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lobe epilepsy. Remarkably, they suggest that an absence seizure, 
often considered the prototypical generalized seizure, is actually a 
fast-spreading localized event.

In a similar vein, Leite et al. (2) propose a novel method for link-
age of EEG and fMRI signals in network analysis by describing in 
their report a “transfer function” between these divergent measures. 
They perform independent component analysis of EEG and extract 
metrics that express models of EEG-fMRI function from resulting 
time courses. These metrics are then used to predict fMRI activity and 
thus the brain regions associated with epileptic activity. The authors 
illustrate the methodology in a proof of concept report on the appli-
cation of this function to fMRI-EEG data obtained during both ictal 
and interictal states in one subject with a hypothalamic hamartoma.

In the next two chapters, by Constable et al. (3) and Weaver et al. 
(4) the focus is on using resting state fMRI to assess functional con-
nectivity in the human brain, and how this approach can be applied to 
epilepsy. These two groups describe the functional reorganization that 
occurs in epilepsy, and the potential that connectivity measures have 
in identifying a network of seizure-generating tissues. Both groups 
stress the importance of focal connectivity measures as adjunctive 
tools in the identification of the epileptogenic zone in patients with 
refractory epilepsy who are being considered for resective surgery.

On the other hand, Kerr et al. (5) find that the interictal FDG-
PET, by visualization of the metabolic changes that take place across 
the whole brain in epilepsy patients, offer another method to observe 
abnormal brain networks in the resting state. These authors report 
that in temporal lobe epilepsy, examination of patterns of metabolic 
dysfunction may assist in lateralizing the onset of seizures. They 
report on the development of a computerized assisted diagnostic 
tool for implementing the metabolic analysis in clinical practice.

Rose et al. (6) studied simultaneous MEG-EEG activity in a 
series of children with refractory epilepsy. They studied the MEG 
signals throughout the brain using a beamformer algorithm, and 
they determined virtual MEG spike locations with a spike detec-
tion program. Comparisons of the MEG results with intracranial 
EEG recordings were conducted both for EEG spikes and for the 
onset and spread of seizures. By demonstrating similarities with 
the invasive electrographic findings, the authors conclude that the 
pattern of interictal MEG findings has the potential to define the 
distribution of the epileptic network, thereby providing a non-
invasive method to analyze abnormal neuronal connections.

Yamazaki et al. (7) have pioneered the ability to simultaneously 
record 256 channel dense EEG (dEEG) and invasive subdural EEG 
recordings in temporal lobe epilepsy, thus helping to establish 
the validity of dEEG recordings. In their chapter in this volume, 
Yamazaki et al. (7) extend this work to cases of neocortical epilepsy 

Progress in characterizing the functional networks of the normal 
human brain is now rapid, with evidence from both regional cor-
relational patterns from functional MRI and fiber tractography 
from diffusion MRI. Increasingly, the tools of cerebral network 
analysis are being applied to understand the derangement of spe-
cific cortical and subcortical networks in epileptic disorders. In 
this approach, the clinical manifestations of epilepsy are viewed 
as the consequence of the pathologies of network dynamics and 
functional connectivity that may involve abnormal network path-
ways. Importantly, concepts of epileptic networks are supplanting 
the older, and more simplistic, notion that epileptic seizures must 
be either “focal” (or partial) or “generalized” in nature. Rather, 
seizures can be understood to result from the paroxysmal and 
pathological activation of specific neuronal connections. The 
characteristics of these may not fit with conventional assumptions, 
and could include widespread and bilateral involvement during 
seizures which classically are considered as focal, or could involve 
restricted cortical/subcortical regions during some seizures that 
are typically considered as generalized in nature. We believe that 
identifying patient-specific epileptic networks will provide critical 
insights into epilepsy syndromes, and more importantly, these 
insights will lead the way to novel forms of treatment for affected 
individuals.

Technological improvements in several fields have contributed 
to the tools applied to understanding epileptic networks, particu-
larly in neuroimaging (MRI, FDG-PET, fMRI), and in electromag-
netic recordings (dense array EEG, MEG). Investigators are also 
finding that combining these methodologies may have a synergistic 
effect in regard to enhancing our understanding of the involved 
cortical networks. In this volume we have assembled contribu-
tions from an international group of investigators, each of whom 
has approached the problem of identifying the epileptic network 
from somewhat different perspectives. The unifying theme in all 
cases is the question of how the application of a specific technol-
ogy, or a simultaneous combination of technologies, may enhance 
our insight into the recognition of the epileptogenic zone in the 
resting state.

This book opens with a chapter by Stefan and Lopes da Silva 
(1), who review the evidence for the concept of epileptic networks. 
These authors discuss the structure and dynamics of cortical net-
works, describe how these connections can be analyzed through 
linear and non-linear methodologies, and outline the dynamics 
of neuronal networks in the context of combined EEG/MEG and 
EEG/fMRI signals analysis. They conclude that the resulting net-
work analysis has clear relevance to understanding the nature of 
seizures occurring with focal cortical dysplasia and with temporal 
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by demonstrating that dEEG, by covering the whole head with suf-
ficient sensor density, can reliably localize epileptiform discharges 
when compared to invasive studies.

The final two chapters concern the application of analytic tech-
niques to examine abnormal synchronization of the interictal dEEG 
data to establish the presumptive epileptogenic zone. Song et al. (8) 
discuss the use of coherence measures in the examination of inter-
ictal spikes to determine the extent and distribution of epileptic 
networks. In their contribution, Ramon and Holmes (9) provide 
evidence that brief segments of interictal dEEG, free of classical 
epileptiform patterns, nevertheless may contain stable markers that 
reveal the likely epileptic network. These markers are identified 
through analysis of localized patterns of phase synchronization and 
cross-frequency coupling that appear specific to the epileptogenic 
region as proven by later intracranial recordings.

The topics covered in this volume present an introduction to 
the study of identifying epileptic networks. They are only a sample 
of the many current approaches to cerebral network analysis that 
could be applied to epilepsy. Nevertheless, we are hopeful that the 
material presented here will provide encouragement for additional 
work to clarify – and treat – the pathological dynamics of human 
cerebral networks in epilepsy.
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The main objective of this paper is to examine evidence for the concept that epileptic
activity should be envisaged in terms of functional connectivity and dynamics of neuronal
networks. Basic concepts regarding structure and dynamics of neuronal networks are
briefly described. Particular attention is given to approaches that are derived, or related,
to the concept of causality, as formulated by Granger. Linear and non-linear methodolo-
gies aiming at characterizing the dynamics of neuronal networks applied to EEG/MEG and
combined EEG/fMRI signals in epilepsy are critically reviewed. The relevance of functional
dynamical analysis of neuronal networks with respect to clinical queries in focal cortical
dysplasias, temporal lobe epilepsies, and “generalized” epilepsies is emphasized. In the
light of the concepts of epileptic neuronal networks, and recent experimental findings, the
dichotomic classification in focal and generalized epilepsy is re-evaluated. It is proposed that
so-called “generalized epilepsies,” such as absence seizures, are actually fast spreading
epilepsies, the onset of which can be tracked down to particular neuronal networks using
appropriate network analysis. Finally new approaches to delineate epileptogenic networks
are discussed.

Keywords: epileptic networks, neurophysiological classification, MEG/EEG, basic concepts, clinical approaches

EPILEPTIC NEURONAL NETWORKS: BASIC CONCEPTS,
STRUCTURE, AND DYNAMICS
Seminal descriptions of neuronal networks in which neurons are
the elementary units that transmit signals through synaptic con-
tacts were performed by Ramón y Cajal (1894). The concept of
neuronal networks has occupied a prominent role in the Neuro-
sciences since. Research into how neuronal networks are inter-
connected forming the wiring structure of the brain has been a
constant thread along the years. An important question has been
to find rules that link structural connectivity of neuronal networks
with information flow and processing in such networks. A model
of how information may flow in cortical networks was proposed
by Abeles (1991), Abeles and Gerstein (1998) who introduced
the concept of “synfire chains” meaning synchronous working
chains of neurons in a network, i.e., sets of interconnected neu-
rons that participate in common tasks. He elaborated this concept
further in what he called Corticonics where insights from anatom-
ical and physiological studies are combined with mathematical
and computer modeling to obtain quantitative descriptions of
cortical functions. These notions have been explored in mod-
ern neural network modeling. At the level of the organization
of the whole brain the network concept has been extended, among
others by Mesulam (1990), describing “local networks” (engaged
in modality-specific processing such as analysis of shape, spatial
location, and object identification in the visual modality) and
“large-scale networks” that incorporate numerous parallel lines
of communication with multiple cross-links, enabling integrative
processing. The complexity of the organization of these networks

of the brain has been compared with that of other large-scale net-
works, such as the World-Wide Web, the Internet, social networks,
or metabolic networks (Jeong et al., 2000), and has been the object
of similar mathematical analyses based on topological properties;
graph analysis is an example of this approach. In this way the
notions used in these mathematical analyses have been adopted
in the description of neuronal networks of the brain, and terms
as “nodes” and “hubs” have entered the field of the neurosciences.
Thus concepts from graph theory are being used to represent neu-
ronal networks: a neuron is denominated a node and a neuronal
network consists of nodes connected by links or edges; highly con-
nected nodes are called hubs and an uninterrupted sequence of
links forms a path; questions such as how the flow of information
takes place from a node to another, can be analyzed by finding the
possible paths in a graph. The structure of these networks deviates
from random; this structure has some properties of “small-world”
networks where any two nodes may be connected by short paths
and where a few “hubs” may dominate the whole connectivity
of the network (Watts and Strogatz, 1998). In such a structure the
number of links of a node may follow a power-law which character-
izes the so-called “scale-free” networks which are heterogeneous.
Small world networks are hypothesized to optimize rapid synchro-
nization transfer creating a balance between local processing and
global integration (Meador, 2011). We should note that in current
applications of these concepts in the field of neurophysiology, the
“nodes” correspond simply to the sites where signals are recorded,
be it using EEG, MEG, or functional magnetic resonance imaging
(fMRI), and not to the neuronal elements as such. This implies
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that there is an enormous distance between those “nodes” and the
neuronal reality.

A particular feature of some neuronal networks is that these are
interconnected by means of re-entrant connections, i.e., that some
nodes tend to receive connections from other nodes to which they
project by relatively short paths, some of which have been well
characterized both anatomically and physiologically such as the
cortico-thalamic-cortical system (Steriade, 2001), and the entorhi-
nal – hippocampal-entorhinal system (Kloosterman et al., 2004). A
few hubs may dominate the whole connectivity of the network, and
if these hubs would represent neuronal features with a high degree
of excitability, the latter may be rapidly distributed throughout the
whole network. Furthermore if the network possesses re-entrant
properties an even larger network may display this high degree of
excitability with complex dynamics.

Whereas the historical approach to understand higher level
operating principles in the brain was to consider it subdivided into
anatomical regions with local functional properties, the current
approach, inspired by the theoretical analysis of complex net-
works, as described above, is to emphasize networks interactions
and connectivity at short and long range.

These theoretical considerations provide a convenient
approach to better understand the pathophysiology of epilepsies.
In this context, however, it is essential to go forward from the
description of network connectivity and structural properties, as
presented above, to the dynamic dimension, i.e., to the study of
the activity of the networks as function of time. A fundamental
characteristic of these neuronal networks is that their dynamics
are essentially non-linear given the non-linear transfer properties
of neuronal elements.

The dynamics of the population of neurons that constitute the
neuronal networks can be considered at different spatial scales:
microscopic, mesoscopic, and macroscopic. The last two levels
are particularly relevant with respect to the dynamics of EEG or
MEG signals in general, and in the case of epileptic activity in
particular. A variety of molecular processes at the microscopic
(cellular) level may lead to changes in the stability of neuronal
networks causing epileptiform seizures, that become manifest at
the mesoscopic and macroscopic levels. A generalized concept is
that seizures occur in strongly coupled neuronal networks due to
a shift in the dynamical balance between excitatory and inhibitory
processes with a predominance of the former. In terms of the
mathematical theory of complex non-linear systems we may state
that such networks display bistability, i.e., they may feature two
stable operational states that may exist simultaneously for the
same set of system parameters. One of these states is the nor-
mal, inter-ictal state, and the other is the epileptic or ictal state
of the network. The transition between the two states is called a
dynamical bifurcation (Lopes da Silva et al., 2003). In epileptic
brain certain networks have abnormal parameters at the molec-
ular and cellular levels, due to genetic or to acquired pathogenic
factors, rendering some essential parameters, that control network
stability, extremely vulnerable to the influence of exogenous and
endogenous factors, such that this kind of bifurcations may occur
easily. In this way abnormal oscillations and other events, such as
epileptiform spikes, may occur in hubs of these neuronal networks
with abnormal parameters.

At the local neuronal network level, some hubs constituted
by neurons and associated glia constitute oscillatory systems that
became increasingly coupled at the transition to a seizure, thereby
recruiting more distant neuronal networks, constituting complex
oscillatory circuits, which can be recognized by EEG or MEG
recordings (Zhang et al., 2011). Accordingly, circuits of this kind
have been described in several forms of epilepsy, such as in the
thalamocortical system involved in Absence epilepsies (Meeren
et al., 2002, 2005; Suffczynski et al., 2004), and also in several
other forms of epilepsy as discussed by Halasz (2010) for rolandic
epilepsy (inner part of sylvian fissure), Landau Kleffner syndrome
(perisylvian opercular structure and/or posterior part of first
temporal convolution), electrical status epilepticus in sleep (peri-
sylvian area, bilateral widespread involvement of cortical mantle,
thalamic mediodorsal nucleus), Lennox–Gastaut syndrome (dif-
fuse bi-synchronous epileptogenic system and cortical excitation
with augmented cortico-thalamic oscillations), nocturnal frontal
lobe epilepsy (frontal medial and orbital surfaces). Also McIn-
tyre and Gilby (2008) described in various models of temporal
lobe epilepsy the recruitment of the parahippocampal cortices
including piriform, perirhinal, and entorhinal cortex in addi-
tion to the hippocampus proper. Along the same line of thought
Spencer (2002) put forward the concept of human epilepsy as
a disorder of large neural networks, and Avanzini et al. (2012)
proposed the term “system epilepsies” to describe some types
of epilepsy that depend on the dysfunction of specific func-
tional neural systems. Clinical and network analytical studies are
required to advance detection of such dysfunctional specific sys-
tems, and characterize more precisely their abnormal structure
and dynamics.

EPILEPTIC NEURONAL NETWORKS: CAUSALITY, LINEAR AND
NON-LINEAR METHODS, AND NEW APPROACHES
Epileptic conditions have to be characterized on the basis of clin-
ical evidence, but a comprehensive analysis of the brain systems
responsible for epileptic manifestations resorts to neuroimaging
techniques that may reveal structural abnormalities, and to the
EEG, MEG, and fMRI which can reveal the underlying dynamics.
Here we concentrate on general aspects of methodologies aiming
at characterizing epileptogenic networks. This implies functional
connectivity mapping to determine the dynamics of epileptiform
activities displayed as patterns of interactions between anatom-
ically connected neural nodes responsible for these abnormal
activities. Current methodologies allow a direct evaluation of
correlations between EEG seizure activities, their propagation
dynamics on the one hand, and the evolution of clinical signs on
the other, observed using combined EEG-video recording. This is
nicely illustrated in the case of patients with intractable Jackson-
ian seizures in whom intra-cranial EEG recordings (iEEG) were
made in order to assess the indication of surgery (Akiyama et al.,
2011). During the Jacksonian seizures High Frequency Oscilla-
tions (HFOs > 40 Hz) started in the sensory cortex and propa-
gated to the motor cortex when ictal motor signs occurred, but
as the seizure progressed ictal HFO spread or reverberated into
the rolandic region; further when the seizure became secondarily
generalized the ictal HFOs were limited to the Rolandic region
(Figure 1).
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FIGURE 1 |The cursor on the EEG indicates the time of the video
and topographies. The color bar at the bottom indicates the amplitude
score, where scores ≥1.5 are considered to be a significant increase
from the inter-ictal period. (A) t =0.0 s The patient lies still on the bed
without symptoms. (B) t =5.3 s During the diffuse EEG attenuation
period, the patient complains of abnormal sensation in the left hand.
There is an increase in the amplitude in 80–200 and 200–300 Hz bands
over the sensory cortex of the left hand. (C) t =15.5 s After 40–80 and

80–200 Hz activities start building up in the EEG, they gradually spread
anteriorly toward the motor cortex of the left hand and tonic flexion of
the left arm is seen. (D) t =23.6 s Subsequently, the activities within all
three bands (40–300 Hz) gradually increase in amplitude and spread to
adjacent areas. Activities at 40–80 and 80–200 Hz also spread to the
inferior rolandic region. However, even when the seizure becomes
secondarily generalized, the HFOs are confined to the rolandic region
(E,F) (Akiyama et al., 2011).

Considering that the main objective of this paper is to examine
evidence for the concept that epileptic activity should be envisaged
in terms of functional connectivity and dynamics of neuronal net-
works, we emphasize here approaches that are derived, or related
to the concept of causality, as formulated by Granger (1998) in
econometrics. In short, according to Ganger causality an observed
time-series x(t ) can be considered the cause of another series y(t )
if knowledge of the past values of x(t ) improves the prediction
of y(t ).

The“directed transfer function”(DTF) extends Granger causal-
ity to multichannel EEG/MEG data (Kaminski and Blinowska,
1991) and has been applied to estimate functional connectivity
in epilepsy (Franaszczuk and Bergey, 1998) and more recently by
Dai et al. (2012) as discussed more in detail below. It should be
noted, however, that DTF represents a linear combination of causal
relations, not only along direct pathways, but also along indirect
pathways. This led to the development of another measure, the

so-called “direct DTF” (dDTF), which emphasizes direct associa-
tions over indirect ones (Korzeniewska et al., 2003). The latter,
however, has the limitation that it needs relatively long signal
epochs to be estimated reliably. To minimize the effects of non-
stationary behavior of EEG/MEG signals, several methods have
been developed, among which the method of short-time DTF
(SDTF). By combining dDTF and SDTF new measures were pro-
posed: the SdDTF which estimates direct causal influences between
signals, not mediated by other signals, in short-time epochs, and
the Event-related causality (ERC) which estimates event-related
changes in SdDTF (Korzeniewska et al., 2008). This has been
applied mainly in the analysis of task-related changes in EEG
or MEG signals, particularly in the high frequency gamma range
during cognitive tasks.

It should be added that the methodologies described above are
based on the assumption that the relationships between EEG/MEG
signals are linear; this may be an acceptable approximation in many
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cases, although during epileptic seizures it is doubtful whether
the linear assumption always holds. Therefore non-linear meth-
ods were developed with the objective of estimating the coupling
between different EEG/MEG signals in general. A first group of
these methods was based on the estimation of mutual informa-
tion (Mars and Lopes da Silva, 1983) and on non-linear regression
(Lopes da Silva et al., 1993; Wendling et al., 2001; Kalitzin et al.,
2007) applied to EEG or MEG signals. A second group of methods,
was based on tools imported from the field of non-linear dynam-
ical systems and chaos theory (Lehnertz, 1999; Iasemidis, 2003).
Related to this class of methods two other may be distinguished,
namely: phase synchronization (PS) methods (Bhattacharya et al.,
2001; Rosenblum et al., 2004), generalized synchronization (GS)
methods (Arnhold et al., 1999; Stam and van Dijk, 2002), and more
recently directed phase lag index (dPLI; Stam and van Straaten,
2012). The former estimate the instantaneous phase of each signal
and then compute a quantity based on co-variation of extracted
phases to determine the degree of coupling between signals. GS
methods also consist of two steps: the reconstruction of state space
trajectories from time-series signals and the computation of a sim-
ilarity index on reconstructed trajectories. The dPLI characterizes
spatial and temporal patterns of phase relations in functional brain
networks.

A study of Wendling et al. (2009) is particularly inter-
esting because these authors compared directly several meth-
ods of estimating functional connectivity between EEG/MEG
signals, namely (a) linear (cross-correlation, cross-spectral
analysis – coherence and phase), (b) non-linear regression
(mutual information, h2 association index), (c) PS, and (d) GS,
applied to a well defined data set. To make the comparison
these authors built computer models of interconnected neuronal
networks with defined coupling parameters, that can generate
oscillatory activity typical of epileptic seizures. This model-based
methodology allows establishing at will the degree of coupling
between the different neuronal networks that generate the EEG sig-
nals. In this way the coupling between the signals of different net-
works can be estimated and the computed values obtained using
different methods can be directly compared among themselves,
and with the values of the coupling parameters established a priori.
This comparison revealed that there was no “ideal” method, i.e.,
none of the methods performed better than all the other ones in
all nine studied situations. Nevertheless, regression methods (lin-
ear or non-linear) showed sensitivity to the coupling parameter
in all tested models with average or good performance, what leads
to the conclusion that these are robust, and it is advisable to first
apply these regression methods in order to characterize functional
brain connectivity, under normal or pathologic conditions. In any
case it is useful in practice to compare the results of different mea-
sures to get more reliable estimates of the coupling of interest.
Figure 2 shows examples of the results of the application of non-
linear regression analysis to intra-cerebral EEG signals identifying
network associations around the moment of seizure onset.

In the last decade new techniques have entered the field
based on the application of MRI: namely fMRI, particularly in
conjunction with EEG, and diffusion-based tractography imaging
(DTI). Regarding fMRI, and in the context of determining path-
ways of propagation of epileptic activity in neuronal networks,

Dynamic Causal Modeling (DCM) applied to the interpretation
of hemodynamic signals (BOLD) is being extensively used to
determine the patterns of interaction between different neuronal
networks (Friston et al., 2003).

In an animal experimental model of absence epilepsy, this
methodology has been integrated with associated EEG signals
(David et al., 2008). In this case the performances of DCM and
Granger causality estimates were compared, showing approxi-
mately similar results. In human epilepsy these methodologies
were applied recently in epileptic patients with Hypothalamic
Hamartomas and were able to yield plausible estimates of seizure
propagation pathways (Murta et al., 2012). DTI is based on the
principle of anisotropic diffusion of water molecules in white
matter tracts throughout brain tissue. In a study of children with
temporal lobe epilepsy displaying spikes over the Rolandic region
identified in the MEG, the hypothesis that the latter occurred due
to activity propagating along neural aberrant pathways connect-
ing the temporal lobe and the Rolandic cortex appeared plausible
according to the DTI analysis (Bhardwaj et al., 2010).

EPILEPTIC NEURONAL NETWORKS: CLINICAL QUERIES AND
PRACTICAL RELEVANCE
NETWORKS IN FOCAL CORTICAL DYSPLASIAS AND OTHER
LESION-RELATED EPILEPSIES
To put in evidence functional dynamics of neuronal networks
engaged in epileptic seizure activity the study of Focal Cortical
Dysplasias (FCD), Dysembryoplastic NeuroEpilethelial Tumors
(DNET), and Periventricular Nodular Heterotopias (PNH), which
frequently are associated with pharmaco-resistant epilepsy, is par-
ticularly enlightening. These lesions may be synaptically connected
with other neuronal networks, such that the epileptic activity may
propagate along the connecting pathways constituting an “epilep-
togenic network” (Aubert et al., 2009), or otherwise may stay
confined to the region of, and around, the FCD lesion. Interest-
ingly, anatomical alterations in tissue microstructure adjacent to
some FCDs were detected using DTI-MR imaging. These over-
lapped with the localization of clusters of equivalent dipoles of
epileptiform spikes (Widjaja et al., 2009).

Therefore it is most relevant to determine the functional orga-
nization of these epileptogenic networks, since this may give
useful indications for a possible surgical intervention and the
corresponding prognosis. Different methods have been applied
to estimate the functional connectivity of neuronal networks in
these cases. Using depth EEG registrations (stereoencephalogra-
phy) functional analysis of multiple EEG signals was performed
using non-linear regression (h2 association index) by Valton et al.
(2008), and by computing the so-called “Epileptogenicity index”
(Aubert et al., 2009). In the former study Valton et al. (2008)
applied this methodology to analyze depth seizure EEG signals
in a patient with bilateral PNH. Non-linear regression analysis
revealed a large epileptogenic network extending beyond the PNH
and involving remote cortical structures. The fact that this is a vast
epileptogenic network may account for surgical failures in patients
with this kind of heterotopias.

Aubert et al. (2009) used depth electrodes (stereoencephalog-
raphy) and the “Epileptogenicity index” from Bartolomei et al.
(2008). This index is based on the spectral content of

Frontiers in Neurology | Epilepsy March 2013 | Volume 4 | Article 8 | 9

http://www.frontiersin.org/Epilepsy
http://www.frontiersin.org/Epilepsy/archive


Stefan and Lopes da Silva Identification of epileptic networks

FIGURE 2 | Characterization of epileptogenic networks in the temporal
lobe during the transition from pre-ictal to seizure activity. (A)
Intracerebral EEG recording performed in a patient with mesial TLE. (B)
Color-coded nonlinear correlation matrices obtained from the pairwise
computation of nonlinear correlation coefficient h2 over six different 10-s
intervals chosen during the pre-ictal period (1, 2), the ictal period (3, 4, 5), and

after seizure termination (6). (C) Graphical representation in which the lines
indicate “abnormally strong” couplings between the two considered
structures (graph nodes). Only significantly high interdependencies are
represented (i.e. h2 values ≥0.32. This value corresponds to the average h2
value computed over the interictal period ±2 SD). Line thickness is
proportional to h2 values.

high frequency components [beta: (12.4–24 Hz)+ gamma: (24–
90 Hz)] relative to lower frequency components. It accounts for
both the propensity of a brain area to generate high frequency
oscillations and the time for this area to get involved in the seizure.
In this study depth EEG signals of several cortical areas were ana-
lyzed; the authors found in one group of patients (31% of the
patients) one strictly localized epileptogenic zone, while a second
group (61%) displayed more than one epileptogenic network. The
success of surgery was related to the extent of the epileptogenic
network. This implies that it is important to determine with the
highest precision the extent of the epileptogenic network while
planning a surgical intervention.

This study illustrates the clinical relevance of making a func-
tional analysis of the neuronal networks associated with an epilep-
togenic lesion using quantitative methods of EEG signal analysis,
and that the “epileptogenicity index” may be a useful tool even in
cases where a relatively small number of EEG signals are avail-
able. In the case of Mesial Temporal Lobe Epilepsies (MTLE)
extended networks outside the temporal lobe may be involved
what led Ryvlin and Kahane (2005) to coin the denomination
“Temporal-plus Epilepsy” where epileptiform activity appears in
multiple brain lobes in addition to the temporal lobe.

The importance of differentiated “primary and secondary”
inter-ictal spike activity for the identification of ictal and

propagated epileptic activity was pointed out by Badier and
Chauvel (1995).

The determination of the extent of an epileptogenic network
may also be obtained from recordings of inter-ictal spikes, either
using EEG or MEG, since it is known that the propagation patterns
of spikes may give valuable information about neural networks
associated with epilepsy (Spencer, 2002) and to the outcome of
epilepsy surgery (Alarcon et al., 1997; Hufnagel et al., 2000; Schulz
et al., 2000). Indeed inter-ictal EEG (reviewed in Rodin et al.,
2009) and MEG spikes (Tanaka et al., 2010) may be considered
biomarkers of epileptogenic networks; more recently, in the same
context, a novel kind of biomarker – High Frequency Oscillations,
i.e., HFOs (ripples and fast ripples), – has raised a lot of interest
and its role is the object of investigation, reviewed by Jacobs et al.
(2012). In order to perform this kind of analyses using scalp EEG
and/or MEG recordings it is necessary to combine information
about electric and/or magnetic fields with anatomical informa-
tion obtained from MRI. In this way spatio-temporal analysis of
EEG/MEG can yield useful information about the propagation of
inter-ictal spikes in epileptogenic networks. The validation of this
approach was systematically assessed in the study of Tanaka et al.
(2010) who compared the results of the spatio-temporal source
analysis of EEG and MEG of inter-ictal spikes with data obtained
by way of iEEG recordings made extraoperatively in 10 patients.
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This study showed that the analysis based on MEG spikes yield a
very similar propagation pattern as observed in iEEG, better than
EEG data. It should be noted, however, that the MEG signals were
obtained from 102 sites whereas for the EEG only 70 recording sites
were used, what may account, at least partially, for the difference
in performance between the two sets of recordings.

A clinical example where the value of inter-ictal MEG spikes is
illustrated is the case study of a patient with PNH where Mag-
netic Source Imaging (MSI), i.e., a combination of MEG and
co-registered MRI, was applied, and used to guide intraoperative
electrocorticography. Thereafter intra-cerebral depth electrodes
and subdural strips were implanted guided by the MSI data,
which revealed two separated zones of spike activity. A cluster
analysis of electrographic recordings of spikes showed two clus-
ters based on source localization using equivalent dipole source
models and a realistic volume conductor model; the main clus-
ter arose from the temporal neocortex and not from the PNH
area. This led to the assumption that the networks of the temporal
cortex distant from the lesion might act as primary epileptogenic
network. Accordingly a resection of the temporo-occipital neo-
cortical tissue including the main spike focal area was performed,
with excellent postoperative seizure control (Figures 3A,B; Ste-
fan et al., 2007). This led to the definition of the epileptogenic
network, including the heterotopia and overlying neocortex, what
was essential to assure a positive surgical outcome. Another study
(Dai et al., 2012) used also inter-ictal Magnetoencephalography
(MEG) to identify epileptogenic networks; these authors estimated
cortical sources of spikes using realistic head models, computed
the directional connectivity between those sources in patients
with pharmaco-resistant epilepsies (different kind of pathologies)

who were pre-surgically investigated using intra-cranial electrodes
under the guidance of the MEG data, and whose epileptogenic
zone was later removed. They found a good overlap between the
primary sources of epileptiform spikes and the epileptogenic zones
that were later surgically resected, in line with the results obtained
by Tang et al. (2003), Shiraish et al. (2005), Stufflebeam et al.
(2009), and Wang et al. (2012). In the context of the present dis-
cussion on the importance of network analysis in epilepsy, the
study of Dai et al. (2012) goes further than previous investigations
because these authors applied the DTF, introduced above, using
an open-source software package (eConnectome). In this way they
estimated the direction of the propagation of the epileptiform
activity along the interconnected neuronal networks as illustrated
in Figure 4.

NETWORKS IN GENERALIZED EPILEPSIES
In the light of the concepts of epileptic neuronal networks and
recent experimental findings the dichotomic classification in focal
and generalized epilepsy has to be re-evaluated. Indeed it is nec-
essary to reassess the role of epileptic networks in the so-called
generalized epilepsies.

Are generalized epilepsies actually fast spreading focal epilepsies?
The concept of “primarily generalized epilepsy,” as for exam-
ple in Childhood Absence Epilepsy (CAE), implies that all brain
regions simultaneously would generate spike-and-wave discharges
(SWDs) and the associated seizure, classically considered to be
triggered by some central process associated with the diffuse
cortico-thalamic system according to the “centrencephalic” con-
cept of Jasper and Penfield (1954), or by the interplay between

FIGURE 3 | (A) (a) Streamtube visualization of the right optic radiation based
on diffusion tensor imaging. (b) For navigation, a three-dimensional object
representing the optic radiation (wrapping the individual fibers) and two
distinct MSI foci (red) are generated. (c) Relation of optic radiation (visualized

as streamlines) to MSI foci. (d–f) Sagittal/coronal/axial view of T1-weighted
images with registered DTI and MSI data. Localization of focal epileptic
activity is below the optic Tract (Stefan et al., 2007).

(Continued )
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FIGURE 3 | (B) (a) Intraoperative electroencephalographic recordings
with platinum-electrodes electrode position confirmed by intraoperative
T1- and T2-weighted high-field-MR imaging. (b) MSI guided electrode
implantation of intra-cerebral depth and subdural electrodes; spike
activity in lateral cortex and periventricular heterotopia, the

corresponding spike density distribution is shown (upper right). The
neocortex shows predominant spike wave activity and 11–12 s−1

polyspikes during intraoperative ECoG. (c) Intraoperative MR-imaging
after cortical resection of MSI-focus No. II (with platinum-electrodes
still in situ).

thalamus and cortex as in the corticoreticular hypothesis of Gloor
(1968). There is growing evidence, however, that this is a too
simplified view, and that in these cases there is a cortical frontal

neuronal network where the onset of the SWDs is located. Thus
the question may be formulated in a simple way: are SWDs man-
ifestations of a generalized or of a focal process? In the same vein
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FIGURE 4 | Estimated direction of propagation of epileptiform activity along neuronal networks (Dai et al., 2012).

a critical analysis of the classification of epilepsies recommend
“abandoning these terms as overall classification categories into
which all epilepsies must fit” (Berg and Scheffer, 2011).

One important hindrance in solving this controversy is that
many studies have used inadequate methodologies. Most of the
classic observations of “generalized SWDs” (GSWDs) were based
on visual inspection of EEG recordings on paper at relatively
high speed, as even reported recently (Koutroumanidis et al.,
2012). Although the human condition of CAE may differ in
some respect from genetic rodent models of Absence epilepsy
[Genetic Absence Epileptic Rats of FStrasbourg and Wag/Rij rats
(GAERS)=Wistar Albino Glaxo from Rijswijk] the detailed obser-
vation of the evolution of the typical SWDs in the latter, using
appropriate techniques, allowed Meeren et al. (2002) to iden-
tify the focal cortical onset of SWDs as the peri-oral region
of the somatosensory cortex (Figure 5). A crucial point is that
these local SWDs propagate very quickly throughout the cortex
and to the thalamus at the millisecond scale. This fast propaga-
tion can only be accurately determined using appropriate ana-
lytical methods, such as non-linear regression analysis, at the
very beginning of the burst of SWDs; within a few hundreds
of milliseconds the propagation to other cortical areas and to
the thalamus feeds back to the initial cortical area, what con-
founds any possibility of determining later where the SWDs had
started.

These observations have two important methodological conse-
quences: (1) any method of analysis needs to be reliably applicable
to very short signal epochs in the order of <500 ms: (2) the sam-
pling both in time and space has to be very high, at the millimeter
and millisecond scales.

This cortical focal onset of SWDs first identified in the cortex
of Wag/Rij rat was subsequently further characterized by means of
intracortical and intracellular recordings by Polack et al. (2007,
2009) and Pinault (2003) in GAERS, what is in line with the
previous observations that the appearance of SWDs in the electro-
corticogram precede the corresponding discharges in the thalamus
by Seidenbecher et al. (1998). The hypothesis that absence seizures
have a focal cortical origin in WAG/Rij rats is also supported by
the abolition of SWDs after pharmacological inhibition of the
focal region (Sitnikova and van Luijtelaar, 2004; van Luijtelaar
and Sitnikova, 2006) and by a series of studies showing abnormal
excitability of the cortical focal region (see also Lüttjohann et al.,
2011). Furthermore an integrated fMRI/EEG study in GAERS con-
firmed also the leading role of the somatosensory cortical focal
area in SWDs, where the hemodynamic signals were analyzed
using Granger causality and DCM along with local field potentials
(David et al., 2008).

Can the cortical focal origin of SWDs in rat absence models be
extrapolated to human patients?
Early classic observations of Bancaud et al. (1974), Rodin et al.
(1994), Niedermeyer et al. (1969), and Niedermeyer (1972) sug-
gested that in CAE there was a focal onset of SWDs in the frontal
cortex. In the same line the temporal analysis of ictal absence EEG
signals revealed a rapid motor involvement in cranio-caudal direc-
tion from the ocular/peri-oral regions to the extremities indicating
dynamic propagation in a network involving the frontal lobe and
motoric system (Stefan, 1982; Stefan and Carter Snead, 1997).

Notwithstanding these and other observations also pointing
out in the direction that SWDs in absences are not primarily
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FIGURE 5 | Evolution of absence seizures in the rat genetic model:
(A) corticocortical (represented by the black arrows), intra-thalamic
(light gray arrows), and cortico-thalamic (dark gray arrows)
interdependencies during spontaneous absence seizures in the
WAG/Rij rat as established by the non-linear association h2 analysis.
The thickness of the arrow represents the average strength of the
association, and the direction of the arrowhead points to the direction of
the lagging site. The values represent the corresponding average time
delays in milliseconds. This example represents the average of 10
seizures of one rat. The relationships are stable for the first 500 ms of the
absence seizure. A consistent cortical onset was found in the upper lip
and nose area of the somatosensory cortex (SmI), because this site
consistently led the other cortical recording sites. The hindpaw cortical
area was found to lag by 2.9 ms on average with respect to this focal
site. Within the thalamus, the laterodorsal (LD) nucleus was found to

consistently lead other thalamic sites. The ventroposterior medial (VPM)
nucleus was found to lag behind the ventroposterior lateral (VPL)
nucleus, with an average time delay of 4.3 ms. Concerning
cortico-thalamic interrelationships, the cortical focus site consistently led
the thalamus (VPM), with an average time delay of 8.1 ms. (B) The
relationships found when the whole seizure is analyzed as one epoch.
The same cortical focus as during the first 500 ms was found
consistently. Compared with the first 500 ms, the time delay from the
cortical focus with respect to the non-focal cortical sites increased.
Furthermore, the strength of association between VPL and VPM also
increased. The direction of the cortico-thalamic couplings changed. For
the non-focal cortical sites, the thalamus was found to lead during all
seizures. For the focal cortical site, the cortex was found to lead during
two seizures, whereas the thalamus was found to lead during seven
seizures (Meeren et al., 2002).

generalized, this feature was overlooked in the Epilepsy commu-
nity probably due to the overwhelming weight that the term “ gen-
eralized”carries until now in the classification of epileptic seizures.
Technical advances of EEG technology (Holmes, 2008), however,
gave a new thrust to the search for possible sources of SWDs in
the human cortex in patients with CAE. An important advance
in this respect was achieved by Holmes et al. (2004, 2010) who
recorded scalp EEG signals with a dense-array, 256-channel system
in patients with “primary generalized epilepsy,” absence seizures,
and carried out source analysis estimating equivalent dipole distri-
butions smoothed by linear inverse methods (LORETA, Pascual-
Marqui et al., 2002). The onset of the slow component of SWDs
was located at the frontal cortex and the spike at the frontopo-
lar region of orbital frontal lobe. Furthermore a similar analysis
(Holmes et al., 2010) in patients with Juvenile Myoclonic Epilepsy
(JME) revealed sources in orbitofrontal/medial frontopolar cortex
in all patients examined, and in half of the patients sources in basal-
medial temporal lobe sources were found. Thus these authors
conclude from these observations that JME is “not generalized
in the sense of bilaterally diffuse onset.”

Further clinical studies in patients with CAE, JME, and
epilepsy with generalized tonic-clonic seizures (GTC) by Stefan
et al. (2009) using MEG/EEG, demonstrated regional activations
of the fronto polar medial cortex and rapid involvement of

other brain areas (Figures 6A,B). The distribution of SWDs in
absence patients appeared to involve a prefrontal-insular-thalamic
network, whereas in patients with myoclonic components the
dominant networks were (pre)motorinsular-thalamic.

Using 204-channel MEG recordings in patients with juvenile
absence epilepsy (JAE) and applying dynamic statistical parameter
mapping (sSPM) Sakurai et al. (2010) found that the onset of
SWDs corresponded to focal cortical activation with secondary
activation of posterior cingulate and precuneus, brain structures
that belong to the“default mode network (DMN),”at least in some
patients.

Since in the great majority of patients with apparently general-
ized Spike-and-Wave (GSW) and “Idiopathic Generalized Epilep-
sies” no iEEG recordings are made, several investigators have
attempted to determine the role of the thalamus and the cor-
tex in the generation of these discharges using imaging methods,
namely fMRI associated with EEG. Using this methodology Salek-
Haddadi et al. (2003) studied a patient with IGE and frequent
absences and found that generalized SWDs were time-locked with
bilateral BOLD activation of the thalamus and cortical deactiva-
tion most prominent in the frontal cortex. A similar study by
Aghakhani et al. (2004), in a group of patients with IGE and
GSWDs described bilateral activation in thalamic regions associ-
ated with SWDs, while in the cortex deactivations were observed.

www.frontiersin.org March 2013 | Volume 4 | Article 8 | 14

http://www.frontiersin.org
http://www.frontiersin.org/Epilepsy/archive


Stefan and Lopes da Silva Identification of epileptic networks

FIGURE 6 | Continued

Moeller et al. (2009) investigated not only GSWDs in patients with
absence seizures but also triggered photoparoxysmal responses
(PPRs) using EEG based coherent source dynamic imaging and
BOLD signals. Partial directed coherence analysis indicated that
the thalamus appeared to act as“pacemaker”of GSWDs in absence
seizures; in contrast PPRs could be accounted for by an activation
of the occipital cortex that propagates along cortical networks to
frontal areas.

Carney et al. (2012) used also EEG-fMRI to further inves-
tigate the role of the frontal cortex in absence seizures. They
identified two major patterns of frontal cortical BOLD signal
change following onset of SWDs using event-related time course
analyses, in the dorsolateral prefrontal cortex (DLPF): one group
showed a pronounced and prolonged positive cortical BOLD sig-
nal change, whereas another group displayed a less pronounced
BOLD increase followed by a predominant negative BOLD signal
change. Similar patterns were found in the midline and lateral

parietal cortex, caudate, and thalamus. They report also evi-
dence of BOLD signal changes that precede the Spike-and-Wave
onset, particularly in the mesial frontal cortex, parietal cortex, and
precuneus, but not in the thalamus.

These authors suggest that the differences in frontal cortical
BOLD associations with onset of absences may have phenotypic
implications. This implies that group-averaged data have to be
interpreted with caution, and that individual recordings have
always to be examined.

A general comment about the findings of these studies in the
light of the experimental evidence obtained in animal models of
absences, is that the dynamics of the onset and early propagation
of SWDs from the cortical onset zone to the thalamus takes place at
a very fast pace. Only during a couple of hundreds of milliseconds
there is a sustained flow of SWD signals from cortex to thalamus;
after that the cortico-thalamo-cortical loop is entrained in the
oscillations and it is not possible anymore to identify where the
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FIGURE 6 | (A,B) Beamformer analysis of spike propagation of two MEG
spike – wave complexes. Both showed predominant epileptic activity
frontal mesial bilateral and perisylvian region (case 5 MAE), however
propagation sequence was different (blue to cyan signifies increasing
activity). Numbers correspond to time points in the waveform. (A) Activity
propagated from left frontal mesial area, to larger frontal areas, including

polar and basal, bilateral frontal, and subsequently to perisylvian areas; (B)
in parts reversed propagation sequence compared to (A): bilateral
perisylvian origin, propagation to left frontal mesial, and subsequent
involvement of bilateral frontal areas. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of
the article; Stefan et al., 2009).

onset was situated. Therefore BOLD signals, that have much longer
time constants don’t have the adequate time resolution to catch
the dynamical onset event of SWDs. The changes in BOLD signals
put in evidence by all the studies referred to above, however, are
consistent: during a burst of SWDs there is activation of thalamus
and deactivation of cortical areas, what represents the steady-state
condition of the underlying neuronal networks during a SWD
burst, but are not informative regarding the identification of the
onset dynamics of SWDs.

Does network analysis reveal abnormalities of the inter-ictal state
in patients with IGE?
Children with CAE can display besides SWDs associated with
absences also SWDs that may be clinically silent. Li et al. (2009)
using EEG-fMRI analyzed both types of GSWDs, inter-ictal

and ictal and reported that both types were associated with
changes of BOLD signal in the basal ganglia-thalamo-cortical loop,
but whereas the ictal type showed widespread and symmetrical
deactivation in the cortex, the inter-ictal type showed predomi-
nant cortical activation. The authors advance the hypothesis that
the cortical deactivation would be the substrate for the abrupt loss
of consciousness of the absences. Interestingly Luo et al. (2011)
investigated, using fMRI, the inter-ictal state also in patients with
absences but taking care of avoiding that SWDs were present dur-
ing the recording, i.e., in the resting state. Cross-correlation func-
tional connectivity analysis revealed decreased integration within
the DMN in the absence epilepsy patients, in particular a decrease
of functional connectivity among the frontal, parietal, and tempo-
ral lobe. It is to be investigated whether this DMN abnormalities
may be related to cognitive impairments in these patients.
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NEW APPROACHES TO DELINEATE EPILEPTOGENIC NETWORKS ALSO
WITH REGARD TO GUIDING THERAPY
In the previous sections we considered how various modern
methodologies can be applied to improve the delineation of
the epileptogenic zone having in mind that the latter should be
envisaged as an epileptogenic neuronal network, and we discussed
several typical clinical cases. In the modern conceptualization of
epilepsy one has to evolve from “zones to networks” paraphrasing
Laufs (2012). The identification of epileptogenic networks is, of
course, of paramount importance in order to improve planning
of resective surgery, and also to guide targeted therapies with the
aim of controlling abnormal activity in relevant hubs and nodes
within the epileptogenic network.

In the context of surgical planning in patients with medically
intractable epilepsies one crucial aspect is to optimize the place-
ment of depth electrodes (iEEG), such that the brain space of
interest may be appropriately explored. Currently the possibilities
offered in this respect by combining EEG and fMRI are the object
of active research (Vulliemoz et al., 2010). A topical issue is whether
fMRI may have a relevant added-value to classic EEG scalp record-
ings regarding the analysis of epileptogenic networks. Of course
fMRI being non-invasive would represent an important practical
tool in this context. Also in association with iEEG, fMRI might
be valuable since it permits to extend the scope of the search for
biomarkers of epileptic activity to the whole brain, compensating
the spatial sampling limitations of iEEG. It is important to empha-
size that EEG-fMRI studies should take into account not only the
question of localization within brain space of “hot spots”of epilep-
tiform activities but also the dynamic features of these activities,
i.e., the flows of propagation and the corresponding time delays.
In many investigations these dynamic aspects are still too little
explored.

