About this Research Topic
Over past a few decades, tremendous investments have been made to search for a viable solution for monolithic integrated Si-based optoelectronics. The most challenging task has been the fabrication of an efficient light source, as well as high-performance light detection using compatible technology. It is therefore highly desirable to develop a transformative strategy for Si-based lasers and detectors.
For a long time, theoretical studies have suggested that the group-IV alloy SiGeSn should possess a tunable bandgap, and eventually a direct bandgap. Not until recently have device-quality SiGeSn materials been grown and characterized, establishing a solid foundation for the development of Si-based optoelectronics devices. Some key strategic attributes offered by SiGeSn materials are:
i) The ability to independently tune the lattice constant and bandgap by simultaneously varying the compositions of Si, Ge, and Sn;
ii) The availability of a true direct bandgap group-IV material;
iii) The possibility of forming desirable type-I band alignment to provide a favorable quantum confinement for the design of optoelectronics;
vi) The potential to cover near-IR wavelengths up to 12 μm through band-to-band transition, and all wavelengths beyond 12 μm through inter-subband transition;
v) A low material growth temperature below 400ºC fully compatible with CMOS process; and
vi) The feasibility of selective area growth, which is highly desirable for optoelectronic integration.
The purpose of this Research Topic is to publish quality research papers as well as review articles presenting original research on cutting-edge SiGeSn technology for mid-infrared applications, including the growth of the material and demonstrations of optoelectronic devices such as emitters and photodetectors. Suggested themes include, but are not limited to:
- Study of material growth mechanism
- Characterization of material properties
- Characterization of optical properties
- Development of SiGeSn/GeSn-based emitters and detectors
- Development of SiGeSn/GeSn-based passive devices
- Exploring the all-group-IV on-chip integration solution
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.