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Editorial on the Research Topic

Fundamentals and Applications of AI: An Interdisciplinary Perspective

Machines, computers, and algorithms appear recurrently in the future imagined in science fiction
pieces. Terminator’s Skynet, Space Odyssey’s HAL 9000, Psychohistory of Asimov’s Foundation, and
Westworld’s Dolores are just a few examples of our collective imaginary of a (days) topic future.
Interestingly, the year 2019 has represented the future in some works. Toronto Star in 1983 asked
Asimov to predict the future, the world of 2019. This is also the case for Blade Runner, where the action
runs in a dystopic LA, in 2019, with replicants having “almost” human cognitive capabilities. Although
we have not reached most of the utopian pictures, the growth of Big Data and Artificial Intelligence
algorithms is unquestionable (Figure 1). Thus, celebrating the unstoppable advance of AI, we collect
in this RT several studies addressing fundaments and applications from a physics perspective.

In 2020, AI has continued its penetration into classical fields and emerging technologies. Fueled
by deep learning and the automatic generation of data, the techniques developed in AI are being
applied to predict and control physical, biological, engineering, and even commercial systems. Given
the two-way interaction between AI and different fields and including how these fields inspire novel
methods and theory in AI, we had envisioned a volume illustrating such an interdisciplinary
perspective. Contributions include quantum annealers and quantum neural networks, echo state
networks, machine learning (reinforcement learning and graph-based methods), and applications to
optimization, classification of heartbeats, animal collective movement, and climate forecast, and the
use of AI to discover physical laws.

A fast machine learning model for ECG-based heartbeat classification and arrhythmia
detection was developed, based on echo state networks [1]. The classifier requires a small
number of features and a single ECG signal suffices. The possibility of using a combination of
ensembles allows them to exploit parallelism to train the classifier with remarkable speed. The
sensitivity and predictive values are comparable with those of the state of the art in fully
automatic ECG classifiers and even outperform other ECG classifiers that follow more complex
feature selection approaches.

Reservoir computers are investigated in two contributions. First, a coherent all-optical fiber-ring
reservoir computer with distributed Kerr nonlinearity is investigated numerically and experimentally [2].
The system is based on a passive coherent optical fiber-ring cavity where part of the nonlinearity is due to
the Kerr effect. They compare the nonlinear transformations of information in the reservoir’s input layer,
the reservoir itself, and the readout layer. They find that the Kerr effect enhances the computational
capability of the reservoir, in particular, its nonlinear computational capacity. Second, the trade-off
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between information processing capacity and rate is analyzed in
Ref. [3] using a delay-based reservoir computer. Delay-based
reservoir computers have a trade-off between computational
capacity and processing speed due to the nonzero response time
of the nonlinear node. They find that the computational
capacity degrades for a sampling output rate that is higher
than the inverse of the response time of the system. Moreover,
the computational capacity also depends on the misalignment
between the delay time of the nonlinear node and the data
injection time.

In the realm of biology, the collective behavior of animals is a
fascinating field aiming to understand how patterns of coordination
among a large number of individuals emerge as a result of local
interactions. Inferring the rules that give rise to a certain behavior is
a challenging problem as any occasional observer of flocks and fish
schools can attest. Ref. [4] uses the framework of reinforcement
learning, machine learning techniques in which an agent acts in an
environment and learns to maximize a reward signal, to model the
problem of automatically discovering local rules of interaction that
would lead to a desired collective behavior. To that end, Costa et al.
apply evolutionary strategies to optimize a single policy (mapping
from sensory inputs to actions) followed by the agents so that a
desired collective behavior would emerge.

The potential of graph-based methods in combination with
machine learning algorithms is addressed in Ref. [5]. The authors
explore two methods to detect outliers, with applications to high-
dimensional datasets. The first method measures the
fragmentation of a graph, where the data samples are the
nodes of the graph, while the second method is based on the
Isomap algorithm, a dimensionality reduction technique. The
performance is compared with alternative methods and assessed
on the dependence on the size of an anomalous region within an
image, a known problem in anomaly and outlier detection.

An example of large-scale coordination occurs in the climate
and ocean circulation systems. Predicting temporal patterns such
as El Nino oscillation is a problem of considerable practical and
fundamental interest. Ref. [6] reviews different machine learning
techniques to predict El Niño events for lead times larger than
12 months and studies which type of attributes is most relevant
for an accurate forecast. The review focuses on feed-forward
artificial neural networks from early work back in the late 90s to
the more recent graph-based methods.

Quantum approaches are explored in three contributions. Refs. [7
and 8] implement quantum annealers to solve quadratic
unconstrained binary optimization (QUBO) in two applications:
an industrial problem, the control of automated guided vehicles in
a factory [7], and the problem of item listing optimization for
e-commerce [8]. The contributions probe the capacity of quantum
annealers to address industrial and commercial problems stimulating
further research of quantum annealers to solve optimization
problems in real-world systems. Ref. [9] addresses the no-cloning
theorem–the impossibility to duplicate a quantum state—and how to
circumvent this limitation for applying quantum computing. In
particular, they obtain lower bounds of input redundancy, that is,
how many times the data must be reintroduced in parameterized
quantum circuits (PQCs) (also referred to as quantum neural
networks or variational quantum circuits). This contribution
analyzes two different functions for the encoding (linear encoding
and arcsin encoding) and proves that lower bounds are logarithmic in
terms of a linear algebraic complexity measure of the target function.

A different approach is the implementation of internal
processing capacity in models of complex systems, in
particular, agent-based models. Ref. [10] introduces an agent-
based model with cognitive and social dynamics, the Bayesian
word learning model, to study the effects of cognitive and social
dynamics on the emergence of linguistic consensus in the naming
game. In the game, agents learn new words by generalization,
using Bayes statistics, from previous experience. The novelty of
the approach, with agents modeled after a Bayesian inference
framework, captures important properties of human behavior and
learning and opens the possibility to study applications to
language, semiotics cognitive science, and complex systems.

Finally, a research line that is attracting interest is the development
of an automated scientist, to extract interpretable dynamics and laws
directly from data. In this direction, Ref. 11 uses machine learning
and data-driven approaches, the sparse identification of nonlinear
dynamics algorithm, to model the motion of falling objects. One
conclusion is that blindly applying machine learning techniques can
be inappropriate without using domain-specific knowledge.
Additionally, the contribution addresses interesting issues related

FIGURE 1 | Growth of the number of documents related to artificial
intelligence in (A) the WoS and (B) Dimensions. (A) Between 1990 and 2010,
the growth seems exponential with a doubling time of 8 years for artificial
intelligence and 3.5 years for machine learning. In more recent years, the
growth is even faster. Number of documents obtained in the Web of Science
with the terms “artificial intelligence,” “machine learning,” and “deep learning.”
(B) The number of documents identified in any Frontiers journal also shows an
exponential growth with a doubling time smaller than 2 years. Number of
documents obtained in Dimensions with the terms “artificial intelligence,”
“machine learning,” and “deep learning” and filtering by Frontiers journals.
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to model “discoverability” and “interpretability,” important concepts
that we are only starting to understand, and that can play an
important role in the future. Indeed, AI is already being used to
learnmodels from quantummechanics to statistical physics, and this
trend can only be expected to grow.
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For e-commerce websites, deciding the manner in which items are listed on webpages

is an important issue because it can dramatically affect item sales. One of the simplest

strategies for listing items to improve the overall sales is to do so in a descending

order of popularity representing sales or sales numbers aggregated over a recent period.

However, in lists generated using this strategy, items with high similarity are often placed

consecutively. In other words, the generated item list might be biased toward a specific

preference. Therefore, this study employs penalties for items with high similarity being

placed next to each other in the list and transforms the item listing problem to a quadratic

assignment problem (QAP). The QAP is well-known as an NP-hard problem that cannot

be solved in polynomial time. To solve the QAP, we employ quantum annealing, which

exploits the quantum tunneling effect to efficiently solve an optimization problem. In

addition, we propose a problem decomposition method based on the structure of the

item listing problem because the quantum annealer we use (i.e., D-Wave 2000Q) has

a limited number of quantum bits. Our experimental results indicate that we can create

an item list that considers both popularity and diversity. In addition, we observe that

using the problem decomposition method based on a problem structure can provide

to a better solution with the quantum annealer in comparison with the existing problem

decomposition method.

Keywords: item listing, e-commerce, quadratic assignment problem, quantum annealing, D-Wave, problem

decomposition

1. INTRODUCTION

Several companies have recently started operating e-commerce websites to sell their items and
services to the public considering the widespread use of the internet. For these companies, deciding
on the order in which items are listed on their website’s pages is important because this ordering has
the potential to dramatically affect the sales of their items or services. Figure 1 shows a snapshot
of a hotel reservation website. This is an example of the items being listed on an e-commerce page.
On this website, hotels at different locations are listed in the order of popularity calculated based on
various indicators from top to bottom. These sorted items for display on webpages are collectively
referred to as an item list.
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To improve sales on e-commerce websites, placing items in
the descending order of popularity representing sales or sales
numbers aggregated over a recent period is a simple strategy
for determining the list order of items (Long and Chang, 2014).
In addition, the popularity of an item can be estimated by it is
placing it at different positions in the item list and determining
the position of each product to maximize the total popularity
estimate. In particular, if pij is the estimated popularity of an item
i ∈ I when it is placed in a position j ∈ J, then the total popularity
of all items can be maximized by solving the following integer
programming problem (Wang et al., 2016):

maximize
∑

i∈I

∑

j∈J

pijxij

subject to
∑

i∈I

xij = 1, j ∈ J,

∑

j∈J

xij = 1, i ∈ I,

xij ∈ {0, 1}, i ∈ I, j ∈ J.

(1)

where xij is a binary variable that indicates whether or not to
assign item i to position j. The abovementioned constraints
ensure that only one item is allocated to each position, and only
one position is allocated to each item. In this study,

P(x) =
∑

i∈I

∑

j∈J

pijxij

is referred to as the popularity term for x = (x11, x12, · · · ). This
problem can be interpreted as a network flow problem, and
an efficient technique to solve such a problem in polynomial
time exists. Furthermore, the solution obtained by solving this
network flow problem with xij ∈ [0, 1] coincides with the
solution of the abovementioned integer programming problem
(Vazirani, 2013).

However, in the case of the list of items generated using
such a strategy, the relationship between the different objects is
ignored because the popularity of each item pij is considered
independently. For example, let us assume that customers visit
an e-commerce website and browse the page of a particular
item group. If the relationships among different items are not
considered while placing items in an item list, several items
with high similarities can possibly be placed close to each other,
thereby reducing the value of the item list for customers in terms
of item diversity. Considering this, several attempts have been
made to include item diversity in item recommendation lists for
users to ensure that they find the recommendation lists useful
(Adomavicius and Kwon, 2011; Antikacioglu and Ravi, 2017).
In these previous studies, the measures of diversity in the item
recommendation lists for customers were improved by solving
the maximum matching problem of the bipartite graph obtained
after Top-N recommendation.

In this study, we introduce diversity into the item list for the
entire user base, as well as methods for improving the usefulness
of recommendation lists. An item list is generated by solving an
optimization problem that imposes a penalty when items with
high similarity are placed in adjacent to each other. Considering

FIGURE 1 | An example of an item list on a hotel reservation website.

both popularity and diversity, the item list generation problem
can be formulated as a quadratic assignment problem (QAP) as
detailed below.

We employ quantum annealing (QA) herein to solve the
QAP (Kadowaki and Nishimori, 1998). An optimization problem
formulated with discrete variables can be efficiently solved
using the Ising model or a quadratic unconstrained binary
optimization problem (QUBO) because of the introduction of
the quantum tunneling effect by QA. Currently, the protocol of
QA is artificially realized in an actual quantum device known
as a quantum annealer (Berkley et al., 2010; Harris et al., 2010;
Johnson et al., 2010; Bunyk et al., 2014). The quantum annealer
has been tested for numerous applications, including portfolio
optimization (Rosenberg et al., 2016), protein folding simulation
(Perdomo-Ortiz et al., 2012), online advertisement allocation
optimization (Tanahashi et al., 2019), molecular similarity
problem (Hernandez and Aramon, 2017), computational biology
(Li et al., 2018), job-shop scheduling (Venturelli et al., 2015),
traffic optimization (Neukart et al., 2017), election forecasting
(Henderson et al., 2018), machine learning (Crawford et al., 2016;
Khoshaman et al., 2018; Neukart et al., 2018), and for automated
guided vehicles in plants (Ohzeki et al., 2019). In addition, several
other studies have been conducted to efficiently solve various
problems using the quantum annealer (Arai et al., 2018; Ohzeki
et al., 2018a,b; Takahashi et al., 2018; Okada et al., 2019).
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In particular, our problem can be solved using the quantum
annealer by formulating our QAP as a QUBO. However, a QUBO
for such a large number of items cannot be directly solved in
one instance with the current state-of-the-art quantum annealer,
namely D-Wave 2000Q because it employs the chimera graph.
The physical qubits available on D-Wave 2000Q are less than
2048 because the qubits might have defects. In addition, the
connection between the physical qubits is sparse and limited on
the chimera graph. Thus, several embedding techniques have
been proposed; however, the number of logical qubits available
to represent the optimization problems to be solved is drastically
reduced (Boothby et al., 2016). To address this issue, a heuristic
method has been proposed to solve a large-sized problem using a
limited number of hardware bits. D-Wave Systems, which is the
manufacturer of D-Wave 2000Q, has developed an open-source
software qbsolv (Booth et al., 2017) that solves a large-sized
problem by dividing it into small subproblems. However, the
decomposed QAPmight not necessarily lead to feasible solutions
because qbsolv selects the subset of variables in the order of
the energy impact of each variable for division of a problem.
Furthermore, in the literature (Okada et al., 2019), the division of
an original problem into subproblems based on its structure is a
promising method to efficiently solve large-sized problems using
D-Wave 2000Q. Considering this, we propose herein a method
to obtain better objective values for the QAP problem compared
to those provided by the existing method (Booth et al., 2017) in
the same calculation time by decomposing the problem based on
the set of items and positions that they can be assigned to in an
item list. In addition, we assess the performance of the proposed
method using the actual access log of a hotel reservation website.