Some promising findings, however, have been reported. In a
study of patients with focal epilepsies Jacobs et al. (2009) demon-
strated the occurrence of BOLD changes associated with inter-ictal
spikes recorded at the scalp that preceded the latter by a few sec-
onds. This early BOLD response may be interpreted as resulting
from changes in neuronal activity in epileptogenic neuronal net-
works situated deep in the brain that are not reflected at the level
of the scalp EEG.

The study of Fahoum et al. (2012) addressed the same question
by investigating the distribution of cortical and subcortical hemo-
dynamic changes associated with inter-ictal spikes (IEDs) recorded
in scalp EEG in patients with different epileptic conditions (tem-
poral lobe-TLE, frontal lobe-FLE, and posterior quadrant-PQE
epilepsies) using a similar EEG-fMRI approach. These authors
modeled the BOLD response to the IEDs using the timing of
the epileptiform events as regressor convolved with a series of
Hemodynamic Response Functions (HRFs) consisting of gamma
functions peaking at successive delays. Without going here into
details the main findings of the analyses showed widespread clus-
ters of activation and deactivation in TLE and FLE patients, while
in PQE only deactivations clusters were found, that reached brain
areas outside the presumed epileptogenic zone. The largest acti-
vations both in TLE and FLE patients were found bilaterally
in mid-cingulate gyri. All patient groups showed deactivations
of DMN regions, particularly in TLE patients (inferior parietal

lobules, posterior cingulate cortex, and precuneus bilaterally). The
involvement of the mid-cingulate gyri likely reflects the rapid
propagation of epileptic activity from sources in temporal and
frontal areas. The pathophysiological significance of this finding is,
however, not yet clear. Nonetheless this may be a pointer to further
investigate whether these networks involving the cingulated cortex
may be interesting targets for therapeutic interventions.

Simultaneous intra-cranial recordings with an appropriate spa-
tial sampling, however, are necessary to clarify these functional
relationships revealed by the scalp IEDs – fMRI analyses. In a study
of patients with FCDs Thornton et al. (2011) made a comparison
between EEG-fMRI signals associated with inter-ictal epileptiform
discharges (IEDs) in iEEG recordings in order to delineate in a
classic way the seizure onset zone (SOZ). These authors stud-
ied also the surgical outcome of these patients. About 5 of 11
patients showed IED-related BOLD signals that were concordant
with the electrophysiologically determined SOZs, that in these
patients had a limited extent. Six of 11, however, did not display
this concordance and the IED-related BOLD signals revealed more
widespread epileptogenic regions in comparison with the extent
of the SOZ delineated based only on iEEG data. Most interesting
the five former patients had a good surgical outcome, but this was
not the case for the latter 6. These findings suggest that EEG-fMRI
may be useful to identify patients with extensive epileptogenic net-
works that extend beyond those delineated using only classic iEEG.
This information may contribute to making decisions concerning
surgical resections more appropriately.

Thus EEG/fMRI studies may be helpful in order to plan more
efficiently iEEG recordings and to estimate more accurately the
extent of epileptogenic neuronal networks. One critical note
should be added: many EEG-fMRI studies tend to focus mainly
on localizations rather than on dynamics. In general these studies
don’t take into account time-delays between different hubs and
nodes within extensive epileptogenic networks. In order to obtain
this information one has to resort to electrophysiological measure-
ments, given the low time resolution of fMRI signals. To obtain a
comprehensive picture of epileptogenic networks it is essential to
uncover the dynamics of the propagation of epileptic activity in
these networks.

It is interesting to note that these techniques are being applied
also to find whether the pattern of functional connectivity of
neuronal networks may yield relevant information about epilepto-
genic networks during inter-ictal resting states. Using non-linear
correlation analysis Bettus et al. (2011) showed in TLE patients
a general increase of iEEG signal interdependencies (specific for
the beta frequency band) in regions affected by electrical epilep-
tiform abnormalities relative to non-affected areas, whereas the
opposite pattern was found for functional connectivity measured
using fMRI signals. This latter finding may be due to anomalies in
metabolism and in neurovascular coupling (blood-brain-barrier
permeability) in epileptogenic networks that may be affected in
TLE. Such anomalies have been also shown in animal models of
TLE and in human patients by means of MR diffusion imaging –
tractography (Yogarajah et al., 2008). Bettus et al. (2011) suggest
that this increase in beta frequency interdependencies in epilepto-
genic networks“could be a reliable pathological marker of epileptic
processes.” This needs further confirmation.

Frontiers in Neurology | Epilepsy March 2013 | Volume 4 | Article 8 | 17

http://www.frontiersin.org/Epilepsy
http://www.frontiersin.org/Epilepsy/archive


Stefan and Lopes da Silva Identification of epileptic networks

With respect to locally targeted therapies experimental work
in animal models reveals some interesting novel perspectives for
future therapeutic interventions, for example with the purpose of
delivering anticonvulsants locally into specific hubs of epilepto-
genic networks as proposed by Löscher and collaborators (Bröer
et al., 2012). Strategies for neuromodulation aiming at the ther-
apeutic control of epileptogenic networks are being considered
besides local drug delivery, such as local electrical stimulation,
transcranial magnetic stimulation, stem cells transplantation, and
gene therapy (see review Al-Otaibi et al., 2011). Regarding deep
electrical brain stimulation (DBS) Kahane and Depaulis (2010)
stress the importance of gaining a better understanding of the
functional properties of epileptogenic neuronal networks in which
seizures originate and propagate, as much as of the mechanisms
by which neurostimulation works, in order to define the types of
DBS that may be effective. The need of acquiring a comprehensive
insight in these functional epileptogenic networks applies to all
strategies to develop novel targeted therapies.

CONCLUSION
The interest on neuronal network analysis in epilepsy has gained
strength with the use of high resolution recording techniques and
signal analytical methodologies that opened up the possibility of
studying dynamic brain states with high resolution both in space
and time. In addition to invasive EEG recordings, non-invasive
recording techniques like MEG/EEG and EEG-fMRI are being
used more and more to identify network involvements in various
epileptic conditions and age dependent syndromes, both struc-
turally and dynamically. In some cases diverse techniques are used
in a complementary way. A typical example is the study of Vaudano
et al. (2012) who made ictal MEG and EEG-fMRI recordings in
a patient with reading epilepsy. Using this information combined
with DCM, they found evidence for a causal link between activ-
ity in the left piriform cortex and the seizures elicited by reading.
More research is needed to integrate this kind of findings with the

detection of relevant biomarkers of epileptogenic zones, that have
been recently described such as (fast)ripples (HFOs, Jacobs et al.,
2012; Jefferys et al., 2012) in order to refine systematic network
analyses in all sorts of epileptic patients.

In the last decade the development of new methodologies to
analyze the dynamics of neuronal networks has gained momen-
tum, and has yield a wide range of computer tools that are being
tested in clinical and experimental environments. Using such tools,
many of which were discussed above, new insights are emerging.

One of these is that the concept that some types of epilepsy
are “generalized” is outdated. Even in cases of IGE and CAE
there is now compelling evidence that the seizures start in a well
defined brain area and spread at great speed to connected brain
areas recruiting specific neuronal networks into typical oscillatory
behavior. This conclusion is now supported by high resolution
human EEG and MEG data, by animal experimental electrophys-
iological and fMRI data. Thus the dividing line between “gener-
alized” and “focal” epilepsies recedes on the face of new relevant
neuronal network analyses. In the classification of seizures, it is
important, in addition to the localization of seizure onset, to iden-
tify cortical and subcortical network involvement and the speed
of propagation. This implies that a neurophysiological seizure
classification approach should include the identification of the
predominant involved networks, within one hemisphere or involv-
ing both. This conclusion is in line with Laufs’ (2012) conclusion
that the concept that epilepsies should be considered as resulting
from disturbed network interactions that implies “multitargeted
treatments.” A major challenge will be to perform connectivity
analysis in order to identify the primary epileptogenic source, or
“hub,” in complex multifocal epilepsies in order to optimize tai-
loring surgical resections and/or targeted therapies in epileptic
patients.
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Simultaneous electroencephalogram (EEG)-functional Magnetic Resonance Imaging
(fMRI) recordings have seen growing application in the evaluation of epilepsy, namely in the
characterization of brain networks related to epileptic activity. In EEG-correlated fMRI stud-
ies, epileptic events are usually described as boxcar signals based on the timing information
retrieved from the EEG, and subsequently convolved with a hemodynamic response func-
tion to model the associated Blood Oxygen Level Dependent (BOLD) changes. Although
more flexible approaches may allow a higher degree of complexity for the hemodynamics,
the issue of how to model these dynamics based on the EEG remains an open question.
In this work, a new methodology for the integration of simultaneous EEG-fMRI data in
epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD
signal. Independent component analysis of the EEG is performed, and a number of met-
rics expressing different models of the EEG-BOLD transfer function are extracted from the
resulting time courses.These metrics are then used to predict the fMRI data and to identify
brain areas associated with the EEG epileptic activity.The methodology was tested on both
ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma.
When compared to the conventional analysis approach, plausible, consistent, and more sig-
nificant activations were obtained. Importantly, frequency-weighted EEG metrics yielded
superior results than those weighted solely on the EEG power, which comes in agreement
with previous literature. Reproducibility, specificity, and sensitivity should be addressed in
an extended group of patients in order to further validate the proposed methodology and
generalize the presented proof of concept.

Keywords: BOLD, EEG-fMRI, epilepsy, ICA, heuristic

INTRODUCTION
Over the years, the electroencephalogram (EEG) has been the tool
of choice for the diagnosis and characterization of epilepsy. With
the possibility to acquire the EEG simultaneously with functional
Magnetic Resonance Imaging (fMRI), studies of Blood Oxygen
Level Dependent (BOLD) signals correlated with epileptic activ-
ity proliferated (Ives et al., 1993; Hoffmann et al., 2000; Lemieux
et al., 2001; Salek-Haddadi et al., 2006; LeVan and Gotman, 2009).
Despite its potential for the localization of epileptogenic brain
networks in patients with drug-resistant focal epilepsy undergo-
ing evaluation for surgical treatment, simultaneous EEG-fMRI
has yet to reach its full potential in clinical practice. One fac-
tor contributing to this state of affairs is the lack of sensitivity
in the identification of hemodynamic changes associated with
the EEG epileptiform discharges in a significant number of stud-
ies (Aghakhani et al., 2006; Salek-Haddadi et al., 2006; Gotman,
2008; Grouiller et al., 2011). Although technical difficulties related
with data acquisition and artifact correction may in part explain
such results, probably most important are the limitations related
with the remaining conceptual and methodological challenges
associated with the integration of the two types of signals.

Although a great amount of both experimental and theoretical
work has been dedicated to the clarification of the relationship
between neural activity and associated hemodynamic changes,
neurovascular coupling mechanisms remain an active area of
research (Rosa et al., 2010a). The most consensual evidence comes
from the recording of electrical activity using micro-electrodes
implanted in the cortex of (non-human) animals, simultane-
ously with fMRI, indicating that the BOLD signal reflects mostly
slow, post-synaptic input activity measured by local field poten-
tials (LFPs), rather than fast, spiking output activity measured
by single/multi-unit activity (S/MUA; Logothetis et al., 2001). In
humans, a growing number of simultaneous EEG-fMRI studies
on healthy subjects as well as epilepsy patients have now been
reported (Goldman et al., 2002; Laufs et al., 2003, 2006; Moos-
mann et al., 2003; de Munck et al., 2009), and biophysical models
of the neurovascular coupling have been proposed (Riera et al.,
2006, 2007). Overall, reports in the literature do not provide a
clear picture of the link between EEG and BOLD signals. In par-
ticular, contradictory results have been presented regarding the
dependency of BOLD changes on the EEG power and spectral
profiles. These include, for example, positive and negative BOLD
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correlations with specific frequency band power changes in the
human EEG (de Munck et al., 2009), BOLD decoupling from LFP
power in mice (Ekstrom, 2010), and negative BOLD associated
with large increases in LFP and MUA during seizures also in mice
(Schridde et al., 2008). Rosa et al. (2010b) addressed this topic
by comparing different models of the transfer function between
EEG and BOLD signals, in the prediction of fMRI data, in a visual
stimulation experiment with human healthy subjects. The mod-
els explored included the EEG total power (TP; Wan et al., 2006);
linear combinations of the power from different frequency bands
(Goense and Logothetis, 2008); and several variations of a heuris-
tic model proposed by Kilner et al. (2005) in which BOLD changes
are assumed to be proportional to the root mean square frequency
(RMSF) of the EEG spectrum. The results obtained showed a clear
superiority of the RMSF metrics in predicting the BOLD signal,
when compared to power-weighted metrics.

In most epilepsy EEG-fMRI studies, the goal is to find brain net-
works exhibiting hemodynamic changes associated with interictal
and/or ictal activity, which are expected to be correlated with the
epileptogenic areas (Hoffmann et al., 2000; Salek-Haddadi et al.,
2006; Marques et al., 2009). Both ictal and interictal events are
identified on the EEG trace and are then used to define regressors
of interest in a general linear model (GLM) analysis of the fMRI
data. Interictal spikes are usually described as stick functions and
ictal activity as boxcar signals between seizure onset and offset,
eventually sub-divided into up to three phases: early ictal EEG,
clinical onset, and late ictal EEG. Both types of events are then
convolved with a model of the hemodynamic response function
(HRF; Tyvaert et al., 2008; Moeller et al., 2010; Thornton et al.,
2010). Independent component analysis (ICA) of the fMRI data
has also been performed in order to identify interictal/ictal BOLD
patterns without resorting to the EEG (LeVan et al., 2010; Thorn-
ton et al., 2010). When the EEG accurately reflected the seizure
onset, the GLM approach yielded activations concordant with the
ictal onset zone; otherwise ICA still gave valuable insight on the
ictal hemodynamics. Importantly, the question of whether or not
the neurovascular coupling is preserved from healthy to disease
conditions has also been investigated, by allowing variations in the
HRF (Grouiller et al., 2010). It is in principle possible to achieve
a higher degree of complexity for the epileptic activity hemody-
namics by using more flexible HRFs, or completely model-free
approaches such as ICA. However, such approaches do not address
the issue of how to model these dynamics based on the information
available in the EEG data (Lemieux, 2008).

In this paper, we address the issue of modeling the BOLD
dynamics associated with epileptic EEG activity by extracting met-
rics from the EEG spectrum expressing different models of the
transfer function between neuronal and hemodynamic signals. A
methodology is proposed for the analysis of EEG-fMRI data in
epilepsy, consisting of ICA decomposition of the EEG followed
by component selection based the reproducibility across different
acquisition runs, Morlet wavelet spectral analysis, and EEG metric
extraction. The resulting time courses are convolved with a canon-
ical HRF and used as regressors of interest in a GLM analysis of
the fMRI data. The proposed methodology is applied to the study
of a patient with epilepsy associated with a hypothalamic hamar-
toma. The different EEG-fMRI transfer functions are compared

with each other, as well as with a conventional GLM methodology
based on the identification of ictal and interictal events on the EEG
by the neurophysiologist, and also with an fMRI-ICA approach.

MATERIALS AND METHODS
PATIENT CHARACTERIZATION
We focused on the simultaneous EEG-fMRI data recorded from a
2-year-old patient with a giant hypothalamic hamartoma suffer-
ing from gelastic epilepsy, as part of the pre-surgical evaluation
under the Program for Epilepsy Surgery of the Hospital Center of
West Lisbon. This case study has been previously described (Leal
et al., 2009). This patient was studied in a run of 30 patients,
from which only five had ictal events during the scanning ses-
sions. From these five, only this one patient had an EEG trace clear
from movement related MR artifacts triggered by the beginning
of the seizures and therefore presented sufficient data quality for
subsequent EEG quantification and was selected for this study.

Seizures occurred more than 50 times per day and typically
lasted for 20–30 s, involving almost exclusively the left hemisphere.
The clinical manifestations of the seizures consisted of slowing
of motor activity, variable interruption of consciousness, eye-
lid rhythmic movements with bilateral nystagmus to the right,
and occasionally gelastic laughter. After the acquisition of the
EEG-fMRI data, the patient underwent a two-stage hamartoma
disconnection surgery, 1 year after which the seizures were reduced
to 1–3 per day.

The EEG interictal activity demonstrated a persistent slow-
wave abnormality over the left temporal-occipital area, associated
with abundant spike activity with occasional contralateral propa-
gation. Abundant spike activity also occurred over the left hemi-
sphere frontal lobe. Topological analysis of the interictal spikes
presented a spatial stationarity for the posterior spikes, whereas the
frontal ones changed significantly in configuration from an occip-
ital dipolar potential at spike onset to a dipolar frontal potential at
spike peak. The ictal EEG pattern was very monotonous and con-
sisted of early diffuse desynchronization, followed by the build-up
of spike activity over the left occipital and temporal areas and, in
the later stages of the seizure, over the frontal area. Occasionally
secondary propagation of spike activity to the right temporal areas
occurred.

SIMULTANEOUS EEG-fMRI ACQUISITION
The EEG was recorded using an MR-compatible 37-channel sys-
tem (Maglink, Neuroscan, Charlotte, NC, USA) with two ECG
channels, using a sampling rate of 1000 Hz with a bandwidth DC-
250 Hz and reference at electrode FCz. The imaging was performed
on a 1.5 T MRI scanner (GE Cvi/NVi). Six fMRI runs were col-
lected using a gradient-echo echoplanar imaging (EPI) sequence,
with TR= 2.275 s, 3.75 mm× 3.75 mm× 5.00 mm voxel size and
a total of 154 volumes (the first four were subsequently rejected in
order to discard T1 relaxation unstationarities). A T1-weighted
structural image was also acquired using a 3D spoiled gradi-
ent recovery (SPGR) sequence, with 0.94 mm× 0.94 mm in-plane
resolution and 0.6 mm slice thickness. During the scanning ses-
sion, the patient was administered light anesthesia with Sevoflu-
rane at 1% (Abbott Laboratories, Abbot Park, IL, USA), through
mask, as established by the MRI protocol for small children and
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uncooperative patients. A 5 min EEG recording was also per-
formed outside the scanner and before anesthesia, in order to allow
for cross-validation of the simultaneous EEG-fMRI recordings in
terms of the presence of MR related artifacts and the effects of
anesthesia. Periods of interictal and ictal activity were identified
on the artifact-corrected EEG by the neurophysiologist. For runs
2 and 3, two and five ictal events occurred, respectively. For the
remainder runs, only interictal spikes were detected on the EEG.
The visual inspection of the EEG inside and outside the scanner
revealed a slight increase in both beta and theta background activ-
ity under anesthesia, but there was no significant change in the
morphology of interictal spikes.

EEG ANALYSIS
Pre-processing
The EEG pre-processing was executed using the EEGLAB toolbox
(Delorme and Makeig, 2004). Firstly, the EEG traces were visu-
ally inspected for the presence and consequent rejection of bad
channels, associated with poor contacts. A 2 Hz high-pass filter
was then applied so as to remove baseline drifts from the signal.
The times of occurrence of the gradient artifacts associated with
the acquisition of each fMRI slice were automatically identified on
the EEG signals, by software developed in-house. The fMRI gra-
dient artifact correction algorithm, FMRIB’s FASTR (Niazy et al.,
2005), was then applied using the default parameters. For the pulse
artifact removal, FMRIB’s QRS complex identification algorithm
(Niazy et al., 2005) was first applied to the ECG channels. An opti-
mal basis set of three principal components was then employed for
pulse artifact removal of the data, after low-pass filtering at 45 Hz
and down-sampling to 100 Hz to improve manageability.

ICA decomposition
In an attempt to separate out the activity of interest in the EEG,
the pre-processed data were decomposed by ICA using the info-
max algorithm as implemented in EEGLAB (Delorme and Makeig,
2004). The reference channel was arbitrarily kept as the one cho-
sen by the electrophysiologist during the acquisition. Although the
referencing method for the EEG channels does not affect the final
IC time courses, because the reference channel is linearly separable
from the data, it will affect the IC’s scalp topographies. Neverthe-
less, the reference channel was kept the same (FCz) throughout
the acquisition of all six runs, so comparisons between the scalp
topographies of components obtained in different runs are still
possible.

A reproducibility analysis of the ICs was performed in order
to identify the associated topographies that were consistent across
the six acquisition runs. IC groups were built by fixing each IC
of each run and selecting, for each of the other runs, the IC that
was the most spatially correlated with it. A total of 6 runs× 25
ICs= 150 IC groups were hence generated, each composed of a
string of six ICs. An IC group was considered to be consistent if
the same associated string was generated by one IC of each run, and
therefore was repeated six times in the total set of 150 IC groups.
The topographies and time courses of the consistent IC groups
were then visually inspected for the identification and consequent
rejection of artifact related ICs, dominated by residual gradient
artifacts, bad channels, or eye blink/movement artifacts.

EEG metrics
The spectral profiles of the selected ICs were obtained by time-
frequency analysis through convolution of the respective time
courses with Morlet wavelets. The subset of metrics found to
be more relevant in Rosa et al. (2011) were applied here: mean
frequency (MF), RMSF, un-normalized mean frequency (uMF)
un-normalized mean square frequency (uRMSF), and TP.

The difference between frequency averaging measures (RMSF
or MF) was found to have a negligible effect on BOLD signal pre-
diction; hence the results emerging from the MF and uMF metrics
will be omitted, as they were not significantly different from those
of the RMSF and uRMSF metrics, respectively.

fMRI ANALYSIS
The fMRI data were analyzed using FSL1, including: (1) pre-
processing; (2) GLM; and (3) ICA.

Pre-processing consisted on: motion correction using
MCFLIRT (Jenkinson et al., 2002); slice timing correction using
(Hanning-windowed) sinc interpolation to shift each time-series
by an appropriate fraction of a TR relative to the middle of the TR
period; brain extraction using BET (Smith, 2002); temporal high-
pass filtering rejecting periods above 100 s; and spatial Gaussian
filtering with FWHM= 8 mm.

Two GLM analyses were specified in order to identify BOLD sig-
nal changes associated with: (1) the EEG metrics for each consistent
IC group (as defined in the previous section); and (2) the epileptic
activity identified by the neurophysiologist on the pre-processed
EEG traces, where boxcar signals were used to describe the periods
of ictal activity and stick functions were used to describe interictal
spikes (from now on referred to as EA). Each of these variables
of interest (EEG metrics and EA) was convolved with a canonical
HRF (Friston et al., 1998), and the time and dispersion deriva-
tives were also included to account for some degree of variability
in the HRF shape across the patient’s brain. This resulted in a
set of three regressors for each variable. The final GLM regres-
sors were obtained by re-sampling the resulting time courses to
match the middle of the acquisition time period of each fMRI
volume. Six motion parameters were also included as regressors
of no interest, in order to account for residual motion-related sig-
nal jitter not removed by the motion correction procedure. The
GLM’s were fitted to the data using the FILM algorithm (Woolrich
et al., 2001) F tests were then applied to each estimated para-
meter contrast, resulting in Z (Gaussianized F) statistic maps.
These were thresholded using a clustering procedure, whereby
each cluster is determined by a voxel Z > 2.3 and a (corrected)
cluster significance threshold p= 0.05.

An ICA of each fMRI run was also performed using Probabilis-
tic ICA as implemented in MELODIC (Multivariate Exploratory
Linear Decomposition into Independent Components) Version
3.09, part of FSL (FMRIB’s Software Library (see text footnote
1); Beckmann and Smith, 2004). Pre-processing included voxel-
wise de-meaning of the data and normalization of the voxel-wise
variance. Estimated component maps were divided by the stan-
dard deviation of the residual noise and thresholded by fitting a
mixture model to the histogram of intensity values.

1www.fmrib.ox.ac.uk/fsl
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MODEL COMPARISONS
The comparison between EEG metrics was performed through
GLM analysis followed by inferences based on F tests, for each
consistent IC group of interest and for each acquisition run. We
first considered a single GLM comprising the three EEG met-
rics (TP, RMSF, and uRMSF) with three regressors of interest
each (canonical HRF, time, and dispersion derivatives), totaling
nine regressors of interest, in one three-way comparison. Three
GLM’s contrasting pairs of EEG metrics (TP vs. RMSF, TP vs.
uRMSF, and RMSF vs. uRMSF) were also considered, totaling
six regressors of interest each, in three two-way comparisons.
F tests were computed for each set of three regressors regard-
ing each metric, as well as for the whole set of metrics. The
resulting Z statistical maps were inspected for their volume, i.e.,
the total number of voxels exhibiting significant EEG metric-
related BOLD changes. This was used as a quantitative measure
of the performance of each EEG metric in terms of BOLD pre-
diction, and the analysis was repeated for each consistent IC
group.

The comparison between consistent IC groups of interest was
performed in a similar way, for each acquisition run, applying the
selected EEG metric. Here, we considered a single GLM compris-
ing the three consistent IC groups of interest (I, II, and V, as will
be shown in the Results) with three regressors of interest each
(canonical HRF, time, and dispersion derivatives), totaling nine
regressors of interest, in one three-way comparison.

In order to assess the plausibility and consistency of the EEG
metric-derived BOLD maps, the EEG metric/IC group combina-
tion yielding the largest maps (and hence best at predicting BOLD
signal changes) was selected for subsequent comparison with the
GLM analysis using the EEG EA regressors and also with the ICA
analyses. The consistency between each two regressors was mea-
sured as their temporal correlation. The consistency between two
maps was measured as their spatial overlap, i.e., the ratio of the
volume of the map intersection with the volume of the map union.

RESULTS
In this section, the results obtained through the proposed method-
ology will be presented.

EEG ANALYSIS
An exerpt of the EEG trace obtained after pre-processing is pre-
sented in Figure 1. The data appears to be clear from MR related
artifacts and the ictal activity can be clearly identified.

The consistent IC groups, obtained as a function of the repro-
ducibility of the associated IC topographies across runs, are pre-
sented in Figure 2. The IC groups I, II, and V were considered
artifact free and were kept for further analysis, while the remainder
were rejected. The IC groups I and II exhibit clear dipolar config-
urations in the left hemisphere, compatible with the frontal and
occipital/parietal patterns of the patient’s interictal and ictal EEG.
Given its predominantly frontal topography, particular attention

FIGURE 1 | Example of the EEG trace obtained after pre-processing the data for run 3. An ictal event occurs within the time window starting at 182 s and
ending at 193 s, as indicated. The data appear to be clear of MR related artifacts.
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FIGURE 2 | Consistent IC groups I–VII: the associated IC topographies for each run are shown (color scale indicates relative weight of each EEG
channel), together with the respective IC number. The three IC groups highlighted in blue boxes were considered not artifactual and hence of interest (left is
left, right is right, up is anterior, down is posterior).

was given to IC group II in order to confirm that ocular move-
ment artifacts did not dominate the IC time course. Topogra-
phy group V exhibits a more diffuse configuration difficult to
interpret.

The spectral profiles obtained with Morlet wavelet decomposi-
tion for one IC (IC10) in run 3, as well as the EEG channel with
highest absolute weight for this component (P3), are shown in
Figure 3. Spectral changes associated with the ictal events iden-
tified by the neurophysiologist are visible in both spectrograms;
however, these changes are clearer in the spectrogram obtained
for the IC in comparison to the spectrogram of channel P3, or
any other single EEG channel (data not shown). This observation
suggests that ICA decomposition is capable of separating out

the ictal activity spread over several EEG channels into a limited
number of components.

fMRI ANALYSIS
The BOLD statistical maps obtained using each EEG metric and
consistent IC group were generally consistent with each other,
across runs and also with the patient’s seizure semiology, but
differed considerably in terms of the number of voxels showing
statistically significant EEG metric-related BOLD changes. Firstly,
the results of the comparison between the fMRI analysis using the
different EEG metrics and consistent IC groups will be presented.
A single metric and IC group will then be selected for comparison
with the EA GLM and fMRI-ICA analyses.
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FIGURE 3 | Spectrograms of the time courses of channel P3 (top) and IC 10 (group II; middle) with corresponding EEG metrics (bottom), for the EEG of
run 3. The P3 channel was the one that contributed the most to IC 10. The boxes in red/black represent the periods identified as ictal events.

EEG metric comparisons
The three-way analysis did not show meaningful activations to
allow for the comparison of the individual EEG metrics; however,
the two-way comparisons yielded a clear superiority of the RMSF
metric when compared to the TP and uRMSF metrics, for every
IC group and run, in terms of the number of voxels showing sta-
tistically significant EEG metric-related BOLD changes, as shown
in Figure 4.

The three-way comparison regarding the IC group showed a
significant superiority of IC group II, in terms of the number

of voxels exhibiting statistically significant EEG metric-related
BOLD changes, as shown in Figure 5. For five out of the six runs,
the statistical maps yielded by IC group II had larger volumes
of significant voxels than those yielded by other ICs. The EEG
RMSF metric of IC group II was found to be the best at predict-
ing BOLD changes and it will now be compared with the results
of the EA GLM analysis as well as with those of the fMRI-ICA
approach.

The BOLD statistical maps obtained using the RMSF metric
for IC groups I and V are shown in Figures 6 and 7.

Frontiers in Neurology | Epilepsy January 2013 | Volume 4 | Article 1 | 26

http://www.frontiersin.org/Epilepsy
http://www.frontiersin.org/Epilepsy/archive


Leite et al. EEG-BOLD transfer function in epilepsy

FIGURE 4 | Number of voxels exhibiting statistically significant EEG
metric-related BOLD changes, for the two-way comparisons RMSF vs.
TP (top) and RMSF vs. uRMSF (bottom), for each IC group (II,V, and I)
and each run (1–6).

EEG metric vs. EA GLM analysis
The comparison between the fMRI results obtained using the EEG
RMSF metric and the EA GLM analysis, for IC group II, are sum-
marized in Figure 8. For each run, the regressors associated with
the canonical HRF are plotted alongside with the Z (Gaussianized
F) statistic maps obtained with both methods. The temporal cor-
relation between the regressors and the spatial overlap between the
respective maps are also presented. The consistency between the
two methodologies is generally low for all runs (correlation < 0.3
and overlap < 3), with only run 3 exhibiting an overlap between
maps above 10%. Interestingly, this is also the run during which
more ictal events occurred.

In general, the maps obtained using the EEG metric approach
were consistent across runs and also with the patient’s seizure semi-
ology. In fact, clusters were found on the left occipital/parietal and
left frontal lobes, consistently with the observation on the EEG
of spike buildups in left occipital/parietal channels followed by

FIGURE 5 | Number of voxels exhibiting statistically significant
RMSF-related BOLD changes, for the three-way analysis of IC groups I,
II, and V, for each run (1–6).

the left frontal channels, after a generalized desynchronization.
In run 3, the EA approach was also capable of identifying these
brain areas, but the corresponding statistical maps were more sig-
nificant and extensive for the EEG metric approach. Furthermore,
with the EEG metric approach, clusters involving left thalamic, left
hippocampal, and left frontal ventral areas, as well as the hamar-
toma itself, were also found, which are generally consistent with
the brain network associated with seizures originating in a hypo-
thalamic hamartoma. For the remaining runs, in contrast with the
EEG metric approach, the fMRI statistical maps obtained with the
EA approach were in general not consistent across runs nor with
the expected epileptic network.

EEG metric vs. fMRI-ICA approach
The results regarding the EEG metric GLM analysis and the fMRI-
ICA decomposition of all the runs, for IC group II, are presented
in Figure 9. The fMRI-ICs presented are those that yielded the
highest spatial map overlap with the results of the correspond-
ing EEG metric analysis. Map spatial overlaps and time course
temporal correlations between EEG metric GLM and fMRI-ICA
approaches were generally higher than those found between EEG
metric GLM and EA GLM approaches (Figure 8). Moreover, in
contrast with the EA approach, with fMRI-ICA, consistency across
runs was also observed for the brain areas expected in the patient’s
epileptic network. Interestingly, runs where only interictal activity
was recorded (1, 4, 5, and 6) yielded maps consistent with runs
with ictal activity (2 and 3).

DISCUSSION
We proposed a new methodology for BOLD signal prediction in
EEG-correlated fMRI studies in epilepsy, by incorporating a model
of the EEG-BOLD transfer function. Specifically, independent
components of the EEG associated with consistent topographies
were translated into BOLD signal predictions by a set of model-
based metrics. Interestingly, we found that increases in the MF of
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FIGURE 6 |Time courses (left) and Z statistic maps (right) of the RMSF metric for IC group I.

the EEG were better than its power at predicting BOLD increases,
in support of the heuristic proposed in (Kilner et al., 2005) and
in agreement with the results obtained in a visual stimulation
experiment with healthy subjects (Rosa et al., 2010b). Moreover,
such EEG-based metrics were found to improve detection sensi-
tivity compared with conventional approaches to EEG-fMRI data
analysis in epilepsy.

The heuristic proposed by Kilner and colleagues puts forward
the MF (in an RMS sense) of the EEG spectrum as a surrogate of
the neuronal activity eliciting the BOLD signal, following a broad
physiological inspiration: the BOLD eliciting signal is assumed to
be proportional to the electric work dissipated by the ionic cur-
rents across the cell membranes; this can in turn be shown to be
proportional to the RMSF of the LFP/EEG spectrum if the covari-
ance of the membrane potentials of the cells are assumed constant
(Kilner et al., 2005). Although more detailed models of EEG-fMRI

integration have been presented in the literature (Riera et al., 2006,
2007), the heuristic benefits from its simplicity in application and
interpretability. The dependency of the BOLD signal on the EEG
spectral profile has often been experimentally reported in stud-
ies of spontaneous or evoked fluctuations of brain rhythms, and
the results are most frequently found to be in concordance with
Kilner’s heuristic predictions (Goldman et al., 2002; Gonçalves
et al., 2006; Laufs et al., 2006; de Munck et al., 2009; Michels
et al., 2010; Zumer et al., 2010; Khursheed et al., 2011). Rosa
et al. (2010b) have explicitly employed the heuristic to analyze
EEG-fMRI data collected during a visual flicker stimulation task
in healthy subjects, and showed that BOLD signal decreases were
indeed associated with changes in the EEG spectral profile, namely
its RMSF, which did not arise from power changes in one spe-
cific frequency band. In epilepsy, low-frequency slow-wave activity
increases have been shown to be associated with BOLD decreases
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FIGURE 7 |Time courses (left) and Z statistic maps (right) of the RMSF metric for IC group V.

(Archer et al., 2003) while high-frequency spike and wave dis-
charges have been shown to be associated with BOLD increases
(Krakow et al., 2001; Hamandi et al., 2004). Although these find-
ing are in agreement with the heuristic, our study is the first one
to test it explicitly on EEG-fMRI data of epileptic activity.

The EEG metric-related BOLD change maps were consistent
with the ones obtained using the epileptic activity regressors
defined by the neurophysiologist, whenever ictal activity was iden-
tified on the EEG. For the runs on which no ictal events were
detected on the EEG, the proposed methodology was able to iden-
tify the same brain network that was involved in the ictal runs. This
was achieved by regressors based on the same IC scalp topography
as those from the ictal runs, suggesting the presence of under-
lying epileptic activity in the identified epileptic network, which
only occasionally manifests itself with an ictal character. In con-
trast with the proposed EEG metric based approach, however, the

conventional analysis of the interictal runs yielded inconsistent
or no results for the same statistical significance threshold. These
findings suggest that the interictal events detected on the EEG may
not fully reflect the activity of the underlying brain network, while
the selected EEG metrics may be more powerful in depicting it.
The same network was also identified by fMRI-ICA on both ictal
and interictal runs, which further supports this idea. However, the
fully data-driven method of fMRI-ICA lacks an explanatory model
for the data, in contrast with the proposed methodology, which is
based on modeling the EEG-BOLD transfer function.

For the purpose of verifying the specific epileptic character of
the identified brain networks, their consistency across runs and
their plausibility as the epileptic brain network underlying the
patient’s seizure semiology were considered. The overlap of the
corresponding BOLD change maps across runs was very high,
both for the EEG metrics GLM and the fMRI-ICA approaches.

www.frontiersin.org January 2013 | Volume 4 | Article 1 | 29

http://www.frontiersin.org
http://www.frontiersin.org/Epilepsy/archive


Leite et al. EEG-BOLD transfer function in epilepsy

FIGURE 8 |Time courses (left) and Z statistic maps (right) of the EA (blue) and the RMSF metric for IC group II (red). The correlation between the two
regressors (bottom of graphs) and the map overlap (top right of maps) are shown.

Moreover, these maps were in good agreement with the brain net-
work known to be involved in the epileptic activity of this patient,
which includes the hamartoma, as well as left hemisphere hypo-
thalamus, hippocampus, parietal–occipital lobe, cingulate gyrus,
and dorsal–lateral frontal lobe (Leal et al., 2009). Clusters in the
left parietal–occipital and frontal lobes are consistent with the
observation on the patient’s EEG of spike buildups in left parietal–
occipital channels followed by the left frontal channels, after a
generalized desynchronization. Clusters involving left thalamus
and hippocampus, as well as the hamartoma itself, are generally
consistent with the brain network associated with seizures orig-
inating in a hypothalamic hamartoma (Leal et al., 2003). Future
work should be carried out in order to further validate the net-
works identified by our methodology. On a first approach, the

topographies of the selected ICs could be compared with those
obtained by ICA decomposition of the EEG performed outside the
MRI scanner. Ultimately, intra-cranial EEG recordings (unavail-
able for this patient) must be used in order to achieve a conclusive
validation.

An ICA decomposition of the EEG was used here with the pur-
pose of separating out the activity of interest into a univariate
timecourse, which was expected to exhibit a consistent and mean-
ingful topography. ICA is a popular technique for the removal of
muscular activity or eye movement artifacts in EEG data process-
ing (Vigario, 1997). Because of the large amplitude of interictal
epileptic activity and the fact that its sources can generally be
assumed to be spatially stationary, ICA has also proved to be use-
ful in the separation and identification of such activity (Kobayashi
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FIGURE 9 |Time courses (left) and Z statistic maps (right) of the fMRI-IC (blue) and the RMSF metric for IC group II (red). The correlation between the
two regressors (bottom of graphs) and the map overlap (top right of maps) are shown.

et al., 1999; Urrestarazu et al., 2006; Marques et al., 2009; Formag-
gio et al., 2011). However, ICA decomposition of EEG ictal events
that involve spatial propagation may be questionable in the sense
that the spatial stationarity assumption of the EEG sources is not
verified. This is in fact the case in our study, where ICA was applied
to the EEG recorded during seizures exhibiting a spatial propaga-
tion pattern associated (Leal et al., 2009). The results obtained may
reflect this issue to some extent, as no single IC isolated per se all
of the seizure dynamics. Nevertheless, ICA was useful for the sep-
aration of local approximately stationary activity, giving the ICs
higher signal-to-noise ratio for the signals of interest, by separat-
ing them from activity in neighboring brain regions and also from
residual artifacts not fully corrected by the EEG pre-processing as
observable in the spectral analyses and scalp topographies.

Other approaches for the extraction of a univariate EEG time
course, representative of the epileptic activity, have been proposed
in the literature, namely continuous Electrical Source Imaging
(Vulliemoz et al., 2010) and weighted averaging of selected ICs
(Formaggio et al., 2011). The former corresponds to the projection
of the recorded EEG data into the space of an EEG source estima-
tion, which provides a more informed way of obtaining the EEG
source signal than ICA. However, this technique is more prone
to include artifacts in the resultant time courses when compared
to ICA, as the latter automatically rejects channels contaminated
with relevant artifacts. Regarding the averaging of selected EEG
IC time courses, there is no straightforward way to compute
averaging weights. Furthermore, when averaging ICs with dis-
crepant topographies, one incurs in the risk of mixing sources
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with significantly different dynamics and loosing the meaning of
the ICA source separation.

A limitation of the proposed approach is the bias of the EEG
measures toward superficial cortical activity, which possibly pre-
cludes the identification of hemodynamic changes associated with
deep brain activity. This limitation is however common to all EEG-
fMRI “integration through prediction” approaches. Nonetheless,
the particular syndrome of epilepsy associated with hypothala-
mic hamartomas is rather well described in the literature, with
clear evidence for the hypothalamic hamartoma being the seizure
focus, and this region was in fact found in our work in five out of
six EEG-fMRI datasets. Although the proposed EEG-BOLD trans-
fer functions are not specific to epileptic activity, this specificity
is achieved in the presented methodology by selecting the EEG
topography used to extract the metric based on an ICA proce-
dure. Nevertheless, a possible limitation of the proposed transfer
functions is that they are not specific to the start of the seizure,
and hence to the epileptogenic focus. However, our aim was the
description of the full epileptic network, leaving the specific iden-
tification of the seizure focus and seizure propagation dynamics
for other, related lines of research (Murta et al., 2012).

The study presented here focused on data from a single patient
with the aim of providing a proof of concept for the poten-
tial usefulness of the proposed methodology for the identifica-
tion of epileptic networks. The choice of this patient was based
on the quality of the EEG data that could be achieved due to
the absence of movement associated with the beginning of the

seizures. Moreover, epilepsy cases associated with hypothalamic
hamartomas are relatively stereotypical in terms of the electro-
physiological patterns of seizure propagation, which makes the
interpretation of the results relatively more robust in comparison
to other types of epilepsy. In general, the clinical utility of EEG-
fMRI is yet to be established. Nevertheless, in this case study, the
results of the EEG-fMRI investigation indicate possible alterna-
tive treatment approaches involving the surgical interruption of
the seizure propagation pathways (Leal et al., 2009; Murta et al.,
2012). The proposed methodology should now be applied to an
extended group of patients, in order to generalize the proof of
concept presented here and to further validate it. Reproducibility,
specificity, and sensitivity should then also be addressed.

In conclusion, we presented a new approach for EEG-fMRI
integration in the field of epilepsy, which incorporates and tests
different models of the transfer function between EEG and BOLD
signals, hence allowing better predictions of the hemodynamic
changes associated with epileptic activity. This work therefore pro-
vides a contribution to our understanding of the link between EEG
and BOLD signals as well as for improving the yield of EEG-fMRI
studies in epilepsy.
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This review focuses on the use of resting-state functional magnetic resonance imaging
data to assess functional connectivity in the human brain and its application in intractable
epilepsy. This approach has the potential to predict outcomes for a given surgical proce-
dure based on the pre-surgical functional organization of the brain. Functional connectivity
can also identify cortical regions that are organized differently in epilepsy patients either
as a direct function of the disease or through indirect compensatory responses. Func-
tional connectivity mapping may help identify epileptogenic tissue, whether this is a single
focal location or a network of seizure-generating tissues. This review covers the basics of
connectivity analysis and discusses particular issues associated with analyzing such data.
These issues include how to define nodes, as well as differences between connectivity
analyses of individual nodes, groups of nodes, and whole-brain assessment at the voxel
level. The need for arbitrary thresholds in some connectivity analyses is discussed and a
solution to this problem is reviewed. Overall, functional connectivity analysis is becoming
an important tool for assessing functional brain organization in epilepsy.

Keywords: epilepsy, functional connectivity, connectome, fMRI, network theory, graph theory, surgical planning

INTRODUCTION
Functional connectivity in human neuroscience refers to the syn-
chrony of activity in anatomically distinct regions of the brain: if
two areas are highly correlated in their activity over time, they are
considered functionally connected. As measured by fMRI, func-
tional connectivity relies on the blood oxygenation level dependent
(BOLD) contrast mechanism (Ogawa et al., 1990, 1992), the same
as that used in traditional task-based functional MRI studies. But,
rather than examining changes in response to specific input stimuli
in a block design or event-related paradigm, connectivity mapping
can extract information from correlations in the fMRI time-course
data while the subject is at rest, in the absence of any externally
imposed task. Acquiring connectivity data in the resting state
makes connectivity analysis easily adaptable to clinical scanning
as it requires no subject participation other than to remain still in
the magnet and is thus just like any clinical imaging study. It can
also be used intraoperatively in anesthetized patients.

Task-based fMRI provides exquisite maps of functional regions
differentially involved in the execution of a specific task and is the
foundation of most functional brain imaging research. Task-based
fMRI as it is used in surgical planning in epilepsy is chiefly focused
on identifying eloquent cortex that must be spared in a surgical
intervention,while other techniques are used to identify the epilep-
togenic tissue to be resected. Task-based fMRI is not well suited
for identifying abnormal cortical or subcortical tissue throughout
the brain, because only a very small number of regions typically
show differential activation to any given task and the number of
tasks that can be run in a reasonable time with sufficient statistical

power is low. Task-based fMRI has not seen widespread clinical use
(outside of mapping for surgical planning) because of limitations
on the number of tasks, difficulties associated with presenting tasks
and/or training subjects on the task in a busy clinical MR center,
and the lack of whole-brain assessment from such studies.

