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Editorial on the Research Topic

Microbial Regulation of Translation

Since the description of the operon model by Jacob and Monod during the late 1950s and early
1960s (Ullmann, 2010), the concept that the reading of genetic information must be a regulated
process has been central to our understanding of biology. This is particularly true for microbes,
which can adapt to an incredible variety of environments. Based on the research performed since
the description of the operon, we have gained a deep understanding of the diverse strategies used
by microbes to modulate the transcription of genetic information from DNA to RNA. In contrast,
the mechanisms that regulate the translation of messenger RNAs into proteins has received
less attention. The technical developments of the last decade now allow us to obtain detailed
information on RNA folding (Rouskin et al., 2014; Aw et al., 2016) and modification (Linder et al.,
2015; Lorenz et al., 2020) and the speed of translation (Subramaniam et al., 2013; Ingolia, 2014; Dai
et al., 2016). This, in turn, allows us to scrutinize the functionality of translation components in
vivo, providing unprecedented opportunities to study translation regulation. In this special issue of
Frontiers in Genetics, “Microbial Regulation of Translation,” we have assembled a series of articles
that use diverse experimental approaches to study the regulation of translation in microbes.

Some of the papers in this issue focus on alterations of translation derived from changes
in ribosome function and abundance. For instance, Pletnev et al. studied the physiological and
molecular effects of mutating all genes known to methylate nucleotides of rRNA in Escherichia
coli. While the mutation of some genes strongly impacts bacterial replication, others only lead to
minor effects. Interestingly, with the exception of the rsfM mutation, most mutants exhibit defects
in translation when the system is challenged by overexpression of exogenous genes, although some
of these strains show only small effects under “normal” conditions. The article by Yoshida et al.
is also related to changes in ribosome availability in E. coli. Nevertheless, this work focuses on the
natural regulation of ribosome availability through hibernation and how this is coordinated with
the abundance of RNA polymerase and its diverse sigma factors.

Other articles in this issue study the regulation of the initiation and elongation steps of
translation. For instance, one article (Radío et al.) shows how ribosome profiling can be used to
study the regulation of translation initiation by uORFs in Trypanosoma cruzi, a mechanism that
accounts for regulation of almost 10% of the genes. Other articles instead discuss regulation of
translation elongation. Leiva et al. shows how inactivation of tRNAGly under oxidative stress may
regulate translation elongation in E. coli, thereby changing protein synthesis only under specific
environmental conditions. Using a different bacterial model,Mycobacterium smegmatis, Barth and
Woychik analyze the role of the toxin-antitoxin system MazEF-ms in the regulation of translation.
They found that MazEF-ms cleaves tRNALys, thereby decreasing the speed of translation elongation
at AAA Lys codons. Thus, when this toxin is activated, expression of AAA rich genes is decreased
while expression of AAA poor genes is increased.
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In addition to the paper by Barth and Woychik, two reviews
in this issue analyze the effects of diverse toxins on the translation
machinery. Jurenas and van Melderen focus on the ability of
many type II toxin-antitoxin systems to interfere with translation.
These systems are composed of a toxin that may inhibit central
processes of a cell and its antitoxin, a labile protein that
inhibits the activity of the toxin. The authors discuss how
most of these toxins’ targets are components of the translation
apparatus, including mRNA, tRNA, ribosomes, and translation
factors. They further propose that the huge variability of these
systems derives from low selective pressure on bacteria to
maintain them, and the high selective pressure on the toxin-
antitoxin systems to diverge from similar systems allowing lateral
transfer to organisms carrying similar toxin-antitoxins. Thus,
they propose these are “selfish genes” that usually give little
advantage to bacteria. The second review about toxins uses a very
different approach. The text written by Travin et al. is focused
on ribosomally synthesized and post-translationally modified

peptides (RiPPs). Similar to type II toxin-antitoxin systems, many

of the RiPPs that have been described target diverse components

of the translation apparatus. Nevertheless, in contrast to type

II toxin-antitoxin systems, these compounds are not targeted

to inhibit the self-translation machinery, but that of competitor

organisms. Travin et al. provide an in-depth description of

several of these compounds from a structural and functional
perspective and highlight strategies to screen for pathways that
produce new varieties of these compounds and their potential
pharmacological use.

Finally, two papers in this issue use an unbiased screening to
identify patterns in regulation of gene expression. Gummesson
et al. describe the use of spike-in normalized RNA sequencing,
applying it to E. coli cells subjected to valine-induced isoleucine
starvation. In addition to providing valuable biological data, they
show how changes in the total RNA levels may interfere with
typical normalization protocols used to analyze transcriptomic
data. Finally, Zhao et al. describe the usage of combined
proteomics and genomics to study the relation between the
organization of genes in operons on their cellular concentrations.
They find interesting correlations, particularly for operons
coding genes from a single complex or metabolic pathway.

In total, the collection of papers included in this issue
represents the enormous variety of approaches and findings of
an area that has been invigorated by the developments of the
last decade.
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More than half of the protein-coding genes in bacteria are organized in polycistronic
operons composed of two or more genes. It remains under debate whether the operon
organization maintains the stoichiometric expression of the genes within an operon.
In this study, we performed a label-free data-independent acquisition hyper reaction
monitoring mass-spectrometry (HRM-MS) experiment to quantify the Escherichia coli
proteome in exponential phase and quantified 93.6% of the cytosolic proteins, covering
67.9% and 56.0% of the translating polycistronic operons in BW25113 and MG1655
strains, respectively. We found that the translational regulation contributes largely to
the proteome complexity: the shorter operons tend to be more tightly controlled for
stoichiometry than longer operons; the operons which mainly code for complexes
is more tightly controlled for stoichiometry than the operons which mainly code for
metabolic pathways. The gene interval (distance between adjacent genes in one operon)
may serve as a regulatory factor for stoichiometry. The catalytic efficiency might be
a driving force for differential expression of enzymes encoded in one operon. These
results illustrated the multifaceted nature of the operon regulation: the operon unified
transcriptional level and gene-specific translational level. This multi-level regulation
benefits the host by optimizing the efficiency of the productivity of metabolic pathways
and maintenance of different types of protein complexes.

Keywords: operons, proteome quantification, HRM-MS, multifaceted stoichiometry control, mass-spectrometry,
DIA, translation

INTRODUCTION

An operon is a cluster of genes transcribed in a single mRNA. This principle is conserved across
bacterial and archaeal genomes, as well as mitochondria and chloroplast (Wolf et al., 2001; Price
et al., 2005; Zheng et al., 2005). Operons are also found in virus and some lower eukaryotes,
including yeasts, nematodes, and insects (Blumenthal, 2004; Ben-Shahar et al., 2007; Osbourn and
Field, 2009; Pi et al., 2009; Gordon et al., 2015). In a typical bacterial genome, more than half of the
protein-coding genes are organized in multigene operons. A classical bacterial operon generates an
mRNA strand with polycistronic structure containing multiple coding sequences and are translated
together in the cytoplasm. These genes are often of related functions, for example, to build a protein
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complex or to participate in one metabolic pathway. Therefore,
grouping related genes as operons under the control of a single
promotor is often thought to simplify the regulation of gene
expression for rapid adaptation to environmental changes.

An intuitive presumption of the operon organization is to
maintain stoichiometry of the gene products. It was argued that
co-regulation could be evolved by merging two independent
genes in proximity together under the control of the same
promoter, to reduce the control complexity (Lawrence and
Roth, 1996; Osbourn and Field, 2009), Li et al. (2014)
measured protein synthesis rates by using ribosome profiling
and implied that the synthesis rates quantitatively might reflect
the stoichiometry of the protein complexes. Studies showed that
an operon with one complex promoter might be better than
two independent promoters; organization of genes in operons
substantially reduces the shortfall in production of complex-
forming individual proteins (Iber, 2006; Osbourn and Field,
2009). However, recent advances of omics techniques raised
counter-arguments. A transcriptome-level study revealed that
certain adjacent genes within one operon are not similarly
transcribed in M. pneumoniae. In half of the polycistronic
operons, genes exhibited a decaying expression according to
its rank in the operon, which is termed “staircase-like decay
behavior” (Guell et al., 2009). Considering the widespread post-
transcriptional regulations including translational control and
protein turnover (Schwanhausser et al., 2011), it is still under
intensive debate whether this “staircase-behavior” influences the
protein abundance (Maier et al., 2011; Schmidt et al., 2011;
Arike et al., 2012).

Theoretically, proteins in a complex should follow the
stoichiometry, while the proteins involved in the same pathway
may need differential expression controls (Guell et al., 2009). For
example, the enzymes in various amino acids synthesis pathways
are regulated in single-input modules (SIMs). A series of such
enzymes are successively expressed in one operon (Zaslaver
et al., 2004; Seshasayee et al., 2006). Meanwhile, the different
catalytic kinetics of these enzymes determines that these enzymes
should not be expressed at the same quantity (Zaslaver et al.,
2004). These genes tend to duplicate to evolve a larger gene
regulatory network (Teichmann and Babu, 2004), indicating their
regulation is less stringent, and an operon arrangement might
be unnecessary. Therefore, a more detailed proteome-wide and
quantitative investigation is necessary to discover the scope and
impact of the operons in gene expression regulation.

A method capable to assess a quantification of the
proteome should be used in this case. Although stable
isotope labeling methods are more accurate than label-free
mass-spectrometry (MS) methods (Arike et al., 2012), the
isotopes may affect the physiology of the bacteria (Xie and
Zubarev, 2015). The isotope labeling is more suitable for
comparative quantification of multiple samples than estimating
abundance of the proteins within one sample (Neilson et al.,
2011). Therefore, label-free MS methods should be used.
Arike et al. (2012) compared three label-free quantification
methods (iBAQ, emPAI, and APEX) and found a staircase-
like protein expression in most of the transcription units,
and found high correlation abundances between some

well-known complex subunits. In contrast, Schmidt et al.
(2011) found only 5% “staircase behavior” for L. interrogans
operons on the proteome level. These contradictory results
reflected the cons of these label-free MS approaches: the
technical variations and relatively low number of quantified
proteins restricted the accurate and in-depth coverage of
operon-controlled genes.

In this work, we set out to tackle these problems by employing
a highly accurate label-free method, DIA (data-independent
acquisition) (Purvine et al., 2003), to obtain quantification of
the proteins constituting the Escherichia coli proteome with a
high coverage and high accuracy. DIA is a MS-based proteomics
method used in peptide quantification, in which all ions within a
selected m/z range are fragmented and analyzed in a second stage
of tandem mass spectrometry (Law and Lim, 2013). Although
not suitable for discovery-based applications, DIA provides
accurate peptide quantification without being limited to profiling
predefined peptides of interest (Chapman et al., 2014; Doerr,
2015). This allowed us to investigate the protein abundances
within operons and thus to interrogate the possible stoichiometry
in operons of different functions.

MATERIALS AND METHODS

MS Sample Preparation
Escherichia coli K-12 sub-strains BW25113 and MG1655 were
cultivated on glucose M9 minimal medium at 37◦C in flasks
to mid-exponential phase (OD600 = 0.6) and then harvested
in 45 mL volume, immediately cooled in ice water, and then
centrifuged at 10,000 × g for 5 min. The pellet was washed
once with PBS, centrifuged at 10,000 × g for 5 min again.
Pellet was re-suspended on ice with lysis buffer (5 M urea/2
M thiourea in 10 mM HEPES, pH 8.0), and were sonicated
and centrifuged at 17,000 × g for 30 min in a table-top
centrifuge to remove cell debris. Supernatant was collected,
and protein concentrations were determined with a Bradford
Protein Assay (Bio-Rad Protein Assay Dye Reagent Concentrate,
Cat. #500-0006).

For proteome analysis, we employed in-solution protein
digestion with a filter-aided sample preparation (FASP) method
(Zhang et al., 2017). 1 mg of protein was subjected to reduction
(8 M urea and 50 mM DTT at 37◦C, 1 h), followed by
alkylation with 100 mM iodoacetamide (IAA) in dark at room
temperature for 30 min. The solution was transferred to the 30
kDa ultracentrifuge filters (Millipore). Proteins were washed with
8 M urea, and four sequential buffer changes were performed
using 50 mM TEAB, respectively. Trypsin (Promega) was then
added into the filter at a mass ratio of 1:20 for Proteins digested
in 130 µL 50 mM TEAB at 37◦C for 12 h. The released
peptides were collected by centrifugation and dried with a cold-
trap speed vacuum.

MS Experiments
One microgram of sample abovementioned peptides was
analyzed on a C18 column (50 µm × 15 cm, 2 µm, Thermo
Fisher) by using an EASY-nLC 1200 UHPLC connected to an
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Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific).
The peptides with the iRT-standard (1/10 by volume, Biognosys,
HRM Calibration Kit: Ki-3003) were separated by a linear
gradient from 6 to 30% ACN with 0.1% formic acid at 270
nL/min for 100–130 min and linearly increased to 90% ACN
in 20 min. For the data-dependent acquisition (DDA), the
source was operated at 2.0 kV. The DDA scheme included
a full MS survey scan from m/z 400 to m/z 1500 at a
resolution of 60,000 FWHM with AGC set to 4E5 (maximum
injection time of 50 ms), followed by MS/MS scans at a
resolution of 15,000 FWHM with AGC set to 5E4 (maximum
injection time of 30 ms), data-dependent mode was set to
top speed. Isolation window was 1.6. Dynamic exclusion was
set to 90 s with a 10 ppm tolerance around the selected
precursor. For the DIA hyper reaction monitoring (HRM-MS),
individual tryptic peptide samples were mixed with the iRT-
standard (1/10 by volume) and analyzed by the same method
as DDA used. The method consisted of a full MS1 scan at
a resolution of 60,000 FWHM from m/z 350 to m/z 1,200
with AGC set to 4E5 (maximum injection time of 30 ms)
followed by 40 non-overlapping DIA windows acquired at a
resolution of 30,000 FWHM with AGC set to 5E5 (maximum
injection time of 50 ms), cycle time, 3.28 s. The MS/MS
isolation windows were listed in Supplementary Table S1. For
comparison, standard DDA MS experiment was performed as
above. All MS raw data have been deposited in iProX with
accession number: IPX0001095000 and ProteomeXchange with
identifier PXD010126.

Spectral Library Generation
To generate the spectral library, three DDA measurements of
the mixed samples were performed. Raw DDA datasets were
searched against a combined database of the NCBI database of
Escherichia coli str. K-12 (GCF_000005845.2_ASM584v2, 4140
entries) and the iRT standard peptides sequence using the
Sequest HT (Proteome Discoverer v2.1) local server. Common
contaminants in the database included trypsin and keratins.
Precursor and product ion spectra were searched at an initial
mass tolerance of 10 ppm and fragment mass tolerance 0.02
Da, respectively. Tryptic cleavage was selected, and up to
two missed cleavages were allowed. Carbamidomethylation on
cysteine (+57.021 Da) was set as a fixed modification, and
oxidation (+15.995 Da) on methionine was assigned as a
variable modification. A target-decoy-based strategy was applied
to control peptide and protein false discovery rates (FDRs) at
lower than 1%. Confident protein identifications should suit
the following criteria: (1) protein level FDR ≤ 1%; (2) unique
peptides ≥ 1 or 2; (3) peptide length ≥ 6 or 7 aa. The search
result was exported in a pdResult file format containing the
annotation of precursors and fragment ions and their exact
retention times. The pdResult file was then imported into
Spectronaut Pulsar 11 (Biognosys) to generate the spectral
library used for HRM-MS data analysis, which yielded 14608
unique peptide sequences in 2041 protein groups with BW25113,
and 8822 unique peptide sequences in 1607 protein groups
with MG1655. A subset of identified peptides was used in
library creation as modification parameter was set none. The

generated spectral libraries were exported from Spectronaut as in
Supplementary Table S2.

Protein Identification and Quantification
The DIA data were then analyzed with Spectronaut Pulsar
11 with the spectral library, which is a mass spectrometer
vendor independent software for SWATH/DIA data analysis.
Raw data were analyzed according to the user manual of the
software. Default settings were setup for protein identification
and peak area calculation. Raw data were converted into
HTRMS files and imported to Spectronaut Pulsar 11 by
choosing the matched database fasta file and spectral library,
with the default settings of the Spectronaut Pulsar 11:
(1) Calibration: calibration mode, automatic; iRT calibration
strategy, non-liner iRT calibration. (2) Identification: decoy
limit strategy, dynamic; decoy method, mutated; machine
learning, per run; precursor q-value (peptide FDR) cutoff,
0.01; protein q-value (protein FDR) cutoff, 0.01; p-value
estimator, kernel density estimator. (3) Workflow: default
labeling type, label; profiling strategy, none; unify peptide
peaks, false. (4) Quantification: interference correction, true;
major(protein) grouping, by protein-group id; major group
quantity, mean peptide quantity; minor (peptide) grouping,
by stripped sequence; minor group quantity, mean precursor
quantity; minor group top n, true; min, 1; max, 3; quantity
MS-level, MS2; quantity type, area; data filtering, q-value;
cross run normalization, true; row selection, q-value sparse;
normalization strategy, local normalization. (5) Reporting:
scoring histograms, true; pipeline report schema, protein quant;
pipeline reporting unit, experiment. (6) Protein inference:
protein inference workflow, automatic. (7) Data extraction:
MS1 mass tolerance strategy, dynamic; correction factor, 1;
MS2 mass tolerance strategy, dynamic; correction faction, 1.
(8) Post analysis: differential abundance grouping, major group
(quantification settings); smallest quantitative unit, precursor
ion (summed fragment ions); use top n selection, false.
(9) Retention time were used to assist identification. XIC
extraction: XIC RT extraction window, dynamic; correction
factor, 1. After peak extraction and area calculation were
performed, the result was exported as the table format for
further quantification analysis in Microsoft Excel. All MS
raw data, Proteome Discoverer report (∗.msf file) and the
constructed spectra library have been deposited in iProX with
accession number: IPX0001095000 and ProteinXchange with
identifier PXD010126. The relationship of submitted raw data are
shown in Supplementary Data.

Protein abundances was calculated by using Spectronaut
Pulsar protein pivot report, those proteins quantified by
Spectronaut pulsar but not identified by Proteome Discoverer
and not met the confident protein identifications criteria were
removed. The abundances of identified proteins were calculated
as follow procedure. Supposed that top 500 abundant proteins
of E. coli can represent total protein copy numbers of a cell.
Concentration of HRM-MS protein copies per cell was calculated
based on the means of 500 most abundant protein quantities
computed by other three label-free methods (APEX, iBAQ, PAI)
downloaded from Arike et al. (2012). HRM-MS intensity could
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be converted to protein copies per cells by coefficient k, which is
defined by the following formula.

Bi is copy numbers of the gene in iBAQ dataset.
Pi is copy numbers of the gene in emPAI dataset.
Ai is copy numbers of the gene in APEX dataset.
Di is correspondence protein intensities of the gene quantified

in HRM-MS dataset.

k =
n
√∏n

i=0
(Bi+Pi+Ai)

3

n
√∏n

i=0 Di
(1)

The amount of individual proteins was calculated as the
product of conversion coefficient k to their intensity in the
HRM-MS measured sample.

Protein copy number = k× Di (2)

The calculations were performed by in-house generated
python scripts. All scripts used in this study can be downloaded
in the Supplementary Materials (Supplementary Scripts).

Coefficient of Variation of Protein
Abundance in the Operons
Coefficient of variation (CV), which is defined as the ratio of the
standard deviation to the arithmetic mean. Standard deviation
is normalized by n − 1 by default (n is sample size). The CV
of proteins within one operon is defined as the ratio of the
standard deviation of protein quantities within this operon to
the arithmetic mean of all protein quantities within this operon.
For multi-gene operons (protein numbers≥ 2), CV was calculate
as follows:

CV =
2
√∑n

i=1(xi−x̄)2

n−1

mean
× 100% (3)

where xi is the abundance of the i-th gene in this operon. To be
noted, the CV calculation was only performed within one operon,
not across the operons.

The CV of the protein half-life in the operons were calculated
in the same way. Protein half-life time in the M9 minimal
medium was from our previous work (Zhong et al., 2015).

Data Randomization
To compare with the real operon CV level if protein abundances
in operons have stoichiometry control, we reshuffled the protein
quantities detected in the polycistronic operons (846) randomly
to each protein ID, the generated dataset was used as randomized
negative control. Randomized protein quantities in “2-/3-/4-/
≥5-protein” operons were extracted from this randomized
negative control data.

Operon and Gene Ontology (GO) Analysis
Operon library of Escherichia coli str. K-12 were downloaded
from the DOOR2 database (Mao et al., 2014) (NC_000913).
Protein GI numbers were converted to proper identifiers by
DAVID Gene Accession Conversion Tool (Huang et al., 2007).

The quantified proteins were integrated to the operon data. The
PANTHER Version 13.0 (released 2017-11-121) (Mi et al., 2017)
was used to perform the GO overrepresentation analysis with
the significance threshold of 0.01, the quantified proteins of
Escherichia coli in our work was selected as the background
proteome, the Fisher’s Exact test was used to obtain p-values and
‘GO slim’ category were used. The protein subcellular localization
data of E. coli was downloaded from EcoProDB (Yun et al., 2007).

Complex and Pathway Classification
The operon contains more than or equal to two genes were
called polycistronic operons. Among polycistronic operons, those
≥90% genes in operon encoded subunits of one protein complex
is selected and classified as “Complex” group, others were
classified as “Pathway” group.

Physical and Chemical Features
of Proteins
The protein lengths in amino acids were obtained from the NCBI
of Escherichia coli str. K-12 (GCF_000005845.2_ASM584v2,
4140 entries). Information of the hydrophobicity was calculated
by Gravy Calculator2. In addition, the isoelectric point,
protein length, instability and hydrophobicity distribution were
calculated by using python 2.7 scripts and Biopython libraries.

Experimental Design and
Statistical Rationale
To increases the precision of protein expression measurements
of the entire E. coli proteome quantification, two biological
replicates of BW25113 and MG1655 each were cultured in
M9 minimal medium to mid-exponential phase and were
harvest, then processed to HRM-MS analysis independently.
iRT-standard (Biognosys, HRM Calibration Kit) was added to
the peptides with 1/10 by volume. The peptide mixture of two
biological replicates of each strain were used and performed
LC-MS for three times for spectral library creation. Proteome
Discoverer 2.1 and Spectronaut Pulsar 11 were used to generated
spectral library, and Spectronaut Pulsar 11 was used to quantify
the protein groups with little modified parameters. Kolmogorov–
Smirnov test (KS-test) were used to compare the distributions
between CVs at transcriptome, translatome and protein level,
and Mann-Whitney U-test were used to compare the difference
between complex and pathway operons.

mRNA Sequencing
E. coli strain BW25113 was cultivated on glucose M9 minimal
medium at 37◦C in flasks to mid-exponential phase (OD600 = 0.6)
with 100 µg/mL chloramphenicol added 15 min before
harvest, then the cells were centrifuged at 5,000 × g for
10 min at 4◦C, followed by thrice washed with pre-chilled
PBS. Cell pellet was then re-suspended in 6 mL pre-chilled
sucrose-buffer solution [16 mM Tris (pH 8.1) supplemented
with 0.5 M RNase-free sucrose, 50 mM KCl, 8.75 mM

1http://pantherdb.org/
2http://www.gravy-calculator.de
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EDTA, 100 µg/mL chloramphenicol, 12.5 mg/mL lysozyme]
and gently stirred for 5 min on ice. Then the cells were
centrifuged 5,000 × g, 10 min. Total RNA was extracted by
Trizol method, and mRNA-seq libraries were prepared using
standard MGIEasyTM mRNA Library Prep Kit V2 following
the manufacturer’s protocol. Sequencing was performed on a
BGISEQ-500 sequencer for 50 cycles, single-ended mode. This
dataset was deposited in the GEO database under the accession
number GSM3489376, GSM3489377.

Analysis of Sequencing Data
The RNA-seq dataset of E. coli strain MG1655 were obtained
from Haft et al. (2014) (GEO accession number: GSM1360030,
GSM1360031, GSM1360042, GSM1360043) and Bartholomaus
et al. (2016) (SRA accession number: SRR2016457). The datasets
of strain BW25113 were generated as described above. For
all datasets, adapters was trimmed from the reads. Reads
were mapped to coding sequence of E. coli reference genome
(GenBank: U00096) using FANSe3 algorithm (Liu et al., 2017)
with the parameters -E3 -S10 –indel. Genes with at least 10
mapped reads were considered quantifiable (Bloom et al., 2009).
The expression levels were estimated in rpkM.

RESULTS

Near-Complete E. coli Cytosolic
Proteome Quantification Using HRM-MS
To assess the quantification power and reproducibility of the
HRM-MS method, we performed two biological replicates
of E. coli total soluble proteins of strain BW25113 and
MG1655. When using the previous identification criteria (at
least one unique peptide, peptide length ≥6 amino acids) (Arike
et al., 2012), our HRM-MS results quantified 1951 and 1571
proteins in these two strains, respectively. The two biological
replications identified almost identical proteins, demonstrating
high robustness and reproducibility (Figure 1A). Two replicates
quantified almost the same proteins: only a few proteins were
quantified only in one replicate (Figure 1A). Under the stringent
criteria as two unique peptides and at least seven amino
acids peptide length. Even under the stringent criteria, we still
quantified 1675 and 1252 proteins with a high reproducibility
(Figures 1B,C and Supplementary Table S3). The number of
quantified soluble proteins was almost doubled when compared
to the previous results quantified by other methods (1021
proteins for APEX, 1183 for IBAQ and 1138 for emPAI) (Arike
et al., 2012). To rule out the difference of the instruments, we
performed DDA MS experiments for the two strains in the same
Orbitrap Fusion Lumos instrument. Proteins were identified
under the stringent criteria and quantified using iBAQ method.
The DDA MS quantified 1520 and 1482 proteins for BW25113
and MG1655 strains, respectively, comparable with the HRM-
MS experiments. However, the correlation coefficients of the
iBAQ quantification of two biological replicates were 0.932 and
0.939, respectively (Figures 1D,E), lower than the HRM-MS
(R = 0.982 and 0.988 for the two strains, respectively). Each
identified protein was covered by 19.20 and 15.45 peptides in

average in two strains, covering 31.56% and 24.87% of the amino
acid sequences, respectively (Figure 1F), which is higher than
the typical peptide coverage of human proteome MS experiments
(single search engine, up to∼20% coverage) (Zhao et al., 2017).

We previously revealed 2922 genes which are being translated
in the E. coli grown in the same condition using ribosome
profiling (Bartholomaus et al., 2016). Using HRM-MS method
with stringent criteria, we quantified 55.2% of these translating
genes in this work. We next analyzed the possible chemical
and physical features of the translated but unquantified proteins
in this work. The unquantified proteins are significantly
more alkalic, less stable, shorter and more hydrophobic
(Supplementary Figure S1). These are general factors that
decreases the visibility of these proteins in shotgun MS
experiments. Since our experiments were not optimized for
membrane proteins, which are more prone to aggregate during
the protein extraction, these proteins are expected to be less
detected in the MS. Notably, we quantified 93.6% translating
cytosolic proteins, showing a near-complete quantification of the
soluble proteins.

Considering the advantage of the HRM-MS, all the subsequent
analysis was based on the HRM-MS under the stringent criteria.

Operons Tend to Unify Gene Expression
in General
The high coverage of proteome quantification allowed us to make
an in-depth investigation of protein abundances in operons.
Indeed, our quantification covered 67.9% and 56.0% of the
translating polycistronic operons in BW25113 and MG1655,
respectively. We calculated the coefficient of variation (CV,
%) of proteins abundances within each operon. To compare
with the real operon CV level, we random redistribution the
protein quantities quantified in the experiment as randomized
negative control. Smaller CV represent the unified expression
level of the proteins within one operon. The mean of real
CV was significantly smaller than that of randomized negative
control data (Mann–Whitney U-test, p = 5.05 × 10−10 and
p = 3.40 × 10−5 for BW25113 and MG1655, respectively)
(Figure 2). The median CV of quantified proteins were also
smaller than the randomized control (Kruskal–Wallis H-test,
p = 1.44× 10−8 and p = 1.18× 10−6 for BW25113 and MG1655,
respectively). As a positive control, the trend to unified expression
is also valid in transcription (an operon is transcribed as an entire
mRNA) (Supplementary Figure S2). This indicated that most
polycistronic operons were co-regulated, and the stoichiometry
balance of protein abundances within polycistronic operons
exists in general, although with exceptions. These results were in
general consistent with previous studies (Ishihama et al., 2008;
Arike et al., 2012).

Functional Enrichment of the Operon
Stoichiometry Control
We then examined if the number of genes per operon could
affect the stoichiometry of proteins encoded within operons in
both BW25113 and MG1655 strains. We found all the medians
of subgroups were lower than the randomized negative control
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FIGURE 1 | Comparison of protein abundances obtained by different label-free quantification methods. (A) Quantified protein numbers in two biological replications
of HRM-MS method of two strains. (B,C) The quantification reproducibility of HRM-MS method in relaxed and stringent criteria of two E. coli strains, respectively. R
is the Pearson correlation coefficient. The protein abundance range was divided into low (<2.0 log scale), mid (2.0–3.5 log scale) and high (>3.5 log scale) sections.
r_low, r_mid and r_high are the Pearson correlation of the proteins in these sections. (D,E) The reproducibility of DDA MS experiment of the two strains. Proteins
were quantified using iBAQ method. (F) The peptide coverage of the HRM-MS-identified proteins in two E. coli strains, respectively.

(RD), which was in accordance with our abovementioned results
(Figure 3A), indicating operon expression regulation exists in
general. We continue to divide operons into two subgroups by
their functions.

Next, each group was separated into two subgroups by the
median CV of randomized data, the high CV subgroups (H2-
H5, higher than median of randomized data) and the low CV
subgroups (L2–L5, lower than median of randomized data). Gene
ontology (GO) overrepresentation analysis was performed for
each subgroup both in both strains (Figures 3B,C, see details
in Supplementary Table S5). Most low CV subgroups (L2–L5)
showed functional enrichment against the quantified proteins as
background. The L2 group was overrepresented in almost all
metabolic activities, and the L5 group was highly enriched in

complexes and structural molecules in both E. coli strains. This
provided a hint that the stringent stoichiometry control might
be important for the efficient assembly of protein complexes. In
contrast, there are little significant functional enrichment of GO
terms enriched in H2–H5 subgroups in BW25113, and only the
GO terms enriched in H2 and H5 subgroup in MG1655. These
results indicated that the large CV of most of these operons might
be caused by experimental error.

Since the operons in L2–L5 subgroups were enriched in
metabolic pathways and complexes, we specifically divide these
operons into “Complex” and “Pathway” groups. The group
“Complex” are the operons encoding proteins for the same
protein complex. The group “Pathway” are the operons encoding
proteins involving in the same metabolic pathway. Similar to
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FIGURE 2 | Protein coefficient of variation (CV) within operons of measured data and randomized negative control.

FIGURE 3 | Functional-dependence of operon stoichiometry control. (A) Protein CVs within operons, categorized according to the number of genes in operon. RD,
randomized data. Blue dashed line represents the median of the randomized data. (B,C) Gene ontology (GO) overrepresentation of the operons with lower CV than
the randomized median (L2–L5) and higher CV than the randomized median (H2–H5). The number refer to the number of genes in operon. GO terms with P > 0.001
were considered insignificant and marked as gray. BP, biological process; CC, cell component; MF, molecular function. (B) BW25113 and (C) MG1655 strain.
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the Figure 3A, we performed randomization for each group
multiple times for robustness. In almost all cases the 2-/3-/4-/
≥5-protein “Complex” and “Pathway” operons exhibited lower
CVs than the corresponding randomized data (Supplementary
Figure S3), indicating that the stoichiometry is still maintained
for the protein complexes and metabolic pathways in a certain
extent, which is consistent with the traditional hypothesis.

However, there seems to be a trend that shorter operons
(containing lower number of genes) possess lower CV
within operon (Figure 3A), suggesting a length-dependent
stoichiometry control. Since the mRNA of an entire operon
is transcribed as a unit, the abovementioned phenomenon
opened a question of the origin of the length-dependent
stoichiometry control.

Length-Dependence of Stoichiometry
Control Is Functional-Dependent
Linear regression analysis was performed to calculate the CVs
at RNA and protein levels, within operon that encodes proteins
forming complexes or involving in the metabolic pathways
(Figure 4A and Supplementary Figure S4). Since the mRNA
of one operon is transcribed as one unit, the CV within operon
at RNA level is much lower than the randomized control, as
expected (Figure 4A and Supplementary Figure S4). However,
the “Pathway” operons did not show length dependence at
protein level, while significant and positive correlation of
protein CV within operon versus length were observed in
“Complex” groups in both BW25113 and MG1655 (P-value of
BW25113 = 0.0004, P-value of MG1655 = 0.022). In contrast,
among the “Pathway” groups, those operons exhibited similar
CV distribution regardless of their lengths (regression P > 0.05)
(Figure 4A, “Protein” plots). This reflects necessity that the
proteins operating in a pathway need to be more independently
tuned and thus do not have to follow the stoichiometry. Those
results indicating a length- and functional-dependence of operon
stoichiometry control for larger operons. The RNA–protein
correlation also echoed this trend (Figure 4B). In both strains, the
Pearson R2 of the RNA–protein correlation in “Complex” group
is considerably higher than in “Pathway” group (Figure 4C).
These results indicated that there may be some inherent
difference between “Pathway” and “Complex” type operons.

Significant difference (p < 0.01) of protein CV distribution
were observed among the 2-protein operons against larger (4-/
5-protein) operons only in “Complex” subgroups, but not
observed in the “Pathway” operon subgroups in both BW25113
and MG1655 strains (Figure 4D, see details in Supplementary
Table S4), consolidated our abovementioned observation that the
shorter operons among “Complex” groups operons tend to be
regulated more stringently.

Enzyme Activity Correlates to the
Differential Translation of
“Pathway” Genes
Figure 5A showed examples of “Complex” and “Pathway”
operons, respectively. Genes in three operons showed almost
same RNA abundance. However, the operon ID 3641 encoding

ribosome proteins showed similar protein abundance, while
the operon ID 3767 encoding enzymes in arginine synthesis
pathway and the operon ID 3157 encoding enzymes in biotin
synthesis pathway showed exaggerated difference in protein
abundance. Both translation and degradation may affect the
protein abundance. We found no significant difference of the
“Complex” and “Pathway” operons in terms of the CV of protein
half-life within operons (KS-test, P = 0.932) (Supplementary
Figure S5). Therefore, the translational regulation should be the
major factor leading to such differential protein expression in
“Pathway” operons.

It is expected that the “Complex” proteins tend to be tightly
stoichiometrically controlled to build functional complexes. In
contrast, what benefit is related to the differential translation of
the “Pathway” genes in one operon?

Since “Pathway” proteins comprise pathways, they
sequentially catalyze conversion of a substrate to product
via multiple and successive reaction steps. Therefore, we
hypothesize that the bacteria require less high-efficiency enzymes
to avoid energy waste. Supplementary Figure S6 showed the
arginine synthesis pathway in E. coli, where ArgB and ArgC are
two enzymes that relay. The Michalis constant (KM) of ArgB is
more than 3 times higher than ArgC (Table 1), showing that the
binding of ArgB to the substrate is weaker. Although lacking
the measured value of ArgB kcat in E. coli, ArgB kcat value in
yeast (56% homology in amino acid sequence) is approximately
1/3 of ArgC in E. coli, as a reference. These data indicated that
the catalytic efficiency of ArgC is higher than ArgB. Therefore,
ArgC is less needed in E. coli, which matched the proteome
quantification (Figure 5A). No argH activity data is available in
E. coli. The homologous enzyme in Anas platyrhynchos (75%
homology in amino acid sequence) showed also lower catalytic
efficiency than ArgC. Similar trend was also observed in the
biotin synthesis pathway (Supplementary Figure S6). The
enzyme BioF possess kcat value one order of magnitude higher
than BioB, indicating higher conversion efficiency. Therefore,
BioF is much less produced in E. coli. The enzyme BioC is
extremely efficient with three orders of magnitude higher kcat
value than BioF and much lower KM value than bioB and BioF.
Therefore, BioC is orders of magnitude lower than the other two
enzymes in E. coli.

To further validate this hypothesis, we manually went through
all quantified “Pathway” operons and found other nine operons
which fit the following criteria: (a) at least two quantified
proteins in one operons, and they must exist in the same
metabolic pathway; (b) their pathway must be branch-free, i.e.,
the substrate should be converted sequentially by these enzymes
without introducing other rate-limiting metabolites as branches
in pathway, at least in the range of the quantified enzymes
(illustrations see Figure 5B); (c) enzyme activity parameters,
e.g., kcat or KM, should be available, and the activity parameters
of at least one enzyme should be available in E. coli. The
RNA abundance, protein abundance and the KM values are
illustrated in Figure 5C. All of the nine operons validated the
correlation of the enzyme activity and the protein abundance
without exception: less active enzymes (represented by higher KM
values) were expressed in higher amount at protein level. To be

Frontiers in Genetics | www.frontiersin.org 8 May 2019 | Volume 10 | Article 47313

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00473 May 22, 2019 Time: 17:2 # 9

Zhao et al. Stoichiometry Control of Bacterial Operons

FIGURE 4 | Length-dependence of operon stoichiometry control. (A) Linear regression analysis of gene CVs at RNA and protein levels within operon that encodes
proteins forming complexes or involving in the metabolic pathways in BW25113 strain. P-values of the regression are indicated in the plots. P < 0.05 are considered
significant. RD, randomized control. (B) The RNA–protein scatter plots of the gene expression levels of the “Complex” and “Pathway” operons in two strains,
respectively. (C) The correlation coefficient R2 of the RNA–protein correlation shown in (B) panel. (D) The mutual P-value (Mann–Whitney U test) matrix of the protein
CV within “Pathway” operons and “Complex” operons, respectively. ∗P < 0.05; ∗∗P < 0.01.

noted, six out of nine operons showed inverse proportion of RNA
and protein expression, suggesting that such regulation is mainly
conducted at translation level.

Divergence of Stoichiometry Control Is
Regulated at Translation Level by the
Gene Intervals
Next, we investigated the factor that could determine the
lower stringency of “Pathway” groups of operons. As both
groups of operons contain a wide variety of genes, the
major difference should lay on the gene structures. This is
reflected by the gene intervals, defined as the distance from
the stop codon of the first gene to the start codon of
the next gene downstream within one operon (Figure 6A).
A strongly significant difference on gene intervals was observed

between two groups on their gene interval distributions
(p = 1.314 × 10−5, KS-test, Figure 6B). The genes in
“Complex” genes tend to be arranged very near to each other,
while the “Pathway” genes tend to be located far from each
other, reflected by the larger mean and median value of
the gene interval.

Both a 70S ribosome and a 30S subunit cover about 40
nucleotides of the mRNA, roughly 18–20 nucleotides upstream
and 16–18 nucleotides downstream of the P-site codon (Beyer
et al., 1994). If a terminating 70S ribosome would have a
downstream initiation site nearer than 40 nucleotides, a 70S
termination event and a downstream 30S-binding initiation
could not be independent events due to a steric clash between
70S and 30S. In this case, the 70S scanning initiation mode
plays a major role for translation, meaning the first cistron
is initiated by 30S and the downstream cistrons by 70S
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FIGURE 5 | Examples of “Complex” and “Pathway” operons. (A) The gene expression at RNA and protein levels in E. coli K-12 MG1655 strain. The detailed
expression level are marked on the data points. <1 means the expression level is too low to be confidently quantified. (B) Illustrations of the “branch-free” and
“branched” pathways. E1 and E2 represent the quantified proteins in the same operon. (C) All nine operons which encodes enzymes that exist in branch-free
pathways. Their RNA abundance, protein abundance and KM values were plotted. KM values are plotted in orange bars. Detailed KM values are listed in Table 1.
Detailed pathways are illustrated in Supplementary Figure S6.

scanning to achieve a strict and precise 1:1 stoichiometric ratio
(Yamamoto et al., 2016). This may be one of the factors explained
that the “Complex” operons, with shorter gene intervals, are more
stringently regulated for stoichiometry.

DISCUSSION

Near-complete coverage of proteome identification and
quantification is always a goal of proteomics research, as
it reveals detailed global dynamics of important biological
processes; for example, the dormancy and resuscitation
of Mycobacterium tuberculosis (Schubert et al., 2015). The
high proteomic resolution of quantification allows in-depth
investigation of many scientific questions in debate for decades.
In this study, we employed DIA based HRM-MS, a highly
reproducible label-free quantification method in E. coli strains
BW25113 and MG1655. Our datasets were better than the
previously reported DDA-based E. coli proteome quantification
datasets in terms of reproducibility. We therefore generated
the most complete investigation on abundance of proteins
encoded within operons in E. coli based on tryptic digestion up
to date, which allows us to accurately evaluate the stoichiometry
presumption of the operon organization. To further increase
the sensitivity of identification, other complement approaches
such as LysC digestion might be helpful (Wisniewski and Rakus,

2014). Nevertheless, since we have already quantified 93.6%
of the cytosolic proteins, specific methods dealing with the
hydrophobic nature of membrane proteins should be employed
to further expand the proteome coverage. The DIA based
HRM-MS relies heavily on DDA spectral libraries. Therefore,
they share the same shortcomings, e.g., the dependence on the
physical and chemical properties of proteins.

We confirmed from our HRM-MS results that the operons
coordinate the gene expression more stringent than the
randomized control in general. In addition, we found a
multifaceted nature of the operon regulation: operons are
not created equal. The stringency is length-dependent and
functional-dependent at protein level. Such multifaceted
organization of operons revealed two-level control: the operon
unified transcriptional level and gene-specific translational level,
which benefits the host in different aspects.

Although the operon organization maintains in general
the stoichiometry of the genes in the operons compared
to fully randomized scenario, the operons for metabolic
pathways are in general less strictly controlled for stoichiometry
balance compared to those operons for protein complexes.
Protein complexes needs stoichiometry to maintain their
functions. Therefore, the operons encoding protein complexes
are tightly regulated to ensure the equal expression, such
as the ribosome protein operons (Figure 5A). In contrast,
since the operons for metabolic pathways are not necessarily
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TABLE 1 | Kinetic parameters of the enzymes in one metabolic pathway.

Enzyme kcat (s−1) KM (mM) Homology to E. coli protein (for
non-E. coli proteins)

References

ArgB 4.9
(S. cerevisiae)

1.3 56% Gil-Ortiz et al., 2010; de Cima et al., 2012

ArgC 14 0.4 McLoughlin and Copley, 2008

ArgH 4.9
(Anas

platyrhynchos)

0.4
(Anas platyrhynchos)

75% Chakraborty et al., 1999

BioB 0.0039 0.002 Farh et al., 2001; Taylor et al., 2008

BioF 0.05825 0.025 Turbeville et al., 2011

BioC 98.334
(Bacillus
cereus)

0.00108
(Bacillus cereus)

62% Lin and Cronan, 2012

GuaB 13 0.061 Kerr and Hedstrom, 1997

GuaA 23 0.053 Oliver et al., 2014

AceB 0.022 Lohman et al., 2008

AceA 0.063 MacKintosh and Nimmo, 1988

BetA 1.5 Landfald and Strom, 1986

BetB 1.8 Gruez et al., 2004

UxuA 4.79 Qiu et al., 2012

UxuB 1 Hickman and Ashwell, 1960

DadA 30 Franklin and Venables, 1976

DadX 3.03 Wu et al., 2008

ProB 1.2
(Pseudomonas

aeruginosa)

74% Krishna and Leisinger, 1979

ProA 300 McLoughlin and Copley, 2008

OtsA 1 (Thermoplasma
acidophilum)

65% Gao et al., 2014

OtsB 0.61 Kuznetsova et al., 2006

CysC 0.0005 Satishchandran and Markham, 2000

CysD + CysN 0.0045
(Thiobacillus
denitrificans)

67% (CysD) Gay et al., 2009

PurD 0.03 Cheng et al., 1990

PurH 0.082
(Methanocaldococcus

jannaschii)

50% Graupner et al., 2002

Values are measured in E. coli unless specified. Non-E. coli data were used as a reference when no E. coli data is available.

forming a complex for their functions, their distinct specific
activities set their specific demand in quantity. All quantified
operons which encode enzymes in branch-free pathways
and with available enzyme activity data validated this
hypothesis without exception (Figure 5C). Nevertheless,
bacteria need to regulate related metabolic pathways in quick
response to environmental stimuli. Therefore, organizing
the proteins in the same pathway under the control of
one promoter would minimize the regulatory complexity
of the adjustments, leaving the delicate control of each
individual gene to the translational level. The available
data indicated that such translational regulation is quite
common (Figure 5C).

Our data also showed that the shorter operons, whose
products form complexes, tend to be more tightly controlled
in stoichiometric expression (Figure 4). This could be
understandable such as two-component protein complexes

would be invalid if there were imbalanced expression of the
components. For instance, the assembly efficiency decreased
remarkably if two subunits of bacterial luciferase LuxA and
LuxB were split at distant chromosomal sites (Shieh et al., 2015).
Large operons tend to encode proteins for large complexes
such as ribosomes (Figure 4). Such large complexes would
sustain for relatively long time in cells to perform essential
functions. For example, half-life of mammalian ribosomes
can be as long as 300 h (Nikolov et al., 1983). Many protein
components of ribosomes are dissociable and interchangeable
with unbound counterparts (Schafer et al., 2003). This allows
the rapid renewal of the damaged proteins of the complex
without degrading and re-synthesizing the entire complex,
which is the most energy-efficient way to keep these valuable
complexes in good condition. This requires the delicate
expression control of these proteins within one operon to meet
the actual demand.
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FIGURE 6 | Gene intervals in the “Complex” and “Pathway” operons.
(A) Illustration of the gene interval within one operon. (B) Distribution of the
gene intervals of “Complex” and “Pathway” operons.

In another aspect, the differential expression regulation within
an operon is also important for bacteria. Previous studies
proposed that such regulation happens via generating different
transcripts from multiple promotors/terminators [e.g., Bacillus
subtilis dnaK operon (Homuth et al., 1999), Vibrio vulnificus
putAP operon (Lee et al., 2003), Zymomonas mobilis gap operon
(Eddy et al., 1989), E. coli glpEGR operon (Yang and Larson,
1998)], or via differential degrading mRNAs [e.g., Acinetobacter
calcoaceticus mop operon (Schirmer and Hillen, 1998), E. coli
atp operon (McCarthy, 1990; McCarthy et al., 1991)]. However,
these studies included only individual cases of specific operons.
Taking advantage of deep coverage of E. coli cytosolic proteome,
our data indicated that enzyme activity seems to be an additional
driving force for the differential expression regulation within
an operon. Highly efficient enzymes tended to be less produced
than the other counterparts in the same pathway. In such cases,
deviating from stoichiometry minimizes the energy waste and
thus may provide survival advantage. This explained the fact
that no significant length-dependent stoichiometry is observed
in “Pathway” proteins. Our analysis was restricted by the very
limited availability of the enzyme activity and kinetics data.
Validation using more such data is necessary in the future.

In this study, we noticed that the gene intervals in operons
may serve as a regulatory factor for stoichiometry. It is a
general accepted notion that termination of bacterial protein
synthesis is obligatorily followed by recycling step governed by
the factors ribosomal recycling factor (RRF), EF-G, and IF3,
where the ribosome dissociates into its subunits (Hirokawa et al.,
2006). In contrast, a recently described 70S-scanning mode of
initiation holds that after termination, the 70S ribosomes do
not dissociate after termination step but rather scan along with

the mRNA until reaching the initiation site of the downstream
cistron of the same mRNA (Yamamoto et al., 2016). Binding of
fMet-tRNA triggers 70S scanning, which occurs in the absence
of energy-rich compounds (e.g., ATP, GTP) and seems to be
driven by unidimensional diffusion (Yamamoto et al., 2016).
Therefore, the 70S scanning initiation might be a mechanism
to read out the “stoichiometry code” of closely located genes
in operons. In addition, the rate of translation of an ORF is
controlled by a number of other mRNA features. For example,
the codon selection and the cognate tRNA concentration
dictate the translational pausing, which is a strong determinant
of co-translational folding for most proteins (Zhang et al.,
2009; Zhong et al., 2015; Lian et al., 2016). Shine–Dalgarno
(SD) sequence accessibility and strength have been implicated
in translational initiation (Steitz and Jakes, 1975). Genome-
wide mRNA secondary structure analysis indicated that ORF
translation rate is correlated with its mRNA structure in bacteria
(Burkhardt et al., 2017), but not in mammalian cells (Lian
et al., 2016). Although highly stable mRNA structures in direct
proximity to the initiation codon diminish translation efficiency
(de Smit and van Duin, 1990), secondary structure hiding
the SD sequence in front of the second cistron prevents 30S
binding initiation, but the secondary structure can be resolved
by scanning 70S ribosomes when the secondary structure has a
comparable stability (1G ≥ −6 kcal/mol at 30◦C) (Qin et al.,
2016; Yamamoto et al., 2016). These molecular mechanisms
should be universal beyond exponential growth condition,
although further validation would be needed.

This two-level regulation mode involving transcription and
translation would balance the regulation in different time-scale.
As transcriptional control takes effects at least in half an hour,
it is suitable for sustained alteration in gene expression and in
pathway-scale. In contrast, rapid and fine adjustment can be
only performed at the translational level, which takes effects in
less than 1 min and occurs at the individual gene level (Zhong
et al., 2015). This rapid responsiveness would be also ideal
for real-time adjustment of the proteins needed in complexes
and pathways. Translational regulation largely contributes to
the proteome complexity and minimizes the energy waste
on synthesizing unnecessary proteins. Thus, the delicate and
differential translational regulation in bacteria maintains the
functionality and efficiency of both macromolecular complexes
and metabolic pathways, which is a desperate need of the survival
and competence of bacteria.

DATA AVAILABILITY

The datasets generated for this study can be found in GEO,
GSM3489376, GSM3489377.

AUTHOR CONTRIBUTIONS

GZ, JZ, and CS: conceptualization. JZ and HZ: experiment and
visualization. JZ, HZ, BQ, and RN: data analysis. GZ and Q-YH:
supervision. JZ, HZ, BQ, RN, Q-YH, CS, and GZ: writing. GZ:
funding acquisition.

Frontiers in Genetics | www.frontiersin.org 12 May 2019 | Volume 10 | Article 47317

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00473 May 22, 2019 Time: 17:2 # 13

Zhao et al. Stoichiometry Control of Bacterial Operons

FUNDING

This work was supported by the Ministry of Science and
Technology of China, National Key Research and Develop-
ment Program (2017YFA0505001/2017YFA0505101/2018YFC0
910201/2018YFC0910202), Guangdong Key R&D Program
(2019B020226001), and the Distinguished Young Talent Award
of National High-level Personnel Program of China.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2019.00473/full#supplementary-material

FIGURE S1 | Physical and chemical features of quantified and unquantified
proteins in E. coli. Panels (A–D) are distributions of protein isoelectric point,
instability, protein length, and hydrophobicity. Instability tests a protein for stability,
which value above 40 means the protein has a shorter half-life. The
Kolmogorov–Smirnov test (KS-test) was used to test the distribution between
quantified and unquantified proteins. Significance different were found between
quantified and unquantified proteins indicated different physical–chemical
characterizations of them.

FIGURE S2 | CV within operons of measured data and randomized negative
control at RNA level.

FIGURE S3 | Length- and functional-dependence of operon stoichiometry control
compare to randomized data. (A–E) Distribution among “Complex,”
“Complex_random,” “Pathway,” and “Pathway_random” groups in BW25113.
(F–J) Distribution among “Complex,” “Complex_random,” “Pathway,”
“Pathway_random” groups in MG1655. In most cases, the CV in “Complex” and
“Pathway” groups were lower than corresponding “Complex_random” and
“Pathway_random” groups in both strains, indicating real robust signals but not
statistical artifacts in operons present in E. coli.

FIGURE S4 | Length dependence of the stoichiometry control at RNA and protein
levels. Same figure in MG1655 strain, comparable to the Figure 4A.

FIGURE S5 | Distribution of protein half-life CV in “Complex” and
“Pathway” operons.

FIGURE S6 | Pathways in Figure 5.

TABLE S1 | DIA MS/MS isolation windows table.

TABLE S2 | Spectral library used in HRM-MS analysis.

TABLE S3 | Protein abundances and properties used in this analysis.

TABLE S4 | P-value of Mann–Whitney U test between complex and pathway
operons shown in Figure 3C.