The primary contributions of our study are summarized
as follows:

• We propose a method of creating item lists on an e-commerce
website as a QAP considering the popularity and diversity of
the items.

• We convert the QAP to the QUBO to solve the
abovementioned problem with D-wave 2000Q.

• We propose a decomposition technique exploiting the
structure of the item list.

2. MODELS

2.1. Formulating the Item Listing
Optimization Problem as a QAP
We introduce the diversity term in our proposed model to add
diversity in the item list. In particular, we calculate the similarity
fii′ for pairs of items i, i′ ∈ I to introduce diversity in the item list.
The diversity of the item list (i.e., the diversity term) is defined
as the negative value of the summation of the items’ similarity
degree fii′ for overall adjacent items:

D(x) = −
∑

i∈I

∑

i′∈I

∑

j∈J

∑

j′∈J

fii′djj′xijxi′j′ .

where djj′ is the adjacent flag of the position j and j′; djj′ =

1 is for the adjacent positions; and djj′ = 0 is for the

non-adjacent positions. The value of function D(x) decreases
because the high-similarity items are adjacent. We solve a
multi-objective optimization problem based on two values: the
popularity of individual products P(x) and diversity of the item
list D(x). Let w be a parameter used to determine the penalty
for listing items with high similarity. This problem is formulated
as follows:

maximize
∑

i∈I

∑

j∈J

pijxij − w
∑

i∈I

∑

i′∈I

∑

j∈J

∑

j′∈J

fii′djj′xijxi′j′

subject to
∑

i∈I

xij = 1, j ∈ J,

∑

j∈J

xij = 1, i ∈ I,

xij ∈ {0, 1}, i ∈ I, j ∈ J.

(2)

Two methods for calculating the similarity fii′ are introduced:
explicit and implicit expressions. In the explicit expression,
semantic features, such as product category and average price,
can be quantified using the distances between the feature vectors
that can be calculated. The smaller the feature distance, the higher
the similarity fii′ between the items. In the implicit expression, the
higher the co-browsing number of an item (i.e., the number of
times that the items were viewed in the same session by the same
user on the website), the higher the similarity fii′ .

The advantage of the first approach is that the interpretation
of the result is straightforward. Also, the semantic features of
each item are available when the item is added to the database,
that is, so-called cold start problems are avoided. Nevertheless, it
suffers from a disadvantage in that appropriate semantic features
must be created and quantified. In contrast, the advantage of
the second approach is that it involves easy calculations and
can consider various information reflecting customer behavior;
however, its disadvantage is that semantic interpretationmight be
difficult. Section 3.1 describes the twomethods for the calculation
of the similarity fii′ in detail, and section 3.2 compares the item
lists created using these measures.

As previously specified, the optimization problem
(2) is a QAP. The QAP is well-known as an NP-hard
problem that cannot be solved in polynomial time
(Anstreicher, 2003; Abdel-Basset et al., 2018).

2.2. Formulating the Item Listing
Optimization Problem as a QUBO
We utilize QA to solve our optimization problem. The details of
QA pertaining to D-Wave 2000Q are outlined in Appendix A.
The optimization problem must be expressed in the form
of a QUBO to use QA as a solver. QUBO is given as
followsi (Lucas, 2014):

minimize xTQx

subject to x ∈ {0, 1}N ,
(3)

where Q ∈ R
N×N . Thus, our optimization problem can be

transformed into a QUBO by employing a penalty function for
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FIGURE 2 | Example of problem decomposition. The red frames represent the variables of the subproblem to be selected. The left figure is a selection of a

subproblem without considering the problem structure. A subproblem has no feasible solution. The right figure is a selection of a subproblem based on the logical

structure of the problem. A subproblem has feasible solutions.

violating constraints and adding this penalty function to the
objective function:

minimize −
∑

i∈I

∑

j∈J

pijxij + w
∑

i∈I

∑

i′∈I

∑

j∈J

∑

j′∈J

fii′djj′xijxi′j′

+M





∑

i∈I





∑

j∈J

xij − 1





2

+
∑

j∈J

(

∑

i∈I

xij − 1

)2




subject to xij ∈ {0, 1}, i ∈ I, j ∈ J.
(4)

where M is a parameter used to prevent the violation of the
constraint conditions. This is ensured by setting an appropriate
value for M. In theory, M should take an extremely large value.
However, we cannot set M to such a large value because of the
limitations of the current version of the quantum annealer used
(i.e., D-Wave 2000Q). Thus, for simplicity, we present M to the
size of the largest element of the absolute value of Q in (3).

2.3. Decomposition Methods for Item
Listing Problems
qbsolv is a software tool released by D-Wave Systems that
enables solving a QUBO larger than one that can be processed
using D-Wave 2000Q (D-Wave Systems Inc., 2017). qbsolv is
essentially a decomposing solver that divides a large problem into
smaller parts, which can then be solved by D-Wave 2000Q. Thus,
when a large QUBO is inputted, qbsolv divides the problem
and sends each part of the problem independently to D-Wave
2000Q for calculation to obtain partial solutions. This process is
repeated by selecting different parts of the problem using the tabu
search until solution improvement stops. See Booth et al. (2017)
for the detailed algorithm of qbsolv. Furthermore, qbsolv
selects the subset of variables in the order of the energy impact of
each variable for division of a problem. However, in some cases,
no feasible solution can be obtained when the target variables are
extracted, regardless of the structure of the original problem.

Therefore, we focus herein on the structure of the assignment
problem and propose a method to extract problems with feasible
solutions. Particularly in the case of an assignment problem,
one condition involves each item being necessarily assigned to
one position and another condition, in which each position is
necessarily assigned to one item. Therefore, while dividing the
problem, we have to select variables with candidate combinations
of items and positions that are already assigned. Figure 2 shows
an example of the decomposition.

The original problem can be decomposed as follows if the
number of items in the original problem is Norg and the number
of items solved by a partial problem is Nsub:

1. LetNs be the set of Nsub items extracted from Norg items.
2. Let Ps be the set of positions of items ofNs.
3. LetNs × Ps be the variables of the decomposed problem.

This procedure involves N2
org
CN2

sub
candidates for variable

combinations in the selection of the subproblems; however, the
number of solution candidates can be reduced to NorgCNsub

exploiting the structure of the item list.
In practice, it is most important to determine the order in

which items are listed in the upper positions of the item list
because they are the items that are browsedmost often. Therefore,
it is effective to solve the entire list as an integer programming
problem as in Problem (1) first, then only resolve the particularly
important upper positions of the list using the QAP (2).

3. RESULTS AND DISCUSSION

3.1. Experimental Setup
For our experiments, we used the actual access log data of
the online hotel reservation site Jalan1. On this e-commerce
website, a hotel list is created daily based on each area in
Japan and the number of guests, including adults and children,
that the hotels can accommodate in their rooms. The access

1https://www.jalan.net/en/japan_hotels_ryokan/
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log includes the date and the time the customer accessed the
item list screen, position of each item when the item list
screen was accessed, and information on the hotel at which the
customer made a reservation. We estimated the popularity pij
and similarity fii′ for the top 10 accessed areas on the hotel
reservation website using the access log for the past 6 months.
The similarity fii′ was estimated using two methods: the co-
browsing similarity and the semantic similarity. The co-browsing
similarity was estimated using the log of the co-browsed items
in the same customer’s session. On the other hand, semantic
similarity was created and quantified by area and type of hotel.
In our experiments, we used the co-browsing similarity, except
for the comparison of the similarity measure in Figure 7. Various
methods, such as machine learning algorithm (e.g., deep learning
or gradient boosting) can be considered for estimating pij and fii′ .
Furthermore, pij and fii′ were normalized such that their average
was 0 and the standard deviation was 1 for each item list.

We conducted two experiments in this study:

• evaluating the effect of the diversity term by comparison of
solutions when the diversity control parameter is changed for
the QAP (2), and

• evaluating the performance of problem decomposition
by comparison of the objective values when the

TABLE 1 | Parameters used for solving the problem in our experiments.

Parameter Value

num_reads (D-Wave Systems Inc., 2017) 1,000

annealing_time (D-Wave Systems Inc., 2017) 20 [µs]

auto_scale (D-Wave Systems Inc., 2017) True

postprocess (D-Wave Systems Inc., 2017) Optimization

num_spin_reversal_transforms

(D-Wave Systems Inc., 2017)

4

timeout (Booth et al., 2017) 20 [s]

repeats (Booth et al., 2017) 5

subproblemSize (Booth et al., 2017) 64

structure of the item list is considered for the qbsolv
problem decomposition.

As previously specified, we used D-Wave 2000Q
(DW_2000Q_VFYC_2) for our experiments. Coupler strengths
mapping logical to physical couplers with two physical couplers
connecting each pair of logical qubits were set as 3.0. Table 1 lists
the values set for the parameters of D-Wave 2000Q and qbsolv.
num_read, annealing_time, and repeats represent
the number of requests for problems, time per annealing, and
number of times the main loop of the algorithm is repeated with
no change in the optimal value before stopping, respectively
(Booth et al., 2017; D-Wave Systems Inc., 2017).

3.2. Effect of the Diversity Term
D-Wave 2000Q has less than 2048 qubits because the qubits
typically have defects. In addition, as previously specified, the
connection between the physical qubits is sparse and limited
on the chimera graph, in which D-Wave 2000Q has been based
on. Thus, we can consider the problem with eight items per
subproblem because complete graph embedding can be applied
to arbitrary problem graphs with less than 64 logical variables.
Therefore, we first compare the popularity term P(x) and the
diversity term D(x) obtained by solving the QAP (2) by changing
the diversity control parameter w in the problem when the
number of items is 6 and 8. The obtained solution will be the
same as that obtained via solving (1) if w is 0.

In Figures 3, 4, the horizontal axes represent the value of
w in (2); the right hand side in the figures indicates that the
larger the similarity between the similar items listed together, the
larger the penalty. In addition, the vertical axes in Figures 3, 4
represent the values of P(x) and D(x), respectively. The average
value of all solutions is approximately 0 because pij and fii′ are
normalized for each area. Figures 3B, 4D depict plots of P(x) and
D(x), respectively, for three typical areas X, Y, and Z from among
the 10 areas for the problem with eight items. Figures 3A, 4C are
plotted by aggregating the typical values for the 10 areas, wherein

FIGURE 3 | Changes in the popularity term when the diversity control parameter is changed. (A) The average popularity term value of 10 areas change when the

number of items is changed. (B) Changes in the typical popularity term when the number of items is 8.

Frontiers in Computer Science | www.frontiersin.org 5 July 2019 | Volume 1 | Article 211

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Nishimura et al. Item Listing Optimization With Diversity

FIGURE 4 | Changes in the diversity term when the diversity control parameter is changed. (A) The average diversity term of 10 areas change when the number of

items is changed. (B) Changes in the typical diversity term when the number of items is 8.

FIGURE 5 | Locations and type of a particular area’s hotels.

the marker and the bar represent the average and standard error
values, respectively.

Figure 3A shows that the average of the popularity term P(x)
is higher than 0 for any w. In addition, P(x) gradually decreases
as w increases. In other words, a trade-off relationship exists
between increasing the popularity term P(x) and ensuring that
similar items are not placed adjacent to each other in the item
list. Furthermore, the decrease in the popularity term value slows
down as w increases. Figure 4C shows that when diversity is
not considered for item listing, the diversity term D(x) is lower
than the average value of 0 and increases with increasing w.
Furthermore, the increase in the diversity term D(x) gradually
slows down as w increases.

Note that the behavior of P(x) andD(x) based onw is the same
whether or not the number of items is 6 or 8.

Figure 5 shows the positional relationships between the top
eight hotels and their type in area X of Figures 3B, 4D. The
top eight hotels in area X particularly include four city hotels
and four budget hotels, which can also be classified as in the
north or south region of area X; hence, it was chosen as
an example.

Figure 6 represents the actual hotel lists in area X obtained
by solving (2) for different values of w. The top five hotels in
the northern area are consecutively listed when w is 0. The
city hotels are listed in succession among the top four; thus,
the list is biased. In contrast, only the top two hotels are the
same in terms of both area and hotel type when w is between
0.1 and 0.6, that is, when diversity is considered. Furthermore,
no similarity exists between the consecutively listed hotels both
in terms of area and hotel type when w is larger than 0.7.
Thus, despite not using semantic information (e.g., area and
hotel type) in the actual calculations, a semantically diverse
item list was created using the number of co-browsers as the
similarity measure.

So far, we have used the co-browsing similarity as fii′ . In
Figure 7, we compared the item lists in area X using the co-
browsing similarity and the semantic similarity as similarity
measures. Each item list was obtained by solving (2) for w =

1. The semantic similarity was calculated using the negative
Euclidean distance of each hotel based on the two-dimensional
vector of whether the area is in the north or south, and the hotel
type (city hotel or budget hotel).

