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Editorial on the Research Topic

Phenotyping; From Plant, to Data, to Impact and Highlights of the International Plant

Phenotyping Symposium - IPPS 2018

The aim of this Research Topic is to provide a series of research articles on a range of subjects
in Plant phenomics (Tardieu et al., 2017) from the use of appropriate sensors for capturing
morphological and physiological traits to smart ways of processing, extracting and managing
“clean” data. Presentation of new approaches to data acquisition, processing and analysis as well
as prerequisites for automation are also among the objectives of this Research Topic.

Plant phenomics is the use of sensors, cameras, and algorithms for trait quantification in plants
including model species crops, forages, vegetables as well as forest and fruit trees. The relationships
between plants and their environment including soil microbes can affect this quantification
bringing in new challenging parameters into the equation. Data may be acquired in a range of
experimental conditions including laboratories, greenhouse, and field or natural experimental site
within forests. Data from the latter can be used for biodiversity studies as well where the scope,
measurement means, and objectives can be shifted for that purpose.

This Research Topic presents a series of articles with an insight into recent advances in plant
phenomics. There are 12 research articles and one opinion paper covering the heterogeneity
and complexity (Watt et al., 2020) of this rapidly developing scientific domain. The majority
of the articles address problems associated with data acquisition and analysis using innovative
computational methods, and a few discuss artificial intelligence. This reflects the current trend
in plant phenomics which leans toward recovering the maximum amount of knowledge and
information from the data deluge triggered by high throughput phenotyping. The significance of
data management is also highlighted.
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In this Research Topic, phenomics data acquisition at a very
large scale, is demonstrated by Hao et al.. Their work shows
how the airborne LiDAR approach allows estimation of the
response of forest ecosystems regarding climate change and
carbon density. Likewise, Zhang et al. used aerial vectors to
enable high throughput data acquisition for understanding leaf
development in rapeseed. This approach was taken to obtain
usable information for precision farming, including precision
fertilization, irrigation, and yield prediction. High throughput
phenotyping in automated greenhouse is discussed by Nguyen
et al.. They show the production of long time series of images
allowingmeasurement of top view area and shoot biomass to help
the estimation of nitrogen use efficiency in wheat.

The imaging types of data produced can also be rather diverse,
including color images (as in Hao et al.; Cho et al.; Bateman et
al.) but also hyperspectral (Bruning et al.) or Fluorescence (Hupp
et al.; Méline et al.) imaging. Méline et al.. suggest promise for
estimation of plant response to biotic stress in a non-destructive
way in a model plant. This opens up future perspectives for crop
research through translational biology.

Major recent innovations in automation and integration of
plant phenomics have mobilized the development of deep and
machine learning methods and tools and the efforts to address
issues with data processing. Dobrescu et al. discuss multitask
learning (MTL) to infer two morphological and one classification
trait at the same time. Bateman et al. present a new method and
name it local context network (LC-Net), which is designed to
measure biomass of individual species in a mixed sward using
convolutional neural networks.

Atanbori et al. demonstrate the use of conditional Generative
Adversarial Network (GAN) to improve the quality of root
counting and measurement to train data for missing classes of
root images/data.

Semantic approaches are important not only to correctly
describe the data but also to extract and organize processed
information. Two papers in this Research Topic explore how
semantic annotation can be fully or partially automated.
Braun and Lawrence-Dill show how in silico text mining
and natural language processing approaches can be used to
extract information from phenotype descriptions, enabling better
exploitation of the data gold mine that lies in the literature.

Adhikari et al. is more applied and field-based and uses both
expert annotation and artificial intelligence approaches to train
an automatic weeding method for Paddy fields. Over the past 10
years, scientific communities have proposed several approaches
to help data reusability following the FAIR (Wilkinson et al.,
2016) principles. This encompasses biologist-friendly data
standards such asMIAPPE (Papoutsoglou et al., 2020), ontologies
designed to help biologists describe their datasets (Shrestha et al.,
2012), or to support data scientists engaged in data integration
(Cooper et al., 2017). Technical standards such as the Breeding
API (Selby et al., 2019) and databases implementing all of these
components such as GnpIS (Pommier et al., 2019) and PHIS
(Neveu et al., 2018) have beenwell-received by the community. In
this Topic, MaizeDIG explores the deep integration of phenomic
and genomic data using BioDIG (Biological Database of Images
and Genomes) web-based software.

The only Opinion paper (Sadras) in this topic gives
interesting thoughts on the outcome of the 5th International
Plant Phenotyping Symposium (IPPS) 2018, and especially the
relationship between theory and our ability to understand and
make efficient use of the existing data.

Overall, we believe that the articles published in this
Research Topic provide important new knowledge in
the broad field of plant phenomics. Our application of
sensors, AI, semantics, and data standards and sharing on
plant biology is only just beginning. Combining all these
tools and techniques to better understand plants and to
improve crops are showing immense promise. It is crucial
to continue investigating the morphology, physiology, and
gene x environment interactions while simultaneously
developing and deploying novel approaches to improve the
quantification and repeatability of these studies. We hope
that the work presented in this Research Topic will help to
both consolidate the field of plant-phenotyping and shed light
on the significance of methods in decoding plant traits in
different environments.
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Forest carbon density is an important indicator for evaluating forest carbon sink
capacities. Accurate carbon density estimation is the basis for studying the response
mechanisms of forest ecosystems to global climate change. Airborne light detection
and ranging (LiDAR) technology can acquire the vertical structure parameters of
forests with a higher precision and penetration ability than traditional optical remote
sensing. Combining top of canopy height model (TCH) and allometry models, this
paper constructed two prediction models of aboveground carbon density (ACD) with
94 square plots in northwestern China: one model is plot-averaged height-based power
model and the other is plot-averaged daisy-chain model. The correlation coefficients (R2)
were 0.6725 and 0.6761, which are significantly higher than the correlation coefficients
of the traditional percentile model (R2 = 0.5910). In addition, the correlation between
TCH and ACD was significantly better than that between plot-averaged height (AvgH)
and ACD, and Lorey’s height (LorH) had no significant correlation with ACD. We also
found that plot-level basal area (BA) was a dominant factor in ACD prediction, with
a correlation coefficient reaching 0.9182, but this subject requires field investigation.
The two models proposed in this study provide a simple and easy approach for
estimating ACD in coniferous forests, which can replace the traditional LiDAR percentile
method completely.
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INTRODUCTION

Forest carbon storage accounts for 82.5% of terrestrial vegetation carbon storage, which is the main
component of the vegetation carbon sink (Cusack et al., 2014; Kauranne et al., 2017). Accurate
calculations of forest carbon stocks are a hot topic in the field of forest carbon sink research. At
present, large-scale estimations of forest carbon sinks are mainly realized by means of traditional
optical remote sensing. Generally, the relationship between field survey data and remote sensing
extraction parameters is established first and then extrapolated to the whole research scope; this
technique is essentially remote sensing-assisted sampling surveying (Drake et al., 2003; Chi et al.,
2017; Koju et al., 2018).
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Traditional optical remote sensing can extract the spectral
information and horizontal structure information of vegetation.
However, with increasing biomass, saturation occurs easily,
which affects the estimation accuracy of forest carbon storage
(Zhao et al., 2016). Light detection and ranging (LiDAR) detects
the distance between a sensor and target by emitting laser pulses
and receiving reflections from the ground object. Thus, LiDAR
can acquire high-precision three-dimensional information of the
object. Furthermore, LiDAR has a certain penetrating ability and
can obtain vertical structure information of forests, improving
the estimation accuracy of forest height and structure and forest
carbon storage (Dubayah and Drake, 2000; Naesset and Bjerknes,
2001; Hudak et al., 2002; Gwenzi and Lefsky, 2014).

With the big-data progress and increasing storage space in
recent years, airborne LiDAR has become an important means of
forest resource surveys and carbon storage research (Guo et al.,
2017; Swetnam et al., 2017). Data processing methods are mainly
divided into plot-based inversion and individual tree-based
inversion. However, due to the large number of trees, complex
spatial structure of forests and canopy shielding effect, single-
tree segmentation algorithms are not yet mature. Therefore,
developing plot-based inversion methods is indispensable (Ayrey
et al., 2017; Dechesne et al., 2017).

There are two main approaches for the estimation of carbon
density based on plots. One approach is the use of a variety
of machine learning algorithms to establish the relationship
between measured carbon density and LiDAR percentile metrics,
which can make full use of the information contained in the
point cloud to obtain increasing precision (Zhao et al., 2011;
McRoberts et al., 2016). However, the modeling process is a black
box operation, and the prediction results are difficult to explain.
The other approach is the establishment of LiDAR inversion
models directly based on allometry models (Mascaro et al., 2011;
Asner and Mascaro, 2014). The premise of this method is that
there is a similar allometric growth law for plot-level biomass
and single-tree biomass. The key to this approach is finding
the appropriate allometric growth model and the corresponding
LiDAR extraction parameters.

A multiple linear regression model based on LiDAR
percentiles is a popular method for estimating forest carbon
density or biomass, which is widely used and has acceptable
precision in different forest area (e.g., Boudreau et al., 2008;
Zhao et al., 2009; Ferraz et al., 2016; Jimenez-Berni et al.,
2018). Among them, Naesset and Gobakken (2008) explained
88% variation in aboveground biomass (AGB) and 85%
belowground biomass using LiDAR derived variables in boreal
forest (1395 circular sample plots with size 200–400 m2);
Levick et al. (2016) used similar methods to obtain the
fitting accuracy of 92% in 1 ha plots and 68% in 0.05 ha
plots in temperate forest; Cao et al. (2016) established two
regression models for estimating the AGB using multi-temporal
LiDAR data of subtropical forest with R2 of 0.74 and 0.79
in 0.09 ha plots, respectively; Dubayah et al. (2010) estimated
AGB in tropical forest with an R2 of 0.90 in 0.5 ha plots.
Previous studies have demonstrated that the accuracy and
form of percentiles models are closely related to the LiDAR
instruments (Naesset, 2009; Silva et al., 2017) and plot size

(Maltamo et al., 2011; Mascaro et al., 2011) except for intrinsic
characteristics of forest.

In this study, we attempt to find a simple plot-based
LiDAR extraction parameter, establish allometry models of the
aboveground carbon density (ACD) of the northern coniferous
forest, and evaluate the accuracy of these models. The objectives
of this study are (1) the selection of the best parameter for ACD
prediction from the following three plot-based LiDAR extraction
parameters: top of canopy height (TCH), AVG (plot-averaged
height), and Lorey’s height (LorH); (2) the proposal of direct and
indirect fitting models of TCH and ACD and comparison of their
accuracy and (3) calculation of the ACD of the study area with
the proposed models and comparisons of the results and spatial
distribution characteristics.

MATERIALS AND METHODS

Study Area
The study was conducted 50 km southwest of Zhangye City,
Gansu Province, Northwest China (Figure 1). The study area
is approximately 264 ha, and its centre is at 100◦15′E, 38◦32′N.
The elevation ranges from 2700 to 3200 m, the annual rainfall
is 200 to 500 mm, and the monthly average temperature is 5.4
to 19.6◦C. The main vegetation is natural pure Qinghai spruce
(Picea crassifolia) forest, which has both naturally renewed young
trees and tall over-ripe old trees. The ecoregion classification is
“cascade pure conifer forest.”

LiDAR Data and Processing
The LiDAR data used in this study were acquired on June 2008
using a LiteMapper 5600 instrument that recorded up to five
returns per pulse, along with their intensity. The average flight
altitude was 3560 m, the relative height over ground was 760 m,
and the flight speed was 227 km/h. The laser scanner adopted
RIEGL LMS-Q560, and the wavelength was 1550 nm. The laser
pulse width was 3.5 ns, and the laser pulse divergence angle was
less than or equal to 0.5 mrad. The LiDAR point cloud used the
WGS84 coordinate system and the UTM projection zone 47 in
the northern hemisphere. To increase the point density, the flight
was repeated seven times over the study area with a side overlap of
approximately 90%. As a result, the average point cloud interval
was decreased to 0.54 m, and the average point cloud density
was 3.43/m2.

Subsequently, a set of metrics (Table 1) was derived from
the point cloud using the LAStools software package1. The main
processing steps were as follows: (1) the point cloud was filtered
and classified to ground, trees and noise; (2) the normalized
point cloud (NPC, also referred to as height above ground) was
calculated; (3) height percentiles, density percentiles and canopy
cover (CC) were derived from the NPC corresponding to each
plot; (4) the digital surface model (DSM) and digital elevation
model (DEM)were interpolated from the first echo and the last
echo of the point cloud, respectively. The canopy height model
(CHM) was the difference of the first two. (5) The TCH was

1http://www.lastools.org
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FIGURE 1 | Study area and 94 plots.

extracted from the CHM based on each plot (the mean value of
400 pixels per plot).

In addition, in order to explore the effect of CHM pixel size
on ACD prediction, we generated 10 CHMs from NPC, with
pixel sizes from 1 to 10 m. When the pixel location of CHM
corresponds to a laser point, the point’s height value is used
as the pixel value. If the location corresponds to multiple laser
points, the average value of height is used as the pixel value.
For the pixels without corresponding laser point, inverse distance
weighted (IDW) is adopted for interpolation, which can ensure
smooth transition between the target pixel and surrounding
pixels (Montealegre et al., 2015).

Field Data and Processing
To calibrate and validate the models, the plot data were acquired
simultaneously with the LiDAR data. A total of 94 square plots
(20 m × 20 m), which included 5734 trees, were used. The
four corners and the centre of each plot were measured using
differential GPS (DGPS), and the error was less than 10 cm. For
each tree with a diameter at breast height (DBH) greater than
5 cm, the tree type, diameter, height to crown base, crown width
in cardinal directions, crown class, and crown transparency were
measured. DBH was measured on all trees using a diameter tape,
and the heights of all trees were measured using a laser ranging
hypsometer with theoretical accuracy up to the decimeter level.

TABLE 1 | Metrics derived from LiDAR and field investigation data.

LiDAR Metric Description Origin Source

TCH Top of canopy height of plot CHM (canopy height model)

h25. . .h95 Height percentiles NPC (normalized point cloud)

d25. . .d95 Density percentiles

CC Canopy closure

AvgH Average height of plot Field investigation

LorH Lorey’s height of plot

BA Base area of plot

Considering the canopy occlusion and human error, the average
accuracy of the measured tree height was better than 0.5 m.

Using the species-specific allometry Eqs 1–4 in the study area
(Wang et al., 1998; He et al., 2013), tree biomass components
(stem, branch, foliage and fruit) were calculated from DBH and
height. The AGB of each tree was equal to the sum of the AGB
components and was then summed to obtain the AGB of each
plot. These equations were constructed by destructive sampling
and the fitting precision reached 0.9887, 0.9568, 0.8662, and
0.9340, respectively. Because the study area is a nature reserve
and pure spruce forest with little human disturbance, it is believed
that the field-estimated AGB of this study can also achieve such
accuracy. Finally, the AGB was converted to the ACD using the
conversion coefficient of 0.5034, which was attained using the
potassium dichromate oxidation method on samples by Wang
et al. (2000) in the same area. Additionally, Lorey’s height (LorH;
Table 1) was also calculated based on each plot using Eq. 5, and
the LorH values were compared with the TCH values extracted
from LiDAR. For the same purpose, the average height (AvgH) of
the plots was also calculated.

Biomass_stem = 0.0478×
(
D2
×H

)0.8665 (1)

Biomass_branch = 0.0061×
(
D2
×H

)0.8905 (2)

Biomass_foliage = 0.2650×
(
D2
×H

)0.4701 (3)

Biomass_fruit = 0.0342×
(
D2
×H

)0.5779 (4)

LorH =
∑

BAiHi/
∑

BAi (5)

where D is DBH, H is tree height, BAi and Hi are the basal
area and the height of the ith tree, respectively, and a and b are
regression fitting coefficients.
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Plot Allometry Models
The use of an allometry model is the main means of
forest biomass calculation. This type of model is obtained
by the regression of the sample forest harvesting and tree-
measuring metrics and is a single-tree model for specific
tree species in a specific region. The present work imitates
the form of single-tree models at the plot level to find a
suitable plot-level LiDAR metric to replace traditional tree-
measuring metrics.

An idealized and simple tree allometry equation for special
species is:

AGB = aDb (6)

Since DBH is the most easily accessible and accurately
measurable tree indicator, and there is an intrinsic relationship
between the DBH and tree height, the model is widely used
(Chave et al., 2005).

However, Eq. 6 cannot explain the variability of diameter
and tree height growth caused by tree age, forest density, site
conditions and management measures; the introduction of the
tree height factor is necessary.

AGB = aDb1Hb2 (7)

where H represents the tree height (m), and a, b1, and b2 are
fitted coefficients.

The essence of LiDAR is ranging, which can directly estimate
tree height. Therefore, this paper applies Eqs 6 and 7 to Eqs 8 and
9, which are plot-averaged height-based allometry models, and
fits the equations as follows:

ACD = aHb (8)

ACD = aBA′b1TCHb2 (9)

where ACD represents the aboveground carbon density
(Mg C ha−1), and H represents AvgH, LorH, or BA computed
from field-measured data and TCH extracted from the CHM.
BA’ is the fitted result in Eq. 10.

BA′ = a+ bTCH (10)

Percentile Model
Light detection and ranging is highly sensitive to the three-
dimensional structure of forest, because laser pulses can
penetrate the canopy and then record all echo signals
from the ground to the canopy surface. Therefore,
a series of LiDAR metrics, such as height percentile,
density percentile, variation coefficient, etc., have been
successively extracted to capture key information of forest
canopy (Nilsson, 1996; Lefsky et al., 2002; Naesset, 2002;
Nelson et al., 2004).

In this study, the height and density percentiles
extracted from the NPC were used to regression fit the
ACD calculated from the field investigation data. The
model is as follows, and the independent variables are
described in Table 1. The prediction results of this model

(Eq. 11) were compared with the prediction results of
the allometry models (Eqs 8, 9) proposed in this paper.

lnACD = β0+ β1lnh25+ β2lnh50+ β3lnh75+ β4lnh90+
(11)

β5lnh95+ β6lnd25+ β7lnd50+ β8lnd75+ β9lnd90+

β10lnd95+ β11lnCC+ ε

Model Fitting and Evaluation
All models in this study were fitted by the least squares
(OLS) method (Meng et al., 2018). This method is simple
and reliable, avoiding the algorithm differences of different
fitting methods and making the fitting results more contrasting.
All power models were first converted to a linear model by
natural log transformation for regression fitting to correct both
non-normality and heteroscedasticity. Then, the correlation of
coefficients (R2) and back-log root-mean-squared errors (RMSE)
were employed to compare the performance of the models,
and 10-fold cross-validation analysis was used to evaluate the
stability of the models.

Model Application
The study area was divided into a 20 m × 20 m grid
using GIS software (Figure 2). The size and direction of
the grid were the same as those of the field plots in order
to reduce possible errors. Then, LiDAR parameters were
extracted using each grid from the CHM and NPC and
introduced into the allometry models (Eqs 8, 11) proposed
in this paper for calculation. Thereby, ACD distribution maps
of the study area were obtained, compared and evaluated.
Since there was no point cloud at the boundary of the study
area, grid incompleteness due to cropping did not affect the
final prediction.

RESULTS

Field Investigation Data Analysis
Using the comparison between the simple power-law model
(Eq. 8) of ACD and the three plot-averaged metrics (AvgH,
LorH, and BA)calculated from the field inventory, we found
that the BA explains 91.8% of the variation in ACD, which is
much higher than the 39.5% explained by AvgH and 10.1%
explained by LorH (Table 2), and the convergence of BA
is much better than that of AvgH and LorH (Figure 3),
which indicates that BA is the optimal plot-averaged indicator
for the inversion of ACD. It is not surprising that BA is
a stronger predictor of AGB than height is, because BA
can be measured with a lot better accuracy than height,
and because DBH is weighted higher than tree height in
Eq. 7. We also found that the exponent b is close to 1
(b = 1.0300), which indicates that the ACD is nearly linearly
related to BA, and the cross-validated R2 value (0.9182)
is reduced by 0.004 compared with the model-fitted R2

(0.9143), which indicates that the model using BA tends
to be applicable and stable. This result means that, when
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FIGURE 2 | Fishnet for the study area.

TABLE 2 | Summary for ACD estimation using AvgH, LorH, and BA.

Model Model parameters R2 Jackknifing R2 RMSE (Mg C ha−1)

a b

ACD = aAvgHb 8.7899 0.8026 0.3945 0.3587 13.5561

ACD = aLorHb 7.8821 0.6691 0.1014 0.0614 15.9938

ACD = aBAb 1.6528 1.0345 0.9182 0.9143 5.5440

we want to obtain the ACD of plots, we can discard the
exhaustive field inventory data and only need to perform
spatially explicit point-based measurements using the relascope
or prism method.

Moreover, although AvgH and LorH are the most
commonly used plot-averaged height indicators, when they
were applied in Eq. 8 to predict ACD, the effect was poor,
with R2 values of 0.3954 and 0.1014, respectively, and RMSE
values of 13.5561 (Mg C ha−1) and 15.9938 (Mg C ha−1),
respectively; the results with AvgH are slightly better than
those with LorH (Table 2). This suggests that the plot-
averaged height alone does not account for the variation
in the ACD. Therefore, the plot-level ACD estimation
(EACD) based on LiDAR should exclude the AvgH and

LorH steps and directly fit ACD with LiDAR-extracted
metrics (Figure 3D).

TCH Models and the Comparisons
The plot-level LiDAR metric (TCH) was taken into the ideal
simplest allometry (Eq. 8) and was subjected to log changes and
linear fits. The result showed that TCH could explain 67.25%
of the variation in ACD (Figure 4A), suggesting that TCH is
a simple and effective predictor of ACD from LiDAR and that
the classic allometry model (Eq. 6) can be extended from the
tree-level to the plot-level scale.

Using regression by ordinary least squares, we modeled
variation in BA to TCH for 94 plots, with resulting values of
R2 = 0.6066 and RMSE = 5.1749 m2 ha−1 (Eq. 10, Figure 4B,
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FIGURE 3 | The linear relationship between ln(AvgH) and ln(ACD) (A), ln(LorH) and ln(ACD) (B), ln(BA)and ln(ACD) (C). The shadowed region shows the 95%
confidence interval. (D) Boxplots of the field-surveyed BA and predicted BA using plot-averaged height (AvgH) and Lorey’s height (LorH).

and Table 3). By substituting this regression result into Eq. 9, the
EACD could be generated without field inventory data. However,
in a comparison of the fitting results, we found that the scatter
plots were almost the same (Figures 4C,D); R2 only increased by
0.0036, and RMSE increased by 0.1163 Mg C ha−1 (Table 3). This
strongly suggests that the daisy-chain method of TCH cannot
achieve the same ACD prediction as the field-measured BA.
Therefore, if we only use LiDAR-extracted TCH, the height-
diameter model (Eq. 9) and height model (Eq. 8) have no essential
difference in accuracy. Thus, this paper ultimately chose Eq. 8 as
the final allometry model, and the parameter H used TCH.

Percentile Model and a Comparison of
Results
The following result (Eq. 12) was obtained by the multiple
regression fitting of the surveyed ACD of 94 plots and the LiDAR
percentile metrics listed in Table 1.

lnACD = 1.896+ 0.033lnh25+ 12.106lnd95 (12)

The ACD in the study area is closely related to h25 and d95.
These two parameters can explain 59.1% of the ACD variation,
with a RMSE of 11.6304 Mg C ha−1 (Figure 5A), and the
prediction accuracy is lower than the 67.25% of Eq. 8 using TCH.
It demonstrated that the height allometry model proposed in this
paper can replace the traditional LiDAR percentile model with
improved precision.

Figure 5B illustrates the difference between the predicted
values and the survey values of ACD. The median values of the
MLR model and the TCH model are near 52 Mg C ha−1, which is
slightly lower than the measured ACD. Furthermore, the range
of predicted values of the TCH model is slightly smaller than
the surveyed value range, which is larger than the range of the
MLR model. Therefore, compared with the MLR model, the TCH
model has a wider prediction range and can represent larger and
smaller values of ACD.

Model Application
All grid values in the study area were calculated using our
proposed TCH allometry model and percentile model, and then
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FIGURE 4 | (A) Linear relationship between ln(TCH) and ln(ACD). (B) Linear relationship between TCH and the basal area (BA). The shadowed region shows the
95% confidence interval. (C) ACD estimated using top of canopy height (TCH) from LiDAR compared to field-surveyed ACD. (D) ACD estimated using TCH and BA
predicted from TCH compared to field-surveyed ACD. The black line is a 1:1 reference line.

TABLE 3 | Summary for ACD estimation using TCH only or TCH and BA’ in pairs.

Model Model parameters R2 Jackknifing R2 RMSE (Mg C ha−1)

a b1 b2

ACD = aTCHb1 11.6592 0.8436 – 0.6725 0.6585 10.1427

BA’ = a+b1TCH 6.7117 3.6516 – 0.6066 0.5882 5.1749 (m2 ha−1)

ACD = aBA’b1TCHb2 0.9393 1.1977 0.0018 0.6761 0.6022 10.2590

maps of ACD were produced. Figure 6 shows that the spatial
distribution of the two maps is very similar. The high-density
area of the map from the percentile model is slightly larger than
that of the map from the TCH model (blue circle), and the low-
density area demonstrates the opposite trend (blue rectangle). In
addition, the density distribution percentages of the two maps
are basically the same as those shown in the two pie charts.

According to the grid statistics, the average ACD from the
TCH model is 41.49 Mg C ha−1, and the maximum value is
104.70 Mg C ha−1, which is slightly larger than the values of 40.13
and 95.46 Mg C ha−1 from the percentile model. This resulted
in an overall aboveground carbon reserve of the study area of
5535.54 Mg for the TCH model and 5433.06 Mg for the percentile
model; the difference between the two models is only 1.89%.
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FIGURE 5 | (A) Estimated ACD values of the percentile model versus the field investigation. (B) Boxplots of field-surveyed ACD and ACD estimated using the
percentile model and TCH model.

FIGURE 6 | Study area carbon density map predicted using the TCH model (A) and percentile model (B). Square is low density area, Round is high density area.
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Although the accuracies of the TCH and the MLR models are
not much different, the TCH model is much simpler and easier
than the MLR model.

DISCUSSION

Our original purpose was to find a suitable plot-averaged LiDAR
parameter and use existing allometry models to quickly and
accurately predict the forest carbon density. The exponential
model of TCH captures 67.25% of ACD changes (Table 3) and
has a higher accuracy than the traditional percentile model of
this study. We also realized that the accuracy of our prediction
is relatively low. The possible reasons are (1) the plot size of
20 m × 20 m is relatively small, and the edge effect is obvious;
(2) point cloud density is not enough, and the conical crown
of spruce is not captured accurately and (3) the penetration

rate of point cloud is insufficient, and the detection of lower
wood is limited. However, for the research objective, we did
effectively improve the accuracy of LiDAR’s prediction of ACD,
simplify the prediction steps and solidify the form of the
prediction model.

Moreover, since the TCH is derived from the mean of the
CHM based on the plots, the TCH is also subject to the pixel
size. We extracted 10 CHMs from the LiDAR point cloud, with
pixel sizes from 1 to 10 m, and then extracted the corresponding
TCHs to fit the ACD. As the pixel size increased, R2 continually
decreased, and the RMSE continually increased (Figure 7). This
result indicated that the smaller the CHM pixel is, the better the
fitting effect of TCH will be. This study was limited to a point
cloud density of 3.43/m2, so the minimum pixel size was 1 m. In
addition, we found that when the pixel sizes were 5 and 7 m, the
fitting effect fluctuated slightly, but this fluctuation did not affect
the overall law. The reason for this finding requires further study.

FIGURE 7 | Fitting trends of TCH and ACD under different CHM precisions. (A) Declining R2; (B) Increasing RMSE.

FIGURE 8 | (A) 3D scatter plot of the normalized point cloud (NPC) in plot 1. (B) Boxplots of TCH, AvgH and LorH. White bullet is mild outliers of boxplot.
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Similarly, fitting accuracy is also limited by the size of the plot
and the number of samples. A larger plot size means a smaller
boundary effect, and a larger plot number means a smaller outlier
influence (Ni et al., 2014; Gwenzi and Lefsky, 2017). However,
larger plots are more expensive and time-consuming than smaller
plots, so finding an optimal plot size and number in coniferous
forest will be an important task for future study.

The three-dimensional visualization of the point cloud in plot
no. 1 (Figure 8A) suggests that the forest point cloud includes
the crown, some of the lower layer, some of the trunks and the
woodland gap. Therefore, the TCH data derived from the point
cloud also contain the above information. However, the average
height of the plot (AvgH) ignores the forest gap and is therefore
slightly higher than the TCH (Figure 8B). Although LorH is
widely used for the estimation of forest biomass (Mitchard
et al., 2012; Gwenzi and Lefsky, 2016), LorH is mainly used to
evaluate site quality and mostly reflects the largest trees in the
forest; therefore, its value is larger than that of TCH and AvgH
(Figure 8B), and LorH is not applicable for fitting the ACD
of irregular and mixed forests. This explains why TCH is the
optimal ACD predictor.

We also recognized a flaw in the ACD prediction at the plot
scale. Whether in the field measurement phase, the plot-based
TCH extraction phase, or the final ACD prediction phase, our
resolution is fixed at 20 m × 20 m. This inevitably leads to
the conversion of the continuous ACD distribution in nature
into a discontinuous distribution, which may cause a large
jump phenomenon at the boundary. Therefore, selecting the
appropriate interpolation algorithm to restore the continuity
of the ACD will help improve the prediction accuracy of our
proposed models (Loquin and Strauss, 2010; DeWitt et al., 2017).
In addition, we only adopted linear regression fitting based on
the least squares method in this paper, and although this method
is simple and practical, it is not necessarily the best method. With
the rise of machine learning in LiDAR research (Zhou et al., 2017;
Jin et al., 2018; Lin et al., 2018), it will be necessary to compare
various machine learning algorithms in future research to find
the best way to fit the allometry models.

Finally, we must emphasize that although our proposed TCH-
based allometric approach is an efficient LiDAR-assisted ACD
prediction method, the allometry model used for plot calculation
is generally targeted to a specific region and species (Picard
et al., 2015; Duque et al., 2017), so it is necessary to re-select an
appropriate allometry model for other tree species and ecological
regions when our method is used. Moreover, developing a
general ACD prediction model based on LiDAR for forests
across ecological regions and species will be the focus of our
future research.

CONCLUSION

Using the traditional allometry growth model theory, this paper
proposed two models based on TCH extracted from LiDAR

data. The first model was a simple power model (only using
TCH) based on the diameter allometry, and the second model
was a daisy-chain model (TCH → BA′ → ACD) based on
diameter-height allometry. A comparison of the results suggested
there was little difference in the fitting accuracy and error
distribution between models. In addition, this paper compared
the traditional LiDAR percentile method with the proposed
method and found that the latter method had a higher precision,
fewer parameters, more concise steps and more stable forms than
the former method. Furthermore, the implicit hypothesis in our
study, the traditional allometry model of individual trees can be
extrapolated to the plot scale, was confirmed. The LiDAR-assisted
ACD estimation method proposed in this study will accelerate
the application of airborne LiDAR technology in forest carbon
density measurements and provide an accurate data basis for
forest ecosystem research.
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Background: An organism can be described by its observable features (phenotypes) 
and the genes and genomic information (genotypes) that cause these phenotypes. For 
many decades, researchers have tried to find relationships between genotypes and 
phenotypes, and great strides have been made. However, improved methods and tools 
for discovering and visualizing these phenotypic relationships are still needed. The maize 
genetics and genomics database (MaizeGDB, www.maizegdb.org) provides an array of 
useful resources for diverse data types including thousands of images related to mutant 
phenotypes in Zea mays ssp. mays (maize). To integrate mutant phenotype images 
with genomics information, we implemented and enhanced the web-based software 
package BioDIG (Biological Database of Images and Genomes).

Findings: We developed a genotype-phenotype database for maize called MaizeDIG. 
MaizeDIG has several enhancements over the original BioDIG package. MaizeDIG, 
which supports multiple reference genome assemblies, is seamlessly integrated with 
genome browsers to accommodate custom tracks showing tagged mutant phenotypes 
images in their genomic context and allows for custom tagging of images to highlight the 
phenotype. This is accomplished through an updated interface allowing users to create 
image-to-gene links and is accessible via the image search tool.

Conclusions: We have created a user-friendly and extensible web-based resource 
called MaizeDIG. MaizeDIG is preloaded with 2,396 images that are available on 
genome browsers for 10 different maize reference genomes. Approximately 90 images 
of classically defined maize genes have been manually annotated. MaizeDIG is available 
at http://maizedig.maizegdb.org/. The code is free and open source and can be found 
at https://github.com/Maize-Genetics-and-Genomics-Database/maizedig.

 
Keywords: MaizeDIG, BioDIG, phenotype, genes, QTL, gene model, MaizeGDB
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INTRODUCTION

One of the fundamental relationships in biology is how observable 
physical and biochemical characteristics (phenotypes) relate 
to the underlying combination of alleles of the genes within an 
organism (genotype). Maize is a good case study for exploring 
this relationship because maize is both agronomically important 
as the top production grain crop (http://faostat.fao.org/) and 
serves as a model species. Maize has numerous reference quality 
genome assemblies available for exploring the genotype to 
phenotype relationship (Schnable et al., 2009; Lu et al., 2015; 
Hirsch et al., 2016; Jiao et al., 2017; Sun et al., 2018; Springer and 
Anderson, 2018), and a great deal of research has been carried out 
in maize that links mutant phenotypes to genes or regions within 
the genome, for example, quantitative trait locus (QTL) (Schnable 
and Freeling, 2011). Other linkages from genetics and genomics 
data to phenotype include the identification of numerous QTLs 
and associations of single-nucleotide polymorphisms with 
phenotypes and traits through genome-wide association studies 
(Xiao et al., 2017). Many loci and traits are further annotated 
with accessible high-resolution images. MaizeGDB has more 
than 2,700 images mapped to genes and more than 1,000 mapped 
to a gene model with specific genomic coordinates available. In 
addition, there are an additional 200 images where the specific 
phenotype feature has been tagged within the image. Most of 
these images were donated by Dr. Gerald Neuffer, University 
of Missouri-Columbia. His research created thousands of 
mutations by treating maize pollen with the known mutagen 
ethyl methanesulfonate. Many of these were imaged and shared 
in the book The Mutants of Maize (Neuffer et al., 1968) and/or 
are available at the “Guide to Maize Mutant Phenotypes” website 
hosted at MaizeGDB (http://mutants.maizegdb.org/). This 
collection of digital images is under active curation.

Although many of these images are linked to a gene locus, 
prior to the efforts described here, there was no method to 
visualize these images within their genomic context via the 
MaizeGDB Genome Browser. This current situation hinders 
researchers working to prioritize candidate genes underlying 
traits of interest within a chromosomal region from being able to 
narrow their search for the causal gene in a quick and easy way.

The first maize genome sequence assembly was completed 
in 2009 (Schnable et al., 2009). The most recent version of 
the reference assembly, B73 RefGen_v4, is based on PacBio 
sequencing and high-resolution optical mapping with an N50 
value of 1.18  Mb (Jiao et al., 2017). It also has nearly 40,000 
structurally annotated protein-coding genes. In addition, the 
rapidly decreasing cost of genome sequencing and assembly has 
led to the availability of a number of new high-quality maize 
genome assemblies from different maize lines. This suggests that 
use of a single reference genome may no longer continue to best 
serve the needs of the maize research community. In addition to 
B73, reference quality maize genome assemblies and annotations 
released in the past few years include CML247 (Lu et al., 2015), 
PH207 (Hirsch et al., 2016), Mo17 (Yang et al., 2017; Sun et al., 
2018), European Flints EP1 and F7 (Unterseer et al., 2017), and 
W22 (Springer et al., 2018). In the near future, we anticipate the 
release of genome assemblies for dozens, if not hundreds, of Zea 

lines. The high level of phenotypic and genomic diversity within 
maize—any two given maize lines can be as different as humans 
and chimpanzees (Buckler et al., 2006)—means these additional 
genome assemblies will have great value.

Currently, there is a pressing need to better integrate phenomic 
data within the context of multiple genome assemblies. The 
current methodology of associating images to genomic data at 
MaizeGDB is relatively complex: Each gene can have multiple 
alleles (denoted as variations at MaizeGDB); each image is linked 
to its appropriate allele; a gene can be linked to a gene model with 
genomic coordinates. A tool is needed to make simplified and 
more direct connections between the phenotype and genotype, 
which in turn will allow researchers to explore a genome or gene 
region simultaneously in both a genomic and phenomic context. 
There currently exist tools and resources to help manage, curate, 
and analyze images such as BisQue at CyVerse (Kvilekval et al., 
2010) and BioDIG at GMOD (Oberlin et al., 2013). BisQue is a 
cloud-based platform that provides support to organize images, 
integrate metadata, and build complex analyses with the images/
metadata. BioDIG is a stand-alone software to integrate images 
with genomic data. To address the need to curate phenotype 
images, link to genomic data, and visualize the relationships 
within the context of a model organism database, we chose to 
implement an enhanced version of BioDIG.

In this article, we present an open-source, web-based software 
called MaizeDIG (SciCrunch.org tool reference ID: SCR_016987), 
a multiple maize reference genome implementation of BioDIG, 
with enhancements that enable tagging and linkages between 
images and genes/gene models or QTLs, support for multiple 
reference assemblies, creation of custom autogenerated genome 
browser tracks, and expanded search capabilities.

MaizeGDB
The Maize Genetics and Genomics Database (MaizeGDB; http://
www.maizegdb.org) is the model organism database for maize 
(Portwood et al., 2019). MaizeGDB’s overall aim is to provide 
a single point of access to maize research data and tools for 
integration, visualization, and discovery. Stored at MaizeGDB 
is comprehensive information on genes, alleles, mutants, stocks, 
molecular markers, gene product information, phenotypic images 
and descriptions, metabolic pathway information, pedigree 
information, reference data, sequences including multiple 
genome assemblies and annotation sets, contact information for 
maize researchers, and more. Curation of high-quality and high-
impact datasets has been the foundation of the MaizeGDB project 
since its inception over 25 years ago (Schaeffer et al., 2011; Andorf 
et al., 2016; Harper et al., 2016). Since the first maize genome 
sequence assembly was announced in 2009 (Schnable et  al., 
2009), MaizeGDB has provided access to genome assemblies 
and annotations through GBrowse-based genome browsers and 
other tools (Sen et al., 2009). Currently, MaizeGDB supports over 
10 independent maize genome sequence assemblies of different 
maize lines, each with their own annotation set(s). A comparison 
of these genome assemblies reveals a high level of sequence 
diversity between maize lines, allowing maize researchers to 
investigate what genotypic combination of alleles leads to the 
great variety of phenotypes in maize, especially agriculturally 
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important phenotypes such as grain yield and planting density. 
Genotype-to-phenotype hypotheses can be facilitated by genome 
visualization tools. One way to integrate high-quality phenotypic 
data with a reference genome assembly is to link images of 
phenotypes to genes that have known physical locations on 
the genome assembly. MaizeGDB currently hosts 4,367 unique 
mutant phenotype images, of which 2,396 are linked to a locus on 
the genome. Detailed descriptions of specific phenotypic features 
within an image can provide additional clarity. To address these 
needs, MaizeGDB has adapted the BioDIG system to create a 
maize-specific database of images and genomes.

BioDIG
BioDIG is a web-based biological database for linking images to 
genomic data (Oberlin et al., 2013). To link an image to a gene, 
an image tagging tool called MaizeDIG Workbench is provided. 
In the workbench, a user can outline and highlight regions within 
the image, called a “tag” and create links from the tag to genomic 
coordinates (gene links). BioDIG is designed to work generally for 
all types of images, but the tagging feature is particularly useful for 
phenotypes in complex images or where the exact phenotype may 
be difficult to identify. To handle genomic data, the Generic Model 
Organism Database (GMOD) Chado database schema is used 
because it is compatible with standard data formats (e.g., Generic 
Feature Format or GFF files), and it is easily extensible to add features 
to genes. The front-end (client-side) user interface is based on the 
Django framework (https://www.djangoproject.com/) and jQuery.

BioDIG was designed for general organisms, and it needs 
genome and image data of the target organism. BioDIG provides 
a tool to build and update genome data with a GFF. However, 
it requires extra database installations and configurations. We 
extended BioDIG to use genome and image data from MaizeGDB 
directly, and it can reduce potential errors or overheads related 
to the handling of genome and image data because MaizeGDB 
has well-curated genome data and images for maize. In addition, 
BioDIG’s functionality was extended by adding novel features 
such as multiple genome support, enhanced searching, and 
images shown in dynamic genome browser tracks.

Connecting Genes to Phenotype 
Through Gene Links
A large amount of both genomics and phenomics data is available 
for maize with many methodologies, applications, and tools being 
utilized. Even with these valuable tools in place, it is still a challenge 
to visualize and discover relationships between phenotype 
and genotype. In MaizeDIG, we have defined the relationship 
between a gene and its phenotype as a gene link. Gene links can 
be used to give a quick visual representation of the phenotype 
in any context in which a gene is presented at MaizeGDB. The 
gene link comprised an image tag and a gene. A single image can 
have multiple phenotypic features, and each of those features 
may be represented by a single or multiple genes. Likewise, a 
mutant allele of a gene can display multiple phenotypes shown in 
different images. The exact phenotypic features within an image 
can be annotated with the tagging tool in which a curator can 

highlight the section of the image by drawing either a rectangular 
region or freestyle region, and these tagged regions can be linked 
to a gene(s). These tagged regions along with their gene links 
represent a map of the phenotype-genotype relationship that can 
be used in the framework of the MaizeGDB database to address 
a variety of situations that require an understanding of a gene 
and the corresponding phenotypes of its alleles. MaizeGDB 
gene pages also provide functional annotations that are linked 
to the image. These annotations include Plant Ontology, Gene 
Ontology, and other ontologies terms, their expression, and 
descriptions of the mutant phenotypes.

MaizeDIG allows a novel way to visualize these relationships 
as a track on the MaizeGDB Genome Browser. The MaizeGDB 
Genome Browser lets a user browse the genomic DNA sequence 
at varying levels of complexity to see aligned biological features 
within the context of that genomic region. The MaizeDIG 
track allows a user to browse a chromosomal region and see 
images of tagged mutant phenotypes for genes of interest. 
Some applications of using this track include determining gene 
function, chromosome walking to genes, identifying enriched 
biological processes or metabolic pathways, and identifying 
regulatory regions adjacent to genes.

MATERIALS AND METHODS

MaizeDIG is a genotype-phenotype linking database based on 
BioDIG that has been enhanced to show phenotype images on a 
genome browser and handle multiple maize genome assemblies. 
MaizeGDB has over 2,700 mutant phenotype images, and many 
of these digital images are linked to a gene model. MaizeDIG has 
a set of web-based tools that allows searching, tagging, annotating, 
and linking images with genes, gene models, and alleles. In 
addition, MaizeDIG has been integrated with several MaizeGDB 
Genome Browsers simultaneously. Once an image is tagged to a 
gene, it becomes available as a custom track for any maize genome 
assembly that has a gene model associated to that genomic region. 
There are four functional aspect of MaizeDIG: data handling, 
image curation, image search, and genome browser integration. 
Each of these aspects has been enhanced relative to its original 
implementation of BioDIG. Figure 1 shows the four main modules, 
and we discuss details of these in the following subsections.

Data Process
The raw data used to build the MaizeDIG database are images and 
genomic mapped loci (e.g., genes). The general data process for 
MaizeDIG is to load an image, tag the location that best identifies 
a phenotype, link the tag to a gene or QTL, and provide additional 
metadata. To make a link between gene and image, both image 
and genomic data must exist that can be linked together.

Image Data
All phenotype images at MaizeGDB have been provided by 
individual researchers. To date, the photographs in MaizeDIG have 
been different than ones in publication to keep from copyright law 
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violation. Given more recent Open Access licensing, we anticipate 
the use of images directly from publications with the appropriate 
Creative Commons license. MaizeGDB has 2,396 images that are 
each linked to the gene representing multiple alleles that display 
the imaged phenotype. Most images are of phenotypes caused by 
mutations in single genes. Images are loaded through the MaizeGDB 
curation tools, but in the absence of a model organism database, 
BioDIG can be used as the primary way of uploading images.

Genomic Data
MaizeGDB acts as the steward of maize genome assemblies. 
Currently, MaizeGDB hosts genome assemblies for over 10 
different maize inbred lines. In the absence of software that can 
display multiple genomes at the same time, MaizeGDB provides 
a genome browser for each genome assembly. Each assembly has 
its own set(s) of structural and functional gene annotations, that 
is, gene model sets. Classically defined genes are associated to 
these gene model sets. Information linked to a gene is therefore 
inherited by the associated gene models sets.

The next sections describe the individual components that 
make up the process of building a maize genotypic-phenotypic 
database and pipeline to integrate gene, gene model, and 
phenotype image data from the MaizeGDB database.

Gene Data
MaizeDIG is an extension of Chado (Mungall and Emmert, 
2007), one of the most popular relational database schema for 
biological research. Figure 2 shows the table schemas related 

to genotypic and phenotypic data. The user table deals with all 
user information including administration accounts. The feature 
table has the genome data needed from maize. The genelink table 
deals with linking information between the tag and feature. A full 
description of the image, genome, and user management modules 
and details on the underlying BioDIG database are described at 
GMOD and the original BioDIG article (Oberlin et al., 2013). 
Although MaizeDIG provides a system to manually link genes to 
an image, the majority of these associates are preloaded based on 
information at MaizeGDB. In the MaizeGDB database, images 
and phenotype descriptors are (independently) linked to alleles, 
alleles are linked to genes, genes are linked to gene models, and 
gene models are linked to genomic coordinates. Scripts have been 
developed to load these associations into the MaizeDIG database. 
The details of linking between image and gene are discussed in 
Image Curation section.

Image Data
To build an initial phenotype image database, 2,721 images with 
gene information were imported from MaizeGDB to MaizeDIG. 
These images are based on interesting maize mutations that 
were photographed, and extensive efforts were taken to map to 
specific genomic locations using whatever chromosome mapping 
technologies were available at the time. Indeed, this collection of 
new maize mutations launched many careers in maize genetics 
which contributed to diverse areas of plant science such as 
developmental biology, chromosome mechanics, hormone 
metabolism, photosynthesis, and more.

FIGURE 1 | Structure of MaizeDIG. MaizeDIG’s structure is divided into four major components: data handling, image curation, image search, and genome browser 
integration.
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The images are mapped to gene(s) in MaizeGDB; hence, each 
image imported from MaizeGDB has an associated gene called 
primary gene. An image can have only one primary gene in 
MaizeDIG. The primary gene does not automatically become a 
gene link directly, but it functions as the recommended gene. In 
general, curators use the recommended gene to make a gene link, 
but it is also possible to choose a different gene(s) as well. There 
are examples where the same image may exist multiple times 
in the database with different genes assigned to it. MaizeDIG 
handles these redundancies by creating image groups, which 
internally recognizes redundancies and consolidates any gene or 
gene link data. In addition to gene data, if a caption is available 
for an image, it is loaded as a description in MaizeDIG.

Image Curation
MaizeDIG provides an image curation tool suite enabling tagging 
of phenotypic features, image-gene linking, visualization of 
image-gene data, and image searching. In this section, we provide 
details on each of these features.

Workbench
Image curation is done within the MaizeDIG Workbench (see 
Figure 3). The workbench is accessible only when a user is logged 
into his/her account. This allows the curation process to be saved 
and associated to a user/curator. The workbench is divided into 
three subsections: toolbar menu (left), image viewing/editing 
section (center), and detail information section (right). The recently 
viewed images menu on the left-side toolbar menu is useful for 

keeping track of the 10 most recently viewed images. The image 
viewing/editing section has a menu bar on the top. The menu bar 
includes tags, tag groups, gene linking, and user note features. 
Additional information such as Image Description, Gene ID, Gene 
Symbol, Gene Name, Image ID, and User Notes is shown on the 
right side of the image. The gene ID/symbol/name are associated 
to a gene, but they do not function as a gene link until activating 
the gene link using the “Gene Link- > Add New Link to Tag” tool. 
The image viewing/editing box can show all tags belonging to 
the image, and even though each tag has an ownership with an 
associated “user_id” (Figure 2), all tags are displayed on the image.

Tagging
An image can represent a phenotype by the image itself without 
additional modification, but in many cases, the phenotypic image 
will benefit from additional visual annotation to provide clarity. 
The tagging process specifies a certain region within an image 
and labeling it with a tag ID. Figure 3 shows a custom tagging on 
image. The tagging tool provides eight colors and two drawing 
styles (rectangular and free pen). Multiple tags can be created on 
a single image.

Gene Linking
Once an image has been tagged, a gene link between the tag 
and a gene can be created by adding a gene to the tag. The “Add 
New Link to Tag” tool provides a way to complete this task, 
which is called creating a “genelink.” A genelink is required 
to have a one-to-one relationship between a tag and a gene. 
A gene symbol or gene model can be assigned to a tag, and 

FIGURE 2 | Database structure of MaizeDIG. This image shows the database schema for the five major database tables used in MaizeDIG.

24

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Phenotype Images and GenomesCho et al.

6 August 2019 | Volume 10 | Article 1050Frontiers in Plant Science | www.frontiersin.org

typically, a single image is linked to a single gene. It is also 
possible that a single image can show multiple phenotypes or 
have phenotypes associated to multiple genes and therefore 
need to be mapped to the multiple genes. The gene link allows 
connecting to MaizeGDB database such as Genome Browser 
and Gene model page.

Linking to QTL Data
Most phenotype images at MaizeGDB are for monogenic 
phenotypes. MaizeGDB does contain more complex phenotypes 
and traits that have been associated to multiple loci across the 
genotype. These QTLs are also supported in MaizeDIG. Within 
the MaizeDIG Workbench, a QTL ID can be added to any image. 
Similar to a gene link, the QTL ID connects the image to QTL 
information in the MaizeGDB database.

Many-to-Many Relationships Between Images 
and Genes
In the phenotypic data handling section, we discussed the 
relationship of images and genes within the context of two 
different scenarios: multiple images are associated to a single 
gene, and multiple genes are linked to a single image. MaizeDIG 
has addresses these two scenarios with the “Image Group” tool. 

In the “multi-image to single-gene” case, it is straightforward for 
the gene to be assigned to multiple images. However, additional 
treatment is needed for the “multi-genes to single-image” 
situation. In this case, the image data are duplicated with different 
“Image ID” for each primary gene, but is still considered a single 
image within the “Image Group” tool. This ensures that all tags 
and gene links in the same group appear in each image.

Image Notes
Image notes provide another mechanism for communicating 
additional information in the image curation process. It is important 
to be able to share opinions/comments among curators. Curators 
can create/edit image notes regardless of its ownership. In addition, 
images can be queried by the image notes using the image search tool.

ENHANCEMENTS

Image Search
MaizeDIG offers an image search tool that has been enhanced 
relative to BioDIG as follows. A curated image has detailed 
information such as image description, gene model IDs, gene 
symbol, gene name, and image notes. Any of these categories can be 
searched individually or together using the image search box. With 

FIGURE 3 | Maize curators workbench. A screenshot of the MaizeDIG Curators Workbench is shown with and image displaying the bronze2 (bz2) kernel phenotype 
segregating on a maize ear. Tools for image tagging, curation, and linking to the MaizeGDB Genome Browser can be accessed on the toolbar directly above the 
image. Mousing over each of the five tools activates a pull-down menu with a variety of options. The “Tagging Tools” pop-up that allows a user to add a tag to an 
existing tag group is shown. The collapsible vertical tool bar to the left of the image allows MaizeGDB curators to review their search history and recently viewed 
images as well their tags and tag groups. In the upper right-hand corner is a search box that allows curators to search over 2,300 images by Image Description (ID), 
Image Notes (IN), Gene Name (GN), Gene Symbol (GS), and Gene ID (GI). To the right of the image is the preloaded image description, Gene ID, Symbol, and Name 
as well as the Image ID. The phenotypic description as it will appear on the genome browser pop-up (minus the curator attribution) appears in the Notes section. 
The Gene Links information appears at the bottom once a successful gene link has been made between an image tag on the workbench and the genome browser.
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thousands of images loaded into MaizeDIG, the flexible search 
tool is needed to locate the correct image to curate. In addition, 
an image search history has been implemented in MaizeDIG that 
saves 10 most recent searched images and the search settings in an 
expandable box on the left side of the workbench.

Downloading Images and Metadata
Images and associated metadata can be downloaded from either 
the workbench or an image record page. The “Tools|Download 
Image Data” menu item will open up a simple download form 
where a user can select the image attributes and data format. The 
attributes include URL of image, upload data/user, image tags, 
image file, tag groups, and gene links. The image tag data will 
include the coordinates and color options of the highlighted 
regions. The options for the output format are JSON and XML. 
After selecting the attributes and format, a zip file will be 
downloaded that includes the image and attribute file. Genome 
Browser integration MaizeGDB’s GBrowse (Donlin, 2009) 
instance provides hundreds of tracks across multiple genome 
assemblies, but up until now did not include any phenotypic 
data. The genome browser is one of MaizeGDB’s most accessed 
resources, receiving nearly 80,000 unique page views in 2018 
according to usage statistics from Google Analytics, and so 
adding genotype-phenotype relations to this resource raises 
the accessibility and usability of these data. Therefore, we have 
created dynamically loaded tracks that contain all of the images, 
tags, gene links, and user notes in MaizeDIG. The tracks are 
available for all of our genome browsers that have gene model 
associations with the reference genome (B73) which as of this 
publication includes the following: B73v3, B73v4, W22v2, PH207, 
Mo17 (x2), B104, EP1, F7, and Zx-PI566673. As new genomes 
are incorporated into MaizeGDB, new MaizeDIG tracks will also 
be created for their respective genome browsers. All MaizeDIG 
tracks are dynamically updated when a user creates (or removes) 
a gene link to a tag. Upon creating a gene link, a new feature 
is inserted into the track at the location of that specified gene, 
and vice versa if the gene link is deleted. The feature shows 
a thumbnail of the image, and mousing over it reveals the full 
size of the image along with all of its tags, user notes, and other 
gene links. Figure 4 shows an example of this track on the B73v4 
genome browser.

CURATION CASE STUDY

After the initial bulk upload of over 2,300 images and metadata, 
it was both possible and advisable to manually annotate select 
images that present a clear representation of the relevant 
phenotype associated with a gene mutation. To accomplish 
this, MaizeGDB curators added manual annotations for every 
classically defined gene (Schnable and Freeling, 2011) in 
the database that were associated with a mutant phenotype 
image. In total, approximately 90 genes were curated, which 
enables the end user to unambiguously identify the exact 
phenotype in both manually curated and noncurated images. 
The manual curation approach taken by MaizeGDB curators 
varies somewhat depending on the particular phenotype and its 

presentation within the image. In ideal situations, the curator 
is able to deploy a “compare and contrast” approach if the 
mutant and nonmutant phenotype is present within the same 
image. However, this is not always possible, and a different 
curation strategy must be taken in these situations. In Figure 
3, a screenshot taken from the curators MaizeDIG workbench 
displays an image of a maize ear, with a majority of kernels 
having a dark purple color, and interspersed between them are 
a few bronze-colored kernels. The bronze2 gene (bz2) when 
fully functional causes the kernels to acquire a dark purple 
color while the bronze colored kernels represent the bz2 gene in 
a nonfunctional or mutated state.

The manual curation process is initiated by the creation of a 
tag group from the “Tag Groups” pull-down menu directly above 
the image. From this menu, it is possible to create multiple tag 
groups and delete or modify them. In practice, it is rare to have 
multiple tag groups attached to an image, although certainly 
there are situations where this proves to be a useful feature. Once 
a tag group has been created and named, a tag can be created 
from the “Tags” pull down in the menu bar. Once the tag has 
been activated, a “Tagging Tools” pop-up appears (Figure 3) with 
a choice of both drawing style (freehand or box) and eight tag fill 
color options. After selecting both the drawing style and color fill 
option, the curator moves directly to the image and highlights 
the area of interest using the mouse. In this example, kernels 
with (bronze) and without (dark purple) the bz2 mutation are 
selected to be within the tagged area. Once the tagged area has 
been selected, and the submit button on the “Tagging Tools” 
pop-up is chosen, an additional “Submit Tag” pop-up appears 
(not shown in Figure 3), and a “Tag Group” can be chosen and 
a name attached to the new tag. Once an image tag has been 
created, it is necessary to create a “Gene Link” to make a link or 
connection between the gene/image on the curation workbench 
and the gene’s location on the MaizeGDB Genome Browser, 
which is what the end user will see and interact with (Figure 4). 
This is accomplished by accessing the “Gene Links” pull-down 
menu directly above the image. If there are multiple tag options, a 
tag is selected, and the relevant gene symbol (bz2 in this example) 
is entered in the “Gene or Locus” field.

The manual curation process is completed by the addition of 
a phenotypic description in the pop-up from the “Notes” section 
above the image (Figure 3) in the curation workbench. When 
completed, the phenotypic description appears both on the right-
hand side of the image (Figure 3) in the workbench and in the 
image pop-up on the MaizeGDB genome browser (Figure  4). 
It is worth noting that the “Description” is seen only on the 
workbench view and not in the genome browser pop-up that is 
visible to the end user. Information in the “Description” section is 
pulled from MaizeGDB records and often contains information 
that is not relevant to the phenotype being presented. In general, 
MaizeGDB curators strive to keep the phenotypic description 
simple and avoid excessive use technical genetic jargon, while still 
maintaining a robust scientific description. At the outset of the 
MaizeDIG project, our goal was to provide simple explanations 
for the phenotype when presented in the context of the genome 
browser. For those interested, more detailed explanations can 
be found in the gene model records at MaizeGDB. MaizeGDB 
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curates maize research papers and will use MaizeDIG to curate 
phenotype images found in these manuscripts.

CONCLUSION

MaizeDIG facilitates a major priority at MaizeGDB which is 
to make accessible high-quality data and create added value 
through curation, integration, or through providing tools 
that visualize and/or analyze the data. This tool enables the 
integration of phenotype and genotype data in a model species 
rich in both data types. This is done directly by making dynamic 
tracks on multiple MaizeGDB Genome Browsers, the most 
widely used tools at MaizeGDB, for genomic exploration. 
Having the phenotype images in their genomic context along 
with other mapped features (e.g., gene models, expression data, 
polymorphisms, etc.) enables users to prioritize gene candidates 
for phenotypes of interest. This data will be valuable in forward 
genetics by providing quick visual clues for prioritizing genes. 
For example, if a region of the genome has been associated with 
the phenotype “photosynthetic capacity,” genes could be quickly 

identified by looking at mutant phenotypes related to leaves. 
In addition, these images can be used in a variety of settings 
to prioritize candidate genes identified through coexpression, 
differential expression, sequence similarity, domain sharing, 
functional enrichment, and subcellular localization. This 
represents a major step forward as experimental determination 
and/or validation are both time-consuming and expensive. 
MaizeDIG will be a valuable addition to the MaizeGDB manual 
annotation workflow.

These use cases are not unique to maize, and MaizeDIG’s 
availability as a free and open-source resource will allow the 
application of integrating phenomic images and genomic data to 
other databases and projects.

DATA AVAILABILITY

The datasets analyzed for this study can be found in MaizeGDB 
at http://maizedig.maizegdb.org. The source code is free 
and open source and can be found at (https://github.com/
Maize-Genetics-and-Genomics-Database/maizedig).

FIGURE 4 | MaizeDIG on the MaizeGDB Genome Browser. A screenshot of the MaizeDIG curated bronze2 (bz2) image and how it presents in the context of the 
MaizeGDB Genome Browser is shown. Mousing over any of the MaizeDIG images activates an image pop-up, while clicking on the image takes you to a webpage 
with a full screen image and phenotypic description. The majority of images in MaizeDIG are high-resolution and present well as a full screen image. Manually 
curated images have a red banner and are automatically sorted to the top of the image stock, while unannotated images have a green banner and are shown 
below. Note the multiple images shown for bz2. Some phenotypes may only have one image, while other phenotypes may have ten or more.
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Noninvasive Phenotyping of Plant–
Pathogen Interaction: Consecutive 
In Situ Imaging of Fluorescing 
Pseudomonas syringae, Plant 
Phenolic Fluorescence, and 
Chlorophyll Fluorescence in 
Arabidopsis Leaves
Sabrina Hupp 1, Maaria Rosenkranz 1,2, Katharina Bonfig 1, Chandana Pandey 3*  
and Thomas Roitsch 1,3,4

1 Department of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany, 2 Department of Environmental 
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Plant–pathogen interactions have been widely studied, but mostly from the site of the plant 
secondary defense. Less is known about the effects of pathogen infection on plant primary 
metabolism. The possibility to transform a fluorescing protein into prokaryotes is a promising 
phenotyping tool to follow a bacterial infection in plants in a noninvasive manner. In the present 
study, virulent and avirulent Pseudomonas syringae strains were transformed with green 
fluorescent protein (GFP) to follow the spread of bacteria in vivo by imaging Pulse-Amplitude-
Modulation (PAM) fluorescence and conventional binocular microscopy. The combination 
of various wavelengths and filters allowed simultaneous detection of GFP-transformed 
bacteria, PAM chlorophyll fluorescence, and phenolic fluorescence from pathogen-infected 
plant leaves. The results show that fluorescence imaging allows spatiotemporal monitoring of 
pathogen spread as well as phenolic and chlorophyll fluorescence in situ, thus providing a novel 
means to study complex plant–pathogen interactions and relate the responses of primary 
and secondary metabolism to pathogen spread and multiplication. The study establishes a 
deeper understanding of imaging data and their implementation into disease screening.

Keywords: green fluorescence protein (GFP), plant–pathogen interaction, imaging PAM, chlorophyll fluorescence 
imaging, phenolic compounds

INTRODUCTION

Plants are regularly attacked by several pathogens, such as bacteria, fungi, viruses, oomycetes, 
nematodes, and others. Due to a lowered performance of an infected plant, pathogen invasion can 
lead into severe economical losses on economically important field and forest sites (Gutierrez-
Arellano and Mulligan, 2018). To defend themselves, plants have developed various strategies in 
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which not only secondary but also carbohydrate metabolism 
plays complex roles (Trouvelot et al., 2014; Jammer et al., 2015).

Several studies exist on the importance of secondary 
metabolites in plant defense against pathogen-induced biotic 
stresses (Großkinsky et al., 2016a; Großkinsky et al., 2016b; 
Jing et al., 2018; Rosa et al., 2018; Zaynab et al., 2018). Phenolic 
compounds, the most ubiquitous secondary metabolites in 
plants, are stress induced and serve in specific roles of plant 
defense, e.g., as deterrents to pathogens and herbivores and 
by protecting against UV radiation and oxidative stress. Most 
of them (flavonoids, tannins, hydroxycinnamate esters, and 
lignin) have common origin from shikimate acid pathway via 
phenylpropanoids (Ge et al., 2018; Thakur et al., 2018).

The roles of primary metabolites in plant defense against 
pathogens are less exploited than those of secondary metabolites, 
even if many biologists have shown a correlation between sugar 
quantities and plant defense responses (Bonfig et al., 2010; 
Carvalho et al., 2019; Dong and Beckles, 2019). Furthermore, 
several studies have proven decrease in photosynthesis 
simultaneously with pathogen spread on a plant leaf (Bonfig et al.,  
2006; Berger et al., 2007; Dong et al., 2016; Lu and Yao, 2018; 
Tischler et al., 2018; Mahlein et al., 2019). The observation may 
be caused by decreased performance of photosynthetic apparatus 
and change of the pathogen-attacked site from source to a sink. 
Alternatively, up-regulation of invertases (Kuska et al., 2018; Su  
et al., 2018) may lead to observed phenomenon. The physiological 
background of decreased photosynthetic performance of a 
pathogen-attacked leaf is, however, still under debate.

Not only plants but also pathogens have developed various 
strategies to ensure more beneficial outcome in plant–pathogen 
interactions. Plant pathogens can successfully use plant 
carbohydrates for their own energy use (Kuska et al., 2018). They 
are likely to redirect the carbohydrate metabolism in plant leaves to 
ensure enough nutrients for themselves (Ökmen and Doehlemann, 
2014). Several pathogenic species possess sucrose-hydrolyzing 
enzymes (Chaliha et al., 2018; Kanwar and Jha, 2018), which can 
help them to secure the plant-provided nutrients directly at the 
infection site. Indeed, Berger et al. (2007) suggested that change of 
an attacked leaf from a source to a sink could be due to a pathogen 
manipulation of plant primary metabolism. Recently, it was shown 
that certain pathogen species are indeed able to modify the host’s 
photosynthesis to stay active, thereby creating conditions favorable 
to its own survival (Xue et al., 2018). Whether the plant-provided 
nutrients could also enhance the survival of the pathogen in 
other manners, e.g., by playing a role in pathogenesis, has to be 
elucidated in the future. Multicolor fluorescence imaging (MCFI) 
has also been used as a promising tool for disease detection in 
plant phenotyping (Murchie and Lawson, 2013; Barón et al., 
2016; Pérez-Bueno et al., 2016). However, for the detection of 
plant stress phenotyping, the most commonly applied sensor and 
imaging techniques are digital RGB (red–green–blue) imaging; 
spectroscopy; thermography; fluorescence; three-dimensional, 
by, for example, stereo cameras and LIDAR (light detection and 
ranging); real-time camera set-ups; RNA-seq analysis; and, to a 
lesser extent, tomography (Quemada et al., 2014; Großkinsky et al.,  
2017; Ghosal et al., 2018; Pineda et al., 2018; Dobos et al., 2019; 
Polonio et al., 2019; Sperschneider, 2019).

Accumulation of bacteria in plants was studied mainly by 
reisolation of the bacterial cells (Raacke et al., 2006; Aydi-Ben-
Abdallah et al., 2019; Liu et al., 2019). Similarly, the analysis of 
phenolic compounds in plant tissues commonly proceeded through 
diverse extraction methods (Torti et al., 1995; Giorgetti et al.,  
2018; Proestos et al., 2018). The techniques provide an invasive 
method to achieve information on pathogen accumulation or 
plant defense response. However, the disadvantages of invasive 
techniques are clear; the determination has to be done from 
detached leaves; the changes cannot be followed over time; and 
moreover, the precise location of the pathogen is not possible.