Functional connectivity data is different from task-based fMRI
data in that it does not provide information as to which areas
of the brain are differentially involved in the execution of a
specific task, but instead provides a more basic measure reflect-
ing how different brain areas are functionally connected to one
another. As such, functional connectivity studies are potentially
more appropriate for whole-brain surveys of functional abnor-
malities such as the clinical challenge in epilepsy of identifying
seizure-generating tissue elements or networks. The hope is that
examining the network properties of the seizure-generating tis-
sue will lead to a better understanding of the impact of epilepsy
on the functional organization of the brain, assist in understand-
ing comorbidities, and facilitate surgical planning, which in turn
could lead to improved surgical outcome through identification
and resection of the critical node(s) in the seizure-generating net-
works(s). Connectivity data could, for example, be used to identify
brain areas to target with invasive intracranial recording elec-
trodes. Resting-state fMRI is not limited to identifying tissue to
be resected but also has the potential to predict cognitive change
following resection if the resection plan involves specific nodes
in functional networks. Research in all of these areas is ongoing
and these topics are discussed in further detail in the sections that
follow.
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Functional connectivity mapping was first described by Biswal
et al. (1995) in a seminal paper, revealing correlations between
brain regions that are synchronized in time, through spontaneous
fluctuations of activity, while the brain regions themselves may
be quite distant. Brain regions with high resting-state temporal
correlations are thought to be involved in the same network and
the more well-formed the network, the stronger the connectiv-
ity. Spontaneous fluctuations lead to changes in the BOLD signal
and most of the work to date has focused on very low-frequency
(<0.1 Hz) fluctuations.

Spontaneous fluctuations have also been studied with both sur-
face EEF and intracranial recordings (Towle et al., 1999; Andrzejak
et al., 2001, 2006; Schevon et al., 2007; Ortega et al., 2008a,b; Lehn-
ertz et al., 2011; Palmigiano et al., 2012) and local differences in
the connectivity between nodes in the seizure focus area have been
observed. For a review discussing both increases and decreases in
synchronization and their role in epilepsy please see Jiruska et al.
(2013). The EEG work, it should be noted, has primarily focused
on higher frequency fluctuations in the 1–40 Hz range although
several groups now are beginning to target much lower frequency
oscillations.

After the initial paper by Biswal et al. (1995), much effort was
focused over the next decade on verifying that the correlations
observed between brain regions indeed reflect true functional con-
nections and not simply noise correlations due to physiological
fluctuations. Without doubt, care must be taken to minimize the
effects of physiologic noise as there are clear correlations asso-
ciated simply with respiratory and cardiac signal fluctuations;
however, the current consensus is that meaningful functional con-
nections are found in continuously recorded BOLD fMRI data.
Since about 2005, the field of functional connectivity mapping
has been expanding rapidly through novel approaches to analysis,
noise removal methodology, and applications to clinical popula-
tions and basic neuroscience problems. In particular, the field is
expanding to more in-depth analyses that move beyond simply
examining correlations between two or a small handful of brain
regions to capturing network information from a large array of
nodes across the brain.

For most functional connectivity studies, BOLD fMRI data is
collected with the subject in the resting state with eyes either open
or closed, and the patient is not required to perform a task. It is
also possible to obtain connectivity data in the presence of a task
and/or after brain-state manipulations, but it should be noted that
the connectivity patterns can be slightly modified by task or brain
state. Functional connectivity patterns have been shown to be sen-
sitive to brain state as well as behavioral variables (Hampson et al.,
2006a,b; Johnson et al., 2006; Rogers et al., 2010; Bonelli et al.,
2012; Cole et al., 2012), and to vary with development (Fair et al.,
2008; Schafer et al., 2009; Myers et al., 2010) and age (Dosenbach
et al., 2010; Hampson et al., 2012).

Connectivity changes have also been reported in several clinical
populations (Quigley et al., 2001; Lowe et al., 2002; Irwin et al.,
2004; Saini et al., 2004; Haas et al., 2006; Waites et al., 2006; Hoff-
man et al., 2007; Schafer et al., 2009; Wang et al., 2009; Freilich and
Gaillard, 2010; Myers et al., 2010; Bai et al., 2011; Killory et al., 2011;
Zhang et al., 2011a,b; Bagshaw and Cavanna, 2012; de Groot et al.,
2012) and there are now more than 100 publications related to

connectivity measures in epilepsy patients. There is evidence that
correlations between time-varying BOLD signals reflect intrinsic
functional connections in that they are present when subjects are
both awake and under anesthesia (Vincent et al., 2007; Martuzzi
et al., 2010, 2011) and they are highly reproducible (Shehzad et al.,
2009). Overall, resting-state functional connectivity mapping has
significant potential to reveal the functional organization of the
brain and how it may be altered in different diseases or disorders.

This review begins with an introduction to resting-state func-
tional connectivity, including basic data collection and processing
steps, the type of information that can be obtained, and various
means of application. The particulars associated with resting-
state methodology as applied in epilepsy are considered includ-
ing strategies for voxel-based and region-of-interest (ROI) based
analyses. Issues associated with selecting a connectivity thresh-
old or avoiding such thresholds, ROIs, and the sensitivity of the
method to choice of ROI are considered in addition to the emerg-
ing field of connectivity-based parcelation for identifying minimal
functional subunits for nodal analysis. Finally we provide a num-
ber of early clinical results reflecting the potential of functional
connectivity data to contribute to the clinical management of
epilepsy.

THE BASICS OF FUNCTIONAL CONNECTIVITY DATA
COLLECTION
Resting-state data is typically collected using a gradient-echo echo
planar imaging (EPI) pulse sequence that provides whole-brain
coverage with a temporal resolution of 3 s or less at a field strength
of 3 T. Current state-of-the-art EPI involves the use of a multi-
band/multi-plexed EPI sequences (Feinberg et al., 2010) that can
provide whole-brain coverage with 2 mm3 voxel dimensions and
a repetition time (TR) of less than 1 s. Short TR in fMRI gen-
erally provides better statistical power (Constable and Spencer,
2001) and eases removal of physiological noise in connectivity
data (Lowe et al., 1998). A minimum of approximately 5 min of
such data is required to obtain connectivity maps with reason-
able signal-to-noise ratios (SNRs). Such an acquisition easily fits
within the constraints of a clinical MRI study, although in general
acquiring more data is advantageous.

Initial post-processing steps involve motion correcting the
data (to ensure all volume acquisitions are aligned through
time), and removing time-course signals that may be of no
interest including the mean global signal through time, compo-
nents associated with cerebrospinal fluid and white-matter signals,
and the variables describing subject motion (the three trans-
lation and three rotation directions). Temporal drift terms are
often regressed from the data and a low pass filter (<0.1 Hz) is
applied.

The extent to which regressing the temporal fluctuations asso-
ciated with motion is effective has been a topic of much discussion
in the literature (Weissenbacher et al., 2009) and there is evidence
for residual motion effects after correction (Power et al., 2012;
Satterthwaite et al., 2012, 2013; Van Dijk et al., 2012). The issue of
whether or not to remove the global signal mean also remains a
hot topic as this can lead to the introduction of negative correla-
tions in the data, making interpretation difficult (Fox et al., 2009;
Murphy et al., 2009; Hampson et al., 2010).
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Following the steps in the chosen preprocessing pipeline,
functional connectivity is measured as the temporal correlation
between the signal from any pair of voxels or ROIs. The following
sections discuss the pros and cons of each approach in detail.

CONNECTIVITY MEASURES
Resting-state connectivity mapping has been used to examine
functional connections between cortical regions since the first pre-
sentation of the method by Biswal et al. (1995). In the sections
that follow, we discuss how connectivity analyses can be applied
to epilepsy for examining alterations in normal brain networks as
a function of disease, or as a function of surgical intervention, as
well as how connectivity mapping can be used to detect segments
of tissue with abnormal functional connectivity with the goal of
identifying the seizure-generating foci or network.

ROI-TO-WHOLE-BRAIN
Defining a ROI and performing ROI-to-whole-brain connectiv-
ity analysis is probably the most common approach to exam-
ining connectivity in the brain; this was the original method
introduced by Biswal et al. (1995). Such an approach is moti-
vated when an investigator is interested in a particular brain
region (the seed ROI) and wishes to examine what other brain
regions the seed is connected to, as well as how such connec-
tions vary between healthy controls and a patient group, or pre-
and post-surgical intervention (see Figure 1 for an example).
In epilepsy this approach has been used to examine changes
in language networks before and after anterior temporal lobe
resection (Bonelli et al., 2012). In another study, Pereira et al.
(2010) examined connectivity between the left and right hip-
pocampi in mesial temporal sclerosis patients and found that
relative to control subjects, patients with left hippocampal sclerosis
showed a larger decrease in functional connectivity than patients
with right hippocampal sclerosis in subjects with left-hemispheric
language dominance. Morgan et al. (2012) performed a similar
study using each of the left and right hippocampi as seeds for
a seed-to-whole-brain analysis. This work revealed that the con-
nectivity between the right hippocampus and the ventral lateral
nucleus of the right thalamus could distinguish between seizure-
free patients with left temporal lobe epilepsy (TLE) and right
TLE patients and that in general, connectivity was greater in the

seizure-free patient group with left TLE compared to the healthy
controls.

In another study of the medial temporal lobe, Pittau et al.
(2012) selected four manually drawn ROIs and examined differ-
ences in connectivity between 23 patients with mesial TLE and
compared these to 23 age- and gender-matched controls in an
ROI-to-whole-brain analysis. They found that patients with right
MTLE had decreased connectivity between right amygdala and
right hippocampus and the brain areas associated with the default
mode network, some prefrontal regions, and contralateral mesial
temporal structures. The left MTLE patients showed decreased
connectivity between the left amygdala and left hippocampus
to the default mode network, contralateral hippocampus, and
bilateral limbic prefrontal regions.

Moving outside the temporal lobe, a study by Killory et al.
(2011) performed ROI-to-whole-brain analysis using eight ROIs:
three defined used a functional task-based paradigm and another
five spherical ROIs based on previous literature. They then com-
pared the resulting maps from patients with childhood absence
epilepsy to those of control subjects. An overall decrease in connec-
tivity in the attention nodes was observed in the absence patients,
who demonstrated impaired connectivity in the insula/frontal
operculum and medial frontal nodes relative to healthy control
subjects.

In a study that used simultaneous EEG/fMRI to define the ini-
tial seed regions, Negishi et al. (2011) compared connectivity to the
seed within the same hemisphere and the contralateral hemisphere
to derive a connectivity laterality index. Results showed decreased
laterality of functional connectivity in the patients that were
seizure-free after surgery compared to those that had recurrent
seizures after surgery.

ROI-TO-ROI
Another approach to connectivity analysis is to define a set of ROIs
and to measure functional connectivity between all possible pairs
of ROIs. This has been applied in numerous studies of epilepsy
and some of these are summarized below. Once multiple ROIs are
considered, network properties for these ROIs can be measured as
discussed in the section on network theoretic measures below.

In a study by Bettus et al. (2010), the investigators chose five
ROIs in each hemisphere – primarily in medial temporal lobe

FIGURE 1 | Seed-to-whole-brain connectivity mapping. A reference BOLD
signal time-course from a seed in Broca’s area (top row) is correlated with the
BOLD time-course for all gray-matter voxels in the image, revealing areas to
which the seed is functionally connected (bottom row; hot colors= strong
positive correlation, cool colors=weak or negative correlation). Such

seed-to-whole-brain connectivity maps may be examined for a single epilepsy
patient relative to a group of healthy control subjects, or for a group of
patients with a similar pathology to a group of healthy control subjects, or
correlated with behavioral measures. This approach and the results it
produces are highly dependent upon how the initial seed region is chosen.
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regions, defined using the Pick atlas tool in SPM (Maldjian et al.,
2003) – and examined connectivity between each pair of ROIs and
compared this to data from 36 control subjects. They reported
decreased connectivity in mesial TLE patients relative to con-
trol subjects, with the largest decreases on the ipsilateral side and
some increased connectivity on the contralateral side. In a similar
study, Morgan et al. (2011) defined hippocampal ROIs using both
structural and functional information and revealed a relationship
between functional connectivity and causal influence of the left
and right hippocampi that varied with the duration of disease in
a group of 19 mesial TLE patients. Looking at a broader network
of nodes in a subsequent paper, Morgan et al. (2012) compared
pre-operative fMRI connectivity data in two groups of patients
who were postoperatively sorted into seizure-free and those with
recurring seizures. They showed that the connectivity between the
right hippocampus and the ventral lateral nucleus of the right
thalamus could distinguish between seizure-free patients with left
TLE from those with right TLE with high sensitivity and speci-
ficity. The patients with recurring seizures after surgery generally
exhibited different connectivity values in this network from those
that were seizure-free.

In a study of 11 children with intractable epilepsy, Widjaja
et al. (2013) used independent components analysis to identify the
default mode network and then calculated the functional connec-
tivity between different pairs of ROIs in this network. They found
reduced connectivity in the default mode network in children with
medically refractory epilepsy.

Using ROI-to-ROI connectivity analyses with a number of pre-
defined ROIs, Bai et al. (2011) investigated functional connectivity
in a group of childhood absence epilepsy patients. In a unique
twist on the ROI approach, they also examined ROI homologs in
a cross-hemispheric study where the ROIs in this case were indi-
vidual voxels. The primary finding was increased interhemispheric
connectivity in the lateral orbitofrontal cortex in the patient group
relative to the healthy control subjects.

A pattern classification approach was applied to another ROI-
to-ROI study in epilepsy by Zhang et al. (2011a). This work exam-
ined connectivity patterns between nodes in both hemispheres and
found, much like the Negishi et al. (2011) study described in the
previous section, that asymmetry in functional connectivity could
correctly distinguish epilepsy patients from healthy controls with
82.5% specificity and 85% sensitivity.

NETWORK THEORETIC MEASURES
While ROI-to-whole-brain and ROI-to-ROI analyses can reveal
much about functional connectivity, such approaches do not take
the next step of considering nodes in the context of a functional
network and the properties of that network as a whole. Recently
there has been an explosion of interest in applying network theory
(see Achard et al., 2006; Bullmore and Sporns, 2009; Bressler and
Menon, 2010; Hagmann et al., 2010; Rubinov and Sporns, 2010) to
the analysis of functional connectivity data in order to characterize
brain connections at both the nodal and network level. This allows
for the observation of the networks associated with specific brain
functions and generally moves fMRI from identification of indi-
vidual nodes to systems involved in the execution of a task. Such
theory, when applied to resting-state fMRI data, can characterize

the topology of normal networks in the brain and, by extension,
identify abnormal patterns of connectivity.

Network theory measures have been applied in epilepsy to EEG
or intracranial EEG data (Ponten et al., 2009, 2010; van Dellen
et al., 2009; Varotto et al., 2012), MEG data (Chavez et al., 2010),
and cortical thickness correlations (Bernhardt et al., 2011), but to
our knowledge only one published study to date has specifically
examined network properties using fMRI data (Zhang et al., 2011a;
although in the voxel-based approaches section below we include
a small study by Stufflebeam that uses the graph-theory mea-
sure of degree to attempt to identify epileptogenic tissue). In this
work, a total of 36 ROIs were defined using both functional (lan-
guage and motor regions) and anatomic definitions [Brodmann’s
(1909) areas]. Five network measures – degree, strength, cluster-
ing coefficient, closeness, and betweenness centrality (Wasserman
and Faust, 1994) – were calculated for these nodes in individ-
ual subjects as well as for input into a classification strategy to
determine if such measures could distinguish medial TLE patients
from healthy control subjects. The results confirmed that net-
work measures such as these can indeed aid in classifying epilepsy
patients and that the epilepsy process is associated with changes in
network-level functional brain organization.

Taken together, independent of whether the analysis is ROI-to-
whole-brain, ROI-to-ROI, or at the level of network properties,
these studies suggest that functional connectivity has potential
for identifying disrupted circuitry as a function of disease and,
perhaps more importantly, predicting outcomes from surgical
intervention. In the sections that follow we outline some impor-
tant issues encountered in these studies related to defining ROIs
and determining thresholds for connectivity.

ROI-BASED APPROACHES AND THE PROBLEM OF ROI
DEFINITION
As described above, many connectivity analyses require the a pri-
ori definition of at least one ROI. While not often highlighted in
previous publications, the choice of the seed ROI(s) and how the
exact boundaries of that ROI are defined is critical. If an ROI con-
tains multiple time-courses then the average time-course from the
ROI may not properly represent any of the time-courses within an
ROI and the results may be completely erroneous. Further, vary-
ing the spatial definition of the seed can substantial changes in
results. This is easily highlighted by observing that in a typical
ROI-to-whole-brain connectivity map (e.g., see Figure 1), there
are often sharp transitions from positive to negative correlations;
hence, moving the seed can result in a very different map.

As is evident in the papers already discussed, numerous
approaches to defining ROIs have been used to date. Task-based
fMRI has been used to define specific functional circuits within
which connectivity can be analyzed (Frings et al., 2009; Bonelli
et al., 2012). This approach, however, suffers from the limita-
tions of task-based fMRI studies in general in that only a very
limited number of ROIs are activated by a task and thus whole-
brain assessment of connectivity is not possible using such defini-
tions. Another approach has been to use independent component
analyses (ICA) (McKeown et al., 1998) to delineate brain regions
(Luo et al., 2012; Mankinen et al., 2012) but these have typically
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identified only a very limited number of networks – often, for
example, fewer than 10.

Anatomic ROI definitions have also been used extensively
(Crespo-Facorro et al., 1999; Tzourio-Mazoyer et al., 2002; Makris
et al., 2005; Shattuck et al., 2008; Zhang et al., 2011a). Such def-
initions are ideal in structures that are well-defined anatomically
(such as the hippocampus) but are difficult in areas such as the
frontal and parietal cortices, and therefore the risk of mixing tem-
poral signals into heterogeneous ROIs in these regions is high.
Many investigators have used small spherical ROI placements
(Shehzad et al., 2009; Bai et al., 2011; Bettus et al., 2011; Killory
et al., 2011; Koyama et al., 2011); in this case the risk of mix-
ing different functional time-courses decreases with the size of
the defined sphere but is not eliminated. Many investigators have
arbitrarily parcelated the cortex into anywhere from 100 to 1000
nodes, but again, with such an approach, the node definitions may
not necessarily reflect true functional boundaries.

An emerging area of investigation involves performing whole-
brain parcelation based on the time-courses themselves (van den
Heuvel et al., 2008; Shen et al., 2010, 2013; Craddock et al., 2012).
This approach appears very promising because it can provide min-
imal functional subunits with uniform time-courses within each
unit. An example obtained using the approach of Shen et al. (2013)
is shown in Figure 2. Both Shen et al. (2013) and Craddock et al.
(2012) have shown that ROIs extracted from these parcelations
had higher functional homogeneity than anatomically defined
ROIs and thus were more relevant for fMRI connectivity analyses.
This parcelation approach using connectivity data itself appears
to solve the problem of providing whole-brain ROI definitions
for meaningful connectivity analysis. The next problem is how to
apply such an approach to a patient population or to a group of
patients. For example, if one generates a parcelation from healthy
control subjects to investigate differences in network properties
between control subjects and epilepsy patients, any results could
be interpreted as due to actual differences in network properties,

or a mismatch in the ideal functional boundaries for the parcela-
tion nodes that come from imposing a control-derived parcelation
on patients. This latter question can be addressed by directly com-
paring a parcelation derived from the patient or patient group to
the parcelation derived from the healthy control subjects.

Thus, while it has been difficult to define ROIs for functional
connectivity analysis, these new parcelation approaches appear to
have solved this problem. Another approach, however, is to avoid
the ROI problem completely by moving to voxel-level connectiv-
ity analysis, in which each voxel in the gray matter is treated as an
individual node and summary statistics on the network or con-
nectivity properties of each voxel are obtained. This approach is
described in the next section.

VOXEL-BASED CONNECTIVITY ANALYSIS
Voxel-level network analyses have been developed that can pro-
vide insight into the functional connectivity of individual tissue
elements, and a number of important studies have been published
using such approaches (Buckner et al., 2009; Martuzzi et al., 2011;
Stufflebeam et al., 2011; Scheinost et al., 2012). Voxel-level analy-
ses have the benefit of not requiring a priori definition of a ROI,
instead treating each voxel as a node in a network analysis. In this
approach a network measure such as degree can be calculated for
each voxel. (Degree is the number of connections to a voxel above
some arbitrary correlation threshold, i.e., r > t, where t = 0.25).
Such a degree map, as shown in Figure 3 below, provides then
for the first time a gray-scale contrast reflecting the functional
connectivity of each tissue element and is a potentially power-
ful approach to identifying regions that have abnormal functional
connectivity on a whole-brain level. Such degree maps can also
be used to define nodes for further ROI-to-ROI network analyses
and/or to compare individual patients with control-group data.

Such a voxel-based approach has been used to study brain
changes in Alzheimer’s disease (Buckner et al., 2009), to examine
the effects of anesthetics on the human brain (Martuzzi et al.,

FIGURE 2 | A map of reproducible (across 79 subjects) functional
subunits identified using resting-state connectivity data. These functional
subunits are ideal nodes for connectivity analyses as they have highly uniform

time-courses for each voxel within a given node by definition. This parcelation
approach (Shen et al., 2010, 2013) provides a solution to the ROI definition
problem in connectivity or network analysis of the brain.
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FIGURE 3 | Gray-scale short axis MR images (from n = 42 healthy control
subjects) with contrast reflecting the functional connectivity of each
voxel as measured by the network measure of degree (brighter colors

indicate higher degree). Such maps can be obtained for individual patients
and compared to control-group data to isolate tissue elements with abnormal
functional connectivity.

2011) and to identify epileptogenic tissue in epilepsy (Stufflebeam
et al., 2011).

There are multiple approaches to calculating degree; three sim-
ple schematics are shown in Figure 4 to illustrate the different
approaches. In these examples the voxel-based degree measure
can be calculated for connections encompassing the entire brain
(whole-brain connectivity), within the same hemisphere as the
voxel (ipsilateral connectivity) or spanning connections to the
other hemisphere (contralateral connectivity). In each case the cal-
culation is performed for each gray-matter voxel in the brain and
the intensity of each voxel then reflects its number of connections
above a predetermined correlation threshold.

An example of such an approach applied in epilepsy is shown
in Figure 5 below where the three degree measures are shown
for a single patient relative to 20 healthy control subjects. The
idea behind this approach is that seizure-generating tissue may
have altered functional connectivity either because of the epilepsy
processes themselves or because the tissue is not functioning nor-
mally. Generally, in all three measures, we observe widespread
decreases along with some increases in functional connectivity
for the patient relative to the controls. Much needs to be learned
about this approach, however, as there are subtle differences in
the ipsilateral and contralateral measures that may provide rele-
vant information for specific pathologies. In the case shown in
Figure 5 the patient had suspected right medial TLE and indeed

there is a large region of decreased functional connectivity in
the right temporal lobe relative to healthy control subjects across
all three measures. However, there are many other regions that
also show differences in functional connectivity relative to control
subjects and it is currently an open question whether these differ-
ences reflect part of the epilepsy network, brain reorganization of
functional subunits as a result of having epilepsy, or some other
neurophysiological mechanism.

Given some clinical consensus via more conventional measures
(surface and/or video EEG, other clinical data, and/or invasive
recordings) there is often some indication that the patient has
foci in a particular region or lobe. In the next example, shown
in Figure 6 below, the right hippocampus was suspected to be
part of the seizure-generating network and indeed the ipsilateral
degree measure showed decreased functional connectivity in this
region for the patient (see Figure 6A). (As an aside, we note that
the ipsilateral degree measure is perhaps the most straightforward
and easiest to interpret, whereas the whole-brain and contralateral
measures are more difficult to understand in terms of the lateral-
ization of the source of the problem.) As in the previous example,
many other regions also show alterations in connectivity and some
of these may be part of the seizure-generating network. Still, with
a priori clinical information about the suspected site of seizure
onset, it is reasonable to use the right hippocampus as a seed
ROI for an ROI-to-whole-brain analysis. The nodes connected to
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FIGURE 4 | Calculation of functional connectivity maps from
resting-state fMRI data. The network measure of degree, reflecting
functional connectivity for a single voxel, is calculated by counting the number

of connections to that voxel above a correlation threshold across the
whole-brain (bilateral; left panel), within the same hemisphere (ipsilateral;
middle panel), or to the opposite hemisphere (contralateral; right panel).

FIGURE 5 | Functional connectivity difference maps for a single epilepsy
patient versus a group of healthy control subjects (red = connectivity
increased in patient relative to controls; blue = connectivity decreased in
patient relative to controls). Some of these regions are consistent with the

seizure onset zones but clearly a large number of regions show altered
connectivity. There are subtle differences between these three measures and
more work is needed to determine the sources of these differences and the
interactions with different pathological variants.

this right hippocampal region are shown in Figure 6B with hot
colors reflecting strong connectivity to the seed region. Combin-
ing the ipsilateral connectivity map in Figure 6A with the map
showing connections to the suspected focal region in Figure 6B
using a logical AND operation, yields a much more circumscribed
map Figure 6C, which highlights regions that have both altered
functional connectivity and are part of the same network. (The
most superior slices in the brain are not shown in the bottom
two panels as there are no regions in these slices that satisfy both
constraints.)

Yet, despite their potential, voxel-based analyses of connectivity
have not seen widespread application primarily for two reasons:
(1) a lack of sensitivity, and (2) vulnerability to threshold effects.

The first problem is partially solved by higher-field magnets
of 3 T or more as well as the more recent move to ultrafast pulse
sequences such as the multi-band/multi-plexed sequence devel-
oped by Feinberg et al. (2010). In addition, sensitivity can be

increased further by examining the distribution of degree values
across the entire range of thresholds; this also addresses the second
problem, as described in the next section.

The second problem, the need for an arbitrary threshold to
calculate the degree measure for each voxel, is unique to the appli-
cation of network theory measures to fMRI data. In most network
theory applications, such as tracking the transmission of a disease
or analyzing friend links on Facebook, the decision tree is binary –
either the disease is transferred or it is not; either two people are
friends or they are not. However, in the case of fMRI connectivity,
since connectivity is measured as a correlation, values may span
a continuum from −1 to 1. Thus, an arbitrary threshold is typ-
ically invoked to decide if two regions are connected or not. In
general there is no principled way to choose this threshold and
the results can change dramatically at different thresholds, which
is a major issue for applying network or graph-theory measures
(Rubinov and Sporns, 2010) to fMRI data. To get around this
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FIGURE 6 | (A) Ipsilateral connectivity for a single patient versus a group of
healthy control subjects showing multiple regions with altered connectivity
(warm colors=higher connectivity for patient; cool colors=higher
connectivity for controls). (B) In an individual analysis of the patient data,
selecting the right hippocampus, which was the onset zone suspected
from clinical data, as a seed region reveals a network of nodes with high vs.
low connectivity to the right hippocampus. In (C) the intersection of the
maps in (A) and (B) highlights regions that have abnormal connectivity
compared to controls AND are part of the same network involving the right
hippocampus.

arbitrary threshold choice, Scheinost et al. (2012) presented a new
approach that examines the entire connectivity distribution curve
across all correlation thresholds from 0 to 1. (The absolute value
of the correlations can be taken, therefore taking negative corre-
lations into account, or the positive and negative correlations can
be treated in separate analyses). This new approach, referred to as
the intrinsic connectivity distribution, is described in the section
that follows.

FIGURE 7 | Regions of high intrinsic connectivity for left temporal lobe
epilepsy (LTE) patients (n = 10) shown at different statistical levels. At
p < 0.05 corrected (top row) the ICD map (left) highlights significant patterns
of increased connectivity in the left hippocampus whereas the degree map
(right) does not show significantly different connectivity in this region. At a
less stringent statistical threshold (bottom row), the degree map shows the
same areas at p < 0.05 uncorrected (right) as the ICD maps (left) at either
statistical threshold. This suggests that intrinsic connectivity is capable of
detecting abnormal connectivity in regions of epileptogenic tissue and that
the ICD approach yields higher sensitivity and reproducibility.

INTRINSIC CONNECTIVITY DISTRIBUTION ANALYSIS
By characterizing the entire degree curve for any of the three voxel-
based connectivity metrics described above (whole-brain, ipsilat-
eral, and contralateral), the need for a specific but arbitrary thresh-
old is eliminated, providing both a more consistent measure of
functional connectivity and a more sensitive measure of individual
differences. Summarizing the entire degree distribution curve cap-
tures information about all connections, weak to strong. This para-
metric estimation approach therefore enables the interpretation of
any differences (between an epilepsy patient and a control group,
for example) to take the form of “more stronger connections,”
“more weaker connections,”or“more even spread of connections.”
An example in a group of 10 TLE patients comparing degree at a
single threshold (r > 0.25) and ICD is shown in Figure 7.

The ICD approach improves on the earlier voxel-based degree
measure through increased sensitivity as well as through more sta-
ble interpretation of the results. To date no comprehensive study
has been published using these emerging methods, but our lab as
well as others are currently applying this to the problem of localiz-
ing seizure foci or networks in epilepsy and no doubt more studies
will appear shortly.

SUMMARY
In summary, resting-state functional connectivity as measured by
BOLD fMRI reflects intrinsic connections in the brain, provid-
ing insight into how the brain is wired and how such wiring
may be altered in disease or through surgical intervention. Like
task-based fMRI, functional connectivity measures can be altered
by task, drug or brain state, but unlike task-based fMRI, which
reflects small changes in activity superimposed upon a very high
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baseline activity level, functional connectivity measures intrinsic
functional connections that exist even in the presence of deep
anesthesia.

The measures of intrinsic connectivity as described above, par-
ticularly the voxel-based degree measure, provide for the first
time a contrast mechanism in MRI based on function rather than
anatomy. Since this approach requires no task, the data is acquired
much in the same way that anatomic MRI data is acquired and thus
these measures can be easily incorporated into clinical diagnostic
radiology departments.

Furthermore, while task-based fMRI provides functional infor-
mation on only a very limited number of cortical regions
(i.e., those few regions differentially activated by the task), the

voxel-based connectivity measures described above provide func-
tional information on the whole-brain without the need for a task.
This makes it ideal for investigating the effects of pharmacologi-
cal agents and the impact of diseases and specific pathologies on
the brain without the need for a priori knowledge or selection
of ROI. The use of functional connectivity methods in epilepsy
will undoubtedly increase as we learn more about the functional
changes that occur with epilepsy and/or as a function of surgical
intervention.
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Successful resection of cortical tissue engendering seizure activity is efficacious for the
treatment of refractory, focal epilepsy. The pre-operative localization of the seizure focus
is therefore critical to yielding positive, post-operative outcomes. In a small proportion of
focal epilepsy patients presenting with normal MRI, identification of the seizure focus is
significantly more challenging. We examined the capacity of resting state functional MRI
(rsfMRI) to identify the seizure focus in a group of four non-lesion, focal (NLF) epilepsy
individuals. We predicted that computing patterns of local functional connectivity in and
around the epileptogenic zone combined with a specific reference to the corresponding
region within the contralateral hemisphere would reliably predict the location of the seizure
focus. We first averaged voxel-wise regional homogeneity (ReHo) across regions of inter-
est (ROIs) from a standardized, probabilistic atlas for each NLF subject as well as 16 age-
and gender-matched controls.To examine contralateral effects, we computed a ratio of the
mean pair-wise correlations of all voxels within a ROI with the corresponding contralateral
region (IntraRegional Connectivity – IRC). For each subject, ROIs were ranked (from lowest
to highest) on ReHo, IRC, and the mean of the two values. At the group level, we observed
a significant decrease in the rank for ROI harboring the seizure focus for the ReHo rankings
as well as for the mean rank. At the individual level, the seizure focus ReHo rank was
within bottom 10% lowest ranked ROIs for all four NLF epilepsy patients and three out of
the four for the IRC rankings. However, when the two ranks were combined (averaging
across ReHo and IRC ranks and scalars), the seizure focus ROI was either the lowest or
second lowest ranked ROI for three out of the four epilepsy subjects. This suggests that
rsfMRI may serve as an adjunct pre-surgical tool, facilitating the identification of the seizure
focus in focal epilepsy.

Keywords: resting state fMRI, functional connectivity, non-lesion, focal epilepsy, ReHo, contralateral, pre-operative
evaluation, epilepsy surgery

INTRODUCTION
Current standards of care for the treatment of pharmacoresis-
tant, focal epilepsy includes the surgical resection of epileptogenic
cortex. Typically, the tissue targeted for resection encompasses an
extended area around the seizure focus believed to be involved
in the propagation of epileptiform discharges, generally referred
to as the epileptogenic zone (Rosenow and Lüders, 2001; Laufs,
2012). The benefits of epilepsy surgery have clearly been estab-
lished. Numerous prospective as well as longitudinal studies have
shown that higher rates of seizure freedom, improved quality of
life, and decreased long-term remission rates are associated with
successful surgical intervention (Wiebe et al., 2001; Spencer and
Huh, 2008; de Tisi et al., 2011).

The precise localization of the seizure focus and the extended
epileptogenic zone is therefore critical to yielding positive, post-
operative outcomes. Pre-surgical evaluations aimed at identifying
the seizure focus are comprised of any number of interdisci-
plinary approaches, including electrophysiological investigations
[e.g., electroencephalography and less frequently sub-dural elec-
trophysiology such as electrocorticography (ECoG) or stereoelec-
troencephalography], traditional neuropsychological evaluation,
modern structural [e.g., structural magnetic resonance imag-
ing (MRI)], metabolic [e.g., [18F]fluoro-2-deoxy-glucose positron
emission tomography (FDG-PET)], and functional imaging based
approaches (e.g., functional MRI). The typical clinical evaluation
identifies sites of pathology from structural-based MR scans and
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probes surrounding tissue for epileptogenic potential using a com-
bination of the aforementioned modalities. However, in a few
patients (i.e., approximately 25% of all qualifying surgical candi-
dates), structural imaging is normal (i.e., an absence of qualitative,
gross pathology – Duncan, 2010). In these non-lesional cases,
seizure localization presents an additional challenge and clinicians
must rely more heavily on alternative approaches (Siegel et al.,
2001; Jayakar et al., 2008).

[18F]fluoro-2-deoxy-glucose positron emission tomography,
which has traditionally been a widely used pre-surgical evalua-
tive tool, plays a particularly important role in the absence of
identified structural abnormalities (Mauguière and Ryvlin, 2004).
In cases of refractory, non-lesional epilepsy, identification of a
focal area of hypometabolism may reflect candidate seizure focus
sites. It is not uncommon however to find hypometabolic regions
outside the suspected region of interest (ROI). Thus, FDG-PET
hypometabolic regions are frequently used to guide ECoG record-
ings. During these studies it is often noted that the extent of
abnormal hypometabolic regions overlaps with the ictal onset
zones and in many cases these areas are substantially larger than
and overlap with electrodes displaying interictal epileptic dis-
charges (IEDs) (Duncan, 2010). Moreover, overlapping sites of
hypometabolism are commonly lateralized to one hemisphere. For
example, when classified by seizure-freedom rates at a 12-month
follow-up, quantitative comparisons of FDG uptake rates of the
hypometabolic regions relative to the contralateral side showed
high accuracy (∼80%) in identifying the hemisphere harboring
the epileptogenic focus (Won et al., 1999).

In recent clinical research studies, fMRI has been shown to be a
reliable complementary study to FDG-PET. For example, resected
cortex displaying pre-operative evoked BOLD signal activations
highly concordant with simultaneously EEG recorded IEDs was
associated with a greater probability of post-operative seizure free-
dom (Thornton et al., 2010). It was noted that the greater the
degree of overlap between resected tissue and the spread of IED
correlated BOLD signal across a region, the greater the probability
of long-term seizure freedom. Based on this good concordance,
the authors suggested that use of simultaneously acquired EEG-
fMRI maybe“a useful adjunct”during the pre-operative evaluation
of epileptogenic cortex, particularly in the absence of identified
pathology (Zijlmans et al., 2007; Thornton et al., 2010). Despite
the major advantages of simultaneous EEG-fMRI during pre-
operative evaluation, it is not readily available in the clinical
setting.

One promising application of BOLD fMRI that may aid seizure
focus localization and is now commonly available in the clin-
ical setting is resting state functional MRI (rsfMRI) functional
connectivity (fc) (Fox and Raichle, 2007; Biswal et al., 2010).
This method calculates whole-brain voxel-wise correlations of
infra-slow (<0.1 Hz) BOLD signal fluctuations extracted during
a resting period and depicts them as maps of brain connectivity.
rsfMRI has been used extensively to reveal patterns of fc across and
between large-scale neural networks (Damoiseaux et al., 2006).
These patterns of correlations are believed to reflect an under-
lying dynamic but intrinsic neural architecture (Honey et al.,
2009; Keller et al., 2011) driven by direct (e.g., mono-synaptic)
and/or indirect (poly-synaptic) anatomical connectivity (Biswal

et al., 2010). Many proposed applications have capitalized on the
inherent advantages of rsfMRI. For instance, rsfMRI has been to
shown to identify intact language networks in the absence of ver-
bal responses (Shimony et al., 2009). In MTLE patients, rsfMRI
has revealed disrupted fc across regions commonly involved in
the greater epilepsy network, primarily on the ipsilateral side to
the seizure focus. Interestingly, increased fc within contralateral
regions was also observed suggestive a possible cross-hemisphere
compensatory mechanism (Bettus et al., 2009). As a follow-up
investigation, the same group of investigators reported that fc
increases observed contralateral to MTL pathology lead to high
degree of specificity (>91%) for identification of the hemisphere
that houses the seizure focus (Bettus et al., 2010).

More recent developments in rsfMRI methodology have begun
to focus on patterns of connectivity specific to the local cortical
environment (Zang et al., 2004). That is, measures of local connec-
tivity mapping correlations restricted to a finite set of voxels within
a ROI. One such method that has recently gained some popular-
ity is Regional Homogeneity (ReHo), a technique that calculates
a non-parametric cross-correlation coefficient between the time-
series of a center voxel with a local cluster of voxels of pre-defined
sized (Zang et al., 2004; Zhong et al., 2011). To date, reports apply-
ing ReHo for seizure focus localization have not been published.
A few studies have contrasted ReHo in epilepsy patients relative
to control volunteers, observing for example significantly higher
thalamic ReHo in a group of generalized tonic-clonic epilepsy
patients, values that were negatively correlated with epilepsy dura-
tion (Zhong et al., 2011). The anatomical assumptions underlying
local fc are built upon patterns of cortico-cortical connectivity.
Variability across local cortical neighborhoods or “small-world
networks” are therefore assumed to reflect weighted differences
of connectivity across neighboring neuronal units (He et al., 2007;
Bullmore and Sporns, 2009) leading to the concept of scale-free
network properties inherent to the brain’s innate architecture
(Barabási and Albert, 1999).

While epileptogenic mechanisms and the underlying etiolo-
gies are widely variable in patients with focal, treatment-resistant
epilepsy, it is well established that the aberrant nature of prolonged
epileptic discharges lead to significant neuroanatomical alterations
particularly within the epileptogenic zone (Thom, 2004). Animal
models and neuropathological reports of resected human epilep-
togenic tissue have revealed that prolonged seizure activity results
in (among many other well-established biochemical and patho-
logical effects) significant neuronal injury and necrosis within the
seizure network, particularly within neocortical pyramidal cells
(Sankar et al., 1998; Chen and Wasterlain, 2006). Further, a wealth
of animal studies has concluded that persistent seizures activity can
lead to significant dendritic damage including alterations in spin
morphology and an overall down regulation of dendritic spines
(Multani et al., 1994; Wong and Guo, in press).

Our overall aim is to examine the capacity of rsfMRI local
connectivity to serve as a useful adjunct in the pre-operative eval-
uation process of seizure focus localization. Based on the extent
literature, we hypothesized that local fc in and around the seizure
focus in patients with non-lesion, focal (NLF) epilepsy would be
significantly lower relative to (1) controls, (2) the correspond-
ing region within the contralateral hemisphere, and (3) ipsilateral
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ROIs outside of the epileptogenic zone. We choose a two-step
analysis approach. First we examined fc in and around the seizure
focus. To accomplish this we calculated whole-brain ReHo and
averaged across different ROIs. We then tailored a more traditional
fc approach to specifically contrast local fc at the seizure focus to
the corresponding region within the contralateral hemisphere, an
analysis we referred to as IntraRegional Connectivity (IRC).

MATERIALS AND METHODS
SUBJECTS
Four NLF epilepsy individuals (two female, mean age: 37.75 –
Table 1) with unknown pathology (MRI negative) were scanned
prior to epilepsy surgery at the University of Washington (UW).
Scans from NLF patients were acquired on two different scanners
(three on a clinical and one on a research magnet; both Philips 3T
Achieva) using identical eight-channel SENSE head coils. Table 1
details the biographical information for each NLF subject. Note:
color-coding within Table 1 is kept consistent throughout to
denote results specific to each individual NLF subject. In order
to minimize variance within the NLF data sets due to use of differ-
ent scanners, we downloaded functional and anatomical data sets
from 16 age- and gender-matched controls (Table A1 in Appendix)
from a multisite rsfMRI repository, the 1000 connectomes data-
base1. Of the 16 controls, one quarter were specifically matched to
one NLF subject. That is, four gender-matched controls with an
age range of ±1 year were selected with specific reference to each
NLF subject.

IMAGING
MRI acquisition
At each UW scan session (NLF subjects), the scanning
protocol included a Magnetization prepared rapid gradient
echo (MPRAGE) high-resolution T1 sequence (repetition time
(TR)/echo time (TE)/flip angle: 6.5 ms/3 ms/8˚; matrix size of
256× 256 and with 170 sagittally collected slices and a slice
thickness of 1 mm) and a 6-min resting state, echo planar fMRI
sequence (rsfMRI, TR/TE/FA: 2000/21/90˚). The clinical scan
sequence consisted of 38 axially oriented slices and a matrix size
64× 64, while the research scan sequence consisted of 41 axially
oriented slices and a matrix size 80× 80. For all subjects, five
“dummy” volumes which were collected to stabilize T1 equilibra-
tion effects were excluded from analyses. Scan parameters for the
1000 connectomes control subjects varied according to acquisition
site (see Table A1 in Appendix for details).

1http://fcon_1000.projects.nitrc.org

Seizure focus identification
After scanning, each NLF epilepsy subject underwent a craniotomy
and long-term ECoG monitoring for epileptiform discharges. Ictal
onset was defined clinically from video-ECoG and identification
of concordant fast spiking, low voltage activity extending from
the sub-dural montage. Figure 1 (left column) shows the ECoG
montage for the four NLF subjects. Electrodes highlighted in red
denote the electrodes in the ictal onset zone. After ECoG monitor-
ing, subjects underwent surgical resection of epileptic tissue. The
red transparent areas (Figure 1, left column) reveal the approxi-
mate location of the resected tissue as outlined by post-op surgical
notes. The location of the seizure focus was defined as the region
containing an overlap between ECoG recorded ictal onset activity
contained within the resection zone.

ANALYSIS
Pre-processing
At the individual level, standard rsfMRI pre-processing was
conducted using FEAT (FMRI Expert Analysis Tool) Version
5.98, part of FSL (FMRIB’s Software Library)2 to remove non-
neuronal sources of variance. These included skull stripping
using BET, motion correction (realignment to the center vol-
ume) with FSL MCFLIRT, spatial smoothing using a 6 mm full-
width half-maximum (FWHM) Gaussian kernel, grand-mean
intensity normalization, and linear drift removal. Identified vol-
umes exceeding 0.5 mm of motion in any direction or plane
were eliminated (scrubbed) from further processing. Addition-
ally, ventricular CSF signal was extracted, averaged, and removed
from the overall whole-brain time-series. Each 4D data set
was entered into a regression analysis, treating the movement
parameters and CSF signal as nuisance variables. Finally, to
limit the effect of physiological noise on fc, the overall time-
series was temporally low-passed filtered removing frequencies
above 0.1 Hz.

Regions of interests
Our aim was to compare across cortical regions containing the
seizure focus and control regions at the individual level. Thus,
we parcellated each individual subject’s brain into established,
known ROIs using the MNI Harvard–Oxford (HO) probability
atlas (included as part of the FSL anatomical toolkit; Figure 2A).
Each of the 48 HO cortical ROIs (employing the 25% threshold
criteria) were selected, degraded by an additional 25% to pre-
vent overlap after warping into native space and then co-registered

2www.fmrib.ox.ac.uk/fsl

Table 1 | Epilepsy subject demographic information and scanning parameters.

Subject Age Gender Focus location TR/TE Resolution No. of

volumes

Matrix No. of

slices

Scanner

Epilepsy 1 fpei 34 F Right inferior sub-temporal 2, 21 3.5×3.5 180 64×64 38 Philips 3T (clinical)

Epilepsy 2 FPE2 36 F Right posterior sub-temporal 2, 21 3.5×3.5 180 64×64 38 Philips 3T (clinical)

Epilepsy 3 FPE3 37 M Left medial to inferior temporal 2, 21 3×3 180 80×80 41 Philips 3T (research)

Epilepsy 4 FPE4 44 M Left middle temporal 2, 21 3.5×3.5 180 64×64 38 Philips 3T (clinical)
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FIGURE 1 | Identification of the seizure focus and ROI. For each NLF
subject, the seizure focus was retrospectively defined and identified as
tissue showing onset of ictal discharges based on electrocorticographic
findings as well as contained with the resection zone (epileptogenic
zone). For consistency throughout, each NLF subject is color-coded as
seen inTable 1. First column shows a 3D surface rendering of the
subjects high-res T1 MPRAGE scan (generated with FREESURFER

automated tools for surface reconstruction) with the overlaid ECoG grid
and strip electrodes. Electrodes colored in red reveal the locales of the
ECoG recorded ictal onset activity. The overlaid red transparencies
show the approximate resected, epileptogenic zone. The second
column (black boxes) plots the HO ROI (on the MNI 152 brain) that
overlaps with the electrode falling within the seizure focus for each NLF
subject.

into native fMRI space through a three-step registration process
using FSL FLIRT. First, the native high-resolution MPRAGE was
registered into native fMRI space using a rigid-body transform.