TABLE S5 | P-value of gene ontology (GO) overrepresentation of the operons with
lower and higher CV groups shown in Figures 3D,E.
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Coordinated Regulation of Rsd and 
RMF for Simultaneous Hibernation 
of Transcription Apparatus and 
Translation Machinery in Stationary-
Phase Escherichia coli
Hideji Yoshida 1*, Akira Wada 2, Tomohiro Shimada 3,4, Yasushi Maki 1 and Akira Ishihama 4*

1 Department of Physics, Osaka Medical College, Takatsuki, Japan, 2 Yoshida Biological Laboratory, Kyoto, Japan, 
3 School of Agriculture, Meiji University, Kawasaki, Japan, 4 Research Center for Micro-Nano Technology, Hosei University, 
Koganei, Japan

Transcription and translation in growing phase of Escherichia coli, the best-studied model 
prokaryote, are coupled and regulated in coordinate fashion. Accordingly, the growth rate-
dependent control of the synthesis of RNA polymerase (RNAP) core enzyme (the core 
component of transcription apparatus) and ribosomes (the core component of translation 
machinery) is tightly coordinated to keep the relative level of transcription apparatus and 
translation machinery constant for effective and efficient utilization of resources and energy. 
Upon entry into the stationary phase, transcription apparatus is modulated by replacing 
RNAP core-associated sigma (promoter recognition subunit) from growth-related RpoD 
to stationary-phase-specific RpoS. The anti-sigma factor Rsd participates for the efficient 
replacement of sigma, and the unused RpoD is stored silent as Rsd–RpoD complex. On 
the other hand, functional 70S ribosome is transformed into inactive 100S dimer by two 
regulators, ribosome modulation factor (RMF) and hibernation promoting factor (HPF). In 
this review article, we overview how we found these factors and what we know about the 
molecular mechanisms for silencing transcription apparatus and translation machinery by 
these factors. In addition, we provide our recent findings of promoter-specific transcription 
factor (PS-TF) screening of the transcription factors involved in regulation of the rsd and 
rmf genes. Results altogether indicate the coordinated regulation of Rsd and RMF for 
simultaneous hibernation of transcription apparatus and translation machinery.

Keywords: RNA polymerase sigma factor, anti-sigma factor (Rsd), ribosome, ribosome modulation factor, 
hibernation, stationary phase, Escherichia coli K-12

INTRODUCTION
Batch cultures under optimal laboratory conditions of the well-characterized model bacterium 
Escherichia coli in rich media at an optimum temperature (usually at 37°C, the temperature of 
host animals for enterobacterium E. coli) under sufficient supply of oxygen exhibit a progression 
of constant steady-state growth as measured by either counting of the viable cells or measuring the 
cell turbidity. Traditionally, the cell growth has been classified into three phases: non-replicative 
lag phase; replicative exponential phase; and stationary phase of replication cessation. The 
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growing-phase E. coli has long been used as a model organism 
relying on the belief that its laboratory culture is homogenous in 
cell populations. Most of our knowledge of modern molecular 
genetics such as the mechanisms and regulation of gene 
expression was established using such apparently homogenous 
planktonic cell cultures.

In contrast to the laboratory culture conditions, the conditions 
that allow steady-state bacterial growth are seldom found in 
nature. Instead, the lack of nutrients, accumulation of toxic 
waste compounds, and the influence of harsh environmental 
conditions such as lack of oxygen and pH change threaten the 
survival of E. coli. A variety of protection systems against such 
hazardous environments are induced for survival by changing 
the cell organization at both the molecular and cellular levels 
(Foster, 1999; Raivio, 2005; Battesti et al., 2011; Jin et al., 2012; 
Mehta et al., 2015). Under such a background, the focus in E. 
coli research is being shifted toward understanding the survival 
strategy of E. coli after growth cessation. Facing this research 
stage, E. coli is again recognized as a suitable model organism 
because of huge amounts of accumulated knowledge of E. coli 
such as the functions and regulation of the whole set of genes on 
its genome.

Upon entry into the stationary phase of laboratory E. coli 
cultures, a variety of morphological and physiological changes 
take place in individual cells. The growth phase-coupled changes 
in cell characteristics are associated with a change in expression 
pattern of the genome: most of the growth-related genes are 
turned off or leveled down, and, instead, a number of the 
genes needed for stationary-phase survival are expressed (for 
reviews, see Lowen and Hengge-Aronis, 1994; Ishihama, 1997; 
Ishihama, 1999). Overall level of genome expression decreased 
down to less than 10% of the level of exponential growth. The 
change in genome expression is mainly attributable to the 
changes in activity and specificity of gene expression system, 
including transcription apparatus and translation machinery 
in parallel with the structural reorganization of genome within 
the nucleoid (Figure 1). Upon entry into the stationary phase, 
unused excess cellular components are generally degraded for 
reuse as nutrients for survival. Both transcription apparatus 
and translational machinery are, however, stored without being 
degraded, and instead, their activity and specificity are markedly 
modulated for expression of the stationary-phase genes (referred 
to as “stationary genes” in this report). The major change of 
transcription apparatus is the replacement of the promoter-
recognition subunit sigma from RpoD to RpoS through the aid 
of anti-sigma factor Rsd (regulator of sigma D) (Jishage and 
Ishihama, 1995) (Figure 1). On the other hand, 70S ribosome 
is converted into inactive 100S dimer with the aid of ribosome 
modulation factor (RMF) and hibernation promoting factor 
(HPF) (Maki et al., 2000; Ueta et al., 2005) (Figure 1). We found 
that these factors have been involved in detailed analyses of the 
regulatory roles of these factors (for reviews, see Wada, 1998; 
Ishihama, 1999; Ishihama, 2000; Yoshida and Wada, 2014). 
Here, we provide an overview of the molecular basis of genome 
expression system after the stationary phase, focusing on the 
simultaneous and coordinated hibernation of the transcription 
apparatus and the translation machinery.

Up to the present time, a set of anti-sigma factors have been 
identified, each sequestering each of all seven E. coli K-12 sigma 
factors (Hughes and Mathee, 1998; Helmann, 1999; Trevino-
Quintanilla et al., 2013; Paget, 2015). Similar systems of the 
functional modulation of RNA polymerase (RNAP) are also 
known in bacteria other than E. coli, but the knowledge of 
regulatory functions of the whole set of sigma and anti-sigma 
factors is best known for E. coli (for details, see Hibernation of 
the Transcription Apparatus). Likewise, the factors for ribosome 
silencing differ between E. coli and other bacteria. For instance, 
non-gamma proteobacteria form 100S ribosome but lack RMF 
and contain long HPF homologues (Ueta et al., 2008; Yoshida 
and Wada, 2014) (for details see Hibernation of the Translation 
Machinery). As to the silencing of transcriptional apparatus and 
translational machinery, we focus on the well-characterized E. 
coli K-12 systems in this review.

GROwTH PHASe-COUPLeD CHANGeS IN 
CeLL CHARACTeRISTICS

Discontinuous Change of the Cell 
Buoyant Density
Upon entry into the stationary phase of laboratory Escherichia 
coli cultures, a variety of morphological and physiological 
changes take place in individual cells, including decrease in 
cell size, alteration in cell shape, compaction of nucleoid, 
changes in cell wall organization, and alterations in cytoplasm 
compositions (Roszak and Colwell, 1987; Kolter et al., 1993; 
Huisman et al., 1996). The synchronization of cell growth is 
disturbed, supposedly due to difference in microenvironment, 
and accordingly, the stationary-phase culture includes a mixture 
of heterogeneous cell populations including dead cells. The level 
and mode of cell heterogeneity differ depending on the culture 
conditions or factors affecting growth retardation the (Ferenci, 
2001; Stewart and Franklin, 2008; Martinez-Antonio et al., 2012; 
Serra and Hengge, 2014; Pletnev et al., 2015). Upon entry into 
the stationary phase, the cell wall becomes thicker while the 
cytoplasm becomes condensed. In parallel, a variety of changes 
have been recognized for the cell characteristics, including the 
increase of unsaturated fatty acids in membrane, the increase 
of osmoprotective solutes such as trehalose and glycine betaine 
in cytoplasm, the accumulation of storage compounds such as 
glycogen and polyphosphate, and the decrease in polyamines 
(Roszak and Colwell, 1987; Kolter et al., 1993; Huisman et al., 
1996; Ishihama, 2000). The nucleoid becomes more compact by 
replacing the DNA-binding proteins, for instance, from Fis in the 
log-phase to Dps in the stationary phase (Talukder et al., 1999; 
Ishihama, 2009). The DNA superhelicity, however, decreases in 
the stationary phase (Jaworski et al., 1991; Kusano et al., 1996).

For physical separation of heterogeneous cell populations, 
we succeeded in separating E. coli cell populations using 
centrifugation through gradients of polyvinylpyrrolidone-coated 
silica Percoll that protects the cells from toxic effects of silica 
(Makinoshima et al., 2002; Makinoshima et al., 2003). Due to 
the low viscosity of Percoll, materials as large as marker beads 
and bacterial cells quickly sediment to positions characteristic 

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 115322

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hibernation of Gene Expression ApparatusYoshida et al.

3

of their densities. Exponential phase cultures of E. coli K-12 
formed at least five discrete even though the density difference 
is within a narrow range (Figure 2A). This minor heterogeneity 
might correspond to the difference in the cycle of cell division 
(Kubitschek et al., 1983; Koch, 1996). In contrast, the stationary-
phase cultures formed more than 10 bands, all exhibiting increased 
densities than the log-phase cultures (Figure 2A). A number of 
factors should influence the cell density, such as the cell volume, 
the chemical composition of cells, and the content of free water. 
One of the unexpected findings is the growth phase-coupled 
discontinuous transition of E. coli cell density. Even if the growth 
phase-coupled changes in molecular events are continuous, the 
overall cell characteristics change in discontinuous fashion as 
detected by the buoyant density. We concluded that the overall 
state of cell morphology and/or physiology of E. coli cells changes 
in discontinuous fashion during the growth transition from the 
log phase to the stationary phase.

A number of stationary genes have been identified by 
transcriptome and proteome analyses (Franchini et al., 2015; 
Sanchuki et al., 2017; Caglar et al., 2018). At present, however, 
we have only fragmentary knowledge on the expression order 
and the physiological roles of these stationary genes. We realized 
that the discontinuous change in cell buoyant density is a good 
marker for identification of the genes involved in each step of 
the cell differentiation during the transition of cell growth from 
exponential to stationary phase. We then subjected more than 200 
single-gene-knockout mutants from the Keio collection (Baba et al., 
2006; Yamamoto et al., 2009) to Percoll gradient centrifugation. 
Some mutants exhibited altered distribution (see Supplemental 
Figure S2 for protein distribution), mostly defective in the density 
increase even after prolonged centrifugation. For instance, the 
density increase was found to be impaired at an early step for a 
mutant E. coli with the disrupted rpoS gene, which encodes RpoS 
sigma, the key player of stationary gene transcription (Figure 2B). 

FIGURe 1 | Hibernation of transcription apparatus and translation machinery in Escherichia coli K-12. Upon entry of E. coli growth into the stationary phase, RNAP 
RpoD becomes silent through binding of anti-sigma factor Rsd onto the RpoD region-4 (promoter -35 recognition site) (Jishage and Ishihama, 1998; Jishage et al., 
2001) while functional 70S ribosomes are converted to inactive 100S dimers through association with RMF (Wada et al., 1990; Wada, 1998) and HPF (Ueta et al., 
2008; Yoshida and Wada, 2014). Here, we describe the coordinated regulation of two key regulators, Rsd and RMF, in E. coli K-12. The binding targets and binding 
sites of these two regulators on RNAP and ribosomes are described in text and also in Figure 6. Other factors involved in these processes are also described in 
text. RNAP, RNA polymerase; RMF, ribosome modulation factor; HPF, hibernation promoting factor.
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RpoS was found to be needed at the early stage of the cell density 
increase (for details, see next chapter). The interruption of 
density increase was observed for the genes not directly related to 
transcription. For instance, mutants defective in RpoF and RpoN 
exhibited essentially the same centrifugation pattern with that of 
wild-type E. coli K-12. In contrast, the density increase stopped 
for the mutant lacking the rmf gene at a step later than that for 
RpoS sigma, indicating that the ribosome dimerization takes place 
after expression of RpoS-dependent genes. Afterward, the density 
increase is interrupted for the mutant lacking universal stress 
protein (UspG) (Figure 2B). RMF is required for hibernation of 
ribosomes through conversion of functional 70S monomer to 
inactive 100S dimer (for details, see below) (Wada, 1998; Yoshida 
and Wada, 2014), while UspG is needed for cell–cell interaction 
in biofilm formation in the stationary phase (Nachin et al., 2005). 
The stop order of buoyant density increases for the uspG and rmf 
mutants agrees well with the order of maximum expression of 
UspG and RMF in wild-type E. coli (see Figure 3).

Growth-Dependent Change of the Protein 
expression Pattern
As noted above, the pattern of genome expression in the stationary-
phase changes for adaptation and survival as measured by 
genome-wide expression patterns of mRNA and protein products 
using the modern omics systems. In this section, we focus on the 
expression and degradation of the whole set of stationary proteins 
during the prolonged culture after the stationary phase up to 8 
days. For protein separation and identification, we employed the 
radical-free highly reducing (RFHR) system of two-dimensional 

(2D) gel electrophoresis (for details, see Wada, 1986a; Wada, 
1986b). The RFHR method allowed fine resolution of proteins 
on 2D gels, minimizing artificial spots generated through intra-
molecular and inter-molecular Cys–Cys bridging under oxidation 
circumstances. The level of each protein on the RFHR 2D gel 
pattern can be determined by measuring the density of stained 
protein spot (Supplemental Figure S1). For the analysis of 
stationary proteins, we used E. coli K-12 AD202 strain lacking the 
ompT gene encoding outer membrane protease 7, which exhibits 
strong protein hydrolysis activity during cell lysate preparation 
once liberated from the outer membrane. In the experiments 
shown in Figure 3, cells were harvested at various times up to day 
8. Under the culture conditions employed, the viability decreased 
gradually to less than 10% at day 8 (Figure 3, inset). The whole 
cell lysates were fractionated by centrifugation into CD (insoluble 
cell debris) and CE (cell extract supernatant fraction), which were 
then fractionated into CR (crude ribosome fraction) and PRS 
(post ribosomal supernatant fraction) (for details, see Figure 3 
legend). The nature of each protein spot on RFHR 2D gel could be 
determined after protein sequencing and/or mass spectroscopy. 
After repeating RFHR analysis thoroughly, a total of more than 
650 protein spots were identified, of which a total of 65 appeared 
or markedly increased after the stationary phase. These proteins 
were detected in three cellular fractions: 31 in RPS, 30 in CD, and 
4 in CR (Supplemental Table S1). Up to the present time, a total 
of 48 spots have been identified, but 17 remained unidentified.

The RFHR system is in particular useful for analysis of 
small proteins, allowing the identification of these small-sized 
ribosome-associated proteins. The CR (crude ribosomal) 
fraction contained the newly identified 50S proteins, L35 (RpmI) 

FIGURe 2 | Growth phase-dependent discontinuous increase of cell buoyant density of Escherichia coli K-12. (A) E. coli W3110 was grown in LB medium at 
37°C with shaking. At various times, an aliquot of cell suspension was subjected to Percoll gradient centrifugation for 1 h at 20,000 rpm at 4°C in a Beckman 
SW40Ti rotor (Makinoshima et al., 2002; Makinoshima et al., 2003). The location of marker beads is indicated on the left: a, 1.035 g/ml; b, 1.074 g/ml; c, 1.087 
g/ml; d, 1.102 g/ml; e, 1.119 g/ml. (B) E. coli wild-type BW25113 and its single-gene knockout mutants were grown in LB for 4 (L) or 24 h (S) and subjected to 
Percoll gradient centrifugation. The increase in cell buoyant density was interfered for these mutants, remaining at specific positions as indicated on the right. 
LB, lysogeny broth.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 115324

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hibernation of Gene Expression ApparatusYoshida et al.

5

and L36 (RpmJ) (Wada and Sako, 1987), and 30S protein S22 
(Sra or RpsV) (Izutsu et al., 2001), leading to make the complete 
list of 54 r-proteins in E. coli K-12. Besides, some ribosome-
related proteins were included in the CR fraction such as RMF, 
RaiA (renamed YfiA), and HPF (renamed YhbH), which all are 
involved in ribosome hibernation; for details, see Hibernation of 
the Translation Machinery.

The CD fraction recovered in the pellet fraction after low-
speed centrifugation includes a total of 30 proteins tightly 
associated with cell wall and membrane. Stationary-phase-
specific nucleoid proteins Dps and StpA were recovered in 
this CD fraction in agreement with the tight association of 
stationary-phase nucleoid with the cell membrane (Ishihama, 
2009). Most of stress-response gene products in this CD 
fraction such as SlyD (chaperone with peptidyl-prolyl cis-trans 
isomerase activity) and StpA (H-NS-like nucleoid protein with 
RNA chaperone function), and two of six E. coli UspGs, UspD 
and UspG. All these proteins are involved in repair and refolding 
of RNAs and proteins (see Supplemental Table S1). The PRS 
fraction includes a total of 31 soluble stationary proteins, 
which all migrated in neutral to acidic regions on 2D (see 
Supplemental Figure S1). Most of these soluble proteins are 
involved in stationary-phase-specific metabolism, supposedly 
for redirection of metabolic circuits after prolonged culture in 
the absence of sufficient nutrients.

The level of stationary-phase proteins was measured 
throughout the culture up to day 8 (Figure 3), and the relative 
distribution is aligned in the order of appearance time throughout 
the 8-day culture (Figure 4). About half of the stationary-
phase proteins appeared at specific time and soon disappeared, 
exhibiting a relatively narrow pattern of appearance in the 
stationary phase, but some other stationary proteins distributed 
in rather wide range of the stationary phase even though the 
distribution pattern between three subcellular fractions change. It 
should be noted that some stationary-phase proteins are detected 
in more than two fractions and exhibited culture time-dependent 
shift of distribution such as RPS-to-CD for GatY, RbsB, SlyD, 
UspD, ZapB, YdcH, and YibJ (see Table 1). The final deposition of 
these soluble proteins could be in the cell membrane and cell wall 
after prolonged culture. One exceptional distribution pattern 
was observed for RaiA, which showed a culture time-dependent 
alteration of distribution among all three fractions, CR, PRS, and 
CD (see Table 1), supposedly reflecting to its role in ribosome 
hibernation (see below).

Furthermore, it is interesting to note that even in the last 
day 8, expressions of some stationary-phase proteins are 
synthesized, including HchA (protein/nucleic acid deglycase), 
Mdh (malate dehydrogenase), GuaB (inosine 5′-monophosphate 
dehydrogenase), and ZapB (cell division factor). HchA is involved 
in repair of glyoxal- and methylglyoxal-glycated proteins (Mihoub 

FIGURe 3 | Growth phase-dependent synthesis of 18 representative stationary proteins in Escherichia coli K-12. E. coli K-12 AD202 was grown in minimal 
medium E (Vogel and Bonner, 1956) containing 2% peptone at 37°C. The cell growth was monitored for 10 days by measuring the turbidity at 660 nm and 
by counting viable cells as shown in the inset. Aliquots of the culture were harvested at the indicated time (X-axis), and the cell lysates were fractionated into 
CD (insoluble cell debris), CE (cell extract supernatant), CR (crude ribosome), and PRS (post ribosomal supernatant) fractions. All these fractions prepared at 
each time point was subjected to RFHR 2D gel system, and the stained protein spots were measured by densitometry. The relative levels (Y-axis) are shown 
at each culture time (X-axis) for a total of 18 representative stationary proteins. The proteins shown under purple background indicate those involved in the 
hibernation of ribosomes.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 115325

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hibernation of Gene Expression ApparatusYoshida et al.

6

et al., 2015) and nucleic acids (Richarme et al., 2017). The mdh 
gene is also organized a network of genes, which facilitate stress-
induced mutagenesis (Al Mamun et al., 2012). ZapB plays, 
together with ZapA, a role in organization and dynamics of the 
repaired genome in resting cells and independent of the Min 
system (Bailey et al., 2014; Mannik et al., 2016). Under stressful 
conditions unfavorable for E. coli growth, mutation rate increases 
for adaption and survival (Foster, 1999; Zinser and Kolter, 2004; 
Saint-Ruf et al., 2007). These 8-day proteins might be involved in 
repair of the genome and damaged proteins.

Both the sequential increase in cell buoyant density and the 
sequential synthesis of stationary-phase proteins are apparently 
under a single pathway, but it should be noted that the pathway for 
entry into the stationary phase is multiple. During the prolonged 
culture, the heterogeneity in the cell population should also be 
amplified due to generation of various types of cells on different 
pathways, such as persister cells, mutant cells, and dead cells 
(Roszak and Colwell, 1987; Kolter et al., 1993; Huisman et al., 
1996; Ishihama, 1999).

GROwTH PHASe-COUPLeD ALTeRATIONS 
IN GeNe eXPReSSION APPARATUS

Hibernation of the Transcription Apparatus
Upon entry into the stationary phase, the level of transcription 
decreases to less than 10% of that in the log phase (Ishihama, 

2000). For this marked reduction in transcription pattern, the 
modulation of the promoter selectivity of RNAP is the major 
mechanism through the replacement of sigma subunit (the 
promoter recognition factor). In Escherichia coli K-12, seven 
different species of the sigma subunit exist, each recognizing 
a specific set of promoters (Ishihama, 1988; Ishihama, 2010). 
Transcription of the genes highly expressed in exponential 
growth phase is carried out by the RNAP holoenzyme 
containing RpoD, while RpoS is a key factor in the change 
in genome expression during growth transition from the 
exponential growth phase to the stationary phase (Lowen and 
Hengge-Aronis, 1994; Ishihama, 2010; Ishihama, 2012). We 
have measured the intracellular level of each sigma subunit 
at various phases of cell growth (Figure 5A). In exponentially 
growing cells of E. coli K-12, a significant level was detected 
only for three sigma factors, RpoD for growth-related genes, 
RpoN for nitrogen-assimilation genes, and RpoF for flagella-
chemotaxis genes (Ishihama et al., 1976; Kawakami et al., 
1979; Jishage and Ishihama, 1995). The concentration of 
RpoD is maintained at a constant level of 500–700 molecules 
per genome from log to stationary phase. The log-phase cells 
contain 1,500 to 2,000 molecules of RNAP core enzyme per 
genome, but about two-third are involved in transcription 
cycle (Ishihama and Fukuda, 1980; Ishihama, 2000). After 
transcription initiation, RpoD sigma is released, and the 
majority of free RNAP core might be associated with RpoD 
sigma, forming the RpoD holoenzyme.

FIGURe 4 | Growth phase-dependent expression patterns of a total of 65 stationary proteins in Escherichia coli K-12. The growth phase-dependent synthesis was 
measured for a total 65 stationary proteins. The relative level of synthesis from log phase (3-h culture) to day 8 is shown for all 65 proteins. The maximum level is 
shown by filling the day column with full red color. Spot numbers listed in Table 1 are shown on the horizontal axis, with colors indicating fraction type (green: PRS, 
orange: CD, and magenta: CR). The protein products so far identified are shown in red below the corresponding spot numbers.
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TABLe 1 | Proteins Expressed During Prolonged Culture of Escherichia coli K-12.

PRS CD CR

2D spot Max stage 2D spot Max stage 2D spot Max stage Gene Map pI/Size (aa) Function

PRS16 Day 1 CD11 Log uspG ybdQ,yzzU 13.79 6.03/142 universal stress protein G
RPS26 Late-log (3 h) cspE msmC 14.16 8.09/69 transcription antiterminator/RNA stability regulator CspE
PRS10/11 Day-3 Day-7 modA 17.12 7.81/257 periplasmic molybdate transporter protein

CD07 10 h dps pexB,vtm 18.27 5.70/167 stationary-phase nucleoid protein/Fe-binding storage protein
PRS09 Day 3 gloC ycbL 21.19 4.95/215 hydroxyacylglutathione hydrolase;methylglyoxal degradation

CR01 Day 1 and 2 rmf 21.87 10.86/55 ribosome modulation factor
PRS24 Late-log (5 h) yccJ 22.97 4.70/75 PF13993 family protein YccJ

CD30 10 h ymdF 23.00 9.87/57 stress-induced acidphilic repreak motifs-containing protein
RPS02 Day 7 and 8 oppA 24.04 6.05/543 periplasmic oligopeptide transporter protein
PRS31 Day 2 CD23 Day 7 and 8 ydcH 32.29 9.30/74 uncharacterized protein
PRS18 Late-log (5 h) hipA 34.28 8.26/440 serine/threonine kinase HipA; regulator with hipB

CR04 10 h sra rpsV 35.52 11.04/45 30S ribosomal protein S22
PRS04 10 h ldtE ynhG 37.87 9.42/334 L,D-transpeptidase 
PRS25 Late-log (3 h) cspC msmB 41.08 6.54/69 cold-shock stress protein CspC
PRS07 Day 8 hchA yedU,yzzC 43.86 5.63/283 protein/nucleic acid deglycase; Hsp32 moleccular chaperone

CD25 Late-log (3 h) yeeX 44.79 9.30/109 DUF496 domain-containing protein
PRS06 Day 2 CD02 Day 4 gatY yegF 46.91 5.87/284 tagarose-1,6-dibphosphate aldolase

CD01 Day 4 ompC meoA,par 49.82 4.58/367 outer membrane protein C pore for passive difusion
CD15 10 h and Day 1 elaB yfbD 51.34 5.35/101 tail-anchored inner membrane protein

PRS03 Day 7 guaB 56.60 6.02/486 Inosine 5’-monophosphate dehydrogenase; GMP symthesis GMP symthesis
PRS21 Day 7 CD19 10 h CR02 Day 2 and 3 raiA yfiA 58.88 6.19/113 stationary-phase translation inhibitor/ribosome stability factor

CD13 Log stpA hnsB,rsv 60.19 7.95/134 nucleoid protein StpA with RNA chaperone activiry
CD09 Day 6 kbp ygaU,yzzM 60.24 5.67/149 K+ binding protein
CD24 Day 5 yggX 66.78 5.91/91 Fe2+-tracking protein; oxidative damage protect Fe-S protein 
CD27 Day 2 yqjD 69.91 9.06/101 ribosome- and membrane-associated DUF-domain protein

CR03 10 h hpf yhbH 72.01 6.50/95 ribosome hibernation-promoting factor; RpoN modulation protein
RPS05 Day 8 mdh 72.81 5.61/312 malate dehydrogenase
PRS22 Late-log (3 and 5 h) CD21 Day 8 zapB yiiU 75.71 4.69/81 cell division factor ZapB
RPS17 Day 1 CD12 Day 3 and 7 uspD yiiT 75.82 6.37/142 universal stress protein D
RPS08 Day 6 CD03 Day 5 rbsB priB,rbsP 79.62 6.85/296 periplasmic ribose transperter protein
RPS15 Late-log (3 h) rbsD rbsP 79.70 5.93/139 D-ribose pyranase; sugar-binding protein
RPS29 10 h CD28 Day 3 yibJ 83.35 5.00/? RHA domain-containing protein YibJ
RPS23 Log maoP yifE 85.06 6.09/112 macrodomain Ori protein
RPS20 Late-log (5 and 6 h) hdeA yhhC,yhiB 85.74 5.06/110 periplasmic acid stress chaperone HdeA
PRS12 Late-log (3 h) nfuA gntY,yhbI 88.12 4.52/191 iron-sulfur cluster carrier protein; gluconate transporter
PRS14 Late-log (3 h) CD05 Day 3 slyD 89.57 4.86/196 FKBP-type pepridyl-prolyl cis-trans isomerase
PRS01 Day 7 X
PRS13 Late-log (3 h) X

(Continued)
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RpoS sigma is needed for transcription of stationary-phase genes. 
The level of RpoS starts to increase after the mid-log phase and 
reaches to the maximum level of about the half the level of RpoD 
in the stationary phase (Figure 5B) (Jishage and Ishihama, 1995; 
Jishage et al.,1996). The level of core enzyme is under the autogenous 
control, thereby keeping the constant level of about 2,000 molecules 
per genome throughout cell growth (Ishihama, 2000). In contrast, the 
combined level of all seven sigma factors is about two folds the level 
of the core enzyme, and we then proposed the “sigma competition” 
model (Jishage and Ishihama, 1998; Maeda et al., 2000). Since the 
level of RpoD was always higher than RpoS even after prolonged 
culture, we doubted whether RpoD is still functional in the stationary 
phase. As an attempt to examine this possibility, we analyzed proteins 
associated with RpoD at various phases of cell growth and discovered 
the association of a novel protein Rsd (regulator of sigma D) (Jishage 
and Ishihama, 1998; Jishage and Ishihama, 1999), which forms a 
complex with RpoD for interfering with its sigma function. The 
level of Rsd starts to increase upon entry into the stationary phase, 
finally reaching to the level of 60 to 80% of RpoD (Figure 5B), 
implying that most of RpoD stays non-functional in the stationary 
phase through formation of RpoD-Rsd complex. As a result, the core 
enzyme becomes available for association of the stationary-specific 
RpoS sigma (Jishage and Ishihama, 1998; Mitchell et al., 2007). The 
anti-sigma factor Rsd binds to the RpoD domain-4 that is involved in 
recognition of the promoter -35 signal (Dove and Hochschild, 2001; 
Jishage et al., 2001; Mitchell et al., 2007) (Figure 5C). Crystal structure 
of Rsd–RpoD complex supports this conclusion (Patikoglou et al., 
2007). The affinity of Rsd to free RpoD is high, and in the presence 
of high concentrations of Rsd, it also binds to the core-associated 
RpoD (Ilag et al., 2004; Westblade et al., 2004). After sequestering 
RpoD into Rsd–RpoD complex, the free core enzyme could be used 
for formation of RpoS holoenzyme, thereby allowing transcription of 
stationary genes.

Based on these findings, we proposed the “sigma competition” 
model, in which the anti-sigma factor plays a regulator in 
replacement of RNAP-associated sigma for an efficient switching 
of its promoter selectivity (Jishage and Ishihama, 1999; Maeda 
et al., 2000; Mitchell et al., 2007). Along this line, it should be noted 
that the anti-sigma factors have been identified for all seven sigma 
factors of E. coli K-12 and widely in other bacteria (Hughes and 
Mathee, 1998; Helmann, 1999; Trevino-Quintanilla et al., 2013; 
Paget, 2015). To confirm the “sigma competition” model for control 
of the promoter selectivity of RNAP, we further compared the 
binding affinity in vitro of all seven sigma factors to the same core 
enzyme (Maeda et al., 2000). In the presence of a fixed amount of 
RpoD, the level of RpoD holoenzyme formation increased linearly 
with the increase in core enzyme level. Mixed reconstitution 
experiments in the presence of a fixed amount of the core enzyme 
and increasing concentrations of an equimolar mixture of all seven 
sigma subunits indicated that the core binding is the strongest 
for RpoD sigma, followed by RpoN, RpoF, RpoE, FecI, and RpoS 
in decreasing order. The order of core binding activity was also 
confirmed by measuring the replacement of one core-associated 
sigma by another sigma subunit. Since the intracellular level of 
core enzyme is virtually constant, the model of sigma replacement 
relies solely on changes in the intracellular concentrations of seven 
sigma subunits (Ishihama 2000; Ishihama 2010).TA

B
Le

 1
 | 

C
on

tin
ue

d

PR
S

C
D

C
R

2D
 s

po
t

M
ax

 s
ta

ge
2D

 s
po

t
M

ax
 s

ta
ge

2D
 s

po
t

M
ax

 s
ta

ge
G

en
e

M
ap

pI
/S

iz
e 

(a
a)

Fu
nc

tio
n

PR
S1

9
D

ay
 5

X
PR

S2
7

La
te

-lo
g 

(2
 h

)
X

PR
S2

8
D

ay
 2

X
R

PS
30

D
ay

 7
X

C
D

04
D

ay
 5

X
C

D
06

La
te

-lo
g 

(3
 h

)
X

C
D

08
Lo

g
X

C
D

10
D

ay
 5

 a
nd

 7
X

C
D

14
D

ay
 6

X
C

D
16

Lo
g

X
C

D
17

Lo
g

X
C

D
18

La
te

-lo
g 

(5
 h

)
X

C
D

20
La

te
-lo

g 
(5

 h
r)

X
C

D
22

D
ay

 8
X

C
D

26
Lo

g
X

(g
re

en
: P

R
S

, o
ra

ng
e:

 C
D

, a
nd

 m
ag

en
ta

: C
R

; s
ee

 le
ge

nd
s 

of
 F

ig
ur

e 
3 

an
d 

4)
.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 115328

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hibernation of Gene Expression ApparatusYoshida et al.

9

Besides RpoD sigma, Rsd was found to interact with HPr, a 
phosphocarrier component of PEP-dependent sugar-transporting 
phosphotransferase system (PTS), thereby interfering with anti-
sigma activity (Park et al., 2013). Recently Rsd was also found to 
interact with SpoT and stimulates its hydrolysis activity of magic 
spot (p)ppGpp (Lee et al., 2018). The SpoT activity is, however, 
antagonized by dephosphorylated HPr, which generally interacts 
with a large number proteins and regulate wide varieties of 
carbon and energy metabolism (Rodionova et al., 2017). These 
observations altogether indicate the presence of a protein–
protein interacting network between Rsd, HPr, and SpoT for 
interconnection between transcription and metabolism during 
the stationary phase.

Here, we propose the hibernation of growth-phase RNAP 
holoenzyme through conversion of RpoD sigma by Rsd anti-sigma 
factor. The RNAP core enzyme can then be used for assembly of 
RpoS holoenzyme for transcription of stationary-phase genes. It 
should be noted that excess free core enzyme, if present, should 
form transcriptionally inactive dimers or oligomers (Ishihama, 
1990; Harris et al., 1995) for storage as in the case of yeast RNAP 
I (Fernandez-Tornero, 2018). The conversion of RpoD into the 
inactive RpoD-Rsd complex and the self-assembly of free core 

enzyme together contribute for silencing of the transcription 
apparatus during the stationary phase.

Hibernation of the Translation Machinery
Bacterial ribosomes are universally conserved ribonucleoprotein 
complexes, generally consisting of two asymmetric subparticles. In 
E. coli K-21, large (50S) and small (30S) subparticles associate with 
each other to form the functional 70S ribosomes. The 50S subparticle 
is composed of two species of rRNA (23S and 5S) and a total of 33 
species of the ribosomal protein, referred to r-protein (L1 to L36), 
whereas the 30S subparticle is composed of 16S rRNA and a total 
of 21 species of r-proteins (S1 to S21) (Wada and Sako, 1987; Izutsu 
et al., 2001; Kaczanowska and Ryden-Aulin, 2007; Shajani et  al., 
2011). Under optimal laboratory culture conditions, E. coli grows 
exponentially with heavy consumption of energy and resources.

During this exponential phase, the ribosome profile detected 
by sucrose density gradient centrifugation (SDGC) includes 70S 
ribosomes as the major component and in addition, small amounts 
of 30S and 50S subparticles, and polysomes (Supplemental Figure 
S3A). These ribosomes are involved in the canonical ribosome 
cycle (initiation, elongation, termination, and recycling) of protein 

FIGURe 5 | Intracellular levels of sigma factors and anti-RpoD sigma (Rsd). (A) Intracellular levels of all seven sigma factors in exponential phase E. coli K-12 was 
determined by Western blot analysis with use of specific antibodies (Jishage and Ishihama, 1995; Jishage et al., 1996). (B) Intracellular levels of growth-related RpoD 
sigma, stationary-phase-specific RpoS sigma, and anti-RpoD sigma Rsd were determined at various growth phases of E. coli K-12 (Jishage and Ishihama, 1998; 
Jishage and Ishihama, 1999). (C) The contact site of anti-sigma factor Rsd on the growth-related RpoD sigma was determined to be located within RpoD region-4 
(promoter -35 recognition site) by using the contact-dependent cleavage sites by Rsd-tethered iron-p-bromoacetamidobenzyl EDTA by analysis of the complex 
formation between Ala-substituted σ70 and Rsd (Jishage and Ishihama, 2001). Rsd-binding to RpoD region-3 leads to silencing RpoD function.
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synthesis (Figure 6A). Protein synthesis is the most energy 
demanding cellular process. The majority of metabolic energy 
is used for the formation of ribosomes (Maaloe and Kjeldgaard, 
1966). Upon entry into the stationary phase, overall level of 
transcription decreases to less than 10% the level of log phase, 
yielding the superfluous translation machinery. The unused excess 
ribosomes are then converted into non-functional 100S ribosome 
dimers, the inactive stored form of ribosomes (Supplemental 
Figure S3B and Figure 6B) (Wada et al., 1990; Yoshida and Wada, 
2014). The ribosome profile measured by SDGC includes a peak 
of 100S ribosomes besides the peak of 30S, 50S, and 70S ribosome 
(Supplemental Figure S3B and Figure 6B). The 100S ribosome 
is a dimer of 70S ribosomes, and inactive in translation (Wada 
et al., 1990; Wada et al., 1995). We then designated this stage of 
ribosome cycle, in which the ribosomes stay in inactive forms, for 
“Hibernation” (Yoshida et al., 2002).

The 100S ribosome of E. coli is formed by the binding of two 
factors, the RMF (Wada et al., 1990) and the HPF (Ueta et al., 2013). 
RMF alone leads only to the formation of 90S particle, which is an 

immature form of the 100S ribosome, suggesting that HPF is needed 
to convert this premature 90S particle to mature 100S ribosome 
(Ueta et al., 2005; Ueta et al., 2008; Ueta et al., 2013). The third protein 
associated with the stationary-phase ribosomes is RaiA (renamed 
YfiA), which interferes with the 100S dimer formation through 
competition with HPF binding (Maki et al., 2000; Ueta et al., 2005). 
Thus, two factors, HPF and RaiA, share the same binding site on the 
100S ribosome and thus compete each other, thereby controlling the 
formation of 100S ribosomes. The binding sites of RMF and HPF 
investigated by several methods indicate the conformational changes 
of 30S subunits, thereby controlling the ribosome dimerization 
indirectly (Yoshida et al., 2002; Ueta et al., 2005; Yoshida and Wada, 
2014; Beckert et al., 2018) (see Figure 6, right panel). Inactivation 
of the rmf gene leads to loss of viability in the stationary phase 
(Yamagishi et al., 1993), under acidic conditions (El-Sharoud and 
Niven, 2007) and upon exposure to heat shock (Niven, 2004). When 
the stationary-phase E. coli was transferred to nutrient-rich media, 
the disassembly of 100S ribosomes is rapid within 1 min (Aiso et al., 
2005) for restart of protein synthesis (Yoshida and Wada, 2014). The 

FIGURe 6 | Growth phase-coupled alteration of ribosomes in Escherichia coli K-12. (A) In exponentially growing bacterial cells, most ribosomes are involved in the 
functional cycle of protein synthesis, consisting of initiation, elongation, termination, and recycling. For initiation, 30S and 50S ribosomes bind to mRNA, forming 
functional 70S ribosomes on mRNA and ultimately leading to form polysomes. After termination, 70S ribosomes are dissociated into 30S and 50S subparticles for 
reutilization. (B) Upon entry into stationary phase, unused ribosomes are converted into functionally inactive 100S dimeric ribosomes by sequential binding of RMF 
and HPF in E. coli K-12, one of Gram-negative bacteria (Wada, 1998; Yoshida and Wada, 2014). We designated this process as “hibernation.” Formation of 100S 
dimers is interfered by RaiA (renamed YfiA) (Ueta et al., 2005). The location of RMF on 30S ribosome is based on the recent cryo-electron micrography structure of 
100S ribosome dimer (Beckert et al., 2018). By biochemical analyses, however, RMF was also indicated to bind 23S rRNA (Yoshida et al., 2004) and the peptidyl 
transferase center (Yoshida et al., 2002).
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mechanism how RMF and HPF are removed from 100S ribosomes 
remains to be solved.

The ribosome hibernation is widespread but the factors 
involved in this process are different between bacteria (Ueta 
et al., 2008; Yoshida and Wada, 2014; Prossliner et al., 2018). E. 
coli and some γ-proteobacteria carry both the rmf and hpf genes, 
but many other bacteria have only the hpf gene or its homologue 
devoid of the rmf gene (Ueta et al., 2008). In bacteria carrying 
a long-type HPF homologue, the ribosome dimerization takes 
place in the absence of RMF (Ueta et al., 2013; Akanuma et al., 
2016). E. coli forms 100S ribosomes only in their stationary 
growth phase, but in Gram-positive bacteria such as Bacillus 
subtilis, 100S ribosomal dimers are formed throughout entire 
growth phases (Ueta et al., 2013; Puri et al., 2014; Akanuma 
et al., 2016), implying that the factors or conditions for ribosome 
dimerization are different between bacterial species.

In the case of the bacterial group having long HPF, several 
structures have been proposed for the ribosome dimer (For 
instance, Matzov et al., 2019). Accordingly, the 70S–70S interface 
within ribosome dimers appeared different from that of E. coli 
(Kato et al., 2010; Beckert et al., 2018). Nevertheless, N-terminal 
domain of long HPF is predicted to bind to the site overlapping 

with the tRNA-binding site as in the case of HPF in E. coli, 
suggesting that common mechanism of translational silencing 
exists between bacteria carrying long and short HPFs.

COORDINATeD HIBeRNATION OF 
TRANSCRIPTION APPARATUS AND 
TRANSLATION MACHINeRY
The formation of transcriptional apparatus and translational 
machinery are tightly coupled and coordinated, showing the 
growth rate-dependent synthesis of RNAP core enzyme (Ishihama 
and Fukuda, 1980; Ishihama, 1988) and ribosomes (Nomura et al., 
1984; Zengel and Lindahl, 1994), thereby keeping the ratio of 5~10 
ribosomes per RNAP core to match effective translation of mRNA 
through formation of polysomes. For this purpose, multiple layers of 
regulation are involved such as the organization of genes for RNAP 
subunits and ribosomal proteins into single and same operons, 
and the autogenous regulation of synthesis of RNAP subunits 
and ribosomal proteins by excess and unused products. We then 
examined the possible coordination in the hibernation process 
between transcription apparatus and translation machinery. During 

FIGURe 7 | PS-TF screening was performed for search of TFs involved in regulation of the rsd and rmf genes. A total of 74 TF species were found to bind 
to both the rsd and rmf promoter probes, although the binding affinity appeared different between these TFs (Yoshida et al., 2018). Besides these 74 TFs, 
some other TFs have been identified to bind only the rsd gene or the rmf gene, indicating independent regulation of the two genes under as yet unidentified 
conditions. Detailed analysis of the regulatory roles in vitro and in vivo was performed for the five representative stress-response TFs (ArcA, McbR, RcdA, 
SdiA, and SlyA) (Yoshida et al., 2018). ArcA was indicated to repress transcription of both rsd and rmf genes, while other four were suggested to activate both 
genes. gSELEX indicated that all these TFs regulate not only the rsd and rmf genes but also regulate a number of genes supposedly required for survival under 
stressful conditions. PS-TF, promoter-specific transcription factor.
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the growth transition of Escherichia coli from log to stationary 
phase, the level of genome expression is reduced less than 10% the 
log-phase level and the pattern of genome expression (the species 
of expressed genes) is also markedly modulated. For this alteration, 
the transcription apparatus is altered by binding of anti-sigma factor 
Rsd to the RpoD sigma for sigma replacement with stationary-
phase-specific RpoS (see above) while the translation machinery 
is modulated by binding of RMF and HPF to 70S ribosome to 
form the inactive 100S ribosome dimer (see above). Until recently, 
however, little was known how the expression of factors involved in 
hibernation of transcription apparatus and translation machinery 
is regulated. We have then performed a systematic search for TFs 
involved in regulation of the promoters of two key regulators, Rsd 
for hibernation of RNAP and RMF for hibernation of ribosomes, 
by using the newly developed promoter-specific transcription factor 
(PS-TF) screening system (Shimada et al., 2013; Yoshida et al., 2018).

Using rsd and rmf promoter probes and a total of about 200 
purified TFs from E. coli K-12 W3110, we performed PS-TF 
screening (Yoshida et al., 2018). A total of 74 TF species (55 
group A TFs and 19 group B TFs) were found to bind to both 
the rsd and rmf probes, although the binding affinity was different 
between these TFs (Yoshida et al., 2018), suggesting that both the 
rmf and rsd genes are under the control of multi-factor promoters 
(Ishihama et al., 2016). After repetition of PS-TF, we succeeded to 
focus on a total of 19 TFs, of which 9 (ArcA, CRP, CueR, McbR, 
NhaR, RcdA, SdiA, SlyA, and ZntR) have been experimentally 
confirmed to be involved in regulation in vitro and in vivo of 
both the rsd and rmf genes (Yoshida et al., 2018) (Figure 7). The 
synthesis of RMF is also under the control of ppGpp (Izutsu et al., 
2001). Results altogether indicated the involvement of a common 
set of TFs, each sensing a specific but different environmental 
condition, in coordinated hibernation of the transcriptional 
apparatus and translational machinery for adaptation and survival 
under stressful conditions. Translation of RMF is stimulated 
by polyamines (Terui et al., 2010), which accumulates in the 
stationary phase (Igarashi and Kashiwagi, 2018).

Besides the large set of TFs with binding activity to both rsd and 
rmf probes, a small number of TFs bound only to either the rsd or 
rmf probe (Figure 7). This finding indicates the two key players for 
hibernation of transcription apparatus and translational machinery 
are regulated independently under certain specific conditions. 
These rsd- or rmf-specific TFs might be involved in independent 
regulation of either transcriptional apparatus or translational 
machinery under as yet unidentified specific environmental 
conditions. This review proves the initial stage of molecular basis 
of the hibernation of E. coli, focusing on the transcription apparatus 
and the translation machinery. The whole set of TFs involved in the 
regulation of rsd and rmf genes will be described elsewhere.
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Survival of mycobacteria, both free-living and host-dependent pathogenic species, is
dependent on their ability to evade being killed by the stresses they routinely encounter.
Toxin-antitoxin (TA) systems are unique to bacteria and archaea and are thought to
function as stress survival proteins. Here, we study the activity of the endoribonuclease
toxin derived from the MazEF TA system in Mycobacterium smegmatis, designated
MazEF-ms. We first enlisted a specialized RNA-seq method, 5’ RNA-seq, to identify the
primary RNA target(s) of the MazF-ms toxin. Just two tRNA species, tRNALys-UUU and
tRNALys-CUU, were targeted for cleavage by MazF-ms at a single site within their
anticodon sequence (UU↓U and CU↓U) to render these tRNAs nonfunctional for protein
synthesis. The 5’ RNA-seq dataset also revealed hallmarks of ribosome stalling
predominantly at Lys AAA codons even though both Lys tRNAs were cleaved by
MazF-ms. Stalled ribosomes were then cleaved on their 5’ side by one or more
RNases, resulting in very selective degradation of only those mRNAs harboring
ribosomes stalled at Lys codons. This highly surgical, codon-dependent degradation
of mRNA transcripts was validated using quantitative mass spectrometry of proteins
that were newly synthesized during MazF-ms expression. The M. smegmatis proteome
was altered as predicted, Lys AAA codon-rich proteins was downregulated while Lys
AAA codon deficient proteins were upregulated. Analysis of specific subsets of proteins
that were upregulated or downregulated was consistent with the growth-arrested
phenotype of MazF-ms expressing cells. Curiously, the tRNA target and mechanism
of action of MazF-ms paralleled that of one atypical MazF toxin in M. tuberculosis,
suggesting manipulation of the levels of lysine tRNAs as the preferred conduit for
reprogramming the proteomes via ribosome stalling at rare AAA codons in these GC-
rich mycobacteria.
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INTRODUCTION

Stress is a constant threat to the survival of free-living organisms.
Toxin-antitoxin (TA) systems are believed to act as one line of
defense enlisted by free-living bacteria to survive the constant
barrage of environmental assaults in their native habitats
(reviewed in Yamaguchi et al., 2011; Harms et al., 2018). TA
systems are operons comprising adjacent genes encoding two
small (~10 kDa) proteins, an antitoxin and its cognate toxin.
Based on currentmodels developed through studies ofEscherichia
coli TA systems (reviewed in Yamaguchi et al., 2011; Harms et al.,
2018), in the absence of stress the intrinsic activity of the toxin is
sequestered by the formation of a stable TA protein-protein
complex. However, in response to one or more specific stress
triggers, the antitoxin is degraded by proteases. The resulting
paucity of antitoxin results in an excess of free toxin which then
acts on its specific intracellular target. Toxin action on its target(s)
generally results in growth arrest which is characteristically
reversible when the stress is released, enabling replenishment of
antitoxin. Thus, TA systems appear to work well for pulses of
stress instead of prolonged stress where a major physiological and
structural transformation is warranted, i.e., conversion from
vegetative state to a nearly dormant spore.

Mycobacterium smegmatis is most recognized as a laboratory
surrogate for the study of features it shares with its pathogenic
relative, M. tuberculosis. However, in nature M. smegmatis is a
saprophyte that lives in ever changing environments within soil,
water and on plants. Thus, it should be genetically hardwired for
stress survival even though its genome harbors only a small
fraction of TA systems compared to M. tuberculosis [three in M.
smegmatis (Frampton et al., 2012) vs. ~90 in M. tuberculosis
(Ramage et al., 2009; Sala et al., 2014)]. In this study, we
determine the intracellular target and study the function of one
of the three distinct TA system family toxins in M. smegmatis,
the sole MazF family member that we designate as MazF-ms
(MSMEG_4448). We found that the primary RNA targeted for
cleavage by this endoribonuclease toxin was tRNALysUUU,
identical to one of the 11 MazF toxins in M. tuberculosis,
MazF-mt9 (Schifano et al., 2016; Barth et al., 2019). We then
document a spectrum of downstream events that lead to surgical
remodeling of the proteome, which closely paralleled that which
occur in M. tuberculosis (Barth et al., 2019). This striking
conservation of tRNA targets underscores the importance of
the relatively rare Lys AAA mRNA codon as an efficient conduit
for modulating the physiology in both mycobacterial species
through activation of MazF toxins.
MATERIALS AND METHODS

Strains, Plasmids, and Reagents
All experiments were performed using Mycobacterium
smegmatis strain mc2 155 (ATCC 700084). M. smegmatis cells
were grown at 37°C in Difco Middlebrook 7H9 media (BD)
supplemented with 5 g/L albumin, 2 g/L dextrose, 0.085 g/L
NaCl, 0.05% Tween 80 and 25 µg/ml kanamycin (for plasmid
selection), under constant shaking at 200 rpm.
Frontiers in Genetics | www.frontiersin.org 237
The gene MSMEG_4448, here referred as MazF-ms, was
amplified by PCR from M. smegmatis genomic DNA using the
oligos NWO2791 (5’-AGA TAC ATA TGC GGC GCG GCG
ATA TCT ACA CCG CGG-3’) and NWO2792 (5’-AGA TAA
AGC TTC ACC CGG CGA TTC CCA GAA AAA CC-3’). The
amplified DNA was cloned into the anhydrotetracycline
(ATC)-inducible plasmid pMC1s (Ehrt et al., 2005) modified
to substitute unique NdeI-HindIII sites in place of ClaI-EcoRI
to enable insertion of a gene with 5’NdeI-3’HindIII sites. MazF-
ms expression was induced by adding ATC to the media at a
final concentration of 200 ng/ml when cells reached an OD
(600 nm) between 0.1 and 0.2 and compared to uninduced
(-ATC) samples.

RNA Isolation
In order to extract total RNA, ~50 ml ofM. smegmatis cells were
collected by centrifugation at 2000 g at 4°C for 5 min. Cell pellets
were resuspended in Tri reagent (Zymo Research) and
transferred to 2 ml lysing kit tubes (Bertin Corp.) containing
0.1 mm glass beads. Cells lysis was performed on a Precellys
Evolution homogenizer (Bertin Corp.) by three consecutive 30-s
pulses at 9,000 rpm, with 1 min cooling periods on ice in between
each cycle. The samples were centrifuged for 5 min at 14,000 rpm
at 4°C, and RNA was isolated from the supernatant using the
Direct-zol RNA Miniprep Plus extraction kit (Zymo Research).
After isolation, the samples were treated with 1 U of Turbo
DNase as an extra genomic DNA removal step, purified using the
RNA Clean and Concentrator kit (Zymo Research) and eluted in
40 ml of RNase-free water. RNA concentration was measured in a
BioSpectrometer (Eppendorf) with a µCuvette.