To assess the impact of biotic stress on host plant, various imaging 
techniques are currently used in plant physiology (Barón et al., 2016). 
Some of these techniques include MCFI and chlorophyll fluorescence 
(Chl-F) imaging. Plant health status is monitored by MCFI, and it is 
based on recording the blue (F440), green (F520), red (F680), and 
far red (F740) fluorescence by leaves when they are excited with UV 
light (Polonio et al., 2019). Particularly, the blue–green fluorescence 
is a valuable technique to study secondary metabolism, because 
phenolic compounds from the phenylpropanoid pathway are the 
primary emitters of that fluorescence. The extent of absorbance of 
light by the epidermal polyphenols can be derived on the basis of the 
ratio of Chl-F emission intensities induced by a standard red beam 
and a Ultraviolet-visible spectroscopy (UV-VIS) beam. Similarly, 
red Chl-F emitted by photosystem II (PSII) provides information on 
the photosynthetic performance of plants in terms of activity and 
indirect information on the CO2 assimilation rate (Murchie and 
Lawson, 2013).

Novel technologies such as hyperspectral imaging and Chl-F 
imaging offer an elegant, noninvasive means to explore indirectly 
the bacteria spread within the plant tissue (Rolfe and Scholes, 
2010; Großkinsky et al., 2017; West et al., 2017; Bohnenkamp et al.,  
2019; Kuska et al., 2019). In our own study (Bonfig et al., 2006), 
the decrease in maximum PSII quantum yield after avirulent 
Pseudomonas syringae infection was detectable already 3 h after 
the inoculation of bacteria into the tissue. However, the method 
is not directly measuring the accumulation of bacteria, and the 
changes in photosynthesis could be due to other, undetermined, 
reasons. A direct noninvasive manner to locate and quantify 
bacterial pathogen in the plant leaf tissue was missing until Wang 
et al. (2007) decided to transform P. syringae cells with a plasmid 
containing bright fluorescing green fluorescence protein (GFP) 
uv-gene. The group was able to monitor the bacterial expansion 
in the whole plant level under long-wavelength UV light. Later, 
confocal laser scanning microscopy (Riedel et al., 2009) and 
fluorescence microscopy (Parente et al., 2008) were applied to 
detect GFP-expressing bacteria. Labeling prokaryotic cells by 
GFP has become a routinely applied technique to visualize cells 
in plant living tissue (Lozoya-Pérez et al., 2018; Yang et al., 2019).

Our interest is, in addition to detecting bacterial cells, 
to follow a pathogen invasion on a leaf by simultaneously 
monitoring direct changes in plant primary and secondary 
metabolisms. Here we present a technique to monitor different 
fluorescing sources on plant leaves in situ by using imaging PAM 
fluorescence (Heinz Walz GmBH) system as a tool. In the present 
study, we detect the GFP, Chl-F, and phenolic fluorescence 
within a short time from one intact leaf by utilizing different 
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wavelengths and filters. The possibility to combine the three 
measurements in one instrument provides a clear advantage in 
characterization of the plant–pathogen interactions in the future. 
For initializing and valuing the technique, Arabidopsis thaliana 
and P. syringae were used as model systems. Pseudomonas 
syringae is a hemibiotrophic pathogen (Preston, 2000) that can 
invade several, also economically important plant species.

MATERIALS AND METHODS

Plant and Bacterial Materials
Arabidopsis thaliana, cv. Columbia 0, were cultivated at 
22°C, L9:D15, and a photosynthetic photon flux density 
of 180 μmol photons m−2 s−1 in climate chambers (Binder, 
Germany). We used 5- to 8-week-old Arabidopsis rosettes in the 
experiments. One of the first fully expanded leaves was chosen 
for the measurements. One Arabidopsis plant was treated as one 
biological replicate.

Pseudomonas syringae DC3000 and DC3000rpm were cultured 
in 28°C either on LB agar plates or by shaking in Kings medium 
B. The medium contained the appropriate antibiotics as follows: 
50 µg mL−1 rifampicillin for both P. syringae strains, 5 µg ml−1 
tetracyclin for the avirulent strain, and 100 µg ml−1 kanamycin 
for pPNptGreen-expressing bacteria. For plant infection, P. 
syringae were harvested by centrifuging and resuspended in 
10 mM MgCl2 until optical density (OD)600 = 0.2, which is equal 
to approximately 1 × 108 cell-forming units (cfu) ml−1. Plants were 
infected by infiltrating the appropriate bacterial suspension by 
1-ml plastic syringe (without needle) through the stomata into the 
leaf tissue. The individuals that were treated with the pathogens 
were selected randomly among the cultivated plants.

Electrocompetent P. syringae cells were obtained by growing 
bacteria in 500 ml of Kings medium B under optimal conditions 
until OD600 = 0.6 ± 0.1. The bacteria were harvested by centrifuging 
and resuspended to 500 ml 10% glycerol (4°C). The harvest was 
repeated, and after each harvest, the pellet was resuspended first 
to 250 ml and then to 150 ml and finally to 3 ml cold 10% glycerol. 
The obtained bacteria cells were stored at −80°C until use.

Creating pPNptGreen Construct and 
Transforming it Into P. Syringae
The plasmid pPNptGreen (13,199 bp) carrying a GFP gene 
sequence and kanamycin resistance was obtained as a gift from 
G. Beattie (Department of Plant Pathology, Iowa State University, 
Iowa, USA). The competent P. syringae cells were transformed 
with pPNptGreen by electroporation (2.5 kV) and spread on LB 
agar plates. The colonies carrying the pPNtpGreen construct were 
selected by kanamycin resistance and additionally by detecting 
green fluorescence under UV light.

Measurement of the Growth of the 
Fluorescing and Wild-Type Bacteria in 
Arabidopsis
The reisolation of bacterial cells from plant leaves (Raacke et al., 
2006) was applied to compare the growth of fluorescing bacteria 

to that of the wild type. Four leaves per plant were infected with 
105 cfu ml−1 of P. syringae. The infection sites were harvested with a 
corkbore (r = 0.7 cm) 24, 48, and 72 h after the infiltration. All the 
four infection sites from one plant were pooled together and fine 
powdered in 500 µL 10 mM MgCl2, with a pestle in an Eppendorf 
tube. The obtained suspension was diluted with MgCl2 until 1 ml 
and further until 1:100 or up to 1:100,000. A hundred microliters 
of each dilution was spread on agar plates; the plates were grown 
under 28°C for 48 h after which the colonies were calculated.

Quantifying the Fluorescence Signal From 
P. Syringae
Known concentrations (1010, 109, 108, 107, 106m, and 105 cfu ml−1) 
of fluorescing P. syringae in 10 mM MgCl2 were used to valuate 
two different methods:

First, the fluorescence was quantified by a fluorometer 
(Fluoroscan, Ascent, Germany). The P. syringae suspensions 
(200 µL) in different concentrations were pipetted on a 
black microtiter plate. The GFP was excited at 485 nm, and 
fluorescence was measured at 538 nm. The background 
fluorescence of nonfluorescing control bacteria was subtracted 
from the obtained values. Second, to validate the signal detected 
by imaging PAM, the fluorescence of single P. syringae drops in 
different concentrations on black, nonfluorescing background 
was quantified. Photographs were taken with imaging PAM 
(for details of the technique, see below), and the fluorescence 
signal in the middle of the drop was measured. As a control, the 
nonfluorescing P. syringae strains were used.

Detecting GFP Under Fluorescence 
Binocular
The fluorescing bacteria were detected with fluorescence 
binocular, which was equipped with a special GFP3 filter 
(instruction manual imaging PAM, Heinz-Walz GmbH, 
Germany). The fluorescence were measured each 24 h until 
96 h after the infection. Photographs of the fluorescing bacteria 
were taken with a camera (Spotlight Color) and analyzed by the 
photograph software SpotAdvanced.

Detection of Chl-F and GFP by  
Imaging PAM
Chlorophyll fluorescence measurements were performed as 
described in Bonfig et al. (2006). A maximum saturation pulse 
was applied on dark adapted (ca. 20 minutes) plants. Further 
fluorescence parameters were subsequently measured with 
actinic light intensity set at 76 µmol m−2 s−1. Measurements were 
performed every 20 s, from 50 to 290 s, duration of the light 
pulses being set at 8 (instruction manual imaging PAM, Heinz-
Walz GmbH). We report PSII quantum yield (Y(II) = (Fm′ − F′)/
Fm′) and Fv/Fm (Fv/Fm  =  (Fm − Fo)/Fm) similar as has been 
previously described (for review e.g. Maxwell and Johnson, 
2000; Murchie and Lawson, 2013). In addition to Chl-F, GFP 
was detected by imaging PAM (Walz, Germany) equipped with 
a special long-pass filter with an angle of 645 nm. The GFP was 
excitated at 450 nm. The measurements were performed with 
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maximum intensity of measuring light and gain (the amplitude 
of fluorescence signal) = 8 (instruction manual imaging PAM, 
Heinz-Walz GmbH). Green fluorescent protein fluorescence was 
detected from the below sites of the leaves.

Detection of Phenolic Fluorescence by 
Reactive Oxygen Species Head
Phenolic compounds were detected by a special application 
developed for imaging PAM. The standard blue power LED 
lights were substituted with special UV-A power LEDs having an 
emission peak at 365 nm. All the wavelengths above 400 nm were 
filtered from the excitation light and a short-pass interference 
filter blocked the transmission above 650 nm, which is essential 
for excluding chlorophyll fluorescence from the detected signal. 
The reactive oxygen species (ROS) head was operated analog to 
imaging PAM, as described previously by Hideg and Schreiber 
(2007). Measuring light is applied as short (10–200 ls) pulses at 
low frequency (1–8 Hz). Two images are measured: one during 
the pulse and one directly afterward, from which a difference 
image was derived. This eliminates eventually disturbing 
ambient background light (Hideg and Schreiber, 2007). Phenolic 
fluorescence was detected from the below sites of the leaves.

Statistical Analysis
Statistical and correlation analyses were performed with SPSS for 
Windows (release 15.0) and Sigma Plot for Windows (version 
10.0). Linear regression analysis was performed to describe the 
dependency of fluorescence intensity on bacterial density.

RESULTS AND DISCUSSION

Selection of Transgenics
The possibility to transform a fluorescing protein into a 
prokaryote is a promising tool to follow bacterial infection in a 
nondestructive manner in plants (Wang et al., 2007; Parente et al., 
2008). In the present work, GFP was successfully transformed 
into two strains of bacterial pathogen P. syringae; in a virulent 
strain pv. tomato DC3000 and in an avirulent strain pv. tomato 
DC3000rpm. The positive transformants were selected by 
kanamycin resistance and additionally by picking the transgenic, 
green-fluorescing colonies from agar plates under UV light. The 
highest fluorescing colonies were chosen for further studies.

Detection of GFP-Fluorescing Bacteria in 
Plant Leaves by Binocular
The GFP-transformed P. syringae DC3000 were detected in 
Arabidopsis leaves 24 h after an infection with 1 × 107 cfu ml−1 
pathogen (Figure 1A) under a binocular. When lower 
concentration (≤1× 106 cfu ml−1) of pathogens was initially applied 
or dip-inoculation-technique used, the fluorescence was detected 
earliest at 48 h after the infection. An application of 1 × 105 cfu ml−1 
was detectable only 96 h after the infection (data not shown).

The progeny of both P. syringae DC3000 strains (each applied 
in concentration of 1 × 107 cfu ml−1 on individual leaves) was 

followed by binocular over 96 h. At the first time point (24 h after 
the infection), the virulent strain was hardly detectable; however, 
the fluorescence intensity increased by each 24-h period and 
was at its strongest 96 h after the infection (Figures 1A–D). 
Unlike the virulent strain, the fluorescent signal of avirulent P. 
syringae DC3000rpm strain was not well detectable. First, the 
detection was possible only when at least 1 × 108 cfu ml−1 bacterial 
concentration was initially infiltrated into the leaf tissue. Twenty-
four hours after the infection, only a very low signal was detected 
(Figure 1E). The signal increased slightly over the time, and the 
signal was stronger in later time points, when the time points 24 h 
and 72 h or 48 h and 96 h were compared to each other (Figures 
1E–H). The fact that avirulent strain of P. syringae showed lower 
increase in fluorescence signal over time than the virulent strain 
was likely due to an incompatible interaction between avirulent 
strain and the plant. The fast reaction to avirulent strain by 
programmed cell death testifies for incompatible interaction 
(Bonfig et al., 2006) and for faster defense response against 
avirulent than virulent strain in Arabidopsis. The fast defense 

FIGURE 1 | Progeny of GFP synthesizing P. syringae DC3000 (A–D) and 
DC3000rpm (E–H) detected as fluorescence signal 24 h (A, E), 48 h  (B, 
F), 72 h  (C, G), and 96 h  (D, H) after infiltration with 1 × 107 cfu ml−1 for 
DC3000gfp and 1 × 108 cfu ml−1 for DC3000rpm_gfp.
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response against the microbial pathogen was followed by low 
pathogen progeny and, logically, low GFP fluorescence that partly 
remained under the detection limit. Due to these complications, 
the avirulent strain was excluded from part of the further studies.

As expected, an infected leaf showed further developed 
necrosis in the middle of the infiltration site than on the edges 
of it (Figure 2A). Interestingly, 2 weeks after the infection with 
the virulent P. syringae strain, the highest fluorescence signal 
was measured on the edges of the infection site, whereas the 
signal was lower directly in the middle of the infiltration site 
(Figure 2B). Thus, the strongest fluorescence signal was detected 
on the areas in which the bacteria invaded so far untouched plant 
cells. Furthermore, our data show that the bacterial density was 
at its highest on the edges of the infection site 2 weeks after the 

infection, whereas a lower bacterial density at the necrotic sites 
was found. The result suggests that the bacteria spread on the 
plant leaf from necrotic spot further into not yet infected areas.

Furthermore, in the infected Arabidopsis leaves, it was 
obvious that the virulent P. syringae cells accumulated stronger 
in the vascular tissue of the plant leaves than on the other sites. 
Higher fluorescence signal was often, even if not always, found 
in the middle vein or in the smaller veins of the plant leaves 
(Figure  2C). Such an accumulation was detected at different 
time points by binocular, but only when at least 1 × 108 cfu ml−1 
bacterial concentration was initially applied into the leaves.

Whether virulent P. syringae use the veins to move from one 
site to another or prefer them due to a higher nutrient quantity is 
not known at present.

The Progeny of Wild-Type and GFP-
Transformed P. Syringae
The fluorescing P. syringae developed symptoms in a similar 
manner with the nonmarked wild-type strain. Infiltration of the 
virulent, fluorescing strain into leaf tissue developed necrosis 
surrounded by so-called “chlorotic halos” at the infection site 
(Figure 2A). We also found no differences in the accumulation 
of the fluorescing and wild-type pathogens (for the time point 
72 h: Kruskal-Wallis, P = 0.191, n = 3) (Figure 3A). The bacteria 
reached a concentration of approximately 615 ± 230 cfu cm−2 24 h 
after the infiltration and the amount of cfu was approximately 
doubled within each further 24-h periods. Seventy-two hours 
post infection, a concentration of approximately 4.5 × 104 cfu ml−1 
was reached (Figure 2D).

As the fluorescing bacterial cells grew similar to the nonmarked 
cells, the plasmid pPNtpGreen likely did not interfere the plant–
pathogen interaction. Wang and colleagues, who studied several 
different P. syringae strains (Wang et al., 2007), previously showed 
similar results. In general, our data prove that the fluorescing 
bacteria can be used instead of nonfluorescing wild-type bacteria 
in wide range of studies that aim to explore P. syringae interaction 
with its host.

Quantification of GFP-Transformed  
P. syringae
Fluorometric assay, compared to the traditional reisolation 
technique of bacteria, provides an easy and accurate tool 
to rapidly quantify the bacterial density on a plant leaf. The 
bacterial densities were detectable down to 1 × 106 cfu ml−1 
by the fluorometric assay. The fluorescence signal detected 
by fluorometer showed linear increase with increasing 
concentration of cell units (R  =  0.982 for virulent and 
R  =  0.975 for avirulent strain, Figure 3A). No differences in 
the signal between virulent and avirulent bacteria were found 
(Mann-Whitney U, P > 0.1 for all the time points, n = 3 ± 1), 
testifying for a comparable expression of the GFP in both of 
the strains.

We moreover quantified the fluorescence signal of different 
P. syringae concentrations by imaging PAM. Measuring the 
fluorescence of P. syringae drops in different concentrations 

FIGURE 2 | Locating and quantifying the P. syringae DC3000_gfp cells in 
differentially infected Arabidopsis leaves. Typical symptoms in the Arabidopsis 
leaves due to an infection with P. syringae applied by a needless syringe 
(A) and the location of the bacterial cells in the same leaf by a fluorescence 
signal 2 weeks after the infection (B). The highest fluorescing signal was 
detected in the leaf veins compared to other tissue 72 h after an infection 
with P. syringae (C). The accumulation of fluorescing and nonfluorescing P. 
syringae DC3000 and fluorescing DC3000rpm cells in Arabidopsis leaves. 
DC3000 (■); DC3000gfp (○); DC3000rpm_gfp (▲); n  =  3 (D). No significant 
differences (Kruskal-Wallis) were found between the different strains.
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(Figure 3C) made it possible to validate the GFP detection by 
imaging PAM (Figure 3B). The lower detection limit of imaging 
PAM was identified at 5 × 107 cfu ml−1, and the saturation of the 
signal was detected at 1 × 1010 cfu ml−1. The fluorescence signal 
depended linearly on bacterial concentration, R  =  0.98 for 
virulent and R  =  0.99 for avirulent strain. In support with the 
fluorometric quantification, also here no differences between 
virulent and avirulent strain were found (Mann-Whitney 
U, P > 0.1 for all the time points, n = 4 ± 1), further verifying 
a comparable expression of the GFP in both of the strains. 
Detection of pathogen in plants on multiple scales facilitates the 
advancement and current development.

Simultaneous Detection of GFP and Chl-F 
by Imaging PAM
Next we followed simultaneously the progeny of fluorescing 
virulent P. syringae in Arabidopsis leaves and the plant primary 
metabolism performance in a noninvasive manner by imaging 
PAM. Infection with GFP-marked P. syringae was detectable by 
imaging PAM (excitation with 450-nm wavelength) 20 and 24 h 
post infection at which time points fluorescence from wild-type 
bacteria site was not yet detectable (Figures 4A–F).

Imaging PAM made it possible to visually prove that the 
bacterial cells were indeed located on the area in which also plant’s 
photosynthetic performance was affected. On the same leaf site on 
which bacteria were inoculated, the photosynthetic performance 
of the plant leaves decreased in synchrony with the spreading 
bacteria. A decrease in quantum yield of PSII (Figures 4G–I) and in 
maximum efficiency of PSII (Figures 4J–L) was detected from the 
initial values. The result supports the previous studies showing that 
reducing photosynthesis is an effective method to defend against 
biotrophic pathogens (Berger et al., 2007; Garavaglia et al., 2010). No 
differences were found in photosynthetic performance between the 
GFP-labeled and wild-type P. syringae–infected leaves. The lowest 
maximum quantum yields of PSII (Fv/Fm) were detected at the very 
sites where the bacteria were initially inoculated (Figure 4).

The detection of the fluorescing, avirulent P. syringae strain 
was possible only ≥24 h post infection and only when initially a 
high amount of P. syringae (1 × 108 cfu ml−1) was applied (data not 
shown). At these later time points (≥24 h), it was not possible to 
distinguish GFP from plant phenolic fluorescence by imaging PAM.

The visualization of the bacterial cells by imaging PAM can be 
especially useful in investigating the role of plant primary metabolites 
in plant defense responses. The location of the bacteria can also be FIGURE 3 | Quantification of the green fluorescence intensity emitted by 

P. syringae DC3000_gfp (○) or DC3000rpm_gfp (■) cells. (A) Fluorometric 
quantification of cells in six different concentrations, from 1 × 105 up to 
1 × 1010 cfu ml−1, is shown. The fluorescence signal shows linear dependency 
on the concentration of the bacteria (R  =  0.982; y  =  0.748x − 3.468 
(DC3000) and R  =  0.9750; y  =  0.656x − 2.937 (DC3000rpm); n  =  4 ± 2). 
(B) Quantification of green fluorescence intensity by imaging PAM. The 
fluorescence was measured by imaging PAM from 20 µL of P. syringae 
cells in 10 mM MgCl2 in increasing concentrations. The fluorescence signal 
shows linear dependency on bacterial concentration; R  =  0.98; y  =  1x − 6.8 
(DC3000) and R  =  0.99  =  0.99; y  =  0.89x − 6.12 (DC3000rpm); n =  4 ± 1. In 
(C), an example of fluorescence signals in various P. syringae concentrations 
is shown (from 1 × 107 up to 5 × 109 cfu ml−1) detected by imaging PAM. The 
false scale color is given in the bottom.

FIGURE 4 | An example of Arabidopsis leaf infected with GFP-labeled P. 
syringae DC3000 on one side of the leaf (upper side) and with wild-type 
P. syringae on the other site of the leaf (lower side), both in concentration 
1 × 107 cfu ml−1. The fluorescence signal is detected after 3, 20, and 24 h 
by exciting with either 450 nm (imaging PAM) (A–C) or 365 nm (ROS head) 
(D–F). Quantum efficiency of PSII (G–I) and maximum efficiency of PSII (Fv/
Fm) (J–L) are shown for the same time points. The false color scale is given 
on the right.
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assigned more accurately than by, e.g., reisolation of bacteria. One of 
the advantages of GFP detection by imaging PAM over binocular is 
the possibility to take all the fluorescence pictures in similar position 
with exactly the same distance between the leaf and camera.

Combining GFP, Phenolic, and Chl-F 
Detections In Situ
The fluorescing nature of the phenolic compounds allows these 
secondary metabolites to be detected under UV or blue light. 
As GFP can be detected with the excitation peak at 450 nm, 
at which wavelength also phenolic fluorescence is excited, we 
applied furthermore a special application of imaging PAM, 
so-called ROS head (Hideg and Schreiber, 2007), which sends 
wavelength of 365 nm. Using this special application, we detected 
phenolic fluorescence, in Arabidopsis leaves infected with GFP 
synthesizing P. syringae DC3000 on one leaf side and with wild-
type P. syringae on the other side. Our results reveal that, contrary 
to imaging PAM, by ROS head a strong plant fluorescence signal 
was detected 20 and 24 h post infection with any P. syringae strain 
(Figures 4E, F). Both of the wavelengths (UV in ROS head and 
blue light in imaging PAM) were thus used in the studies to be 
able to distinguish plant autofluorescence from GFP.

To determine in which time frames GFP and phenolic 
fluorescence can be distinguished from each other, the 
fluorescence signal from several infected plant leaves (one 
side of the leaf infected with GFP labeled, the other side with 
nonmarked P. syringae) was recorded each half an hour during 
at least 24 h. The measurements were done by applying either 
365 nm (ROS head), so that only plant phenolic fluorescence was 
excited, or 450 nm (imaging PAM), which excites both GFP and 
phenolic fluorescence. The results show that with imaging PAM 
GFP is detectable 15.3 ± 2.5 h after infection, whereas phenolic 
fluorescence can be seen only 23.7 ± 4.4 h after the infection 
(Figures 5A, C; P < 0.01 (Student t test).

The recordings with ROS head (excitation at 365 nm) show 
that phenolic fluorescence appears approximately at the same 
time point (16.6 ± 1.7 h) (Figures 5A, B) as GFP can be detected 
with imaging PAM. Thus, imaging PAM was “blind” to phenolic 
fluorescence until a certain level of fluorescence signal was 
achieved. With ROS head, the GFP-labeled bacteria were detected 
probably due to combination of phenolic fluorescence and GFP 
signal already 13 ± 0.7 h post infection. The earlier detection 
point is probably due to GFP that can be excited by UV light in 
certain extent. Our results show that with certain limits GFP can 
be distinguished from phenolic fluorescence and vice versa.

FIGURE 5 | The time in which fluorescence signal is detectable from Arabidopsis leaves infected either with wild-type or GFP-labeled P. syringae DC3000. (A) 
The fluorescence signal detection limit with either excitation by imaging PAM (450 nm) or by ROS head (365 nm) when Arabidopsis leaves were infected with 
1 × 107 cfu ml−1 type (WT) or GFP-labeled (GFP) P. syringae DC3000. Different letters represent the significant differences between different treatments and methods 
(P < 0.01; Student t test, n = 6 ± 1). (B) An example of the fluorescence signal detection by ROS head (upper row) and imaging PAM (lower row) over time when one 
side of the Arabidopsis leaves was infected with GFP synthesizing (upper site) and the other side with wild-type (lower site) P. syringae DC3000. Maximum efficiency 
of PSII (Fv/Fm) in the end of the experiment is shown for each experiment on the right. False color scale is given in the bottom of the figure.
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In the present study, phenolic compounds could be easily 
spatially located without damaging the leaf. In addition to spatial 
location, the time course of the induction of secondary metabolites 
after a pathogen attack was followed over several days with very 
short time intervals. With the help of ROS head, the measurements 
were recorded automatically over a longer period, which reduced the 
need of labor. A certain, minimum level of P. syringae is necessary 
before a detection of fluorescing bacterial cells is possible by imaging 
PAM, which is a disadvantage of the application. Another limitation 
is that the fluorescence signal is a mixture of GFP and plant phenolic 
fluorescence signals already approximately 24 h after the infection. 
Thus, the period in which GFP can be detected at 450 nm without 
background signals is relatively small, and the appearance of other 
signals has to be always excluded by nontransformed controls. 
Interestingly, however, by ROS head, phenolic fluorescence signal 
can be detected in the same time frame as GFP by imaging PAM. 
Instead of concentrating only to GFP detection, it might be of interest 
to use the detection of phenolic compounds to suspect a pathogen 
attack in several research applications. The initiation of plant defense 
metabolism could be proven well before physiological changes in the 
leaves are visible. Most interestingly, detecting phenolic fluorescence 
does not acquire transgenic bacterial lines.

Taken together, the different wavelengths between phenolic 
fluorescence, GFP fluorescence, and Chl-F allow the detection of all 
three from a single leaf within minutes. These imaging techniques 
enable a novel kind of insight to the plant pathogen interactions 
and could be applied for diverse research purposes. It is our interest 
to further optimize the technique to simultaneous image the plant 
performance and pathogen progeny in situ. Should this be possible 
in microscopic scale, an even more sensitive technique can be 
developed for visualization of plant–pathogen interactions. Further, 
this proof-of-concept study needs to be tested, verified, and validated 
with other pathosystem and expanded to other parameters, which 
can be determined in a noninvasive way. For initializing and valuing 
the technique, A. thaliana and P. syringae are used as model systems. 
Pseudomonas syringae is a hemibiotrophic pathogen that can 
invade several, also economically important plant species. Recent 
advancement and current development are facilitating the detection 
of pathogen in plants on multiple scales. Although it is challenging 
regarding the diverse type of pathogen, we must explore multiscale 
approach by possibility to combine this technique with other 
types of noninvasive analysis either in combination with reporter 
construct or fluorescent dye–like monitoring pH changes and ROS. 

Finally, within a truly holistic functional phenomics approach, the 
image-based, noninvasive phenotyping needs to be complemented 
by physiological phenotyping (Großkinsky et al., 2017). Thus, 
the optical signals need to be related to cell and ecophysiological 
parameters by methods such as the determination of enzyme 
activity signatures (Jammer et al., 2015) and phytohormone profiles 
(Großkinsky et al., 2014).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will 
be made available by the authors, without undue reservation, to 
any qualified researcher.

AUTHOR CONTRIBUTIONS

SH, MR, and KB conducted the experimental work and analyzed 
the data. MR drafted a preliminary version of the manuscript, 
and CP made an updated and revised version of the manuscript 
and finalized the manuscript for publication. TR designed the 
project and contributed to the preliminary and final version of 
the manuscript. All authors discussed the results.

FUNDING

The work of TR was supported by the Ministry of Education, 
Youth and Sports of CR within the National Sustainability 
Program I (NPU I), grant LO1415.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the essential support by 
Ulrich Schreiber (Julius-Sachs-Institute, University of Würzburg) 
by the design of a dual GFP and PAM fluorescence IMAGING 
PAM system, providing a prototype of a UV light measuring 
head, help with the measurement and data evaluation. We would 
like to thank Gwyn A. Beattie (Department of Plant Pathology, 
Iowa State University, Iowa, USA) for providing the plasmid 
pPNptGreen. This article is dedicated to Svend Christensen 
(Department of Plant and Environmental Sciences, University of 
Copenhagen), on the occasion of his 60th birthday.

REFERENCES

Aydi-Ben-Abdallah, R., Jabnoun-Khiareddine, H., Nefzi, A., and Daami-
Remadi,  M. (2019). Growth promotion and Fusarium wilt suppression in 
tomato using endophytic bacteria recovered from two wild solanaceous 
species. Int. J. Adv. Agric. Sci. 4 (2), 01–16.

Barón, M., Pineda, M., and Pérez-Bueno, M. L. (2016). Picturing pathogen infection 
in plants. Z. Naturforsch. C 71 (9–10), 355–368. doi: 10.1515/znc-2016-0134

Berger, S., Sinha, A. K., and Roitsch, T. (2007). Plant physiology meets 
phytopathology: plant primary metabolism and plant–pathogen interactions. 
J. Exp. Bot. 58, 4019–4026. doi: 10.1093/jxb/erm298

Bonfig, K. B., Schreiber, U., Gabler, A., Roitsch, T., and Berger, S. (2006). 
Infection with virulent and avirulent P. syringae strains differentially affects 

photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225, 1–12. 
doi: 10.1007/s00425-006-0303-3

Bonfig, K. B., Gabler, A., Simon, U. K., Luschin-Ebengreuth, N., Hatz, M., Berger, S., 
et al. (2010). Post-translational derepression of invertase activity in source leaves 
via down-regulation of invertase inhibitor expression is part of the plant defense 
response. Mol. Plant 3 (6), 1037–1048. doi: 10.1093/mp/ssq053

Bohnenkamp, D., Kuska, M. T., Mahlein, A. K., and Behmann, J. (2019). Utilising 
pure fungal spore spectra as reference for a hyperspectral signal decomposition 
and symptom detection of wheat rust diseases on leaf scale. Plant Pathol. 
68, 1188–1195. doi: 10.1111/ppa.13020

Chaliha, C., Rugen, M. D., Field, R. A., and Kalita, E. (2018). Glycans as modulators 
of plant defense against filamentous pathogens. Front. Plant Sci. 9, 928. doi: 
10.3389/fpls.2018.00928

36

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org
https://doi.org/10.1515/znc-2016-0134
https://doi.org/10.1093/jxb/erm298
https://doi.org/10.1007/s00425-006-0303-3
https://doi.org/10.1093/mp/ssq053
https://doi.org/10.1111/ppa.13020
https://doi.org/10.3389/fpls.2018.00928


Fluorescence Imaging of Pseudomonas Syringae InfectionHupp et al.

9 October 2019 | Volume 10 | Article 1239Frontiers in Plant Science | www.frontiersin.org

Carvalho, C. P., Cardoso-Gustavson, P., Rodrigues, E., Braga, M. R., Mercier, H., 
and Nievola, C. C. (2019). Low temperature acclimation and de-acclimation 
of the subtropical bromeliad Nidularium minutum: implications of changes in 
the NO, sugar content and NR activity. Environ. Exp. Bot. 1159, 34–43. doi: 
10.1016/j.envexpbot.2018.12.004

Dong, X., Wang, M., Ling, N., Shen, Q., and Guo, S. (2016). Potential role of 
photosynthesis-related factors in banana metabolism and defense against 
Fusarium oxysporum f. sp. cubense. Environ. Exp. Bot. 129, 4–12. doi: 10.1016/j.
envexpbot.2016.01.005

Dong, S., and Beckles, D. M. (2019). Dynamic changes in the starch–sugar 
interconversion within plant source and sink tissues promote a better abiotic 
stress response. J. Plant Physiol. 234–235, 80–93. doi: 10.1016/j.jplph.2019.01.007

Dobos, O., Horvath, P., Nagy, F., Danka, T., and Viczián, A. (2019). A deep 
learning-based approach for high-throughput hypocotyl phenotyping. bioRxiv, 
1, 651729. doi: 10.1101/651729

Garavaglia, B. S., Thomas, L., Gottig, N., Zimaro, T., Garofalo, C. G., Gehring, C., 
et al., (2010). Shedding light on the role of photosynthesis in pathogen 
colonization and host defense. Commun. Integr. Biol. 3, 382–384. doi: 10.4161/
cib.3.4.12029

Ge, Y., Wei, M., Li, C., Chen, Y., Lv, J., Meng, K., et al. (2018). Reactive oxygen 
species metabolism and phenylpropanoid pathway involved in disease 
resistance against Penicillium expansum in apple fruit induced by ε-poly-L-
lysine. J. Sci. Food Agric. 98, 5082–5088. doi: 10.1002/jsfa.9046

Ghosal, S., Blystone, D., Singh, A. K., Ganapathysubramanian, B., Singh, A., and 
Sarkar, S. (2018). An explainable deep machine vision framework for plant 
stress phenotyping. Proc. Natl. Acad. Sci. U. S. A. 115 (18), 4613–4618. doi: 
10.1073/pnas.1716999115

Großkinsky, D. B., Albacete, A., Jammer, A., Remele, K., v. d. Graaff, E., Pfeifhofer, H., 
et al. (2014). A rapid phytohormone and phytoalexin screening method for 
physiological phenotyping. Mol. Plant 7, 1053–1056. doi: 10.1093/mp/ssu015

Großkinsky, D. K., Tafner, R., Moreno, M. V., Stenglein, S. A., De Salamone, 
I.  E. G., Nelson, L. M., et al. (2016a). Cytokinin production by Pseudomonas 
fluorescens G20-18 determines biocontrol activity against Pseudomonas 
syringae in Arabidopsis. Sci. Rep. 6, 23310. doi: 10.1038/srep23310

Großkinsky, D. K., van der Graaff, E., and Roitsch, T. (2016b). Regulation of 
abiotic and biotic stress responses by plant hormones. Plant pathogen resistance 
biotechnology 131, 131–147. doi: 10.1002/9781118867716.ch7

Großkinsky, D. K., Syaifullah, S. J., and Roitsch, T. (2017). Integration of multi-
omics techniques and physiological phenotyping within a holistic phenomics 
approach to study senescence in model and crop plants. J. Exp. Bot. 69 (4), 
825–844. doi: 10.1093/jxb/erx333

Gutierrez-Arellano, C., and Mulligan, M. (2018). A review of regulation ecosystem 
services and disservices from faunal populations and potential impacts 
of agriculturalisation on their provision, globally. Nat. Conserv. 30, 1. doi: 
10.3897/natureconservation.30.26989

Giorgetti, L., Giorgi, G., Cherubini, E., Gervasi, P. G., Della Croce, C. M., 
Longo, V., et al. (2018). Screening and identification of major phytochemical 
compounds in seeds, sprouts and leaves of Tuscan black kale Brassica oleracea 
(L.) ssp acephala (DC) var. sabellica L. Nat. Prod. Res. 32 (14), 1617–1626. doi: 
10.1080/14786419.2017.1392953

Hideg, E., and Schreiber, U. (2007). Parallel assessment of ROS formation and 
photosynthesis in leaves by fluorescence imaging. Photosyn. Res. 92, 103–108. 
doi: 10.1007/s11120-007-9146-4

Jammer, A., Gasperl, A., Luschin-Ebengreuth, N., Heyneke, E., Chu, H., Cantero-
Navarro, E., et al. (2015). Simple and robust determination of the activity signature 
of key carbohydrate metabolism enzymes for physiological phenotyping in 
model and crop plants. J. Exp. Botany. 22, 5531–5542. doi: 10.1093/jxb/erv228

Jing, X., Wang, H., Gong, B., Liu, S., Wei, M., Ai, X., et al. (2018). Secondary and 
sucrose metabolism regulated by different light quality combinations involved 
in melon tolerance to powdery mildew. Plant Physiol. Biochem. 124, 77–87. doi: 
10.1016/j.plaphy.2017.12.039

Kanwar, P., and Jha, G. (2018). Alterations in plant sugar metabolism: signatory of 
pathogen attack. Planta 28, 1–4. doi: 10.1007/s00425-018-3018-3

Kuska, M. T., Behmann, J., Grosskinsky, D. K., Roitsch, T., and Mahlein, A. K. 
(2018). Screening of barley resistance against powdery mildew by simultaneous 
high-throughput enzyme activity signature profiling and multispectral 
imaging. Front. Plant Sci. 9, 1074. doi: 10.3389/fpls.2018.01074

Kuska, M. T., Behmann, J., Namini, M., Oerke, E. C., Steiner, U., and Mahlein, A. K. 
(2019). Discovering coherency of specific gene expression and optical reflectance 
properties of barley genotypes differing for resistance reactions against powdery 
mildew. PLoS One 14 (3), e0213291. doi: 10.1371/journal.pone.0213291

Lu, Y., and Yao, J. (2018). Chloroplasts at the crossroad of photosynthesis, pathogen 
infection and plant defense. Int. J. Mol. Sci. 19, 3900. doi: 10.3390/ijms19123900

Liu, X., Chen, Y., Zhong, M., Chen, W., Lin, Q., and Du, H. (2019). Isolation and 
pathogenicity identification of bacterial pathogens in bleached disease and 
their physiological effects on the red macroalga Gracilaria lemaneiformis. 
Aquat. Bot. 153, 1–7. doi: 10.1016/j.aquabot.2018.11.002

Lozoya-Pérez, N. E., Casas-Flores, S., Martínez-Álvarez, J. A., López-Ramírez, L. A., Lopes-
Bezerra, L. M., Franco, B., et al. (2018). Generation of Sporothrix schenckii mutants 
expressing the green fluorescent protein suitable for the study of host–fungus 
interactions. Fungal Biol. 122, 1023–1030. doi: 10.1016/j.funbio.2018.07.004

Mahlein, A. K., Alisaac, E., Al Masri, A., Behmann, J., Dehne, H. W., and Oerke, 
E. C. (2019). Comparison and combination of thermal, fluorescence, and 
hyperspectral imaging for monitoring Fusarium head blight of wheat on 
spikelet scale. Sensors 19, 2281. doi: 10.3390/s19102281

Maxwell, K., and Johnson, G. N. (2000). Chlorophyll fluorescence—a practical 
guide. J. Exp. Bot. 51, 659–668. doi: 10.1093/jexbot/51.345.659

Murchie, E. H., and Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide 
to good practice and understanding some new applications. J. Exp. Bot. 64 (13), 
3983–3998. doi: 10.1093/jxb/ert208

Ökmen, B., and Doehlemann, G. (2014). Inside plant: biotrophic strategies to 
modulate host immunity and metabolism.  Curr. Opin. Plant Biol. 20, 19–25. 
doi: 10.1016/j.pbi.2014.03.011

Parente, A. F., Silva-Pereira, I., Baldani, J. I., Tibúrcio, V. H., Báo, S. N., and 
De-Souza, M. T. (2008). Construction of Bacillus thuringiensis wild-type S76 
and Cry-derivatives expressing a green fluorescent protein: two potential 
marker organisms to study bacteria-plant interactions. Can. J. Microbiol. 54, 
786–790. doi: 10.1139/W08-061

Pérez-Bueno, M. L., Pineda, M., Francisco, M. C., and Barón, M. (2016). Multicolor 
fluorescence imaging as a candidate for disease detection in plant phenotyping. 
Front. Plant Sci. 7, 1790. doi: 10.3389/fpls.2016.01790

Pineda, M., Pérez-Bueno, M. L., and Barón, M. (2018). Detection of bacterial 
infection in melon plants by classification methods based on imaging data. 
Front. Plant Sci. 9, 164. doi: 10.3389/fpls.2018.00164

Pineda, M., Bautista, R., Martínez-Cruz, J., Pérez-Bueno, M. L., Barón, M., and 
Pérez-García, A. (2019). RNA-seq analysis and fluorescence imaging of melon 
powdery mildew disease reveal an orchestrated reprogramming of host 
physiology. Sci. Rep. 9 (1), 7978. doi: 10.1038/s41598-019-44443-5

Polonio, Á., Pineda, M., Bautista, R., Martínez-Cruz, J., Pérez-Bueno, M. L., Barón, 
M., et al. (2019). RNA-seq analysis and fluorescence imaging of melon powdery 
mildew disease reveal an orchestrated reprogramming of host physiology. Sci. 
Rep. 9 (1), 7978. doi: 10.1038/s41598-019-44443-5

Preston, G. M. (2000). Pseudomonas syringae pv. tomato: the right pathogen, 
of the right plant, at the right time. Mol. Plant Pathol. 1, 263–275. doi: 
10.1046/j.1364-3703.2000.00036.x

Proestos, C., Zoumpoulakis, P., and Sinanoglou, V. J. (2018). Isolation and 
characterization of phenolic compounds from selected foods of plant origin 
using modern spectroscopic approaches. Stud. Nat. Prod. Chem. 57, 203–220. 
doi: 10.1016/B978-0-444-64057-4.00007-7

Quemada, M., Gabriel, J., and Zarco-Tejada, P. (2014). Airborne hyperspectral 
images and ground-level optical sensors as assessment tools for maize nitrogen 
fertilization. Remote Sens. (Basel) 6, 2940–2962. doi: 10.3390/rs6042940

Rosa, E., Woestmann, L., Biere, A., and Saastamoinen, M. (2018). A plant 
pathogen modulates the effects of secondary metabolites on the performance 
and immune function of an insect herbivore. Oikos 127, 1539–1549. doi: 
10.1111/oik.05437

Raacke, I. C., von Rad, U., Mueller, M. J., and Berger, S. (2006). Yeast increases 
resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea 
by salicylic acid–dependent as well as –independent mechanisms. Mol. Plant 
Microbe Interact. 19, 1138–1146. doi: 10.1094/MPMI-19-1138

Riedel, M., Calmin, G., Belbahri, L., Lefort, F., Götz, M., Wagner, S., et al. (2009). 
Green fluorescent protein (GFP) as a reporter gene for the plant pathogenic 
oomycete Phytophthora ramorum. J. Eukaryot. Microbiol. 56, 130–135. doi: 
10.1111/j.1550-7408.2008.00376.x

37

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org
https://doi.org/10.1016/j.envexpbot.2018.12.004
https://doi.org/10.1016/j.envexpbot.2016.01.005
https://doi.org/10.1016/j.envexpbot.2016.01.005
https://doi.org/10.1016/j.jplph.2019.01.007
https://doi.org/10.1101/651729
https://doi.org/10.4161/cib.3.4.12029
https://doi.org/10.4161/cib.3.4.12029
https://doi.org/10.1002/jsfa.9046
https://doi.org/10.1073/pnas.1716999115
https://doi.org/10.1093/mp/ssu015
https://doi.org/10.1038/srep23310
https://doi.org/10.1002/9781118867716.ch7
https://doi.org/10.1093/jxb/erx333
https://doi.org/10.3897/natureconservation.30.26989
https://doi.org/10.1080/14786419.2017.1392953
https://doi.org/10.1007/s11120-007-9146-4
https://doi.org/10.1093/jxb/erv228
https://doi.org/10.1016/j.plaphy.2017.12.039
https://doi.org/10.1007/s00425-018-3018-3
https://doi.org/10.3389/fpls.2018.01074
https://doi.org/10.1371/journal.pone.0213291
https://doi.org/10.3390/ijms19123900
https://doi.org/10.1016/j.aquabot.2018.11.002
https://doi.org/10.1016/j.funbio.2018.07.004
https://doi.org/10.3390/s19102281
https://doi.org/10.1093/jexbot/51.345.659
https://doi.org/10.1093/jxb/ert208
https://doi.org/10.1016/j.pbi.2014.03.011
https://doi.org/10.1139/W08-061
https://doi.org/10.3389/fpls.2016.01790
https://doi.org/10.3389/fpls.2018.00164
https://doi.org/10.1038/s41598-019-44443-5
https://doi.org/10.1038/s41598-019-44443-5
https://doi.org/10.1046/j.1364-3703.2000.00036.x
https://doi.org/10.1016/B978-0-444-64057-4.00007-7
https://doi.org/10.3390/rs6042940
https://doi.org/10.1111/oik.05437
https://doi.org/10.1094/MPMI-19-1138
https://doi.org/10.1111/j.1550-7408.2008.00376.x


Fluorescence Imaging of Pseudomonas Syringae InfectionHupp et al.

10 October 2019 | Volume 10 | Article 1239Frontiers in Plant Science | www.frontiersin.org

Rolfe, S. A., and Scholes, J. D. (2010). Chlorophyll fluorescence imaging of 
plant–pathogen interactions. Protoplasma 247 (3–4), 163–175. doi: 10.1007/
s00709-010-0203-z

Sperschneider, J. (2019). Machine learning in plant–pathogen interactions: 
empowering biological predictions from field-scale to genome-scale. New 
Phytol. doi: 10.1111/nph.15771

Su, T., Han, M., Min, J., Chen, P., Mao, Y., Huang, Q., et al. (2018). Genome-wide 
survey of invertase encoding genes and functional characterization of an 
extracellular fungal pathogen-responsive invertase in Glycine max. Int. J. Mol. 
Sci. 19 (8), 2395. doi: 10.3390/ijms19082395

Tischler, Y. K., Thiessen, E., and Hartung, E. (2018). Early optical detection 
of infection with brown rust in winter wheat by chlorophyll fluorescence 
excitation spectra. Comput. Electron. Agr. 146, 77–85. doi: 10.1016/j.
compag.2018.01.026

Thakur, M., Bhattacharya, S., Khosla, P. K., and Puri, S. (2018). Improving 
production of plant secondary metabolites through biotic and abiotic elicitation. 
J. Appl. Res. Med. Aromat. Plants. 12, 1–12. doi: 10.1016/j.jarmap.2018.11.004

Trouvelot, S., Héloir, M. C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., et al. 
(2014). Carbohydrates in plant immunity and plant protection: roles and 
potential application as foliar sprays. Front. Plant Sci. 5, 592. doi: 10.3389/
fpls.2014.00592

Torti, S. D., Dearing, M. D., and Kursar, T. A. (1995). Extraction of phenolic 
compounds from fresh leaves: a comparison of methods. J. Chem. Ecol. 21, 
117–125. doi: 10.1007/BF02036646

Wang, K., Kang, L., Anand, A., Lazarovits, G., and Mysore, K. S. (2007). 
Monitoring in planta bacterial infection at both cellular and whole-plant levels 

using the green fluorescent protein variant GFPuv. New Phytol. 174, 212–223. 
doi: 10.1111/j.1469-8137.2007.01999.x

West, J. S., Canning, G. G., Perryman, S. A., and King, K. (2017). Novel technologies 
for the detection of Fusarium head blight disease and airborne inoculum. Trop. 
Plant Pathol. 42, 203–209. doi: 10.1007/s40858-017-0138-4

Xue, C., Liu, Z., Dai, L., Bu, J., Liu, M., Zhao, Z., et al. (2018). Changing host 
photosynthetic, carbohydrate, and energy metabolisms play important roles 
in Phytoplasma infection. Phytopathology 108 (9), 1067–1077. doi: 10.1094/
PHYTO-02-18-0058-R

Yang, Y., Jiang, N., Lai, Y. T., Chang, Y. Y., Yang, X., Sun, H., et al. (2019). Green 
fluorescent probe for imaging His6-tagged proteins inside living cells. ACS 
Sens. 4, 1190–1196. doi: 10.1021/acssensors.8b01128

Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., et al. (2018). 
Role of secondary metabolites in plant defense against pathogens. Microb. 
Pathog. 124, 198–202. doi: 10.1016/j.micpath.2018.08.034

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Hupp, Rosenkranz, Bonfig, Pandey and Roitsch. This is an open-
access article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

38

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org
https://doi.org/10.1007/s00709-010-0203-z
https://doi.org/10.1007/s00709-010-0203-z
https://doi.org/10.1111/nph.15771
https://doi.org/10.3390/ijms19082395
https://doi.org/10.1016/j.compag.2018.01.026
https://doi.org/10.1016/j.compag.2018.01.026
https://doi.org/10.1016/j.jarmap.2018.11.004
https://doi.org/10.3389/fpls.2014.00592
https://doi.org/10.3389/fpls.2014.00592
https://doi.org/10.1007/BF02036646
https://doi.org/10.1111/j.1469-8137.2007.01999.x
https://doi.org/10.1007/s40858-017-0138-4
https://doi.org/10.1094/PHYTO-02-18-0058-R
https://doi.org/10.1094/PHYTO-02-18-0058-R
https://doi.org/10.1021/acssensors.8b01128
https://doi.org/10.1016/j.micpath.2018.08.034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 October 2019 | Volume 10 | Article 1339

OPINION

doi: 10.3389/fpls.2019.01339
published: 22 October 2019

Frontiers in Plant Science | www.frontiersin.org

Effective Phenotyping Applications 
Require Matching Trait and Platform 
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We’re in a maze, not a highway; there is nowhere that speed alone can take us … I’m not 
being held back by the university’s computers … I’m being held back by my own lack of 
insight into the problems I’m addressing…

Julie Dehghani

In the spring of 2018, the city of Adelaide hosted the 5th International Plant Phenotyping Symposium 
(IPPS), titled “From plant, to data, to impact”, as well as the OECD-sponsored workshop “Making 
science useful to agriculture”.1 Here I share a personal account of salient findings of these two 
meetings, with a focus on more effective phenotyping, namely, phenotyping that is more likely to 
deliver tangible outcomes to plant breeding. To improve the effectiveness of the large phenotyping 
effort worldwide, I suggest asking two questions:

Are we really limited by data? Or better, to what extent we are limited by data, and to what extent 
we are, in the terms of Julie Dehghani, being held back by our own lack of insight into the problems 
we’re addressing? I would argue our theories are lagging, and the theoretical model of the phenotype 
has become a bottleneck.

Can we improve the matching of trait and phenotyping platform? Individual plants and 
populations are fundamentally different biological entities; yield is a population-level attribute 
where plant-plant interactions are important. I would propose that explicit consideration 
of scaling, density- and context-dependence can help to better match agronomic traits with 
phenotyping platform and method, avoid expensive distractions and improve return on 
R&D investment.

The underlying assumption of ‘omics’ technologies is that large datasets on genes, their 
expression (transcriptomics) and products (proteomics and metabolomics) would resolve the 
complexities of key traits (Langridge, 2018). These ‘omics’ efforts have been primarily driven by 
technology—it was possible and therefore done—and largely failed to resolve the agronomically 
relevant phenotype, particularly crop yield (Langridge, 2018). This failure was ascribed to lagging 
phenotyping technologies (Cobb et al., 2013; Araus and Cairns, 2014), which in turn motivated 
the phenotyping effort displayed in the 5th IPPS. The IPPS showed a similar technology-driven 
approach that leads to large datasets of variable quality and relevance. Once again, we are 
assuming we are limited by data—but are we? Big data (and associated technologies) is the next 
promise, and it might deliver in some areas. However, we need hypothesis-driven science at the 

1Papers and presentations from this meeting are at: https://msua.aweb.net.au/.
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very least for proper experimental design, and importantly, to 
match trait and phenotyping platform.

The complete lack of attention to the theoretical aspects of 
the construction of the phenotype in the 5th IPPS was striking, 
and reinforces the notion of a technology-driven effort. The 
oversimplified model based on the unidirectional arrow from 
genotype to phenotype is unjustified but remains influential 
(Vinocur and Altman, 2005; Pickett, 2016). More nuanced 
theories of the phenotype need consideration (West-Eberhard, 
2003; Piersma and van Gils, 2011; Noble, 2012; Félix, 2016). 
The metaphors that genes “control” development, and that 
genomes embody “programs” for development are particularly 
misplaced (Noble, 2012; Félix, 2016). A unified theory of 
phenotypic development and evolution emphasizes that “the 
individual’s genotype can never be said to control development. 
Development depends at every step on the pre-existent structure 
of the phenotype, a structure that is complexly determined by 
a long history of both genomic and environmental influences” 
(West-Eberhard, 2003). This perspective is more broadly 
captured in the concept of downward causation (Noble, 2012; 
Flack, 2017; Noble, 2017). A panel discussion on what it takes 
for phenotypic data to be useful focused on technical aspects 

along the lines of the FAIR principles (Wilkinson et al., 2016). A 
lonely voice advanced the importance of asking questions that 
matter biologically and agronomically for data to be useful, 
but after a lukewarm collective nod the discussion reverted 
to technical aspects of data management. Future editions of 
this IPPS will benefit from sessions devoted to the theory of 
the phenotype.

The 5th IPPS, and the literature more broadly, show that the 
mismatch between trait and phenotyping approach is a major 
source of inefficiency, e.g. phenotyping for density-dependent 
traits such as yield or nutrient uptake in isolated plants in the 
glasshouse, or in single rows in the field. For different reasons, 
research in plant biology frequently simplifies to potted plants 
in chamber or glasshouse. If we are interested in a biological 
process of an isolated plant in an artificial condition lacking 
agronomic context, this simplification is fine and needs no 
justification. However, we must ask rigorous questions about 
scaling, density- and context-dependence if we want to 
achieve agronomic relevance.

How does a trait measured in an individual plant relate 
to the trait in a crop stand, where yield and other agronomic 
attributes are resolved? Sadras and Richards (2014) classified 

FIGURE 1 | Bt scales, but yield and plant allometry do not because they are density dependent. (A) Bt scales from molecular to ecosystem level. (a) Bacillus 
turingensis (Bt) Cry proteins have deleterious effects on Lepidoptera larvae at the (b) cell, (c) individual, and (d) population levels. Bt proteins expressed in transformed 
plant tissues confer protection at the (e) organ and (f) population level. This protection allows for (g) less reliance on synthetic insecticides for pest control, with 
consequences at the ecosystem level. Sources: (a) Ca traces of individual domains of CryIA(a) (red) and CryIIIA (black) proteins (Grochulski et al., 1995); (b) inhibitory 
effect of CryIA(a) on leucine uptake by membrane vesicles prepared from Bombyx mori larvae midgut; (c) weight and (d) survival of 7-day-old, 3rd instar larvae of 
Elsmopalpus lignosellus after a week of feeding treatments with peanut leaf containing variable concentration of CryIA(c) protein (Singsit et al., 1997); (f) comparison 
of cotton leaves expressing CryIA(c) proteins and non-transformed controls exposed to Helicoverpa spp larva (Lewis Wilson, unpublished); differences between Bt 
and conventional cotton in (g) lint yield. (B) Yield does not scale from plant to population. Yield of wheat stands (200–400 plants m-2) does not correlate with yield of 
isolated plants (<20 plants m-2) grown under the same conditions in the field. Source: Pedró et al. (2012). (C) Nitrogen-biomass allometry does not scale from plant to 
population. Owing to plant-plant interactions, dilution curves relating shoot nitrogen concentration and shoot dry matter show a sharp dilution for plants in stands, and 
a highly buffered dilution in isolated plants. Source: Lemaire and Millard (1999).
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traits in three groups depending on their scaling. Some traits 
generally scale, like herbicide tolerance or Bt (Figure 1A). 
There are traits for which scaling is strictly dependent on 
experimental protocols; for example, leaf expansion rate seems 
to scale from glasshouse to field in well designed and carefully 
executed experiments (Reymond et al., 2003). There are traits 
that rarely scale, including yield (Figure 1B), photosynthesis, 
capture and efficiency in the use of water and nutrients, 
allometric relationships (Figure 1C), and architecture traits 
such as tillering, shoot and root branching (Sadras and 
Richards, 2014). Photosynthesis is strongly buffered from 
molecular to stand level (Pettigrew et al., 1989; Sinclair et al., 
2004). Lack of both wind and canopy structure in plant-based 
settings (glasshouse, chamber) generates unrealistic canopy-
atmosphere coupling, hence the difficulty in scaling gas 
exchange (Jarvis and McNaughton, 1986; Fereres et al., 2014). 
Artifacts from growing plants in pots are well established 
(Ben-Porath and Baker, 1990; Passioura, 2002; Passioura, 
2006; Poorter et al., 2012; Ryan and Graham, 2018), and yet 
potted plants are used in phenotyping traits related to water 
and nutrient uptake and efficiency. Ryan and Graham (2018) 
critically revised the agronomic relevance of plant-mycorrhiza 
studies in controlled environments. Density-dependence 
(Donald, 1963; Harper, 1977) is a useful criterion to predict 
scaling; tillering responds to neighboring plants as related to 
both light quality and resources (Casal et al., 1986; Skinner 
and Simmons, 1993; Peltonen-Sainio and Järvinen, 1995; 
Robertson et al., 2009), hence is less likely to scale. Nitrogen-
biomass allometry—the keystone for quantifying crop nitrogen 
status (Sadras and Lemaire, 2014; Gastal et al., 2015)—is 
strongly density dependent, and therefore does not scale 
from plant to crop (Figure 1C). Density-dependence leads to 
hierarchies in stands and is an artifact commonly overlooked 
in the glasshouse (Chen et al., 2018) and, to a lesser extent in 
the field (Rebetzke et al., 2014; Fischer and Rebetzke, 2018). 
For example, transformed tobacco plants with superior leaf-
level photosynthesis were grown with a single-row buffer 
of shorter, untransformed wild-types leading to a gross 
misinterpretation of the effect of molecular manipulations on 
the crop phenotype (South et al., 2019). Gene expression is 
density-dependent in locust (Pener and Simpson, 2009), and 
in Arabidopsis (Geisler et al., 2012). In chickpea, Fst genome 
scan revealed a mismatch in the top genomic regions under 
selection for yield in border rows under relaxed competition 
and inner rows under full competition (Lake et al., 2016).

Consideration of biological context is critical for effective 
phenotyping. Environmental factors such as radiation, 
photoperiod and temperature are spatially and temporally 
correlated, and plants evolved receptors coupled with 
molecular signaling that extract information from these joint 
multivariate properties of the environment. Hence responses 
dependent on these properties of the environment are encoded 
in the genome, epigenome and phenome of plants (Karban, 
2015). For this reason, phenotyping in an unnatural context, 
i.e. where correlations between environmental variables have 

been unrealistically altered, are often of little agronomic 
relevance because biased relationships among the states of 
different environmental variables disturb the information 
decoded by the plant, and hence the phenotype. For example, 
diurnal profiles of carbon and nitrogen metabolites of plants 
grown with a step-change in radiation do not match those 
for plants grown with both regular (day-night sinusoidal 
cycle) and irregular (due to clouds) fluctuations in radiation 
(Annunziata et al., 2017). Sowing date trials to screen for 
heat adaptation in the field bias the relative state of key 
environmental factors (radiation, photoperiod, temperature, 
vapor pressure deficit), and confound developmental and 
thermal-stress responses (Sadras et al., 2015).

The sequence “From plant, to data, to impact” resonates 
with both the directional “pipeline” in biotechnology, from 
lab to field (Nuccio et al., 2018) and with the simplistic 
genotype-to-phenotype model. These directional perspectives 
have delivered improvements in crop protection but have 
largely failed to improve yield and adaptation to drought 
(Dalal et al., 2017; Nuccio et al., 2018). Conceptually, Denis 
Noble concludes that there is no privileged level of causation 
(Noble, 2012). Renee Laffite and colleagues have advanced 
a robust approach that focuses on agronomically rigorous 
field phenotyping of grain yield and high-level secondary 
traits such as anthesis-silking interval, with complementary 
work under controlled conditions—working from field to lab 
ensures agronomic relevance (Habben et al., 2014; Shi et al., 
2015; Brugiere et al., 2017; Lafitte et al., 2018).

To improve the effectiveness of the large phenotyping effort 
worldwide, I suggest asking two questions:

Are we really limited by data? Or better, to what extent 
we are limited by data, and to what extent we are, in the 
terms of Julie Dehghani, being held back by our own lack 
of insight into the problems we’re addressing? I would argue 
our theories are lagging, and the theoretical model of the 
phenotype needs attention.

Can we improve the matching of trait and phenotyping platform? 
Individual plants and populations are fundamentally different 
biological entities; yield is a population attribute. I would propose 
that explicit consideration of scaling, density- and context-
dependence can help to better match agronomic traits with 
phenotyping platform and method, avoid expensive distractions 
and improve return on R&D investment.
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The Development of Hyperspectral 
Distribution Maps to Predict 
the Content and Distribution of 
Nitrogen and Water in Wheat 
(Triticum aestivum)
Brooke Bruning 1*, Huajian Liu 1, Chris Brien 1, Bettina Berger 1, Megan Lewis 2 
and Trevor Garnett 1

1 Australian Plant Phenomics Facility, The Plant Accelerator, School of Agriculture, Food & Wine, University of Adelaide, 
Urrbrae, SA, Australia, 2 Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, 
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Quantifying plant water content and nitrogen levels and determining water and nitrogen 
phenotypes is important for crop management and achieving optimal yield and quality. 
Hyperspectral methods have the potential to advance high throughput phenotyping efforts 
by providing a rapid, accurate, and nondestructive alternative for estimating biochemical 
and physiological plant traits. Our study (i) acquired hyperspectral images of wheat plants 
using a high throughput phenotyping system, (ii) developed regression models capable 
of predicting water and nitrogen levels of wheat plants, and (iii) applied the regression 
coefficients from the best-performing models to hyperspectral images in order to develop 
prediction maps to visualize nitrogen and water distribution within plants. Hyperspectral 
images were collected of four wheat (Triticum aestivum) genotypes grown in nine soil 
nutrient conditions and under two water treatments. Five multivariate regression methods 
in combination with 10 spectral preprocessing techniques were employed to find a 
model with strong predictive performance. Visible and near infrared wavelengths (VNIR: 
400–1,000nm) alone were not sufficient to accurately predict water and nitrogen content 
(validation R2 = 0.56 and R2 = 0.59, respectively) but model accuracy was improved when 
shortwave-infrared wavelengths (SWIR: 1,000–2,500nm) were incorporated (validation 
R2 = 0.63 and R2 = 0.66, respectively). Wavelength reduction produced equivalent model 
accuracies while reducing model size and complexity (validation R2 = 0.69 and R2 = 0.66 
for water and nitrogen, respectively). Developed distribution maps provided a visual 
representation of the concentration and distribution of water within plants while nitrogen 
maps seemed to suffer from noise. The findings and methods from this study demonstrate 
the high potential of high-throughput hyperspectral imagery for estimating and visualizing 
the distribution of plant chemical properties.

Keywords: nitrogen, water, hyperspectral, wheat, PLSR, plant phenotyping
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iNTRODUCTiON
Wheat (Triticum aestivum) is the major winter crop in 
Australia and sustainable improvement of yields is a major 
research focus. The availability of nitrogen and water are widely 
recognized as two of the main factors limiting crop growth and 
production (Garnett and Rebetzke, 2013). Nitrogen is essential 
for crops but nitrogen use efficiency is generally low (Raun 
and Johnson, 1999). Understanding the nitrogen dynamics 
within the plant is key to improving fertilization practices and 
breeding more efficient crops (Garnett et al., 2015) which in 
turn may help reach the increased yields required for a growing 
population. Water also profoundly influences plant health and 
potential yield. Water is a strong driver of photosynthesis, 
respiration, absorption, and the translocation of nutrients 
and metabolites throughout the plant (Lambers et al., 2008). 
The accurate assessment of water content also has importance 
for fertilization, irrigation practices, and drought assessment 
(Peñuelas et al., 1997; Torres et al., 2019).

High throughput plant phenotyping is an emerging approach 
for plant breeding and crop improvement studies (Awada et al., 
2018; Hansen et  al., 2018). Image-based phenotyping offers 
nondestructive techniques which can significantly reduce the 
cost, time, and labor involved in larger-scale screening trials. 
Collecting information from multiple sensors allows near-
simultaneous data collection for the measurement of many plant 
traits (Li et al., 2014; Humplik et al., 2015). Since such methods 
are nondestructive, they are repeatable across a plant’s lifecycle, 
thereby allowing for changes to be detected over time which 
otherwise could not be determined with traditional destructive 
analyses (Berger et al., 2012; Fahlgren et al., 2015).

Hyperspectral cameras are becoming more common in the 
plant research environment. Hyperspectral imaging combines 
the benefits of both spectroscopy and traditional imaging; it 
is able to quantify light reflectance across hundreds of narrow 
spectral bands for distinct spatial pixels (ElMasry et al., 2012; 
Liu et al., 2014). Hyperspectral imaging has successfully 
been used in the prediction of many plant traits such as early 
drought stress in barley (Behmann et al., 2014), macronutrient 
content and distribution in oilseed rape (Zhang et al., 2013), 
and nitrogen distribution in cucumber leaves (Yu et al., 2014). 
Chemical properties, including water content, micronutrient, 
and macronutrient concentrations, have also been quantified 
in maize and soybean plants using hyperspectral imaging in 
a high throughput phenotyping greenhouse (Ge et al., 2016; 
Pandey et al., 2017).

Multivariate analysis techniques are required to relate the 
spectral information gained from hyperspectral instruments 
to the chemical or physical traits of interest. Many different 
multivariate methods exist for model development but these 
techniques require a measured reference sample to use in the 
development of calibration models. Although ideal, this is 
impossible to achieve at a pixel-scale resolution; wet chemistry 
reference methods often require minimum amounts of tissue 
from an entire leaf or plant. Therefore, regression is often 
performed using mean spectra extracted from the entire 
plant or a region thereof (Ge et al., 2016; Pandey et al., 2017). 

Regression coefficient vectors based on these mean spectra 
can then be applied to the image at the individual pixel 
scale to make predictions at a resolution equivalent to that 
of the images acquired. These developed prediction maps, 
or distribution maps, provide a visual interpretation of the 
content and spatial variation of the predicted component 
which otherwise cannot be visualized by the hyperspectral 
data alone.

The present study focused on wheat, the major winter crop in 
Australia. The specific objectives were (i) to acquire hyperspectral 
images of wheat plants using a high throughput phenotyping 
system, (ii) develop regression models capable of predicting water 
and nitrogen levels of wheat plants, and (iii) apply the regression 
coefficients from the best-performing models to hyperspectral 
images in order to develop prediction maps to visualize nitrogen 
and water distribution within plants.