Second, the MNI 2-mm standard brain was registered onto the
warped MRPRAGE using an affine transformation. The gener-
ated transformation matrices from standard-to-warped MPRAGE
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FIGURE 2 | Regions of interest and local connectivity. (A) Shows the 48
thresholded HO ROIs overlaid in the MNI 152 brain. Using the structural
detail inherent to the high-res T1 scans, all ROIs were warped into native
fMRI space for each subject. Whole brain, normalized ReHo, and IRC values
were then extracted and averaged from each ROI. (B) Reveals an example
ReHo map form one epilepsy subject. Note the cross-hairs pinpoint a
qualitative decrease in ReHo in and around the seizure focus within the right

hemisphere, an effect that is absent from the left. (C) Plots raw normalized
ReHo values across the 48 HO ROIs for the same NLF subject (green bars)
and the mean of the four age- and gender-matched control subjects (white
bars). Epilepsy and control values are sorted from lowest to highest for the
NLF subject. In this NLF subject, the ROI that contains the epileptogenic
zone (ROI 38) has one of the five lowest mean normalized ReHo values of all
ROIs.

were then applied to all HO ROIs. Finally, for each patient the
HO co-registered ROI that contained the electrode overlaying the
seizure focus was identified and selected for statistical analysis

(Figure 2, right-most column, cross-hairs, the ROI corresponding
to the seizure focus is listed in the bottom right hand corner of the
black box).
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FC ANALYSES
Regional homogeneity
Each 4D pre-processed data set was then passed through ReHo
analysis using the REST toolbox in MATLAB3. For each voxel, a
mean correlation coefficient was computed using Kendal’s coef-
ficient of concordance (KCC-ReHo), relative to the time-series
from the surrounding 27 voxel neighbors. Voxel-wise ReHo values
were normalized by dividing by the global mean KCC-ReHo value
(Mankinen et al., 2011). Greater ReHo values denote increased
local connectivity (Figure 2B).

IRC
To specifically contrast fc between the HO ROI contralateral to
the seizure focus, we adapted traditional fc methods by comput-
ing pair-wise correlation coefficients between all possible voxel
pairs within each HO ROI. Coefficients within an ROI were then
transformed into z-scores and a mean value of absolute z-scores
was estimated. This score was then transformed back into an aver-
age correlation coefficient yielding a mean value of intra-nodal or
local fc. Finally, a ratio of local fc in the left hemisphere ROI to
the connectivity in the right hemisphere ROI was calculated. If
the ratio is close to 1, the brain’s fc is more symmetric, vice versa.
The ratios were subsequently converted into log scale resulting in
degrees of asymmetry (i.e., the larger the value, the more left ROI
is locally connected in comparison to the right ROI).

Statistics
We are specifically interested in whether local fc within the HO
ROI containing the seizure focus is lower relative to the same ROI
in controls and non-seizure focus ROIs within each epilepsy sub-
ject (thus serving as his/her own control). Because of the small
patient population presenting with refractory, non-lesion epilepsy
combined with interest in comparing across different fc analyses,
we used a non-parametric ranking metric to evaluate differences
at the group level. For each subject, HO ROIs were ranked from
lowest to highest with respect to the normalized ReHo values ipsi-
lateral to the hemisphere housing the seizure focus (for an example
ranking see Figure 2C). IRC ROIs were sorted according to the
degree of left-to-right (or right-to-left depending on which hemi-
sphere housed the focus) asymmetry. The two rankings were then
averaged. Thus, stemming from our local connectivity analysis
approaches, we generated three sets of rankings of 48 values of
local connectivity for each subject. The rank value of each focus
ROI for each of the three rankings were entered into an indepen-
dent sample Wilcoxon Rank Sum test (two-sided, alpha level of
0.05), contrasting the rank value of that ROI for the four NLF
against the 16 matched controls.

Additionally, we reasoned the translational value of rsfMRI fc as
a pre-operative evaluation tool would come at the individual level,
contrasting local fc values across brain regions for a given surgical
candidate. To characterize the ranking values for each NLF epilepsy
subject, we took a parametric approach calculating the mean and
standard deviation of the ranks from across all controls for each of
the four seizure focus ROIs. For each of these four distributions, a

3http://www.restfmri.net/forum/index.php

corresponding z-score and p value was estimated testing the null
hypothesis that the local fc rank for a given NLF epilepsy subject
was no different than the controls rank values.

Finally, the mean ReHo values from each ROI was standardized
to a−1 to 1 distribution in order to average across the quantitative
estimate of ReHo with the left-right IRC ratios (Table 2). For each
HO ROI, a mean standardized ReHo and IRC ratios were averaged,
ranked, and compared to the mean rank values.

RESULTS
The HO ROI containing the seizure focus for each epilepsy subject
ordered in the bottom 10% for all within-subject rankings except
for the IRC ranking for NLF4 (red text in Table 2). For example,
the ReHo ranking for participant NLF1 was 2 indicating the HO
ROI housing the seizure focus had the second lowest mean, nor-
malized ReHo with respect to all ipsilateral ROIs. Further, the IRC
ranking for this subject was 3, indicating that this ROI showed
the third lowest local fc ranking when mean local fc was directly
contrasted with its contralateral counterpart. The one exception
was the IRC ranking for subject NLF4, indicated that the local fc
showed a greater degree of contralateral connectivity relative to the
seizure focus. Figure 3 plots the rank value for the three ranking
distributions revealing the raw values for each non-lesional, focal
epilepsy patient as the colored bar.

GROUP-LEVEL CONTRASTS
To determine whether local fc in the seizure focus ROI was
lower in the epilepsy group, we compared the rank value of
the seizure focus ROI between NLF and controls across our
three sets of rankings (ReHo, IRC, and mean rank). Both the
ReHo (p= 0.0156, Wilcoxon Rank Sum test) and the mean rank
(p= 0.0421, Wilcoxon Rank Sum test) were significantly lower
averaged across the NLF subjects (Figure 3, color bars) relative to
controls (Figure 3, mean value shown in gray bars) but not the
IRC fc method (p= 0.0184). It should be noted that the unusual
contralateral connectivity effect seen with in NLF4 subject likely
contributed to the null statistical effect for the IRC method at the
group level.

INDIVIDUAL-LEVEL CONTRASTS
To piece out ranking effects at the individual level, we calculated
z-score statistics from the mean and SD across ranks values from
the controls. For each seizure focus ROI across each of the three
local fc rankings, we were able to reject the null hypothesis for only
NLF1 subject (p= 0.0424) under the IRC rankings. Further, when
the ReHo and IRC rankings were averaged together, both subjects
NLF1 (p= 0.0409) and NLF3 (p= 0.0427) showed significantly
lower rankings relative to controls.

We also directly contrasted the mean rankings (i.e., the average
between ReHo and IRC) for each individual NLF subject with a
mean value of the raw local fc estimations. For each ROI, quan-
titative local fc values were an average metric calculated from the
normalized ReHo and the IRC ratio scores. The mean local fc value
paralleled the average ranking for all four NLF epilepsy subjects.
The red text items in Table 2 reveal the ranking and raw local fc
values for each of the seizure focus ROIs. As can be seen, across
both the mean rankings and combined local fc estimates, the ROI
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Table 2 | ReHo, IRC and mean ranking values for all HO ROIs.

ReHo IRC

1 2 3 4 1 2 3 4

ROI Raw

value

Normal-

ized

ROI Raw

value

Normal-

ized

ROI Raw

value

Normal-

ized

ROI Raw

value

Normal-

ized

ROI IRC ROI IRC ROI IRC ROI IRC

NLF SUBJECT

34 0.658 1.000 45 0.716 1.000 37 0.794 1.000 14 0.735 1.000 34 1.000 2 1.000 25 1.000 6 1.000

37 0.668 0.974 44 0.742 0.929 34 0.819 0.905 11 0.761 0.932 7 0.856 46 0.924 6 0.925 41 0.937

14 0.710 0.851 41 0.806 0.759 27 0.854 0.770 5 0.821 0.772 37 0.615 38 0.823 37 0.714 42 0.911

41 0.732 0.789 2 0.807 0.755 8 0.913 0.541 9 0.848 0.700 14 0.300 48 0.507 48 0.624 27 0.838

38 0.738 0.771 38 0.814 0.736 14 0.926 0.491 12 0.896 0.575 6 0.239 1 0.462 28 0.508 4 0.802

27 0.771 0.676 14 0.827 0.701 38 0.939 0.441 33 0.896 0.575 42 0.236 41 0.424 5 0.500 25 0.774

42 0.800 0.593 7 0.863 0.605 25 0.943 0.425 15 0.909 0.541 1 0.155 21 0.390 26 0.455 40 0.772

2 0.808 0.570 46 0.867 0.596 3 0.952 0.391 38 0.910 0.539 27 0.134 19 0.386 36 0.447 9 0.764

35 0.854 0.439 19 0.875 0.574 1 0.954 0.384 34 0.923 0.503 38 0.097 43 0.363 40 0.408 19 0.756

46 0.854 0.438 33 0.880 0.560 33 0.975 0.303 8 0.931 0.481 18 −0.036 8 0.335 7 0.391 22 0.731

8 0.865 0.406 37 0.886 0.544 29 0.979 0.289 37 0.950 0.432 19 −0.055 42 0.308 27 0.384 2 0.727

33 0.874 0.379 26 0.902 0.503 28 1.002 0.198 44 0.971 0.377 20 −0.075 33 0.285 19 0.355 24 0.716

43 0.887 0.343 42 0.916 0.463 26 1.006 0.183 26 0.972 0.373 29 −0.099 4 0.270 39 0.355 47 0.700

7 0.890 0.335 43 0.920 0.454 35 1.011 0.162 27 0.973 0.370 17 −0.125 34 0.179 13 0.348 32 0.695

15 0.898 0.310 15 0.924 0443 4 1.025 0.108 35 0.988 0.332 16 −0.129 7 0.135 24 0.338 28 0.678

29 0.906 0.287 48 0.932 0.422 15 1.048 0.021 45 0.994 0.315 10 −0.149 14 0.131 30 0.325 31 0.676

44 0.919 0.252 4 0.959 0.350 11 1.050 0.012 1 1.002 0.295 2 −0.155 40 0.123 23 0.323 39 0.632

45 0.923 0.239 1 0.968 0.326 6 1.064 −0.039 10 1.020 0.248 21 −0.175 44 0.095 32 0.309 29 0.624

6 0.928 0.224 17 0.989 0.269 7 1.067 −0.052 4 1.026 0.232 46 −0.193 26 0.089 46 0.298 45 0.622

5 0.938 0.195 8 0.989 0.269 5 1.070 −0.064 3 1.037 0.203 23 −0.205 10 0.066 34 0.297 20 0.615

1 0.970 0.103 6 1.004 0.227 41 1.079 −0.098 20 1.044 0.184 39 −0.222 16 0.037 10 0.281 17 0.581

10 0.979 0.079 27 1.023 0.176 32 1.086 −0.126 46 1.047 0.176 8 −0.247 31 0.000 43 0.249 3 0.574

18 0.990 0.047 3 1.029 0.163 36 1.097 −0.169 19 1.047 0.176 44 −0.288 20 −0.002 31 0.244 44 0.564

17 0.999 0.020 18 1.032 0.154 10 1.105 −0.200 6 1.050 0.167 3 −0.294 39 −0.025 17 0.238 23 0.536

28 1.005 0.002 5 1.051 0.103 30 1.106 −0.202 41 1.059 0.146 33 −0.320 30 −0.056 20 0.227 33 0.515

4 1.025 −0.055 20 1.058 0.085 18 1.109 −0.216 2 1.067 0.125 31 −0.372 47 −0.059 3 0.221 18 0.508

32 1.034 −0.079 29 1.088 0.004 31 1.117 −0.246 18 1.084 0.078 5 −0.402 12 −0.060 21 0.217 36 0.506

19 1.048 −0.122 16 1.090 −0.002 47 1.120 −0.257 42 1.085 0.076 35 −0.409 23 −0.082 29 0.185 35 0.477

11 1.060 −0.156 34 1.114 −0.065 9 1.122 −0.265 36 1.087 0.072 15 −0.413 36 −0.104 15 0.113 30 0.477

3 1.063 −0.163 11 1.120 −0.083 16 1.128 −0.287 30 1.089 0.066 48 −0.452 32 −0.115 47 0.110 46 0.415

26 1.069 −0.180 23 1.136 −0.126 17 1.143 −0.345 7 1.093 0.055 32 −0.460 3 −0.126 44 0.048 43 0.400

21 1.073 −0.192 10 1.139 −0.133 46 1.150 −0.372 48 1.099 0.038 36 −0.478 25 −0.129 1 0.045 15 0.376

20 1.083 −0.222 30 1.159 −0.186 39 1.162 −0.419 43 1.100 0.035 12 −0.519 45 −0.158 35 0.034 37 0.375

48 1.084 −0.224 21 1.182 −0.248 24 1.165 −0.431 29 1.107 0.018 24 −0.522 37 −0.158 45 0.013 26 0.367

47 1.100 −0.271 12 1.186 −0.259 42 1.170 −0.448 28 1.111 0.007 45 −0.535 11 −0.160 4 0.010 21 0.358

16 1.101 −0.273 13 1.193 −0.277 40 1.171 −0.454 17 1.116 −0.006 28 −0.544 24 −0.210 9 −0.018 34 0.345

12 1.113 −0.308 28 1.204 −0.305 2 1.172 −0.457 32 1.146 −0.085 43 −0.575 18 −0.249 41 −0.043 16 0.328

30 1.130 −0.357 40 1.220 −0.349 48 1.179 −0.484 23 1.148 −0.091 30 −0.625 17 −0.249 42 −0.058 48 0.312

9 1.132 −0.361 39 1.220 −0.351 12 1.184 −0.502 40 1.151 −0.098 22 −0.626 29 −0.269 14 −0.070 10 0.305

39 1.139 −0.382 22 1.236 −0.393 13 1.192 −0.535 13 1.154 −0.107 26 −0.655 15 −0.279 I8 −0.133 1 0.235

23 1.139 −0.383 31 1.245 −0.415 44 1.202 −0.574 16 1.183 −0.182 4 −0.669 27 −0.306 33 −0.209 12 0.233

24 1.152 −0.420 9 1.255 −0.444 19 1.208 −0.597 39 1.183 −0.183 13 −0.678 13 −0.389 38 −0.211 14 0.125

31 1.187 −0.519 35 1.260 −0.457 45 1.212 −0.612 21 1.229 −0.303 40 −0.698 22 −0.401 12 −0.218 5 0.035

13 1.196 −0.545 24 1.302 −0.570 22 1.228 −0.673 24 1.235 −0.319 47 −0.709 5 −0.536 2 −0.225 38 −0.017

36 1.219 −0.612 25 1.307 −0.582 23 1.229 −0.676 22 1.281 −0442 25 −0.717 35 −0.613 16 −0.282 11 −0.036

22 1.255 −0.715 36 1.367 −0.744 43 1.262 −0.804 31 1.336 −0.586 9 −0.864 6 −0.635 22 −0.328 7 −0.076

25 1.288 −0.811 32 1.401 −0.834 20 1.292 −0.921 47 1.388 −0.724 41 −0.879 28 −0.640 8 −0.989 13 −0.088

40 1.354 −1.000 47 1.463 −1.000 21 1.313 −1.000 25 1.493 −1.000 11 −1.000 9 −1.000 11 −1.000 8 −1.000

(Continued)
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Table 2 | Continued

Mean

1 2 3 4

ROI Mean rank Mean value ROI Mean rank Mean value ROI Mean rank Mean value ROI Mean rank Mean value

NLF SUBJECT

34 1 1.000 2 2.5 0.877 37 2 0.857 9 6 0.732

37 2.5 0.794 38 4 0.780 25 4 0.712 27 9 0.604

7 3.5 0.595 46 4.5 0.760 34 7 0.601 6 12 0.584

14 6.5 0.575 41 5 0.592 77 8.5 0.577 14 12.5 0.562

38 7 0.434 44 8.5 0.512 6 10 0.443 33 13.5 0.545

42 7 0.415 19 10 0.480 78 10 0.353 41 15.5 0.542

27 8 0.405 48 10 0.464 26 11 0.319 4 15.5 0.517

6 12 0.232 33 11 0.422 3 13 0.306 42 16 0.493

2 12.5 0.207 45 11 0.421 29 14.5 0.237 44 17.5 0.471

1 14 0.129 14 11 0.416 5 15.5 0.218 45 17.5 0.469

46 14.5 0.122 43 11.5 0.408 1 17 0.215 19 18.5 0.466

29 14.5 0.094 1 11.5 0.394 14 19.5 0.210 15 19.5 0.459

8 16.5 0.080 42 12 0.386 7 20 0.170 11 20.5 0.448

33 16.5 0.029 7 15 0.370 36 20.5 0.139 2 21 0.426

35 18.5 0.015 4 15 0.310 38 20.5 0.115 34 21.5 0.424

18 18.5 0.005 8 15.5 0.302 35 21 0.098 35 21.5 0.405

44 19 −0.018 26 17 0.296 32 22 0.092 12 22 0.404

10 19 −0.035 37 20.5 0.193 48 22.5 0.070 37 22.5 0.404

41 19.5 −0.045 15 21.5 0.082 15 22.5 0.067 5 23 0.403

15 20 −0.052 21 22.5 0.071 30 22.5 0.062 70 23 0.399

17 22 −0.052 34 24.5 0.057 4 23 0.059 3 23 0.388

19 22.5 −0.088 20 24.5 0.042 33 23.5 0.047 26 23.5 0.370

5 23.5 −0.103 3 26 0.019 10 24 0.041 28 23.5 0.342

43 25 −0.116 16 27 0.017 31 24.5 −0.001 40 25 0.337

45 25 −0.148 17 27.5 0.010 40 25 −0.023 29 25.5 0.321

20 25.5 −0.148 10 27.5 −0.033 39 25 −0.032 32 26 0.305

21 25.5 −0.184 18 28.5 −0.048 46 25.5 −0.037 46 26 0.296

16 26.5 −0.201 27 29 −0.065 74 25.5 −0.047 18 26 0.293

3 27 −0.229 23 29.5 −0.104 17 25.5 −0.053 36 26.5 0.289

32 29 −0.270 40 30.5 −0.113 41 27 −0.071 17 27 0.287

28 30.5 −0.271 11 31 −0.121 47 27 −0.073 10 27.5 0.276

23 30.5 −0.294 30 31.5 −0.121 13 27.5 −0.093 30 28 0.271

39 30.5 −0.302 29 31.5 −0.132 19 29 −0.121 1 28 0.265

48 32 −0.338 12 31.5 −0.160 9 29 −0.142 38 28.5 0.261

4 33.5 −0.362 39 32.5 −0.188 18 31 −0.174 39 28.5 0.224

12 34.5 −0.414 6 33 −0.204 23 32.5 −0.177 23 28.5 0.223

26 35 43.417 31 33.5 −0.208 8 32.5 −0.224 43 29 0.218

31 35.5 −0.446 5 34.5 −0.217 42 33 −0.253 24 29.5 0.199

24 38 −0.471 13 37 −0.333 44 34 −0.263 48 29.5 0.175

47 38 −0.490 25 37.5 −0.356 43 36 −0.277 22 30 0.144

30 38.5 −0.491 24 38.5 −0.390 16 36 −0.284 16 31 0.073

36 38.5 −0.545 77 38.5 −0.397 45 36.5 −0.300 31 31 0.045

11 39.5 −0.578 36 39 −0.424 2 37.5 −0.341 21 32 0.027

13 42.5 −0.612 28 40 −0.473 20 37.5 −0.347 7 35 −0.011

9 42.5 −0.613 32 41.5 −0.475 12 38.5 −0.360 47 38.5 −0.012

22 43 −0.671 47 42 −0.530 21 40.5 −0.392 13 39 −0.097

25 45.5 −0.764 35 44 −0.535 11 41 −0.494 25 39 −0.113

40 46 −0.849 9 45 −0.722 22 45 −0.501 8 43.5 −0.259

Raw values for local fc measurements with the corresponding rankings are shown across all ROIs. Red, bold text represents the seizure focus ROI for each subject.
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FIGURE 3 | Ranking the local fc estimates from the HO ROI around the
seizure focus. For each NLF subject and the 16 age- and gender-matched
controls, ReHo, IRC, and mean scalars were calculated from the ROI that
contained the seizure focus. For each of the 20 subjects, values from all
ROIs were sorted from lowest to highest and assigned a rank relative to the
48 ROIs within the HO atlas. The first column plots ReHo ranks, the second

column plots the IRC ranks (ranking either R > L or L > R) and the third the
average rank across the two methods for all subjects. The color bar
represents the ranking for the respective NLF subject as noted inTable 1.
The gray bar represents the mean (with standard error of the mean) of the
16 controls subjects, and each black bar represents the ranking for each
control subject.

housing the seizure focus was lower in value relative to either of
the constituent values alone for three out of the four NLF patients.
For example, in the patient NLF 2, the seizure focus ROI was the

second lowest ranked and second lowest combined computed local
fc value, but ranked third and fifth when individually sorting IRC
and ReHo values, respectively.
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DISCUSSION
Here we observe that rsfMRI local fc shows some potential as
a pre-operative mapping tool for seizure focus identification in
individuals with NLF epilepsy. We examined two different meth-
ods of fc estimation, averaged across both methods and contrasted
local fc at the site of the seizure focus between epilepsy individu-
als, normal controls, and within-subject ROIs. At a group level, we
observed a decrease in both the ReHo ranking and the combined
rank for the ROI harboring the focus compared to a matched group
of control subjects. This suggests that in our cohort of local epilep-
tics there was a marked decrease in one measure of local fc (ReHo)
in the area around the seizure focus. Thus, at the group level, the
disease process associated with epilepsy appears to alter local fc
around the focus, a hypothesis that is consistent with the patho-
logical effects typically seen in the epileptogenic zone (Thom,2004;
Wong and Guo, in press). The real clinical value however of local fc
to epilepsy surgery is an accurate estimation of the location of the
epileptogenic zone at the individual level that is concordant with
other modalities of investigation. This is particularly important
for patients with focal epilepsy with a normal MRI where macro-
scopic structural abnormalities are not available as an initial guide
for surgical planning.

A WITHIN-SUBJECT METHOD FOR IDENTIFYING THE SEIZURE FOCUS
We therefore examined whether rsfMRI could clarify the location
of the seizure focus in NLF epilepsy at an individual level. Based
on neuropathological reports and animal studies of focal epilepsy
reporting significant neuronal necrosis at the seizure focus, we
hypothesized that values of local connectivity would be abnormal
in and around the seizure focus (Thom, 2004; Wong and Guo, in
press). Based upon an extensive imaging literature showing com-
pensatory effects within the contralateral hemisphere, we extended
this hypothesis to a specific decrease in local fc within the ipsilat-
eral relative to the contralateral cortical region (Won et al., 1999;
Morgan et al., 2012). The approach providing the greatest poten-
tial for revealing our predicted effects was averaging across both
ReHo and IRC and contrasting across all ROIs from a single subject
(Table 2). This procedure revealed that for three out of the four
NLF subjects the seizure focus ROI was either the lowest (NLF3)
or second lowest (NLF1 and NLF2) ranked ROI (see Figure 3,
colored bars, Table 2; for a specific discussion on the IRC ranking
of NLF4, see below). That is, the predictive capacity of local fc
rsfMRI in focal, non-lesion epilepsy is improved when combin-
ing a method that specifically computes local fc within the region
around the seizure focus (ReHo) with an analysis that contrasts
local fc with specific reference to the corresponding contralateral
hemisphere (IRC).

We argue using the epilepsy patient as his or her own con-
trol while combining these two local fc approaches provides the
most promise as a translational tool. rsfMRI provides whole-
brain coverage. Thus, contrasting ReHo and IRC values across the
brain is readily available when employing standard clinical rsfMRI
sequences. Normative, population values for patterns of local fc
have not been established, more importantly are not readily avail-
able in the clinical setting and will likely need to be developed for
specific MR systems and imaging sequences. When combined with
established physiological and anatomical and functional imaging

abnormalities commonly associated with the seizure focus as well
as including the possible compensatory effects observed in the
contralateral hemisphere (Bettus et al., 2009), it is not surprising
that factoring in both of these methodologies would improve the
overall ability to identify the epileptogenic focus ROI.

This combined approach may also have an important role in
patients early in the course of the epileptogenic process where
potentially surgically remediable lesions can be identified at an
incipient stage before neuroanatomical changes are observed on
conventional MRI. Several studies have shown that surgical inter-
ventions early in the course of pharmacoresistant epilepsy leads to
better quality of life and outcomes (Engel et al., 2012).

THE LARGER SEIZURE NETWORK
For NLF1, the HO ROI 34 (corresponding to anterior division
of the parahippocampal gyrus) ranked lower after combining
both ReHo and the IRC methods than the seizure focus ROI
(corresponding to the anterior extent of the temporal fusiform –
Figure 1). Portions of HO ROI 34 were resected in this patient.
Thus under established criteria, the parahippocampal gyrus would
be included as part of the epileptogenic zone (c.f. Laufs, 2012). This
region shares significant inter-connectivity with cortex through-
out the medial temporal lobe, including the perirhinal and
entorhinal cortices as well as with the hippocampus proper (Bur-
well, 2000). Accordingly, the parahippocampal cortex is heavily
involved in recall and/or numerous memory-related processes
(Eichenbaum et al., 2007). Intrinsic connectivity studies using
rsfMRI have revealed significant fc with numerous neocortical
association cortices including the posterior regions of the default
mode network as well as inter-connectivity spread throughout the
lateral temporal lobe (Ranganath and Ritchey, 2012) and exten-
sively with the anterior extent of the inferior temporal lobe (Kahn
et al., 2008). Not surprisingly, the parahippocampal gyrus is a key
fixture in the larger network underlying MTL epilepsy and seizure
propagation (McIntyre and Gilby, 2008). The widespread pat-
tern of connectivity extending from the parahippocampal region
throughout the temporal lobe provides an architecture that would
easily promote temporal lobe seizure propagation. With specific
reference to NLF1, the seizure focus is located in a densely con-
nected adjacent portion of the anterior, inferior temporal lobe
(the temporal lobe fusiform). Thus, the observation that these
two regions show the lowest local fc estimates likely signifies
that rsfMRI is revealing a broader epileptogenic zone or epilepsy
network in this subject.

For NLF epilepsy subject 2, only the insular cortex ROI ranked
lower in local fc relative to the seizure focus ROI (located within the
posterior temporal fusiform). The insula is generally considered a
multimodal integration site that shares a high level of connectiv-
ity with frontal and temporal cortex. A recent seed-based rsfMRI
report noted significant fc between two different points along the
anterior-posterior insular plane and the posterior fusiform (Tay-
lor et al., 2009). Both ictal and IEDs originating from the insula
have been reported in MTL epilepsy (Isnard et al., 2000). In this
same report, it was observed that two patients with significant
insular discharges continued to have seizures after temporal lobec-
tomy. Moreover, lesions in the insula have been shown to develop
into intractable epilepsy where resection of the lesion and the
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surrounding insular tissue yields seizure freedom (Roper et al.,
1993). Based on these and similar reports, insula-based epilepsy
has become more routinely recognized over the past few decades
(Nguyen et al., 2009).

The converging notion from the current NLF epilepsy patients
one through three is that alterations in local fc may identify the
epileptogenic zone as well as the larger epilepsy network (Stuffle-
beam et al., 2011). The concept of widespread epilepsy networks
has been identified using both imaging with MRS (Pan et al., 2012),
SPECT (Sequeira et al., 2013), FDG-PET (Mauguière and Ryvlin,
2004), and electrophysiological studies (Muldoon et al., 2013).
The observation that ROIs ranking lower in local fc relative to
the seizure focus likely share rich patterns of connectivity with
the seizure focus may be exposing a more widespread patholog-
ical consequence of the seizure propagation. Building upon the
hypothesis that discrepancies in local fc are linked to local neuronal
insults such as necrosis (or apoptosis), alterations in dendritic
morphology, and potential compensation within the contralateral
hemisphere, the currently applied techniques may be revealing the
downstream consequences of seizure propagation across the entire
epilepsy network.

METHODOLOGICAL CONSIDERATIONS AND LIMITATIONS
We choose to focus specifically on refractory, non-lesion epilepsy
patients because of the added importance that functional-based
modalities (i.e., electrophysiological and imaging based proce-
dures) provide in the pre-surgical localization of the seizure focus.
The number of patients presenting with NLF epilepsy that are can-
didates for surgery are however relatively small (<10% of all new
cases per year; Duncan, 2010). Despite this limitation, the current
results should be taken with a degree of caution due the small sam-
ple size. As a follow-up, future studies will clearly need to conduct
similar analyses with larger samples. It is however likely that esti-
mates of local fc may aid in the identification of the epileptogenic
focus among patients presenting with various focal pathologies
(i.e., cortical dysplasia, AVM, brain tumors etc.). Taken together
with the lateralized fc differences throughout the medial temporal
lobe previously reported in MTLE patients (Bettus et al., 2009),
local fc would likely contribute to the pre-surgical evaluation even
in the presence of an identified insult.

The current results would benefit from a more precise delin-
eation of the epileptogenic zone. Other groups have identified the
epileptogenic zone using a variety of additional techniques (c.f.
Jayakar et al., 2008; Duncan, 2010). We were not able to use a more
sophisticated means of defining the epileptogenic zone other than
a description from post-op surgical notes of the extent and bound-
aries of the resected region. By choosing to parcellate the brain into
ROIs using a well-established, probabilistic atlas combined with a
sorting method based on mean local fc values, we ensured a com-
pletely unbiased process of identifying patterns of reduced local fc
across subjects while maintaining relatively high anatomical speci-
ficity. One unfortunate and likely consequence of this procedure
is a smearing of voxel types within an ROI. More specifically, it
is unlikely that the ROI corresponding to the seizure focus in any
given NLF patient contains voxels that would be exclusively labeled
as falling in or exclusively out of the epileptogenic zone. Thus, it
is likely that the mean values for each ROI in and around the

epileptogenic zone are underestimated, and the true local fc value
associated with the epileptogenic zone is likely lower. One possi-
ble solution for consideration in future studies is to contrast pre
and post-resection MRI scans. This would generate a voxel mask
of the resected tissue and by extension the extended epileptogenic
zone. Furthermore, the current results would indeed benefit from
the addition of simultaneously acquired EEG. Confirmation of the
IED-related activity during rsfMRI acquisition would provide the
ability to confirm the boundaries of epileptogenic zone. Provided
the presence of IEDs during functional scanning, it may be feasi-
ble to select out specific periods of “IED-free” rsfMRI activity in
order to determine whether the presence of IEDs are negatively
(or positively) impacting local lc correlation coefficients. How-
ever, we reason that rsfMRI provides a simple yet powerful means
of examining the underlying physiology of the epileptogenic zone
that is also feasible in the clinical context (c.f. Fox and Greicius,
2010). Future studies will clearly need to address the influence of
IEDs (as well as ictal discharges) on the rsfMRI BOLD activity
and local fc estimates. Furthermore, future studies will need to
address the concordance between rsfMRI local fc estimates in NLF
epilepsy and more commonly used modalities such as FDG-PET.
However, if local fc does indeed reflect the accurate location of the
seizure focus and thereby supplementing more traditional evalu-
ative modalities, then the need of simultaneous EEG would prove
relatively superfluous.

NLF 4 did this not show the same pattern of IRC within the
seizure focus ROI (located within the left middle temporal gyrus)
as was observed in other NLF 3 patients. Although the raw and
ranked ReHo values were within the bottom 10% of all sorted
ROIs, the pattern of local fc under the IRC calculation was signif-
icantly greater within the ipsilateral hemisphere. The mechanism
contributing to this effect is unknown. Results from the WADA
test as well as clinical fMRI scans using various language screens
concluded that language dominance was localized to the left hemi-
sphere for this patient. It is possible that patterns of contralateral
connectivity are not as vast within the middle, temporal lobe rel-
ative to noted contralateral compensatory effects stemming from
medial temporal lobe (Bettus et al., 2009). It is also conceivable that
scalars of local fc are greater in regions throughout the language
dominant hemisphere relative to the contralateral counterparts. It
is clear that future work will need to address baseline differences
in local fc across both the temporal lobe as well as whole brain.

CONCLUSION
We present evidence suggesting local fc measurements from
rsfMRI provide an accurate estimate of the location of the epilepto-
genic region in non-lesional, focal epilepsy. Structurally identified
lesions are typically considered a reliable guide as a first pass for
identifying the approximate location of the epileptogenic zone.
Because the long-term benefits of epilepsy surgery are significant
for individuals presenting with normal anatomical MRIs (Jayakar
et al., 2008), accurate localization is a critical pre-operative func-
tion. In the absence of identified lesions, clinicians must rely
more heavily on alterative methods to identify epileptogenic zones.
Here we provide the first evidence that rsfMRI local fc may pro-
vide additional, confirmatory information about the location of
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the epileptogenic focus in refractory NLF epilepsy. These tech-
niques may also identify the broader epilepsy network and identify
comorbid neuropsychological dysfunction due to involvement of
other functional networks.
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APPENDIX

Table A1 | Control subject demographic information and scanning parameters.

1000C ID Age Gender Control ID TR Resolution No. of volumes Matrix No. of slices

NY sub33062 34 F ctrl002 2 3×3 180 64×64 39

Leipzig sub41241 34 F ctrl003 2.3 3×3 180 64×64 34

Palo Alto sub29935 33 F ctrl004 2 3.4×3.4 180 64×64 29

NY sub53710 34 F ctrl015 2 3×3 180 64×64 39

NY sub30860 35 F ctrl016 2 3×3 180 64×64 39

NY sub47633 37 F ctrl017 2 3×3 180 64×64 39

Oxford subl3304 35 F ctrl018 2 3×3 175 64×64 34

Oxford sub85152 35 F ctrl019 2 3×3 175 64×64 34

Bangor sub04097 36 M ctrl006 2 3×3 180 80×80 34

Bangor sub81464 38 M ctrl007 2 3×3 180 80×80 34

ICBM sub51677 37 M ctrl008 2 4×4 128 64×64 23

Leipzig sub36858 38 M ctrl009 2.3 3×3 180 64×64 34

ICBM sub94169 43 M ctrlOll 2 4×4 128 64×64 23

Milwaukie sub91468 44 M ctrl014 2 3.75×3.75 175 64×64 20

Milwaukie sub49975 45 M ctrl020 2 3.75×3.75 175 64×64 20

UW sub56994 43 M ctrl021 2 3×3 180 80×80 41
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Interictal FDG-PET (iPET) is a core tool for localizing the epileptogenic focus, potentially
before structural MRI, that does not require rare and transient epileptiform discharges
or seizures on EEG. The visual interpretation of iPET is challenging and requires years of
epilepsy-specific expertise. We have developed an automated computer-aided diagnos-
tic (CAD) tool that has the potential to work both independent of and synergistically with
expert analysis. Our tool operates on distributed metabolic changes across the whole brain
measured by iPET to both diagnose and lateralize temporal lobe epilepsy (TLE). When diag-
nosing left TLE (LTLE) or right TLE (RTLE) vs. non-epileptic seizures (NES), our accuracy
in reproducing the results of the gold standard long term video-EEG monitoring was 82%
[95% confidence interval (CI) 69–90%] or 88% (95% CI 76–94%), respectively. The clas-
sifier that both diagnosed and lateralized the disease had overall accuracy of 76% (95%
CI 66–84%), where 89% (95% CI 77–96%) of patients correctly identified with epilepsy
were correctly lateralized. When identifying LTLE, our CAD tool utilized metabolic changes
across the entire brain. By contrast, only temporal regions and the right frontal lobe cortex,
were needed to identify RTLE accurately, a finding consistent with clinical observations
and indicative of a potential pathophysiological difference between RTLE and LTLE. The
goal of CADs is to complement – not replace – expert analysis. In our dataset, the accu-
racy of manual analysis (MA) of iPET (∼80%) was similar to CAD. The square correlation
between our CAD tool and MA, however, was only 30%, indicating that our CAD tool does
not recreate MA.The addition of clinical information to our CAD, however, did not substan-
tively change performance. These results suggest that automated analysis might provide
clinically valuable information to focus treatment more effectively.

Keywords: epilepsy, computer-aided diagnosis, mutual information, temporal lobe epilepsy, PET,
fluoro-deoxyglucose positron emission tomography, machine learning

INTRODUCTION
It is difficult to differentiate between patients with epilepsy (PWE),
and those with non-epileptic seizures (NES). The clinical assess-
ment relies on the report of untrained witnesses or the patients
themselves. A non-epileptic seizure is defined as the presence of
external seizure symptoms and/or signs with no electrographic
features characteristic of epilepsy. Long term video-EEG moni-
toring has shown consistently that roughly one third of patients
diagnosed with “medication refractory epilepsy” in fact suffer
from NES (Kerr et al., 2012a). Because they don’t suffer from
epilepsy, these patients with NES (PWN) are not treated effec-
tively with anti-epileptic drugs (AEDs). For the majority of PWN,
the NES are a manifestation of dissociative or conversion disor-
der in which their psychological challenges manifest themselves

physically (Marchetti et al., 2008, 2009). A minority of PWN suf-
fers from organic, non-epileptic maladies that can be confused
with seizure disorder including, but not limited to, dementia
and cardiovascular disease (Sahaya et al., 2011). The gold stan-
dard for the differential diagnosis and pre-surgical assessment
of epilepsy includes 72 or more hours of video-EEG monitor-
ing (Cragar et al., 2002; LaFrance and Devinsky, 2004). How-
ever, 10% of patients admitted for this extensive assessment
leave with inconclusive results (Kerr et al., 2012a). Considering
that one sixth of PWE are diagnosed with medication refractory
epilepsy (Privitera, 2011), improved methods to effectively iden-
tify PWN who do not benefit from AEDs effectively could reduce
the morbidity and both the financial and social cost of treating
epilepsy.
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Improved diagnostic tools could also help PWE. The diffi-
culty in ruling out non-epileptic etiologies speaks to the chal-
lenge of adequately localizing and characterizing each patient’s
epileptic etiology. The major seizure type discriminations are
focal vs. generalized; partial vs. complex; and lesional vs. non-
lesional. Each of these key discriminations leads patients down a
different treatment path. When medication or other novel treat-
ments like the vagus nerve stimulator fails, as they frequently
do, the patient is left to consider resective neurosurgery. Recent
reports have shown that surgery is most effective earlier in the
course of disease (Engel et al., 2012). Improved diagnostic tools
could more quickly and effectively diagnose patients with epileptic
seizures and therefore speed the progression toward considering
the surgical option.

Ultimately, our goal is to establish a general, automated
computer-aided diagnostic (CAD) tool that effectively combines
clinical information, manual interpretation of EEG and imaging
technologies as well as automated analysis of interictal FDG-PET
(iPET), EEG, structural MRI (sMRI), and diffusion MRI for all
subtypes of epilepsy and NES. To accomplish this, we first must
develop effective CAD tools that harness the information from
each modality for a limited set of epileptic localizations. We have
begun already to address automated analysis of interictal EEG for
a wide variety of epilepsy subtypes (Kerr et al., 2012a). Others have
described effective CAD tools that diagnose and lateralize tempo-
ral lobe epilepsy (TLE) using structural and diffusion MRI (Farid
et al., 2012; Focke et al., 2012; Keihaninejad et al., 2012).

The clinical, metabolic, and structural differences between left
and right TLE can be subtle. Some theories suggest that TLE is
inherently a bilateral disease. Potentially, due to the strong func-
tional link between the hippocampi, the only clinical difference
is that in the aura of patient with left TLE (LTLE) more fre-
quently includes language dysfunction. Over time, patients with
LTLE more commonly develop verbal memory deficits, compared
to non-verbal memory deficits in right TLE (RTLE) (Delaney et al.,
1980; Kim et al., 2003). This functional connection between the
hippocampi may also lead some patients to be falsely-lateralized
using scalp EEG because a small seizure onset zone (SOZ) in one
hippocampus can induce larger scale ictal activity in the con-
tralateral hippocampus with very little time delay. This can lead
neurologists to falsely conclude that the SOZ is either bilateral or in
the contralateral hippocampus. Structural and metabolic imaging
can reduce these errors by demonstrating that that one temporal
lobe is asymmetrically affected, as shown by the previous CAD
tools that lateralize TLE (Farid et al., 2012; Focke et al., 2012;
Keihaninejad et al., 2012). Studies of the functional connectivity
of these epileptic networks, however, conclude that there are very
few, if any, differences between the two lateralizations (Zhang et al.,
2010; Liao et al., 2011; Morgan et al., 2011, 2012; Pittau et al., 2012;
McCormick et al., 2013). Recently, Pereira et al. (2010) suggested
that more patterns of functional connectivity change in LTLE
compared to RTLE. However, after patients suffer from intractable
seizures for 10 or more years, the intrahemispheric hippocampal
connectivity linearly increases with the duration of disease, sug-
gesting that over time lateralized disease may become bilateral
disease (Morgan et al., 2011). Because patients with bilateral hip-
pocampal disease are no longer considered surgical candidates,

improved methods to distinguish left and right TLE early in the
course of disease are needed.

In this manuscript, we discuss the development of an auto-
mated CAD tool to diagnose, and lateralize, TLE using iPET. We
also begin to address how to combine our CAD tool with manual
analysis (MA) and incorporate it into clinical practice. Using a
mutual information-based feature selection technique, we exam-
ine how our methods reveal more about the distributed metabolic
abnormalities that are associated with the different anatomical
locations of the epileptogenic focus.

The realistic goal of CAD tools is to complement, not to replace,
expert analysis. Therefore, we focus on how clinical information
and expert analysis can work synergistically with our automated
technology. To summarize the major clinical differences, patients
with NES are characteristically females in the third decade of
life with psychiatric co-morbidities (Sahaya et al., 2011). PWE,
however, also have significant psychiatric co-morbidities includ-
ing potentially reduced financial and social independence due
to the suspension of their driver’s and, frequently, professional
license. Particularly in adult onset epilepsy, age-associated changes
in metabolism may confound the interpretation of iPET, possibly
leading to an increased diagnostic uncertainty. It is well estab-
lished that 80–90% of medication refractory epilepsy is “PET
positive” (Salamon et al., 2008; Lee and Salamon, 2009).The rate
of PET positivity in NES has not been studied extensively, there-
fore the true positive predictive value of iPET is unclear. Although
these differences in clinical presentation are salient, their quanti-
tative effect on diagnostic probabilities is unknown. Therefore,
we also examined how simple clinical information and expert
manual interpretation can be incorporated into our quantitative
CAD tool.

The standard of care for the pre-surgical assessment for epilepsy
is the manual correlation of iPET with numerous other diagnostic
modalities. The goal of this assessment is to simultaneously ver-
ify the diagnosis of epilepsy, characterize the seizure etiology, and
identify the location and extent of the SOZ. Expert radiologists
and neurologists can detect metabolic asymmetries indicative of
the epileptogenic focus or foci (Person et al., 2010). The exact
threshold at which asymmetric metabolism is attributed to patho-
logic change or seen as a variant of normal is part of the art of
neuroradiology (Benbadis et al., 2000; Reuber et al., 2002). Once
non-epileptic etiologies have been ruled out, our previous work
demonstrated that the quantitative degree of metabolic asymme-
try is correlated with surgical outcome (Lin et al., 2007). Surgical
outcome is improved further when iPET is co-registered to sMRI
because of improved characterization of the focus or foci (Chan-
dra et al., 2006; Rastogi et al., 2008; Salamon et al., 2008; Lee and
Salamon, 2009). These hypometabolic lesions are thought to be
secondary to increased inhibitory neuron cell death, gliosis, and
abnormal functional connectivity resulting in altered functional
metabolism.

The size of the hypometabolic lesion tends to be larger than
the SOZ, potentially due to functional changes in nearby tis-
sue secondary to the presence of the epileptogenic lesion (Juhasz
et al., 1999; Matheja et al., 2001; Henry and Roman, 2011). Such
reports are major limitations to the wide implementation of iPET
in epilepsy practices (Barrington et al., 1998; So et al., 2000; Henry
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et al., 2011). In addition to the limitation of counting statistics,
that forces the quantitative radioactivity intensity of iPET to be
less certain in hypometabolic lesions (Kerr and Lau, 2012), the
biological hypothesis is that the epileptogenic abnormality induces
metabolic abnormality at the SOZ and also at closely associated
and/or functionally connected regions (Henry et al., 1990, 1993;
Sperling et al., 1990; Sadzot et al., 1992; Arnold et al., 1996; Dlugos
et al., 1999; Bouilleret et al., 2002; Rusu et al., 2005; Nelissen et al.,
2006; Takaya et al., 2006; Lee et al., 2009). The epileptogenic lesion
commonly is larger and more diffuse in left TLE then right TLE,
potentially because of the high degree of functional connectivity
between specialized foci within the left temporal lobe associated
with language and other functions (Toga and Thompson, 2003;
Barrick et al., 2005; Iturria-Medina et al., 2011; Haneef et al., 2012;
Kucyi et al., 2012). These insights parallel the trend in dementia
that atrophy starts focally then spreads more quickly to function-
ally connected regions (Zhou et al., 2012). The limited sensitivity
of iPET unaligned with sMRI to characterize extratemporal lesions
may be partly due to the insufficient description of the local func-
tional network of each extratemporal focus and thereby reduced
detection of a characteristic pattern of metabolic abnormalities
associated with each focus. In general, an improved insight into
the clinical interpretation and value of metabolic abnormalities
outside the SOZ is needed. To overcome this limitation, the iPET
analysis is used in combination with other diagnostic modalities
determine which tissue to resect.