5′ RNA-Seq
5’ OH libraries were constructed as previously described
(Schifano et al., 2014). Briefly, in order to remove 5’
monophosphate RNA species, three mg of the purified RNA
from induced and uninduced cultures were digested with 1 U
Terminator at 30°C for 1 h. After purification using the RNA
Clean and Concentrator kit (Zymo Research), the samples were
phosphorylated using 3 U of T4 PNK at 37°C for 1 h and re-
purified with the same kit. 5’ adapter (5′-GUUCAGAGU
UCUACAGUCCGACGAUCNNNNNN-3′) was ligated using 1
U of T4 RNA ligase 1 (New England Biolabs) at 16°C for
approximately 18 h. In order to remove the remaining free
adapters, the adapter-ligated RNAs were resolved on a 6%
TBE-Urea PAGE gel, excised and precipitated in isopropanol
at −20°C. The purified RNAs were used in a reverse transcription
reaction using Superscript IV (Thermo Fisher) and the
degenerate primer (5′-GCCTTGGCACCCGAGAATTCCA
NNNNNNNNN-3′). The resulting cDNA was loaded into a
10% TBE-Urea gel and fragments between 80 and 500 nts were
excised and precipitated. The cDNA libraries were amplified in a
PCR reaction with Phusion HF DNA Polymerase (Thermo
Fisher) . The primers used were RP1 (5 ′- AATGA
TACGGCGACCACCGAGATCTACACGTTCAGAGTTCTA
CAGTCCGA -3′) and RPIX (5′-CAAGCAGAAGACGGCATA
CGAGATNNNNNNGTGACTGGAGTTCCTTGG
CACCCGAGAATTCCA-3′), where the N’s represent the
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individual Illumina barcodes for each library. The amplified
libraries between 150–450 bp were gel purified and subjected
to single-end sequencing in an Illumina HiSeq 2500 or
HiSeq4000 sequencer.

Note that our 5’ RNA-seq method specifically selects for RNA
molecules with 5’ hydroxyl ends created upon cleavage by MazF-
ms. Based on the detailed schematic of our method in Schifano
et al. (2016), if reverse transcriptase should pause at tRNA
modifications, the truncated cDNA would not contain the
complement to the 5’ adapter sequence that was exclusively
ligated to RNAs containing a 5’-OH. Without the adapter
sequence, truncated cDNAs would not be amplified by PCR
nor could they be sequenced by the Illumina primer which is also
complementary to the 5’ adapter.

The resulting FASTQ files had the adapter sequences and the
first 6 nucleotides of the 5’ end trimmed using Trimmomatic
(Bolger et al., 2014). Reads were trimmed to 20 nts and the ones
containing fewer than 20 nucleotides were excluded. The
remaining reads were mapped to M. smegmatis genome (NCBI
accession: CP000480.1) using bowtie 1.2 applying the parameters
–n 0–l20 (Langmead et al., 2009). Next, we calculated the
number of reads that started at a given genome position for
each nucleotide in the genome. Genomic positions with 0 counts
received a pseudo count of 1 in the uninduced sample. The
counts were normalized by sequencing depth, in reads per
million (rpm) of mapped reads and the counts of the induced
sample were divided by the uninduced control to generate a fold
change. Unless otherwise stated, we only considered positions
with at least 50 rpm and 5 rpm in the induced sample for tRNA
and mRNA genes, respectively, and a fold change >10. Sequence
and frequency logos were generated by kpLogo (Wu and Bartel,
2017). The fastq files were submitted to NCBI’s Sequence Read
Archive (SRA), under BioProject number PRJNA564437.

Labeling of Newly Synthesized Proteins
and Proteomic Analysis
To identify and quantify which proteins are translated after
induction of MazF-ms (MSMEG_4448), three biological
replicates were grown to an OD600 between 0.1 and 0.2 and
divided into induced (+ATC) and uninduced samples. In order
to label newly synthesized proteins, the methionine analog
azidohomoalanine (AHA, AnaSpec) was added to the media at
50 µM after 4.5 h of MazF-ms induction. After 1.5 h of incubation
with AHA, the cells were pelleted by centrifugation at 2000 g at
4°C for 10 min and washed with PBS. The cells were resuspended
in a 2% CHAPS, 8M Urea buffer and lysed as described in the
“RNA isolation” section, using Precellys Evolution homogenizer
(Bertin Corp). The cell lysate was centrifuged and the AHA-
containing proteins in the supernatant were captured using
Click-iT™ Protein Enrichment Kit (ThermoFisher) followed by
in-column trypsin digestion.

Digests were analyzed in two separate runs and combined.
The data was analyzed as described previously (Barth et al.,
2019), considering proteins with ≥15 detected spectral counts.
Q-values are calculated using the fdrtool package of Strimmer
(Strimmer, 2008) with significant changes at or below a q-value
of 0.05. The raw files were deposited in Mass Spectrometry
Frontiers in Genetics | www.frontiersin.org 338
Interactive Virtual Environment (MassIVE) repository
(accession number: MSV000084300).
RESULTS

MazF-ms Expression Arrests Growth in
M. smegmatis
According to the Toxin-Antitoxin Database (TADB 2.0) (Xie
et al., 2018), theM. smegmatis reference genome harbors only one
gene from the MazF toxin family, annotated as MSMEG_4448
(here referred to asMazF-ms). To establish whether or notMazF-
ms is toxic (i.e., leads to cell growth arrest) when expressed inM.
smegmatis, we cloned the gene under the control of an ATC-
inducible promoter in the pMC1s plasmid and transformed M.
smegmatismc2 155 cells. The expression level from this plasmid is
modest, a 4.5-fold induction, based on measurement of mCherry
fluorescence (Supplementary Figure 1). MazF-ms expression led
to pronounced growth arrest that started between 4.5 to 6 h
(Figure 1) and was sustained for at least 18 h.

MazF-ms Exclusively Targets Both
tRNALys Isoacceptors for Cleavage at a
Single Site Within Their Anticodons
All members of the MazF family reported to date are single-
strand, sequence-specific endoribonucleases. To help elucidate
the molecular mechanism by which the ribonuclease activity of
MazF-ms is able to regulate growth, we applied our specialized
RNA seq method, 5’ RNA-seq, to find its RNA target(s)
FIGURE 1 | MazF-ms expression in M. smegmatis leads to growth inhibition.
M. smegmatis cells harboring pMC1s-MazF-ms were grown in triplicate in
supplemented 7H9 media until OD600nm = ~ 0.16. The cultures were split into
induced (+ATC, orange lines) and uninduced (-ATC, green lines) and
absorbance at 600 nm was determined every 1.5 h. Error bars represent the
standard deviation from the average (solid line) of the three biological
replicates (dotted lines). Asterisks represent statistical significance between
induced and uninduced in a Student’s t test comparison (*, p-value = 0.011;
**, p-value = 0.0046).
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(Schifano et al., 2014). This technique was originally developed
to selectively sequence transcripts based on their 5’ ends. Here,
we apply 5’ RNA-seq to identify RNA fragments containing a 5’
hydroxyl (5’ OH) end, which are products of MazF toxin activity
(Schifano et al., 2014). This approach also allows us to precisely
map the cleavage position at a single nucleotide resolution.

Given that the difference in growth between induced and
uninduced cultures is more dramatically observed after 6 h post
induction, we selected two time points for RNA isolation: one
Frontiers in Genetics | www.frontiersin.org 439
immediately before we observed growth separation (at 4.5 h) and
one where the separation is significant (at 6 h). In both time
points, 5’ RNA-seq identified internal cleavage of the only two
tRNALys isoacceptors [tRNALys23-UUU and tRNALys18-CUU (Lowe
and Chan, 2016)] annotated in the M. smegmatis genome
(Figures 2A–D). When compared to controls, MazF-ms-
induced datasets showed an enrichment of 41 to 163-fold in
intragenic 5’ OH ends at position 36 of both tRNALys genes.
There are 46 standard tRNAs in M. smegmatis and one
FIGURE 2 | MazF-ms selectively targets both tRNALys isoacceptors. (A–D) Fold changes of 5’OH (indicating endonucleolytic cleavage) within both tRNALys-CUU and
tRNALys-UUU genes detected by 5’ RNA-seq. M. smegmatis cells expressing MazF-ms for 4.5 (A, B) or 6 h (C, D) were compared to uninduced controls.
(E) Heatmap showing the fold change in 5’ OH levels in each position of all 47 M. smegmatis tRNA genes after 6 h of MazF-ms induction. The annotated tRNA gene
ID (from genome CP000480.1) is shown in parentheses.
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selenocysteine tRNA, none of the other 45 tRNAs were cleaved
by MazF-ms (Figure 2E).

Other tRNA-cleaving toxins, such as MazF-mt9 and VapC-
mt11 (Schifano et al., 2016; Cintrón et al., 2019), rely on both
sequence and secondary structure to accurately recognize their
targets. Accordingly, the two tRNALys identified here as MazF-ms
targets only differ by one nucleotide in the ± 5 nt region
surrounding the cleavage site (Figure 3A). This site is located in
the anticodon stem loop, where the predicted secondary structure
is highly conserved. More specifically, cleavage occurred between
the second and third bases of the anticodons (UU↓U and CU↓U,
Figure 3B), presumably inactivating these tRNAs.

5’ RNA-Seq of MazF-ms-Expressing Cells
Reveals Ribosome Stalling
Having established that the primary targets were tRNALys-UUU

and tRNALys-CUU, we questioned whether the depletion of these
tRNAs would lead to ribosome stalling in M. smegmatis at the
mRNA codons requiring these tRNAs as we had previously
Frontiers in Genetics | www.frontiersin.org 540
observed for M. tuberculosis (Barth et al., 2019). Indeed, we
identified 130 cleaved mRNAs in our 5’ RNA seq dataset that
were not similar in sequence to the tRNA targets at the cleavage
site and are not expected to have the secondary structure
requirements for MazF-ms recognition demonstrated by
Schifano et al. (2016). When aligned by their 5’ ends, these
transcripts showed a clear AAA or AAG consensus sequence
approximately 15 nt downstream of the 5’ OH end (Figures 4A,
B), the cognate Lys codons for tRNALys-UUU and tRNALys-CUU,
respectively. As we had recently proven by Ribo-seq, the 15-nt
spacing from the codon to the 5’ OH end indicates that a stalled
ribosome was bound at this position of the mRNA in vivo (Barth
et al., 2019). The 15 nts represents the approximate distance from
the 5’ side of the translating ribosome to the A-site (Figures 4D,
Barth et al., 2019). Thus, evidence of the stalled ribosome is
fortuitously revealed by 5’ RNA-seq because upon stalling, the
mRNA is then cleaved on its 5’ side of the ribosome by one or
more cellular RNase(s)—not MazF-ms—that generates a 5’ OH
upon cleavage.
FIGURE 3 | MazF-ms targets show high secondary structure and sequence similarity. (A) Frequency logo showing the DNA sequence similarity between tRNALys-UUU

and tRNALys-CUU genes in the 50 nucleotides surrounding MazF-ms cleavage position (orange arrow). (B) Schematic representation of tRNALys-UUU and tRNALys-CUU,
illustrating the D-arm (D), T-arm (T) and anticodon stem loop (ASL) portions of the tRNA. ASL is partially shown in greater detail to emphasize the sequence and
secondary structure near the cleavage site (orange arrow). Numbering in red indicates the nucleotide position of the anticodon in the mature tRNA molecule.
February 2020 | Volume 10 | Article 1356
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We have described the same cascade of events for just one of
the 11 MazF family members in M. tuberculosis, MazF-mt9, in
which tRNALys43-UUU depletion leads to ribosome stalling and
cleavage on the 5’ end of the ribosome. The observation of an
analogous trend in the MazF-ms 5’ RNA-seq datasets indicating
ribosome stalling and subsequent cleavage strongly suggests
mechanistic conservation between MazF-mt9 and MazF-ms
toxins regarding initial toxin-mediated tRNA cleavage followed
Frontiers in Genetics | www.frontiersin.org 641
by a secondary ribosome stalling/mRNA cleavage event. In M.
smegmatis, however, although tRNA cleavage was significant for
both isoacceptors, the vast majority of the observed stalled
ribosomes (75%) paused at the rarer Lys AAA codon rather
than the more frequent Lys AAG (Figure 4C). Therefore, as in
M. tuberculosis, our data support a model in which MazF-ms acts
by depleting the cellular pool of tRNALys causing ribosome
stalling at Lys codons (predominantly Lys AAA), followed by
FIGURE 4 | 5’RNA-seq serendipitously reveals ribosome stalling at lysine codons. (A) Top mRNA hits found in the 5’RNA-seq dataset. The 50 nucleotides
surrounding the secondary cleavage site (dotted line) generated by one or more cellular RNases (scissor) are shown. Lysine AAA codons are indicated in green,
approximately 15 nucleotides downstream of the cleavage site. The first nucleotide (adjacent to the 5’ OH) of the read is highlighted in orange. Counts are
normalized to reads per million (rpm). (B) Sequence logo summarizing the 130 detected mRNA hits. The height of each nucleotide is proportional to its frequency at
that given position. Positions are numbered relative to the secondary RNase cut site (scissor). Red bracket indicates the position of lysine AAA codons.
(C) Proportion of stalling in AAA codons vs. AAG codons found by 5’ RNA-seq in 223 annotated transcripts with at least 1 rpm in the induced sample and
containing a lysine codon at or near +15. (D) Schematic representation demonstrating the events following the depletion of the cellular levels of tRNALys by MazF-ms.
Due to the lack of available tRNALys, translating ribosomes stall mainly at lysine AAA codons at the A site. Ribosome stalling events likely trigger mRNA cleavage at 5’
side of the stalled ribosome by one or more cellular RNases (scissor).
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recruitment of another RNase that cleaves 5’ of the stalled
ribosome (Figure 4D).

MazF-ms Promotes Codon-Specific
Translation
Next, we sought to characterize the proteomic changes promoted
by the Lys AAA/AAG-specific ribosome stalling events mediated
by MazF-ms. In order to distinguish proteins that were only
synthesized after MazF-ms induction from preexisting “old”
proteins, we adopted a method that utilizes a methionine
mimetic called azidohomoalanine (AHA). AHA is incorporated
into nascent peptides during translation, therefore only marking
proteins that were synthesized after its addition to themedia. Due
to its azide moiety, proteins containing AHA residues can be
captured using an alkyne-containing resin through a Cu(I)-
catalyzed click reaction and then analyzed by quantitative mass
spectrometry. We added AHA to the cultures after 4.5 h of MazF-
ms induction, tagging only proteins that were newly translated.

In contrast to a translation shut-off model proposed for other
tRNA-cleaving toxins (Winther et al., 2016), global translation
was not halted. One hundred twenty six proteins were
significantly more abundant in cells expressing MazF-ms
compared to the controls (Supplementary Table 1, q-value <
0.05). Interestingly, a striking difference in AAA codon content
was detected in these proteins compared to the less abundant
ones (Figure 5A), i.e. upregulated proteins were generally Lys
AAA codon deficient while downregulated proteins were
generally Lys AAA codon rich. This trend was not as striking
when the proteomics data was instead graphed based on AAG
codon content (Figure 5B). These trends observed in newly
synthesized proteins were concordant with the relative
abundance of ribosome stalling events detected in our 5’ RNA-
seq datasets at Lys AAA codons (>75% of transcripts with
evidence of ribosome stalling). Finally, the ability of MazF-ms
to preferentially influence the overall cellular pool of Lys AAA
codon-containing proteins over those containing Lys AAG
codons is also graphed in Figure 6.

MazF-ms Reduces Translation of Critical
Components of the DNA Replication
Machinery While Concomitantly
Supporting Synthesis of Stress
Response Proteins
In TA systems, specific stresses trigger degradation of the
cognate antitoxin by a protease, freeing toxin to act within the
cell (Yamaguchi et al., 2011; Harms et al., 2018; Song and Wood,
2018). Therefore, overexpression of MazF-ms (used in this
analysis and throughout this work) is intended to mimic
natural toxin activation that occurs when cells are exposed to
the relevant stress. After observing hundreds of differentially
translated proteins in Figure 5, we analyzed the two datasets
comprising the more abundant or less abundant proteins
following MazF-ms toxin expression using the Function
Annotation Tool in the Database for Annotation, Visualization
and Integrated Discovery (DAVID) platform (Huang et al.,
2009a; Huang et al., 2009b). This tool within DAVID was used
Frontiers in Genetics | www.frontiersin.org 742
to identify functionally similar proteins which were enriched in
the two datasets (Figure 7). Since toxin overexpression simulates
toxin activation by exposure to stress, the proteins identified
using DAVID are expected to be physiologically relevant.

Among the 171 statistically significant downregulated
proteins from Figure 5A (in blue in Figure 7), there were some
notable trends consistent with cells in a state of growth arrest
(Supplementary Table 2). First, there were 11 downregulated
enzymes involved in “fatty acid catabolism” (FAD heading; blue
box Figure 7). Fatty acid catabolism occurs predominantly
through successive rounds of b-oxidation, a process whereby
even-chain fatty acids are degraded to acetyl-CoA and odd-
chain fatty acids are degraded to acetyl-CoA and propionyl-
CoA. Second, there were five functionally related proteins
within the “DNA replication” and “nucleotide binding”
categories (blue box Figure 7). In the DNA replication category,
one critical protein was downregulated, the only catalytic subunit
of the three subunit core DNA polymerase III enzyme (a subunit,
MSMEG_3178). This core enzyme is a component of the DNA
polymerase III holoenzyme that mediates DNA replication in
bacteria. Within the nucleotide binding group were a spectrum of
proteins whose downregulation is also logical for cells in a state of
FIGURE 5 | Translation of proteins rich in lysine AAA codons is reduced
upon MazF-ms expression. (A–B) Volcano plot showing differentially
translated proteins (circles) detected by quantitative mass spectrometry and
their AAA (A) or AAG (B) codon content. M. smegmatis cultures expressing
MazF-ms for 4.5 h were incubated with azidohomoalanine (AHA) to label only
newly synthesized proteins after toxin expression. The color saturation and
circle size are proportional to the number of AAA (A) or AAG (B) codons in
the gene.
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growth arrest: RecA (MSMEG_2723) is involved in DNA repair,
the DNA translocase FtsK (MSMEG_2690) is localized at the
septum where cell division occurs, chromosome segregation
protein SMC (MSMEG_2423) and the priA (MSMEG_3061)
are components of the primosome protein complex that
activates DNA replication forks.
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There were 126 upregulated proteins upon MazF-ms
expression. When this dataset was subjected to the Functional
Annotation Tool in DAVID, there were several proteins whose
upregulation were also consistent with the growth arrested state
of MazF-ms expressing cells. Four proteins were in the “stress
response” category: Lon protease (MSMEG_3582), an ATP-
FIGURE 6 | Expression of MazF-ms leads to global proteomic shifts based on the Lys AAA, but not Lys AAG, codon content. Distribution of AAG (left) or AAA (right)
codons in significantly upregulated or downregulated proteins. Outliers are shown as individual dots.
FIGURE 7 | Functional classification of differentially translated proteins during MazF-ms expression. Enriched DAVID UP_KEYWORDS (corresponding to UniProt
keywords) were generated by analyzing the upregulated (red) or downregulated (blue) proteins identified in azidohomoalanine (AHA)-proteomics. The diameter of
each circle and its numbering correspond to the number of genes associated with the given keyword. Examples of genes in the main groups are described by
relevant categories in the corresponding color-matched boxes.
February 2020 | Volume 10 | Article 1356

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Barth and Woychik tRNALys Cleavage as a Mycobacterial Stress Response
dependent RNA helicase DEAD/DEAH box family protein
(MSMEG_5042), sigma factor SigH (MSMEG_1914) and
alkylhydroperoxide reductase (MSMEG_4891). Lon is a stress-
responsive protease. Since it is known to degrade all TA system
antitoxins in Escherichia coli (Gerdes and Maisonneuve, 2012), it
may also have an analogous role and cleave the MazE-ms
antitoxin in M. smegmatis. Uniprot places the MSMEG_5042
RNA helicase as functioning in ribosome biogenesis, mRNA
degradation and translation initiation. The alternate sigma factor
SigH is activated by oxidative, heat and nitric oxide stress (Sharp
et al., 2016) while Uniprot places alkylhydroperoxide reductase
MSMEG_4891 in protection from oxidative damage by
detoxifying peroxides.

Consistent with the sustained protein synthesis while MazF-
ms was being expressed, we observed new synthesis of a subset of
elongation factors and ribosomal proteins. Four elongation
factors were upregulated: EF-Ts (MSMEG_2520), EF-Tu
(MSMEG_1401), EF-P (MSMEG_3035) and BipA/TypA
ribosome-binding GTPase (MSMEG_5132). Many of these
elongation factors are associated with the bacterial stress
response. Finally, 18 of the 51 ribosomal proteins were also
upregulated. The other 33 ribosomal protein levels were stable.
DISCUSSION

Bacterial genomes are under constant pressure to remain
compact while also retaining genes that provide a competitive
edge for survival in their natural environments. Acquisition of
TA systems in bacterial genomes is thought to represent one
potent vehicle for stress protection. In contrast to the ~90 TA
systems in its pathogenic relative M. tuberculosis, the M.
smegmatis genome harbors just three TA systems (MazEF,
PhD-Doc, and VapBC) as one facet of its stress survival
armamentarium. A thorough understanding on how a TA
system acts to protect its host from stress requires
determination of the function of the toxin, and the function of
Frontiers in Genetics | www.frontiersin.org 944
the toxin is informed by determining its intracellular target. Since
all MazF toxins are generally single-strand and sequence-specific
endoribonucleases, in this work we identified the RNA target of
the MazF-ms toxin using 5’ RNA-seq which revealed its detailed
mechanism of action. To our surprise, MazF-ms did not behave
like the vast majority of MazF toxins that appear to
predominantly cleave mRNAs (reviewed in Masuda and
Inouye, 2017). Instead, MazF-ms behaves almost exactly like
the only other known exception, MazF-mt9, one of the 11 MazF
family members in M. tuberculosis (Barth et al., 2019).

MazF-mt9 is an outlier because it requires both structure and
sequence for its highly specific recognition of a single tRNA
isoacceptor. This requirement for structure is much like VapC
toxins, even thoughMazF-mt9 and VapC toxins lack sequence or
structural similarity (Cruz et al., 2015; Schifano et al., 2016;
Winther et al., 2016; Schifano and Woychik, 2017; Cintrón et al.,
2019). MazF-ms now represents the second example of a MazF
toxin that targets tRNA for cleavage, thus reducing the levels of
only this tRNA species in vivo. Since we were able to
unequivocally detect MazF-ms target RNAs with the required
5’-OH using 5’ RNA-seq, there was no apparent masking of the
precise cleavage site due to the presence of an RNA modification.
This surgical depletion of just one tRNA results in ribosome
stalling at codons requiring this depleted tRNA and proteome
remodeling to favor sustained synthesis of only AAA-deficient
proteins (Figure 8).

Why is Lys tRNA such an important conduit for proteome
remodeling, ostensibly during stress, in mycobacteria? It appears
that many proteins critical for stress survival in these GC rich
genomes (67.4% GC in M. smegmatis; 65.6% in M. tuberculosis)
are deficient in AAA Lys codons, allowing for their sustained
translation while the cell can save energy by not synthesizing
proteins that do not contribute to this endpoint. Indeed, as
discussed above, many of the upregulated proteins annotated in
the stress response category have direct roles in one or more
stress responses: cold shock, heat shock, oxidative stress and
nitric oxide stress. The stress-specific sigma factor SigH was also
FIGURE 8 | Summary of the proposed MazF-ms mechanism of action. MazF-ms primarily targets tRNALys-UUU and tRNALys-CUU, depleting their intracellular levels.
Inactivation of these tRNAs lead to selective ribosome stalling predominantly in rare Lys-AAA codons, culminating in cleavage of the transcript. This results in codon-
biased proteomic changes, favoring Lys-AAA-depleted transcripts.
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upregulated. Therefore, it is implicated as the primary RNA
polymerase sigma factor enlisted for the sustained transcription
of M. smegmatis genes whose proteins were upregulated after
toxin expression. However, other upregulated proteins in our
dataset that are not commonly associated with the stress
response, i.e. at least some elongation factors, appear to have
indirect roles (reviewed in Starosta et al., 2014). EF-Tu is
maximally expressed during stress in E. coli (Muela et al.,
2008). Since the guanine nucleotide exchange factor EF-Ts
assembles with EF-Tu in a 2:2 stoichiometry (Kawashima
et al., 1996), it is expected to be expressed at levels equivalent
to EF-Tu. EF-P rescues ribosomes stalled at poly-proline
stretches. However, EF-P is only active when lysinylated or
hydrozylysinylated (Doerfel et al., 2013; Ude et al., 2013).
Thus, the lysine from cleaved Lys tRNAs might be recycled
and used to activate EF-P. Finally, BipA/TypA, while not
essential, appears to confer a growth advantage by regulating
the synthesis of a subclass of proteins in cells under cold shock,
low pH, oxidative stress, antimicrobial peptide stress and
detergent stress.
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Ribosomal RNAs in all organisms are methylated. The functional role of the majority of
modified nucleotides is unknown. We systematically questioned the influence of rRNA
methylation in Escherichia coli on a number of characteristics of bacterial cells with the
help of a set of rRNA methyltransferase (MT) gene knockout strains from the Keio
collection. Analysis of ribosomal subunits sedimentation profiles of the knockout strains
revealed a surprisingly small number of rRNA MT that significantly affected ribosome
assembly. Accumulation of the assembly intermediates was observed only for the
rlmE knockout strain whose growth was retarded most significantly among other rRNA
MT knockout strains. Accumulation of the 17S rRNA precursor was observed for rsmA
(ksgA) knockout cells as well as for cells devoid of functional rsmB and rlmC genes.
Significant differences were found among the WT and the majority of rRNA MT knockout
strains in their ability to sustain exogenous protein overexpression. While the majority of
the rRNA MT knockout strains supported suboptimal reporter gene expression, the strain
devoid of the rsmF gene demonstrated a moderate increase in the yield of ectopic gene
expression. Comparative 2D protein gel analysis of rRNA MT knockout strains revealed
only minor perturbations of the proteome.

Keywords: ribosome, rRNA, methyltransferase, modification, Escherichia coli
INTRODUCTION

Ribosomal RNA (rRNA) of all organisms contains modified nucleosides (Sergiev et al., 2011). The
functional role of suchmodifications is unknown inmany cases. Somemodifications were shown to be
required for proper ribosome assembly (Connolly et al., 2008), interaction with ribosomal ligands
(Burakovsky et al., 2012), antibiotic resistance (Weisblum, 1995), and the correct functioning of
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particular regulatory mechanisms (Vazquez-Laslop et al., 2008;
Vazquez-Laslop et al., 2010; Prokhorova et al., 2013). In 2012, the
entire list of E. coli rRNA methyltransferase genes was completed
(Golovina et al., 2012). Not a single modification of rRNA was
found to be essential for bacterial cell survival, although earlier
studies indicated that the lack of several modifications might
cumulatively have a deleterious effect on ribosome activity (Green
and Noller, 1996). Obviously, none of the rRNA modifications is
required for the general ability of a ribosome to synthesize proteins.
However, in a living cell, a ribosome should synthesize the proteins
quickly, at the right proportions, and in a cost-effective manner (Li
et al., 2014). Ribosomal RNAmodification might contribute to the
fine-tuning of particular gene expression mechanisms (Sergiev
et al., 2012; Prokhorova et al., 2013) or contribute to the
efficiency of protein biosynthesis in general. At favorable growth
conditions, the inefficiency of protein biosynthesis might be
tolerated, while an increased load on the protein biosynthesis
machinery, such as in the artificial case of foreign gene
Frontiers in Genetics | www.frontiersin.org 248
overexpression, or when it is necessary to replace damaged
proteins, modification of rRNA might play a role. In this work we
systematically studied the influence of rRNA methyltransferase
gene knockouts (Table 1) on bacterial growth, the accumulation of
assembly intermediates, deviations in the proteome, and the ability
to sustain excessive protein synthesis.
RESULTS

Expression of rRNA Methyltransferase
Genes at Different Stages of Bacterial
Culture Growth
Gene expression analysis in specific conditions might give a hint
about its specialized function. Various genes, coding for rRNA
modification enzymes, show distinct expression patterns
according to the databases on a global analysis of gene
TABLE 1 | List of E. coli rRNA MT coding genes and the phenotypes of their knockouts.

Nucleotide Enzyme Reference Growth of
knockout strain/

growth at
overexpression*

CER expres-
sion**

FastFT expres-
sion***

Accumulation of
assembly inter-

mediates
and 17S rRNA

precursor

Expression level****
and timing

16S rRNA
527 m7G RsmG Okamoto et al., 2007 +++\++ +++ +++ −/− +++, 3h
966 m2G RsmD Lesnyak et al., 2007 +++\+++ + +++ −/− +++, 2h
967 m5C RsmB Tscherne et al., 1999a; Gu

et al., 1999
+++\+++ ++ ++ −/++ ++++, 4h

1207 m2G RsmC Tscherne et al., 1999b +++\+++ ++ +++ −/− ++++, 2h
1402 m4Cm RsmI,

RsmH
Kimura and Suzuki, 2010 +++\+ + +/+++# −/− +, 2h

1407 m5C RsmF Andersen and Douthwaite,
2006

+++\+++ ++++ ++++ −/− +++, 2h

1498 m3U RsmE Basturea et al., 2006 +++\+++ +++ +++ −/− +++, 2h
1516 m2G RsmJ Basturea et al., 2012 +++\+++ + ++ −/− +++, 2h
1518/9 m6

2A RsmA Helser et al., 1972; Poldermans
et al., 1979

+++\+++ + + −/++ ++++, 2h

23S rRNA
745 m1G RlmA Gustafsson and Persson, 1998 +++\++ + +/+++# −/−. ++++, 2h
747 m5U RlmC Madsen et al., 2003 +++\++ + +++ −/++ ++, 2h
1618 m6A RlmF Sergiev et al., 2008 +++\++ + +++ −/− +++, 1–7h
1835 m2G RlmG Sergiev et al., 2006 +++\+++ ++ ++ −/− +++, 2h
1915 m3 Y RlmH Purta et al., 2008a; Ero et al.,

2008
+++\+++ + ++ −/− +++, 2h

1939 m5U RlmD Agarwalla et al., 2002; Madsen
et al., 2003

+++\+++ +++ +++ −/− +++, 2h

1962 m5C RlmI Purta et al., 2008b +++\+ + ++ −/− +++, 2h
2030 m6A RlmJ Golovina et al., 2012 +++\+++ + +++ −/− ++++, 2h
2069 m7G,
2445 m2G

RlmKL Kimura et al., 2012 +++\+++ + +++ −/− +++, 2h

2251 Gm RlmB Lovgren and Wikstrom, 2001 +++\+++ ++ +++ −/− +++, 2h
2498 Cm RlmM Purta et al., 2009 +++\+++ + ++ +?/− +++, 2h
2503 m2A RlmN Toh and Mankin, 2008 +++\++ + +++ +?/- +++, 2h
2552 Um RlmE Caldas et al., 2000; Bugl et al.,

2000
+\+ + +/++# +++/− ++++, 3h

WT +++ +++ +++ −/−
February 2020
*+++ corresponds to doubling times 40–60min, ++ 60–70min, + > 70min. ** CER fluorescence after overnight growth at inducing conditions ++++ > 6·105, +++ 4−6·105, ++ 2−4·105, + <
4·105. ***Fluorescence intensity of the blue, newly produced form of the FastFT at the exponential growth conditions ++++ > 2·103, +++1–2·103, ++5·102–103, + < 5·102. ****Expression
levels at a timepoint with maximal expression. ++++ > 10−4, +++ > 10−5, ++ > 10−6, + < 10−6 relative to the 16S rRNA. #During growth of these strains transformed by FastFT expression
plasmid a significant amount of non-fluorescent cells were accumulated.
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expression in a variety of conditions (Sergiev et al., 2012). We
monitored expression of rRNA methyltransferase genes
experimentally at different stages of bacterial culture growth
using RT-qPCR (Figure 1). In the computer analysis of GEO
profiles of gene expression focused on rRNA modification genes
(Sergiev et al., 2012) we noticed that the majority of rRNA
Frontiers in Genetics | www.frontiersin.org 349
methylation genes, except for rsmA(ksgA) and rlmE, are
coexpressed with other genes associated with fast growth.
Here, we demonstrated experimentally that the expression of
the majority of rRNA methyltransferase genes is induced at an
early exponential phase (Figure 1A). The amount of mRNA
molecules coding for different rRNA methyltransferases
FIGURE 1 | Expression of rRNA methyltransferase genes at different phases of E. coli culture growth. (A) Amounts of rRNA methyltransferases mRNA relative to the
amount of 16S rRNA as revealed by RT qPCR (left scale). (B) Change in the proportion of rRNA methyltransferases mRNA to the 16S rRNA relative to that in the
stationary phase (left scale). The keys to the graphs are shown below the panels. Red curves (right scale) correspond to the A600 of the cell culture.
February 2020 | Volume 11 | Article 97

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Pletnev et al. Function of rRNA Modification
normalized to the amount of rRNA differs by three orders of
magnitude. We observed the highest expression level for the
rsmA(ksgA) gene and the lowest for rsmH. Analysis of the growth
phase dependencies of expression (Figure 1B) revealed a group
of rRNA methyltransferase genes, namely, rlmN, rlmC, rsmF,
rsmG, rlmA, rlmF, and rsmH, with nearly constitutive expression.
The remaining rRNA MT coding genes demonstrated a variable
extent of induction from small to moderate for rsmC, rlmH,
rlmKL, rsmD, rlmM, rlmB, rlmD, rlmI, high for rsmE, rsmJ, rlmJ,
and extreme for rlmG and rsmA(ksgA). Genes coding for rsmB
and rlmE have specific expression patterns (Figure 1). The RsmB
gene is transcribed at a later growth stage, the maximal
expression level being attained at 4 h after dilution of the
culture in fresh media. The gene coding for RlmE is
transcribed almost constitutively with the maximal level of
expression reached after 7 h of bacterial culture dilution in
fresh media.
Influence of rRNA Methyltransferase
Genes Inactivation on the Accumulation of
Ribosome Assembly Intermediates
A function of rRNA modification enzymes in ribosome assembly
was proposed for RlmE andRsmA(KsgA) rRNAmethyltransferases.
The knockout of the former caused an accumulation of assembly
Frontiers in Genetics | www.frontiersin.org 450
intermediates and slow growth (Bugl et al., 2000; Caldas et al., 2000;
Hager et al., 2002; Arai et al., 2015), which could be suppressed by
overexpression of small GTPases Obg and EngA (Tan et al., 2002).
RsmA(KsgA) was proposed to be the ribosome biogenesis factor,
utilizing its methyltransferase activity to trigger its dissociation upon
successful completion of the 30S subunit assembly (Connolly et al.,
2008). Involvement of other rRNA methyltransferases in the
ribosome assembly pathway could be hypothesized (Sergiev et al.,
2011). We used a collection of rRNA methyltransferase knockout
strains (Baba et al., 2006) to systematically study the accumulation of
assembly intermediates of ribosomal subunits. Knockout strains
were grown in a rich medium at 37°C and 20°C. Low temperature
slows conformational rearrangements of RNA and is known to
aggravate ribosome assembly defects (Shajani et al., 2011); thus, at
20°Cwe expected to reveal more severe defects then at 37°C. Sucrose
density centrifugations of the rRNA methyltransferase gene
knockout cell lysates were done at low, 1 mM (Figure 2A) and
high 10 mM (Figure 2B) magnesium ion concentrations to reveal
any differences in accumulation of assembly intermediates or
subunit association. Only the rlmE knockout strain previously
known to accumulate a significant amount of assembly
intermediates (Bugl et al., 2000; Caldas et al., 2000; Hager et al.,
2002; Arai et al., 2015) demonstrated such an effect at both
magnesium ion concentrations. In addition, small peaks of
presumably assembly intermediates might be observed on the
FIGURE 2 | Accumulation of ribosomal subunits assembly intermediates in the E. coli strains with inactivation of the 16S rRNA and 23S rRNA methyltransferase
genes marked on the left side. WT corresponds to the parental isogeneic strain carrying all set of rRNA methyltransferase genes. Shown are sucrose gradient
centrifugation profiles at subunit dissociation conditions (1 mM magnesium ions concentration) (A) and association conditions (10 mM magnesium ions
concentration) (B). Left panels correspond to the cells grown at 37°C, while that to the right correspond to the cells grown at 20°C known to exacerbate ribosomal
subunits assembly defects.
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sucrose gradients at a low magnesium ion concentration of the
extracts from DrlmM and DrlmN strains.

Surprisingly, none of the other rRNA methyltransferase
knockout strains demonstrated the accumulation of ribosomal
subunits assembly intermediates with sedimentation properties
different from that of mature ribosomal subunits, arguing against
the essentiality of the corresponding rRNA modifications for
ribosome assembly.

Nucleolytic processing of the 17S rRNA precursor resulting in
the formation of the 16S rRNA happens in the late stage of small
ribosomal subunit assembly (Smith et al., 2018). For the few
strains deficient in rRNA modification enzymes (Gutgsell et al.,
Frontiers in Genetics | www.frontiersin.org 551
2005; Connolly et al., 2008) excessive accumulation of the 17S
rRNA precursor was demonstrated. However, up to now, no
systematic study of rRNA modification’s influence on the
processing of the 17S rRNA precursor was available. We
decided to analyze 17S rRNA to 16S rRNA ratio in the cells
devoid of each of the rRNA methyltransferases (Figure 3) with
the help of the RT qPCR. An accumulation of the 17S rRNA
precursor was detected for cells of the DrsmA(DksgA) strain
grown at a low temperature, in agreement with previously
published data (Connolly et al., 2008). In addition, a
substantial increase in the amount of the 17S rRNA processing
intermediate was detected for the cells of the DrsmB and DrlmC
FIGURE 3 | Accumulation of 17S rRNA precursor in the E. coli strains with inactivation of the 16S rRNA and 23S rRNA methyltransferase genes. Shown is the 17S
rRNA to 16S+17S rRNA ratio determined by RT qPCR. Knockout strains are marked below the bars. (Panel A) corresponds to the cells grown at the 37°C, while
(panel B) to the cells grown at the 20°C.
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strains. For the former, a higher concentration of the precursor
was detected at both tested temperatures, while for the latter, 17S
was accumulated at 20°C.

Influence of rRNA Methyltransferase Gene
Inactivation on the Growth Rate of
Bacteria
Protein biosynthesis requires a large share of cellular resources.
Any deviation from optimal protein synthesis efficiency should
influence the doubling time of bacteria. We consistently
measured the growth rates of bacteria lacking rRNA
methyltransferase genes (Figure 4). At optimal conditions in a
rich medium (Figure 4A) only the DrlmE strain demonstrated
a significant, nearly twofold increase in the doubling time. Such
Frontiers in Genetics | www.frontiersin.org 652
a result correlates well with the accumulation of assembly
intermediates in this strain.

Overexpression of an exogenous protein leads to the
unproductive waste of biosynthetic protein resources. It may lead
to significant growth retardation if the protein biosynthesis
machinery would operate at suboptimal efficiency. To evaluate the
influence of exogenous gene expression on cell growth, we used a
reporter plasmid carrying the red fluorescent protein (rfp) gene
under a constitutive T5 promoter and the cerulean fluorescent
protein (cer) gene under the inducible Tet promoter. Growth rates
were measured for rRNA methyltransferase knockout strains upon
overexpression of the CER fluorescent protein gene (Figure 4B).
More knockout strains revealed the difference from the wild-type
parental strain in doubling time; in addition to the strain lacking
FIGURE 4 | Influence of rRNA methyltransferase gene inactivation on the growth rates of bacteria. (A) Doubling times of the strains devoid of the rRNA
methyltransferase genes. Inactivated genes are labeled below the graph. WT corresponds to the parental isogeneic strain carrying a whole set of rRNA
methyltransferase genes. (B) Doubling times of the same strains carrying a plasmid coding for the cerulean fluorescent protein (CER) and red fluorescent protein
(RFP) reporter proteins at induction of reporter gene expression.
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RlmEmethyltransferase, significant growth retardationwas found in
the strains lacking RsmH and RlmI rRNA MTs.

Influence of rRNA Methyltransferase Gene
Inactivation on the Efficiency of
Constitutive and Induced Exogenous
Protein Synthesis
In a living cell, different mRNA species compete for the protein
biosynthesis machinery. If ribosomes and other components of the
translation apparatus are present in excess over the total mRNA,
then the transcriptional control of gene expression might function
optimally and an increase in certain mRNA synthesis would not
limit the expression of other genes. However, if the number of active
ribosomes is low or they are functioning inefficiently, then excessive
transcription of a gene would have a negative influence on other
genes’ expression due to the competition. To evaluate the influence
Frontiers in Genetics | www.frontiersin.org 753
of rRNA methylation on the availability of protein biosynthesis
machinery for exogenous protein synthesis, we used a set of rRNA
methyltransferase knockout strains transformed with a plasmid
encoding for RFP under the constitutive T5 phage promoter and
the cer gene under the inducible Tet promoter. The expression level
of both genes could be monitored simultaneously in the rRNA MT
knockout cells and compared to that of the wild-type cells. Thus, the
overall ability of cells to support excessive protein synthesis might be
deduced from this experiment as well as the influence of induced
gene expression on the expression level of other genes, exemplified
by a constitutively expressed rfp gene (Figure 5). The wild-type cells
efficiently expressed both fluorescent proteins, and no reduction in
constitutively transcribed rfp gene expression was observed upon
additional expression of the cer gene. The yield of exogenous reporter
protein synthesis was reduced for rRNA knockout strains. Only for
the DrsmB, DrsmC, DrsmG, and DrlmD strains this reduction was
FIGURE 5 | Influence of rRNA methyltransferase gene inactivation on the expression of exogenous reporter genes encoded on the plasmid carrying red fluorescent
protein (RFP) gene under the control of a constitutive T5 promoter and cerulean fluorescent protein (CER) gene under a control of an induced Tet promoter. Shown
are the intensities of the CER (blue) and RFP (orange) fluorescence in the overnight cultures of the strains devoid of the 16S rRNA (A) and 23S rRNA (B)
methyltransferase genes as labeled below the graphs. WT corresponds to the parental isogeneic strain carrying all set of rRNA methyltransferase genes. IND marks
the graphs corresponding to the induction of CER gene expression by anhydrotetracycline.
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mild, and not exceeding twofold. More significant, up to a 10-fold
reduction of RFP expression was attributed to the lack of the
remaining rRNA methyltransferases (Figure 5). Of note, a
reduction in constitutively transcribed rfp gene expression was
observed upon induction of cer gene transcription in the strains
deficient in rsmA(ksgA), rlmA, rlmC, rlmE, rlmF, rlmG, rlmJ, rlmKL,
rlmM, and rlmN. The only exception in this rule is the DrsmF strain
supporting twofold higher expression of the RFP gene, relative to
that of the wild-type strain, as well as mildly increased expression of
theCER gene, relative to that in thewild-type strain at the uninduced
state, and uponCER gene induction. To be sure that this observation
was well reproduced, we repeated this experiment in 24 independent
cell culture replicates (Figure S1). While the absolute level of CER
and RFP fluorescence varied from culture to culture, the tendency
always remained the same. In the strain devoid of RsmF, both CER
and RFP levels were higher when those in the wild-type strain. To
check whether this increase in expression is due to transcription or
translation enhancement, we compared the amounts of cer and rfp
mRNAs (Figure S2). An increase in the yield of both cer and rfp gene
transcription in the DrsmF strain shows evidence that the overall
upregulation of CER and RFP synthesis in this strain could be
explained, at least partially, by the upregulation of transcription.

Our findings support a hypothesis that in the majority of
strains lacking particular types of rRNA methylation, ribosome
availability became a limiting factor for gene expression, where
the strain devoid of RsmF methyltransferase appeared to be
an exception.

Single Cell Analysis of the Efficiency of
Protein Synthesis Upon the Inactivation of
rRNA Methyltransferase Genes
To evaluate the capacity for exogenous protein synthesis in the
individual cells of rRNA MT knockout strains, we applied a
reporter plasmid encoding a FastFT fluorescent timer protein
(Subach et al., 2009) and detected the intensity of fluorescence by
the cell sorter. The FastFT protein undergoes a two-step
maturation process in a way that a rapid formation of a blue
fluorophore is followed by a slow conversion to a red fluorescent
form with a half conversion rate of 7 h. With this rate, stationary
phase cells, after 24 h of growth, contain mainly the fully
converted red fluorescent form of FastFT, while rapidly
growing cells contain the blue fluorescent form of the protein.
We transformed rRNA MT knockout strains systematically with
the plasmid coding for the FastFT protein under a control of an
arabinose-inducible promoter and monitored the fluorescence at
405/460 nm for a newly synthesized blue fluorescent form and at
555/610 nm for a fully converted red fluorescent form (Figure 6).
Monitoring of the FastFT protein level and synthesis was done
throughout the growth curve of the bacterial culture.

At the stationary phase of the bacterial culture, the level of the
predominant red form of the FastFT protein for the majority of
the rRNA MT knockout strains exceeded that of the wild type
(Figures 6A, B). We hypothesize that this might be due to the
increase of the average cell size, rather than a change in FastFT
protein biosynthesis. An exceptional presence of the blue FastFT
form in the stationary phase cells was documented for the strain
Frontiers in Genetics | www.frontiersin.org 854
lacking the rsmF gene (Figure S3), which corresponds to a
moderate increase in both CER and RFP reporter protein
levels in this strain, relative to the wild-type strain described in
the preceding section.

In the exponential growth phase (Figures 6C, D), the level of
the predominant blue form of the FastFT protein was generally
lower for the rRNA MT knockout strains, while the cell size was
approximately the same. This is indicative of the decrease in
exogenous protein synthesis efficiency upon rRNA MT gene
inactivation, which is especially prominent in rsmA(ksgA), rsmJ,
rlmE, and rlmM knockout cells. These findings correspond well
with our data on the synthesis of CER and RFP reporter proteins
discussed in the preceding section. Furthermore, a strain lacking
the rsmF gene, and additionally the DrsmC strain, demonstrated
FIGURE 6 | Influence of rRNA methyltransferase gene inactivation on the
expression of exogenous reporter gene FastFT. Shown is a distribution of
cells (arbitrary units) by the red fluorescence intensity corresponding to the
completely mature FastFT form in overnight cultures of the strains devoid of
the 16S rRNA (A) and 23S rRNA (B) methyltransferase genes as labeled on
the left side of the graphs. Distribution of cells (arbitrary units) by the blue
fluorescence intensity corresponding to the newly synthesized FastFT form in
the cultures at the exponential growth (5 h post dilution) of the strains devoid
of the 16S rRNA (C) and 23S rRNA (D) methyltransferase genes as labeled
on the left side of the graphs.
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a higher amount of the freshly synthesized blue FastFT protein
form in the exponentially growing cells, in line with an increased
expression of other exogenous fluorescent protein genes.

Influence of rRNA Methyltransferase Gene
Inactivation on the Composition of the
Total Proteome
Lack of m2G966/m5C967 16S rRNA nucleotide modification
perturbed the proteome of the cell and resulted in the
misregulation of gene expression control by transcription
attenuation (Prokhorova et al., 2013). Next, we sought to
compare the proteomes of the strains lacking rRNA MT
encoding genes. Proteins, whose abundance was changed in
comparison with the parental strain, were detected by 2D
protein gel electrophoresis (Figure S4). Surprisingly, none of
the single rRNA methyltransferase gene knockouts led to a
significant and reproducible perturbation of the proteome as
revealed by 2D protein gel electrophoresis.

Three strains were selected for more detailed proteome
analysis using a label-free shotgun proteome technique. The
DrlmE strain demonstrated the most severe growth retardation,
accumulation of ribosome assembly intermediates, and a
significant reduction in the efficiency of reporter protein
synthesis. The DrsmF strain was unique in its ability to support
higher expression of the exogenous protein than the parental
wild-type strain. The strain lacking the rlmC gene had a mild
phenotypic abnormality and an increased level of the 17S rRNA
precursor at low temperature. Very few proteins changed their
abundance in the DrlmC strain (Table 2, Table S1). An analysis
of transcription factors that might co-regulate genes whose
expression depended on the RlmC revealed sS and ppGpp that
regulate sra and gadB expression, although the statistical support
is insufficient (Keseler et al., 2013). A more profound change was
observed in the rlmE gene knockout. Visual inspection of the
results suggests that sS, ppGpp, AppY, ArcA, and FNR activated
genes are downregulated in the DrlmE strain, while genes
repressed by PepA, ArcA, FNR, arginine, methionine, and
pyrimidine nucleotides are upregulated. This statement,
however, could get sufficient statistical support only for the
transcription factor PepA (pvalue = 0.02, Bonferroni correction)
(Keseler et al., 2013). Visual analysis of the genes whose
expression was changed by inactivation of the rsmF gene
revealed the possible involvement of Crp and sS, although the
statistical support is insufficient (Keseler et al., 2013), and further
partial verification with the help of RT qPCR (Figure S5) could
not support the possible involvement of Crp in the response to the
rsmF gene knockout. Notably, sS is among the proteins whose
amount was decreased more than twofold upon RsmF
inactivation. This may suggest that increased transcription of
s70-dependent reporter genes in this knockout strain might to
some extent be explained by reduced competition over the RNA
polymerase core enzyme. GO term analysis of the proteins whose
abundance decreased upon RsmF rRNA methyltransferase
inactivation revealed a TCA cycle (pvalue = 0.001). We found a
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TABLE 2 | Significant differences in the proteome of E. coli caused by
inactivation of rlmC, rlmE, and rsmF genes as revealed by panoramic proteome
analysis.

DrlmC DrlmE DrsmF

sra 0,28 gadB 0,21 astC 0,07
gadB 0,39 sra 0,23 acs 0,10
can 0,44 hyaB 0,30 modA 0,22
ytfE 2,05 cydA 0,31 pspE 0,22

ybgS 0,40 ugpB 0,23
appA 0,42 argT 0,25
narG 0,44 sra 0,25
mdtE 0,45 grcA 0,26
glpQ 0,47 sdhA 0,27
rpsU 0,48 msrB 0,28
psiF 0,49 sdhB 0,30
rpsL 0,50 aldA 0,31
can 0,50 fdoH 0,32
ansB 0,50 flu 0,33
fadI 2,07 sthA 0,33
nlpA 2,07 gadB 0,34
fumA 2,14 gadC 0,34
yfeX 2,14 sucB 0,35
mdaB 2,21 yciF 0,36
carA 2,21 psiF 0,36
pck 2,26 putA 0,37
carB 2,58 dadX 0,37
metK 2,92 ynfK 0,37
pyrI 3,22 osmY 0,39
ydeN 3,32 ydfZ 0,39
nanA 3,41 yhhA 0,41
gdhA 3,52 yciE 0,41
oppA 5,47 acnA 0,42
ompF 6,86 rpoS 0,43

yaiE 0,44
frdB 0,44
ybgS 0,44
ynjE 0,45
ompX 0,45
tsx 0,46
sucA 0,46
hisJ 0,46
iadA 0,47
glcB 0,47
mglB 0,48
ftnA 0,48
ybeL 0,49
bfr 0,49
sodC 0,49
glnH 0,50
nanA 2,03
gatY 2,07
miaB 2,09
guaB 2,18
iscS 2,19
cysH 2,25
metK 2,32
cydA 2,35
yidB 2,99
ybeD 3,51
mdaB 3,58
oppA 3,61
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certain degree of similarity between proteomic responses to
rlmC, rlmE, and rsmF gene inactivation (Table 2). Interestingly,
all three strains have a reduced concentration of Sra and
GadB proteins.

Phylogenetic Distribution of Orthologs of
E. coli rRNA Methyltransferases
Conservation of a protein may be a proxy of its functional
importance. To compare the phylogenetic distribution of the
complete set of E. coli rRNA methyltransferases, we performed
blast searching (Altschul et al., 1990) for their orthologs. We
aimed to determine a minimal phylogenetic group still
containing orthologs of a part icular E. col i rRNA
methyltransferase. To this end, we verified whether any
orthologs of a given E. coli rRNA methyltransferase might be
identified outside Enterobacteriales, gamma Proteobacteria,
Proteobacteria, and Bacteria, and whether any orthologs could
be found in Eukarya and Archaea (Figure 7). We intentionally
decided not to determine the entire phylogenetic trees of all
rRNA methyltransferase families as this might be the matter of a
separate, more focused, study.

The range of phylogenetic distributions in our set varied from
universality for RsmA(KsgA) and RlmE, to extreme specificity to
Enterobacteria for RsmJ and RlmG. Most frequently rRNA
methyltransferase orthologs were found to be conserved among
bacteria. For several E. coli rRNA methyltransferases, close paralogs
were identified, such as RlmCDmethyltransferases of gram positive
bacteria for RlmC and RlmD (Desmolaize et al., 2011) or orthologs
of RsmB in a BLAST search for RsmF homologues.
DISCUSSION

Several roles have been suggested for methylated rRNA nucleotides
(Sergiev et al., 2011; Sergiev et al., 2018), among which ribosomal
subunit assembly control appears amongst the most obvious ones.
RsmA(KsgA) methyltransferase was shown to fulfill quality control
over the last stages of small subunit assembly (Connolly et al., 2008),
in line with a similar role of its eukaryotic homologue, Dim1, in
ribosome biogenesis (Lafontaine et al., 1995). The mechanism of
RsmA(KsgA)’s action suggested by Connolly et al. (2008) involved
binding of the small subunit assembly intermediates by RsmA
(KsgA), while its methyltransferase activity is delayed until the late
stages of assembly. This type of activity might require more RsmA
(KsgA) molecules relative to other rRNA MTs, which might cycle
faster. Accordingly, we see the highest level of RsmA(KsgA) mRNA
relative to mRNA coding for other rRNAMTs. We did not observe
significant accumulation of assembly intermediates in the DrsmA
(DksgA) strain by sucrose gradient centrifugation, in line with earlier
studies (Connolly et al., 2008). However, in consort with that work,
we found an increase in the amount of the 17S rRNAprecursor upon
growth of the DrsmA(DksgA) strain at a low temperature (Figure 3).
Ubiquitous phylogenetic distribution of KsgA orthologs (Figure 7A)
is explained by their involvement in the assembly of bacterial
(Connolly et al., 2008) and eukaryal cytoplasmic (Lafontaine et al.,
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1995), as well as mitochondrial (Metodiev et al., 2009), small
ribosomal subunits.