MaTeRiaLS aND MeTHODS
The experiment was carried out in an automated phenotyping 
platform (LemnaTec GmbH, Aachen, Germany) at The Plant 
Accelerator (Australian Plant Phenomics Facility, University of 
Adelaide, Adelaide, Australia; longitude: 138.64, latitude: -34.97). 
The platform houses a hyperspectral imaging chamber (WIWAM, 
Ghent, Netherlands) which contains two individual cameras, a 
Specim FX10 (Specim, Oulu, Finland) operating in the VNIR 
(visible and near infrared: 400–1,000 nm) range and Specim 
SWIR (Specim, Oulu, Finland) operating at the longer SWIR 
(shortwave infrared: 1,300–2,500 nm) wavelengths. The VNIR 
FX10 has spatial sampling of 1024 pixels and a spectral interval of 
approximately 1.3 nm, capturing a total of 448 individual spectral 
measurements for each image acquisition. The SWIR camera 
has spatial sampling of 640 pixels and a spectral interval of 5.7 
nm, capturing 288 bands. The hyperspectral imaging chamber 
is illuminated by 18 halogen lights to ensure a consistent light 
source across the wavelengths.

experimental Design
Four soil nutrient factors at two levels each and two watering 
treatments were applied to four varieties of wheat- cv Gladius, 
Kukri, Mace and RAC875. The nutrient factors were nitrogen 
(N:25, 100 mg/kg), phosphorous (P:15, 40 mg/kg), potassium 
(K:20, 60 mg/kg), and Micromax (5, 10 g/150 g). Half of the full 
24(= 16) combinations of the soil nutrient treatments, in addition 
to a control treatment where no nutrients were added, were 
included in the design, resulting in nine different soil nutrients 
treatments (Table 1). The base soil was a 1:1:1 mixture of UC 
(University of California)-mix:coco-peat:clay-loam without any 
nutrients but balanced to pH 6.4 using dolomite lime. The base 
soil was divided and different levels of nutrients were added and 
mixed by hand. Nitrogen was added as Polyon urea (Polyon, 42% 
N, Koch, Melbourne, Australia), phosphorous as Superphosphate 
(20.1% P, Incitec Pivot Ltd., Melbourne, Australia), potassium as 
Potash sulphate (Greenskote, 41% K), and secondary nutrients 
as Micromax (Scotts Micromax micronutrients; Scotts-Sierra 
Horticultural Products Co., Marysville, Ohio).
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For the drought treatment, pots were dried down to 10% (g/g) 
gravimetric water content 23 days after sowing (DAS) to ensure 
initial plant establishment in well-watered conditions. The well-
watered pots were watered to 20% (g/g) water content which was 
then increased to 23% (g/g) from 34 DAS as growth increased 
and additional water reserves were required. Each soil, variety 
and drought combination was replicated six times resulting in a 
total of 432 pots. Plants were grown in 150 mm pots containing 
2.5 kg of dry soil. The greenhouse maintained an average daytime 
temperature of 23.8°C and average night temperature of 17.5°C.

When first sown, pots were kept on greenhouse benches 
and hand watered daily until plant emergence. The pots were 
transferred to the conveyor system 17 DAS where the daily 
watering became automated. Pots were arranged in a criss-cross 
design with split-plots, randomized using “dae” (Brien, 2017), 
a package for the R statistical computing environment (R Core 
Team, 2017). The pots occupied 24 lanes divided into six zones, 
each containing a single replicate of allocated factors. The four 
varieties were randomized to the four lanes in each zone. The 
layout was split into two sides (west and east) and the drought 
treatments randomized to the combination of zones by sides 
using three 2x2 Latin squares. The nine soil nutrient treatments 
were assigned to the nine carts with a lane-side combination 
using an 8x9 Youden square.

Data Collection
Hyperspectral System and Data Measurements
Hyperspectral images were collected weekly from 31–61 DAS 
from a position above the plant. The data collected for each plant 
consisted of a raw hyperspectral datacube, a white reference and 
dark reference image. MATLAB (2017b, The MathWorks, Natick, 
MA) was used to write a function to convert the raw and reference 
image data into calibrated 3D datacubes of the plants (Equation 1):

 
I I I

I Icalibrated
raw dark

white dark
= −

−
     (1)

where Icalibrated is the calibrated datacube image, Iraw is the raw, 
unprocessed datacube, Idark is the dark current image, and Iwhite is 
the white reference image.

Plant Sampling and Chemical Analysis
At the end of the experiment (61 DAS), the flag leaf from the 
main tiller and the remainder of the plant were harvested 
separately. The plant (minus a flag leaf) was immediately weighed 
to measure plant fresh weight. Samples were then placed in an 
oven at 60°C for 72 hours until a constant weight had been 
achieved and were then reweighed to obtain dry weight. Plant 
water content was calculated by (Equation 2):

 
water content W W

W
        %= −F D

F
x 100  (2)

where WF is the fresh weight of the harvested sample and WD 
is the dried sample weight.

The flag leaf samples were reserved for nitrogen analysis. 
Nitrogen was measured using a “rapid N exceed” N analyzer 
(Elementar Analysensysteme GmbH, Langenselbold, Germany) 
with the Dumas combustion method. Samples were dried using 
the same methods as the whole plant samples and were then 
ground using a Geno/Grinder (SPEX SamplePrep, NJ, USA). 
Although different nutrient factors of N, P, and K were selected 
in the experimental design, only nitrogen values were predicted; 
there was insufficient flag-leaf tissue to also allow for the analysis 
of phosphorous and potassium. Nitrogen was therefore selected 
due to its importance to crop health.

Data analysis
Extraction of Mean Plant Spectra
In order to extract only the spectral information corresponding 
to the plant shoot, the background pixels of the images were 
identified and excluded. This was achieved in the VNIR (400–
1,000 nm) images by establishing an enhanced vegetation index 
(EVI) threshold mask in order to segment the plant tissue from 
other pixels (Huete et al., 2002). The band at 670 nm was assigned 
as the red band, 800 nm as the NIR band, and 470 nm as the blue 
band. These bands were extracted from the datacubes and used 
to calculate the EVI output for each image (Equation 3):

 
EVI R R

R R R
= −

+ − +
2 5

6 7 5 1
.  

(   . )
NIR R

NIR R B
 (3)

where RNIR is the reflectance value in the near infrared band, 
RR is the reflectance value in the red band, and RB is the reflectance 
value in the blue band. The EVI output image was found to be 
very effective at identifying and segmenting plant pixels from 
background pixels when a threshold of 0.25 was applied. A 
binary mask based on the EVI values above 0.25 was therefore 
built and applied to the calibrated images. The reflectance values 
of all pixels identified as vegetation were then averaged to obtain 
the average reflectance spectrum of each plant.

For the SWIR images (1,000–2,500 nm), a different 
segmentation method was adopted (Liu et al., 2019). The 
SWIR data was first transformed from the original space of the 
hypercube to a hyper-hue space. A SVM model was then trained 
with a radial basis function kernel using the svm.OneClassSVM 

TaBLe 1 | Nutrient levels of the different soils used in this study. Half of the full 
24(= 16) combinations of the soil nutrient treatments were used in addition to a 
control treatment, where no nutrients were added.

Soil N (mg/kg) P (mg/kg) K (mg/kg) secondary 
nutrients 
(g/150kg)

1 0 0 0 0
2 25 15 20 5
3 100 15 20 10
4 25 40 20 10
5 100 40 20 5
6 25 15 60 10
7 100 15 60 5
8 25 40 60 5
9 100 40 60 10
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function in the Python programming language (Python Software 
Foundation) with the sklearn toolbox (Pedregosa et al., 2011) and 
optimal parameter tuning. The extracted mean spectra from both 
the VNIR and SWIR cameras were then combined for each plant.

Multivariate Regression
The average plant reflectance spectrum extracted from each 
image was used to develop models capable of predicting water 
content (%) and nitrogen content (%) in wheat plants. Spectral 
pre-processing techniques were used to remove noise, transform 
spectra, emphasis features, and to extract useful information 
in order to develop multivariate prediction models. The 
preprocessing techniques selected were adapted from those of 
Dotto et al. (2018) and Gholizadeh et al. (2015) and included 
the first-order Savitzky-Golay derivative (see further detail 
below) on reflectance spectra (SGD1), second-order Savitzky-
Golay derivate on reflectance spectra (SGD2), the first-order 
Savitzky-Golay derivative of the absorbance-transformed spectra 
(ASGD1), the second-order Savitzky-Golay derivative of the 
absorbance-transformed spectra (ASGD2), multiplicative scatter 
correction (MSC), extended multiplicative scatter correction 
(EMSC), normalization by range (NBR), standard normal variate 
spectra (SNV), and smoothed spectra (SMO). In addition, the 
raw spectra were also used as model input to evaluate whether 
preprocessing actually improved the regression results.

Savitzky-Golay (SG) derivatives are used to reduce baseline 
shifts and linear trends: the first derivative removes baseline 
drifts whereas second derivatives can remove both baseline and 
linear effects (Martens and Næs, 2011). SG derivatives perform 
least squares linear regression fits of a polynomial around each 
point in the spectrum to smooth the data. They involve a spectral 
smoothing method prior to derivation to reduce the signal-to-
noise ratio and to determine how many adjacent variables will 
be used for their calculation. Consideration is required when 
selecting the tuning parameters for derivatives: the polynomial 
order, window size, and order of differentiation can strongly 
influence resulting spectra (Zimmermann and Kohler, 2013). 
The first-order derivative was calculated using Savitzky-Golay 
filtering in the “prospectr” package (Stevens and Ramirez-Lopez, 
2015) in the R open-source statistical environment (R  Core 
Team, 2007). The SGD1 treatment was fitted with a first order 
differentiation, second-order polynomial, and a window size 
of 11. Similarly, the SGD2 treatment was fitted with a second-
order polynomial, a window size of 11 but with a second order 
differentiation. For the ASGD1 treated data, the raw reflectance 
was first converted to absorbance values before a first-order 
Savitzky-Golay derivative was applied with a second-order 
polynomial and a window size of 11 nm.

Multiplicative scatter correction (MSC) involves regressing 
each spectrum in a dataset against a reference spectrum (quite 
commonly, the mean spectrum) in order to estimate the intercept 
and slope of the equation representing the scattering component 
(Geladi et al., 1985). Each spectrum in the dataset is corrected 
by subtracting the intercept and dividing by the slope. Extended 
multiplicative scatter correction (EMSC) is an improvement to 
MSC that allows the physical light scattering effects to be separated 
from chemical light effects in spectra (Martens and Stark, 1991).

Standard normal variate (SNV) removes scatter effects from 
spectral data by performing a row-oriented transformation which 
centers and scales each spectrum (Barnes et al., 1989). Performing 
SNV will produce similar results to MSC. The main difference is 
that SNV does not use the mean spectrum for standardisation 
but relies only on the data of each individual spectrum. 
Normalization by range (NBR) is a simple normalisation which 
adjusts values that are measured on different scales. Neither SNV 
nor normalization involve least squares fitting and are therefore 
quite sensitive to spectral noise (Rinnan et al., 2009). The MSC 
treatment was applied using the “pls” (Mevik and Wehrens, 2007) 
package in the R open-source statistical environment (R  Core 
Team, 2007). The CRR and SNV treatments were applied using 
the “prospectr” package (Stevens and Ramirez-Lopez, 2015), 
the EMSC transformation was applied through the “EMSC” 
package (Liland, 2017) using a 6-degree polynomial, and the 
NBR was applied using the “clusterSim” package (Walesiak and 
Dudek, 2017).

The five different multivariate regression methods applied in 
this study were partial least square regression (PLSR), Principal 
Component Regression (PCR), Multiple Linear Regression 
(MLR), Support Vector Machines (SVM), and Random Forest 
(RF). PLSR is a multivariate calibration method that uses data 
compression in order to reduce the full spectrum into a smaller 
number of noncorrelated components while maintaining the 
majority of the information contained in the data (Axelsson et al., 
2013). PLSR is a popular and widely-used regression method 
because it performs well when variables contain high correlation 
or colinearity, as is the case with hyperspectral data, due to its 
ability to minimise redundancy and overfitting of models (Wold 
et al., 2001). PLSR was applied in the “pls” package (ncomp = 
10, validation = “CV”). The optimal number of components to 
include in the model was determined by visual inspection of the 
root mean square error of prediction (RMSEP) graph; the number 
of components which gave the lowest RMSEP was selected.

PCR is a technique very similar to PLSR in that it is able 
to model variables when there are a large number of highly 
correlated predictors present (Wold et al., 1984). Furthermore, 
both techniques construct new predictor variables which are 
linear combinations of the original predictor variables. As with 
the PLSR, PCR was applied in the “pls” package (ncomp  = 
10, validation = “CV”). The optimal number of components 
to include in the model was determined by the number of 
components which gave the lowest RMSEP.

MLR is one of the most common forms of linear regression 
analysis which has had some success with hyperspectral data 
(Pan et al., 2016). However, it may not be particularly applicable 
to all high-dimensional hyperspectral data as many of the data 
assumptions are not met. For example, MLR assumes that a 
linear relationship between the independent and dependent 
variables exists as well as that variables are normally distributed 
(Montgomery et al., 2012; Osborne and Waters, 2002). The “MASS” 
package (Venables and Ripley, 2002) was used to fit a linear model 
by ridge regression (lambda = 0.1-10 by 0.1, repl = 10).

SVM is a group of supervised learning methods originally 
developed for classification and has recently been adapted for 
regression models. SVM create hyperplanes that maximize the 
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margins between different classes by reducing the cost function 
and therefore enabling high prediction performance (Do et al., 
2012; Karatzoglou et al., 2005). SVM models are able to fit both 
linear and nonlinear relationships between variables and are 
able to handle large datasets (Dotto et al., 2018). Support vector 
machine (type = “eps”, kernel = “radial”, cost = 50) was employed 
using the “e1071” package (Meyer et al., 2017).

RF is a machine learning technique that enhances the 
performance of a single decision tree by averaging the predictions 
from multiple trees, each of which is generated from a random 
selection of the input variables (Belgiu and Dragut, 2016). 
RF is flexible with small or large datasets but their validation 
performance is usually poor compared to their calibration 
performance. The results from a RF model can also be difficult 
to interpret so their implementation has not been widespread 
in past spectroscopic vegetation studies. The “randomForest” 
package was used to implement a RF algorithm (ntree = 1000, 
type = “regression”) (Liaw and Wiener, 2002).

The dataset of mean spectra was split based on experimental 
replicates into a training set (n = 236 for nitrogen and n = 250 
for water) and a validation (n = 109 for nitrogen and n = 105 
for water) set to allow both the development and independent 
validation of the models. Only the training data set was used in 
the development of the nutrient prediction models; the validation 
set was used as an independent test set. The total number of 
samples used in model development deviated from the total 
number of pots in the experiment (n = 432) due to technical 
issues during image acquisition. The number of samples in the 
calibration sets varied between the water and nitrogen regressions 
because plants grown in soil 1 (no nutrients) did not produce a 
flag leaf and therefore were not sampled for nitrogen analysis. 
The accuracy of the developed models was assessed using the 
independent testing set excluded from the model calibration. 
Three statistical measures were calculated to evaluate the models 
developed by each of the multivariate methods: the coefficient 
of determination (R2), root mean square error (RMSE), and the 
ratio of performance to deviation (RPD) (Equations 4–6). 
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where ŷi  are the predicted values, yi  is the mean of the 
observed value, y is the observed value, n is the number of 
samples in the validation or calibration set, and SD is the standard 
deviation of the reference values.

Since VNIR cameras are more affordable than SWIR cameras, 
we first tested to see whether models based on VNIR wavelengths 

alone were able to predict nitrogen and water content in wheat. 
Full-spectra models incorporating both VNIR and SWIR 
wavelengths were then trialled to see if models were improved. 
While adding SWIR data increases the number of variables, it may 
contribute noise to the original VNIR models rather than adding 
useful information. SWIR wavelengths alone were not exclusively 
trialled because of the camera’s coarser spatial resolution. The 
larger pixel size of the SWIR images would not allow subtle spatial 
variations to be visualized in the distribution maps.

Wavelength Selection
Wavelength selection is widely performed with hyperspectral 
data because a large number of wavelengths are often 
redundant and contribute to noise. In this study, wavelength 
selection was approached in two ways: firstly, using regression 
coefficients from the full-spectra models and secondly, using 
only wavelengths located at known-absorption features for both 
water and nitrogen. For the regression coefficient approach, the 
vector of regression coefficients (β), a measure of association 
between each wavelength and the response, was output from 
the original full-spectra PLSR models. Wavelengths with small 
absolute regression coefficients, and therefore low association to 
water or nitrogen, were removed. Both the nitrogen and water 
datasets were reduced to 132 wavelengths based on the top 30% 
of regression coefficient values.

A second method, a feature-selection method, was also used 
for wavelength selection. This is a more traditional approach 
in which only the wavelengths in a particular region of the 
spectrum known to be associated with responses (i.e., water or 
nitrogen content) are selected. Wavelengths known to be related 
to either water and nitrogen content of vegetation were identified 
from previous studies (Tables 2 and 3). A 40 nm range centered 
on each of these wavelengths was then included in the models to 
ensure that the identified wavelengths were encompassed.

ReSULTS
Prior to destructive harvest of the wheat plants grown in 
varying nutrient and water regimes, hyperspectral images were 
acquired in the VNIR and SWIR regions. For each corrected 
hyperspectral image, the pixels corresponding to vegetation 
were identified and the mean reflectance spectra of those pixels 
were calculated to develop prediction models for both water 
content and nitrogen levels. The mean spectra exhibited the 
typical reflectance properties of vegetation with low reflectance 
across visible wavelengths, a dramatic increase in reflectance 
at the transition from visible to near infrared wavelengths, 
and maximum reflectance values throughout the near infrared 
domain (Figure 1). An obvious feature of the spectral graph 
was the offset at 1,000 nm. This was caused by the two separate 
cameras: the FX10 operating at 400–1,000 nm and the SWIR 
camera operating at 1,000–2,500 nm. The two cameras, while 
focally and geometrically aligned, had different optical systems 
and spectral and spatial resolutions, which attribute to the 
offset between cameras. While overlapping regions common 
to both cameras were removed (996–1,006 nm), appropriate 
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preprocessing should be applied in order to correct the spectral 
jump in future studies. Baseline shifts across the spectra were also 
apparent which suggests that a preprocessing technique which is 
able to correct for additive scatter, such as EMSC or MSC, may 
improve subsequent regression results.

VNiR Wavelengths alone are Not 
Sufficient to Predict Water Content
Initially, only VNIR (400–1,000 nm) wavelengths were used 
as input into the regression models. The different multivariate 
regression techniques and preprocessing methods resulted in 
various predictive performances for quantifying water content. 
Only three preprocessing methods (ASGD1, SMO, and raw) 

achieved R2 values above 0.50 (Table 4). Of the preprocessing 
methods, the smoothed and raw data consistently achieved the 
highest overall prediction performance with validation R2 values of 
up to 0.62 and 0.57 for smoothed and raw data, respectively (when 
used in combination with multiple linear regression). For the 
regression methods, PLSR models produced the highest accuracy 
performance for the prediction of water content in fresh wheat 
leaves; they consistently returned models with higher R2 values 
compared to other techniques with relatively high RPD values 
and low RMSE values. PLSR validation R2 values varied from 
0.33 to 0.56, RMSE varied from 3.61–2.85, and RPD varied from 
1.18–1.5 (Supplementary Table 1). PLSR achieved the best results 
when used in conjunction with raw spectra, achieving validation 
statistics of R2 = 0.56, RMSE = 2.85, and RPD = 1.50. However, 
even this model does not provide a sufficient level of accuracy for 
predicting water content. According to the model classification of 
Li et al. (2018), these models can only be considered as “acceptable” 
for the prediction of water content based on their R2 and RPD 
values (0.50≤R2 ≤ 0.75 and 1.40≤RPD ≤ 2.00).

VNiR Wavelengths are Not Sufficient for 
Nitrogen Prediction
As with water prediction, PLSR and MLR showed the strongest 
prediction of nitrogen (Table 5). The calibration R2 values ranged 
from 0.23 to 0.90 with the calibration RMSE and RPD values 
varying from 0.55 to 0.22 and 1.13 to 2.84, respectively. On the 
other hand, the validation R2 values ranged from 0.06 to 0.59 
with the validation RMSE and RPD values varying from 0.97 to 
0.41 and 0.66 to 1.56, respectively (Supplementary Table 2). As 
with the water models, the smoothed and raw data achieved the 
highest overall prediction performance for estimating nitrogen, 
considering both calibration and validation data. PLSR models 
also produced the highest accuracy performance for nitrogen 
prediction compared to other multivariate methods trialled. 

TaBLe 2 | Wavelengths known to be associated with water content in vegetation. A broad range (40 nm) centered on these values were included in the feature-reduced 
models to ensure that each feature was captured.

Wavelength (nm) Range included (nm) assignation Reference

600 580–620 O-H Hydrogen Bonding Hunt and Rock, 1989
680 660–700 Electron transition Hong et al., 2017
810 790–830 C-H Hong et al., 2017
820 800–840 C-H Hunt and Rock, 1989
860 840–880 C-H Gao, 1996; Eitel et al., 2006 
900 880–920 C-H Peñuelas et al., 1993; Peñuelas et al., 1995
970 950–990 O-H bend Curran, 1989; Peñuelas et al., 1993; 

Peñuelas et al., 1995 
1240 1,220–1,260 C-H Gao, 1996; Eitel et al., 2006 
1530 1,510–1,550 N-H secondary amines Foutry and Baret, 1997; Curran, 1989
1550 1,530–1,570 N-H secondary amines Musick and Pelletier 1986; Musick and 

Pelletier, 1988
1720 1,700–1,740 C-H Foutry and Baret, 1997
1750 1,730–1,770 C-H secondary overtones Musick and Pelletier 1986; Musick and 

Pelletier, 1988
2080 2,060–2,100 N-H and C-H, O-H stretch and deformation Musick and Pelletier 1986; Musick and 

Pelletier, 1988; Curran, 1989
2350 2,330–2,370 C-H combinations Musick and Pelletier 1986; Musick and 

Pelletier, 1988; Curran, 1989
1400-1450 1,400–1,450 O-H bend and stretch Curran, 1989; De Bei et al., 2011 

TaBLe 3 | From Ecarnot et al. (2013). Wavelengths known to be associated with 
nitrogen content in vegetation. A broad range (40 nm) centered on these values were 
included in the feature-reduced models to ensure that each feature was captured.

Wavelength 
(nm)

Range included 
(nm)

assignation

460 440–480 Electron transition, chlorophyll a,b
530 510–550 Electron transition, carotenoids
670 650–690 Electron transition, chlorophyll a,b
1440 1,420–1,460 O-H bend, first overtone, starch
1500 1,480–1,520 N-H stretch
1680 1,660–1,700 C-H stretch, aromatic
1712 1,692–1,732 C-H stretch, CH3
1770 1,750–1,790 C-H stretch, CH2
1900 1,880–1,920 O-H stretch, C = O, starch, CO2H
1960 1,940–1,980 N-H, CONH2
2080 2,060–2,100 N-H stretch, proteins
2115 2,095–2,135 N-H stretch, CONH2, CONHR
2140 2,120–2,160 Amide, proteins
2230 2,210–2,250 N-H stretch, C = H stretch, amino acid
2300 2,280–2,320 N-H stretch, C = O stretch, amino acid
2400 2,380–2,420 CH2 bend, C-H deformation, cellulose
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For different preprocessing methods, validation R2 values varied 
from 0.26 to 0.59, RMSE varied from 0.55–0.41 and RPD varied 
from 1.16–1.56 (Supplementary Table 2). PLSR achieved the 
best results when used in conjunction with smoothed spectra, 
achieving validation statistics of R2 = 0.59, RMSE = 0.41, and 
RPD = 1.56 (Table 5). However, no model developed with VNIR 
wavelengths alone can be considered as accurate for predicting 
nitrogen content. As with the VNIR water content models, these 

regressions are only considered as “acceptable” (0.50≤R2 ≤ 0.75 
and 1.40≤RPD ≤ 2.00) (Li et al., 2018).

Full-Spectra (VNiR+SWiR) Regressions 
improve accuracies for Water and Nitrogen
Since both water and nitrogen also express strongly in the SWIR 
region, SWIR wavelengths were also included in the regression 
models to see whether prediction accuracies were improved 
compared to VNIR models alone. The incorporation of the SWIR 
wavelengths in the full-spectra models improved the prediction 
accuracies of both the water and nitrogen models (Table 6). 

FigURe 1 | Mean spectra extracted from the vegetation pixels for each image using the FX10 visible and near infrared wavelength (VNIR) camera for wavelengths 
from 400–1,000nm and the shortwave-infrared wavelength (SWIR) camera for the 1,000–2,500nm wavelengths.

TaBLe 4 | Performance results for the prediction of water content in wheat using 
VNIR (400–1,000 nm) spectra. 

Calibration

PLSR PCR MLR RF SVM
ASGD1 R2 0.63 0.42 0.50 0.47 0.84

RMSE 2.92 3.61 3.42 3.46 1.96
RPD 1.63 1.32 1.39 1.38 2.43

SMO R2 0.64 0.60 0.61 0.44 0.67
RMSE 2.90 3.04 2.96 3.57 2.76
RPD 1.64 1.57 1.61 1.33 1.73

Raw R2 0.67 0.60 0.57 0.44 0.69
RMSE 2.79 3.04 3.13 3.55 2.70
RPD 1.71 1.56 1.52 1.34 1.77

Validation
PLSR PCR MLR RF SVM

ASGD1 R2 0.51 0.41 0.54 0.49 0.52
RMSE 3.01 3.30 2.94 3.06 2.96
RPD 1.42 1.29 1.45 1.39 1.44

SMO R2 0.56 0.54 0.62 0.47 0.55
RMSE 2.90 2.88 2.70 3.11 2.89
RPD 1.47 1.48 1.58 1.37 1.48

Raw R2 0.56 0.54 0.57 0.49 0.56
RMSE 2.85 2.88 2.82 3.05 2.86
RPD 1.50 1.48 1.51 1.40 1.49

R2, coefficient of determination, RMSE, root mean square error; RPD, ratio of performance 
to deviation. PLSR, partial least-squares regression; PCR, principal components regression; 
MLR, multiple linear regression; RF, random forest; SVM, support vector machine;  
SMO = smoothed.

TaBLe 5 | Performance results (validation R2≥0.5) of trialled preprocessing and 
multivariate methods for the prediction of nitrogen in wheat. 

Calibration

PLSR PCR MLR RF SVM
SMO R2 0.56 0.50 0.53 0.42 0.60

RMSE 0.42 0.45 0.43 0.48 0.40
RPD 1.49 1.40 1.46 1.31 1.58

Raw R2 0.59 0.49 0.48 0.42 0.62
RMSE 0.41 0.45 0.45 0.47 0.39
RPD 1.53 1.38 1.39 1.32 1.60

Validation
PLSR PCR MLR RF SVM

SMO R2 0.59 0.54 0.57 0.33 0.43
RMSE 0.41 0.44 0.42 0.52 0.48
RPD 1.56 1.47 1.53 1.22 1.33

Raw R2 0.57 0.52 0.58 0.33 0.43
RMSE 0.42 0.44 0.42 0.52 0.48
RPD 1.53 1.44 1.54 1.23 1.33

R2 = coefficient of determination, RMSE; root mean square error; RPD; ratio of 
performance to deviation. PLSR; partial least-squares regression; PCR; principal 
components regression; MLR; multiple linear regression; RF; random forest; SVM; 
support vector machine; SMO; smoothed.
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TaBLe 6 | Validation prediction accuracies for full-spectra (VNIR+SWIR: 400-2500nm) regression models for predicting water content and nitrogen. 

Water full-spectra (VNiR+SWiR) validation

PLSR PCR MLR RF SVM

ASGD1 R2 0.56 0.59 0.56 0.60 0.61
RMSE 3.11 2.95 3.25 2.92 2.88
RPD 1.48 1.56 1.41 1.58 1.60

ASGD2 R2 0.58 0.50 0.34 0.59 0.55
RMSE 3.07 3.24 5.22 3.00 3.10
RPD 1.50 1.42 0.88 1.53 1.48

EMSC R2 0.57 0.59 0.54 0.55 0.59
RMSE 3.10 3.01 3.27 3.08 2.94
RPD 1.49 1.53 1.41 1.49 1.57

MSC R2 0.57 0.56 0.54 0.49 0.55
RMSE 3.09 3.10 3.19 3.37 3.09
RPD 1.49 1.49 1.44 1.37 1.49

SGD1 R2 0.58 0.58 0.54 0.60 0.59
RMSE 3.01 3.00 3.25 2.92 2.94
RPD 1.53 1.54 1.42 1.58 1.57

SGD2 R2 0.52 0.57 0.37 0.57 0.58
RMSE 3.19 3.03 4.42 3.07 3.00
RPD 1.44 1.52 1.04 1.50 1.54

SNV R2 0.57 0.57 0.54 0.48 0.55
RMSE 3.10 3.08 3.19 3.37 3.10
RPD 1.48 1.49 1.44 1.37 1.48

SMO R2 0.63 0.62 0.61 0.61 0.59
RMSE 2.80 2.83 2.96 2.89 2.97
RPD 1.64 1.62 1.56 1.59 1.55

Raw R2 0.63 0.62 0.58 0.62 0.60
RMSE 2.81 2.83 3.01 2.85 2.95
RPD 1.64 1.62 1.53 1.61 1.56

Nitrogen full-spectra (VNiR+SWiR) validation
PLSR PCR MLR RF SVM

ASGD1 R2 0.58 0.57 0.55 0.56 0.55
RMSE 0.45 0.49 0.46 0.45 0.47
RPD 1.46 1.36 1.43 1.46 1.42

ASGD2 R2 0.51 0.14 0.29 0.54 0.59
RMSE 0.48 0.63 0.63 0.47 0.45
RPD 1.39 1.06 1.04 1.41 1.48

EMSC R2 0.56 0.61 0.54 0.48 0.53
RMSE 0.45 0.46 0.46 0.49 0.47
RPD 1.47 1.44 1.45 1.36 1.40

MSC R2 0.61 0.53 0.54 0.39 0.43
RMSE 0.43 0.49 0.45 0.52 0.52
RPD 1.54 1.35 1.48 1.26 1.28

SGD1 R2 0.57 0.58 0.55 0.48 0.55
RMSE 0.46 0.47 0.45 0.52 0.47
RPD 1.45 1.41 1.46 1.27 1.40

SGD2 R2 0.48 0.43 0.26 0.51 0.56
RMSE 0.48 0.51 0.63 0.49 0.45
RPD 1.38 1.31 1.05 1.36 1.46

SNV R2 0.57 0.50 0.55 0.36 0.42
RMSE 0.45 0.51 0.45 0.54 0.52
RPD 1.46 1.30 1.48 1.23 1.27

SMO R2 0.66 0.63 0.63 0.37 0.43
RMSE 0.41 0.44 0.41 0.52 0.50
RPD 1.61 1.52 1.64 1.26 1.32

Raw R2 0.60 0.61 0.59 0.36 0.43
RMSE 0.43 0.44 0.43 0.53 0.50
RPD 1.54 1.52 1.56 1.25 1.33

R2 = coefficient of determination; RMSE, root mean square error; RPD, ratio of performance to deviation. PLSR, partial least-squares regression; PCR, principal components 
regression; MLR, multiple linear regression; RF, random forest; SVM, support vector machine; ASGD1, absorbance transformation then Savitzky-Golay first derivative; ASGD2, 
absorbance transformation then Savitzky-Golay second derivative; EMSC, extended multiplicative scatter-correction; MSC, multiplicative scatter-correction; SGD1, Savitzky-Golay 
first derivative; SGD2, Savitzky-Golay second derivative; SNV, standard normal variate; SMO, smoothed. Models with validation R2≥0.6 are in bold.
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For the prediction of water, the validation R2 values ranged from 
0.34 to 0.63 with the validation RMSE and RPD values varying 
from 5.22 to 2.8 and 0.88 to 1.64, respectively. Similarly, for the 
prediction of nitrogen, the validation R2 values ranged from 0.14 
to 0.66 with the validation RMSE and RPD values varying from 
0.63 to 0.41 and 1.04 to 1.64, respectively. As was found with the 
VNIR models, the smoothed and raw data had the highest overall 
prediction performance for both water and nitrogen, except for 
the RF and SVM prediction of nitrogen which was improved with 
preprocessing. PLSR models again had the most consistently high 
performance compared to other multivariate methods trialled, 
particularly when used with raw or smoothed data (Table 6).

Wavelength Selection Using Regression 
Coefficients Reduces Data Without 
Compromising accuracy
Wavelength selection was performed in order to remove some 
of the redundant information inherent in hyperspectral data. 
Two approaches to wavelength selection were used: through 
the regression coefficients from the full-spectra models and by 
selecting only wavelengths located at known-absorption features 
for both water and nitrogen.

The wavelengths retained in the reduced β coefficient water 
model were 398–404, 410–415, 426–432, 440–443, 637–705, 724–
752, and 950–1,000 nm. Direct associations between reflectance 
spectra and water content are those features related specifically 
to the water content in the leaves. These are known to occur at 
1450 and 1940 nm with smaller features at 980, 1150, and 1400 
nm associated with the bonding and stretching of O-H molecules 
(Curran, 1989; Ollinger, 2011). However, reflectance properties 
can also be influenced by indirect effects, those associated with 
other traits that vary alongside water or nitrogen status. These 
indirect effects can be caused by properties such as varying leaf 
pigments or vegetation architecture, which are represented 
by reflectance changes throughout visible and near-infrared 
wavelengths (Ollinger, 2011). The fact that the model produced 
predictions based on wavelengths within only the visible and near-
infrared regions suggests that rather than directly quantifying 
water content, it is detecting indirect associations between water 
and secondary traits influencing the overall reflectance.

The nitrogen wavelengths with the highest β coefficients were 
located at 510–637 nm and 693–739 nm. The 693–739 nm region 
is likely representing changes in the red-edge position, which have 
previously been shown to vary with crop chlorophyll concentration 
(Horler et al., 1983; Curran et al., 1990). However, the identified 
wavelengths from 510–637 nm do not correspond to a direct 
association with nitrogen. Foliar nitrogen is predominantly found 
within proteins, largely chlorophyll or Rubisco (Evans, 1989; Elvidge, 
1990). Protein absorption features only occur in the infrared region 
around 910, 1,020, 1,510, 1,690, 1,980, 2,060, 2,130, 2,180, 2,240, 
and 2,300 nm while chlorophyll absorptions are found in the visible 
region of the spectrum near 430, 460, 640, and 660 nm (Curran, 
1989). Therefore, the 510–637 nm wavelengths are likely detecting 
an indirect association between the spectra and nitrogen content.

The second approach to wavelength reduction was to use only 
wavelengths that have previously been related to either water 

and nitrogen content. The wavelengths identified by previous 
studies included both direct and indirect associations to water 
(Table 2) and nitrogen (Table 3). The wavelengths selected for 
the reduced nitrogen models excluded some of the direct spectral 
asssociations known to exist with nitrogen. Wavelengths with 
direct association to nitrogen occurring within the SWIR region 
were not included in the model because those absorption features 
are generally weaker (Curran, 1989; Ollinger, 2011). Therefore, 
wavelengths were selected (from Ecarnot et al., 2013) which 
are known to be correlated with nitrogen content in vegetation, 
even if they are detecting secondary traits relating to changes 
in water content. Similarly, some of the major water absorption 
features, those located at 1,940 and 1,150 nm were excluded 
from the reduced water models while other wavelengths that 
don’t have direct associations to water were included (e.g., those 
located within the visible region). A number of plant functions 
are related to changes in water content. Therefore, even if the 
exact compound or process is not determined, spectral features 
of several secondary traits and processes have been used, and 
included in these reduced water models, for indirect associations 
to water content.

Since PLSR consistently showed the strongest performance 
in the previous model development, it was the only multivariate 
technique considered in the reduced-wavelength models. The 
predictive performances of the wavelength-selection models 
developed using the regression coefficient method had higher 
accuracy than the full-spectra or VNIR model (Figure 2). For the 
prediction of water content, the regression coefficient method 
generated a PLSR model with validation R2 = 0.69, RMSE = 2.53, 
and RPD = 1.78 while the feature method gave accuracies of R2 = 
0.64, RMSE = 2.74, and RPD = 1.76. (Table 7). This is compared 
to a maximum validation R2 value of 0.63 using the full-spectra 
PLSR model (Table 8). For nitrogen, the regression coefficient 
method had a validation accuracy of R2 = 0.66, RMSE = 0.41, 
and RPD = 1.66 (Table 7), compared to a validation R2 value of 
0.60 using the same methods (PLSR with raw data) from the full-
spectra models (Table 8).

The reduced wavelength models, while greatly simplifying the 
models also reduced the degree of overfitting. The calibration 
and validation prediction values (Table 7) are much closer 
together than the models without wavelength selection (Tables 
4 and 5). The feature method produced accuracies of R2 = 0.52, 
RMSE  = 0.47, and RPD = 1.39 for predicting nitrogen. The 
feature reduction method for wavelength refinement did not 
improve either the water or nitrogen models.

Distribution Maps Can Visualize Water 
and Nitrogen Distribution
Distribution maps, or prediction maps, were developed in order 
to provide a visual representation of the concentration of water 
and nitrogen content within the plants as well as to show any 
spatial variability within individual plants. Distribution maps 
were created by applying the regression coefficients of the highest 
performing VNIR models to the calibrated hyperspectral images 
(Figure 3). In the case of water content, the coefficients from the 
VNIR PLSR model of raw spectra were used. For nitrogen, the 
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coefficients from the VNIR PLSR model with smoothed spectra 
were applied. Only the VNIR models were used to develop the 
distribution maps; the combined full-spectra models were not 
considered. This is because the two cameras (FX10 and SWIR) 
operate at different spatial resolutions, so the combined models 
cannot be visualized on a single image.

The resulting prediction maps revealed the spatial variation 
in biochemical properties, particularly water content, and 

allowed for a visual comparison between and within the plants 
which is otherwise impossible with the raw hyperspectral data 
(Figure 4). There were noticeable differences between the maps 
of the watered (Figure 4A) and drought (Figure 4C) plants as 
indicated by their color scale; the watered plants appear yellow-
red (72–88% water content) whereas the drought plants are 
predominantly green (64–72% water content). This is also the 
case for the low (Figure 4B) and high (Figure 4D) nitrogen 
plants, however this difference is less obvious.

In general, water content was higher at the base of the leaves 
and decreased toward the tips (Figures 4A, C). Higher levels of 
water were also apparent around the midrib region as opposed 
to the outsides of the leaves. These clear patterns and gradual 
degradation between neighboring pixels suggests that the water 
distribution maps provide a visually plausible indication of 
spatial variability within the plants. The nitrogen distribution 
maps (Figures 4B, D) do not appear to follow a plausible spatial 
pattern; each pixel is a different colour with no clear gradation 
to the neighboring pixels. This “noise” in the image is likely the 
result of model overfitting (Gowen et al., 2014).

DiSCUSSiON
Hyperspectral imagery combines the spatial information of 
traditional RGB imagery with the benefits of high-resolution 
spectral reflectance data. This reflectance data, an indication of 
how light is interacting with the target, provides a unique spectral 
fingerprint of the chemical nature of each plant. However, 
hyperspectral images alone are not visually intuitive or easily 
interpretable. The development of distribution maps has allowed 
for a visual comparison between and within plants and revealed 
the spatial variation in water and nitrogen.

Of the five different multivariate regression methods and 
10 different spectral preprocessing techniques trialled, the 
smoothed and raw data consistently achieved the highest overall 
prediction performances for both water and nitrogen. This 
suggests that preprocessing may not have been required for 
this dataset and that applying preprocessing techniques may 
have dampened some of the important features of the spectra. 
Without accounting for the physical influence of scatter or noise, 
it would normally be expected that a poorer performance is 
achieved for the smoothed data in comparison to pre-processed 
data, however, this was found not to be the case.

The high accuracies achieved with PLSR in comparison to 
other techniques is due to its ability to handle both the high 
dimensionality and collinearity inherent in hyperspectral data 
and its effectiveness when a large number of collinear predictor 
variables are present (Wold et al., 1984). The strong performance 
of PLSR and its ability to handle spectral data explains why it has 
been so widely adopted in past hyperspectral studies quantifying 
plant biochemical properties. MLR and SVM also performed well.

One apparent and perhaps significant finding was the large 
difference between the calibration and validation performances 
for the VNIR models (Supplementary Tables 1 and 2). The 
inconsistencies between the sets, particularly in the case where 
validation statistics are considerably lower than calibration 

FigURe 2 | Water (top) and nitrogen (bottom) regression graphs for the 
models showing the best validation predictive performance from all trialled 
methods (regression coefficient reduction method with raw spectra and 
partial least square regression (PLSR)).
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statistics, may be attributed to model overfitting. This discrepancy 
is not as severe in the wavelength-selection models suggesting that 
the wavelength selection methods were able to remove the noise 
and irrelevant wavelengths in the data. The prediction accuracies 

between the nitrogen and water models were quite similar; there 
was no drastic difference in the ability to predict one property 
over the other. This is true for all models developed: VNIR, 
full-spectra, and wavelength-refined models (besides perhaps 

TaBLe 7 | Predictive performances for the wavelength refined models. Cal = calibration. Val = validation. Results are shown for the two different approaches used for 
variable selection: using the top 30% of wavelengths based on the regression coefficients from the full-spectra models and using wavelengths previously determined to 
be associated with nitrogen and water.

Water wavelength selection models Nitrogen wavelength selection models

PLSR Cal Val PLSR Cal Val

Regression Coefficients R2 0.81 0.69 Regression Coefficients R2 0.74 0.66
RMSE 2.05 2.53 RMSE 0.32 0.41
RPD 2.31 1.78 RPD 1.89 1.66

Known Absorption Features R2 0.71 0.64 Known Absorption Features R2 0.54 0.52
RMSE 2.57 2.74 RMSE 0.42 0.47
RPD 1.85 1.76 RPD 1.45 1.39

TaBLe 8 | Validation results for the strongest performing models for water and nitrogen prediction across the different pre-processing and regression methods trialled- 
PLSR in combination with raw input data. Wavelength selection using the regression coefficient method produced the strongest models.

VNiR Full spectra
(VNiR+SWiR)

Wavelength selection 
regression coefficients

Wavelength selection 
feature positions

Water R2 0.56 0.63 0.69 0.64
RMSE 2.85 2.81 2.53 2.74
RPD 1.50 1.64 1.78 1.76

Nitrogen R2 0.57 0.60 0.66 0.52
RMSE 0.42 0.43 0.41 0.47
RPD 1.53 1.54 1.66 1.39

FigURe 3 | The procedure for the development of water and nitrogen distribution maps. Mean spectra were used as input to generate a PLSR model. The 
coefficients of the partial least square regression (PLSR) model were then applied to the unfolded datacube at the individual pixel level providing a spatial 
visualisation of water and nitrogen distribution within the plants.
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the absorption feature method for wavelength-selection which 
yielded validation R2 = 0.64 for water and R2 = 0.52 for nitrogen).

The stronger performing models, e.g., PLSR, were not 
drastically improved in the full-spectra models in comparison 
to the VNIR models. However, the regression and preprocessing 
methods that did not perform as well in the VNIR models, 
e.g., EMSC and multiple linear regression, were improved 
significantly. By considering only the visible and near infrared 
wavelengths initially, it might have been expected that nitrogen 
and water, both which have major spectral expressions in the 
shortwave infrared region, would not be predicted accurately. 
The fact that the full-spectra (VNIR+SWIR) models did not 
significantly improve the VNIR models suggests that perhaps 

neither water nor nitrogen content is being directly detected, 
rather secondary processes within the plant spectrally expressed 
in the VNIR region.

The applied wavelength reduction techniques, both the 
“regression coefficient” and “known absorption feature” 
methods, while successfully reducing the volume of data, 
did not significantly improve the model accuracies. The 
wavelengths incorporated in the two approaches contained 
both direct and indirect associations with nitrogen and water. 
Since the regression coefficient approach is likely detecting both 
direct and indirect associations, selecting known absorption 
features also based on both direct and indirect associations 
does not necessarily provide additional or new information 

FigURe 4 | Distribution maps showing the prediction of water content in a watered (a) and drought (C) plant and nitrogen levels in a low (B) and high (D) nitrogen 
soil plant.
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(i.e., there is some degree of duplication in the two approaches 
since they both target direct and indirect associations). If only 
direct features of nitrogen or water were selected from previous 
literature during the known absorption feature approach, then 
the wavelength selection methods could be considered as more 
independent approaches; one approach, the known absorption 
feature approach, is targeting only the direct associations to 
water or nitrogen while the regression coefficient approach 
is targeting both direct and indirect associations. Targeting 
only direct associations would mean that the developed 
models would likely have a stronger predictive performance 
for independent datasets. Due to the indirect associations 
included, the wavelengths identified as being sensitive to water 
and nitrogen cannot be generalised and may not hold true for 
all future studies.

Previous studies have utilized high-throughput 
phenotyping platforms equipped with hyperspectral cameras 
for investigating crop traits. Pandey et al. (2017) imaged 
maize and soybean leaves using a hyperspectral camera with 
a spectral range of 550–1700 nm to predict leaf water content 
and nutritional status. They showed that both water and 
nitrogen content could be predicted accurately using PLSR 
(R2 = 0.93 and 0.92 with RPD = 3.80 and 3.60, for water and 
nitrogen respectively). Ge et al. (2016) used high throughput 
hyperspectral imaging to characterize the temporal dynamics 
of the leaf water content of maize. They used PLSR to accurately 
predict leaf water content using a hyperspectral camera with 
a wavelength range of 550–1750 nm and a spectral bandwidth 
of 5 nm (R2 = 0.87, RMSE = 3.0%, and RPD = 2.82). Although 
different species and smaller datasets were used (Ge et al. 
(2016) used 80 plants while Pandey et al. (2017) used 120), 
these previous studies achieved much greater accuracies for 
predicting water and nitrogen content than presented here. 
Compared to wheat, which has narrow, twisting leaves with 
irregular structure, maize has considerably broader leaves 
with a more regular leaf architecture. There are fewer pixels 
to work with when analyzing wheat plants with a greater 
proportion suffering from mixed signals (i.e., edge pixels of 
background and plant material). The fact that maize plants 
have more pixels to work with, and proportionally fewer 
mixed-pixels, may have contributed to the higher accuracies 
achieved in these previous studies.

The generally poor R2 values achieved in this study can be 
attributed to a number of factors. The main factor influencing the 
poor performance of the nitrogen models is likely the different 
scales at which the spectral and reference measurements 
were made. The spectra were extracted and averaged over the 
entire plant whereas the reference laboratory measurements 
of nitrogen were taken on a single leaf. Nitrogen is considered 
a mobile element within plants and can be retranslocated to 
younger leaves from older leaves (Taiz and Zeiger, 1998). Its 
distribution is not homogenous throughout wheat plants but is 
generally lower in older leaves (Wang et al., 2005). Therefore, the 
nitrogen measured in a single leaf may not be representative of 
the entire plant’s nitrogen status. Regressions may be improved 
if either spectra were extracted from only the leaf which 
was sampled for nitrogen (i.e., the flag leaf), or alternatively, 

reference nitrogen measurements were determined on the 
plant scale. This could be achieved by calculating masks which 
identify only the flag leaf within the image. However, the 
flag leaf could not be identified automatically in the images. 
Manually extracting the flag leaf would have been too time-
consuming and would have diminished the benefits of using a 
high-throughput system. By separating the flag leaf from the 
remainder of the plant material and using only the leaf pixels 
corresponding to those analysed for nitrogen, regression results 
are likely to improve. Similarly, water regressions could also be 
improved by reversing the mask and removing the flag leaves 
which were not used in the calculation of water content. A 
smaller subset of the data could be used to this affect to assess 
how much of the noise and error can be attributed to different 
measurement scales.

Alternatively, the poor results for the water regressions may 
be attributed to measurement protocols used to obtain reference 
values. The relative water content (RWC), or relative turgidity 
of a leaf or plant, is a measure of its hydration status (actual 
water content) relative to its maximal water holding capacity at 
full turgidity (Weatherley, 1950; Mullan and Pietragalla, 2012). 
Determining the RWC may have provided a better indication 
of plant water status than the method used here which did 
not consider turgid weight. Alternatively, regressions may 
have been stronger if leaf thickness was also considered. Light 
reflected from leaves or transmitted through leaves depends on 
both the RWC of leaf cells as well as the thickness of the leaves 
(Seelig et al., 2008). Therefore, models may have proved more 
accurate if leaf thickness or even total plant biomass were taken 
into consideration.

A further contribution to the poor R2 values for both the 
water and nitrogen regressions may be the canopy geometry. 
The geometry of plants and inclination of individual leaves has a 
strong influence on the spectral information acquired (Behmann 
et al., 2015; Huang et al., 2018). The cameras took a top-view 
image from directly above the plant. Lower leaves may have 
been hidden by leaves above and this information consequently 
missed. Incorporating 3-D structural information alongside the 
hyperspectral images may reduce the effect of plant geometry on 
the acquired spectra.

Prediction accuracies may also improve if the spectral 
reflectance jump between the two sensors, caused by 
the different properties and measurement principles of 
the cameras and detectors, was corrected. Overlapping 
wavelength regions (996–1006 nm) were removed from 
the spectra, however, correcting the spectral jumps with 
appropriate preprocessing techniques, such as splice or 
parabolic correction, may improve confidence in the data 
when combining information from separate cameras. In this 
case, combining the data from the two cameras still provided 
meaningful information without removing the jump. The 
spectral signatures with the jump arevstill representative of 
the spectral properties of the plants, providing the jumps 
are consistent in the calibration and validation datasets. A 
further consideration in combining the two datasets is the 
difference in the spatial resolution of the two cameras. The 
issue of different spatial resolutions was reduced by extracting 
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the mean spectrum of the entire plant rather than using pixel-
level information. Combining the information from two 
cameras gives meaningful information at the plant level but 
the different spatial resolutions of the cameras may prove an 
issue when performing pixel-level analysis.

As well as providing information related to the biochemical 
properties of plants, the developed prediction maps provide a 
visual representation of model performance. This is apparent 
when comparing the distribution maps of nitrogen to those of 
water content; the nitrogen maps appear “noisier” in comparison 
to the water maps. The spatial distribution and patterns within 
the plant do not appear feasible and may not be caused by real 
spatial variation in nitrogen. This is likely an effect of model 
overfitting (Gowen et al., 2014). This noise could be reduced by 
selecting a different PLSR model with which to create the maps, 
likely one with fewer components.

One of the main advantages of developing distribution maps 
is their potential to be used in time-series analyses in order 
to track the dynamics of biochemical parameters throughout 
the growing season. Images can be non-destructively acquired 
at multiple times throughout the season and used to predict 
changes or remobilisation of biochemical components over 
time. While hyperspectral images were acquired weekly, 
reference measurements of nitrogen and water were only 
collected at the conclusion of the experiment. Therefore, 
models were developed using plants of only one age (61 DAS). 
The growth stage of the plant has a strong influence on the 
developed models (Li et al., 2010; Haiying and Hongchun, 
2016; Wen et al., 2019). As such, time-series analysis would 
first require the development of robust models using a variety 
of plant ages and growth stages.

Using hyperspectral phenotyping methods to estimate 
the content and spatial distribution of nitrogen and water in 
wheat shows strong promise but models could be improved by 
incorporating additional data from a larger range of growing 
conditions, e.g., seasons, soils, and genotypes. Using the 
techniques and methods developed here, it may be possible to 
measure other plant biochemical and structural properties, 
such as other nutrients, salts, lignin, cellulose, and water-soluble 
carbohydrates. Such methods may lead to advances in high-
throughput phenotyping and subsequent improvements in the 
way that breeding trials are conducted and their biochemical 
properties analysed.

CONCLUSiON
The development of distribution maps through hyperspectral 
imaging was demonstrated as a nondestructive, in vivo tool for 
estimating the concentration, and spatial distribution of water 
content and nitrogen levels in wheat. Hyperspectral images 
were collected of wheat plants and multivariate regression was 
performed in order to relate the spectral information to the 
measured water and nitrogen levels. Both plant water content 
and nitrogen level could be predicted with “acceptable” accuracy 

using PLSR models developed with the mean reflectance from the 
full-spectra wavelengths. Wavelength selection using a regression 
coefficient approach slightly improved model accuracy while 
significantly reducing model complexity.

The regression coefficients from the best-performing VNIR 
models were applied to the calibrated images to develop 
distribution maps. The water distribution maps provided 
a plausible visual representation of the water distribution 
within the plant, however, the nitrogen maps appeared to 
suffer from noise likely due to model overfitting. The findings 
and methods from this study demonstrate the high potential 
of hyperspectral imagery, multivariate regression, and 
distribution maps have for estimating the level and distribution 
of plant chemical properties.

DaTa aVaiLaBiLiTY STaTeMeNT
The raw data supporting the conclusions of this manuscript will 
be made available by the authors, without undue reservation, to 
any qualified researcher.

aUTHOR CONTRiBUTiONS
All authors listed have made substantial, direct, and intellectual 
contribution to the work and approved it for publication.

FUNDiNg
The Plant Accelerator®, Australian Plant Phenomics Facility, is 
funded under the National Collaborative Research Infrastructure 
Strategy (NCRIS). BrBr acknowledges the University of Adelaide 
for research support through the provision of an Australian 
Government Research Training Program Scholarship and The 
Plant Accelerator® for a PhD stipend top-up. Financial support 
from the Grains Research and Development Corporation 
(GRDC) and The AW Howard Memorial Trust (Department 
of Primary Industries and Regions, South Australia) is 
also acknowledged.

aCKNOWLeDgMeNTS
The authors would like to thank The Plant Accelerator® staff, 
particularly Lidia Mischis, Nicole Bond and Fiona Groskreutz, 
for their assistance with the glasshouse experiments and Sanjiv 
Satija for his assistance with the nitrogen measurements.

SUPPLeMeNTaRY MaTeRiaL
The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpls.2019.01380/
full#supplementary-material

Frontiers in Plant Science | www.frontiersin.org October 2019 | Volume 10 | Article 138057

https://www.frontiersin.org/articles/10.3389/fpls.2019.01380/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2019.01380/full#supplementary-material
https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Nitrogen and Water Distribution MapsBruning et al.

15

ReFeReNCeS
Awada, L., Phillips, P. W. B., and Smyth, S. J. (2018). The adoption of 

automated phenotyping by plant breeders. Euphytica 214, 148. doi: 10.1007/
s10681-018-2226-z

Axelsson, C., Skidmore, A. K., Schlerf, M., Fauzi, A., and Verhoef, W. (2013). 
Hyperspectral analysis of mangrove foliar chemistry using PLSR and support 
vector regression. Int. J. Remote Sens. 34 (5), 1724–1743. doi: 10.1080/ 
01431161.2012.725958

Barnes, R. J., Dhanoa, M. S., and Lister, S. J. (1989). Standard normal variate 
transformation and de-trending of near-infrared diffuse reflectance spectra. 
Appl. Spectroscopy 43 (5), 772–777. doi: 10.1366/0003702894202201

Behmann, J., Mahlein, A.-K., Paulus, S., Kuhlmann, H., Oerke, E.-C., and 
Plumer,  L. (2015). Calibration of hyperspectral close-range pushbroom 
cameras for plant phenotyping. ISPRS J. Photogrammetry Remote Sens. 106, 
172–182. doi: 10.1016/j.isprsjprs.2015.05.010

Behmann, J., Steinrücken, J., and Plümer, L. (2014). Detection of early plant stress 
responses in hyperspectral images. ISPRS J. Photogrammetry Remote Sens. 93, 
98–111. doi: 10.1016/j.isprsjprs.2014.03.016

Belgiu, M., and Dragut, L. (2016). Random forest in remote sensing: A review of 
applications and future directions. ISPRS J. Photogrammetry Remote Sens. 114, 
24–31. doi: 10.1016/j.isprsjprs.2016.01.011

Berger, B., de Regt, B., and Tester, M. (2012). “High-Throughput Phenotyping 
in Plants. Methods in Molecular Biology (Methods and Protocols),” in High-
Throughput Phenotyping of Plant Shoots, vol. 918. Ed. Normanly, J. (Totowa, NJ: 
Humana Press). doi: 10.1007/978-1-61779-995-2_2

Brien, C. J. (2017) dae: Functions useful in the design and ANOVA of experiments. 
Version 3.0-12. https://cran.r-project.org/package=dae.

Curran, P. J. (1989). Remote Sensing of Foliar Chemistry. Remote Sens. Environ. 30, 
271–278. doi: 10.1016/0034-4257(89)90069-2

Curran, P. J., Dungan, J. L., and Gholz, H. L. (1990). Exploring the relationship 
between reflectance red edge and chlorophyll content in slash pine. Tree 
Physiol. 7, 33–48. doi: 10.1093/treephys/7.1-2-3-4.33

De Bei, R., Cozzolino, D., Sullivan, W., Cynkar, W., Fuentes, S., Dambergs, R., 
et  al. (2011). Non-destructive measurement of grapevine water potential 
using near infrared spectroscopy. Australian J. Grape Wine Res. 17, 62–71. doi: 
10.1111/j.1755-0238.2010.00117.x

Do, H., Kalousis, A., Wang, J., and Woznica, A. (2012). “A metric learning perspective 
of SVM: on the relation of LMNN and SVM.” In: Proceedings of the 15th 
International Intelligence and Statistics (AISTATS), JMLR Proceedings. 308–317.

Dotto, A. C., Dalmolin, R. S. D., Caten, A., and Grunwald, S. (2018). A systematic 
study on the application of scatter-corrective and spectral derivative 
preprocessing for multivariate prediction of soil organic carbon by Vis-NIR 
spectra. Geoderma 314, 262–274. doi: 10.1016/j.geoderma.2017.11.006

Ecarnot, M., Compan, F., and Roumet, P. (2013). Assessing leaf nitrogen content 
and leaf mass per unit area of wheat in the field throughout plant cycle 
with a portable spectrometer. Field Crops Res. 140, 44–50. doi: 10.1016/j.
fcr.2012.10.013

Eitel, J. U. H., Gessler, P. E., Smith, A. M. S., and Robberecht, R. (2006). Suitability 
of existing and novel spectral indices to remotely detect water stress in Populus 
spp. For. Ecol. Management 229, 170–182. doi: 10.1016/j.foreco.2006.03.027

ElMasry, G., Sun, D. W., and Allen, P. (2012). Near-infrared hyperspectral imaging 
for predicting colour, pH and tenderness of fresh beef. J. Food Eng. 110 (1), 
127–140. doi: 10.1016/j.jfoodeng.2011.11.028

Elvidge, C. D. (1990). Visible and near infrared reflectance characteristics of 
dry plant materials. Int. J. Remote Sens. 11 (10), 1775–1795. doi: 10.1080/ 
01431169008955129

Evans, J. R. (1989). Photosynthesis and nitrogen relationships in leaves of C3 
plants. Oecologia 78, 9–19. doi: 10.1007/BF00377192

Fahlgren, N., Gehan, M. A., and Baxter, I. (2015). Lights, camera, action: high-
throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 
24, 93–99. doi: 10.1016/j.pbi.2015.02.006

Foutry, T., and Baret, F. (1997). Vegetation water and dry matter contents estimated 
from top of the atmosphere reflectance data: a simulation study. Remote Sens. 
Environ. 61, 34–45. doi: 10.1016/S0034-4257(96)00238-6

Gao, B.-C. (1996). NDWI A normalized difference water index for remote sensing 
of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266. doi: 
10.1016/S0034-4257(96)00067-3

Garnett, T., Plett, D., Heuer, S., and Okamoto, M. (2015). Genetic approaches to 
enhancing nitrogen-use efficiency (NUE) in cereals: challenges and future 
directions. Funct. Plant Biol. 42, 10, 921–941. doi: 10.1071/FP15025

Garnett, T. P., and Rebetzke, G. J. (2013). “Improving water and nutrient-
use efficiency in food production systems,” in Improving crop nitrogen 
use in dryland farming. Eds. Rengel, Z., and Wiley, N. J., 123–144. doi: 
10.1002/9781118517994.ch8

Ge, Y., Bai, G., Stoerger, V., and Schnable, J. C. (2016). Temporal dynamics of 
maize plant growth, water use, and leaf water content using automated high 
throughput RGB and hyperspectral imaging. Computers Electronics Agric. 127, 
625–632. doi: 10.1016/j.compag.2016.07.028

Geladi, P., MacDougall, D., and Martens, H. (1985). Linearization and scatter-
correction for near-infrared reflectance spectra of meat. Appl. Spectroscopy 
39 (3), 491–500. doi: 10.1366/0003702854248656

Gholizadeh, A., Boruvka, L., Saberioon, M. M., Kozak, J., Vasat, R., and Nemecek, K. 
(2015). Comparing different data preprocessing methods for monitoring soil 
heavy metals based on soil spectral features. Soil Water Res. 10 (4), 218–227. doi: 
10.17221/113/2015-SWR

Gowen, A., Burger, J., Esquerre, C., Downey, G., and O'Donnell, C. (2014). Near 
infrared hyperspectral image regression: on the use of prediction maps as a tool 
for detecting model overfitting. J. Near Infrared Spectroscopy 22, 261–270. doi: 
10.1255/jnirs.1114

Haiying, L., and Hongchun, Z. (2016). Hyperspectral characteristic analysis for 
leaf nitrogen content in different growth stages of winter wheat. Appl. Optics 55 
(34), 151–161. doi: 10.1364/AO.55.00D151

Hansen, N. J. S., Plett, D., Berger, B., and Garnett, T. (2018). “Engineering Nitrogen 
Utilization in Crop Plants,” in Tackling Nitrogen Use Efficiency in Cereal 
Crops Using High-Throughput Phenotyping. Eds. Shrawat, A., Zayed, A., and 
Lightfoot, D. (Cham, Switzerland: Springer). doi: 10.1007/978-3-319-92958-3_7

Hong, M., Zeng, W., Ma, T., Lei, G., Zha, Y., Fang, Y., et al. (2017). Determination 
of growth stage-specific crop coefficients (Kc) of sunflowers (Helianthus 
annuus L.) under salt stress. Water 9, 1–17. doi: 10.3390/w9030215

Horler, D. N. H., Dockray, M., and Barber, J. (1983). The red edge of plant 
leaf reflectance. Int. J. Remote Sens. 4 (2), 278–288. doi: 10.1080/ 
01431168308948546

Huang, P., Luo, X., Jin, J., Wang, L., Zhang, L., Liu, J., et al. (2018). Improving high-
throughput phenotyping using fusion of close-range hyperspectral camera and 
low-cost depth sensor. Sensors 18 (8), 2711. doi: 10.3390/s18082711

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G. (2002). 
Overview of the radiometric and biophysical performance of the MODIS 
vegetation indices. Remote Sens. Environ. 83 (1), 195–213. doi: 10.1016/
S0034-4257(02)00096-2

Humplik, J. F., Lazar, D., Husickova, A., and Spichal, L. (2015). Automated 
phenotyping of plant shoots using imaging methods for analysis of plant stress 
responses- a review. Plant Methods 11 (29), 1–10. doi: 10.1186/s13007-015- 
0072-8

Hunt, E. R., and Rock, B. N. (1989). Detection of changes in leaf water content 
using near- and middle-infrared reflectances. Remote Sens. Environ. 30 (1), 
43–54. doi: 10.1016/0034-4257(89)90046-1

Karatzoglou, A., Meyer, D., and Hornik, K. (2005). “Research Report Series / 
Department of Statistics and Mathematics, Department of Statistics and 
Mathematics,” in Support vector machines in R, vol. 21. (Vienna: WU Vienna 
University of Economics and Business).

Lambers, H., Chapin, F. S., and Pons, T. L. (2008). “Plant physiological ecology,” 
in Plant water relations. Eds. Lambers, H., Chapin, F. S., and Pons, T. L. (New 
York: Springer), 163–223. doi: 10.1007/978-0-387-78341-3_5

Li, F., Miao, Y., Hennig, S. D., Gnyp, M. L., Chen, X., Jia, L., et al. (2010). Evaluating 
hyperspectral vegetation indices for estimating nitrogen concentration of 
winter wheat at different growth stages. Precision Agric. 11, 335–357. doi: 
10.1007/s11119-010-9165-6

Li, L., Wan Li, L., Wang, S., Ren, T., Wei, Q., Ming, J., et al. (2018). Ability of models 
with effective wavelengths to monitor nitrogen and phosphorus status of winter 
oilseed rape leaves using in situ canopy spectroscopy. Field Crops Res. 215, 173–
186. doi: 10.1016/j.fcr.2017.10.018

Li, L., Zhang, Q., and Huang, D. (2014). A review of imaging techniques for plant 
phenotyping. Sensors 14, 20078–20111. doi: 10.3390/s141120078

Liaw, A., and Wiener, M. (2002). Classification and Regression by random Forest. 
R. News 2, 3, 18–, 22.

Frontiers in Plant Science | www.frontiersin.org October 2019 | Volume 10 | Article 138058

https://doi.org/10.1007/s10681-018-2226-z
https://doi.org/10.1007/s10681-018-2226-z
https://doi.org/10.1080/01431161.2012.725958
https://doi.org/10.1080/01431161.2012.725958
https://doi.org/10.1366/0003702894202201
https://doi.org/10.1016/j.isprsjprs.2015.05.010
https://doi.org/10.1016/j.isprsjprs.2014.03.016
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1007/978-1-61779-995-2_2
https://doi.org/10.1016/0034-4257(89)90069-2
https://doi.org/10.1093/treephys/7.1-2-3-4.33
https://doi.org/10.1111/j.1755-0238.2010.00117.x
https://doi.org/10.1016/j.geoderma.2017.11.006
https://doi.org/10.1016/j.fcr.2012.10.013
https://doi.org/10.1016/j.fcr.2012.10.013
https://doi.org/10.1016/j.foreco.2006.03.027
https://doi.org/10.1016/j.jfoodeng.2011.11.028
https://doi.org/10.1080/01431169008955129
https://doi.org/10.1080/01431169008955129
https://doi.org/10.1007/BF00377192
https://doi.org/10.1016/j.pbi.2015.02.006
https://doi.org/10.1016/S0034-4257(96)00238-6
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1071/FP15025
https://doi.org/10.1002/9781118517994.ch8
https://doi.org/10.1016/j.compag.2016.07.028
https://doi.org/10.1366/0003702854248656
https://doi.org/10.17221/113/2015-SWR
https://doi.org/10.1255/jnirs.1114
https://doi.org/10.1364/AO.55.00D151
https://doi.org/10.1007/978-3-319-92958-3_7
https://doi.org/10.3390/w9030215
https://doi.org/10.1080/01431168308948546
https://doi.org/10.1080/01431168308948546
https://doi.org/10.3390/s18082711
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1186/s13007-015-0072-8
https://doi.org/10.1186/s13007-015-0072-8
https://doi.org/10.1016/0034-4257(89)90046-1
https://doi.org/10.1007/978-0-387-78341-3_5
https://doi.org/10.1007/s11119-010-9165-6
https://doi.org/10.1016/j.fcr.2017.10.018
https://doi.org/10.3390/s141120078
https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Nitrogen and Water Distribution MapsBruning et al.

16

Liland, K. H. (2017) “Package ‘EMSC’: extended multiplicative signal correction” 
R package Vignette version 0.9.0.