Clinical description, EEG, MRI, and FDG-PET each describe
separate facets of the pathophysiological etiology, and therefore all
play critical roles in the diagnosis of epilepsy, and in the identifica-
tion of the epileptogenic lesion (Struck et al., 2011). Each modality,
however, also has unique limitations. EEG provides an in-depth
description of the seizures and interictal epileptiform spikes. These
seizures and spikes, however, are rare events: only 50% of PWE
exhibit diagnostic interictal epileptiform spikes and/or seizure
activity during the first outpatient scalp EEG (Gilbert et al., 2003).
The characteristic signs of epilepsy in structural and diffusion MRI
may not be measurable until years after the first seizure because
these methods require the detection of atrophic tissue and/or sub-
tle regions of cortical dysplasia (Swartz et al., 1992; Reutens et al.,
1996; Van Paesschen et al., 1998; Liu et al., 2002; Jung da and
Lee, 2010; Bernasconi et al., 2011; Schmidt and Pohlmann-Eden,
2011; Dabbs et al., 2012). MA uses the contralateral structure to
assess if atrophy is present but a certain degree of asymmetry is
expected (Farid et al., 2012; Keihaninejad et al., 2012). It takes
years of specific experience in manually analyzing sMRIs from
PWE to reliably discriminate between normal variation and patho-
logic changes. Once these relatively large-scale changes in neural
structure have occurred, it is less likely that both invasive and non-
invasive treatments will be effective (Engel et al., 2012). iPET can
localize the epileptogenic lesion without observing rare events and,
potentially, before changes are detectible on sMRI and/or diffusion
tensor imaging (DTI) (Theodore et al., 1990; Ryvlin et al., 1991;
Swartz et al., 1992; Gaillard et al., 1995; Debets et al., 1997; Knowl-
ton et al., 1997, 2008; Blum et al., 1998; Drzezga et al., 1999;
Benedek et al., 2004; Carne et al., 2004; Chandra et al., 2006;
Yun et al., 2006; Uijl et al., 2007; Willmann et al., 2007; Rastogi
et al., 2008; Salamon et al., 2008; Duncan, 2009; Lee and Salamon,

2009; Lerner et al., 2009; Liew et al., 2009; Brodbeck et al., 2010;
Chinchure et al., 2010; Kim et al., 2011; Jupp et al., 2012). As
discussed above, the presence of metabolic abnormalities outside
the SOZ, however, complicates the effective localization of the
SOZ using iPET alone (Henry and Roman, 2011). An improved
description of these induced changes outside the SOZ may help
spare healthy tissue from resective surgery. Given the recent report
that resective neurosurgery for epilepsy is more effective earlier in
disease (Engel et al., 2012); we believe that iPET may play a crit-
ical role in characterizing patients with unremarkable MRIs and
inconclusive EEGs earlier in the course of their disease.

MATERIALS AND METHODS
PATIENT DATA
All of the 105 patients that were included in our analysis were
admitted to the University of California, Los Angeles (UCLA)
Seizure Disorder Center’s video-EEG Epilepsy Monitoring Unit
(EMU) between 2005 and 2012. Each patient’s diagnosis was
based on a consensus panel review of their clinical history, phys-
ical and neurological exam, neuropsychiatric testing, video-EEG,
iPET, ictal FDG-PET, structural and diffusion MRI, and/or CT
scan. This multimodal assessment is the gold standard for epilepsy
diagnosis and localization of the epileptic focus (Cragar et al.,
2002; LaFrance and Devinsky, 2004). The patients included in
this analysis were chosen because they had an FDG-PET after
2005; had no history of penetrative neurotrauma, including neuro-
surgery; were determined by consensus diagnosis to have a single,
lateralized epileptogenic focus; and had no suspicion of mixed
non-epileptic and epileptic seizure disorder. These patients were
diagnosed either with LTLE (n= 39), right TLE (RTLE, n= 34), or
NES (NES, n= 32). PET images were determined to be interictal
by clinical findings and concurrent scalp EEG.

PET and MRI images were acquired according to the best clin-
ical practices at the time of acquisition. PET/CT studies were
acquired using a Siemens Biograph scanner. After a minimum fast-
ing period of 6 h, patients received 0.14 mCi/kg of 18F-FDG-PET
intravenously. During the ensuing 40 min uptake period with con-
comitant EEG monitoring to confirm interictal status, the patients
waited in a quiet, dimply lit room with their eyes open. PET images
were reconstructed with an iterative algorithm (OSEM: 2 itera-
tions, 8 subsets). CT images were reconstructed using filtered back
projection at 3.4 mm axial intervals to match the slice separation
of the PET data, and used for attenuation correction.

COMPUTER-AIDED DIAGNOSTIC TOOL TRAINING AND VALIDATION
Automated analysis of the iPET records was performed in four
stages. (1) First, each image was screened for gross structural
and/or metabolic abnormalities by S.T.N., N.M.R., and/or W.T.K.
(n= 21). These excluded subjects are not reflected in the sam-
ple sizes quoted above. (2) NeuroQ (Syntermed, GA, USA) was
used to segment each brain into 47 regions of interest (ROIs) and
then to calculate the average radioactivity in each ROI, normal-
ized by the whole brain radioactivity (Table A1 in Appendix). (3)
The minimum redundancy-maximum relevancy (mRMR) tool-
box for MATLAB (Mathworks, MA, USA) was used to generate a
ranked list of the ROI metabolisms (features) within each train-
ing set that were maximally relevant to the diagnosis of epilepsy
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and minimally redundant with all higher ranked features (Ding
and Peng, 2005; Peng et al., 2005). The representative number of
features to exclude and quantal levels was selected based on our
method discussed previously (Kerr et al., 2012a,b) (see below).
In each of the training sets, the feature ranking was determined
exclusive of the test patient’s data. We expect the ranked lists to
be similar, but not identical, across training sets. For purely illus-
trative purposes, the full dataset was used to create the ranked
list in Table 2. (4) Weka was used to implement leave-one-out
cross-validation of a cost-sensitive Multilayer Perceptron (MLP)
that was weighted to maximize balanced accuracy, defined by the
mean of sensitivity and specificity (Bouckaert et al., 2010). Using
this method, we examined our ability to diagnose either LTLE or
RTLE from NES and assessed our ability to diagnose and lateralize
disease simultaneously. For the remainder of this manuscript, the
latter tool that discriminates LTLE vs. RTLE vs. NES is called the
trinary classifier. Similarly, the binary CAD tools are referred to by
the laterality of epilepsy that is being detected. The comparison
to NES is not stated, but can be assumed. We then compared our
CAD tool’s performance to the results of MA alone.

MACHINE LEARNING ALGORITHMIC DETAILS
The MLP was implemented with default parameters in Weka
(Bouckaert et al., 2010). All input features were normalized to
values between negative and positive 1. No limit was set on the
number of hidden layers or nodes within each hidden layer. These
parameters were optimized within each training set indepen-
dently. The learning rate and momentum were set to 0.3 and 0.2,
respectively. Five hundred epochs were used for training. Dur-
ing training, models with more than 20 consecutive errors were
excluded. The trinary classifier was created by decomposing the
three class problem into three 1-against-1 problems that were com-
bined using majority voting. No three-way ties occurred during
training or testing.

Balanced accuracy was optimized using a cost-sensitive classi-
fier in which a false positive was given a cost of n+ and a false
negative was given the cost of n−, where n+ and n− represent the
number of PWE and NES in the full sample, respectively. In the
trinary classifier, the cost was set as the sum of the number of
patients in the other two diagnostic classes.

Cyclical leave-one-out cross-validation (CL1OCV) was used to
assess the performance of the MLP. In this paradigm, all but one
patient was used to determine the features selected and train the
algorithm. The single remaining patient is tested using the model
built upon the other patients. The identity of the test patient is
permuted until all patients have been the test case once and only
once.

To determine the number and identity of the input features, the
mRMR algorithm requires the number of input features, F, and
quantal levels,Q,be set a priori. For the calculation of mutual infor-
mation, the features were smoothed into Q quantal bins akin to the
bins in a histogram. Classification, however, utilizes unsmoothed
features. The choice of input features smoothed into quantal levels
was determined to be most representative of the performance of
the algorithm across a wide variety of choices of F and Q (Kerr
et al., 2012b). This choice was made by selecting a point within a
region of F-Q parameter space that performed significantly better

than the naïve classifier with 95% confidence based on random
field theory correction where the spatial smoothness is estimated
directly from the data (for more details, see Worsley et al., 1992,
2004; Chauvin et al., 2005). The naïve classifier classifies all test
exemplars as the most common class in the training set. Under the
CL1OCV procedure, these input features were determined inde-
pendently for each of the training samples. The illustrated rank
order of features was calculated based on the full dataset, and
does not necessarily match the rank list of any individual training
sample.

When clinical information was incorporated into the algo-
rithm, the same methodology was applied as above, except that all
exemplars with missing data were excluded from analysis. In these
additional analyses, we did not re-sample the parameter space of F
and Q. We simply used the selections determined in the previous
analysis.

MANUAL ANALYSIS OF PET AND MRI RECORDS
Manual analyses of the iPET and sMRI records were performed
based on the review of clinical records primarily written by Dr.
Noriko Salamon. Dr. Salamon has 10 years of experience in the
pre-surgical assessment of epilepsy using FDG-PET and MRI. All
manual interpretation was conducted for the clinical assessment
of each patient when it occurred, prior to the CAD tool devel-
opment. Therefore, Dr. Salamon was blinded to the automated
results. Due to the unclear relationship between structural and
metabolic abnormalities, asymmetries, and epilepsy, all abnor-
mal results were interpreted to be consistent with some form
of epilepsy. Not all patients had sMRI (n= 6) and iPET (n= 1)
reports available; therefore all analysis regarding MA of neu-
roimaging includes only patients with available records. These
patients had raw iPET data available; they therefore were included
in the automated analysis.

COMBINATION OF CLINICAL INFORMATION WITH COMPUTER-AIDED
DIAGNOSTIC INFORMATION
To examine the combined power of clinical knowledge, MA and
our automated analysis, we assessed the linear correlation of
detecting epilepsy with CAD compared to MA, and also incorpo-
rated clinical information and MA into our algorithm in two ways.
First, the clinical literature suggests that patients with NES are
more likely to be female, begin having seizures in the third decade
of life, have a decreased duration of disease and have increased
seizure frequency (Table 1). Although we did not see a significant
difference seizure frequency within our dataset, we included this
features to better match clinical practice. These clinical features
were then added to the input and leave-one-out cross-validation
was repeated. Secondly, to explore how our computational meth-
ods can complement clinical wisdom, we included the results of
MA of the iPET and sMRI as two additional input features and
re-evaluated CAD performance. For the trinary classifier only, we
split each of the features describing the iPET and sMRI MA to
indicate if a left and/or right sided abnormality was reported.

To assess the applicability of our CAD as a separate modal-
ity that could be considered as part of the clinical assessment
of epilepsy, we calculated the likelihood ratios (LRs) of each of
the combinations of our CAD with MA of iPET and/or sMRI.
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Table 1 | Clinical information and results of manual analysis.

NES LTLE RTLE

Age Mean±SD 37±14* 38±12 36±13¶

Min-Max (Median) 16–76 (38) 18–54 (40) 17–67 (35)

N 32 39 34

Sex % Female±SE 78.1±7.3*§ 53.8±8.0 35.3±8.2

Duration of disease Mean±SD 12±12*§ 22±15 20±13

Min-Max (Median) 10 d–40 y (7) 6 m–53 y (21) 2 y–48 y (19)

Seizure frequency Mean±SD 3.2/d±5.9/d 1.2/d±2.4/d 1.5/w±1.7/w

Min-Max (Median) 0.3/m–25/d (3/d) 0.2/m–11/d (1/w) 0.1/m–1/d (0.8/w)

iPET manual % Positive±SE 18.8±6.9*§ 76.9±6.7 87.9±5.7

N 32 39 33

sMRI Manual % Positive±SE 34.5±8.8*§ 73.7±7.1 87.5±5.8

N 29 38 32

This table reflects the clinical information known before the application of the CAD tool. All times are listed in years (y) unless otherwise specified by days (d), weeks

(w), or months (m). Manual analysis of all patients’ iPET and sMRI were not done, therefore we list the number with available manual results. *, §, or ¶ indicate that

the value for NES vs. LTLE, NES vs. RTLE, or LTLE vs. RTLE, respectively, is statistically significant from both the LTLE and RTLE groups with at least 95% confidence

using a two-sample z-test of proportions or Mann–Whitney U test, where appropriate. No other differences are statistically significant (p > 0.10).

This was done only for the binary classifiers, because LRs have a
clear formulation only for binary outcomes. The likelihood ratio
is defined by the likelihood that a patient with a certain combina-
tion of diagnostic outcomes has epilepsy, divided by the likelihood
that the same patient has NES. Intuitively, a likelihood ratio of two
implies that the patient is twice as likely to have epilepsy. The
95% confidence intervals of chance were calculated using exact
binomial intervals by considering the likelihood ratio of a clas-
sifier that diagnosed patients according to their prior likelihood
alone, conditioned upon the assumption that the same total num-
ber of patients would have the diagnostic outcome of interest.
For example, 39 of 71 patients had LTLE when we discriminated
between LTLE and NES, therefore the median LR is 1.2. Thirty-five
patients from the NES vs. LTLE group had negative MA of their
iPET. Therefore, we use a binomial distribution with 35 trials and
success probability of 39 over 71 to yield a 95% confidence interval
of 0.94–3.38.

RESULTS
All of our results are compared to the gold standard diagnosis
from the consensus panel. The clinical trial statistics of each of our
automated diagnostic tool matched, but were not redundant with,
expert MA of both interictal PET and sMRI (Figure 1). All inter-
vals reflect 95% confidence intervals and all p-values correspond
to differences from anaïve classifier. The binary CAD tool for
RTLE had accuracy of 88% (69–90%), compared to the accuracy
of MA of iPET [85% (72–92%)] and sMRI [77% (63–85)]. The
binary tool for LTLE had accuracy of 83% (69–90%), compared to
the accuracy of MA of iPET [79% (66–88%)] and sMRI [70%
(56–81%)]. The pattern in sensitivities, specificities, and odds
ratios all parallel this trend where our automated diagnostic tools
are non-statistically superior to MA oriPET, which, in turn, are
non-statistically superior to MA of sMRI (Figure 1). The accuracy

of our trinary CAD tool that simultaneously diagnoses epilepsy
and lateralize disease was 76% (66–84%), where 89% (77–96%)
of patients correctly identified with epilepsy were also lateralized
correctly. MA to diagnose and lateralize was 78% (69–86%) accu-
rate with 89% (76–94%) correctly lateralized using iPET and 71%
(61–80%) accurate with 91% (78–97%) correctly lateralized using
sMRI.

The rank order of the features used in our algorithm parallel
the clinical observation that the epileptogenic networks in LTLE
are broader than in RTLE. The LTLE vs. NES classifier achieved its
performance by utilizing trends across almost the entire brain by
including 42 of the 47 features in the final algorithm. In contrast,
the RTLE vs. NES classifier only needed to measure the metabo-
lism in six regions – bilateral temporal cortex and two associated
regions of cortex – to achieve its impressive performance (Table 2).
As expected, the trinary classifier utilized an intermediate number
of features to achieve its accuracy (30 of 47). The rank list of
these features matches the biological intuition based on knowl-
edge about the potential connectivity of epileptogenic networks
(Table 2).

We then considered how this CAD information could be used
in combination with clinical information or expert analysis. The
squared correlation of our CAD tool with manually interpreted
iPET was 0.25 (0.09–0.43), 0.32 (0.17–0.54), and 0.34 (0.17–0.46)
for the LTLE, RTLE, and trinary classifiers, respectively (Figure 2).
The squared correlation of our tool with manually interpreted
sMRI was 0.07 (0.001–0.23),0.21 (0.06–0.40),and 0.11 (0.02–0.25)
for the LTLE, RTLE, and trinary classifiers respectively. For com-
parison, the squared correlation between manually interpreted
iPET and sMRI was 0.17 (0.06–0.33).

When the same automated analysis was used to combine
clinical findings with our iPET data, performance did not change
significantly. After the four clinical factors were added to the input
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FIGURE 1 | CAD tool performance matches manual analysis. These
figures indicate the accuracy, sensitivity and specificity of the LTLE (A),
RTLE (B) and trinary (C) classifiers. The performance of our CAD tools
matched that of MA and was superior to just using gender alone. The error
bars indicate standard error of the mean performance for each measure.
The translucent region indicates the performance of a naïve classifier.
*Indicates significant differences from the naïve classifier with a confidence
level of 95% or more.

of our tools, the accuracy changed to 79% (66–88%), 68% (56–
79%), and 64% (54–73%) for the LTLE, RTLE, and trinary classi-
fiers, respectively (Figure 3). These accuracies do not substantively

Table 2 | Ranked list of contributing metabolic ROIs.

Region of interest

mRMR rank LTLE vs. NES RTLE vs. NES Trinary

1 Midbrain R ila temporal C R ila temporal C

2 L ilp temporal C R ilp temporal C L ilp temporal C

3 R ilp temporal C L sensorimotor C L sensorimotor C

4 L associative visual C L sl temporal C R ilp temproal C

5 L Broca’s Region R thalamus R sl temporal C

6 L s frontal C R i frontal C R pm temporal C

This table illustrates the top six informative and non-redundant regions of inter-

est (ROIs) that may contribute to each of the CAD tools, as determined by the

minimum redundancy-maximum relevancy criteria (mRMR; Ding and Peng, 2005;

Peng et al., 2005). The illustrated rank order of features was calculated based on

the full dataset and does not necessarily match the rank list of any individual

training sample. The leading L or R indicates left or right. The lowercase letters

indicate inferior (i), lateral (l), median (m), anterior (a), and posterior (p).The lagging

C signifies cortex. Note that the LTLE vs. NES and trinary classifiers include infor-

mation from 42 and 30 ROIs, respectively. To better understand the benefit of

mRMR, this list can be directly compared to the list of ROIs ranked by t-statistics

inTable A1 in Appendix.

FIGURE 2 | CAD tool is not redundant with manual analysis. The
squared correlation of our CAD tools’ results with those of MA of the iPET
or sMRI from the same patients was below 50%. This indicates that while
some information is shared, the majority of information provided by our
CAD tools is not captured by MA. The correlation between MA of iPET and
sMRI is similar in magnitude to the correlation of CAD with MA, therefore
the CAD could potentially be seen as similar to another informative
modality. *Indicates significant differences of the correlation from zero with
a confidence level of 95% or more.

change when only sex and duration of disease were considered
(results not shown). Adding the results of MA of both iPET and
sMRI to our iPET data changed the accuracy to 82% (73–91%),
77% (67–88%), and 68% (59–77%) for the LTLE, RTLE, and
trinary classifiers, respectively. When all information sources con-
tribute to the algorithm, the accuracy changed to 77% (68–88%),
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FIGURE 3 | Automated combination of clinical information with
automated analysis of iPET images. The automated combination of
clinical information and/or MA with our analysis produced no significant
change in performance for the LTLE (A), RTLE (B) or trinary (C) classifiers,
relative to the CAD operating on automated values alone. The unshaded
bars indicate the performance of similarly constructed CAD tools using
clinical information or the results of MA alone. The shaded bars indicate the
modified performance when information from NeuroQ is added. The
horizontal line indicates the mean accuracy of each CAD tool without
clinical information. The translucent region indicates the performance of a
naïve classifier.

74% (64–85%), and 76% (68–84%) for the LTLE, RTLE, and
trinary classifiers, respectively.

We combined the results of MA were combined with our CAD
tool manually using LRs. After doing so, the likelihood was gen-
erally only significant if all considered modalities agreed. Viewed
alone, MA and our CAD increased the likelihood of the predicted
outcome between two and ninefold (p < 0.02; Figure 4A). When
two analysis streams were combined, if both analyses agreed, the
likelihood of the predicted outcome was increased between 8- and
27-fold (p < 3× 10−4; Figures 4B,C). If all three analyses agreed,
the likelihood of the predicted outcome increased more than 15-
fold (p < 1.3× 10−5; Figure 4D). However, in most cases, if there
was any disagreement, the likelihood did not change significantly,
most probably due to the small numbers of patients with each
potential outcome. There are two key exceptions: (1) Given iPET
results indicating NES over RTLE using either MA or CAD, the
sMRI could be largely ignored (p < 1.1× 10−2). (2) If both MA
and CAD of iPET agreed that a patient suffered from LTLE and not
NES, the sMRI results could be similarly ignored (p < 3.3× 10−2).

DISCUSSION
These results demonstrate how our CAD tool has the potential
for clinically application, while also confirming and elucidating
the distributed effects of epilepsy on the entire brain. Our CAD
tool’s diagnostic performance of TLE matches, but is not redun-
dant with, expert MA of iPET and sMRI. When considered in
the context of recent reports of CAD tools for epilepsy based on
sMRI and interictal EEG data (Farid et al., 2012; Focke et al., 2012;
Keihaninejad et al., 2012; Kerr et al., 2012a), CAD is proving espe-
cially applicable to epilepsy. Further, if more work confirms the
hypothesis that metabolic changes in iPET are observable before
the structural changes in sMRI, our iPET tool may have better
clinical utility than these existing sMRI tools. In contrast to MA,
this and other CAD tools can be quickly and efficiently applied
by minimally trained technicians, emergency physicians, and pri-
mary care providers as preliminary analysis of the iPET images
(van Ginneken et al., 2011; Kerr et al., 2012c). The performance
of MA can vary with experience and fatigue of the observer; auto-
mated tools are consistent over time. Upon further validation,
these CAD results could also be incorporated into the consensus
diagnoses with minimal cost if iPET already has been obtained.

CLINICAL IMPACT
Our CAD tools could provide valuable clinical information that
may help readily identify which treatments may be effective
in patients who present with uncharacterized, and/or medica-
tion refractory seizures (Kerr et al., 2012a,c). In particular, 15
of our 105 patients were admitted twice to achieve definitive
characterization or localization of their seizures. The appropriate
binary classifier correctly diagnosed 12 (80%) of these challeng-
ing patients. This valuable information might reduce the need
for multiple video-EEG admissions. Additionally, 28% (9/32)
of our PWN were admitted for improved characterization of
their previously-diagnosed “epilepsy,” and 16% (12/73) of our
PWE were admitted for the differential diagnosis of epilepsy,
indicating that non-epileptic etiologies were not ruled out suf-
ficiently. The trinary CAD effectively diagnosed 67% (14) of these
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FIGURE 4 | Combination of clinical information and CAD results using
likelihoods. Columns in this log plot above 1 indicate that the seizures are
more likely to be epileptic whereas the columns below 1 indicate a
non-epileptic etiology is more probable. (A) Illustrates the positive and
negative likelihood ratio of each analysis method considered individually.
(B,C) Illustrate the likelihood ratios of each possible outcome when two
analysis methods are combined. (D) Indicates the likelihood ratios of each
possible outcome when all analysis methods are combined. If all
modalities agree, the likelihood non-significantly increases with the

addition of each modality. However, if there is disagreement, the likelihood
ratio is generally not significantly different from chance. The translucent
bars indicate the 95% confidence interval for chance with the relevant sign
(see Materials and Methods).The numbers above the translucent bars
indicate the total number of patients with each outcome. The bars that go
off the scale of the graph diverge toward zero or infinity because no
patients of a certain class had that outcome. *Indicates significant
differences of the correlation from zero with a confidence level of 95%
or more.

particularly challenging patients. Despite this impressive perfor-
mance, the ultimate goal of CAD, however, is to complement – not
replace – MA.

COMBINATION OF AUTOMATED ANALYSIS WITH CLINICAL WISDOM
Our finding that performance almost uniformly, but non-
statistically, decreased when the automated algorithm incorpo-
rated clinical information indicates that automated analysis can-
not and should not replace manual interpretation across infor-
mation modalities. We suspect that this performance decreased
due to ineffective modeling of the contribution of the clinical
information and over-fitting. The statistical distribution of the
clinical factors was very different from the metabolic data therefore
the same model likely cannot effectively utilize both modalities.
The efficient incorporation of multimodality information into
machine learning is an active area of theoretical research, and well-
validated methods are not yet available. Now that CAD tools using
interictal EEG (Kerr et al., 2012a), sMRI (Farid et al., 2012; Focke
et al., 2012; Keihaninejad et al., 2012), and iPET have been pub-
lished, we believe it will be extremely exciting to assess how these
various tools can be combined.

We expected that the best performance would be achieved when
our CAD is used synergistically with MA. The low correlations

between the CAD results and MA suggest that our CAD tool pro-
vides information that is not evident on visual inspection. These
results emphasize that PET is not redundant with MRI (Henry
et al., 1999). Physicians could learn to view CAD as analogous
to another imaging modality that provides valuable, but not per-
fectly diagnostic, clinical insight. This synergistic application of
computer-aided diagnosis after manual interpretation already has
proven beneficial in the detection of lung nodules by the FDA
and is an active area of translational research (Kerr et al., 2012c;
Wang et al., 2012). The key differences between MA and auto-
mated analysis are the ability to entirely ignore certain pieces of
data, and to rule that the results are inconclusive.

The results summarized above, and the LRs for each analy-
sis stream individually, show that both MA and CAD are useful
clinically. If the analysis streams agree, the diagnostic certainty
increases substantially, but at a cost: as more analyses are added,
more patients have inconclusive results because the analyses did
not agree, and the LRs are not significant. Even though our sample
size is large compared to other studies of this type, there were not
enough patients in our dataset with each diagnostic outcome to
explain the clinical implication of disagreeing analyses adequately.
This matter of inconclusive results is a common challenge faced in
clinical practice. Physicians struggle regularly with those types of
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decisions. When MA of iPET and sMRI are combined, they need to
agree to yield meaningful results. However, our analysis shows that
in some specific cases, if both the MA and CAD of iPET agree, the
sMRI is not needed. This parallels the finding we suggested above:
iPET may be more clinically useful than sMRI to diagnose and lat-
eralized epilepsy. The hypometabolic abnormality may be present
earlier in disease (Theodore et al., 1990; Ryvlin et al., 1991; Swartz
et al., 1992; Gaillard et al., 1995; Debets et al., 1997; Knowlton
et al., 1997, 2008; Blum et al., 1998; Drzezga et al., 1999; Benedek
et al., 2004; Carne et al., 2004; Chandra et al., 2006; Yun et al., 2006;
Uijl et al., 2007; Willmann et al., 2007; Rastogi et al., 2008; Sala-
mon et al., 2008; Duncan, 2009; Lee and Salamon, 2009; Lerner
et al., 2009; Liew et al., 2009; Brodbeck et al., 2010; Chinchure et al.,
2010; Kim et al., 2011; Jupp et al., 2012), and it may provide slightly
more accurate disease characterization, as seen in our dataset. In
settings where the PET scanner is not combined with the MRI
scanner, and/or when the cost of imaging is a limiting factor (both
common occurrences) the effective application of our CAD could
result in substantial cost savings.

PATHOPHYSIOLOGICAL INSIGHTS
Our methods also reveal a potential difference in the pathophysi-
ology of left vs. right TLE. This may help explain why CAD tools
perform slightly better when diagnosing RTLE compared to LTLE
(Farid et al., 2012; Focke et al., 2012; Keihaninejad et al., 2012).
The finding that mostly bilateral temporal ROIs, the right inferior
frontal cortex and left sensorimotor cortex provide non-redundant
diagnostic information for RTLE is consistent with the clinical wis-
dom that the epileptogenic network in RTLE is more focal than
in LTLE. The inclusion of temporal regions echoes the conven-
tional wisdom that focal hypometabolism and asymmetry reflect
characteristic changes due to epilepsy. This suggests that conserva-
tive resection of the temporal lobe may result in increased rates of
seizure freedom in RTLE compared to LTLE due to complete resec-
tion of the SOZ. Further, seizures that originate in the left temporal
lobe may secondarily generalize more frequently in LTLE. These
differences have not yet been studied clinically.

The trends in the extratemporal regions included in the algo-
rithms suggest that the primary lesion may induce metabolic
changes in functionally or anatomically associated regions. This
is substantiated further by the finding that almost all regions of
the brain provide informative diagnostic information in LTLE.
This in turn mirrors the increased stereotypic connectivity of the
left temporal lobe. Even though the interconnectivity of the right
hemisphere is higher than the left hemisphere, the left hemisphere
has strong connections between specialized foci (Barrick et al.,
2005; Iturria-Medina et al., 2011; Kucyi et al., 2012). We hypoth-
esize that the SOZ may induce abnormal metabolism along these
strong, stereotyped connections. This change cannot be attrib-
uted to language specifically in our dataset because we did not
identify the laterality of language dominance in our patients.
Compared to our t -statistics ranking, it may seem surprising that
the metabolism of the midbrain was ranked first by mRMR for
LTLE vs. NES. This rank may indicate a non-linear change in
the metabolism within the dorsal midbrain anticonvulsant zone,
which has itself been identified in animals to be part of the net-
work that modulates seizure threshold (Shehab et al., 1995). The

exact relationship between epilepsy and midbrain metabolism is
unclear, however. The lack of distributed atrophy in LTLE mea-
sured by sMRI suggests that these changes are not associated with
distributed cell death or gliosis (Farid et al., 2012; Focke et al.,
2012; Keihaninejad et al., 2012). Instead, we hypothesize that this
change instead reflects abnormal metabolism in these regions due
to altered neural connectivity and/or activity secondary to the
epileptogenic lesion. This is supported by the finding that LTLE
was associated with more changes in functional connectivity than
RTLE was (Pereira et al., 2010). This also explains why we observed
metabolic changes in the right thalamus in RTLE: recent work
demonstrates that the connectivity of the right thalamus with the
right hippocampus is reduced in RTLE (Morgan et al., 2012). The
presence of such distributed changes also supports the finding
that the size of the hypometabolic lesion visualized on PET may
be larger than the SOZ (Juhasz et al., 1999; Matheja et al., 2001;
Henry and Roman, 2011). It is particularly interesting to note that
the extent of these distributed changes is underappreciated by t -
statistics comparing LTLE to NES. This indicates that there is a
complex, likely non-linear, relationship between the metabolism
of the hypometabolic lesion and its associated tissue that may be
better understood by mutual information.

The inclusion of the contralateral hippocampus in both of the
binary classifiers lends itself to multiple interpretations that are
all supported by biologically sound hypotheses. Firstly, a salient
feature of LTLE or RLTE could be asymmetric metabolism, as
suggested clinically; therefore the metabolism of the contralat-
eral hippocampus was compared to the observed metabolism in
the ipsilateral hippocampus. Alternatively, the interhemispheric
connectivity between the hippocampi is high, therefore under
our hypothesis that changes in metabolism spread according to
functional connections, the metabolism in the contralateral hip-
pocampus may be one of the first induced changes due to the
epileptic lesion. Lastly, if LTLE and RTLE are inherently bilateral
diseases then the metabolism in the contralateral hippocampus
may also be abnormal. This also provides an explanation for why
LTLE and RTLE were not perfectly distinguished.

In addition to diagnosing epilepsy, our algorithm lateralized
disease efficiently with an accuracy of approximately 90% when
epilepsy was diagnosed correctly. This impressive accuracy could
be clinically useful for pre-surgical planning, when used in combi-
nation with other clinical and radiological information. Although
our current sample size is too small to fully assess this potential
fully, our results suggest that similar methodology could be applied
to a larger dataset with more diverse and specific SOZ localiza-
tions to yield an objective and reliable tool to assist in pre-surgical
SOZ localization. Our data suggest that this approach likely would
identify and utilize distributed metabolic findings associated with
each epileptic lesion to improve performance. Instead of blur-
ring the boundary of the SOZ by detecting affected tissue outside
the SOZ, the improved understanding of these distributed effects
may lead to more refined characterization of this clinically vital
SOZ. However, the spatial resolutions of our outcome classes were
insufficient to assess the utility of this method directly to identify
candidate lesions for resective surgery.

While our lateralization accuracy is exciting, there is also
a potential clinical interpretation of the patients who were
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falsely-lateralized. Functional connectivity between the temporal
lobes is particularly strong. In a minority of patients, this con-
nectivity allows epileptogenic activity to spread quickly from the
SOZ to the contralateral temporal lobe on EEG, resulting in the
appearance of either bilateral or falsely-lateralized disease. Simi-
larly to the distributed networks discussed above, this high degree
of functional connectivity also may induce metabolic abnormali-
ties in the contralateral temporal lobe that may be indistinguish-
able from the primary lesion. This hypothesis can be tested by
comparing these falsely-lateralized patients to patients with bilat-
eral TLE. This comparison requires a detailed methodological
treatment of non-mutually exclusive classes in machine learning
and therefore lies outside the scope of the current manuscript.

To characterize these and other pathophysiological insights,
most studies utilize healthy neurologically normal controls. In
contrast, we prefer the use of PWN as our control group. In brief,
when constructing a control group, one aims to match the patients
in the pathologic group in all aspects other than the pathology.
In contrast to neurologically normal controls when compared to
PWE, PWN’s have been exposed similarly to AEDs and other med-
ications, have increased prevalence of TBI and some other risk
factors for epilepsy (Sahaya et al., 2011), have regular and frequent
meetings with health care providers, and have much more strict
inclusion criteria. Lastly, and perhaps most importantly,physicians
do not consider whether all of their patients have epilepsy; they
assess only the patients with seizures. Therefore, in our opinion,
the use of PWN as the control group is a benefit in of our study
because it maximizes the clinical relevance of our results while
simultaneously improving its statistical selectivity.

LIMITATIONS AND FUTURE DIRECTIONS
Because our retrospective dataset was collected as part of clinical
care, our approach has a few important limitations. The accuracy
of MA reported in our patients is worse than the rates quoted
in previous literature (Rastogi et al., 2008; Salamon et al., 2008;
Lee and Salamon, 2009). Given UCLA’s status as a tertiary refer-
ral center, the decrease in manual accuracy likely indicates that
our patients had more heterogeneous etiologies and/or were more
complex and difficult to diagnose than other centers. This sug-
gests that our CAD tool may perform better on other datasets. Our
iPETs and MRIs were collected on varying cameras with varying
resolutions. This demonstrates the flexibility of our automated
analysis using NeuroQ. The efficacy of the MA of older and lim-
ited resolution data may not be comparable to that of more current
and higher resolution data. After establishing the efficacy of our
method, we plan to both validate our tool prospectively on data
from other centers, and to incorporate multi-center data into our
algorithm to further improve its performance. Additionally, we
only discuss the combination of CAD results with independently
derived MA. Future work will examine the efficacy of CAD tools
informed by MA and vice versa.

Critics of our approach might claim that the significant gender
and age difference of the patients with NES compared to PWE
may lead to our CAD simply detecting the age and/or gender of
the patients. While we do not expect this to be the case for RTLE,
the utilization of language areas by the LTLE classifier might reflect
differences in gender, and not epileptogenic pathology. However,

the performance of our CAD was significantly higher than when
clinical information was used directly, therefore the algorithm
utilized more information than just clinical data to achieve its
strong performance. These significant differences in clinical fac-
tors largely mirror the observed differences in clinic; therefore our
dataset better matches the population for which our CAD tool
would be applied. The only notable exception is the significant age
difference between LTLE and RTLE, which was unexpected. Due
to the naturalistic nature of our data collection scheme, we did not
correct for this difference. However, we note similarly to the NES
group, the use of age alone was significantly worse than our tool
and the addition of age to the iPET data to control for its effect
did not significantly change performance.

Another key caveat to the direct clinical application of our tool
to clinical practice is the fact that epilepsy is an extremely het-
erogeneous disease. The generalization of our method to bilateral
TLE, extratemporal foci and multifocal epilepsy will be critical
before it can be incorporated into clinical practice. In particular,
even though NES mimic all types of seizures, it is uncommon
for TLE to be mistaken for NES. Instead, it is more common
that NES appear to have a focus in frontal cortex (LaFrance and
Benbadis, 2011). Therefore, the literature suggests that the high-
est impact CAD tool would discriminate between frontal lobe
epilepsy and NES and another, separate tool could be used to
lateralize TLE. Based on our results above (see section Clinical
Impact), we believe that our TLE-specific tool may be clinically
applicable. For the first publication demonstrating the applica-
bility of computer-aided diagnosis based on iPET data, we chose
to focus on the diagnosis and lateralization of TLE, based, based
on prior findings that the sensitivity of iPET is highest for TLE.
Our future work then can address generalizing our methods
to the other epilepsies, including bilateral TLE and frontal lobe
epilepsy.

CONCLUSION
Despite a few caveats, and upon further validation with data from
other centers, our automated methods could provide unique infor-
mation for the effective and efficient characterization of epilepsy,
with the potential to decrease the fraction of patients with NES
that are being treated (inappropriately) with AEDs, and to more
quickly triage patients with medication refractory epilepsy toward
surgical intervention. This may help achieve the ultimate goal: a
global reduction in seizures (Engel et al., 2012).
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APPENDIX

Table A1 |This table illustrates the ranking of informative regions of

interest (ROIs) based on the maximum magnitude of t -statistic

across the three contrasts.

Region of interest LTLE vs. NES RTLE vs. NES LTLE vs. RTLE

Lilp temp C −3.974*** 0.158 −3.410**

Lila temp C −3.493** 0.410 −3.463***

L sensorimotor C 0.230 3.459*** −2.469*

Rila temp C 0.080 −3.441** 3.172**

Rpm temp C 2.583* −1.147 3.266**

Rs parietal C 3.202** 0.631 2.229*

R assoc. visual C 2.641* −1.128 3.180**

Rsl temp C 1.450 −2.343* 2.995**

Lam temp C −1.349 1.415 −2.981**

Ram temp C 2.176* −1.234 2.986**

Ri parietal C 2.975** 1.266 2.072*

R parietotemporal C 2.246* −0.325 2.720**

Ls frontal C −1.828 0.545 −2.389*

Rilp temp C 0.447 −2.321* 2.361*

La cingulate C 1.274 2.320* −1.021

L thalamus −1.663 −0.192 −2.236*

Lpm temp C −1.212 1.069 −2.189*

Ri frontal C −0.742 −2.172* 1.409

Lsl temp C −1.664 1.000 −2.163*

L lentiform nucleus −1.115 1.399 −2.032*

Lm frontal C −1.949 0.244 −2.001*

Li frontal C −1.930 0.059 −1.971

Ls frontal C 1.536 −0.351 1.943

Rm frontal C 1.482 −0.280 1.807

Rm frontal C 0.878 −0.883 1.726

Rp cingulate C 0.034 −1.215 1.712

R sensorimotor C 1.629 0.989 0.750

Li parietal C 1.576 1.361 0.193

(Continued)

Region of interest LTLE vs. NES RTLE vs. NES LTLE vs. RTLE

R Broca’s region 1.108 −0.442 1.570

R caudate nucleus 1.462 0.925 0.559

L caudate nucleus −0.937 0.599 −1.460

L Broca’s region −1.028 0.668 −1.427

R primary visual C −0.237 −1.362 1.393

Lm frontal C 1.096 1.370 −0.291

Ra cingulate cortex 1.286 0.407 0.889

R thalamus 0.266 −0.944 1.282

R lentiform nucleus 0.947 0.442 0.271

L primary visual C −0.944 −0.149 −0.810

L assoc visual C −0.142 −0.861 0.660

Vermis −0.197 0.507 −0.701

Pons 0.667 0.473 0.153

L parietotemporal C −0.569 −0.530 −0.028

R cerebellum −0.087 0.406 −0.535

Lp cingulate C −0.211 −0.498 0.393

L cerebellum −0.461 −0.321 −0.054

Midbrain −0.383 0.100 −0.435

Ls parietal cortex 0.093 0.195 −0.096

Negative t-values in the first two columns indicate the hypometabolism in

epilepsy. Negative t-values in the last column indicate hypometabolism in LTLE

compared to RTLE. The leading L or R indicates left or right. The lowercase let-

ters indicate inferior (i), lateral (l), median (m), anterior (a), and posterior (p). The

lagging C signifies cortex. Bold indicates significant differences at greater than

the 95% confidence level. The markings of *, **, and *** indicate significance

at the 95, 99, and 99.9% confidence level, respectively, without multiple testing

correction. No t-statistics remain significant at the 95% confidence level after

Bonferroni correction.
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Non-invasive studies to predict regions of seizure onset are important for planning intracra-
nial grid locations for invasive cortical recordings prior to resective surgery for patients
with medically intractable epilepsy. The neurosurgeon needs to know both the seizure
onset zone (SOZ) and the region of immediate cortical spread to determine the epilepto-
genic zone to be resected.The immediate zone of spread may be immediately adjacent, on
a nearby gyrus, in a different lobe, and sometimes even in the contralateral cerebral hemi-
sphere.We reviewed consecutive simultaneous EEG/MEG recordings on 162 children with
medically intractable epilepsy. We analyzed the MEG signals in the bandwidth 20–70 Hz
with a beamformer algorithm, synthetic aperture magnetometry, at a 2.5 mm voxel spac-
ing throughout the brain (virtual sensor locations, VSLs) with the kurtosis statistic (g2) to
determine presence of excess kurtosis (γ2) consistent with intermittent increased high
frequency spikiness of the background. The MEG time series was reconstructed (virtual
sensor signals) at each of these VSLs.The VS signals were further examined with a relative
peak amplitude spike detection algorithm.The time of VS spike detection was compared to
the simultaneous EEG and MEG sensor signals for presence of conventional epileptiform
spike morphology in the latter signals.The time ofVS spike detection was compared across
VSLs to determine earliest and last VSL to show a VS spike. Seven subjects showed delay
in activation across VS locations detectable on visual examination. We compared the VS
locations that showed earliest and later VS spikes with the locations on intracranial grid
locations by electrocorticography (ECoG) that showed spikes and both onset and spread
of seizures. We compared completeness of resection of VS locations to postoperative out-
come. The VS locations for spike onset and spread were similar to locations for ictal onset
and spread by ECoG.

Keywords: magnetoencephalography, beamformer, children, adolescents, intracranial EEG, outcome, network,
localization

INTRODUCTION
Non-invasive studies to predict regions of seizure onset are impor-
tant for the planning of intracranial grid locations for epilepsy.
The surgeon needs to know both the seizure onset zone (SOZ)
and the region of immediate cortical spread to determine the
epileptogenic zone (EZ) to be resected (Engel, 1996; Wiebe et al.,
2001; Luders et al., 2006). The immediate zone of spread may
be immediately adjacent, on a nearby gyrus, in a different lobe,
and sometimes even in the contralateral cerebral hemisphere.
Among non-invasive recording modalities, magnetoencephalog-
raphy (MEG) has some advantages because of its very good time
resolution and good spatial resolution, as signals are not altered by
the skull (Knowlton et al., 2009; Stefan et al., 2011). Prediction of
intracerebral locations of sources for recorded extracranial MEG
signals requires mathematical source localization algorithms. Mul-
tiple categories of algorithms have been developed including single
and multiple equivalent current dipoles (ECD), dipole scans such

as multiple signal classification (MUSIC) (Mosher, 1999), distrib-
uted dipoles (current density) such as minimum norm estimate
(MNE) (Tanaka et al., 2010), standardized low resolution brain
electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002),
vector and scalar beamformer (Robinson et al., 2004; Sekihara
et al., 2005), and multiple other algorithms each with particular
strengths. Source localization algorithms in the beamformer cate-
gory are spatial filters and have very good signal to noise resolution.
The beamformer algorithm, as a spatial filter, can “tune” the MEG
sensor array to enhance the signal arising in a specific location
while diminishing brain signals arising from other locations.

The tuning process has been referred to as creating a “virtual
sensor” (VS) at the chosen spatial location (VS location) and the
resulting spatially filtered signal is referred to as a VS signal. The
tuning can be repeated iteratively for multiple locations intracra-
nially on the same recording of the MEG signal, such that the whole
brain can be scanned sequentially to evaluate source contributions
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to the overall signal that was recorded at the magnetometer sen-
sors. We chose to evaluate the capability of a particular scalar
beamformer algorithm, synthetic aperture magnetometry (SAM),
to detect onset and spread of interictal spikes, interictal bursts of
spikes, and ictal discharges (Robinson et al., 2004).

METHODS
SUBJECTS
We initially reviewed consecutive simultaneous EEG/MEG record-
ings between January 2006 and December 2008 for 162 children
and adolescents with medically intractable epilepsy who were
admitted for non-invasive Phase I presurgical evaluation. All sub-
jects were recorded during spontaneous sleep after sleep depriva-
tion, conscious sedation with chloral hydrate, or general anesthesia
with dexmedetomidine (Table 1). This study was performed under
Cincinnati Children’s Hospital Medical Center Internal Review
Board Protocol 2008-0403 as a retrospective review.

ELECTROMAGNETIC RECORDINGS
All subjects had simultaneous 23-channel scalp EEG and 275-
channel MEG recorded with a whole-head CTF 275-channel mag-
netometer (VSM MedTech Systems Inc., Coquitlam, BC, Canada).
Fiducial markers were placed at the nasion and left and right preau-
ricular points and placements were photographed digitally. The
same fiducial locations were marked with MRI visible targets. The
MRI scans were thin slice, 1 mm in the sagittal plane. Each sub-
ject had a series of simultaneous MEG/EEG recordings for 2 and
10 min durations for a minimum recording time of 40 min. All
subjects’ recordings were digitized at 300 or 600 Hz for the 10-min
recording and additionally at 4000 Hz for the 2-min recordings.

