, our predictive cascading metabolic model
should be adjustable to account for other types of bacterial
infection(s) of the CNS that cause chronic neuroinflammation,
such as neurosyphilis, bacterial brain abscesses and Lyme disease,
as well as chronic non-bacterial CNS infections that are common
in resource-constrained settings of poor communities, and
sometimes difficult to distinguish from TBM, such as cerebral
malaria and cryptococcal meningitis. Being so identified, based
upon the literature, patients with VM and TBM exhibit a similar
increase in CSF IFN-γ levels, both far greater than in patients
with BM. Hence, a predictive metabolic model of cerebral
malaria and cryptococcal meningitis would likely exclude CSF-
based IFN-y and its subsequent downstream cascading metabolic
influence – that is, no downstream tryptophan metabolic
catabolites. What remains to be done is to identify the unique
immunological markers associated with these other bacterial
infection(s) of the CNS and predict and confirm their associated
downstream metabolic markers that should be reflected in urine,
which could be used diagnostically or to characterize these
diseases better.

In short, analysis of urinary metabolic profiles offers a
wealth of metabolic information that can be traced back to
an altered gut-microbiome, and to an inherently changed
BGA, induced by chronic neuroinflammation from bacterial
infection(s) of the CNS. This metabolic information from
urine holds within it the potential to contribute to improved
and early differential diagnosis of bacterial infection(s) in the
CNS – a quicker and less invasive method of diagnosis than
currently available. The review presented here provides support
that, by taking existing validated immunological markers of
infectious diseases in conjunction with metabolomics data and
biochemistry fundamentals, it is possible to predict downstream
metabolic products, most likely detectable via urinary metabolic
profiling methods.
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Mucus is integral to gut health and its properties may be affected in neurological

disease. Mucus comprises a hydrated network of polymers including glycosylated mucin

proteins. We propose that factors that influence the nervous system may also affect

the volume, viscosity, porosity of mucus composition and subsequently, gastrointestinal

(GI) microbial populations. The gut has its own intrinsic neuronal network, the enteric

nervous system, which extends the length of the GI tract and innervates the mucosal

epithelium. The ENS regulates gut function including mucus secretion and renewal. Both

dysbiosis and gut dysfunction are commonly reported in several neurological disorders

such as Parkinson’s and Alzheimer’s disease as well in patients with neurodevelopmental

disorders including autism. Since some microbes use mucus as a prominent energy

source, changes in mucus properties could alter, and even exacerbate, dysbiosis-related

gut symptoms in neurological disorders. This review summarizes existing knowledge

of the structure and function of the mucus of the GI tract and highlights areas to be

addressed in future research to better understand how intestinal homeostasis is impacted

in neurological disorders.

Keywords: mucus, MUC-2, goblet cells, intestine, microbes, neurological disorders

PROPERTIES OF THE GASTROINTESTINAL MUCUS LAYER

Themucus layer is the first line of defense against infiltration of microorganisms, digestive enzymes
and acids, digested food particles, microbial by-products, and food-associated toxins. This layer
coats the interior surface of the GI tract, lubricates luminal contents and acts as a physical
barrier to bacteria and other antigenic substances present in the lumen. The moist, nutrient-rich
mucus layer adjacent to the epithelial barrier of the GI tract is also essential in the maintenance
of intestinal homeostasis and contains a thriving biofilm including beneficial and pathogenic
microbial populations.

Emerging evidence demonstrates changes in the gut-brain axis in neurological disease involving
the enteric nervous system located within the wall of the GI tract. Interestingly, mucus production is
regulated by molecular pathways involved in developmental processes and nervous system activity.
Multiple neurological disorders present with gastrointestinal dysfunction and microbial dysbiosis
but whether alterations in mucus structure and function are driving these changes is unknown.
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Therefore, we propose that alterations in enteric nervous system
function and mucus production may occur in neurological
disease and contribute to GI symptoms and dysbiosis.

Regional Mucus Variations
Although mucus located throughout the gut contains the same
biological components, mucus properties vary with regional
differences in function along the gastrointestinal tract (Ermund
et al., 2013, Figure 1).

Small Intestine
The majority of nutrient uptake from digested food occurs in
the small intestine and therefore there is a single, discontinuous
and more penetrable mucus layer in this region (Johansson et al.,
2011). The discontinuity of the small intestinal mucus layer is
important not only for the absorptive function of this region
but also for the release of digestive enzymes localized in the
brush border membrane of epithelial cells. Experiments assessing
passage of fluorescent beads across small intestinal mucosal
samples showed that small intestinal mucus in mice is penetrable
by beads equivalent to the size of bacteria (i.e., 0.5–2 µ3) and
hence contains pores as large as 2µ2 (Ermund et al., 2013). These
large mucus pores ensure efficient nutrient absorption by the
host epithelium.

The bacterial content of the mucosal barrier in the small
intestine is also regulated by a cocktail of antibacterial mediators
such as defensins, lysozymes, and other peptides released by
Paneth cells (Peterson et al., 2007). Together, these mediators
repel bacteria by generating an antibacterial gradient toward

FIGURE 1 | The structure of the mucus layer varies with regional locations within the GI tract. (A) The small intestine contains a single layer of mucus, which is loosely

attached to the epithelium and easily penetrable. Bacteria within the small intestine are primarily repelled from the epithelium by antibacterial modulators. (B) The distal

colon contains two mucus layers; a stratified adherent inner mucus layer and loosely adhesive outer mucus layer. The inner mucus layer of the colon is essentially

sterile and the outer mucus layer harbors the intestinal microbiota.

the lumen (Johansson and Hansson, 2011; Vaishnava et al.,
2011). Specific mediators include the abundant Regenerating
islet-derived 3 (REG3) peptides, IgA, Toll-like receptor 5 (TLR5
regulates levels of anti-flagellin antibody in the gut) (Cullender
et al., 2013) and phospholipase A2-IIA (Meyer-Hoffert et al.,
2008; Bevins and Salzman, 2011). Overall, antibacterial peptides
kill bacteria via a range of mechanisms including by the
formation of aggregates, recognition, and binding to bacterial
cell wall peptidoglycans, and permeabilization of bacterial cell
membranes (Chairatana and Nolan, 2017). This serves to
neutralize invasion by foreign particles and maintain epithelial
crypts. This antimicrobial defense mechanism is critical in the
small intestine due to the discontinuous and penetrable nature
of the mucus in this region and is reflected by a higher density of
Paneth cells and corresponding peptides (Ouellette, 2010).

Colon
The organization of the mucus layer varies along the length of the
colon. In the distal colon, there are two layers of mucus, however,
whether these layers adhere to the epithelium or the colonic
content is under debate. In the proximal colon, the presence of
two mucus layers has been queried based on histological studies
in animal models.

Johansson and colleagues reported that the mouse distal colon
contains two continuous mucus layers; an inner mucus layer
that is ∼50µm thick and anchored to the mucus-producing
goblet cells of the epithelial membrane, and an outer mucus
layer that is loosely adherent and harbors bacteria (Johansson
et al., 2008). These researchers also reported that the thickness
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of the outer mucus layer is determined by the composition of the
mucus-inhabiting bacteria. Interestingly, this group reported that
the inner mucus layer of the proximal colon is also penetrable
to bacteria (Ermund et al., 2013). In contrast, Kamphuis and
colleagues reported that the two distal colonic mucus layers
adhere to the fecal pellet rather than the intestinal epithelium
in rodents and that the organization of the colonic mucus
layers is dependent on the presence of fecal content (Kamphuis
et al., 2017). Specifically, this study utilized fluorescence in situ
hybridization and histological techniques in longitudinal sections
to demonstrate that the fecal pellet is covered by a sterile
mucus layer of variable thickness that is not attached to the
epithelium. They also showed that within the proximal part of the
proximal colon, which contains colon content prior to formation
of a fecal pellet, the mucus layer is loosely organized and the
bacteria in this region are in contact with the epithelial surface
(Kamphuis et al., 2017).

The dissimilarities in the mucus layers of the colon
reported may be due to methodological variations including the
orientation of tissue sectioning and mucus staining techniques.
Overall, multiple studies examining mucus properties carried out
in both mice (Macfarlane et al., 2011; Motta et al., 2015; Welch
et al., 2017) and humans (Swidsinski et al., 2007a) describe two
mucus layers in the colon that include a firmmucus layer adjacent
to the epithelium that is devoid of bacteria.

Commensal bacteria secrete mucinases and proteinases that
continuously degrade the outer mucus layer contributing to its
highly disorganized nature (Donaldson et al., 2016). Similarly,
a role for bacteria in mucus thickness has been demonstrated
in germ free mice which have a thinner inner colonic mucus
layer. Simply adding components of the bacterial cell wall
(e.g., lipopolysaccharide; LPS) is sufficient to increase mucus
thickness in this model, highlighting a role for bacteria in
regulating the structure of the outer mucus layer (Petersson
et al., 2011). The continual release of mucus contributes to a
dynamic process whereby the inner mucus layer is gradually
converted to the irregular and less adherent outer mucus layer.
This process involves Meprin β, an endogenous protease which
aids mucus detachment (Wichert et al., 2017) and also bacteria
penetration by increasing pore size in the outer mucus layer
(Schutte et al., 2014).

Intestinal Mucus Composition
Mucus is primarily composed of branched glycoproteins
(including mucins) that interact with the external environment
and via their hydrophilic nature, influence mucus viscosity
(Bergstrom and Xia, 2013). There are more than 20 subtypes
of mucin identified in humans and their distribution varies
throughout the GI tract. For example, the salivary glands produce
MUC5B and MUC7 to lubricate food (Bobek et al., 1993; Nielsen
et al., 1996; Khan et al., 1998; Thornton et al., 1999) and the
mucus layer in the stomach contains MUC5AC (Ho et al., 1995;
Atuma et al., 2001; Nordman et al., 2002). Although MUC5AC is
not typically expressed in the large intestine, it has been detected
in the distal colon along with MUC-2 during inflammation
associated with ulcerative colitis and adenocarcinoma in patients

(Forgue-Lafitte et al., 2007). It is well-established that the major
glycoprotein within the intestinal mucus layer is mucin-2 (MUC-
2 protein).