Figure 7 shows that the item list is not consecutive with
respect to both the area and the hotel type by solving (2) even
if both similarity types are used. The difference between these
two item lists is that E, the budget hotel northern area, rose
from the fourth to the first place. The item lists created using
the explicit semantic similarity have fewer sequences for the hotel
type than those created using the co-browsing similarity. This
result confirms that the item list, which considered diversity for
the purpose of this study, was consistently created regardless of
the similarity measure used.
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FIGURE 6 | A particular area’s item lists when the diversity control parameter w is between 0 and 1.

FIGURE 7 | Item lists using co-browsing similarity and semantic similarity as similarity measures in a particular area. The diversity control parameter w in creating each

item list is 1.

3.3. Performance Evaluation of Problem
Decomposition
We compared the method of extracting partial problems
by qbsolv and our method of extracting partial problems
considering the problem structure of the item list. Our
experiments were performed by comparing the objective values
of (4) when solving the problem of 12, 16, 20 and 24 items using
each method.

Table 2 lists the average of the objective values for the 10
areas obtained by solving the problem for different numbers
of items and the gap between the objective values of the
proposed and original qbsolv methods. The goal of the
problem was to minimize the objective value, indicating that
the smaller the objective value, the better the performance. The
gap between the objective values of the proposed and original
qbsolv methods increased as the number of items increased.
The effectiveness of the proposed method also increased. We
conducted aWilcoxon signed-rank test on the difference between
the objective values of the original qbsolv and proposed
methods (Bonferroni correction was performed on the number of
items). Consequently, the null hypothesis in this case was rejected
at a significance level of 5% (p-value = 0.020).

In terms of application, our proposed method is not only
limited to the item list optimization problem, but can also be
widely applied to other problems involving similar constraints,

such as the assignment problem (1). For example, our method
can be applied to the traveling salesman problem, which
typically includes two constants A,B along with the following
penalty terms:

A
∑

i∈I





∑

j∈J

xij − 1





2

+ B
∑

j∈J

(

∑

i∈I

xij − 1

)2

.

4. CONCLUSION

This study proposed a method of creating item lists on an e-
commerce website as a QAP considering item popularity and
diversity. We converted the QAP to a QUBO such that it can
be directly solved by the quantum annealer, D-Wave 2000Q.
Direct manipulation to solve the resulting QUBO was not
possible in the case with a large number of items because of the
limited number of qubits available in the current version of the
quantum annealer and the restriction on specifying connections
between the qubits. Therefore, we proposed a decomposition
technique exploiting the structure of the problem. The original
large problem was divided into several subproblems, which
can eventually be solved by D-Wave 2000Q individually. Our
experiments using actual real-world data demonstrated the
efficiency of our proposed approach. A remarkable observation
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TABLE 2 | Comparison of the objective values for problem decomposition.

Methods

Number of items qbsolv Proposed method Gap

12 −160.038 −160.337 −0.299

16 −268.777 −270.176 −1.399

20 −391.428 −393.051 −1.623

24 −505.634 −509.266 −3.632

made from the experimental results was that the output item
list changed based on the diversity control parameter. Our
formulation led to the antiferromagnetic Ising model with a
random field. The resulting lists were “aligned” along the random
field when the diversity control parameter was small. In contrast,
increasing the diversity control parameter eliminated the order
in the item list and introduced diversity.

However, our research has some limitations. The item list
created by our method will not work well when the data
needed to calculate the popularity pij and similarity fii′ are
insufficient, because no reliable estimate values will exist in that
case. Obtaining good estimates for pij and fii′ requires access logs
pertaining to when items are placed at various positions. The
determination of the diversity consideration parameter w was
also a limitation. w depends on the scale of diversity a customer
of an e-commerce service wants; thus, it should be adjusted by
changing w and monitoring performance, which is cumbersome
to implement in real-world scenarios.

As the number of qubits available in the quantum annealer
increases in the future, our method for division of a large-sized
problem into smaller subproblems will become more useful.
The experiments in this study clearly showed that our method
performed better than qbsolv when the size of the problem

became large. The structure of our problem is similar to that of
the traveling salesman problem and the scheduling problem in
that it takes the form of a QUBO with two quadratic functions
based on two constraints (i.e., one for distance or time and the
other for list locations or tasks).

Thus, our method has a wide range of applications involving
optimization problems that can be solved via QUBO formulation,
such as those using the QA, D-Wave 2000Q, and other types of
QUBO solvers. Our results indicate that not only the evolution
of hardware devices, but also the development of better software
based on the structure of problems are essential for future
QA applications.
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APPENDIX A

Quantum Annealing (QA) on D-Wave 2000Q
QA belongs to a class of meta-heuristic algorithms, which
exploit the quantum tunneling effect to efficiently solve an
optimization problem (Kadowaki and Nishimori, 1998). The
quantum processing unit (QPU) is designed to find the lowest
energy state of a spin glass system. This energy state is described
by an Ising Hamiltonian:

HP =
∑

i∈V

hisi +
∑

(i,j)∈E

Jijsisj,

where hi is the on-site energy of qubit i, and Jij denotes the
interaction energies of two qubits i and j. The binary variables
si ∈ {−1,+1} are called spins, and are fixed in a lattice graph G
with vertices and edges (V ,E). Finding the ground state of such a
spin glass system, that is, the state with the lowest energy is an NP
problem. Therefore, QA can find the solutions of NP problems by
mapping them onto spin glass systems. The basic process of QA is
to interpolate physically between an initial Hamiltonian H0, with
an easy-to-implement ground state, and a problem Hamiltonian

HP, whose minimal configuration needs to be explored. Then,
we change the Hamiltonian slowly such that it is the spin glass
Hamiltonian at time T:

H(t) =

(

1−
t

T

)

H0 +

(

t

T

)

HP.

If T is long enough, according to the adiabatic theorem,
the system will be in the ground state of the spin glass
Hamiltonian HP.

For computation on D-Wave 2000Q, the problem is first
mapped to the Ising binary and quadratic structures. Then,
it is embedded in the available qubit lattice. The qubits are
arranged according to a chimera graph on D-Wave 2000Q.
Each qubit couples to five or six others, except when the qubit
has defects. If the problem does not embed directly, auxiliary
qubits can be introduced to augment the available couplings.
However, introducing auxiliary qubits is a significant cost in
qubits. Both mapping and embedding imply restrictions on the
types of problems that can effectively solved with the D-Wave
2000Q. For more details on QA in the D-Wave 2000Q, see
D-Wave Systems Inc. (2018).
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A Fast Machine Learning Model for
ECG-Based Heartbeat Classification
and Arrhythmia Detection
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We present a fully automatic and fast ECG arrhythmia classifier based on a simple

brain-inspired machine learning approach known as Echo State Networks. Our classifier

has a low-demanding feature processing that only requires a single ECG lead. Its training

and validation follows an inter-patient procedure. Our approach is compatible with an

online classification that aligns well with recent advances in health-monitoring wireless

devices and wearables. The use of a combination of ensembles allows us to exploit

parallelism to train the classifier with remarkable speeds. The heartbeat classifier is

evaluated over two ECG databases, the MIT-BIH AR and the AHA. In the MIT-BIH

AR database, our classification approach provides a sensitivity of 92.7% and positive

predictive value of 86.1% for the ventricular ectopic beats, using the single lead II, and a

sensitivity of 95.7% and positive predictive value of 75.1%when using the lead V1’. These

results are comparable with the state of the art in fully automatic ECG classifiers and even

outperform other ECG classifiers that followmore complex feature-selection approaches.

Keywords: Echo State Networks, reservoir computing, arrhythmia classification, GPU, ECG

1. INTRODUCTION

Electrocardiogram (ECG) analysis has been established at the core of cardiovascular pathology
diagnosis since its development in the twentieth century. The ECG signals reflect the electrical
activity of the heart. Thus, heart rhythm disorders or alterations in the ECGwaveform are evidences
of underlying cardiovascular problems, such as arrhythmias. Non-invasive arrhythmia diagnosis
is based on the standard 12-lead electrocardiogram, which measures electric potentials from 10
electrodes placed at different parts of the body surface, six in the chest and four in the limbs. In order
to provide an effective treatment for arrhythmias, an early diagnosis is important. Early detection
of certain types of transient, short-term or infrequent arrhythmias requires long-term monitoring
(more than 24 h) of the electrical activity of the heart. The fast development of the digital industry
has allowed for improvements in devices, data acquisition and computer-aided diagnosis methods.

The open access to ECG databases [1] has led to the development of many methods and
approaches for computer-aided ECG arrhythmia classification over the last decades, fostering the
productive cross-disciplinary efforts that engineers, physicists or non-linear dynamics researchers
are no strangers to. Almost every computer-aided ECG classification approach involves four main
steps, namely, the preprocessing of the ECG signal, the heartbeat detection, the feature extraction
and selection and finally the classifier construction. The preprocessing of the ECG signal and
the heartbeat detection are out of the scope of this work, both widely studied, and the heartbeat
detection is close to optimal results [2].
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A large number of classifiers have been proposed for
arrhythmia discrimination. The proposed techniques range
from simple classifiers, such as linear discriminants (LD) [3–
5] or decision trees [5–7], to more sophisticated ones, such as
traditional neural networks [8–13], Support Vector Machines
(SVM) [9, 14–18], conditional random fields [19], and more
recently deep learning techniques [13, 20–22]. In addition, many
works have been devoted to finding the best combination of
features, sometimes even developing complex signal processing
methods, and to choosing the best subset (dimensionality
reduction) for the arrhythmia classification [23]. On the one
hand, popular choices for the input features are morphological
features extracted from the time domain (such as inter-beat
intervals, amplitudes, areas) [3, 14, 15, 24], frequency-domain
features [6, 7, 16, 17, 25], wavelet transforms [4, 8–11, 18,
26], complex heartbeat representations [16] or higher order
statistics (HOS) [4, 6, 7, 9]. On the other hand, feature selection
methods, such as the independent component analysis (ICA)
[18, 26], principal component analysis (PCA) [18], particle
swarm optimization (PSO) [16], or the genetic algorithm—
back propagation neural networks (GA-BPNN) [23], have
been used.

Despite the good performance in classifying arrhythmias
achieved by these methods, many of them require long
computation times to optimize the classifiers. The use of
complex classification or preprocessing methods is not suitable
for online calculations or demand a lot of computational
power. In this work, we present a fully automatic and fast
classifier of arrhythmias that can be implemented online
and analyze long sequences of ECG records efficiently.
By loosening the requirements for feature extraction, we
propose an implementation fundamentally based on raw
signals, single lead information and heart rates that aims
at reducing computation time while achieving low error
classification results.

Cardiologists use mostly the raw ECG to diagnose. The
simplest and fastest method of feature extraction is then to
extract sampled points from an ECG signal curve. However, one
should be aware of the fact that the amount of the extracted
features used to characterize the heartbeat can be a burden for the
classification algorithm. For this reason, most of the works that
use the raw signal perform a down sampling of the waveform or
some feature selection in order to reduce the computation time
[3, 4, 15]. In order to circumvent this issue, a simple machine
learning method is chosen to classify the arrhythmias. One of the
advantages of the proposedmethod is that the number of features
barely affects the speed of the classification since the classifier
parameters related to the input are not optimized and remain
random, as it will be described in more detail later in the text.
As a result, the raw waveform of the heartbeat can be used for the
classification without compromising speed. This simple machine
learning method also allows a fast retraining of the classifier if
new ECG data become available.

In this work, we propose an ensemble of Echo State Networks
(ESNs) [27] as the classifier method, using the raw ECG
waveforms and time intervals between the heartbeats as the
input features. A particular advantage of the ESNs is that they

have recurrent connections, being able to take into account time
dependencies between neighboring heartbeats. This property is
beneficial since, in the case of a normal or an abnormal heartbeat,
there are more chances that the subsequent heartbeat will also be
a healthy or a pathological one. Moreover, the ESN method can
take advantage of the power of a parallel computing architecture,
such as a graphics processing unit (GPU). Hence, we compare the
computation times between a GPU and a central processing unit
(CPU), showing that the implementation in a GPU outperforms
its CPU counterpart in the classification of the heartbeats. The
computation times of the GPU outperform those of the CPU even
in the training part of the classifier, i.e., the entire system can be
trained extremely fast with a GPU.

Finally, it is worth noting that our classifier is based on a single
lead ECG. Long-term monitoring generally involves devices with
fewer electrodes than the standard 12 leads ECG in order to allow
the patient to have a normal activity, requiring computer-aided
techniques to analyze the huge amounts of data generated. We
show that our heartbeat classification method outperforms other
classifiers that rely on much more complicated feature selection
techniques and complex calculations. We evaluate the proposed
classifier in two different ECG databases and leads to test the
robustness of the proposed algorithm.

2. MATERIALS AND METHODS

2.1. Databases
The performance of the proposed heartbeat classificationmethod
has been evaluated in two internationally recognized ECG
databases: the MIT-BIH arrhythmia (MIT-BIH AR) [28] and the
AHA [29]. The MIT-BIH AR database is a golden standard to
evaluate arrhythmia classifiers. This benchmark database consists
of 48 half-hour ECG records sampled at 360 Hz. Each ECG
record contains two leads: lead II (modified limb lead II, obtained
from electrodes on the chest) and lead V1’ (modified lead V1,
and in some records V2, V4, or V5). The AHA database contains
154 ECG recordings of 3 h long but only the last 30 min have
information about the beat class. The AHA ECG recordings have
two leads (A,B) sampled at 250 Hz. The documentation of the
AHA database does not provide the name of the leads.