DATA ANALYSIS
We first visually reviewed each EEG/MEG recording in the band-
width 1–70 Hz for ictal and interictal discharges, and removed
any sections of the recordings with non-cerebral artifact, particu-
larly sections containing muscle artifact. We further analyzed the
remaining sections of MEG signals in the bandwidth 20–70 Hz
with a beamformer algorithm, SAM, at a 2.5 mm voxel spac-
ing throughout the brain (VS locations, VSLs) at approximately
300,000 locations in the three dimensional grid. We applied the
kurtosis statistic (g 2) to the signals at each VS location to deter-
mine presence of excess kurtosis (γ2) consistent with intermittent
increased high frequency spikiness of the background (Ukai et al.,
2004; Kirsch et al., 2006; Ishii et al., 2008; Prendergast et al., 2013).
The kurtosis statistic is a measure of the peakedness and thickness
of the tails of a unimodal distribution (DeCarlo, 1997). A positive
kurtosis indicates more “outliers” in the tails of the distribution
than expected. For this application, the “outliers” are intermittent
additional high frequency activity within a constrained 20–70 Hz
bandwidth compared to the background brain noise distribution
in that bandwidth (Robinson et al., 2004). The VS locations were
ordered based on highest to lowest excess kurtosis. The first 20
VS locations with highest excess kurtosis were chosen for further
examination. A short note of explanation: Because the signal at
each VS location is first evaluated for kurtosis separately from all
others, a VS location with very infrequent additional high fre-
quency activity may register a higher kurtosis than locations with

more frequent, yet still intermittent, additional high frequency
activity occurrences. Also, the VS location with the highest kurtosis
may not have the most frequent VS spikes or the earliest occurring
of the spike components. Therefore, once the VS locations demon-
strating increased kurtosis are identified, each location must still
be evaluated to assess the nature and frequency of occurrence of
the increased high frequency activity. For the further analysis, the
MEG time series (VS signal) was reconstructed for each of these
VS locations. The continuous VS signals for each VS location were
evaluated with a simple adaptive spike detection algorithm based
on peak amplitude relative to prior signal amplitude. An addi-
tional note here: sometimes a VS location with increased kurtosis
does not show a spike in the reconstructed signal. In that case
the increased high frequency activity may be low amplitude, infre-
quent and occur over a longer time span than the short time span
of a spike. Thus, although increased activity is present, because it is
more spread out over time, the activity does not rise up above the
background as a visible spike. The opposite effect can also occur
if spikes occur very frequently, for instance 2/s throughout the
recording, which has happened in some of our pediatric patients.
Then the spikes are a common, consistent feature of the back-
ground, contribute to the central “peak” of the distribution, and
do not increase the kurtosis at the tails. Also, since we measured
the kurtosis in the bandwidth 20–70 Hz, spikes in the original
MEG/EEG signal, whose spectral power was confined below 20 Hz
(this can happen in very young children), would not be detected
by this method. Thus the reconstructed VS signals must always
be compared to the simultaneous original MEG/EEG signals. The
EEG, MEG, and the VS signals were displayed together as chan-
nels, with the VS signal at each VS location displayed as a separate
VS channel (Figure 3A shows simultaneous EEG and VS channels,
but not the MEG sensor channels because of space limitations).
The time of each VS spike detection in each VS location (channel)
was compared to the simultaneous original signals recorded at
the EEG electrodes and MEG sensors (EEG/MEG sensor signals)
for the presence of conventional epileptiform spike morphology
in the latter signals. Only the VS spikes that were associated with
conventional epileptiform spikes in the EEG/MEG sensor signals
were chosen for further analysis and evaluation.

For each VS location, the peak of the VS spike was used as the
time mark to average the spikes at that location. A time window
250 ms before and after the VS spike peak was chosen to make
a 500-ms total duration epoch for averaging. The epochs were
visually reviewed before averaging, including the simultaneous
original EEG and MEG sensor signals. Only epochs that contained
just one epileptiform discharge in the EEG/MEG sensor signals
were included in the average. The simultaneous EEG, MEG, and
VS signals from the other VS locations that occurred during that
epoch were averaged at the same time based on the same time
mark (Figure 1A). The number of VS spikes that occurred in the
VS signals at a VS location varied from 2 to about 200, and in
general depended on the sparseness or abundance of epileptiform
discharges for that particular subject.

For the purposes of this article, the averaged VS spike at the
VS location, along with the simultaneous averaged EEG and MEG
sensor signals and the VS signals from the other VS locations, was
considered a VS spike “type.” This definition of a “type” is based
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FIGURE 1 | Continued
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Rose et al. Epilepsy networks with beamformer MEG

FIGURE 1 | Subject 1. (A) EEG in bipolar AP montage and five virtual sensor
channels showing average of 146 interictal spike epochs in bandwidth
3–70 Hz, digitized at 300 Hz. Topographic maps for MEG and EEG signals are
top of head views centered at vertex Cz with anterior (nose) at top of map.
For this averaged spike, epochs were aligned based on spike peak detected at
VS location V3 in right frontal lobe in the 20–70 Hz bandwidth. (B) Inset is
enlarged view virtual sensor (VS) channels showing timing of peaks. V5 peak
occurs earliest followed by V4 (40 ms), V3 and V2 (50 ms), and V1 (63 ms).
Note that although largest amplitude peaks at V1–V4 are delayed after V5
peak, each has a small peak at about the time of V5 peak. Onset of spike peak
at V5 location precedes apparent onset at the other four VS locations.
Although the averaged epochs shown were aligned based on the spike at V3,

the earlier onset of a spike at V5 was detected. (C) Subjects MRI scan
showing VS locations of V1–V5. Green dot is location of V5, earliest of the VS
peaks. (D) Subject’s MRI scan showing one possible pattern of spread based
on timing of peaks and shortest distances between VS locations. The arrows
are only to show relative timing, since propagation and pathways cannot be
discerned solely with spike peaks separated in time. (E) 3D reconstruction of
subject’s MRI and subdural electrode locations. (F) Intraoperative photograph
of left brain surface. Green dots represent electrodes showing spikes at onset
of seizures. Ictal onset was in left frontal lobe at LIPF2–4 (red frontopolar
electrodes and purple anterior frontal lobe electrodes) with rapid spread to left
anterior temporal lobe (blue electrodes). Yellow overlay represents resection
plan.

on a signal occurring at an intracranial location following spa-
tial filtering, although it does include the simultaneous EEG and
MEG sensor waveforms and VS waveforms forms from the other
VS locations to further characterize the spike “type.” The defini-
tion is somewhat different from the conventional definition of an
EEG or MEG spike type that is based on the pattern of simulta-
neous EEG electrode or MEG sensor signals without any spatial
filtering.

Since more than one VS location for a subject might have
spikes detected in the VS signal, the procedure described above
was repeated for the VS spikes at each VS location. Thus, if a sub-
ject had five VS locations that had VS spikes, the procedure would
be repeated five times. The result would be five sets of averaged
VS spikes (five VS spike types) that included the simultaneous
EEG/MEG sensor signals and also the simultaneous VS signals
from the other locations.

After averaging, the EEG, MEG, and VS averaged spikes were
examined for earliest onset of the EEG, MEG, or VS spike and also
for time of the waveform peak (Figure 1A). If more than one of
the VS locations in an averaged epoch showed VS spikes, the time
of VS spike onset and spike peak was compared across each of
the VS locations to determine which VS location showed the first
spike and the timing difference for EEG, MEG, and VS spikes at the
other VS locations (Figure 1A). The averaged epochs from each of
the VS locations were compared to determine whether the timing
differences for the EEG, MEG, and VS spikes at all VS locations
remained consistent.

For subjects showing a consistent timing difference among
spikes across VS locations, the unaveraged EEG, MEG, and VS sig-
nals were then reviewed again at the time in the original EEG/MEG
recording at which the VS spikes occurred to be certain that the
timing differences seen in the averages of the EEG/MEG and VS
spikes were also present in the unaveraged EEG, MEG, and VS
signals.

For the subjects who had interictal or ictal spike bursts in the
conventional EEG/MEG signals instead of individual spikes, the
simultaneous EEG/MEG sensor signals and VS signals were com-
pared for earliest time of burst onset, but no averaging was done
across bursts.

RESULTS
All subjects had one or more VS locations identified by the
SAM + g 2 [SAM(g 2)], evaluation for excess kurtosis. Although the
VS locations for each subject had been detected because of excess
kurtosis, the subsequent analysis with the adaptive spike detection

algorithm did not always detect VS spikes in the VS signals at all
the VS locations.

Each VS location/channel that had VS spikes detections that
were used to provide the marker for averaging a set of epochs
of simultaneous EEG, MEG, and VS signals did show a spike in
that location in the bandwidth 20–70 Hz following averaging the
epochs, as would be expected. Usually a VS spike was also seen at
that VS location in a wider bandwidth filter, such as 3–70 Hz. The
other simultaneous VS signals/channels in an averaged epoch also
sometimes showed VS spikes.

The VS spikes in the averaged epochs often showed an onset
and peak before the simultaneously averaged EEG and MEG sen-
sor spikes. For those averaged epochs that showed VS spikes at
multiple VS locations, the timing of onset and peak of the VS
spikes by visual inspection appeared near simultaneous across the
VS locations, differing by often only 5–20 ms of each other. For a
subset of seven subjects the timing of the peaks of VS spikes was
longer than 20 ms and more easily discernible by visual inspection.

We studied in greater detail the seven subjects who had the rela-
tively longer time difference among VS spike activation across their
VS locations as we felt the slightly greater time separation could
be more clearly analyzed. These seven subjects ranged in age from
1 year, 10 months to 16 years, 1 month (mean 9.9 years). Epilepti-
form patterns in the raw EEG and MEG signals included interictal
spikes (three subjects), primarily interictal bursts (two subjects),
mixed spikes and bursts (one subject), and both interictal and
ictal bursts (one subject). Etiology was probable cortical dysplasia
on imaging (one subject), prior brain tumor (one subject), tuber-
ous sclerosis (two subjects), probable encephalitis (one subject) or
undetermined at the time of study (two subjects). Of the seven
subjects, five had Phase II intracranial monitoring with strip and
grid electrode recordings and surgical resection; one subject had
corpus callosotomy, and one subject chose not to have any surgical
procedure. All six subjects with surgical treatment had a minimum
of 2 years follow-up. The seven subjects’ ages, presumed etiolo-
gies, epileptiform discharge types and locations, MEG findings,
electrocorticography (ECoG) findings, surgical treatments, out-
comes, and pathological findings (when available) are summarized
in Table 1.

SUBJECT 1
On video/EEG, the subject had frequent moderate voltage spikes
and sharp waves in the left temporal, left frontal, and right frontal
head regions. A clinical complex partial seizure was recorded. EEG
findings suggested an ictal onset zone at the left frontotemporal
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region with symptomatic zone at the left temporal head region. On
combined MEG/EEG, the subject had 187 spikes and sharp waves
that occurred topographically in the left middle temporal head
region. SAM(g 2) detected 5 VS locations: left frontal lobe (73 VS
spikes averaged), left frontopolar lobe (85 VS spikes averaged), left
temporal lobe (107 VS spikes averaged), right frontal lobe (146 VS
spikes averaged), right frontopolar lobe (26 VS spikes averaged).
The VS location with earliest VS spike was left frontopolar with
spread both to right frontal and to left temporal and then to left
inferior frontal (Figure 1).

Following craniotomy, subdural electrodes were placed over
the lateral cortical surface for left frontal and temporal lobes, left
orbitofrontal, and left frontopolar. Ictal ECoG demonstrated two
main foci: one in the inferior prefrontal and posterior frontal lobe.
In addition, interictal ECoG showed very frequent epileptiform
discharges at the left anterior temporal region, which was involved
during the two clinical seizures. The subject had a left frontal cor-
ticectomy sparing the opercular portion of inferior frontal gyrus
and a left anterior temporal lobectomy. At 2 years postoperative
follow-up, the subject was seizure free.

SUBJECT 2
On video/EEG frequent spikes occurred in the right hemisphere at
O2, P4, and C4. Nine ictal events suggested right parieto-occipital
onset. On combined MEG/EEG, the subject showed frequent right
parieto-occipital spikes and frequent bursts of polyspikes in the
central head regions that were bilateral but more prominent over
the right hemisphere. SAM(g 2) analysis of the recording revealed
7 VS locations. Three that showed VS spikes included: right insula
(99 VS spikes averaged), right superior posterior frontal (110 VS
spikes averaged), and right superior mesial anterior parietal (145
VS spikes averaged). The VS location showing earliest spike activa-
tion was right mesial parietal with almost synchronous spread to
right posterior frontal and right insula For bursts, the earliest acti-
vation was right insula with almost synchronous spread to right
posterior frontal and right mesial parietal (Figure 2).

Following craniotomy, subdural electrodes were placed over the
lateral cortical surface for right temporal and right frontoparietal
with one superior frontal strip. Earliest seizure onset was recorded
at the superior temporal electrodes with spread to inferior poste-
rior parietal and later posterior superior frontal. The subject had
a right temporal lobectomy and right parietal corticectomy, which
on pathology showed diffuse cortical dysplasia. The subject con-
tinued to have seizures and required a right hemispherectomy, but
has been seizure free at 2 years follow-up.

SUBJECT 3
On video/EEG, the subject had frequent multifocal bilateral dis-
charges and multiple clusters of electroclinical seizures that were
tonic,atonic,or myoclonic,but electrographically the seizures were
similar regardless of semiology. Initial changes appeared to occur
in the left posterior region slightly before diffuse changes occurred,
suggesting that these could be rapidly generalizing partial onset
seizures. MRI imaging had revealed a lesion in the left mesial
occipitoparietal region felt to be consistent with cortical dysplasia.
On combined MEG/EEG recording, the subject showed multifocal
spikes bilaterally and frequent diffuse bursts. SAM(g 2) identified

15 VS locations that showed spike activity during the bursts. These
were not averaged, but each burst was individually examined. The
earliest onset was in the VS location in the left occipitoparietal
junction, just lateral to the MRI lesion. There was spread to VS
locations nearby and somewhat later to the left posterior frontal
lobe (Figure 3).

Following craniotomy, subdural electrodes were placed over
the lateral cortical surfaces for left temporal, parietal, occipital,
and posterior frontal lobe. ECoG showed numerous clinical-
electrographic seizures arising from the left occipital pole and
posterior subtemporo-occipital region spreading both superiorly
into the left parietal region and anteriorly into the left temporal
region. The surgical resection was left parieto-occipital and poste-
rior temporal. The pathology of the MRI lesion was focal cortical
dysplasia. The subject has been seizure free for 2 years.

SUBJECT 4
This subject had a brain tumor resected in the right frontal lobe
6 years before presurgical epilepsy evaluation and the MEG study.
On video/EEG, the subject had frequent high voltage spikes and
sharp waves in the left frontal, right anterior temporal, and right
frontal head regions. He had 27 events recorded in the EMU, 26
of which were electroclinical seizures: 17 were tonic or general-
ized tonic clonic seizures (8 localized left frontal head region, 3 to
left hemisphere, 6 showed no clear lateralization), 7 were complex
partial seizures (5 showed a right frontal localization, 2 did not
lateralize), 2 were of atypical semiology and did not show any
clear lateralization. On combined MEG/EEG, the subject had 98
spikes seen in the right frontal head region in the EEG recording.
The raw MEG signal was obscured by magnetic noise from the
subjects vagal nerve stimulator (VNS). SAM(g 2) detected 11 VS
locations all in the right hemisphere. Four VS locations were in
right frontal lobe (5, 6, 7, and 8 VS spikes), two in right posterior
frontal (1 and 7 VS spikes), two in right lateral parietal (4 and 7
VS spikes), and three in right mesial parietal (1 VS spike in each
VS location). The spikes in the right frontal lobe preceded those
in the right mesial parietal lobe by about 65 ms (Figure 4).

Following craniotomy, subdural electrodes were placed over the
lateral cortical surfaces for right frontal and anterior parietal lobe,
and strips over lateral and inferior temporal lobe. ECoG recorded
five clinical seizures characterized by asymmetric tonic posturing
and one myoclonic seizure. The seizure onset was localized to the
right mid and anterior frontal region with rapid spread to right
anterior and mid temporal regions. A right frontal resection was
performed. Postoperatively the subject had recurrent seizures.

SUBJECT 5
On video/EEG, the subject had occasional spike and slow waves in
the left frontocentral and left centroparietal head regions. Twelve
tonic seizures were recorded: nine began in the right temporal
head region, one in the right centroparietal region, one in the
left centroparietal region, and one was poorly localized. On com-
bined MEG/EEG, the subject had multifocal interictal spikes: left
frontal, left frontocentral, left centroparietal, right centroparietal,
and right frontocentral head regions. SAM(g 2) detected multi-
ple VS locations bilaterally with VS spikes in left lateral superior
frontal lobe (21 VS spikes averaged), left lateral superior parietal
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Rose et al. Epilepsy networks with beamformer MEG

FIGURE 2 | Subject 2. (A) Bipolar AP EEG and seven virtual sensor
channels showing onset of burst in unaveraged signals filtered in
bandwidth 20–70 Hz, digitized at 600 Hz. Red arrow at V4, right
operculum/insula, shows burst onset preceding first apparent onset in
F8T4 EEG channel by 100 ms. For VS locations, onset in location V4
occurred first followed by right mesial parietal V5 (80 ms), then right mid
frontal V7 (240 ms), and right superior mid frontal V3 and V1 (260 ms), and
finally right posterior frontal V2 (300 ms). (B) Subject’s MRI scan showing
one possible pattern of spread based on the timing of the VS peaks.

(C) Subject’s MRI showing a second timing pattern that occurred in other
bursts (not shown) with earliest onset in superior mesial parietal V5, then
superior posterior frontal V3 and operculum/insula V4, and then lateral
superior midfrontal V1. Red arrows indicate relative timing of peaks.
(D) Subject’s 3D MRI scan and grid electrode locations. Red numbers 1–3
indicate the ictal onset (1) and spread pattern based on ECoG (2, 3).
(E) Intraoperative photograph of brain and subdural grids with ictal onset
right mid temporal (dark purple), spread to inferior parietal (pink), then
superior posterior frontal (dark blue).
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Rose et al. Epilepsy networks with beamformer MEG

FIGURE 3 | Subject 3. (A) Bipolar AP EEG and 15 virtual sensor channels
showing onset of burst in unaveraged signals filtered in bandwidth 3–70 Hz,
digitized at 600 Hz. A spike is seen at V1, but not well seen at other VS
locations in this bandwidth (B) The same epileptiform discharge but shown in
bandwidth 20–70 Hz. Earliest onset at VS location V10 left parietal followed by
left posterior frontal V9 (43 ms), and right parietal V4 (43 ms), then right
posterior frontal lobe V1 (173 ms). (C) Subject’s sagittal MRI scan showing VS

location V10 in left parietal at crosshairs and red #1. (D) Subject’s axial MRI
scan showing location of earliest onset at red #1(V10), then next two onsets
at blue #2 (V9 and V4), and then onset at green #3 (V1). Red arrows indicate
relative timing of peaks. Green circle indicates location of left parietal MRI
lesion. (E) 3D reconstruction of subject’s MRI scan. Purple dots indicate the
location of spikes on subdural grid electrodes preceding ictal fast activity.
Posterior to red line indicates resection plan.

lobe (anterior – 5 and posterior – 17 VS spikes averaged), right
frontal lobe (10 VS spikes averaged), right parietal lobe (lateral
anterior superior – 72 and lateral mid superior – 20 VS spikes
averaged). Based on the order of occurrence of VS spikes in the
right hemisphere, the anterior and posterior parietal lobe locations
showed the earliest spike, with spread into the right posterior pari-
etal lobe and right lateral midfrontal lobe VS spike. In addition,

the order of occurrence of VS spikes suggested there was simul-
taneous spread from the right posterior parietal to left posterior
parietal and then to left anterior parietal, left posterior frontal, and
left lateral midfrontal lobe locations. A second pattern of spread
(again based on VS spike order of occurrence, but also based on
averaging left hemisphere interictal spikes) suggested that some VS
spikes began in the left lateral midfrontal lobe and spread to left
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Rose et al. Epilepsy networks with beamformer MEG

FIGURE 4 | Subject 4. (A) Bipolar AP EEG and 11 virtual sensor channels
showing interictal spike in unaveraged signals in bandwidth 3–70 Hz,
digitized at 300 Hz. The earliest peaks occurred at V4 and V6 right frontal lobe
(red arrows), just posterior to the resection site for tumor, followed 100 ms
later by spike peaks at V9 and V10 right parietal lobe (blue arrows). In an
expanded timebased view (not shown), V9 and V10 also show smaller
amplitude spikes earlier, 20 ms after V4 and V6. In that view, timing of the
spike at V3, right frontal lobe, is also 20 ms after V4, V6. (B) Subject’s MRI

scan showing tumor resection right frontal lobe (blue T), interictal spike onset
at V4, V6 (red circle), and subsequent spike peaks anteriorly at V3 and
posteriorly at V9, V10. Red arrows indicate relative timing of peaks. (C) 3D
reconstruction of subject’s MRI scan with subdural grids over right frontal
and temporal lobe. (D) Summary of electrodes active at or shortly after
seizure onset with the most intense red color corresponding to the most
active electrodes in superior, mid, and inferior frontal lobe posterior to
resection site and also mid temporal.
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Rose et al. Epilepsy networks with beamformer MEG

posterior frontal lobe, then to left anterior parietal lobe locations.
This left lateral midfrontal lobe VS location was both the last VS
location showing spread from the right parietal spikes and the first
VS location showing activation and spread of VS spikes for spikes
originating in the left hemisphere (Figure 5).

Based on the multimodality presurgical studies in addition to
MEG, a right craniotomy was performed with electrode grids
placed over the right frontal, temporal, and parietal lobes. Five
typical seizures were recorded with onset detected in the superior
right frontal lobe on the right mid superior frontoparietal grid,
frontal grid, and middle interhemispheric strip. A right posterior
frontal lobe resection was performed with multiple subpial resec-
tions over the motor cortex. Initially postoperatively the subject
was seizure free. However, within 1 week seizures recurred. On
repeat video/EEG, the subject showed a different clinical pattern
of flexing the right elbow and flexing the back with EEG onset in
the left central head region. Combined MEG/EEG was repeated at
that time. The subject had fewer epileptiform discharges per unit
time compared to the first study. The most frequent detections of
VS spikes were in the left lateral midfrontal lobe location described
above that preoperatively showed late activation after right parietal
VS spikes and earliest activation of VS spikes for left hemisphere
epileptiform discharges. The family declined a second operative
procedure, and a second Phase II study was therefore not indi-
cated. At 2 years postoperative follow-up, the subject continued to
have intermittent seizures.

SUBJECT 6
On video/EEG, the subject had frequent myoclonic and atonic
seizures with diffuse electrographic changes that were not well-
localized. On combined MEG/EEG, the subject had very fre-
quent bilaterally diffuse and synchronous spikes and polyspikes.
SAM(g 2) detected multiple VS locations in the parietal and occip-
ital lobes and fewer in the temporal and posterior frontal lobes
bilaterally. Two VS locations that showed prominent VS spikes
were left (154 VS spikes averaged) and right (129 VS spikes aver-
aged) posterior parietal lobes. The left parietal VS spike usually
preceded the right parietal VS spike by about 25 ms (Figure 6).
Based on all of the subject’s tests, the subject was judged clinically
not to be a candidate for focal resection, did not have a Phase II
study, but did have a corpus callosotomy. At 2 years follow-up, the
subject continued to have seizures, but not the drop attacks.

SUBJECT 7
On video/EEG, the subject had frequent spikes and sharp waves in
the left anterior temporal region head region. Frequent bursts of
high voltage diffuse spikes and polyspikes and slow waves occurred
with a frontocentral predominance. The subject had brief tonic
seizures lasting 3–5 s and multiple complex partial seizures, but
with somewhat variable semiology. All clinical seizures were poorly
localized or lateralized on scalp EEG. On combined MEG/EEG, the
subject had frequent focal spikes bilaterally and multiple bursts of
polyspikes seen on EEG, six of which were associated with a bilat-
eral tonic “shudder” of the arms. The MEG sensor signals could
not be directly interpreted because of the magnetic noise from
the subject’s VNS. The spatial filter characteristics of the beam-
former algorithm excluded this distant noise source in the SAM

VS. SAM(g 2) detected VS locations in left frontal lobe (424 VS
spikes averaged), right frontal lobe (472 VS spikes averaged), and
right opercular (106 VS spikes averaged), right parietal (118 VS
spikes averaged), and occipital lobes (122 VS spikes averaged).
No consistent pattern of spread from one VS location to another
(based on VS spike onset or peaks) was found for averaged VS
spikes. For the six brief clinical seizures, sometimes the earliest VS
spikes (in the VS signals associated with the EEG polyspike bursts)
was in the right hemisphere and at other times in the left hemi-
sphere in the 20–70 Hz bandwidth (Figure 7). The VS waveforms
at locations of peak spikiness suggested that the location of earliest
onset during the electroclinical seizures of polyspike bursts varied
and could begin in either the right or left hemisphere. The subject
chose not to proceed with surgery, and Phase II evaluation was
therefore not done.

PATTERNS OF VS SPIKE OCCURRENCE DURING EEG/MEG
SENSOR INTERICTAL AND ICTAL DISCHARGES
The spatial separation between VS locations showed that spread
of activation varied from intralobar (five subjects) through intra-
hemispheric (seven subjects) to interhemispheric (five subjects),
with six subjects showing more than one distance of spread.
Timing for spread intralobar ranged from 20 to 63 ms, intrahemi-
spheric was 39 to 300 ms, and interhemispheric was 26 to 173 ms
(Table 1; Figures 1–7). Usually, the VS location that showed the
earliest visually noticeable change from baseline also showed the
earliest peak activity; however, sometimes twoVS locations showed
approximately similar first change from baseline, but one of the
two VS locations might demonstrate an earlier peak. For some
subjects, the VS locations that showed delayed spike peaks some-
times also showed a small amplitude deflection shortly after the
VS spike at the VS location showing earliest VS spike peak.

COMPARISON OF PREOPERATIVE MEG BEAMFORMER
PUTATIVE SOURCE TIMING AND INTRACRANIAL ECOG
INTERICTAL/ICTAL RECORDINGS
For comparison of preoperative MEG beamformer predictions
and ECoG findings, two of the seven subjects did not proceed
to Phase II evaluation with ECoG, so for those two subjects no
comparison between MEG and ECoG can be made.

For subject 1, MEG beamformer showed left frontopolar onset
with spread to left temporal lobe, both of which were detected on
ECoG and in that order for ictal onsets. However, later spread to
the left inferior frontal was not detected, which could be MEG
beamformer error, or possibly the left frontal grid did not extend
sufficiently inferiorly over frontal lobe. ECoG could neither vali-
date nor invalidate occurrence or relative timing of VS spikes in
the right frontal lobe, since no intracranial electrodes were placed
over that hemisphere. The subject has been seizure free for 2 years
without any resection in right frontal lobe.

For subject 2, MEG beamformer detected an onset in right tem-
porofrontal operculum or insula and subsequent occurrence in
right mesial parietal, right mid frontal, and superior frontal. ECoG,
on the surface of the frontal and temporal lobes, detected an onset
in right middle temporal gyrus, then inferior parietal, and finally
anterior superior parietal or posterior superior frontal. Overall
both preoperative MEG beamformer and ECoG showed origin
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FIGURE 5 | Continued

www.frontiersin.org May 2013 | Volume 4 | Article 56 | 83

http://www.frontiersin.org
http://www.frontiersin.org/Epilepsy/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rose et al. Epilepsy networks with beamformer MEG

FIGURE 5 | Subject 5. (A) EEG in average reference montage and seven
virtual sensor channels showing average of 72 interictal spike epochs in
bandwidth 3–70 Hz. For this averaged spike, epochs were aligned based on
spike peak detected at VS location 1 in right parietal lobe in the 20–70 Hz
bandwidth. The earliest onset occurred in V1 about 33 ms before the first
onset in EEG channels C4 and P4. The panel also shows the first peak in V1
preceded the peak in V3 right mesial parietal and V6, right posterior frontal.
Averages of epochs based on the timing of the spikes at each of the other six
VS locations (not shown) were compared to obtain a composite of spike peak
timing differences among all VS locations. (B) Subject’s MRI scan showing
the composite of spike peak timing differences. Red arrows indicate relative
timing of peaks. The average of epochs based on MEG spike detections in the
20–70 Hz bandwidth for VS location V7 showed an additional pattern of spike
peak timing that tracked back from left posterior frontal to anterior parietal,
then posterior parietal, but did not cross the midline to the right hemisphere.

(C) 3D reconstruction of the subject’s MRI scan showing subdural electrode
locations over right frontal, parietal, and temporal lobes. Ictal onset was in
superior anterior parietal at the yellow X. [The red regions here represent
region of activation from subtraction ictal SPECT co-registered with MRI
(SISCOM) but were not analyzed as part of the current study.] (D) Combined
EEG/MEG study performed 2 months postoperatively because subject
continued to have seizures. Bipolar AP EEG and 10 virtual sensor channels
showing average of 3 interictal spike epochs in bandwidth 5–70 Hz, digitized
at 4 KHz. The peaks at VS locations 1–2 and 8–10 all seem to occur at
approximately the same time. Spikes were seen in the MEG signals, but not
well seen in the EEG. (E) The subject’s MRI scan showing the VS locations
from the postoperative MEG. Highest excess kurtosis was at left posterior
frontal near V1 and V2 (red region). This location was also near the location of
the second spread pattern seen preoperatively (Panel B) in left posterior
frontal (V7 location in that panel).

near/in temporal lobe with subsequent spread dorsally to pari-
etal and then superior parietofrontal. No intracranial recording,
stereotaxic/stereotactic (SEEG), was done of the insula/opercula
nor ECoG of superior mesial parietal, so intracranial record-
ings did not validate or invalidate either location as an onset
site or terminal extension of ictal activity as suggested by MEG
interictal VS fast activity burst analysis. The resection was lim-
ited to temporal and inferior parietal, but the subject continued
postoperatively to have seizures. Subsequently the subject had
right hemispherectomy and thereafter has been seizure free for
2 years.

For subject 3, MEG beamformer showed left parietal onset in
sulci just lateral to the MRI lesion followed both left posterior
frontal and right parietal to right posterior frontal spread. ECoG-
detected spikes in the left posterior parietal and occipital surfaces
and rapid diffuse spread into the left anterior parietal and poste-
rior temporal lobes, but not into left posterior frontal lobe. No
intracranial electrodes were placed over the right hemisphere,
so spread and timing there could not be validated/invalidate
by the intracranial recordings. The resection was limited to left
occipitotemporoparietal lobes, but the subject was 2 years seizure
free.

For subject 4, MEG beamformer showed a frontal onset poste-
rior the prior resection site and both more anterior spread mesially
in frontal lobe and posterior spread to deep in the parietal lobe.
ECoG showed ictal onset posterior to the lesion in frontal lobe but
did not detect the parietal spread shown in MEG and frontopolar
surface intracranial electrodes were not placed, perhaps because
of scarring from the prior tumor resection. After a prefrontal lobe
resection, 4 cm from the frontal tip, the subject continued to have
seizures.

For subject 5, MEG beamformer detected a right frontopari-
etal onset but also a separate left posterior frontal onset. The
other modality tests done clinically preoperatively also pointed to
right frontoparietal region. ECoG over right temporofrontopari-
etal regions showed superior right parietal onset. No ECoG was
done over the left hemisphere, so a second left posterior frontal
onset could not be validated/invalidated. After a right posterior
frontal lobe resection with multiple subpial resections over the
motor cortex, the first ictal clinical pattern disappeared, but new
seizures recurred suggesting left hemisphere onset based on semi-
ology. A postoperative MEG showed left posterior frontal and

parietal VS spikes that were not well seen in simultaneous 10–
20 scalp EEG. No further intracranial EEG studies were planned
as a second resection was not planned, so the persistent left poste-
rior frontal MEG spikes could not be confirmed as the ictal onset
location in the left hemisphere.

DISCUSSION
This study examined source localization for epileptiform dis-
charges with a beamformer algorithm that spatially filtered the
MEG signals by “tuning” the MEG sensor array to provide a
single VS signal at a single VS location. Each 2 or 10 min MEG
recording was iteratively examined offline at multiple intracranial
locations for source activity. The source activity at each location
was evaluated with the g 2 excess kurtosis statistic.

Virtual sensor signals at the VS locations with highest excess
kurtosis were evaluated for transient spikes. When spikes were
detected, epochs surrounding the spikes were averaged including
the simultaneous EEG/MEG sensor spikes and simultaneous VS
signals at up to the 20 VS sensor locations with the highest excess
kurtosis.

In review of all 162 subjects, the MEG VS spikes often had their
onset at, or sometimes just before, the onset of the EEG/MEG
sensor spikes (see Figures 2 and 5) and sometimes were shorter
in duration than the associated EEG/MEG sensor spikes (see
Figure 6). The finding of an earlier VS onset may have occurred
because the spatial filtering lowered the contribution of back-
ground noise from other sites in the brain, improved the signal
to noise ratio, and allowed a smaller amplitude, earlier occurring
spike signal to be detected above the lowered background noise
level. The shorter duration spike may indicate that activity at that
location had ceased and propagated to another site; alternatively,
the finding may indicate local contiguous spread created a more
extended source that fit less well the forward solution of a focal
dipole source, and lead to a lower amplitude VS signal.

For most of our 162 subjects whose averaged epochs contained
VS spikes at multiple VS locations, and the timing of onset and
peak of the VS spikes across the VS locations was similar. Based on
visual inspection, these VS spike features appeared to occur either
synchronously or varied by just 5–20 ms in timing. For a subset
of seven subjects the timing of VS spike onsets and peaks dif-
fered more,and differences were discernible with visual inspection.
Although time for a signal to cross from one cerebral hemisphere
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Rose et al. Epilepsy networks with beamformer MEG

FIGURE 6 | Subject 6. (A) Bipolar AP EEG and fifteen virtual sensor
channels showing average of 154 interictal spike epochs in bandwidth
3–70 Hz. For this averaged spike, epochs were aligned based on spike peak
detected at VS location V1 in left occipital lobe in the 20–70 Hz bandwidth.
(B) Inset shows close-up of VS peaks at VS locations. Although the
averaged epochs shown were aligned on the timing for VS location V1, the
average shows the earliest VS spike onsets were at VS locations V2 and V5
left occipitotemporal, then 13 ms later spike peak at V1, left occipital, and
13–26 ms later two peaks in V3, right occipital. (C) Bipolar AP EEG and
fifteen virtual sensor channels showing average of 129 interictal spike

epochs in bandwidth 3–70 Hz. For this averaged spike, epochs were aligned
based on spike peak detected at VS location V3 in right occipital lobe in the
20–70 Hz bandwidth. (D) Inset shows close-up of VS peaks at VS locations.
The spike peak at V3, right posterior occipital occurred earliest followed by
V4 (26 ms), right anterior occipital, and V6 (39 ms), right posterior temporal.
(E) Subject’s axial MRI scan showing right V3 and left V2 occipital earliest
spike peak locations. (F) Subject’s 3D MRI scan showing relative timing of
peak locations starting in either left or right occipital lobe and spreading
anteriorly. Red arrows indicate relative timing of peaks, pointing toward later
peaks.
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Rose et al. Epilepsy networks with beamformer MEG

FIGURE 7 | Subject 7. (A) Bipolar AP EEG and 12 virtual sensor
channels showing onset of generalized ictal onset in unaveraged
signals filtered in bandwidth 20–70 Hz, digitized at 600 Hz. Red arrow
indicates VS location V7 in right parietal. Ictal onset at V7 precedes by
120 ms the ictal onset in left parietal V6 (blue arrow). (B) Subject’s MRI
scan showing VS V7 location in right parietal lobe (at red arrow and

crosshairs). (C) Overview of ictal onset from right parietal lobe. (D)
Second generalized ictal onset. Blue arrow indicates VS location V6 in
left parietal Ictal onset at V6 precedes by 83 ms the ictal onset in right
parietal V7 (red arrow). (E) Subject’s MRI scan showing VS V6 location
in left parietal lobe (at blue arrow and crosshairs). (F) Overview of ictal
onset from left parietal lobe.
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to the other has been quoted as 10 ms (Barth et al., 1982) for
axonal transmission through the corpus callosum, the timing dif-
ferences between component VS spikes of the EEG/MEG sensor
spike were greater than 10 ms. The reason for the greater delay
seen for our seven subjects is not certain. The spikes in the orig-
inal simultaneous scalp EEG did not appear unusual, although
the epileptiform discharge for subject 6 was actually a sharp wave
by time duration. For these subjects the delay may relate to a
time period required for one cortical region to activate another
cortical region. Similar delays in propagation time of interictal
spikes were noted previously in a subset of subjects in a combined
scalp and intracranial EEG study; however, in those subjects also
nothing strikingly unusual was noted in the morphology of the
scalp EEG spikes and/or sharps waves (Alarcon et al., 1994). As
noted in the results section, for some subjects, the VS locations
that showed delayed spike peaks sometimes also showed a small
amplitude deflection shortly after the VS spike at the VS location
showing the earliest VS spike peak. Axonal transmission times
might be appropriate from one intralobar, intrahemispheric, or
interhemispheric location to another, but activation of indepen-
dent synchronized activity at the secondary sites might require the
longer time delays.

COMPARISON OF PREOPERATIVE MEG BEAMFORMER
PUTATIVE SOURCE TIMING AND INTRACRANIAL ECoG
INTERICTAL/ICTAL RECORDINGS
Although two of seven subjects did not proceed to Phase II
intracranial recordings, the MEG beamformer and intracranial
EEG (ECoG) did share similarities of at least onset locations for
the remaining five subjects. Corroboration of patterns of spread,
predicted by MEG, was seen to a certain extent in for subjects 1
and 2 in the ECoG.

Several differences of the two recording modalities became rel-
evant for attempts to corroborate non-invasive MEG prediction
of onset locations and spread patterns using intracranial EEG
recordings. First is the physics limitation that MEG is more likely
to record tangential sources in sulci, which ECoG may not detect
well, while ECoG records radial sources on the surface of the brain,
the gyral crowns, which MEG does not detect well (Hillebrand and
Barnes, 2002). Thus some spread to deeper locations may not be
detected by ECoG, while spread from one gyral crown to another,
perhaps by U -fibers, may not be detected by MEG (e.g., Figure 2,
subject 2 – the second ECoG-detected location in lateral inferior
parietal cortex but not detected by MEG).

The limitations of ECoG to see deeper sources in sulci may in
part be solved by combined SEEG and ECoG, or just SEEG, but
considerable preoperative planning is required for either evalu-
ation (Koessler et al., 2010; Kakisaka et al., 2012). Non-invasive
preoperative MEG detection of multiple contributory sources rel-
ative to gyral crown components may improve with simultaneous
higher resolution scalp EEG with more closely spaced electrode
placement such as 64, 128, or 256 channel arrays (Yamazaki et al.,
2012). Beamformer analyses of EEG scalp recordings have been
reported, but success may be dependent on the accuracy of the
forward model and knowledge of variations in skull impedance
over the head (Steinstrater et al., 2010; Dang et al., 2011; Jon
Mohamadi et al., 2012). Combined beamformer analysis with

MEG and EEG may provide improved timing details regard-
ing activation of cortical sources with both radial and tangential
current sources (Schoffelen and Gross, 2009; Shahbazi Avarvand
et al., 2012).

Postoperative outcomes may suggest support for sources seen
in MEG beamformer, but not detected with intracranial electrodes,
when those MEG identified structures have not been resected. This
difference may be the case for the insular and mesial parietal MEG
sources for subject two that were not resected initially and seizures
continued, but were resected with the subsequent hemispherec-
tomy and seizures ceased. The difference could also be the case for
a deep parietal source for subject four predicted by MEG that was
not resected and seizures continued in that subject. Nonetheless,
the persistence of seizures after MEG-predicted source locations
that were not resected, or the disappearance of seizures after proce-
dures like hemispherectomy, does not validate or invalidate precise
location predictions of MEG.

Another limitation occurs when MEG detects bilateral sources,
but subsequent invasive intracranial EEG is performed only for
one hemisphere. The features that make MEG detection of inter-
hemispheric spread clinically relevant are not yet delineated. For
subjects 1 and 3, interhemispheric spread of interictal spikes with-
out resection of the MEG-detected sources in the contralateral
hemisphere were not relevant, as without their resection, the sub-
jects still had a seizure free outcome 2 years postoperatively. By
contrast, the detection of spread of interictal spikes to a site in the
contralateral hemisphere in subject five, and detection of inde-
pendent spikes that arose from that contralateral site and spread
locally there, did presage the subject’s postoperative seizures in
that contralateral hemisphere. Numbers of intracranial electrodes
that can be placed clinically safely are limited, so extensive bihemi-
spheric ECoG or SEEG coverage will not likely be the solution.
Better understanding of the clinical relevance of spread of spikes
to a contralateral hemisphere may require comparing MEG studies
with other non-invasive whole-head modalities such as the high
density scalp EEG recordings or EEG-fMRI in addition to tracking
surgical outcomes.

MACRO NETWORKS IN CLINICAL EPILEPSY
The concept of a single epileptic focus to be surgically removed
was popular in the early years of epilepsy surgery. The concept may
be very appropriate still for seizures limited to mesial temporal
lobe. However, in pediatrics most medically intractable epilepsy
is extratemporal in origin and may originate in more than one
location, especially when cortical dysplasia is involved.

Networks in the propagation of seizures can occur at multiple
levels (Lemieux et al., 2011). At a single cortical location, a local
network over a few square centimeters of cortex may be required to
sustain repetitive fast activity at the beginning of a seizure. Larger
networks may involve a single or several contiguous gyri and may
include both a SOZ and a surrounding region of rapid spread to
give an EZ, which must be resected entirely to achieve seizure con-
trol (Engel, 1996; Wiebe et al., 2001; Luders et al., 2006). A still
larger network may involve a SOZ with a region of rapid spread
that may be located several gyri away or even in a different lobe or
the contralateral hemisphere. For these larger networks there may
be more than one cortical region with lower threshold for seizure
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onset and for ictal spread. Based on clinical experience with ECoG,
when more than one cortical region is present with apparent low
ictal threshold, the roles of SOZ and region of rapid spread may
alternate between the two or more cortical regions, depending
on the particular ictal event evolving at the time. For these latter
cases, surgical treatment may involve resections or corticectomies
at multiple sites, or sometimes the decision not to proceed with
resective surgery.

The hope and expectation of clinicians treating pediatric med-
ication resistant epilepsy is that intracranial electrodes can be
placed during invasive monitoring to identify and delineate all
the SOZs and all regions of rapid spread. Preoperative identifica-
tion of multiple intracranial sources contributing to the interictal
epileptiform discharge or ictal event is an important goal. The
knowledge may help the neurosurgeon better plan the surgical
approach to place intracranial electrodes (Knowlton et al., 2009).

Accomplishing this goal based on scalp EEG may be difficult
using the conventional 10–20 electrode set and head surface topog-
raphy of scalp voltage potentials. Efficacy may be improved with
additional scalp electrodes, though multiple intracranial sources
may be difficult to delineate with scalp recording topography, since
EEG sees a composite of radial and tangential dipoles; source local-
ization algorithms may be required (Ebersole, 1994; Ochi et al.,
2001).

MEG studies usually require mathematical algorithms to pre-
dict intracranial source locations. The conventional algorithm is
the single ECD, but in its simplest form it localizes a single source.
When two or more sources are active simultaneously or the timing
of their activation overlaps, the single ECD may predict a location
between the two sources, which in some cases may mislocalize to
white matter or ventricle. The moving ECD algorithm can iden-
tify that the average location of the composite of sources changes
over time, but the algorithm is not configured to identify where
individual contributing sources are located. Current source den-
sity algorithms may better account for multiple sources; however,
in general the timing of activation of the different source may be
somewhat difficult to ascertain based on the current density map
(de Gooijer-van de Groep et al., 2012). All of the algorithms that
do not use spatial filtering suffer from including fluctuations in
background noise in the source localization calculations. Although
keeping the subject quiet, relaxed, and still are important for reduc-
ing extracranial noise sources, intracranial brain noise fluctuations
are ever present and are still part of the signal that is being localized
(Ward et al., 1999).

On the other hand, every methodology has limitations. For
clinical studies we also evaluate the traditional ECD model and
both dipole scan algorithms (MUSIC) and current density algo-
rithms (MNE, sLORETA). A limitation for beamformers is that
two sources that changed together with identical relative amplitude
time courses, but at different locations, could not be distinguished
by a beamformer algorithm and would be mislocalized to a third
location (Diwakar et al., 2011). The observation that beamform-
ers do as well as they do, suggests that different brain regions most
often do not have exactly identical relative amplitude time courses,
particularly at the higher frequency bandwidths and if greater than
3 cm distant from one another (Belardinelli et al., 2012; Moiseev
and Herdman, 2013).

In this study we first visually inspected the EEG/MEG signals
for artifact, then used quantitative algorithms to (1) spatially filter
the MEG signal, (2) measure excess kurtosis to identify candi-
date brain regions of spikiness, and (3) identify timing of the
transient spikes in the regions that contributed to the spikiness
of the signal. Then we returned to simple visual inspection of
the VS signals to compare the timing of the original EEG/MEG
interictal and ictal discharges with the VS spike timing at each
of the VS locations. We found that multiple sources identified
by this method were seen also in the ECoG in similar, but not
exactly identical, cortical locations. At this time it is not certain
whether the differences in locations between ECoG and beam-
former were secondary to beamformer relative mislocalization, or
whether the different cortical substrates measured (ECoG – gyral
crowns; beamformer – gyral sulci), contributed to some of the
differences.