There are three major structural domains within the
MUC2 protein; the N-terminal domain, a central large
PTS (proline, threonine, and serine) domain and the C-
terminal domain. Following translation, full-length MUC2
protein cores form dimers via disulfide bridges near their C-
terminus within the endoplasmic reticulum (ER) of goblet cells.
Within the Golgi apparatus, MUC2 proteins undergo O-linked
glycosylation. In this process glycans such as xylose, mannose, N-
acetylglucosamine, and N-acetylgalactosamine (O-GalNAc) are
covalently attached to the hydroxyl group (-OH) of threonine and
serine residues of the PTS domain (Godl et al., 2002). Glycans
account for 80% of the total mass of the MUC2 protein and
extend perpendicularly from the protein core giving the molecule
a “bottle brush-like” appearance (Figure 2). O-Glycans can be
modified via formation of linkages with sulfate, sialic acid, and
fucose. These modifications play an important role in influencing
interactions between the host microbial populations with mucus
(Arike and Hansson, 2016).

A complex polymerization process occurs within the trans-
Golgi network by which MUC2 protein dimers interact firstly
as trimers and then are tightly bundled into MUC2 secretory
granules (Godl et al., 2002; Ambort et al., 2012). High Ca2+

ion concentration alongside low pH enables mucus packing
by masking negatively charged glycans on the MUC2 protein.
During this process, concatenated ring structures are formed
(Grubb and Gabriel, 1997; Choi et al., 2001; Ambort et al., 2012;
Gustafsson et al., 2012b; Schutte et al., 2014).

Although the main component of mucus in the small intestine
and the colon is mucin-2, a rich variety of other proteins
largely originating from shredded epithelial cell debris that
becomes trapped in the mucus are also present within the
mucus biofilm, including IgG Fc-binding protein (FCGBP),
Calcium activated chloride channel 1 (ClCA1), Zymogen granule
membrane protein 16 (ZG16), Anterior gradient 2 (AGR2), and
immunoglobulins (Johansson et al., 2008).

Mucus Expansion
After mucus secretion, the MUC2 protein complex expands
dramatically to form a net-like structure (Ambort et al., 2012).
Mucin expansion occurs due to increased pH and decreased
Ca2+ levels driven by cystic fibrosis transmembrane regulator
(CFTR) channels. CFTR-mediated secretion of HCO3− reduces
Ca2+ levels which weakens the ring structure of the mucin
complex and allows the densely packed MUC2 mucin to expand
into large flat sheets (Ambort et al., 2012). The newly secreted
mucus sheets are laid down on the epithelium by interacting
with previously secreted mucus and subsequently attaching to
the epithelium (Johansson and Hansson, 2016) (Figure 2). In
the colon, expansion of the outer mucus layer is also triggered
by bacteria that release glycosidases that sequentially cleave
individual monosaccharides from mucin glycans (Johansson and
Hansson, 2016) to further relax the tight-knit structure of mucin
glycans (Johansson et al., 2008).
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FIGURE 2 | Neuronal innervation of goblet cells in the intestinal mucosa. Neurons of the submucosal plexus (SMP) innervate goblet cells by release of

neurotransmitters such as acetylcholine (ACh) and vasoactive internal peptide (VIP). Maturation of goblet cells is influenced by SAM pointed domain-containing Ets

transcription factor (Spdef ), Wnt/Notch signaling and neuronal activity. Mature goblet cells have a characteristic goblet shape. The apical region is distended by the

presence of mucin granules, giving the cell the characteristic cup shape with other cellular organelles condensed in the basal “stem-like” region. Muc-2 protein

comprises multiple O-glycans arranged in a “bottle brush” like formation. SMP, submucosal plexus; CM, circular muscle; MP, myenteric plexus; LM, longitudinal

muscle; EC cell, enteroendocrine cells.

Mucus Secreting Goblet Cells
The intestinal epithelium consists of absorptive and secretory
cell lineages including enterocytes, enteroendocrine cells (EECs),
Paneth cells, and goblet cells. Goblet cells are specialized cells
equipped with specific biological machinery for the secretion
of mucus and are present throughout the entire length of the
intestine (Figure 2). These cells, as their name suggests, are easily
identifiable in histologically stained cross sections of the intestine
due to their characteristic “goblet-like” shape. Intestinal epithelial
cells, including goblet cells, arise from multipotential stem cells
residing at the base of the intestinal crypts and subsequently
migrate from the crypts to the top of the villus prior to eventually
being shed into the lumen (Cheng and Leblond, 1974). In mice,
this migratory process occurs over 2–3 days (Specian and Oliver,
1991). Differentiation of goblet cells is directly controlled by

the transcription factor SAM pointed domain-containing ETS
transcription factor (Spdef ) (Noah et al., 2010) and also via a
network of transcriptional factors regulated by the Notch and
Wnt signaling pathways known to influence developmental and
inflammation pathways (van Es et al., 2005; Clarke, 2006; Fre
et al., 2009; Gersemann et al., 2009; Gregorieff et al., 2009;
Kwon et al., 2011; Heuberger et al., 2014; Tian et al., 2015).
Furthermore, enteric neural activity has been shown to influence
the maturation and production of stem cells in the GI tract
(Lundgren et al., 2011) which, in turn, suggests a role for the ENS
in goblet cell proliferation and differentiation.

Goblet cell morphology changes dramatically during the
cellular lifespan (Specian and Oliver, 1991). Immature goblet
cells are larger and pyramidal in shape with cellular organelles
dispersed throughout the cell and interspersed with mucus
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granules in the apical cellular region. As these goblet cells migrate
toward the colonic epithelial surface, they reduce in volume as
a result of shedding cytoplasmic content and organelles. During
this phase of volume reduction, goblet cells reduce contact
with the basal laminar surface adjacent to the epithelium and
simultaneously increase contact with the luminal surface of
the GI tract. The goblet cells then rapidly produce and store
mucus granules, resulting in the distention of the apical cellular
region to produce the typical “cup” shape. The nucleus and
other cellular organelles of the goblet cells are concentrated in
narrowed stem-like subcellular regions located at the base of the
cells (Specian and Oliver, 1991). These processes could be altered
in neurological disorders. For example in Alzheimer’s disease,
the metalloprotease Meprin β, which cleaves amyloid precursor
protein (Schönherr et al., 2016; Becker-Pauly and Pietrzik, 2017)
also regulates mucus detachment from goblet cells in the small
intestine (Wichert et al., 2017).

Mucus Interactions With Microbes
Microbial populations are spatially organized along the length
of the intestine as well as from the luminal to mucosal axis
(Palestrant et al., 2004). Mucus viscosity increases toward the
distal region of the GI tract. This viscosity gradient along
the length of the GI tract reportedly determines the spatial
distribution of intestinal microbiota (Swidsinski et al., 2007b).
The composition of bacteria adjacent to the mucosa is different to
the bacterial populations that reside within the luminal content
(Swidsinski et al., 2005). This mucosal to luminal bacterial
distribution is likely driven by variations in oxygen levels and
nutrient availability (Yasuda et al., 2015).

The mucus layer serves as a carbon and energy source,
predominantly in the form of glycans, for mucus residing
bacteria. As an adaptation to residing in a glycan-rich
environment, these bacteria produce mucus-degrading enzymes
such as glycosidase, sulphatase, and sialidases (Table 1) that
cleave the mucus network to enhance the utilization of mucus as
an energy source. A range of mucus-degrading bacteria present
within the mucus, includes Akkermansia muciniphila (Derrien
et al., 2004), Bacteroides thetaiotaomicron (Xu et al., 2003),
Bifidobacterium bifidium (He et al., 2001), Bacteroides fragilis
(Macfarlane and Gibson, 1991), and Ruminoccous gnavus (Png
et al., 2010). These bacterial species cleave mucus O-glycans
to produce monosaccharides (Berry et al., 2013) which can
be further utilized by other mucus-residing bacteria including
Lachnospiraceae (Nava et al., 2011), Clostridium cluster XIV
(van den Abbeele et al., 2013), Enterobacteriaceae (Ashida
et al., 2008), and Clostridium difficile (Ng et al., 2013). Further
adaptation of bacteria has been identified in Lactobacillus
(Etzold et al., 2014) and Bacteroides (Sicard et al., 2017)
where the presence of multi-repeat cell-surface adhesins enable
retention of the bacteria within the mucus layer. The syntrophic,
symbiotic, and mutualistic interactions of the microbes in the
mucus layer create the environment which drives microbial
community selection and defines physical properties of the
mucus layer.

Some mucus residing bacteria form mucosal biofilms,
complex microbial communities embedded in a polymeric

TABLE 1 | Predominant mucus-degrading bacteria and secreted digestive

enzymes.