Both databases have annotations indicating the class of the
heartbeat and its position verified by independent experts.
Following the standards and recommendations of the American
National Standards Institute developed by the Association for
the Advancement of Medical Instrumentation (AAMI) for the
evaluation of ECG classifiers [30], all the heartbeat annotation
labels are converted to five heartbeat types: N (normal beats),
S (supraventricular ectopic beats), V (ventricular ectopic beats),
F (fusion beats), and Q (unclassifiable beats). The Q beats were
excluded in this research because they are not representative [31].
Also in accordance to the AAMI standard, ECG recordings with
paced beats are removed (i.e., four ECG records in the MIT-
BIH AR database and three ECG records in the AHA database
are excluded from the analysis). It is worth mentioning that the
original annotations of the AHA database do not differentiate
between N and S beats.
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2.1.1. Training and Test Datasets

Each database is split into two sets: one for training (DS1) and
one for testing (DS2). This division of the data is chosen to
balance the presence of the different types of heartbeats and
number of subjects in each dataset. It takes into account the
inter-patient division, i.e., the subjects used to construct or
optimize the classifier (DS1) are different from the subjects used
to evaluate it (DS2). It has been demonstrated [3] that models
which use heartbeats of the same patient in both the training
and test are biased and their results can not be replicated in
real environments.

For the MIT-BIH AR database we adopted the same set
division as in de Chazal et al. [3] for comparative purposes of the
results. 22 of the 44 ECG records of the MIT-BIH AR database
are part of the set DS1 and the other 22 are part of the set DS2.
For the AHA database, we use the recordings recommended for
the training and testing procedure in the original AHA database
description. In the AHA database, the set DS1 contains 79 ECG
recordings with the label series = 0 and the DS2, 75 recordings
labeled with series = 1. The division scheme for theMIT-BIH AR
and AHA databases is summarized in Tables 1, 2, respectively.
The beat class distributions of the different databases are given
in Table 3.

2.2. Performance Metrics
The performance of the proposed algorithm is evaluated using
the MIT-BIH AR and AHA databases on a single lead basis.
The performance of each classification algorithm is assessed
using four standard statistical measures: sensitivity (Se), positive
predictive value (PPV), specificity (Sp), and accuracy (Acc). They
are calculated as follows:

Se = TP/(TP + FN), (1)

PPV = TP/(TP + FP), (2)

Sp = TN/(TN + FP), (3)

Acc = (TP + TN)/(TP + TN + FP + FN) (4)

True positives (TP) indicate correctly predicted positive class
and true negatives (TN) indicate correctly predicted negative
class heartbeats. A good classifier is the one that minimizes false
negatives (FN) and false positives (FP).

The F1 score is the harmonic mean of Se and PPV, F1 =

2(Se · PPV)/(Se + PPV). The F1 score is used to choose the
optimum parameters of our classifier during the training phase.

2.3. The Heartbeat Classifier
The proposed heartbeat classifier is based on an Echo State
Network (ESN). It classifies the heartbeats of the processed ECG
recordings in two classes based on morphology: SVEB+ and
VEB+. SVEB+ class includes normal (N) and supraventricular
ectopic (S or SVEB) heartbeats. These heartbeats have a
normal morphology and a supraventricular origin as opposed
to VEB+ heartbeats that present ventricular origin or abnormal

TABLE 1 | Distribution of the MIT-BIH AR database ECG recordings into the

training (DS1) and testing (DS2) sets.

Dataset MIT-BIH AR recordings

DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201,

203, 205, 207, 208, 209, 215, 220, 223, 230

DS2 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213,

214, 219, 221, 222, 228, 231, 232, 233, 234

TABLE 2 | Distribution of the AHA database ECG recordings into the training

(DS1) and testing (DS2) sets.

Dataset AHA recordings

DS1 1,001–1,004, 1,006–1,010, 2,001, 2,003–2,010, 3,001–3,010,

4,001–4,010, 5,001–5,010, 6,001–6,010, 7,001–7,010,

8,001–8,004, 8,006–8,010

DS2 1,101–1,110, 2,101–2,110, 3,101–3,110, 4,101–4,110,

5,101–5,105, 6,101–6,110, 7,101–7,110, 8,101–8,105,

8,107–8,110

The ECG recording names in the AHA database are of the form CSNN, where C is the

arrhythmia category, S is the series and NN is the file number in the category.

TABLE 3 | Heartbeat class distribution of the training (DS1) and testing (DS2) sets.

SVEB+ class VEB+ class

Database N S V F

MIT-BIH AR (DS1) 45,783 943 3,785 414

MIT-BIH AR (DS2) 44,179 1,834 3,216 388

AHA (DS1) 158,587 15,075 292

AHA (DS2) 156,992 15,855 437

The beats at the beginning and at the end of the recordings are discarded as they do not

provide information about the temporal distance to the neighboring beats.

morphology. The VEB+ class comprises the ventricular ectopic
beats (V or VEB) and the fusion beats (F).

The overall process is schematically represented in Figure 1.
The two stages are clearly differentiated:

• Stage 1–Processing of the ECG recordings: this procedure
involves the filtering, heartbeat detection, heartbeat
segmentation, and feature extraction. We include
morphological and time intervals between heartbeats in
our model.

• Stage 2–Classification between SVEB+ and VEB+ classes: we
use an ensemble of ESNs with ring topology to perform this
classification task.

We discuss the classification procedure in stage 2 in more detail
later in the text.

2.4. Processing of the ECG and Feature
Extraction
In order to accomplish arrhythmia classification, minor
preprocessing needs to be applied to the source ECG records. In
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FIGURE 1 | Schematic representation of the fully automatic heartbeat classifier.

our system, the processing of the ECG recordings includes the
following steps:

1. ECG re-sampling: ECG signals are processed with a common
sampling rate of 250 Hz. The AHA database (250 Hz) keeps
its original sampling rate and the MIT-BIH AR database (360
Hz) is resampled to 250 Hz using the PhysioToolkit software
package [1].

2. ECG filtering: All ECG recordings are filtered in a bandwidth ν

(Hz) ∈ [0.5, 35], to correct the baseline and remove unwanted
high frequency noise. A Butterworth high-pass filter (with a
cutoff frequency νc = 0.5 Hz) and a finite impulse response
filter of 12th order (35 Hz, at 3-dB point) are used, following
standard procedure.

3. Heartbeat detection: To determine the position of the
heartbeats, the annotated positions provided by the databases
are used. In theMIT-BIHAR database the annotation position
occurs at the largest of the local extrema of the QRS complex.
Beat detection is beyond the scope of this study. Highly
accurate automated beat detection methods have already been
reported [32].

4. RR calculation: The RR interval is defined as the time interval
between successive heartbeats. The RR interval associated to a
heartbeat i, RR(i), corresponds to the time difference between
the heartbeat i and the previous heartbeat (i− 1).

5. Heartbeat segmentation: The ECG signal is segmented around
the annotated position given by each database. The size of the
segmented heartbeat is 240 ms (60 samples at 250 Hz) and it is
centered around the annotation position.

6. Heartbeat normalization: Each segmented heartbeat is
normalized between [−1, 1]. This scaling operation
results in a signal that is independent of the original
ECG recording amplitude.

After processing the ECG recordings, each heartbeat is
represented by a set of features. One of the main goals related to
the feature selection in ourmodel is to avoid complicated features
with a high computational cost, since we aim to design a fast and
real-time heartbeat classifier. Therefore, we focus on simple ways

to extract features. In our case, we use the raw waveform of each
heartbeat around the heartbeat position to represent it. The raw
data of each beat was represented by an equal number of samples
from each side from the point of the beat annotation. In order to
learn from the temporal characteristics of each beat, information
about the RR intervals is also added to the heartbeat features.
The RR intervals are features used in almost all the methods
to classify arrhythmic heartbeats. For instance, it is well-known
that VEB heartbeats are characterized by shorter RR intervals
than the N heartbeats. We found that using the logarithm of
the RR intervals, as in Llamedo and Martinez [33], leads to a
slightly better performance of the classifier. All the features that
characterize the ith heartbeat are listed below:

• 60 raw samples of the segmented heartbeat waveform centered
around the position annotated for the heartbeat.

• ln(RR(i)): logarithm of the current RR interval.
• ln(RR(i+ 1)): logarithm of the next RR interval.
• ln(RRmean) logarithm of an average of the previous 250 RR

intervals (averaging over the n available RR intervals when
n < 250).

At the end of the processing and feature extraction stage,
each heartbeat is represented as a d-dimensional vector
containing three features related to the RR intervals and 60
morphological features, which are simply the samples of the
ECGwaveform around the position annotated for each heartbeat.
This d-dimensional vector (d = 63) is the input for the
classification algorithm.

2.5. Classification Algorithm: Echo State
Network
Our classifier is built upon an ESN with a ring topology.
ESNs are a popular implementation of Reservoir Computing
(RC). RC is an established paradigm in machine learning
that has been successfully applied in a variety of different
tasks [27, 34]. This computing paradigm is made of three
layers: input, reservoir and output (see general ESN scheme
in Figure 2A. In the case of the ESN, the reservoir is a
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recurrent neural network with random input and random
connection weights between the neurons. Thanks to the
recurrence of the network, current reservoir responses depend
on the previous state of the reservoir, yielding an ESN
capable of performing context-dependent computations. The
reservoir benefits from a high-dimensional non-linear mapping
of the input, so that the reservoir response is easier to
classify than the original input by means of a simple linear
regression technique.

At the input stage, the ECG data must be fed into the reservoir
network. In this process, dimensions must change from d × Hb

to N ×Hb, where d, Hb, and N are the number of input features,
heartbeats, and network neurons, respectively. The mapping
from the input into the reservoir is done through a random input
matrix Win

N×d
generated from a uniform distribution ∈ [−1, 1].

Hence, the ECG data original features vector ud×Hb is modified
according to:

XN×Hb = (Win
N×d × ud×Hb). (5)

Once the first data is fed into the reservoir, the input proceeds
sequentially and further reservoir responses are computed

FIGURE 2 | Schematic illustration of (A) traditional ESN, depicting the high-dimensional non-linear mapping of the input to a reservoir with random and sparse internal

node connectivity and (B) ring ESN, depicting the high-dimensional non-linear mapping of the input to a reservoir with a specific ring topology internal node

connectivity. Weights optimized during the learning process are indicated by black arrows (Wout ), whereas random weights are depicted with red arrows (Win).

Random (A) or predefined (B) weights are depicted with blue arrows (W). Although it is not explicitly depicted in the figure, the d-dimensional input x is augmented

with an additional constant node accounting for the bias term.

FIGURE 3 | Performance map of the F1 score obtained for the MIT-BIH AR and AHA databases from a 5-fold cross-validation on the set DS1. The number of neurons

is N = 500 and the results have been averaged over 100 different input random matrices. η ranges from 0 to 1 and γ from 0.1 to 1. Top panels correspond to the

MIT-BIH AR database lead II (left) and V1’ (right). Bottom panels correspond to the AHA database lead A (left) and B (right). Each performance map adapts the color

range so that optimal values can be easily identified by visual inspection.
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iteratively. The reservoir matrix response r for the nth heartbeat
for the standard ESN is obtained as follows:

r(n) = F(γX(n)+ ηWr(n− 1)), (6)

where W is the random connection square matrix, with
dimensions N × N, F is the ESN activation function and γ and
η are the input and connection scaling parameters, respectively.
For the standard ESN, W is also generated from a uniform
distribution ∈ [−1, 1] and defines the connection weights
between the internal neurons. For the non-linear function, we
choose the classical sigmoid function with exponent −4 and a
bias of 0.5, i.e., F(x) = 1

1+e−4x − 0.5. Reservoir computers with

these sigmoid functions have shown optimal results solving
different tasks [35]. Other activation functions, such as rectifiers
can also be used.

In this method, only the connections between the reservoir
responses and the output are optimized using, usually, some
simple linear regression. The response of the ESN to the input,
r(n), is used to calculate the expected output, ŷ(n), according to:

ŷ(n) = Woutr(n), (7)

where Wout
l×N

are the output weights of the ESN and l the
number of output nodes. The output weights are computed by
minimizing the squared error between the train outputs and
their corresponding target class values, usually employing a
linear regression method [36]. In addition, the normal equation
formulation is adopted. For the heartbeat classifier we have found
that due to the experimental noise present in the original data,
simple linear regression results are similar to ridge regression
results. For this reason, we prefer the use of linear regression.
In this work we deal with a classification task that requires a
binary output, e.g., 0 and 1, for the SVEB+ and VEB+ classes,
respectively. Thus, the continuous output given by Equation (7)

FIGURE 4 | Performance (F1 score) obtained from a 5-fold cross-validation on

the set DS1 as a function of the number of neurons (N). Results for η = 0.2,

γ = 0.1, which have been averaged over 100 different input random matrices.

is converted into a binary one by means of a decision threshold
of 0.5.

In most of the ESN approaches, the connection matrix W

is a sparse random matrix. This general form is schematically
represented in Figure 2A. However, it has recently been shown
that simpler ESN with ring topologies perform as well as those
with a standard random connection matrix [37]. The ring ESN
presents fixed random connections at the input layer Win and
fixed deterministic weights between internal reservoir neurons,
with a connection matrix W of only non-zero elements in the
lower sub-diagonal Wi+1,i = 1 and at the upper-right corner
W1,N = 1. The ring ESN is schematically illustrated in Figure 2B.

In this work, we use a ESNwith ring topology for convenience.
The simplicity of the ring ESN allows for an easy exploration
of the system parameters in contrast to the computationally
demanding trial and error process in ESNs with random
topologies [37]. Moreover, this simplicity also allows an easy
hardware implementation of the ring ESN using delay-coupled
systems [38–41].