Visual inspection alone was able to detect timing differences
among the EEG/MEG spikes and the VS signals in 7 of 162
(4%) subjects, which is a low percentage of all subjects. However,
visual inspection of signals should be done at each step of analy-
sis/processing of the signals to obtain a Gestalt of what changes
are occurring in the signals and for quality control to detect signal
artifacts in what may become clinical tools. The range of differ-
ences in timing VS spikes for the remaining 155 subjects were in the
range of 5–20 ms. The signal digitization rates we are using now
(600–4 KHz) may allow us to use pursue quantitative comparisons
after visual inspection, to evaluate better the timing differences in
onset and peak across VS spikes and EEG/MEG sensor spikes.

There are several limitations to the current study. The sample
size is a small percentage of all subjects we studied in the enroll-
ment time window, as noted above. Only five of seven subjects had
resective surgery, and for subject 5, a second ECoG recording was
not done after the second MEG study. Only three of the five with
resective surgery were seizure free; a fourth (subject 5) who did not
have the contralateral source resected, continued to have seizures.
Although that finding might be considered supportive, subject 5
did not have a second ECoG, so the contralateral source could
not be confirmed as a second SOZ. For these reasons, the clinical
significance of VS spike activation delay remains uncertain until a
larger population can be examined and the degree of usefulness of
the analysis can be better understood.

CONCLUSION
A spatial filter analysis of MEG signals such as a beamformer may
be helpful during presurgical epilepsy evaluation to distinguish
subregions of spiking during recorded interictal spikes and onsets
of ictal discharges. In a subset of subjects the differences in tim-
ing between these onsets may be great enough to be apparent
by visual inspection. For our subject subset the onset and tim-
ing differences roughly correlated with the SOZs and regions of
spread determined by later ECoG. These subjects appeared to have
a network of spread of the seizures within a cerebral lobe, across
lobes and from one hemisphere to another. If the significance
of VS spike activation delay can be better ascertained in a larger
population, this kind of presurgical evaluation may be helpful
for presurgical planning for surgical approach and intracranial
electrode placement.
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Rationale: Dense array EEG (dEEG) evenly covers the whole head surface with over 100
channels contributing to more accurate electrical source imaging due to the higher spatial
and temporal resolution. Several studies have shown the clinical utility of dEEG in presur-
gical clinical evaluation of epilepsy. However validation studies measuring the accuracy
of dEEG source imaging are still needed. This can be achieved through simultaneously
recording both scalp dEEG with intracranial electrodes (icEEG), which is considered as the
true measure of cortical activity at the source. The purpose of this study is to evaluate the
accuracy of 256-channel dEEG electrical source estimation for interictal spikes.

Methods: Four patients with medically refractory neocortical epilepsy, all surgical can-
didates, underwent subdural electrode implantation to determine ictal onset and define
functional areas. One patient showed a lesion on the magnetic resonance imaging in the
right parietal lobe. The patient underwent simultaneous recording of interictal spikes by
both scalp 256-channelsvdEEG and icEEG.The dEEG was used to non-invasively estimate
the source of the interictal spikes detected by the 256-channel dEEG array, which was then
compared to the activity measured directly at the source by the icEEG.

Results: From the four patients, a total of 287 interictal spikes were measured with the
icEEG. One hundred fifty-five of the 287 spikes (54%) were visually detected by the dEEG
upon examination of the 256 channel head surface array. The spike amplitudes detected
by the 256-channel dEEG correlated with icEEG spike amplitudes (p < 0.01). All spikes
detected in dEEG were localized to the same lobe correctly.

Conclusion: Our study demonstrates that 256-channel dEEG can reliably detect interic-
tal spikes and localize them with reasonable accuracy. Two hundred fifty-six-channel dEEG
may be clinically useful in the presurgical workup for epilepsy and also reduce the need for
invasive EEG evaluation.

Keywords: dense array EEG, source estimation, neocortical epilepsy, interictal spike, intracranial EEG

INTRODUCTION
For patients with intractable epilepsy, surgical therapy is an impor-
tant treatment option. Although the propagation of seizures may
involve complex cerebral networks, surgical resection of the cor-
tical zone of seizure onset may be effective, if this zone can be
identified and delineated from surrounding tissue. The first stage
of diagnostic tests is typically non-invasive, with the goal being to
characterize the epileptogenic zone as comprehensively as possible
in order to guide the next stage of invasive testing with intracranial
electrodes that confirms the decision on resective surgery.

Magnetoencephalography (MEG) and electroencephalography
(EEG) have both been used as non-invasive methods in the electro-
physiological evaluation of the epileptogenic zone. A number of
studies has shown that multi-channel MEG is useful for dipole
localization of interictal spike events, especially in neocortical
epilepsy, where the sources may be more superficial (closer to the
skull) compared to epilepsy with deeper sources, such as mesial
temporal lobe epilepsy (Ricci et al., 1987; Gallen et al., 1995;

Knowlton et al., 1997; Stefan et al., 2003; Huiskamp et al., 2010).
MEG is inherently insensitive to deeper brain sources because
magnetic signals fall off by the square of the distance from the
source. Although EEG has better depth sensitivity than MEG,
and it is sensitive to radial (gyral) as well as tangential (sulcal)
sources, the electrical volume conduction of EEG is distorted by
the resistive skull, requiring detailed computational modeling for
an accurate inverse estimation (Ebersole, 2000; Vanrumste et al.,
2000; Baumgartner, 2004; Plummer et al., 2007).

Although accurate electrical head modeling is now available
for EEG, based on the patient’s magnetic resonance imaging
(MRI) and CT (for skull conductivity), the conventional 21-
channel scalp EEG does not have high enough spatial resolution
to allow for accurate source localization in most cases (Tucker
et al., 2004; Holmes et al., 2005). Adequate source localiza-
tion requires adequate spatial sampling in addition to sophisti-
cated source analysis techniques. Freeman et al. (2003) reported
that the spatial Nyquist of the human scalp EEG necessitates

www.frontiersin.org May 2013 | Volume 4 | Article 42 | 90

http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/about
http://www.frontiersin.org/Epilepsy/10.3389/fneur.2013.00042/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MadokaYamazaki&UID=68447
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DonTucker_1&UID=11087
http://www.frontiersin.org/people/AyatakaFujimoto/91517
http://www.frontiersin.org/people/TAKAMICHIYAMAMOTO/90037
mailto:madokaymzk@gmail.com
http://www.frontiersin.org
http://www.frontiersin.org/Epilepsy/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yamazaki et al. dEEG imaging in neocortical epilepsy

inter-sensor distances of <10 mm. Recently it has become pos-
sible to record dense array EEG (dEEG) of up to 256 chan-
nels, providing 20–25 mm interelectrode distances for most adult
head sizes. Several studies have shown that interictal source
localization with dEEG suggests its usefulness in neurosurgi-
cal planning in epilepsy (Lantz et al., 2003a,b; Michel et al.,
2004a; Holmes, 2008). However validation studies measuring the
accuracy of dEEG source imaging are still needed. This can be
achieved through simultaneously recording the scalp dEEG with
intracranial electrodes (icEEG), which provides a local measure
of electrical activity at the gyral cortical (pial) surface. In pre-
vious studies we have investigated the sensitivity and accuracy
of dEEG source analysis comparing 256-channel dEEG source
analysis of interictal activity and simultaneously recorded icEEG
in patients with mesial temporal lobe epilepsy (Yamazaki et al.,
2012a,b). In the present study, we extend this approach to inves-
tigate the accuracy of source estimation with dEEG in patients
with neocortical epilepsy using simultaneous dEEG and icEEG
recording.

MATERIALS AND METHODS
PATIENTS
We studied four patients, each of whom had suffered from
intractable localization related epilepsy for at least 2 years. Each
patient was a surgical candidate and underwent a presurgi-
cal workup including conventional long-term EEG monitor-
ing, MRI, 125-Iomazenil (IMZ)-single-photon emission tomogra-
phy (SPECT), 18-F fluorodeoxyglucose (FDG)-Positron emission
tomography (PET),and neuropsychological testing. Clinical infor-
mation for these patients is summarized in Table 1. Case 1 had
right parietal cortical dysplasia.

We received approval for this study from Seirei Hamamatsu
General Hospital Human Subject Committee and informed
consent was obtained from all patients.

INTRACRANIAL EEG RECORDING
Subdural strip and grid electrodes (Unique medical, Tokyo, Japan)
were implanted for each patient in order to delineate the epilepto-
genic zone for cortical excision, and to separate it from functional
areas. All electrode contacts were platinum, and interelectrode dis-
tance was 10 mm. The location and types of subdural electrodes
used for each patient are shown in Table 1.

DENSE ARRAY EEG RECORDING
The dEEG was recorded with the 256-channel Geodesic Sen-
sor Net (Electrical Geodesics, Inc., Eugene, OR, USA), providing
257 electrodes (including vertex reference) covering the face and
neck as well as cranium, with 20–25 mm interelectrode distances.
The coverage of the face and neck is important for measuring
the downward projection of electrical potentials from basal brain
regions.

SIMULTANEOUS icEEG AND dEEG ACQUISITION
We conducted simultaneous icEEG recording with NicoletOne
(CareFusion, Middleton, WI, USA) and dEEG with Net Amp300
(Electrical Geodesics, Inc., Eugene, OR, USA) at 1 kHz sampling
with bandpass filter 0.1 and 400 Hz for approximately 30–40 min.
A digital pulse from the icEEG system was provided to the dEEG
acquisition system for synchronization. Prior to the simultaneous
icEEG-dEEG recording, each patient recovered from the intracra-
nial placement for at least 3 days, allowing surgical wounds to
heal to avoid infection risk during simultaneous scalp record-
ing. There were no complications due to any of the simultaneous
recordings.

DATA ANALYSIS
Frequent epileptiform discharges were selected during artifact free
periods in the simultaneous dEEG and icEEG recordings. Inter-
ictal spikes seen in icEEG were visually identified by a certified

Table 1 | Case summary.

Case 1 Case 2 Case 3 Case 4

Age/sex 28 year/F 38 year/M 27 year/M 21 year/F

Onset 3 year 8 year 5 year 17 year

Sz type SPS, CPS, sGTC SPS, CPS, sGTC SPS, sGTC CPS, sGTC

MRI R-P cortical dysplasia Normal Normal Normal

IMZ-SPECT* R-P L-F, mT, laT Bilateral-F, P R mT

FDG-PET** R C-P L-F, mT, laT R-P R mT, laT

EEG Sz onset C4, P4 Fp1, F7, T3 P4, T4 T4, T6

Interictal C4, P4 Fp1, F7, T3 C4, P4, T6 Fp2, F8, T4

Subdural electrodes

location

SPS, simple partial seizure; CPS, complex partial seizure; sGTC, secondary generalized tonic clonic seizure; *, hypoperfusion area; **, hypometabolism area; mT, mesial

temporal lobe; laT, lateral temporal lobe.
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EEG technologist (MY) and confirmed by a board-certified clini-
cal epileptologist (AF). As expected, many of the icEEG spikes were
not detectible by inspection of the dEEG. We calculated the spike
detection rate of 256-channel dEEG (with the icEEG detection as
the criterion), and we measured the average maximum amplitude
for both the icEEG detected spikes and the smaller subset of dEEG
detected spikes.

Electrical source localization was conducted at the rising phase
for the dEEG detected spikes with a linear inverse method
(LAURA) using the GeoSource 1.0 software package1 within the
space of a 3D head model derived from the Montreal Neurologi-
cal Institute’s average adult MRI. The LAURA constraint provides
results very similar to the low-resolution electromagnetic tomog-
raphy (LORETA) spatial Laplacian constraint (Pascual-Marqui
et al., 2002), and this smoothing constraint has been shown to pro-
vide stable source estimation of interictal epileptiform events in
neurosurgical planning for epilepsy (Lantz et al., 2003a,b; Michel
et al., 2004a,b).

RESULTS
SPIKE DETECTION RATE
A total of 287 spikes were recorded in icEEG with four patients
during recordings of approximately 30–40 min each. One hundred

1http://www.egi.com

fifty-five of these spikes (54%) were also clearly distinguish-
able from background activity in the simultaneously recorded
dEEG. The dEEG detection rate for the spikes verified by icEEG
for each patient is summarized in Table 2. Case 2 showed
two independent patterns of interictal spikes, one originat-
ing from the left frontal region and the other from the left
mesial temporal region. The detection rate of neocortical spikes
was 56% and that for mesial temporal spikes in this case
was 39%.

icEEG AMPLITUDE OF DETECTABLE SPIKES
The average maximal icEEG amplitude of neocortical interictal
spikes that were also detectable by the scalp dEEG was 968 µV
(standard deviation of 139 µV), significantly higher (p < 0.01)
than that of dEEG undetectable spikes (757 µV; standard devi-
ation of 102 µV). The average maximal icEEG amplitude of
mesial temporal spikes that were also detectable by the scalp
dEEG was 1112 µV (standard deviation of 197 µV), significantly
higher (p < 0.01) than that of dEEG undetectable spikes (763 µV;
standard deviation of 172 µV).

DENSE ARRAY EEG SOURCE ESTIMATION
Figure 1 shows dEEG source estimation for the dEEG detected
icEEG spikes in each patient, visualized by displaying the voxel
with maximal source amplitude (as well as voxels with similar

Table 2 | Spike detection rate.

Spike location Case 1 Case 2 Case 3 Case 4

Parietal lobe Mesial temporal

lobe

Frontal lobe Parietal lobe Lateral temporal

lobe

No. of spilkes Detectable 40 14 44 36 21

Undetectable 31 22 39 20 20

Detection rate (%) 56 39 53 64 51

Amplitude (µV) Detectable 907 1112 902 989 1075

Undetectable 686 763 762 755 823

FIGURE 1 | dEEG source estimation. Upper: dEEG source estimation by dEEG superimposed on a standard MRI, down: icEEG findings, •: subdural

electrode, N: interictal discharges, F: ictal onset, white circle: resected area, : eloquent area
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amplitudes) using a section from the MNI typical brain image2

consistent with the MNI atlas used for the cortical dipole locations
in the GeoSource software. All spikes detected in dEEG were local-
ized to the same lobe correctly and 141 of 155 spikes (91%)
were well localized, close to the position confirmed by subdural
electrodes.

Figure 2 shows more detail for a typical example of icEEG
and dEEG source estimation. For this selected spike, the icEEG
and conventional EEG recordings are shown in Figure 2A. The
locations of the icEEG strips are shown in Figure 2B. The head
surface (scalp, face, and neck) distribution of the dEEG potentials
is shown in Figure 2C. From inspection, this dEEG head sur-
face topography is consistent with a mostly radial source in the
right posterior midline, with diffuse inversions over both sides of
the face indicating the approximate radial source orientation. The
peak of the non-invasive dEEG source estimation for this spike is
shown in Figure 2D consistent with visual inspection of the sur-
face array, and the post-operative MRI shows the resected region
in Figure 2E.

SURGICAL OUTCOME
All patients underwent resective surgery based on the intracranial
icEEG findings, functional mapping, and imaging studies. Patho-
logical findings are case 1: FCD type IIB, case 2: FCD type IIB, case
3: FCD type IA, and case 4: no abnormality. Surgical outcome is
Engel class Ia (case 3, 4), IId (case 1), and IIIa (case 2) within the
post-operative follow-up period 23–35 months at this time (mean,
30 months).

DISCUSSION
Simultaneous recording of non-invasive dEEG with icEEG allowed
a direct comparison of the sensitivity of dEEG to epileptiform
events (spikes) that were confirmed by intracranial recordings. In
these four patients with neocortical (extra temporal) epilepsy, the
non-invasive dEEG localization of spikes predicted not only the
intracranial location of the spikes, but also the cortical location of
seizure onset (Figure 1).

Clearly there were many spikes visible in the icEEG that were
not detected through visual inspection of the dEEG. For the neo-
cortical spikes identified by icEEG in the present study, the dEEG
spike detection rate was 56%. As would be expected, the dEEG
detected spikes were consistently larger in amplitude than the
dEEG undetected spikes in each patient. For the mesial tempo-
ral spikes examined in our previous studies with simultaneous
icEEG and dEEG (Yamazaki et al., 2012a,b), the dEEG detec-
tion rates were somewhat lower, 45 and 42%, respectively. Also
as expected, to be detectable by visual inspection of the dEEG, the
mesial temporal lobe spikes in those studies were typically larger
in amplitude (averaging 1236 µV; Yamazaki et al., 2012b) com-
pared with the dEEG detected neocortical spikes of the present
study (averaging 968 µV). For the one patient of the present
study with mesial temporal spikes, the 39% dEEG detection rate
was similar to the previous rates for detecting mesial temporal
spikes.

2www.bic.mni.mcgill.ca

A higher non-invasive detection sensitivity to neocortical than
mesial temporal spikes has also been observed in those MEG
studies where validation has also been obtained from simultane-
ous icEEG recording. Compared with dEEG, MEG is particularly
insensitive to the deep sources presented by mesial temporal lobe
spikes. Huiskamp et al., 2010 reported that whole head MEG
detected only 28% of the icEEG spikes generated in the mesial
temporal lobe, whereas it detected 70% of the icEEG detected
spikes from the lateral temporal lobe and extra temporal regions.
Similarly, Oishi et al., 2002 observed that MEG detected only 26%
of the mesial temporal spikes, but 53% of lateral frontal spikes
that were confirmed by simultaneous icEEG recording. Consider-
ing our previous results and the present study, 256-channel dEEG
is roughly equivalent to whole head MEG in detecting neocortical
sites but superior to MEG in detecting mesial temporal lobe spikes.

Magnetic fields are less distorted by the skull, cerebral fluid,
and scalp than electrical fields (Nakasato et al., 1994; Ebersole,
1999; Minassian et al., 1999; Otsubo et al., 1999; Morioka et al.,
2000). However, the accuracy of MEG for deep sources, such as in
the mesial temporal lobe, appears limited because magnetic sig-
nals fall off by the square of the distance (Mikuni et al., 1997;
Oishi et al., 2002; Rampp and Stefan, 2007). In addition, the 256-
channel dEEG sensor net includes sensors on the face and neck
that improve the characterization of the electrical fields from the
temporal lobe that are directed inferiorly and anteriorly, where
even whole head MEG has limited coverage. Finally, the inclusion
of accurate head conductivity information, such as from the MRI
and CT atlas used for finite difference conductivity modeling in
GeoSource software in the present analyses, is now helping to deal
with the ambiguities of electrical volume conduction that plague
EEG source localization.

Presurgical evaluation for what is typically called neocortical
epilepsy, located outside the mesial temporal lobe (and archicorti-
cal hippocampus), requires precise accuracy because the epilepto-
genic zones are often located adjacent to critical functional areas
of cortex (Otsubo et al., 1997; Minassian et al., 1999; Chitoku
et al., 2001). For the four patients of the present study, the non-
invasive dEEG source localization of the patient’s typical interictal
spikes was predictive of the icEEG localization of not only the
interictal spikes but also the seizure onset. Although the inter-
ictal events do not always localize to the same region as seizure
onset, the utility of careful non-invasive localization of interic-
tal events as a first stage in the presurgical workup is consistent
with previous dEEG studies on electric source imaging in epilepsy
(Michel et al., 2004b; Brodbeck et al., 2010). Nonetheless, non-
invasive localization of seizure onset is an important confirmation
for the hypotheses generated from localizing interictal events, and
may be an important form of converging evidence in preparing
for icEEG mapping of seizure onset (Holmes et al., 2008, 2010).
Non-invasive 256-channel dEEG is now available for long-term
monitoring for seizure onset; although more challenging than con-
ventional EEG monitoring, it is more practical than attempting
seizure monitoring with MEG.

There were several important technical limitations of this study
that should be addressed in future research. We used standard
3D sensor positions, rather than the precise 3D locations of the
256-channels for each individual net application, such as can be
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Yamazaki et al. dEEG imaging in neocortical epilepsy

FIGURE 2 | A typical example of icEEG and dEEG source estimation
(case 1). (A) The icEEG (upper) shows a right parietal spike. Interictal spike is
shown at electrodes # 1–5–7 and 12–16 which are located over the parietal
region. The EEG (lower) is simultaneous recorded 256-channel dEEG with
19-channel of 10/20 display. (B) Placement of subdural electrodes and the
location of the interictal spike. N Indicates the electrodes which show the

interictal spike. (C) Two hundred fifty-six-channel dEEG topographic plot of the
corresponding spike. The view is looking down on top of the head with nose
at the top. The 256-channnel topographic plot was instructive in localizing the
spike to the right parietal lobe. (D) The source estimation by dEEG
superimposed on a standard MRI. The interictal spike is localized to right
parietal head region. (E) Post-operative MRI.
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obtained with photogrammetry (Russell et al., 2005). Even with
careful placement of the net, the sensor positions can vary in
relation to the cortex from patient to patient depending on head
shape and the tissues of the face and neck. In addition, we used
the GeoSource atlas finite difference model of head conductiv-
ity, based on the MNI brain template (and skull CT fit to that
template), rather than building an electrical conductivity model
based on the individual’s MRI and CT for the source estimation.
Brodbeck et al., 2011 examined the sensitivity and specificity of
dEEG source estimation comparing individual MRI and stan-
dard MRI template and showed the benefit of using individual
MRI. For example, Case 1 in the present series had a focal cor-
tical dysplasia in the right parietal region; rather than using the
GeoSource atlas it would have been useful if we could compare

the source localization of the spikes with the lesion location
precisely by building the conductivity model from the patient’s
MR and CT.

CONCLUSION
Simultaneous recording of dEEG and icEEG allows direct exam-
ination of the accuracy of localizing cortical electrical sources
from non-invasive dEEG recordings. In four patients with neo-
cortical epilepsy examined with 256-channel dEEG, we observed
good prediction of both the interictal spikes and seizure onset as
verified by icEEG. Careful non-invasive analysis of the patient’s
typical interictal events with dEEG may be an important first
step in the neurosurgical planning for resection of the seizure
onset zone.
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Epilepsy may reflect a focal abnormality of cerebral tissue, but the generation of seizures
typically involves propagation of abnormal activity through cerebral networks. We exam-
ined epileptiform discharges (spikes) with dense array electroencephalography (dEEG) in
five patients to search for the possible engagement of pathological networks. Source analy-
sis was conducted with individual electrical head models for each patient, including sensor
position measurement for registration with MRI with geodesic photogrammetry; tissue
segmentation and skull conductivity modeling with an atlas skull warped to each patient’s
MRI; cortical surface extraction and tessellation into 1 cm2 equivalent dipole patches;
inverse source estimation with either minimum norm or cortical surface Laplacian con-
straints; and spectral coherence computed among equivalent dipoles aggregated within
Brodmann areas with 1 Hz resolution from 1 to 70 Hz. These analyses revealed character-
istic source coherence patterns in each patient during the pre-spike, spike, and post-spike
intervals. For one patient with both spikes and seizure onset localized to a single temporal
lobe, we observed a cluster of apparently abnormal coherences over the involved temporal
lobe. For the other patients, there were apparently characteristic coherence patterns asso-
ciated with the discharges, and in some cases these appeared to reflect abnormal temporal
lobe synchronization, but the coherence patterns for these patients were not easily related
to an unequivocal epileptogenic zone. In contrast, simple localization of the site of onset
of the spike discharge, and/or the site of onset of the seizure, with non-invasive 256 dEEG
was useful in predicting the characteristic site of seizure onset for those cases that were
verified by intracranial EEG and/or by surgical outcome.

Keywords: epilepsy, spike, coherence, networks, dEEG, cortical surface Laplacian

1. INTRODUCTION
There is increasing evidence in the recent literature that functional
networks of the human brain can be identified through correlation
analysis of fluctuations in hemodynamic functional magnetic res-
onance imaging (fMRI) measures (Fox et al., 2005; Fair et al., 2007,
2008;Van Dijk et al., 2010). To capture the millisecond dynamics of
the electrophysiological abnormalities of epilepsy, it is important
to apply a similar approach to electrophysiological network analy-
sis of epileptiform discharges, including both spikes and seizures
(Gotman et al., 2006; Hamandi et al., 2006; Laufs et al., 2006; Got-
man, 2008). Seizures may originate in a focal site of pathological
tissue, such as a malformation or lesion of the cortex, but the clin-
ically significant seizure typically involves propagation through
some functional networks of the brain.

In a recent study from our laboratory (Ramon et al., 2008;
Ramon and Holmes, 2012), non-linear dynamic measures of local
correlation among the 256 dense array electroencephalography
(dEEG) channels showed abnormally high levels of synchroniza-
tion over cortical regions that later prove to be seizure onset zones.
Because these analyses were conducted with the head surface
(scalp) dEEG, they are less precise than synchronization analysis

performed with cortical source analysis, assuming, of course, that
the cortical source analysis is indeed accurate. In the present study,
we developed computational models of the head geometry and
conductivity for each patient, including extraction of the corti-
cal surface and tessellation with oriented source dipoles, in order
to improve the electrical source analysis of the dEEG measures
of epileptiform events. The goal was to apply the synchroniza-
tion analysis (spectral coherence) to the waveforms of the cortical
sources directly.

2. MATERIALS AND METHODS
The workflow of the data analysis procedure employed for the
present study is presented in Figure 1.

2.1. PATIENTS AND CLINICAL SETTING
Patients in this study are five individuals with medically refrac-
tory epilepsy who were referred to the University of Washington
Regional Epilepsy Center for evaluation and treatment. All were
considered as potential candidates for epilepsy surgery. At the time
of the evaluation, the subjects ranged in age from 11 to 28 years
(mean age= 21 years). Four of the five were males. Duration of
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Song et al. Epileptic network coherence

FIGURE 1 | EEG was continuously recorded. Spikes were detected. The
continuous EEG was segmented. The head volume (MR/CT) was
segmented and registered to the electrodes. The lead field matrix was
calculated. The cortical source waveforms were estimated. The source
waveforms were averaged over Brodmann Areas. The BA waveforms were
transformed to the frequency domain by fast Fourier transformation. The
coherences of the BA waveforms were computed. If the high performance
computing (HPC) power is available, the step of averaging over BAs is not
required.

epilepsy at the time of the assessment varied from 2 to 16 years
(mean= 7 years). Each individual had failed trials of least four
standard antiseizure medications, either as monotherapy or in
combination, at the time of the presurgical evaluation (range 4–7
drugs).

All patients underwent as part of the presurgical assessment a
comprehensive history and clinical examination, routine awake-
sleep electroencephalogram (EEG), high-resolution magnetic res-
onance imaging (MRI), formal neuropsychological testing, and
standard EEG-video monitoring. In cases 1, 3, and 4, after a thor-
ough review of these initial studies, the consensus of opinion
rendered by epileptologists at Epilepsy Center was that intracra-
nial, subdural strip, or grid electrode EEG-video monitoring was
indicated, as the initial non-invasive evaluation failed to pro-
vide adequate information regarding seizure onsets. For case 2,
intracranial recording was not done because the parents decided
against surgery. For case 5, the evidence for temporal lobe onset
was sufficiently clear from non-invasive recording to proceed to
temporal lobe resection. Prior to invasive monitoring, all subjects
underwent 256 dEEG video monitoring to record electrographic
activity with a greater degree of spatial resolution and enhance the
non-invasive estimate of ictal onsets.

2.2. INTERICTAL SPIKE IDENTIFICATION
Dense array EEG data were collected during long term monitor-
ing on the epilepsy unit. Identification of spikes in the continuous
EEG file was first performed automatically using Persyst (Persyst,

San Diego, CA, USA). Briefly, Persyst employs a neural network
technique to identify spikes and a statistical clustering algorithm to
group spikes according to spatial similarity. The identified spikes
were then reviewed by an epileptologist to confirm that identified
spikes were indeed spikes and that their grouping were appropriate
(i.e., that spikes were topographically homogeneous within each
group).

Persyst identified multiple spike types for all patients. However,
based on review by the epileptologist, in three patients, only one
spike type was confirmed. In the other two patients, the epileptolo-
gist confirmed two spike types (see Table 1). For these two patients,
we analyzed the data for from both groups but only report results
from the analysis of the spike type consistent with their icEEG or
resected zone (see Discussion). Once identified in the continuous
record, the EEG was segmented centered on the spike peak, with
1.5 s before and after the spike for further analysis (see below).

2.3. REQUIREMENTS FOR ELECTRICAL SOURCE ANALYSIS
The understanding of the neural sources of the EEG has been
improved in recent years by a number of factors. A first step has
been more adequate spatial sampling of the potentials at the head
surface with dense sensor arrays (Tucker, 1993). The estimation of
the cortical sources of the surface EEG requires accurate charac-
terization of tissue geometries, the EEG sensors positions relative
to the tissues, and electrical conductivity of the tissues. Together,
the combined information makes up the electrical head model.

To create the electrical head model, the EEG sensors must first
be located precisely in relation to the head surface. Derivation of
sensor positions can be accomplished by using photogrammetric
techniques (Russell et al., 2005). Next, the cortical sources must be
characterized in the electrical model, typically as electrical dipoles.
If the orientation of each patch of cortex is known, such as from
cortical surface extraction from the MRI (Dale and Sereno, 1993),
then oriented sources may be used. Otherwise, xyz “triple” dipole
models must be used for each cortical source, with a considerable
loss of constraint, and thus loss of precision for the inverse esti-
mation. Next, a mathematical model of the volume conduction
of cortical sources to the head surface is constructed (Malmivuo
et al., 1997). When a high-resolution, volumetric MRI can be seg-
mented accurately, a finite difference (or finite element) model
can be constructed, specifying the conductivity of each voxel of
brain, cerebral spinal fluid, skull, and scalp (Salman et al., 2005a;
Turovets et al., 2006). Spherical or boundary element models can-
not account for the complexity of the conductive compartments,
particularly for inferior head regions that are critical for the prop-
agation of discharges basal brain structures (basal temporal and
orbital frontal) to the head surface (including the face and neck).
Because the resistive skull must be specified precisely, fitting an
volumetric x-ray computed tomography (CT) image to the head
model is a critical step (Salman et al., 2005b).

Finally, given the complex forward model specified by these
facts of tissue geometry and electrical conductivity, the estima-
tion of cortical source activity is made through an inverse model.
When the parameters of the electrical head model are specified
loosely or inaccurately, such as with electrodes only assumed to
be at typical positions, the cortical sources at unknown orien-
tations and therefore modeled as dipole “xyz” triples, and the
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Song et al. Epileptic network coherence

Table 1 | Clinical features of the 5 patients.

Patient Gender Age 10–20 EEG Spike types

(dEEG)

No. spikes icEEG Surgery Outcome

1 Male 27 R temp L fron* 6 R temp R temp Engel I

L occi 3

2 Male 13 Right R fron* 15 None None

3 Male 11 L fron mid L fron* 76 L fron L fron Engel II

4 Male 28 Midline R infe* 12 Midline None

L infe 12

5 Female 19 R fron temp R infe* 56 None R temp Engel I

L, left; R, right; *, typical spike type; temp, temporal; fron, frontal; mid, midline; occi, occipital; infe, inferior.

head conductivity modeled loosely as concentric spheres, the con-
straints on the source estimation are so loose as to create large
uncertainty bounds. Fundamentally, the inverse model is ill-posed,
and source estimation is an approximation in the best case. The
ill-posed inverse model may be stabilized through regularizing
with various methods, including the minimum norm (Ou et al.,
2008), 3D Laplacian smoothing (Pascual-Marqui et al., 1994), sta-
tistical standardization of the projection of each source to the
sensors (Pascual-Marqui, 2002), ECD (equivalent current dipole)
(Fischer et al., 2005), or beamforming (Gross et al., 2001). In previ-
ous research on localization of spike and seizure onset, reasonable
results have been created with dEEG (128 and 256 channel) mea-
surement, using a realistic head conductivity atlas (finite difference
model from an atlas MRI) with cortical triples and various meth-
ods of regularization and smoothing of the inverse (Michel et al.,
2004; Tucker et al., 2007, 2009; Guggisberg et al., 2008; Brodbeck
et al., 2010; Holmes et al., 2010a,b; Holmes, 2011; Bouet et al.,
2012; Yamazaki et al., 2012). These results suggest that more accu-
rate solutions for the inverse problem can be achieved with a more
accurate volume conductor head model.

In the present study, we improved the accuracy of the electrical
head model for each patient by specifying cortical source dipoles
whose orientation was known from extracting the gyral-sulcal cor-
tical surface for each patient. The goal was to develop an accurate
source analysis for major regions of the cortex (Brodmann areas)
that could then support analysis of electrophysiological coherence
that may be related to the pathological activity in cerebral networks
engaged by the patient’s epileptic discharges.

2.4. CONSTRUCTING THE ELECTRICAL HEAD MODEL
The electrical head model was constructed with the BrainK soft-
ware (Li et al., 2006). For each patient and each EEG recording
session, sensor positions of the 256-channel Geodesic Sensor Net
were determined with multi-camera geodesic photogrammetry
system (GPS) (Russell et al., 2005). The data were then registered
with the patient’s head model, derived from structural MRIs. The
patient’s volumetric MRI was segmented into scalp, skull, CSF, and
brain gray and white matter. Accurate segmentation was optimized
with a unique relative thresholding algorithm, which corrects for
the inhomogeneity of MR images. Characterization of the detailed
geometry of the skull was accomplished through non-linear warp-
ing of an atlas skull CT to the patient’s MRI image. Analysis of
the electrical source activity within the patient’s MRI allowed

inspection of the convergence of anatomical features with the
epileptic discharges. The MRI for Patient 3, for example, showed
a blurred gray-white boundary in the left dorsal frontal region,
possibly suggesting a malformation, and this structural feature
proved to be co-located with the patient’s typical source-localized
epileptiform discharges.

With the cortical ribbon segmented by its inner and outer table,
the outer (gray to CSF) cortical surface was meshed, and then cast
into a geodesic graph theoretical representation with the Chaco
graph algorithms (Sandia National Laboratories). The graph rep-
resentation allows flexible tessellation of the cortical surface, and
flexible representation of mathematical constraints defined on
that surface, such as the Cortical Surface Laplacian (CSL) defined
below. For the present analysis, 1 cm2 cortical patches (about 1200
per hemisphere) were created. For each patch, the average ori-
entation within that patch was characterized by computing the
surface normal for each triangle in that patch, then computing the
vector sum across all patch triangles as the representation of the
equivalent dipole orientation for that patch.

2.5. INVERSE METHOD
The use of oriented dipoles on the cortical surface provides an
important constraint on the inverse source estimation process that
appears to improve accuracy considerably. Much of the ambigu-
ity in the relation of cortical electrical activity to the head surface
measurements is created by the extensive gyral and sulcal folding
of the individual patient’s cortex. The requirement, of course, is
that the position of the EEG sensors in relation to the oriented
sources must be specified precisely; otherwise the misalignment
will result in incorrect source attributions.

Given accurate geometric alignment, accuracy in the conduc-
tivity of the volume conduction model is then required, including
the precise geometry of the skull, such as from CT. Given these
several measurement constraints on the forward model, we have
observed that minimal regularization constraints on the inverse
estimation, such as the minimum norm, yield accurate results.
Support for this accuracy has come from initial (unpublished)
validation studies with dEEG mapping of individual sensory and
motor potentials, with similar results as seen with fMRI for that
individual. These conclusions on the decreased importance of reg-
ularization are consistent with previous reports using oriented
cortical sources (Dale and Sereno, 1993; Ou et al., 2008; Knosche
et al., 2013).
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Song et al. Epileptic network coherence

FIGURE 2 | Patient 1’s non-invasive dEEG localization of a typical
(left-frontal) spike. (A) Topographic map of scalp potentials at peak of spike
(which is used for spike classification). Orientation is top looking down with
the nose at the top; red=positive, blue=negative, white= zero. The right
inferior (face and neck) spatial gradient (described by the isopotential lines)
suggests a right anterior temporal source, even though the spike (i.e.,
negative features) was located at left-frontal recording sites. (B) Waveforms of
EEG from all channels (top row), source waveforms from all 2240 sources
(second row), source waveform from dipole that shows maximal activity at
spike peak (third row, blue trace) and source waveform from dipole that
shows maximal activity at 50% of spike peak (third row magenta trace), and

the frequency spectra of the blue source waveforms (third row) shown in
forth row. Note that the dipole location of the blue trace is in the left temporal
lobe and the magenta trace in the third row is in the right anterior temporal
lobe, consistent with the icEEG data and resection zone. In (B), each column
represents 1 s of data from a 3-s segment. Middle column represent data
centered on the spike peak. (C) Electrical source localization with the patient’s
individual electrical head model. Left: scalp potential reconstructed from the
source estimate (at 50% of spike peak). Right: partially inflated brain
illustrating the dominant source associated with the data illustrated in left
figure (location of dipole described by magenta trace in (B), third row). Data
was thresholded to only show top 5% activity.
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Although reasonably accurate with the orientation constraints,
the minimum norm remains a non-specific constraint, and is not
an optimal fit to the physiological properties of electrophysiolog-
ical activity of the cortex. To optimize the inverse constraints that
are appropriate to our knowledge of localized cortical activity,
we have developed an inverse regularization or smoothing con-
straint that makes use of the knowledge of adjacency of dipoles
on the extracted 2-dimensional cortical surface. This is the Cor-
tical Surface Laplacian, computed as the Laplacian operator for a
given dipole source against the (typically 6) neighboring dipoles
on the 2D cortical surface. There are both physical and physio-
logical rationales for this constraint. Physically, only synchronous
activity of adjacent, laminar cortical neurons (thought to be pyra-
midal cells and their apical dendrites) is capable of generating the
far field observed by head surface electrodes (Nunez and Srini-
vasan, 2005). Physiologically, the columnar and hyper-columnar
organization of the human cortex (Jones, 2009) makes it plausible
that synchronous activation – perhaps even as large as a 1-cm2

patch – might be reasonable.
The CSL constraint is then used to smooth or regularize the

inverse estimation, to avoid inappropriate mathematical results
that are possible with the instabilities of the matrix inverse. The
inverse estimation then: (1) minimizes the difference between the
forward oriented cortical source model and the observed surface
potentials (the data fidelity term) and (2) minimizes the CSL as
the regularization term. With Φ as the measured surface potentials,
K as the lead field or forward volume conduction matrix, J as the
cortical sources, and ε as the error term, the surface potentials can
be modeled as the projection of the cortical source activity through
the head volume model, plus error:

Φ = KJ + ε.

The inverse formulation minimizes the data fidelity term plus the
regularization term:

Ĵ = arg min
J

{
‖Φ− KJ‖2

+ α‖WJ‖2} ,

where W comprises a discrete spatial Laplacian operator defined
by

wij =


−1 if i = j

1
Ni

if i 6= j and voxel j is a neighbor of voxel i

0 otherwise
,

where Ni is the number of cortical surface dipole neighbors
(patches or voxels) to dipole i.

2.6. INVESTIGATING PATHOLOGIES OF CORTICAL COHERENCE
The goal of the present study was to implement and then eval-
uate these several advances in individual head modeling for
dEEG source waveforms to investigate cortical network patterns
(source coherence) in relation to epileptiform discharges (spikes)
in patients being examined for possible neurosurgical resection
of the epileptic focus. The hypothesis was that abnormal pat-
terns of cortical source coherence during interictal events may
reveal abnormal patterns of electrophysiological synchronization

associated with the seizure onset zone. For each of the five patients,
we selected characteristic interictal spikes and then clustered these
to insure that all spikes in the cluster had a common head surface
topography in the 256 surface dEEG array. The cortical source
waveforms were computed with the patient’s individual head
model with the CSL constraint for three intervals: 1 s before the
spike; 1 s centered on the spike, and 1 s after the spike.

Coherence is the standardized cross-spectral density computed
between two signals, x and y :

X , Y : Fast Fourier Transform of x and y

SXX (f ) : autospectrum of Xat frequency f

SYY (f ) : autospectrum of Y at frequency f

SXY (f ) : cross - spectrum of X and Y at frequency f

Coherence(f ) =
SXY (f )√

SXX (f ) · SYY (f )
.

Just as the power spectrum describes frequency spectrum of
the variance of one signal, the cross-spectrum describes the fre-
quency spectrum of the covariance between two signals. Because
the covariance is affected by the amplitude of the component
signals, the coherence measure is standardized, by dividing the
cross-spectrum by the square root of the product of the power
spectra. Coherence is thus the frequency domain analog of the
Pearson correlation coefficient (which is covariance of two vari-
ables divided by the square root of the product of their respective
variances).

With the 1-s epoch for each interval (pre-spike, spike, and
post-spike), the frequency resolution was 1 Hz, and coherences
for 1–70 Hz were examined. The frequency range was divided into
five frequency bands; delta, theta, alpha, beta, and gamma. With
∼2400 patches of size 1 cm2 for the cortical surface, and thus
2400 equivalent source dipoles, there are 2,878,800 comparisons
[(N 2
−N )/ 2]. With 5 coherence values for each comparison, the

coherence matrix for each 1-s interval becomes somewhat large
(∼360 million entries). For this preliminary study, we therefore
grouped the dipoles within the BAs for each hemisphere, and
averaged all source waveforms in each BA. For the grouping, the
individual’s brain was transformed to Talairach space, and the BAs
for each cortical patch were determined with the Talairach Dae-
mon (Lancaster et al., 2000). This resulted in about 40 BAs per
hemisphere (depending on the anatomy of the patient’s cortex
and its alignment with the Talairach transform). This resulted in
∼3160 cross-signal coherences in each matrix. For an overview
visualization of the coherence matrices, each was plotted as an
80× 80 matrix, with the coherence entries scaled by a color palette
(Figure 3). Each matrix shows coherence values in the form of
a color palette, with green to blue as lower coherence and yel-
low to red as higher coherence. The variables on the axes are the
approximate Brodmann areas (slightly different areas are reflected
by these numbers for each patient, depending on the patient’s
cortical anatomy and alignment with the Talairach atlas). In each
matrix, the intra-hemispheric coherences for the right hemisphere
are in the upper left, and intra-hemispheric coherences for the
left hemisphere in the lower right, and inter-hemisphere coher-
ences in the lower left and upper right quadrants. In general, for
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FIGURE 3 | Patient 1’s dEEG cortical source coherence
matrices for the delta (0–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), and gamma (30–70 Hz) frequency
bands, computed between 82 Brodmann areas (the numbers

identify slightly different BAs for each patient, depending on
alignment). These coherences are computed for the 1-s
pre-spike (A), the 1-s centered on the spike (B), and the 1-s
post-spike (C) intervals.

all patients, intra-hemispheric coherences are higher than inter-
hemispheric coherences. For a more anatomical visualization, the
cortical patch dipoles were plotted in their 3D positions in a glass

brain (the vertical or axial projection was made transparent), and
the highest 100 coherences from each interval were represented by
a line between the coherent signals (e.g., Figure 4).
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3. RESULTS
For each patient, we first summarize the standard clinical evalu-
ation: (1) non-invasive spike and seizure localization with con-
ventional (Ten-Twenty System) EEG; (2) non-invasive spike and

seizure localization with 256 dEEG; (3) icEEG when that was done;
(4) the decision whether the patient was a surgical candidate;
and (5) if so, the surgical outcome (Engel class) at the present
time in Table 1. Next, the coherence analyses for the interictal

FIGURE 4 | Patient 1’s dEEG cortical source coherence peaks (highest 100 of ∼6400) for pre-spike (A), spike (B), and post-spike (C) intervals of the five
frequency bands.
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events (spikes) are presented, for the pre-spike, spike, and post-
spike intervals. One typical spike cluster (comprising spikes with
similar head surface topographies) is described for each patient;
the set of spike clusters obtained for that patient and differences
in coherence patterns for the other clusters is summarized in each
case. The peak coherences are shown for all 3 intervals (pre-spike,
spike, and post-spike). In each case, the differences across differ-
ing spike clusters for that patient, and the differences between
pre-spike, spike, and post-spike intervals are summarized.

3.1. PATIENT 1
EEG: right temporal seizures, not well localized on the scalp.
dEEG: right medial temporal localization for both spikes and
seizures.
icEEG: right medial temporal localization for both spikes and
seizures.
Surgery: right temporal resection.
Outcome: seizure free (Engel Class I) for 1 year.
Coherence analysis: cortical patch tessellation resulted in 2240
patch dipoles for Patient 1 which were classified into 82 Brod-
mann areas (41 per hemisphere). For a typical cluster of left-
frontal spikes (N = 6), the coherence matrices are shown in
Figure 3.

For this patient, the spike clustering show a group with a
left-frontal distribution. However, analysis of the spike at 50%
maximum amplitude (as recommended in previous work by Lantz
et al., 2003) show a dominant right-lateralized source in the tem-
poral region (see Figure 2). An overview summary of Patient
1’s spike coherences is given in Figure 3. The pre-spike inter-
val coherences appear unremarkable, with the possible exception
of certain low inter-hemispheric values (blue) for the gamma
band. The spike-interval coherences show higher values overall,
including in the inter-hemispheric quadrants for the lower (delta,
theta, alpha) bands. The post-spike interval coherences return to
somewhat lower values, with perhaps a specific decrease in the
inter-hemispheric values for the lower (delta, theta, alpha) bands.
The peak coherences for this same spike cluster for Patient 1 are
shown in Figure 4. The patterns for peak coherences for Patient
1 are similar for pre-spike, spike, and post-spike intervals, with
a strong delta cluster (and perhaps theta) over the right tem-
poral region. There seems to be a similar pattern across bands
in which there are fairly distributed peak coherences across the
left hemisphere, but a focal cluster in the temporal area for the
right hemisphere. Somewhat higher values of the distributed left
hemisphere coherences are observed for the alpha band in the
pre-spike interval. The right temporal cluster may be particularly
strong for the delta band in the spike interval. The post-spike
interval includes what appears to be stronger occipital coherences,
including inter-hemispheric, particularly for the theta band.