In addition, a significant amount of the 17S rRNA precursor
accumulates in the DrsmB strain (Figure 3). RsmB is known to
act on the early assembly intermediate of the 30S ribosome
subunit, prior to the incorporation of the S19 protein
(Weitzmann et al., 1991). It might be suggested that RsmB
accelerates the assembly or prevents misassembly. Orthologs of
RsmB are distributed among bacteria (Figure 7A), while in
archaea and eukarya the same small subunit rRNA loop is
modified to form acp3U (Kowalak et al., 2000) or m1acp3y
(Wurm et al., 2010; Meyer et al., 2016) respectively. Enzymes
Nep1 (Wurm et al., 2010) and Tsr3 (Meyer et al., 2016),
responsible for the formation of the m1acp3y nucleotide, are
documented to serve a role in ribosome assembly and might be
hypothesized to have a function reminiscent to that of RsmB.

Unexpectedly, inactivation of the 23S rRNA methyltransferase
RlmC, responsible for the formation of m5U747, also resulted in the
accumulation of the 17S rRNA precursor (Figure 3). This
phenomenon is not unique. Inactivation of the large subunit
pseudouridine synthase RluD also resulted in the accumulation of
the 17S rRNA precursor (Gutgsell et al., 2005), although later this
phenotype was found to be dependent on the combination of the
rluD knockout and E. coliK12-specific RF2 allele carrying threonine
at the position 246 (O’Connor and Gregory, 2011). It seems likely
that an influence of 23S rRNA methylation by RlmC on the
processing of the small subunit rRNA is indirect, similar to that
of RluD.

A severe assembly defect was known to be associated with
inactivation of the RlmE methyltransferase (Bugl et al., 2000;
Caldas et al., 2000; Hager et al., 2002; Arai et al., 2015). Here we
corroborated and extended previous studies (Figure 2),
demonstrating that while rlmE inactivation leads to a severe
manifestation of ribosome misassembly, other rRNA MT
knockouts have a marginal, if any, effect on the accumulation of
ribosome assembly intermediates which might be distinguished by
sucrose density centrifugation. In line with this, rlmE inactivation
leads to the most significant growth retardation among the other
rRNA MT gene knockouts. The severe phenotype of rlmE gene
inactivation goes in parallel with the universal phylogenetic
distribution of its orthologs (Figure 7B). A number of genes
whose expression is dependent on sS and ppGpp, as well as
ArcA and FNR, were found downregulated in the DrlmE strain
(Table 2). This result may indicate lagging of the growth phase of
the DrlmE strain relative to that of the wild type, which may also
result in higher oxygenation of the bacterial culture sensed byArcA
andFNR. RlmC inactivation, whichmoderately affected the growth
rate of bacteria, resulted in decreased expression of sra and gadB
genes. Both these genes were similarly downregulated in the strains
deficient in the rlmE and rsmF genes. This phenomenonmight also
reflect a lag in the growth phase of rRNAMT knockout cells, since
both sra and gadB genes are normally expressed in the stationary
phase (Castanie-Cornet and Foster, 2001; Izutsu et al., 2001).

Another common assumption is that rRNA modification
might be functional in a particular set of conditions. In such a
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case, it might be anticipated that the expression of the
corresponding rRNA MT genes might be regulated in a
condition-dependent manner. Analysis of rRNA MT gene
expression throughout the bacterial growth cycle revealed that
the predominant majority of rRNA MT genes is significantly
upregulated in the exponential growth phase (Figure 1), along
Frontiers in Genetics | www.frontiersin.org 1157
with the expression of rRNA operons. These data generally
support a previous work (Sergiev et al., 2012) performed on
the basis of GEO database analysis. Among the rRNA MT genes,
rlmE and rsmB seem to be induced at the later growth phase,
demonstrating a distinct way of transcriptional control. RlmE is
known to be under heat shock control (Bugl et al., 2000), while
FIGURE 7 | Phylogenetic distribution of the E. coli 16S rRNA (A) and 23S rRNA (B) methyltransferases orthologs. Shown are the simplified phylogenetic trees
illustrating the occurrence of rRNA MT orthologs in the taxons beyond Enterobacteriales, gamma Proteobacteria, Proteobacteria, and Bacteria as well as in Eukarya
and Archaea. Schematic trees are labelled by protein designations. Branches colored green correspond to those that contain orthologs of the methyltransferase,
while those colored red do not.
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the mechanism of rsmB gene regulation remains unknown.
Expression of the predominant majority of rRNA MT in the
exponential growth phase does not support a function of
methylated rRNA nucleotides within specific conditions.

Protein biosynthesis is one of the major resource consuming
processes. Suboptimal protein biosynthesis efficiency caused by a
lack of rRNA methylation may become a significant problem if
resources are additionally spent on the synthesis of a protein
coded in an artificially expressed gene. In line with this
assumption, the growth rates of the majority of rRNA MT
knockout strains are almost indistinguishable from that of the
wild-type strain, except for the rlmE knockout, leading to the
accumulation of ribosome assembly intermediates. However,
induction of an exogenous gene, exemplified in this study by
rfp and cer, decreases the growth rates of the rRNAMT knockout
strains more significantly than that of the parental strain
containing a complete inventory of rRNA MT coding genes.
Almost all rRNA MT knockout strains were able to support only
½ to ¼ of the wild-type expression level of the constitutively
expressed rfp gene. Additionally, induction of cer gene
expression in the majority of the rRNA MT knockout strains
not only failed to reach the wild-type expression levels, but also
led to a more significant decrease in the expression of the rfp
gene. This tendency is well reproduced by the evaluation of
protein biosynthesis efficiency at a single cell level by flow
cytometry. The likely interpretation of this fact is a mildly
reduced protein synthesis capacity of the strains devoid of
rRNA MT genes, which becomes a significant problem if a cell
is under the burden of the synthesis of an exogenous protein.
Among the rRNAMT deletion strains, the most compromised in
the ability to synthesize exogenous proteins are the DrlmA,
DrlmG, DrlmH, DrlmI, DrlmJ, DrlmM, DrlmN, DrlmE, DrsmA
(DksgA), DrsmH, and DrsmJ strains.

Apart from the general tendency, rsmF gene knockout
resulted in a moderate increase of exogenous gene expression
compared to the wild type. RsmF methyltransferase is
responsible for the modification of m5C1407 of the 16S rRNA
(Andersen and Douthwaite, 2006), which increases the
aminoglycoside sensitivity of E. coli (Gutierrez et al., 2012).
The molecular mechanism of a small increase in exogenous
gene expression in the DrsmF strain is unknown; a likely
explanation is the suboptimal functioning of some regulatory
mechanism. The transcriptional upregulation of reporter gene
expression might be involved, at least partially. According to the
proteome analysis, rsmF knockout leads to an alteration in the
abundance of a large number of proteins, including decreased
amounts of sS and downregulation of a number of genes
transcribed with the help of this sigma factor. Perhaps, the
increased propensity of the rsmF knockout strain to synthesize
an exogenous protein might reflect a secondary effect.

This work might be of particular interest, as it is the first
comprehensive study of all rRNA methyltransferase knockouts.
Although only a few rRNAMT knockouts were found to have an
influence on bacterial growth, ribosome assembly, or proteome,
the majority of the knockout strains demonstrated a suboptimal
capability to synthesize exogenous proteins. This may indicate a
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necessity of rRNA methylation at increased loads on the protein
biosynthesis apparatus. More methods are needed to assess the
subtle advantages of rRNA methylation in bacteria.
MATERIALS AND METHODS

Homology search was done with BLAST (Altschul et al., 1990),
using the model organisms database. The resulting phylogenetic
distribution of the BLAST hits was used to deduce whether any
orthologous proteins could be found beyond Enterobacteriales,
gamma Proteobacteria, Proteobacteria, and Bacteria, and
whether any orthologs could be found in Eukarya and
Archaea. Visual inspection of the search results was used to
filter out paralogous, rather than orthologous proteins. In
doubtful cases, a reciprocal BLAST search, with a putative
orthologous protein identified in the original search, was
performed to check whether the protein used as bait for the
initial search would be found as its closest homologue among the
proteins of E. coli.

In all experiments, the strains DrsmG (JW3718), DrsmD
(JW3430), DrsmB (JW3250), DrsmC (JW4333), DrsmH
(JW0080), DrsmF (JW5301), DrsmE (JW2913), DrsmJ (JW5672),
DrsmA(ksgA) (JW0050), DrlmA (JW1811), DrlmC (JW2756),
DrlmF (JW5107), DrlmG (JW5513), DrlmH (JW0631), DrlmD
(JW0843), DrlmI (JW5898), DrlmJ (JW3466), DrlmK/L
(JW0931), DrlmB (JW4138), DrlmM (JW2777), DrlmN
(JW2501), and DrlmE (JW3146) from the Keio collection (Baba
et al., 2006) were used and compared with the parental wild-type
strain BW25113 (Datsenko and Wanner, 2000).

For the rRNAMT expression analysis, an overnight culture of
wild-type E. coli was diluted in triplicate in fresh LB media to
A260 0.01 and grown at 37°C in a shaker. Aliquots of cells were
removed at 1, 2, 3, 4, 5, 6, 7, and 56 h and used for total RNA
purification with Trizol reagent (Invitrogen), followed by cDNA
synthesis with either a Maxima First Strand cDNA Synthesis Kit
for RT-qPCR (Thermo) with a random hexamer primer or a
Superscript reverse transcriptase (Invitrogen). Quantitative PCR
was performed by a Maxima Hot Start DNA polymerase
(Thermo) in the presence of SYBR green. The following
primers were used for amplification of indicated mRNAs:
rsmA(ksgA) (CCCTTTTGCGGGTTAATGGC and ACGCTT
CGGGCAAAACTTTC), rsmB (CTATGCCACCTGTTCG
GTGT and CTGTTTCGCAAAGTTCGGCA), rsmC (GCGC
ATAATCTGCCAGCATCand AAGAACAAACCGGA
AGCCCA), rsmD (CGCAAAAAGGTACACCGCAT and CAG
CCAGCCGTTATCTTCCA), rsmE (TGAGCAGTGTGGTC
GTAACCand ACCGGTAACGGCAACGTATT), rsmF(CCG
ATTTTCTCGGTTGGGGA and ATACCACTCCTCCG
CTTCCT), rsmG (GGACGCACGATAGAGAGTGGand TTC
GGTCCGCGATCCTAATG), rsmH (CTCACGTCTGATCCTC
TCGC and CAATAGTCTTCGCAACGGCG), rsmJ (AAT
TCCAGATGTTCCGGCGT and TGCCTTATCTGTTCTG
GCGG), rlmA (AAATCAGCCCCTTCAGCTCC and CCGATA
CCAGTATGGACGCC) , r lmB (GCCAGGACGTCA
GTATCAGG and AGGATCAGCAGGAACGGTTG), rlmC
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(GGGCTTTGGTTTACACTGCG and AAACTGAG
TGGAGTCCAGCG), rlmD (TCGACAATGTCACTGGAGCC
and GATGTTCCCTGGGGCTATCG), rlmE (AGGTCG
ACAACCGTCATTCC and AAAGGGGTTACGTTCCCGTG),
rlmF (CATCACAGCCGCTACGATCTand AAGTCTAC
GCTTTGCTCCCC), rlmG (AATGCCAGTGTTTTCGGCAC
and ACGGGATTGATGAGTCGAGC), r lmH (TGCT
CACCCTCTTTGTCGAG and TTTACCGAGTACCTGCG
TCG), rlmI (ATCGCGATAAGTACGCAGCA and GAAG
CGCTGGATATTGCACG), rlmJ (CAGTTAGGCAGCGAAC
ATGC and CTGACCGCTACGGTTGAAGT), rlmKL (TTTG
AAACGTCTGCTGCGTG and CAGGCCGTCGAGATCC
ATAC), r lmM (CTTCAACACGCAGTTCACCG and
CATTTGCCGCCAGAAGATCG) , r lmN (ATGTCG
ATGGCTTCACCCTG and TATCGATGCTGCCTGTGGTC),
oppA (AATCGTTCTTGAACGCAGC and GATCAA
CGTGAACTTCGTCC), metK (AGGCTGAAGTGCGTAA
AAAC and GGGCAGAATTGGCTTGATG), nanA (GTGG
TGTACAACATTCCAGC and CGAAGATTTCGTCGTAA
CCG), gatY (TTTGCCATCGCTTTGATGTC and TGG
CATACATCCCATGAGC), guaB (AAGACTTCCAGAAAGC
GGAA and TTCACGGATACGTTGCAGTA), mdaB (CAGC
GACTACGATGTCAAAG and TTTTCGACGGATCTTT
GCG), ybeD (CAGGCGTTACCTGAGCTG and TTTGC
CCAGTTCTTCATACAGT), astC (ATTGACGACTCTACCTG
TGC and TCACGCCGTAGTGCATATAG), acs (GCAG
TATTCCGCTGAAGAAA and GATCTTCGGCGTTCATC
TCT), modA (GCCTGCGGATCTGTTTATTT and TTCAG
CAGTGAAGTCCAGTT), psp (ATCGATGTTCGTGTTCC
AGA and CCCATCTCGCTAAGGATCTC), ugpB (GCTGG
ATCCAACTGGAAAAC and TTCATCCTTACGACCGACG),
a r gT (TACCGATAAACGTCAGCAGG and CCTT
TACTACGCCAGGTCTC), sra (AATCGAACCGTCAGGCAC
and TTTTCAGCGGGGCGTTT), cer (TGAGCAAGGGCGAG
GAGC and TGGTGCAGATGAACTTCAGG) , r f p
(GCTGATCAAGGAGAACATGC and AGGATGTCG
AAGGCGAAGG). Quantification of expression was done by
DDCt method using 16S rRNA as a reference (gAgAATgTgCCT
TCgggAAC and CCgCTggCAACAAAggATAA for MT gene
expression analysis or CATTGACGTTACCCGCAGAAGAAG
and CTACGAGACTCAAGCTTGCCAGTA for other gene
expression analyses). To estimate the proportion of 17S rRNA
processing, an intermediate RT qPCR approach was used. The
following primer sequences were used for the 16S rRNA
( G A A G A G T T T G A T C A T G G C T C A G a n d
CCACTCGTCAGCAAAGAAG) and for the 17S rRNA
processing intermediate (TCATTACGAAGTTTAATTC
TTTGAGCG and GAAGAGTTTGATCATGGCTCAG). The
proportion 17S/(16S + 17S) was calculated by normalization of
the levels of the 5′-end-extended 17S transcript to the total
amount of 16S and 17S transcripts.

To assess the accumulation of assembly intermediates, cells of
rRNA MT knockout strains and a BW25113 strain (WT) and
were grown in 500 ml of an LB medium at 37°C or 20°C to A600
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0.6, slowly cooled on ice, and harvested by centrifugation. Cells
pellets were resuspended in a lysis buffer (20 mM HEPES-KOH
pH 7.5, 4.5 mM Mg(OAc)2, 150 mM NH4Cl, 4 mM b-
mercaptoethanol, 0.05 mM spermine, 2 mM spermidine
buffer) and lysed by ultrasonication. After removal of cell
debris, lysates containing approximately 1,200 pmol of
ribosomes were applied to either a 10% to 30% sucrose
gradient in a buffer 20 mM HEPES-KOH pH 7.5, 1 mM Mg
(OAc)2, 200 mM NH4Cl, 4 mM b-mercaptoethanol, or a 10% to
40% sucrose gradient in a buffer 20 mMHEPES-KOH pH 7.5, 10
mM Mg(OAc)2, 200 mM NH4Cl, 4 mM b-mercaptoethanol.
Ultracentrifugation was performed by an SW41Ti rotor at 19,000
rpm for 19 h followed by optical density monitoring at 260 nm.

To create a pRFPCERtet construct, a pRFPCER plasmid
(Osterman et al., 2013) was digested with HindIII and SacII
and ligated with pair of pre-annealed complementary
oligonucleotides (TetR F 5′ AGCTTGGGAAATCATAA
AAAATTATTTGCTTACTCTATCATTGATAGAGT
TATAATAGCCGC-3′ and TetR R 5′-GGCTATTATAA
CTCTATCAATGATAGAGTAAGCAAATAATTTTTT
ATGATTTCCCA-3′), containing a T5 promoter with the TetR
binding site. The obtained plasmid was digested with SacII and
NdeI restriction enzymes and ligated with pair of pre-annealed
complementary oligonucleotides (5′-CACACAACAAAGG
AGGTAC and 5′-TAGTACCTCCTTTGTTGTGTGGC),
containing a highly efficient ribosomal binding site. The
resulted plasmid was used for further study as pRFPCERtet.

To monitor growth rates upon exogenous gene overexpression,
and to evaluate protein synthesis efficiency, cells of rRNA MT
knockout strains and the BW25113 strain (WT) were transformed
with the plasmid pRFPCERtet. Overnight cultures of the
transformants, in triplicate for each strain, were diluted by LB with
or without anhydrotetracycline 0.2 ug/ml to A600 0.01 in a 96 well
plate. Cells were cultivated with continuous shaking at 37°C with
automatic A600 monitoring every 30 min by a Janus workstation
(Perkin Elmer). Growth rates of rRNAMTknockout strains, and the
wild-type strain not transformed by any plasmid, were
measured likewise.

For evaluation of CER and RFP protein synthesis efficiency,
cells transformed by the plasmid pRFPCERtet were grown in
triplicates for 18 h in 200 ul LB media at 37°C with or without
anhydrotetracycline 0.2 ug/ml in a 96 deep well plate with
continuous shaking. After incubation, the cells were
centrifuged in a 96 well plate and washed twice with 0.9%
NaCl. The fluorescence of the cells was measured by a Victor
X5 plate reader (Perkin Elmer) at 430/486 nm for CER and 531/
595 nm for RFP.

To determine in vivo protein synthesis efficiency, the cells of
the wild-type and rRNA MT knockout strains were transformed
by a plasmid encoding the FastFT protein under a control of an
araBAD promoter (Subach et al., 2009). Cells grown in LB media
with 10 mM arabinose at 37°C after 48 h were diluted 1:100 by a
fresh LB media with 10 mM arabinose. An aliquot was taken at
various time points; cells were isolated by centrifugation, washed
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two times by sterile PBS, and analyzed by a fluorescently
activated cell sorter BD FACSAria III at the wavelengths 405/
460 nm and 555/610 nm.

Comparative proteome analysis using 2D PAGE was
performed as described (Hoch et al., 2015). Not less than three
independent ly grown cultures were used for each
knockout strain.

Shotgun comparative proteome analysis was performed as
described (Toprak et al., 2014; Osterman et al., 2015). Briefly,
cells resuspended in 0,75% w/w RapiGest SF (Waters) were lysed
by sonication. After debris removal, protein cysteine bonds were
reduced with 10 mM dithiothreitol and alkylated with 30 mM
iodoacetamide. Trypsin was added in a 1/50 w/w ratio trypsin/
protein and incubated at 37°C overnight. To stop trypsinolysis,
trifluoroacetic (TFA) acid was added to the final concentration of
0,5% v/v. Peptides were desalted and resuspended in 3%
acetonitrile (ACN), 0.1% TFA, to a final concentration of 2 µg/
µl. Mass spectrometry analysis was performed on a TripleTOF
5600+ mass-spectrometer with a NanoSpray III ion source
(ABSciex, Canada) coupled to a NanoLC Ultra 2D+ nano-
HPLC system (Eksigent). For protein identification,.wiff data
files were analyzed with ProteinPilot 4.5 revision 1656 (ABSciex)
using the Paragon 4.5.0.0 revision 1654 (ABSciex) search
algorithm and a standard set of identification settings to search
against SwissProt database, species Escherichia coli.
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It is generally accepted that the presence of ORFs in the 5′ untranslated region of
eukaryotic transcripts modulates the production of proteins by controlling the translation
initiation rate of the main CDS. In trypanosomatid parasites, which almost exclusively
depend on post-transcriptional mechanisms to regulate gene expression, translation
has been identified as a key step. However, the mechanisms of control of translation
are not fully understood. In the present work, we have annotated the 5′UTRs of the
Trypanosoma cruzi genome both in epimastigotes and metacyclic trypomastigotes
and, using a stringent classification approach, we identified putative regulatory uORFs
in about 9% of the analyzed 5′UTRs. The translation efficiency (TE) and translational
levels of transcripts containing putative repressive uORFs were found to be significantly
reduced. These findings are supported by the fact that proteomic methods only identify a
low number of proteins coded by transcripts containing repressive uORF. We additionally
show that AUG is the main translation initiator codon of repressive uORFs in T. cruzi.
Interestingly, the decrease in TE is more pronounced when the uORFs overlaps the
main CDS. In conclusion, we show that the presence of the uORF and features such
as initiation codon and/or location of the uORFs may be acting to fine tune translation
levels in these parasites.

Keywords: Trypanosoma cruzi, uORF, 5′UTR, translation efficiency, translation regulation

INTRODUCTION

Translation regulation depends on signals that are present mainly at the untranslated regions of
the mRNAs (UTRs). Although many regulatory elements are present in the 3′UTR regions, 5′UTRs
may also contain important cis acting regulators. In particular, the presence of small open reading
frames (upstream ORFs, uORF) in this region has been described as a regulatory mechanism
influencing the formation of the translation initiation complex at the initiator codon of the main
CDS (McCarthy, 1998). Typically, the presence of uORFs decreases the efficiency of initiation at
the main CDS, thus leading to downregulation of its translation rate (Griffin et al., 2001; Vattem
and Wek, 2004; Chen et al., 2010). Even though there are cases where the presence of a uORF
positively influences the translation efficiency (TE) of the main CDS, these are exceptions (Griffin
et al., 2001; Vattem and Wek, 2004; Chen et al., 2010). uORFs may serve as elements that respond
to altered environmental conditions, allowing the cells to rapidly adjust their protein production
rates (Calvo et al., 2009; Lawless et al., 2009). Features of the uORFs that are efficiently translated
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and negatively regulate the main CDS have been defined. Among
them, the uORF position within the 5′UTR, its length, the
sequence context of the initiation codon and the overlap with the
main CDS have all been shown to affect their regulatory potential
(Kozak, 1987, 2002; Rajkowitsch et al., 2004; Wethmar, 2014;
Chew et al., 2016; Fervers et al., 2018).

Kinetoplastids are excellent models for the analysis of post-
transcriptional mechanisms of gene expression regulation, given
that transcription initiation is considered to be constitutive for
most of the genome (Soldatos et al., 2010). This implies that
the control of the substantial and rapid cell biology changes
that take place throughout their life cycle, must rely mostly
on post-transcriptional mechanisms (Soldatos et al., 2010). In
addition to studies on regulation of mRNA steady state levels
and protein degradation or modification, ribosome profiling
approaches (Ingolia et al., 2011; Ivanov et al., 2011; Smircich
et al., 2015) have confirmed that translation is a key step to
regulate gene expression profiles in these organisms (Peabody,
1989; Vasquez et al., 2014; Smircich et al., 2015).

The role of uORFs in kinetoplastids has been studied using
reporter genes and through the analysis of Ribo-Seq and
proteomic data (Siegel et al., 2005; Jensen et al., 2014; Vasquez
et al., 2014; Fervers et al., 2018). Probably due to the use of
different definitions, the number of CDS associated to uORFs in
the kinetoplastid genomes remains controversial, ranging from
11–22% in T. brucei (according to (Jensen et al., 2014) or Siegel
et al., 2005, respectively) or 29% in the T. congolense (according
to Fervers et al., 2018).

Except for one early report about uORFs composition in four
specific genes (Jaeger and Brandao, 2011), a systematic analysis of
uORFs inTrypanosoma cruzi is missing. This parasitic protozoan,
is the causative agent of the neglected Chagas’ disease a neglected
infection affecting millions of people in Latin America (Lidani
et al., 2019). It has a complex life cycle involving replicative
and non-replicative developmental forms both in vertebrate
(amastigote and bloodstream trypomastigotes, respectively)
and invertebrate hosts (epimastigotes and metacyclic
trypomastigotes, respectively) (Tyler and Engman, 2001).

In the present study, we performed a systematic search for
uORFs in T. cruzi 5′UTRs focusing on those with repressive
potential. The two life cycle forms of the parasite in the
invertebrate host (epimastigotes and metacyclic trypomastigotes)
were analyzed to detect putative stage-specific control. Using a
stringent approach that considers factors that influence the uORF
TE, we found that at least 5% of the 5′UTRs of the mRNAs in
the T. cruzi genome contain repressive uORFs (approx. 9% of the
analyzed 5′UTRs). Our results show that genes containing these
uORFs have a low translational efficiency and low translation
levels in both epimastigotes and metacyclic trypomastigotes
insect stages. We also show that the AUG codon is mainly
responsible for initiating translation of the uORFs that cause
this effect. Additionally, we analyzed the uORFs that overlap the
main CDS, a category not previously analyzed in T. cruzi. We
found that these overlapping uORFs (uORFo) are associated to
the most pronounced decrease of translation efficiency in this
organism. In conclusion, we present a repertoire of genes in
T. cruzi that exhibit putative repressive uORFs at the 5′UTR and

define characteristics such as the identity of the initiation codon
and/or location of the uORFs, that may be contributing to the
regulation of gene expression by fine tuning the translation levels.

MATERIALS AND METHODS

Genomic Data
The genome sequence of T. cruzi strain CL Brener and
its gene annotation were obtained from the TriTrypDB
database (version 32).

UTRs Determination
The UTR sequences were determined for the epimastigote
and metacyclic trypomastigote stages using the UTRme
software (Radio et al., 2018), based on the transcriptomic data
(accession numbers ranging from SRR1346053–SRR1346059)
data generated in Li et al. (2016). The 5′UTRs with the highest
scoring trans-spliced site and longer than 5 nucleotides were
used. 8206 5′UTR regions were annotated for epimastigotes and
8217 for metacyclic trypomastigotes.

Multigene family members were not analyzed because, due
to either the large content of repeated regions or to assembly
problems, the 5′UTR ends are difficult to assess. Besides, their
high UTR similarity and abundance would bias the results.
Multigene families removed include large families of surface
proteins such as MASPs, GP63, Mucins, and TcTS. Finally,
we also decided to remove 5′UTR that contain fragments of
T. cruzi protein coding regions, likely produced by assembly or
annotation errors. For this purpose, the BLASTX tool (Altschul
et al., 1990) was used, eliminating UTRs that returned a hit
against the T. cruzi CDS with an e-value of less than 0.005.

uORF Annotation and Classification
Annotation of 5′UTR sequences was performed using the
UTRme tool (Radio et al., 2018) using data obtained from Li
et al. (2016). Open reading frames (ORF) greater than three
codons were obtained using the getORF tool (Rice et al., 2000).
For all ORFs present in the same strand as the CDS, AUGs in
frame to the stop codon of the ORF (uAUG) were searched to
define all putative coding sequences. uORFs in which the coding
sequences start in the 5′UTR region and end within the main
CDS (out of frame with respect to the main CDS AUG) were
defined as overlapping uORFs (uORFo) while the ones contained
entirely in the 5′UTR were defined as non-overlapping uORF
(uORFno), in this case the frame with respect to the main CDS
AUG was not considered.

Putative repressive uORFno elements were filtered
considering the following characteristics: (1) the presence
of an AUG start codon; (2) a minimum distance of 15 nucleotides
from the uAUG to the 5′ end; (3) a maximum distance of 50
nucleotides between the stop codon of the uORF and the AUG
of the main CDS; (4) minimum length of 5 amino acids. In the
case of the uORFo the requirements were: (1) to start with AUG;
(2) a minimum length of three amino acids before the AUG
of the main CDS.
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To identify and study uORFs with coding sequences
initiating from near cognate codons (NCC), the annotation and
classification strategy remained the same with the exception
that the initiator codon was changed from AUG to the
codon under study.

Translation Efficiency Determination
Ribosome Profiling data were obtained from the SRA:
PRJNA260933 (Smircich et al., 2015) and correspond to the
epimastigote and trypomastigote metacyclic stages of T. cruzi.
The cutadapt program (Martin, 2011) was used to remove the
adapters and filter by quality. The same parameters for the
specification of the adapter (5′- CGCCTTGGCCGTACAGCAG
- 3′), minimum quality allowed (13 phred score), maximum
allowed error rate (0.1), and colorspace mode were used for both
the RNA-Seq and Ribo-Seq data. As for the length limitation, a
size larger than 18 base pairs (bp) and a range between 25 and
40 bp were defined for RNA-Seq and Ribo-Seq data, respectively.

The Bowtie aligner (version 1.2.2) (Langmead et al., 2009)
was used to remove contamination produced by readings of
ribosomal RNA origin. T. cruzi rRNAs were downloaded from
the TriTrypDB database. ShortStack (version 3.6) (Johnson et al.,
2016) was used to align the previously obtained reads. The
ShortStack program was adapted to accept data from SOLiD
technology, while the prediction of secondary structures and
micro RNAs was disabled. The mapping mode chosen was the
single weighting mode (U) where, only the frequencies of the
uniquely aligned reads in the vicinity of the alignment in question
are considered in the final weighting. Then, the FeatureCounts
module of the SubRead package (v1.5.2) (Liao et al., 2013) was
used to quantify the number of reads originated in each transcript
or CDS (for RNA-seq or Ribo-seq data, respectively). Finally, the
translation efficiency in each stage was obtained with the RiboDiff
software (Zhong et al., 2017).

Generation of Sequence Logos
Sequence logos were generated with the WebLogo 3 online tool,
using default parameters (Crooks et al., 2004).

Gene Ontology Enrichment Analysis
Gene ontology analysis were performed using the tool available
for this purpose in the TriTrypDB database for this purpose. The
visualization and reduction of the categories was carried out by
REVIGO (Supek et al., 2011) in conjunction with the graphic
environment of the R language (R Core Team, 2013).

RESULTS AND DISCUSSION

The T. cruzi Genome Contains Hundreds
of uORFs With Repressive Potential
Precise definition of 5′UTR sequences was performed using the
UTRme tool specifically developed to characterize untranslated
regions of trypanosomatid genomes (Radio et al., 2018) using
deep transcriptomic data obtained from Li et al. (2016). All
open reading frames greater than three codons and present in
the same strand as the CDS were then obtained. As described

in the methods section, uORFs were classified as overlapping
(uORFo) if the coding sequence starts in the 5′UTR region
and ends within the main CDS (out of frame), or non-
overlapping uORF (uORFno) which are contained entirely in the
5′UTR of the mRNA.

Since not all uORFs have coding potential nor do they have
the same translation initiation efficiency, it is crucial to consider
features that influence the repressive capacity of an uORF to
define them. According to the literature, putative repressive
uORFno elements are more likely to contain the following
characteristics: (1) the presence of an AUG start codon (Clements
et al., 1988); (2) a minimum distance of 15 nucleotides from the
5′ end, since shorter distances render difficult the assembly of
the translation machinery at the uORF initiation codon (Vilela
and McCarthy, 2003); (3) a maximum distance of 50 nucleotides
between the stop codon of the uORF and the AUG of the
main CDS, as shorter re-initiation times are associated to greater
repressive potential (Chew et al., 2016) and (4) minimum length
of 5 amino acids, as the longer the uORF length, the lower the
probability of translation reinitiating at the main CDS (Kozak,
2001; Rajkowitsch et al., 2004). In the case of the uORFo, in which
the coding sequences ends within the main CDS the requirements
were: (1) to start with AUG; and (2) at least a minimum length
of three amino acids before the AUG of the main CDS. Both
types of uORFs passing the requirements were classified as
repressive uORFs and 5′UTR regions that have one or more
putative repressive elements were also classified as repressive. In
turn, 5′UTRs that do not contain repressive elements, have a
size greater than 50 nucleotides and do not contain AUGs were
defined as non-repressive. Regions that do not fulfill any of the
above categories were not assigned any classification.

After performing the above classification, the 5′UTR regions
of T. cruzi mRNAs in both insect stages were studied. For the
epimastigote stage, 6744 regions were analyzed, 568 of which
(8.4%) classified as repressive. Among them, 111 regions contain
only uORFo and 160 contain only uORFno, while the remaining
regions (297) encompass elements of both categories. In addition,
3375 regions (50%) were classified as non-repressive. In the
trypomastigote stage, 6750 mRNAs were analyzed, and a similar
distribution was observed, 602 regions (8.9%) being classified
as repressive. Among them, 231 carry both repressive types of
uORFs, while 204 contain only uORFo and 167 only uORFno.
Finally, 3333 regions (49%) were classified as non-repressive.
These numbers are summarized in Table 1 and the list of gene
identifiers for the analyzed UTRs can be found in Supplementary
Table 1. Interestingly, the percentage of genes that have putative
repressive elements is similar to that detected in T. brucei (11%)
by Jensen et al. (2014). The observed differences with other
reports (Vasquez et al., 2014; Fervers et al., 2018) are most likely
due to the different inclusion criteria applied in each work.

mRNAs Containing Putative Repressive
uORFs Are Characterized by a Low TE in
T. cruzi
An open reading frame with repressive potential in the 5′UTR
region of a gene could decrease its translation efficiency. To
independently assess the repressive effect of the two defined
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TABLE 1 | Number of genes presenting uORFs in T. cruzi epimastigotes and
metacyclic trypomastigote stages.

T. cruzi life cycle
stage

Repressive uORFs Non-
repressive

Total
analyzed

uORFo uORFno Both

Epimastigote 111 160 297 3375 6744

Trypomastigote 204 167 231 3333 6750

The number of repressive (either overlapping, non-overlapping or both) and non-
repressive uORFS are indicated. Also, the total number of transcripts analyzed for
each T. cruzi stage is shown.

categories, the TE values of the genes whose 5′UTR regions
contain only repressive uORFno or only uORFo were calculated
using Ribodiff and available ribosome profiling data obtained by
our group (Smircich et al., 2015). TE values were also obtained
for the non-repressive category and for all the genes. Translation
efficiency values were then correlated to the presence of repressive
uORFs in the 5′UTRs. The results show that the TE is indeed
significantly correlated with the presence of uORFs that have
repressive potential and with the subcategory to which they
belong (Figure 1A).

Interestingly, genes containing only uORFo have the lowest
TE. As ribosomes translating an uORFo are out of frame,
they will read through the main CDS AUG, thus establishing
an important translational control mechanism. The effect of
naturally occurring uORFo has been poorly described in the
literature, there are only a few previous reports on it (Wethmar,
2014). Recently, Fervers et al. observed that in T. congolense,
as the distance between the uAUG and the AUG of the main
CDS decreases, the translation efficiency does too, reaching
the maximum decrease when the overlap occurs (Fervers
et al., 2018), suggesting that this effect may be shared among
trypanosomatids.

In the case of genes containing only uORFno, the drop in
observed TE is lower than for those containing only uORFo.
However, a clear repressive effect is seen, particularly when
compared with the TE of the transcripts with 5′UTRs categorized
as non-repressive. The TE of this later group is the highest in the
entire comparison, suggesting that they indeed lack repressive
uORFs and highlighting the relevance of these elements in
translation control. In turn, the TE of all the 5′UTR regions shows
an intermediate value between the repressive and non-repressive
categories as expected considering the latter results.

In the metacyclic trypomastigote stage, a similar situation is
evident even though the data show a higher dispersion, specially
for the uORFno-containing genes (Figure 1B). It is worth
noting that in the metacyclic trypomastigote stage, genome-wide
translational repression has been described (Smircich et al., 2015),
implying the existence of other regulatory mechanisms that exert
a more significant effect on translation control.

It has been reported that the higher the number of uORFs
in the 5′UTR of an mRNA, the higher the decrease in its
translation efficiency (Chew et al., 2016). However, no correlation
between the number of uORFs present in the 5′UTR region and
the translation efficiency of the genes was found in our model
(Supplementary Figure 1).

Globally, the results presented here are in good agreement
with those previously obtained in other trypanosomatids,
suggesting that the presence of open reading frames with
regulatory potential in the 5′UTR regions is a contributing factor
to translational control in these organisms. We also demonstrate
that overlapping upstream open reading frames achieve the
highest level of repression in T. cruzi. Additionally, the features
we selected for uORF classification were confirmed to behave
as good indicators of the repressive potential of uORFs, both in
the case of repressive and non-repressive categories. Finally, we
produced a dataset ofT. cruzi genes where uORFs are likely acting
as important regulatory elements.

AUG Is the Main Initiation Codon of the
Repressive uORF in T. cruzi
Pioneering studies initially proposed that uORFs with non-AUG
initiation codons have poor translation efficiency (Clements et al.,
1988). Later, several reports claimed that the majority of the
translational initiation codons for uORFs were non-canonical
(not AUG) (Ingolia et al., 2011; Fritsch et al., 2012; Lee et al.,
2012). More recently, through the analysis of Ribo-seq data, it
has been suggested that the translation efficiency of non-AUG
initiating uORFs is low (Michel et al., 2014).

This led us to ask whether the presence of AUG as a start codon
of an uORF can modulate the repressive effect on translation
efficiency in T. cruzi. To find an answer to this question, we
evaluated if uORFno initiating from each of the 61 codons would
also cause a general effect on TE of the main CDS, as observed for
AUG. Putative repressive uORFs were defined by maintaining the
requirements to classify uORFs in this category (length, distance
to the AUG, distance to the 5′ end) and only changing the criteria
for the identity of the initiation codon. Thus, for each codon
a set of uORFno was determined while preserving the rest of
the requirements as before. Then, each new set of uORFs was
correlated with the TE distribution of the genes, as done for
before AUG initiating uORFs.

In the epimastigote stage, the translation efficiency of genes
with uORFno using AUG as initiation codon is significantly
lower (non-parametric Mann–Whitney U test < 0.01) compared
to any other codon (Figure 2A and Supplementary Figure 2).
Our results show no evidence of any particular behavior of
mRNAs containing uORFs beginning with near cognate codons
(NCC) known to be capable of translation initiation in other
systems (CUG, UUG, GUG, ACG, AUA, and AUU) (Peabody,
1989; Ivanov et al., 2011). A similar situation is observed for
the metacyclic trypomastigote stage (Figure 2B), the uORFno
starting with AUG also being the only initiation codon associated
with statistical significance to a low TE.

This approach allowed us to determine that AUG is the
main initiation codon that generates repressive uORFno in
T. cruzi. This finding further supports our original criteria.
It is worth noting that this analysis does not eliminate the
possibility that NCC initiate translation in specific uORFs with
important regulatory consequences for the affected CDS. Indeed,
experimentally assessing the translation of uORFs initiated by
NCC would provide interesting insights in this regard. Even
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FIGURE 1 | Translation efficiency of genes containing uORFs in T. cruzi. Box plots showing the distribution of TE values for genes with 5′UTR containing uORFo,
uORFno, all genes and genes presenting UTRs classified as non-repressive. Statistically significant comparisons are indicated (Mann–Whitney U p < 1e-4 ****,
p < 1e-3 ***, p < 1e-2 **, p < 0.05 *). (A) epimastigotes. (B) metacyclic trypomastigotes.

FIGURE 2 | Translation efficiency of genes containing uORFno in T. cruzi. Box plots showing the distribution of translation efficiency values for genes with 5′UTR
containing uORFno starting at each indicated codon. For each boxplot the procedure to identify uORFno with repressive potential was identical. TTT is used as a
control codon (not described to efficiently initiate translation). (A) epimastigotes. (B) metacyclic trypomastigotes.

though Ribo-seq data has been used to this end in other models,
the sensitivity reached by our data for the 5′UTR regions did not
allow us to address this issue.

Kozak proposed that translation efficiency is strongly
determined by the context of the initiating AUG (Kozak, 1978,
2002). In many organisms including T. brucei and L. major, only
some of the characteristics defined by Kozak for mammalian

cells are preserved, mainly the presence of A in the -3 position
(Nakagawa et al., 2008). To further address this question in
T. cruzi, we studied the primary sequence context of the
initiator AUG of all main CDSs and repressive uORFno in the
epimastigote stage (10 nt flanking the A in position +1 of
the CDS). While the overrepresentation of A at position -3 is
not as evident as for the other trypanosomatids, a clear purine
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FIGURE 3 | Sequence logo of the AUG initiator sequence in T. cruzi. 10 base
pairs surrounding the A in position +1 are shown for the main CDS (A) and for
the longest uORFno (B). Context logo were generated with WebLogo (Crooks
et al., 2004).

enrichment is found for the main CDS AUG. However, this is
not observed for the uORFs AUG (Figure 3), suggesting that
initiation driven from the uAUG is not as efficient as from
the main CDS AUG.

The Presence of uORFno Is Correlated to
the 5′UTR Length
As the presence of a uORFno will set a minimum length for the
5′UTR, we explored the size of this region. We found that the

5′UTR size of the uORFno associated genes is significantly larger
(Mann–Whitney U test, p-value < 0.001) than the rest of the
groups, for both the epimastigotes or metacyclic trypomastigote
stages, as can be seen in Figure 4. Interestingly, the median size
of repressive UTRs containing uORFno almost triples the length
of the average T. cruzi 5′UTR. This finding implies that either
the maintenance of uORFno increases the size of these regions,
or that the length of the 5′UTR by itself is a determinant of the
repressive potential. The latter is not a likely explanation as there
is no general genome wide correlation between 5′UTR length and
TE (Supplementary Figure 3).

In addition, this observation suggests that the minimum
length of the 5′UTRs of genes regulated by uORFno might be
evolutionary restricted to allow for the presence of the regulatory
element. In support of this hypothesis, regions containing
uORFo (elements that repress TE through a size independent
mechanism), have the shortest 5′UTRs of all the groups.

Genes Associated to Repressive 5′UTRs
Have Low Expression in T. cruzi
In order to study the association between the presence of
repressive uORFs and the translational level of the CDS,
we comparatively analyzed the translation rates of genes
containing repressive and non-repressive uORFs using our Ribo-
Seq data. We found that genes with repressive uORFs have
a decreased the number of ribosomal footprints compared
to genes with non-repressive UTRs. Accordingly, the latter

FIGURE 4 | Length of the 5′UTRs in T. cruzi. Box plots showing the distribution of 5′UTR lengths for genes with 5′UTR containing uORFo, uORFno, all genes and
genes presenting UTRs classified as non-repressive. Statistically significant comparisons are indicated (Mann–Whitney U p < 1e-4 ****, p < 1e-3 ***, p < 1e-2 **,
p < 0.05 *). (A) epimastigotes. (B) metacyclic trypomastigotes.
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are also have the greatest translation rates (Figure 5A and
Supplementary Figure 4A).

This effect is also reflected in the available proteomic data (de
Godoy et al., 2012) where most proteins translated from genes
containing repressive uORFs are not detected. Indeed, we found
a significant underrepresentation of these genes in proteomic
databases and an overrepresentation of proteins whose mRNAs
do not contain repressive uORFs (Thermo Fisher Scientific
test < 0.05, Figure 5B and Supplementary Figure 4B). As

detection in proteomic studies is biased by the relative amount
of protein in the sample, these data suggest low levels for proteins
coded by repressive uORF containing mRNAs.

Furthermore, genes with non-repressive 5′UTRs show
ontology term enrichment with a trend for housekeeping
functions such as catabolic processes, cell movement and
transport, which are generally associated with high expression
protein levels. Conversely, genes with 5′UTR containing
repressive uORFs show enrichment in translational elongation

FIGURE 5 | Analysis of the translation of genes with uORFs in T. cruzi epimastigotes. (A) Ribosomal footprints obtained from Smircich et al. (2015) were analyzed for
genes with 5′UTR containing uORFo, uORFno, all genes and genes presenting UTRs classified as non-repressive. Boxplot of ribosomal footprints (RPKM) for genes
in each category. Statistically significant comparisons are indicated (Mann–Whitney U p < 1e-4 ****, p < 1e-3 ***, p < 1e-2 **, p < 0.05 *). (B) Fraction of the genes
belonging to each category present in the proteomic data of de Godoy et al. (2012) are represented in dark gray. A Fisher’s exact test was used to assess over or
down representation of the number of detected proteins in proteomic experiments for each category compared to the number detected in the total proteome (all
comparisons are significant p < 0.05).

FIGURE 6 | Biological process categories overrepresented in genes with uORFs in T. cruzi epimastigotes. Grouping reveals functionally related categories, size
shows the frequency of the UniProtKB database category and color indicates a p value < 0.01. (A) Genes with non-repressive 5′UTRs, (B) Genes with repressive
5′UTRs.
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and phosphorylation terms (Figures 6A,B). Similar results
were obtained for the metacyclic trypomastigote stage, so we
can conclude that this is not a stage specific characteristic
(data not shown).

Finally, to evaluate if alternative 5′UTR processing could
provide a mechanism to regulate the presence of uORFs
(and thus the TE) between T. cruzi life stages, we searched
for differential 5′UTR processing between epimatigotes and
metacyclic trypomastigotes. First, we observed that most genes
either share their main 5′UTR splice site (83% of the 3245
analyzed), or have sites are less than 10 nt apart (60% of the non-
identical ones) (Supplementary Figure 5). This indicates that the
presence or absence of uORFs is not a general mechanism to
regulate differential TE between these life-cycle stages. We cannot
discard that differential translation efficiency of the uORFs
themselves might provide a regulatory mechanism of the main
CDS. This requires further investigation as it cannot be assessed
with our current data.

FINAL REMARKS

Overall, the results here presented allow us to conclude that
uORFs are a frequent mechanism to fine tune translation
efficiency in T. cruzi. Characteristics intrinsic to the uORF – such
as its position within the 5′UTR, size and start codon – influence
their ability to exert this effect. Genes with repressive uORFs have
low levels of ribosomal footprints and are underrepresented in
proteomic data, while the opposite is observed for genes with
5′UTR regions classified as non-repressive. Finally, differential
5′UTR processing does not seem to be a general mechanism to
regulate their TE between the parasite life-cycle stages analyzed.
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Escherichia coli cells respond to a period of famine by globally reorganizing their gene
expression. The changes are known as the stringent response, which is orchestrated by
the alarmone ppGpp that binds directly to RNA polymerase. The resulting changes in
gene expression are particularly well studied in the case of amino acid starvation. We used
deep RNA sequencing in combination with spike-in cells to measure global changes in the
transcriptome after valine-induced isoleucine starvation of a standard E. coli K12 strain.
Owing to the whole-cell spike-in method that eliminates variations in RNA extraction
efficiency between samples, we show that ribosomal RNA levels are reduced during
isoleucine starvation and we quantify how the change in cellular RNA content affects
estimates of gene regulation. Specifically, we show that standard data normalization
relying on sample sequencing depth underestimates the number of down-regulated
genes in the stringent response and overestimates the number of up-regulated genes by
approximately 40%. The whole-cell spike-in method also made it possible to quantify how
rapidly the pool of total messenger RNA (mRNA) decreases upon amino acid starvation. A
principal component analysis showed that the first two components together described
69% of the variability of the data, underlining that large and highly coordinated regulons
are at play in the stringent response. The induction of starvation by sudden addition of high
valine concentrations provoked prominent regulatory responses outside of the expected
ppGpp, RpoS, and Lrp regulons. This underlines the notion that with the high resolution
possible in deep RNA sequencing analysis, any different starvation method (e.g., nitrogen-
deprivation, removal of an amino acid from an auxotroph strain, or valine addition to E. coli
K12 strains) will produce measurable variations in the stress response produced by the
cells to cope with the specific treatment.

Keywords: stringent response, deep RNA sequencing, whole-cell spike-in normalization, ribosomal RNA
degradation, transcriptome, ppGpp, gene expression
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INTRODUCTION

During stress conditions, cells of Escherichia coli (E. coli) impose
dramatic changes in their transcriptional profile and proteome to
combat stressors. The cells ensure that genes important to
overcome the stress are turned on and other redundant and
energy-demanding gene products, such as genes of the protein
synthesis machinery [i.e., those encoding the ribosomes, transfer
RNAs (tRNAs) and factors required for translation] are down-
regulated. The rapid re-orchestration of the transcriptome in E.
coli occurs on the timescale of a few minutes, and is aided by the
small molecules guanosine tetra- and pentaphosphate, herein
collectively referred to as ppGpp. This physiological response is
called the stringent response (Ryals et al., 1982; Cashel et al.,
1996) and has become a model system for studies of bacterial
stress responses. Together with the protein DksA, ppGpp binds
two sites on RNA polymerase, which affects promoter selectivity
and reduces the ribosomal RNA (rRNA) promoter clearing rates
(Artsimovitch et al., 2004; Gummesson et al., 2013; Ross et al.,
2016). The nucleotide ppGpp is produced when amino acids
become limiting and upon starvation for many different kinds of
nutrients as well as by other circumstances restricting growth
(Cashel et al., 1996). In E. coli, the synthesis of ppGpp is
mediated by two related proteins, RelA and SpoT; each
requiring different signals for activation. The RelA protein is
associated with uncharged tRNA and the synthesis of ppGpp is
triggered when the translating ribosome binds a RelA-tRNA
complex at the starving A-site codon (Haseltine and Block, 1973;
Winther et al., 2018). The SpoT protein is bi-functional; besides
synthesizing ppGpp, SpoT can hydrolyse ppGpp to guanosine
diphosphate and pyrophosphate (Murray and Bremer, 1996),
thus allowing a way out of stringency when conditions allow.

The global effect of ppGpp on transcription has previously
been studied upon starvation for the amino acid serine (Durfee
et al., 2008) or isoleucine (Traxler et al., 2008; Traxler et al.,
2011). These studies have in common that they utilized the well-
established expression microarrays as their read out, the best
technology available for genome-wide analysis at the time.
However, the much more sensitive technique of deep RNA
sequencing (RNAseq) has emerged as a standard method to
measure globally the relative abundance of RNA species in the
cell, and offers a superior dynamic range for measuring
variability in the levels of expressed transcripts (Wang et al.,
2009; Croucher and Thomson, 2010). The effects of ppGpp on
global transcriptional regulation without concomitant starvation
has recently been studied using RNAseq, and resulted in a
substantial expansion of the genes that can be assigned to the
ppGpp-controlled regulon (Sanchez-Vazquez et al, 2019).