Liu, D., Sun, D. W., and Zeng, X. A. (2014). Recent advances in wavelength 
selection techniques for hyperspectral image processing in the food industry. 
Food Bioprocess Tech. 7 (2), 307–323. doi: 10.1007/s11947-013-1193-6

Liu, H., Bruning, B., Berger, B., and Garnett, T. (2019). “7th Edition of the 
International Workshop on Image Analysis Methods for the Plant Sciences,” 
in Green plant segmentation in hyperspectral images using SVM and hyper-hue 
(France: Lyon).

Martens, H., and Næs, T. (2011). Pretreatment and linearization, Multivariate 
Calibration. Hoboken, NJ: John Wiley&Sons Ltd.

Martens, H., and Stark, E. (1991) “Extended multiplicative signal correction and 
spectral interference subtraction: new preprocessing methods for near infrared 
spectroscopy”. J. Phar. Biomed. Anal. 9 (8), 625–635

Mevik, B. H., and Wehrens, R. (2007). The pls package: Principal component and 
partial least squares regression in R. J. Statistical Software 18 (2), 1–23. doi: 
10.18637/jss.v018.i02

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C., 
et al. (2017) “Package ‘e1071’: Misc functions of the department of statistics, 
Probability Theory Group (Formerly: E1071), TU Wien” R package Vignette 
version 1.6-8.

Montgomery, D. C., Peck, E. A., and Vining, G. G. (2012). Introduction to Linear 
Regression Analysis. Hoboken, New Jersey: A John Wiley & Sons, Inc.

Mullan, D., and Pietragalla, J. (2012). “Physiological Breeding II: a field guide 
to wheat phenotyping,” in Leaf relative water content. Eds. Pask, A. J. D., 
Pietragalla, J., Mullan, D. M., and Reynolds, M. P. (Mexico, D.F.: CIMMYT).

Musick, H. B., and Pelletier, R. E. (1986). Response of some Thematic Mapper 
band ratios to variation in soil water content. Photogrammetric Eng. Remote 
Sens. 52 (10), 1661–1668.

Musick, H. B., and Pelletier, R. E. (1988). Response to soil moisture of spectral 
indexes derived from bidirectional reflectance in thematic mapper wavebands. 
Remote Sens. Environ. 25 (2), 167–184. doi: 10.1016/0034-4257(88)90099-5

Ollinger, S. V. (2011). Sources of variability in canopy reflectance and 
the convergent properties of plants. New Phytolog. 189, 375–394. doi: 
10.1111/j.1469-8137.2010.03536.x

Osborne, J. W., and Waters, E. (2002). Four assumptions of multiple regression that 
researchers should always test. Practical Assessment Res. Evaluation 8 (2), 1–5.

Pan, T. T., Sun, D. W., Cheng, J. H., and Pu, H. (2016). Regression algorithms 
in hyperspectral data analysis for meat quality detection and evaluation. 
Comprehensive Rev. Food Sci. Food Safety 15, 529–541. doi: 10.1111/1541-4337. 
12191

Pandey, P., Ge, Y., Stoerger, V., and Schnable, J. C. (2017). High throughput in vivo 
analysis of plant leaf chemical properties using hyperspectral imaging. Front. 
Plant Sci. 8, 1348. doi: 10.3389/fpls.2017.01348

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. 
(2011). Scikit-learn: machine learning in python. J. Machine Learn. Res. 12, 
2825–2830.

Peñuelas, J., Filella, I., Biel, C., Serrano, L., and Save, R. (1993). The reflectance at 
the 950-970nm region as an indicator of plant water status. Int. J. Remote Sens. 
14 (10), 1887–1905. doi: 10.1080/01431169308954010

Peñuelas, J., Filella, I., Lloret, P., Munoz, F., and Vilajeliu, M. (1995). Reflectance 
assessment of mite effects on apple trees. Int. J. Remote Sens. 16, 2727–2733. 
doi: 10.1080/01431169508954588

Peñuelas, J., Piñol, J., Ogaya, R., and Filella, I. (1997). Estimation of plant water 
concentration by the reflectance Water Index WI (R900/R970). Int. J. Remote 
Sens. 18 (13), 2869–2875. doi: 10.1080/014311697217396

R Core Team. (2017). R: a language and environment for statistical computing.  
R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-
project.org/.

Raun, W. R., and Johnson, G. V. (1999). Improving nitrogen use efficiency for 
cereal production. Agronomy J. 91 (3), 357–363. doi: 10.2134/agronj1999.000
21962009100030001x

Rinnan, A., van den Berg, F., and Engelsen, S. B. (2009). Review of the most 
common pre-processing techniques for near-infrared spectra. Trends Analytical 
Chem. 28 (10), 1201–1222. doi: 10.1016/j.trac.2009.07.007

Seelig, H. D., Hoehn, A., Stodieck, L. S., Klaus, D. M., Adams, W. W., and Emery, 
W.  J. (2008). Relations of remote sensing leaf water indices to leaf water 
thickness in cowpea, bean, and sugarbeet plants. Remote Sens. Environ. 112, 
445–455. doi: 10.1016/j.rse.2007.05.002

Stevens, A., and Ramirez-Lopez, L. (2015) “Package ‘prospectr’” [online] Available: 
https://cran.r-project.org/web/packages/prospectr/prospectr.pdf.

Taiz, L., and Zeiger, E. (1998). “Plant Physiology,” in Mineral Nutrition, Eds. Taiz, L., 
and Zeiger, E. (Sunderland, Massachusetts: Sinauer Associates Publishers), 103–124.

Torres, I., Sánchez, M.-T., Benlloch-González, M., and Pérez-Marín, D. (2019). 
Irrigation decision support based on leaf relative water content determination 
in olive grove using near infrared spectroscopy. Biosyst. Eng. 180, 50–58. doi: 
10.1016/j.biosystemseng.2019.01.016

Venables, W. N., and Ripley, B. D. (2002). Modern Applied Statistics with S. New 
York: Springer. doi: 10.1007/978-0-387-21706-2

Walesiak, M., and Dudek, A. (2017) “Package ‘clusterSim’: Searching for optimal 
clustering procedure for a data set” R package Vignette version 0.47-1.

Wang, Z., Wang, J., Zhao, C., Zhao, M., Huang, W., and Wang, C. (2005). 
Vertical distribution of nitrogen in different layers of leaf and stem and their 
relationship with grain quality of winter wheat. J. Plant Nutrition 28 (1), 73–91. 
doi: 10.1081/PLN-200042175

Weatherley, P. E. (1950). Studies in the water relations of the cotton plant. I. The 
field measurement of water deficits in leaves. New Phytolog. 49, 81–97. doi: 
10.1111/j.1469-8137.1950.tb05146.x

Wen, P.-F., He, J., Ning, F., Wang, R., Zhang, Y.-H., and Li, J. (2019). Estimating leaf 
nitrogen concentration considering unsynchronized maize growth stages with 
canopy hyperspectral technique. Ecological Indicators 107, 1–16. doi: 10.1016/j.
ecolind.2019.105590

Wold, S., Sjöström, M., and Eriksson, L. (2001). PLS-regression: a basic tool of 
chemometrics. Chemometrics Intelligent Lab. Syst. 58, 109–130. doi: 10.1016/
S0169-7439(01)00155-1

Wold, S., Ruhe, A., Wold, H., and Dunn, W. J., III (1984). The collinearity problem 
in linear regression. The partial least squares (PLS) approach to generalized 
inverses. SIAM Int. J. Sci. Statistical Comput. 5 (3), 735–743. doi: 10.1137/0905052

Yu, K.-Q., Zhao, Y.-R., Li, X.-L., Shao, Y.-N., Liu, F., and He, Y. (2014). Hyperspectral 
imaging for mapping of total nitrogen spatial distribution in pepper plant. 
PLoS One 9 (12), 1–19. doi: 10.1371/journal.pone.0116205

Zhang, X., Liu, F., He, Y., and Gong, X. (2013). Detecting macronutrients content 
and distribution in oilseed rape leaves based on hyperspectral imaging. Biosyst. 
Eng. 115, 56–65. doi: 10.1016/j.biosystemseng.2013.02.007

Zimmermann, B., and Kohler, A. (2013). Optimizing Savitzky-Golay parameters 
for improving spectral resolution and quantification in infrared spectroscopy. 
Appl. Spectroscopy 67 (8), 892–902. doi: 10.1366/12-06723

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Bruning, Liu, Brien, Berger, Lewis and Garnett. This is an open-
access article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org October 2019 | Volume 10 | Article 138059

https://doi.org/10.1007/s11947-013-1193-6
https://doi.org/10.18637/jss.v018.i02
https://doi.org/10.1016/0034-4257(88)90099-5
https://doi.org/10.1111/j.1469-8137.2010.03536.x
https://doi.org/10.1111/1541-4337.12191
https://doi.org/10.1111/1541-4337.12191
https://doi.org/10.3389/fpls.2017.01348
https://doi.org/10.1080/01431169308954010
https://doi.org/10.1080/01431169508954588
https://doi.org/10.1080/014311697217396
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.2134/agronj1999.00021962009100030001x
https://doi.org/10.2134/agronj1999.00021962009100030001x
https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1016/j.rse.2007.05.002
https://doi.org/10.1016/j.biosystemseng.2019.01.016
https://doi.org/10.1007/978-0-387-21706-2
https://doi.org/10.1081/PLN-200042175
https://doi.org/10.1111/j.1469-8137.1950.tb05146.x
https://doi.org/10.1016/j.ecolind.2019.105590
https://doi.org/10.1016/j.ecolind.2019.105590
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1137/0905052
https://doi.org/10.1371/journal.pone.0116205
https://doi.org/10.1016/j.biosystemseng.2013.02.007
https://doi.org/10.1366/12-06723
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


1

Edited by: 
Kioumars Ghamkhar, 

AgResearch (New Zealand), 
New Zealand

Reviewed by: 
Christopher James Bateman, 

Lincoln Agritech Ltd, 
New Zealand  

Dong Xu, 
University of Missouri, 

United States

*Correspondence: 
Hyongsuk Kim 

hskim@jbnu.ac.kr

Specialty section: 
This article was submitted to 

 Technical Advances in Plant Science, 
 a section of the journal 

 Frontiers in Plant Science

Received: 04 June 2019
Accepted: 10 October 2019
Published: 31 October 2019

Citation: 
Adhikari SP, Yang H and Kim H 

(2019) Learning Semantic Graphics 
Using Convolutional Encoder–

Decoder Network for Autonomous 
Weeding in Paddy. 

 Front. Plant Sci. 10:1404. 
 doi: 10.3389/fpls.2019.01404

Learning Semantic Graphics Using 
Convolutional Encoder–Decoder 
Network for Autonomous Weeding in 
Paddy
Shyam Prasad Adhikari 1, Heechan Yang 2 and Hyongsuk Kim 1,2*

1 Division of Electronics Engineering, Intelligent Robots Research Center (IRRC), Chonbuk National University, Jeonju, South 
Korea, 2 Division of Electronics and Information Engineering, Chonbuk National University, Jeonju, South Korea

Weeds in agricultural farms are aggressive growers which compete for nutrition and 
other resources with the crop and reduce production. The increasing use of chemicals to 
control them has inadvertent consequences to the human health and the environment. 
In this work, a novel neural network training method combining semantic graphics for 
data annotation and an advanced encoder–decoder network for (a) automatic crop line 
detection and (b) weed (wild millet) detection in paddy fields is proposed. The detected 
crop lines act as a guiding line for an autonomous weeding robot for inter-row weeding, 
whereas the detection of weeds enables autonomous intra-row weeding. The proposed 
data annotation method, semantic graphics, is intuitive, and the desired targets can be 
annotated easily with minimal labor. Also, the proposed “extended skip network” is an 
improved deep convolutional encoder–decoder neural network for efficient learning of 
semantic graphics. Quantitative evaluations of the proposed method demonstrated an 
increment of 6.29% and 6.14% in mean intersection over union (mIoU), over the baseline 
network on the task of paddy line detection and wild millet detection, respectively. The 
proposed method also leads to a 3.56% increment in mIoU and a significantly higher 
recall compared to a popular bounding box-based object detection approach on the task 
of wild–millet detection.

Keywords: semantic graphics, convolutional neural network, autonomous weeding, crop line extraction, encoder–
decoder network

INTRODUCTION
The resurgence of neural networks in the form of “deep” neural networks (DNNs) (Krizhevsky et al., 
2012) has dramatically improved the performance of various computer vision tasks such as image 
classification (Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016; Huang et al., 
2017), object detection and localization (Ren et al., 2015; Redmon et al., 2016; He et al., 2017), and 
semantic segmentation (Long et al., 2015; Ronneberger et al., 2015; Badrinarayanan et al., 2017).

Recently, DNNs have also been used extensively for problems in agriculture. Researchers have 
applied deep learning in agriculture to automate different tasks such as plant recognition (Grinblat 
et al., 2016), crop type classification (Kussul et al., 2017), plant disease classification (Mohanty et al., 
2016; Fuentes et al., 2018), weed identification (Dyrmann et al., 2016; Dyrmann et al., 2017), and land 
cover classification (Kussul et al., 2017; Ienco et al., 2017). Agricultural farm is a semi-constrained 
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environment which is easier than unconstrained natural 
environments for the adoption of DNN. However, application of 
DNN to agriculture has its own challenges because of confusion 
due to low variation between the target classes. Crops and 
weeds are similar in shape, texture, color, and position, which 
results in significant reduction in accuracy of DNN systems 
(Mohanty et   al., 2016; Dyrmann et al., 2016). Furthermore, 
severe overlapping and occlusion, a common phenomenon in 
the farm, also poses serious challenges to the application of DNN 
in agriculture. Among the different areas for the use of DNN in 
agriculture, plant and weed identification has received much 
attention in the literature due to its enormous practical impact. 
This study is focused on the use of DNN in rice fields.

Rice is a widely eaten staple food by billions of people around the 
world. It is considered the lifeline of the Asia-Pacific region where 
90% of the world’s rice is consumed. With increasing population, 
the demand for rice is expected to grow, and the challenge is to 
increase the production of rice using limited land, water, and 
manpower and less use of agrochemicals. One of the factors 
responsible for reduced rice yield is weeds. Weeds are aggressive 
growers which compete for nutrition and other resources and 
thus reduce production. Moreover, weeds serve as hosts to pests 
and diseases that are otherwise harmful for the crop. Various 
weed control methods like hand weeding, mechanical weeding, 
chemical weeding, and biological control are available for weed 
management. Herbicides are used extensively to manage weeds; 
however, their increasing use has inadvertent consequences to 
the human health and the environment. Though mechanical 
weeding saves farmers from the drudgery of hand weeding, it is 
nonetheless labor-intensive. With a decline in interest among the 
younger generation to join agriculture, the available manpower 
for labor is limited. Biological control methods using fish, insects, 
and birds are environmentally friendly and used for effective 
weed management in organic rice cultivation.

With the advancements in robotics, autonomous agricultural 
robots have been widely adopted to increase crop productivity 
and improve labor efficiency. Machine vision-based systems 
have been used in autonomous agricultural robots for weed 
management in row crops like rice and maize (Guerrero et al., 
2017; Ma et al., 2019). Navigation systems are a crucial part 
of such autonomous robots where a guidance line has to be 
computed to guide the robot for weed control. Vision sensor-
based autonomous guidance systems have been widely researched 
for extracting the crop lines to guide the robot (Choi et al., 2015; 
Zhang et al., 2017).

In this work, we used data from a row-transplanted organic 
rice field in the Republic of Korea where the golden apple snail 
(Pomacea canaliculata) was used for biological control of weeds. 
The golden apple snail is effective in controlling most of the weeds 
except for the wild millet. Wild millet being similar in appearance 
to the rice plant makes it difficult for hand weeding. Towards the 
end goal of an autonomous weeding system for paddy, we present 
a DNN-based system to (a) automatically detect rows of crop 
and (b) detect weed (willet millet) in row-sown (transplanted) 
paddy field. The detected crop lines act as a guiding line for an 
autonomous weeding robot for inter-row weeding, whereas the 
detection of weeds enables autonomous intra-row weeding.

RELATED WORK

Crop Line Detection
Previous works on detecting crop rows using vision-based 
systems primarily detect the position of the crops using different 
handcrafted features like living tissue indicators (Søgaard and 
Olsen, 2003), vegetation index (Bakker et al., 2008; Montalvo 
et al., 2012), morphological features (Choi et al., 2015), and 
extraction of the crop line using different pattern recognition 
and machine learning techniques like distribution of pixel 
values, vanishing point detection, Hough transform, and linear 
regression (Søgaard and Olsen, 2003; Bakker et al., 2008; 
Montalvo et al., 2012; Choi et al., 2015; Jiang et al., 2016).

Methods based on handcrafted features work well under 
controlled conditions; however, they can fail to work in real 
farm conditions, as it is practically infeasible to hand-engineer 
features which capture the extensive diversity found in real farm 
environments. The methods based on color index work well in 
the absence of weeds in between the rows, as the vegetation index 
or living tissue index of weeds is similar to that of crops. The 
presence of weeds and different natural conditions like shades 
or light reflection affects the extraction of binary morphological 
features, which ultimately affects the accuracy of the extracted 
crop line.

Recent advancements in neural networks have demonstrated 
that automatic feature learning using convolutional neural 
networks (CNNs) are more successful than hand-engineered 
features. Methods based on CNNs have produced state-of-the-
art results in different computer vision and pattern recognition 
problems like object detection and classification (Ren et al., 
2015; Redmon et al., 2016; Huang et al., 2017) and semantic 
segmentation (He et al., 2016).

In this work, we use CNN to extract the crop lines. Unlike 
prior works which segment the input into different regions and 
extract the crop lines, we propose to train a CNN to directly 
learn the concept of a crop line using “semantic graphics” as 
shown in Figure 1.

Weed Detection
Recently, DNN-based algorithms for classification of weeds 
and crops have attracted much attention. Two different CNNs 
were used to segment and classify image pixels into crop and 
weeds (Potena et al., 2016). A method based on K-means feature 
learning combined with CNN was used for weed identification 
in soybean seedlings (Tang et al., 2017). A fully CNN was used 
to detect single weed instances in image from winter wheat 
fields with leaf occlusion (Dyrmann et al., 2017). CNN-based 
semantic segmentation approaches to separate crops, weeds, 
and background have also been studied (Milioto et al., 2018; Ma 
et  al., 2019). While semantic segmentation-based approaches are 
helpful for widely spaced crops and weeds, these approaches are 
difficult to adopt in fields with heavy overlap and occlusion owing 
to the difficulty in obtaining per-pixel ground truth annotations. 
Moreover, the difficulty in obtaining ground truth labels is 
compounded for crop and weeds, like rice and wild millet, which 
have similar appearances.
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In this work, we propose to learn “semantic graphics” using 
CNN for the identification of rice and wild millet.

Semantic Graphics
One of the factors enabling the increase in performance of DNNs 
is the availability of a huge amount of data for training. However, 
for supervised training of DNNs, the data has to be annotated 
manually with ground truth. It is expensive and time-consuming 
to prepare large-scale ground truth annotations (Bearman 
et al., 2016), and hence, there is a bottleneck in extending the 
application of DNN to new applications which require the 
network to be trained on custom datasets. Manual annotation 
is particularly time-consuming for semantic segmentation where 
per-pixel annotation is required. Per-pixel semantic labeling is 
also economically not viable without employing methods which 
reduce human labor.

To reduce the dependency on large-scale detailed annotations, 
weakly or semi-supervised learning techniques have been 
explored in the literature. In the weakly supervised setting, the 
training images are annotated only at the image level or sparsely 
annotated at the pixel level, thus requiring less time and effort for 
annotation. Different forms of weak supervision have also been 
explored in the literature such as image-level labels (Pinheiro and 
Collobert, 2015), bounding boxes (Papandreou et al., 2015), and 
point annotations and free-form scribbles (Bearman et al., 2016; 
Lin et al., 2016). However, much of the focus in the literature 
has been towards detecting or segmenting “objects” with a 
well-defined shape, appearance, and boundary. Less attention 
has been paid towards understanding complex scenes that are 
difficult even to annotate correctly due to similar appearance and 
ambiguous boundaries.

To simplify the process of annotating such complex scenes, 
we introduce the notion of semantic graphics. Semantic graphics 

is a graphical sketch where a target concept is expressed in the 
form of a figure for easy learning by neural networks. Semantic 
graphics can encode human knowledge directly in intuitive 
graphics which can be annotated with considerable ease even for 
complex scenes. For example, in the image of a line-transplanted 
paddy field shown in Figure 2, the lines of paddy have been 
rendered indistinguishable due to high weed pressure. However, 
humans can easily figure out the actual rows of paddy in the 
image, including in those regions where the actual demarcation 
does not exist due to weeds. One of the meaningful ways to mark 
the rows is by sketching a line as shown at the bottom of Figure 2.

Semantic graphics is different from semantic segmentation as 
pixels belonging to the same semantic region or super-pixel may 
not be necessarily labeled with the same target category. Semantic 
graphics is particularly useful for tasks which are otherwise 
challenging for existing pixel-based semantic segmentation 
methods. For example, the rows of paddy and the wild millet in 
between the rows, as shown in Figure 2, are semantically similar; 
therefore, it is difficult and time-consuming to prepare dense per-
pixel annotation to be used for semantic segmentation. However, 
it is easier to figure out the actual crop rows and represent those 
using semantic graphics. In this work, we demonstrate that 
semantic graphics are an effective way towards training CNNs to 
learn higher-order concepts like the crop line and to differentiate 
between crops and weeds.

Convolutional Encoder–Decoder Network
A convolutional encoder–decoder network is a standard network 
used for tasks requiring dense pixel-wise predictions like 
semantic segmentation (Badrinarayanan et al., 2017), computing 
optical flow and disparity maps (Mayer et al., 2016), and contour 
detection (Yang et al., 2016). The encoder in the network computes 
progressively higher-level abstract features as the receptive fields 

FIGURE 1 | The proposed approach of training deep neural networks to learn the concept of crop line using semantic graphics.
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in the encoder increase with the depth of the encoder. The spatial 
resolution of the feature maps is reduced progressively via a down-
sampling operation, whereas the decoder computes feature maps 
of progressively increasing resolution via un-pooling (Zeiler and 
Fergus, 2014) or up-sampling. The network has the ability not only 
to model features like shape or appearance of different classes but 
also to model long-range spatial relationships. This attribute of 
modeling local and global features makes this architecture suitable 
for learning semantics graphics, as shown in Figure 1.

Different variations of the encoder–decoder network have 
been explored in the literature for improved performance. Skip 
connections (Ronneberger et al., 2015) have been used to recover 
the fine spatial details during reconstruction which get lost due 
to successive down-sampling operations involved in the encoder. 
Addition of larger context information using image-level features 
(Liu et al., 2015), recurrent connections (Pinheiro and Collobert, 
2014; Zheng et al., 2015), and larger convolutional kernels (Peng 
et al., 2017) has also significantly improved the accuracy of semantic 
segmentation. Other methods studied for improving semantic 
segmentation accuracy include hierarchical supervision (Chen et al., 
2016) and iterative concatenation of feature maps (Jégou et al., 2017).

In this work, we design an enhanced encoder–decoder 
network, named “extended skip network” (ESNet), to learn the 
semantic graphics. We demonstrate that the enhanced network 

exhibits significant performance improvement over the baseline 
network on the problem of crop line detection and weed 
detection. We also demonstrate that the proposed method has 
improved performance on the task of weed detection over a 
popular bounding box-based object detection method.

MATERIALS AND METhODS

Dataset
Paddy Line Dataset
The focus of this dataset is to extract the rows of paddy, as shown 
in Figure 2. The detected crop lines will enable the navigation 
of an autonomous agent in the field to accomplish different 
agricultural tasks like mechanical weeding and precision spraying 
of herbicides, pesticides, nutrients, etc. Paddy line dataset was 
prepared to evaluate the proposed method. This dataset consists 
of 350 images of line-transplanted paddy field captured with a 
handheld camera while walking between the rows of the crop. 
The dataset contains different scenarios like unevenly spaced 
rows, weed-infested fields rendering crop rows indistinguishable, 
and missing crops in a row which make the problem of detecting 
rows challenging. The images were captured in three different 
fields at different geographical locations but during the same 

FIGURE 2 | Semantic graphics: (top) images of row-transplanted paddy field. (bottom) Manually marked semantic graphics representing the rows of paddy is 
superimposed on the original images. Even at places where the paddy lines are rendered indistinguishable due to the heavy presence of weeds, humans can easily 
figure out the actual lines and represent those using semantic graphics. (Best viewed in color).
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phonological stage; tillering. Out of the total 350 images, 300 
images were used for training and 50 images were set aside for 
the test. Due to perspective, the rows of rice appear to converge at 
the horizon and are indistinguishable. In this study we consider 
only the near-field view for ease of annotation. The rows of rice 
were annotated with few-pixel-thick lines as shown in Figure 2.

The images were down-sampled to a uniform size of 600 × 600 
pixels to reduce computation time and memory requirement. 
Though this dataset has less number of training images, extensive 
data augmentation was carried out during training by scaling 
the original image by a factor sampled randomly in the range 
[0.5, 1.5], rotating the image by an angle sampled randomly 
from [−15, 15] degrees, mirroring the image randomly along 
the vertical axis, randomly distorting the image brightness and 
saturation, and generating random crops of size 512 × 512.

Paddy–Millet Dataset
Paddy and wild millet are similar in appearance; therefore, they 
are difficult to discriminate. Wild millet are aggressive growers 
which compete for resources and therefore have to be weeded 
out for better yield of paddy. The goal is to identify and localize 
the “weed” wild millet present among the paddy so that an 
autonomous agricultural robot can eliminate the “weed” while 
keeping the crop intact.

A dataset, namely, paddy–millet dataset, consisting of 760 
images of row-transplanted paddy field captured with a handheld 
camera while walking between rows of the crop, as shown in 
Figure 3, was prepared for the experiments. Out of the total 760 
images, 660 images were used for training and 100 images were 
set aside for testing. Semantic graphics was used to annotate the 
ground truth data and the base of the respective plant categories; 
namely, paddy and wild millet were the target key-points to be 
detected. These key-points were annotated with solid circles, and 
all unmarked pixels were considered as background. The key-
points near the camera viewpoint were annotated with bigger 
radius circles which could extend well beyond the boundary 
of the key-point whereas the key-points farther away from the 
viewpoint were annotated with progressively smaller circles. The 
semantic graphics used to annotate this dataset can represent 
multiple higher-level meanings such as category of the plant, 

location of the key-point, and their distance from a viewpoint. 
However, only the plant category and location of the key-point 
are considered in this work.

Each high-resolution image was down-sampled to a uniform 
size of 288 × 288 pixels to reduce computation time and memory 
requirement. The data were augmented by mirroring the images 
randomly along the vertical axis and generating random crops of 
size 256 × 256 during training.

Architecture of Extended Skip Network
An enhanced fully convolutional encoder–decoder network, 
called “enhanced skip network” (ESNet), as shown in Figure 
4A, is proposed for end-to-end learning of semantic graphics. 
The network consists of a contracting encoder and an 
expanding decoder. The detailed network architecture is given 
as Supplementary Material. The encoder consists of multiple 
VGGNet-like (Simonyan and Zisserman, 2014) blocks, where 
each block consists of multiple 3 × 3 convolution followed by 
batch normalization (Ioffe and Szegedy, 2015) and a nonlinear 
activation. Each VGG-style block in the encoder, except the last 
block, is followed by max pooling to reduce the spatial resolution 
of the feature maps. These blocks are followed by two convolution 
blocks (with large kernels) → batch normalization → nonlinear 
activation blocks, which are used at the tail of the encoder to 
capture a wider context. To reduce the computation overhead, 
these large convolutions are computed using separable kernels 
(Jin et al., 2014). The rectified linear unit (ReLU)is used as the 
nonlinear activation throughout the network.

The decoder is similar in architecture to the encoder but 
with fewer feature maps for optimized computation and 
memory requirements. Each block in the decoder is also a 
repeating structure of up-sampling, followed by multiple 3 × 3 
deconvolution, batch normalization, and nonlinear activation 
operations. The number of feature maps at each level in the 
decoder is kept constant except for the output layer where it 
is equal to the number of target classes. The network contains 
extended skip connections where the feature maps from the 
encoder are concatenated to the corresponding feature maps 
in the decoder. The extended skip module consists of a bank of 

FIGURE 3 | Semantic graphics for paddy–millet dataset. (A) Image of a paddy field with wild millet. (B) Semantic graphics annotation. The color-filled circles 
used to annotate the base of the plants indicate multiple meanings such as category of the plant, location of the key-point, and their distance from a viewpoint. 
(C) Annotation superimposed on the source image. (Best viewed in color)
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FIGURE 4 | ESNet: The proposed extended skip network for end-to-end learning of semantic graphics (A). Diagram representing the output feature maps at each 
stage of the network (B). Extended skip module: If Cin is the number of channels in the input, the output after 1 × 1 convolution has the same number of feature 
maps as the input, whereas to keep the computational complexity minimal, the number of feature maps at the output after other multi-scale filter banks is kept 
constant at 12. Hence, the total number of output feature maps of the skip module is (Cin + 12). (C) The combined operations (up-sampling, concatenation, and 
convolution with fixed number of output feature maps) involved while merging feature maps from the extended skip module with the decoder. For simplicity, this 
detailed structure is not shown in (A).
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multi-scale filters as shown in Figure 4B. The output feature maps 
of the extended skip module are merged with the corresponding 
feature maps of the decoder as shown in Figure 4C.

The proposed ESNet is inspired from and exploits the elements 
of three different DNNs in a single network, namely, (a) skip 
layers to recover fine spatial details (Ronneberger et al., 2015), (b) 
larger convolutional kernels to incorporate a wider image context 
(Peng et al., 2017), and (c) multi-scale filter bank or “inception” 
module (Szegedy et al., 2015). However, unlike Ronneberger 
et al. (2015), whose study used skip layers that are fixed identity 
connections (copy and concatenate), we propose to make the 
architecture more general by learning these connections using 
multi-scale convolution. Large convolutional kernels (Peng 
et al., 2017) are used to increase the effective receptive field of 
the network for learning semantic graphics. However, the large 
kernels are used only at the tail of the encoder and the skip layers.

Finally, the large convolutional kernels in the skip layers are 
arranged in a multi-scale filter bank module (Szegedy et al., 
2015),as shown in Figure 4B, to incorporate the required input 
context during learning without having to empirically find 
an appropriate kernel size. This module provides multi-scale 
features which are more efficient for learning semantic graphics 
than selecting a single-scale context, as will be shown in the 
results presented in Section Ablation Experiments.

Training Parameters and Evaluation 
Metrics
The proposed approach is evaluated on the two problems, paddy 
line detection and wild millet detection, by training the models 
from scratch. The DNN models for both the tasks are trained by 
minimizing the pixel-wise cross-entropy loss given as

 
CELoss y L

c

L

i c
i

N

i
= − ∈∈

==
∑∑1 1

11
N

p y L
c
log [ ]  (1)

where N is the total number of pixels, L is the number of semantic 
categories, 1y Li c∈  is a binary indicator function if category c is the 
ground truth label for the ith observation, and p[y L ]i c∈  is the 
predicted probability of the model for that category.

The network shown in Figure 4 was used for learning the 
semantic lines. The details of the network are included as 
Supplementary Material. The network was initialized using 
Xavier initialization (Glorot and Bengio, 2010) and trained on 
mini-batches of five using the Adam method (Kingma and Ba, 
2014) with an exponential decaying learning rate of 10−4 for a 
total of 100 epochs, with all the training images being processed 
per epoch. As the paddy lines and background pixels are highly 
imbalanced in each mini-batch, the loss for the two categories 
is weighted by the class proportion of pixels computed on the 
training set. The paddy–millet dataset was trained on mini-
batches of size 10, with a learning rate of 10−4 and a decay factor 
of 0.94 after successive 10,000 iterations. The network was trained 
for a total of 60,000 iterations.

The performance of the trained model for both the datasets 
are evaluated using an intersection-over-union (IoU) metric,

 
IoU = T P

T P
∩
∪  (2)

where T is the target and P is the predicted category. In addition 
to the IoU metric, the precision and recall values for wild millet 
detection and the average pixel deviation of the predicted line 
from the ground truth for paddy line detection are also reported. 
The experiments were conducted in TensorFlow (Abadi et al., 
2016) using an NVIDIA Titan-X graphics processing unit (GPU).

Comparison Models
The proposed ESNet is compared to other commonly used 
CNN architectures which produce image-like outputs like the 
UNet (Ronneberger et al., 2015), FCN8 (Long et al., 2015), and 
DeepLabV3 (Chen et al., 2017). The problem of paddy and wild 
millet detection can be addressed as a bounding box-based object 
detection and localization approach of Faster-RCNN (Ren et al., 
2015) also. Therefore, the proposed network is compared with 
Faster-RCNN on the task of paddy and wild millet detection. We 
also implement a basic encoder–decoder network (EDNet) with 
a comparatively large number of parameters for comparison on 
the paddy–millet dataset. The details of the networks used in this 
study are included as Supplementary Material.

In the Faster-RCNN setting, the paddy–millet dataset was 
annotated by replacing the semantic graphics with minimum 
bounding boxes and the problem was solved as a detection 
and localization problem. The IoU was then computed on the 
predicted bounding boxes [proposals with class scores p > 0.8 
with a non-maximum suppression (NMS) threshold of 0.2] 
and the ground truth annotation. For a fair comparison with 
the semantic graphics method, the IoU was computed after 
substituting each bounding box with a maximal circle that 
fit the box. The detection accuracy was also evaluated using 
precision and recall values. Any prediction whose center lay 
within a distance of d_thresh (= 15) pixels from the center of its 
corresponding ground truth was deemed correct (true positive). 
The VGG16 (Simonyan and Zisserman, 2014) model pre-trained 
on ImageNet (Deng et al., 2009) was used to initialize the Faster-
RCNN and EDNet and fine-tuned on the paddy–millet dataset.

Post-Processing: Dominant Semantic Line 
Extraction
The proposed method of detecting crop lines outputs semantic 
lines for every visible row of paddy. However, for practical 
purposes, it is often sufficient and meaningful to detect only a 
few dominant rows, for example, the host rows and a few of its 
neighbors. Therefore, a simplified random sample consensus 
(RANSAC) (Fischler and Bolles, 1981) like post-processing step 
is employed to extract only the four dominant rows. The output 
semantic graphics is binarized, and the line segments are sorted 
according to their length. The longest line segment is chosen as 
a seed, and a straight line is fit to this segment. All the points 
within a distance of d_thresh (= 15) pixels are assigned as inliers 
to the initial line, and a new estimate of the line is computed. The 
resultant line after the second iteration is the first dominant line.
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After the first line is detected, all the pixels that are inliers to this 
line and any other line segments with more than 50% pixel inliers to 
this line are excluded from processing the remaining dominant line 
segments. The next longest line segment in the binarized output is 
then chosen as the second seed, and the above procedure is repeated 
until the required number of dominant lines are extracted.

The accuracy of the extracted dominant lines is computed 
using mean pixel deviation (mpd) from the ground truth line. 
The mpd is computed as the average of the row-wise difference 
between the predicted line and its corresponding ground truth. 
Let (xp, y) be a point on the predicted line and (xg, y) be its 
corresponding point on the ground truth line; then the row-wise 
pixel deviation (pd) is given as pd = |xp − xg|. Then mpd is the 
mean of pd computed across all the lines in the test set.

RESULTS AND DISCUSSION

Crop Line Detection
The quantitative results of the proposed network, ESNet, along 
with the results of UNet, FCN8, and DeepLabV3 on the paddy 
line test set are presented in Table 1. From Table 1, we see that 
the proposed network achieves the highest mean intersection 
over union (mIoU, 62.73%) among all the models considered 
in this study. The mIoU of the proposed method is 6.29%, 
4.56%, and 2.38% higher than that of UNet, DeepLabV3, and 
FCN8, respectively.

However, the mIoU of the detected semantic lines is less than 
the mIoU reported on the task of semantic segmentation using 
similar networks. This is because, unlike the per-pixel ground 
truth labels used in semantic segmentation, the annotations 
used for semantic lines are abstract and can be subjective; i.e., 
annotation of the same line of crop by two human annotators 
can differ significantly with little overlap between the two. 
This subjective nature of annotation affects network training 
and test accuracy. The quantitative analysis on the effect of the 
subjective nature of annotating semantic graphics is a subject of 
our future research.

From Table 1, we see that the proposed method is slow during 
inference. Even on a Titan-X GPU, the method runs at 10 fps. 
This is due to the large-sized kernels used in the network. The 
bulky Titan-X GPU may not be an optimal choice for use in field 
robots, and lightweight and more power-efficient GPUs like the 
Jetson TX2 are more practical. We can expect a considerable 
slowdown in inference time using the Jetson TX2. However, 
for a carefully designed system, we can limit the field of view 
of the vision sensor and restrict the region of interest (ROI) to 
gain inference speed. From our experiments, it was observed 
that the proposed network can process 5 fps for an input ROI 
of 192 × 256. This inference time is expected to be sufficient for 
any practical application of a slow-moving robot like a tractor 
running in a flooded rice field.

Some qualitative results on the paddy line test set are presented 
in Figure 5. While the proposed method is able to successfully 
detect paddy line in well-separated crop rows (first and fifth 
rows), the crop rows are delineated in high-weed-pressure areas 

also (second, third, and fourth rows). We also see that the line 
detection accuracy is higher for rows near the principal axis of 
the camera lens, whereas it is low for rows lying further away. 
Training the network on a larger dataset is expected to increase 
the accuracy of the detected lines throughout the image.

However, as explained in Section Post processing: Dominant 
Semantic Lines Extraction , for the practical purpose of navigating 
the field, it is often not necessary to detect crop rows lying 
further away from the principal axis. Some qualitative results 
of the extracted dominant lines are presented in Figure  5D. 
The  detected dominant lines are in close agreement with the 
ground truth line, which is also evident from the mpd values 
presented in Table 2. Though the difference in mIoU of UNet 
and ESNet is high, no significant difference in mpd is observed 
between these two networks. The random sample consensus 
(RANSAC)-based post-processing compensates for the low 
mIoU of UNet.

Wild Millet Detection
The quantitative results of the proposed method on the paddy–
millet dataset along with results of Faster-RCNN, EDNet, UNet, 
FCN8, and DeepLabV3 are presented in Table 3. From our 
experiments, it was observed that initializing Faster-RCNN 
and EDNet with VGG16 weights pre-trained on ImageNet and 
fine-tuning only the last few layers resulted in low-accuracy 
networks. However, a significant increase in mIoU was observed 
when all the layers were fine-tuned. The lower accuracy of the 
networks with few layers fine-tuned is due to the difference in 
the type of classes used in the pre-trained VGG16 model. The 
generic “object” features extracted by the pre-trained VGG16 
are not optimal to discriminate between the categories used for 
this dataset.

Though EDNet has a fraction of the parameters, it exhibits 
an mIoU higher than that of Faster-RCNN. This shows that 
the proposed method can be used to solve the problem of 
discriminating paddy and wild millet with higher accuracy, fewer 
parameters, and a simple end-to-end training compared to the 
existing bounding box approach of object detection. From Table 3, 
we see that the proposed ESNet leads to a 0.44% increment in mIoU 
with significantly less number of parameters than did EDNet. We 
also see that the mIoU of ESNet is 22.17%, 6.14%, and 2.42% higher 
than that of DeepLabV3, UNet, and FCN8, respectively.

TABLE 1 | Comparison of different networks on the paddy line dataset. 

Method #parameters 
(million)

mIoU (%) fps (512 × 512 
pixels, Titan-X GPU)

UNet ~2.14 56.44 21.28
FCN8 ~38.16 60.35 21.60
DeepLabV3 ~4.14 58.17 31.30
ESNet (proposed) ~5.74 62.73 10.97

ESNet, enhanced skip network; GPU, graphics processing unit; mIoU, mean 
intersection over union. The performance is quantified using mIoU. For Methods, 
bold is used to highlight the proposed method, whereas bold numbers are used to 
highlight the best results.
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Though Faster-RCNN has the highest precision, it has poor 
recall values. On the other hand, ESNet has balanced precision 
and recall values. From an application perspective, though 
Faster-RCNN is less likely to mistake a rice plant as millet, it is 

more likely to leave a significant number of weeds in the field 
undetected. However, ESNet detects most of the millets present 
in the field and is also less likely to mistake rice for millet.

Some qualitative results on the paddy–millet dataset 
are presented in Figure 6. While ESNet detects most of the 
millets in the field, it also produces some false positives 
(second and third rows). Some failure cases (third and fourth 
rows) are also observed where there is overlap between the 
two classes. Training the network with a larger dataset is 
expected to increase the accuracy of the system and reduce 
the number of failure cases. Though no post-processing has 
been implemented in the current study, these failure cases can 
also be reduced by using morphology-based post-processing 
operations like erosion and filtering.

ABLATION EXPERIMENTS
The effectiveness of the proposed ESNet is evaluated by 
comparing it with different ablated versions. The paddy line 
test set is used for evaluation, and the results are presented 
in Table 4. From Table 4, we see that the addition of large 
convolutional kernels, at the tail of the encoder of UNet to 
capture a wider image context, improves the mIoU by 3.29%. 
Further, replacing the UNet-style fixed skip connections with 
the proposed multi-scale filter bank leads to an additional 3% 
improvement in mIoU.

The motive behind using the multi-scale filters in the skip 
layers was to incorporate multi-scale features for reconstructing 
the output without having to rigidly set the convolutional kernel 
size. To verify this intuition, the multi-scale filter bank module 
is replaced with single-scale filters of size k × k. Different values 
of k ranging from 7 to 15 were evaluated, and the results are 
presented in Table 5.

From Table 5, we see that the network with k = 7 shows 
the best performance among the different single-scale filters 
evaluated. It can be observed that there is no straightforward 
relationship between the size of the kernel and network 
performance. From Tables 4 and 5, we see that the network 
with the proposed multi-scale filter bank outperforms all 
other networks with single-scale filters. The increased network 
capacity of the proposed filter bank may have led to increased 

FIGURE 5 | Qualitative results of learning semantic lines using the proposed 
extended skip network on the paddy line dataset. (A) Test images, (B) 
corresponding outputs of the proposed network, (C) output superimposed 
on test image, and (D) extracted dominant paddy lines along with the ground 
truth lines (dotted). (Best viewed in color).

TABLE 2 | Comparison of different networks on the paddy line dataset. 

Method Mean pixel deviation Deviation [−max, max]

UNet 3.39 [−27, 48]
ESNet (proposed) 2.89 [−24, 24]

ESNet, enhanced skip network. The performance is quantified using mean pixel 
deviation of the predicted line from the ground truth line. For Methods, bold is used to 
highlight the proposed method, whereas bold numbers are used to highlight the best results.

TABLE 3 | Comparison of different variants of Faster-RCNN and the proposed method on the paddy–millet dataset. 

Method #parameters 
(million)

Paddy Millet mIoU (%) Precision (%) 
(d_thresh = 15)

Recall (%) 
(d_thresh = 15)

F1 score

Paddy Millet Paddy Millet Paddy Millet

Faster-RCNN ~136 50.07 46.37 48.22 95.42 94.69 74.87 68.58 83.90 79.54
EDNet ~15.27 57.15 45.52 51.34 90.0 86.29 92.30 68.59 92.19 76.42
UNet ~2.14 48.65 42.62 45.64 91.86 84.37 81.02 69.23 86.10 76.05
FCN8 ~38.16 53.30 45.40 49.36 89.29 77.07 89.74 77.56 89.51 77.31
DeepLabV3 ~4.14 15.93 43.27 29.61 51.58 95.69 33.33 57.05 40.49 71.48
ESNet 
(proposed)

~5.74 56.53 47.02 51.78 87.80 84.56 92.30 80.76 89.99 82.16

EDNet, encoder–decoder network; ESNet, enhanced skip network; mIoU, mean intersection over union. The performance is quantified using intersection over union 
(IoU), precision, and recall. For Methods, bold is used to highlight the proposed method, whereas bold numbers are used to highlight the best results.
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accuracy. However, from Table 5, we see that increasing 
the network capacity by simply increasing the number of 
parameters does not necessarily improve the accuracy. The 
proposed structure allows the learning algorithm to choose 
either single-scale features or a combination of multi-scale 
features, whichever are efficient, and leads to better accuracy.

CONCLUSION
In this study, we proposed a convolutional encoder–decoder 
network-based system to (a) extract the crop line and (b) 
differentiate between weeds and crops, in row-transplanted paddy 
fields. Different from the conventional methods of training DNNs, 

FIGURE 6 | Qualitative results of learning semantic graphics using the proposed convolutional encoder-decoder network on paddy–millet dataset. (Best viewed in color).
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a novel method of training DNN using “semantic graphics” was 
proposed. Semantic graphics was introduced to annotate the 
target functional key-points, semantic regions, or other higher-
level concepts which are otherwise challenging to annotate using 
existing bounding box-based or dense per-pixel-based approaches. 
An enhanced convolutional encoder–decoder network was then 
trained to directly learn the concept of crop line and discriminate 
between weeds and crop using semantic graphics.

Results demonstrating enhanced performance of the proposed 
method on the paddy line detection problem compared to other 
existing networks were presented. Experiments demonstrating 
enhanced performance of the proposed method on detecting paddy 
and wild millet compared to the more commonly used bounding 
box-based object detection approach were also presented.

The proposed crop line detection system can be easily extended 
to extract the rows of different types of crops. While the traditional 
handcrafted feature-based crop row extraction methods can fail 
to generalize well in real farm environments, the proposed crop 
line extraction system exhibits robust performance in real farm 
environments as demonstrated by the results. Though only wild 
millet detection is considered in this study, the proposed method 

can be extended easily to detect any other species of weeds. The 
crop lines extracted by the proposed method are accurate and can 
act as a reliable guiding line for an autonomous robot for inter-
row weeding, whereas the detection of individual plants and 
weeds enables autonomous intra-row weeding. A combination of 
these two approaches for inter-row and intra-row weeding can be 
used to realize a comprehensive autonomous weeding system.

In the future, we plan to use the semantic graphics-based crop 
row detection method for vision-based control of an autonomous 
tractor for unmanned inter-row weeding in paddy and extend 
the system for intra-row weeding.
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TABLE 4 | Ablation experiments to evaluate the effectiveness of the proposed 
extended skip connections.

Method Baseline Skip 
layer 

(fixed)

Large 
conv

Skip layer 
(multi-scale 

filters)

Paddy 
line IoU 

(%)

UNet √ √ 56.44
UNet_WC √ √ √ 59.73
ESNet √ √ √ 62.73

ESNet, enhanced skip network; IoU, intersection over union.

TABLE 5 | Performance comparison using different scales of filter in the 
skip layer.

K 7 9 11 13 15

IoU (%) 60.68 58.25 59.22 60.43 59.26

IoU, intersection over union.
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A Robust Automated Image-Based 
Phenotyping Method for Rapid 
Vegetative Screening of Wheat 
Germplasm for Nitrogen Use 
Efficiency
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Emily Thoday-Kennedy 1 and Surya Kant 1,2*

1 Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia 2 Centre for Agricultural Innovation, The University of 
Melbourne, Melbourne, VIC, Australia

Nitrogen use efficiency (NUE) in crops is generally low, with more than 60% of applied 
nitrogen (N) being lost to the environment, which increases production costs and affects 
ecosystems and human habitats. To overcome these issues, the breeding of crop 
varieties with improved NUE is needed, requiring efficient phenotyping methods along 
with molecular and genetic approaches. To develop an effective phenotypic screening 
method, experiments on wheat varieties under various N levels were conducted in the 
automated phenotyping platform at Plant Phenomics Victoria, Horsham. The results from 
the initial experiment showed that two relative N levels—5 mM and 20 mM, designated 
as low and optimum N, respectively—were ideal to screen a diverse range of wheat 
germplasm for NUE on the automated imaging phenotyping platform. In the second 
experiment, estimated plant parameters such as shoot biomass and top-view area, 
derived from digital images, showed high correlations with phenotypic traits such as 
shoot biomass and leaf area seven weeks after sowing, indicating that they could be used 
as surrogate measures of the latter. Plant growth analysis confirmed that the estimated 
plant parameters from the vegetative linear growth phase determined by the “broken-
stick” model could effectively differentiate the performance of wheat varieties for NUE. 
Based on this study, vegetative phenotypic screens should focus on selecting wheat 
varieties under low N conditions, which were highly correlated with biomass and grain 
yield at harvest. Analysis indicated a relationship between controlled and field conditions 
for the same varieties, suggesting that greenhouse screens could be used to prioritise a 
higher value germplasm for subsequent field studies. Overall, our results showed that this 
phenotypic screening method is highly applicable and can be applied for the identification 
of N-efficient wheat germplasm at the vegetative growth phase.

Keywords: high-throughput phenotyping, digital imaging, controlled environment, plant growth analysis, broken-
stick model
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INTRODUcTION
Over the past five decades, there has been a significant increase 
in global food production resulting, in part, from the major 
contribution of substantial nitrogen (N) fertilizer application. 
Nevertheless, food production must be increased to sufficiently 
meet the projected world population of 9 billion people by 
2050 (Godfray et al., 2010). However, with current agricultural 
practices this means that more than 240 million metric tons 
of additional N fertilizer would be utilized (Good et al., 2004). 
Approximately 110 million metric tons of synthetic N fertilizers 
are used annually for farming and food crop production globally 
(International Fertilizer Industry Association, 2013). However, 
nitrogen use efficiency (NUE) is generally low, with only 40% of 
applied N being taken up by the crop plants, while the remainder 
is lost to the environment resulting in increased production costs 
and environmental pollution (Good and Beatty, 2011; Nguyen 
et  al., 2015), as well as affecting human health (Ahmed et al., 
2017). Annually, excessive N application is estimated to cost up 
to €320 billion of damage to the environment in Europe (Brink 
et al., 2011). Proper N fertilization management practices are 
expected to reduce N fertilizer application while maintaining 
stable crop production (Good et al., 2004; Good and Beatty, 
2011). To achieve this, improving NUE in crops is one of the most 
effective ways to ensure current crop yields can be maintained 
while N supply is reduced, or increasing crop yields with an 
optimum N input (Cormier et al., 2013).

NUE is a complex concept, but can be defined as the function 
of two varying components: N uptake efficiency (NUpE)—
the plant’s ability to obtain N from the soil—and N utilisation 
efficiency (NUtE)—the plant’s ability to assimilate and remobilize 
absorbed N into the grain (Moll et al., 1982; Craswell and Godwin, 
1984; Xu et al., 2012). In simplistic terms, NUE is determined by 
a plant’s ability to utilise supplied N into biomass and grain yield, 
and can be calculated as the ratio of biomass or grain yield to 
the amount of N inputs (Nguyen et al., 2016; Hawkesford, 2017). 
Multiple approaches have been proposed for NUE improvement 
in crops that include applications of advanced agronomical 
practices, genetic improvement through molecular breeding, and 
genetic engineering (Hirel et al., 2007; Hawkesford, 2014; Beatty 
and Good, 2018; Nguyen and Kant, 2018).

Among these, molecular breeding for N-efficient varieties 
is considered the most effective method to lift NUE in wheat 
(Cormier et al., 2016), although this approach depends on the 
availability of reliable and accurate molecular markers linked 
to N-efficient genes for marker assisted and genomic selection 
(Cabrera-Bosquet et al., 2012; Garnett et al., 2015; Han et al., 
2015). However, molecular breeding for N-efficient varieties 
is still a daunting task, given that NUE is a polygenic trait 
with complex interactions, and associated genes are heavily 
influenced by environmental conditions such as varying soil N, 
soil type, rainfall pattern and soil water availability (Cormier et 
al., 2013; Lammerts Van Bueren and Struik, 2017; Nguyen et al., 
2017). A large volume of high-quality phenotypic data is needed 
to dissect NUE’s genetic influences into smaller manageable and 
measurable components, and to derive reliable and accurate 
molecular markers or genomic estimated breeding values (Araus 

and Cairns, 2014; Nadeem et al., 2018). Thus, molecular breeding 
goals for N-efficient varieties rely heavily on the deployment of 
effective phenotyping methods (Araus and Kefauver, 2018; Araus 
et al., 2018). However, the absence of a robust, high-throughput, 
and reliable phenotyping method that is powerful enough to 
break down genetic components is currently limiting breeders’ 
efforts to make a breakthrough in the genetic improvement 
of NUE traits (Nguyen and Kant, 2018). Effective screening 
methods for identifying N-efficient germplasm that performs 
consistently in the greenhouse and field conditions are required 
to facilitate breeding outcomes (Garnett et al., 2015; Nguyen 
and Kant, 2018). High-throughput phenotyping methods which 
can effectively differentiate the performance of germplasm at 
early growth stages and predict their performance at harvest are 
urgently required (Sharma and Bali, 2018).

Over the last two decades, proximal sensing technology 
has become one of the most promising high-throughput 
phenotyping approaches that can provide key non-destructive 
support in measuring performance and predicting crop yield 
in controlled and field environments (Fiorani and Schurr, 
2013; Araus and Cairns, 2014; Araus and Kefauver, 2018). This 
technology was fundamentally developed on the principle that 
the light reflectance from the interaction between the natural 
light spectrum with plant components could provide accurate 
information on the morphological and physiological status of 
plants (Homolová et al., 2013; Fahlgren et al., 2015). The light 
reflectance captured by specially designed optical instruments 
can then be used to generate vegetation indices (VIs) and digital 
plant objects. Once validated, these derived VIs or digital plant 
objects can be used as proxies of various plant traits, such as shoot 
biomass, leaf area or N content, to compare the performance 
of individual varieties (Nguyen and Kant, 2018). For instance, 
the most common vegetation index i.e. normalised difference 
vegetation index (NDVI), is often used to assess a plant response 
to varying N supplies (Nguyen et al., 2016). Moreover, the 
application of optical devices such as Red-Green-Blue (RGB) 
digital cameras has also been used for measuring crop growth, 
phenology and yield components, as well as the development 
of VIs (Casadesús et al., 2007; Casadesús and Villegas, 2014; 
Nguyen et al., 2018). Unlike conventional spectral indices, RGB 
indices are not affected at long wavelengths by elements such 
as crop architecture and soil cover, and they were shown to 
outperform the conventional spectral indices in measuring crop 
growth and N use to some extent (Araus and Kefauver, 2018). 
There have been a few reports on the application of automated 
RGB imaging platforms to study phenotypic responses of grass 
species (Poiré et al., 2014), and sorghum (Neilson et al., 2015; 
Berry et al., 2018) to N fertilizer under controlled environments. 
Recently, ground and aerial based RGB imaging has been 
successfully used to study NUE in wheat and maize under field 
conditions (Prey et  al., 2018; Buchaillot et al., 2019). However, 
a robust method using imaging technology for screening of 
crop germplasm for NUE under controlled conditions is still to 
be reported. To the best of our knowledge, this is the first study 
describing a vegetative phenotypic screening method for NUE 
improvement in wheat using automated imaging phenotyping 
technology under controlled environments.
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The aim of this work was to develop a high-throughput 
and high-resolution phenotyping protocol that can effectively 
screen wheat varieties at the vegetative growth phase for NUE 
improvement in controlled environments, and then to compare 
the performance of wheat varieties under controlled and field 
conditions with respect to NUE. The perspectives of applying 
sensing technologies for phenotypic screens of wheat germplasm 
for NUE under field conditions are also discussed.

MATERIAlS AND METhODS

Plant Materials and Growth conditions
Fifteen genotypically diverse wheat (Triticum aestivum L.) 
varieties used in our previous field trial (Nguyen et al., 2016), 
where they were shown to be differentially responsive to N, were 
studied in two separate experiments at Plant Phenomics Victoria, 
Horsham, described in detail by Nguyen et al. (2018). Briefly, 
the automated phenotyping platform consists of a conveyor 
belt system, a watering and weighing station (Figure 1A), and 
an imaging chamber with a Scannalyzer 3D imaging system 
(LemnaTec GmbH, Aachen, Germany; Figure 1B).

In the first experiment, two varieties, Bobwhite and Chara, 
were used for the identification of appropriate low and optimal N 
levels for further screens. White plastic pots (200 mm diameter x 
190 mm deep, Garden City Plastics Pty Ltd, Victoria, Australia) 
were filled with 3.5 litres of cereal standard soil mix without 
added fertilizers (Biogro, South Australia, Australia). To ensure 
that each pot was filled with an equal amount of soil, pots were 
weighed prior to sowing. Three seeds were sown per pot on rolling 
benches and thinned to one plant at 3 leaf stage (~ 2 weeks old). 
To avoid water leaking, pots were placed on white saucers for 
the duration of the experiment. On a weekly or fortnightly basis, 
between 100 ml and 200 ml of nutrient solution, components 
listed in Supplementary Table 1, was supplied depending on the 
crop growth stages (vegetative or reproductive). Ferrous fertilizer 

(Fe3+) was supplied as Librel® Fe-LO (CW Pacific Specialties 
Pty Ltd, NSW, Australia) and phosphorus fertilizer (PO4

-3) was 
supplied as a phosphate buffer with pH 6. Six relative N levels 
using KNO3 as the sole N source were applied; 2 mM, 5 mM, 
10 mM, 15 mM, 20 mM, and 25 mM N. Water was supplied 
adequately and equally among pots to keep plants growing 
healthily. Due to some greenhouse conditions, we could not 
continue the experiment until crop maturity. However, the crop 
growth and canopy development were carefully observed and 
used as guidance for the second experiment.

In the second experiment, 15 wheat varieties were screened 
for their responsiveness to two N levels, 5 mM and 20 mM, 
designated as low and optimum N. Under our observation, the 
total amount of N supplied for these two levels was equivalent to 
147 mg and 588 mg N per pot, respectively, which were similar to 
the N levels supplied in the previous study by Malik et al. (2016). 
Pot preparation and plant growth management were conducted 
similarly to the first experiment at the Plant Phenomics Victoria, 
Horsham. Three weeks after sowing, pots were loaded and laid 
out on the conveyor belt system in a split-plot design with 15 
replicates per N treatment, where N was the main treatment 
and variety was the sub-treatment. The growth conditions in the 
greenhouse were 24°C during the day and 16°C during the night 
with a 12 h photoperiod. To keep plants upright for imaging, a 
cage was placed into each pot, which was painted blue so that its 
images could easily be segmented and removed as background 
noise during image analysis.

Wheat plants at both N treatments were divided into two sets. 
The first set of plants was harvested at 49 days after sowing (DAS) 
for the vegetative growth evaluation. The second set continued to 
grow until maturity and was harvested for grain yield and yield 
attributes assessment. Heading date was recorded as the day the 
first head in each pot completely emerged as described previously 
by Guedira et al. (2016). Physiological maturity date was recorded 
as the day when the lower glumes of spikes completely lost all the 
green colour.

FIGURE 1 | The automated system in Plant Phenomics Victoria, Horsham. (A) Pots laid out on conveyor system with a watering and weighing station. (B) Plants 
moving to imaging booth containing a side and a top RGB camera for image acquisition.
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RGB Image Acquisition and Analysis
Digital image capture and analysis were implemented following 
the procedure described previously by Nguyen et al. (2018). In 
brief, after loading plants on the automated system, they were 
imaged twice a week by the Scannalyzer 3D plant-to-sensor 
imaging unit which consists of two 28.8 megapixel RGB cameras 
(a side and a top camera), and model Prosilica GT6600C 
(Allied Vision Technologies, Stadtroda, Germany) (Figure 1B). 
Three colour images were acquired from 3 sides of the plant 
after consecutive rotations of 0, 120, 240 degrees, and a top-
view image of the plant was also acquired. Images taken were 
automatically recorded in the database server which is managed 
by LemnaBase software (LemnaTec GmbH, Aachen, Germany). 
Figure 2A illustrates a simplified image processing algorithm, 
containing key steps and devices of LemnaGrid software 
(LemnaTec GmbH, Aachen, Germany). To analyse the images, 
the region of interest consisting of whole plant parts in the raw 
images (Figure 2B, i) was separated from the background by 
Vessel Cofig Marker device. In subsequent steps, the noise was 
removed from the region of interest and purified by LabtoGrey 
Converter and Threshold devices (Figure 2A) and finally the 

digital plant objects were determined (Figure 2B, ii). This object 
was used to estimate morphological and physiological traits 
of the plant (the bright green objects, Figure 2B, iii). Table 2 
lists traits measured by digital plant objects and conventionally 
destructive methods.

Destructive Phenotyping
The first set of plants was destructively harvested at 49 DAS by 
cutting plants above the soil level in the pots. Whole plants were 
immediately weighed to determine fresh biomass (MB) per pot. 
All leaves from the plant were then detached from stems and 
used to determine leaf area (LA) using a Portable Area Meter, 
model LI-3050A (LI-COR Inc, Lincoln, Nebraska, USA).

The second set of plants was harvested at physiological 
maturity to determine yield and yield attributes as described in 
Table 1. All above ground parts of the plant were removed from 
pots and oven-dried at 65°C for 5 days. After the measurement 
of total dry biomass (DW), the spikes were separated from stems 
and counted to determine number of spikes per pot (SN), as well 
as number of grains per spike (GN), total grain yield (GY) and 
1000-grain weight (1000-GW).

FIGURE 2 | Image acquisition and analysis by the automated plant phenotyping system, Plant Phenomics Victoria, Horsham. Panel (A), a simplified image 
processing algorithm comprising key steps and devices of LemnaGrid software. Panel (B), i) a raw side-view image of a wheat plant cv. Bobwhite at 49 DAS; ii) the 
color classification and identification of corresponding object (the grey plant); iii) the processed image object (the bright green plant). Estimated shoot biomass is the 
pixel sum of highlighted green objects in processed images.
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Water Soluble carbohydrate Assay
Water soluble carbohydrate (WSC) concentration of plant shoots 
was determined by near-infrared reflectance (NIR) spectroscopy. 
The ground plant samples were measured using FOSS XDS 
Rapid Content Analyser (FOSS, Hillerød, Denmark). The WSC 
composition was predicted using the WINISI 4 NIR calibration 
with standard error of prediction of 1% and R2 of 0.98. The 
reference WSC method used for validating NIR data was adopted 
from Maharjan et al. (2018).

Shoot and Grain N concentration 
Measurement
The procedure for shoot and grain N concentration measurement 
was described previously by Nguyen et al. (2016). Briefly, a subset 
of samples was randomly collected from shoot dry biomass or 
grain samples and ground to fine powder by a grinder (Cyclotec; 
Foss, Hillerød, Denmark). Total N concentration in the shoot and 
grain samples were determined by NIR spectroscopy (Foss XDS 
Rapid Content Analyser) (AACC method 39-25) and calculated 
on a dry weight basis.

Nitrogen Use Efficiency
The NUE of wheat plant biomass and grain per pot was calculated 
according to the formula adapted from Crasswell and Godwin 
(1984) with modifications.

 NUE W Wb biomass N inputs=   /  (1)

 NUE W Wg grain N inputs=   /  (2)

where NUEb (1) and NUEg (2) are the nitrogen use efficiency 
of wheat plants per pot in regard to biomass and grain yield, 
respectively; Wbiomass and Wgrain are the weight (grams) of plant 
biomass and grain yield per pot at harvest, respectively; WN inputs 
is the amount (grams) of nitrogen inputs.

comparison of the Performance of Wheat 
Varieties Under Greenhouse and Field 
conditions
To compare the performance of 15 wheat varieties grown under 
greenhouse and field conditions, we utilized the published data 

set from our previous field trial (Nguyen et al., 2016). Harvest 
plant dry biomass and grain yield from this study were compared 
with the performance of the same wheat genotypes grown in the 
field trial.

Plant Growth Model and Statistical 
Analysis
Imaging-derived and manually measured data were initially 
checked for outliers by using GENSTAT statistical software 
version 18.0 statistical software (VSN International Ltd, Hemel 
Hempstead, UK). Two-way analysis of variance (ANOVA) 
was performed to determine varietal effects by using the same 
software. The procedure for the selection of the best fit nonlinear 
regression plant growth model based on the estimated biomass 
and statistical analyses was adopted from Nguyen et al. (2018). 
In brief, the biomass accumulation of wheat plants over the 
growth period follows a sigmoidal growth pattern (Malhi et al., 
2006; Archontoulis and Miguez, 2015) and the “broken-stick” 
statistical model fitting two straight lines using GENSTAT was 
used to identify the linear growth phase of wheat plants. Linear 
regressions and Pearson’s correlation coefficient (r) were used 
to determine the correlations between estimated and measured 
plant traits by using R statistical software (version R-3.5.0) (R 
Core Team, 2017).

RESUlTS

Wheat Varietal Response to Various N 
Supplies
The initial experiment screened six N concentrations, 2 mM; 5 
mM; 10 mM; 15 mM; 20 mM and 25 mM on two bread wheat 
cultivars, Bobwhite and Chara. Overall, data showed that 
increased N concentrations resulted in a larger canopy and higher 
biomass accumulation (Figure 3). Plants did not grow well at 2 
mM N, whereas they appeared over grown at 25 mM N with very 
large canopies. Leaf overlap due to large canopies can reduce 
the correlation of the digital image to actual biomass, especially 
when leaf area index > 3 (Serrano et al., 2000). Therefore, the two 
N concentrations, 5 mM and 20 mM were chosen and designated 
as low and optimum N levels, for subsequent screens of wheat 
genotypes for NUE traits.

In the second experiment, 15 genetically diverse wheat 
cultivars including Bobwhite and Chara were grown under the 

TABlE 1 | Wheat traits measured by digital RGB imaging and destructive methods.

Traits Abbreviation Unit Description

Estimated shoot area EB kilopixel (kPix) The pixel sums of three side-views and top-view image of the plant
Top-view area TVA kPix The pixel sums of the top-view image
Measured shoot bimass MB gram (g) Destructive biomass harvest at 49 DAS
Measured leaf area LA cm2 Total leaf area per plant per pot
1000-grain weight 1000-GW gram (g) Manually count and weigh 1000 grains
Number of spikes SN spike Manually count the number of spikes per pot
Number of grain per spike GN grain Manually count the number of grain per spike
Dry biomass DW gram (g) Determined by manually weighing total dry biomass per pot
Grain yield GY gram (g) Determined by manually weighing total seed yield per pot
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low and optimum N levels. Overall, all varieties showed positive 
responses to the increased N supply, resulting in longer growth 
duration, higher DW, GY, shoot and grain N concentration 
(Supplementary Figure 1 and Table 2). Data showed that wheat 
varieties responded differentially to the supplied N leading to a 
significant N and variety interaction (Table 2). Varieties such as 
Yitpi, Chara and Alsen had high DW accumulation, in contrast to 
Westonia, Kennedy and Drysdale, which accumulated less DW 
at both N levels (Table 2). Grain yield showed a highly positive 
association with DW accumulation at both N levels (Table 2). 
Greater DW accumulators such as Yitpi, Chara, and Alsen also 
had higher GY than Westonia, Kennedy and Drysdale (Table 2). 
However, the shoot and grain N concentrations of wheat varieties 
showed a highly negative trend with DW accumulation, GY and 
WSC at both N levels. Varieties with the lowest DW, GY, and 
WSC such as Kennedy and Drysdale had shoot and grain N 
concentration higher than Yitpi, Chara and Gladius at both N 
levels (Table 2). WSC concentrations of plants at maturity were 
higher under optimum N than low N for all the varieties (Table 2). 
Interestingly, WSC concentrations corresponded more with DW 
and GY at low N than optimum N (Table 2). On average, wheat 
varieties at optimum N level had higher SN, but slightly lower 
harvest index than those at the low N level (Table 3). However, 
the 1000-GW and GN were not changed significantly (Table 3).