Bacteria Mucus degrading enzyme References

Akkermansia muciniphila Glycosidase Png et al., 2010; van

Passel et al., 2011

Bacteroides

thetaiotaomicron

Sulfatase, neuraminidase,

α-fucosidase, β-galactosidase

α- N-acetylgalactosaminidase

β-N-acetylglucosaminidase

Xu et al., 2003

Rumminococcus gnavus α-galactosidases Png et al., 2010

Rumminococcus torques α-N-acetylgalactosaminidase Png et al., 2010

Bacteroides fragilis Neuraminidase, sulfatase,

protease, α-

N-acetylgalactosaminidase,

β-galactosidase, β

-N-acetylglucosaminidase,

α-fucosidases

Macfarlane and

Gibson, 1991

Bacteroides vulgatus Neuraminidase, α and

β-galactosidases,

α-fucosidase

β-N-acetylglucosaminidase, α

and β

-N-acetylgalactosaminidase

Onderdonk et al.,

1983; McCarthy

et al., 1988

Adherent invasive

Escherichia coli

Vat protease Gibold et al., 2016

Giardia duodenalis Cysteine protease Amat et al., 2017

Entamoeba histolytica Cysteine protease Lidell et al., 2006

matrix. Techniques including fluorescent in situ hybridization
and electron microscopic studies reported the presence of
bacterial biofilms in the healthy colon of mice, humans and
rats (Palestrant et al., 2004; Swidsinski et al., 2005; Bollinger
et al., 2007; Macfarlane et al., 2011; Motta et al., 2015). Altered
levels of biofilm associated bacteria such as Bacteroides fragilis,
Enterobacteriaceae family were reported in Crohn’s disease and
inflammatory bowel disease (Masseret et al., 2001; Macfarlane
and Dillon, 2007; DuPont and DuPont, 2011; Srivastava et al.,
2017).

Therefore, the mucus associated bacterial biofilm also could
play a role in these disorders. Alterations in these complex
community structures could result in abnormal mucus invasion,
epithelial adherence, and spatial distribution of bacterial species.

THE ENTERIC NERVOUS SYSTEM (ENS)

The digestive tract is innervated by the enteric nervous system
(ENS), an intrinsic neuronal network that regulates GI functions
(Furness et al., 2013) in addition to extrinsic innervation
from the parasympathetic and sympathetic components of the
autonomic nervous system (reviewed in Uesaka et al., 2016).
Neuronal control of intestinal function is largely regulated by
two ganglionated plexuses; themyenteric and submucosal plexus.
The myenteric plexus predominantly regulates GI motility while
the submucosal plexus regulates the secretion of water and
electrolytes primarily via the neurotransmitters acetylcholine
(ACh) and vasoactive intestinal peptide (VIP).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 May 2020 | Volume 10 | Article 248161

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Herath et al. Mucus Interactions in Brain Disorders

The ENS Influences Mucus Secretion
Mucus secretion is influenced by nervous system activity
and occurs via two processes; (i) vesicle secretion and
(ii) compound exocytosis. During vesicle secretion, mucus-
secreting goblet cells release mucus content by fusion of
the mucus granule membrane with the overlying plasma
membrane (Lang et al., 2004). This process is regulated by
vesicle exocytotic components like syntaxin, Munc 18, vesicle-
associatedmembrane proteins (VAMP) and synaptosomal nerve-
associated proteins (SNAP) proteins (Cosen-Binker et al., 2008).
During compound exocytosis, all mucus granules are fused
together and empty the mucus as a single unit. As yet, the
molecular pathways regulating compound exocytosis have not
been defined.

VIP and ACh are the two main secretagogues responsible
for neurally-evoked mucosal secretion (Specian and Neutra,
1980; Neutra et al., 1984; Lelievre et al., 2007; Gustafsson et al.,
2012a; Ermund et al., 2013). ACh induces mucus secretion
by activating M3 muscarinic receptors located on goblet cells
within the epithelium in both the small intestine and in the
colon (Specian and Neutra, 1980; Neutra et al., 1984; Gustafsson
et al., 2012b; Ermund et al., 2013). Exocytosis of mucus-
containing granules is regulated by intracellular Ca2+ and
Ca2+−mobilizing agents (including acetylcholine; Birchenough
et al., 2015). The activation of M3muscarinic receptors mobilizes
Ca2+ from intracellular stores to induce mucus secretion
(Ambort et al., 2012).

Mucus release is differentially regulated in a region-specific
manner in the GI tract. ACh specifically targets both crypt and
villus-associated goblet cells in the small intestine (Birchenough
et al., 2015). In contrast, in the colon, goblet cells located
in crypts are responsive to ACh, but equivalent cells at the
epithelial surface do not respond to ACh or the cholinergic
agonist, carbachol (Gustafsson et al., 2012b). Release of the
neuropeptide VIP enhances mucus secretion (Lelievre et al.,
2007) via modulating CFTR-dependent secretions (Alcolado
et al., 2014). Furthermore, VIP deficiency in mice results in
reduced goblet cell number and reduced muc-2 gene expression
levels (Wu et al., 2015). A recent study displayed that mucosal
VIP-containing neurons are in close proximity with ileal goblet
cells and VPAC receptor antagonist alter the goblet cell numbers
in the ileum (Schwerdtfeger and Tobet, 2020).

Gut Motility and Mucus Movement
In addition to its prominent action in regulating GI motility
and peristalsis, the myenteric plexus plays a key role in mucus
renewal. GI motility regulates mucus levels by propelling mucus
to the distal GI tract. Myenteric neurons coordinate cyclic
motility patterns known as migrating motor complexes (MMCs)
that contribute to the “housekeeping” functions of the intestine
by flushing undigested materials, mucus, and bacteria along the
small intestine. Altered ENS regulation of motility can therefore
also perturb mucus renewal. Interestingly, patients with irritable
bowel syndrome (IBS) report lower MMC frequencies and show
bacterial overgrowth in the small intestine (Pimentel et al., 2002)
implicating alterations in the mucus environment.

ANIMAL MODELS OF MUCUS

IMPAIRMENT

Preclinical models have demonstrated that abnormalities in
GI structure and function are associated with altered mucus
production. For example, colonic mucus layer thickness is
decreased alongside progressive inflammation in a mouse model
of colitis (Petersson et al., 2011). In the absence of an inner
mucus layer, bacteria can penetrate deep into the epithelial crypts
and interact with the colonic epithelium (Johansson et al., 2008)
which can exacerbate disease. Furthermore, multiple studies
report that alterations in mucus secretory processes result in an
underdeveloped colonic inner mucus layer, often associated with
sparsely filled goblet cells and an increased susceptibility to colitis
(An et al., 2007; Park et al., 2009; Stone et al., 2009; Fu et al., 2011;
Tsuru et al., 2013; Bergstrom et al., 2014).

Muc-2 Knockout Mice
Mice lacking the mucus protein MUC2 (MUC2−/− mice)
lack an inner colonic mucus layer despite the presence of
goblet cells and other mucus layer components. Interestingly,
Rahman and colleagues showed changes in colonic innervation
in mice expressing a point mutation in Muc-2 (Rahman et al.,
2015) highlighting interactions between mucus production and
innervation of the GI tract. Knockout mice also exhibit altered
intestinal cell maturation, migration, and abnormal intestinal
crypt morphology (Velcich et al., 2002). These mice develop
adenomas and rectal tumors as well as increased infiltration of
neutrophils and lymphocytes, loose stools, diarrhea with blood,
rectal prolapses, and fail to thrive (Velcich et al., 2002). In the
longer term, these mice also show increased susceptibility to
developing colon cancer (Velcich et al., 2002; van der Sluis et al.,
2006).

Cystic Fibrosis
Patients with cystic fibrosis are commonly diagnosed with
concomitant GI abnormalities including meconium ileus and
distal intestinal obstruction syndrome (Colombo et al., 2011) due
to an increase in secreted mucus volume, mucus dehydration,
and increased viscosity that contributes to blockage of the small
intestine. Both mucus buildup and reduced mucus movement
occur in these patients due to dysregulated mucus secretion.
Cystic fibrosis is caused by mutations in the gene encoding the
Cystic Fibrosis Transmembrane conductance Regulator (CFTR)
channel important for mucus hydration. These mutations cause
defective chloride ion transport out of epithelial cells and
dehydration of mucus overlying the epithelium. In patients,
mucus remains tightly attached to the small intestinal epithelium
and peristaltic movements fail to propel the mucus forward
within the GI tract. In keeping with these changes, an increased
bacterial load has been observed in cystic fibrosis patients
(O’Brien et al., 1993), likely due to the elevated volume and
viscosity of mucus that provides an ideal environment for
commensal microbes.

Mouse models expressing CFTRmutations also display severe
intestinal dysfunction and a mucus layer that is firmly attached to
the mucosal epithelium (Grubb and Gabriel, 1997; Seidler et al.,
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2009; Frizzell and Hanrahan, 2012). Since a prominent role of
mucus is to trap and transport bacteria to the distal regions of
the gastrointestinal tract via peristalsis, animal models provide
an excellent experimental tool to investigate the effects of mucus
perturbation on microbial dysbiosis.

Hirschsprungs Disease
Extreme effects of neuronal loss on goblet cell function and
on mucus layer properties have been observed in Hirschsprung
disease, a life-threatening developmental disorder where the
distal colon lacks enteric neurons due to the failure of neural crest
cells to completely migrate during gastrointestinal development.
Patients with Hirschsprung disease have a reduced mucin
turnover rate, a decreased goblet cell population and reduced
expression of Spdef and Krueppel like factor 4 which drive
goblet cell differentiation and maturation (Aslam et al., 1997a,b;
Nakamura et al., 2018). These findings highlight the importance
of the ENS in the development and function of mucus-producing
goblet cells in the clinical setting.

Mouse models of Hirschprung Disease additionally provide
evidence for neural-mucus interactions. For example, endothelin
receptor B knockout mice (Ednrb−/− mice) along with mice
expressing a mutation in the RET gene that encodes the receptor
for the glial cell line-derived neurotrophic factor (GDNF)
are well-characterized models which have been examined for
alterations in mucus and goblet cell structure. Mice lacking
endothelin receptor B, known for its role in angiogenesis and
neurogenesis, show colonic aganglionosis resembling the clinical
presentation. Ednrb−/− mice showed an increase in both goblet
cell numbers and size as well as increased expression of Spdef
and Math 1 transcription factors in the distal colon (Thiagarajah
et al., 2014). In addition, the absence of Ednrb in mice alters
mucus structure as evidenced by reduced permeability to 200 nm
nanoparticles in vitro (Thiagarajah et al., 2014; Yildiz et al.,
2015). Furthermore, significant differences in the commensal
microbiome were also present in this model (Ward et al., 2012).