2.6. Parameter Optimization of the ESN for
the SVEB+ and VEB+ Classification
The ring ESN topology allows for a simple optimization
procedure, in contrast to the complex trial and error ESN
construction with random topologies. The typical model
construction decisions in a ring ESN include: setting the network
size (N), the scaling parameters γ and η and the random input
connections (Win). In this heartbeat arrhythmia classification
task, the data are very imbalanced [the number of VEB+ cases
is much smaller than the SVEB+ ones (see Table 3)], and the
system is prone to have a high accuracy but a poor classification
performance. Thus, the criterion to choose the optimum ring
ESN parameters to discriminate between the SVEB+ and VEB+
classes is the one that maximizes the F1 score over the training
set DS1.

The optimal η and γ values for each lead and database are
determined via a 5-fold cross-validation over the corresponding
training set. Figure 3 shows the performance of the combinations
of the pair (η, γ) with a fixed number of neurons N = 500
for the MIT-BIH AR and the AHA databases. To avoid an
undesired dependence on the sparsity and randomness of the
input connections, we average over 100 different input random
matrices (Win). The parameter pair that yields the best overall
classification is η = 0.2 and γ = 0.1. It is worth mentioning
that the memory of past heartbeats helps the classification of
heartbeats because the case of η = 0 (where ESN has no recurrent
connections and it is just a feed-forward neural network with
one hidden layer) is out of the optimum performance area.
This suggests that the memory of past heartbeats helps the
classification of present heartbeats. Once the pair (η, γ) is set,
their optimal values are used to explore the dependence on the
number of neurons (N) via a 5-fold cross-validation over the
corresponding training set. The F1 score as a function of the
number of neurons for the value pair (η = 0.2, γ = 0.1) is
represented in Figure 4. As expected, the performance improves
with the number of neurons but it starts to saturate for network
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sizes over 700 neurons. One of the advantages of the ESN is
that they are not prone to overfitting. Performance vs. N in
the test set follows a similar trend than in the training set. We
choose a value of N = 1, 000 that suits a compromise between
good performance for all the studied databases and leads and
the computational time. The performance for N = 1, 000 is
only slightly lower than the one obtained for a larger number
of neurons but requires a moderate computational time. The
outcome of the optimization must be a fast algorithm suitable
for real-time monitoring that, in addition, can be easily retrained
when new data are available.

Subsequently, we search for the optimum input connectivity
matrix Win. A usual approach would be to randomly generate
several input matrices and choose the one that performs better
in the training set. However, we note that optimizing the input
matrix for the training set does not necessarily yield the optimum
performance in the test set. Instead, we use a parallel ensemble
method in our case since it yields an improvement in the
performance. Ensemble methods have already been successfully
used for arrhythmia classification [12, 15, 42]. Parallel ensemble
methods are learning models that combine the outputs of
multiple base classifiers generated in parallel. They exploit
the independence between the base classifiers to obtain more
accurate predictions than the average error of the individual
classifiers. Ensembles are an effective technique if the base
classifiers are reasonably accurate and there is diversity between
their responses. In an ESN, the mapping of the input data to a
high-dimensional non-linear reservoir varies depending on the
randomly generated input matrix and this yields variability in
the ESN outputs. The output of the ensemble is just the majority
voting over the individual outputs of the ESNs. In Figure 5, we
show the F1 score over the training set DS1 for an ensemble of
ESNs with different input matrices as the number of members of
the ensembles increases. After combining the outputs of 30 ring
ESNs, the classifier performance does not improve when adding
new members to the ensemble. Therefore, in the evaluation
phase, we use ensembles of 30 ESNs.

In addition, we assess whether a faster alternative to the (η,
γ) parameter optimization is feasible. To that end, we carry out
an ensemble test on a classification that uses random values for
the (η, γ) reservoir parameters. In this case, each member of
the ensemble takes random values for the (η, γ) drawn from a
uniform distribution between [0, 0.8] and [0.01, 0.5] for the η and
γ parameters, respectively. Thus, the optimization of (η, γ) on
the training set would not be necessary. However, we have found
that the choice of random (η, γ) parameter values is valid for the
classification of leads II (MIT-BIH AR) and A (AHA) but it yields
a significant decrease in the PPV of leads V1’ (MIT-BIH AR) and
B (AHA). Therefore, η = 0.2 and γ = 0.1 are the optimum values
used in the Results section.

3. RESULTS

3.1. Classifier Evaluation
After optimizing the parameters of the classifier over the
training set (DS1) as described in the Methods section, we
evaluate the classifier using the optimal parameters. The final

FIGURE 5 | Performance of the F1 score obtained on the set DS1 as a

function of the number of ensembles of ESNs with different input random

matrices. The parameters of the ring ESN that form the ensemble are set at

their optimal values, η = 0.2, γ = 0.1, and N = 1, 000.

TABLE 4 | VEB+ performance over the test set DS2 using an ensemble of 30 ring

ESNs.

Database Lead Se (%) PPV (%) Sp (%) Acc (%)

MIT-BIH AR II 84.4 (82.9) 95.8 (85.5) 99.7(98.8) 98.6 (97.7)

V1’ 81.5 (78.9) 76.2 (66.0) 98.0 (96.6) 96.8 (95.3)

AHA A 90.4 (87.2) 94.9 (92.4) 99.5 (99.2) 98.6 (98.5)

B 87.9 (85.8) 89.6 (83.4) 98.9 (98.2) 97.8 (97.0)

The values into parenthesis show average of the individual performances of each ring ESN

that is part of the ensemble.

performance is evaluated in the test phase with heartbeats that
have not been used in the training set and come from different
subjects (DS2 set).

Table 4 shows the classification performance obtained by an
ensemble of 30 ring ESNs over the test set DS2. The parameters
of the individual ESN are the ones optimized in the training
phase. We highlight the fact that the optimal regime for the
ESN coincides regardless of database and lead. Since the original
heartbeat waveform is normalized between [−1, 1] and the RR
intervals are similar between both databases, the optimum ESN
parameters (η = 0.2, γ = 0.1, and N = 1000) coincide for the
MIT-BIH AR and the AHA databases. Thus, we expect that these
optimum parameters can also be valid for other databases.

The best performance is obtained for the lead A of the AHA
database. In the MIT-BIH AR, the lead II gives the best results.
Comparing the ensemble results with those obtained with the
average of ensemble base classifiers, it is clear that the ensembles
reduce the overall error given by a single ESN. The ensembles
remarkably reduce the incidence of the false negatives, leading
to higher PPV. An ensemble of classifiers has already been used
to classify heartbeats and significant improvements have been
reported [12, 15]. The improvement in the classification accuracy
thanks to the ensembles comes at the cost of higher computation
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TABLE 5 | Cross database VEB+ performance over the test set DS2 using an

ensemble of 30 ring ESNs.

Train (DS1) Test (DS2) Se (%) PPV (%) Sp (%) Acc (%)

AHA A AHA A 90.4 94.9 99.5 98.6

AHA B 87.2 92.4 99.2 98.1

MIT-BIH AR II 78.2 98.5 99.9 98.3

MIT-BIH AR V1’ 71.5 80.6 98.7 96.7

AHA B AHA A 82.2 97.1 99.7 98.1

AHA B 87.9 89.6 98.9 97.8

MIT-BIH AR II 84.9 97.2 99.8 98.7

MIT-BIH AR V1’ 79.1 43.4 91.9 91.0

MIT-BIH AR II AHA A 69.4 20.5 71.4 71.2

AHA B 58.8 23.9 80.0 78.0

MIT-BIH AR II 84.4 95.8 99.7 98.6

MIT-BIH AR V1’ 39.9 17.5 85.2 81.9

MIT-BIH AR V1’ AHA A 77.0 49.6 91.7 90.3

AHA B 74.7 49.1 91.8 90.1

MIT-BIH AR II 72.6 97.6 99.9 97.9

MIT-BIH AR V1’ 81.5 76.2 98.0 96.8

times. However, ensembles are inherently parallel, which can
make them much more efficient at training and test time if one
has access to a computer with multiple processors.

As part of our study, we assess the generalization capability of
our SVEB+ and VEB+ classifier by evaluating the performance
of the classifier on a lead and/or database different from the
one used to train it. The results are shown in Table 5. The
best generalization capability is obtained when the classifier is
trained either with the AHA lead A or lead B, performing
relatively well for all the analyzed leads in the test. The bigger
size and the richer variety of the AHA database is likely the
reason of the better generalization capability of the classifiers
trained with the AHA leads than those trained with the MIT
leads. The classification into SVEB+ and VEB+ is based mainly
on the morphological shape of the lead. In spite of this lead
dependency, the classifier can to some extent generalize to other
leads. It is worthmentioning that theMIT-BIHAR cross database
performance is relatively poor, specially for the lead II. Some
ECG recordings of MIT-BIH AR lead V1’ are V2 or V5, which
could lead to a better generalization capability of the lead V1’ but
also to a worse performance in the intra-lead classification when
compared with the other intra-lead performances (see Table 4).

3.2. Computational Times
Besides providing a detailed characterization of the arrhythmia
heartbeat classifier based on ESNs, our study also aims
at achieving computational times that allow for real-time
processing of ECG data. In particular, we have implemented the
ESN classifiers described here independently in an unparallelized
C++ version for the CPU and a C++/CUDA version for
the GPU. C++ refers to the object oriented programming
language and CUDA is a parallel computing platform developed
by the company Nvidia to interface with their GPUs. The

TABLE 6 | Technical specifications of the CPU and GPU used in this work.

CPU GPU

Processor Intel(R) Core(TM) i7-4790K NVIDIA TITAN X Pascal

(3584 CUDA cores)

Clock frequency 4,400 MHz 1,417 MHz

Memory 32 GB 12 GB

Max. Mem. Bandwidth 25.6 GB/s 480 GB/s

specific technical details for the CPU and GPU are summarized
in Table 6.

Although ensembles are inherently independent,
making them good candidates for parallel multi-processor
implementations, the presence of large matrix products and
non-linear mapping functions in the reservoir paradigm also
makes serial implementations suitable for the exploration of
computationally fast approaches. These approaches, such as
GPU implementations, are capable of reducing the latency and
increasing the throughput.

In order to explore the computational time and reservoir size
(N) dependence, a series of training and classification procedures
for the MIT-BIH AR database are analyzed. Linear regressions
are carried out by means of lower-upper decomposition.
C++ implementations benefit from the Eigen library 1, while
C++/CUDA use cuSolver, cuBLAS products and a CUDA kernel
implemented for the non-linear mapping.

Figure 6 shows the computational times of a training and
a testing realization for the DS1 and DS2 sets of the MIT-
BIH AR databases, respectively, vs. the number of neurons. The
GPU and CPU comparison highlights the advantage of using
a GPU implementation, with significantly lower training times.
The depicted computational times include, on the one hand,
the random non-linear mapping of the input onto the reservoir
and, on the other hand, the calculation of the output weights
Wout over the entire train dataset. The insets in Figure 6 show
the computational time for the final classification product steps
that calculate the output in the test dataset. As expected, the
processing time increases with the number of neurons, especially
in the training procedure. The influence of small sized products
on cuBLAS scaling, intrinsic to the library, can be seen in
the piece-wise linear trend present in the GPU Classification
product. The reported computational times account for 11 h of
ECG recordings, allowing the exploration of different parameter
regimes and providing fast classifications clearly suitable for
real-time scenarios that may include statistical ensembles.

3.3. Comparison With Other Heartbeat
Arrhythmia Classifiers
The MIT-BIH AR database is by far the most used to evaluate
methods on the ventricular arrhythmia classification. However,
making a fair comparison between heartbeat classifiers is a
difficult task. For instance, classifiers sharing heartbeats for the

1Eigen v3.3—Gaël Guennebaud, Benoît Jacob et al.

http://eigen.tuxfamily.org/
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FIGURE 6 | Dependence of the computational times as a function of the number of neurons for (Left) GPU and (Right) CPU implementations. NM stands for

Non-linear Mapping and consists in the input-random matrix multiplication and the application of the non-linear function in accordance with the ESN. The single test

and training times shown are over the whole DS1 and DS2 sets of one lead of the MIT-BIH AR database, respectively.

TABLE 7 | VEB performance of the heartbeat classifiers on the MIT-BIH AR database.