The boxplots showed significant variations in NUE of biomass 
(NUEb) and grain (NUEg) per pot between varieties and N 
levels, confirming a significant interaction between these two 
factors (Figure 4). Varieties such as Alsen, Chara and Yitpi had 
high NUEs compared to Drysdale, Kennedy and Volcani DDI. 
Within N levels, 11 wheat varieties had significant variations in 
NUEb (Figure 4A), while only 3 varieties i.e. Alsen, Gladius and 
Excalibur were significantly different in NUEg (Figure 4B). This 
suggests that N treatments resulted in a more stable NUE for 
grain than biomass.

Validation of Imaging Phenotyping
To validate the application of the image-based phenotyping 
technology used to study the responses of wheat varieties 
to N supplies, we determined the association between the 
morphological and physiological parameters of 15 wheat varieties 
derived from digital imaging and conventionally destructive 
sampling methods (Figure 5). Manually harvested samples were 
collected at 49 DAS and used to measure MB and LA. The EB 
and TVA were derived from digital RGB images collected the 
night before the destructive harvest. Results from the correlation 
analysis at low N level showed that EB and TVA were highly 
correlated with important NUE traits such as measured fresh 

FIGURE 3 | Wheat varieties Bobwhite (A) and Chara (B) grown under six levels N levels: 2 mM, 5 mM, 10 mM, 15 mM, 20 mM, and 25 mM. Photos taken at 90 DAS.
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MB and LA for all 15 wheat varieties with statistically significant 
coefficients of 0.94 and 0.82, respectively (Figure 5A). Likewise, 
the correlation analysis at optimum N level showed similar results; 
EB and TVA were also highly correlated with these NUE traits 
with correlation coefficients of 0.93 and 0.90, respectively (Figure 
5B). The results also showed that there were intercorrelations 
within estimated and measured NUE traits at both N levels. For 
instance, EB was highly correlated with TVA and MB was highly 
correlated with LA (r ≥ 0.89, Figure 5). Similarly, EB was highly 
correlated with LA and TVA was highly correlated with MB 
(r ≥ 0.84, Figure 5). This suggests that these traits can be used 
interchangeably for an effective NUE assessment.

Association Between Vegetative 
Performance and harvest of Wheat 
Varieties
Biomass accumulation of wheat and other grain crops over the 
growth period follow a sigmoidal growth pattern (Malhi et al., 
2006; Archontoulis and Miguez, 2015; Nguyen et al., 2018). In 
the current study, our data showed that biomass accumulation 
(as indicated by EB) of wheat varieties under both N levels 
followed a sigmoidal growth pattern (Figures 6A, B). We 
determined the breakpoints where varieties commence or 
complete their linear growth phase using the “broken-stick” 
model (Table 4). Breakpoints are the reference points where each 
linear regression was “broken”, or the slope changed, given as X, 
Y coordinates, with X being the DAS and Y being the EB. The 
broken-stick model fitted well with the EB of wheat varieties, as 
indicated by high values of adjusted coefficients of determination 
(adjusted R2 > 0.99; Table 4). Regression slopes before (slope 1) 
and after (slope 2) the breakpoint indicate the commencement 
or completion of the linear growth phase, while the exact values 
can indicate the number of days spent in either the linear or lag 
growth phases during the imaging period (Table 4). At the low N 
level, ten wheat varieties, i.e. Alsen, Baxter, Bobwhite, Drysdale, 
Excalibur, Kennedy, Kukri, RAC875, Volcani DDI and Westonia, 
commenced their linear growth phase early, with the breakpoint 
identified in Table 4 being at the end of linear growth rather 
than the start, seen by a higher slope 1 and lower slope 2. Out 
of these, Drysdale completed its linear growth phase the earliest 
at 66.3 DAS (Table 4). Meanwhile, the remaining five varieties 
commenced their linear growth phase later, with 48.7 DAS being 
the latest time point when one of the varieties Yitpi commenced 
linear growth (Table 4). Thus, the period between 48–66 DAS 
is the duration when all wheat varieties were in their linear TA
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TABlE 3 | Mean value of yield components of 15 wheat varieties. GW, grain 
weight; SN, number of spikes per pot; GN, number of grains per spike; CV, 
coefficient of variation; n.s., not significant difference (p > 0.05).

component low N Optimum N l.s.d. 
(p = 0.05)

cV% p

1000-GW (g) 41.35 44.26 3.11 9.7 ns
SN 4.21 15.38 1.83 25 < 0.001
GN 34.8 37.88 3.84 14.1 ns
Harvest index 49.41 46.36 3.02 8.4 0.05
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FIGURE 4 | Boxplots of nitrogen use efficiencies (NUEs) of 15 wheat varieties at low and optimum N levels. (A) NUEb is nitrogen use efficiency calculated by 
harvested biomass (equation 1); (B) NUEg is nitrogen use efficiency calculated by grain yield (equation 2). The asterisks indicate the statistically significant levels of 
ANOVA, comparing the NUE of a variety within N levels (* p ≤ 0.05; ** p ≤ 0.01).

FIGURE 5 | Validation of the relationships between estimated and measured NUE traits of 15 wheat varieties. Panels A) and B) represent the correlation between 
estimated biomass and top-view area with measured fresh shoot biomass and leaf area collected at 49 DAS at low and optimum N supplies, respectively. In each 
panel, the coloured windows are the histograms of individual traits. The windows above and below the diagonal of the coloured windows are Pearson’s correlation 
coefficients (r) and bivariate scatter plots with trend lines, respectively. L, low N; O, optimum N. EB, estimated biomass; TVA, top-view area, MB, measured biomass; 
LA, leaf area. The asterisks are the statistically significant levels (*** p ≤ 0.001). Sample number = 90.
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growth phase under low N (Table 4). At the optimum N level, 
all varieties commenced their linear growth phase later between 
36.1–52.4 DAS, compared to the same varieties at the low N level. 
However, like the results seen at low N level, Drysdale once again 
completed its linear growth phase earlier than all other varieties, 
at 62 DAS (Table 4). Therefore, the period between 52–62 DAS is 
when all wheat varieties were in their linear growth phase under 
optimum N (Table 4).

To validate whether EB during the linear growth phase can be 
used to evaluate the performance of wheat varieties for improved 
NUE, we compared the EB of the second plant set captured at 
54 DAS against fresh shoot biomass and leaf area of the first 
plant set harvested 49 DAS for all wheat varieties (Table 5). The 
fifteen wheat varieties are ranked in descending order of MB 
accumulation at the low N level, where the dark green cells denote 
the higher values and in contrast the dark red cells represent the 

lower values (Table 5). Under low N, varieties such as Bobwhite 
and Yitpi accumulated higher MB in contrast to Drysdale and 
Volcani DDI (Table 5). However, Pastor and Alsen showed a 
stronger response to optimum N. Interestingly, Excalibur showed 
strong responses to N at both levels. Data also showed that EB 
and TVA were well correlated with MB and LA at both N levels 
for all varieties, showed by similar ranking patterns across the 
three traits (Table 5).

To test if the estimated parameters at the vegetative stage 
could predict biomass accumulation and grain yield at harvest, 
we determined the association between EB on different DAS with 
final DW and GY (Figure 7). The heat map shows increasing 
positive correlations between EB and DW or GY at low N level 
from 30 DAS onwards, with the correlation peaking at 80 DAS 
coinciding with the start of the flowering period (Figure 7 and 
Supplementary Figure 1). In contrast, the positive correlation 

FIGURE 6 | Dynamic growth of wheat genotypes under low and optimum N levels. Graph A) and B) represent biomass accumulation over the growth period 
for 15 wheat genotypes at low and optimum N level, respectively. EB, estimated biomass; DAS, days after sowing. Specific marker shapes and colors indicate 
particular genotypes.

TABlE 4 | Regression parameters as determined by the split-line linear regression model of 15 wheat genotypes*. X is DAS and Y is EB, which represent the 
coordinates of the breakpoint where the linear regression was split or broken; slope 1 and slope 2, slopes of the regression before and after the breakpoint, respectively.

Variety low N Optimum N

Breakpoint X Breakpoint Y Slope 1 Slope 2 Breakpoint X Breakpoint Y Slope 1 Slope 2

Alsen 68.7 480.8 11.9 5.9 46.2 570.9 28.1 49.8
Baxter 71.2 413.4 10.0 5.4 43.6 454.0 26.0 41.8
Bobwhite 68.1 393.6 10.0 4.1 37.8 242.0 18.1 33.8
Chara 45.1 113.7 6.0 12.3 52.4 578.7 22.1 50.2
Drysdale 66.3 247.4 6.0 2.8 62.0 939.1 25.9 16.5
Excalibur 69.1 554.5 13.6 6.9 52.3 1024.0 37.6 53.7
Gladius 42.5 97.3 5.6 9.5 49.9 514.5 22.3 36.5
Kennedy 67.8 268.9 6.7 3.7 37.7 241.2 17.6 30.4
Kukri 69.3 419.1 10.4 4.6 36.1 273.0 22.6 34.3
Pastor 38.2 77.3 5.4 11.2 46.4 501.0 24.8 54.2
RAC875 71.8 374.5 8.8 4.8 45.7 457.3 22.8 33.8
Volcani DDI 68.6 384.4 8.3 5.4 39.2 232.7 15.5 27.6
Westonia 66.5 326.1 8.1 3.7 45.5 408.1 21.2 31.2
Wyalkatchem 38.6 81.6 5.7 10.4 51.0 619.7 24.7 39.1
Yitpi 48.7 170.4 7.9 16.4 51.9 620.7 25.5 57.4

*Adjusted R2 > 99%.
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between these parameters at optimum N only started at 48 DAS, 
also peaking at 80 DAS, even though the correlations were much 
lower compared to those under low N (Figure 7). Data also 
showed that EB observed at 60 DAS could possibly explain 50% 
and 70% of the variations in DW and GY at low N, respectively. 
Whereas, these figures were only approximately 18% and 14% at 
optimum N (Figure 7).

comparative Performance of Wheat 
Varieties Under controlled and Field 
conditions
To determine if better performing varieties in the greenhouse 
perform well in the field, we analysed the correlation between 

DW and GY of wheat plants grown under greenhouse and 
field conditions. We compared the performance of the 15 
wheat varieties from this greenhouse trial to the same varieties 
grown in the field at Horsham, Victoria, Australia in 2013 
(Nguyen et al., 2016). There were several correlations between 
DW and GY in the greenhouse and the field, with some trends 
identifiable (Supplementary Table 2). These results showed 
low to moderate positive correlation for DW, especially the 
DW of wheat plants in the greenhouse at both N levels was 
significantly correlated with that of field plants at 80 N, the 
N level gives optimum NUE (Supplementary Table 2). The 
GY at low N in the greenhouse and the three field N levels 
also demonstrated a positive correlation trend with each other 
(Supplementary Table 2) (Nguyen et al., 2016).

TABlE 5 | Comparative performance of 15 wheat varieties at vegetative stage. Data are means of fresh shoot biomass, leaf area at 49 DAS (n = 6) and estimated 
biomass, top-view area at 54 DAS (n = 9) under low and optimum N levels. Varieties are ranked in descending order of fresh biomass accumulation at low N level. In 
a column: dark green cells, the highest values; dark red cells, the lowest values. MB, measured fresh shoot biomass; LA, measured leaf area; EB, estimated shoot 
biomass; TVA, top-view area; n = sample number.

Variety MB (g pot-1) lA (cm
2
 pot

-1
) EB (kPix pot

-1
) TVA (kPix pot

-1
)

low N Optimum N low N Optimum N low N Optimum N low N Optimum N

Bobwhite 8.33 25.52 191.01 699.92 245.86 759.47 57.22 215.81
Excalibur 8.04 36.63 238.46 1162.61 347.36 1059.88 74.14 296.44
Yitpi 7.66 25.94 217.56 693.79 254.35 751.63 48.70 166.91
Alsen 7.66 31.61 214.09 906.27 295.29 921.56 66.91 249.65
Kukri 7.63 29.21 191.82 768.57 251.00 859.99 51.20 223.55
RAC875 7.49 26.79 178.45 636.31 207.91 699.55 39.89 180.93
Wyalkatchem 6.67 28.38 190.34 792.61 242.24 711.04 46.49 169.47
Chara 6.59 21.97 174.86 599.51 218.43 663.29 39.50 153.32
Baxter 6.29 25.97 173.00 784.56 233.44 840.74 49.58 218.80
Pastor 6.10 32.06 157.68 831.87 251.98 849.85 51.37 224.07
Kennedy 6.00 27.37 136.43 723.73 170.16 721.79 33.02 174.04
Gladius 5.87 23.14 142.66 587.06 199.04 647.07 39.25 163.88
Westonia 5.62 24.99 125.66 569.03 221.09 656.73 45.03 162.15
Volcani DDI 5.49 19.68 123.79 413.69 199.42 614.73 43.58 163.12
Drysdale 5.01 25.74 96.90 635.07 173.51 712.40 33.09 181.50

ANOVA N V N x V N V N x V N V N x V N V N x V
s.e.d 0.083 1.052 1.440 4.76 40.27 52.22 13.30 25.00 36.65 5.59 7.15 11.25
p <0.001 <0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
l.s.d (p = 0.05) 4.17 4.13 113.05 116.66 73.42 70.82 22.75 20.25

FIGURE 7 | The relationship between estimated shoot biomass at different growth stages with harvest dry biomass and grain yield. The numbers inside the circle 
are correlation coefficients (r). Colour and circle size indicate r magnitude. DW, plant dry biomass per pot; GY, grain yield per pot. The asterisks are the statistically 
significant levels (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001).
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DIScUSSION

An Advanced Phenotypic Screening 
Method for NUE Improvement in Wheat 
Under controlled Environments
This work describes the development of a robust, high-
throughput, reliable plant phenotyping method using 
automated digital imaging technology, that can be used to 
effectively screen a diverse range of wheat germplasm for 
NUE improvement at the vegetative stage in a controlled 
environment. The development of N-efficient wheat varieties 
through molecular breeding will undoubtedly contribute 
to the more effective use of N fertilizer, which is currently 
causing significant production and environmental costs 
(Cormier et al., 2016). However, NUE is a multi-genic trait 
and the lack of reliable phenotyping methods is currently a rate 
determining factor in NUE genetic improvement programs. 
These methods will aid in effectively screening breeding 
populations, phenotyping training populations for genomic 
selection, and evaluating breeding lines (Cabrera‐Bosquet 
et al., 2012; Araus et al., 2018; Campbell et al., 2018). Thus, the 
availability of efficient phenotyping methods that are capable 
of characterising and quantifying multiple NUE traits, will 
provide useful tools to wheat breeders. In the present study, 
our results have demonstrated an applicable and reproducible 
wheat growth assessment system in a controlled environment 
for NUE studies. The results also revealed corresponding 
performance between wheat varieties screened by the digital 
RGB imaging unit of automated plant phenotyping platform, 
compared to field conditions for NUE traits.

An optimal plant growth system that can precisely apply and 
manipulate nutrient supplies in a timely way will play an important 
role in N studies. Several potting systems using pre-fertilized 
mixes have been reported to screen wheat for improved NUE in 
greenhouse studies (Tian et al., 2015; Malik et al., 2016; Veres 
et al., 2017). Although effective, these systems pose challenges 
such as the ability to timely adjust the amount of N supply for a 
range of varieties with unknown and diverse N responsiveness. 
The gradually supplied liquid fertilizer method used here, has 
advantages over pre-fertilized potting mixes, especially when 
used in conjunction with an automated watering system, which 
can also accurately dispense a set volume of fertilizer solution 
(Nguyen et al., 2018). Since water highly interacts with N 
availability in the growth media (Nguyen et al., 2017), this system 
will ensure an adequate supply of water for plants so that NUtE 
is not affected by either a shortage or excess of water, and will 
help reduce the time and labour costs associated with manual 
watering. More importantly, it was demonstrated that the current 
screening method could effectively produce significant variations 
in NUE traits (NUEb and NUEg) among wheat varieties, which 
will facilitate selection in screening processes.

Vegetative Screens by RGB Imaging for 
N-Efficient Wheat Genotypes
Early vigour, biomass accumulation, grain yield and grain 
protein are key criteria for the selection of N-efficient wheat 

materials (Nguyen and Kant, 2018). Since wheat grain yield is 
largely determined by the availability of carbohydrate reserves 
in the leaves and stems pre-anthesis, the higher the biomass 
accumulation during vegetative growth, the higher DW and 
GY at harvest (Reynolds et al., 2009; Li et al., 2013). Improving 
wheat yield potential by increasing DW at harvest has been 
demonstrated as an achievable and feasible strategy in breeding 
programs (Aparicio et al., 2002; Hawkesford, 2017). The primary 
objective of vegetative screens is to save time and costs, while still 
being able to effectively identify wheat genotypes which perform 
better for DW and GY at harvest in controlled environments 
and the field; ultimately speeding up breeding outcomes 
(Aparicio et al., 2000; Aparicio et al., 2002). In the present 
study, results confirmed that the automated RGB imaging unit 
was effective in estimating biomass accumulation from early 
vegetative to heading stages with a high degree of accuracy. 
The high correlations between EB and TVA and important 
traits such as MB and LA confirmed that the formers can be 
used as surrogates of the latter to evaluate the performance of 
wheat varieties for NUE at vegetative stage without destructive 
samplings. Our results also demonstrated that the performance 
of wheat varieties could be assessed effectively at early vegetative 
stages, as plant status during the linear growth phase truly 
reflects the potential at maturity regarding DW and GY. Being 
able to phenotype traits early in a high-throughput, precise and 
reproducible manner is a clear advantage in greenhouse screens 
and crucial for accelerating the breeding of improved NUE 
varieties (Ly et al., 2017). Vegetative screens, using conventional 
phenotyping methods, have also been successfully used for 
quantitative trait loci (QTL) mapping of early growth traits such 
as seedling height or shoot biomass for improved NUE in wheat 
(An et al., 2006; Guo et al., 2012). Highly accurate estimates of 
vegetation coverage of field grown wheat at booting stage using 
digital RGB images have been reported previously (Lukina 
et al., 1999). Moreover, the automated RGB imaging unit used 
in this study, was also advantageous against other proximal 
sensing tools, since it was not negatively influenced by genotypic 
variations or N levels observed elsewhere (Babar et al., 2006; 
Nguyen et al., 2016).

However, the causal relationship between vegetative 
performance and both DW and GY isn’t fully understood. 
Under low N conditions, the EB of wheat plants was better 
correlated with GY than DW at early growth (40 DAS) and 
with correlation strength increasing until 74 DAS. Whereas, 
the correlation started at 67 DAS under optimum N conditions. 
In wheat, the remobilization of N reserved in vegetative parts, 
such as shoots and roots, before flowering, contributes up to 
95% of grain N content at maturity (Palta and Fillery, 1995). 
Previous studies suggested that higher grain yield and grain 
NUtE in wheat were determined by a higher N remobilization 
efficiency, which was subject to genotypic assimilation 
efficiency and the availability of stored N in vegetative parts of 
the plants (Barbottin et al., 2005; Tian et al., 2015). Additionally, 
the remobilization of reserved carbohydrate pre-anthesis in 
wheat contributes up to 20% of grain yield under favourable 
conditions and up to 60% under stressful conditions, including 
N stress (Li et al., 2013), which was supported by our WSC assay 
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results. Since NUE-related traits, e.g. remobilization efficiency, 
were highly expressed under low N conditions (Barbottin et 
al., 2005; Lammerts Van Bueren and Struik, 2017), it is likely 
that most of the reserved N and WSC in the wheat plants were 
translocated to grain yield before maturity due to N stress, 
leading to higher correlations between vegetative EB, DW and 
GY. Whereas, abundant N supplies meant that a large portion 
of the N and WSC reserved in shoots and roots were leftover 
in the DW, resulting in a lower correlation between EB from 
early stages and DW and GY (Barbottin et al., 2005; Gaju et al., 
2014). Thus, selection might focus on the performance of wheat 
genotypes under low N rather than optimum N conditions 
for vegetative screens. The small variations in NUEg within N 
levels among varieties again supports this hypothesis. Based on 
growth analysis in the current study of 15 wheat varieties, it is 
recommended that EB collected at 60 DAS, that coincides with 
booting stages, can be used to compare vegetative performance 
of wheat varieties.

Perspective of Image-Based Phenotyping 
for NUE Improvement in Wheat Under 
Field conditions
One of the biggest challenges in the development of N-efficient 
wheat varieties is necessity of developing an effective screening 
system in controlled environments that can effectively foresee 
the performance of wheat varieties under field conditions 
(Nguyen and Kant, 2018). In the present study, we compared 
the performance of wheat varieties for NUE under controlled 
and field conditions. We observed moderate and low-level 
correlations between greenhouse and field data for the DW and 
GY of identical wheat varieties, respectively (Supplementary 
Table 2). Interestingly, the DW of wheat varieties appears 
more consistent under both N levels in greenhouse compared 
to the 80 N, the optimum level under field conditions 
(Supplementary Table 2). The inconsistent performance of 
varieties under greenhouse and field has been well documented 
(Poorter et al., 2012; Junker et al., 2015). Quite often, genotypes 
selected from the controlled environments do not substantiate 
their performance under field conditions, because of significant 
competition among plants within plots under field conditions, 
which is not present for individual plants in pots in controlled 
environments (Araus and Cairns, 2014; Fischer and Rebetzke, 
2018). Associations between greenhouse and field trials 
using the same varieties is further complicated by other 
environmental factors such as soil type, microorganisms, N and 
water availability (Cormier et al., 2016; Nguyen et al., 2017). 
However, several studies have reported a causal relationship 
between greenhouse screens and the field performance of crops 
(Chapuis et al., 2012; Pardo et al., 2015; Peirone et al., 2018). 
Therefore, results from vegetative screens in greenhouses, like 
those in the current study, can still be useful indicators of the 
performance of genotypes for NUE, which can help reduce the 
time and cost of developing new breeding materials.

Non-invasive remote sensing and imaging, using sensors and 
cameras, has been successfully applied to field crop phenotyping 

for NUE improvement (Nguyen and Kant, 2018). Simple to set 
up and cost effective conventional digital cameras have been 
effectively used as assessment tools for leaf area index and 
biomass in cereals (Casadesús and Villegas, 2014). The advent 
of various ground-based and aerial-based plant phenotyping 
platforms has made the estimation of final biomass and grain 
yield in wheat faster, more accurate and economical (Reyniers 
et al., 2006; Wang et al., 2014; Kefauver et al., 2017). Vegetation 
indices have been used to estimate biomass and grain yield under 
varying N supplies with high accuracy (Serrano et al., 2000). 
However, all the above-mentioned phenotyping platforms were 
deployed at the booting and heading stages to predict yield and 
final biomass, since biomass accumulation peaks at anthesis 
(Aparicio et al., 2000; Chang et al., 2005; Malhi et al., 2006); 
but, none of them were designed to predict final biomass and 
grain yield at early vegetative stages. Early vegetative prediction 
of N-efficient genotypes by high-throughput phenotyping will 
be especially useful, particularly when applied with genomic 
selection for NUE (Ly et al., 2017). This is particularly helpful 
for sensor and image based phenotyping in the field because 
vegetation indices will possibly become saturated if the leaf 
area index of the canopy is > 3 (Aparicio et al., 2000; Serrano 
et al., 2000). Several recent reports showed the potential of RGB 
imaging technology to study early crop growth and yield for 
NUE improvement in the field. Prey et al. (2018) used canopy 
cover from RGB imaging as a criterion to assess early vigour 
in wheat. In a similar approach, Buchaillot et al. (2019) used 
vegetation indices generated by both ground and aerial based 
RGB sensors at the vegetative stage in combination with crop’s 
agronomic parameters, to successfully develop regression 
models for yield prediction of maize genotypes. Since TVA, 
observed here, was highly correlated with other traits, an 
avenue for further investigation is the deployment of digital 
RGB cameras, either handheld or mounted on ground or aerial 
vehicles (Araus and Kefauver, 2018; Fernandez-Gallego et al., 
2019; Gracia-Romero et al., 2019) to capture and assess the 
performance of wheat genotypes for NUE traits at the linear 
growth phase under field conditions.

cONclUSIONS
Here, we have described the development of a robust, high-
throughput and reliable screening method at vegetative 
growth phases to investigate NUE improvements in wheat 
under controlled environment. Our results have shown that 
this digital RGB imaging method is strongly correlated to 
important NUE traits such as MB of wheat varieties. The 
observed relationship between controlled and field conditions 
for the same varieties indicates that greenhouse screening could 
be used to prioritise germplasm for subsequent field studies. 
Therefore, the application of this designated wheat growth 
system in conjunction with the digital imaging will provide 
breeders with an excellent assessment tool to enable the rapid 
phenotyping of diverse wheat genotypes to select N-efficient 
germplasm. This screening method may also provide a basis for 
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the rapid phenotyping method of other crop species to identify 
germplasm efficient to a range of nutrients and stresses.
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Convolutional Neural Net-Based 
Cassava Storage Root Counting 
Using Real and Synthetic Images
John Atanbori 1, Maria Elker Montoya-P 2, Michael Gomez Selvaraj 2, Andrew P. French 1 
and Tony P. Pridmore 1*

1 Agrobiodiversity Research Area, School of Computer Science, University of Nottingham, Nottingham, United Kingdom,  
2 Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia

Cassava roots are complex structures comprising several distinct types of root. The 
number and size of the storage roots are two potential phenotypic traits reflecting crop 
yield and quality. Counting and measuring the size of cassava storage roots are usually 
done manually, or semi-automatically by first segmenting cassava root images. However, 
occlusion of both storage and fibrous roots makes the process both time-consuming 
and error-prone. While Convolutional Neural Nets have shown performance above the 
state-of-the-art in many image processing and analysis tasks, there are currently a 
limited number of Convolutional Neural Net-based methods for counting plant features. 
This is due to the limited availability of data, annotated by expert plant biologists, which 
represents all possible measurement outcomes. Existing works in this area either learn 
a direct image-to-count regressor model by regressing to a count value, or perform a 
count after segmenting the image. We, however, address the problem using a direct 
image-to-count prediction model. This is made possible by generating synthetic images, 
using a conditional Generative Adversarial Network (GAN), to provide training data for 
missing classes. We automatically form cassava storage root masks for any missing 
classes using existing ground-truth masks, and input them as a condition to our GAN 
model to generate synthetic root images. We combine the resulting synthetic images with 
real images to learn a direct image-to-count prediction model capable of counting the 
number of storage roots in real cassava images taken from a low cost aeroponic growth 
system. These models are used to develop a system that counts cassava storage roots 
in real images. Our system first predicts age group ('young' and 'old' roots; pertinent to 
our image capture regime) in a given image, and then, based on this prediction, selects 
an appropriate model to predict the number of storage roots. We achieve 91% accuracy 
on predicting ages of storage roots, and 86% and 71% overall percentage agreement on 
counting 'old' and 'young' storage roots respectively. Thus we are able to demonstrate 
that synthetically generated cassava root images can be used to supplement missing root 
classes, turning the counting problem into a direct image-to-count prediction task.

Keywords: convolutional neural networks, generative adversarial networks, cassava phenotyping, machine 
learning, root counting
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INTRODUCTION
The tropical root crop, cassava (Manihot esculenta Crantz), is 
a staple food for more than a tenth of the world's population. 
However, a major obstacle reducing its industrial potential 
is it's long and variable growth cycle. Information on the 
development of the edible cassava storage root is therefore 
crucial for selecting high yielding, early bulking cassava root 
crops for industrial-scale production. Cassava root systems 
comprise two key types of root. Fibrous roots develop first, and 
only a small number of these go on to form the larger storage 
roots. It is these storage roots which become an important 
food source, in particular a major source of carbohydrates. 
Understanding the growth of these storage roots therefore 
becomes an important phenotyping task. Presently, 
phenotyping of cassava storage roots is carried out using 
manual, destructive sampling methods (Okogbenin et al., 
2013; Belalcazar et al., 2016), which are labour-intensive and 
require many replications of each genotype. The physiological 
traits of the cassava crop are usually measured manually, often 
during harvesting, but also pre-harvest. Measurements begin 
in the third month and continue every month until harvested 
(Okogbenin et al., 2013). The important pre-harvest traits 
measured include the number of storage roots and the primary 
stems, while harvest traits include the above-ground biomass, 
stem diameter and number of storage roots, along with their 
length and volume."

Image-based software tool development and usage for plant 
phenotyping tasks have increased in recent years (Furbank and 
Tester, 2011). Ideally, such tools should be high-throughput 
and at least semi-automatic, making them capable of providing 
accurate, quantitative data on plant structure and function 
with minimal manual labour. Most current phenotyping 
installations require precisely-designed, automated image 
acquisition hardware matched to specialist software solutions 
to achieve the best quality data and throughput. Often, the 
function of the image analysis step is impeded if the images 
are not captured in a tightly controlled, systematic way. 
Nevertheless, these tools are gaining more attention due to 
their merits in providing large-scale plant phenotyping when 
compared with manual methods. Image-based phenotyping 
techniques have recently been used in plant segmentation 
(Aich and Stavness, 2017; Aich et al., 2018), leaf counting 
(Giuffrida et al., 2015; Aich et al., 2018; Aich and Stavness, 
2017) and to automatically identify root and leaf tips (Pound 
et al., 2017a). Dedicated development frameworks are even 
available to make building custom systems easier. For example, 
PlantCV (Gehan et al., 2017) can support a number of plant 
phenotyping tasks via processing pipelines, and the Deep Plant 
Phenomics platform (Ubbens and Stavness, 2017) specifically 
supports deep learning development.

Recently, very deep Convolutional Neural Networks (CNNs) 
have been used to recover plant traits in an attempt to gain 
improved robustness and accuracy (Scharr et al., 2016; Minervini 
et al., 2016a; Minervini et al., 2016b; Aich and Stavness 2017; 
Pound et al., 2017b). Here, and in the broader computer vision 

community, these techniques have increased the accuracy of 
the image analysis, but require large numbers of data samples 
to make them sufficiently general. Deep networks can comprise 
very many parameters (in the millions), which in turn introduces 
expensive computations (Long et al., 2015; Yu and Koltun, 2015; 
Badrinarayanan et al., 2017; Lin et al., 2017; Zhao et al., 2017) 
and can make such models inefficient on low-cost, resource-
limited devices.

To date, deep learning methods addressing feature counting 
tasks have focused almost exclusively on phenotyping the plant 
shoot system. Two broad approaches are in use. The first begins 
by segmenting the input image. Learning to segment requires 
individual annotation of the relevant objects to create a training 
data set, a task which is usually error prone and time-consuming 
for the plant biologist to undertake. The second approach learns 
a direct regression model. The regression approach solves this 
problem by using the total object count as its only supervision 
information, which is comparatively very easy to collect. A 
complete, pixel-by-pixel labeling of the training images is not 
required, only instead requiring a numerical label giving the 
count of the features of interest; e.g. a root count. The regression 
models which must be learned are, however, non-linear and 
of very high dimensionality (Aich and Stavness, 2017): Here, 
instead, we propose to develop a direct image-to-count prediction 
model instead.

We aim to develop a fully-automated, image-based 
phenotyping system to count storage roots in color images 
of aeroponically grown cassava, including and in particular 
counting early bulking storage roots (those appearing in 
the first 2.5 months of growth). The challenge here is that 
early storage roots are usually particularly difficult to detect. 
There are comparatively few such roots on any given plant, 
and they are often occluded by fibrous roots, which have 
similar color and texture (see example images in Figure 1, 
bottom row). We develop here a direct "image-to-count" 
prediction model, avoiding the complexity of the regression 
approach, and avoiding a pure segmentation approach which 
can be problematic when the boundaries of the objects 
involved (especially fibrous roots) are not well defined. 
This prediction approach effectively classifies each image 
according to the number of plant features, e.g. storage roots, 
present. This raises a further challenge: to successfully train 
a classifier a training set containing multiple images of each 
class is required. In the current context this means that we 
require images showing 0, 1, 2, 3, 4 etc, storage roots, up to 
the maximum number expected to be encountered. Though 
the number of roots that can be reasonably expected is not 
large—we do not need examples for every integer, of course—
complete data sets of this type are often unavailable in existing 
repositories, and can take a significant amount of time to 
assemble. This is particularly true of more recently-studied 
species like cassava, for which limited image data exists. To 
remedy the problem of classes short on, or missing data, we 
first develop a conditional GAN to generate synthetic images 
of the storage roots classes which are not sufficiently well-
represented with real image data.
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The contributions of this work, then, are:

1. Design of a conditional Generative Adversarial Net (GAN) 
that can automatically generate synthetic cassava root images 
when presented with ground truth segmentation masks of the 
desired image classes.

2. Design of a deep CNN age-prediction model that predicts the 
age of cassava roots as either "old" (≥2.5 months) or "young" 
(≤2.5 months).

3. Design of a deep CNN-based storage root counting model, 
which given an input image and an age class will classify the 
image according to the number of storage roots present.

4. Combination of these components, which will create a cassava 
root counting tool to support an aeroponic phenotyping 
system (Selvaraj, 2019); this will be evaluated against a 
segmentation-based counting approach

The remainder of this paper is structured as follows. In 
Background, we review existing works that generate synthetic 
images using a GAN approach, and those that perform object 
counting using deep CNN systems. In Datasets, we introduce 
the cassava root datasets used in our experiments and proceed 
in Image Prediction and Generation Methods to describe our 

methods. We describe our experimental set-up, including a 
benchmark, in Experimental Evaluation. We then proceed to 
present and discuss our results in Results and draw conclusions 
in Conclusion.

BaCKgROUND
As many current phenotyping techniques were initially developed 
in Europe and North America, where cereal crops dominate, 
comparatively few studies have phenotyped cassava (Subere 
et al., 2009; Okogbenin et al., 2013; Adu et al., 2018 (Polthanee 
et al., 2016). Though these studies have considered both shoot 
and root phenotyping, and some even examined roots regularly 
during their development (Okogbenin et al., 2013), measurement 
of cassava root traits is typically carried out only during harvest. 
Despite consideration of root numbers, size and length alongside 
shoot structural measures and biomass (Okogbenin et al., 2013; 
Adu et al., 2018), it has not yet been established which traits 
or variables provide the most detailed differentiation between 
distinctive genotypes (Adu et al., 2018).

Traditionally, cassava storage roots are phenotyped 
destructively using manual or semi-automated methods. This 

FIgURe 1 | Sample real cassava root images from our datasets. The top row illustrates cassava roots that are 2.5 months and more, which we term “old” roots. 
The bottom row illustrates “young” roots, those less than 2.5 months.
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usually involves extracting the roots from the soil, losing a 
large number of small and fibrous roots in the process. Cassava 
roots are cut from their stem. They are then suspended in water 
to measure volume and spread on a black background to ease 
counting and measurement of their total length. Care is taken 
to avoid roots overlaying each other, as much as is practically 
possible. In semi-automated methods, a digital camera is used 
to capture root images. The controlled imaging conditions 
often allow simple thresholding methods to segment roots from 
background, and simple image analysis methods, controlled by 
the user, can be used to extract total root lengths and counts from 
the resulting binary images. This process is not only destructive 
to the plants but also time-consuming for the scientist.

Though there is existing literature presenting methods that 
count the plant features visible in an image, to our knowledge 
no study has considered automatically counting cassava storage 
roots. Automated counting methods have focussed on counting 
shoot features such as leaves (Giuffrida et al, 2015; Aich and 
Stavness, 2017; Ubbens and Stavness, 2017), plants (Ribera 
et al., 2017; Aich et al., 2018), seeds (Uzal et al., 2018), and fruits 
(Chen et al., 2017; Rahnemoonfar and Sheppard, 2017). Current 
approaches are all based on deep CNNs, and can be broadly 
divided into three categories: counting by segmentation, and 
direct image-to-count by class prediction or regression.

Methods that adopt a segmentation-based approach (Aich and 
Stavness, 2017; Aich et al., 2018) first identify pixels arising from 
the relevant plant component(s) in, usually, RGB images, using a 
CNN-based segmentation model. Aich et al. (Aich et al., 2018) 
counted leaves by summing the predictions of image patches 
from a deep CNN model. However, in Aich and Stavness, 2017, 
both the RGB image and the corresponding binary segmentation 
image produced by the CNN were used to estimate the number 
of leaves. The complexity of the images involved means that 
segmentation approaches may generate spurious segmentations 
that in turn lead to inaccurate counts.

Regression-based approaches usually pose the counting task 
as a non-linear regression problem, regressing the output of the 
final CNN to a single value which represents the object count. 
Giuffrida et al. (2015) used this approach, converting images to 
log-polar form to benefit from the information present in the 
natural radial structure of the plants. They extracted patches 
from the log-polar image to form a feature vector which was 
used to train a support vector regression network to predict leaf 
number. This study, however, uses perfect segmentation together 
with the image and it is not clear how robust the system is to 
segmentation errors.

Such a regression-based approach is effective, but introduces 
a non-linear regression problem of very high dimensionality, 
which can be avoided by image-to-count class prediction 
methods (Ubbens and Stavness, 2017; Ribera et al., 2017; Uzal 
et al., 2018). This approach treats the counting problem as one of 
classification. Direct image-to-count prediction methods that use 
a deep CNN typically have their final layer made up of a number 
of neurons equal to the maximum number of plant features to be 
counted. Ubbens and Stavness (Ubbens and Stavness, 2017) have 
shown that this method outperforms both the segmentation- 
and regression-based approaches. However, the problem with 

this approach is that samples representing all classes must be 
available. If some classes are not represented well, the network 
cannot be trained.

One way of overcoming this problem of missing data is 
to generate synthetic images for non-represented or under-
represented classes. Various methods for generating synthetic 
data have been proposed in the computer vision literature. Recent 
state-of-the-art methods commonly use conditional GANs (Isola 
et al., 2017). A conditional GAN is a general-purpose solution to 
image-to-image translation problems. Conditional GANs learn 
the mapping from an input image to an output image, as well 
as a loss function to learn this mapping. Some previous works 
(Giuffrida et al., 2017; Ward et al., 2018; Zhu et al., 2018), have 
reported using a GAN for image-to-image mapping in plant 
phenotyping. These methods used the GAN to generate synthetic 
images to augment real data for leaf counting in the CVPPP 2017 
LCC dataset (Scharr et al., 2017) and showed that the testing 
error is reduced compared with all the other state-of-the-art 
methods reported to date for the challenge.

DaTaSeTS
We use two combined plant image datasets, which we refer 
to as the "old" and "young" cassava root sets, to perform all of 
our experiments. Figure 1 shows samples taken from each of 
these. The top row comprises sample images drawn from the 
"old" dataset and the bottom from the "young." The "old" roots 
dataset is made up of cassava roots that are at least two and a 
half months old, while the young dataset contains images of roots 
that are less than two and a half months. Though they may have 
very similar size, color, and texture, some roots considered to 
be storage roots when seen in "young" cassava plants would not 
be classed as storage roots when they appear later in the plant's 
development, in "old" plants: storage root identification must 
therefore consider plant age. We therefore first classify an unseen 
image as containing "new" or "old" roots, then count storage roots 
taking that classification into account, as the analysis challenge 
presented by the two age groups is very different.

Three semi-aeroponic systems (fog, drip and spray) designed 
and constructed at the International Center for Tropical 
Agriculture (CIAT), Colombia, were used to grow and image 
cassava roots (Selvaraj, 2019). Semi-aeroponic growth made it is 
easier to record cassava root images at regular intervals without 
disturbing or damaging the plants. We captured images at a 
resolution of 960 × 720 pixels using Logitech C922 Pro Stream 
Webcams with a custom-developed capture software tool, built 
on the OpenCV library (Intel Corporation, 2017). When imaging, 
the cassava plants were taken from the semi-aeroponic chambers 
and their roots hung carefully over a black background. Cassava 
experts from CIAT segmented the cassava storage roots from the 
captured images using a further custom-built annotation tool, 
and at the same time provided a manual count of the storage 
roots to form our annotated cassava root datasets. Each dataset 
was divided randomly following an "80/20" train/test split and 
the training data subjected to a further "80/20" train/validation 
split. Images were normalized by scaling their RGB values to the 
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range 0–1. Image annotations were converted to a class label and 
then to a binary class matrix (one-hot encoding) before passing 
them to the deep neural networks. Example real data and classes 
can be seen in Figure 2.

IMage PReDICTION aND geNeRaTION 
MeThODS
The storage root counting system proposed, and experimental 
evaluation conducted, here relies upon variations of two 
popular CNN networks: SegNet and DenseNet. In each case 
we reduced the number of model parameters using separable 
convolution, before training the resulting networks on the 
datasets described above, and synthetic images generated by a 
conditional GAN.

Separable Convolution
MobileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 
2018) and Xception (Chollet, 2017) previously used separable 
convolution to reduce the number of model parameters. 
Separable convolution reduces the number of multiplications 
and additions in the convolution operation, thus reducing the 
model's weight matrix and speeding up both the training and 
application of large CNNs.

A 2D convolution can be defined as in Equation 1.
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where x is the (m × n) matrix being convolved with a (k × k) kernel h. 
If the kernel h can be separated into two kernels, say h1 of dimension 
(m × 1) and h2 of dimension (1 × n), then the 2D convolution can be 
expressed in terms of two 1D convolutions as in Equation 2.
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The 2D convolution requires k × k multiplications and 
additions. However, separable convolution has its kernels 
decomposed into two 1D kernels, which then reduces the 
multiplications and additions to k + k and thus reduces the 
number of model parameters.

age-Prediction and CNN-Based Count 
Models
Our Age-Prediction and CNN-Based count models both use 
the DenseNet (Huang et al., 2017) architecture but with some 

FIgURe 2 | This figure shows sample real cassava root images drawn from our datasets. The top row shows the cassava root images and the bottom, the ground 
truth annotation (segmentation mask and number of storage roots). The challenge of identifying storage roots is particularly evident in the one storage root image.
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minor changes. To decrease the model parameters, we reduced 
the 1 × 1 and 3 × 3 convolution blocks in the first dense block to 
3, the second to 6, third to 12, and fourth to 8 and converted 2D 
convolutions to 2D separable convolutions. However, we used a 
classification layer similar to the original DenseNet: 7 × 7 global 
average pool, 7D fully-connected layer with a softmax activation 
(CNN-Based Count model only), and 2D fully-connected layer 
with a softmax activation (Age-Prediction model only). The 
reduced-parameter architecture is shown in Figure 3.

Synthetic Cassava Root generation Model
Our synthetic cassava root generation model uses a conditional 
GAN (Isola et al., 2017). The GAN comprises a generative and 
discriminative network chained together to make a composite 
model for training end-to-end. The network learns a mapping 
from the input mask to an output image, as well as a loss function 
to train the mapping (see Figure 4). We adapted our network 
architectures from those in Isola et al. (2017) and deposited 
the code in the GitHub repository1. Similar to Isola et al. 
(2017), our generator uses a “U-Net”-based architecture and a 
“PatchGAN”classifier with a patch size of 60 × 45. Both generator 
and discriminator use modules of the form convolution-
BatchNorm-ReLu (ie. a 2D convolution followed by a Batch 
Normalization and then Rectified Linear Unit respectively). We 
use the convolution block “Conv2D-LeakyReLU-BatchNorm” 
(ie. a 2D convolution followed by a leaky Rectifier Unit and 
then a Batch Normalization respectively) denoted by Ci and the 
“Convolution-Dropout-BatchNorm” block, CDi, where i is the 
number of filters. The convolutions are 4 × 4 spatial filters applied 
with stride 2. The convolutions in the encoder of both generative 
and discriminative models are downsampled by a factor of 2 and 
the decoder in the generative model up-samples by a factor of 2. 
Our generative model’s encoder has:

 

C C C C C

C C C C C

64 128 256 512 512

512 512 512 512 51

⇒ ⇒ ⇒ ⇒

⇒ ⇒ ⇒ ⇒ ⇒ 22  

The decoder has:

D D D D D D D D D512 512 512 512 512 512 256 128 64⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

We used the BatchNorm to improve the model's training 
procedure, thus allowing us to use much higher learning rates. 
ReLU is a type of activation function, which is defined as y = 
max(0, x), meaning for all negative values of x, y = 0 and y = x 
otherwise. On the other hand, the Leaky ReLU has a small 
gradient for negative values, instead of zero (for example, y = 
0.01x when x < 0).

The difference between our model and that in Isola et al. (2017) 
is that our encoder and decoder are both two blocks deeper. Here, 
we replace the MSE-based content loss with a loss calculated 
over feature maps of the VGG network, which are more robust 

1 https://github.com/Amotica/CNN-Based-Cassava-Storage-Roots-Counting/
tree/master/rootGAN

to changes in the pixel space. We used the pre-trained VGG-16 
network instead of the VGG-19. The discriminator architecture 
has a 60 × 45 patchGAN:

 D D D D64 128 256 512⇒ ⇒ ⇒  

Our approach, which we refer to as a "CNN-based count 
model," first predicts the age of the root from an image using 
the age-prediction model in Age-Prediction and CNN-Based 
Count Models. This prediction helps determine whether to use 
the "old" or "young" CNN-based model to count the number 
of storage roots in the given image. It should be stressed that 
while the architectures of these models are identical, they are 
trained on the distinct age datasets. Figure 5 summarizes 
our method.

Segmentation-CNN Model
For our deep segmentation CNN model—used in our 
experimental evaluation of the proposed method as a comparison 
approach—we used a a VGG-16 style architecture similar 
to SegNet (Badrinarayanan et al., 2017). We followed the 
convolution layers in each encoder with a batch normalization 
and ReLU activation except for the last block, where we placed 
a max-pooling at the end of each encoder block. Max-pooling 
is a sample-based discretization process, which down-samples 
the input images by reducing their dimensionality. We used the 
same settings as Badrinarayanan et al. (2017), with max-pooling 
indices for up-sampling. 2D convolutions were replaced with 2D 
separable convolutions to reduce the number of model parameters 
and produce a model similar to the Lite CNN models in (Atanbori 
et al., 2018). The convolution layers in both the encoder and 
decoder were made separable, and batch normalization and 
ReLU activations applied to the separated convolutions. The first 
convolution of the network was, however, not separated, as this 
captures important, high-detail features. The reduced architecture 
is illustrated in Figure 6. To provide a point of comparison with 
the direct prediction method, a storage root count is obtained 
from the segmentation mask produced by the SegNet-based 
CNN, following noise removal using morphological operations, 
by counting the number of contours in the mask.

eXPeRIMeNTal eValUaTION
We combined the cassava root datasets detailed in Datasets, 
and the CNN architectures presented in Image Prediction and 
Generation Methods to perform the following experiments:

• The conditional GAN architecture described in Synthetic 
Cassava Root Generation Model was used to generate synthetic 
cassava root images from storage root segmentation masks 
derived from the ground truth segmentations manually 
created at CIAT. The similarity of synthetic and natural 
images was quantitatively evaluated by comparing the results 
of segmenting those images with the segmentation network 
presented in Segmentation-CNN Model. The hypothesis is that 
if synthetic and real images can be automatically segmented 
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FIgURe 3 | Our reduced-parameter DenseNet architecture has four dense blocks. Each dense block is made up of a 2D separable Convolution 
(SeparableConv2D), Batch Normalization (BN), and ReLU activations.

FIgURe 4 | Our generative model (G) learns the mapping between cassava storage root masks and cassava roots. Then given a cassava storage root masks (x), 
the generator predicts the cassava root image (G(x)) and the Discriminator (D) determines if the generated cassava storage root (G(x)) is fake or real.

FIgURe 5 | Block diagram of our Convolutional Neural Network (CNN)-Based Count Model.
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with similar accuracy, the synthetic data is likely suitable as 
additional training data when training the counting networks.

• The age-prediction network described in Age-Prediction and 
CNN-Based Count Models was used to classify real images 
of cassava roots as "young" or "old." The performance of this 
tool is evaluated in the usual way, as a classification task. The 
motivation for this test is to show we can identify root age 
with sufficient accuracy that a suitable counting model (ie. 
optimized for younger or older roots) can then be selected for 
the image in question.

• Two instantiations of the root counting network architecture 
described in Age-Prediction and CNN-Based Count Models 
were trained, both using real and synthetic images, to perform 
a direct image-to-count mapping. One of these models is 
trained for "young" root images, and one for "old" images. 
Performance of each of these networks was quantitatively 
compared to manually obtained ground truth. Results were 
also compared with identical measures of performance 
obtained using the segmentation-based approach described in 
Segmentation-CNN Model.

To train the image generation GAN we apply an Adam solver 
with a learning rate of 0.0002, and momentum parameters of 
β1 = 0.5 β2 = 0.999. For this experiment, we trained the network 
from scratch for 900 epochs and used a batch size of 2. Similar 
to Ledig et al. (2017), we minimize the MSE between features 
extracted with a pre-trained VGG19 model for real and synthetic 
root images. We did this because the pixel-wise loss functions 
such as MSE usually struggle to handle the uncertainty inherent 

in recovering lost high-frequency details such as texture. As input 
to the GAN, we supply a storage root mask, which can derive 
from a mask from an existing image with the same root count, or, 
in the case of missing data for a class (such as a lack of real data 
of plants with five storage roots), can be synthesized. To generate 
such a novel mask, masks of different root counts were combined 
before being passed into the GAN (see Figure 4).

We set the batch size of the segmentation CNN model to 2 
and the age-prediction and CNN-based count models to 32. The 
input image resolution of the segmentation CNN is 640 × 480 
pixels: large enough to maintain details of young cassava storage 
roots and small enough for the network to train reasonably 
quickly. The input image resolution of the Age-Prediction and 
CNN-based Count models is 256 × 256 pixels, large enough 
to maintain the storage root structure but again small enough 
for the model to train efficiently. Data augmentation applied 
consists of a zoom range of 0.2, brightness scaling ranging 
between 0.2 and 1.0, a rotation range of 10 degrees, and a 
horizontal flip.

We implemented all our models using Python 3.5.3 and Keras 
2.0.6 with a Tensorflow backend, and trained them on a Linux 
server with three GeForce GTX TITAN X GPUs (12 GB memory 
each). Testing was carried out on a Windows 10 computer with 
64GB RAM and a 3.6GHz processor.

Metrics Used
We used the “SegNet-score,” which is similar to the "FCN-score" 
used in Isola et al. (2017) to quantitatively evaluate our generative 

FIgURe 6 | The architecture of our Lite-SegNet model is a typical VGG-16 architecture with only four blocks. The building blocks comprise of a 2D Convolution 
(Conv2D), 2D separable Convolution (SeparableConv2D), Batch Normalization (BN), a ReLU activation, Max Pooling, and Upsampling. This network is used to 
generate a reference root segmentation to help evaluate our Generative Adversarial Network (GAN) and CNN counting models.
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model. The SegNet-scores used in our evaluation include 
Precision, Recall, Pixel Accuracy, and MeanIoU, previously used 
in Atanbori et al. (2018) to evaluate competing segmentation 
models. We have detailed these below:

• Pixel accuracy: This tells us about the overall effectiveness of 
the classifier and is defined in Equation 3.
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• Mean intersection over Union (MeanIoU): This compares 
the similarity and diversity of the complete sample set and is 
defined in Equation 4:
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• Average Precision: This tells us about the class agreement of 
the data labels with the positive labels given by the classifier 
and is defined in Equation 5.

 

1

1
1

c
n

n

ii

ji
j

c
i

c

∗

=
= ∑∑

 

(5)

• Average Recall: This is the effectiveness of classifier to identify 
positive labels and is defined in Equation 6.

 

1

1
1

c
n

n

ii

ij
j

c
i

c

∗

=
= ∑∑

 

(6)

where nij is the number of pixels of class i predicted to belong to 
class j, nji is the number of pixels of class j predicted to belong to 
class i, and c is the total number of classes.

We used the metrics reported in Giuffrida et al. (2015) for 
evaluating the leaf counting challenge to compare our CNN-based 
count model with the count derived from the Seg-Based Model. 
We choose to use these metrics since they have been widely used 
by the plant phenotyping community when evaluating counting 
models. They are:

• PercentAgreement, indicating in how many cases the 
algorithmic estimation agrees with ground truth

• CountDiff, average difference between algorithmic estimation 
of the count and ground truth, reported as mean and SD

• AbsCountDiff, average of absolute count errors, and reported 
as mean (SD)

• Mean Squared Error (MSE), the average squared difference 
between the predicted and ground truth values.

ReSUlTS
As we need to generate synthetic images to fill in classes of root 
numbers which are missing training images, and to augment 
other data-poor classes, we first examine the success of our 
GAN-based synthetic image generation approach. We compared 
our synthetically-generated cassava images (see Figure 7 and 
Supplemental Data for examples) against real images using 
the SegNet-scores, which we have detailed in Metrics Used, and 
present the results in Table 1. The SegNet-scores we considered 
are Precision, Recall, Pixel Accuracy, and MeanIoU.

The results reported were based on using the segmentation 
model trained on real images, for testing real and synthetically 
generated cassava images. The reasoning is that if the synthetic 
images are sufficiently similar to real images, then the model should 
be able to segment the synthetic images with comparable accuracy; 
if the generated images are visually different to the real images, 
segmentation will fail. From Table 1, it can be seen that although 
the SegNet-scores of the synthetically generated cassava images 
are lower than those associated with real images, the difference is 
small—only 4% based on the MeanIoU, and even smaller when 
considering the other metrics. From this, we observe that if the 
synthetic images can be segmented almost as well as the real images, 
they will be suitable as synthetic data to replace missing real images 
in the training data for the counting CNN procedure.

In order to choose an appropriate counting CNN model, we 
must estimate the age of the plant in an image as either young or 
old. Therefore, we next evaluate classifying cassava images from 
each dataset into featuring either old (≥ 2.5 months) or young  
(< 2.5 months) cassava roots using our age-prediction model. Results 
are presented in Table 2. These results are then used as input into 
our CNN-based count model to count storage roots. Storage roots 
of an image predicted as "young" are counted using the CNN-based 
model trained on "young" cassava roots whereas those predicted as 
"old" are counted by the model trained on old cassava roots.

We then evaluated our CNN-based cassava storage roots 
counting model, comparing counts generated by our CNN 
model with counts generated from an image processing pipeline 
deriving from the Seg-Based model. We evaluated using the test-
split (data from train/test split), test data (taken from the field 
after building the models), and combined test data (both test-
split and test data). The results are presented in Tables 3, 4, and 5, 
respectively, and some good quality example outputs are shown 
in Figure 9 (error cases are raised in the discussion).

The CNN-based model (ours) outperformed the Seg-Based 
system based on all metrics and test data splits reported. The 
difference is more than 36% for "old" roots and 25% for "young" roots 
based on the test-split data only. However, based on the combined 
test data (both test and test-splits), this is 39% and 23%. In all cases 
our CNN-based approach outperforms the segmentation-based 
approach. We present a discussion of these results in Discussion.

Discussion
We generated synthetic images for only the "old" cassava storage 
roots (≥2.5 months). We did this since our model requires all 
classes of the dataset (ie. all possible numbers of storage roots) to 
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be present, but this age category had some missing. Based on the 
"SegNet-Scores," our synthetically generated cassava images are 
comparable to real images and therefore should be able to be used 
to train our CNN-based count models. Figure 7 shows the results 
of synthetic images generated using our generative model. Visually 
inspecting these images also show that they are comparable to the 

FIgURe 7 | Our generative model (GAN) results: The first row show results of generated synthetic cassava roots images, all having five storage roots; no images 
of this class are present in the real image dataset, hence requiring synthetic generation. The last row shows results of generated synthetic cassava root images 
featuring a variety of storage root numbers. More examples from our GAN network can be seen in Supplemental Images S1–S3.

TaBle 1 | Comparison of segmenting synthetically generated cassava images 
versus the real images using the SegNet-scores: Precision, Recall, Pixel 
Accuracy, and MeanIoU.

Data Precision Recall Pixel accuracy MeanIOU

Real 99.30% 99.30% 99.30% 70.35%
Synthetic 98.38% 98.36% 98.48% 65.56%

TaBle 2 | Percentage of correctly classified images for young and old root 
classes, using the age-prediction model.

Test-split Test data Combined

Old 95% 71% 83%
Young 99% 100% 100%
Overall 97% 86% 91%

Test-split represents data from the train/test split, test data is taken from the field after 
building the models, and combined data comprises both test-split and test data.

TaBle 3 | Comparison of storage root-counting accuracy for our proposed 
Convolutional Neural Network (CNN)-based approach versus a more traditional 
segmentation-based approach.

% 
agreement

CountDiff aBS 
CountDiff

MSe

CNN-Based Old 90% 0.17 ± 0.79 0.26 ± 0.76 0.65
Young 74% 0.08 ± 0.84 0.38 ± 0.76 0.72

Seg-Based Old 54% 1.39 ± 1.92 1.39 ± 1.92 5.61
Young 49% 1.04 ± 1.54 1.08 ± 1.52 3.45

Results from the Test-split data; this is the data from train/test split that was reserved 
for testing the model. We report: %Agreement: the higher the better, CountDiff and 
ABSCountDiff as mean ± SD: the smaller the better and MSE: the smaller the better.

TaBle 4 | Comparison of storage root-counting accuracy for our proposed 
CNN-based approach versus a more traditional segmentation-based approach.

% 
agreement

CountDiff aBS 
CountDiff

MSe

CNN-Based 
(Ours)

Old 70% 0.27 ± 0.96 0.45 ± 0.89 1.00
Young 62% 0.36 ± 1.59 0.79 ± 1.25 3.18

Seg-Based Old 20% 0.09 ± 1.31 1.00 ± 0.85 1.72
Young 46% 1.14 ± 1.25 1.14 ± 1.25 3.64

Results here are from new isolated test data after the model was built. We report: 
percent agreement: the higher the better, CountDiff and ABSCountDiff as mean ± 
SD: the smaller the better and MSE: the smaller the better.
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real images (c.f. Figure 1). Even though the synthetically generated 
images were high resolution (960 × 720), they were less blurry, 
since our perceptual loss function, which uses the high-level 
feature maps of the VGG network adopted from Ledig et al. (2017) 
has been shown to produce less blurry images than an L1-Loss 
function, for example. We thus effectively use the generated images 
to supplement the real ones for training our count-model.

The correct prediction rate of our age-prediction model on 
our "old" roots is 83%, which by itself can be considered a good 
result. However, we observed that the model performs better in 
correctly predicting "young" cassava roots than the "old" ones. 
This is evidenced in the correct prediction rates reported in 
Table 2. The difference in the correct prediction rate between 
"young" and "old" roots is 4% on the test-split data, 29% on the 
test data collected after training the model, and 17% based on the 
combined test sets. We have also shown results of some correctly 
and incorrectly predicted ages of cassava storage root in Figure 8. 

Most of the incorrect predictions lie closer to the boundary age 
(2.5 months) of "old" and "young" roots. The second and third 
images in row two of Figure 8 shows some of these types of 
incorrect age predictions. Other incorrectly classified images 
were varieties of cassava roots that were poorly represented in 
the training data (images 1 and 4 in row two of Figure 8).

The "old" cassava roots are usually correctly counted by the CNN-
based model (ours) and Seg-Based model. "Young" roots with well-
defined storage roots are also very likely to be correctly counted by 
both models. Figure 9 shows the results of correctly counted storage 
roots. The top row shows images of the "old" cassava roots that are 
correctly counted and the bottom the "young" ones. Clearly, "young" 
roots with well-defined storage roots are correctly counted by both 
models [especially the CNN-Based model (ours)]. However, overall, 
counting the "old" cassava storage roots are more successful than the 
"young" ones as their storage roots are well-defined.

We have observed that our CNN-based counting model 
outperforms the Seg-based model substantially based on 
both datasets. The reason for this difference is that the Seg-
based model uses the masks of cassava storage roots, which 
sometimes overlaps, thus making them difficult to count. 
However, because the CNN-Based model (ours) does not 
rely on segmented masks, it is usually more successful on 
this type of images. Furthermore, the "Seg-Based" model fails 
to correctly count the storage roots when there is incorrect 
segmentation from the segmentation-CNN model. There are 
also additional cases when both our "CNN-Based" and "Seg-
Based" models incorrectly count roots (see Figure 10). Again, 

TaBle 5 | The table shows results from combining the Test and test-split Data.

% 
agreement

CountDiff aBS 
CountDiff

MSe

CNN-Based 
(Ours)

Old 86% 0.12 ± 0.77 0.24 ± 0.74 0.61
Young 71% 0.14 ± 1.06 0.47 ± 0.96 1.14

Seg-Based Old 47% 0.84 ± 1.63 1.04 ± 1.51 3.37
Young 48% 1.08 ± 1.49 1.11 ± 1.47 3.38

We reported %Agreement—the higher the better, CountDiff and ABSCountDiff as 
mean ± SD—the smaller the better and MSE—the smaller the better.

FIgURe 8 | Example results of our age-prediction model. Top row shows images of correctly predicted age; bottom row shows incorrect predictions. More age 
prediction example images can be seen in Supplemental Images S4–S9.

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 151697

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


CNN Cassava Storage Root CountingAtanbori et al.

12

FIgURe 9 | The figure shows correctly counted storage roots, with the top row showing "old" storage roots and the bottom, "young" ones. More examples of 
outputs for the counting networks can be seen in Supplemental Images S10–S15.

FIgURe 10 | The figure shows incorrectly counted storage roots, with the top row showing results from the CNN-based model and the bottom, the 
Seg-based model.
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this happens more in "young" roots where storage roots are 
visibly harder to pick out, and also varieties of cassava that are 
under-represented in the training set. Perhaps more insight 
could be gained into these errors by building in an explainable 
approach to the deep learning. To elucidate why decisions are 
made by the deep learning system, future systems will attempt 
to reveal to the user regions which are used in the counting 
process. Understanding the exact mechanism of GAN-based 
image generation is more challenging, and is a focus of current 
research.

CONClUSION
We proposed two convolutional network architectures for 
counting "old" and "young" cassava storage roots, which we refer 
to as "old" and "young" CNN-Based count models respectively. 
Since we needed two models, we further proposed a CNN-based 
age-prediction architecture that first classifies storage roots 
as either "old" or "young" and then use the appropriate CNN-
based count model to predict the number of storage roots. In 
our experiments, the age-prediction model achieved a state-of-
the-art prediction accuracy on both datasets. We evaluated our 
CNN-based count model with a similar approach that uses a 
segmentation based method, and it outperformed it considerably.

We generated synthetic images for missing count classes 
in the "old" root dataset since our approach requires data for 
all classes, and found that they are comparable (both visually 
and when automatically segmented) to the real mages. We 
investigated incorrect counting by our model and found they 
were often caused by storage roots lying closer to the boundary 
age (2.5 months) used to separate "old" and "young" roots. We also 
found some incorrect classifications caused by testing varieties of 
cassava roots that were few or missing from the training data. As 
future work, we propose to collect more data for each variety of 
cassava roots in our dataset, which will help improve our models' 
performance. Even though we can generate these images with our 
conditional GAN, this also requires more data to produce realistic 
images. We also propose to design additional CNN-Based models 
that will predict the total length and volume of cassava storage 
roots, which will help us develop a complete image-based cassava 
root phenotyping system. The approach here has been developed 
to support cassava phenotyping work, in particular to support the 

development of a low-cost aeroponic phenotyping system. Future 
work will need to consider the ease of transfer from this system 
to other, similar systems, and a transfer learning approach may be 
required to update models for new image sets.
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Natural language descriptions of plant phenotypes are a rich source of information for 
genetics and genomics research. We computationally translated descriptions of plant 
phenotypes into structured representations that can be analyzed to identify biologically 
meaningful associations. These representations include the entity–quality (EQ) formalism, 
which uses terms from biological ontologies to represent phenotypes in a standardized, 
semantically rich format, as well as numerical vector representations generated using 
natural language processing (NLP) methods (such as the bag-of-words approach and 
document embedding). We compared resulting phenotype similarity measures to those 
derived from manually curated data to determine the performance of each method. 
Computationally derived EQ and vector representations were comparably successful in 
recapitulating biological truth to representations created through manual EQ statement 
curation. Moreover, NLP methods for generating vector representations of phenotypes 
are scalable to large quantities of text because they require no human input. These 
results indicate that it is now possible to computationally and automatically produce and 
populate large-scale information resources that enable researchers to query phenotypic 
descriptions directly.

Keywords: ontology, natural language processing, machine learning, semantic similarity, phenotype, phenologs

BACKGROUND
Phenotypes encompass a wealth of important and useful information about plants, potentially 
including states related to fitness, disease, and agricultural value. They comprise the material 
on which natural and artificial selection act to increase fitness or to achieve desired traits, 
respectively. Determining which genes are associated with traits of interest and understanding 
the nature of these relationships is crucial for manipulating phenotypes. When causal alleles 
for phenotypes of interest are identified, they can be selected for in populations, targeted for 
deletion, or employed as transgenes to introduce desirable traits within and across species. The 
process of identifying candidate genes and specific alleles associated with a trait of interest is 
called candidate gene prediction.

Genes with similar sequences often share biological functions and therefore can create similar 
phenotypes. This is one reason sequence similarity search algorithms like BLAST (Altschul et al., 
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1990) are so useful for candidate gene prediction. However, 
similar phenotypes can also be attributed to the function of 
genes that have no sequence similarity. This is how protein-
coding genes that are involved in different steps of the same 
metabolic pathway or transcription factors involved in regulating 
gene expression contribute to shared phenotypes. For example, 
knocking out any one of the many genes involved in the maize 
anthocyanin pathway can result in pigment changes (reviewed 
in Sharma et  al., 2011). This concept is modelled in Figure 1, 
where, notably, the sequence-based search with Gene 1 as a query 
can only return genes with similar sequences, but querying for 
similar phenotypes to those associated with Gene 1 returns many 
additional candidate genes.