The absence of GDNF signaling in mice similarly results in
a severely underdeveloped ENS. Furthermore, these mice have
altered mucus composition and mucus retention (Porokuokka
et al., 2019). Overall, these clinical and animal model data
illustrate involvement of the nervous system in the regulation of
goblet cell differentiation and maturation as well as influencing
mucus properties.

NEUROLOGICAL DISORDERS AND

MUCUS DYSFUNCTION

Patients with neurological disorders frequently present with
coexistent bowel diseases but whether this is due to nervous
system changes per se or additional downstream effects such
as dysbiosis, immune dysregulation and/or altered mucus
production is uncertain. Gut disorders are often associated
with, and precede, the core diagnostic symptoms of autism,
Parkinson’s disease, Alzheimer’s disease, and Multiple Sclerosis
(Pfeiffer, 2003; Buie et al., 2010; Preziosi et al., 2013;
Coggrave et al., 2014). Severe gastrointestinal dysfunction can be

debilitating, exacerbate core symptoms of neurological disease,
and decrease quality of life. Thus, clarifying the role of the
nervous system in mucus production and maintenance could
improve understanding of the pathophysiology of neurological
disease. Furthermore, modulating mucus properties to optimize
probiotics and microbial engineering could provide additional
“psychobiotic” therapeutic options for these disorders.

A major function of the intestinal mucus layer is to form a
barrier between the intestinal epithelium and the luminal content
to protect the intestine from pathogenic invasion. A number of
biological pathways influence mucus production and volume:
(i) stem cell proliferation and subsequent maturation of goblet
cells is influenced by the SPDEF transcription factor and the
Wnt/notch signaling pathways, as well as neural activity; (ii)
multiple neurotransmission pathways directly activate mucus
release from goblet cells, including via muscarinic receptors; (iii)
motility driven by the enteric nervous system can also affect
mucus renewal; (iv) vesicular signaling molecules govern mucus
release; and (v) microbes are integral in maintaining mucus
homeostasis (Figure 3).

Developmental Pathways
Key developmental pathways implicated in neurological disease
are involved in goblet cell maturation, mucus production
and release. For example, the Spdef and Wnt/Notch signaling
pathways, known to be crucial for neuronal development in the
brain, also influence stem cell maturation in the GI tract. As Spdef
regulates the terminal differentiation of goblet cells and Paneth
cells (Noah et al., 2010) alterations in these pathways would
influence goblet cell turnover and numbers (Lo et al., 2017),
therefore modulating mucus properties. The Wnt-beta catenin
pathway is also associated with neurological disease (Sani et al.,
2012; Zhang et al., 2012, 2014; Ferrari et al., 2014; Huang et al.,
2015; Hoseth et al., 2018). This pathway stimulates the synaptic
expression and localization of neuroligin-3, a synaptic adhesion
protein associated with autism spectrum disorder (Medina et al.,
2018). Wnt signaling pathways are also implicated in Parkinson’s
Disease via interactions with PARK genes (Berwick and Harvey,
2012). Although potential changes in goblet cell number and
morphology or mucus properties have not been studied in
animal models of autism or several other models of neurological
disorders, we predict that Wnt-mediated pathways are altered
in the gastrointestinal tract and affect mucus properties, thereby
contributing to patient GI symptoms.

Protein Misfolding
Due to the high levels of protein produced, mucus production
processes within goblet cells are susceptible to proteinmisfolding,
retention in the endoplasmic reticulum (ER), and ER stress.
Protein misfolding is known to trigger the unfolded protein
response (UPR), which is associated with chronic inflammation
and autoimmune changes in neurodegenerative diseases such
as PD, Alzheimer’s disease, and multiple sclerosis (Mhaille
et al., 2008; Matus et al., 2011). Accordingly, protein misfolding
could result in altered production and apoptosis of goblet cells,
therefore affecting mucus properties.
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FIGURE 3 | How neurological disease may impact mucus production. Schematic representation of potential changes in mucus production and microbial communities

in neurological disorders. SMP, submucosal plexus; CM, circular muscle; MP, myenteric plexus; LM, longitudinal muscle.

Vesicle-Associated Proteins
Biological pathways required for neurotransmission and mucus
release share molecular components. Multiple neurological
disorders are associated with gene mutations that impair
neuronal communication via synapses, therefore mutations
in the brain potentially affect mucus properties in the
gastrointestinal tract. Examples of mucus release components
that overlap with synaptic neurotransmitter systems include

syntaxin, Munc 18, VAMP, and SNAP proteins. These vesicle-
associated proteins are commonly expressed at neuronal synaptic
membranes and have been identified as being mutated in
neurological disorders (syntaxin; ASD, SNAP; ADHD, Munc
18; epilepsy/ASD (Guerini et al., 2011; Durdiaková et al., 2014;
Hamada et al., 2017). Changes in the function of these proteins
will not only contribute to brain disorders but may also disrupt
vesicular secretion of mucus. Further investigation of mucus
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TABLE 2 | Altered mucosal microbiome in patients with neurological disease.

Neurological

disorder

Gastrointestinal

dysfunction

Altered mucosal microbiome (↓ ↑ abundance) References

Autism spectrum

disorder

Constipation, diarrhea,

functional abdominal pain,

food allergies, bloating

↓ Akkermansia muciniphila

↓ Bifidobacteria species

Wang et al., 2011

↑ Mucosa-associated Clostridiales (Lachnospiraceae and

Ruminococcaceae)

↓ Dorea, Blautia, Sutterella

Luna et al., 2017

↑ Burkholderia

↓ Neisseria

Kushak et al., 2017

↑ Sutterella Williams et al., 2012

↓ Bacteroidetes

↑ Firmicutes (↑ Ruminococcaceae

↑ Lachnospiraceae)

Williams et al., 2011

Parkinson’s disease Constipation ↓ Faecalibacterium (Blautia, Coprococcus, and

Roseburia)

↑ Pro-inflammatory Proteobacteria of the

genus Ralstonia

Keshavarzian et al., 2015

↓ Dorea,

↓ Bacteroides,

↓ Prevotella,

↓ Faecalibacterium,

↓ Bacteroides massiliensis, ↓

Bacteroides coprocola,

↓ Stoquefichus

↓ Blautia glucerasea,

↓ Dorea longicatena, ↓

Bacteroides dorei,

↓ Bacteroides plebeus,

↓ Prevotella copri,

↓ Coprococcus eutactus,

↓ Ruminococcus callidus

↑ Christensenella,

↑ Catabacter,

↑ Lactobacillus,

↑ Oscillospira,

↑ Bifidobacterium,

↑ Christensenella minuta,

↑ Catabacter hongkongensis,

↑ Lactobacillus mucosae,

↑ Ruminococcus bromii,

↑ Papillibacter cinnamivorans

Petrov et al., 2017

↓ Prevotellaceae Scheperjans et al., 2015

↑ Akkermansia muciniphila Heintz-Buschart et al., 2018

Alzheimer’s disease Constipation, incontinence ↑ Akkermansia muciniphila

↑ Prevotella denticola

Zhuang et al., 2018

↓ Firmicutes and Bifidobacterium

↑ Bacteroidetes

Vogt et al., 2017

↑ Escherichia/Shigella (pro-inflammatory)

↓ E. rectale (anti-inflammatory)

Cattaneo et al., 2017

Multiple sclerosis Constipation, diarrhea ↑ Methanobrevibacter

↑ Akkermansia muciniphila

↓ Butyricimonas

Jangi et al., 2016

↑ Akkermansia muciniphila, Berer et al., 2017

↓ Faecalibacterium Cantarel et al., 2015

↑ Akkermansia muciniphila,

↑ Acinetobacter calcoaceticus

↓ Parabacteroides distasonis

Cekanaviciute et al., 2017

Arrows indicate an increase or decrease in abundance of bacteria.

properties is therefore warranted in these models and in patients
with neurological disorders that potentially express mutations in
these and related synaptic genes.

Mucosa-Associated Microbial Dysbiosis
In neurological disease, changes in mucus properties could
additionally alter commensal microbial populations. Dysbiosis
has been reported for the mucus-residing microbiome in patients
with various neurological disorders including autism, Parkinson’s

disease, Alzheimer’s disease, and multiple sclerosis (Table 2).
Because dysbiosis can alter gut barrier function (i.e., via altering
mucus thickness), this could contribute to disease progression.
Microbial populations influence mucus hydration by releasing
enzymes that modify mucus structural networks. Microbes
release enzymes that degrade mucus, and this enzymatic cleavage
of mucin complexes expands and hydrates the mucus 3-
dimensional structure. For example, increased release of mucin-
degrading enzymes due to an overgrowth of mucus-residing
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bacteria (such as Akkermansia muciniphila) increases mucus
thickness and strengthens the protective mucosal barrier
(Ottman et al., 2017). An additional effect of increasing mucus
thickness may be reduced nutrient absorption. Such an increase
could be beneficial (i.e., in the case of obesity) but detrimental
in neurodegenerative diseases such as multiple sclerosis and
Parkinson’s Disease (Cani, 2018).