The long-lived house-keeping RNAs, rRNA, and tRNA,
constitute the vast majority of the total RNA in the cell (>95%)
(Bremer and Dennis, 1996). For this reason, rRNA and
sometimes tRNA are generally removed prior to RNAseq, or
not included on microarrays, unless they are the specific focus of
the study. One goal of our work was to obtain data on the
response to amino acid starvation in E. coli that includes the
changes in the whole transcriptome, including the most
Frontiers in Genetics | www.frontiersin.org 273
abundant RNAs, and to analyze how inclusion of all RNA may
enhance the current understanding of the well-studied stringent
response. In connection with this goal came the need to quantify
transcripts without making assumptions about the total RNA
content of the cells before and after starvation. Typical
transcriptome analyses, whether done by microarray or
RNAseq, rely on the assumption that the total amount of RNA
is constant across different sample conditions. However, while
rRNA and tRNAs are generally believed to be stable during
exponential growth (Baracchini and Bremer, 1987), the familiar
way of thinking of these RNAs as stable in an absolute sense has
been questioned for some time (Deutscher, 2003). Our previous
work shows that a substantial fraction of the tRNA and rRNA
pools in the cell is rapidly degraded upon amino acid starvation
(Svenningsen et al., 2017; Fessler et al., 2020), suggesting that the
total RNA content of E. coli cells may decrease appreciably under
this condition. Given the global changes in gene expression and
the possibility that total RNA levels may decrease upon amino
acid starvation we reasoned that a normalization method that is
independent of any assumptions about cellular RNA content
would be important for accurate detection of gene expression
changes during the stringent response. Therefore, we chose to
normalize the sample sequencing reads using a spike-in culture
for reference. Spike-in, in the form of in vitro synthesized RNA,
has been used in many experiments for normalization of
transcriptional activity (see e.g., Schena et al., 1995;
Bartholomäus et al., 2016; Gorochowski et al., 2019) and to
verify the accuracy of RNA preparation protocols (see e.g., Jones
et al., 2015; Ju et al., 2019). However, in-vitro-transcribed spike-
in RNA is added after the extraction of the experimental RNA
and quantification of transcription rates assume an equally
efficient extraction of RNA from each sample (Gorochowski
et al., 2019). Or, if the spike-in transcripts are added per mass of
RNA in each sample, the underlying assumption is that cells
contain equal amounts of RNA at the different conditions. The
whole-cell spike-in approach is often used in microbiome studies
to quantify cell numbers (Hornung et al., 2019) but has not, to
our knowledge, been used outside our research group for
quantification of RNA (Svenningsen et al., 2017). The benefit
of the whole-cell spike-in approach we use here is that it allows
normalization directly to the concentration of bacteria in each
sample [as measured by optical density (OD)], without making
any assumptions about the RNA content of the cells. For
comparison, we also normalized our data set using the
conventional approach of normalizing the data based on the
sequencing depth obtained for each sample. The analysis of the
transcriptome of isoleucine-starved cells normalized by the two
methods reveal that the regulon responding negatively to
starvation is much larger than what is detected using a
conventionally normalized RNAseq transcriptome, and the
regulon responding positively is correspondingly smaller. This
observation relates to a greater turnover of total RNA in starved
cells than previously anticipated, and the spike-in approach
enabled us to quantify the loss of rRNAs and total messenger
RNA (mRNA) during starvation relative to the levels during
steady-state growth. Furthermore, principal component analysis
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of the stringent response transcriptome reveals two predominant
temporal gene profiles that are enriched for classes of genes with
related biological functions. Finally, it was evident that isoleucine
starvation induced by L-valine has transcriptional consequences
that are separate from the general stringent response of amino-
acid-starved cells controlled by ppGpp.
MATERIALS AND METHODS

Strains, Media, and Growth Condition
The wild-type strain E. coli K-12 MAS1081 (MG1655 rph+ gatC+

glpR+) were grown in flasks at 37°C at 200 rpm in
morpholinepropanesulfonic acid (MOPS) minimal medium
(Neidhardt et al., 1974) supplemented with 0.2% glucose. Cell
growth was monitored spectrophotometrically by optical density
at 436 nm (OD436) and cultures were grown for at least nine
generations in exponential phase before sampling. Isoleucine
starvation was induced by adding L-valine to a final
concentration of 400 µg/ml (Leavitt and Umbarger, 1962). The
small RNA (sRNA) qrr2 from Vibrio cholerae was cloned
downstream of the T7 promoter in the vector pET11a (XbaI/
Bpu1102I) and transformed into E. coli BL21 (DE3) to yield the
spike-in strain BKG3; 100 µg/ml ampicillin was used to maintain
the plasmid and the expression of Qrr2 was induced with 1 mM
isopropyl b-D-1-thiogalactopyranoside (IPTG). Rifampicin was
added to a final concentration of 300 µg/ml immediately after the
last isoleucine starvation sample to block transcription initiation.

Spike-In and RNA Extraction
To preserve cellular RNA, bacterial culture samples were
harvested by mixing with 1/6 vol of a stop-solution composed
of 5% water-saturated phenol in ethanol at 0°C (Bernstein et al.,
2002). All samples were kept at 0°C until the final sample had
been harvested. Prior to total RNA extraction, a volume of spike-
in culture corresponding to 1% of the experimental culture was
added to each sample, based on sample OD. The volume of
spike-in cell culture used was calculated according to Equation 1
(as described in Stenum et al., 2017).

Vspike−in =
0:01*Vsample*ODsample

ODspike−in
(1)

RNA was isolated using a hot phenol extraction method.
Briefly, cell pellets were mixed with resuspension solution (0.3 M
sucrose, 0.01 M sodium acetate pH 4.5, 0°C), then with lysis
solution [2% sodium dodecyl sulfate (SDS), 0.01 M sodium
acetate pH 4.5] and finally with hot acidic phenol [pH 4.3, 65°
C (Fisher BioReagents)]. The mixture was snap-freezed in liquid
nitrogen and centrifuged, and the aqueous phase was re-
extracted by phenol (65°C) and frozen in liquid nitrogen one
more time. RNA was precipitated with 2.5 vol ethanol and 0.1 vol
sodium acetate (3M, pH 4.7) at −80°C overnight. Precipitated
RNA was pelleted, washed with 70% ethanol, and re-suspended
in nuclease-free H2O. The remaining DNA was removed by
Frontiers in Genetics | www.frontiersin.org 374
DNaseI treatment (Roche), according to the manufacturers
manual. RNA integrity (16S and 23S rRNA) was verified by
agarose gel electrophoresis.

Northern Blot
An aliquot of total RNA was mixed with 3 vol loading dye (8 M
urea, 6% formaldehyde, bromophenol blue) and fractionated by
electrophoresis through a 1% MOPS-buffered agarose gel
prepared with 6% formaldehyde. The RNA was transferred
from the gel onto a Hybond-N+ membrane by capillary transfer
overnight and was fixed to the membrane by 0.12 J/cm2 of UV
light in a Hoefer UVC 500 UV crosslinker. Membranes were pre-
hybridized for one hour at 42°C in 6 ml hybridization solution
[0.09 M NaCl, 0 .05 M NaH2PO4 (pH 7.7) , 5 mM
ethylenediaminetetraacetic acid (EDTA), 5x Denhardt's
solution, 0.5% (w/v) SDS, 100 mg/ml sheared, denatured
herring sperm DNA]. Hybridization of the immobilized RNA
was performed at 42°C overnight in the same solution as above
with 40 pmol 32P 5'end-labeled oligo-DNA probe (g-[32P]-ATP;
PerkinElmer). DNA-oligos used were complementary to a
sequence in the 5S rRNA, 16S rRNA, 23S rRNA, or Qrr2,
probe sequences are listed in Supplementary Table S11.
Membranes were washed several times in 0.3 M NaCl, 30 mM
sodium citrate, 0.1% SDS at room temperature prior to exposure
to a phosphor-imaging screen. The radioactivity present in
specific bands was measured on a Typhoon phosphor Imager
FLA7000 (GE Healthcare) at 100 microns. Membranes were
stripped of hybridized probes with 90–95°C stripping buffer
(0.1% SDS, 18 mM NaCl, 1 mM NaH2PO4, 0.1 mM EDTA)
under shaking until no more radioactivity could be detected on
the blot by a Geiger-Müller tube. The program ImageQuant TL
8.2 was used to quantify each band on the phosphor-imaging
screen. The quantified intensity on each rRNA band were then
divided with the values from Qrr2 in the same lane and this ratio
is plotted relative to the three samples harvested immediately
before inducing starvation.

Quantitative Reverse Transcription PCR
First-strand complementary DNA (cDNA) was reverse
transcribed from 1 mg of total RNA with Thermo Scientific
RevertAid RT Kit (#K1691) using the supplied random hexamer
primers. As control for genomic DNA contamination, a reaction
with no reverse transcriptase was included for each sample (RT-).
A 1/10,000 to 1/25 fraction of the total synthesized cDNA was
combined with SsoAdvanced Universal SYBR Green Supermix
(Bio-Rad) and analyzed in triplicate by quantitative reverse
transcribed PCR (qRT-PCR) using the QuantStudio 3 system
(Applied Biosystems). Thermal cycling conditions used were 95°
C for 30 s followed by 40 cycles of 95°C for 15 s, 60°C for 1 min.
A final melting-curve cycle was performed to check for
amplification artifacts starting at 95° for 15 s, 60° for 1 min,
followed by a dissociation step to 95°C with 0.15°C/s increments.
The relative levels of RNA is calculated as the signal ratio
between the target transcript and one of the reference genes
from the spike-in plasmid, namely bla, using the formula:
2−(DDCT) where DDCT = (CT,target−CT,bla)timex−(CT,target−CT,bla)
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time 0 (steady state), as previously described (Livak and Schmittgen,
2001). Primer sequences for target genes and control gene are
listed in Supplementary Table S11.

RNA Sequencing and Data Analysis
The RNA used for RNAseq was harvested, spiked-in, and
extracted as described above; 1–1.5 µg of total RNA from each
sample was sent to the GATC BIOTECH facility, European
Genome and Diagnostics Centre, Konstanz, Germany for
library preparation and RNA sequencing. RNA quality was
assessed using an Agilent 2100 Bioanalyzer/Advanced
Analytical Technologies Fragment Analyzer. Strand-specific
cDNA libraries were prepared according to Illumina's
protocols without prior rRNA depletion. RNAseq experiments
were performed on an Illumina HiSeq using a paired-end read
length of 2x50 bp. Twenty-two to 29 million paired-reads were
obtained per sample. GATC BIOTECH initially processed the
raw read files, removing adapters prior to delivery. Then the files
were uploaded to the Galaxy web platform and we used the
public server at usegalaxy.org to analyze the data (Afgan et al.,
2018). The files were checked using fastQC1. The reads were then
aligned to Escherichia coli str. K-12 substr. MG1655 (RefSeq
NC_U00096.3) using bwa-aln (version 0.7.15.2 with default
parameters) (Li and Durbin, 2009). Reads were counted using
htseq-count (version 0.6.1p1) (Anders et al., 2015). In parallel,
the reads were aligned (bwa-aln) to the reference sequence of the
plasmid harboring the spike-in genes and raw read counts
mapping to three features (qrr2, bla, and antisense-lacI), and
counted using htseq-count and summed to give the plasmid
spike-in reads for a given sample. Raw read counts were then
normalized to gene size prior to normalization to spike-in reads
to give RPKSP, Reads Per Kilobase of gene per 10 kilobase of
spike-in as shown in Equation 2.

RPKSP =
Gene� specific Reads Per Kilobaseð Þ

Spike� in Reads Per Kilobase=10:000ð Þ (2)

We emphasize that the order in which the raw reads were
aligned to the E. coli chromosome and to the spike-in plasmid
did not change the results. Specifically, the same results were
obtained when the raw reads were separately aligned to the
plasmid and the chromosome as when the alignment was carried
out sequentially (i.e., reads were first aligned to the chromosome
and remaining reads were aligned to the plasmid).

The raw read counts were also normalized according to the
standard method to give RPKM, Reads Per Kilobase Million as
shown in Equation 3.

RPKM =
Gene� specific Reads Per Millionreadsð Þ

Size of Specific gene kbð Þð Þ (3)

High-throughput sequencing data has been deposited in
NCBI's Gene Expression Omnibus (Edgar et al., 2002) and are
accessible through GEO Series accession number GSE1367532.
1Andrews, S. FastQC: a quality control tool for high throughput sequence data
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
2 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136753)
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Transcriptome Data Filtering
We initially applied some filtering of the normalized
transcriptomic data (RPKSP and RPKM) in order to quantify
the magnitude of fold differences in transcriptional regulation
upon starvation for isoleucine. i) All genes that were neither
sequenced in steady state nor in starvation were filtered out (50
genes). ii) Transcripts in the triplicate steady-state samples that
either had low average normalized reads or no reads in
combination with either low average normalized reads or no
reads in the four starvation samples were filtered out (112
genes). These transcripts did not yield any computable fold
differences between steady-state growth and starvation. One
feature, the gene lacI, was present on both the E. coli
chromosome and the spike-in plasmid. lacI was therefore
excluded from our analysis. A third filtering step was applied in
the comparison of fold differences between RPKM and RPKSP
normalization at 10 and 80 min starvation, iii) genes where the
fold change at both the 10 and 80 min time points relative to the
steady-state average could not be calculated due to a lack of
coverage were omitted (60 genes). In total 4,048 transcripts were
assessed, i.e., 95% of the annotated genes in the Escherichia coli str.
K-12 substr. MG1655 (RefSeq NC_U00096.3) reference genome.
The average standard deviation between the three steady-state
measurements of each of the 4,048 transcripts was 25%. The
normalized sequencing reads, including omitted genes, are
reported in Supplementary Data Sheet 1 (RPKSP) and
Supplementary Data Sheet 2 (RPKM). For the analysis of the
variance among steady-state samples as a function of gene length
(Supplementary Table S2), we also applied a filter; the analysis
was restricted to only consider genes where at least two of the
triplicate steady-state samples had detectable transcripts. This
yielded 3.979 transcripts for analysis.

Principal Component Analysis
Principal component analysis (PCA) (Abdi and Williams, 2010)
was performed on RPKSP-normalized reads of the steady-state
samples and the starvation time series in Supplementary Data
Sheet 1. In order to focus on the temporal profile of expression
changes and not the absolute expression level, the number of
reads for each data point were normalized to the average number
of reads mapped to the corresponding gene for the seven time
points. PCA was performed and visualized in MATLAB
(MATLAB, Release R2016b). PC1 and PC2 captured 48 and
21% of the variability of the data, respectively. PC3 captured 9%
of the variability, but the PC3 vector showed large variability
among the three steady-state samples, indicating that it captured
a trend that is due to sampling error. Therefore, we focused on
the first two principal components. For the enrichment analysis,
the Enrichment tool in the SmartTable of the EcoCyc webserver
(Karp et al., 2014; Keseler et al., 2017) was used with the options
of “Fisher Exact” and “Benjamini-Hochberg Correction” on
“Biological Process” gene ontology terms.

Ecocyc Omics Dashboard Tool
Genes in Supplementary Data Sheet 1 and the log2-fold
induction ratios of the data points in the starvation time series
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were imported as a SmartTable in Ecocyc (Karp et al., 2014;
Keseler et al., 2017) and analyzed using the Omics Dashboard
Tool (Paley et al., 2017). The Dashboard Biosynthesis shown in
Figure 8A was modified to only show the seven largest sub-
systems of biosynthetic genes. In addition, the group of
aminoacyl-tRNA synthetases was added manually by curating
and extracting the relevant genes from the Biosynthesis sub-
system “Others.” Genes belonging to the arginine biosynthesis
sub-system were exported and their induction ratio at the 5 min
time point after starvation are shown alongside data on the same
genes extracted from the dataset published by Sanchez-Vazquez
and co-workers (Sanchez-Vazquez et al., 2019).

RESULTS

Experimental Approach and Provoking
Amino Acid Starvation
To evoke amino acid starvation in cultures of E. coli K-12, we
grew MAS1081 (MG1655; rph+ gatC+ glpR+) in MOPS-buffered
minimal medium supplemented with 0.2% glucose and starved
for the amino acid isoleucine by adding excess L-valine. The K-
12 strain of E. coli harbors a frameshift mutation in ilvGM,
inactivating one of three isozymes in the valine and isoleucine
biosynthetic pathways, while the other two isozymes, ilvBN and
ilvIH, are susceptible to feedback inhibition by L-valine (Valle
et al., 2008). High concentrations of L-valine therefore renders
E. coli K-12 auxotrophic for isoleucine (Leavitt and Umbarger,
1962). Three samples were collected during steady-state growth
immediately before starvation and five samples in total were
collected in a time series; 5, 10, 20, 40, and 80 min after L-valine
Frontiers in Genetics | www.frontiersin.org 576
addition, resulting in a total of eight samples (Figure 1A). A
culture of spike-in E. coli cells was grown in a parallel, which was
not exposed to L-valine (Figure 1B). The spike-in cells carry an
inducible plasmid and express three transcripts that are not
present in the wildtype strain, namely a V. cholerae sRNA (qrr2),
an antibiotic marker (bla), and an antisense transcript of lacI,
from the plasmid. The spike-in cells were induced with IPTG for
approximately four generations before they were mixed with the
experimental samples in a 1:100 ratio based on OD. We added
spike-in cells to the experimental samples prior to total RNA
extraction to ensure that variations in RNA recovery, cDNA
synthesis, and sequencing depth between the samples would be
reflected in the numbers of spike-in reads. By using this
approach, we were able to, very precisely, quantify the relative
changes in the transcriptome during the experiment, while we
lost the information about absolute amounts of transcripts
mapped, which is only obtainable by addition of in vitro
transcribed spike-in RNA after sample preparation
(Gorochowski et al., 2019).

Overview of Spike-In Methodology and
RNAseq Data
RNAseq libraries were prepared from the eight samples collected
during the isoleucine starvation time series. Illumina sequencing
results produced 22 to 29 million reads per sample and the
proportion of uniquely mapped reads to the E. coli genome
(RefSeq NC_U00096.3) was at least 97.8% for all samples. The
reads from each sample were mapped in parallel to the spike-in
plasmid reference sequence (Supplementary Table S1). The
volume of spike-in cells added to each sample prior to RNA
FIGURE 1 | Provoking amino acid starvation and addition of spike-in cells to samples. (A) Cells were grown in steady state (closed circles) before induction of
isoleucine starvation by addition of 400 mg/ml L-valine (denoted by *). Three steady-state samples (blue arrows) were harvested as reference immediately before
addition of L-valine and five samples in total were harvested during starvation up to 80 min after the addition of L-valine (open circles and red arrows). (B) In parallel,
an E. coli strain that carried an inducible plasmid expressing a Vibrio cholerae small RNA (sRNA) (qrr2), antisense-lacI and an antibiotic marker (bla) (gray closed
circles) was grown as a spike-in culture. Addition of inducer (1 mM IPTG) is indicated with a gray arrow. The samples collected in (A) were spiked-in with 1% optical
density (OD) units of the spike-in culture of cells harboring the plasmid (gray dashed arrows).
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purification was adjusted according to the samples' OD at the
time of harvest, to ensure a constant ratio of spike-in cells to
sampled cell mass (as measured by OD). We first assessed the
spike-in method by calculating the ratio of spike-in reads to total
reads. Thus, we could evaluate two parameters; i), how much the
three steady-state replicate samples varied from each other and
ii), whether the spike-in method indicated changes in total RNA
levels during starvation. As seen in Supplementary Figure S1A,
the ratio of plasmid reads to total reads of the three replicates
taken during steady-state growth varied only by ~1%, indicating
a high reproducibility of the data. In contrast, as starvation
progressed within the 80-min time series, the ratio of plasmid
reads/total reads increased, indicative of a decline in total RNA
levels from the experimental samples, which is consistent with
the net negative effect of ppGpp on the activity of RNA
polymerase (Fiil et al., 1972; Sarubbi et al., 1988) and break-
down of rRNA (Zundel et al., 2009; Fessler et al., 2020) and tRNA
(Svenningsen et al., 2017) upon starvation. However, the
correlation deviated from the expected ratio at the 20-min time
point with approximately 30% from the trend. The deviation is
most likely due to erroneous sampling, which results in a surge in
the ratio of ribosomal reads to spike-in reads at the 20-min time
point (Supplementary Figure S1B). The surge in rRNA mid-
starvation is highly unlikely to have a biological explanation,
given the negative effect of amino acid starvation and ppGpp
production on rRNA synthesis (Sands and Roberts, 1952; Cashel
and Kalbacher, 1970). Therefore, we regarded the 20-min time
point as an outlier and did not include it in the further analysis of
the transcriptome. We then proceeded with normalizing the
sequencing reads to the spike-in RNA (here designated RPKSP,
Reads Per Kilobase of gene per 10 kilobase of spike-in, see
Materials and Methods). For comparison we also normalized
the sequencing reads (excluding reads mapping to the spike-in
plasmid) using the standard method that only takes into account
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the sequencing depth and gene length (RPKM, Reads per
Kilobase Million).

Hallmark Stringent Response Gene
Regulation Is Captured With RNAseq
When E. coli experiences amino acid starvation, transcription
of the protein synthesis machinery is adjusted within minutes
to meet the lower demand for protein synthesis (Maaløe, 1979;
Ryals et al., 1982; Nomura et al., 1984). This hallmark of the
stringent response was clearly reflected in our transcriptomic
data, shown in Figure 2 by the mRNAs encoding ribosomal
proteins and elongation factor Tu. Figure 2 also shows that
two extensively characterized promoters known to be activated
by ppGpp, namely the iraP and uspA promoters (Nyström and
Neidhardt, 1992; Bougdour et al., 2006; Vollmer and Bark,
2018), are up-regulated in this analysis. Thus, the ppGpp-
mediated stringent response is activated upon L-valine-
induced isoleucine starvation in our experiment, and the
general trends are detected using both methods of data
normalization (RPKSP and RPKM).

Ribosomal RNA Turnover Upon
Isoleucine Starvation
Assessing the ribosomal RNAs, however, our spike-in-
normalized data show that not only was the synthesis of rRNA
down-regulated, but the levels of existing rRNA per OD unit of
cells were substantially reduced upon isoleucine starvation.
Specifically, after 80 min of starvation the levels of 16S and 23S
rRNAs had decreased to approximately 70% of the pre-
starvation level (Figure 3A, RPKSP). This behavior was only
visible when we normalized the sequencing reads to levels of
reads from the spike-in plasmid, and not to total reads (Figure
3B, RPKM). In agreement with the RPKSP-normalized data,
northern blots showed that 16S and 23S rRNAs decayed to
FIGURE 2 | The messenger RNA (mRNA) encoding protein components of the protein synthesis machinery are rapidly down-regulated, and known ppGpp-
controlled stress response proteins are rapidly up-regulated upon isoleucine starvation. The average levels of ribosomal protein mRNA reads during isoleucine
starvation plotted as log2-fold change relative to pre-starvation levels (rpsA-U: open diamonds, rplA-Y: open squares, and rpmA-J: open triangles) as well as the
average mRNA levels of elongation factor EF-Tu (tufAB: circles) and mRNA levels of the anti-adaptor protein, iraP (closed circles), and universal stress protein A,
uspA (closed triangles).
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approximately 60–80% of the pre-starvation level in the first 80
min after starvation (Figures 3C, D).

While there is good agreement between the two methods for
16S and 23S rRNA, there is a discrepancy in the quantification of
5S rRNA levels. In the northern blot analysis, 5S levels declined
to approximately 80% after 80 min, whereas RNAseq reads
indicate a decline to approximately 40% of the pre-starvation
level. We suspect that the lower levels of 5S reads is likely a
consequence of a higher number of mapping errors for short
RNAs in the RNAseq pipeline, as we noticed a general increase in
the variation between the triplicate steady-state samples for reads
mapping to short genes (<0.2 kb) (Supplementary Table S2). As
a further quantification control, we assessed the RNA samples by
qRT-PCR for the levels of 5S. The qRT-PCR data verified the
magnitude of 5S decline shown in the northern blots
(Supplementary Figure S2), confirming that 5S was unreliably
quantified in the RNAseq pipeline. Collectively, the RPKSP-
normalized transcriptome, the northern blots, and the qRT-PCR
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assay, validate that rRNA levels decrease substantially during the
early response to isoleucine starvation.

Transfer RNA Turnover Upon
Isoleucine Starvation
A rapid reduction in tRNA levels upon L-valine-induced
isoleucine starvation as well starvation for other amino acids
was reported previously, but the kinetics of tRNA disappearance
shown in Figure 3 are much faster than expected from northern
blot experiments (Svenningsen et al., 2017), regardless of the
method of normalization. In addition, the concentration of
tRNA is highly underestimated by the RNAseq method as a
molar ratio of about 10 tRNAs per ribosome is expected (Dong
et al., 1996), but we only detected 0.003 tRNA per rRNA by
RNAseq during steady-state growth (Supplementary Table S3).
The low detection of tRNAs is reportedly due to the difficulties in
reverse transcription of the highly modified tRNA to cDNA
(Motorin et al., 2007). While tRNA is quantified independently
FIGURE 3 | Normalizing RNA sequencing reads to spike-in RNA reveals that stable RNA levels are substantially reduced during isoleucine starvation. The average
reads of stable RNA (23S; circles, 16S; diamonds, 5S; squares and transfer RNAs (tRNAs); triangles) during isoleucine starvation are shown relative to the average
pre-starvation levels normalized with two different methods: (A) by spike-in cells (RPKSP, Reads Per Kilobase of gene per 10 kilobase of spike-in) and (B) by total
reads (RPKM, Reads per Kilobase Million). (C) A 1% agarose gel was used for electrophoresis of total RNA from three samples harvested in steady-state growth
before induction of isoleucine (Ile) starvation (0 time points) and during starvation (5, 10, 20, 40, 80 min time points). The resulting blot was probed for 23S, 16S, 5S,
and the spike-in-cell-specific RNA Qrr2 as indicated. (D) The levels of stable RNA (23S; circles, 16S; diamonds, 5S; squares) were quantified by normalizing to Qrr2
from the spike-in cells and shown relative to the average of the three RNA samples harvested prior to starvation. The quantified and normalized data originates from
the blot in panel (C).
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of its modification status in northern blots, here it is not, and we
therefore expect newly transcribed hypomodified tRNA to be
overrepresented in the RNAseq analysis. This could explain why
tRNA “disappears” fast (within 5 min of the onset of starvation;
Figure 3) as transcription of tRNA genes is curtailed by the
stringent response, so the pool of hypomodified tRNA is
expected to decrease very fast upon starvation and enter the
pool of poorly detected mature tRNA. Indeed, treatment of the
starved culture with the transcription initiation inhibitor
rifampicin, which terminates initiation of RNA synthesis,
resulted in an additional decrease in tRNA-mapped reads
down to just 2% of the pre-starvation level, supporting that
very little mature tRNA was detected by RNAseq (Figure 4),
while previous northern blot experiments showed at least 20%
retention of tRNA 80 min after rifampicin treatment
(Svenningsen et al., 2017). By contrast, the profile of rRNA
levels per OD unit of culture remained nearly undisturbed
during the rifampicin treatment (Figure 4).

Changes in the Size of the Total
Messenger RNA Pool Upon
Isoleucine Starvation
The whole-cell spike-in method in combination with RNAseq
allowed us to estimate the kinetics of the reduction in the total
mRNA pool during starvation (Figure 5). This estimate is unique
in that it yields direct information on mRNA abundance per OD
unit of bacterial culture under starvation relative to steady-state
levels, whereas previous estimates were based on the change in
synthesis rates of stable RNA relative to total RNA (RS/RT)
during starvation (Ryals et al., 1982), or the addition of synthetic
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RNA spike-in after the preparation of sample RNA (see e.g.,
Schena et al., 1995; Gorochowski et al., 2019). It is well known
that the promoter selectivity and the initiation frequency of RNA
polymerase changes as a function of the ppGpp concentration
(Kajitani and Ishihama, 1984; Sanchez-Vazquez et al., 2019) and
that ppGpp switches RNA polymerase onto stress-related genes
rather than genes for components of the translational apparatus
(as illustrated in Figure 2). It has also been shown that the
processivity of the RNA polymerase is negatively affected by the
concentration of ppGpp (Kingston and Chamberlin, 1981;
Kingston et al., 1981; Sørensen et al., 1994; Vogel and Jensen,
1994; Roghanian et al., 2015). In the present set of data (Figure
5) we can see how these effects of reduced RNA polymerase
initiation frequency, processivity, and altered promoter
selectivity combined to reduce the total mRNA pool to about
70% already after 10 min of starvation, and reduced it by half
after 80 min (Figure 5 and Supplementary Table S4).

In summary, the spike-in methodology allowed us to quantify
the change in the pools of rRNA and mRNA upon isoleucine
starvation and subsequent rifampicin treatment, while tRNA
could not be reliably quantified using this method. Northern blot
analysis confirmed the decrease in rRNA shown by RPKSP
normalization (Figure 3C). The underlying reason that RPKSP
reveals this decrease while RPKM normalization does not, is that
since the rRNA comprises ~85% of total RNA in the cell (on
average 89% of the total reads in our samples), a decrease in
rRNA will result in an almost equivalent decrease in the total
RNA. Therefore, a normalization method that relies on
sequencing depth will i) mask changes in very abundant
rRNAs, ii) underestimate the magnitude of the change in
FIGURE 4 | Inhibition of transcription leads to diminished levels of transfer RNA
(tRNA)-mapped reads. The sumof readsmapped to ribosomal RNA (rRNA) genes
(open circles) and the sumof readsmapped to tRNA genes (open squares) during
isoleucine starvation are shown as the log2-fold change relative to their pre-
starvation levels (L-valine addition denoted by *). Immediately after the last
isoleucine starvation sample was harvested at 80min, 300 mg/ml rifampicin was
added to the culture to block transcription initiation. Samples were harvested 10,
15, 25, and 45min after rifampicin addition.
FIGURE 5 | Total messenger RNA (mRNA) levels decrease during starvation.
Reads mapping to 129 noncoding RNAs [ribosomal RNA (rRNA), transfer
RNA (tRNA), small regulatory RNAs, and the RNA component of RNase P]
were removed from the filtered Supplementary Data Sheet 1 to yield the
mRNA dataset (Supplementary Table S4). The sum of reads mapped to the
3.919 mRNA genes during isoleucine starvation are plotted relative to the
average of their pre-starvation levels.
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RNAs that change in the same direction as the very abundant
RNA, and iii) overestimate the magnitude of the change in RNAs
that change in the opposite direction of the very abundant RNA.

Transcriptome-Wide Response to Amino
Acid Starvation Induced by L-Valine
The sequencing results for individual genes are available in
Supplementary Data Sheet 1 (RPKSP-normalized) and
Supplementary Data Sheet 2 (RPKM-normalized) as the RNA
abundance levels (normalized reads per gene) for each time point
as well as the log2–fold difference in RNA abundance levels at
each time point of starvation and rifampicin treatment, relative
to the average of the three steady-state samples. Supplementary
Tables S5 and S6 are alphabetic lists of RPKSP- and RPKM-
normalized genes, that are up- or down-regulated more than
two-fold at the 80-min starvation time point relative to the
average of the three steady-state time points. Finally,
Supplementary Tables S8 and S9 report the 100 RPKSP-
normalized genes most strongly activated and repressed,
respectively, upon isoleucine starvation.

The difference in the outcomes of the two normalization
methods for L-valine-induced isoleucine starvation was assessed
by plotting the 10 and 80 min time points relative to the average
of the three steady-state samples (Figures 6A, B). We apply a
two-fold regulatory threshold (Wren and Conway, 2006) to ease
comparison between our data sets and the most relevant
literature (Traxler et al., 2011; Sanchez-Vazquez et al., 2019).
As shown in Figure 6, RPKM normalization underestimates the
number of down-regulated genes in the stringent response
compared to normalization to the spike-in reads (RPKSP).
This effect is more pronounced as starvation progresses. RPKM
normalization fails to detect 40% of the ≥ 2.0 fold down-
regulated genes at 80 min post starvation, which are detected
with RPKSP normalization (Figure 6). By contrast, RPKM
overestimates the number of genes induced ≥2 fold by >40% at
the 80 min time point, compared to RPKSP normalization
(Figure 6B). While the number of genes that qualify for the ≥2
fold up- or down-regulation cut-off clearly differ substantially
between the two normalization methods, we emphasize that the
identity of the most strongly regulated genes is independent of
the normalization method. Thus, the 970 genes that could be
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identified as ≥2-fold down-regulated in the RPKM-normalized data
set despite the tendency for this method to overestimate gene
expression late in starvation relative to the steady state, form the
most strongly down-regulated subset of the 1642 genes that were
identified as ≥2-fold down-regulated after application of the RPKSP
correction, and vice versa for the up-regulated genes
(Supplementary Tables S5 and S6). From this result, it is evident
that the method of normalization is critical for the interpretation of
changes in RNA levels when cells experience a shift in growth
condition. In the remainder of the manuscript, we therefore focus
on the RPKSP-normalized data set as we analyze the transcriptomic
response to amino acid starvation induced by L-valine.

Two Temporal Profiles Account for the
Majority of Gene Expression Changes
To explore trends in the transcriptome response to isoleucine
starvation in general terms, a principal component analysis
(PCA) was carried out. PCA is a statistical procedure that uses
linear transformations of the original data (relative abundance of
each RNA at the seven time points, see Materials and Methods)
to define a set of new, orthogonal variables that reduce the
number of variables needed to describe the data set. We found
that the first two components of the analysis account for 69% of
the variability of the data. The temporal profile of these two
components (PC1 and PC2) are shown in Figures 7A, B
respectively, and PC1 and PC2 scores for each individual gene
is provided in Supplementary Table S7. The PC1 vector, which
accounts for 48% of the variability, describes genes that do not
show variation among the three steady-state samples, change
abruptly in response to the addition of L-valine, and remain at
the new level throughout the duration of the starvation. An
example of a gene with a high positive PC1 score is uspB,
encoding the universal stress protein B, which is known to be
induced by starvation (Farewell et al., 1998). Like PC1, the PC2
vector describes genes that do not vary among the three steady-
state samples, and change abruptly in response to the addition of
L-valine. But in contrast to PC1, the RNA level for genes with a
high positive PC2 score show a surge at the 5 min time-point
followed by a drop as starvation continues. An example of such a
gene is crp, encoding the cAMP-binding global transcriptional
regulator CRP. Figure 7C shows all 4,048 genes in the
FIGURE 6 | Applying the spike-in methodology alters the proportions of up- and down-regulated genes observed during isoleucine starvation. Normalization was
done by two different methods; RPKM (Reads Per Kilobase Million) and RPKSP (Reads Per Kilobase of gene per 10 kilobase of spike-in). RNAs that showed >2-fold
change at (A) 10 min and (B) 80 min after starvation relative to the average of the three samples harvested immediately before isoleucine starvation are denoted in
orange bars (≥ 2.0 fold up-regulated) and blue bars (≥ 2.0 fold down regulated). Genes that were < 2.0-fold regulated genes are shown in dark gray bars. N/A: not
included in the analysis either because the reads in the triplicate steady state samples were filtered out (see Materials and Methods), or gene reads were not
detected in either steady-state growth or starvation (light gray bars).
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transcriptome analysis plotted according to their PC1 and PC2
scores (colored dots). The temporal profiles for selected values of
PC1 and PC2 are shown as eight inserts at the corresponding
positions on the graph. For example, the insert at position (−4;0)
depicts a gene with a temporal profile that is strongly negatively
correlated with the PC1 profile shown in Figure 7A. An example
of such a gene is carB, encoding a component of carbamoyl
phosphate synthetase, which is involved in arginine biosynthesis
from ornithine (see also Figure 8C). The gene arnA encoding a
key enzyme in outer membrane lipid A modification (Williams
et al., 2005), is an example of a gene with a negative correlation to
the PC2 profile. Specifically, arnA mRNA was quite abundant
during steady-state growth, dropped 15-fold at 5 minutes after
starvation, and returned to steady-state levels after 40 min of
starvation. The temporal profile of uspB, crp, carB, and arnA
were confirmed by qRT-PCR and show similar relative
expression profiles as the RPKSP-normalized sequencing data
(Supplementary Figure S3).

To explore whether general trends could be discerned in
terms of the biological processes associated with temporal
profiles defined in the PCA, we used the enrichment tool
available on the EcoCyc webserver (Keseler et al., 2017) to
identify gene ontology (GO) terms that were statistically over-
Frontiers in Genetics | www.frontiersin.org 1081
represented in the four subsets of genes that scored among the
10% highest or lowest for PC1 or PC2 (see Materials and
Methods). Among the tens to hundreds of GO terms that were
significantly enriched in each subset, we focused on broad
categories (parent GO terms) to highlight the general trends in
the dataset, rather than focus on specific metabolic pathways or
regulons. The 10% of genes that had the highest PC1 scores were
enriched (p-value 3*10−7) for the parent GO term “response to
stress” (Figure 7C, red dots). By contrast, the 10% of genes that
had the lowest PC1 scores were highly enriched (p-value 7*10−13)
for the broad GO term “biosynthetic process” (Figure 7C, green
dots). Meanwhile, the 10% of genes that had the highest PC2
scores were enriched (p-value 2*10−4) for “regulation of
transcription, DNA-templated” (Figure 7C, blue dots), while
those with the 10% lowest PC2 scores did not yield a significantly
enriched broad category. While there are naturally many outliers
within these broad categories, this analysis illustrates that general
temporal profiles can be recognized in the stringent response that
distinguish biosynthesis genes which generally remain down-
regulated during starvation (low PC1), and stress response genes
which generally remain up-regulated (high PC1), from the
transcriptional regulators whose expression spikes during the
growth transition followed by a recovery period (high PC2).
FIGURE 7 | Two distinct temporal profiles account for the majority of gene expression changes in the stringent response transcriptome. (A) Temporal profile of the
PC1 vector. The three steady-state samples are artificially displayed between time −20 and 0 to better illustrate the shape of the vector. Units on the y-axis are
arbitrary units of normalized RNA levels, as described in Materials and Methods. (B) Temporal profile of the PC2 vector; (C) 4,048 genes plotted according to their
PC1 and PC2 values. Inserts show temporal profiles at the corresponding coordinates, e.g., the top left insert shows the profile for PC1 = −3 and PC2 = 3. Vertical
blue lines indicate the cut-off values for genes in the subset with 10% highest and lowest PC1 values used for enrichment analysis. Horizontal blue lines indicate the
same for the PC2 values. Each data point corresponds to a gene and is colored according to the parent GO term it belongs to. Since some genes belonged to more
than one category, the coloring was layered so that the final graph displays the smallest category the data point belongs to: all data points (4,048 points) light gray;
biosynthetic process (975 points) green; response to stress (578 points) red; regulation of transcription, DNA-templated (349 points), blue. The points corresponding
to the genes mentioned in the main text are highlighted with black open circles and labeled with the gene names.
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Downregulation of Biosynthesis
The “Omics Dashboard” software tool available on the EcoCyc
webserver (Paley et al., 2017) was used to further explore the
transcriptomic changes that occurred in response to L-valine
addition. The tool combines data on the expression level of
individual genes into a hierarchy of cellular systems and
subsystems. As expected in response to amino acid starvation,
and as indicated in the PCA analysis, genes responsible for the
major biosynthetic processes (e.g., nucleotide, carbohydrate, fatty
acid, lipid, and aminoacyl-tRNA synthesis) are generally down-
regulated (Figure 8A). Amino acid biosynthesis genes are
reportedly up-regulated under the stringent response, which
could help E. coli overcome starvation (Cashel et al., 1996),
and this has been observed to varying extents in previous
transcriptome-wide analyses (Cashel et al., 1996; Durfee et al.,
2008; Traxler et al., 2008; Sanchez-Vazquez et al., 2019). We
found that amino acid biosynthetic genes were generally down-
regulated in response to L-valine (Figure 8B). For example, while
seven of the 12 genes ascribed to arginine biosynthesis were up-
regulated within 5 min of ppGpp production in a recent study
where a constitutively active RelA variant was induced to
produce ppGpp in the absence of starvation (Sanchez-Vazquez
et al., 2019), none of the arginine biosynthetic genes were up-
regulated in our study (Figure 8C). We expect that the key
difference between the two experiments is that all amino acids
were supplied in the growth medium in the study conducted by
Sanchez-Vazquez and coworkers, so at the outset of the
experiment, arginine biosynthetic operons would be repressed
by the arginine-bound ArgR repressor (Caldara et al., 2006).
What is then measured is a positive regulatory effect of ppGpp on
some of these repressed promoters. In our study, the growth
medium did not contain any amino acids prior to the addition of
L-valine, so the amino acid biosynthetic operons were already
de-repressed when ppGpp production was induced by L-valine-
mediated isoleucine starvation. We suspect that the reduced rate
of protein synthesis that occurs upon isoleucine starvation results
in a build-up of the residual amino acids, including arginine,
which would lead to repression of the arginine biosynthesis
pathway by arginine-bound ArgR.

Differential Response of the RpoS and
Lrp Regulons
In most bacterial systems, the stringent response includes a
robust general stress response mediated by the stationary phase
sigma factor RpoS (sS or s38), which is regulated at the level of
transcription, translation as well as at the level of protein stability
both directly and indirectly by ppGpp (Lange and Hengge-
Aronis, 1994; Landini et al., 2014). The RpoS regulon has been
studied extensively and is known to control >140 genes in
response to diverse stress conditions (Lacour and Landini,
2004; Weber et al., 2005), including isoleucine starvation
(Traxler et al., 2011). In the study by Traxler and coworkers,
they analogously applied isoleucine starvation on the conditional
auxotrophic E. coli K-12 strain, but contrasting our experiments,
the cells in their experimental set-up gradually exhausted
isoleucine in media containing all other amino acids. They
Frontiers in Genetics | www.frontiersin.org 1283
show that the levels of ppGpp calibrate and co-regulate the
RpoS-dependent stress response and the Lrp-dependent regulon
(leucine responsive protein), which mostly includes genes for
metabolic enzymes. The Lrp-dependent response occurred prior
to and at lower ppGpp concentrations than the RpoS-dependent
response (Traxler et al., 2011). We employed the definitions of
the RpoS and Lrp regulons used by Traxler et al., and
investigated the isoleucine starvation response of these two
regulons in our experimental set-up. As seen in Figure 9A, the
majority of the RpoS-dependent genes are induced after 40 min
of L-valine-mediated isoleucine starvation, in agreement with the
slow but robust induction of the regulon reported in the previous
study. However, under the condition tested here, E. coli did not
significantly induce the Lrp regulon apart from genes involved in
alanine metabolism (dadAX) (Figure 9B). In fact, the lrpmRNA
itself was three-fold down-regulated at the end-point of the
starvation. In line with this finding, the small regulatory RNA
GcvB was among the top 10 up-regulated transcripts in our
experiment (Supplementary Table S8), and GcvB is known to
regulate the lrp mRNA negatively (Holmqvist et al., 2012; Lee
and Gottesman, 2016; Lalaouna et al., 2019). It is unknown to us
how valine-induced isoleucine starvation could trigger high
expression levels of GcvB but we suggest that the induction of
GcvB could be the main reason for the missing Lrp response in
this particular experimental set-up.

A Specific Transcriptional Response to
L-Valine-Induced Isoleucine Starvation
The only gene which was up-regulated more strongly than GcvB
5 min after starvation was alaE, encoding an L-alanine exporter
(Hori et al., 2011), which showed an average increase of
transcript levels during starvation >300-fold compared to pre-
starvation levels (Supplementary Table S8). alaE transcription
was recently shown to be positively regulated by ppGpp
(Sanchez-Vazquez et al., 2019), supporting the up-regulation
seen here. Although not included in the Lrp regulon defined in
(Traxler et al., 2011), alaE is also predicted to be up-regulated by
Lrp. Similarly, dadA and dadX which are identified here as the
only clearly up-regulated genes in the curtailed Lrp-regulon
(Figure 9B) were identified to be transcriptionally activated by
ppGpp in the same study (Sanchez-Vazquez et al., 2019). We
suggest that the prominent up-regulation of alaE, dadA, dadX,
and gcvB results directly from cellular metabolic consequences of
the addition of L-valine rather than the resulting starvation for
isoleucine. The physiological role of AlaE is to export L-alanine
(and possibly alanine dipeptide) to avoid intracellular toxic-level
accumulation of L-alanine (Kim et al., 2015). The excess L-
valine, together with pyruvate as substrate, can be converted to L-
alanine by avtA, one of three major alanine-synthesizing
transaminases in E. coli (Hori et al., 2011). The avtA mRNA
was not up-regulated during starvation, but it was highly
expressed during unrestricted growth under our conditions
(Supplementary Data Sheet 1), suggesting that the
transaminase protein it encodes is abundant at the onset of
starvation. According to this model, overabundant levels of L-
alanine is exported out from the cell by AlaE. In addition, surplus
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L-alanine can be converted by the alanine racemase dadX to D-
alanine (Wild et al., 1985), which in turn is the substrate for the
D-amino acid dehydrogenase dadA in the inner membrane to
yield ammonium and pyruvate (Franklin and Venables, 1976).
This further fuels the conversion of L-valine to L-alanine (Figure
10). Evidently, excess L-valine gave rise to high levels of L-
alanine that is countermeasured by upregulating the mRNA
encoding the alanine exporter, clearly envisaged in this
transcriptome. Moreover, elevated levels of D-alanine in the
cells might be utilized and directed to cell wall synthesis. Some
cell structure biosynthetic genes were de-repressed as starvation
progressed (Figure 8A), especially genes involved in UDP-
MurNAc-pentapeptide biosynthesis (e.g., ddlB and murD/F)
and peptidoglycan maturation (mtgA) (Supplementary
Table S10).
DISCUSSION

The stringent response to amino acid starvation is in many
respects a model system for studies of bacterial stress responses,
and has been the subject of intense study for decades, including
several transcriptome-wide studies (Durfee et al., 2008; Traxler
et al., 2008; Traxler et al., 2011). Here, we combined RNAseq
Frontiers in Genetics | www.frontiersin.org 1384
with spike-in-cell normalization of the sequencing depth to
obtain an adjusted view of the stringent response that is
independent of any assumptions about the total RNA content
of the cells. The methodology allowed us to quantify the changes
in total rRNA and total mRNA per OD unit of bacterial culture
over the first 80 min of starvation for isoleucine. In accordance
with other reports (Ben-Hamida and Schlessinger, 1966;
Jacobson and Gillespie, 1968; Maruyama and Mizuno, 1970;
Zundel et al., 2009; Piir et al., 2011; Fessler et al., 2020), we find
that the stability of rRNA is compromised upon nutrient
starvation, resulting in a drop in rRNA per OD unit to 70% of
the pre-starvation level within the first 80 min of an amino acid
starvation. Because rRNA constitutes the vast majority of cellular
RNA, this drop affects the quantification of all other RNA species
in the cell if the RNAseq data is normalized solely to the
sequencing depth of the samples in the conventional way
(referred to here as RPKM-normalization, Figure 6). One
important outcome of our work is therefore that ~40% more
mRNAs are down-regulated, and ~40% fewer are up-regulated
by more than two-fold, compared to what a conventional
RNAseq study would suggest. We remark that the problem
associated with normalizing solely to sequencing depth is not
solved by depletion of rRNA prior to RNA-seq, because the
rRNA-depleted transcriptome also is subject to the
FIGURE 9 | Heat maps of the RpoS and Lrp regulons in cells starved for isoleucine. The time points into isoleucine starvation is indicated below each heat map.
(A) The ppGpp/RpoS regulon and (B) the ppGpp/Lrp regulon. Genes listed in each regulon were defined in a previous study by Traxler and coworkers (Traxler
et al., 2011).
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transcriptional consequences of a change in growth conditions.
For example, the activity of RNA polymerase is reduced at
elevated ppGpp levels, giving rise to lower RNA levels and the
RNA chain growth rate is decreased (Kingston and Chamberlin,
1981; Kingston et al., 1981; Sørensen et al., 1994; Vogel and
Jensen, 1994; Roghanian et al., 2015).

This study highlights that although the stringent response of
E. coli to amino acid starvation has a set of defining
characteristics, most notably a surge in ppGpp levels and
reduced transcription of genes encoding the protein synthesis
machinery, the particular growth conditions employed give
notable differences in the transcriptome-wide response at the
detailed resolution of an RNAseq experiment. Most notably, in
contrast to a previous study (Traxler et al., 2011) the extensive
Lrp regulon was not activated in response to isoleucine limitation
in this study, and amino acid biosynthesis was not generally
induced although many operons encoding amino acid
biosynthesis genes are activated in response to ppGpp under
other growth conditions (Sanchez-Vazquez et al., 2019). We used
principal component analysis combined with enrichment
analyses to identify broad functional classes of genes that
responded similarly to the growth transition. Besides these, the
data set also contains many smaller gene categories that will be of
interest to specific research sub fields. For example, mRNA of the
conserved BluR-repressed operon ycgZ-ymgABC, which were
completely repressed during steady-state growth, were among
the genes most strongly up-regulated upon starvation
(Supplementary Table S8), suggesting an unidentified
regulatory mechanism that is unrelated to the known BluR
signals; blue light and low temperature, for the YcgZ regulator
of OmpF porin expression and the Ymg biofilm modulators
(Tschowri et al., 2012; Duval et al., 2017). Finally, at least four
(alaE, gcvB, dadA, dadX) of the 20 genes that respond most
strongly in our dataset are likely responding to the sudden
Frontiers in Genetics | www.frontiersin.org 1485
addition of L-valine rather than the starvation for isoleucine
(Figure 10).

The methodology also allowed us to quantify changes in total
mRNA levels under starvation (Figure 5), and the result
underlines that overall mRNA production is substantially
reduced upon amino acid starvation. The rapid reduction of
the total mRNA pool demonstrated here supports the model
previously proposed to explain why the initial surge in ppGpp
levels upon amino acid starvation levels off on a timescale of a
few minutes, namely that the initial surge of ppGpp in response
to the onset of starvation should taper off due to a reduction in
the number of RelA-associated stalled ribosomes, resulting from
the reduced availability of mRNA (Sørensen et al., 1994; Tian
et al., 2016).
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FIGURE 10 | Export pathway for excess L-valine. The synthesis of L-alanine requires pyruvate and is catalyzed by the valine-pyruvate aminotransferase avtA. The
predominant alanine racemase in the cell, dadX, is degradative and catalyzes the conversion of L-alanine to D-alanine. The respiratory-chain-associated dadA can
further catabolite D-alanine to pyruvate which can enter the central metabolism, or in this case be used as substrate to further convert high concentrations of L-valine
to L-alanine. alaE, an alanine-proton antiporter, facilitates the export of L-alanine out from the cytosol in exchange of a proton. ddlA/B, murD/F, and mtgA are all
involved in biosynthesis of cell wall structural elements. PG, peptidoglycan; IM, inner membrane). Up-regulated genes in the pathway are represented in red.
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Prokaryotic translation is among the major targets of diverse natural products with
antibacterial activity including several classes of clinically relevant antibiotics. In this
review, we summarize the information about the structure, biosynthesis, and modes of
action of translation inhibiting ribosomally synthesized and post-translationally modified
peptides (RiPPs). Azol(in)e-containing RiPPs are known to target translation, and
several new compounds inhibiting the ribosome have been characterized recently.
We performed a systematic search for biosynthetic gene clusters (BGCs) of azol(in)e-
containing RiPPs. This search uncovered several groups of clusters that likely direct the
synthesis of novel compounds, some of which may be targeting the ribosome.

Keywords: RiPPs, ribosome, antibiotics, LAPs, YcaO, azol(in)e-modified peptides, genome mining

INTRODUCTION

Antibiotics are extensively used worldwide in healthcare, agriculture, and food preservation.
However, development and the spread of resistance to most antibiotics discovered during the
second half of the 20th century in the course of the so-called “golden era of antibiotics” has
become a global threat (Brown and Wright, 2016). With multinational pharmaceutical corporations
exiting the field, the search for novel natural products, which remain a major source of novel
bioactive compounds including antibiotics (Li and Vederas, 2009; Moloney, 2016), is largely
concentrated in academia and small companies (Wright, 2017). Classical activity-based strain
screening approaches, which are costly and which often result in a rediscovery of the already known
compounds, are giving way to “smarter” techniques (Baltz, 2019). The genome mining approach
relies on a “from genes to products” paradigm, which is the opposite of conventional activity-based
antibiotic searches, and critically depends on the rapid accumulation of genomic data in publicly
available databases (Ziemert et al., 2016).

Genome mining for novel metabolites begins with in silico predictions of functions of the
groups of genes called “biosynthetic gene clusters” (BGCs), whose products may take part in
the biosynthesis of a certain metabolite. Making specific predictions about the structure of the
final compound enables better prioritizing of candidate BGCs for subsequent time-consuming
downstream experimental validation. Both proteinogenic and non-proteinogenic amino acids can
act as building blocks for the production of specialized metabolites, leading to a great diversity of
naturally occurring bioactive peptides. Peptide natural products originating from bacteria and fungi
and currently used as antibiotics are dominated by non-ribosomal peptides (NRPs), assembled by
large multisubunit enzymatic complexes (Süssmuth and Mainz, 2017). With the number of known
NRP BGCs steadily growing, our abilities to predict both the amino acid sequence and tailoring
modifications of final compounds based on the sequences of NRP synthases and additional enzymes

Frontiers in Genetics | www.frontiersin.org 1 March 2020 | Volume 11 | Article 22689

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00226
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00226
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00226&domain=pdf&date_stamp=2020-03-31
https://www.frontiersin.org/articles/10.3389/fgene.2020.00226/full
http://loop.frontiersin.org/people/849440/overview
http://loop.frontiersin.org/people/850914/overview
http://loop.frontiersin.org/people/296621/overview
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00226 March 27, 2020 Time: 18:51 # 2

Travin et al. Translation-Targeting RiPPs

encoded in BGCs improve as well; however, the complete
“nonribosomal code” is not yet known (Ackerley et al., 2016).

In addition to NRPs, ribosomally synthesized and post-
translationally modified peptides (RiPPs) comprise another
rapidly expanding class of bioactive peptides. They are produced
by posttranslational modifications (PTMs) of ribosomally
synthesized precursors by dedicated enzyme machinery (Arnison
et al., 2013). Compared to those of NRPs, RiPP BGCs
are generally smaller and contain a precursor peptide gene,
which enables better prediction of the final product structure
based not only on the properties of enzymes involved in
biosynthesis but also on the chemical structure of the initial
peptide substrate. While the number of identified RiPPs grows,
there is still an enormous space for the discovery of new
compounds expanding the diversity within the already known
RiPP subclasses and of entirely new groups of RiPPs harboring
novel modifications, as evidenced, for example, by the recently
described ranthipeptides (Hudson et al., 2019) and streptide-like
RiPPs (Schramma et al., 2015).