High-throughput and computational phenotyping methods 
are largely sensor and image-based (Fahlgren et  al., 2015). 
These methods can produce standardized datasets such that, 
for example, an image can be analyzed, data can be extracted, 
and those data can be interrogated (Green et  al., 2012; Gehan 
et  al., 2017; Miller et  al., 2017). However, while such methods 
are adept at comparing phenotypic information between plants 
that are physically similar, they are limited in their ability to 
transfer this knowledge between physically dissimilar species. 
For example, traits such as leaf angle vary greatly among different 
species, and therefore cannot be compared directly. Moreover, 
where shared pathways and processes are conserved across broad 
evolutionary distances, it can be hard to identify equivalent 
phenotypes. McGary et al. (2010) call these non-obvious shared 
phenotypes phenologs. Between species, phenologs may present 
as equivalent properties in disparate biological structures (Braun 
et  al., 2018). For example, Arabidopsis KIN-13A mutants and 
mouse KIF2A mutants both show increased branching in single-
celled structures, but with respect to neurons in mouse (Homma 

et  al., 2003) and with respect to trichomes in Arabidopsis (Lu 
et al., 2004). Taken together, the ability to compute on phenotypic 
descriptions to identify phenologs within and across species has 
the potential to aid in the identification of novel candidate genes 
that cannot be identified by sequence-based methods alone and 
that cannot be identified via image analysis.

In order to identify phenologs, some methods rely on searching 
for shared orthologs between causal gene sets (McGary et al., 2010; 
Woods et al., 2013). For example, McGary et al. (2010) identified 
a phenolog relationship between “abnormal heart development” 
in mouse and “defective response to red light” in Arabidopsis by 
identifying four orthologous genes between the sets of known 
causal genes in each species. However, these methods are not 
applicable when the known causal gene set for one phenotype or 
the other is small or non-existent. In these cases, using natural 
language descriptions to identify phenologs avoids this problem 
by relying only on characteristics of the phenotypes, per se. These 
phenotypic descriptions are a rich source of information that, if 
leveraged to identify phenolog pairs, can enable identification 
of novel candidate genes potentially involved in generating 
phenotypes beyond what has already been described.

Unfortunately, computing on phenotype descriptions is not 
straightforward. Text descriptions of phenotypes present in the 
literature and in online databases are irregular because natural 
language representations of even very similar phenotypes can be 
highly variable. This makes reliable quantification of phenotype 
similarity particularly challenging (Thessen et  al., 2012; Braun 
et al., 2018). To represent phenotypes in a computable manner, 
researchers have recently begun to translate and standardize 
phenotype descriptions into entity–quality (EQ) statements 
composed of ontology terms, where an entity (e.g., “leaf ”) 
is modified by a quality (e.g., “increased length”; Mungall 

FiGURE 1 | Conceptual comparison of querying with a gene sequence or its associated phenotypic description. Genes are shown as white ovals. Methods of 
searching for related genes are shown as light gray boxes. Gray dashed arrows indicate the path from the query gene to the set of genes that are returned from 
the search. Solid black arrows indicate relationships between genes in a biological pathway or gene regulatory network. Dashed black arrows indicate relationships 
between the pathway or network and the resulting phenotype.
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et  al., 2010).1 Using this formalism, complex phenotypes are 
represented by multiple EQ statements. For example, multiple 
EQ statements are required to represent dwarfism, where the 
entity and quality pairs (“plant height,” “reduced”) and (“leaf 
width,” “increased”) may be used, among others. Each of these 
phenotypic components of the more general phenotype is termed 
a “phene.” Because both entities and qualities are represented by 
terms from biological ontologies (fixed vocabularies arranged as 
hierarchical concepts in a directed acyclic graph), quantifying the 
similarity between two phenotypes that have been translated to 
EQ statements can be accomplished using graph-based similarity 
metrics (Hoehndorf et al., 2011; Slimani, 2013). Such techniques 
for estimating semantic similarity based on arranging concepts 
hierarchically in a graph have long been employed in the field 
of natural language processing (NLP; e.g., Resnik, 1999) and, as 
applied to biological ontologies, have been useful in applications 
from clustering gene function annotations for data visualization 
(Supek et al., 2011) to assessing functional similarities between 
orthologous genes (Altenhoff et al., 2016).

Oellrich, Walls et al. (2015) developed Plant PhenomeNET, an 
EQ statement-based resource primarily consisting of a phenotype 
similarity network containing phenotypes across six different 
model plant species, namely, Arabidopsis (Arabidopsis thaliana), 
maize (Zea mays ssp. mays), tomato (Solanum lycopersicum), rice 
(Oryza sativa), Medicago (Medicago truncatula), and soybean 
(Glycine max). Their analysis demonstrated that the method 
developed by Hoehndorf et al. (2011) could be used to recover 
known genotype to phenotype associations for plants. The authors 
found that highly similar phenotypes in the network (phenologs) 
were likely to share causal genes that were orthologous or involved 
in the same biological pathways. In constructing the network, 
text statements comprising each phenotype were converted by 
hand into EQ statements primarily composed of terms from the 
Phenotype and Trait Ontology (PATO; Gkoutos et  al., 2005), 
Plant Ontology (PO; Cooper et al., 2013), Gene Ontology (GO; 
Ashburner et  al., 2000), and Chemical Entities of Biological 
Interest (ChEBI; Hastings et al., 2013) ontology.

The success of this plant phenotype pilot project was 
encouraging, but to scale up to computing on all available 
phenotypic data for each of the six species was not a reasonable 
goal given that curating data for this pilot project took 
approximately 2 years and covered only phenotypes of dominant 
alleles for 2,747 genes across the six species. More specifically, 
human translation of text statements into EQ statements is the 
most time-consuming aspect of generating phenotype similarity 
networks using this method. Automation of this translation 
promises to increase the rate at which such networks can be 
generated and expanded. Notable efforts to automate this process 
include Semantic Charaparser (Cui, 2012; Cui et al., 2015), which 
extracts characters (entities) and their corresponding states 
(qualities) after a curation step that involves assigning terms to 
categories and then mapping these characters and states to EQ 
statements constructed from input ontologies. Other existing 

1In relation to sentence structure, the entity represents the subject and the quality 
represents the predicate. Qualities are also elsewhere referred to as attributes, 
features, or characteristics of a biological structure or process.

annotation tools such as NCBO Annotator (Musen et al., 2012) 
and NOBLE Coder (Tseytlin et  al., 2016) are fully automated, 
relying only on input ontologies. Both map words in the input 
text to ontology terms without imposing an EQ statement 
structure. State-of-the-art machine learning approaches to 
annotating text with ontology terms also have been developed 
(Hailu et al., 2019). These can be trained using a dataset such as 
the Colorado Richly Annotated Full-Text corpus (CRAFT; Bada 
et al., 2012), but are not readily transferable to ontologies that are 
not represented in the training set.

In addition to using ontology-based methods, similarity 
between text descriptions of phenotypes can also be quantified 
using NLP techniques such as treating each description as a 
bag-of-words and comparing the presence or absence of those 
words between descriptions, or using neural network-based 
tools such as Doc2Vec to embed descriptions into abstract 
high-dimensional numerical vectors between which similarity 
metrics can then be easily applied (Mikolov et al., 2013; Le and 
Mikolov, 2014). Conceptually, this process involves converting 
natural language descriptions into locations in space, such that 
descriptions that are near each other are interpreted as having 
high similarity and those that are distant have low similarity.

In this work, we demonstrate that automated techniques for 
generating computable representations of natural language can 
be applied to a dataset of phenotypic descriptions in order to 
generate biologically meaningful phenotype similarity networks. 
See Figure 2 for an overview of how phenotype similarity 
networks are computationally generated as an output when 
text descriptions are provided as the input. We first show that 
these computational techniques are limited in their capability to 
exactly reproduce the annotations and corresponding phenotype 
similarity networks generated with hand-curation. However, 
we subsequently show that the hand-curated network does not 
outperform networks built with purely computational approaches 
on dataset-wide tasks of biological relevance, such as organizing 
genes by function and predicting membership in biochemical 
pathways. Most importantly, we discuss how we can now use 
these computational approaches to automatically generate new 
datasets necessary to identify phenotypic similarities and predict 
gene function within and across species without requiring the 
use of time-consuming and costly hand-curation.

METhODs

Dataset of Phenotypic Descriptions and 
Curated EQ statements
The pairwise phenotype similarity network described in Oellrich, 
Walls et al. (2015) was built based on a dataset of phenotype 
descriptions across six different model plant species (A. thaliana, 
Z. mays ssp. mays, S. lycopersicum, O. sativa, M. truncatula, and 
G. max). In that work, each phenotype description was split into 
one or more atomized statements describing individual phenes, 
each of which mapped to exactly one curated EQ statement 
(Table 1). The EQ statements in this dataset were primarily built 
from terms present in PATO, PO, GO, and ChEBI. For this work, 
we used this existing dataset as the source of genes and associated 
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phenotypic descriptions on which to test automated methods for 
assessing similarity networks between phenotypes and using the 
resulting phenotype similarity networks to perform comparative 
analyses across the whole dataset to predict gene function.

Computationally Generating EQ 
statements From Phenotypic Descriptions
For each phenotype and phene description in the dataset, we 
computationally generated corresponding EQ statements without 
human interaction. To accomplish this, terms were first annotated 
to each text description and then combined to form complete EQ 
statements. Two different existing computational tools and a simple 
machine learning technique were used to map ontology terms to text 
descriptions. Specifically, these were NCBO Annotator and NOBLE 
Coder, which are tools for matching ontology terms to specific words 
in text, and a Naïve Bayes bag-of-words classifier, which assigns 
terms to descriptions based on the observed frequencies of term–
word co-occurrence in a training dataset. The Oellrich, Walls et al. 
(2015) dataset of descriptions and curated EQ statements was split 
into four groups such that any three groups of the dataset were used 

to train a Naïve Bayes model that was then applied to the remaining 
group. The result of applying these three annotation methods was 
a set of ontology terms from PATO, PO, GO, and ChEBI assigned 
to each text description. Terms were then combined to form full 
EQ statements by assigning default root terms where none were 
matched, such as the entity term whole plant (PO:0000003), and 
organizing the matched terms into the different roles of the EQ 
statement by removing overlapping terms and automatically 
applying compositional rules used by curators in Oellrich, Walls 
et al. (2015). As an example, these rules include the fact that ChEBI 
terms cannot be the primary entity. The EQ statements were scored 
based on how well the terms aligned with the text description they 
were annotated to, so that the closest matching EQ statements for 
each text description were output and used downstream to generate 
phenotype similarity networks. See the Supplemental Methods 
section for a more detailed description of this process.

Computationally Generating Numerical 
Vectors From Phenotypic Descriptions
In addition to generating EQ statements for each phenotype and 
phene description in the dataset, Doc2Vec was used for generating 
numerical vectors for each description. A model pre-trained on 
Wikipedia was used (Lau and Baldwin, 2016). In these document 
embeddings, positions within the vector do not refer to the 
presence of specific words but rather abstract features learned by 
the model. A size of 300 was used for each vector representation, 
which is the fixed vector size of the pre-trained model. In addition, 
vectors were generated for each description using bag-of-words 
and set-of-words representations of the text. For these methods, 
each position within the vector refers to a particular word in the 
vocabulary. Each vector element with bag-of-words refers to the 
count of that word in the description, and each vector element 
with set-of-words is a binary value indicating presence or absence 
of the word. In cases where phene descriptions were used instead 
of phenotype descriptions, the descriptions were concatenated 
prior to embedding to obtain a single vector.

Creating Gene and Phenotype Networks
Oellrich, Walls et al. (2015) developed a network with phenotypes as 
nodes and similarity between them as edges for all the phenotypes 

FiGURE 2 | Overview of computational pipelines used here to generate phenotype similarity networks from text descriptions of phenotypes. Rounded white 
rectangles represent data in the form of text descriptions as input or network nodes as output. Rounded black rectangles represent the intermediate data forms 
that are computable representations of text descriptions. These allow for quantitative similarity metrics to be applied. Gray rectangles represent computational 
methods carried out at each step. Single-headed arrows represent flow of data through each pipeline. Double-headed arrows represent edges between nodes in 
resulting similarity networks. Values next to double-headed arrows indicate magnitude of phenotype similarity. One output network is created for each computable 
representation, but only one example is shown here.

TABlE 1 | Description of the Oellrich, Walls et al. (2015) dataset in terms of 
number of phenotype descriptions, phene descriptions, and EQ statements.

species Phenotypes Phenes1 EQ statements2

Arabidopsis 1385 5172 5172
Maize 117 373 373
Tomato 90 269 269
Rice 86 340 340
Medicago 40 149 149
Soybean 24 61 61

Example gene: 
Arabidopsis 
PKS2 
(ATIG14280.1)

Phenotype: 
short hypocotyl 
and expanded 
cotyledon under 
hourly far red 
pulses

Phene 1: short 
hypocotyl

PO:0020100 
(hypocotyl) + 
PATO:0000574 
(decreased length)

Phene 2: 
xpanded 
cotyledon

PO:0020030 
(cotyledon) +
PATO:0000586 
(increased size)

1Also referred to as ‘atomized statements’.
2Each EQ statement represents a single specific phene.
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in the dataset. For each type of text representations that we 
generated with computational methods, comparable networks were 
constructed. For EQ statement representations, Jaccard similarity 
either taking the structure and order of terms in the EQ statement 
into account (referred to as metric S1) or ignoring the structure and 
treating the ontology terms in the EQ statement as an unordered set 
(referred to as metric S2) were used to determine edge values. See 
the Supplemental Methods section for a more detailed description of 
these similarity metrics. For vector representations generated using 
Doc2Vec and bag-of-words, cosine similarity was used. For the vector 
representations generated using set-of-words, Jaccard similarity was 
used. These networks are considered to be simultaneously gene 
and phenotype similarity networks because each phenotype in 
the dataset corresponds to a specific causal gene and a node in the 
network represents both that causal gene and its cognate phenotype. 
However, two phenotype descriptions corresponding to the same 
gene are retained as two separate nodes in the network, so while 
each node represents a unique gene/phenotype pair, a single gene 
may be represented within more than one node.

REsUlTs

Performance of Computational Methods in 
Reproducing hand-Curated Annotations
We tested the ability of computational semantic annotation 
methods to assign ontology terms similar to those selected by 
curators to phenotype and phene descriptions in the Oellrich, 
Walls et al. (2015) dataset. Specifically, the ontology terms 
mapped by each method to a particular description were 
compared against the terms present in the EQ statement(s) that 
were created by hand-curation for that same description. Metrics 

of partial precision (PP) and partial recall (PR), as well as the 
harmonic mean of these values (PF1) as a summary statistic, were 
used to evaluate performance (Table 2). Metrics PP and PR were 
applied as in Dahdul et al. (2018); see the Supplemental Methods 
section for a detailed description of these metrics.

NOBLE Coder and NCBO Annotator generally produced 
semantic annotations more similar to the hand-curated 
dataset using phenotype descriptions as inputs than using the 
set of phene descriptions as inputs, a result consistent across 
ontologies. We considered this to be counterintuitive because 
the phene descriptions are more directly related to the individual 
EQ statements in terms of semantic content. However, the set 
of target ontology terms considered correct is larger in the case 
of the phenotype descriptions because this set of terms includes 
all terms in any EQ statements derived from that phenotype 
rather than a single EQ statement, which could contribute to this 
measured increase in both partial recall and partial precision. 
Accounting for synonyms and related words generated through 
Word2Vec models increased PR in the case of specific annotation 
methods as the threshold for word similarity was decreased 
(from 1.0 to 0.5), but did not increase PF1 in any instance due to 
the corresponding losses in PP (Supplemental Figure 1).

NOBLE Coder and NCBO Annotator performed comparably 
in the case of each type of text description and ontology, with 
NOBLE Coder using the precise matching parameter slightly 
outperforming the other annotation method with respect to 
these particular metrics for these particular descriptions. Both 
outperformed the Naïve Bayes classifier, for which performance 
dropped significantly for the ontologies with smaller relative 
representation in the dataset (GO and ChEBI), as might be 
expected. When the results were aggregated, the increase in partial 
recall for PATO, PO, and GO terms relative to the maximum recall 

TABlE 2 | Performance metrics for semantic annotation methods.

Annotator Ontology n1 Phenotype Description Phene Descriptions

PP3 PR3 PF1
3 PP3 PR3 PF1

3

NOBLE Coder (Precise) PATO 7882 0.641 0.627 0.634 0.601 0.572 0.586
PO 5634 0.622 0.380 0.472 0.546 0.294 0.382
GO 1505 0.514 0.521 0.517 0.510 0.514 0.512

NOBLE Coder (Partial) PATO 7882 0.412 0.748 0.532 0.375 0.689 0.486
PO 5634 0.309 0.758 0.439 0.269 0.659 0.382
GO 1505 0.102 0.846 0.182 0.091 0.839 0.165

NCBO Annotator PATO 7882 0.640 0.619 0.629 0.598 0.563 0.580
PO 5634 0.550 0.259 0.352 0.458 0.170 0.248
GO 1505 0.478 0.433 0.454 0.480 0.424 0.450
ChEBI 775 0.429 0.888 0.579 0.431 0.913 0.586

Naïve Bayes Classifier PATO 7882 0.517 0.394 0.447 0.642 0.484 0.552
PO 5634 0.474 0.258 0.334 0.636 0.429 0.512
GO 1505 0.091 0.073 0.081 0.155 0.157 0.156
ChEBI 775 0.035 0.031 0.033 0.001 0.001 0.001

Aggregate Annotations2 PATO 7882 0.412 0.798 0.543 0.383 0.815 0.522
PO 5634 0.351 0.809 0.489 0.304 0.831 0.445
GO 1505 0.107 0.839 0.190 0.090 0.839 0.163
ChEBI 775 0.366 0.890 0.519 0.305 0.913 0.457

1The number of terms from a given ontology in all curated EQ statements in the dataset.
2Annotation set formed by taking the union of the annotations from all other methods.
3Metrics are partial precision and recall (PP, PR; Dahdul et al., 2018) and their harmonic mean (PF1).
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achieved by any individual method indicates that the curated terms 
that were recalled by each method were not entirely overlapping. 
This is as expected given that different methods used for semantic 
annotation recalled target (curated) ontology terms to different 
degrees, as measured by Jaccard similarity of a given target term 
to the closest predicted term annotated by that particular method. 
These sets of obtained similarities to target terms were comparable 
between NCBO Annotator and NOBLE Coder (ρ = 0.84 with 
phene descriptions and ρ = 0.86 with phenotype descriptions) and 
dissimilar between either of those methods and the Naïve Bayes 
classifier (ρ < 0.10 in both cases for either type of description) 
using Spearman rank correlation adjusted for ties.

These results indicate that automated annotation methods 
(NCBO Annotator, NOBLE Coder, and Naïve Bayes classifier) do 
not reproduce the exact same ontology term annotations selected 
by hand-curation for each phenotypic description, as expected. 
Given this result, we next assessed how these differences between 
the hand-curated annotations and computationally generated 
annotations translated into differences between the phenotype 
similarity networks based on these annotations.

Comparing Computational Networks to 
the hand-Curated Network
Oellrich, Walls et al. (2015) developed a network with phenotype/
gene pairs as nodes and similarity between them as edges for all 
phenotypes in the dataset. In this work, comparable networks were 

constructed for the same dataset using a number of computational 
approaches for representing phenotype and phene descriptions and 
for predicting similarity. For the purposes of this assessment, the 
network built from hand-curated EQ statements and described in 
Oellrich, Walls et al. (2015) is considered the gold standard against 
which each network we produced is compared. The computational 
and gold standard networks were compared using the F1 metric to 
assess similarity in predicted phenolog pairs at a range of k values, 
where k is the allowed number of phenolog pairs predicted by the 
networks (the k most highly valued edges). Results are reported 
through k = 583,971, which is the number of non-zero similarities 
between phenotypes in the gold standard network, and were 
repeated using phenotype descriptions and phene descriptions as 
inputs to the computational methods (Figure 3). The simplest NLP 
methods for assessing similarity (set-of-words and bag-of-words) 
consistently recapitulated the gold standard network the best 
using phenotype descriptions, whereas the document embedding 
method using Doc2Vec outperformed these methods for values of 
k ≤ 200,000 based on phene descriptions. The differences in the 
performance of each method are robust to 80% subsampling of the 
phenotypes present in the dataset.

These results illustrate that computational methods do 
not exactly reproduce the phenotype similarity network built 
from the hand-curated EQ statements. However, this does not 
necessarily mean that the hand-curated network is inherently 
more biologically meaningful. To assess how useful each network 
is in a biological context, we next compared how the hand-curated 

FiGURE 3 | Comparison of phenolog pairs identified by predictive methods in comparison to the Oellrich, Walls et al. (2015) dataset. The x-axis indicates the 
number of phenologs pairs (highest valued edges in the phenotype similarity network) at each point. The standard deviation of resampling with 80% of the 
phenotypes in the dataset (network nodes) are indicated by ribbons for each method. Phene descriptions (left) or phenotype descriptions (right) were used as the 
text input for each particular method.
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network and each computational network performed on the task 
of sorting genes into functional groups.

Computational Methods Outperform 
hand-Curation for Gene Functional 
Categorization in Arabidopsis
Lloyd and Meinke (2012) previously organized a set of Arabidopsis 
genes with accompanying phenotype descriptions into a 
functional hierarchy of groups (e.g., “morphological”), classes 
(e.g., “reproductive”), and finally subsets (e.g., “floral”), in order 
from most general to most specific. See Supplemental Table 1 in 
Lloyd and Meinke (2012) for a full specification of this hierarchy 
to which the genes were assigned, and Supplemental Table 2 in 
Lloyd and Meinke (2012) for a mapping between genes and this 
hierarchical vocabulary. Oellrich, Walls et al. (2015) later used this 
set of genes and phenotypes to validate the quality of their dataset 
of hand-curated EQ statements by reporting the average similarity 
of phenotypes (translated into EQ statements) that belonged to the 
same functional subset. We used this same functional hierarchy 
categorization and a similar approach to assess the utility of 
computationally generated representations of phenotypes towards 
correctly categorizing the functions of the corresponding genes 
and to compare this utility against that of the dataset of hand-
curated EQ statements. For each class and subset in the hierarchy, 
the mean similarity between any two phenotypes related to genes 
within that class or subset (“within” mean) was quantified using 
each computable representation of interest and compared to the 
mean similarity between a phenotype related to a gene within that 
class or subset and one outside of it (“between” mean), quantified 

in terms of standard deviation of the distribution of all similarity 
scores generated for each given method. The difference between 
the “within” mean and “between” mean (referred to here as the 
Consistency Index) for each functional category for each method 
indicates the ability of that method to generate strong similarity 
signal for phenotypes in this dataset that share that function 
(Figure 4). In the case of these data, most computational methods 
using either phene or phenotype descriptions as the input text 
were able to recapitulate the signal present in the network Oellrich, 
Walls et al. (2015) generated from hand-curated EQ statements, 
and the simplest NLP methods (bag-of-words and set-of-words) 
produced the most consistent signal.

In order to more directly compare each method on a general 
classification task, networks constructed from curated EQ 
statements and those generated using each computational method 
were used to iteratively classify each Arabidopsis phenotype into 
classes and subsets. This was accomplished by removing one 
phenotype at a time and withholding the remaining phenotypes as 
training data, learning a threshold value from the training data, and 
then classifying the held-out phenotype by calculating its average 
similarity to each training data phenotype in each class or subset 
and classifying it as belonging to any category for which the average 
similarity to other phenotypes in that category exceeded the learned 
threshold. Performance on this classification task using each network 
was assessed using the F1 metric, where the functional category 
assignments for each gene reported by Lloyd and Meinke (2012) were 
considered to be the correct classifications (Table 3). The simplest 
NLP methods (bag-of-words and set-of-words) outperformed the 
Oellrich, Walls et al. (2015) hand-curated EQ statement network on 
this classification task in all cases, while using the computationally 

FiGURE 4 | Heatmap of Consistency Index. The difference between average similarity for two phenotypes within a subset and one phenotype within and one 
outside, for each functional subset defined in the dataset of Arabidopsis phenotypes, and for each method of quantifying similarity between phenotypes is shown, 
with darker cells indicating higher consistency within a subset. Differences are measured in standard deviations of the distributions of similarities obtained for each 
method. The meaning of subset abbreviations are specified in Supplemental Table 1 of Lloyd and Meinke (2012). Methods are listed at left. Input text for calculating 
similarities between the phenotypes were either derived from phenotype descriptions (top) or phene descriptions (bottom). The far right column in the heatmap 
refers to an average Consistency Index for a given method across all subsets.
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generated EQ statements or document embeddings generated with 
Doc2Vec only outperformed the curated EQ statement network in 
some cases.

Taken together, these results indicate that even though the 
computationally generated networks are significantly different 
than the hand-curated network (Figure 3), they generally 
perform equally well or better on tasks related to organizing 
Arabidopsis genes into functional groups. We next examined how 
these networks compare on the task of predicting biochemical 
pathway membership for specific genes, both within a single 
species and across multiple species.

Computational Methods Outperform 
hand-Curation for Recovering Genes 
involved in Anthocyanin Biosynthesis Both 
Within and Between species
Oellrich, Walls et al. (2015) illustrated the utility of using EQ 
statement representations of phenotypes to provide semantic 
information necessary to recover shared membership of causal genes 
in regulatory and metabolic pathways. Specifically, they showed 
that by querying a six-species phenotype similarity network with 
the c2 (colorless2) gene in maize, which is involved in anthocyanin 
biosynthesis, genes c1, r1, and b1 (colorless1, red1, and booster1), 
which are also involved in anthocyanin biosynthesis in maize, are 
recovered. Querying in this instance is defined as returning other 
genes in the similarity network, ranked using the maximal value 
of the edges connecting a phenotype corresponding to the query 
gene and a phenotype corresponding to each other gene in the 
network. There are 2,747 genes in the dataset, so querying with one 
gene returns a ranked list of 2,746 genes. This result was included 
by Oellrich, Walls et al. (2015) as a specific example of the general 
utility of the phenotype similarity network to return other members 
of a pathway or gene regulatory network when querying with a 
single gene. See Figure 1 for a general illustration of this concept.

To evaluate this same utility in the phenotype similarity 
networks we generated using computational methods and to 
compare their utility to that of the network from Oellrich, Walls 
et al. (2015) generated using hand-curated EQ statements, we 
first expanded the set of maize anthocyanin pathway genes to 
include those present in the description of the pathway given 
by Li et al. (2019), and listed in Supplementary Table 1 of that 
publication. Of those genes, 10 are present in the Oellrich, Walls 
et al. (2015) dataset (Table 4). Additionally, we likewise identified 
the set of Arabidopsis genes known to be involved in anthocyanin 

biosynthesis (listed in Table 1 of Appelhagen et  al., 2014) that 
were present in the Oellrich, Walls et al. (2015) dataset. This 
yielded a total of 16 Arabidopsis genes (Table 5).

Recovering Anthocyanin Biosynthesis Genes  
Within a Single Species
Using each phenotype similarity network, each anthocyanin 
biosynthesis gene from one species was iteratively used as a 
query against the network. The rank of each other gene in the set 
of anthocyanin biosynthesis genes corresponding to the same 
species as the query was quantified. We grouped the ranks into 
bins of width 10 for ranks less than or equal to 50 and combined 
all ranks greater than 50 into a single bin. For each phenotype 
similarity network, the mean and standard deviation of the 
number of anthocyanin biosynthesis genes in each bin were 
calculated (Figure 5). The average number of pathway genes 
ranked within the top 10 across all queries was greater for all 
computationally generated networks than for the network built 
from hand-curated EQ statements, although variance across the 
queries was high. In general, computational networks built from 
predicted EQ statements performed best for this task, whereas 
the network built using the hand-curated EQs performed the 
worst. The networks constructed using the numerical vector 
representations (set-of-words, bag-of-words, and Doc2Vec) 
were intermediate in performance as a group (Figure 5).

Recovering Anthocyanin Biosynthesis Genes 
Between Two Species
To determine whether the methods performed similarly both 
within and across species, we repeated the analysis described 
in the previous section (Recovering Anthocyanin Biosynthesis 
Genes Within a Single Species), but instead of quantifying 
the ranks of all anthocyanin biosynthesis genes from the 
same species as the query gene, we quantified the ranks of 
all anthocyanin genes that derived from the other species. In 
other words, Arabidopsis genes were used to query for maize 
genes, and maize genes were used to query for Arabidopsis 
genes. As shown in Figure 6, the phenotype similarity network 
constructed from hand-curated EQ statements did not recover 
(provide ranks of less than or equal to 50) any of the anthocyanin 
biosynthesis genes when queried with genes from the other 
species. Networks generated using the set-of-words and bag-
of-words approaches, or with Doc2Vec, performed similarly, 
recovering on average less than one anthocyanin biosynthesis 
gene per query. Only networks built from computationally 
generated EQ statements recovered an appreciable number of 
anthocyanin biosynthesis genes on average across the queries 
between species (Figure 6).

DisCUssiON

Computationally Generated Phenotype 
Representations Are Useful
A primary purpose for generating representations of phenotypes 
that are easy to compute on (EQ statements, vector embeddings, 
etc.) is to construct similarity networks that enable the use of one 

TABlE 3 | Evaluation (F1 scores) for each method used to categorize 
Arabidopsis genes by function.

Method Phenes Phenotypes

Class subset Class subset

Curated EQ 0.470 0.359 0.470 0.359
Pred EQ S1 0.472 0.472 0.369 0.320
Pred EQ S2 0.504 0.413 0.437 0.368
Set-of-words 0.613 0.447 0.587 0.426
Bag-of-words 0.595 0.423 0.549 0.409
Doc2Vec 0.455 0.331 0.486 0.377
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phenotype as a query to retrieve similar phenotypes. This process 
serves as a means of discovering relatedness between phenotypes 
(potential phenologs) within and across species, thus generating 
hypotheses about underlying genetic relatedness (reviewed in 
Oellrich, Walls et al., 2015).

The computational methods discussed in this work were 
demonstrated to only partially recapitulate the phenotype 
similarity network constructed by Oellrich, Walls et al. (2015) using 
hand-curated EQ statements (Comparing Computational Networks 
to the Hand-Curated Network). Despite the limited similarity 
between the network built from hand-curated annotations and 
the computationally generated networks, the computationally 
generated networks performed as well or better than the hand-
curated network (based on curated EQ statements) in terms 
of correctly organizing phenotypes and their causal genes into 
functional categories at multiple hierarchical levels (Computational 
Methods Outperform Hand-Curation for Gene Functional 
Categorization in Arabidopsis). In addition, each computationally 
generated network performed better than the hand-curated 
network for querying with either maize or Arabidopsis anthocyanin 

biosynthesis genes to return other anthocyanin biosynthesis genes 
from the same species (Recovering Anthocyanin Biosynthesis Genes 
Within a Single Species), a task originally used to demonstrate the 
utility of the phenotype similarity network constructed in Oellrich, 
Walls et al. (2015).

Moreover, the networks built from computationally generated 
EQ statements were useful for recapturing anthocyanin 
biosynthesis genes from a species different than the species 
of origin for the queried gene/phenotype pair. None of the 
other networks, including the network built from curated 
EQ statements, exhibited this utility for this task (Recovering 
Anthocyanin Biosynthesis Genes Between Two Species). This 
particular result indicates that high accuracy of constructed EQ 
statements is not specifically necessary for tasks such as querying 
for related genes across species because potentially inaccurate 
(computationally predicted) EQ statements generated a more 
successful network for the task. Replicating these analyses with 
phenotype descriptions in a different biological domain, such as 
vertebrates, would determine whether these results generalize to 
additional species groups and datasets.

TABlE 4 | Maize genes involved in anthocyanin biosynthesis.

Gene name (symbol) Gene model iD1 Category2 Encoded protein3

colorless2 (c2) GRMZM2G422750 Enzyme naringenin-chalcone
synthase

chalcone flavone GRMZM2G155329 Enzyme chalcone isomerase
isomerase1 (chi1)
red aleurone1 (pr1) GRMZM2G025832 Enzyme flavonoid

3'-hydroxylase
(flavonoid
3'-monooxygenase)

flavone 3-hydroxylase1 GRMZM2G062396 Enzyme flavonone
(fht1; F3H) 3'-hydroxylase

(flavonol synthase)
anthocyaninless1 (a1) GRMZM2G026930 Enzyme dihydroflavonol

4-reductase
(flavonone
4-reductase)

anthocyaninless2 (a2) GRMZM2G345717 Enzyme anthocyanidin
synthase
(leucoanthocyanidin
dioxygenase)

bronze1 (bz1) GRMZM2G165390 Enzyme flavonol
3-O-glucocyltransferase

bronze2 (bz2) GRMZM2G016241 Enzyme glutathione transferase
(maleylacetoacetate
isomerase)

multidrug resistance GRMZM2G111903 Transporter multidrug-resistance-
associated protein3 like-transporter
(mrpa3; ZmMrp4)
scutellar node color1 (sn1) GRMZM5G822829 T F bHLH
colorless1 (c1) GRMZM2G005066 T F R2 R3-MYB
pericarp color1 p1 GRMZM2G084799 T F R2 R3-MYB
purple plant 1 (pl1) GRMZM2G701063 T F R2 R3-MYB
colored1 (r1) GRMZM5G822829 T F bHLH
colored plant (b1) GRMZM2G172795 T F bHLH
pale aleurone color1 (pac1) GRMZM2G058432 T F WD40

1Gene model IDS in bold were present in the Oellrich, Walls et al. (2015) dataset.
2The abbreviation TF is short for transcription factor.
3Enzyme encoded protein names from the Plant Metabolic Network (Schläpfer et al., 2017).
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Taken together, these results over this particular dataset of 
phenotype descriptions suggest that while the EQ statements 
generated through manual curation are likely the most 
accurate and informative computable representation of a given 
phenotype in specific cases, other representations generated 
entirely computationally with no human intervention are 
capable of meeting or exceeding the performance of the hand-
curated annotations on dataset-wide tasks such as sorting 
phenotypes and genes into functional categories, as well as 
in the case of specific tasks such as querying with particular 
genes to recover other genes involved in the same pathway. 
Therefore, in cases where the volume of data is large, the 
results are understood to be predictive, and manual curation is 
impractical, using automated annotation methods to generate 
large-scale phenotype similarity networks is a worthwhile goal 
and can provide biologically relevant information that can be 
used for hypothesis generation, including novel candidate 
gene prediction.

Multiple Approaches to Representing 
Natural language Are Useful
EQ statement annotations comprising ontology terms allow for 
interoperability with compatible annotations from varied data 
sources. They are also a human-readable annotation format, 
meaning that a knowledgeable human could fix an incorrect 

annotation by selecting a more appropriate ontology term (a 
process that is not possible using abstract vector embeddings). 
Their uniform structure also provides a means of explicitly 
querying for phenotypes involving a biological entity that 
is similar to some structure or process (e.g., trichomes) or 
matches some quality (e.g., an increase in physical size). 
Ontology-based annotations have the potential to increase 
the information attached to a phenotype (through inferring 
ancestral terms which are not specifically referred to in the 
phenotype description), but do not necessarily fully capture 
the detail and semantics of the natural language description.

For this reason, future representations of phenotypes in 
relational databases for the purpose of generating phenotype 
similarity networks across a large volume of phenotypes 
described in literature and in databases likely should include 
both ontology-based annotations describing the phenotypes, as 
well as the original natural language descriptions. Although the 
number of phenotypes in the dataset used here and described 
in Oellrich, Walls et al. (2015) is relatively small, the results of 
this work suggest utility of original text representations as a 
powerful means of calculating similarity between phenotypes, 
especially within a single species. Computationally generated 
EQ statements, which in the context of this study do not often 
meet the criteria for a fully logical curated EQ statement, were 
demonstrated to be more useful in any other approach for 
recovering biologically related genes across species.

TABlE 5 | Arabidopsis genes involved in anthocyanin biosynthesis.

Gene Name (symbol) locus Name1 Category2 Encoded Protein3

TRANSPARENT TESTA 4 (TT4) At5g13930 Enzyme naringenin-chalcone synthase
TRANSPARENT TESTA 5 (TT5) At3g55120 Enzyme chalcone isomerase
TRANSPARENT TESTA 6 (TT6) At3g51240 Enzyme flavanone 3'-hydroxylase

(flavonol synthase)
TRANSPARENT TESTA 7 (TT7) At5g07990 Enzyme flavonoid 3'-hydroxylase

(flavonoid 3'-monooxygenase)
TRANSPARENT TESTA 3 (TT3) At5g42800 Enzyme dihydroflavonol 4-reductase

(flavonone 4-reductase)
TRANSPARENT TESTA 11 (TT11)
TRANSPARENT TESTA 17 (TT17)
TRANSPARENT TESTA 18 (TT18) At4g22880 Enzyme anthocyanidin synthase
TANNIN-DEFICIENT SEED 4(TDS4) (leucoanthocyanidindioxygenase)
ARABIDOPSIS SIP1 CLADE
TRIHELIX 1 (AST1) At1g61720 Enzyme anthocyanidin reductase
BANYULS (BAN1)
TRANSPARENT TESTA 14 (TT14) At5g17220 Enzyme glutathione transerase
TRANSPARENT TESTA 19 (TT19) (maleylacetoacetate isomerase)
AUTOINHIBITED H+ - ATPASE (AHA) At1g17260 Enzyme ATP-ase
TRANSPARENT TESTA 10 (TT10) At5g48100 Enzyme laccase
TRANSPARENT TESTA 5 (TT15) At1g43620 Enzyme 3β- hydroxy sterol

glucosyltransferase
TRANSPARENT TESTA 11 (TT12) At3g59030 Transporter MATEefflux proton antiporter
TRANSPARENT TESTA 16 (TT16) At5g23260 T F K-box, MADS-box
TRANSPARENT TESTA 1 (TT1) At1g34790 T F C2H2
TRANSPARENT TESTA 2 (TT2) At5g35550 T F bHLH
TRANSPARENT TESTA 8 (TT8) At4g09820 T F bHLH
TRANSPARENT TESTA GLABRA 1 At5g24520 T F WD40
(TTG1)
TRANSPARENT TESTA GLABRA 1(TTG2) At2g37260 T F WRKY
1Locus names in bold were present in the Oellrich, Walls et al. (2015) dataset.
2The abbreviation TF is short for transcription factor.
3Enzyme encoded protein names from the Plant Metabolic Network (Schläpfer et al., 2017).

Frontiers in Plant Science | www.frontiersin.org January 2020 | Volume 10 | Article 1629110

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Computing on Phenotypic DescriptionsBraun and Lawrence-Dill

11

Ensemble methods are often applied in the field of machine 
learning, where multiple methods are used to solve a problem, 
with a higher-level model determining which method will be 
most useful in solving each new instance of the problem. It is 
possible that such an approach could be applied to measuring 
similarity between phenotypes to generate a single large-scale 
network, where similarity values are based on the best possible 
method to assess the text representations of each pair of 
particular phenotypes.

Additional Challenges With EQ 
statement Representation
Although ontology terms and EQ statements composed 
of ontology terms are an information-rich representation 
of phenes and phenotypes, flexibility in which terms and 
statements can represent a particular phenotype can limit the 
ability to computationally recognize true biological similarity. 
The graph structures of the ontologies themselves, the metrics 
used to assess semantic similarity, and the ambiguity inherent 

FiGURE 5 | Rankings of anthocyanin biosynthesis genes in either maize (A) or Arabidopsis (B) upon querying phenotype similarity networks generated with 
genes from the same species. Phenotype networks are organized by the method used to generate them (columns) and by whether those methods were applied 
to phenotype or phene descriptions (rows). Rank value specifies a range of rankings for each bar in the plots (1–10, 11–20, etc.) and rank quantity indicates the 
average number of anthocyanin biosynthesis genes that were ranked in a given range over all queries. Error bars indicate one standard deviation of the rank 
quantities in each range over all queries.
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in both natural language and EQ statement representations of 
phenes and phenotypes can all potentially contribute to this 
problem.

As one example in the Oellrich, Walls et al. (2015) dataset 
used here, the phene description “complete loss of flower 
formation” was annotated with an EQ statement whose entity 
is flower development, whereas the computationally identified 
entity using the methods described in this work was flower 
formation. In this instance, the Jaccard similarity between these 
two ontology terms was 0.286, which by comparison is less 

than the Jaccard similarity between flower formation and leaf 
formation in the context of the ontology graph. This selected 
example illustrates the possible discrepancies between true 
biological similarity and semantic similarity as measured using 
graph-based metrics. Although each semantic similarity metric 
calculates this value differently, those that use the hierarchical 
nature of the ontology are all constrained by the structure of 
the graph itself.

Variation in how humans and computational methods 
interpret how a phenotype as a whole should be conceptualized 

FiGURE 6 | Rankings of anthocyanin biosynthesis genes in either maize (A) or Arabidopsis (B) upon querying phenotype similarity networks generated with 
genes from the other species. Phenotype networks are organized by the method used to generate them (columns) and by whether those methods were applied 
to phenotype or phene descriptions (rows). Rank value specifies a range of rankings for each bar in the plots (1–10, 11–20, etc.) and rank quantity indicates the 
average number of anthocyanin biosynthesis genes that were ranked in a given range over all queries. Error bars indicate one standard deviation of the rank 
quantities in each range over all queries.
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also has the potential to produce representations that obscure 
true similarity, as measured by graph-based metrics. In another 
example from the Oellrich, Walls et al. (2015) dataset, the phene 
description “stamens transformed to pistils” was annotated with 
two different EQ statements. The first EQ statement uses the 
relational quality has fewer parts of type to indicate the absence 
of stamen in this phenotype, and the second uses the relational 
quality has extra parts of type to indicate the presence of pistils 
in this phenotype. This representation of the phenotype makes 
logical sense, but is not easy to generate computationally because 
it abstractly describes the outcome of the transformation that 
is explicitly present in the natural language description and is 
dissimilar from computationally generated representations that 
focus on the explicit content (i.e., those which use the relational 
quality transformed to).

Finally, this study looked at a dataset consisting entirely of 
phenotypic descriptions in English, and the generalizability of 
these methods to other languages is not discussed. It is certainly 
likely that structural differences between languages would 
result in differences in how certain methods of computing over 
descriptions in those languages perform, but such analysis is 
outside the scope of this work.

Extending This Work to the Wealth of 
Text Data Available in Databases and 
the literature
We plan to apply the methods of semantic annotation, 
ontology-based semantic similarity calculation, and natural 
language-based semantic similarity calculation to the wealth of 
text data available in existing plant model organism databases 
and biological literature. For the latter, doing so will involve 
the additional challenge of extracting phenotype descriptions 
as well as the genes causative to those phenotypes as a separate 
identification and processing step. We plan to leverage existing 
work in the areas of named entity recognition specific to genes 
(Wei et  al., 2015) and relation extraction, as well as existing 
methods for extracting information related to phenotypes 
such as those developed using vector-based representations 
of phenotype descriptions (Xing et  al., 2018) and grammar-
tree representations of phenotype descriptions (Collier et al., 
2015). As the size of the applicable dataset is increased by these 
means, we will continue to analyze the performance of methods 
from the domains of machine learning and NLP towards 
constructing biologically meaningful networks from this 
phenotypic data, including additional techniques that were not 
included in the results presented here. For example, Sent2Vec 
(Pagliardini et al., 2018) is another technique for assessing text 
similarity that takes a different approach from Doc2Vec for 
embedding text as numerical vectors and has been shown to 
perform well when trained on life science corpora (Chen et al., 
2018). These next steps are anticipated to enable researchers 
to begin to compute on phenotype descriptions directly and 
will drive a promising future for forward genetics research 
approaches where phenotypes can be used for novel candidate 
gene prediction as easily as sequence similarity searches can be 
used to identify putative homologs from sequence data.
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Phenotyping biotic stresses in plant-pathogen interactions studies is often hindered

by phenotypes that can hardly be discriminated by visual assessment. Particularly,

single gene mutants in virulence factors could lack visible phenotypes. Chlorophyll

fluorescence (CF) imaging is a valuable tool to monitor plant-pathogen interactions.

However, while numerous CF parameters can be measured, studies on plant-pathogen

interactions often focus on a restricted number of parameters. It could result in

limited abilities to discriminate visually similar phenotypes. In this study, we assess

the ability of the combination of multiple CF parameters to improve the discrimination

of such phenotypes. Such an approach could be of interest for screening and

discriminating the impact of bacterial virulence factors without prior knowledge. A

computation method was developed, based on the combination of multiple CF

parameters, without any parameter selection. It involves histogram Bhattacharyya

distance calculations and hierarchical clustering, with a normalization approach to

take into account the inter-leaves and intra-phenotypes heterogeneities. To assess

the efficiency of the method, two datasets were analyzed the same way. The first

dataset featured single gene mutants of a Xanthomonas strain which differed only by

their abilities to secrete bacterial virulence proteins. This dataset displayed expected

phenotypes at 6 days post-inoculation and was used as ground truth dataset to

setup the method. The efficiency of the computation method was demonstrated

by the relevant discrimination of phenotypes at 3 days post-inoculation. A second

dataset was composed of transient expression (agrotransformation) of Type 3 Effectors.

This second dataset displayed phenotypes that cannot be discriminated by visual

assessment and no prior knowledge can be made on the respective impact of

each Type 3 Effectors on leaf tissues. Using the computation method resulted in

clustering the leaf samples according to the Type 3 Effectors, thereby demonstrating
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an improvement of the discrimination of the visually similar phenotypes. The relevant

discrimination of visually similar phenotypes induced by bacterial strains differing only by

one virulence factor illustrated the importance of using a combination of CF parameters

to monitor plant-pathogen interactions. It opens a perspective for the identification of

specific signatures of biotic stresses.

Keywords: imaging analysis, chlorophyll fluorescence parameters, Bhattacharyya distance, hierarchical

clustering, biotic stress

INTRODUCTION

In recent years, plantx phenotyping has been significantly
evolving. High-throughput plant phenotyping platforms have
been developed to answer to the rapid improvement of plant
genomic technologies. Time consuming expert-based approaches

of traditional phenotyping is moving toward a technology-based

approaches providing automatic and quantitative measurements

of biotic or abiotic stresses.
Imaging analysis applied to plant phenotyping is a component

of this evolution. Measurements based on automatic image
analysis could provide higher throughput, accuracy, and
reproducibility than human visual inspections (Bock et al.,
2008). Imaging analysis can be applied in various parts of
plant phenotyping domain, such as the characterization of plant
structure at a given instant, the quantification of plant growth
over time or the monitoring of plants interactions with the
environment or with pathogens. Plant structure and growth
are now accessible with various 3D imaging techniques (Fang
et al., 2009; Jahnke et al., 2009; Dhondt et al., 2010; Alenya
et al., 2011; Zhu et al., 2011; Bellasio et al., 2012; Paproki et al.,
2012), while imaging of plant health is accessible with various
functional imaging techniques (see Li et al., 2014; Mahlein,
2016 for recent reviews). Thermal, near infrared reflectance,
hyperspectral reflectance and chlorophyll fluorescence imaging
(CF imaging) are among the most popular imaging techniques
for monitoring plant health.

CF imaging is of special interest as it can be considered
as a non-invasive and non-destructive method to efficiently
phenotype the impact of biotic (Baron et al., 2012; Rousseau et al.,
2013; De Torres Zabala et al., 2015; Zhou et al., 2015; Montero
et al., 2016; Perez-Bueno et al., 2016; Pineda et al., 2018) or
abiotic stresses (Honsdorf et al., 2014; Mishra et al., 2014; Bresson
et al., 2015; Sebela et al., 2018) on the photosystem II of plants.
Based on an active imaging technique with illumination flashes,
sequences of many images are acquired and exploited to then
evaluate CF parameters. These CF parameters are studied both
for basic research on photosynthetic processes (Genty et al., 1989,
1990; Lichtenthaler et al., 2005; Baker, 2008), or alternatively for
applied purposes, such as screening for phenotypes of resistance
to abiotic and biotic stresses. Contrary to the study of abiotic
stresses, only few CF parameters have been exploited when
studying biotic stresses (Gorbe and Calatayud, 2012). Among all
CF parameters available, Fv/Fm and NPQ are commonly used for
studying biotic stress (Baron et al., 2016; Kalaji et al., 2017). These
parameters could give an efficient pre-symptomatic measure of

the impact of several pathogen (Csefalvay et al., 2009; Pineda
et al., 2011). However, contrasts obtained may differ among the
numerous CF parameters used. Therefore, the use of only a subset
of CF parameters may limit the ability to discriminate visually
similar phenotypes (Berger et al., 2007; Pineda et al., 2008).

Bacteria belonging to the genus Xanthomonas are associated
to plants, and numerous strains are responsible for disease on
many important crops, such as rice, bean, soybean, tomato,
sugarcane, wheat, oilseed rape, as well as on model plants,
such as Arabidopsis thaliana. Even though more than 400 plant
species may be infected by strains belonging to the genus
Xanthomonas, a single strain only displays a narrow host range,
restricted to one or several plant species. Even though most
strains of Xanthomonas spp isolated from plants were described
as pathogenic, non-pathogenic strains of Xanthomonas spp have
been also been isolated and described, receiving an increasing
attention in the recent years (Cesbron et al., 2015; Essakhi et al.,
2015; Garita-Cambronero et al., 2016; Merda et al., 2016, 2017).

Among themultiple virulence factors that have been described
for Xanthomonas spp strains, the type 3 secretion system (T3SS)
encoded by the hrp gene cluster, is known to play a central
role in the interactions with plants. Indeed, the inactivation
of the T3SS usually abolishes the virulence of pathogenic
Xanthomonas spp strains on their host plants. On the other
hand, the acquisition of a T3SS by non-pathogenic bacteria may
constitute an evolutionary step toward the emergence of novel
plant pathogenic bacterial strains (Manulis and Barash, 2003).
For example, strain 7698R of Xanthomonas cannabis is non-
pathogenic on bean, its host of isolation. When inoculated on
the non-host plant Nicotiana benthamiana, strain 7698R induces
a rapid necrosis similar to the hypersensitive reaction (HR)
observed in non-host resistance. The complementation of this
non-pathogenic strain with a plasmid harboring genes encoding
a T3SS, suppressed the onset of this HR-like necrosis, and only
a mild chlorosis could be observed on inoculated tissues at
6 days post-inoculation (6 dpi) (Meline et al., 2019). Such a
suppression of a defense layer could constitute a first step toward
the emergence of novel pathogenic strains.

This secretion system enables the injection of numerous
bacterial effector proteins called Type 3 effectors (T3Es) directly
into the plant cells, that collectively suppress the plant defenses
and subvert the plant’s physiology to the benefit of the bacteria
(Li et al., 2002; Büttner, 2016; Jacques et al., 2016; Wei and
Collmer, 2018). Repertoires of T3Es vary importantly among
strains of Xanthomonas belonging to a same species, and were
reported to correlate to some extend with the host specificity of
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strains (Hajri et al., 2009, 2012). Knowledge on the functions
and cellular targets in plant cells of some single T3Es has
considerably increased over the last decade. Numerous targets
in various compartments of the plant cell were described
(for review Büttner, 2016). For example, once injected inside
the plant cells, the T3E XopAC of Xanthomonas campestris
uridylylates the cytoplasmic kinase BIK1, which blocks the
transduction pathways leading to plant immunity and promote
bacterial virulence on Arabidopsis thaliana (Feng et al., 2012;
Guy et al., 2013a,b). Another example is that of TAL effectors
of Xanthomonas spp, enter the plant nucleus, recognize and
bind specific DNA sequences and induce the expression of plant
genes (Boch et al., 2014). Plant immunity and more globally the
physiology of plant cells may also be altered by T3Es targeting
other cell organelles, such as cytoskeleton and stromules, or
chloroplasts (Büttner, 2016; Erickson et al., 2018).

However, in most cases, functions of T3Es and their targets in
plant cells still remain elusive. Importantly, mutants in single T3E
genes often hardly display any phenotype visible to the eye, which
may hinder deciphering their role in the interaction between
plants and bacteria (Mutka and Bart, 2015). Therefore, innovative
tools are needed to better phenotype the impact of single T3Es on
plant tissues.

In the present paper, we propose an approach based on CF
imaging aiming at the discrimination of the behavior of such
mutants on leaves. To this purpose, we developed a computation
method based on the combination of multiple images of
CF parameters. This approach aims at using the information
contained in all the images of CF parameters, without prior
selection nor focusing on the physiological processes involved.
As such, the approach developed in the present study is mainly
intended to setup screening methods for phenotyping closely
related biotic stresses on plants.

MATERIALS AND METHODS

Xanthomonas Mutant Strains
Mutant strains of Xanthomonaswere already described inMeline
et al. (2019). Strain 7698R is an environmental strain belonging
to the species X. cannabis isolated from bean seeds, but not
pathogenic on bean. As largely documented in Meline et al.
(2019), when inoculated onN. benthamiana, this strain induces a
necrosis of leaf tissues at 6 dpi. Strain 7698R was complemented
with the plasmid pIJ3225 that carries a 20 kb hrp cluster encoding
a major bacterial virulence determinant: the Type 3 Secretion
System and four Type 3 Secreted Proteins (Arlat et al., 1991).
On N. benthamiana at 6 dpi, the complemented strain 7698R
pIJ3225 does not induce any necrosis, the inoculated tissues only
display a chlorotic phenotype. Derivatives of pIJ3225 harboring
a Tn5 insertion that inactivates one gene in the hrp cluster
were characterized in Meline et al. (2019). These derivatives
were transformed into strain 7698R to obtain strains 7698R
pIJ3225::Tn5 (G9, G2, F2, F15, C3, or G1). After inoculation
on N. benthamiana leaves, Tn5 insertions G9 and G2 restore
the onset of the necrosis, the Tn5 insertions F2, F15, and C3
partially restore the necrosis, whereas Tn5 insertion G1 does
not alter the phenotype conferred by pIJ3225. Strain 7698R

and complemented strains 7698R pIJ3225::Tn5 were used in the
present paper for inoculation onN. benthamiana and subsequent
CF imaging at 3 dpi. The complete list of Tn5 derivatives used is
reported in Supplementary Table 1.

Cloning of Bacterial Virulence Factors
Six T3E genes (xopAF, xopL, xopG, xopV, xopT, and xopAK) of
the sequenced strain Xanthomonas citri pv. fuscans CFBP 4834
were chosen for cloning into Gateway vectors, for subsequent
transient expression in N. benthamiana. These T3E genes were
chosen as previous knowledge suggests they are involved in
various biological processes (Darrasse et al., 2013). Hence they
constituted a good set of candidates for setup of an approach
aiming at discriminating the impact of various virulence factors
on plants. The xopG and xopT genes were chosen because they
often are found in highly aggressive strains of X. citri on bean.
In the genome of the model strain X. citri pv. fuscans CFBP
4834, these genes are flanked by insertion sequences suggesting
that they may be horizontally transferred to other bacteria
(Rousseau et al., unpublished data). The xopV and xopAK genes
were chosen as they were proposed by Moreira et al. (2010) to
be involved in the specificity of symptoms caused by X. citri.
The xopL gene was described to impact stromule formation in
plant cells, and is widely distributed among sequenced model
strains of Xanthomonas. Conversely, the xopAF gene is poorly
distributed among the sequenced model strains of Xanthomonas,
and its distribution suggests this gene may be involved in
tissue specificity of Xanthomonas strains (Bogdanove et al.,
2011). Sequences of these T3Es were amplified by PCR using
adequate primers summarized in Supplementary Table 2, and
AccuPrimeTM Taq DNA Polymerase High Fidelity. Amplified
sequences were cloned in pENTR/D-TOPO vector using pENTR
Directional TOPO cloning kit (Invitrogen). Then, cloned
sequences were transferred to the pB7WG2 binary vector,
obtained fromVIB (Belgium) (Karimi et al., 2002) using Gateway
LR clonase II (Invitrogen). The nucleotide sequences of all
constructs were confirmed by sequencing.

Agrobacterium tumefaciens-Mediated
Transient Expressions
Strain EHA105 of A. tumefaciens was transformed with the
binary vector pB7WG2 containing the bacterial genes of interest
fused to gfp. The subsequent derivatives of strain EHA105
were used to prepare an inoculum (see subsection Preparation
of Inocula and Inoculation procedures) infiltrated into fully
expanded leaves to perform transient expressions of the cloned
genes in N. benthamiana. The transient expression of six
T3Es and β-glucuronidase (GUS) were performed. To control
the efficiency of the transient expression process, we revealed
the GUS activity of samples of leaf tissues inoculated with the
EHA105 pB7FWG2-gus at 24 h post-inoculation (hpi), 36 and 48
hpi (data not shown). The GUS activity of samples was revealed
using a buffer containing X-Gluc (1 mM), K3Fe(CN)6 (4 mM),
K4[Fe(CN)6]·3H2O (0.05 mM), EDTA (10 mM), Na2HPO4

(50 mM) and NaH2PO4 (50 mM) in a buffer phosphate. The
efficiency of the transient expression of each T3E gene was
controlled by observation at 24 and 48 hpi of a GFP signal
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resulting from the expression of the gfp fusion obtained by the
cloning the T3E gene of interest into pB7FWG2.

Plant Material
Nicotiana benthamiana plants were grown and inoculated
in environmentally controlled growth room under a 16 h
photoperiod and 8 h dark period at 22◦C and 80% of relative
humidity under a light intensity of 100 µE·m−2

·s−1 throughout
the whole experiment. At the optimal developmental stage (6
weeks old) the plants had at least five fully developed true leaves.

Preparation of Inocula and Inoculation
Xanthomonas mutant strains were cultured on classical media
TSA (Trypticase Soy Agar: Tryptone 17 g·L−1; peptone soja 3
g·L−1; glucose 2.5 g·L−1; NaCl 5 g·L−1; KH2PO4 5 g·L−1; agar
15 g·L−1; pH 7.2, supplemented with the adequate antibiotics)
and incubated at 28◦C. For the inoculation, bacterial suspensions
were calibrated at 108 cfu.ml−1.

A. tumefaciens was cultured into 20 mL of Luria Bertani
medium (Tryptone 10 g·L−1; NaCl 10 g·L−1; Yeast extract
5 g·L−1) in the presence of selective antibiotics (50 mg
L−1 spectinomycin and 50 mg·L−1 gentamycin), and grown
overnight in a rotary shaker at 150 rpm and 28◦C. Cells
were harvested by centrifugation and resuspended to a final
concentration of 0.3 OD600 in a solution containing 10
mM MgCl2, 10 mM MES, 10 g·L−1 sucrose, pH 5.6 and
150 µM acetosyringone and incubated at 28◦C for 3 h
before agroinfiltration.

For Xanthomonas or Agrobacterium inoculation, three fully
expanded leaves per plant were inoculated by pressing the blunt
end of a 1 ml needleless syringe to the lower side of the leaf while
supporting the leaf with a gloved finger.

Datasets
In a validation approach, two datasets were used and processed
the same way to setup and assess the computation method.

The first dataset was used as ground truth dataset to validate
the computation method. It featured 85 leaves ofN. benthamiana
at 3 dpi. Each leaf was inoculated with three controls and one
tested-strain as described in Meline et al. (2019). The three
controls were, (i) strain 7698R used as necrosis control, (ii)
strain 7698R pIJ3225 used as chlorosis control, and (iii) mock-
inoculated control used as no symptom control. The tested-
strains were strains 7698R pIJ3225::Tn5 (G9, G2, F2, F15, C3,
or G1). Each inoculated area was cropped and considered as
an independent sample. Thereby, 340 samples (85 × 4) were
generated. For each sample, 70 images of CF parameters were
obtained. The total size of this first dataset was of 23800 images.
As expected, Tn5 insertions G9 and G2 restored the onset of the
necrosis, the Tn5 insertions F2, F15, and C3 partially restored the
necrosis, whereas Tn5 insertion G1 led to chlorosis phenotype
at 6 dpi. However, at 3 dpi, all the controls and tested-strains
displayed phenotypes that could hardly be discriminated by
visual assessment.

The second dataset was used to assess the relevance of
the computation method to discriminate leaf tissues impacted
by biotic stresses without any prior knowledge. It featured

108 leaves of N. benthamiana each inoculated with three
controls and one tested-strain. The three controls were, (i)
A. tumefaciens strain EHA105 not expressing any exogenous
protein, (ii) transient expression of β-glucuronidase as non-
deleterious exogenous protein control, and (iii) mock-inoculated
control used as no symptom control. The tested-strains were A.
tumefaciens EHA105 transiently expressing one of the X. citri
pv. fuscans virulence genes (T3Es): xopL: L, xopT: T, xopV : V,
xopAK: AK, xopAF: AF, xopG: G. Each inoculated area was
cropped and considered as an independent sample. Thereby,
432 samples (108 × 4) were generated. For each sample, 70
images of CF parameters were obtained. The total size of this
second dataset was of 30240 images. This second dataset is
of interest as phenotypes cannot be discriminated by visual
assessment: no necrosis nor chlorosis can be observed either at
3 or 6 dpi. Therefore, no prior knowledge can be made on the
respective impact of the transient expression of each T3Es on
leaf tissues.

Chlorophyll Fluorescence Imaging System
Acquisition of fluorescence images is performed with a PSI Open
FluorCam FC 800-O. The system sensor is a CCD camera with
a pixel resolution of 512 by 512 and a 12-bit dynamic. The
system includes 4 LED panels divided in 2 pairs. One pair
provides an orange actinic light with a wavelength around 618
nm, with an intensity up to 400 µmol·m−2

·s−1. The other pair
provides a saturating pulse in blue wavelength, typically 455 nm,
with an intensity up to 3, 000 µmol·m−2

·s−1. The acquisition
protocol is a quenching analysis protocol (Kolber et al., 1998),
producing a raw file containing 70 images of CF parameters.
A schematic description of the quenching protocol is proposed
in Figure S1. To measure the parameter F0, a modulated light
of 0.1 µmol·m−2

·s−1 is used. Then orange actinic light with
intensities of 20% of the 400 µmol·m−2

·s−1 is used during
the light-adapted period of 60 s. The protocol also provides 6
pulses of 0.8 s duration of blue saturating light with an intensity
of 50% of the 3,000 µmol·m−2

·s−1: 5 pulses during the light-
adapted period and 1 pulse during the dark-relaxation period.
The 50% of the saturating light pulse was considered as a good
intensity as it provides a ratio (Fm − F0)/Fm of 0.82 measured on
non-inoculated area, and being closed to optimal value of 0.83
(Bjorkman and Demmig, 1987). This was measured after a dark
adaptation of 30 min. The whole duration of the illumination
protocol is about 95.8 s. For evaluating the performance of our
computation method on datasets obtained with such protocol,
the 70 images given in gray-level intensity are processed in batch
to provide histograms of pixels that statistically represent regions
of interest, i.e., the four areas of infection on the leaf. Distances
between the histograms of each leaf are then calculated according
to Bhattacharyya distance.

Bhattacharyya Distance
The Bhattacharyya distance measures the similarity of two
discrete probability distributions or histograms (Bhattacharyya,
1943). This measure, regularly used in classification problems
in the field of computer vision (Kailath, 1943), determines
the relative closeness of two histograms being considered. The
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Bhattacharrya distance is known to be particularly useful to give
a contrast scalar directly connected to detection performance in
noisy images (Goudail et al., 2004). The Bhattacharyya distance
Bd is defined as:

Bd = −ln
∑ √

(hAhB)

where hA and hB are the normalized histograms for two different
areas A and B.

3D Euclidean Distance
According to Deza and Deza (2009), the distance between two
points (p,q) in a three-dimensional Euclidean space (x, y, z) is
defined as

Ed =

√

(xp − xq)2 + (yp − yq)2 + (zp − zq)2

In a three dimensional Euclidean space, we also defined
intra-modality and inter-modality distances. A modality is
composed of several images of the same kind of inoculation.
For each modality, the intra-modality distance is the mean
Euclidean distance between each image and the centroid of
the modality, constituting the dispersion of the modality. The
inter-modality distance is the Euclidean distance between
the centroid of each modality. Such distances were useful
to evaluate contribution of the addition of CF parameters
for the clustering ability. The addition of parameters was
performed using a sequential forward sequence method
(SFS) (Agrawal and Srikant, 1995).

Clustering Based on Dendrogram
We used hierarchical clustering algorithm based on a Ward
linkage method (Ward, 1963). This method is the only one
among the agglomerative clustering methods that is based on
a classical sum of squares criterion, producing groups that
minimize within group dispersion at eachmerging step (Murtagh
and Legendre, 2014). In R, the Ward.D2 algorithm of the
function hclust is the one attributed to Ward. This function
requires Euclidean distances as input dissimilarities. Several
studies point out that this method outperforms other hierarchical
clustering methods (Blashfield, 1976; Hands and Everitt, 1987).
In our case this method allows to cluster modalities with a
better accuracy.

To evaluate the clustering abilities of dendrograms, we
computed the sensitivity and the specificity of the clustering.
According to Parikh et al. (2008), the sensitivity and the
specificity can be expressed as:

sensitivity =
true positive

true positive + false negative

specificity =
true negative

true negative + false positive

where, for the sensitivity, a true positive represented an image
of one modality (for instance necrosis control) classified in
the correct corresponding cluster (necrosis phenotype cluster)
and false negative represented an image of the same modality

(necrosis control) classified in the other uncorrect clusters
(chlorosis and mock-inoculated clusters). For the specificity,
true negative represented an image of the two other modalities
(chlorosis and mock-inoculated) classified in one of these two
corresponding correct cluster (chlorosis phenotype and mock-
inoculated phenotype cluster) and false positive represented
an images of the two other modalities (chlorosis and mock-
inoculated controls) classified in a uncorrect cluster (necrosis
phenotype cluster).

RESULTS

Distance Calculation Between
Tested-Strain and Controls for Each Image
of CF Parameter
In this study, phenotyping of interactions betweenN. bethamiana
leaves and Xanthomonas strains was confronted to an inter-
leaf heterogeneity. As illustrated in Figure 1, the intensity of
the necrosis development, after inoculation with the same
strain, could vary between leaves. To circumvent this inter-
leaves heterogeneity, for both dataset, each tested modality was
inoculated with their respective controls on each leaf as illustrated
in Figure 1. In a normalization approach, each tested-strain was
then characterized according to its distance with its respective
controls on each leaf. This image processing procedure occurring
in 4 steps was described for the computation of the first dataset
there after.

Firstly, as illustrated in Figures 2A,B, from a gray-level
intensity image, the normalized histograms of the cropped four
areas were extracted (Figures 2C,D). Secondly, for each image of
CF parameter, Bhattacharyya distances were calculated between
the histogram of the tested-strain and each histogram of the
three controls. As shown in Figure 2E, the three Bhattacharrya
distances defined the axes of a three-dimensional plot, where each
tested-strain modality can be represented. This representation
had the advantage of taking into account the inter-leaves
heterogeneity as each tested-strain was compared to its three
controls on each leaf. Thirdly, our CF imaging protocol generated
70 images of CF parameters for each tested-strain. Therefore,
each tested-strain can be characterized by an array of 70 three-
dimensional Euclidean distances. Finally, tested-strains were
then clustered according to their array of 70 three-dimensional
Euclidean distances by hierarchical ascendant classification based
on Ward’s agglomeration method and represented with a
dendrogram (Figure 3).