Autism
Autism spectrum disorder is a neurodevelopmental disorder
characterized by impaired social interactions and restrictive and
repetitive behavior. In 2018, 1 in 59 children are diagnosed
with autism in the United Status. GI dysfunction is a
major comorbidity for autism patients (Kohane et al., 2012;
Chaidez et al., 2014; McElhanon et al., 2014) and includes
symptoms such as abdominal pain, diarrhea, constipation,
and bloating. Altered levels of mucosa-associated bacterial
species are reported in autism patients with GI dysfunction
with Akkermansia muciniphila Dorea, Blautia, Sutterella
Neisseria having decreased abundance, while mucosa-
associated Clostridiales (Lachnospiraceae and Ruminococcaceae),
Burkholderia, Ruminococcaceae, Lachnospiraceae, and Sutterella
have increased abundance (Wang et al., 2011; Williams et al.,
2011, 2012; Kushak et al., 2017; Luna et al., 2017).

Parkinson’s Disease
Parkinson’s disease (PD) is the second most common
neurodegenerative disease observed in people over 60 years
of age (de Lau and Breteler, 2006). In addition, PD is increasingly
correlated with GI disorders prior to the onset of characteristic
motor symptoms such as tremor and coordination of complex
movement. Although the pathophysiology of PD remains
unclear, the accumulation of α-synuclein appears to cause
neuronal death (Kirik et al., 2002; Braak et al., 2003). Parkinson’s
patients with colonic inflammation also showed α-synuclein
deposits in their colon (Holmqvist et al., 2014). The mucosal
biopsy samples of PD patients showed increased abundance
of Akkermansia muciniphila, and Ralstonia, and a decrease
in abundance of Faecalibacterium (Blautia, Coprococcus,
Roseburia) and Prevotella (Keshavarzian et al., 2015; Scheperjans
et al., 2015; Petrov et al., 2017; Heintz-Buschart et al., 2018).

Alzheimer’s Disease
Alzheimer’s disease is an increasingly prevalent
neurodegenerative disease characterized by progressive cognitive
decline and also reported to have comorbid GI dysfunction.
Patients with Alzheimer’s disease who also had symptoms
indicative of IBS showed dysbiosis involving increased
abundance of mucolytic bacteria including Akkermansia
muciniphila and Prevotella denticola (Zhuang et al., 2018).

Similarly stool samples of Alzheimer patients examined for

targeted bacteria showed an increase in the abundance of
Escherichia/Shigella (pro-inflammatory taxa) and a decrease
in abundance of E. rectale (anti-inflammatory taxa) (Cattaneo
et al., 2017). Microbial dysbiosis in Alzheimer’s disease has been
implicated in increasing gut permeability, which may influence
systemic inflammation and impairment of the blood brain
barrier (Vogt et al., 2017; Kowalski and Mulak, 2019).

Multiple Sclerosis
Multiple sclerosis involves an aberrant immune system that
causes inflammation and results in demyelination in the central
nervous system. Multiple studies in patients with multiple
sclerosis have found increased abundance of mucosal bacteria
including Akkermansia muciniphila, Methanobrevibacter,
and Acinetobacter calcoaceticus and decreased abundance of
Butyricimonas, Faecalibacterium, and Parabacteroides distasonis
(Cantarel et al., 2015; Jangi et al., 2016; Berer et al., 2017;
Cekanaviciute et al., 2017). Such alterations in the mucosal
microbiome potentially favor the growth of pathogenic bacteria
that alter the composition of the mucus layer and therefore may
exacerbate core symptoms of these disorders (Camara-Lemarroy
et al., 2018; Buscarinu et al., 2019)

CONCLUSION

In summary, multiple pathways relevant to mucus homeostasis
may be impacted by nervous system impairments in neurological
disease. Furthermore, altered mucus properties could contribute
to the widespread observations of microbial dysbiosis
in autism, Parkinson’s Disease, Alzheimer’s Disease, and
multiple sclerosis, and potentially exacerbate core symptoms.
Overall, this review highlights that mucus properties could
be impaired in neurological disease and provides new
avenues for clinically relevant research into GI dysfunction in
these disorders.
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Background:Growing evidence points out that a disturbance of gut microbiota may also

disturb the gut–brain communication. However, it is not clear to what extent the alteration

of microbiota composition can modulate brain function, affecting host behaviors. Here,

we investigated the effects of gut microbiota depletion on emotional behaviors.

Methods: Mice in the experimental group were orally administered ceftriaxone sodium

solution (250 mg/ml, 0.2 ml/d) for 11 weeks. The open-field test and tail-suspension test

were employed for the neurobehavioral assessment of the mice. Fecal samples were

collected for 16s rDNA sequencing. The serum levels of cytokines and corticosterone

were quantified using enzyme-linked immunosorbent assays. The immunohistochemistry

method was used for the detection of brain-derived neurotrophic factor (BDNF) and

c-Fos protein.

Results: The gut microbiota for antibiotic-treated mice showed lower richness and

diversity compared with normal controls. This effect was accompanied by increased

anxiety-like, depression-like, and aggressive behaviors. We found these changes to be

possibly associated with a dysregulation of the immune system, abnormal activity of the

hypothalamic-pituitary-adrenal axis, and an alteration of neurochemistry.

Conclusions: The findings demonstrate the indispensable role of microbiota in the

gut–brain communication and suggest that the absence of conventional gut microbiota

could affect the nervous system, influencing brain function.

Keywords: gut microbiota, emotional behaviors, ceftriaxone sodium, anxiety, depression, aggressive behavior

INTRODUCTION

Gut microbiota, known as a reservoir of bacteria, not only plays an essential role in host digestion
and energy metabolism but shapes host immunity (Aleshukina, 2012; Antonopoulos and Chang,
2016; Thursby and Juge, 2017). Recently, evidence of its influence extends well-beyond the gut,
many studies have begun to report that the gut microbiota may be associated with the development

171

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2020.00258
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2020.00258&domain=pdf&date_stamp=2020-06-24
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhoulinlin@scu.edu.cn
mailto:taocm@scu.edu.cn
https://doi.org/10.3389/fcimb.2020.00258
https://www.frontiersin.org/articles/10.3389/fcimb.2020.00258/full
http://loop.frontiersin.org/people/847323/overview


Zhao et al. Abnormal Gut Microbiota Influences Behaviors

and progression of diseases affecting multiple organ systems
such as liver, lung, and brain (Felix et al., 2018; Lee and
Jayaraman, 2019; Yuan et al., 2019). Researchers believe that
there is a potential connection between the gut and the central
nervous system (CNS). Additional studies have defined this
connection as a bi-directional communication covering multiple
connections, such as immune response, the vagus nerve, and
humoral components (Mayer et al., 2015). Recent evidence has
unlocked a novel pivotal member, gut microbiota, which plays an
important role in this communication. As a result, this concept,
now known as the microbiota-gut-brain (MGB) axis, has been
prompted and subsequently implicated in multiple disorders,
such as digestive, neurological, and psychiatric diseases (Scriven
et al., 2018; Iannone et al., 2019).

Antibiotics are one of the most commonly prescribed drugs
worldwide. There has been an increasing concern that variations
in the microbiota induced by antibiotics may have detrimental
consequences for health (Kim et al., 2017). A growing body of
evidence confirms the role of specific microbial compositions
in the modulation of brain functions as well as host behaviors.
To be specific, a complete absence of gut microbiota resulted in
alteration of blood–brain barrier (BBB) permeability and brain
neurochemistry with decreased social behaviors inmice (Braniste
et al., 2014).

While the whole brain is vulnerable to external stimuli, two
regions that influence stress responsivity and behavior have
been considered as the most likely targets for gut microbiota
(Luczynski et al., 2016). The first region is the amygdala,
which seems to be involved in many forms of negative
emotionality, including anxiety (Davis et al., 1994; Janak and Tye,
2015). After receiving input from disgust stimuli, the amygdala
projects to the regions or sub-regions regulating anxious and
defensive behaviors (Kovács, 2008). Usually, the activation of the
amygdala is measured by c-Fos expression (Kovács, 2008). The
second region, the hippocampus, is well-known as for emotion
regulation. In this study, germ-free (GF) mice exhibited more
anxiety-like behaviors, which were accompanied by higher brain-
derived neurotrophic factor (BDNF) levels in the dentate region
of the hippocampus (Sudo et al., 2004; Neufeld et al., 2011).
Here, we explored the contribution of gut microbiota to the
CNS via depleting bacteria with ceftriaxone sodium, a broad
spectrum antibiotic.

MATERIALS AND METHODS

Study Design
Male BALB/c mice (6–8 weeks; Institute of Laboratory Animals
of Sichuan Academy of Medical Sciences, Sichuan, China) were
maintained (ten mice per cage) under a specific-pathogen-free
(SPF) condition at 22–26◦C, 40–60% humidity, and 12-h light-
dark cycle. The mice were given 1 week to acclimate. All mice

Abbreviations: MGB, microbiota-gut-brain; SPF, specific-pathogen-free; OFT,

open-field test; TST, tail-suspension test; OTUs, operational taxonomic units;

ELISA, enzyme-linked immunosorbent assay; BDNF, brain-derived neurotrophic

factor; IL, interleukin; HPA, hypothalamic-pituitary-adrenal; CNS, central nervous

system; BBB, blood–brain barrier; LPS, lipopolysaccharide; GF, germ-free.

were fed with adequate food and clean water. At the end of
adaptive phase, all mice (initial weight 23.55 ± 1.49 g) were
randomly divided into two groups (n = 20 for each group) and
given either sterile saline solution (the control group was defined
as the CT group, 0.2 ml/d) or ceftriaxone sodium solution (Qilu
Pharmaceutical, Shandong, China) (the antibiotic group was
defined as the AB group, 250 mg/ml, 0.2 ml/d) intragastrically
once a day for 11 consecutive weeks (details about drug dosages
is included in Supplementary Materials). Mice were housed by
group (10 mice per cage) from the first day of gavage to avoid
interference between different groups. A battery of behavioral
tests was administrated weekly, with 1 h of rest between each test.