Among the RiPPs exhibiting antibacterial activity, there are
examples of compounds targeting various validated drug targets,
including bacterial RNA polymerase (microcin J25; Delgado
et al., 2001), DNA gyrase [microcin B17 (McB); Heddle et al.,
2001], and the cell membrane (lanthibiotics; Chatterjee et al.,
2005). The prokaryotic ribosome, another key target of many
antibiotics currently in use (reviewed in Wilson, 2014; Polikanov
et al., 2018), is also inhibited by certain RiPPs. In addition to
RiPPs directly interacting with the ribosome, there are those
that block translation by binding to elongation factors or
inhibiting the activity of aminoacyl-tRNA synthetases. In this
review, we briefly summarize the available data on the structure,
biosynthesis, mode of action, and BGC composition of the
known RiPPs inhibiting different steps of translation (Figure 1).
In addition, we specifically explore the genomic landscape of
azol(in)e-containing RiPPs in an attempt to predict novel RiPPs
inhibiting translation. Although definitive predictions of the
compound mode of action based entirely on the genomic data
can be made only in rare cases (see, for example, the self-
resistance guided identification of new topoisomerase inhibitors;
Panter et al., 2018), the results of our search define new
subclasses of azol(in)e-containing RiPPs, which may include the
translation inhibitors.

Thiopeptides
Thiopeptides comprise one of the best-studied subclasses of
RiPPs, with more than 100 compounds characterized to date.
Produced predominantly by Actinobacteria, they demonstrate
various activities including antibacterial and antiplasmoidal
(Gaillard et al., 2016), which result from their ability to inhibit
translation by the prokaryotic ribosome and the ribosome within
the apicoplast of the malaria parasite Plasmodium falciparum
(Clough et al., 1997). All known thiopeptides have the specific set
of biosynthetic genes in their BGCs (Figure 2A), share common
structural features (Figure 2B), and use two major mechanisms
for translation inhibition: they either interact directly with the
ribosome (Figure 2C) or prevent the binding of aminoacyl-tRNA
by the elongation factor EF-Tu (Figure 2D).

The first group of thiopeptides is characterized by the
small size of a macrocycle (26 atoms) and a conserved region
(Figure 2B, nosiheptide, red dashed frame) essential for the
interaction with their binding site on the large ribosome subunit,
GTP-ase associated center (GAC). Thiostrepton, nosiheptide, and
micrococcin, all belonging to this group, were co-crystallized with
the large ribosome subunit of Deinococcus radiodurans. While
most ribosome-targeting antibiotics contact only rRNA, these
thiopeptides interact with both rRNA and ribosomal proteins,
binding in a cleft formed by the N-terminal domain of the
ribosomal protein uL11 and the loops of helices H43 and H44
of the 23S rRNA (Figure 2C; Harms et al., 2008). Their binding
site overlaps with the binding sites of IF2, EF-G, and EF-Tu.
Consistently, thiopeptides inhibit initiation (Brandi et al., 2004),
translocation (Rodnina et al., 1999), and tRNA delivery to the
ribosome (Gonzalez et al., 2007). The practical applications of
naturally occurring thiopeptides are limited by their poor water
solubility (Just-Baringo et al., 2014). Nevertheless, nosiheptide is
used as a growth stimulating additive in mixed animal food, while
thiostrepton is used to treat skin infections in animals.

GE2270A, isolated in the early 1990s from actinobacterium
Planobispora rosea (Selva et al., 1991), is a representative of
the second functional group of thiopeptides. It binds to the
elongation factor EF-Tu in a complex with GTP and prevents
the formation of the ternary complex with aminoacyl-tRNA
(Figure 2D; Heffron and Jurnak, 2000). A derivative of GE2770A
with an altered C-terminus named LFF571, proved to be
effective and safe in phase II clinical trials against Clostridium
difficile infections, a rare case when a RiPP-inspired molecule
reached clinical trials (Jarrad et al., 2015). The GE2270A
binding site is located between EF-Tu domains I and III and
partially overlaps with the binding site of polyketide antibiotic
pulvomycin, an interesting example of two chemically unrelated
compounds adopting a similar mode of inhibition of the same
molecular target (Parmeggiani et al., 2006). Other thiopeptides
demonstrating similar modes of action, e.g., thiomuracin and
GE37468A, are all characterized by the medium size of the
macrocycle (29 atoms) and the presence of a conserved Asn
or MeAsn residue (Figure 2B, GE2770A, red dashed frame),
required for the interaction with EF-Tu (Young et al., 2012).

The “core” set of PTMs characterizing most thiopeptides
includes the installation of azol(in)e heterocycles, dehydration
of amino acids, and macrocyclization via the formation of
a six-membered azacycle. Azole cycles (Figure 2B, red) are
synthesized in a two-step reaction from amino acids with a
nucleophilic group in their side chains. First, an YcaO-domain
cyclodehydratase together with ThiF-like partner protein (the
latter is required for precursor recognition) converts Cys residues
into thiazolines and Ser or Thr residues into oxazolines or
methyloxazolines, respectively. Flavin mononucleotide (FMN)-
dependent dehydrogenase can further oxidize azoline cycles
into aromatic azoles. The mechanism of azole installation and
diversity of azol(in)e-containing RiPPs were recently reviewed by
Burkhart et al. (2017).

The formation of dehydrated amino acids (dehydroalanine
from Ser residues and dehydrobutyrine from Thr, Figure 2B,
pink) in thiopeptides proceeds via a glutamylation-elimination
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FIGURE 1 | Overview of the prokaryotic translation process and its steps targeted by various RiPPs. IFs—initiation factors, RF—release factor, aa—amino acid,
aa-tRNA—aminoacyl tRNA, f-Met tRNA—initiator N-formylmethionine tRNA.

mechanism with tRNAGlu functioning as a donor of glutamyl
(Hudson et al., 2015). The enzymes catalyzing this reaction are
encoded by two separate genes (so-called “split” LanB), which
are also found in BGCs of other, unrelated, RiPPs including
class I lanthipeptides. The mechanisms and enzymology of
dehydration of amino acids were reviewed by Repka et al.
(2017). Amino acid dehydration is a prerequisite for the
most remarkable modification of thiopeptides—formation of
the central nitrogen-containing heterocycle (Figure 2B, green).
This reaction follows the [4+2] cycloaddition mechanism (aza-
Diels-Alder reaction) that is in most cases accompanied by the
removal of the leader peptide and leads to the formation of
a macrocycle system. The enzymes responsible for catalysis of
these reactions in various biosynthetic pathways were reviewed
by Jeon et al. (2017). The structure of the central azacycle is
the basis for thiopeptide classification into series (from a to e)
(Bagley et al., 2005).

The genes encoding the enzymes responsible for “core”
PTMs mentioned above, together with a precursor peptide gene,
constitute the simplest variant of thiopeptide BGC, i.e., the

laz-cluster of lactazole synthesis (Figure 2A, Hayashi et al.,
2014). Most thiopeptide BGCs are larger and encode the enzymes
catalyzing additional modifications (Figure 2A, nos- and tbd-
clusters) as well as transporters and regulatory proteins. The
tailoring modifications may include the formation of a side
ring system via the addition of indole derivates (Figure 2B,
blue), modifications of the C-terminus to prevent hydrolysis
by carboxypeptidases, glycosylation, hydroxylation, etc. The
diversity and mechanisms of thiopeptide PTMs were reviewed in
detail by Zheng et al. (2017).

Linear Azol(in)e-Containing Peptides
(LAPs)
The name “linear azol(in)e-containing peptides (LAPs)” refers
to the only two characteristics shared by compounds from
this diverse subgroup of RiPPs: they (i) have azol(in)e cycles
installed along the polypeptide backbone and (ii) do not undergo
macrocyclization (Arnison et al., 2013). Thus, a minimal LAP
BGC comprises only a gene encoding the precursor peptide
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FIGURE 2 | Thiopeptides. (A) Biosynthetic gene clusters of lactazole (a minimal thiopeptide-encoding BGC), nosiheptide, and GE2270A. Functions of encoded
proteins are listed on the right. (B) Chemical structures of lactazole, nosiheptide, and GE2270A. Azol(in)e cycles are shown in red, six-membered central azacycles in
green, dehydrated amino acids in pink, and methylindole acid-containing second ring system of nosiheptide in blue. Auxiliary tailoring modifications are highlighted
with gray background. The number of atoms and amino acid residues in the macrocyclic system is indicated for each compound. Macrocycles are shown in bold.
Red dashed polygons show conserved residues characteristic for ribosome targeting (nosiheptide) and EF-Tu targeting (GE2270A) thiopeptides. (C) Mode of
nosiheptide and thiostrepton interaction with the ribosome (PDB IDs 2ZJP and 3CF5; Harms et al., 2008). Nosiheptide is yellow, thiostrepton is green, uL11
ribosomal protein CTD (C-terminal domain) is lightblue, NTD (N-terminal domain)—blue, H43 and H44 helices of 23S rRNA are orange, residues A1067 and A1095
(E. coli nomenculature), involved in the rRNA-antibiotic interaction are shown as sticks. (D) Mode of action of GE2770A. Elongation factor EF-Tu (blue) is shown in
complex with aminoacyl tRNA (aa-tRNA, orange) and GE2270A (yellow) (PDB IDs 1B23 and 2C77, respectively, Nissen et al., 1999; Parmeggiani et al., 2006). The
binding of GE2270A prevents the interaction of EF-Tu with aa-tRNA acceptor stem.

(gene A) and gene(s) coding for the enzymes involved in the
installation of azole cycles: a YcaO-cyclodehydratase (the product
of the D gene), which in most cases has a partner protein
that is required for leader peptide recognition (either an E1-
like protein, the product of the C gene, or a ThiF-like protein
encoded by the F gene), and a dehydrogenase (the product of
the B gene) which oxidizes azolines to azoles. In some BGCs,
genes coding for C and D proteins, are fused and code for a

single polypeptide (Burkhart et al., 2017). The list of additional
modifications of LAPs is diverse and includes, among others,
N-methylation (plantazolicin, Lee et al., 2013), the formation
of dehydroamino acids and N-terminal acetylation (goadsporin,
Ozaki et al., 2016), N-terminal oxyme formation, and C-terminal
O-methylation (azolemycin, Liu et al., 2016).

As the set of chemical characteristics required to attribute
a compound to LAPs is not particularly restrictive, the group
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includes compounds without any obvious sequence similarity of
peptide precursors. The relationships between the known LAPs
(to date there are less than two dozens of well-characterized
compounds) resemble a “sea with islands,” where each “island”
is formed by a group of the closely related homologs (e.g.,
streptolysin S with its relatives; Molloy et al., 2011) without links
between the “islands.”

Klebsazolicin (KLB) is the first characterized translation-
targeting LAP (Metelev et al., 2017). Its BGC was found in the
genome of Klebsiella pneumonia sub. ozaenae and contains a gene
for the precursor peptide (klpA), genes encoding the enzymes
required for azole cycle installation (klpCBD), and an exporter
pump gene (klpE) (Figure 3A). In addition to three thiazoles and
one oxazole cycle, KLB has an N-terminal amidine cycle formed
by the first two residues of the core part of the precursor peptide
(Ser1 and Gln2; Figure 3B), a modification unique among the
known LAPs. In vitro studies have demonstrated that this cycle
is formed after the proteolytic cleavage of the leader peptide
and strictly requires the YcaO-domain KlpD cyclodehydratase
(Travin et al., 2018). The amidine cycle is required for KLB to
function since the derivatives with a full set of azole cycles, but
lacking the amidine cycle, do not inhibit translation. As it is
typical for other LAPs, KLB is a narrow spectrum antibiotic: it
is active against the genera closely related to Klebsiella, including
Yersinia and Escherichia.

Cocrystallization of KLB with the Thermus thermophilus
ribosome (which because of ease of crystallization is widely used
for structural studies of ribosome-targeting compounds) revealed
the molecular details of its mode of action. KLB binds in the
upper part of the peptide exit tunnel in a site adjacent to the
peptidyl-transferase center (PTC) (Figure 3C). Acting as a cork
in the bottle, KLB blocks the passage of the nascent peptide, only
allowing the synthesis of di- or tripeptides that remain associated
with tRNA and stay bound to the elongating ribosome.

Phazolicin (PHZ) is another recently discovered ribosome-
targeting LAP produced by soil bacterium Rhizobium sp. Pop5,
a symbiont of wild beans Phaseolus vulgaris (Travin et al., 2019).
In terms of the overall composition, PHZ BGC is identical
to that of KLB (Figure 3A). PHZ is a 27-amino acid long
peptide, every third amino acid of which is converted into an
azole cycle. Unlike KLB, no modifications other than Cys and
Ser side chain cyclizations are present in PHZ (Figure 3B).
PHZ is active against various rhizobia that are closely related
to the producing strain. Similarly, to KLB, PHZ targets the
ribosome exit tunnel but does this through a different set of
interactions, which were revealed by cryo-EM of the Escherichia
coli ribosome complex with PHZ (Figure 3C). Four azole
cycles of PHZ form a π–π stacking system, which stabilizes
3D globular structure of the peptide, while the three azoles
are involved in stacking with nucleobases of the 23S rRNA.
Unlike KLB, PHZ has three positively charged residues involved
in the interactions with phosphates and other polar groups
of 23S rRNA. PHZ also interacts with the loop regions of
two ribosomal proteins (uL4 and uL22). Amino acid sequences
of these loops confer the species-specific mode of translation
inhibition by PHZ, which, unlike KLB, does not bind to
T. thermophilus ribosome.

Bottromycins
Bottromycins are extensively modified RiPPs that exhibit
potent antimicrobial activity against the drug-resistant human
pathogens including vancomycin-resistant Enterococcus (VRE)
and methicillin-resistant Staphylococcus aureus (MRSA)
(Shimamura et al., 2009). In early works, bottromycin A2 was
demonstrated to inhibit protein synthesis both in vitro and
in vivo (Tanaka et al., 1966). Further studies showed that the
action of bottromycin does not interfere with the peptide bond
formation and translocation steps. Bottromycins are believed to
bind in the A-site of the ribosome (Otaka and Kaji, 1976, 1981,
1983) and block the interaction of aminoacyl-tRNAs with the
ribosome, almost an unexploited target among the currently used
antibiotics. However, further structural studies of bottromycin
mechanism of action are needed to establish the details of this
interaction at a molecular level, as previous studies used indirect
approaches sometimes leading to contradictory conclusions.

Although the first representative of the bottromycin family
of RiPPs was isolated from Streptomyces bottropensis in 1957
(Waisvisz et al., 1957), more than 50 years passed until the
structure of the compound was finally confirmed by total
chemical synthesis (Shimamura et al., 2009). Bottromycins are
eight-amino acid long extensively modified peptides originating
from the N-terminal part of a precursor peptide (thus
bottromycin precursor has a “follower” peptide to which
modification machinery binds, rather than N-terminal “leader”
common among other RiPPs). The biosynthesis of bottromycin
includes many steps and was intensively studied using the
untargeted methabolomics approach (Crone et al., 2016) and
in vitro reconstitution of separate modification reactions. The
PTMs characteristic to bottromycins include the formation of
the N-terminal macroamidine cycle (Figure 4A, green) and
C-terminal thiazole (Figure 4A, red) catalyzed by two divergent
YcaO-domain enzymes acting without any partner proteins (so-
called “standalone YcaOs”) (Franz et al., 2017; Schwalen et al.,
2017). In addition to these cyclizations, Cβ-methylations of Pro,
Phe, and Val residues, as well as O-methylation of aspartate take
place (Figure 4A, gray background; Huo et al., 2012). Different
methylation profiles lead to multiple forms of bottromycins
produced by the same strain (Eyles et al., 2018). In addition to
the genes encoding YcaO heterocyclases and methyltransferases,
bottromycin BGC includes genes encoding an enzyme, which
removes the N-terminal methionine residue (Mann et al., 2016),
an amidohydrolase required for the follower peptide removal
(Sikandar et al., 2019), a cytochrome performing oxidative
decarboxylation of the C-terminal azoline into azole, and a
transporter (Figure 4A).

Microcin C and Related Compounds
Microcin C (McC) is a peptide-nucleotide antibiotic produced by
E. coli strains bearing a plasmid with a six-gene mcc gene cluster
(Figure 4B), which encodes a seven amino acid-long precursor
peptide (MccA, MRTGNAN), enzymes responsible for its PTM
(MccB, MccD, and MccE), an exporter pump (MccC), and a
peptidase providing autoimmunity (MccF). The product of the
mccA gene is adenylated by MccB, which leads to the formation
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FIGURE 3 | LAPs targeting the ribosome exit tunnel. (A) BGCs of klebsazolicin (klpACBDE) and phazolicin (phzEACBD). The functions of encoded proteins are listed
on the right. (B) Chemical structures of klebsazolicin (KLB) and phazolicin (PHZ), azole cycles are shown in red, positively charged amino acid side chains of PHZ—in
blue, the N-terminal amidine cycle of KLB is yellow. (C) Mechanism of translation inhibition by KLB (PDB ID 5W4K, Metelev et al., 2017) and PHZ (PDB ID 6U48,
Travin et al., 2019). Interactions of the two antibiotics with the ribosome are shown: π–π stacking is denoted by red arrows and hydrogen bonds with red dashed
lines. Nucleobases of 23S rRNA are cyan, ribosomal proteins are magenta, and tRNAs are orange and green. PTC—peptidyl-transferase center.
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of a non-hydrolyzable N-P bond between C-terminal asparagine
and phosphate (Roush et al., 2008). MccD and MccE are required
for additional decoration of the molecule with aminopropyl
group attached to the phosphate (Kulikovsky et al., 2014). Recent
studies increased the number of McC-related compounds: RiPPs
of this family undergoing cytidylation instead of adenylation were
discovered, and carboxymethylation of the cytidine was shown to
be an additional tailoring step required for an optimal bioactivity
(Serebryakova et al., 2016; Tsibulskaya et al., 2017).

Microcin C is a Trojan-horse antibiotic imported into
sensitive cells via the inner membrane transporter YejABEF,
which recognizes the peptide part of McC (Novikova et al., 2007).
The McC molecule itself is not toxic for the cell; the peptide
part has to be deformylated and subsequently degraded by non-
specific cellular oligopeptidases (Kazakov et al., 2008) to release a
nonhydrolyzable analog of aspartyl adenylate, a potent inhibitor
of aspartyl-tRNA synthetase (Figure 4B, gray background)
(Metlitskaya et al., 2006). This leads to the accumulation of

FIGURE 4 | Translation-targeting RiPPs without structural information on target binding (A) BGC and chemical structure of bottromycin A2 from Streptomyces
bottropensis. C-terminal thiazole is shown in red, macroamidine bond is green, and Cβ-methyl groups are shown on the gray background. (B) BGC of microcin C,
chemical structures of unprocessed microcin C and of processed form, an analog of aspartyl adenylate. The non-hydrolyzable N–P bond is shown in red.
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uncharged tRNAAsp, inhibition of protein synthesis, and the
cessation of cell growth. Thus, McC is another example of a
RiPP (together with GE2270A discussed earlier), which does not
directly interact with the ribosome but blocks translation by
inhibiting the supply of substrates required for protein synthesis.
Although McC has been studied for more than 30 years and
structures of multiple enzymes involved in its biosynthesis and
immunity have been determined (Agarwal et al., 2011, 2012;
Dong et al., 2019), we still lack structural information about the
details of McC interaction with aspartyl-tRNA synthetase.

GENOME MINING FOR NOVEL
TRANSLATION INHIBITING RIPPS

In light of the data discussed above, it is evident that many
translation-targeting RiPPs contain azol(in)e cycles. At least in
several cases where the mode of interaction with a ribosome is
known, these cycles take part in stacking interactions with rRNA
nucleobases thus mediating binding of the inhibitor to the target.
We decided to perform a search for novel groups of azol(in)e-
containing RiPPs in the genomes present in publicly available
databases with a goal of identifying the putative translation
inhibitors as well as other bioactive molecules. Due to their
essential role in azol(in)e-containing RiPP biosynthesis, the genes
encoding the YcaO-domain-containing enzymes were chosen as
a starting point for our search.

In less than 10 years YcaO-domain containing enzymes went
from being DUFs (domains of unknown function) to one of the
most studied groups of RiPP modification proteins (Burkhart
et al., 2017). It was demonstrated that YcaO enzymes play the
key role in the catalysis of three distinct reactions of PTM
of proteins and peptides including the installation of azoline
cycles (Dunbar et al., 2012), amidines (Burkhart et al., 2017;
Franz et al., 2017; Travin et al., 2018), and thioamides (Mahanta
et al., 2018; Schwalen et al., 2018). A common mechanism
involving the nucleophilic attack on the amide bond containing
substrate with a subsequent ATP-dependent phosphorylation of
the intermediate followed by phosphate elimination underlies
all these activities. Three groups of proteins are regarded as
YcaO partners, allowing for the interaction of the enzyme with
its substrate (the recognition of the leader peptide in case
of RiPP biosynthesis). These are E1-like proteins and ThiF-
like proteins, fused or clustered together with azoline-forming
YcaOs (Burkhart et al., 2017), and TfuA-like proteins considered
to be a hallmark of the BGCs of thioamidated compounds
(Santos-Aberturas et al., 2019).

To identify new BGCs of azol(in)e-containing compounds,
we started with a sensitive search for sequences of YcaO
domain-containing enzymes present in genomes from the RefSeq
database (O’Leary et al., 2016). In brief, the subsequent steps
included filtering, clusterization, and annotation of genomic
regions surrounding the recovered ycaO genes (Figure 5). To
visualize the obtained diversity and to identify families of BGCs,
we constructed a sequence similarity network of all YcaO-
containing BGCs, which was then analyzed manually (for detailed
description of procedures, see section “Methods”). A curated set

of characterized YcaO-containing BGCs including those present
in the MIBiG database (Kautsar et al., 2019) or described
elsewhere in the literature (including previous bioinformatic
predictions) was used as a reference (Supplementary Table S1).
In the current study, we focused only on clusters containing
E1-like or a ThiF-like partner proteins and did not consider
TfuA-containing BGCs or BGCs with standalone YcaOs. We
also did not consider BGCs of thiopeptides and closely related
RiPPs (defined as clusters containing lanB-like genes) as they
were recently searched with various tools (Li et al., 2012;
Schwalen et al., 2018). The genomic landscape of all azol(in)e-
containing peptides was studied by Cox et al. (2015), however,
since the time of this publication new azol(in)e-containing
RiPPs with characterized modes of action (including ribosome-
targeting KLB and PHZ) have been discovered, and many more
sequenced genomes have been deposited in publicly available
databases. Moreover, several improved methods and software
have become available.

Figure 6 represents a similarity network of YcaO-containing
BGCs encoding E1-like (Figure 6A) or ThiF-like (Figure 6B)
YcaO partner proteins (see Supplementary Table S2 for the list
of all BGCs). BGCs of the already characterized compounds from
the curated dataset are shown as blue circles. In the network with
E1-like partners, these include BGCs of bioactive antibacterials
McB, KLB, and PHZ as well as a number of streptolysin S-like
RiPPs (clostridilysin S; listeriolysin S; Cotter et al., 2008; Gonzalez
et al., 2010) and hakacin, whose biosynthesis was studied in vitro,
but the structure of the naturally produced compound remains
unknown (Melby et al., 2012; Dunbar and Mitchell, 2013). In

FIGURE 5 | A workflow for identification of YcaO-containing RiPP BGCs.
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FIGURE 6 | A similarity network of YcaO-containing BGCs with E1-like (A) and ThiF-like (B) partner proteins. Nodes representing BGCs of already characterized
compounds are shown in blue, nodes representing BGCs analyzed in Cox et al. (2015) are red. BGCs containing an mcbG-homolog are denoted with red “G.”
Groups of clusters discussed in the text are shown in orange ellipses. Light blue color of nodes in group 2 shows BGCs from genus Pseudomonas.
SLS—strepolysin S, LLS—listeriolysin S, CLS—clostridiolysin S, HCA—heterocycloanthracin.
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the network of ThiF-like protein containing BGCs we observed a
large group of heterocycloanthracin (HCA) BGCs, which include
the already characterized sonorensin (Chopra et al., 2014) and
HCA from Bacillus thuringiensis Al Hakam (Dunbar et al., 2015).

Below, we discuss three groups of BGCs, which attracted
our attention during the analysis of the networks and putative
peptides encoded by these BGCs as predicted by RiPPER (Santos-
Aberturas et al., 2019) in Figure 6. We consider it likely that
the first group of these BGCs encodes new translation targeting
RiPPs; the second may also do so, while the third was so
interesting in terms of RiPP encoding clusters’ evolution, that we
could not help but discuss it in this article.

Lactazolicins
The first group of BGCs contains clusters from the
representatives of the genus Lactobacillus, which form a
connected component with PHZ BGC (Figure 6, Group 1).
Analysis of these BGCs and their homologs from genera
Enterococcus and Streptococcus found with an additional BLAST
search revealed that all these BGCs share the same set of genes,
which, in addition to modification machinery and export pump
homologs of those in PHZ BGC (Figure 7A, genes E, C, B, and
D2), includes three auxiliary genes (Figure 7A, genes X1, D1,
and X2). The product of gene D1 is the second YcaO protein.
It is distinct from the product of the D2 gene and lacks the
C-terminal PxP-motif, found in azoline-forming YcaOs and
involved in catalysis (Ghilarov et al., 2019). According to the
results of HHPred (Söding et al., 2005), the product of gene X2
is distantly related to ThiF/MccB/PaaA proteins and contains a
RiPP recognition element (RRE) — a domain found in different
RiPP modification enzymes binding leader peptides (Burkhart
et al., 2015). The presence of the second YcaO and of the X2 gene
product, which could function either as a partner protein or an
independent adenylating enzyme (Ghodge et al., 2016; Dong
et al., 2019), makes additional modifications of the precursor
peptide highly probable. We were unable to detect any homologs
of the X1 gene product among the known proteins.

Following the conventional practice of giving names to the
proposed new groups of compounds (Cox et al., 2015) and
in accordance with the nomenclature recommended for LAPs
(Arnison et al., 2013), we named this group of putative translation
inhibitors lactazolicins. All lactazolicin clusters encode 83-106
amino acid-long putative precursor peptides with 8–12 repeats
of the [Cxxx] motif in the N-terminal part of the predicted
core segment (Figure 7A). HCAs represent an already known
group of RiPPs, which have a similar pattern of repeated cysteine
residues in the core part (Haft, 2009). However, HCA precursors
(also found in our search, Figure 6B, the largest group of
BGCs) have the [Cxx] motif repeated rather than [Cxxx], and
the overall composition of HCA BGCs also differs significantly
from that of lactazolicin BGCs. Unlike HCAs, where the [Cxx]-
repeat containing part of the precursor is rich in glycines,
the N-terminal [Cxxx] repeat-containing part of lactazolicin
precursors is enriched in positively charged amino acids (Arg,
Lys). In the cases of PHZ and proline-rich peptides (which do not
belong to RiPPs but also target the ribosome exit tunnel) (Gagnon
et al., 2016), the side chains of positively charged amino acids take

part in the interaction with phosphate groups of rRNA. We thus
hypothesize that lactazolicins may also affect translation.

Microcin B17-Like BGCs From
Pseudomonads
Microcin B17 is a DNA-gyrase-targeting LAP produced by some
strains of E. coli. The McB BGC contains a set of enzymes similar
to those encoded by the KLB and PHZ BGCs and an additional
gene mcbG, which encodes a pentapeptide repeat protein (PRP)
(Li et al., 1996; Heddle et al., 2001). McbG is likely a DNA mimic
that decreases the formation of toxic gyrase-DNA complexes
trapped by McB, thus protecting the gyrase in the McB-producing
cell (Hegde et al., 2005; Vetting et al., 2011). Clusters similar to
that of McB were described in the genomes of several pathovars
of Pseudomonas syringae and their products also target gyrase
(Metelev et al., 2013).

A relatively large network of clusters retrieved by our search
(Figure 6A, Group 2) contains no previously characterized
representatives except for an mcb-operon homolog from
P. syringae (blue circle). However, several of these clusters
(marked with red letter G) contain a gene coding for a PRP
protein. The overall sequence similarity and the distribution of
potentially cyclizable residues in precursor peptides from clusters
with and without the PRP gene differ (Figure 7B). Thus, it
is highly probable that mcb-like clusters without a PRP gene
encode a RiPP with a target distinct from DNA gyrase. While we
cannot establish whether these are translation-targeting RiPPs,
compounds with the same set of proteins in their BGC (KLB and
PHZ) do affect translation.

Flavazolicins
The last group of putative new LAP BGCs was identified
during the analysis of precursor peptides predicted with RiPPER
(Santos-Aberturas et al., 2019). The precursor peptide identified
in the genome of flavobacterium Algibacter aquaticus SK-16 (a
singlet and therefore not shown in Figure 6A; Figure 8A) appears
to have resulted from a duplication of a standard leader-core
ancestral precursor gene (Figure 8B). As a result, in a single ORF,
there are two putative core sequences rich in Ser and Cys residues
separated by an “internal” leader (another leader is N-terminally
located) (Figure 8C). A similar cassette-like arrangement of core
peptides has been described for several different groups of RiPPs
including cyanobactins (Gu et al., 2018), thiovarsolines (Santos-
Aberturas et al., 2019), orbitides (Shim et al., 2015), and dikaritins
(Ding et al., 2016); but in all these cases, precursors are composed
of a single leader, followed by several core peptides, interspersed
by signal sequences required for the cleavage of each core at C-
and N-termini by dedicated peptidases (Figure 8B shows, as an
example, the sequence of TruE1 — the precursor of patellins 2
and 3, representatives of cyanobactins).

A BLAST search for similar BGCs resulted in identifying
six additional BGCs, that share the same set of modification
enzymes (Figure 8A). The first three originate from the genomes
of Flavobacteriaceae closely related to Algibacter, while three
others were found in the genomes of Gammaproteobacteria.
Interestingly, only two of these clusters contained a fused
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FIGURE 7 | (A) Common BGC composition conserved among lactazolicin BGCs, proposed functions of the encoded proteins are listed on the right. RiPP
recognition elements (RREs) in C and X2 genes are depicted. Alignment of precursor peptides of lactazolicins, predicted leader and core parts are shown. Cysteines
in the core part are shown on red background, positively charged amino acids of the predicted core are blue, and negatively charged residues are green. (B) The
composition of McB-like BGC from pseudomonads. mcbG homolog is shown in square brackets as it is not present in the majority of clusters from pseudomonads,
the genes are colored according to the color scheme in (A). Alignment of precursor peptides predicted with RiPPER, those encoded in PRP gene-containing BGCs
are in magenta frame. Potentially cyclized residues are shown with red background, predicted core and leader parts are shown.

precursor peptide gene, while the rest had a set of one to
three separate ORFs encoding non-fused precursor peptides
(Figure 8B). These different genome arrangements from

the closely related species provide a glimpse on how the
genes of cassette-containing peptides may originate from
an independent single short ORF through gene duplication
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FIGURE 8 | Flavazolicines. (A) Comparison of biosynthetic gene clusters encoding a putative new group of LAPs found in Flavobacteria and Gammaproteobacteria
genomes. Predicted functions of the Encoded proteins are listed below. (B) Comparison of precursor peptides of flavazolicins. Conserved core sequences
containing cyclizable residues are shown with red background. The precursor peptide sequence of cyanobactins patellins 2 and 3 (truE1 gene product) is shown for
comparison on the gray background. Functional parts of the peptide including leader (yellow), two cores (red), and recognition sequences of peptidases (RS1 and
RS2) are shown (Gu et al., 2018). (C) Sequences of cassette-containing precursor peptides of flavazolicins showing the conserved positions in two leader
sequences. Conserved positions are shown with green dashed lines, synonymous substitutions with yellow dashed lines. (D) A possible scenario in the evolution of
cassette-containing peptides. See main text for the explanations.

[Figure 8D(1)], fusion [Figure 8D(2)], and a subsequent
reduction of the role of the internal leader to that of a recognition
sequence of proteases [Figure 8D(4)]. Further multiplication of
cassette-containing precursor genes may lead to arrangements
found in several cyanobactin clusters [Figure 8D(5);
Gu et al., 2018].

Strikingly, only the BGCs with fused precursors contain
an additional gene, which is a predicted protease (Figure 8A,
orange). This enzyme may be involved in the processing required
to produce individual modified core parts. The acquisition of an
additional protease gene may be the step that follows the fusion of
two independent ORFs in the course of cassette-containing BGC
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evolution [Figure 8D(3)]. We named the products of this family
of BGCs flavazolicins. Characterizing the products encoded in
these BGCs and establishing the details of their biosynthesis and
function appears to be an exciting direction of future work.

CONCLUDING REMARKS

Although the number of the known subclasses and unique
representatives of RiPPs increases each year, a remarkable
proportion of publications devoted to novel compounds provides
information only about the structure and sometimes evaluates the
bioactivity of a modified peptide. Researchers focusing on RiPP
clusters as a source of unprecedented enzymatic activities rarely
proceed toward establishing the mode of action of the target
compound and are even less likely to establish its physiological or
ecological role. Addressing these questions is a challenging task,
which partially explains the lack of detailed information about
the precise mechanisms of action for many groups of RiPPs,
including some that are known and have been studied for decades
(e.g., bottromycin, McB). We hope that the upcoming years will
provide more structural insights not only on the enzymology of
RiPP modification widely studied now, but also on the principles
the already known and novel compounds act by.

In many cases, the analysis of genomic information was
a starting point for further successful discoveries of a novel
RiPP, facilitating the prediction of the BGC product based on
the sequences of precursor peptides and modification enzymes.
Through genome mining, future studies will not only result in
the discovery of new compounds but will also allow systemization
of our knowledge about RiPP genomic landscape and a better
understanding of RiPP clusters’ evolutionary relations.

METHODS

Search for YcaO Containing BGCs,
Filtration, and Annotation
146,381 bacterial genomes were downloaded from RefSeq
(O’Leary et al., 2016) database on 27 March 2019. To obtain
all YcaO domain-containing proteins we searched the database
with profile HMMs (TIGR03549, TIGR03604, and PF02624)
from public databases using hmmer package1. We clustered
resulting hits with mmseqs2 (Mirdita et al., 2019) (90% identity;
90% coverage) to remove duplicates and redundant highly
similar sequences from organisms, which genome sequences are
overrepresented in the database.

The genomic regions of 12.5 kbp to each side of the
identified unique YcaO protein-coding genes were annotated
with RODEO (Tietz et al., 2017) using Pfam 32.0 and TIGRFAMs
15.0 databases. For further analysis, we selected genomic
regions according to several rules. First, we collected regions
that encode proteins containing E1-like (PF00881, TIGR03603,
TIGR04424) or ThiF-like (PF00899, TIGR02354, TIGR02356,
TIGR03693, TIGR03736, TIGR03882) domains. Initial search

1hmmer.org

was very sensitive and false positive results were obtained.
Thus, we removed predicted YcaO proteins that were not
annotated with TIGR03549, TIGR03604, or PF02624 domains in
the RODEO output. In order to exclude thiopeptides, studied
comprehensively in several other works, we removed genomic
regions containing genes of lantipeptide dehydratase (PF14028,
PF04738, TIGR03897, PF05147). Putative precursor peptides
were predicted with RiPPER (Santos-Aberturas et al., 2019). For
each BGC, the best predicted precursor peptide was selected as
the one bearing the highest number of cyclizable residues (Ser,
Thr, Cys residues) within the C-terminal half.

Using a custom script (available on http://github.com/
bikdm12/RODEO2antiSMASH) we converted RODEO output to
genbank files imitating antiSMASH (Blin et al., 2019) output. The
script adds a feature “cluster” with information about the class
of the product. The coordinates of this feature are boundaries
of the group of genes located on the same strand not farther
than 100 bps from each other and containing YcaO protein.
Also, genes that may be related to azol(in)e-containing RiPP
biosynthesis (for the list of domains see Supplementary Table
S3) were marked as biosynthetic. These files were then used to
build a sequence similarity network with BiG-SCAPE (Navarro-
Muñoz et al., 2020) subsequently visualized with Cytoscape
(Shannon et al., 2003).
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Type II Toxin–antitoxin (TA) modules are bacterial operons that encode a toxic protein
and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on
toxins in many ways that distinguish different types of TA modules. In type II TA modules,
toxin and antitoxin are proteins that form a complex which physically sequesters the
toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes,
however, the translation process appears to be their favorite target and nearly every step
of this complex process is inhibited by type II toxins. The structural features, enzymatic
activities and target specificities of the different toxin families are discussed. Finally, this
review emphasizes that the structural folds presented by these toxins are not restricted
to type II TA toxins or to one particular cellular target, and discusses why so many of
them evolved to target translation as well as the recent developments regarding the
role(s) of these systems in bacterial physiology and evolution.

Keywords: toxins, translation, persistence, programmed cell death, mobile genetic elements

INTRODUCTION

Bacterial toxin-antitoxin (TA) systems are generally composed of a toxic protein and its inhibitor.
These small modules were originally discovered on plasmids in the 1980s where they were found
to promote plasmid maintenance in growing bacterial populations (Karoui et al., 1983; Ogura and
Hiraga, 1983; Jaffe et al., 1985; Gerdes et al., 1986; Hiraga et al., 1986). TA modules are classified
into different types depending on the nature and mode of action of the antitoxins, as the toxins are
always proteins. Antitoxins are either small RNAs that block translation of the toxin mRNA (type I)
(Gerdes and Wagner, 2007) or sequesters the toxic protein (type III) (Fineran et al., 2009; Blower
et al., 2011) or proteins that inhibit the activity of the toxin through direct interaction (type II)
(Tam and Kline, 1989; Kamada et al., 2003; Takagi et al., 2005) or antagonize the toxic activity on
the target, without any direct interaction with the toxins (type IV) (Brown and Shaw, 2003). This
review will focus on type II systems. These elements are not only found in plasmids but also in
other types of mobile genetic elements (such as phages and ICEs) as well as in chromosomes (see
e.g., Anantharaman and Aravind, 2003; Pandey and Gerdes, 2005; Guglielmini and Van Melderen,
2011; Leplae et al., 2011; Ramisetty et al., 2016; Coray et al., 2017). While the roles of TAs, when
located in mobile genetic elements, are reminiscent to that on plasmids, i.e., maintenance (Szekeres
et al., 2007; Wozniak and Waldor, 2009; Huguet et al., 2016), the roles of chromosomally-encoded
systems remains a largely debated topic in the field. These systems have been involved in the
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adaptation to adverse conditions and are considered to be stress
response modules (Hayes and Van Melderen, 2011; Page and Peti,
2016; Harms et al., 2018), with a mainstream model proposing
that TA systems are essential effectors of persistence to antibiotics
(Gerdes and Maisonneuve, 2012). However, seminal papers
supporting this hypothesis are now being retracted (Maisonneuve
et al., 2018a,b; Germain et al., 2019) and contradictory data
are being published (Harms et al., 2017; Shan et al., 2017;
Goormaghtigh et al., 2018a; Pontes and Groisman, 2019). The
involvement of TA systems in the persistence phenomenon
was based on the observation that successive deletions of 10
TA systems in Escherichia coli lead to a gradual decrease of
persistence frequency in the presence of lethal doses of ampicillin
or ciprofloxacin (Maisonneuve et al., 2011). In subsequent
studies, time-lapse microscopy experiments with E. coli strains
containing fluorescent reporters revealed that cells that are able
to recover from an ampicillin treatment (namely persister cells)
are those in which the ppGpp level is high and TA systems
are activated (Maisonneuve et al., 2013). Furthermore, the same
group proposed that the HipBA system is the major regulator
of persistence as the HipA toxin, by phosphorylating glutamyl-
tRNA synthetase (see below), will trigger ppGpp production
and the activation of the 10 other TA systems (Germain et al.,
2015). We, along with other researchers, have identified major
problems both with the E. coli strains and fluorescent reporters
that were used in these studies (Harms et al., 2017; Goormaghtigh
et al., 2018a). First, the strain deleted for the 10 TA systems
is lysogenized with several copies of the Phi80 phages (Harms
et al., 2017; Goormaghtigh et al., 2018a). This explains why that
strain presents a lower persistence frequency to ciprofloxacin.
Indeed, activation of the SOS response by fluoroquinolones will
lead to lambdoid prophage activation and a strong decrease
in viability. Second, the fluorescent reporters used to monitor
ppGpp levels and TA activation are likely to not be functional,
either forming protein aggregates or not being more fluorescent
than the fluorescence background of control strains without the
reporter (Goormaghtigh et al., 2018a). In an effort to solve the
issue of TAs and persistence, we, along with other researchers,
constructed a strain in which the 10 TA systems are deleted,
devoid of any phage contaminants, and showed that this strain
presents the same level of persistence to ampicillin or ofloxacin
as the wild-type strain (Harms et al., 2017; Goormaghtigh
et al., 2018a). Moreover, newly designed reporters monitoring
the activation of the yefM-yoeB TA system allowed us to show
that there is no correlation between persister cells and the
activation of this TA system (Goormaghtigh et al., 2018a).
Moreover, we recently showed that another TA system, MqsrA
(see below), that was thought to be a global regulator involved
in stress responses and biofilm formation, does not appear to
play any significant role neither in oxidative or bile stresses
nor in macrocolony formation (Fraikin et al., 2019). Therefore,
our data strongly argue against the idea that TA systems are
pivotal elements of antibiotic persistence. This basically leaves
the principal questions in the field open (for a recent review
see Fraikin et al., 2020). Conditions in which TA systems are
activated and what the outcomes of such activations are, still
remain undetermined.

Type II toxins are very diverse in their molecular mode of
action, however, almost all the families described to date comprise
toxins that target protein synthesis (Harms et al., 2018). Several
major mechanisms of translation inhibition by type II toxins
can be distinguished: RNA hydrolysis of (i) solvent exposed
RNAs, (ii) mRNAs in ribosomes, (iii) rRNAs, (iv) tRNAs or
interference with the tRNA machinery, where in addition to
the above mentioned hydrolysis of tRNAs, toxicity is exhibited
by the modification of tRNA cargo (v) and the inactivation of
enzymes that service the tRNAs (vi) i.e., phosphorylation of
aminoacyl-tRNA synthetases that charge the tRNAs or EF-Tu
which delivers the tRNAs to the ribosome (Figure 1). Most type II
toxin activities lead to the general inhibition of protein synthesis
and the subsequent inhibition of growth. In this review, we
follow this classification to discuss the specificity and evolution
of the different families of toxins from TA systems. We discuss
the consequences of toxin-mediated translation inhibition on
cell physiology and phenotypes and raise questions about their
biological functions in light of recent discoveries.

HYDROLYSIS OF RNAs

MazF Toxins
MazF toxins are RNA endonucleases that exhibit cleavage
specificity to sequences spanning from three to seven bases
(Figure 2). Most of the MazF toxins prefer U upstream of
cleavage (at position −1) and AC downstream of cleavage (at
positions +1 and +2, respectively) with less stringency outside
of the two to four main recognized bases (Figure 2). The
E. coli MazF cleaves in the coding as well as untranslated
regions of mRNAs, independent from the reading frame, and in
rRNA precursors (Mets et al., 2017; Culviner and Laub, 2018;
Mets et al., 2019). Slight changes in sequence specificity of
different MazF enzymes from different bacteria, correspond well
to their amino acid sequence similarity (Figure 2). A particular
member of the MazF family, the MazF-mt9 toxin from
Mycobacterium tuberculosis, cleaves a tRNA substrate (Schifano
et al., 2016), similar to the VapC toxins that will be discussed
later in this review.

The structures of many MazF toxins alone or in complex with
an mRNA substrate or with their cognate antitoxins have been
solved (Hargreaves et al., 2002; Kamada et al., 2003; Simanshu
et al., 2013; Zorzini et al., 2014, 2016; Ahn et al., 2017; Chen
et al., 2017; Hoffer et al., 2017). The MazF monomer consists
of 2 beta-sheets composed of antiparallel beta-strands linked
by three or four small alpha-helices (Figure 3). The residues
constituting the active site are located on the β1-β2 and β3-
β4 linkers (Kamada et al., 2003; Simanshu et al., 2013; Zorzini
et al., 2016). Although MazF toxins possess what is known as the
SH3-barrel-fold, they are not related to other members of this
fold (Anantharaman and Aravind, 2003). Two MazF subunits
form a dimer with an extensive dimeric interface. A concave
positively charged groove at the interface between the two
subunits of the MazF dimer binds RNA in an extended alignment
with bases facing upwards toward the groove (Simanshu et al.,
2013; Zorzini et al., 2016). Structural studies have shown that
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FIGURE 1 | Activities of type II TA toxins. Cellular targets of the toxins are depicted in black and white; toxins are depicted as red circles – open circles for toxins
hydrolyzing chemical bonds, circles with diamond for toxins transferring chemical groups on the targets. Ac stands for acetylation, and P for phosphorylation.

a MazF dimer binds to one mRNA molecule and covers at
least seven bases (Simanshu et al., 2013; Zorzini et al., 2016),
explaining the extent of possible recognition and necessity of an
unstructured RNA substrate, i.e., solvent exposed bases. MazF
cleavage leaves 2′, 3′-cyclic phosphate at the 3′-end and 5′-
OH group at the 5′-end of the cleavage site, which are used
as a signature to study the cleavage products generated by the
in vivo overexpression of MazF toxins (Schifano et al., 2014;
Mets et al., 2017).

In addition to cleaving mRNAs, the E. coli MazF toxin was
shown to cleave the 16S rRNA (Vesper et al., 2011). It was
proposed that rRNA-cleavage generates specialized ribosomes
able to translate specific pools of mRNAs constituting a regulon
that is required to cope with various stresses (Vesper et al.,
2011; Sauert et al., 2016). The model relies on data showing
that E. coli MazF cleaves the 16S rRNA in the decoding center
before ACA sequences at nucleotide positions 1396 and 1500
(↓1396ACA and ↓1500ACA) within the 30S ribosomal subunit. It
was speculated that MazF-mediated cleavage removes the anti-SD
sequence, thereby generating specialized ribosomes that are able
to translate specialized MazF-processed leaderless mRNAs that
also lack SD (Vesper et al., 2011; Sauert et al., 2016). However,
these particular 16S rRNA bases are paired in the 30S subunits,
making the MazF-dependent cleavage very unlikely. It was later
shown that indeed, MazF cleaves the rRNAs in their precursor
states, before the 30S subunit biogenesis, and at multiple sites
(Mets et al., 2017; Culviner and Laub, 2018). This is in agreement
with structural data showing that MazF binds to single-stranded
RNA (ssRNA) and interacts with the bases (Simanshu et al.,
2013; Zorzini et al., 2016). In fact, fragmentation of rRNAs as
well as mRNAs including those coding for ribosomal proteins
leads to the accumulation of aberrant ribosomal subunits and
generates irregular particles with fragmented rRNA upon MazF
expression (Mets et al., 2017). Accordingly, the synthesis of the
vast majority of cellular proteins drop in response to MazF
cleavage, without enrichment of any specific functional protein
groups. Proteomic studies upon MazF expression did not find any
‘death’ or ‘survival’ proteins (Mets et al., 2019), associated to the
proposed programmed cell death pathway (Amitai et al., 2009).

The TA-mediated programmed cell death (PCD) theory
proposed that some TA systems, in particular MazEF, serve as
built-in suicide modules (Engelberg-Kulka et al., 2004). Multiple
different and unrelated stressing conditions, such as amino
acids starvation and elevated ppGpp (guanosine tetraphosphate)
concentrations, antibiotic treatments, high temperature, H2O2
treatment or phage infections were proposed to trigger MazF-
dependent PCD. All these conditions would lead to the inhibition
of mazEF expression. Since the MazE antitoxin is unstable
and degraded by ATP-dependent proteases, this would liberate
MazF and provoke the death of a large subpopulation of
cells (Engelberg-Kulka et al., 2004). Within the frame of this
pathway, it has been suggested that MazF itself is induced
by a ‘quorum sensing’ peptide called extracellular death factor
(EDF). This pentapeptide was identified to have the NNWNN
sequence (Kolodkin-Gal et al., 2007) and is thought to amplify
the endoribonucleolytic activity of MazF and other homologs
and prevent the interaction of MazF toxins with their cognate
antitoxins (Belitsky et al., 2011). However, alongside the PCD
theory, the involvement of the EDF peptide in MazF-mediated
PCD is questionable. First, in the original paper that describes
the activity of the EDF peptide, the authors observed a drastic
decrease in bacterial viability upon the addition of 2.5 ng/ml
(4 nM) of EDF to growing E. coli cultures. This effect was
also observed in MazF-deleted strains although at higher
concentrations, starting from 200 ng/ml (300 nM) (Kolodkin-
Gal et al., 2007). In subsequent publications, the authors showed
that in vitro MazF ribonucleolytic activity was enhanced by
only 26% by the addition of 1.5 µM of EDF (Belitsky et al.,
2011). Further addition of up to 7.5 µM of EDF increased
MazF activity to a maximum of 57% (Belitsky et al., 2011).
Such a high EDF concentration, corresponding to a 300-fold
molar excess, was used to show the disruption of the MazE-
MazF complex in vitro. Assuming that EDF is produced in vivo
under physiological conditions, it is very unlikely that such high
concentrations will be reached. Moreover, in vivo, viability of
bacteria is highly affected at EDF concentrations that are by
several logs lower (4 nM versus 7.5 µM). The same group
later discovered more EDF-like peptides (6 aa or longer) in
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FIGURE 2 | MazF toxins and their specificity of RNA cleavage. MazF protein
sequences were aligned and an average distance tree was build (BLOSUM
62, JalView) (Waterhouse et al., 2009). Substrate specificity is indicated (right).
The cleavage position of the substrate is indicated by an arrow. Subsets of
toxins sharing similar target sequences are boxed with different colors. Protein
identifiers and cleavage specificity were taken from: E. coli MazF (ChpAK)
(NP_417262.1) (Culviner and Laub, 2018; Mets et al., 2019), ChpBK
(NP_418646.1) (Zhang et al., 2005), Kid (PemK) (YP_003937673.1)
(Munoz-Gomez et al., 2004; Zhang et al., 2004); Bacillus subtilis MazFbs

(AOR96854.1) (Park et al., 2011); Bacillus anthracis MoxT (NP_842807.1)
(Verma and Bhatnagar, 2014); Staphylococcus aureus MazFsa (BBJ19047.1)
(Zhu et al., 2009); Staphylococcus equorum MazFseq (AFV93478.1) (Schuster
et al., 2013); Clostridium difficile MazFcd (YP_001089981.1) (Rothenbacher
et al., 2012); Legionella pneumophila MazFlp (CCD10720.1) (Shaku et al.,
2018); Deinococcus radiodurans MazFDR0417 (AAF09995.1) (Miyamoto et al.,
2017); Haloquadratum walsbyi MazFhw (WP_048066888.1) (Yamaguchi et al.,
2012); Pseudomonas putida MazFpp (NP_742932.1) (Miyamoto et al., 2016a);
Myxococcus xanthus MazFmx (SDX28280.1) (Nariya and Inouye, 2008);
Methanohalobium evestigatum MazFme (WP_013195679.1); Nitrosomonas
europaea MazFne1 (WP_011111532.1) (Miyamoto et al., 2018), MazFNE1181

(CAD85092.1) (Miyamoto et al., 2016b); Mycobacterium tuberculosis
MazF-mt1 (NP_217317.1) (Zhu et al., 2006), MazF-mt3 (NP_216507.1) (Zhu
et al., 2008; Schifano et al., 2014), MazF-mt6 (NP_215618.1) (Schifano et al.,
2013), MazF-mt7 (NP_216011.1) (Zhu et al., 2008), MazF-mt9
(YP_004837055.2) (Barth et al., 2019).

Bacillus subtilis and Pseudomonas aeruginosa, however all of
these peptides were only active in combination with rifampicin
(Kolodkin-Gal et al., 2007; Kumar et al., 2013). Although in the
original studies, rifampicin was used to induce MazF-mediated
PCD (Kolodkin-Gal et al., 2007; Kumar et al., 2013), other studies
did not find any MazF-related effect of rifampicin, nor any MazF-
mediated PCD (Tsilibaris et al., 2007; Ramisetty et al., 2016).
Thus, the cellular functions of MazF remain an open question.