VEB

Work Feature set Classifier Leads Se PPV

de Chazal et al. [3] Morphological, RR-intervals Weighted LD II + V1’ 77.7 81.9

Ye et al. [18] Morphological, RR-intervals, wavelet, ICA, PCA SVM II + V1’ 81.5 63.1

Zhang et al. [14] Morphological, RR-intervals Feature selection + SVM II + V1’ 85.5 92.8

Mar et al. [4] Morphological, HOS, temporal features Feature selection + MLP II + V1’ 86.8 75.9

Garcia et al. [16] Morphological, wavelets, TVCG PSO + SVM II + V1’ 87.3 59.4

Llamedo and Martinez [31] Morphological, RR-interval, VCG, wavelet LD+ EMC II + V1’ 83.0 88.0

Llamedo and Martinez [33] RR-interval, wavelet LD+ EMC II + V1’ 89.0 87.0

Ye et al. [26] Morphological, RR-intervals, wavelet, ICA General + specific classification model II + V1’ 91.8 98.0

Tejeiro et al. [43] Morphological, rhythm features, RR-intervals Abductive interpretation II + V1’ 94.6 96.8

Ghorbani et al. [7] Morphological, RR-intervals, statistical features, GMM + EM Decision trees II + V1’ 96 77.6

Krasteva et al. [5]* Morphological, RR-intervals, correlations Decision trees II + V1’ 96.7 99.2

Wu et al. [20] DBN, RR-intervals Softmax regression II 80.5 81.4

Lannoy et al. [19] Morphological, RR-intervals, HOS, HBF coeff Weighted conditional random fields II 85.1 –

Rahhal et al. [22] * Raw ECG data Deep neural networks II 91.0 79.5

Raj et al. [17] DOST PSO + SVM II 87.5 65.4

Sultan Qurraie and

Ghorbani Afkhami [6]

RR-interval, HOS, time–frequency Decision trees II 95.4 94.1

Herry et al. [44] RR-interval, SST SVM II

V1’

77.5

79.6

79.1

62.7

Huang et al. [15] Random projections SVM ensembles II

V1’

93.9

78.1

90.9

43.8

This work Raw ECG data, RR-intervals ESN ensembles II

V1’

92.7

86.1

95.7

75.1

Only the best fully automatic work result is reported. All the classifiers have been trained over the set DS1 and tested over DS2, except the ones marked with*. Rahhal et al. [22] and

Krasteva et al. [5] test against all the MIT-BIH AR database. Rahhal et al. [22] trains over the DS1 and Krasteva et al. [5] uses three databases (AHA, MIT-BIH-SV, and EDB) to train the

model. See the text for a description of the different methods and features.

same subjects in the training and test set have unrealistically
better evaluation results than classifiers that follow the inter-
patient procedure [7]. Semi-automatic heartbeat classifiers (that
require some assistance for expert cardiologist) also have a better
performance than the fully automatic approaches [33]. Thus, to
be as fair as possible, we only compared our method with other
fully automatic heartbeat classifiers that make the test over the
DS2 set of the MIT-BIH AR database and whose train set does
not share subjects with the testing set.

Focusing on the detection of ventricular arrhythmia, we
compare the VEB (V) performance instead of the VEB+ (V+F),
as the VEB+ performance is usually not reported in the literature.
The VEB performance has then been calculated in our algorithm
without taking into account the F heartbeats, which are rather
rare. Table 7 compares the VEB detection performance of
state-of-the-art algorithms with the method proposed in this
manuscript. Table 7 also provides information about the features
and classifiers used by the different approaches. In most cases,
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the computational cost of these methods, either during the
training or the test phases, is not mentioned. Table 7 presents a
wide variety of methods, such as Multilayer Perceptron (MLP),
temporal vectorcardiogram (TVCG), Expectation-maximization
clustering algorithm (EMC), Gaussian mixture modeling
(GMM), Enhanced expectation maximization (EM), Orthogonal
Stockwell Transform (DOST), Deep Belief Networks (DBN), and
synchrosqueezing transform (SST).

Our method outperforms or shows state-of-the-art results
with methods that used much more complicated procedures
to extract and select the heartbeat features for the VEB class.
Some of the methods with better performance than the method
proposed here are not well-suited for real-time applications, as
the feature extraction stage can not be implemented online, such
as in [43] or imply a high computational cost [6]. Moreover, our
approach outperforms the other single lead classifiers reported
for the VEB classification based on the MIT-BIH AR lead V1’,
showing a better generalization capability than the other methods
based on a single lead. Finally, the excessive false alarm rate
(low PPV) is a major problem for clinical use since it diminishes
the confidence in the algorithm. The approach discussed in this
manuscript has the best PPV for the VEB class among the single
lead classifiers.

4. DISCUSSION

The proposed method shows excellent classification results
for the VEB class on the MIT-BIH AR and the AHA
databases, outperforming existing single lead classification
algorithms in the detection of ventricular arrhythmia.
The presented ESN approach is suitable for processing
long-term recordings and large databases as the feature
extraction and the algorithm itself both have minimal
computational requirements.

Overall, the ESN presents two main advantages over other
classical methods that have been used to classify heartbeats,
such as the SVM, NN, and decision trees (see Table 7). First,
the aforementioned methods involve relatively time consuming
complex computations in the training phase that in ESN
are easily computed. We have checked that the computation
times of the classification algorithm for the evaluation of 11
h of ECG recordings amounts to <0.2 s for a lab CPU,
while the use of a GPU (see Table 6) offers at least a
speedup of an order of magnitude. Second, past heartbeats
play a role in the classification task in the case of the ESN
thanks to its intrinsic memory, having a positive impact on
the performance.

In this work, heartbeats are classified as SVEB+ and VEB+.
Future work will focus on the extension of these results to
the five heartbeat classes recommended by the AAMI. Another
important aspect not covered in our study is the fixed heartbeat
window length that can be inappropriate in the case of fast and
slowly varying heart rhythms when changing physical activity.
Thus, there is a need to study adaptive beat size segmentation.
The understanding of the exact relation between underlying
physiology and features is a potential question to address.
However, there are no conclusive guidelines about which features
should be used to diagnose arrhythmias from the ECG using
computer aided systems.
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We investigate, both numerically and experimentally, the usefulness of a distributed

non-linearity in a passive coherent photonic reservoir computer. This computing system

is based on a passive coherent optical fiber-ring cavity in which part of the non-linearities

are realized by the Kerr non-linearity. Linear coherent reservoirs can solve difficult tasks

but are aided by non-linear components in their input and/or output layer. Here, we

compare the impact of non-linear transformations of information in the reservoirs input

layer, its bulk—the fiber-ring cavity—and its readout layer. For the injection of data into

the reservoir, we compare a linear input mapping to the non-linear transfer function of a

Mach Zehnder modulator. For the reservoir bulk, we quantify the impact of the optical

Kerr effect. For the readout layer we compare a linear output to a quadratic output

implemented by a photodiode. We find that optical non-linearities in the reservoir itself,

such as the optical Kerr non-linearity studied in the present work, enhance the task

solving capability of the reservoir. This suggests that such non-linearities will play a key

role in future coherent all-optical reservoir computers.

Keywords: photonic, reservoir computing, passive, coherent, distributed non-linearity, Kerr, fiber-ring

1. INTRODUCTION

In this work, we discuss an efficient, i.e., high speed and low power, analog photonic computing
system based on the concept of reservoir computing (RC) [1, 2]. This framework allows to exploit
the transient dynamics of a non-linear dynamical system for performing useful computations. In
this neuromorphic computing scheme, a network of interconnected computational nodes (called
neurons) is excited with input data. The ensemble of neurons is called the reservoir, and the
interneural connections are fixed and can be chosen at random. For the coupling of the input
data to the reservoir an input mask is used: a set of input weights which determines how strongly
each of the inputs couples to each of the neurons. The randomness in both the input mask and
internal reservoir connections ensures diversity in the neural responses. The reservoir output is
constructed through a linear combination of neural responses (possibly first processed by a readout
function) with a set of readout weights. The strength of the reservoir computing scheme lies in the
simplicity of its training method, where only the readout weights are tuned to force the reservoir
output to match a desired target. In general, a reservoir exhibits internal feedback through loops
in the neural interconnections. As a result any reservoir has memory, which means it can retain
input data for a finite amount of time, and it can compute linear and non-linear functions of the
retained information.
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Within the field of reservoir computing two main approaches
exist: in the network-based approach networks of neurons are
implemented by connecting multiple discrete nodes [3], and in
the delay-based approach networks of virtual neurons are created
by subjecting a single node (often a non-linear dynamical device)
to delayed feedback [4]. In the latter, the neurons are called
virtual because they correspond with the traveling signals found
in consequent timeslots in the continuous delay-line system.
On account of this time-multiplexing of neurons, the input
weights are translated into a temporal input mask, which is
mixed with the input data before it is injected into the reservoir.
Besides ensuring diversity in the neural responses, this input
mask also keeps the virtual neurons in a transient dynamic
regime, which is a necessary condition for good reservoir
computing performance.

Multiple opto-electronic reservoirs have been implemented,
both delay-based [5–8] and network-based [9]. Several all-optical
reservoirs have been realized, both network-based systems [9–
13] and delay-based systems [14–16]. An overview of recent
advances is given in reference [17]. We observe that in the field of
optical reservoir computing, some implementations operated in
an incoherent regime, while others operated in a coherent regime.
Coherent reservoirs have the advantage that they can exploit the
complex character of the optical field, exploit interferences, and
can use the natural quadratic non-linearity of photodiodes. As a
drawback, coherent bulk optical reservoirs typically need to be
stabilized, but this is not a problem for on chip implementations.
Here we investigate the potential advantage of having a coherent
reservoir with non-linearity inside the reservoir. We show that
it can increase the performance of the reservoir on certain tasks
and we expect that future coherent optical reservoir computers
will make use of such non-linearities.

State of the art photonic implementations target simple
reservoir architectures [13], which can easily be upscaled to
increase the number of computational nodes or neurons, thereby
enhancing the reservoirs computational capacity. Even a linear
photonic cavity can be a potent reservoir [16], provided that
some non-linearity is present either in the mapping of input
data to the reservoir, or in the readout of the reservoirs
response. Despite advances toward all-optical RC [18], many
state of the art photonic reservoir computers inherently contain
some non-linearity as they are usually set up to process
and produce electronic signals. This means that even if the
reservoir is all-optical, the reservoir computer in its entirety
is of an opto-electronic nature. Commonly used components
like a Mach-Zehnder modulators (MZM) and photodetectors
(PD) provide means for transitioning back and forth between
the electronic and optical domains, and they also—almost
inevitably—introduce non-linearities which boost the opto-
electronic reservoir computers performance beyond the merits
of the optical reservoir itself. When transitioning toward all-
optical reservoir computers, such non-linearities can no longer
be relied on, and thus the required non-linear transformation
of information must originate elsewhere. One option is then to
use multiple strategically placed non-linear components in the
reservoir, but this can be a costly strategy when upscaling the
reservoir [10].

In this paper, we study a delay-based reservoir computer,
based on a passive coherent optical fiber ring cavity following
reference [16] and exploit the inherent non-linear response of
the waveguiding material to build a state-of-the-art photonic
reservoir. This means that the non-linearity of our photonic
reservoir is not found in localized parts, but rather it is distributed
over the reservoirs entire extent. To correctly characterize
the effects of such distributed non-linearity, we also consider
in this study all other non-linearities that may surround
the reservoir. In terms of the reservoirs input mapping, we
examined the system responses when receiving optical inputs
(linear mapping), and when receiving electronic inputs coupled
to the optical reservoir through a Mach-Zehnder modulator
with a non-linear mapping. For the reservoirs readout layer,
we examined both linear readouts (coherent detection) and
non-linear readouts through the quadratic non-linearity of a
photodiodemeasuring the power of the optical field. Taking these
different options into account, we then constructed different
scenarios in terms of the presence of non-linearities in the input
and/or output layer of these reservoir computers. In all these
scenarios we numerically benchmarked the RC performance,
thus quantifying the difference in performance between systems
which do or do not have such distributed non-linearity inside
the reservoir. In the next sections, we show our numerical
results, which show a broad range of optical input power levels
at which these RCs benefit from the self-phase modulation
experienced by the signals due to the non-linear Kerr effect
induced by the waveguide material. We also show the results
of our experimental measurements that indicate how much
this distributed non-linearity boosts the reservoir’s capacity to
perform non-linear computation. In the discussion section, we
analyze the impact of these findings on the future of photonic
reservoir computing.

2. MATERIALS AND METHODS

2.1. Setup
Our reservoir computing simulations and experiments are based
on the set of dynamical systems which are discussed in this
section. The reservoir itself is implemented in the all-optical
fiber-ring cavity shown in Figure 1, using standard single-mode
fiber. A polarization controller is used to ensure that the input
field Ein (originating from the green arrow) excites a polarization
eigenmode of the fiber-ring cavity. A fiber coupler, characterized
by its power transmission coefficient T = 50%, couples light
in and out of the cavity. The fiber-ring is characterized by
the roundtrip length L = 10m (or roundtrip time tR), the
propagation loss α (taken here 0.18 dB km−1), the fiber non-
linear coefficient γ (which is set to 0 to simulate a linear reservoir,
and set to γKerr = 2.6mradm−1 W−1 to simulate a non-
linear reservoir), and the cavity detuning δ0, i.e., the difference
between the roundtrip phase and the nearest resonance (multiple
of 2π). This low-finesse cavity is operated off-resonance, with
a maximal input power of 50mW (17 dBm). A network of
time-multiplexed virtual neurons is encoded in the cavity
field envelope. The output field Eout is sent to the readout
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FIGURE 1 | Schematic of the fiber-ring cavity of length L used to implement

an optical reservoir. The green (orange) arrow indicates a connection with an

input (output) layer. A polarization controller maps the input polarization onto a

polarization eigenmode of the cavity. A coupler with power transmission

coefficient T couples the input field E
(n)
in

(τ ) to the cavity field E (n)(z, τ ) and

couples to the output field E
(n)
out (τ ), where n is the roundtrip index, τ is time

(with 0 < τ < tR) and z is the longitudinal position in the ring cavity.

layer (through the orange arrow) where the neural responses
are demultiplexed.

The input field Ein can originate from one of two different
optoelectronic input schemes. Firstly we consider a scenario
where the input signal u(n) (with discrete time n) is amplitude-
encoded in an optical signal E ∼ u(n), as shown in Figure 2A.
The reservoir’s input maskm(τ ) is mixed with the input signal by
periodic modulation of the optical input signal using an MZM.
This scheme was implemented in reference [7], but the non-
linearity of the MZM was avoided through pre-compensation
of the electronic input signal. Note that the discrete time
n corresponds with the roundtrip index. And as delay-based
reservoirs are typically set up to process 1 sample each roundtrip,
n also corresponds with the sample index. However, we have
chosen to hold each input sample over multiple roundtrips, for
reasons which are explained in the Results section [that is, u(n)
is constant over multiple values of n]. Secondly we consider
a scenario where we use the MZM to modulate a CW optical
pump following reference [14], as shown in Figure 2B. Here the
input signal is first mixed with the input mask and then used to
drive the MZM. It is known that the MZM’s non-linear transfer
function can affect the RC system’s performance [16], but the
implications for a coherent non-linear reservoir have not yet
been investigated.