Eleven weeks after ceftriaxone treatment, the mice in the
AB group exhibited a remarkable difference in behavioral
parameters. On the second day after the last behavioral
experiment was performed, the mice were administered the final
gavage exposure, and 1 h later, fresh blood and stool was sampled.
The mice were inspected daily for changes in appearance
and body weight. All experiments followed the guidelines of
the Chinese Council on Animal Care and were approved by
the Animal Care Advisory Committee of Sichuan University,
Sichuan, China. The experimental design was shown in Figure 1.

Behavioral Tests
Two behavioral tests were carried out under following sequence
(from 8 a.m. to 5 p.m.): open-field test (OFT)→ tail-suspension
test (TST). The OFT, which involves a low stress level, preceded
the TST, which involves a high stress level (Di et al., 2017).
Prior to each behavioral test, mice were habituated for at least
1 h to the testing room (Champagne-Jorgensen et al., 2020).
The lighting condition was set at 15 lux for all behavioral tests
(Dere et al., 2004).

The Open-Field Test
The equipment of theOFTwas composed of a square arena 100×
100 cm with 40 cm walls. The floor was subdivided into a center
and periphery compartment with 25 squares. Mice were placed
alternatively in the open field for at least 30min and allowed
to explore undisturbedly before the first test (Champagne-
Jorgensen et al., 2020). In the formal test, mice were placed singly
in the center of the open field and allowed to freely explore for
5min. Relevant parameters (the total distance, the total time
in the periphery, and center of the open field) were recorded
by a video monitor. At the end of the test, mice were sent
back to their home cages, and the test box was cleaned with
70% ethyl alcohol and air dried. The OFT has been proven to
be efficient in detecting anxiety and selecting anxiolytic drugs
(Kraeuter et al., 2019).

The Tail-Suspension Test
Mice were suspended in an upside-down position by the tail,
so that they could not escape or touch nearby surfaces. The
rationale for the test is that mice are under enormous stress, and,
if they don’t have the desire to live, they will develop a motionless
posture quickly and maintain it for a longer period. The total
duration of quiescence and activity during 5min was scored,
respectively (Młyniec and Nowak, 2012).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2 June 2020 | Volume 10 | Article 258172

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zhao et al. Abnormal Gut Microbiota Influences Behaviors

Gut Microbiota Analysis
A TIANamp Bacteria DNA Kit (TIANGEN, China) was used
to extract fecal DNA. Then, the extraction was eluted using

elution buffer and stored at −80◦C until PCR amplification

detection by LC-Bio (Hangzhou, China). The V3-V4 region of

the prokaryotic 16S rRNA gene was amplified with primers

FIGURE 1 | Study design. After seven days of adaptation, the antibiotic (AB) group was given ceftriaxone and the control (CT) group was given saline by gavage once

a day. The open-field test (OFT) and tail-suspension test (TST) were given to mice once a week. After 11 weeks of oral gavage, significant behavioral differences were

noted between the groups. On the second day after the last behavioral experiment was performed, mice were administered the final gavage exposure, and 1 h later,

fresh blood and stool was sampled.

FIGURE 2 | Effect of ceftriaxone on body weight. AB, ceftriaxone administration for 11 weeks (n = 14); CT, saline treatment for 11 weeks (n = 18). AP: adaptive

phase. *P < 0.05, ***P < 0.001.
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FIGURE 3 | Diagram showing movement of (A) AB group mice and (B) CT group mice in the open field. AB, antibiotic group (n = 14); CT, control group (n = 18).

FIGURE 4 | Results of behavioral tests (A) in the open field test, (B) in the suspension tail test. AB, antibiotic group (n = 14); CT, control group (n = 18). *P < 0.05,

***P < 0.001.
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338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) (Fadrosh et al., 2014). The
detailed operation was performed as described previously (Li
et al., 2019).

Serum Cytokine Assay
Cytokines secretion is usually induced in an inflammation or
infection. Except for their effects on immunity, cytokines can
also affect brain function and modulate host behaviors (Köhler
et al., 2018). Research has suggested that serum IL-6 and IL-
10 levels are putative biomarkers for several mood disorders
(Wiener et al., 2019). Here, fresh blood was collected in sterile
tubes, coagulated at room temperature, and centrifuged at 1000
× g for 10min after the last ceftriaxone sodium treatment.
The serum was stored at −70◦C for later analysis. IL-6 and
IL-10 were quantified by enzyme-linked immunosorbent assay
(ELISA) (Neobioscience, Shenzhen Xinbosheng Biotechnology
Co., Ltd, China). The detection limit of the assay was about 1 pg
ml−1. According to the manufacturer’s protocol, the assay was
performed in triplicate.

Serum Corticosterone Assay
Corticosterone is the end product of the hypothalamus-pituitary-
adrenal (HPA) axis in rodents. Rising corticosterone levels
suggest increases in HPA axis activity (Hiroshi et al., 2006).
Serum corticosterone was measured by ELISA (Cusabio,Wuhan
Huamei Biotechnology Co., Ltd, China). The detection limit of
the assay was about 1 ng ml−1. The assay was performed in
triplicate according to the manufacturer’s protocol.

Immunohistochemistry
The immunohistochemistry was used to assess expression of
brain-derived neurotropic factor (BDNF) in the hippocampus

FIGURE 5 | Venn diagram of fecal bacteria. AB, antibiotic group (n = 14); CT,

control group (n = 18).

and c-Fos in the amygdala. The whole process consisted of brain
collection, sectioning, and immunolabeling. The details referred
to previous literatures (Gareau et al., 2011).

Each maker was quantified by staining intensity and extent.
We scored the staining intensity as follows: negative, weak,
moderate, and strong (on a scale of zero to four). The staining
extent was divided into five grades according to the percentage
of positive cells in the region: negative, 0–25, 26–50, 51–75, and
76–100% (on a scale of zero to four) (Liu et al., 2011).

Semi-quantification of BDNF was calculated by multiplying
the intensity score and fraction score in the CA1, CA3, and
DG (dentate gyrus) regions of the hippocampus (Olympus,
Tokyo, Japan, BX53). Similarly, semi-quantification of c-Fos
was performed by calculating the intensity score and fraction
score in the CeC, CeL, and CeM regions of the amygdala. The
immunohistochemical analysis was performed blind.

Statistical Analysis
Data were expressed as the mean± standard deviation or median
(IQR) and analyzed by one-way ANOVA or Wilcoxon rank sum
test in SPSS 22.0 software (SPSS Inc., Chicago, IL, USA). P-values
less than 0.05 were considered statistically significant.

RESULTS

The Effect of Ceftriaxone Treatment on

Body Weight
Mice in the AB group gained less weight than the CT group, with
this difference increasing progressively over time. After gavage
for 7 weeks, the weight of the AB group was significantly lower
than that of the CT group (p < 0.05) (Figure 2).

The Effect of Ceftriaxone Treatment on

Mice Behaviors
Mice Treated With Ceftriaxone Sodium Exhibited

Anxiety-Like Behaviors
OFT is usually performed to assess locomotor activity and
exploratory behavior (Kraeuter et al., 2019). The former was
represented by the total distance traveled throughout the 5min,
and no differences were observed between the two groups.
Previous studies suggest mice prefer staying close to the walls and
travel more in the periphery field can be described as showing
signs of anxiety (Crawley, 1985). Comparatively, mice with lower
anxiety tend to spend more time in the central field. In this study,
the AB group spent less time in the center as compared to the CT
group (p < 0.001) after gavage for 11 weeks. Meanwhile, the AB
group reduced movement in the center (p < 0.001) (Figures 3,
4A). For details of the 11-week behavioral data analysis, see
Supplementary Figure 1.

Mice Treated With Ceftriaxone Sodium Exhibited

Depression-Like Behaviors
TST was often used for evaluating the ability to cope with a
stressful situation (Kraeuter et al., 2019). Decreased duration of
activity is considered a sign of depressive behavior (Castagne
et al., 2011). In the test, the AB group showed decreased activity
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during the 5min and stopped escaping earlier than the CT group
(p < 0.05) after gavage for 11 weeks (Figure 4B).

Mice Treated With Ceftriaxone Sodium Exhibited

High Aggressive Behavior
Eight weeks after ceftriaxone administration, visible injuries were
observed in the AB group, suggesting that aggressive behaviors
had occurred. Four mice from the AB group were excluded
from the experiment 10 weeks later due to serious injuries
influencing mobility. In contrast, the CT group did not get
injured throughout the experiment.

The Effect of Ceftriaxone Treatment on Gut

Microbiota Composition
16S rDNA sequencing was used to identify alterations in gut
microbiota after gavage for 11 weeks. Ceftriaxone administration
induced a significant change in gut microbiota diversity. For
the Venn diagram (Figure 5), the number of shared and unique
OTUs indicate a similarity and difference of gut microbiota
between groups, respectively (Ren et al., 2018). Based on this,
there were 587 OTUs specific to the AB group and 1,570

specific to the CT group, accounting for 19.38 and 39.13% of
the total OTU richness, respectively. All samples shared 2,442
OTUs at 97% similarity. The alpha diversity analysis revealed
that the AB group had lower species diversity, richness, and
evenness than that of the CT group by plotting Chao1, Shannon,
Simpson, and Observed_species curves (Figure 6). A strong
antibiotic effect was observed in beta diversity analysis. The
PCA plot showed an appreciable separation between the two
groups, indicating they had low similarity in gut microbiota
composition. Likewise, the PCoA plot and MDS plot indicated
the microbiota of AB group clustered separately from CT
group (Figure 7).