The Discrimination of the Contrasted
Phenotypes of Controls at 3 Days
Post-inoculation Validated the
Computation Method
To validate the computation method, the relevance of the
70 CF images combination method was evaluated through
the discrimination efficiency of the three controls which
induced contrasted phenotypes at 3 dpi. The first dataset
was computed according to the method described in the
previous paragraph. On the dendrogram of Figure 3, the
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FIGURE 1 | Visual observation of the inter-leaf heterogeneity at 3 dpi. (A–C) Were representative of the diversity of results obtained with the inoculations of the same

strains on three different leaves. 1. necrosis: strain 7698R. 2. chlorosis: strain 7698R pIJ3225. 3. tested-strain: strain G9. 4. mock-inoculated.

FIGURE 2 | Method for the calculation of the distance between two different tested strains. (A,B) Illustrations of gray-level intensity images for two different leaves

corresponding to Fm parameter. Gray-level intensity was coded between 0 and 1. The four areas corresponded to necrosis, chlorosis, tested strain, and

mock-inoculated, respectively. (C,D) Extracted normalized histograms from areas 1 to 4. From these histograms, three Bhattacharyya distances (Bd3−1, Bd3−2,

Bd3−4) were computed between tested strains and their three respective controls. Plant tissues could also display a heterogeneity intra the inoculated area.

Bhattacharyya distances allowed to take into account each pixel value to consider this heterogeneity across each inoculated area. These three distances defined axes

for a three-dimensional space where tested strains could be represented and compared to each others using Euclidean distance calculation. (E) Illustrated the

three-dimensional representation and the three-dimensional Euclidean distance calculation between two tested strains (yellow and violet spots) for one image.

three controls were clearly grouped in three distinct clusters
referred to as necrosis phenotype, chlorosis phenotype and
no symptom phenotype clusters. A first level of analysis
revealed an efficient clustering of mock-inoculated control.
Practically, all samples (except two samples) of this control
were grouped into a single cluster (No symptom phenotype
cluster). All the other clusters of the dendrogram are clearly

discriminated from this latter cluster, which highlighted the
impact of inoculation. At a second level of analysis, all samples
of necrosis control and all samples of chlorosis control were
respectively grouped into distinct clusters (Necrosis phenotype
cluster and Chlorosis phenotype cluster, respectively). Results
obtained using this method were in complete accordance
with the observed phenotypes at 3 dpi, and with the
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FIGURE 3 | Clustering of samples of the first dataset according to the combination of the 70 images of CF parameters. Dendrogram based on three-dimensional

Euclidean distance of 70 images combination and Ward agglomeration method. Black horizontal bars corresponded to the different levels of analysis of the

dendrogram. Four clusters corresponding to the four phenotypes visually observed (necrosis, intermediate, chlorosis, and no symptom phenotypes) were obtained.

Necrosis (pink) corresponds to leaf tissues inoculated with strain 7698R. Chlorosis (green) corresponds to leaf tissues inoculated with strain 7698R pIJ3225.

Mock-inoculated (blue) corresponds to leaf tissues inoculated with water. Tested-strains (black) correspond to leaf tissues inoculated with strains G9, G2, F2, F15, C3,

or G1.

expected phenotypes at 6 dpi for the controls used as ground
truth (Meline et al., 2019).

To better assess the relevance of the approach, we compared
the sensitivity and the specificity of the clustering using
70 images of CF parameters, or using a single parameter
(Table 1). To perform clustering using single one, we chose
Fv/Fm or NPQ, as these parameters are commonly used in CF
phenotyping (Baron et al., 2016; Kalaji et al., 2017). Related to
Fv/Fm and NPQ, two supplementary dendrograms were then
built and shown in Figure S2. Using the combination of 70
images of parameters, the mock-inoculated control have been
efficiently discriminated from other controls (sensitivity almost
of 0.98 and specificity of 1). When using clustering based
only on single parameter, contrasting results were obtained
according to which parameter was used. Using the sole Fv/Fm
parameter, mock-inoculated control was also well-discriminated
from other controls (sensitivity of 0.99 and a specificity of
1). Inversely, the sole NPQ parameter did not allow such an
efficient discrimination as only 60% of the mock-inoculated
control images were correctly classified into the no symptom
phenotype cluster (sensitivity of 0.6). Moreover, by observing
the associated dendrogram (dendrogram C. in Figure S2), we
noted that the remaining 40% images of this control were
grouped into a cluster where all the necrosis control images
were also grouped. The necrosis and chlorosis controls have been
efficiently discriminated using the combination of 70 images of
CF parameters (sensitivities of 1 and specificities of 1 and 0.99,
respectively). Using the sole Fv/Fm parameter, the sensitivities
of discrimination between necrosis and chlorosis phenotypes
decreased down to 0.68 and 0.56, respectively, although its
specificities remained high as 1 and 0.99, respectively. Such low
sensitivities values could be explained with some mild necrosis
or chlorosis phenotypes that were grouped in the intermediate
phenotype cluster (dendrogram B. in Figure S2). Such results

TABLE 1 | Sensitivity (sens.) and specificity (spec.) of the clustering for the

controls according to CF parameters for the two datasets.

First dataset

Mock-inoc. Chlorosis Necrosis

Parameter Sens. Spec. Sens. Spec. Sens. Spec.

Combined 70 0.98 1 1 0.99 1 1

Fv/Fm 0.99 1 0.56 0.99 0.68 1

NPQ 0.60 1 0.75 1 1 0.57

Second dataset

Mock-inoc. GUS EHA105

Parameter Sens. Spec. Sens. Spec. Sens. Spec.

Combined 70 1 0.87 1 0.65 0.87 0.67

In the first dataset, controls are mock-inoculated, chlorosis and necrosis. In the second

dataset, controls are mock-inoculated, GUS and EHA105.

highlighted the interest of using a combination of 70 images of CF
parameters to improve the discrimination of the three controls.

Assessment of the Contribution of Each
Image of CF Parameters in the
Combination
According to the results exposed in last section, the combined 70
images of CF parameters provided a better clustering ability of
the three controls than only one classical parameter, e.g., Fv/Fm
or NPQ in this study. To further confirm the relevance of the
combination of images of CF parameters, it was therefore suitable
to evaluate how the clustering ability is impacted according to
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FIGURE 4 | Evolution of the mean inter-modality distance (black spot) and the

mean intra-modality distance (black line) between the three controls according

to the number of images of CF parameters combined from 1 to 70.

the number of images of CF parameters which are combined.
For these purpose, images were sequentially combined from 1
to 70 using sequential forward sequence method (SFS) based
on the maximal mean inter-modality distance between the three
controls. For each combination, we measured the evolution of
the inter-modality and intra-modality distance between the three
controls. For our application, the inter-modality distance can
be considered as the useful information to discriminate the
three controls and the intra modality distance represented the
dispersion of all the images of one modality and can therefore
be considered like degrading information as the dispersion
increased. These mean distances are plotted in Figure 4.

The mean inter-modality distance increased quickly with
the combination of images between 1 and 40. It then slowly
reached a saturation level from 40 to 70. At the same time,
the mean intra-modality distance remained at least five times
lower than inter-modality distance values. As a consequence,
while the combination of a large number of images increased the
mean inter-modality distances, it was not a source of degrading
information regarding the positive ratio between inter and intra-
modality distance.

Application of the Computation Method to
Successfully Discriminate the
Tested-Strains From the First Dataset
At 3 dpi, among the six tested-strains of the first dataset,
only two different phenotypes were visually annotated as
shown in Figure 5. Tested-strains G9 and G2 were identified
as intermediate phenotypes between necrosis and chlorosis
phenotypes whereas the phenotypes of the other tested-strains
(F2, F15, C3, G1) were identified as a chlorosis phenotype.

To assess the relevance of the computation method, we
analyzed the clustering of these tested-strains (Figure 3). Samples
from the tested-strains G9 and G2 were mainly grouped into
a fourth cluster distinct from the three previously described
clusters. This fourth cluster corresponded to samples displaying

intermediate phenotypes. Such results were expected, as G9 and
G2 corresponded to mutant strains for which Tn5 insertions
fully inactivated the secretion system encoded on pIJ3225. In
contrast Tn5 insertions of F2, F15, C3, G1 tested-strains only
inactivated one secreted protein that transit through the secretion
system encoded on pIJ3225. For the tested-strains (F2, F15, C3,
G1), the inoculation resulted in phenotypes visually identified as
chlorosis. Regarding these latter strains, the clustering ability of
the method showed more differences than the visual observation.
Tested-strains C3 and G1 were grouped almost exclusively
into the chlorosis cluster. Whereas, F15 was grouped into
intermediate and chlorosis clusters considering almost equal
proportions, and F2 was mainly grouped into chlorosis cluster
but with a small proportion also grouped in necrosis cluster.
The clustering of these single gene mutants of Xanthomonas
were in accordance with the expected impact of each inactivated
gene in the ability of the plasmid pIJ3225 to suppress the
necrosis development at 6 dpi, as described in Meline et al.
(2019). Therefore, the combination of images of CF parameters
allowed at 3 dpi a predictive discrimination between samples
that could previously be discriminated only at 6 dpi. Proportions
(in percentage) of samples of each tested-strain grouped into
necrosis, chlorosis, intermediate or no symptom phenotype
clusters were summarized in Table 2.

Application of the Computation Method on
a Second Dataset to Discriminate
Phenotypes for Which No Prior Knowledge
Is Available
To test the interest of the computation method on situations
that cannot be discriminated by visual assessment and for
which no prior knowledge is available, we used a second
dataset composed of bacterial virulence factors (T3Es) transiently
expressed on leaves (xopAF: AF, xopL: L, xopG: G, xopV :
V, xopT: T or xopAK: AK). As shown in Figure 6, 3 dpi,
no difference was observed visually between mock-inoculated
control and the transient expressions of β-glucuronidase
protein (GUS) or five T3Es among the six tested. Only
transient expression of xopV could in rare case induce a
mild chlorosis. The computation method was applied to the
second dataset (Figure 7) and proportions (in percentage) of
images of each tested-strain grouped into four clusters were
summarized in Table 2.

At a first level of analysis, a relevant clustering of mock-
inoculated control vs. leaf tissues inoculated with bacterial strains
was obtained. All samples corresponding to mock-inoculated
control were grouped in cluster 1 with a sensitivity equal
to 1. Few samples corresponding to other modalities were
misclustered, resulting in a specificity of 0.87 in cluster 1.
Here again, plant tissues inoculated with bacterial strains could
be discriminated from mock-inoculated strains in the absence
of any phenotype visible to the eye (Figure 6). At a second
level of analysis, the transient expressions of the GUS reporter
protein could be discriminated from the transient expression
of T3Es. Indeed, all samples of leaf tissues expressing GUS
were clustered in cluster 2.1 whereas most samples of leaf
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FIGURE 5 | Visual observation of controls and tested-strains of the first data set at 3 dpi. Two phenotypes for the tested-strains (strains G9, G2, F2, F15, C3, G1)

were identified as intermediate and chlorosis phenotypes.

TABLE 2 | Proportions of clustering of the tested strains for the two datasets, based on the combination of the 70 images of CF parameters.

First dataset

Tested strains No symptom phenotype

cluster (%)

Chlorosis phenotype

cluster (%)

Intermediate phenotype cluster (%) Necrosis phenotype cluster (%)

G9 0 17 74 9

G2 0 11 78 11

F2 0 73 18 9

F15 0 60 40 0

C3 0 90 10 0

G1 0 100 0 0

Second dataset

Tested strains Cluster 1 (%) Cluster 2.1 (%) Cluster 2.2.1 (%) Cluster 2.2.2 (%)

AF 0 11 39 50

L 0 0 11 89

G 6 11 44 39

V 11 11 17 61

T 0 6 0 94

AK 22 0 39 39

Proportions are expressed in percentage. In the first dataset, tested strains are G9, G2, F2, F15, C3, G1. In the second dataset, tested strains are transient expression of xopAF: AF,

xopL: L, xopG: G, xopV: V, xopT: T, xopAK: AK.

FIGURE 6 | Visual observation of controls and tested-strains of the second dataset at 3 dpi. Mock-inoculated (Mock), A. tumefaciens strain no protein expressed

(EHA105), the transient expression of β-glucuronidase protein (GUS) were considered as the three controls on each leaf. The six transient expression of T3E genes

were considered as the tested-strains (transient expression of xopAF: AF, xopL: L, xopG: G, xopV: V, xopT : T, xopAK: AK, respectively). Constructs for transient

expression are described in Supplementary Table 1.

tissues expressing T3Es were clustered in cluster 2.2. At this
level, the method allowed to discriminate the impact on leaf
tissues of presumably deleterious bacterial virulence proteins
(T3Es) vs. non-deleterious exogenous proteins (GUS). The
sensitivity of GUS clustering was of 1. Its specificity decreased
down to 0.65 because of the presumably deleterious effect on
leaf tissues of the inoculation with A. tumefaciens (EHA105).

The sensitivity of EHA105 clustering in cluster 2.2 was of
0.87 with a specificity 0.67. The clustering ability in terms
of sensitivity and specificity for these three controls (mock-
inoculated, GUS, and EHA105) is summarized in Table 1. When
further focusing, cluster 2.2.2 grouped 94, 88, and 61% images of
leaf tissues inoculated with xopT, xopL, and xopV, respectively.
Moreover, the computation method discriminated the transient
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FIGURE 7 | Clustering of samples of the second dataset according to the combination of the 70 images of CF parameters. Black horizontal bars corresponded to the

different levels of analysis of the dendrogram. The lower part of the figure presents a focus on the cluster 2.2.2 regrouping the majority of the transient expression of

T3Es considered as tested-strains.

expression of xopL vs. the transient expression of xopT and xopV
(Figure 7, cluster 2.2.2).

DISCUSSION

CF imaging is a powerful technique to study quantitatively plant-
pathogen interactions (Perez-Bueno et al., 2016; Pineda et al.,
2018) and has been used to highlight potential physiological
mechanisms underlying disease symptoms (De Torres Zabala
et al., 2015; Zhou et al., 2015). However, some CF parameters
are still very contentious (Kalaji et al., 2014) and caution must be
exercised when attempting to interpret their significance (Baker,
2008; Murchie and Lawson, 2013). Moreover, careful setups
of illumination protocols have to be considered for the
assessment of physiological studies. In the context of our
study, we developed a computational method to improve
the discrimination between close phenotypes based on the
combination of images of multiple CF parameters. In the
present study, these multiple CF parameters are generated
from non-optimized illumination protocols which preclude
any physiological interpretation. However, this approach
would be fully compatible with optimized illumination
protocols. Such an optimization of illumination protocols
would probably result in improved performances of the
discrimination. The use of optimized illumination protocols in
combination with the method described in the present paper
may also allow the discrimination of distinct physiological
status of plants. However, this latter is beyond the scope of
this paper.

Although a large variety of CF parameters is available, only
a subset of parameters have been used in the literature (Kalaji
et al., 2014). Parameters empirically selected do not provide
necessarily the best contrast between studied phenotypes. For
instance, Fv/Fm parameter is a relatively stable ratio as impacts
of stress could be detected rather late (Lichtenthaler et al., 2005).
NPQ parameter could be one of the most appropriate one
to distinguish plant-pathogen interactions (Rodriguez-Moreno
et al., 2008; Perez-Bueno et al., 2015). But it has also been shown
to be an unstable temporal parameter (Bonfig et al., 2006; De
Torres Zabala et al., 2015). Inversely to subjective selections of
these parameters, the depicted computation method provided
an objective method to exploit all the information from all
the available images of CF parameters. However, although the
present paper presents a computation method to gather all the
information provided by multiple images of CF parameters, the
illumination protocol remains to be optimized to provide more
physiologically relevant information.

It had been considered that CF imaging and thermography
techniques could have a lack of potential to identify specific
diseases in contrary to RGB and hyperspectral imaging
techniques (Martinelli et al., 2015; Mahlein, 2016). Indeed, taken
individually, Fv/Fm parameter could be impacted either by any
abiotic or biotic stress factor like water deficit (Bresson et al.,
2015) or bacterial disease development (Perez-Bueno et al.,
2016). However, it has been shown that the inoculation of an
avirulent Pseudomonas syringae pv. glycinea on soybean leaves
was associated with a decrease in Fv/Fm and an increase in
NPQ parameters (Zou et al., 2005) whereas an inoculation of
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an avirulent Pseudomonas syringae pv. tomato on arabidopsis
thaliana was associated with a decrease in both Fv/Fm and NPQ
parameters (Bonfig et al., 2006). Thereby, combination of several
CF parameters could constitute a specific signature of visually
similar stress, as reviewed in Baron et al. (2012).

During infections, plant-pathogen interactions could have
effects on several mechanisms of the plant. Regulation of stomatal
aperture could impact temperature dynamic which could be
study using thermography imaging (Sankaran et al., 2013; Maes
et al., 2014). Production of phenolic compounds involved in
plant defense could be measured with blue green fluorescence
(BGF) which can be study using Multi Color Fluorescence
Imaging (MCFI) (Perez-Bueno et al., 2015; Montero et al.,
2016; Ortiz-Bustos et al., 2017). CF imaging could measure
performance of the photosystem II which could be altered by the
development of a pathogen (Rousseau et al., 2015). Using several
imaging techniques in parallel could improve the performance of
detection and allowed pre-symptomatic identification of a stress.
It could also be used to improve the discrimination abilities
to identify disease signatures for a specific pathogen (Mahlein
et al., 2012; Baron et al., 2016). The method presented in
this study could be generically applied on a combination of
multi-modal images.

Adding a temporal monitoring may improve the phenotyping
for the characterization of the plant-pathogen interactions.
Indeed, monitoring the temporal dynamic revealed useful
to discriminate temporal spectral signatures of three foliar
pathogens of barley leaves (Wahabzada et al., 2015). As well,
Berger et al. (2007) showed that infections by virulent and
avirulent strains of Pseudomonas syringae result in distinct
temporal dynamics of CF parameters, although the same
CF parameters were involved. For example, the response
to Pseudomonas syringae pv. tomato DC3000 could be
discriminated from the response to its mutant inactivated
in the type 3 secretion system by a transient increase of NPQ
parameter between 6 and 12 hpi (De Torres Zabala et al., 2015).
Furthermore, spatio-temporal phenotyping of the response
to virulent and avirulent strains of Pseudomonas syringae
provided non-redundant information (Perez-Bueno et al., 2015).
Therefore, combining our computation method with a temporal
monitoring could improve significantly the discrimination of
biotic stresses on leaves.

The aim of our paper is essentially to present and discuss
a computation method combining for each sample 70 images
of CF parameters, without any selection, and computing a
normalization in order to take into account the inter-leaves and
intra-phenotypes heterogeneities. We show its implementation
and its usability to provide significant results, in the study-case
of the discrimination of visually similar phenotypes induced
by bacterial virulence factors. We showed our method to be
useful for phenotyping of the impact of single T3E on plant
tissues following transient expression. Any T3E could be tested
this way and our approach could reveal of interest as well for
phenotyping the impact on plant tissues of T3Es of other plant
pathogenic bacteria, such as Pseudomonas syringae or Ralstonia
solanacearum. The genericity of the present computationmethod
also resides in the possibility to be applied systematically to any

dataset where controls can be defined. In that way, controls can
be defined within each leaf (as described in the present paper)
or within each experiment if it is not possible to apply different
stresses to the same leaf. Furthermore, the use of CF imaging
for the phenotyping is widely documented for the study of both
biotic (Chaerle et al., 2004) and abiotic stresses (Yusuf et al.,
2010).

Although we showed in this study that the combination
of a large number of CF parameters was not degrading
information, we could not rule out that some parameters
could carry redundant information. Moreover, it had been
demonstrated that in some case, the combination of eleven or
less CF parameters involved the most important fluorescence
signatures and could be sufficient to classify tissues inoculated
with different strains (Mishra et al., 2014; Cen et al., 2017). It
could be interesting to process the datasets using selective and
reductive methods (as decision tree for instance) to select and
identify parameters which could discriminate tissues inoculated
with different strains and to reduce inherent redundancy and
overfeeding. However, we could consider that the presentmethod
remained an efficient alternative to such learning methods which
could require large annotated datasets that can be tough to
obtained in plant phenotyping domain. In that direction, further
studies aiming at selecting the most informative CF parameters
in each situation may further increase the discriminative power
of the method described in the present paper. Indeed different
biological situations may impact differentially the various CF
parameters, therefore the most informative CF parameters may
differ among the biological situations. The selection of the most
informative CF parameters in each biological situation would
thus provide a first step toward specific signatures of particular
stresses. This constitutes the scope of further studies in order to
complete and improve the present method.

In plant phenotyping, heterogeneity linked to each plant
constitutes an important and widespread limitation. In this
paper, the computation method based on multiple Bhattacharyya
distance calculation between tested-strain and controls on each
leaf allowed to circumvent the inter-leaves heterogeneity and to
take into account the heterogeneity of each phenotype. Plant-
pathogen interactions studies often face phenotypes that could
be hardly discriminated by visual assessment. The computation
method based on the combination of images of multiple CF
parameters provided an efficient discrimination of visually
similar phenotypes which differed only by one protein secretion
or protein expression. The results obtained in the present paper
support the idea that combination of images of CF parameters
improve the discrimination between distinct biotic stresses
compared to single CF approach. Furthermore, the combination
of several imaging techniques using this computation method
could constitute an advance in the identification of specific
signature of these biotic stresses.
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Breeding higher yielding forage species is limited by current manual harvesting and visual
scoring techniques used for measuring or estimation of biomass. Automation and remote
sensing for high throughput phenotyping has been used in recent years as a viable
solution to this bottleneck. Here, we focus on using RGB imaging and deep learning for
white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) yield
estimation in a mixed sward. We present a new convolutional neural network (CNN)
architecture designed for semantic segmentation of dense pasture and canopies with
high occlusion to which we have named the local context network (LC-Net). On our testing
data set we obtain a mean accuracy of 95.4% and a mean intersection over union of
81.3%, outperforming other methods we have found in the literature for segmenting clover
from ryegrass. Comparing the clover/vegetation fraction for visual coverage and harvested
dry-matter however showed little improvement from the segmentation accuracy gains.
Further gains in biomass estimation accuracy may be achievable through combining RGB
with complimentary information such as volumetric data from other sensors, which will
form the basis of our future work.

Keywords: forage yield, clover, ryegrass, biomass, semantic segmentation, deep learning
INTRODUCTION

The increase in demand for meat and dairy over the last few decades has led to an intensification of
forage based farming. Breeding for the improvement of forage yield and nutrient composition of
grassland forage species adds value to these industries (Smith and Spangenberg, 2014; Capstaff and
Miller, 2018; Gebremedhin et al., 2019). The length of time required to develop stable new forage
cultivars can however take up to 10–15 years (Lee et al., 2012). One of the bottlenecks in this process
Abbreviations: CNN, convolutional neural network; DM, dry matter; FCN, fully convolutional network for semantic
segmentation (Shelhamer et al., 2016); HSV, hue, saturation, value; IoU, intersection over union; LC-Net, local context
network; LCPP, local context pyramid pooling; LED, light emitting diode; LiDAR, light detection and ranging; MSICS,
multiple scanning imaging capacity system; RGB, red, green, and blue; RTK-GPS, real-time kinematic global positioning
system; SIG, synthetic image generation.
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is that growth rates and yield measurements for these forage
species are generally done by visual scoring and/or manual
harvesting. Both of these practices require a considerable
amount of time and labour to perform, which in turn limits
the size of breeding trials (Araus et al., 2018; Gebremedhin et al.,
2019). With advances in sensors, computing technologies, and
more recently in artificial intelligence tools and methods, there
has been a surge of interest around automated and high
throughput phenotyping techniques for overcoming this
bottleneck (Walter et al., 2012; Araus et al., 2018).

Numerous techniques have been developed over the last 15 years
for assessing clover and ryegrass forage yield using image data.
(Bonesmo et al., 2004) developed a method for pixel-level
segmentation of clover and ryegrass using thresholding and
morphological filtering on RGB images. This method was applied
to predicting the visible area of clover within a specified region. They
showed that their automated method could achieve correlation of
R2 = 0.81 compared to marking out the same areas manually. This
method was extended by (Himstedt et al., 2012) through performing
segmentation in the HSV colour space. They then combined this
information with a linear model for different legumes to estimate the
legume biomass. Although high correlations between measured and
predicted legume content were observed (R2 = 0.90–0.94), the
validation set only consisted of 44 data points spread between their
different legumes and monoculture examples. They also limited their
validation method to swards with less than 2,800 kgDM/ha.
(Mortensen et al., 2017) also investigated improvements to this
method by looking at different ways of combining the colour
information in RGB space. They were also able to obtain a
biomass correlation of R2 = 0.93 with a multivariate linear model
trained separately for mixed sward grown from different seed
mixtures. This was done using a similar sized validation set,
however spanning a larger forage dry matter range (up to 3,084
kgDM/ha). An issue all of these researchers found with the
morphological approach is that the erosion operations have a
tendency to eliminate small clover leaves producing a bias —
especially in younger pasture. There are also significant differences
between the camera setup, lighting, and image resolutions in each of
their setups—requiring tuning of the parameters provided in
(Bonesmo et al., 2004) and derivative methods to use them.
(Skovsen et al., 2017) investigated use of deep learning for
segmentation of clover and ryegrass. They trained the fully
convolutional network for semantic segmentation (FCN) model
(Shelhamer et al., 2014) using synthetic pasture data constructed
from clover, ryegrass, and weed leaves cropped from photographs.
The network was shown to have a significantly higher segmentation
accuracy than the method in (Bonesmo et al., 2004)—with a pixel
accuracy of 83.4% and mean intersection over union (IoU) of 65.5%.
(Skovsen et al., 2017) did not regress their segmentation results
directly to the clover drymatter as done by othersmentioned. Instead
their analysis was limited to the correlation of clover-vegetation
fraction between dry matter measurements and estimated
coverage area.

The use of deep learning in place of traditional machine
vision techniques has become increasingly common since
(Krizhevsky et al., 2012) demonstrated that CNNs are
Frontiers in Plant Science | www.frontiersin.org 2131
unreasonably effective for solving image classification type
problems. Over the last five years, significant efforts have been
made toward adapting CNNs to image segmentation. The
majority of these networks follow the same general procedure:
the image is first down-sampled while extracting semantic
information, followed by up-samping and extrapolation of the
semantic information back to the image's original size. The
simplest segmentation network (FCN) makes coarse
predictions from down-sampled features, then uses learned
deconvolutions, skip-connections, and bilinear interpolation to
upscale the predictions back to the original image size Shelhamer
et al., 2016). SegNet built on this by following a more explicit
encoder-decoder architecture, replacing deconvolutions with
inverse-pooling operations that are subsequently followed by
convolution layers (Badrinarayanan et al., 2016). The latest
iteration of the DeepLab architecture (DeepLabV3+) is
currently one of the more popular networks being used for
high accuracy image segmentation. This replaces some of the
down-sampling steps with separable atrous convolutions—
which achieve the same effect without losing spatial resolution.
They also reinforce the predictions using an additional decoder
and global context information for the image (Chen et al., 2018).
For a more general review on deep learning based image
segmentation, we direct the reader to (Garcia-Garcia et al., 2017).

FCN was the first deep learning network architecture
developed for pixel-level segmentation. In the two years
between since its introduction and subsequent application to
pasture segmentation there have been dozens of networks
developed that can achieve significantly higher segmentation
accuracy (Garcia-Garcia et al., 2017). State of the art networks
such as DeepLabV3+, PSPNet, and EncNet all achieve an mean
IoU above 80% on standard computer vision benchmark datasets
(Zhao et al., 2017; Chen et al., 2018; Zhang et al., 2018). It is
worth noting however that the benchmarks these networks are
developed generally focus on urban settings—and therefore are
not guaranteed to perform as well for agricultural applications.
These benchmarks often contain images with objects sparsely
distributed with relatively little occlusion. Pasture images
however have objects densely clustered with a high degree
of occlusion.

We reported on a mobile multisensor platform for high
throughput phenotyping of ryegrass to augment selective
breeding (Ghamkhar et al., 2018). Here, we build upon the
work of (Skovsen et al., 2017) and (Ghamkhar et al., 2018),
with the aim of improving the accuracy of clover/ryegrass
segmentation. The focus of this paper is on the measurement
of percentage white clover (Trifolium repens L.) and perennial
ryegrass (Lolium perenne L.) yields in mixed sward using top-
down view RGB images and deep learning. We introduce a new
CNN architecture which we have named local context network
(LC-Net) which applies design principles from the
aforementioned networks to segmentation of complex
agricultural images. We show that LC-Net can differentiate
clover and ryegrass with a significantly higher accuracy than
previously applied deep learning based methods reported by
(Skovsen et al., 2017).
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MATERIALS AND METHODS

Data Collection
All data used in the manuscript was collected at the AgResearch
Lincoln farm in Canterbury, New Zealand (−43.667799,
172.470908). Data used for training our neural network was
gathered from location's A and B in Figure 1. A mixed sward
trial at location C was used for independently comparing the
RGB segmentation results to dry matter harvest measurements.
All three of these locations contained varying mixtures of
perennial ryegrass and white clover. Data was collected using
our mobile data collection platform for forage assessment—the
Multiple Scanning Imaging Capacity System (MSICS) described
by (Barrett et al., 2018).

Mobile Data-Capture Platform
The MSICS contains a range of different sensors—including
RGB, LiDAR, as well as VNIR and SWIR hyperspectral
cameras, RTK-GPS, and a wheel encoder (Figure 2). The
MSICS contains two hoods, each with controlled lighting
specificly designed for the sensors mounted within the
respective hood. The Teledyne Dalsa Genie Nano C1920 RGB
camera used for this work is mounted in the second hood along
with the LiDAR (Figure 3A). The underside of the hood is lined
with a custom rig of focused high-powered RGB LED lights that
illuminate the ground directly below the camera (Figure 3B).
During these experiments the RGB camera was setup to acquire
14 frames per second. During data-capture the MSICS was
driven at speeds ranging from 0.14 ms–1 to 0.37 ms–1.

Training Data
The data used for training our neural network was collected at
location's A and B in Figure 1. RGB data was acquired while the
Frontiers in Plant Science | www.frontiersin.org 3132
MSICS was driven at full speed (approx. 0.4 ms–1) randomly
across the mixed sward in each location. Note that the MSICS
only had lighting installed on one side of the hood when data was
collected at location B. The result of this is that approximately
half of the data has deeper shadows than the other half. We
retained this data in the final training set to improve the
network's robustness to variable lighting conditions.

Validation Trial
A mixed sward trial at site C (Figure 1) containing ryegrass and
clover was used for comparing visual clover fraction estimates to
harvest measurements. The clover used in this trial are half white
sib white clover (Trifolium repens L.) breeding lines along with
two commercial checks, planted in October 2017. The grass
cultivar is Rohan perennial ryegrass, which was sown in April
2017. Efforts have been made to minimise weed presence in the
trial. Irrigation has not been used. The trial is row-column
layout, with two replicates of 240 plots (a total of 480 plots).
Each plot is approx 1.5 m by 1.5 m in size. The trial is scored
when it reaches 2,800 kg/ha– 3,200 kg/ha (approximately 8–10
times per year), and then cattle grazed. The whole trial is scored
for growth (total clover biomass) then a selection of plots, which
are a fair representative of the whole trial are selected for harvest
measurements. This equates to 20%–30% of the trial plots
harvested, or approximately three representatives of each score
per replicate. The trial was between 12 and 18 months old when
the data for this paper was collected.

RGB data was collected for a subset of the harvested plots
during two separate scoring events. First, a total of 30
measurements were taken on the 22nd January 2019, and then
another 40 measurements were conducted on the 15th April
2019. Of these, five were taken at the edge of the trial to increase
the amount of data collected with low clover fraction. Measured
FIGURE 1 | All data was collected at the AgResearch farm in Lincoln, New Zealand (Lat:-43.627799, Long:172.470908). Data used for training the neural network
was collected from sites A and B. An independent mixed sward trial at site C was used for validating against harvest measurements. Satellite image retrieved from
Google Maps (16 April 2019) and follows attribution guidelines for redistribution.
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FIGURE 3 | (A) Interior of Hood 2 on the multiple scanning imaging capacity system (MSICS) showing the custom lighting setup alongside the LiDAR an red, green,
and blue (RGB) camera. (B) A typical image captured from the RGB camera during operation.
FIGURE 2 | The multiple scanning imaging capacity system (MSICS) used for high throughput phenomic screening of forage. Hood 1 contains SWIR and VNIR
hyperspectral cameras. Hood 2 contains light detection and ranging (LiDAR) and red, green, and blue (RGB) sensors. Each hood contains its own custom lighting
setup. A black skirt is installed around the base of the hoods to block out ambient light. An encoder is installed on the back wheel for measuring distance. The
MSICS also incorporates real-time kinematic global positioning system (RTK-GPS) technology to enable geo-referencing.
Frontiers in Plant Science | www.frontiersin.org February 2020 | Volume 11 | Article 1594133
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plots were chosen specifically to have a wide range of biomass
and proportion of clover/ryegrass.

For each harvested plot, a 25 cm × 25 cm quadrat was placed
on the plot in a position that visually corresponded to the plot's
growth score (Figure 6). After RGB data was collected, the mixed
material inside each quadrat was harvested using electric shears
and packaged. Following this, clover and grass were separated
from each sample before being dried and weighed.

Training Dataset
To train convolutional neural networks, thousands of labelled
images are typically needed. This problem is exacerbated for
image segmentation where a label is required for every pixel.
Although techniques for semisupervised and unsupervised
learning do exist, their success varies between different
problems. Therefore, we decided to construct our data set
using two different labelling approaches. The majority of the
data set is built from synthetic data that has been constructed
using a variant of the synthetic image generation (SIG) method
used by (Skovsen et al., 2017). Here samples of individual plants
and leaves are cropped from RGB images captured by the
MSICS, then randomly overlapped to create new images where
the label is already known. Augmentations such as scaling, flips,
and gamma transformations are also applied to these samples to
further increase diversity of images in the dataset. This process
enables the synthesis of thousands of unique labelled images
from a relatively few number of samples. We have also included a
number of partially labelled images to provide some examples
that are more realistic and target configurations that are not
easily simulated—such as clusters of small gaps in the pasture
canopy, object boundaries, and complex shadowing effects. Each
partially labelled image was augmented with vertical and
horizontal flips to quadruple the amount of partially
labelled data.

Our final training data set is made of 4,500 training images
and 600 testing images as shown in Table 1. Samples used for
generating synthetic data for the training and testing data sets
were kept separate to avoid cross-contamination. Each image in
this dataset have both a height and width of 100 pixels. We also
experimented with larger image sizes, however the 100×100 size
provided a good balance between training speed and
image complexity.

Synthetic Image Generation
The SIG process we followed was similar to that used by
(Skovsen et al., 2017). Each synthetic image contains a random
background (soil image), and between 2 and 20 random samples
that are augmented and overlaid in random positions. The
selection probability for clover and grass samples was
Frontiers in Plant Science | www.frontiersin.org 5134
subjectively adjusted to account for the average sizes of each to
ensure a balanced distribution of ratio and sparseness. Sample
augmentations included: horizontal and vertical flips;
scale ±25%; gamma ±10%; and saturation ±25%. The ground
sample distance for our data is approximately 2–3 pixels per mm.
As such we have omitted rotation augmentations of our samples
as it disrupted the texture information at this resolution. We also
apply Gaussian drop shadows to approximately half of our
synthetic images to darken underlying soil and leaves. Instead
of simulating shadows that are realistic for our data-capture
system, we vary the extent and intensity of the Gaussian drop
shadows in order to improve our networks robustness to
different lighting conditions. Examples of our synthetic data
are shown in Figure 4. Unlike Skovsen et al. who focused on
making photo-realistic synthetic images, we have embraced the
inelegance of simple stitching as a further form of data lighting
augmentation. We also identify the boundary pixels in each
sample so that they can be ignored during network training to
reduce influence of edge artefacts.

Local Context Network
LC-Net follows an encoder-decoder structure (Figure 5), taking
design inspiration from a number of recent segmentation
networks. The input image is encoded using the first five
blocks of VGG16 (Simonyan and Zisserman, 2015). We have
also followed standard practice of removing the max-pooling
layer from final block. The decoder part of the network has two
branches. The primary branch contains an FC block (equivalent
role to the Fully Connected layers of VGG16) and three Decoder
blocks which have skip connections to the corresponding
encoding blocks. The second branch takes the features from
the last VGG16 block and feeds them through a custom pyramid
pooling module we have designed, which we have named local
context pyramid pooling (LCPP). The output of the LCPP
module is then resized to be the same size as the output of the
primary branch (both in spatial and feature dimensions) and
concatenated to it. This is then put through mixing convolution
layers for combining the information from each branch before
the logits are calculated. At this point the output has a stride of 2
and the up-sampling is completed with bilinear interpolation.
Final predictions are then made by applying softmax activation
to this output.

FC Block
This consists of three 3×3 convolutions then a 1x1 convolution.
Each convolution is followed by ReLU activation then batch
normalisation. We choose the number of output channels for
these convolutions to be 1,024 as we generally find VGG16's
original 4,096 feature length to be excessive for problems
targeting a small number of classes.

Decoder Block
The output from the previous layer is bilinearly resized to match
the output size of the corresponding VGG16 block output. These
are then concatenated and passed through two mixing
convolution layers. There are different numbers of channels for
each input into the concatenation—this causes the less developed
TABLE 1 | Composition of the training and testing data sets.

Clover Ryegrass Background Synthetic Partial Total

Training Set 308 230 54 2700 450 (x4) 4500
Testing Set 50 50 50 400 50 (x4) 600
Each set contained independent clover, ryegrass, and background samples. The amount
of partially labelled data was quadrupled using flip augmentations.
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features in the earlier VGG16 blocks to have less influence on the
semantic information in the final output.

Mixing Convolution
These follow the same design principle shown by the DeepLabV3
+ decoder; i.e. it is beneficial to follow concatenation operations
with several convolutions to properly combine the features. We
use a 3×3 convolution followed by ReLU activation then batch
Frontiers in Plant Science | www.frontiersin.org 6135
normalisation for this. The number of output channels is fixed to
128 for all mixing convolutions in this network.

LCPP Module
The input to this module is sent separately through two average
pooling layers with kernel sizes 3×3 and 5×5. “Same” padding is
used to maintain spatial shape. The outputs of these pooling
layers are then concatenated before being sent through two 1×1
FIGURE 5 | The local context network architecture using a VGG16 backbone and local context pyramid pooling.
FIGURE 4 | Example of synthetic image generation. Plant samples use the labelling convention: red = object of interest; blue = pixels to include but ignored during
training—such as edges or ambiguous pixels; black = excluded from sample. The synthetically generated labels (right) use a convention based on the (Everingham
et al., 2012) colour scheme: red = clover; green = grass; black = background; white = pixels marked to be ignored during training.
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convolution + ReLU activation + batch normalisation blocks.
The length of the features returned by these convolutions are the
same as the module input.

It has been demonstrated by other networks (Chen et al.,
2018) that predictions can be improved by incorporating the
global context vector (the image described by single rich feature
vector with zero spatial extent) into the final decision process.
However, it would be ambiguous to apply this with forage images
of different sizes and scales (i.e., visually forage is relatively
densely packed and continuous across the extent of the image).
The LCPP module is designed to play the role of the global
context vector in this situation. It does this by incorporating
multiple context vectors that are local to large regions of the
image at different scales. The dependencies on image size and
scale are limited as a result.

Network Training
LC-Net was trained to classify pixels to three classes—Clover,
Ryegrass, and Background. The background class includes
regions containing soil and exceptionally dark shadows. Pixels
of other pastoral species are explicitly ignored during training—
therefore will have indeterminate classification during inference.
ImageNet initialisation was used for the VGG16 layers
(Tensorflow, 2016). The other weights were initialised using
standard Xavier initialisation. The network was trained for 400
epochs with a batch size of 24, using Adam optimisation, partial
categorical cross-entropy loss and a learning rate of 5e-5.
Training LC-Net with the above data set took 3.5 h on a
desktop PC using a GTX 1080Ti GPU and an Intel i7-
7700K CPU.

Data Postprocessing
Segmentation networks provide a prediction score for each class
in every pixel which is used to determine the classification for
that pixel. After processing each image with the network, we
Frontiers in Plant Science | www.frontiersin.org 7136
defined any pixel with a prediction confidence less than 80% to
be background (i.e., uncertain predictions). All other pixels were
defined as as either clover or ryegrass depending on which the
had the highest prediction confidence for the respective pixel.

When processing the data for the validation trial the harvest
frame did not fit in the camera field of view in the driving
direction. Furthermore, the height of the hood was adjustable—
meaning that the camera footprint (i.e., pixels/mm) needed to be
calculated dynamically. A rasterising-like approach to stitching
the RGB data was taken as per below.

First cross-correlation between adjacent images was
performed to determine the number of overlapped pixels. The
overlap strip was then divided into 22 strips, taking the central
row of pixels as the representative for each strip. This was then
followed by using the wheel encoder information to determine
the distance travelled in this overlap region, and therefore the
relative position of each strip. The pixels/mm along each strip is
determined from information obtained by the LiDAR unit on the
MSICS. These samples were then averaged in a raster grid with a
pixel size of 1.2 × 1.2 mm. An example of this rasterising process
applied to both an RGB image and its associated segmentation
mask is shown in Figure 6. The rasterised RGB image was not
processed with LC-Net. Instead, LC-Net is used to create
segmentation masks for the raw RGB images. The same
rasterising parameters calculated for stitching the raw RGB
images is also used to stitch the associated segmentation masks.
RESULTS

Network Training
In addition to LC-Net, two more networks were trained for
comparison (Table 2 and Figure 7). We used two standard
metrics to assess the quality of each network—mean pixel
FIGURE 6 | (A) visual and (B) segmentation images for one of the validation trial plots after rasterising. Each image has a pixel size of 1.2 × 1.2 mm2. The harvest
frame has ambiguous segmentation as the convolutional neural network (CNN) has not been trained to recognise it.
February 2020 | Volume 11 | Article 159

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Bateman et al. Assessment of Mixed Sward Using CNNs
accuracy and mean IoU. Both of these metrics are class weighted
averages. Due to the non-linear behaviour of these metrics the
mean IoU was the more informative one during training after the
pixel accuracy exceeded 90%.

FCN was trained for one of the comparison networks. Although
data from (Skovsen et al., 2017) consists of higher resolution images,
the FCNmodel we trained in our study significantly higher accuracy
—with an IoU close to that reported for benchmark datasets
(Shelhamer et al., 2016). As illustrated in Figure 7, FCN lacks the
Frontiers in Plant Science | www.frontiersin.org 8137
ability to properly delineate fine filament like structures or corners,
which is fundamental limitation of this architecture.

To show the benefits provided by the LCPP module, the LC-
Net architecture both with and without the LCPP branch.
Despite the LCPP module only improving the mean IoU by
2.2%, there is a significant boost in performance as presented in
Figure 7. Clover in the segmentation are more filled in; and
prominent gaps in the grass from the network without LCPP are
filled in when LCPP is included. Overall, the full LC-Net
outperformed all other networks tested for this application.

To test the robustness of our training process and dataset we
applied a stratified 5-fold cross validation to each of the tested
networks (Figure 8). We split each sub dataset (17/07/2018
samples, 05/12/2018 samples, and partially labelled)
independently and aggregated the respective folds. This was so
the samples with different lighting conditions would not be mixed
in the synthetic data generation process. The accuracy and mIoU
for these cross validation runs are on average a few percent lower
than obtained from the original dataset configuration (Table 2).
However, the overall network ranking remains unchanged. Note
FIGURE 7 | A red, green, and blue (RGB) image that has been captured by the multiple scanning imaging capacity system (MSICS) at site C, and processed using
each of the trained networks—fully convolutional network for semantic segmentation (FCN), local context network (LC-Net) [without the local context pyramid pooling
(LCPP) module], and the full LC-Net. The segmentation masks show clover (red), grass (green), and background (black). The background class includes soil, very
dark shadows, and pixels that have less than an 80% confidence score in their classification.
TABLE 2 | Comparison of networks trained for clover-ryegrass segmentation.

Method mAcc mIoU mAcc (CV) mIoU (CV)

FCN (Skovsen et al., 2017) 83.4 65.5 – –

FCN 92.7 74.8 92.0 73.4
LC-Net (without LCCP) 93.7 79.1 93.4 77.3
LC-Net 95.4 81.3 95.0 79.0
The mean pixel accuracy (mAcc) and mean intersection over union (mIoU) metrics are
class-weighted averages. The first two columns are results for our original dataset
configuration. The last two columns are averaged results from a stratified fivefold cross-
validation (CV).
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the original dataset configuration used approximately 11% more
samples in the training set than the cross validation. This indicates
that further improvements may still be gained through increasing
the number of samples in the dataset.

Sward Composition
To assess the improvement in estimating sward composition
using LC-Net over FCN we used 70 data points from our
validation trial. A small number of data points were excluded
from this analysis due to insufficient data for to completing the
rasterising process. The fraction of clover estimated from the
RGB images were taken as the ratio of clover pixels to clover and
ryegrass pixels as identified by the respective networks. The
clover fraction for the harvest measurements is obtained from
the equivalent calculation using dry weights instead of pixels.
Frontiers in Plant Science | www.frontiersin.org 9138
As shown in Figure 9, the clover fraction correlation obtained
from LC-Net (R2 = 0.825) is only marginally better than what
was obtained for FCN (R2 = 0.793). Overall this similarity is not
surprising since they provide approximations to the same
coverage areas. Data points with similar forage density are also
spread relatively evenly throughout the scatter cloud, which
suggests that a significant component of the variation is due to
occlusion of underlying vegetation by the top layer of pasture.
DISCUSSION

Deep Learning methods have a tendency to produce results that
appear much better compared to traditional methods, especially on
classification type problems. However, since the field of deep
FIGURE 8 | Mean accuracy (A) and mean intersection over union (B) results for each fold for models trained using stratified fivefold cross-validation. Results are
relatively consistent between folds for each model.
FIGURE 9 | Comparison of the clover-vegetation ratio obtained from RGB images and harvested dry matter measurements. (A) Red, green, and blue (RGB) results
from the fully convolutional network for semantic segmentation (FCN) network has a linear correlation of R2 = 0.793 with harvested dry matter. (B) RGB results from
the local context network (LC-Net) and has a linear correlation of R2 = 0.825 with harvested dry matter.
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learning is advancing at a very high rate it is challenging for other
fields to uptake state-of-the-art techniques into new applications.
The first pre-print of the FCN network was published two years
before it was applied to segmenting ryegrass from clover
(Shelhamer et al., 2014; Skovsen et al., 2017). During this time
dozens of new segmentation networks were published that
significantly outperformed FCN (Garcia-Garcia et al., 2017). Also,
most CNN architectures have been developed on standard
computer vision benchmark data sets, many of which are focused
on urban settings. Agricultural applications can offer challenges that
are either not present or less prominent than those found in these
benchmarks. For example, the object detection networks such as
Faster R-CNN and YOLO are now commonly applied to fruit and
weed detection. However, these networks have severe limitations
around how many objects they can detect which can cause
problems when looking at a tree with hundreds of targets—
requiring them to be applied in innovative ways. Based on our
experience in this research, global context information for proximal
pasture images contain sufficient ambiguity to make it challenging
to robustly incorporate it into networks for this application. During
the development of LC-Net we trialled DeepLabV3+ (a state-of-the-
art network which utilises global context) on this problem. We
found that it required both a fixed ground sample distance and a
consistent input image size between both the training and
deployment versions of the model. This restriction is not practical
as it is too time consuming and costly to train and maintain a
different model for every potential hardware configuration we may
need to use. The LCPP module is a pragmatic alternative to global
context—providing similar benefit without being restrictive on the
development of our data-collection platform.

For this work we did not restricted ourselves to using
predefined CNN architectures, instead we developed our own
specifically for the application of canopy segmentation in an
agricultural context. In this paper we have applied used this new
architecture (LC-Net) for analysing pasture. The design of LC-Net
is influenced by a number of different networks. Although we
don't use separable convolutions, the decoder modules and mixing
convolutions are derived from the structures used for DeepLabV3
+. The network also trained more robustly when we used skip-
connections during up-sampling rather than atrous convolutions
—although it is not clear whether this observation is specific to our
application. We also used a pyramid pooling module of our own
design (LCPP) to incorporate local context information at
different scales instead using a single global context. By
including a context layer in our network, we effectively force it
to make a high level visual score and incorporate that into the
decision process. Another advantage of LCPP is that it uses pre-
defined pooling operations, therefore requires significantly fewer
trainable parameters than other pyramid pooling techniques. The
description for LCPP we have given is very specific, however it
follows a generic formula. It can be adapted by changing the
number of pooling layers along with different kernel sizes and/or
changing the number of convolutions and feature sizes following
the concatenation. The design of this module will almost certainly
Frontiers in Plant Science | www.frontiersin.org 10139
need tuning for specific applications/data depending on factors
such as relative object size. This aspect is being investigated
further. Our experience working with CNNs is that those built
upon VGG16 are easier to train for canopy assessment compared
to deeper networks such as Xception (Chollet, 2017) and ResNet
(Kaiming et al., 2016). This is the primary reason for choosing
VGG16 as the backbone of the first iteration of our LC-Net. In
addition to pasture, we are also currently investigating extensions
of LC-Net for segmentation of orchard and vineyard canopy
applications, in addition to how well it performs on the
standard benchmark data sets.

We showed that LC-Net significantly out-performs FCN for
segmenting clover from ryegrass in mixed swards. Comparing
our FCN results and those of (Skovsen et al., 2017) two major
differences are noticeable. First, our images have half the ground
sample distance of theirs. Given that FCN has an output stride of
8, the edges of objects in its predictions should be more uncertain
with our data. Second, (Skovsen et al., 2017) included a class for
predicting weeds whereas we have not. They used very few
examples of weeds in their training data which negatively
impacted their reported accuracy. It is likely their FCN model
would have an accuracy similar to ours if either more weed
examples were added to their data set—or if the weed was class
removed entirely. Over the following season we are planning to
incorporate other plants into our dataset so we can also adapt our
network to be effective in weedy conditions.

We are planning to publish the dataset associated with this
work separately. Before doing so however, there are several
additions and improvements that we believe would add
significant value—which include labelling data from different
seasons, and inclusion of additional plants/weeds. It is worth
noting that the dataset we have compiled for this study is highly
specific to the camera and lighting setup we have used. For
example, a few minor tests we performed demonstrated that our
network is not generalised for natural lighting conditions (a drop
in mIoU of roughly 30 − 40%). As such, networks trained by our
dataset will likely perform poorly on data collected from setups
substantially different from our own.

Comparing LC-Net and FCN models by the correlation
between visual and harvested clover ratios, we see little
difference in the results. Work by (McRoberts et al., 2016) and
(Rayburn, 2014) using more traditional methods showed that it
is also possible to obtain reasonable estimation through
classification with coarse super-pixels and sparse subsampling.
This indicates that significant boosts in pixel-level segmentation
accuracy only translates to small (sometimes negligible)
improvements in clover-vegetation fraction estimation with
RGB imaging. There are two situations we identify that could
benefit from higher segmentation accuracy: (1) when combining
visual information with that of other sensors such as LiDAR to
which can potentially compensate for the lack of plant density,
volume, and occlusion information; and (2) when assessing
pasture for more species than just clover and ryegrass. We are
currently investigating both of these areas. Another motivation
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for using deep learning models is that they are in many cases
simpler to work with, maintain, and extend when compared to
more traditional feature crafting methods.

An observation of significance we made during training each
of these networks was that training and testing losses could not
be used to monitor for overfitting. After approximately 20–30
epochs in every training run the testing loss starts to increase (a
typical sign of the network memorising the training set), however
the accuracy and IoU metrics continued to improve regularly.
This increase in validation loss seemed to be focused around the
edges of the leaves in the images. Due to the mesh-like structure
of pasture there is an unusually high proportion of class
boundary pixels to interior pixels (%56 in our training data)
that therefore provide a significant contribution to the loss. The
synthetic images in our data set has been constructed in a
manner that provides little information to the network about
what true edges look like. This peculiarity may be resolved
through improvements to how the training set is labelled,
however the cost is likely higher than the benefit from doing
so. The networks trained appear to work well in practice despite
the elevated loss, and the accuracy metrics did not indicate
overfitting nor appear to be significantly affected by this.

Overall, our results for assessing clover fraction using
convolutional neural networks are comparable to those
obtained by (Skovsen et al., 2017). We have demonstrated that
relationship between visual and harvested clover fraction is
reproducible using different networks, lighting setup, camera,
image resolution, less photogenic synthetic data, and different
postprocessing procedures.
CONCLUSIONS

A new CNN architecture (LC-Net) designed for segmentation of
agricultural canopies is showing promise for component
identification in mixed sward. This architecture can segment
clover and ryegrass in RGB images with higher accuracy than any
other methods publicly available for the same application. We
have also achieved this with half of the image resolution (pixels/
mm) used by the next best method. Our comparisons between
visual and harvested dry matter clover-vegetation ratios indicate
that these improvements in segmentation accuracy do not yield
similar improvements to biomass estimation. However, we
predict that refined segmentation is necessary for improving
biomass predictions when it is combined with information from
other sensors.
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Doing More With Less: A Multitask
Deep Learning Approach in Plant
Phenotyping
Andrei Dobrescu1*, Mario Valerio Giuffrida2 and Sotirios A. Tsaftaris1

1 IDCOM, University of Edinburgh, Edinburgh, United Kingdom, 2 School of Computing, Edinburgh Napier University,
Edinburgh, United Kingdom

Image-based plant phenotyping has been steadily growing and this has steeply increased
the need for more efficient image analysis techniques capable of evaluating multiple plant
traits. Deep learning has shown its potential in a multitude of visual tasks in plant
phenotyping, such as segmentation and counting. Here, we show how different
phenotyping traits can be extracted simultaneously from plant images, using multitask
learning (MTL). MTL leverages information contained in the training images of related tasks
to improve overall generalization and learns models with fewer labels. We present a
multitask deep learning framework for plant phenotyping, able to infer three traits
simultaneously: (i) leaf count, (ii) projected leaf area (PLA), and (iii) genotype
classification. We adopted a modified pretrained ResNet50 as a feature extractor,
trained end-to-end to predict multiple traits. We also leverage MTL to show that
through learning from more easily obtainable annotations (such as PLA and genotype)
we can predict a better leaf count (harder to obtain annotation). We evaluate our findings
on several publicly available datasets of top-view images of Arabidopsis thaliana.
Experimental results show that the proposed MTL method improves the leaf count
mean squared error (MSE) by more than 40%, compared to a single task network on
the same dataset. We also show that our MTL framework can be trained with up to 75%
fewer leaf count annotations without significantly impacting performance, whereas a
single task model shows a steady decline when fewer annotations are available. Code
available at https://github.com/andobrescu/Multi_task_plant_phenotyping.

Keywords: plant phenotyping, deep learning, multitask, leaf count, PLA, genotype
INTRODUCTION

Nondestructive, image-based plant phenotyping is a growing trend in how scientists and breeders
engage in plant characterization. Due to the advances in image acquisition systems (Qiu et al., 2018)
and development of affordable hardware and software framework (Dobrescu et al., 2017b; Minervini
et al., 2017), high throughput plant image capture is becoming widespread. In particular, machine
learning has shown that it can be applied effectively in processing vasts amounts of data, including
in plant phenotyping problems (Scharr et al., 2016). For example, segmenting whole plants
(Minervini et al., 2014; Aich and Stavness, 2017), or each individual leaf (Romera-Paredes and
.org February 2020 | Volume 11 | Article 1411142
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Torr, 2016; Ren and Zemel, 2017; Ward et al., 2018), synthetic
image synthesis (Giuffrida et al., 2017; Zhu et al., 2018), and leaf
counting (Aich and Stavness, 2017; Dobrescu et al., 2017a;
Giuffrida et al., 2015; Pape and Klukas, 2015; Giuffrida et al.,
2018b; Itzhaky et al., 2018) are all phenotyping tasks that have
been recently addressed using machine learning and deep
learning, technologies that are becoming more common in the
plant-research community. In fact, the fourth edition of the
Computer Vision Problems in Plant Phenotyping1 workshop
(CVPPP 2019) shows an increasing interest from people inside
and outside the plant phenotyping community to invest efforts to
develop newer machine learning based approaches.

Leaf count has been an area of interest for plant phenotyping, as
it is related to developmental stages (Boyes et al., 2001) and can be
an indicator for yield potential (Ngouajio et al., 1999) and plant
health (Rahnemoonfar and Sheppard, 2017). Two have been
proposed to infer leaf count: (i) determining the leaf count as a
subproduct of per-leaf segmentation; or (ii) tackling the problem as
a holistic regression task. Several different algorithms have been
proposed for a per-leaf segmentation approach. Scharr et al. (2016)
discusses four methods to achieve per-leaf segmentation, where
machine learning was used for the first time for this task. Romera-
Paredes and Torr (2016); Ren and Zemel (2017); Ward et al. (2018),
and Zhu et al. (2018) have proposed several deep learning
approaches for per-leaf segmentation, obtaining remarkable
results in terms of segmentation accuracy. However, the main
issue with such methods is that they require per-leaf
segmentations to train the algorithms that are often time-
consuming, laborious, and expensive to acquire. Although
Minervini et al. (2015; 2017) have proposed semiautomatic
graphical tools, they still require experienced users to obtain an
adequate per-leaf segmentation. Another type of annotation used
for leaf counting is to mark each leaf with a dot on the center, rather
than the whole leaf segmentation. Although it is an easier way to
provide topological and localisation information, it still requires a
human to click on the center of each leaf. Itzhaky et al. (2018) use
such annotation to train a leaf detector which is used in conjunction
with a leaf regressor (named D+R) to achieve state-of-the-art
leaf count.

Alternatively, leaf counting can be addressed as a holistic
regression task, where an algorithm predicts the total leaf count
in an image. In this context, the machine learning algorithm
requires just the total number of leaves, which is an easier
annotation to obtain, compared to the per-leaf segmentations
(Minervini et al., 2015; Giuffrida et al., 2018a). The first studies to
use machine learning techniques reported encouraging results
(Giuffrida et al., 2015; Pape and Klukas, 2015), although more
recently approaches based on deep neural networks have become
the state of the art. Dobrescu et al. (2017a) proposed a deep
neural network based on a ResNet50 (He et al., 2016), where leaf
counting was learned by agglomerating data from multiple
sources. Further to this, Giuffrida et al. (2018b) proposed a
versatile network that demonstrated that leaf counting could
be better learned using data from multiple imaging modalities
1More information available at https://www.plant-phenotyping.org/CVPPP2019
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using a single architecture. Itzhaky et al. (2018) also describe
another approach (named MSR) which uses a feature pyramid
network architecture (Lin et al., 2017) to learn a direct regressor
at multiple scale levels of a plant and then fuse them to output a
single leaf count prediction. Ubbens and Stavness (2017)
proposed several specialised deep network architectures to
count leaves in different datasets, as well as to infer other tasks
such as projected leaf area (PLA) and genotype prediction.

The success of machine learning, and especially deep learning,
is attributed to the ability to relate images to a given task. Deep
neural networks extract meaningful information from images
(typically referred to as image features), even when they contain
complex structures like plants. In the current paradigm, many
machine learning models are specialised to perform a single task
(i.e., learn one plant trait at a time).

However, plant phenotyping traits, such as the total leaf
count, can often be related to other traits, such as the total leaf
area, age, and genotype. Incorporating such related traits in the
deep learning framework would help the deep neural network
better learn all the traits (Caruana, 1997).

Multitask learning (MTL) has been shown to improve the
accuracy and the generalization performance of each task
(Caruana, 1997). The benefits of MTL are multifold, especially
when tasks are related to each other. Firstly, one one network is
trained to perform multiple tasks at the same time, in contrast
with Ubbens and Stavness (2017), where several networks with
different architectures were trained separately to extract
phenotyping traits. The learning of multiple tasks enforces the
network to learn good representations, thus increasing the
generalization capability of the model. Since information
sharing is the core of MTL, learning multiple tasks
simultaneously reduces overfitting, even in presence of reduced
datasets (Baxter, 1997). Additionally, from an implementation
perspective, MTL allows having just one shared model instead of
independent models per task. This helps reduce storage space,
decreases training times and is easier to deploy and maintain.
MTL is a special case of transfer learning (Pan and Yang, 2010),
where (i) there is no distinction between tasks; and (ii) the
objective is to increase performance for all the involved tasks.

Surprisingly, despite the benefits of MTL and its application
in several other areas of computer vision (Ramsundar et al., 2015;
Kokkinos, 2017; Ranjan et al., 2019), it has been under-explored
in addressing problems in plant phenotyping. Pound et al. (2017)
proposed the earliest application in MTL for plant phenotyping,
where a deep neural network that can both detect and count
wheat spikes, as well as classify the presence of awns.

In this paper, we propose an MTL architecture aimed to infer
leaf counting, together with the PLA and genotype classification
(Figure 1). We use the dataset Ara2013 (Minervini et al., 2017) and
show that multiple tasks help to achieve more precise predictions of
these three plant traits. The tasks were chosen, as they are relevant
and well known plant phenotyping objectives as well as being
correlated to each other, which helps the training process. The
PLA and genotype annotations are less tedious and time-consuming
to gather. The PLA can be obtained with a plant segmentation
algorithm (Aich and Stavness, 2017; Dobrescu et al., 2017a;
February 2020 | Volume 11 | Article 141
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Minervini et al., 2015), whereas the genotype is generally known a
priori to the scientists. The leaf counting task and PLA estimation
are treated as direct regression problems having only the total leaf
count and total PLA as respective annotations. The genotyping task
is addressed as a binary classification between wild-type
and mutant.

The contributions of this paper are multifold:

• Our end-to-end MTL architecture predicts several traits at the
same time, in particular leaf counting, PLA, and genotype.
Having one unified model for multiple tasks improves
performance in leaf count compared to a single task model.
Amongt the other tasks, leaf counting is the hardest to predict
from a computer vision perspective, due to huge variability
between leaves as well as occlusions in the images.

• We show that our proposed method can be trained with fewer
leaf count annotations without significantly impacting leaf
count performance. Our results show that when annotations
for one task are available, performance can be improved by
using correlated tasks for the same images.

• We show which count annotations have the most impact on
the model performance. Understanding this key aspect would
help guide the annotation of a new dataset, highlighting
which images should be first annotated in a new dataset.
METHODS

For this study we developed an MTL deep learning model that
takes in as input a top-down color (RGB) image of a rosette plant
(e.g. Arabidopsis thaliana) to infer the total number of leaves,
PLA, and binary genotype classification.

The Feature Extractor
The first part of the model (Figure 2 Top) is a ResNet50 (He et al.,
2016) neural network and works as a feature extractor. We used a
Frontiers in Plant Science | www.frontiersin.org 3144
ResNet50 pretrained on ImageNet (Krizhevsky et al., 2012), as it
has been demonstrated to perform well on plant phenotyping
tasks (Dobrescu et al., 2017a; Giuffrida et al., 2018b). The
architecture of the model is composed of 16 convolutional
blocks, each consisting of three convolutional layers of
increasing filter sizes to maintain complexity per layer (He et al.,
2016). This model is a residual neural network, which means that
the convolutional layers are not just stacked on top of each other,
but also additional connections between the convolutional blocks
(residual connections) are present between neighboring blocks.
These skip connections help propagate the error signal faster
across these very deep networks layers, yielding improved results
over other network designs. We modified the reference ResNet50,
by removing the last layer intended for classification and replaced
it with a fully connected layer containing 1536 nodes, which acts as
a shared representation for the three training tasks. Up to and
including the shared representation, we leverage hard parameter
sharing, meaning the network layers are shared between all the
tasks. This approach reduces the risk of overfitting which is
important when training deep learning models.
The Task Branches
The second part of the model (Figure 2 Bottom) consists of the
three task-specific branches that are each responsible for
computing one of the tasks. The branches receive information
from the shared representation above and specialise on one task.
The first one computes the leaf count and it consists of a fully
connected layer of 512 nodes and a 1 node layer which outputs
the count prediction. The second for estimating the PLA, has the
same design as the leaf count branch. The PLA output is
normalised as the percentage that the plant occupies in
relation to the whole image. Genotype classification is
determined by the third branch and contains 3 fully connected
layers of 512, 256 and 2 nodes respectively. The activation
functions of the fully connected layers in the branches are
FIGURE 1 | Schematic of the multitask learning (MTL) model: The model takes in an image as input and it uses a CNN to learn three tasks concurrently: Leaf count
outputted as a scalar (Task 1); projected leaf area (PLA) estimation as a percentage of area the plant occupies in the image (Task 2); and genotype classification
between mutant and wild type (Task 3).
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rectified linear units (ReLU), except for the final genotype and
PLA prediction layers, which are sigmoid and LeakyReLU
respectively. On layers before the final prediction layers for all
three tasks we apply an L2 regularization of 0.04 to penalize layer
activity during training and prevent overfitting.
Frontiers in Plant Science | www.frontiersin.org 4145
Losses
All tasks are learned at the same time in the MTL model. Each
task has a specific loss tailored to the specifications. For the leaf
counting and PLA estimation tasks the loss is mean squared
error (MSE). However, when comparing to the other tasks the
FIGURE 2 | Detailed architecture of the model. The network takes in as input an RGB image of a rosette plant. The main feature extractor is a ResNet50 deep
residual network, which is composed of 16 residual blocks which consist of three stacked layers with residual connections between the input and the output of each
block. FC layers represent fully connected layers of a given size. The FC1536 is a shared dense representation layer from which each task branch off into their
respective output. Each branch is then is specialised for a specific task.
February 2020 | Volume 11 | Article 141
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values were very low. To balance it out, we multiplied the error
values by 10 to maintain comparable values. For the task of
genotype prediction the loss is binary cross entropy using a
sigmoid final layer activation to get the output between 0 and 1.