Similarly, the output field Eout can be processed by two
different optoelectronic readout schemes. Firstly we consider
a coherent detection scheme as shown in Figure 2C. Mixing
the reservoir’s output field with a reference field ELO allows to
record the complex neural responses, time-multiplexed in the
output field Eout . Secondly, we consider a readout scheme where
a photodetector (PD) measures the optical power of the neural
responses |Eout|

2, as shown in Figure 2D.
With high optical power levels and small neuron spacing

(meaning fast modulation of the input signal), dynamical and
non-linear effects other than the Kerr non-linearity may appear,
such as photon-phonon interactions causing Brillouin and

FIGURE 2 | Schematics of input and output layers connecting to the reservoir

shown in Figure 1. In the linear input scheme (A) the Mach-Zehnder

modulator (MZM) superimposes the reservoir’s input mask m(τ ) on the optical

signal E ∼ u(n) carrying the input data. In the (possibly) non-linear input

scheme (B) the input data is mixed with the input mask and then drives the

MZM to modulate a CW optical pump. In the linear output scheme (C) a

reference field ELO is used to implement coherent detection, allowing a

quadrature of the complex optical field to be measured. Note that coherent

detection requires two such readout arms with phase-shifted reference fields

in order to measure the complex output field Eout. In the non-linear output

scheme (D) only a photodetector (PD) is used, thus only allowing the optical

output power |Eout|
2 to be recorded.

Raman scattering, and bandwidth limitations caused by the
driving and readout equipment. We want to focus in the present
work on the effects of the Kerr non-linearity. Combined with the
memory limitations of the oscilloscope, we therefore limit our
reservoir to 20 neurons, with a maximal input power of 100mW.

The current setup is not actively stabilized.We have found that
the cavity detuning δ0 does not vary more than a few mrad over
the course of any single reservoir computing experiment, where
a few thousand input samples are processed. A short header,
added to the injected signal, allows us to recover the detuning
δ0 post-experiment. We effectively measure the interference
between a pulse which reflects off the cavity and a pulse which
completes one roundtrip through the cavity. However, we find
that the precise value of δ0 has no significant influence on the
experimental reservoir computing results.

2.2. Physical Model
Here we discuss the mean-field model used to describe the
temporal evolution of the electric field envelope E(n)(z, τ ) inside
the cavity, where n is the roundtrip index, 0 < τ < tR is time
(bound by the cavity roundtrip time tR and 0 < z < L is
the longitudinal coordinate of the fiber ring cavity with length
L. The position z = 0 corresponds to the position of the fiber
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coupler. The position z = L corresponds to the same position,
but after propagation through the entire fiber-ring. We will
describe the evolution on a per-roundtrip basis (i.e., with varying
roundtrip index n). With this notation E(n)(z, τ ) represents the
cavity field envelope measured at position z at time τ during
the n-th roundtrip. For each roundtrip we model propagation
through the non-linear cavity to obtain E(n)(z = L, τ ) from
E(n)(z = 0, τ ). We then express the cavity boundary conditions to

obtain E(n+1)(0, τ ) from E(n)(L, τ ) and to obtain the field E
(n)
out(τ )

at the output of the fiber-ring reservoir. For now we will omit τ .
Firstly, to model propagation in the fiber-ring cavity we take

into account propagation loss and the non-linear Kerr-effect.
Since the non-linear propagation model is independent from
the roundtrip index n, this subscript is omitted in the following
description. The non-linear propagation equation is given by

∂zE = iγ |E|2E− αE. (1)

Here, α is the propagation loss and γ is the non-linear coefficient
which is set to γ = 0 to simulate a linear reservoir, and set to
γ = γKerr to include the non-linear Kerr effect caused by the fiber
waveguide. We do not include dispersion effects at the current
operating point of the system, since the neuron separation is
much larger than the diffusion length, hence also τ can be
omitted in the non-linear propagation model. The evolution of
the power |E(z)|2 is readily obtained by solving the corresponding
propagation equation

∂z|E|
2 = E∗∂zE+ E∂zE

∗ = −2α|E|2, (2)

|E(z)|2 = |E(0)|2e−2αz . (3)

With φz the non-linear phase acquired during propagation over
a distance z, we know that the solution of E(z) will be of the form

E(z) = E(0)eiφz−αz . (4)

Since this non-linear phase depends on the power evolution given
by Equation (2), an expression for φz is found to be

φz = γ

∫ z

0
|E(v)|2δv = γ |E(0)|2

∫ z

0
e−2αv

δv = γ |E(0)|2
1− e−2αz

2α
.

(5)
At this point, we can introduce the effective propagation distance
zeff as

zeff =
1− e−2αz

2α
. (6)

In general (since α ≥ 0) we have zeff ≤ z. Substituting these result
in Equation (4) yields the complete solution for propagation of
the cavity field envelope

E(z) = E(0) exp
(

iγ |E(0)|2zeff − αz
)

. (7)

Finally, we reinstitute the roundtrip index n and the time
parameter τ which allows us to combine this non-linear
propagation model with the cavity boundary conditions.











E(n)(L, τ ) = E(n)(0, τ ) exp
(

iγ |E(n)(0, τ )|2Leff − αL
)

E(n+1)(0, τ ) =
√
TE

(n+1)
in (τ )+

√
1− Teiδ0E(n)(L, τ )

E
(n+1)
out (τ ) =

√
1− TE

(n+1)
in (τ )+

√
Teiδ0E(n)(L, τ )

(8)

In these equations, T represents the power transmission
coefficient of the cavity coupler, and δ0 represents the cavity
detuning (i.e., difference between the roundtrip phase and the

closest cavity resonance). Further, the input field Ein = E
(n)
in (τ )

changes with the roundtrip index n as new data samples can
be injected into the system, and is modulated in time using the
input mask to create a network of virtual neurons. The output

field Eout = E
(n)
out(τ ) containing the neural responses is sent to a

measurement stage.

2.3. Reservoir Computing
The framework of reservoir computing allows to exploit
the transient non-linear dynamics of a dynamical system to
perform useful computation [1, 2]. For the purpose of reservoir
computing, virtual neurons (dynamical variables, computational
nodes) are time-multiplexed in τ -space of the physical system
described by Equation (8), following the delay-based reservoir
computing scheme originally outlined in reference [4]. As such,

the input field E
(n)
in (τ ) varies with n as new input samples arrive,

and varies with τ to implement the input mask, which excites
the neurons into a transient dynamic regime. Subsequently,

the neural responses are encoded in the output field E
(n)
out(τ )

and need to be demultiplexed from τ -space. As in references
[5, 16] the length tM of the input mask m(τ ) is deliberately
mismatched from the cavity roundtrip time tR. Instead, we set
tM = tRN/(N + 1) which provides interconnectivity between
the N virtual neurons in a ring topology. The input mask m(τ )
is a piecewise constant function, with intervals of duration θ =

tM/N. The signal I(n)(τ ) injected into the RC is constructed
by multiplying the input series u(n) with the input mask,
I(n)(τ ) = u(n)m(τ ). When the input is coupled linearly to

the reservoir then E
(n)
in (τ ) ∼ I(n)(τ ). This would be the case

when u(n) is an optical signal periodically modulated with the
input mask signal m(τ ). When a MZM modulator with transfer
function f is used to convert the electronic signal I(n)(τ ) to

the optical domain then E
(n)
in (τ ) ∼ f (I(n)(τ )), where f can

be non-linear.
Note that in reference [16] the sample duration tS is matched

to the length of the input mask tM , allowing the reservoir to
process 1 input sample approximately every roundtrip, as tS =

tM . tR. However, for reasons explained in the Results section,
we will study different sample durations by holding input samples
over multiple durations of the input mask, tS = k tM with integer
k as illustrated in Figure 3. This inevitably slows the reservoir

down, as it only processes 1 input sample approximately every k

roundtrips. But it also provides practically straightforwardmeans

to accumulate more non-linear processing of the data inside the

reservoir, which can then be measured and quantified.

Since the virtual neurons are time-multiplexed in this delay-

based reservoir computer, they need to be de-multiplexed from

E
(n)
out(τ ) in the readout layer by sampling this output field at a

set of times {τi} (with i the neuron index and 1 < i < N
when N neurons are used) as shown in Figure 3. The dynamical

neural responses xi(n) = E
(n)
out(τi) are recorded and used to train

the reservoir to perform a specific task. That is, we optimize a

Frontiers in Physics | www.frontiersin.org 4 October 2019 | Volume 7 | Article 13831

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pauwels et al. Distributed Non-linearity in Optical Reservoir

FIGURE 3 | Schematic of input and output timing, with tS the sample duration, tM the input mask duration and tR the roundtrip time. Input samples are injected

during (integer) k roundtrips (bars in alternating colors) and the neural responses are recorded at times {τi} (blue tick marks) during the last of those k roundtrips.

set of readout weights wi which are used to combine the neural
readouts into a single scalar reservoir output y(n). In general the
reservoir output is constructed as

y(n) =

N
∑

i=1

wig(xi(n)) (9)

where the neural responses xi(n) are first parsed by an output
function g(x) taking into account the operation of the readout
layer and readout noise ν. In all simulations the fixed level of
readout noise is matched to the experimental conditions. When
the complex-valued reservoir states are directly recorded, then
g(x) = x + ν and the readout weights wi are complex too, such
that y is real. If however, a PD measures the power of the neural
responses, then g(x) = |x|2 + ν which is real-valued, and the
readout weights will be real-valued too. Tasks are defined by the
real-valued target output ŷ. Optimization of the readout weights
occurs over a training set of Ttrain input and target samples,
and is achieved through least squares regression. This procedure
minimizes the mean squared error between the reservoir output
y and target output ŷ, averaged over all samples.

{wi} = argmin
{wi}

〈

(

ŷ−

N
∑

i=1

wig(xi)

)2

〉Ttrain
. (10)

These optimized readout weights are then validated on a test set
of Ttest new input and target samples. A common figure of merit
to quantify the reservoir’s performance is the normalized mean
square error (NMSE) defined as

NMSE(y, ŷ) =
〈
(

y− ŷ
)2
〉Ttest

〈ŷ2〉Ttest
. (11)

2.4. Balanced Mach-Zehnder Modulator
Operation
Here we briefly investigate the relevant non-linearities which
occur when mapping an electronic signal to an optical signal
using an MZM. The operation of our balanced MZM can be
described as

Ein

E0
= cos

(

V

Vπ

π

2

)

(12)

where E0 represents the incident CW pump field, Ein is the
transmitted field which will be the input field to the optical

reservoir,Vπ determines at which voltage the zero intensity point
occurs (point of no transmission), and V is the voltage of the
applied electronical signal consisting of a bias contribution Vb

and a zero-mean signal Vs, i.e., V = Vb + Vs. For our numerical
investigation, we will set the amplitude of the signal voltage to
|Vs| = Vπ/2. First, we investigate the zero intensity bias point,
Vb = Vπ . In this case, we can approximate Equation (12) with
the following Taylor expansion

Ein

E0
= f (Vs)+ O

(

V5
s

)

(13)

f (Vs) = −
π

2Vπ

Vs +
1

6

(

π

2Vπ

)3

V3
s (14)

With (Ein/E0)max representing the maximal value of Ein
E0

with the
given bias voltage Vb and signal amplitude |Vs|, the relative error
r.e. of the Taylor expansion (14)

r.e. =
|
Ein
E0

− f (Vs)|
(

Ein
E0

)

max

(15)

is smaller than 1%. When the cubic term (∼ V3
s ) of the

approximation f (Vs) is omitted, this error increases to 11%.
This means that at this operating point of the MZM, there
is a significant non-linearity which scales with the input
signal cubed.

Next, we investigate the linear intensity operating point, Vb =

Vπ/2. Although the MZM’s transfer function at this operating
point is the most linear in terms of the transmitted optical power,
it is highly non-linear in terms of the transmitted optical field. In
this case, we replace Equation (14) with

f (Vs) =
1
√
2

(

1−
π

2Vπ

Vs +
1

2

(

π

2Vπ

)2

V2
s (16)

+
1

6

(

π

2Vπ

)3

V3
s +

1

24

(

π

2Vπ

)4

V4
s

)

,

as we need all polynomial terms up to order 4 to keep the relative
error defined by Equation (15) below 1%. In this case, omitting
terms of orders above 1 in the approximation f (Vs) increases the
relative error of the Taylor expansion to 26%. This means that at
this operating point of the MZM there are multiple polynomial
non-linearities and that the total non-linear signal distortion is
stronger compared with the zero intensity bias point.
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Furthermore, during our experiments we have decided to
operate the MZM in a linear regime. This allows for the non-
linear effects inside the reservoir to be more readily measured. To
this end, we tuned the MZM close to the zero intensity operating
point, Vb = Vπ − δV with δV ≪ Vπ and reduced the signal
amplitude |Vs|. The small deviation δV is used to generate a bias
in the optical field injected into the reservoir.