3.2. PATIENT 2
EEG: interictal events (spikes) were right sided. Seizures seemed
to be on the right, but the pattern was unclear.
dEEG: right temporal localization for both spikes and seizure
onset in Figure 5.
icEEG: not done.

Surgery: none. Parents decided not to pursue surgical resection.
Coherence analysis: cortical patch tessellation resulted in 2272
patch dipoles for Patient 2 for 83 Brodmann Areas. A cluster of
15 right frontal spikes was identified. In the dEEG analysis (both
atlas and individual cortical source localization), the onset of
these spikes was localized to the right temporal area, and there was
rapid propagation to sources in the right frontal area (creating
the right frontal topography for the spike peak).

Patient 2’s peak coherences were generally similar for the pre-
spike, spike, and post-spike intervals, as was observed for all
patients in this series (Figure 6). For the delta, theta, and alpha
bands particularly, there was a cluster of peak coherence over the
left-frontal and temporal regions. For beta and gamma bands,
there was a cluster of peak coherence over the right posterior
regions.

3.3. PATIENT 3
EEG: seizures observed with apparent onset in the left-frontal
midline.
dEEG: similar left-frontal midline localization for both spikes
and early seizure activity, but evidence of early onset for both
spikes and seizures in left temporal region in Figure 7.
icEEG: seizure activity observed over left-frontal midline cortex.
Surgery: resection of left-frontal midline.
Outcome: after 1 year, seizures are improved (Engel Class II).
Coherence analysis: cortical patch tessellation resulted in 2260
patch dipoles for Patient 3 for 80 Brodmann Areas. Spike cluster-
ing showed the predominance of spikes showed a left-frontal
topography (N = 76); these were examined with coherence
analysis.

The peak coherence analysis for Patient 3 (Figure 8) showed
fairly similar patterns across the three intervals. Coherences are
somewhat higher for right hemisphere cortical sources than left
hemisphere cortical sources. Somewhat higher coherences are seen
for the beta band than for other frequencies, and for the gamma
band for the right hemisphere intra-hemispheric values particu-
larly. The pattern seems like a mirror image of that for Patient 1,
with a distributed frontotemporal cluster of peak coherences over
the right hemisphere, but a more focal pattern of peak coherences
over the left temporal region.

3.4. PATIENT 4
EEG: seizures appeared to involve midline structures.
dEEG: seizures appeared to involve right central and midline
structures. Interictal analysis of several spike clusters (right infe-
rior, left inferior) showed the onset of each of these differing spike
discharges appeared to be in the left and right medial temporal
cortex as well as bilateral mediofrontal cortex (Figure 9).
icEEG: seizures involved both left and right midline cortex.
Surgery: none. Patient was judged not to be a surgery candidate.
Coherence analysis: cortical patch tessellation resulted in 2247
patch dipoles for Patient 4 for 81 Brodmann Areas. Spike cluster-
ing showed the three differing peak topographies: midline frontal,
left inferior, and right inferior. The right inferior spike cluster was
selected for coherence analysis (N = 12).
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Song et al. Epileptic network coherence

FIGURE 5 | Patient 2’s non-invasive dEEG localization of a typical
(right frontal) spike. (A) Topographic map of scalp potentials at peak of
spike (which is used for spike classification). Orientation is top looking
down with the nose at the top; red=positive, blue=negative,
white= zero. (B) Waveforms of EEG from all channels (top row), source
waveforms from all 2272 sources (second row), source waveform from
dipole that shows maximal activity at 50% of spike peak (third row, blue
trace) and source waveform from dipole at a distance from maximal
location (third row magenta trace), and the frequency spectra of the blue

source waveforms (third row) shown in forth row. Note that the dipole
location of the blue trace is in the right temporal lobe. In (B), each column
represents 1 s of data from a 3-s segment. Middle column represent data
centered on the spike peak. (C) Electrical source localization with the
patient’s individual electrical head model. Left: scalp potential
reconstructed from the source estimate (at 50% of spike peak). Right:
partially inflated brain illustrating the dominant source associated with the
data illustrated in left figure [location of dipole described by blue trace in
(B), third row]. Data was thresholded to only show top 5% activity.

The peak coherences of the spike interval for Patient 4
were possibly more focal than for the other intervals, impli-
cating the left inferior region for the delta band (Figure 10).

However, as is typical in these analyses, the peak coherence
patterns were roughly similar for the three (pre-spike, spike,
and post-spike) intervals. For Patient 4, there were suggestions
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FIGURE 6 | Patient 2’s dEEG cortical source coherence peaks (highest 100 of ∼6400) for pre-spike (A), spike (B), and post-spike (C) intervals of the five
frequency bands.

of a tight temporal lobe cluster, in this case on the left,
which seemed to engage other left posterior sites for the
delta.

3.5. PATIENT 5
EEG: seizures appeared to involve right frontotemporal areas, and
spikes were right sided.
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FIGURE 7 | Patient 3’s non-invasive dEEG localization of a typical
(left-frontal) spike. (A) Topographic map of scalp potentials at peak of
spike (which is used for spike classification). Orientation is top looking
down with the nose at the top; red=positive, blue=negative,
white= zero. (B) Waveforms of EEG from all channels (top row), source
waveforms from all 2260 sources (second row), source waveform from
dipole that shows maximal activity at 50% of spike peak (third row, blue
trace) and source waveform from dipole at a distance from maximal
location (third row magenta trace), and the frequency spectra of the blue

source waveforms (third row) shown in forth row. Note that the dipole
location of the blue trace is in the left-frontal lobe. In (B), each column
represents 1 s of data from a 3-s segment. Middle column represent data
centered on the spike peak. (C) Electrical source localization with the
patient’s individual electrical head model. Left: scalp potential
reconstructed from the source estimate (at 50% of spike peak). Right:
partially inflated brain illustrating the dominant source associated with the
data illustrated in left figure (location of dipole described by blue trace in
(B), third row). Data was thresholded to only show top 5% activity.
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FIGURE 8 | Patient 3’s dEEG cortical source coherence peaks (highest 100 of ∼6400) for pre-spike (A), spike (B), and post-spike (C) intervals of the five
frequency bands.
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FIGURE 9 | Patient 4’s non-invasive dEEG localization of a typical (right
inferior) spike. (A)Topographic map of scalp potentials at peak of spike (which
is used for spike classification). Orientation is top looking down with the nose
at the top; red=positive, blue=negative, white= zero. (B) Waveforms of
EEG from all channels (top row), source waveforms from all 2247 sources
(second row), source waveform from dipole that shows maximal activity at
50% of spike peak (third row, blue trace) and source waveform from dipole at
a distance from maximal location (third row magenta trace), and the

frequency spectra of the blue source waveforms (third row) shown in forth
row. In (B), each column represents 1 s of data from a 3-s segment. Middle
column represent data centered on the spike peak. (C) Electrical source
localization with the patient’s individual electrical head model. Left: scalp
potential reconstructed from the source estimate (at 50% of spike peak).
Right: partially inflated brain illustrating the dominant source associated with
the data illustrated in left figure (location of dipole described by blue trace in
(B), third row). Data was thresholded to only show top 5% activity.
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FIGURE 10 | Patient 4’s dEEG cortical source coherence peaks (highest 100 of ∼6400) for pre-spike (A), spike (B), and post-spike (C) intervals of the
five frequency bands.
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dEEG: both spikes and seizures showed a right medial temporal
lobe onset in Figure 11.
icEEG: not done.
Surgery: right temporal lobe resection. Patient is seizure free
(Engel Class I) for about 1 year.
Coherence analysis: cortical patch tessellation resulted in 2244
patch dipoles for Patient 5 for 82 Brodmann Areas. Spike
clustering showed only one topography: right inferior spikes
(N = 56).

Patient 5’s peak coherences (Figure 12) show a unique pattern
of left-frontal and temporal coherences, together with high coher-
ences between these regions with a source in the right frontal area.
This pattern is observed for the lower frequency bands. Whereas
features of this pattern can be seen for the beta and gamma bands,
there are increased coherences over right hemisphere regions, par-
ticularly for the frontal and temporal regions for the gamma
band.

4. DISCUSSION
The results of the coherence analyses in the present study must be
seen as preliminary. We are only beginning to validate the oriented
cortical source analysis constructed from individual head models.
The present data are the first we have examined with oriented cor-
tical source analysis of epileptic discharges and the present results
are perhaps most useful in illustrating the approach to charac-
terizing cortical network electrophysiology rather than providing
definitive evidence on epileptic networks.

In a similar vein, DICS (dynamic imaging of coherent sources)
has been used to localize the epileptic spikes using oscillatory
features (Guggisberg et al., 2008; Bouet et al., 2012). The DICS
method focuses on the source localizations of the spike-related
high frequency activity (>20 Hz). The present study considered
low as well as high frequencies, using coherence analysis to attempt
to discern pathological networks contributing to the epileptic
spikes.

In considering the accuracy of the oriented cortical source
analysis with the CSL constraint, we observed good correspon-
dence in the present CSL analyses of spike and seizure onset and the
atlas-based model (dipole triples with the MNI average cortex and
a generic head conductivity model) implemented in Geosource
2.0. Given the previous validation of the atlas (Geosource 2.0)
analysis in relation to intracranial recordings (Yamazaki et al.,
2012) and surgical outcome (Holmes et al., 2008, 2010a) the
present results imply that the CSL inverse is at least roughly correct
when applied to the oriented cortical sources constructed for the
individual patient.

Given the previous findings of characteristic patterns of EEG
synchronization over the seizure onset zone in the scalp (head sur-
face) EEG (Ramon and Holmes, 2012), we organized the present
study to examine cortical source coherence, rather than EEG elec-
trode channel coherence. On first principles, we would expect the
cortical source coherence – even with the summation over the large
Brodmann areas – to reveal more about cortical function than the
badly superposed gyral and sulcal fields that are summed at any
given surface electrode.

Whether the coherence analysis of the source activity before,
during, and after the spike will yield clinically meaningful infor-
mation remains to be seen. It is noted here that, because this study
represent the first systematic study of the approach we employ
here, we also analyzed several aspects of the data but do not report
findings in detail here. First, for those patients with confirmed
multiple spike types (e.g., Patients 1 and 4), the coherence patterns
were not substantially different between the spike types at the three
time intervals. Second, we also examined random data from spike-
free intervals, and the coherence patterns for each patient was
similar to their spike-interval coherence patterns. Nevertheless,
the overall results do point to interesting possibilities.

Patient 1 did show a promising result. He manifested a single
seizure focus in the right temporal lobe that, even though the peak
of the spike indicated a left-frontal focus, when resected, resulted in
his being seizure free. His characteristic interictal spikes were asso-
ciated with a tight pattern of right temporal lobe peak coherences
that dominated over other coherences in the right hemisphere. Of
course, an obvious interest is whether seizure onset is associated
with a similar pattern of abnormal synchronization. We chose
to focus on interictal events for this preliminary study because
the dEEG data quality is high, and there are many spikes that
provide for statistical stability of the results. Nonetheless, it is
clearly important to extend these methods to analysis of cortical
synchronization associated with seizure onset.

Patient 5 also showed spikes and seizures localized to the right
temporal lobe, and a right temporal lobectomy eliminated seizures
(at least for the 1-year follow up to date). Yet Patient 5 showed a
dominance of peak coherences over left frontotemporal regions for
most frequency bands. It was the case that the gamma band showed
the strongest coherences for Patient 5, where a right-lateralization
of frontal and temporal coherences was observed. Nonetheless,
there was no simple association of temporal lobe epileptic pathol-
ogy that could be concluded from these two cases which appeared
to be straightforward single sided temporal lobe epilepsy from
the dEEG evaluation, and which have been seizure-free following
temporal lobectomy.

Patient 2’s parents decided not to pursue surgical interven-
tion. Yet the dEEG localization of both spikes and seizure onset
pointed to a right temporal localization. With no indications of
other epileptic foci, the dEEG localization has generally proven
accurate for predicting both icEEG results and surgical outcome
(Holmes et al., 2008, 2010b; Holmes, 2011). Nonetheless, Patient
2 showed a consistent cluster of left-frontal and temporal peak
coherences, for the delta and theta bands, a pattern that seems
discrepant with the more standard dEEG localization of spike and
seizure source amplitudes.

Patient 3 was a difficult case, in that the primary findings
pointed to the left superior medial frontal area, and there was a
possible cortical anomaly in this area, and yet surgical resection of
this area was only effective in improving, rather than eliminating,
seizures. The largest discharges for both spikes and seizure onset
were clearly localized to the left superior medial frontal area for
Patient 3. There were subtle clues in the dEEG amplitude analysis
that these discharges (for both spikes and the large discharge at
seizure onset) were preceded by a source amplitude increase in the
left temporal area. However, temporal lobe source activity is often
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Song et al. Epileptic network coherence

FIGURE 11 | Patient 5’s non-invasive dEEG localization of a typical (right
inferior) spike. (A)Topographic map of scalp potentials at peak of spike (which
is used for spike classification). Orientation is top looking down with the nose
at the top; red=positive, blue=negative, white= zero. (B) Waveforms of
EEG from all channels (top row), source waveforms from all 2244 sources
(second row), source waveform from dipole that shows maximal activity at
50% of spike peak (third row, blue trace) and source waveform from dipole at
a distance from maximal location (third row magenta trace), and the

frequency spectra of the blue source waveforms (third row) shown in forth
row. In (B), each column represents 1 s of data from a 3-s segment. Middle
column represent data centered on the spike peak. (C) Electrical source
localization with the patient’s individual electrical head model. Left: scalp
potential reconstructed from the source estimate (at 50% of spike peak).
Right: partially inflated brain illustrating the dominant source associated with
the data illustrated in left figure (location of dipole described by blue trace in
(B), third row). Data was thresholded to only show top 5% activity.
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Song et al. Epileptic network coherence

FIGURE 12 | Patient 5’s dEEG cortical source coherence peaks (highest 100 of ∼6400) for pre-spike (A), spike (B), and post-spike (C) intervals of the
five frequency bands.

www.frontiersin.org May 2013 | Volume 4 | Article 55 | 113

http://www.frontiersin.org
http://www.frontiersin.org/Epilepsy/archive
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associated with the early milliseconds of spike discharges in our
experience, but it is still unclear whether this has clinical signifi-
cance. It is worth noting that Patient 3 showed a tight left temporal
coherence cluster, in contrast to more distributed coherences over
the right hemisphere (Figure 8), in a mirror image of the pattern
observed for Patient 1. Whether or not this restriction of hemi-
spheric peak coherences to the temporal lobe could be taken as
a signal of temporal lobe involvement in seizure onset is unclear
without further studies.

Patient 4 is another example where early source amplitude
(rather than coherence) changes are observed in the temporal lobe
at the onset of spikes, but with uncertain clinical significance. In
examining each of Patient 4’s several spike types (left inferior,
right inferior), a left medial temporal source seemed to be the first
indicator of the discharge. However, seizures appeared to show a
midline onset, not only in the conventional EEG but in the dEEG
as well. Furthermore, bilateral icEEG recordings showed apparent
seizure onsets from both left and right midlines. The peak coher-
ence patterns during spikes for Patient 4 showed left temporal and
posterior clusters for delta and theta bands.

Although such clues are intriguing, the challenge for a novel
method like cortical source coherence analysis will be to obtain
validation from a number of converging perspectives, including
normal and functional studies as well as epilepsy studies. We think
it is impressive that the delta band of coherence shows apparently
meaningful results in these analyses, and to a lesser extent theta
band. Whereas the transient features of the spike amplitude involve
spectral components in the delta and theta frequency bands, there
is typically little power in the gamma band in the head surface
EEG. Furthermore, gamma frequency of the EEG is often con-
taminated by muscle artifact. Nonetheless, although it is clearly
important to consider artifactual explanations for the apparent
EEG gamma patterns in high frequency analyses, it appears at the
present time that meaningful coherence results can be obtained
in this high frequency range in human subjects. The observation
of high frequency oscillations in intracranial EEG at seizure onset
(Kobayashi et al., 2010; Jacobs et al., 2011) makes it clear that high
frequency features are an important target for non-invasive EEG
analysis, and future research should examine the high gamma band
(above 70 Hz).

A clear limitation of the present study is that we only exam-
ined EEG coherence around spike events rather than around

seizure onset. Although interictal events are often localizing for
seizure onset, there are very likely dynamics of cortical syn-
chronization that can only be studied in relation to seizure
onset.

Another limitation of the present study is that we grouped
the oriented cortical sources into Brodmann areas, primarily for
computational convenience. A goal for research on oriented cor-
tical sources must be to implement the high performance com-
puting necessary to examine the full cortical source coherence
matrix, applying not only statistical analysis and decomposition
but also effective visualization methods. Recent advances in dif-
fusion imaging tractography (Scherrer and Warfield, 2010) have
made it possible to compute a full set of likely cerebral fiber tracts
(N = 15 million), and to align them with both subcortical struc-
tures and the cortical patch tessellation implemented in the present
study. Anatomically specific measures of cortical electrophysiology
will continue to bring important tools to the study of epilepsy in
the near future. The challenge will be to apply these tools to the
study of epileptic networks in order to understand their clinical
significance.

CONCLUSION
EEG coherence provides a measure of the covariance among sig-
nals that resolves the frequency features of that covariance. In the
present research, coherence was computed among cortical source
waveforms, localized to the oriented cortical surface with detailed
head models for individual patients. The improved source analy-
sis with anatomical constraints promises new insights into the
network properties that may be altered in epilepsy. The first step
in these analyses was localizing the amplitude onset of the spike
with 256 dEEG, which proved useful in predicting the onset of
the seizure in each case. The utility of dEEG spike localization
was verified by dEEG and icEEG analyses of seizure onset, and
was confirmed in several cases by success of surgical resection.
Whether cortical source coherence analysis adds to the clinical
utility of spike amplitude localization remains to be seen. Perhaps
the most intriguing observation was the frequent pattern of strong
coherence centered on temporal lobe structures in several patients.
Understanding the clinical significance of this pattern will require
further studies of seizure onset, as well as contrast analyses with
normal individuals and with apparently normal EEG intervals in
the epileptic patients.
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The stochastic behavior of the phase synchronization index (SI) and cross-frequency cou-
plings on different days during a hospital stay of three epileptic patients was studied
for non-invasive localization of the epileptogenic areas from high density, 256-channel,
scalp EEG (dEEG) recordings. The study was performed with short-duration (0–180 s),
seizure-free, epileptiform-free, and spike-free interictal dEEG data on different days of
three subjects. The seizure areas were localized with subdural recordings with an 8×8
macro-electrode grid array and strip electrodes.The study was performed in theta (3–7 Hz),
alpha (7–12 Hz), beta (12–30 Hz), and low gamma (30–50 Hz) bands. A detrended fluctuation
analysis was used to find the long range temporal correlations in the SI that reveals the
stochastic behavior of the SI in a given time period. The phase synchronization was com-
puted after taking Hilbert transform of the EEG data. Contour plots were constructed with
20 s time-frames using a montage of the layout of 256 electrode positions. It was found
that the stochastic behavior of the SI was higher in epileptogenic areas and in nearby areas
on different days for each subject. The low gamma band was found to be the best to local-
ize the epileptic sites. Also, a stable higher pattern of SI emerged after 60–120 s in the
epileptogenic areas. The cross-frequency couplings of SI in theta–gamma, beta–gamma,
and alpha–gamma bands were decreased and spatial patterns were fragmented in epilepto-
genic areas. Combinations of an increase in the stochastic behavior of the SI and decrease in
cross-frequency couplings are potential markers to assist in localizing epileptogenic areas.
These findings suggest that it is possible to localize the epileptogenic areas non-invasively
from a short-duration (∼180 s), seizure-free and spike-free interictal scalp dEEG recordings.

Keywords: epilepsy localization, dEEG, phase synchronization, stochastic behavior of EEG, cross-frequency
couplings

INTRODUCTION
In previous studies (Ramon and Holmes, 2012, 2013), we have
demonstrated that the stochastic behavior of the phase synchro-
nization index (SI) derived from the high density (256-channel)
scalp EEG data has a potential to localize the epileptic sites in
human subjects. A 256-channel scalp EEG data is often referred as
dEEG or hdEEG data. These previous studies were limited either to
a single day (Ramon and Holmes, 2012) or for multiple days but in
a single EEG band of low gamma frequencies (Ramon and Holmes,
2013). The present work is an extension and a comprehensive sum-
mary of the previous work on multiple days in four EEG bands,
viz., theta (3–7 Hz), alpha (7–12 Hz), beta (12–30 Hz), and low
gamma (30–50 Hz) and it confirms our previous results that the
stochastic behavior of the SI in the low gamma band was best
suited to localize the epileptic sites derived from a short-duration
(∼180 s) interictal scalp dEEG data.

The EEG phase synchronization plays an important role in
studying the network connectivity of different regions of the brain
under normal and diseased states, including various forms of

epileptic seizures (Varela et al., 2001; Baier et al., 2012; Lang et al.,
2012; Palmigiano et al., 2012). Local and long rage connectivity can
be studied with EEG phase synchronizations (Varela et al., 2001).
An increase in the phase synchronization has been observed in
epileptogenic zones (Schevon et al., 2007; Warren et al., 2010) and,
also, the connectivity patterns are different in epileptogenic zones
as compared with other cortical zones not involved in epileptic
activities (Varotto et al., 2012). Phase synchronization also influ-
ences the genesis of epileptic activity. From invasive recordings
it has been observed and suggested that there is an increase in
the phase synchronization activity in the epileptogenic regions of
the brain and these regions are functionally isolated from the sur-
rounding regions of the brain (Warren et al., 2010). It has also
been observed with magnetoencephalogram (MEG) recordings
in epileptic patients that there were fluctuations in synchrony
between neighboring cortical networks (Dominguez et al., 2005).

The phase synchronization also randomly fluctuates with time.
The stochastic behavior of these random fluctuations can be stud-
ied with detrended fluctuation analysis (DFA) which is, often, used
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Ramon and Holmes Stochastic phase synchronization in interictal EEG

to study long range temporal correlation (LRTC) in a time series
data, such as, EEG data (Peng et al., 1995; Hardstone et al., 2012).
It has been shown by Linkenkaer-Hansen et al. (2005) that DFA
exposes LRTCs that are characteristic of epileptogenic neocorti-
cal networks, the areas where epilepsy begins. We examined the
stochastic behavior of the SI on different days derived from a short-
duration (∼3 min) interictal dEEG data. Our results show that the
stochastic behavior of the SI is higher in the vicinity of the epilep-
togenic zones and possibly maybe useful to localize the epileptic
sites. Here, the stochastic behavior of the SI or LRTC of SI is used
in a synonymous fashion.

The brain also exhibits oscillatory activity in various frequency
bands. The cross-frequency coupling, where one band modulates
the activity of a different band is a very powerful tool to study the
oscillatory activity of the brain. It has been observed with subdural
recordings that the power of the high gamma (50–100 Hz) band is
phase locked to theta oscillations (Canolty et al., 2006). The cross-
frequency related phase synchrony among different bands in the
frequency range of 3–80 Hz has also been observed in human MEG
data (Palva et al., 2005) and also in scalp EEG data (Friese et al.,
2012). We also found that during object naming tasks measured
with dEEG data there was some coupling in the theta–gamma
band (Ramon et al., 2009). This was observed by plotting the dif-
ference in phase synchronization between two EEG bands over
a time period of 3 s. A similar analysis is used here to exam-
ine stochastic behavior of cross-frequency couplings. We found
that cross-frequency couplings decreased in theta–gamma, beta–
gamma, and in alpha–gamma bands. Also, some complex spatial
patterns were observed. These results can also be used as an addi-
tional marker to non-invasively localize the seizure onset areas
from interictal scalp EEG data.

MATERIALS AND METHODS
EEG DATA OF PATIENTS
Our procedures for data collection and analysis have been
described previously (Ramon et al., 2008; Ramon and Holmes,
2012, 2013). Only a brief summary is given here. Epileptic seizure
areas in patients were localized with intracranial subdural EEG
(ECoG) recordings with 8× 8 contact grid electrodes and also with
strip electrodes. The electrodes on the grid had an exposed sur-
face area defined by 2.3 mm diameter and with a center-to-center,
inter-electrode separation of 1.0 cm (Johnson et al., 2012). The
strips had the same size electrodes with the same inter-electrode
separation. Prior to this during pre-surgical evaluations, high den-
sity 256-channel scalp EEG data was collected continuously for
7–12 days. The data was collected with an EEG system developed
by Electrical Geodesics, Inc. (Eugene, OR, USA). The electrode
caps were filled with a conducting gel with an effective diameter of
∼1.0 cm. For an adult head, from the center of one electrode to the
other, the inter-electrode separation was ∼2.0 cm or less (Tucker,
1993). The data was collected with a sampling rate of 250 Hz, i.e.,
the time difference between each sample was 4 ms. We used data
of three adult subjects. All were candidates for resection surgery
and after surgery they were cured of the epileptic seizures. Subjects
were not on any medication during dEEG and ECoG monitoring.
All data were collected at the Regional Epilepsy Center, University
of Washington under the authorized human subjects protocol.

For each subject, we selected data on three randomly selected
days for analysis. For a given day, approximately, 10 min long,
seizure-free and spike-free data from each patient during sleep
was selected for analysis. The selected data sets were not in close
proximity to seizures. Out of this, a continuous 3 min long data was
randomly selected and imported into MATLAB for further analy-
sis. The analysis was repeated for other two randomly selected days
of the data.

COMPUTATIONS OF PHASE SYNCHRONIZATION INDEX
The raw EEG data was normalized to their common averaged refer-
ence and then filtered using a FIR bandpass filter in the appropriate
EEG band. Excessively noisy channels were eliminated by replac-
ing them with the averages of their neighbors. For each subject,
there was only one noisy channel. The 60 Hz power line artifact
was eliminated with a matching pursuit filter (Gratkowski et al.,
2006).

The synchronization between a pair of channels was inferred
from a statistical tendency to maintain a nearly constant phase dif-
ference over a given period of time even though the analytic phase
of each channel may change markedly during that time-frame
(Freeman and Rogers, 2002). The Hilbert transform was applied
on the pairs of EEG traces with a stepping window which is long
enough to encompass at least two cycles of the lowest frequency in
a given band. For example for the low gamma (30–50 Hz) band,
the lowest frequency will be 30 Hz and based on that we selected
a window of 80 ms. The analysis was repeated by stepping the
window at 8 ms intervals, i.e., two digitized points. Similarly, the
size of the stepping window was selected for other EEG bands
while the step size of 8 ms was kept the same. The window sizes
selected for theta, alpha and beta bands were, 680 ms, 300 ms, and
170 ms, respectively. The SI was computed for each pair of EEG
traces.

The phase of the analytic signal has a sawtooth pattern which
is unwrapped to produce a cumulative linear phase of the signal.
The phase difference between the two channels was computed
by subtracting the phase of one channel from the other. This
phase difference was then used to determine the SI. The math-
ematical techniques for computing synchronization indices are
given in detail elsewhere (Tass et al., 1998; Freeman and Rogers,
2002). We computed synchronization indices based on Shanon
entropy function (Tass et al., 1998). Phase locking, i.e., synchro-
nization between the phases of two signals within a stepping
window was given by Shanon entropy function, e(t ), defined
as:

e (t ) = −
N∑

i=1

pi ln pi (1)

where pi was the relative frequency of finding the phase difference
modulus of 2π in the ith bin. The function e(t ) varied between
zero and its maximum value of emax= ln N. We used 100 bins
(N = 100) for the phase difference in a given stepping window.
This phase locking, q(t), was normalized and is represented as:

q (t ) =
emax − e(t )

emax
(2)
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Ramon and Holmes Stochastic phase synchronization in interictal EEG

FIGURE 1 |The analysis of phase synchronization between two EEG
signals. (A) A short segment of two EEG traces, (B) unwrapped phases, ϕ1

and ϕ2 after taking Hilbert transform of EEG signals, (C) time derivative,

dϕ/dt, of the phase difference, ϕ=ϕ1−ϕ2, of two EEG signals, and (D) phase
synchronization index, q(t), between the two EEG signals. Notice that q(t) is
high when dϕ/dt is nearly zero.

FIGURE 2 | (Left) each electrode is paired with six nearby electrodes for
computation of phase synchronization indices. There are 21 possible
combinations. Few of them are shown by arrows. (Middle) average of phase
synchronization indices over 21 combinations of electrode pairs. The phase

synchronization index of the white noise is shown with a dashed line. (Right)
montage layout of 256 electrodes above the head for plotting purposes. The
nose is on the top. The ellipse encloses the area covered by electrodes above
the eye level but excludes the electrodes on the forehead.

The q(t ) has a value of zero for uniform distribution of phase
differences and a value of one for a spike or delta distribution of
phase differences between two signals. This q(t) is also called phase
syncronization index (SI).

The Figure 1 shows a small segment of EEG traces for two
nearby channels. It also shows the unwrapped phases,ϕ1 and ϕ2, of
the two signals, the time derivative of the phase difference, d(ϕ)/dt,
and the q(t ). The phase difference is defined as: ϕ=ϕ1−ϕ2. There
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Ramon and Holmes Stochastic phase synchronization in interictal EEG

FIGURE 3 |The spatiotemporal plots of the stochastic behavior of the
phase synchronization index (SI) for the subject #1 in the low gamma
band. These plots, above the head are with 20 s intervals over a period of

3 min. The seizure area is marked with a rectangle in the plot at 180 s. Notice
that the stochastic activity is higher in the seizure area and becomes stable
and noticeable after the 60 s time-frame.

are two regions marked with light-green color shade where dϕ/dt
is nearly zero and the q(t ) is high. This shows that in the shaded
regions, the two EEG signals are almost in phase synchronization
and due to this value of q(t ) is high.

A global SI was also computed for each electrode by pairing
it with the nearby six electrodes. There were 21 combinations of
electrode pairs for each given electrode. The q(t ) was averaged
over these electrode pairs for each given electrode. The averaged
q(t ) represents the local cortical connectivity approximately over
a circular area defined by a 4.0 cm diameter which is based on
inter-electrode separation of 2.0 cm in the geodesic net used for
collecting dEEG data (Tucker, 1993). Figure 2 shows the electrode
pairs, the global SI and a montage layout of 256 electrode positions
for plotting purposes. The nose is on the top, back of the neck is
at the bottom, left of the subject is on the left side of the plot
and right side of the subject is on the right side of the plot. The

ellipse, roughly covers the electrodes above the eye level includ-
ing occipital areas, but, excludes the electrodes on the forehead.
The horizontal and vertical axes for plots are in normalized length
units.

Only few possible electrode pairs, out of possible 21 pairs are
shown by the double headed arrows in Figure 2. The averaged q(t )
given in Figure 2 is slightly less than the q(t ) given in Figure 1 for
a single electrode pair. In general, there is always some spatial
decoherence involved between two electrode pairs (Freeman and
Rogers, 2002). Thus, it is anticipated that by averaging over 21
electrode pairs, the averaged SI will be less than the SI of an indi-
vidual electrode pair. However, it is still above the synchronization
level of the white noise (Tass et al., 1998). Following the proce-
dures given in Tass et al. (1998), a Gaussian white noise signal was
generated, filtered and the SI was computed. The mean value of
the SI of the white noise was found to be 0.18 with 95% confidence
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Ramon and Holmes Stochastic phase synchronization in interictal EEG

FIGURE 4 |The stochastic behavior of the phase synchronization index
(SI) for the subject #1 in all EEG bands for three different days. Columns
are the EEG bands and rows are the days. Notice that for the low gamma

band, stochastic activity is higher in and near to the seizure area on all 3 days
while for the beta band, it is higher on the second and the eleventh day. This
behavior is not strong for theta and alpha bands.

interval. The noise level is marked as a dashed line in the middle
plot in Figure 2. The averaged q(t ) in Figure 2 shows sustained
levels of phase synchrony which is interrupted by dips below the
noise level. Hereafter, the averaged q(t ), for simplicity, is called the
phase syncronization index (SI).

COMPUTATIONS OF STOCHASTIC BEHAVIOR
We used DFA to compute the stochastic behavior of the SI. The
cumulative sum of each channel was calculated. This sum was
divided into windows of 10 s length, i.e., windows were of 10,
20, 30, . . ., 170 and 180 s length. Within each window, a linear
fit was found and the cumulative sum was detrended. Next, the
root-mean-squared (RMS) fluctuation of this detrended sum was
calculated. The median fluctuation at each window size was taken.
The log of this median fluctuation was plotted against the log of
the window size, and a linear fit was found. The slope of this linear
fit, denoted as, α, is the result of the DFA which can be expressed
as (Hardstone et al., 2012):

F (L) ∝ Lα (3)

where F(L) is a fluctuation function and L is the window length.
This is also called LRTC (Peng et al., 1995) of a given time series
data, such as, EEG or SI which is derived from EEG. For simplic-
ity, we will refer LRTC of SI as the stochastic behavior of the SI.
The stochastic behavior of the SI, i.e., α, was computed for each
channel as explained above. Color intensity plots of α were con-
structed using a montage layout of 256 electrode positions given
in Figure 2.

The exponent, α, in Eq. 3 is also related to the power law rep-
resentation of random walk processes after a walk of length L
(Hardstone et al., 2012). This exponent, α, represents many prop-
erties of a time series data. If 0 < α < 0.5, the slope is negative and
the time series sequence is anticorrelated or negatively correlated.
If α' 0.5, the time series sequence is an uncorrelated white noise.
If 0.5 < α < 1, the time series sequence has LRTCs. If α' 1.0, the
time series sequence is a 1/f pink noise, where f is the frequency
of the signal. If α > 1.0, the time series sequence is non-stationary,
random walk like and has strong correlations which are not of a
power law form. A special case is for α' 3/2 which represents that
the time series sequence is a Brownian noise. In general, the EEG
signal is non-stationary while the white noise is stationary.
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Ramon and Holmes Stochastic phase synchronization in interictal EEG

FIGURE 5 | Stochastic behavior of coss-frequency couplings for the subject #1 on three different days. In the seizure area, it seems to be fragmented and
with spatial dipolar and quadrupolar patterns. These patterns are more pronounced in the low gamma band.

RESULTS
SPATIOTEMPORAL PLOT
For the subject #1, the spatiotemporal plots of the stochastic behav-
ior of the SI are given in Figure 3. A rectangle marks the location
of the seizure area as mapped with invasive subdural grid and
strip electrode recordings. The subdural grid was near to the mid-
line covering the right frontal, parietal and temporal areas of the
brain. Two strip electrodes were covering the medial frontal and
medial parietal areas of the brain. This subject had seizure in cen-
tral parietal area and frontoparietal midline areas. The scalp dEEG
electrodes also showed seizure activities in the same area. These
seizures were more toward the right side of the brain from the
midline. In Figure 3, the rectangle is shown in the 180th second of
the plot. A stable pattern of stochastic behavior begins to emerge
from 60 s onward. Similar plots were also constructed for other
two subjects which are not shown here. The color bar gives the
LRTC values, i.e., α values. Within the seizure area, the values of α

are in the range of 1–1.5 indicating a strong LRTC which are not
of a power law form.

SUBJECT #1
The stochastic behavior of the SI and cross-frequency couplings
for the subject #1 are given in Figure 4 and Figure 5, respectively.
For this subject, as shown in Figure 3, 60–80 s duration of dEEG
data was sufficient to localize the epileptic site. The analysis was
done for the dEEG data collected on the first, second, and the
eleventh day of the hospital stay. The seizure area is marked with
a rectangle that was determined with invasive subdural grid and
strip electrode recordings. The stochastic behavior of the SI in
the seizure area is higher as compared with nearby surrounding
areas on all 3 days in the low gamma band. Refer to Figure 4. It
is strongest on the first day and fragmented on other days, but,
still with hot spots within and near to the seizure area. In the beta
band, on the first day, the stochastic activity is very low in the
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Ramon and Holmes Stochastic phase synchronization in interictal EEG

FIGURE 6 |The stochastic behavior of the phase synchronization
index (SI) for the subject #2 in all EEG bands for three different days.
Notice that for the low gamma band, stochastic activity is higher in and

near to the seizure area on all 3 days while for the beta band, it is higher on
the second and the third day. This behavior is not strong for theta and
alpha bands.

seizure area. On the second day, it is wide spread, including in the
seizure area. On the eleventh day, there is some higher activity at
the upper edge of the seizure area. The theta and alpha bands do
not show any hot spots in the seizure area.

The stochastic behavior of the cross-frequency couplings is
given in Figure 5. In general, it is fragmented and less as com-
pared with surrounding areas in all the bands and on all of 3 days,
i.e., first, second, and the eleventh day. It is more noticeable in the
beta–gamma coupling. The α values for theta–gamma and alpha–
gamma couplings are in the range of 0.5–1.2. In comparison, the α

values for beta–gamma couplings are higher and are in the range of
1.2–1.6. In Figure 4, there are other hot spots outside the seizure in
all of these plots which could be related to the spread of the seizure
activity in a larger area or due to the some other processes in the
brain, such as, spontaneous brain activity. This makes it difficult to
localize the seizure area from the stochastic behavior of the SI alone
in different EEG bands. However, combining with cross-frequency
couplings, it becomes feasible to localize the seizure areas.

SUBJECT #2
This subject had a complex seizure pattern spreading from right
mid temporal area to the right occipital area. The spread of the

seizure activity was seen in the grid and strip electrode recordings.
The stochastic behavior of the SI is given in Figure 6 for the first,
second, and the third day of the hospital stay. For this subject, 100 s
long EEG data was needed to find a stable pattern in the stochastic
activity of the SI. The gamma band exhibits hot spots in the seizure
are and also in the vicinity of seizure area on all 3 days. Also, there
are hot spots in the beta band on the first 2 days in the seizure
area. On the third day, the hot spots are toward the lower edge of
the rectangle, very close to the occipital area. As compared with
low gamma and beta bands, the activity in alpha and theta bands
is less intense. For the first 2 days, the alpha band exhibits some
low intensity activity in the seizure area and on the third day it is
missing. The theta band does not show any activity in the seizure
area.

The stochastic behavior of cross-frequency couplings is given in
Figure 7 for the subject #2. For the beta–gamma coupling within
the seizure area, the activity is fragmented and exhibits a dipolar
and quadrupolar patterns on all 3 days. There is also significant
activity outside the seizure area on the first day which could be
due to the spreading of the seizure activity and/or due to spon-
taneous brain activity. On the first day, there is some low level
stochastic activity in the alpha–gamma coupling which is reduced
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Ramon and Holmes Stochastic phase synchronization in interictal EEG

FIGURE 7 | Stochastic behavior of coss-frequency couplings for the subject #2 on three different days. In the seizure are, it seems to be fragmented with
complex spatial patterns for beta–gamma couplings. These cross-frequency couplings in theta–gamma and in alpha–gamma bands are very low.

significantly on the following 2 days. The theta–gamma coupling
is absent in the seizure area on all 3 days. Within the seizure area
the values of α are in the range of 1.0–2.0 for alpha–gamma and
beta–gamma couplings. In contrast for theta–gamma couplings,
the values of α are in the range of 0.5–1.0. These plots show
that the stochastic behavior of the cross-frequency coupling in
the beta–gamma band is highest as compared with theta–gamma
and alpha–gamma couplings.

SUBJECT #3
This subject had seizures in the left front temporal area with slow
bilateral spread which were observed in subdural grid electrodes,
strip electrodes and also in scalp dEEG recordings. The subdural
grid was placed on left frontal and temporal areas and electrode
strips were placed on left medial temporal, lateral frontal and
occipital areas. The stochastic behavior of the SI is given in Figure 8

for the first, second, and the third day of the hospital stay. For this
subject, 100–120 s long EEG data was needed to find a stable pat-
tern in the stochastic activity of the SI. The gamma band exhibits
hot spots in the seizure area on all 3 days. On the first day, the
hot spot is observed only at the lower edge of the seizure area
rectangle. The hot spots in the vicinity of right occipital area are
probably due to the spread of the seizure activity. These seizures
related hot spots are much stronger on the second day and also
there is widespread activity in the frontal and right temporal areas
which was also observed in strip electrodes. The low gamma band
activity is very strong in the seizure area marked by the rectangle
and also outside, below the rectangle. The beta band exhibits hot
spots in the seizure area on the first 2 days while on the third day it
is very subdued. The alpha band activity within the seizure area is
absent on the first and the third day while some low level activity
is present on the second day. Patterns similar to the alpha band
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FIGURE 8 |The stochastic behavior of the phase synchronization index
(SI) for the subject #3 in all EEG bands for three different days. Notice that
for the low gamma band, stochastic activity is higher in and near to the

seizure area on all 3 days while for the beta band, it is higher on the first and
the second day. This behavior is not strong for the alpha band. However, the
theta band does show some hot spots on the second day in the seizure area.

activity are also present in the theta band activity. No theta band
activity in the seizure area on the first and the third day. There is a
widespread activity in the frontal area, including the seizure area
on the second day in beta and low gamma bands. This could be
related to bilateral spread as observed in invasive grid and strip
electrode recordings.

The stochastic behavior of cross-frequency couplings for the
subject #3 is given in Figure 9. The stochastic behavior of the
beta–gamma coupling within the seizure area is fragmented and
exhibits complex spatial patterns on the first and the third day.
On the second day, the stochastic behavior of the beta–gamma
coupling is spread in a large area on the left side including the
seizure area. The stochastic behavior of the alpha–gamma cou-
pling is absent in the seizure area on the first and the second day,
but some activity in visible on the third day. The stochastic behav-
ior of the theta–gamma coupling is absent in the seizure area on the
first day, slightly visible on the second day and becomes stronger
on the third day.

DISCUSSIONS
For the subject #1, the stochastic behavior of the SI in the low
gamma band (Figures 3 and 4) seems to show some higher pat-
terns of activity in and near to the seizure area on all 3 days. In

addition, the stochastic behavior of the beta–gamma coupling is
fragmented in the seizure area. Also, behaviors of other cross-
frequency couplings are also weaker in the seizure area with respect
to the nearby areas. For this subject a stable pattern of stochastic
activity (Figure 3) begins to appear from 60 s onward and thus, 80 s
long interictal dEEG data was enough to localize the epileptic site.

For the subject #2, both the beta and the low gamma bands had
the higher stochastic activity of the SI in and near to the seizure
area and the stochastic behavior of the coss-frequency couplings
was fragmented and relatively decreased. For this subject, 100 s
long interictal dEEG data was needed to find stable patterns of
stochastic activity in the seizure area.

For the subject #3 also, both the beta and the low gamma bands
had the higher stochastic activity of the SI in and near to the seizure
area and the stochastic behavior of the coss-frequency couplings
was fragmented and relatively decreased. For this subject, 100–
120 s long interictal dEEG data was needed to find stable patterns
of stochastic activity in the seizure area. An interesting feature to
note is that for subjects #2 and #3 on the same days when the
beta band activity is higher, in comparison, the low gamma band
activity is lower.

From these results and from our previous work (Ramon and
Holmes, 2012, 2013) one can conclude that in the seizure areas
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Ramon and Holmes Stochastic phase synchronization in interictal EEG

FIGURE 9 | Stochastic behavior of coss-frequency couplings for the subject #3 on three different days. In the seizure are, it seems to be fragmented with
complex spatial patterns for the beta–gamma coupling. These cross-frequency couplings are very low in theta–gamma and in alpha–gamma bands.

and also in the vicinity of seizure areas, stochastic behavior of
the SI in beta and low gamma bands are higher and also the
stochastic behavior of cross-frequency couplings has decreased
and spatial patterns are fragmented. Our results also suggest that
the seizure related stochastic activity is present on a continuous
basis in the interictal scalp EEG data which, possibly, could be
useful for non-invasive localization of the epileptic sites. These
are our preliminary results and show a promise that these have
a potential to localize epileptic sites from a short-duration (1–
3 min), seizure-free, high density (256-channel) scalp EEG data.
Further studies with more subjects are needed to substantiate these
findings.

The SI is a time series sequence and in the seizure area, the
values of α are in the range of 0.8–2.0 for beta and low gamma
bands. Thus, in these two bands, SI exhibits a LRTC or strong

correlations and also exhibit some properties of Brownian noise
within the seizure area. In contrast, theta and alpha bands have
lower values of α in the range of 0.4–1.2. This would suggest that
the stochastic behavior of the SI in theta and alpha bands is an
uncorrelated white noise in some parts of seizure area and in other
parts, it has LRTC or strong correlations. Based on this, one can
further infer that beta and low gamma bands in combination with
cross-frequency couplings will be a better choice for localization
of the epileptic sites.

The SI for a given electrode is averaged with the SI of nearby six
electrodes. This averaged SI represents the local interconnected
activity of cortical neurons. The stochastic behavior of the SI
showed in Figures 3–9 is often spread in large areas including the
seizure areas. It could possibly represent the local and global con-
nectivity of cortical neurons in the seizure areas as well as normal
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parts of the brain in the vicinity of the seizure area. Epileptic and
interconnected normal cortical neurons, both play an important
role in the genesis and spread of the seizure activity. It is also pos-
sible that the stochastic behavior of the SI in interictal periods
is spread in an area larger than the seizure area. These concepts
need to be further examined with seizure modeling and patient
studies.

An increase in fluctuations in the order parameter related to
brain synchronization has also been observed and can be used as
precursors for identification of epileptic seizures (Velazquez et al.,
2011). The order/disorder parameter can also be used as a mea-
sure of EEG phase transition states of the brain. In view of these
previous studies, our results based on the stochastic fluctuations
in the phase synchronization indices are plausible.
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