Probably, the most intriguing case is that of M. tuberculosis
which encodes 10 MazF toxins among its large TA arsenal
(Sala et al., 2014). Out of those, the MazF-mt3 and MazF-mt6

FIGURE 3 | Toxin structures. Structures of the toxins from different families
representing different structural folds (noted in brackets) are shown. These
domains are common in proteins of the defense and offense systems (HEPN,
Cas2, BECR, FIC), RNA processing (dsRBD, PIN), eukaryotic cell signaling
(SH3-barrel, (PI)3/4-kinase) or various other functions (GNAT). Structures are
colored in rainbow from N-terminus (blue) to C-terminus (red), in cases of
dimers the second monomer is in gray. Structures were visualized using
ChimeraX, PDB codes were following: E. coli MazF:3nfc; E. coli HicAB:6hpb
(Manav et al., 2019); S. oneidensis SO_3166-SO3165 (HEPN): 5yep (Jia et al.,
2018); H. pylori HP0315 (VapD): 3ui3 (Kwon et al., 2012); S. flexneri VapCD7A:
5ecw (Xu et al., 2016); E. coli RelER81A,R83A: 2kc9 (Li et al., 2009); E. coli
HipAS150A: 3tpb (Schumacher et al., 2012); E. coli AtaTY144F : 6gtp (Jurenas
et al., 2019); prophage P1 Phd-Doc: 3k33 (Garcia-Pino et al., 2010). In the
cases of structures in complexes with antitoxin, the coordinates of antitoxin
were deleted.

toxins cleave mainly mRNAs at the U↓CCUU and UU↓CCU
sequences, respectively. In addition, MazF-mt3 cleaves the anti-
SD sequence of the 16S rRNA and both the MazF-mt3 and
MazF-mt6 cleave the 23S rRNA loop 70 (L70) opening to the
ribosomal A site (Schifano et al., 2013, 2014; Hoffer et al., 2017).
It has been shown that MazF-mt6 can cleave the 23S rRNA
in mature 50S subunit, albeit with 30% efficiency as compared
to free RNA fragment coding for 23S L70 sequence (Hoffer
et al., 2017). This indicates that like other MazF toxins, MazF-
mt6 cleaves the solvent exposed target sequence. Alternatively,
cleavage might be possible in rRNA precursors as described
for E. coli MazF (Mets et al., 2017; Culviner and Laub, 2018).
Another MazF toxin from M. tuberculosis, MazF-mt9, cleaves the
tRNALys43−UUU in its anticodon sequence (Schifano et al., 2016;
Barth et al., 2019). Since tRNALys19−CUU does not compensate
for tRNALys43−UUU , ribosomes stall at the AAA codon in MazF-
mt9 overexpression conditions (Barth et al., 2019). Ribosome
stalled transcripts are further cleaved by specific RNAses such
as RNAse J and are therefore eliminated (Barth et al., 2019).
Since the AAA codon is rare in the GC-rich M. tuberculosis
(5.3/1000), the authors speculate that expression of MazF-mt9
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generates a specific proteome consisting of the proteins whose
genes are poor in AAA Lys codons (Barth et al., 2019). However,
it remains unclear whether genes devoid of the AAA codon would
be sufficient to generate a functional proteome.

Interestingly, MazF toxins share high structural similarity to
the F plasmid CcdB toxin (Loris et al., 1999; Hargreaves et al.,
2002; Gogos et al., 2003; Kamada et al., 2003) that binds to
the GyrA subunits of DNA-gyrase and induces double-strand
breaks and the SOS response (Bernard and Couturier, 1992;
Bernard et al., 1993; Dao-Thi et al., 2005). Despite their structural
similarity, the two toxins bind their substrates using different
sites on the toxin dimer interface – CcdB binds GyrA via the
α4 helices, while, MazF recognizes RNA using the β1-β2, β3-β4,
β4-β5 loops and a short α1 helix (Dao-Thi et al., 2005; Zorzini
et al., 2016). On the other hand, the activity of MazF and CcdB
toxins is regulated by their cognate antitoxins in a common way,
which further supports the hypothesis of a common ancestor
(Zorzini et al., 2016).

HicA Toxins
HicA toxin and its cognate HicB antitoxin owe their gene names
to a genetic locus linked to the pilus gene cluster (hif contiguous)
in Haemophilus influenzae (Mhlanga-Mutangadura et al., 1998).
HicA toxins possess small∼50 amino acid double-stranded RNA
binding domains (dsRBD). HicA folds into a three-stranded
antiparallel beta-sheet flanked by two alpha helices that reside
on one side of the sheet (Figure 3) (Makarova et al., 2006;
Butt et al., 2014). The positively charged surface is predicted to
bind RNA and the catalytic histidine residue located in the β2
strand is required for RNase activity (Bibi-Triki et al., 2014; Butt
et al., 2014; Kim et al., 2018). The E. coli HicA toxin cleaves
mRNAs and tmRNA in vivo independently of translation and
no consensus of cleavage was reported (Jorgensen et al., 2009).
Yersinia pestis HicA3 was shown to degrade in vitro transcribed
mRNAs (Bibi-Triki et al., 2014) and Sinorhizobium meliloti HicA
degrades purified rRNA (Thomet et al., 2019). However, there is
not enough data available to be able to conclude what the precise
targets of HicA toxins are in vivo.

Outside of the TA context, it has been shown that the dsRBD
domain binds double-stranded RNA where the α1 helix interacts
with the minor groove and the α2 helix with the major groove
of RNA molecules (Ryter and Schultz, 1998). All the HicA
toxins studied to date hydrolyze RNA in addition to binding
(Jorgensen et al., 2009; Bibi-Triki et al., 2014; Thomet et al.,
2019), however there are no details on the molecular substrate
binding and hydrolysis.

The typical antitoxin partner HicB protein comprises DNA-
binding domain fused to a degenerated RNAse H-fold (Makarova
et al., 2006). These two domains (dsRBD and RNAse H) are also
found in the architecture of eukaryotic RNA interference (RNAi)
machinery (Makarova et al., 2006).

HEPN-Fold Toxins
The HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-
binding domain) superfamily contains proteins that have
all-alpha helical catalytic domains. Outside of the TA context,
HEPN-domain proteins typically have metal-independent

endonuclease activities, although some only bind RNA without
degrading it (Anantharaman et al., 2013). HEPN domains
are shared between TA and prokaryotic defense systems,
such as abortive infection modules, restriction-modification
systems and CRISPR-Cas systems, as well as eukaryotic
antiviral, antitransposon systems and rRNA processing
enzymes (Anantharaman et al., 2013). In the TA context,
HEPN is frequently found in association to MNT (minimal
nucleotidyltransferase) domain proteins. Shewanella oneidensis
SO_3166 toxin possesses a HEPN domain and its cognate
antitoxin SO_3165 an MNT domain (Yao et al., 2015). The
SO_3166 toxin cleaves mRNA, but not rRNA or tRNA in vitro,
however, the sequence specificity has not been determined. The
toxin has a typical all-alpha helical HEPN fold and conserved
Arg-(4-6X)-His motif, and forms a dimer with a potential
composite active site in a central cleft that could accommodate
RNA substrate (Figure 3) (Jia et al., 2018).

RnlA (or RNase LS)-like toxins that exhibit RNAse activity
(Otsuka et al., 2007) also contain a catalytic domain belonging
to the HEPN superfamily (Anantharaman et al., 2013). RNA
cleavage by RnlA was shown to be dependent on translation
(Otsuka and Yonesaki, 2012), more specifically on translation
termination (Yamanishi and Yonesaki, 2005). RnlA induces
sequence non-specific mRNA cleavage more frequently occurring
3′ to pyrimidines (Kai and Yonesaki, 2002). Homologous toxin
LsoA shares the same cleavage pattern, however, cleavage sites are
not identical (Otsuka and Yonesaki, 2012). The RnlA and LsoA
toxins were shown to be part of functional TA systems with their
cognate antitoxins RnlB and LsoB, respectively (Koga et al., 2011;
Otsuka and Yonesaki, 2012). Interestingly, it was shown that the
RnlA and LsoA toxins have a common antitoxin, Dmd, encoded
by the T4 phage (Otsuka and Yonesaki, 2012). This antitoxin
does not share any sequence similarity with the homologous but
not interchangeable RnlB and LsoB antitoxins. T4 phages devoid
of the Dmd-encoding gene are unable to propagate on E. coli,
opening the possibility that the RnlAB and LsoAB systems act
as defense mechanisms (Kai and Yonesaki, 2002; Otsuka and
Yonesaki, 2012). Later it was shown that the activity of the RnlA
and LsoA toxins is enhanced by RNAse HI (Naka et al., 2014) – an
RNase responsible for RNA cleavage in DNA-RNA duplexes and
removing the RNA primer in DNA replication (Miller et al., 1973;
Itoh and Tomizawa, 1980). RNase H-fold domains are often fused
to HEPN domains in larger architectures, suggesting that other
RNase LS family proteins could also target RNA in DNA–RNA
duplexes (Anantharaman et al., 2013). RnlA toxins in addition
to the HEPN domain (also described as DBD) contain two
additional domains, NTD and NRD that share similar topology
of 4–5 stranded antiparallel beta-sheets with two alpha helices. It
was shown that the DBD domain is responsible for dimerization
of the toxin, its toxicity, and it is neutralized by both the RnlB and
Dmd antitoxins (Wei et al., 2013). The functions of the NTD and
NRD domains still need to be investigated.

Cas2-Like VapD Toxins
The vapD gene was first detected in the chromosome of the
anaerobic bacterium Dichelobacter nodosus. The genes of this
locus, prevalent in virulent strains, were designated as vapABCD
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(Katz et al., 1992). The vapBC locus was later shown to encode
a type II TA system (Daines et al., 2007); the same was
demonstrated for vapD and a small upstream encoded ORF
designated vapX (Daines et al., 2004). Later it was found that the
VapD toxin from Helicobacter pylori displays a ferredoxin-like
fold and therefore is structurally related to CRISPR-associated
protein Cas2 (Figure 3). VapD functions as an endoribonuclease
and cleaves mRNA preferentially before A or G nucleotides
(Kwon et al., 2012). The presence of solitary vapD toxin in the
Neisseria gonorrhoeae pEP5289 plasmid was suggested to be a
factor restricting plasmids’ host range. A small cryptic neisserial
plasmid pJD1, however, contains full VapXD. When the VapX
antitoxin from pJD1 is expressed in E. coli, it increases the
conjugation rate of pEP5289. This suggests that solitary VapD
could limit the host range of pEP5289-like plasmids to the ones
that contain the pJD1 plasmid carrying an intact VapXD module,
and is therefore able to neutralize incoming VapD (Pachulec
and van der Does, 2010). Although it has been proposed that
vapXD locus as well as vapBC locus contributes to the virulence
of H. influenzae (Ren et al., 2012), no molecular mechanism has
been demonstrated yet. VapXD satisfies the definition of the type
II TA module and comprises the toxin that likely shares its origins
with the Cas2 protein, however, virtually nothing else is known
about its molecular mechanism or its physiological function.

mRNA CLEAVAGE IN THE RIBOSOME
BY RelE TOXINS

Almost all RelE toxins cleave mRNAs in the A site of the
ribosome, between the second and third position of the codon.
RelE family toxins described to date share as low as 11–
20% sequence identity but retain the conserved fold which is
similar to ribosome independent endoribonucleases T1, Sa2,
and U2 (Neubauer et al., 2009; Schureck et al., 2015). The
well-studied RelE-like toxins (E. coli RelE, YoeB, YafQ, and
Proteus vulgaris HigB) possess different active sites, have different
preferences for targeted mRNA codons, and differ in their
ability to associate with 30S and/or 70S ribosomes (Neubauer
et al., 2009; Feng et al., 2013; Maehigashi et al., 2015; Schureck
et al., 2016b; Pavelich et al., 2019). Analysis of the cleavage
specificity of RelE homologs from a wide range of bacterial
species or isolates shows that the cleavage specificity is not strict
(Goeders et al., 2013). The specificity likely originates from subtle
differences in the association with the ribosome, rather than
recognition of specific mRNA bases. RelE toxins belong to the
large superfamily of BECR-fold proteins (barnase-EndoU-colicin
E5/D-RelE fold) that is found in different polymorphic toxin
systems (Zhang et al., 2012).

RelE contains an antiparallel beta-sheet (usually 4-
stranded) flanked by two to four surface-exposed alpha
helices enriched with positively charged residues (Figure 3)
(Neubauer et al., 2009; Schureck et al., 2016b). The positively
charged residues that decorate the alpha helices and mediate
interaction with the negatively charged 16S rRNA backbone
are thought to be a unique feature of the ribosome-dependent
RelE family of endoribonucleases (Maehigashi et al., 2015;

Schureck et al., 2016b). Despite the overall structural similarity,
the residues that comprise the active sites of several well-studied
RelE toxins are different, as well as the ribosome conformation
induced by these toxins (Neubauer et al., 2009; Feng et al.,
2013; Maehigashi et al., 2015; Schureck et al., 2016b). Inside the
ribosomal A site, RelE toxins reorient and activate the mRNA
for 2′-OH-induced hydrolysis. Although the ribosome is not
directly involved in catalysis, it is required to achieve the correct
orientation of the mRNA for the cleavage reaction (Neubauer
et al., 2009). Generally, RelE toxins induce strong reorganization
of the mRNAs at the ribosomal A site and cause the hydrolysis
between the second and third position of the codon in the A site
(Neubauer et al., 2009; Feng et al., 2013; Goeders et al., 2013;
Maehigashi et al., 2015; Schureck et al., 2016b). Toxins pull
the mRNA out of its typical tRNA bound state. In presence of
the toxin, all three A site nucleotides are shifted by more than
7 Å (Neubauer et al., 2009; Schureck et al., 2016b). Conserved
residues of the toxin orient the first two A site codon bases for
hydrolysis, while the third base is usually oriented with the aid
of 16s rRNA (Neubauer et al., 2009; Schureck et al., 2016b).
Different RelE family toxins interact with all three nucleotides of
the cleaved codon in different ways, leading to subtle specificities
for nucleobases at each position (Neubauer et al., 2009; Feng
et al., 2013; Maehigashi et al., 2015; Schureck et al., 2016b).

The E. coli RelE toxin extensively relies on the ribosome
for both mRNA binding and cleavage, as it has lost conserved
histidine and glutamate residues used for RNA cleavage in
ribosome independent RNases like RNAse T1 (Heinemann and
Saenger, 1983; Takagi et al., 2005; Neubauer et al., 2009). RelE
instead uses conserved basic residues both for interaction and
catalysis (Neubauer et al., 2009). Almost 1/5 of the residues of
RelE are basic and provide a large potential for an interaction
with negatively charged RNA. In particular, a large accumulation
of these residues is observed on the three helices that interact
with the 16S rRNA. Other RelE toxins, such as HigB, YoeB, or
YafQ do not rely on basic residues and instead function more
like the RNase T1, through conserved histidine and glutamate
(or histidine or tyrosine) residues for catalysis (Kamada and
Hanaoka, 2005; Maehigashi et al., 2015; Schureck et al., 2016b).
In addition, the RelE toxin leaves 2′-3′-cyclic phosphate at the
new 3′ end (Neubauer et al., 2009), while others (YefM, YoeB,
HigB) further hydrolyze it to a 3′-phosphate product (Feng et al.,
2013; Maehigashi et al., 2015; Schureck et al., 2016b), like RNase
T1 (Heinemann and Saenger, 1983).

Most of the RelE toxins display virtually no codon specificity
and cleave between the second and third positions of the codon
with the only conserved preference of purines at the third
position (Goeders et al., 2013). However, several RelE family
toxins were reported to be selective for the AAA lysine codon.
This codon is preferred by the E. coli YafQ, Rhodopseudomonas
palustris RelERpa, Nostoc sp. RelENsp, Sinorhizobium meliloti
RelESme and Treponema denticola RelETde (Prysak et al., 2009;
Goeders et al., 2013). P. vulgaris HigB cleaves A-rich codons
(Hurley and Woychik, 2009; Schureck et al., 2016b), and was
shown to cleave the 30S bound mRNA, indicating that it
can interfere with the initiation step of translation after IF1
dissociation (Schureck et al., 2016a). The AAA and other A-rich
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codons are the most frequent at the beginning of the ORFs
in E. coli (Sato et al., 2001). Several studies have shown that
the AT-rich content at the 5′ of the ORF likely reduces the
secondary structures and has been shown to serve as a translation
ramp for efficient protein expression in E. coli (Goodman et al.,
2013; Verma et al., 2019). Moreover, ribosome profiling indicates
that ribosomes spend a lot of time at the beginning of the
transcripts (Oh et al., 2011), which might provide more time
for these toxins to access their substrates. Therefore, at least
a subset of RelE toxins could be considered as translation
initiation inhibitors.

Several RelE toxins were shown to cleave at different sites
with respect to the codon. For example, E. coli YhaV and
Mycobacterium avium RelE cleave mRNA preferably between the
codons (i.e., after the third base of the codon) (Goeders et al.,
2013; Choi et al., 2017). However, the molecular mechanisms
of substrate recognition are not yet described for these toxins.
The YafO toxin was shown to be a ribosome-dependent
endoribonuclease that cleaves mRNAs 11–13 bases downstream
of the initiation codon (Zhang et al., 2009; Christensen-Dalsgaard
et al., 2010). Such cleavage event was speculated to be located near
the mRNA entrance tunnel rather than at the A site as determined
for the RelE-like toxins (Schureck et al., 2016a). Although initially
YafO was considered a RelE-like toxin (Christensen-Dalsgaard
et al., 2010), the lack of structural information about this toxin
or its interaction with ribosome lead to YafO being classified as
a separate family (Leplae et al., 2011). Several RelE-family toxins,
such as E. coli MqsR (YgiU), Brucella abortus BrnT and H. pylori
HP0894 are suggested to cleave RNA in a ribosome-independent
manner (Brown et al., 2009; Christensen-Dalsgaard et al., 2010;
Han et al., 2011; Heaton et al., 2012) and could therefore be
functionally closest to ribosome independent RNases T1, Sa2,
and U2 found outside of the TA context. MqsR is a RelE-fold
toxin that possesses an additional beta strand (Brown et al., 2009;
Christensen-Dalsgaard et al., 2010). MqsR preferentially cleaves
the 5′-G↓CN-3′ triplet (where N is preferentially U, but C or A
are tolerated) in mRNA or rRNA precursors (Yamaguchi et al.,
2009; Mets et al., 2017). The H. pylori HP0894 toxin prefers
purines upstream of cleavage and its major cleavage activity was
observed between first and second base at termination codons
UAA and UAG (Han et al., 2011), therefore its independence
from the ribosome is questionable. In fact, E. coli RelE was also
suggested to inhibit translation termination, as in addition to
CAG sense codon, it cleaves UAG or UAA stop codons between
the second and third nucleotide and subsequently prevents
class 1 release factors from binding the ribosome (Pedersen
et al., 2003). It remains unclear whether RelE toxins targeting
translation initiation would be able to compete for the A site with
initiation factors, and those acting during elongation with tRNA.
To date, only the affinity of YafQ toxin to the 70S assembled
complex has been reported (∼360 nM) and is comparable to
those of the above-mentioned factors (Maehigashi et al., 2015).
It remains unclear why toxins rely on the ribosome for activity
as simply blocking the translation cleavage of free mRNA would
both be sufficient and efficient. It has been suggested that this
dependence may indicate a specialized mechanism that would
allow a response to stresses (Schureck et al., 2016a). On the

other hand, selectivity for specific ribosomal complexes, such
as initiating ribosomes, might be an efficient way to inhibit
translation and is likely to give the same effect of reducing
the global translation rate as ribosome-independent but more
sequence-specific mRNA cleavage.

Bioinformatic searches and structural comparisons have
detected the relationship between RelE-family toxins and those
similar to ParE encoded by RK2 plasmid (Anantharaman and
Aravind, 2003; Sterckx et al., 2016). ParE-family toxins act at
the level of DNA replication by poisoning DNA-gyrase or by
currently unidentified mechanisms (Jiang et al., 2002; Hallez
et al., 2010; Yuan et al., 2010; Sterckx et al., 2016). Some
residues are highly conserved across the RelE/ParE superfamily
(Anantharaman and Aravind, 2003) and their three-dimensional
structure is strikingly similar (Dalton and Crosson, 2010; Sterckx
et al., 2016). The major differences between the mRNAses and
replication inhibitors are the extended N-terminal alpha helices
as well as the absence of the C-terminal helix observed in ParE
toxins (Dalton and Crosson, 2010; Sterckx et al., 2016). ParE
toxins are also devoid of the major catalytic residues used by
RelE for mRNA cleavage in the ribosome (Neubauer et al.,
2009; Dalton and Crosson, 2010). Evidence of the evolutionary
relationships between RelE-like and ParE-like toxins, is the
conserved principle of the binding of their cognate antitoxins to
conserved hydrophobic motifs on the toxins, although different
families of antitoxins can associate with both ParE and RelE-
like toxins (Dalton and Crosson, 2010; Leplae et al., 2011;
Sterckx et al., 2016).

INTERFERENCE WITH tRNA FUNCTIONS

VapC Toxins
The VapC toxins are characterized by the presence of a PIN
domain that presents a structural similarity with the classical
Rossmann-fold associated with the binding of nucleotides and
nucleotide-based cofactors (Rao and Rossmann, 1973; Matelska
et al., 2017; Senissar et al., 2017). The PIN domain, although
originally owing its name to the type IV pili protein PilT
(PilT N-terminal like nucleases), is generally found in proteins
that present various endonuclease functions such as tRNA and
rRNA maturation, nonsense mediated mRNA decay, and DNA
replication and repair in all domains of life (Matelska et al.,
2017; Senissar et al., 2017). In the PIN motif, alternating beta
strands and alpha helices (α/β/α sandwich) fold into a central
five stranded parallel beta-sheet decorated with alpha helices
on both sides (Figure 3). All VapC toxins, although presenting
low sequence similarity, share conserved acidic residues (D, E,
D, D/N) that are distant in the primary amino acid sequence,
but cluster together in the protein to form an active site that
coordinates divalent-cations, such as Mg2+ and Mn2+ that are
required for cleavage of single-stranded RNA (Fatica et al., 2004;
Daines et al., 2007; Das et al., 2014; Matelska et al., 2017;
Senissar et al., 2017). VapC toxins cleave the 3′-O-P bond of
single stranded RNA to produce 3′-hydroxyl and 5′-phosphate
cleavage products (McKenzie et al., 2012). So far, VapC toxins
targeting the initiation tRNAfMet , different elongation tRNAs,
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and the sarcin-ricin loop (SRL) of the 23 S rRNA have been
identified (Figure 4) (Winther and Gerdes, 2011; Winther et al.,
2013, 2016). All the VapC toxins targeting tRNAs cleave in the
anticodon stem-loop (ASL), either in the anticodon sequence
itself or at the 3′-side of the anticodon before the stem structure
(Figure 4). The M. tuberculosis VapC-mt20 cleaves the 23S rRNA
SRL loop in the helix 95 that structurally mimics the ASL of
tRNAs (Winther et al., 2013), therefore all VapC toxins tested so
far cleave ASL-like structures. Unlike other ribonuclease toxins
(namely MazF and RelE – see above), VapC toxins appear to
recognize both RNA sequence and structure (Winther et al.,
2013; Cruz et al., 2015; Walling and Butler, 2018; Cintron
et al., 2019). Ribonucleotide modifications in the ASL region
might be important for governing the specificity of VapC toxins
(Winther et al., 2016; Cintron et al., 2019). Strikingly, VapC-mt20
requires the presence of the ribosome for 23S rRNA cleavage
and does not cleave isolated SRL rRNA fragments (Winther
et al., 2013). Since the helix 95 is exposed to the solvent at the
surface of the ribosome (Yusupov et al., 2001), it is accessible
for cleavage, however no information of VapC-mt20 interactions
with ribosomes is currently available (Winther et al., 2013).

While some VapC toxins cleave tRNAs that service highly
abundant codons, others cleave tRNAs that service rare codons,
however it is unlikely that they could be compensated by other
tRNAs (Cruz et al., 2015; Winther et al., 2016; Cintron et al.,
2019). Therefore, it is most likely that the overexpression of VapC
toxins leads to global inhibition of translation. Breaks in the ASL
will interfere with the aminoacylation of those tRNAs that are
recognized through their ASL by aminoacyl-tRNA synthetases
(McClain et al., 1998), while charged tRNAs cleaved in ASL are
unlikely to generate productive interaction with the A site of the
ribosome. It has been proposed that tRNA halves produced by
VapC toxins could have further functions in the stress response
(Cruz et al., 2015), however the lifetime and possible interactions
of VapC cleavage products remain unexplored.

Cleavage of tRNAfMet reported for Salmonella, Shigella, and
several other VapC toxins (Winther and Gerdes, 2011) (Figure 4)
will lead to inhibition of the initiation – a rate limiting step
of protein synthesis (Laursen et al., 2005). It has been shown
that expression of VapCLT 2, which leads to cleavage of initiator
tRNAfMet , would boost the translation start from elongation
codons (Winther and Gerdes, 2011). However, translation of only
one model mRNA was followed (Winther and Gerdes, 2011),
therefore it is difficult to conclude whether induction of VapC
would lead to synthesis of specific proteins initiating with other
codons and whether it would lead to a sufficient, functional, and
specialized proteome.

Several VapC toxins were reported to cleave the SRL loop of
23S rRNA (Winther et al., 2013; Winther et al., 2016) (Figure 4)
that owes its name to two toxins – the α-sarcin that cleaves it at
the identical position as VapC-mt20 and the ricin that removes
the adenine base in the SRL (Olmo et al., 2001; Grela et al.,
2019). The SRL loop is located in the GTPase associated center
of the large ribosomal subunit where translational GTPases are
recruited. The SRL loop is required for docking and stimulation
of GTP hydrolysis of all translation GTPases (Munishkin and
Wool, 1997; Rodnina et al., 1999), therefore its cleavage leads

to overall inhibition of protein synthesis in prokaryotes as
demonstrated for VapC, as well as in eukaryotes in case of
α-sarcin (Olmo et al., 2001; Winther et al., 2013).

Numerous structures of VapCs show that these toxins are
dimers and that their cognate antitoxins neutralize the toxic
activity by interfering with the binding of the metal ions (Miallau
et al., 2009; Dienemann et al., 2011; Min et al., 2012). However,
there is still no structural information regarding their interaction
with the RNA substrates, making it difficult to predict details
of target recognition and catalysis. It has been demonstrated
that by comparing divergent VapCs that recognize particular
tRNA or rRNA substrates, they can be grouped in sub-families
sharing amino acid sequence similarity (Figure 4). Predicted
specificity of new VapCs within these families was confirmed
(Winther et al., 2016). Interestingly, VapC toxins can be encoded
abundantly in one genome, with an outstanding example of
M. tuberculosis encoding as much as 50 VapC toxins (Ramage
et al., 2009; Sala et al., 2014). Despite the high abundance
and sequence/structure similarities, these TAs appear to not
cross-talk, at least for those that are functional and that have
been tested – their toxins are neutralized only by their cognate
antitoxins – although in some cases this insulation could be
alleviated by a single mutation (Ramage et al., 2009; Walling
and Butler, 2018). Moreover, mycobacterial VapC toxins do not
overlap functionally, since many of them target different tRNAs
or the SRL of 23S rRNA (Figure 4) (Winther et al., 2016).
Nevertheless, the question of the functional benefit, if any, of
having large arrays of VapCs, remains open.

GNAT Toxins
GNAT-fold acetyltransferase toxins identified so far, including
TacT, AtaT, and ItaT, acetylate aminocylated-tRNAs on the amino
group of the cargo amino acids (Cheverton et al., 2016; Jurenas
et al., 2017a; Wilcox et al., 2018). For convenience, we will refer
to this family as AtaTs for Aminoacyl-tRNA-acetylating Toxins.
GNAT-fold comprises a central beta-sheet composed of six to
seven strands surrounded by four alpha helices (Figure 3). The
alpha helix α3 located between the β4 and β5 strands encodes
the signature motif R/Q-X-X-G-X-A/G, also referred to as ‘P-
loop,’ which binds the pyrophosphates of acetyl-Coenzyme A
which is used as a substrate for the transfer of the acetyl group
(Neuwald and Landsman, 1997). The GNAT (general control
non-repressible 5 (GCN5)-related N-acetyltransferases) family of
proteins comprises more than 300,000 enzymes that acetylate
various substrates from small metabolites to proteins and tRNAs
(Ikeuchi et al., 2008; Salah Ud-Din et al., 2016). The GNAT-
fold toxins from type II TA systems described to date form a
distinct monophyletic group of GNAT acetyltransferases (Wilcox
et al., 2018). Despite being related, these toxins have diverged to
target different species of tRNAs charged with their respective
amino acids (Jurenas et al., 2017b; Wilcox et al., 2018). The
AtaT toxin encoded by the E. coli O157:H7 strain specifically
acetylates the initiator tRNA Met-tRNAfMet . Acetylation of the
Met loaded on the Met-tRNAfMet impairs its interaction with
the initiation factor 2 (IF2) and precludes the formation of
the 30S translation initiation complex (Jurenas et al., 2017a).
Formylation of the initiator fMet-tRNAfMet is essential for normal
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FIGURE 4 | VapC toxins and their specificity of RNA cleavage. VapC protein sequences were aligned and an average distance tree was build (BLOSUM 62, JalView)
(Waterhouse et al., 2009). Substrate specificity is indicated (right). Toxin cleavage position is marked by an arrow, tRNA anticodon sequence is underlined, in the
case of rRNA numbers of nucleotide positions are indicated in superscript. Additional targets and sequences are marked in the boxes on the right. Subsets of toxins
sharing similar target sequences are boxed with different colors. Protein identifiers and cleavage specificity were taken from: Haemophilus influenzae VapC1Hin

(NP_438487.1), VapC2Hin (NP_439108.1) (Walling and Butler, 2018); Salmonella enterica VapCLT2 (NP_461950.1), Shigella flexneri MvpT (AMN61047.1) (Winther
and Gerdes, 2011); Leptospira interrogans VapCLin (AAS71220.1) (Lopes et al., 2014); Mycobacterium tuberculosis VapC-mt4 (NP_215109.1) (Cruz et al., 2015;
Winther et al., 2016), VapC-mt11 (NP_216077.1) (Winther et al., 2016; Cintron et al., 2019), VapC-mt15(NP_216526.1), VapC-mt25 (NP_214791.1), VapC-Mt28
(NP_215123.1), VapC-mt29 (NP_215131.1), VapC-mt30(NP_215138.1), VapC-mt32(NP_215630.1), VapC-mt33 (NP_215758.1), VapC-mt37 (NP_216619.1),
VapC-mt39 (NP_217046.1) (Winther et al., 2016), VapC-mt20 (NP_217065.1), VapC-mt26 (NP_215096.1) (Winther et al., 2013, 2016), VapC-mt1 (NP_214579.1)
(McKenzie et al., 2012; Sharrock et al., 2018), VapC-mt19 (NP_217064.1), VapC-mt27 (NP_215112.1) (Sharrock et al., 2018), Pyrobaculum aerophilum
VapCPAE2754 (WP_011008882.1), VapCPAE0151 (WP_011007068.1) (McKenzie et al., 2012); Metallosphaera prunae VapC3Mpr (WP_012020824.1), VapC7Mpr

(WP_012021162.1), VapC8Mpr (WP_012021192.1) (Mukherjee et al., 2017).

growth (Shah et al., 2019) and is impaired by the Met acetylation,
resulting in a strong growth inhibition and generating a dead-end
product acMet-tRNAfMet . In vivo expression of AtaT manifests
in accumulation of ribosome assembly intermediates, reflecting a
strong inhibition of translation initiation (Jurenas et al., 2017a).
Interestingly, AtaT is able to discriminate between the initiator
Met-tRNAfMet and the elongator Met-tRNAMet in vitro (Jurenas
et al., 2017a) although the molecular basis of this specificity
has not yet been determined. The E. coli HS strain encoded-
ItaT toxin acetylates the elongator Ile-tRNAIle. This leads to the
inhibition of translation elongation at Ile codons. It has been
shown that tRNAs charged with N-blocked amino acid cannot
form ternary complex EF-Tu:GTP:tRNA (Janiak et al., 1990),
therefore acetylated elongator tRNAs would not be delivered to
the ribosome. TacTs from Salmonella have been shown to have
more relaxed specificities and target several elongator tRNAs.
However, some specificity still occurs as different TacTs have
slightly different preferences for subsets of elongation aa-tRNAs.
For example, the TacT and TacT2 toxins mostly target the Gly-
tRNAGly, while TacT3 prefers Ile or Leu charged tRNAs (Rycroft
et al., 2018). TacTs were suggested to play an important role for

persistence of Salmonella in macrophages (Helaine et al., 2014;
Cheverton et al., 2016; Rycroft et al., 2018). However, recent
data did not find any involvement of TacT or other type II
TA systems from Salmonella in persistence (Claudi et al., 2014;
Pontes and Groisman, 2019). On the other hand, like other TAs,
many AtaRT-like TA systems are associated to mobile genetic
elements, such as plasmids, transposons and integrons and could
be involved in their maintenance (Iqbal et al., 2015; McVicker and
Tang, 2016; Jurenas et al., 2017b).

HipA Toxins
HipA toxins phosphorylate aminoacyl-tRNA synthetases on
conserved serines located in their ATP-binding sites, therefore
leading to their inactivation (Kaspy et al., 2013; Vang Nielsen
et al., 2019). Since phosphorylated aa-tRNA-synthetases
cannot charge their respective tRNAs, ribosomes stall at the
generated hungry codons. Consequently, an increase of ppGpp
concentration is observed, associated to the activation of RelA,
the effect known as the stringent response (Wendrich et al., 2002;
Germain et al., 2013; Vang Nielsen et al., 2019). HipA toxins are
serine-threonine kinases that belong to the phosphatidylinositol
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(PI) 3/4–kinase superfamily (Correia et al., 2006). Their
C-terminal domain is all-alpha helical and has a similar fold to
human CDK2/cyclin A kinase (Figure 3) (Schumacher et al.,
2009). The C-terminal domain comprises the active site with a
conserved aspartate, an ATP-binding ‘P-loop motif ’ and a Mg2+

binding aspartate (Correia et al., 2006). The N-terminus is an α/β
globular domain specific to the HipA toxins (Figure 3) (Correia
et al., 2006; Schumacher et al., 2009). Interestingly, it can be
encoded as a separate protein, as seen in a three-component
TA system HipBST from E. coli O27. The HipT toxin exhibits
sequence similarity with the C-terminal kinase region of the
HipA toxin and also targets specific tRNA synthetase (see
below). The gene located upstream of the hipT gene, hipS,
encodes a small protein (∼100 amino acids) corresponding to
the N-terminal domain of HipA which is able to counteract the
toxic activity of HipT (Vang Nielsen et al., 2019). The first gene
of the operon, hipB, encodes a protein that enhances the ability
of HipS to counteract HipT. Indeed, it has been proposed, that
in addition to HipB antitoxin, the N-terminal domain of HipA
(similar to the HipS protein) could be involved in regulation of
HipA toxin activity through dimerization that blocks the active
site (Schumacher et al., 2015).

The E. coli K12 HipA toxin phosphorylates the Ser 239 located
in the ATP-binding site of the glutamyl-tRNA synthetase (GltX)
(Germain et al., 2013; Kaspy et al., 2013). The homologous E. coli
O127 HipT toxin phosphorylates tryptophanyl-tRNA synthetase
(TrpS) at the conserved Ser 197 (corresponding to Ser 239 in the
glutamyl-tRNA synthetase) (Vang Nielsen et al., 2019). The Ser
239 of GltX is located in a conserved flexible loop (characteristic
to type I aa-tRNA-synthetases). Conformational changes upon
tRNAGlu binding make this loop more exposed (Sekine et al.,
2003). It was shown that HipA only phosphorylates the tRNAGlu-
bound HipA (Germain et al., 2013). The conserved motif of GltX
that is phosphorylated by HipA is required for ATP binding.
Thus, phosphorylation of GltX likely precludes the binding of
ATP at the first step of aminoacylation reaction (Sekine et al.,
2003; Germain et al., 2013). Meanwhile, the HipT toxin is
able to phosphorylate the TrpS tryptophanyl-tRNA synthetase
independently of tRNATrp binding (Vang Nielsen et al., 2019).
In fact, GltX activates glutamate to glutamyl adenylate only in
presence of cognate tRNA, while TrpS can activate tryptophan
to tryptophanyl-adenylate without binding tRNATrp (Giege and
Springer, 2016). These differences likely correspond to the
conformation and accessibility of the loop in the ATP-binding site
of the targeted aminoacyl-tRNA synthetases.

It has been shown that HipA inactivates itself by auto-
phosphorylation (Correia et al., 2006). Typically, kinases auto-
phosphorylate on the solvent exposed activation loops, HipA
instead auto-phosphorylates at Ser150 located in its ATP-
binding site (P-loop motif) located in the core of the protein
(Schumacher et al., 2012). Autophosphorylation on Ser150 leads
to conformational changes of the P-loop motif which then
hinders binding of ATP (Correia et al., 2006; Schumacher
et al., 2012). Likely due to the flexibility of the P-loop,
autophosphorylation is an intermolecular event and therefore is
likely to happen when amounts of free HipA increase, thereby
providing an auto-regulation and reported as a possibility to

revive from HipA-induced growth inhibition (Korch and Hill,
2006; Schumacher et al., 2012). HipT also auto-phosphorylates
at Ser57 and Ser59, which are adjacent to the P-loop motif
of the kinase, and which corresponds to the position of
autophosphorylation of HipA (Vang Nielsen et al., 2019). The
HipA toxin from Shewanella oneidensis was also shown to auto-
phosphorylate at a similar position and it was proposed that
this modification is important for complex formation with the
cognate HipB antitoxin and its further binding to DNA as
well as the stability of this complex (Wen et al., 2014). The
autophosphorylation most likely regulates the activity and the
expression of the HipA toxins.

The discovery and the name of the E. coli K12 HipA toxin is
related to the isolation of the hyper-the HipA7 persistent mutant
(Moyed and Bertrand, 1983). The HipA7 strain shows a 100
to 1000-fold increase in persistence (Korch et al., 2003). It was
shown that the hipA7 allele codes for the mutations G22S and
D291A in the HipA protein, which was later described to encode
the toxin HipA from the hipBA TA system (Black et al., 1991;
Korch et al., 2003). Recently, a proteomics study suggested that
HipA phosphorylates multiple targets in addition to the principal
target GltX, notably the ribosomal protein L11 (RplK) and other
proteins involved in translation, transcription, and replication
(Semanjski et al., 2018). This is in agreement with previous
reports showing that HipA overexpression inhibits protein, RNA
and DNA synthesis in vivo (Korch and Hill, 2006). However,
no phosphorylation resulting from endogenous HipA encoded
on the chromosome was observed, since it is repressed by HipB
(Semanjski et al., 2018). Furthermore, the HipA7 strain showed
phosphorylation of GltX and to a lesser extent of the phage shock
protein PspA (Semanjski et al., 2018). This is in agreement with
previous observations that the G22S mutation in the N-terminal
domain of HipA7 likely results in compromised dimerization and
failure to form a HipA:HipB:operator-DNA complex required
for neutralization of HipA and transcription repression of the
hipBA locus (Schumacher et al., 2015). Induction of HipA7
however showed more phosphorylation targets (Semanjski et al.,
2018), therefore indicating that they might be physiologically
non-relevant and result from a high expression of the protein.
Therefore, GltX is likely to be the main target of E. coli K-
12 HipA toxin. HipA7 also showed less auto-phosphorylation
than HipA, indicating that the mutant either has less activity
or compromised folding or stability, as induction of chaperons
was reported upon overexpression of HipA7 (Semanjski et al.,
2018). Accordingly, it has been previously reported that the
HipA7 does not have a strong inhibitory effect on protein
synthesis (Korch and Hill, 2006). In conclusion, the hipA7
allele likely results in smaller effective HipA7 concentrations
as compared to the wild-type system and in overall reduced
activity of phosphorylation, however the HipA7 toxin is more
likely to be released from the HipBA7 complex. It was later
proposed that the HipBA system, together with 10 other TA
systems in which the toxins are RNases, are the central effectors
of antibiotic persistence in E. coli (Maisonneuve et al., 2018a,b;
Germain et al., 2019). However, it was later demonstrated that
these TA systems are not involved in persistence (see above)
(Ramisetty et al., 2016; Harms et al., 2017; Shan et al., 2017;
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Goormaghtigh et al., 2018a) and the idea that ppGpp is required
for persistence has been challenged as well (Bhaskar et al., 2018;
Pontes and Groisman, 2019).

Another family of proteins that are YjjJ-like belong to the same
PI 3/4-kinase superfamily as HipA and possesses similarities in
the catalytic domain (Correia et al., 2006; Maeda et al., 2017).
YjjJ although encoded without cognate antitoxin was shown to be
toxic, but strikingly it could be neutralized by the HipB antitoxin.
YjjJ comprises a DNA-binding motif in its N-terminus that is not
present in HipA-like toxins. YjjJ appears to have different cellular
targets as it does not inhibit macromolecule synthesis and may
affect cell division (Maeda et al., 2017).

Fic/Doc Toxins
Doc toxin is a Fic-fold protein that catalyzes phosphorylation
of the elongation factor EF-Tu (Castro-Roa et al., 2013).
Fic-fold proteins typically perform NMPylation (AMPylation,
GMPylation, or UMPylation) as a post-translational modification
on proteins using a phosphate-containing compound, usually
ATP (Garcia-Pino et al., 2014; Veyron et al., 2018). In contrast,
Doc toxin catalyzes the transfer of the phosphor moiety of ATP,
instead of transferring the AMP, and is therefore a kinase (Castro-
Roa et al., 2013). Doc phosphorylates EF-Tu at the conserved
threonine Thr283 which leads to translation arrest (Castro-Roa
et al., 2013). The binding site of Doc on EF-Tu likely overlaps
with the tRNA binding site since ternary complex formation
prevents Doc binding. In agreement with that, Doc preferentially
phosphorylates the GDP-bound state of EF-Tu (Castro-Roa et al.,
2013). Phosphorylation of the Thr382 located on the loop of
the beta-barrel domain III of EF-Tu locks it in an unfavorable
open conformation typical of GDP-bound EF-Tu (Talavera et al.,
2018). Conformational dynamics of EF-Tu are the essence of
its function and GTP hydrolysis has a major effect on aa-tRNA
binding and interaction with the ribosome. Once locked in an
open state, EF-Tu exhibits decreased affinity for aa-tRNA to a
similar extent as the affinity of GDP-bound EF-Tu (Talavera
et al., 2018) and is not compatible with translation (Castro-Roa
et al., 2013). Fic domain toxins that perform AMPylation have
also been reported to constitute type II TA modules (Harms
et al., 2015). FicT toxins target TopoIV and Gyrase, and block
their ATPase activity (Harms et al., 2015). Fic and Doc domain
families, together sometimes referred to as Fido proteins, have
conserved the alpha-helical core arranged in the bundle with two
additional alpha helices perpendicular to the bundle (Figure 3)
(Kinch et al., 2009). Although active site geometry is conserved, a
single substitution in the active site motifs for Doc in comparison
to Fic (K73 in Doc while G114 in Fic) leads to inverted
orientation of ATP and therefore the transfer of γ-phosphate
(Castro-Roa et al., 2013).

In contrast to some TA toxins, like RnlA that targets invading
phages, Doc is itself encoded by a phage and provides stability
to its lysogenic state. The Doc toxin is encoded by the P1 phage
that is maintained as a plasmid during its lysogenic cycle. Doc
was named after its impact on the remarkable stability of lysogens
due to elimination of cells that have lost P1 (death on curing)
(Lehnherr et al., 1993).

CONCLUSION AND DISCUSSION

Translation as a Favorite Target
Protein synthesis is one of the most complex processes in
the cell. Translation involves the step by step assembly of
ribosomes, coordinated movements of translation machinery
at every addition of a new amino acid into the nascent
polypeptide chain and well-organized termination, leading to
the release of a newly synthesized protein as well as the
recycling of ribosomes and translation factors (Arenz and Wilson,
2016a). The complexity of this process provides a multitude of
intervention possibilities that have been explored by antibiotics,
bacteriocins and secreted toxins (Zhang et al., 2012; Arenz
and Wilson, 2016b; Kumariya et al., 2019). Toxins that are
part of type II TA systems target translation in a multitude
of ways – from destroying the transcripts before or during
translation, to affecting ribosome biogenesis or interrupting the
charging of tRNAs or the delivery of amino acids into growing
polypeptide chains. Targeting translation allows not only choices,
but also room for specialization – potential targets include a great
number of tRNAs, tRNA synthetases, translation factors, and the
ribosome itself (rRNAs and ribosomal proteins). Specialization
of toxins portrayed in this review is already seen in almost all
the TA toxin families that we know of to date. MazF toxins
have diverged to target different mRNA and precursor rRNA
sequences – although the majority of them cleave downstream of
U and upstream of ACA nucleobases, some of them prefer an A
downstream of the cleavage site and C or G upstream (Figure 2).
Furthermore, the recently described MazF-mt9 is specialized for
a particular tRNALys43−UUU species (Barth et al., 2019). VapCs
also exhibit specificity for a multitude of different tRNAs or even
a tRNA stem-loop structure-mimicking the 23S SRL (Winther
et al., 2016) (Figure 4). The AtaT-like toxins that target charged
tRNAs are also specific to different tRNAs and even though
their toxicity relies on the acetylation of the cargo amino acid
charged on its cognate tRNA, these toxins most likely recognize
both the amino acids and the tRNA sequence (Jurenas et al.,
2017a; Rycroft et al., 2018; Wilcox et al., 2018). Likewise, different
HipA toxins have been recently demonstrated to phosphorylate
different aminoacyl-tRNA synthetases (Germain et al., 2013;
Kaspy et al., 2013; Vang Nielsen et al., 2019). RelE family toxins
seem to recognize the mRNA pre-loaded ribosome rather than
the particular mRNA sequence. Although some RelE toxins show
some preference toward certain nucleobases at certain positions
of a codon, the specificity comes not only from the toxin itself,
but also from the conformation of ribosomes induced by the
binding of these toxins (Neubauer et al., 2009; Feng et al., 2013;
Maehigashi et al., 2015; Schureck et al., 2016b; Pavelich et al.,
2019). Consequently, the specialization of RelEs involves the
evolution of the interactions with ribosomes that in turn direct
the substrate recognition.

Evolutionary Links of Type II TA Toxins
In this review, we have discussed a number of toxin families
that inhibit translation at different steps. Not surprisingly, some
of these families have potential evolutionary links with proteins
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Jurėnas and Van Melderen Translation Inhibition by Type II TA Toxins

involved in the translation maintenance. Toxins targeting RNAs
share folds with RNA metabolism associated proteins, in
particular those used in RNA maturation and processing (dsRBD,
HEPN and PIN-like domains) (Anantharaman and Aravind,
2006; Makarova et al., 2006; Anantharaman et al., 2013). These
protein folds are not limited to type II TA toxins, they also
take part in other defense and offense systems in prokaryotes
as well as in eukaryotes; namely, dsRBD, HEPN, ferredoxin-
like, PIN, FIC, and BECR domains can be detected in RNA
interference, antitransposon and antiviral systems (Makarova
et al., 2006; Kwon et al., 2012; Zhang et al., 2012; Anantharaman
et al., 2013). The MazF endoribonucleases comprise a distinct
SH3-like barrel-fold rather than a typical nucleic acid-binding
domain. The classical SH3 domain is common in eukaryotic
cell-to-cell communication and signal transduction proteins,
such as signaling kinases, but is less evident in prokaryotes. It
has been speculated that bacterial SH3-domain proteins act in
eukaryotic cell invasion by corrupting cell signaling (Whisstock
and Lesk, 1999). MazF however belongs to the group of proteins
that possess domains that structurally resemble SH3, but have
diverse functions and enzymatic activities (Whisstock and Lesk,
1999). Therefore, it is not clear whether the SH3 structural motif
observed in MazF has a true evolutionary link with other SH3-
domain proteins. Similarly, HipA toxins comprise a fold similar
to (PI)3/4-kinases found in eukaryotes. These eukaryotic kinases
produce 3′ phosphoinositide lipids that bind and activate proteins
and therefore participate in signaling cascades (Lempiainen and
Halazonetis, 2009). However, a certain class of eukaryotic PI3K
family proteins are also Ser/Thr kinases (like HipA toxins) that
respond to DNA damage (ATM and DNA-PKcs), nutrient stress
(mTOR) or are involved in nonsense-mediated mRNA decay
(SMG-1) or transcription regulation (TRRAP) (Lempiainen and
Halazonetis, 2009). Whether these eukaryotic proteins have real
evolutionary links with HipA toxins remains unclear.

GNAT-fold acetyltransferases are among the most abundant
protein folds, however all GNAT-fold TA toxins analyzed to
date target the amino group of the amino acid charged on
their respective tRNAs (Cheverton et al., 2016; Jurenas et al.,
2017a; Wilcox et al., 2018). GNAT-fold acetyltransferases are
known to target a wide variety of substrates (Salah Ud-Din
et al., 2016). A certain class of GNAT enzymes also acetylate
the alpha-amino group of amino acids, however in the context
of proteins, i.e., the N-terminal amino acid of peptides after
methionine removal. In eukaryotes, this modification is co-
translational and affects the majority of proteins, while in bacteria
it is limited to specific cases of several ribosomal proteins
(Vetting et al., 2008; Favrot et al., 2016). As for GNATs that
interact with tRNA, TmcA – an enzyme implicated in translation
fidelity – acetylates the wobble cytidine in the anticodon to
prevent its misreading (Ikeuchi et al., 2008). Another family
of GNATs – the Fem enzymes – use charged tRNAs as
substrates for the synthesis of peptidoglycan precursors (Dare
and Ibba, 2012). Fic/Doc toxins and secreted toxic effectors
generally target eukaryotic and prokaryotic GTPases involved
in protein signaling, translation or replication, however, new
Fic targets, such as chaperons are emerging (Veyron et al.,
2018). Interestingly, three TA toxin folds have also evolved

to target topoisomerases (MazF/CcdB, RelE/ParE, Doc/Fic). It
is not clear what the link is between translation machinery
and topoisomerases. However, topoisomerases are probably the
second favorite target of TA toxins. DNA damage caused by
these toxins induces a SOS response and DNA repair and
could favor rearrangements of genetic material providing higher
chances for TAs to relocate. However, it is not clear why the
mechanism of choice is blocking topoisomerases. It is worth
noting that the translation machinery and topoisomerases are
also among the most common targets of antibiotics. Lastly,
novel enzymatic activities and targets of TA toxins have been
increasingly reported, for example ADP-rybosyltransferase-fold
toxins were shown to act by NAD+ phosphorolysis and its
depletion, or by DNA ribosylation (Jankevicius et al., 2016;
Freire et al., 2019). These are the first examples of ADP-
ribosyltransferase toxins (ART) involved in TA systems, however,
many examples of secreted ART toxins are known and predicted,
those also involve translation inhibitors, such as the diphtheria
toxin (Zhang et al., 2012).

What Are the Roles of Type II TA
Systems?
The role(s) of TA systems in bacterial physiology and evolution
is a long-standing debate (Magnuson, 2007; Tsilibaris et al., 2007;
Van Melderen and Saavedra De Bast, 2009; Van Melderen, 2010;
Ramisetty et al., 2016; Harms et al., 2017; Culviner and Laub,
2018; Goormaghtigh et al., 2018a,b; Holden and Errington, 2018;
Kaldalu et al., 2019; Mets et al., 2019; Pontes and Groisman, 2019;
Wade and Laub, 2019; Fraikin et al., 2020). Since their discovery
on plasmids in the 1980’s and on chromosomes almost 20 years
later, the TA field has been going through waves of hypothesis
ranging from replicon maintenance, programmed cell death,
stress response, generation of specialized ribosomes, persistence
to antibiotics, to phage abortive infection mechanisms. The
mainstream hypothesis for the last 10 years was the central role
played by type II TA systems in persistence to antibiotics. The
hypothesis is that TA systems would be induced in persister
subpopulations, thereby stopping their growth and allowing these
cells to tolerate the presence of antibiotics. While this hypothesis
prevailed for several years, contradicting data accumulated and
eventually lead to the retraction of the main papers thereby
questioning the involvement of TA systems in drug tolerance
(Tsilibaris et al., 2007; Conlon et al., 2016; Ramisetty et al.,
2016; Harms et al., 2017; Shan et al., 2017; Goormaghtigh et al.,
2018a,b; Kaldalu and Tenson, 2019; Pontes and Groisman, 2019).
Although TA systems are occasionally found upregulated under
stress conditions in transcriptomic data (Keren et al., 2004),
this could be a natural consequence of de-repression of TA
loci due to instability and degradation of the antitoxins. Since
TA systems present selfish behavior, it is tempting to compare
them to viral elements, and to look at TAs from the perspective
of genes, and not of the organism. In this review we have
provided a detailed view of the specialization of toxins sharing
the same fold. Such a specialization seems to be the general
trend for type II TA toxins and is seen in virtually all families
that have at least several studied examples. If such systems
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would be part of a stress-response system, however, one would
expect the selection and conservation of the ‘best’ mode of
action. On the contrary, the reservoir and activities of TA
systems from different strains is highly variable and reminds
the variety seen in offense and defense systems that are
used for competition between species where innovations are
beneficial. Among the driving forces for the evolution of
different substrate specificities could be the tight neutralization
of each toxin by its cognate antitoxin. Co-evolution of different
antitoxins and different toxins relies on their vast contacts,
necessary for neutralization and transcriptional autoregulation.
This dependency should in addition allow for a faster evolution
and selection of changes. Further, the competition between
an incoming near-identical TA system likely provides selective
pressure. The incoming TAs, if identical, would be neutralized
by an existing copy of the TA system and such an ‘anti-
addiction’ module therefore would prevent stable establishment
of identical TAs (Van Melderen and Saavedra De Bast, 2009).
Indeed, it has been shown that in some cases the different
TAs in the same organism are only insulated by 1 amino
acid difference (Walling and Butler, 2018), indicating that
a strong selection might apply on TAs to avoid cross-talks.
Lastly, the high abundance of TA systems on mobile genetic

elements supports the idea that TA systems are primarily
elements involved in intergenomic conflicts – inheritance of
existing, defense against incoming and offense or spread of new
genetic material.
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Bacterial oxidative stress responses are generally controlled by transcription factors that 
modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and 
in some cases the translation, of specific mRNAs. Here, we report that oxidative stress 
additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of 
physiological changes. The observed inactivation of tRNAGly correlated with altered 
efficiency of translation of Gly codons, suggesting a possible mechanism of translational 
control of gene expression under oxidative stress. Changes in translation also depended 
on the availability of glycine, revealing a mechanism whereby bacteria modulate the 
response to oxidative stress according to the prevailing metabolic state of the cells.