According to abundance analysis, the dominant phyla
in AB and CT groups were Bacteroidetes and Firmicutes,
while the relative abundance of Firmicutes was lower
in the AB group than that in CT group. Significant
abundance differences were observed in the following phyla:
Proteobacteria increased while five phyla decreased (Firmicutes,
Actinobacteria, Candidatus Saccharibacteria, Deferribacteres,
and Candidatus_Melainabacteria) in the AB group (Figure 8A,
Table 1). At the genus level, ceftriaxone increased the

FIGURE 6 | Alpha diversity analysis for gut microbiota. (A) Chao1 curves for each group. (B) Shannon-Wiener curves for each group. (C) Simpson curves for each

group. (D) Observed_species curves for each group. AB, antibiotic group (n = 14); CT, control group (n = 18).
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FIGURE 7 | Beta diversity analysis for gut microbiota. (A) PCA plot of weighted UniFrac distances between samples. (B) PCoA plot of weighted UniFrac distances

between samples. (C) MDS plot of weighted UniFrac distances between samples. AB, antibiotic group (n = 14); CT, control group (n = 18).

proportion of Proteobacteria, Porphyromonadaceae_unclassified,
Escherichia, and Parabacteroides, while Lactobacillus,
Acetatifactor, Bacteroidetes_unclassified, Barnesiella,
Helicobacter, Prevotella, Alistipes, and Bacteroidales_unclassified
declined (Figure 8B, Table 2). Ten phyla and 21 genera
were clustered by heatmaps, which demonstrated the relative
abundance of species in different samples. In the CT group, the
samples got closer to each other, indicating a higher similarity
among them (Figure 9).

The Effect of Ceftriaxone Treatment on

Serum Cytokines and Corticosterone
Ceftriaxone induced increased IL-6 and IL-10 in the AB group
(IL-6: 51.82± 9.99 pg/ml and 43.21± 10.18 pg/ml for AB andCT,
respectively) (IL-10: 274.81 ± 95.59 pg/ml and 173.12 ± 55.31
pg/ml for AB and CT, respectively) (Figures 10A,B). In addition,
serum corticosterone was significantly higher in the AB group
than in the CT group (10.16 ± 4.97 ng/ml and 5.39 ± 4.03 ng/ml
for AB and CT, respectively) (Figure 10C).

The Effect of Ceftriaxone Treatment on

Hippocampal Cell Proliferation and Neural

Activity
A slight decrease of BDNF in the CA1, CA3, and DG regions
of the hippocampus was observed in the AB group compared to
the CT group (Figure 11, Table 3). Meanwhile, c-Fos expression
increased in the amygdala of the AB group without a statistically
significant difference (Figure 12, Table 3).

DISCUSSION

The gut, a vulnerable but vital organ, is affected by different
factors easily. Antibiotics are one of the common causes leading
to gut disturbance, especially given the broad spectrum of
antibiotics. Consistently, little is known about adverse effects
of these antibiotics on health except for drug resistance. But,
recently, medications with antibiotic have been reported to
enhance the risk of allergies, inflammatory bowel diseases,
obesity, and even mental diseases (Harris and Baffy, 2017;
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FIGURE 8 | Composition abundance of gut microbiota (A) at the phylum level and (B) the genus level. AB, antibiotic group (n = 14); CT, control group (n = 18).

TABLE 1 | Relative abundance of gut microbiota at the phylum level.

Phylum AB (%) CT (%) P-value

Candidatus_Saccharibacteria 0.00 0.27 0.006**

Actinobacteria 0.34 0.81 0.006**

Deferribacteres 0.00 0.15 0.008**

Bacteria_unclassified 1.17 2.62 0.005**

Candidatus_Melainabacteria 0.00 0.01 0.024*

Proteobacteria 4.89 4.13 0.034*

Firmicutes 36.51 46.12 0.047*

Bacteroidetes 56.97 45.58 0.064

Cyanobacteria 0.01 0.09 0.097

Tenericutes 0.11 0.23 0.379

AB, antibiotic group (n = 14); CT, control group (n = 18). *P < 0.05, **P < 0.01.

Torres-Fuentes et al., 2017; Guo J. et al., 2019; Slykerman
et al., 2019). Also, some investigators suggest that abnormal gut
microbiota or some intestinal infections may be responsible for
a series of metabolism or immunity-related diseases (Wang and
Wang, 2016). The impact of intestinal dysbacteriosis induced
by antibiotics on brain functions and behaviors piques interest
and is yet to be elucidated. Therefore, this study was designed
to determine whether long-term ceftriaxone exposure altered gut
microbiota and thus affected host behaviors.

Ceftriaxone administration caused significant weight loss in
the study. This is consistent with the previous finding that
the weight gain of mice was delayed significantly following
the ceftriaxone treatment (Miao et al., 2020). However, it was
contradictory with previous findings that antibiotics result in
weight gain in the animal production system (Angelakis, 2017).
The disparate findings imply that the growth of animals may be
impacted by the dosage, intervention time and, above all, types
and properties of antibiotics.

Ceftriaxone could result in a significant gut microbiota
dysbiosis by killing most of the normal flora and providing the
living space for other potential pathogens (Cheng et al., 2019).
The gut microbiota of mice was altered greatly in quantity and
quality by the oral administration of ceftriaxone in this study.
Similar to the result, other studies confirmed that oral ceftriaxone

TABLE 2 | Relative abundance of gut microbiota at the genus level.

Genus AB (%) CT (%) P-value

Porphyromonadaceae_unclassified 49.13 23.43 0.000***

Lachnospiraceae_unclassified 20.49 24.57 0.335

Bacteroides 4.32 7.07 0.082

Lactobacillus 1.86 9.23 0.028*

Ruminococcaceae_unclassified 4.21 3.45 0.408

Bacteroidales_unclassified 1.31 4.89 0.000***

Bacteria_unclassified 1.17 2.62 0.007**

Clostridiales_unclassified 1.80 2.03 0.673

Prevotella 0.10 3.14 0.010*

Escherichia 4.16 0.00 0.038*

Bacteroidetes_unclassified 0.32 2.65 0.000***

Clostridium XlVa 1.21 1.47 0.571

Helicobacter 0.24 1.93 0.029*

Oscillibacter 1.31 0.84 0.125

Alloprevotella 0.43 1.10 0.074

Acetatifactor 0.44 1.07 0.033*

Barnesiella 0.30 1.11 0.002**

Alistipes 0.00 1.00 0.000***

Parabacteroides 0.95 0.15 0.004**

Clostridium IV 0.40 0.40 0.953

AB, antibiotic group (n = 14); CT, control group (n = 18). *P < 0.05, **P < 0.01,

***P < 0.001.

significantly decreased the quantity of fecal microbiota (Cheng
et al., 2017, 2019; Guo et al., 2017; Miao et al., 2020). At the
phylum level, the microbiota diversity of the AB group decreased,
Proteobacteria became a dominant phylum, and the abundance
of Bacteroidetes, Firmicutes, Actinobacteria, and Deferribacteres
decreased. This result is supported by studies that ceftriaxone
could characteristically decrease the alpha-diversity of the fecal
microbiota accompanied with more Proteobacteria and less
Bacteroidetes (Cheng et al., 2017, 2019; Miao et al., 2020). In
some dysbiosis and related diseases, an increased Proteobacteria
is perceived as a diagnostic characteristic since it is closely related
to colon epithelial oxygenation as well as the disruption of the
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FIGURE 9 | Heat maps of gut microbiota (A) at the phylum level and (B) the genus level. Red and blue colors indicate high and low values of the percent of reads

classified at that rank. AB, antibiotic group (n = 14); CT, control group (n = 18).

FIGURE 10 | Concentrations of (A) IL-6, (B) IL-10, and (C) corticosterone in serum. AB, antibiotic group (n = 14); CT, control group (n = 18). *P < 0.05, **P < 0.01.

gut anaerobic environment (Zhu et al., 2013; Shin et al., 2015;
Miao et al., 2020). Firmicutes has become a controversial strain as
some studies identified an increase in Firmicutes after ceftriaxone
treatment, but others have demonstrated a declined Firmicutes
in the ceftriaxone group (Cheng et al., 2017, 2019; Miao et al.,
2020). Evidence from clinics has suggested that patients with
depression often have decreased Firmicutes (Huang et al., 2018).
Experimental findings further revealed that decreased Firmicutes
led to a reduction in short-chain fatty acids, which are an
important physiological basis for low-level inflammation during
depression (Huang et al., 2018). Bacteroidetes, as an important
microbe for short-chain fatty acids, almost disappeared from
the feces of the mice during exposure to ceftriaxone (Miao
et al., 2020). Significant alteration of fecal microbiota was also
observed at the genus level: Porphyromonadaceae, Escherichia,
and Parabacteroides dominated the gut microbiota of the

AB group mice, while Lactobacillus, Clostridiales, Acetatifactor,
Bacteroidetes, Barnesiella, Helicobacter, Prevotella, Bacteroidales,
and Alistipes were lowered. In line with this, some researchers
have proposed that decreased Barnesiella after ceftriaxone gavage
is a common and sensitive gut microbiota of the BALB/c mice
and can be used as an indicator for assessing the balance of
the gut microbiota (Zhao et al., 2013). Bacteroidetes is closely
associated with digestion and interacts with the host’s immune
system, affecting the growth of other bacteria (Karlsson et al.,
2011). In addition, an increase in Escherichia prevalence after
oral antibiotic treatment has been reported for vancomycin and
imipenem (Stokes, 1949), amoxicillin, bismuth (Dawes and
Foster, 1956), and metronidazole (Paege and Gibbs, 1961). It
is difficult to discern whether an increase in Escherichia could
be beneficial or harmful as Escherichia is both a commensal
and pathogenic inhabitant of a host’s gastrointestinal tract. But
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FIGURE 11 | Immunohistochemical results of BDNF in the hippocampus of mice (×400). AB, antibiotic group (n = 14); CT, control group (n = 18). CA1, field CA1 of

hippocampus; CA3, field CA3 of hippocampus; DG, dentate gyrus.