Datasets
Three different datasets were used in this study that contain
top-down RGB images of Arabidopsis thaliana plants. The
Ara2013 (Minervini et al., 2017) dataset consists of 24
separate plants of 5 different genotypes: Col-0 (wild-type),
ein2 (Guzman, 1990), ctr (Kieber et al., 1993), adh1 (Perata
and Alpi, 1993), pgm (Caspar et al., 1985). Images were
captured of each plant twice a day for 26 days. Example
images from the dataset can be seen in Figure 3. The different
genotypes represent a wide range of visual phenotypes when
compared to the wild type (Col-0). Ein2 and adh1 are visually
similar to the wild-type while the ctr and pgm are more distinct.
Two additional datasets part of the CVPPP leaf counting
challenge (LCC), hereafter denoted as A1 (Minervini et al.,
2016) and A4 (Bell and Dee, 2016) were also used in evaluating
the model. The total number of images in the datasets are 1248,
128, 624 of resolutions 317×309, 500×530, and 441×441 in
Ara2013, A1, and A4, respectively. The datasets were captured
with different experimental setups, so the quality of the images
as well as the background appearance varies.

Data Augmentation
Data augmentation is a method widely used in deep learning to
increase the size of available datasets and to give more diverse
examples to the neural network during training. The aim is to
Frontiers in Plant Science | www.frontiersin.org 5146
instill in the model a level of invariance to nuisance factors
meaning that the network should give the same results if the
same image of a plant is just rotated or shifted. It also helps the
network to ignore background variability such as different
planting trays, camera setups and soil appearance. For this
study, data augmentation was performed when training all
mode l s , in the fo rm of a s s i gn ing random affine
transformations from a pool of random rotations between 0
and 180 degrees, shifting the image between 0% and 10% of its
size as well as flipping the image on the horizontal or
vertical axis.

Data Preprocessing and Model Training
Before training the neural network, all images were resized to
320 × 320 as a preprocessing step to optimise training times
while retaining important features, such as distinct small leaves.
Out of the 24 plants in the Ara2013 dataset, 19 were used for
training and the remaining five plants were used for testing. As
the five genotypes present in the dataset can be visually distinct, it
is important to present the network with an adequate sample of
each so that it can learn each genotype particularities. As a result,
the five testing plants were chosen as to contain one plant of each
genotype. We perform fourfold cross validation where the
dataset was randomly divided into four nonoverlapping subsets
so that all images are present in the test set once. There is an
imbalance between mutants and wild type in the training
datasets so a training class weight was added to the genotype
classification branch to increase training importance of the wild-
type images. The class weight was chosen to be proportional to
the class imbalance in each training scenario.
FIGURE 3 | Example images from the Ara2013 dataset. The dataset is composed of time series images of 24 plants of 5 Arabidopsis thaliana accessions.
The different genotypes vary in size, shape and color hue, making it a challenging dataset.
February 2020 | Volume 11 | Article 141
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The annotations used during training for each image were the
total leaf count as an integer, the PLA, and whether the plant was
a mutant or wild type. We normalised the PLA values between 0
and 1 by computing the total area covered by the plant as a
percentage of the whole image. In the experiment testing how the
model performs with less training annotations, leaf count labels
were removed in incremental steps leaving 75%, 50%, and 25%
from the total number in the training set. The labels were
removed to maintain an even distribution of plant ages and
genotypes in the training set (i.e., every 4th label removed for the
75% step). Next, in the experiment analyzing the different
strategies of annotating a dataset, three methods of removing
labels were employed: we either removed count annotations
corresponding to the most juvenile plants, or we removed
labels corresponding to the most mature plants, or lastly we
removed labels randomly. The same 25% increments were used.
During all experiments where we trained the model with fewer
leaf count annotations, the PLA and genotype annotations were
still provided for all images.

The model was trained on an Nvidia TitanX GPU using the
Adam optimizer with a learning rate of 0.0001. All the tasks were
concurrently learned end-to-end, with an early stopping
criterion based on the validation loss, in order to avoid
overfitting. Model selection was according to the overall
validation loss for all tasks in the cross-validation.
RESULTS

In this section, we offer experimental evidence of the effectiveness of
our model. To evaluate our model in the leaf counting task, we use
CVPPP evaluationmetrics (Scharr et al., 2016; Giuffrida et al., 2018b).

They are the difference in count (DiC), absolute DiC (|DiC|),
MSE, percentage agreement and coefficient of determination
(R2). The agreement metric represents the percentage of
instances where the network prediction corresponds exactly
with the ground truth.

Evaluation of the MTL Model
We first trained our MTL model on the Ara2013 dataset, as it is
the only dataset that contains plants of different genotypes. We
then added the A1 and the A4 datasets in order to gauge impact
of visually diverse datasets to our model. The results are
displayed in Table 1 for all three tasks. The results show that
the network predictions display a strong correlation with the
ground truth in the leaf count task with a R2 of 0.95 and an
Frontiers in Plant Science | www.frontiersin.org 6147
overall test MSE of 0.93. The PLA estimation task shows a small
MSE equating to an average difference of 2.1% between the
ground truth and the predicted PLA. The genotype classification
task shows a promising 91.1% test accuracy. As illustrated in the
confusion matrix in Figure 4, wrong predictions occur rarely.
Moreover, the model shows resistance to nuisance variability
(i.e., different backgrounds and soil), as we evaluated different
datasets grown in different growth scenarios.

Next, we assessed if the addition of MTL increases
performance for the leaf counting task compared to a single
task model. To make the single task leaf count variant of our
model we removed the other branches. We maintained the same
training procedure for both models and the dataset used was the
Ara2013 dataset. The results are shown in Table 2. Overall, the
results of the MTL model are improved for all metrics analyzed,
demonstrating that MTL reduces prediction errors when
multiple related tasks are learned jointly. To test whether there
is a statistically significant difference between the multitask and
single-task models, we performed a bootstrapped paired t-test
(Rodriguez, 2011) between the results of the |DiC| for the two
approaches at 100% leaf count labels with a null hypothesis that
they are equal. We perform the bootstrapped t-test because the
TABLE 1 | Results for the multitask learning (MTL) network for leaf count and projected leaf area (PLA) and genotype classification.

Dataset DiC Count PLA Genotype

│DiC│ Agreement MSE R2 MSE Accuracy

Ara2013 −0.22 (0.93) 0.67 (0.69) 45 0.93 0.95 0.021 91.1
Ara2013 + A1A4 −0.21 (1.09) 0.77 (0.79) 44 1.23 0.96 0.025 95.6
February 20
20 | Volume 11 |
The values are computed at test time for the model trained on first just the Ara2013 dataset and then the extended dataset of Ara2013+A1+A4. The small drop in performance in the
extended dataset can be attributed to the increase in dataset difficulty by adding more challenging examples.
FIGURE 4 | Confusion matrix for genotype prediction at test time. The
multitask learning (MTL) model learns to classify whether a plant is a mutant or
wild type with an accuracy of 98% correct wild type and 91% correct mutant
classification. The values are given at test time in the Ara2013 dataset.
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output of our model for the |DiC| does not follow a Gaussian
distribution required for a valid t-test. The result is a two tailed p-
value of 0.0093 after 105 bootstrapped samples. The p-value of
<0.05 demonstrates that there is a significant difference between
the MTL and single task models, confirming the superiority of
MTL for the leaf counting task.

We then compare ourMTL framework to current state of the art
specialised leaf counting models. The results can be seen in Table 3.
We trained our MTL model on the A1 dataset but with just the leaf
count and PLA tasks as there are only wild-type plants present. Our
model outperforms the results of Dobrescu et al. (2017a) in all
categories. We achieve similar results to the best reported values in
Itzhaky et al. (2018), D+R method that utilise the leaf center as
additional training annotation, while we are using only a direct
regression method.

Substituting Hard to Get Annotations
With MTL
In this experiment, we assess whether we could compensate for
the lack of expensive training annotations in the leaf counting
task by using an MTL approach and providing other, easier to
acquire, annotations. When training the network, we removed
parts of the leaf count labels, but we retained all the PLA and
genotype labels. Leaf count labels were removed in incremental
steps leaving 75%, 50%, and 25% from the total number in the
training set to check how the models perform when increasingly
fewer count annotations are available.

Experimental results are shown in Table 4. It can be noted
that the MTL model remain consistent even when only 25% of
the original count labels are used in training. Furthermore, the
standard deviation of the DiC in the MTL model remains nearly
constant for all the label steps, indicating that the predictions are
Frontiers in Plant Science | www.frontiersin.org 7148
consistently close to the reported mean. On the other hand, the
single-task model sees a significant decline in performance when
less training annotations are present. The MSE increases from
1.45 when 100% of the labels are present to 5.49 and then to 17.2
at the 50% and 25% count label steps respectively.

The same trend is visible in the R2 values as well declining
from 0.92 at 100% to near 0 when only 25% of the count labels
are available. To test whether there is a significant difference
between the results of the different count label thresholds in
Table 4, we computed the same type of bootstrapped paired
sample t-tests mentioned in Section 3.1 between the results of the
|DiC| for the multitask and single-task models trained with 100%
and 25% of the labels respectively, using the standard threshold
of 0.05 as a significance level to indicate whether there is a true
mean difference between the two samples. The performance drop
is more noticeable in single task-model at all levels of omitted
labels and the bootstrapped two tailed p-value well below <0.001
reflects the results. On the other hand, in the MTL model, the
results remain stable and do not differ significantly as the
number of training labels decrease (bootstrapped two tailed p-
value of 0.097, above significance threshold). This means that the
model successfully compensates from the lack of leaf counting
data by learning from the other tasks.

The distribution of count predictions at the 25% count label
step can be seen in Figure 5. The MTL model maintains a more
leptokurtic distribution, with 91% of the predictions fall within
±1 of the ground truth, compared to the single task model where
only 50% of predictions are within ±1 of the ground truth.

Which Labels Are Most Important
Given that it is possible to obtain reliable leaf count predictions
with only the 25% of the training count labels in the MTL model,
an important question is:Which 25% of labels are most important
for the model to successfully train? Understanding this key aspect
would help guide the first annotation of a new dataset,
highlighting which 25% of images should be first (and
potentially only) annotated in a new dataset.
TABLE 2 | Results for the multitask learning (MTL) network vs. the single task
network for leaf counting task trained on the Ara2013 dataset.

Model DiC │DiC│ Agreement MSE R2

Single task 0.40 (1.09) 0.80 (0.84) 41 1.35 0.92
Multitask 0.22 (0.93) 0.67 (0.69) 45 0.93 0.95
All parameters are improved in the MTL model, with the mean squared error (MSE)
showing an improvement of 40%.
TABLE 3 | Comparison of our proposed multitask learning (MTL) model with
state-of-the-art results in leaf counting on the Computer Vision Problems in Plant
Phenotyping workshop (CVPPP) A1 test set.

Method DiC │DiC│ Agreement MSE

Romera-Paredes and Torr
(2016)**

0.20(1.40) 1.1(0.9) – –

Aich and Stavness (2017)† −0.33(1.38) 1.00(1.00) 30.3 1.97
Dobrescu et al. (2017a)† −0.39(1.17) 0.88(0.86) 33.3 1.48
Itzhaky et al. (2018) MSR† −0.27(1.21) 0.70(1.02) 57.0 1.48
Itzhaky et al. (2018) D+R** −0.12(1.11) 0.73(0.84) 45.5 1.21
Proposed Multi-Task Model† −0.09(1.10) 0.78(0.77) 39.0 1.22
The results show an improvement in mean squared error (MSE) on previous works that
use just the total leaf count as annotation. The results are similar to the current state-of-
the-art specialized leaf counting networks. The table only shows results of the leaf counting
task as there is no benchmark for the other tasks. †Method uses just the total leaf count as
annotation. **Method uses stronger annotations.
TABLE 4 | Effect of incrementally decreasing leaf count annotations in the
multitask learning (MTL) (multi) and single-task (single) models during training.

Count
Labels

100% 75% 50% 25%

DiC Single
Multi

0.40 (1.09)
−0.22 (0.93)

0.82 (1.68)
−0.14 (0.94)

1.16 (2.04)
−0.23 (0.95)

1.18 (3.98)
−0.46 (0.94)

│DiC│ Single
Multi

0.80 (0.84)
0.67 (*0.69)

1.28 (1.36)
0.62 (0.71)

1.62 (1.69)
0.75 (0.72)

2.68 (3.16)
0.75 (0.75)

Agreement Single
Multi

41
45

33
48

23
40

21
42

MSE Single
Multi

1.35
0.93

3.48
0.91

5.50
1.08

17.2
1.13

R2 Single
Multi

0.92
0.95

0.80
0.95

0.68
0.94

0.02
0.94
February 202
0 | Volume 11
All the projected leaf area (PLA) and genotype labels are still present during training of the
MTL model. The MTL model maintains steady performance in all label steps while the
single task model shows significant decline. We show the results on the leaf count task
because it is the most challenging task.
| Article 141

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Dobrescu et al. Multitask Learning in Plant Phenotyping
We evaluated three different annotating strategies and results
are shown in Table 5. Firstly, we removed the count labels
starting with the youngest plants up to the designated thresholds
of 75%, 50%, and 25%. For example, at 50% labels there were no
count labels present for the first half of the plant’s life. Using this
method, the results show similar results between 100% and 75%
count labels so we conclude that the youngest plants have little
impact on the training of the model. The results then start
Frontiers in Plant Science | www.frontiersin.org 8149
declining until there is only a R2 value of 0.07 when only the
oldest 25% of the plants were present.

The next method is the reverse of the previous one, meaning
we removed the count labels starting with the oldest plants. We
observed a decline in results, even at 75% labels. At the next step
threshold, the model failed to learn any of the tasks. Lastly, we
excluded annotations from the dataset selecting at random plants
across the time span. This method, perhaps as expected, gave
FIGURE 5 | Leaf count test accuracy when training with 25% of the count labels. The bars represent the sum of predictions in the Ara2013 test set which are equal
the ground truth as well as the differences in count on either side. The green shaded region represents the region of ground truth ±1 leaves which is similar to human
accuracy. The multitask learning (MTL) variants have a ±1 accuracy of 91% while the single task models only have a 50% ± 1 accuracy and a much wider spread of
difference in count errors.
TABLE 5 | The impact on the multitask learning (MTL) model different strategies for annotating a dataset by determining the impact on the MTL model count labels and
their impact on the MTL model.

Count PLA Genotype

Selection Method Count Labels │DiC│ Agreement MSE R2 MSE Accuracy
All count labels 100% 0.67 (0.69) 45 0.93 0.95 0.021 90
Removed juvenile plants 75%

50%
25%

0.65 (0.68)
1.66 (1.73)
3.45 (2.26)

46
28
6

0.89
5.76
17.08

0.95
0.68
0.07

0.025
0.032
0.030

91
88
81

Removed mature plants 75%
50%
25%

1.36 (1.84)
4.83 (5.80)
6.91 (6.20)

34
21
17

5.27
53.03
86.16

0.71
N/A
N/A

0.015
0.013
0.019

63
73
67

Random Selection 75%
50%
25%

0.70 (0.68)
0.67 (0.71)
1.39 (1.24)

42
44
27

0.97
0.96
3.49

0.94
0.94
0.81

0.010
0.024
0.045

91
88
81
February 202
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This can also be seen as what count labels are most important when annotating a new image based plant growth dataset. The values shown were obtained training on the Ara2013
dataset. The count labels were removed in increments of 25%. First the labels of the most juvenile plants were removed. Then the labels of the oldest plants were removed. The third
category removes count labels in a random fashion at the designated percentage steps.
Article 141

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Dobrescu et al. Multitask Learning in Plant Phenotyping
results which are comparable to having an equal distribution of
labels as in Table 4. At the 25% step the results worsened, but this
could be explained due to random chance of how the count label
distribution was selected.
Determining Important Image Regions
Training a deep neural network model with less annotations
generally makes it more difficult for the model to learn. To assess
this impact in our model, we investigated what parts of the image
the network considers important. We aim to see if the most
important regions correspond to the plant or the network is
influenced by information found in the background (e.g. the soil
or plant pot). We performed the test by imposing a black sliding
window on a sample of test images and predicted the leaf count,
genotype, and PLA using our model on the images as the sliding
window was traversing it. The method developed in Zeiler and
Fergus (2014) is similarly used in Dobrescu et al. (2017a). The
aim was to understand what are the important parts of the image
from the trained network’;s perspective, as obstructing such a
part would give rise to errors in the predictions.
Frontiers in Plant Science | www.frontiersin.org 9150
For the leaf counting task, we carried out this test on models
trained using 25% count annotations in MTL and single task
models to gauge if there is a difference in how the errors are
distributed in the two approaches when less annotations were
available. In the PLA estimation and genotype classification we
compare MTL models trained with 100% and 25% count labels
to determine if they were learning properly, and if they were still
focusing on relevant image parts at the two annotation
increments. The results are shown in Figure 6, showing that
the network does actually focus mostly on the image areas
corresponding to the plants. Additionally in the MTL model
the errors generated and the regions impacted are similar
between the models trained with 100% and 25% leaf count labels.
DISCUSSION

We show that an MTL deep learning approach is superior to just
single task models for the purposes of characterizing visually
challenging plant traits, such as leaf counting. We treat the leaf
counting problem as a holistic regression task. One of the
FIGURE 6 | Test showing the focus of the network using a sliding window. (A) is the original test image, along with the count ground truth. Overlaid is a black
sliding window (60 × 60 pixels), which traverses the original images. The top row is an example of a wild type plant and the bottom row is an example of a mutant.
(B) represents the prediction accuracy as the sliding window is traversing the image of the multitask learning (MTL) model (left column) and the single task model
(right column) trained with just 25% count labels. The errors are expected to be confined to the area where the plant is located as the box obscures whole or parts
of leaves the overall count prediction should decrease. (C, D) represent the sliding box test only in the MTL model for Genotype classification accuracy and
projected leaf area (PLA) estimation. These were only performed on the MTL model comparing between models trained with 100% (right column) and 25% (left
column) labels. The color bar for the PLA task shows increments in percentage points. The rows correspond to the images in part A. GT signifies the ground truth.
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limitations of such approaches is that the network needs to learn
good image representation from each image, based only on the
total leaf count number. Employing an MTL model offers extra
information to the model easing the training process.

In agreement with Caruana (1997), an MTL model can learn
also from the other tasks leading to better generalization
performance and more robust extraction of features. The
benefits can be seen in Tables 2 and 4 where the MTL model
outperforms the single-task model. The performance of deep
neural networks is known to be strongly influenced by the
quantity of annotated data used during training (Sun et al.,
2017). By omitting leaf count labels in our approach, the model is
essentially training the leaf counting task with fewer annotated
examples and, therefore, it would be expected to have an important
negative impact on the results. However that is not the case for our
MTL model, which can overcome the extra difficulty of training
from less annotations without having a statistically significant drop
in performance. Furthermore, during training, the MTL model was
more stable when fewer count annotations were available compared
to the single task models (see Additional Figure 1 for more details).

Getting a sense of what regions the network considers important,
provides an insight if the model was successfully trained to get
information from the appropriate image areas (i.e., the plant not the
background). There is a clear difference between theMTL and single
task models in the leaf counting task when trained with just 25%
count annotations Figure 6. As the sliding box moves over the
image, the errors that produce a lower count prediction are very
specific to regions containing the plant suggesting that the model
learned well the area of interest. On the other hand, the single task
model yields more pronounced prediction errors in all regions of
the image so it does not focus on the plant region as well as theMTL
model. For the genotype classification and PLA estimation tasks we
investigated if there are differences between MTL models trained
with 100% and 25% leaf count annotations. There is no visibly
significant difference between them meaning that both models
learned to focus mostly on the plant areas.

Two of the mutants present in the Ara2013 dataset seen in Figure
3, (ein2 and adh1) are visually similar to the Col-0 wild type, making
genotype classification a challenging task. The errors we observed
occurmainly when themodelmisclassifies thesemutants as wild-type
in the early and middle part of the growth cycle. However, the overall
classification accuracy remains >90%, demonstrating that the
network is not biased towards a specific class.

When assessing the best strategy to select labeled data for the leaf
counting task in the MTL model, we can find what are the most
important time points in the plant growth stage for the network to
learn in Table 5. The network performance is directly affected when
the count labels are missing from mature plants, while minor
changes are seen when the juvenile 25% are removed, showing
similar behavior as a random selection of up to 50%. This means
that most important information for these tasks is learned from the
mature plants, while the juvenile plants contribute less in the
learning process. The other tasks reflect this trend as well. We
can conclude that the best strategy is to provide the most balanced
Frontiers in Plant Science | www.frontiersin.org 10151
dataset, that provides the widest-ranging examples to the neural
network during training. Next, in order from best to worst would be
to just randomly choose which labels to provide, then omitting the
juvenile plants and lastly is to omit the mature ones.
CONCLUSIONS

In this paper we have proposed a framework for multitask deep
learning (MTL) for plant phenotyping. We showed that MTL
architecture outperforms the single-task models trained on the
same datasets. We have achieved an improvement on the state-of-
the-art for leaf counting compared to direct regression approaches for
the datasets tested. We achieve a similar performance to state-of-the-
artmethods which use additional annotations for training. To the best
of our knowledge, this is the first work that studies and compares the
benefits of MTL versus single task in plant phenotyping. We show
that the proposedMTLmodel can be used to compensate for missing
labels in plant phenotyping, leveraging other related traits. We have
also explored different leaf count annotation strategies and showed
which segments of the plant images are most important to be labeled.
Lastly we have shown that the MTL model correctly focuses on the
parts of the image that correspond to the plant and largely disregards
the background when computing prediction for all three tasks.
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Rapeseed is an important oil crop in China. Timely estimation of rapeseed stand count
at early growth stages provides useful information for precision fertilization, irrigation,
and yield prediction. Based on the nature of rapeseed, the number of tillering leaves
is strongly related to its growth stages. However, no field study has been reported on
estimating rapeseed stand count by the number of leaves recognized with convolutional
neural networks (CNNs) in unmanned aerial vehicle (UAV) imagery. The objectives of
this study were to provide a case for rapeseed stand counting with reference to the
existing knowledge of the number of leaves per plant and to determine the optimal
timing for counting after rapeseed emergence at leaf development stages with one to
seven leaves. A CNN model was developed to recognize leaves in UAV-based imagery,
and rapeseed stand count was estimated with the number of recognized leaves. The
performance of leaf detection was compared using sample sizes of 16, 24, 32, 40, and
48 pixels. Leaf overcounting occurred when a leaf was much bigger than others as
this bigger leaf was recognized as several smaller leaves. Results showed CNN-based
leaf count achieved the best performance at the four- to six-leaf stage with F-scores
greater than 90% after calibration with overcounting rate. On average, 806 out of 812
plants were correctly estimated on 53 days after planting (DAP) at the four- to six-
leaf stage, which was considered as the optimal observation timing. For the 32-pixel
patch size, root mean square error (RMSE) was 9 plants with relative RMSE (rRMSE)
of 2.22% on 53 DAP, while the mean RMSE was 12 with mean rRMSE of 2.89% for
all patch sizes. A sample size of 32 pixels was suggested to be optimal accounting for
balancing performance and efficiency. The results of this study confirmed that it was
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feasible to estimate rapeseed stand count in field automatically, rapidly, and accurately.
This study provided a special perspective in phenotyping and cultivation management
for estimating seedling count for crops that have recognizable leaves at their early growth
stage, such as soybean and potato.

Keywords: stand counting, field-based phenotyping, optimal observation timing, convolutional neural network,
precision agriculture

INTRODUCTION

Next to soybean and oil palm, rapeseed (Brassica napus L.) is the
third largest oil crop worldwide (Wang et al., 2010; Berrocoso
et al., 2015; Bouchet et al., 2016). Statistical data from the Food
and Agriculture Organization of the United Nations have shown
that the world production of rapeseed in 2016 was more than
68 million tons, mainly from Canada (19.5 million tons), China
(13.1 million tons), and India (6.8 million tons)1. Increasing
rapeseed yield is a major focus for rapeseed researchers and
cultivators (Godfray et al., 2010). The crop stand count at early
growth stages is one of the most important parameters for the
prediction of yield, density, and growth status (Jin et al., 2017;
Liu S. et al., 2017; Zhao et al., 2018). Rapeseed leaf development
in early growth stages includes cotyledons completely unfolded,
first leaf unfolded, two leaves unfolded, three leaves unfolded,
until nine, or more leaves unfolded (Weber and Bleiholder, 1990;
Lancashire et al., 1991). Overlapping is intense throughout the
entire leaf development stage. Moreover, small and irregular
spacing makes rapeseed seedlings clustered. As a result, it is
hard to detect and count each individual rapeseed seedling (Zhao
et al., 2018). The traditional way of counting rapeseed seedlings at
early growth stages is based on ground-level investigation which
is labor-intensive and time-consuming (Jin et al., 2017; Liu T.
et al., 2017; Naito et al., 2017). Since rapeseed seedlings are in
small plant size, irregular spacing and complex overlapping at
their early growth stages, timing of rapeseed seedling counting
by field investigation depends on empiricism. Accordingly, the
obtained records and data are subjective (Bucksch et al., 2014;
Deng et al., 2018). The most serious problem is that ground-
level investigation is destructive to the field crops (Jin et al.,
2017; Liu S. et al., 2017; Deng et al., 2018). In addition,
manual investigation brings more external factors into the plant
growth environment, resulting in artificial error (Zhao et al.,
2018). Therefore, an objective, precise, and automated rapeseed
stand counting method will benefit researchers and producers
(Araus and Cairns, 2014).

In recent years, plant scientists worldwide have shown great
interest in phenotyping since this technology will bring a
brand new perspective for agricultural planting and breeding
(Furbank and Tester, 2011; Yang et al., 2014; Naito et al.,
2017). Phenotyping provides a new tool to reveal phenotype

Abbreviations: CNN, convolutional neural network; DAP, day after planting;
GCP, ground control point; GPS, global positioning system; LOOCV, leave-one-
out crossing validation; MAE, mean absolute error; RF, random forest; RMSE, root
mean square error; rRMSE, relative root mean square error; SVM, support vector
machine; UAV, unmanned aerial vehicle; UGV, unmanned ground vehicle.
1www.fao.org/home/en/

traits determined by environmental and genetic factors (White
et al., 2012; McCouch et al., 2013; Ghanem et al., 2015) and to
estimate the growth status of plants and crops (Sadras et al., 2013;
Maimaitijiang et al., 2017; Yang et al., 2017). Remote sensing
technology provides an efficient means for crop phenotype data
collection (Verger et al., 2014; Shi et al., 2016; Yu et al., 2016;
Wendel and Underwood, 2017), which can record phenotyping
traits, such as plant height, canopy temperature, architecture,
stress, and color (Walter et al., 2012; Rahaman et al., 2015;
Mir et al., 2019). In particular, UAVs draw much attention due
to their unique advantages, such as noninvasive observation
at low altitude, high resolution, frequent data collection, and
deployment flexibility (Zhang and Kovacs, 2012; Ballesteros
et al., 2014; Huang et al., 2016). Accordingly, UAVs are used
as a platform to collect data and estimate vegetation growth
parameters including biomass (Bendig et al., 2014), leaf area
index (Córcoles et al., 2013), height (Van Iersel et al., 2018),
yield (Geipel et al., 2014), canopy cover, and structure (Cunliffe
et al., 2016). Overall, as a powerful and reliable platform, UAVs
have shown their advantages to be used to collect crop data
for phenotyping.

In studies of crop stand counting, Gnädinger and
Schmidhalter (2017) found maize plant numbers had a strong
correlation (R2 = 0.89) with the enhanced color digital counts
using UAV imagery. Jin et al. (2017) extracted 13 object features
containing color and texture from UAV images and further
employed SVM for wheat classification, counting, and density
estimation. Their results indicated that wheat density can be
estimated when wheat plants had one to two leaves (Jin et al.,
2017). Besides, field imagery for crop stand counting has been
applied in some other crops such as corn (Shi et al., 2013; Varela
et al., 2018), potato (Zheng et al., 2016; Sankaran et al., 2017), and
cotton (Chen et al., 2018) with various remote sensing platforms.
However, in most previous studies of crop stand counting, data
were derived only from one observation at a certain day during
the growth stages, and to our knowledge, there has been little
research with data from multiple observations for rapeseed.

Object identification, classification, and counting are major
tasks in image analysis (Davies, 2009; Blaschke, 2010; Ma
et al., 2017; Zanotta et al., 2018). Several approaches have
been developed for fast image processing and classification
(Schowengerdt, 2012), including SVM, RF. These approaches
are developed from using individual spectral, spatial, or textural
information to integrating all the information (Linker et al.,
2012). Gnädinger and Schmidhalter (2017) used regression
analysis to find the correlation between maize plant number
and green digital pixel counts based on spectral information.
Jin et al. (2017) employed SVM model to classify wheat and to
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estimate seedling count and density by using spectral and textural
features. These approaches can be used for counting trees (Gomes
et al., 2018), fruits (Qureshi et al., 2017), and flowers based on
satellite remote sensing imagery or UGV/UAV remote sensing
imagery. Nevertheless, these regular non-automatic approaches
required manual extraction of distinct features, which was time-
consuming for a multi-observation study.

Convolutional neural networks have drawn wide attention
due to their automated processing and good performance in
image analysis (Lee et al., 2017; Pound et al., 2017; Sindagi
and Patel, 2017). The CNN application for object detection
and counting has been reported in previous studies, such as
crowd detection and counting in public events (Sheng et al.,
2016; Zhang et al., 2015, 2016) and animal detection and
counting in the wild (Arteta et al., 2016). CNN approach
is also reported to be applied for classification, detection,
and counting for seeds, fruits, flowers, crops, and leaves in
agriculture (Grinblat et al., 2016; Ramos et al., 2017). Pound
et al. (2017) showed that CNNs were effective to distinguish,
identify, and count wheat plants and their ears in glasshouse
condition. Madec et al. (2019) used faster region-based CNN
(Faster-RCNN) to detect and count wheat ears in a field
and estimated the density of ears via high-resolution RGB
imagery captured by a camera fixed on a boom. Besides,
there are some studies using CNN for tree detection and
counting. Li et al. (2016) employed a CNN algorithm to
detect and estimate oil palm trees from four-band satellite
images with 0.6 m spatial resolution, and they reported
that more than 96% of trees were correctly detected. Csillik
et al. (2018) used a customized CNN model for citrus tree
detection and counting with overall accuracy greater than
95%. These studies demonstrated that CNN could be applied
to remote sensing imagery captured from both satellites and
UAVs. Crop stand counting using CNN has not been widely
reported, especially for rapeseed stand counting. Ribera et al.
(2017) reported a CNN model to estimate the number of
sorghum plants by UAV imagery with a best mean absolute
percentage error of 6.7%, which provided a solution for
large field plant counting research using CNN. Using CNN
in a field or in the wild is of more practical significance
(Simonyan and Zisserman, 2014).

However, the situation of crops grown in the field was
complex. Specifically, rapeseed seedlings grown in the field were
in irregular spacing, complex overlapping, and different plant
sizes, which made its counting difficult. Nevertheless, one of
rapeseed phenotyping traits that UAV imagery collected was its
leaf canopy. During the early growth stages of leaf development,
rapeseed leaves play an important role reflecting their growth
status (Weber and Bleiholder, 1990; Lancashire et al., 1991).
Therefore, it is feasible to recognize individual rapeseed leaves
with CNN and perform stand counting with reference to the
existing knowledge of the number of rapeseed leaves per plant.
The objectives of this study were to (1) recognize and count
the individual rapeseed canopy leaves through UAV imagery
with CNN, (2) establish and examine the models identifying
the number of leaves per rapeseed seedling, and (3) propose an
optimal timing to estimate rapeseed stand count.

MATERIALS AND METHODS

Study Area and Experimental Design
Figure 1 shows the study area and GCPs. The study area with
center coordinates (30◦28′57.11′′N, 114◦18′39.45′′E) located near
Huazhong Agricultural University in Wuhan, China. It covered
an area about 50 m × 30 m with an average elevation of
27 m. In the field, a rapeseed cultivar named Huayouza 62
(B. napus L.) was sown with two planters including a valve-
branch distributor-based centrifugal precision metering device
and a rotating disk-type seeding device on November 4, 2017
(Figure 1). According to the experimental design, rapeseed
was seeded by the two devices in eight rows simultaneously
with 20 cm row spacing at a seeding rate of 5.5 kg/ha. No
weed control management was implemented after sowing. There
were 12 GCPs permanently arranged surrounding the study
area. Reach RS+ (Emlid, United States) was used to collect
GPS information.

Image Acquisition System
The image acquisition system was composed of a DJI rotocopter
Matrice 600 UAV (DJI, Shenzhen, China) and a Nikon D800
camera (Nikon, Japan) in this study. The UAV could hover for
35 min without a payload. In this study, each mission took about
13 min with a payload of 2 kg. A GPS module was integrated
into the UAV, which was tested with a horizontal accuracy of
0.5 m and a vertical accuracy of 1.5 m. The Nikon D800 camera
fitted with a Nikon 50.0 mm f/1.4D lens was mounted on the
UAV to collect nadir RGB images of the rapeseed field during
flights. The complementary metal oxide semiconductor (CMOS)
sensor of the camera had a size of 35.9 mm× 24.0 mm, capturing
images with 7,360× 4,912 pixels. The camera was also integrated
with a GPS device to geotag the images and a wireless control to
trigger the camera capturing imagery every 1.0 s automatically.
An SD memory card was used to store JPEG images with a 24-
bit format.

Each flight mission followed the same camera configuration
during the whole rapeseed leaf growth stage. The frontal and side
overlaps of the flight path were 80.0 and 70.0%, respectively. Two
perpendicular flight paths were conducted to cover and image the
rapeseed canopy. In this study, the UAV was flown at a ground
speed of 3 m/s and at a height of approximately 30 m above
ground level, and spatial resolution of image was about 0.18 cm.

Unmanned Aerial Vehicle Data Collection
and Preprocessing
Image collection was scheduled from November 17, 2017, the
14th DAP, to January 12, 2018, with an interval of 7 days.
This period covered the whole rapeseed leaf development stage
(Weber and Bleiholder, 1990; Lancashire et al., 1991). Some
adjustments were made because of rainy or heavy windy weather.
As a result, data collection started on November 17, 2017, and
ended on January 10, 2018, with specific dates on 14, 23, 32, 39,
46, 53, 58, and 68 DAP from 12:30 p.m. to 2:00 p.m. The one-
to three-leaf stage was before 40 DAP and the three- to four-
leaf stage lasted from 40 to 50 DAP. The four- to six-leaf stage
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FIGURE 1 | Study area and ground control point (GCP) distribution.

ranged from 50 to 60 DAP, and the seven-leaf stage and beyond
was after 60 DAP.

Free software Capture NX-D 1.2.1 from Nikon (Nikon, Japan)
was utilized to correct geometric distortion for the UAV captured
individual images. Secondly, an ortho-mosaic image for each
collection was generated using Pix4Dmapper software (Pix4D,
Switzerland). In this step, the 12 GCPs were added for image
mosaicking. This study used eight sample plots (four plots per
seeding device) for analysis, which were subsets from each ortho-
mosaic image by ArcMap 10.3 (ESRI, United States). Each plot
was in the size of 9.5 m× 2 m (Figure 2B).

These eight sample plots were divided into an image training
dataset containing six sample plots and a test dataset consisting
of two sample plots during the whole processing and analysis.
Since manual counting in the field could possibly change the
real field condition, making the data unreliable for multiple
observations, this study manually interpreted and annotated the
rapeseed leaves over the eight sample plots for each observation
date using ArcMap 10.3 (an illustration in Figure 2), which
was mainly described in the next section. This study also used
image-based manual rapeseed seedling count as the ground truth
reference. Data of 14 and 23 DAP were not used because rapeseed
seedlings were too small to distinguish in imagery. Therefore,
there were six remaining observation dates over the eight study
plots (six for training and two for testing) in this study.

All the processing and analysis were executed on a computer
with an Intel (R) Core (TM) i7-6800K CPU and one NVIDIA
GeForce GTX 1060 6GB GPU, and the memory of the
computer was 32 GB.

Image Processing and Data Analysis
Rapeseed Leaf Recognition Based on a
Convolutional Neural Network
Convolutional neural networks are the most popular machine
learning algorithms applied to various computer vision tasks,
such as numeral recognition, face recognition, and handwriting
recognition. Some software packages such as Python and Matlab
provide a convenient environment for CNN modeling, and there
are some open-source CNN codes online. However, it is still hard
for a nonprofessional machine learning researcher to implement
the entire flowchart of CNN modeling, including CNN software
operation environment configuration, codes modification, as
well as parameter adjustment. In addition, such CNN software
is not suitable for processing geospatial information and
geoinformation analysis. Thus, this study employed the easy-to-
use image analysis software eCognition Developer 9.3 (Trimble,
United States), which contains a CNN module (Trimble, 2018).
The module can be used to recognize objects in images based
on the Google TensorFlowTM library-create (Csillik et al., 2018;
Trimble, 2018).

This approach was a patch-based CNN algorithm according
to the categorization reviewed by Sindagi and Patel (2017). It
was convenient and interactive when researchers use CNN for
image analysis in this software. The operation in this software
was mainly composed of four steps: (1) to generate labeled sample
patches; (2) to create a CNN; (3) to train a CNN; and (4) to apply
a CNN (Trimble, 2018). In this study, the labeled sample patches
were cropped from the training sample plot images according to
three classes including rapeseed leaves, weeds, and bare soil.
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FIGURE 2 | Ortho-mosaic RGB image of a sample plot with a size of 9.5 m × 2 m: (A) manual interpreted and annotated rapeseed leaves, (B) ortho-mosaic RGB
plot image, (C) RGB image overlapping with annotated rapeseed leaves.

To label the three classes, the rapeseed leaves from the eight
sample plots for each observation date were manually interpreted
and annotated using ArcMap 10.3, as shown in Figure 2A.
The labeled leaves were used as a reference, representing the
ground truth leaves. The overlapping of rapeseed leaves was
unavoidable, and each recognized canopy rapeseed leaf was
outlined. Furthermore, the weeds increased with time since there
was no weed control management in the field to maintain the
original ecological scene. As DAP increased, the rapeseed leaves

and weeds were much distinguishable by size, color, texture,
and pattern in high-resolution UAV images. Therefore, after
interpreting and annotating the rapeseed leaves, we used ExG-
ExR, a color vegetation index whose ability for green pixel
identification was confirmed (Meyer and Neto, 2008; Zhao et al.,
2018) to label the remaining green pixels as weeds by eCognition
Developer. The pixels that were not in green were labeled as
bare soil through normalized green minus red difference index
(NGRDI). The pixels whose values of NGRDI less than 0 were
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classified as bare soil. In this study, the input data of eCognition
Developer include RGB imagery in TIFF format exported from
ArcMap, the manual-annotated rapeseed leaf polygon shapefile
exported from ArcMap.

The parameters during the operation included sample patch
size, number of hidden layers, kernel size, number of feature
maps, max pooling, and learning rate. According to the rapeseed
leaf development stages from one leaf to more than seven leaves
during the investigation period, this study generated five sizes
of sampling patches for CNN training, which included 16 × 16,
24 × 24, 32 × 32, 40 × 40, and 48 × 48. In addition, the default
number of feature maps was 12, while the learning rate was at
0.0005 in the software. Based on the five patch sizes, the optimal
kernel size was 5 × 5 after trial-and-error processing. Therefore,
this study structured an initial CNN model as shown in Figure 3,
containing two hidden layers, two max pooling layers, and one
fully connected layer. A previous study using a similar CNN
model showed great performance for oil palm tree detection and
counting with satellite images (Li et al., 2016). We generated
20,000 sample patches of rapeseed leaves, 10,000 weed patches,
and 10,000 bare soil patches from the training dataset in each
observation date for five sample patches totally.

The number of recognized rapeseed leaves was counted after
the dilate operation in the outputted heat map, according to
the number of local maximal points. A heat map with each
pixel value ranging from 0 to 1 was output by the CNN model,
representing the possibility of the target class for rapeseed leaves.
High pixel values close to 1 in the heat map indicated a high
possibility of rapeseed leaves, while values close to 0 indicated
a low possibility (Csillik et al., 2018; Trimble, 2018). Based on
the pixel values, local maximal pixels whose threshold ranged
from 0.5 to 1 (step on 0.01) were iteratively searched to locate
a rapeseed leaf through the dilate operation in eCognition as the
locations of rapeseed leaves were expected to coincide with local
maximal and high values in the heat map (Figure 4).

In this study, the size of the dilation filter was defined as 5× 5,
which was the same as the kernel size in CNN. Afterward, a

maximal layer was generated, reflecting the maximum value in
the matrix of 25 pixels in the heat map (Figure 4C). Accordingly,
when a pixel in the maximal layer has the same value with the
pixel in the same location of the heat map, this pixel inherited
the value. Otherwise, the pixel was valued 0 (Figure 4D).
Each located point was considered to represent a CNN-detected
rapeseed leaf. Thus, the number of local maximal points was
considered as the number of recognized rapeseed leaves.

Overcounting occurred when the number of CNN-detected
rapeseed leaves sometimes was larger than the actual number
of rapeseed leaves, as a big leaf might correspond to several
located maximum points (Figure 5). In Figure 4, if a pixel
far away from the pixel of 0.98 also had a value of 0.98, two
targets might be located in Figure 4D. Merging the adjacent
points with a tolerance was a useful means for tree canopy
recognition and counting (Li et al., 2016), but this method
cannot be applied to rapeseed leaf counting in this study
since the boundary of rapeseed leaves was less distinct than
that of a tree canopy. Moreover, the sizes of rapeseed leaves
were also different. Therefore, it was difficult to determine
a precise distance for merging rapeseed leaf located points.
Inspired by the method of using ground truth masks for
assessing the accuracy of the estimated plant centers (Chen
et al., 2017), we used the manual interpreted ground truth
rapeseed leaf outlines as masks to record and analyze the
overcounting rate (Roc) of the local maximum points for each
investigation (Figure 5).

The illustration in Figure 5 was a subset of CNN recognition
results on 53 DAP with the 32-pixel patch size and a local max
value of 0.65. The blue lines showed rapeseed leaf outline masks,
and each mask represented a ground truth rapeseed leaf. The
green points illustrated the CNN-detected rapeseed leaves.

As mentioned, the sizes of leaves influenced the number
of located maximum points representing the CNN-detected
rapeseed leaves, and DAP was a significant factor of the leaf size.
Thus, it could be assumed that in our study duration, the Roc
might be related to DAP. For CNN detection and counting, Roc

FIGURE 3 | Structure and parameters of the convolutional neural network (CNN) model used in this study. RGB, red-green-blue.
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FIGURE 4 | An illustration of local maximal possibility detection with 3 × 3 filter (actual 5 × 5 in the study): (A) possibility heat map; (B) a 3 × 3 dilation filter; (C) the
maximal layer after dilating; (D) locating target.

was calculated by:

Roc =

∑M
i=1(Ci − 1)

N
× 100%,

(
when, Ci > 1

)
(1)

where N is the number of CNN-detected rapeseed leaves, M is the
number of ground truth rapeseed leaf masks, Ci is the number
of located maximum points inside a ground truth rapeseed leaf
mask for mask i, when mask i has more than one point.

Precision, Recall, and F-score were used in this study to
evaluate leaf detection results (Xiong et al., 2017; Zhao et al.,
2018). Precision and Recall are defined by true positive (TP), false
positive (FP), and false negative (FN):

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

Combined with the situation of overcounting, the following
equations can be inferred by Eqs. (1), (2), and (3) in this study:

N = TP+ FP+
M∑

i=1

(Ci − 1) (4)

M = TP+ FN (5)

The unique recognized local maximum point that is inside a
ground truth mask is considered as a TP. Accordingly, TP here
is the accurate number of CNN-detected rapeseed leaves. If a
local maximum point is outside a mask, then this maximum
point is considered as a FP. A mask is identified as a FN if there
is no point recognized inside (Figure 5). F-score was used as
the final exponent to evaluate the CNN-detected rapeseed leaf
recognition accuracy. Precision, Recall, and F-score in this study
can be expressed as follows:

Precision =
TP

(1− Roc)× N
(6)

Recall =
TP
M

(7)

F − score =
2× Precision× Recall(

Precision+ Recall
) (8)
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FIGURE 5 | Illustration of overcounting statistics. CNN, convolutional neural network; FN, false negative; FP, false positive; TP, true positive. A was calculated without
overcounting rate, B was calculated with overcounting rate.

Leave-One-Out Crossing Validation Regression
Modeling for Rapeseed Seedling Counting
A strong relationship between the rapeseed seedling counting
and the number of unfold leaves was expected because the
identification of rapeseed at early growth stages was based on
the number of unfolded leaves (for example, the one- to three-
leaf stage and four- to six-leaf stage). In this study, the models
that counting rapeseed seedlings through the number of manual-
interpreted rapeseed leaves were first established and verified,
which were considered as the reference describing the number
of leaves per rapeseed seedling plant. Then the number of
CNN-recognized rapeseed leaves was applied to these models
to evaluate the accuracy of rapeseed stand count estimation at
different growth stages.

The LOOCV regression modeling method was used to
establish the models of seedling stand counting. LOOCV was
effective in the case of small sample size. It was a special case
of K-fold crossing validation, when K was equal to the number
of samples. One sample was excluded for validation, and the rest
samples were used for training. The same operation was repeated
for K times so that each sample could be used for validation
so that the results were unbiased. The LOOCV regression
modeling was conducted by Python Spyder in Anaconda3 (64-
bit) (Anaconda Software Distribution, 2016. Computer software).

In this study, there were six training sample plots for each
investigation. Thus, K was 6, and LOOCV regression modeling
was repeated for six iterations. The optimal rapeseed seedling
model parameters of the corresponding DAP were further
obtained by calculating an average value of the iteration results.
Mean absolute error, RMSE, and coefficient of determination
(R2

LOOC) were used to verify these models. They were calculated
as follows:

RMSE =

√∑n
i=1(yi − ŷi)2

n
(9)

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (10)

R2
LOOC = 1−

∑n
i=1
(
yi − ŷi

)2∑n
i=1
(
yi − ȳ

)2 (11)

where n is the number of sample plots, yi is the investigated
ground truth rapeseed seedling stand count for sample i, ŷi is
the model-predicted rapeseed seedling stand count for sample i,
ȳ is the average value of the investigated ground truth rapeseed
seedling stand count for all samples in each observation date.

Performance Evaluation of Counting Seedlings
The number of CNN-recognized rapeseed leaves was used to
evaluate the eventual performance of counting seedlings in
this study. The number of CNN-recognized rapeseed leaves
corresponding to the best value of F-score was applied to the
models. Relative RMSE (rRMSE) was calculated as follows:

rRMSE =
RMSE

ȳ
× 100% (12)

where ȳ is the average value of the investigated ground
truth rapeseed seedling stand count for all samples in each
observation date.

RESULTS

Counting Rapeseed Leaves Recognized
by Convolutional Neural Networks
The strong correlation (R2 = 0.831) between Roc and DAP
conformed the impact of DAP on Roc that Roc increased as DAP
advanced during the observed rapeseed leaf development stages
(Figure 6). The bigger leaves caused the more detected local
maximal points for a leaf, thus resulting in the overcounting
situation. As shown in Figure 6, Roc ranged from 7% on
39 DAP for the 32-pixel patch to 40% on 68 DAP for the
16-pixel patch. According to the correlation in Figure 6, Roc
was estimated to be 6.86% for 32 DAP, 12.25% for 39 DAP,
17.64% for 46 DAP, 23.03% for 53 DAP, 26.88% for 58 DAP,
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FIGURE 6 | Correlation between overcounting rate and days after planting
(DAP).

and 34.58% for 68 DAP. In Figure 6, Roc for the 32-pixel patch
(blue legend) was lower than that for the other four patch
sizes in most DAPs.

F-scores used for CNN-based recognition accuracy evaluation
were calculated by equations (9), (10), and (11). The mean
F-scores based on local maximal values ranging from 0.5 to
1 were calculated (Figure 7). For most of the patch sizes,
F-scores increased from 32 to 53 DAP and decreased after
53 DAP. However, F-scores decreased from 32 to 39 DAP
for the 16-pixel patch and increased from 58 to 68 DAP
for the 40-pixel patch. For all patch sizes, F-scores had the
highest values on 53 DAP. On 53 DAP, the ranking of F-score
values from highest to lowest was 92.83% for the 32-pixel
patch, 92.26% for the 24-pixel patch, 89.84% for the 40-pixel
patch, 89.21% for the 48-pixel patch, and 88.26% for the 16-
pixel patch.

Figure 8 shows the mean local max values achieving best
F-score among the testing data during the whole observed leaf
development stage. DAP also influenced the variation of local
max values. The local max values increased with DAP and
leveled off after 58 DAP. With these local max values, the
number of rapeseed leaves recognized by CNN was counted for
each observation.

Revealing the Number of Rapeseed
Leaves per Seedling
A strong correlation between the seedling counting and the
number of canopy rapeseed leaves was established by using
the LOOCV method over data of training sample plots for
each observation (Table 1). All sub-models were significant
(p-value < 0.05) except for the sub-model of the first iteration on
32 DAP exhibiting a p-value of 0.058. Afterward, the relationship
defining the number of rapeseed leaves per seedling was revealed
by the formulas in Table 1 for each observation.

FIGURE 7 | Results of F-score for convolutional neural network
(CNN)-detected rapeseed leaf recognition and counting.

FIGURE 8 | Mean local max values for the best F-score according to days
after planting (DAP).

These formulas were verified by the testing data. The ordering
of R2

LOOC from highest to lowest was 0.984 on 46 DAP, 0.926
on 53 DAP, 0.897 on 39 DAP, 0.886 on 58 DAP, 0.806 on
68 DAP, and 0.775 on 32 DAP. RMSE ranged from 14 plants
to 54 plants, and MAE ranged from 13 plants to 47 plants.
Results showed that the relationship revealing the number of
rapeseed leaves per seedling obtained the best performance
on 46 DAP and satisfactory performance on 53 DAP. As
a result of the strong correlation revealing the number of
rapeseed leaves per seedling, the approach using precise CNN-
recognized leaves counting to estimate the seedling stand count
was feasible and expected.
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TABLE 1 | Results of optimal rapeseed seedling counting models for six
observation periods.

Period Formula R2
LOOC MAE RMSE

32 DAP y = 0.354x + 14.340 0.775 47 54

39 DAP y = 0.297x + 65.037 0.897 29 30

46 DAP y = 0.322x + 19.490 0.984 13 14

53 DAP y = 0.277x + 41.540 0.926 25 31

58 DAP y = 0.220x + 72.334 0.886 31 35

68 DAP y = 0.214x + 46.388 0.806 31 42

x represents the number of rapeseed canopy leaves. y stands for rapeseed seedling
count. MAE and RMSE were rounded to integer. DAP, days after planting; MAE,
mean absolute error; RMSE, root mean square error.

Performance of Estimating Seedling
Stand Count With Convolutional Neural
Network-Recognized Leaf Counting
Convolutional neural networks-recognized leaf counting
(see section “Counting Rapeseed Leaves Recognized By
Convolutional Neural Networks”) was used to estimate seedling
stand count according to the revealed relationship of the
number of rapeseed leaves per seedling (Table 1 in section
“Revealing the Number of Rapeseed Leaves Per Seedling”).
Table 2 gives the results of estimating rapeseed seedling
stand count. For all patch sizes, the best mean accuracy
was achieved on 53 DAP with 99.26%. On average, 806 out
of 812 plants were correctly estimated on 53 DAP at the
four- to six-leaf stage. With the 32-pixel patch size, almost
all the seedling stand counts were correctly estimated on
53 DAP. Some errors were counteracted mutually as a result of
summing up the estimated seedling stand counts from two test
sample plots. RMSE and rRMSE are presented in Table 3 and
Figure 9, respectively.

On 32 DAP, a maximum mean RMSE of 107 plants was
observed, while on 53 DAP, a minimum mean RMSE of 12 plants
showing the best performance was obtained. On 53 DAP, the
rRMSE was 1.99% for the 40-pixel patch size (Figure 9). For the
32-pixel patch size, its RMSE was nine plants with an rRMSE of
2.22%. The ordering of mean RMSE from lowest to highest was
12 on 53 DAP, 48 on 46 DAP, 49 on 68 DAP, 57 on 58 DAP, 76
on 39 DAP, and 107 on 32 DAP, with the best performance on
53 DAP. Similarly, the ordering of rRMSE was 2.89% on 53 DAP,
11.71% on 68 DAP, 11.97% on 46 DAP, 11.97% on 58 DAP, 19.36%
on 39 DAP, and 25.59% on 32 DAP.

DISCUSSION

Influence of Days After Planting
Corresponding to Leaf Development
Periods
Huayouza 62 (B. napus L.) used in the study is a member of
the family Brassicaceae (Weber and Bleiholder, 1990; Lancashire
et al., 1991). Based on the characteristics that its leaf development
periods were highly related to DAP, the number of canopy leaves
was used for seedling stand count modeling and estimation in
this study. Chen et al. (2018) found that DAP had a strong
correlation with the number of germinated seeds (R2 = 0.938)
and with average plant size (R2 = 0.936). In our study, results
also strongly illustrated that DAP played an important role on
the leaf recognition and counting, revealing the relationship
between seedling stand count and the number of leaves per
seedling, and the eventual estimation of seedling stand count with
CNN-recognized leaf counting. Finally, the best performance
was achieved on 53 DAP for leaf recognition and counting as
well as estimating seedling stand count with the number of
CNN-recognized leaf counting (Figures 7, 9 and Tables 2, 3).

This study not only used DAP but also tried to associate it with
the leaf development period and to determine the influence of
DAP corresponding to the leaf development periods on rapeseed
leaf counting (Figures 7, 8). DAP is an essential dimension unit to
describe the growth process of crops, and it is easy to comprehend
and quantify. Nevertheless, the growth situation based on DAP
varies with different regions where crops and plants are cultivated
with different treatments, even for the same cultivated variety.
Sankaran et al. (2017) reported that it was hard to estimate the
number of potato plants after 43 DAP because of the within-
row canopy closure, even though the best correlation coefficient
(r = 0.83) between manual plant counts and image-based counts
was achieved on 32 DAP. This study presented a novel approach
to understand the growth status of rapeseed seedlings and to
count the seedlings in terms of leaf development periods.

In Figure 6, overcounting rate increased with DAP. From
another perspective, the increasing overcounting rate was mainly
caused by the development of leaves or the increasing size and
number of rapeseed seedling canopy leaves. Rapeseed seedlings
experience a process from new leaf unfolding to leaves gradually
growing with DAP. In this study, rapeseed had more than
seven leaves in the last observation period, which caused a
serious overlapping. Moreover, the bigger leaf size influenced

TABLE 2 | Sum of rapeseed stand count estimation from two testing sample plots (unit: plants).

Size 16 Size 24 Size 32 Size 40 Size 48 Average Mean accuracy (%) Ground-truth plants

32 DAP 593 672 657 640 590 630 75.05 840

39 DAP 567 734 668 640 657 653 83.42 783

46 DAP 686 723 727 712 714 712 89.05 800

53 DAP 801 806 812 804 807 806 99.26 812

58 DAP 835 833 823 854 823 834 88.12 946

68 DAP 803 802 805 805 800 803 96.51 832

Estimated results were rounded to integer. DAP, days after planting.
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TABLE 3 | Results of RMSE for rapeseed stand count estimation (unit: plants).

Size 16 Size 24 Size 32 Size 40 Size 48 Average

32 DAP 124 90 96 103 125 107

39 DAP 118 62 59 74 66 76

46 DAP 63 44 40 45 47 48

53 DAP 17 14 9 8 10 12

58 DAP 56 57 62 47 62 57

68 DAP 50 45 48 50 51 49

Means the optimal value in the column. Results were rounded to integer. DAP, days
after planting; RMSE, root mean square error.

FIGURE 9 | Results of relative root mean square error (rRMSE) for rapeseed
stand count estimation.

the recognition. According to the trend and strong correlation
between overcounting rate and DAP (R2 = 0.831), when the
number of leaves developed from one to more than seven leaves,
overcounting rate might keep increasing.

As mentioned, as the number of leaves increased, leaf
overlapping and saturation became more intensified. In Figure 7,
F-score increased from the one- to six-leaf stage, and then
decreased after that. This peak of F-score was mainly related
to the leaf development. When rapeseed seedlings were in the
one- to six-leaf stage, the number of unfolded leaves increased
dramatically, and the characteristics of leaves became more and
more obvious so that the recognition performance improved.
After the six-leaf stage, leaf overlapping and saturation resulted
in the decreasing recognition accuracy. On the other hand, in
Figure 8, the local maximal value for CNN recognition did not
increase after the six-leaf stage. Moreover, a strong correlation
(R2 = 0.835) between the coefficient of the seedling counting
models (Table 1) and DAP was found (Figure 10).

When a DAP was replaced by its corresponding leaf
development stage, the coefficients were approximately the
inverse of the number of leaves at the given stage. For example,
at the one- to three-leaf stage, the coefficients on 32 and 39 DAP
were 0.354 and 0.297, which were approximately the inverse
of 3 (1/3 or 0.333). Similarly, at the four- to six-leaf stage, the
coefficients on 53 and 58 DAP were 0.277 and 0.220, which were

FIGURE 10 | Correlation between coefficient of the seedling counting models
and days after planting (DAP).

approximately the inverse of 5 (1/5 or 0.200). To some extent, this
correlation demonstrated another perspective to understand the
counting models through the leaf development stage, but more
data are needed to verify the result more scientifically.

Another interesting finding related to the leaf development
stage of rapeseed seedlings was that the timing of 53 DAP
corresponding to the four- to six-leaf stage was near winter
solstice in the Chinese calendar. Winter solstice, a meaningful
solar term, is known as a significant time for winter rapeseed
planting as well as for other agricultural activities. Many
Chinese agronomic researchers and cultivating specialists regard
winter solstice as a critical timing for rapeseed characteristic
measurement. It is also considered as a mid-growth phase of
rapeseed leaf development with about five leaves. In fact, the day
of winter solstice was 4 days before 53 DAP. Therefore, the DAP
corresponding to the leaf development stage was confirmed to be
reliable in this study. Our findings offered a scientific explanation
for the agricultural practice in China and should be referential for
relevant studies and practices.

Influence of Parameters in Convolutional
Neural Network
Influence of Patch Size
It is necessary to define patch sizes according to the specific
purposes and the image target for the application of CNN. In
this study, sample patches were cropped from the entire labeled
UAV image. Moreover, the trained CNN model was applied to
a large-scale field image. This study employed five sample patch
sizes with 16, 24, 32, 40, and 48 pixels.

These sizes were determined mainly by the image resolution
and the growth situation of rapeseed. Madec et al. (2019)
assumed that resolution around 0.3 mm could allow to detect
and count wheat ears for high-throughput phenotyping based on
UAV-captured RGB images using Faster-RCNN. However, their
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research used imagery captured by a camera fixed on a boom, and
their assumption was not verified with UAV images in their work.
The imagery used in this study was captured by UAV in the field
30 m above ground level. If the altitude was more than 30 m, the
resolution was not enough for recognition. If the UAV imagery
was captured below 30 m, it would reduce the efficiency of field
plot data collection. Furthermore, the turbulence generated by
the UAV made the rapeseed leaves shake, leading to the unfocused
targets in the imagery.

Meanwhile, the leaf size of rapeseed was another factor
determining the patch size. In this study, an overlarge patch size
such as a 128-pixel patch could contain redundant and useless
information. On the contrary, an undersized patch would cause
underfitting recognition results because the patch would be so
small that the features between rapeseed leaves and weeds could
not be distinguished. Employing a patch-based CNN algorithm
(Sindagi and Patel, 2017) brought about a problem that the
patch could not cover an oversized rapeseed leaf, resulting in a
larger number of detected objects than the actual number called
overcounting in this study (Figure 5). Therefore, the patch size
of UAV imagery was limited by its imaging mode and resolution,
field status, and the characteristics of objects.

In this study, the areas of the five patches were calculated and
matched with the leaf size of rapeseed for each observation. The
area of the 48-pixel patch was calculated to be 74.6 cm2, and
the maximum area of rapeseed leaf obtained on 68 DAP was
almost 63 cm2. Based on this, a sampling patch cropped with
48 pixels could meet the minimum requirement for covering an
entire rapeseed leaf. However, each patch size was used for all the
observations, thus the same patch size had a dynamic influence
on the counting results as DAP changed. In Figure 7, the 16-
pixel patch exhibited the optimal performance on 32 DAP, which
was attributed to the fact that the 16-pixel patch could match
the leaf size better on 32 DAP than on the other DAPs. On the
other DAPs, the 24-pixel patch and the 32-pixel patch matched
the leaf size better than the other patch sizes achieving better
F-score in Figure 7.

In addition, patch size significantly affected training time.
Figure 11 shows that training time increased exponentially with
patch size. Training time was more than 5,200 s (about 90 min)
when using the 48-pixel patch. Although using the 16-pixel
patch could save time, its results were not desirable in this
study. According to Figure 11 and based on the results of
leaf recognition and seedling estimation, the 32-pixel patch was
selected as the optimal sampling size balancing the performance
and efficiency in this study.

Influence of Learning Rate
Learning rates ranging from 0.0001 to 0.0014 (step on 0.0001)
were used to analyze the learning rate function with the 32-pixel
patch on 53 DAP based on the local max value of 0.65 (Figure 12).
F-scores were higher than 90.00% for most of the results. However,
it was difficult to determine the relationship between learning rate
and F-score since there was an irregular fluctuation. In terms of
the ranking of F-scores, the top four learning rates were 0.0002,
0.0006, 0.0005, and 0.0007 with all their corresponding F-scores
higher than 92.00%.

FIGURE 11 | Convolutional neural network training time consumed for five
sampling patch sizes.

Learning rate plays an important role in CNN models
(Trimble, 2018). It defines the weights used to adjust the gradient
descent optimization. If learning rate is too small, the learning
process will be slowed down and may not be close to the optimal
settings. If learning rate is too large, the model may not reach the
minimum boundary and produce results of null values (Trimble,
2017). Learning rate is considered as a hyper-parameter in
machine learning and deep learning, which is mostly set up based
on practices and empiricism (Senior et al., 2013). Finally, learning
rates ranging from 0.0004 to 0.0006 were suggested in this study.

Influence of Overcounting Rate
Overcounting is common in object identification and counting
tasks, especially in large-scale scenes (Li et al., 2016). It is
challenging to use CNN algorithms for object detection and
counting in a large-scale scene. Most studies detected flowers,
leaves, and crops in the lab because the scenes were well
controlled and the results were less influenced by external
factors. This study detected rapeseed leaves in a field-based
scene. The existing leaf overlapping was one of the main reasons
for overcounting. With leaf size increasing, the overlapping
became more complex, which caused serious overcounting and
inaccurate counting results.

This study selected and employed different patch sizes,
attempting to match the size of leaves and improve model
performance. However, the overcounting was still difficult
to avoid. Comparison was made between the F-scores with
overcounting and those without overcounting based on the
suggested learning rate of 0.0004 on 53 DAP (Figure 13). Even
though two curves of F-scores exhibited a similar tendency,
F-scores without overcounting calibration were higher than those
with overcounting calibration. The former almost reached 100%,
which was inaccurate.

A graphic example of F-score with and without overcounting
calibration is shown in Figure 5. As shown in the figure,
precision without overcounting calibration was greater
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FIGURE 12 | Test of learning rate for the convolutional neural network-based rapeseed leaf recognition on 53 days after planting (32-pixel patch, local max value of
0.65).

FIGURE 13 | Comparison of F-scores with and without overcounting rate at a
learning rate of 0.0004 on 53 days after planting.

than that with overcounting calibration, resulting in an
illusory high F-score. F-scores with overcounting calibration
more accurately and objectively described the CNN-
based leaf recognition performance. When the number
of referencing masks was 29, the accurate number of
detected rapeseed leaves was 28 using overcounting

calibration. Without overcounting calibration, the number
of detected rapeseed leaves was 38 (Figure 5). These
results demonstrated that overcounting calibration was
important to obtain precise rapeseed leaf counting. When
overcounting calibration was considered, more reliable and
objective rapeseed leaf counting results were achieved as
demonstrated by the study.

Future Work
This study was a specific application of machine learning
in agriculture for quantitative analysis of rapeseed seedling
stand counting at a field level from UAV images. We aimed
to estimate the rapeseed seedling count precisely and to
offer a comprehensive study of field-based rapeseed seedling
estimation throughout its early growth stages. Moreover,
we tried to present a study showing general and user-
friendly workflow for executing CNN methods. We also
expected that our research offered another perspective in
phenotyping and cultivation management for estimating seedling
count for crops that have obvious tillering leaves at early
growth stages such as soybean and potato. The results
based on the particular case were desirable and promising.
More detailed data and relevant technical information of
our study were deposited to GitHub repository in “LARSC-
Lab/Rapeseed_seedling_counting”.
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In the future, we will focus on the data accumulation including
data from multiple growing seasons and multiple fields in
different locations. Moreover, multiple approaches are expected
to be employed, and their performances will be compared
to identify optimal methods and improve accuracy. A more
comprehensive dataset of rapeseed from UAV imagery is expected
to be completed and published in the future based on our work,
which will promote the research in phenotyping for rapeseed and
other crops.

CONCLUSION

Utilizing a consumer-grade camera mounted on a UAV for
crop phenotyping and vegetation investigation in the field
is feasible and efficient. This study attempted to estimate
rapeseed stand count in UAV-captured RGB imagery with
machine learning. CNN algorithm was used for rapeseed
leaf identification and counting. Regression modeling
coupled with LOOCV method was used to establish and
optimize the relationship between the seedling counting
and the number of rapeseed leaves. When the number of
CNN-detected rapeseed leaves was brought into seedling
counting models, the results demonstrated that our proposed
framework performed well and achieved great accuracy. In
summary, the following conclusions can be drawn from
this study:

(1) The effectiveness of our proposed CNN framework on
rapeseed leaf recognition and counting was verified in
this study. Overcounting is a common problem during
leaf recognition and counting. The overcounting rate was
related to the DAP reflecting of the rapeseed growth
conditions during leaf development. CNN-recognized
rapeseed leaf counting incorporated with overcounting
calibration was reliable with an overall F-score of more
than 90%. On average, 806 out of 812 plants were correctly
estimated on 53 DAP at the four- to six- leaf stage. RMSE
was nine plants with rRMSE of 2.22% on 53 DAP for the
32-pixel patch size, while the mean RMSE was 12 with mean
rRMSE of 2.89% for all patch sizes.

(2) This study demonstrated that DAP influenced the
overcounting rate, CNN-recognized leaf results, and
seedling counting models. On 46 and 53 DAP, the counting
models presented desirable performance. Moreover, a
strong correlation (R2 = 0.835) was also found between
coefficients of counting models and DAP. The optimal

observation period was on 53 DAP corresponding to the
four- to six-leaf stage of rapeseed development.

(3) Based on machine learning approaches, this study proposed
a framework for rapeseed stand counting in the field by
high-resolution UAV imagery. Our future studies will focus
on the collection and evaluation of multiple-year datasets
to improve the robustness and reliability of the stand
counting models.
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