Keywords: tRNAGly, Escherichia coli, oxidative stress, codon, glycine, translation

INTRODUCTION

Bacteria, like other organisms, need to adapt to environmental conditions that are constantly 
changing. Some of these conditions induce oxidative stress in bacteria due to either an increase 
in oxidants or a decrease in the ability of bacteria to defend against them. In the absence of 
an adequate protective response to oxidative stress, numerous macromolecules may be damaged, 
including proteins, lipids, and nucleic acids (Imlay, 2008).

The response to oxidative stress has been extensively studied, in particular because 
generation of an oxidative attack by macrophages and polymorphonuclear leukocytes is one 
of the main defense strategies of the human body against invading bacteria once they have 
crossed the primary physical barriers (Slauch, 2011; Nguyen et  al., 2017). In order to adapt 
to conditions that induce oxidative stress, bacteria may: (I) reduce motility, increase 
exopolysacharide production, and induce biofilm formation, thereby reducing accessibility 
to molecules that produce oxidative stress (Gambino and Cappitelli, 2016); (II) inhibit 
replication, preventing DNA mutagenesis at sites of base oxidation (Imlay, 2013) and possibly 
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also reducing the toxicity of replication near the site of repair 
for oxidized bases (Charbon et  al., 2014); (III) reduce the 
rate of global translation (Katz and Orellana, 2012; Zhong 
et  al., 2015; Zhu and Dai, 2019); (IV) selectively induce the 
production of several proteins involved in the reduction, 
repair, or degradation of oxidant molecules or oxidized 
biological targets such as thiol groups and Fe/S clusters in 
proteins (Imlay, 2013); and (V) decrease the production of 
reduced nicotinamide adenine dinucleotide (NADH) in order 
to increase production of reduced nicotinamide adenine 
dinucleotide phosphate (NADPH), required to reduce oxidant 
molecules and oxidized targets (Rui et  al., 2010; Shen et  al., 
2013). Finally, oxidative stress also induces some members 
from a bacterial community to enter a partially quiescent 
state known as “persistence” (Wu et  al., 2012), where several 
primary metabolic pathways are repressed and stress responses 
are induced (Lewis, 2010; Cohen et  al., 2013).

Transcriptional control of gene expression plays a major 
role in coordinating the cellular response to oxidative stress. 
In Escherichia coli and other enterobacteria, OxyR and SoxR 
sense the presence of hydrogen peroxide and oxygen superoxide, 
respectively, regulating the transcription of genes that belong 
to each regulon (Imlay, 2013). These transcription factors 
are aided by others, like Fur or Fnr, that modulate more 
specific aspects of the response (Chiang and Schellhorn, 2012; 
Shimizu, 2016). Beyond this “transcription focused” response, 
reports from diverse laboratories suggest that the defense 
mechanisms against oxidative stress also depend on translation, 
for example, via regulation of transfer RNA (tRNA) metabolism 
and translation elongation. It has been shown that changes 
in error rate of aminoacyl-tRNA synthetases are altered by 
oxidation of editing domains that may increase or decrease 
their activities under oxidative stress (Ling and Söll, 2010; 
Wu et  al., 2014; Steiner et  al., 2019). Others have found that 
tRNA may be  oxidized (Liu et  al., 2012) and, in at least 
some E. coli strains, oxidative stress induces a general and 
undiscriminated degradation of tRNAs that strongly reduce 
translation elongation, eventually provoking cell death (Zhong 
et  al., 2015; Zhu and Dai, 2019). Others have found that, 
in E. coli and other bacteria, oxidation of translation elongation 
factors may also inhibit elongation (Kojima et  al., 2009; 
Nagano et  al., 2015; Yutthanasirikul et  al., 2016).

To investigate whether changes in the concentration of 
particular tRNAs may modulate the translation of the E. coli 
transcriptome, we screened for changes in the levels of functional 
tRNAs under sub-lethal oxidative stress. Unexpectedly and 
in contrast to other reports, we  observed that in the strain 
used in this research, E. coli K-12 MG1655, only tRNAGly is 
inactivated under oxidative stress while nine other tRNAs 
remain active and at unchanged concentrations. Over production 
of specific tRNAGly isoacceptors altered the response of E. coli 
to oxidative stress, altering motility, carbohydrate consumption, 
and growth kinetics. The observed changes directly correlated 
with alterations in the translation efficiency of Gly codons 
under oxidative stress, suggesting a mechanism by which 
changes in active tRNAGly levels may regulate the response 
to oxidative stress.

MATERIALS AND METHODS

Strains and Culture Media
All experiments performed in this work used wild-type (WT) 
E. coli K-12 MG1655 strain. Strains were cultured in either 
lysogeny broth (LB) media (1% tryptone, 0.5% yeast extract, and 
0.5% NaCl), M9 media (47.7  mM Na2HPO4, 22.0  mM KH2PO4, 
8.6  mM NaCl, 18.7  mM NH4Cl, 2  mM MgSO4, 0.1  mM CaCl2, 
and 0.4% Glycerol), or low phosphate media (40  mM MOPS, 
4  mM Tricine, 50  mM KCl, 10  mM NH4Cl, 0.2  mM KH2PO4, 
0.5  mM MgSO4, 10  μM FeCl3, and 0.4% Glucose) supplemented 
with branched amino acids. When indicated, isopropyl β-d-1-
thiogalactopyranoside (IPTG; 100  μM), branched amino acids 
(isoleucine, leucine, and valine 50  μg/ml each), Gly (50  μg/ml 
glycine), diverse sugars (glucose, arabinose, lactose, or manose, 
0.2–0.4%), phenol red (0.1  μg/ml), ampicillin (100  μg/ml), or 
paraquat (up to 1M) were added to the culture media.

tRNA Purification
tRNA was extracted using previously published protocols 
(Raczniak et al., 2001) with increased 2-mercaptoethanol added 
to quench possible remnants of oxidizing molecules. 250  ml 
of LB were inoculated with 1.5  ml of an overnight culture of 
E. coli, incubated at 37°C, and shaken at 225  rpm. At an 
OD600 of 0.6–0.7, H2O2 or paraquat was added for a final 
concentration of 2.5 and 1  mM, respectively. After 20  min 
(H2O2) or 30  min (paraquat) of incubation, the culture was 
pelleted at 11,000  g for 5  min at 37°C. Cells were resuspended 
in 2.5  ml of buffer A (20  mM Tris HCl, pH 7.0; 20  mM 
MgCl2; and 20 mM 2-mercaptoethanol) and extracted by shaking 
for 20  min at room temperature with 2.5  ml of acid phenol. 
Aqueous phase was recovered after centrifugation at 6,500  g 
for 10  min at room temperature and stored at 4°C. Phenol 
was re-extracted with additional 2.5 ml of buffer A. Both buffer 
A extracts were mixed together and re-extracted with 5  ml 
of acid phenol. The aqueous phase was recovered. Isopropanol 
was added to a final concentration of 20% and was centrifuged 
at 9,000  g for 60  min. The supernatant was recovered and 
isopropanol concentration was adjusted to 60%. The mixture 
was centrifuged at 11,000  g for 60  min. Supernatant was 
discarded, the pellet briefly dried and then dissolved in 1.25 ml 
of 200 mM Tris acetate pH 8.5 plus 20 mM 2-mercaptoethanol 
and incubated for 60 min at 37°C to deacylate tRNAs. Samples 
were further purified in a DE52 or DEAE sepharose column 
(~250  μl resin). Sample was loaded in the column and 
subsequently cleaned with 50 volume buffer II (20  mM Tris 
HCl pH 7.0; 200  mM NaCl and 5  mM 2-mercaptoethanol). 
tRNA was eluted with buffer III (20  mM Tris HCl, pH 7.0; 
1M NaCl; and 5 mM 2-mercaptoethanol). tRNA from fractions 
with higher absorbance at 260 nm was recovered by precipitating 
with 0.1 volume 3 M sodium acetate pH 4.5 and 2 volume 
ethanol. Samples was stored at −20°C for at least 30  min and 
then centrifuged at 9,000  g for 1  h. Pellets were cleaned with 
cold 80% ethanol and resuspended in H2O.

tRNA samples used for mass spectrometry analyses were 
further purified using biotinylated beads. For these samples, 
180  μg of total tRNA were dissolved in hybridization solution 
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[0.1× saline sodium citrate (SSC) buffer, 0.1% sodium dodecyl 
sulfate (SDS), and 5 mM 2-mercaptoethanol] containing 0.5 mM 
EDTA and 2.5  μM of the corresponding biotinylated probe. 
We  used the same biotinylated probes as for Northern blots 
(Supplementary Table S3). The mixture was incubated for 
2  min at 90°C and then rapidly cooled to 41°C. Samples were 
further incubated for 120  min at this temperature. Samples 
were then mixed with 60  μl streptavidin/sepharose beads (in 
150  μl hybridization buffer) and incubated for 30  min at this 
temperature while shaking at 1  min intervals. Samples were 
centrifuged for 20  s at 3,000  g and the supernatant was 
eliminated. Then samples were cleaned eight times with 
hybridization buffer (3  min incubations at 41°C with gentle 
shaking each min. Spin 20 s at 3,000 g to eliminate supernatant) 
and eluted in 40  μl of the same buffer at 80°C.

tRNA Quantification by Aminoacylation
tRNA’s concentration was estimated from the plateau of an 
aminoacylation reaction progress curve at 37°C. Reactions were 
started by adding tRNA extracts to get 0.2  μg/μl in a mixture 
containing 1× reaction buffer (100  mM HEPES KOH, pH 7.2; 
30  mM KCl; and 12  mM MgCl2), 5  mM ATP pH 7.0, 10  mM 
2-mercaptoethanol, 8  U/ml pyrophosphatase (Roche 10 108 
987 001), 2.7  mg/ml of a S100 extract from E. coli K-12 
MG1655 (cleaned using DE52 resin to eliminate amino acids 
and RNA), and a mix of non-radioactive and 14C amino acid 
(Supplementary Table S4 for final concentrations). At defined 
time points, 7  μl of aliquots were deposited in filter paper 
saturated in 5% trichloroacetic acid to precipitate aminoacyl-
tRNAs. Papers were washed at room temperature three times 
for 5 min in 5% trichloroacetic acid and once in 100% ethanol. 
Then, papers were dried and aminoacyl-tRNAs were quantified 
in a scintillation counter. Background was subtracted based 
on experiments where no tRNA was added to account for 
non-specific binding of radioactive amino acids to filter papers 
and the potential tRNA traces present from S100 extracts.

RNA Mass Spectrometry
The detailed protocol for the analysis of RNA by mass 
spectrometry has been described elsewhere (Sarin et al., 2018). 
In brief, tRNAs were digested to single nucleosides essentially, 
as previously described (Alings et  al., 2015). Chromatographic 
separations of the samples were performed using a self-packed 
Hypercarb capillary column (75  μm ID  ×  500  mm) coupled 
to a Proxeon EASY nLC (Thermo Fisher Scientific GmbH, 
Dreieich, Germany). Samples were separated using solvent A 
(5 mM ammonium formate pH 5.2) and solvent B (acetonitrile) 
in a multi-step gradient (2–20% B for 3  min; 20–75% B for 
3–50  min; 75–100% B for 5  min; hold at 100% B for 15  min). 
Subsequently, samples were analyzed using a Q Exactive Mass 
Spectrometer (Thermo Finnigan LLC, San Jose, CA).

Quantitative Analysis of LC-MS/MS Data
Thermo RAW files were converted to the mzML format (Martens 
et  al., 2011) using msConvert as part of ProteoWizard (version 
3.0.10738; Chambers et al., 2012). Quantitative data analysis was 

performed using pymzML (version 2.0.0; Bald et  al., 2012) and 
pyQms (version 0.5.0; Leufken et  al., 2017). Chemical formulae 
of all nucleosides (including modified forms) were retrieved from 
the MODOMICS database (Boccaletto et  al., 2017).

pyQms was used to calculate high-accuracy isotopologue 
patterns for all chemical formulas, and these patterns were 
matched onto all MS1 spectra. Quantification of nucleosides 
for individual samples is based on the maximum intensity of 
the matched isotope pattern chromatogram (MIC). To assess 
quantification quality, pyQms calculates a weighted similar 
match score (mScore; Leufken et  al., 2017). Detection and 
quantitation of selected nucleosides were manually validated.

Total RNA Extraction
2  ml of bacterial cultures in LB or 5  ml from cultures in M9 
media were pelleted for 1 min at 12,000 g. Pellet were resuspended 
in 50  μl lysis buffer (83  mM Tris HCl, pH 6.8, 18  mM EDTA 
pH 8, 1.7% SDS, and 1.6% 2-mercaptoethanol) and incubated 
for 3  min at 37°C. 1.5  ml of TRIzol was added, and total 
RNA was extracted following the manufacturer’s protocol.

Northern Blot Assay
Most Northern blot analyses were performed using biotinylated 
probes. For some RNA, we  additionally used a non-labeled 
probe to help “unwind” the tRNA structures (list of probes 
in Supplementary Table S3). Samples were transferred to 
positively charged nylon membranes for 2  h at 22 volts in 
0.5× TBE. Then, RNA was fixated by UV radiation and 
membranes were blocked for 30 min at the temperature indicated 
in Supplementary Table S3 in hybridization solution (6× SSC, 
70  μg/ml heat-denatured salmon sperm DNA, 0.1% SDS, and 
5× Denhardt’s solution). After blocking, probes were added 
directly to the same solution and incubated overnight at the 
same temperature. Membrane was then washed for 3  min at 
room temperature with solution A (2× SSC and 0.1% SDS) 
and then twice for 15  min at the temperature specified in 
Supplementary Table S3 in solution B (0.1× SSC and 0.1% 
SDS). After this treatment, the membrane was blocked for 
30  min at room temperature with a blocking solution [1% 
casein in maleic buffer (0.1M maleic acid and 0.15M NaCl 
pH 7.5)]. Then, 0.1 μg/ml of streptavidin-horseradish peroxidase 
was added to the blocking solution. Membranes were incubated 
for 30  min at room temperature and then washed twice for 
15  min with maleic acid buffer plus 0.3% (V/V) tween-20. 
Finally, the membranes were washed for 3 min in pre-detection 
buffer (0.1M Tris HCl, 0.1M NaCl, pH 9.5) and developed 
using a chemiluminescent kit (SuperSignal West Pico 
Chemiluminescent Substrate, Prod#34080). Determination of 
aminoacylation levels in strains overproducing tRNAs was 
performed using 32P labeled probes. A similar protocol was 
used, but images were acquired using phosphorimager technology.

Determination of the in vivo Levels of tRNA 
Aminoacylation
Total RNA was purified in acidic conditions, and then, the 
3' extreme nucleotide was eliminated by sodium periodate 
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oxidation followed by β-elimination following previously 
described protocols (Salazar et  al., 2004). Briefly, 50  ml of 
LB were inoculated with 300  μl on preinoculum of E. coli 
and incubated at 37°C and constant shaking. At an OD600 of 
0.9–1.0, 15  ml of culture was pelleted at 10,000  g for 6  min. 
Paraquat to 1  mM was added to the remaining culture and 
continued incubating for 30  min, after which 15  ml were 
similarly pelleted. Immediately after pelleting, each bacterial 
pellet was resuspended in 500  μl of 0.3 M sodium acetate 
pH 5.2 with 1  mM EDTA pH 8.0. After resuspension, 500  μl 
of acid phenol were added and the mixture was incubated 
for 10  min on ice with intermittent mixing. Then, phases 
were separated by centrifuging for 6 min at 10,000 g. Aqueous 
phase was recovered and RNA was precipitated by adding 
1  ml of ethanol and storing samples at −80°C. After samples 
from stressed cells were kept for 30 min at −80°C, all samples 
were centrifuged (14,000  g, 30  min). Pellets were washed with 
0.5  ml of 75% ethanol with 10  mM sodium acetate pH 5.2 
and then resuspended in 50  μl of H2O. It is recommended 
not to use freshly distilled water to allow pH of water to 
decrease by absorption of atmospheric CO2. Each sample was 
divided into two 25 μl aliquots. 1.42 μl of 3 M sodium acetate 
of pH 5.2 was added to tubes “A” that were then stored at 
−80°C. tRNA in tubes “B” was deaminoacylated by adding 
6.25  μl of 1 M Tris acetate pH 9.0 and incubating for 60  min 
at 37°C. Samples in tubes B were precipitated by adding 3.13 μl 
of 3 M sodium acetate of pH 5.2 and 62.5 μl ethanol. Samples 
were stored at −80°C for at least 30  min, after which samples 
were centrifuged (30  min, 13,000  rpm). Pellets were washed 
with ethanol 70%, dried, and resuspended in 26.4 μl of 160 mM 
sodium acetate pH 5.2. Samples A were thawed and 4.84  μl 
of freshly prepared 250  mM sodium periodate was added to 
tubes A and B. Tubes were wrapped in aluminum foil and 
incubated for 90  min on ice. Then, 12.97  μl of 20% glucose 
was added. After an additional 90  min incubation in ice, 
4.3  μl of 3 M sodium acetate pH 5.2 and 87  μl ethanol were 
added. Samples were stored at least for 30  min at −80°C and 
centrifuged (30  min, 13,000  rpm). Pellets were resuspended 
in 250  μl of 0.5M lysine pH 8.0 and incubated for 60  min 
at 45°C. Then, 25  μl of 3M sodium acetate pH 5.2 and 500  μl 
ethanol were added, and samples were stored at least for 
30  min at −80°C. Tubes were then centrifuged (30  min, 
13,000 rpm), and after washing with 70% ethanol, pellets were 
dried and resuspended in 15  μl water. Then, samples were 
analyzed by 10% polyacrylamide gels with 8 M urea and by 
Northern blot analysis.

Cloning and Mutation Protocols
Plasmid pBAD30SFIT (Rojas et  al., 2018) contains a tandem 
fluorescent transcriptional fusion cassette composed of superfold 
green fluorescent protein (sfGFP) followed directly by a modified 
mCherry, itag-mCherry (Henriques et  al., 2013). The plasmid 
contains a XhoI-SpeI site after the third codon of sfgfp, where 
tetra codon sequences were inserted using annealed oligo cloning 
with the oligonucleotide pairs described in Supplementary 
Table S5. narJ was also cloned in XhoI-SpeI restriction sites 
after amplifying the gene from E. coli K-12 MG1655 genomic 

DNA using external oligonucleotides NarJ_EcoRI_5'_Fw and 
NarJ_XhoI_3'_GGA_Rv (Supplementary Table S6). To clone 
the mutant version of narJ, a similar protocol was used, 
exchanging primer NarJ_XhoI_3'_GGA_Rv by NarJ_XhoI_3'_
GGC_Rv. The same protocol was used to clone these genes 
in pBAD30SFIT-HP, which codes for a hairpin between gfp 
and mCherry. The hairpin was introduced in pBAD30SFIT by 
annealed oligo cloning of oligonucleotides Str_Yam_Fw and 
Str_Yam_Rv (Supplementary Table S6) in BglII y PciI 
restriction sites.

Cloning of tRNA genes was performed by annealed oligo 
cloning of oligonucleotides listed in Supplementary Table S7 
between EcoRI and HindIII sites of pKK223-3.

E. coli K-12 MG1655 ΔglyVX::FRT was constructed by the 
Red-swap method (Datsenko and Wanner, 2000) using primers 
glyV (H1 + P1) and glyX (H2 + P2; Supplementary Table S8), 
as well as plasmid pLZ01 (Blondel et  al., 2013) as template 
for amplification of a Cam resistance cassette flanked by the 
FRT sites (FLP recombinase target sequence).

Translation Efficiency Analyses
M9 media supplemented with branched amino acids (50  μg/
ml each) and ampicillin (100  μg/ml) were inoculated with 
bacteria from a saturated overnight culture in similar media 
and grown at 37°C in an orbital shaker. When indicated, the 
inoculated media were also supplemented with Gly (50  μg/
ml). When bacteria reached mid-log phase (OD600 ~0.4–0.6), 
a 50  μl aliquot of it was diluted in a 96-well optical-bottom 
plate with 150 μl fresh M9 media supplemented with arabinose 
(0.4% final concentration). When indicated, media additionally 
contained paraquat (700  μM final concentration). Plates were 
further shaken for 2  h at 37°C. Then, OD600 and fluorescence 
intensity of green fluorescent protein (GFP; Ex. 480  ±  4.5  nm, 
Em. 515  ±  10  nm) and mCherry (Ex. 555  ±  4.5  nm, Em. 
600  ±  10  nm) were measured in a microplate reader (Infinite 
M200 PRO, Tecan). When comparing GFP/mCherry fluorescence 
ratios of different strains (WT vs. ΔglyVX::FRT), data were 
normalized by the GFP/mCherry fluorescence ratio of a control 
without additional codons (S1).

Motility Assay
Strains were cultured in LB media supplemented with 100 μg/ml 
ampicillin and 100  μM IPTG. When the culture reached an 
OD600 of ~0.7, an aliquot was centrifuged and the pellet was 
resuspended in LB to an OD600 of 1. 5  μl of these samples 
were used to inoculate LB plates with 0.3% agar, 100  μg/ml 
ampicillin and 100 μM IPTG. When indicated, 500 μM paraquat 
were also added to the plates. The plates were incubated during 
8 (control) or 24  h (paraquat) in a humid chamber at 30°C. 
After this time, the radial growth was measured (Ha et al., 
2014) and expressed as a ratio to colony diameter of the 
strain carrying the empty plasmid (62  ±  5  mm under control 
conditions and 19  ±  10  mm when 500  μM paraquat was 
added). These experiments could not be  performed in plates 
with M9 media because motility was too low for all strains 
when paraquat was added.
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Growth Curves
E. coli K-12 MG1655 was transformed with plasmids carrying 
the genes for each tRNAGly isoacceptor and stored at −80°C. 
A fresh ON culture of these strains in LB media supplemented 
with 100  μg/ml ampicillin and 100  μM IPTG was diluted to 
DO600nm ~0.05  in a similar media with or without 1  mM 
paraquat and transferred to a 96-well microtiter plate. Growth 
was subsequently followed in a thermostated microplate reader 
(Infinite M200 PRO, Tecan) at 37°C and intercalating orbital 
(142  rpm, 6  mm amplitude) and linear (296  rpm, 6  mm 
amplitude) shaking in 10  min intervals. Using strains that 
have been cultured several times in LB plates gave inconsistent 
results, suggesting that strains overproducing tRNAGly accumulate 
mutations that altered their behavior.

Carbohydrate Fermentation Assay
ON cultures of bacteria grown in M9 media supplemented 
with glycerol 0.4%, Gly 50  μg/ml, branched amino acid of 
50  μg/ml, and ampicillin 100  μg/μl were used to inoculate 
similar media and incubated at 37°C. When cultures reached 
an OD600 value of 0.6–0.8, a sample was diluted to an OD600 
of 0.2  in similar media. Around 50  μl of these samples were 
mixed in a 96-well plate with 50  μl of similar media plus the 
corresponding carbohydrate (0.4% final concentration), IPTG 
(100  μM final concentration), and phenol red (0.1  μg/L) as 
pH indicator. Media also had diverse concentrations of paraquat 
(0–350  μM). Samples were incubated for 12  h at 37°C, after 
which plates were centrifuged (3,000  rpm, 7  min). Absorbance 
of the supernatant was measured at 560  nm.

Paraquat MIC Determination
MIC values were estimated using previously described methods 
(Wiegand et al., 2008). Briefly, 50  μl of culture with 108  CFU 
in M9 media supplemented with glycerol 0.4%, Gly 50  μg/
ml, branched amino acids of 50  μg/ml each, 100  μM IPTG, 
and 100  μg/ml ampicillin were mixed with 50  μl of the same 
media containing serial dilutions of paraquat in 96-well plates. 
Plates were incubated in ON at 37°C, and then bacterial growth 
was determined by OD600.

Analysis of Codon Usage
Codon usage for each gene was calculated with an in-house 
Perl 5 script and using the current RefSeq annotation for  
E. coli K-12 MG1655 genes (RefSeq assembly accession: 
GCF_000005845.2). Enrichment analysis was performed in 
EcoCyc platform (Keseler et  al., 2017).

RESULTS

Oxidative Stress Induces a Decrease in the 
Levels of Active tRNAGly

Aminoacylated tRNAs (aa-tRNAs) are essential for elongation 
of the nascent peptide during mRNA translation. While 
translation is mainly regulated at the initiation step, changes 
in the modification status and/or aminoacylation levels of 

tRNA can regulate translation by altering elongation rates 
(Starzyk, 1984; Subramaniam et  al., 2013a, 2014; Katz et  al., 
2016; Zhu and Dai, 2019). To determine the role of tRNA 
alterations in the bacterial oxidative stress response, we screened 
for changes in concentrations of active tRNAs upon exposure 
to oxidants using the tRNA aminoacylation reaction. Total 
tRNA was purified from E. coli K-12 MG1655 (Blattner et  al., 
1997) cells cultivated under control conditions or oxidative 
stress induced by addition of 1  mM paraquat or 2.5  mM 
H2O2. Addition of paraquat led to a minor decrease in growth, 
while exposure to H2O2 arrested cell growth for ~2  h, after 
which cells resumed replication (Supplementary Figure S1). 
Purified total tRNA was deaminoacylated and subsequently 
selectively aminoacylated with 10 available radioactive amino 
acids using cell-free extracts from E. coli cultured in control 
conditions. This allowed the screening of changes in the levels 
of tRNAs responsible for the decoding of 10 different amino 
acids during translation. Out of 10 tested tRNAs, only tRNAGly 
showed a statistically significant decrease in the levels of active 
tRNA after stress by exposure to either paraquat or H2O2 
(Figure  1A). Previous reports have shown a general decrease 
in total tRNA levels under oxidative stress in minimal media 
(Zhong et al., 2015; Zhu and Dai, 2019). In contrast, we observed 
that tRNA levels remained fairly constant (Figure  1B), 
suggesting the observed decrease in the levels of active tRNAGly 
was a specific response to oxidative stress. Since we  observe 
comparable effects on tRNAGly after addition of either H2O2 
or paraquat, we  confined additional studies to the effects of 
paraquat, that is continually reduced by the cellular NADPH 
pool (Hassan and Fridovich, 1979) producing a constant, 
readily reproducible oxidative stress. Furthermore, as oxidative 
stress is known to inactivate dihydroxyacid dehydratase and 
consequentially impair the synthesis of branched amino acids 
(Imlay, 2008), we  added Leu, Val, and Ile to cultures when 
using minimal media.

The Effect of Oxidative Stress on Specific 
tRNAGly Isoacceptors
E. coli has six-genes coding for tRNAGly. Four of them (glyV, 
glyW, glyX, and glyY) code for identical tRNAs that are 
indistinguishable by Northern blot. These tRNAs have a GCC 
anticodon (tRNAGly

GCC) that decodes GGC and GGU, two codons 
that are used at high frequency in E. coli. A fifth gene, glyU, 
codes for tRNAGly

CCC that exclusively decodes GGG codons. A 
sixth gene, glyT, codes for tRNAGly

UCC that decodes GGA and 
GGG codons. Codons decoded by tRNAGly

CCC and tRNAGly
UCC 

are used with a lower frequency (Table  1 and Supplementary 
Figure S2). Genes glyV, glyX, and glyY are clustered together 
in a putative operon, while the other genes for tRNAGly are 
either not clustered (glyU) or clustered with genes for other 
tRNAs (glyT and glyW; Supplementary Figure S3). We  tested 
whether changes in the expression levels of specific tRNAGly 
isoacceptors correlate with the observed differences in active 
tRNA levels during oxidative stress. Northern blot analyses 
indicated that levels of all tRNAGly isoacceptors were unaltered 
under oxidative stress (Figure  1C). The lack of variation in 
tRNAGly isoacceptor expression suggested that the changes in 

128

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Leiva et al. tRNAGly Inactivation Under Oxidative Stress

Frontiers in Genetics | www.frontiersin.org 6 August 2020 | Volume 11 | Article 856

active tRNAGly levels might instead result from chemical 
modifications that impair their interaction with GlyRS during 
aminoacylation. We  determined in vivo aminoacylation levels 
for tRNAGly directly by subjecting total tRNA pools to periodate 
oxidation and β-elimination followed by Northern blot (Salazar 
et  al., 2004). Through this treatment, deaminoacylated tRNAs 

loses their terminal adenine and migrate faster in polyacrylamide 
electrophoresis gels while aa-tRNAs are protected by the amino 
acid and retain their original length and electrophoretic mobility. 
We  observed decreases in the in vivo aminoacylation levels of 
the three tRNAGly isoacceptors under oxidative stress. While 
~60−80% of each tRNAGly isoacceptor is aminoacylated under 
control conditions, after paraquat addition these levels decreased 
to around ~30−50% (Figure  1D). However, a stronger decrease 
was observed for tRNAGly

UCC (from ~60 to ~30%) and tRNAGly
CCC 

(from ~80 to ~30%) that are less abundant than tRNAGly
GCC 

(from ~70 to ~50%). In similar experiments, we  found that 
oxidative stress induced by paraquat produces only minor alterations 
to the concentration and aminoacylation levels of other tRNAs 
such as tRNATrp, tRNATry, and initiator tRNAfMet, confirming that 
the observed deaminoacylation is a specific behavior  
of tRNAGly (Supplementary Figure S4). Next, we  hypothesized 
that tRNAGly inactivation might be  mediated through differences 
in the levels of chemical modification of the tRNAGly isoacceptors. 
Individual tRNAGly isoacceptors were purified and analyzed  
by quantitative RNA mass spectrometry. Surprisingly, while 
we  detected all modified nucleosides that are known for  
each isoacceptor, we  did not observe quantitative differences 
between the stress and the control samples (data not shown).  

TABLE 1 | tRNAGly coded in E. coli K-12 MG1655 genome.

tRNAGly genes Anticodon Decoded codon(s)

(usage frequency*)

% of total tRNA**

glyV, glyW, glyX, glyY GCC GGC (2.96%)
6.76%

GGU (2.47%)

glyU CCC GGG (1.11%)

3.31%***
glyT UCC GGA (0.79%)

GGG (1.11%)

- ACC -

*Based on data available at GtRNAdb (Chan and Lowe, 2009).
**As estimated in exponentially growing cells (Dong et al., 1996).
***Spots of tRNAGly

CCC and tRNAGly
UCC were not resolved, so the authors reported the 

total abundance for both tRNA isoacceptor together.

A

C D

B

FIGURE 1 | tRNAGly are inactivated under oxidative stress. (A) Effect of oxidative stress on the levels of active tRNAs specific for 10 different amino acids as measured 
by the plateau of aminoacylation reaction. Control: lysogeny broth (LB), white bars; oxidative stress: LB + 1 mM paraquat, light gray bars; or 2.5 mM H2O2, dark gray 
bars. *p ≤ 0.01, one way ANOVA with Dunnett versus Control posterior test for each amino acid (n = 3). (B) Effect of oxidative stress on the levels of total tRNA from 
cells cultured in M9 media under control (white bars) or oxidative stress (gray bars, left: 2.5 mM H2O2 or right: 1 mM paraquat) and analyzed by electrophoresis (n = 3). 
Intensities from tRNA are higher than expected, as ribosomal RNA (rRNA) should represent at least 80% of total RNA. We suggest this is an artifact of staining efficiency 
and should not alter the conclusions of the figure. (C) Effect of paraquat on the levels of tRNA as quantified by Northern blot of total RNA samples purified from control 
(LB, white bars) or stressed (LB + 1 mM paraquat, gray bars) E. coli cells. Data in the graph showed no significant differences using one way ANOVA (n = 5). (D) In vivo 
levels of aminoacylation of tRNAGly in E. coli cell before (white bars) or 30 min after stress by 1 mM paraquat (gray bars). 3' terminal nucleotide of RNAs was eliminated 
by oxidation with sodium periodate followed by β-elimination and analyzed by Northern blot. **p ≤ 0.05, paired t-test (n = 3). In all box graphs, top, middle, and bottom 
lines of the box represent 25, 50, and 75% of the population. Whiskers represent the maximum and minimum values and the mean is represented by a circle.
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However, these results do not necessarily invalidate our hypothesis, 
as abasic sites and unknown oxidation products of modified 
tRNAGly nucleotides that might inactivate the tRNAs could have 
escaped our analysis. Finally, modifications might have been lost 
as a result of heating in the presence of a reducer during 
purification of individual tRNAGly isoacceptors.

Effect of Oxidative Stress on Translation of 
Gly Codons
Changes in aa-tRNA concentration are likely to alter the 
translation efficiency of the codons they decode. As each tRNAGly 
isoacceptor decodes a different set of codons, this could potentially 
lead to codon-dependent changes in gene expression, which 
in turn could give rise to distinct phenotypes. To determine 
whether the observed decrease in active tRNAGly affects the 
decoding efficiency of the corresponding Gly codons, 
we  generated reporter constructs where we  fused GFP to four 
contiguous identical Gly codons using mCherry as an internal 
control of transcript levels and global alterations of translation 
initiation. We used these reporters to test whether GFP production 
was affected in response to oxidative stress conditions where 
we observed changes in active tRNAGly levels and aminoacylation 
(Figure  1). We  previously used this strategy to analyze the 
role of translation elongation factor P during the translation 
of several codon patterns (Elgamal et  al., 2014) and the effect 
of natural changes in tRNA gene copy numbers on codon 
translation (Rojas et  al., 2018). We  first tested GFP production 
in M9 minimal medium containing glycerol and branched amino 
acids, both in the presence and absence of Gly. In both conditions, 
we observed a higher GFP/mCherry ratio when using reporters 
containing the frequent GGC or GGU codons as compared to 
the infrequently used codons (GGA or GGG). This shows that 
the method is sufficiently sensitive to differentiate between the 
translation efficiency of different Gly codons [Figure  2; ratio 
between GFP/mCherry values for the most frequently used 
codon (GGC) and least frequently used codon (GGA) is ~1.75 fold 
in absence of Gly]. Additionally, this suggests that translation 
of four contiguous Gly codons has a similar or slower speed 
than initiation that is usually considered the limiting step of 
translation (Subramaniam et  al., 2013b; Hersch et  al., 2014). 

Otherwise, translation of the four reporters would have produced 
similar amounts of GFP. We  then repeated the experiment in 
a strain where two out of four of the genes coding for tRNAGly

GCC 
(glyVX) were deleted, leading to a decrease in the levels of 
the tRNAGly

GCC (data not shown). Decreasing the levels of 
tRNAGly

GCC induced a lower translation of the gfp genes enriched 
in GGT or GGC codons (that are directly translated by tRNAGly

GCC) 
and only minor effects on gfp enriched for the two other Gly 
codons, indicating that the method is sensitive to changes in 
tRNA levels (Supplementary Figure S5).

While adding paraquat to minimal media at the time of 
reporter induction completely stopped cell replication, GFP and 
mCherry synthesis continued (although at much lower levels) 
indicating that cells can still transcribe and translate their genes 
following initiation of oxidative stress. The addition of paraquat 
induced a strong decrease in the production of both GFP and 
mCherry in the presence or absence of Gly (around 10 and 
15  fold decrease for GFP/OD600 and mCherry/OD600 values, 
respectively, for the strain carrying the control plasmid; data 
not shown). When oxidative stress was induced in the presence 
of Gly, no difference was observed between the translation of 
each Gly codon (Figure 2). This result suggests that the decrease 
in the rate of translation initiation or another limiting step is 
much stronger than any effect on Gly codons translation, making 
differences in Gly translation unmeasurable. Instead, when Gly 
was absent from the culture media, differences between translation 
of each Gly codon were readily measurable and we  observed 
that, unexpectedly, translation of GGA shifted from being the 
slower Gly codon to being the fastest codon (Figure  2). This 
suggests that under this condition, not only a fraction of tRNAGly 
isotypes are inactivated, but additionally, Gly becomes limiting. 
Thus, a reduced aminoacylation derived from low Gly availability 
(Böck and Neidhardt, 1966; Folk and Berg, 1970a,b; Subramaniam 
et al., 2013b) plus tRNAGly inactivation made Gly codon translation 
slow enough to produce measurable differences in GFP 
production. In agreement with this interpretation, if we  reduce 
the concentration of paraquat added to the media lacking Gly 
from 700 to 250  μM, presumably decreasing the degree of 
tRNAGly inactivation, the differences between Gly codons are 
also not observed (Figure 2). Although less likely, an alternative 

FIGURE 2 | Oxidative stress alters translation of Gly codons. Figure shows green fluorescent protein (GFP) fluorescence normalized by fluorescence of mCherry in 
diverse strains and conditions. Data were additionally normalized dividing by the GFP/mCherry ratio of the control strain (reporter S1, without additional codons). 
Four identical Gly codons were cloned in fusion to GFP and fluorescence measured in control media (M9), control media with Gly (M9-Gly), media with high 
concentration of paraquat in the absence (PQ 700 μM) or presence (PQ 700 μM-Gly), or media with low concentration of paraquat (PQ 250 μM). ****p ≤ 0.0001, 
**p ≤ 0.01, *p < 0.05, one way ANOVA with Dunnett versus GGA strain for each condition (n ≥ 3).
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interpretation that we  cannot rule out is that addition of Gly 
somehow protects tRNAGly from inactivation without producing 
a similar degree of protection to translation initiation. Following 
this interpretation, under reduced paraquat concentrations, the 
fraction of inactivated tRNAGly would be  much smaller than 
inhibition of translation initiation.

Effect of Oxidative Stress on Translation of 
GGA Codons in Natural Context
The results shown here indicate that oxidative stress caused by 
700  μM paraquat alters translation of Gly codons when located 
in the context of four continued identical Gly codons within 
the gfp gene. These alterations are stronger for the most frequently 
used codons, transforming the most infrequently used GGA 
codon into the fastest Gly codon under strong oxidative stress. 
Nevertheless, in E. coli K-12 MG1655, GGA is never found in 
the context of four consecutive identical codons, questioning 
the relevance of our observation in natural genes. To verify 
the effect of paraquat on translation of Gly codons located in 
their natural context, we  cloned WT narJ (coding for nitrate 
reductase molybdenum cofactor assembly chaperon) and a 
version where its two contiguous GGA codons were mutated 
to GGC in a translational fusion to gfp to form the narJ(GGA)-gfp 
and narJ(GGC)-gfp genes. Like in the previous experiments, 
we  used mCherry as an internal control. We  did not observe 
a significant difference between changes in GFP/mCherry 
fluorescence ratios under control and stress conditions for the 
narJ(GGA)-gfp and narJ(GGC)-gfp strains (Figure 3, left panel). 

The sensitivity of our reporter may be  decreased, if ribosomes 
that have translated gfp slide and initiate mCherry translation 
(70S-scanning initiation; Yamamoto et al., 2016), as then mCherry 
translation would not be completely independent of gfp translation. 
To avoid the possible effects of 70S-scanning, we  introduced 
a sequence which is predicted to form a stable hairpin between 
both genes and has been previously shown to prevent ribosome 
sliding (Yamamoto et al., 2016). Using this construct, we observe 
a ~20% higher GFP/mCherry fluorescence ratio under oxidative 
stress when narJ is coded using GGA codons than when using 
GGC codons (Figure 3, right panel). This indicates that although 
under oxidative stress, GGA translation is less inhibited than 
translation of other Gly codons, and its effect on the amount 
of protein produced will strongly depend on the context where 
the codon is located.

tRNAGly Modulates the Response to 
Oxidative Stress
Alterations of translation efficiency of Gly codons probably 
alter level and/or cotranslational folding of several proteins 
under oxidative stress. In order to confirm that alterations in 
the active tRNAGly pool may affect the response to oxidative 
stress, we  studied the response to oxidative stress in strains 
overproducing each tRNAGly isoacceptor from an IPTG inducible 
plasmid (pKK223-3). In all these experiments, the empty plasmid 
was used as a control for non-specific effects of the plasmid, 
and a plasmid coding for a tRNA that did not show changes 
in our aminoacylation experiments (tRNATyr

GUA) was used as 
a control for the non-specific effects of tRNA overproduction. 
Overproduction of any of the tested tRNAs (including tRNATyr

GUA) 
increased the sensitivity of carbohydrate fermentation to paraquat 
as measured by changes in the pH of culture media. Nevertheless, 
the effect was much stronger for the strain producing tRNAGly

CCC. 
Similarly, all the other tested phenotypes were also dependent 
on the overproduction of individual isoacceptors. For instance, 
while the stronger effect of overproduction of tRNAGly

GCC was 
in preventing the loss of bacterial motility (measured as changes 
in colony diameter in low agar LB plates), overproduction of 
tRNAGly

UCC mostly reduced culture yield (measured in 96-well 
plate cultures). As mentioned above, overproduction of tRNAGly

CCC 
mainly increased the sensitivity of carbohydrate fermentation 
to paraquat (Figure  4 and Supplementary Figure S6). In 
contrast to these phenotypes, cells overproducing these tRNAs 
did not show any change in their respective MIC for paraquat 
(25 μM in M9 media supplemented with branched amino acids).

In addition to generating idiosyncratic phenotypes, 
overproduction of each tRNAGly induced distinct changes in 
the aminoacylation of the other tRNAGly isoacceptors (Figure 4D). 
For instance, overproduction of tRNAGly

GCC led to a ~10% 
decrease of the basal levels of aminoacylation of all tRNAGly 
isoacceptors. In contrast, tRNAGly

UCC overproduction only altered 
basal aminoacylation of the other tRNAGly isoacceptors, but 
not its own. Finally, overproduction of tRNAGly

CCC increased 
its basal level of aminoacylation while inducing a decrease in 
aminoacylation of other tRNAGly isoacceptors. Under oxidative 
stress, the effects were similarly diverse, with tRNAGly

GCC inducing 
a decrease in tRNAGly

CCC aminoacylation but tRNAGly
UCC and, 

FIGURE 3 | Oxidative stress alters translation of Gly codons in natural 
context. Left graph shows the GFP/mCherry fluorescence ratio for narJ 
[NarJ(GGA)-GFP, white] or a mutant of the gene where a contiguous GGA pair 
was changed for a pair of GGC [NarJ(GGC)-GFP, gray] cloned in fusion to 
GFP. Shown in the right graph are similar experiments performed after 
introducing a hairpin that prevents ribosome sliding between the sequences 
coding for GFP and mCherry. *p < 0.05, two-tailed t-test (n = 3).
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in particular, tRNAGly
CCC inducing an increase in tRNAGly

CCC 
aminoacylation level. Overall, under oxidative stress, the 
aminoacylation of the most abundant tRNAGly isoacceptor 
(tRNAGly

GCC) was the least sensitive to the levels of other tRNAGly 
isoacceptors, while tRNAGly

CCC showed the highest sensitivity.
In summary, the specificity of the phenotypes induced by 

overproduction of each tRNAGly isoacceptor and the fact that 
most were observed under oxidative stress but not during 
normal growth suggests that these effects are triggered by 
individual tRNAGly isoacceptors and are not simply secondary 
effects of tRNA overproduction. Nevertheless, it is currently 
not possible to determine a cause-effect relation between 
particular tRNAs and phenotypes because changes in the levels 
of any tRNAGly isoacceptor alter the aminoacylation of 
other tRNAs.

DISCUSSION

Regulation of Translation by Changes in 
tRNA Concentration
Here, we  demonstrate that oxidative stress induces specific 
alterations in the tRNAGly pools and concurrent changes in 
Gly codon translation rates. Nevertheless, changes in protein 
levels are only observed under strong oxidative stress, low Gly 
availability, and particular genetic context. Taken together, our 
findings suggest that diversity of codon translation speeds is 
only observed when the speed of Gly codon translation is 
similar to or slower than translation initiation which is usually 
considered the limiting step of the complete process (Hersch 
et  al., 2014; Subramaniam et  al., 2014). Thus, it appears that 
the translational response to oxidative stress is complex and 
effects on elongation are only observed under the most hostile 
conditions. Either lower paraquat concentration or higher Gly 
availability induces a condition where changes in gfp codons 
do not affect protein production.

In agreement with our observations, reports of experiments 
performed in other E. coli strains also indicate that the relevance 
of elongation in determining the overall speed of protein 
production increases at stronger oxidative stress conditions, in 
this case induced by higher concentrations of H2O2 (Zhu and 
Dai, 2019). In contrast to what we  have observed, but in 
agreement with previous reports (Zhong et  al., 2015), the 
authors of these experiments observe a decrease in the 
concentration of all tRNAs. Thus, the translational response 
to oxidative stress seems to be  strain dependent. It is currently 

A

B

C

D

FIGURE 4 | Overproduction of tRNAGly alters the response of E. coli to 
oxidative stress. The effect of overproduction of diverse tRNAGly isoacceptors 
on the response to oxidative stress induced by paraquat was studied. (A) 
Effect of tRNAGly overproduction over growth curves performed at 37°C in 
control media (left) or media with paraquat (stress condition, right). Inset 
graph shows same data in linear scale for time points above 10 h. tRNAGly

CCC: 
green, tRNAGly

GCC: purple, tRNAGly
UCC: red, tRNATyr

GUA: orange, and empty 
pKK223-3 plasmid: blue (n = 8). (B) Effect of tRNAGly overproduction on the 
fermentation of lactose as measured by changes in media pH after incubation 
at diverse paraquat concentrations. Higher absorbance indicates higher pH 
(lower fermentation of the carbohydrate). tRNAGly

CCC: green inverted triangles, 
tRNAGly

GCC: purple rhombus, tRNAGly
UCC: red triangles, tRNATyr

GUA: orange 
circles, and empty pKK223-3 plasmid: blue squares (n = 3). (C) Effect of 
tRNAGly overproduction on bacterial motility as measured by changes in the 
diameter of colonies cultured on low agar LB plates in the absence (left) or 
presence (right) of paraquat. Data in graph represent the diameter of colonies 
normalized dividing by the average diameter of the control colonies. Each bar 

(Continued)

FIGURE 4 | represents the average of at least four replicates. 
****p ≤ 0.0001, **p ≤ 0.01, *p ≤ 0.05, one way ANOVA with Dunnett versus 
strain with empty plasmid at the corresponding condition. (D) Fraction of 
tRNAGly isoacceptors that is aminoacylated in strains overproducing diverse 
tRNAGly isoacceptors. Color represents the tRNA isoacceptor that is 
overproduced in strains where aminoacylation was quantified. tRNAGly

CCC: 
green, tRNAGly

GCC: purple, tRNAGly
UCC: red, empty pKK223-3 plasmid: blue. 

Darker colors correspond to measurements performed before paraquat 
addition, while light colors represent aminoacylation 30 min after addition of 
the stressor. Each bar represents the average of at least three replicates.
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difficult to predict what determines these different behaviors 
between E. coli strains. For example, the lack of a toxin-antitoxin 
system or a smaller nuclease activity in the strain we  used 
could prevent tRNA cleavage under oxidative stress. Alternatively, 
a decreased protease activity or increased amino acid usage 
might produce stronger limitations of amino acid availability 
in strains used by other groups, thereby inducing degradation 
of tRNAs (Svenningsen et  al., 2017).

Further research will be  required to clarify the peculiarities 
that induce different behaviors between E. coli strains. 
Nevertheless, our data show that in E. coli K-12 MG1655, an 
important model strain, only tRNAGly is inactivated under 
oxidative stress. Although all isoacceptors are deacylated, the 
decrease in the speed of GGA translation is smaller than 
observed for other Gly codons. This should allow preferential 
translation of GGA enriched genes under oxidative stress. As 
mentioned previously, GGA is used with a lower frequency 
than other Gly codons in E. coli K-12 MG1655 (Table  1; 
Supplementary Figure S2; Supplementary Table S1). Only 
79 genes (~1.8% of all E. coli K-12 MG1655 genes) use GGA 
as 3% or more of their codons. Many of the genes that use 
GGA codons with high frequency are implicated in the negative 
regulation of cell growth and cellular defense, including toxins 
from three toxin-antitoxin systems (chpB, mazF, and ralR) that 
might explain the differences observed in growth after 
overproduction of tRNAGly

UCC. The high abundance of GGA 
codons in genes such as rmf, which is involved in ribosome 
hibernation during stationary phase or yciH that binds the 
ribosome and alters the expression of stress response genes, 
and growth in minimal medium could further explain some 
of the observed growth phenotypes. Also, the enrichment of 
genes implicated in cell adhesion or motility (yraK, ydeQ, yadK, 
flhE, and chaC) could explain different motility behaviors 
between strains overexpressing the different tRNAGly genes. A 
comprehensive list of functions enriched in the list of genes 
with high GGA codon usage is given in Supplementary Table 
S2. Nevertheless, care should be  taken when extrapolating 
results obtained by using fluorescent reporters to these GGA-rich 
genes, as our results indicate that sensitivity to oxidative stress 
may strongly depend on the context where GGA codons are 
located. This context sensitivity may derive from different speeds 
of translation depending on neighboring codons (Chevance 
et al., 2014), for instance, due to interactions with other tRNAs 
in the ribosome (Buchan et  al., 2006). As we  are analyzing 
translation of full-length genes and not isolated GGA codons, 
different sensitivities may additionally arise from a slow translation 
initiation or specific patterns of amino acids or codons where 
translation elongation is very slow, making any change in GGA 
translation undetectable due to other limiting steps in translation 
(Hersch et  al., 2014). As mentioned previously, this might 
explain the lack of differences between translation of each Gly 
codon under some conditions. Oxidation of ribosomal RNA 
(rRNA) or proteins (Katz and Orellana, 2012; Liu et  al., 2012; 
Willi et  al., 2018) might explain such a decrease in translation 
initiation. In this context, the fact that the anti-Shine-Dalgarno 
of E. coli presents repeats (ACCUCC) of the tRNAGly anticodon 
sequences (NCC) might suggest a similar modification 

mechanism. Nevertheless, the little available data (Willi et  al., 
2018) suggests that the 3' extreme is more resistant to oxidative 
stress derived modifications than other segments of the rRNA.

Based on current data, it is difficult to determine why 
translation of GGA is less inhibited than translation of the 
other Gly codons. One possibility is that there is a lower 
requirement of aa-tRNAGly

UCC as a consequence of the low 
frequency of usage of GGA codons (Table  1; Supplementary 
Figure S2). If true, this would limit the sensitivity of translation 
to changes in the levels of active tRNAGly

UCC. Nevertheless, 
relations between tRNA and translation appear to be  complex, 
and the effect of changes of a single tRNA might be  difficult 
to predict. For instance, while we  observe that increasing the 
concentration of tRNAGly

GCC may result in significant alterations 
in the levels of aminoacylation of the other tRNAGly isoacceptors 
(Figure 4D), we also found that at least under some conditions, 
a decrease in concentration of the same tRNA can have very 
limited effects on translation of the codons not directly translated 
by the affected tRNA (Supplementary Figure S5).

Final Remarks
Recent research on the effects of oxidative stress on the bacterial 
translation machinery has shown a very diverse set of effects 
ranging from changes in error rates (Ling and Söll, 2010; Wu 
et al., 2014; Steiner et al., 2019) to translation inhibition (Kojima 
et al., 2009; Nagano et al., 2015; Zhong et al., 2015; Yutthanasirikul 
et  al., 2016; Zhu and Dai, 2019). Such results appear to derive 
from alterations to all components of the machinery such as 
changes in tRNA (Katz and Orellana, 2012; Liu et  al., 2012; 
Zhong et  al., 2015; Zhu and Dai, 2019), aminoacyl-tRNA 
synthetases (Ling and Söll, 2010; Katz and Orellana, 2012; Wu 
et  al., 2014; Steiner et  al., 2019), ribosomes (Katz and Orellana, 
2012; Liu et  al., 2012; Willi et  al., 2018), and elongation factors 
(Kojima et  al., 2009; Katz and Orellana, 2012; Nagano et  al., 
2015; Yutthanasirikul et  al., 2016). Nevertheless, comparison of 
our results with these previous reports indicates that the relevance 
of each of these changes to bacterial adaptation depends not 
only on the culture conditions but also on the strains being 
analyzed. Thus, further studies will be  required to understand 
the relevance of alterations in each component of the translation 
machinery in the adaptation to diverse degrees of stress and 
how the genetic background of each strain determines this response.
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