TABLE 3 | Expression of BDNF in the hippocampus and expression of c-Fos in the amygdala.

BDNF c-Fos

Group n CA1 CA3 DG CeM CeL CeC

AB 14 1 (1.00–3.25) 3 (2.00–6.75) 3 (1.75–4.00) 6 (3.00–7.50) 6 (3.00–7.50) 2 (0.50–5.00)

CT 18 2 (1.00–4.00) 4 (2.25–8.25) 3 (2.00–4.00) 0 (0.00–4.50) 0 (0.00–4.50) 1 (0.00–9.00)

P-value 0.350 0.586 0.884 0.076 0.076 0.892

AB, antibiotic group; CT, control group; CA1, field CA1 of hippocampus; CA3, field CA3 of hippocampus; DG, dentate gyrus; CeM, central amygdaloid nucleus, medial division; CeL,

central amygdaloid nucleus, lateral division; CeC, central amygdaloid nucleus, capsular part.

most of the time, Escherichia is considered a potential pro-
inflammatory bacteria (Liu et al., 2019). Of particularly note,
increased Porphyromonadaceae associates with mental deficits
and cognitive disorders as well as anxiety-like behaviors in mice
(Scott et al., 2017). Lactobacillus is known as a protective species
against long-lasting metabolic disturbances and prevents gut
dysbiosis, but was suppressed by ceftriaxone (Robles-Vera et al.,
2018). Researchers also discovered that elevated Parabacteroide
relates to the etiology of depression (Cheung et al., 2019).
These results indicate, once again, that different bacteria may be
involved in different functions or biological pathways.

Alterations in gut microbiota were accompanied by behavioral
changes in the mice, including anxiety-like, depression-like,
and aggressive behaviors. These behavioral changes cannot
necessarily be a result of the direct toxic effect of ceftriaxone on
the brain, since ceftriaxone is a non-absorbable antibiotic and
usually given by injection. Previous studies have demonstrated
the complex interaction between gut microbiota and the CNS;
this is what is known as the MGB axis (Wang and Wang,
2016). Animal experiments support that absence or change in
gut microbiota affects the HPA axis answering to stress, anxiety,
and relevant behavior (Koopman and El Aidy, 2017; Lach et al.,

2018; Chen et al., 2019). In addition, the rodents infected with
intestinal pathogens showed anxiety-like behaviors, which can be
partly explained by the activation of vagal afferents (Klarer et al.,
2014). In one study of GF BALB/c with a high-anxiety level and
NIH Swiss mice with a high exploratory ability, when the two
groups exchanged each other’s microbiota, the donor behavioral
characteristics could be reproduced in recipients (Crumeyrolle-
Arias et al., 2014). On the other hand, clinical trials suggest
treatment with probiotics could control the stress response and
improve anxiety symptoms by restoring the gut microbiota (Liu
et al., 2015). Our further work will test whether probiotics could
improve the abnormal behaviors. At present, two major types of
probiotics are commonly used: Bifidobacterium and Lactobacillus
(Logan and Katzman, 2005; Rao et al., 2009; Silk et al., 2009).
According to Wang et al., Lactobacillus fermentum strain NS9
administration not only normalized the composition of gut
microbiota but reduced the anxiety-like behavior induced by
ampicillin (Wang et al., 2015). Furthermore, the antidepressant
effect of Bifidobacterium infantis has also been identified in the
rat separation model of depression (Desbonnet et al., 2010).

Immune dysregulation was demonstrated by high levels
of serum cytokines. This is supported by the evidence that
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FIGURE 12 | Immunohistochemical results of c-Fos in the amygdala of mice (×400). AB, antibiotic group (n = 14); CT, control group (n = 18). CeC, central

amygdaloid nucleus, capsular part; CeL, central amygdaloid nucleus, lateral division; CeM, central amygdaloid nucleus, medial division.

inflammatory factors associate with a profile of behavioral
changes (Capuron and Miller, 2011; Salim et al., 2012; Felger
and Lotrich, 2013). Vagal sensory neurons express receptors for
cytokines, so the inflammatory factors could directly activate the
vagal afferents (Reardon et al., 2018). One study proposes that
anxiety is related to inflammation; for example, mice infected
with Schistosoma mansoni showed a reduction in behaviors
such as exploration and grooming (Sulaiman et al., 1989). In
addition, abnormal emotions, such as anxiety and neophobia,
could happen following bacterial infection or as a response to
bacterial products (Capuron and Miller, 2011). Anxiety levels
increased when humans were exposed to lipopolysaccharide
(LPS) (Grigoleit et al., 2011). Of the numerous cytokines, IL-
6 is perceived as an atypical proinflammatory cytokine, having
been demonstrated to show elevated levels in depressed animals
and patients (Jiang et al., 2020; Lamers et al., 2020). In a study,
IL-6 knockout mice became resistant to the development of
depression-like symptoms (Monje et al., 2011). The underlying
mechanisms involve in two pathways, the HPA axis and
neurotransmitter metabolism, both of which are affected by
increased IL-6 in depression (Ting et al., 2020). Furthermore,
anxious patients also had higher serum levels of IL-6 than
common people (Tang et al., 2018; Zou et al., 2020). In addition
to impact on HPA axis activity, IL-6 could cross the blood–brain
barrier, as they affect the uptake and release of mood-relevant
neurotransmitters, including dopamine, 5-HT, noradrenaline,
and gamma-aminobutyric acid (Zalcman et al., 1994; Clement
et al., 1997; Anisman et al., 2008; Miller, 2009). IL-10, a
prototypical anti-inflammatory cytokine, was closely related to
depression (Li et al., 2020). Lower IL-10 has been observed
in depression, while IL-10 was elevated after antidepressant
treatment (Dai et al., 2020; Lee et al., 2020). In contrast,
studies have reported higher IL-10 in depressive patients and

decreased IL-10 after treatment for depression (Köhler et al.,
2018; Himmerich et al., 2019; Wang et al., 2019; Brunoni
et al., 2020). One explanation for increased IL-10 is that it
is an anti-inflammatory response to correct an inflammatory
activation caused by higher levels of proinflammatory cytokines
(Bhattacharya andDrevets, 2017). In this way, higher IL-10 levels,
as observed in our study, may be associated with the development
of abnormal patterns. On the other hand, previous studies found
a high dose of IL-10may induce anxiety in the OFT (Harvey et al.,
2006), two other behavioral tests for anxiety detection (Munshi
et al., 2019). Taken together with these experiment evidences,
the abnormal pattern of mice may be a direct result of increased
inflammatory mediators.

Elevated corticosterone, one marker of HPA axis activation,
was observed in the mice of the AB group (Borrow et al.,
2019). Several studies indicate that the disturbance of gut
bacteria affects the HPA axis. Specifically, adrenocorticotrophin
and corticosterone levels for GF mice were higher than of
mice bearing conventional microbiota (Crumeyrolle-Arias et al.,
2014). Besides, the hyperactivity of the HPA response in GF mice
could be partially reversed by gut microbiota transplantation
(Huo et al., 2017). Probiotics, such as Bifidobacterium species,
have been demonstrated to be efficient in restoring HPA axis
function (Moya-Pérez et al., 2017).

The BDNF level showed a decreasing trend in the
hippocampus of the AB group. According to the previous
study, BDNF can maintain and promote development,
differentiation and regeneration of neurons as well as affect
learning and memory (Bercik et al., 2011). The hippocampus
provides the brain with a spatiotemporal framework within
which various sensory, emotional, and cognitive components
are integrated (Yang and Wang, 2017). Literature has reported
that hippocampus degeneration with diminished BDNF leads

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11 June 2020 | Volume 10 | Article 258181

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zhao et al. Abnormal Gut Microbiota Influences Behaviors

to a decline in cognition (Deltheil et al., 2008). Recently, gut
microbiota is thought to directly affect BDNF expression.
The GF mice showed a decreased BDNF in the cortex and
hippocampus (Bercik et al., 2011). This coincides with the
thesis that reduction of BDNF after gut dysbiosis possibly
leads to impairment of cognitive function (Frohlich et al.,
2016). Contrary to the findings, some studies observed an
increased BDNF in the amygdala and hippocampus when gut
microbiota imbalance induced a decline in spatial memory
(Desbonnet et al., 2015). In addition, Bifidobaterium adolescentis
shows a promising anxiolytic and antidepressant property as
it up-regulated BDNF expression by restoring the balance of
gut microbiota (Guo Y. et al., 2019). A slight increase of c-Fos
was observed in the amygdala of the AB group. C-Fos serves
as a component of transcription factor AP-1 and biomarker of
neuronal activation, playing a major role in processing emotion
and motivation (Baulmann et al., 2000; Roberts et al., 2019).
Abnormal activation of c-Fos in the brain may be related to
gut disorders; for example, as compared to uninfected mice, a
significantly increased c-Fos was observed in mice infected with
Campylobacter jejuni (Goehler et al., 2008). Meanwhile, a study
indicated c-Fos activation following immune activation; this
finding was in accord with our findings that cytokines increased
with increasing c-Fos (Lyte et al., 2006).

CONCLUSION

In general, we found that mice exposed to 11 weeks of ceftriaxone
sodium treatment had a lower diversity and abundance of gut
microbiota and showed more behavioral changes as compared
to mice that were given normal saline. Dysregulation of the
nerve-endocrine-immunological network may be a potential
mechanism underlying abnormal behaviors induced by impaired
gut microbiota. The study revealed the unknown side effects of
antibiotics to a certain extent. Follow-up studies rebalancing the
gut dysbacteriosis are required to further confirm the relationship
between gut microbiota and brain function.
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