2.5. Memory Capacities
To benchmark the performance of an RC, one can train it to
perform one or several benchmark tasks. Alternatively, there
exists a framework to quantify the system’s total information
processing capacity. This capacity is typically split into two main
parts: the capacity of the system to retain past input samples is
captured by the linear memory capacity [19], and the capacity
of the system to perform non-linear computation is captured
by the non-linear memory capacity [20]. It is known that the
total memory capacity has an upper bound given by the number
of dynamical variables in the system, which in our system is
the number of neurons in the reservoir. It is also known that
readout noise reduces this total memory capacity, and that there
is a trade-off between linear and non-linear memory capacity,
depending on the operating regime of the dynamical system. In
order to measure these capacities for our reservoir computer a
series of independent and identically distributed input samples
u(n) drawn uniformly from the interval [−1, 1] is injected into
the reservoir, with discrete time n. The RC is subsequently trained
to reconstruct a series of linear and non-linear polynomial
functions depending on past inputs u(n− i), looking back i steps
in the past. Following reference [20] these functions are chosen
to be Legendre polynomials Pd(u) (of degree d), because they
are orthogonal over the distribution of the input samples. As an
example, we can train the reservoir to reproduce the target signal
ŷ(n), given by

ŷ(n) = P2(u(n− 1))P1(u(n− 3)). (17)

The ability of the RC to reconstruct each of these functions is
evaluated by comparing the reservoir’s trained output y with
the target ŷ for previously unseen input samples. This yields a
memory capacity C which lies between 0 and 1 [20],

C = 1−
〈
(

ŷ− y
)2
〉

〈ŷ2〉
, (18)

where 〈.〉 denotes the average over all samples used for the
evaluation of C. Due to the orthogonality of the polynomial
functions over the distribution of the input samples, the
capacities corresponding to different functions yield independent
information and can thus be summed to quantify the total
memory capacity, i.e., the total information processing capacity
of the RC. The memory functions are typically grouped by their
total degree, which is the sum of degrees over all constituent
polynomial functions, e.g., Equation (17) has total degree 3.
Summing all memory capacities corresponding with functions of
identical total degree yields the total memory capacity per degree.
This allows to quantify the contributions of individual degrees to

the total memory capacity of the RC, which is the sum over all
degrees. As the memory capacities will become small for large
degrees, the total memory capacity is still bound.

Since the reservoirs are trained and their performance is
evaluated on finite data sets, we run the risk of overestimating the
memory capacities C, whose estimator Equation (18) is plagued
by a positive bias [20]. Therefore, a cutoff capacity Cco is used
(Cco ≈ 0.1 for 1,000 test samples) and capacities below this cutoff
are neglected (i.e., they are assumed to be 0).

Note that the trade-off between linear and non-linear memory
capacity is typically evaluated by comparing the total memory
capacity of degree 1 (linear) with the total memory capacity of
all higher degrees (non-linear). However, special attention is due
when a PD is present in the readout layer of our RC. If a reservoir
can (only) linearly retain past inputs u(n− i) (i steps in the past)
then any neural response x(n) consists of a linear combination
(with a bias term b and fading coefficients ai) of those past inputs

x(n) = b+
∑

i

aiu(n− i) (19)

and subsequently the optical power Px measured by the PD is
given by

Px(n) = x(n)x̄(n) = |b|2 +
∑

i

2Re(bāi)u(n− i) (20)

+
∑

i,j

2Re(aiāj)u(n− i)u(n− j)

which consists of polynomial functions of past inputs of degrees
1 and 2. Thus, in this case the total linear memory capacity of
the RC is represented by the total memory capacity of degrees 1
and 2 combined. In case the bias term b is lacking, only memory
capacities of degree 2 will be present. On the other hand, if a PD
is used in the output and memory capacities of degree higher
than 2 are present, then this indicates that the reservoir itself is
not linear, i.e., cannot be represented by a function of the form
Equation (19).

3. RESULTS

3.1. Numerical RC Performance: Sante Fe
Time Series Prediction
For the injection of input samples to the optical reservoir,
we consider two strategies as discussed in section 2.1 and in
Figures 2A,B, referred to here as the linear and non-linear input
regimes, respectively. The exact shape of the non-linearity in
the non-linear regime depends, among other things, on the
operating point (or bias voltage) of the MZM, as discussed in
section 2.4. We will demonstrate this by showing results around
both the linear intensity operating point and the zero intensity
operating point of the MZM. For the readout of the reservoir
response, we also consider two cases as discussed in section 2.1
and in Figures 2C,D, referred to here as the linear and non-linear
output regimes, respectively.

We have thus identified four different scenarios based on the
absence or presence of non-linearities in the input and output
layer of the reservoir computer. As we will show, we have for
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FIGURE 4 | Numerical results of fiber-ring reservoir computer on Santa Fe time series prediction tasks. In all panels the prediction error (NMSE) is plotted vs. the

average neuron power 〈Px〉. (a,b) Correspond with a linear input layer, where (c,d) correspond with a non-linear input layer using the MZM’s non-linear transfer

function. The non-linear input regime shows results for two different operating points of the MZM with different strengths of non-linear transformation.

(a,c) Correspond with a linear output layer, where (b,d) correspond with a non-linear output layer using the PD.

each of these cases numerically investigated the effect of the
distributed non-linear Kerr effect, present in the fiber waveguide,
on RC performance. For this evaluation, we have used 100
neurons to solve the Santa Fe time series prediction task [21] and
each input sample is injected during six roundtrips (tS = ktM
with k = 6) for reasons which will become clear in section
3.2. Here, a pre-existing signal generated by a laser operating
in a chaotic regime is injected into the reservoir. The target
at each point in time is for the reservoir computer to predict
the next sample. Performance is evaluated using the NMSE,
where lower is better. Figure 4 has four panels corresponding to
these four scenario’s. Each panel shows the NMSE as function of
the average optical power per neuron inside the cavity. Dashed
blue lines correspond with simulation results of linear reservoirs
(i.e., with the non-linear coefficient γ set to 0), and full red
lines correspond with simulation results of reservoirs with Kerr
non-linear waveguides (i.e., γ set to γKerr).

In Figure 4a both the input and output layers of the reservoir
are strictly linear (i.e., optical input and coherent detection). It
is clear that the linear reservoir (γ = 0) scores poorly, with the
NMSE approaching 20%. For a wide range of optical power levels,
the presence of the Kerr non-linear effect (γ = γKerr) induced by
the fiber waveguide boosts the RC performance, with an optimal
NMSE just below 1%. This can be readily understood as it is well-
known that for this task, some non-linearity is required in order
to obtain good RC performance. Note that the average neuron
power 〈Px〉 can be used to estimate the average non-linear phase
φKerr the signals will acquire during the sample duration tS, as
φKerr = γKerr〈Px〉LtS/tM . We observe that without the presence
of phase noise in the cavity, the boost to the RC performance
due to the Kerr effect starts at very small values of the estimated
non-linear phase, and breaks down when φKerr & 1. Switching
to Figure 4bwe have now introduced the square non-linearity by
using a PD in the readout layer. Focusing on the results obtained
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with a linear reservoir, we see that the PD’s non-linearity alone
decreases the NMSE down from 20 to ∼5% (γ = 0). Although
the PD’s non-linearity clearly boosts the RC performance on
this task, its effect is rather restricted. The PD only generates
squared terms, and linear terms if a bias is present, see section
2.5, depending on the MZM’s operating point. Furthermore,
this non-linearity does not affect the neural responses nor the
operation of the reservoir itself, as it only applies to the readout
layer. It can thus be understood that the introduction of the
Kerr non-linearity inside the reservoir warrants an additional
significant drop in NMSE, to below 1% (γ = γKerr). In Figure 4c,
the output layer is linear again, but now we have introduced the
MZM in the input layer. The closed markers correspond with
simulations where the MZM operates around the zero intensity
operating point or the point of minimal transmission (Vbias =

Vπ ). In terms of the optical field modulation, this is the most
linear regime. It is thus no surprise that the performance of both
linear and non-linear reservoirs mimics that Figure 4a where no
non-linearity was present in the input layer. The only difference
is that the error of the linear reservoir drops from 20% to about
13%(γ = 0, Vbias = Vπ ) because of the small residual non-
linearity at this operating point of the MZM. The round markers
correspond with simulations where the MZM operates around
the linear intensity operating point (Vbias = Vπ/2). In terms of
the optical field modulation, the non-linearity in the mapping
of input samples to the optical field injected into the reservoir
is more non-linear at this operating point. This is why even
the linear reservoir manages to achieve errors below 4% (γ =

0, Vbias = Vπ/2). Again we see that the introduction of the
non-linear Kerr effect allows the NMSE to drop even further,
to below 1% (γ = γKerr). In fact, this scenario is similar to
the scenario with linear input mapping and non-linear output
mapping, Figure 4b. Finally, in Figure 4d, non-linearities are
present in both the input mapping and readout layer. With
the MZM operating around the zero intensity operating point,
there is only a weak non-linearity in the input mapping and
thus, as expected, both linear and non-linear reservoirs show
trends which are very similar to the scenario where the input
mapping is linear, Figure 4c. With the MZM operating around
the linear intensity operating point (Vbias = Vπ/2) however,
we observe a scenario in which the RC does not seem to benefit
from the presence of the Kerr non-linear effect. It seems that with
significant non-linearities present in both input and output layers
of the RC the distributed non-linear effect inside the reservoir
cannot further decrease the NMSE below values attained by the
linear reservoir, which is below 1% (Vbias = Vπ/2). In all other
cases, Figures 4a–c, we find that the distributed non-linearity
inside the reservoir significantly boosts RC performance, and we
find that its presence is critical when no other non-linearities
are available.

3.2. Experimental Verification: Linear and
Non-linear Memory Capacity
In this section we compare experimental results with detailed
numerical simulations. For the experimental verification of our
work, we are currently limited to operate with 20 neurons,

as explained in section 2.1. Therefore, we have chosen not to
perform the reservoir computing experiment on the Santa Fe
task. With this few neurons, tasks like the Santa Fe task become
hard for the reservoir. Instead we turn to a more academic
task which allows us to quantify the reservoir’s memory and
non-linear computational capacity in a more complete and task-
independent way. We experimentally measure the linear and
non-linear memory capacities considered in section 2.5. Even
with this few neurons the evaluation of the memory capacities
can yield meaningful results while taking up comparatively little
processing time.

For these experiments, the input layer to our fiber-ring
reservoir contains a balanced MZM tuned to operate in a linear
regime as outlined in section 2.4. The output layer employs a
PD to measure the neural responses. That is, we use the setups
of Figures 2B,D but with the MZM operated as in Equation
(2.4). Following reference [20], we have driven the reservoir
with a series of independent and identically distributed random
samples and trained the RC to reproduce different linear and
non-linear polynomial functions of past input samples. The
capacity of the reservoir to reconstruct these functions was then
evaluated and results were grouped according to the function’s
polynomial degree. To retain oversight on the results, we will
only show the total capacity per degree, by summing all capacities
corresponding with functions of the same total polynomial
degree. In Figure 5 we show the total memory capacity per
degree, encoded in the height of vertically stacked and color-
coded bars. The stacking allows to visualize the contributions
of individual degrees to the total overall memory capacity
(summed over all degrees). Capacities of degree higher than
4 are not considered, as they were found not to contribute
significantly to the total memory capacity of the system. For
results labeled bias off the MZM operates at the zero-intensity
point (Vbias = Vπ ), and moving toward the bias on label,
we tuned the MZM’s bias voltage (Vbias = Vπ − δV , with
δV ≪ Vπ ). This introduces a small bias component to the optical
field injected into the reservoir, without compromising the linear
operation of the MZM. The experiment was also repeated for
different values of the sample duration tS with respect to the
input mask periodicity tM (approximately equal to the cavity
roundtrip tR). We expect the sample duration to play a very
important role, since it determines how much time a piece
of information spends inside the cavity, and thus how much
non-linear phase can be acquired. The ratio tS/tM is gradually
increased from tS = 2tM in (first row) Figures 5A–C, to
tS = 6tM in (middle row) Figures 5D–F, and finally to tS =

10tM in (bottom row) Figures 5G–I. The experimental results
in (left column) Figures 5A–G are compared with numerical
results on a linear reservoir (γ = 0) in (middle column)
Figures 5B–H, and a non-linear reservoir (γ = γKerr) in (right
column) Figures 5C–I.

Firstly, in Figure 5A we observe that without bias to the
optical input field (Vbias = Vπ ) the total memory capacity
originates almost completely from the polynomial functions
of degree 2 which means (given the presence of the PD in the
readout layer) that the optical system is almost completely
linear. Then, as an optical field bias is introduced we find
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FIGURE 5 | Comparison between experimental results (A,D,G) and numerical models with linear (γ = 0) (B,E,H) and non-linear (γ = γKerr ) reservoirs (C,F,I). The

stacked vertical bars are color-coded to represent the total memory capacities (TMC) of degree 1 (blue), 2 (red), 3 (orange), and 4 (purple). As such, the total height

represents the total overall memory capacity. A control variable to the MZM δV , is varied to include a small bias component to the injected optical field, where bias off

corresponds with δV = 0 and bias on corresponds with a small non-zero value 0 < δV ≪ Vπ . The sample duration tS is varied from 2 times (A–C), to 6 times (D–F)

and finally to 10 times (G–I) the input mask period tM (≈ cavity roundtrip time tR).

that the total linear memory capacity of the system is now
shared between degrees 1 and 2. As expected on account of
quadratic non-linearity due to the PD, Equation (20), the
contribution of (odd) degree 1 grows with the increasing
bias. Beyond these capacities of degrees 1 and 2, we also
observe a small contribution of capacities of degrees 3 and
4. We ascribe these contributions to the imperfect tuning
of the MZM and thus a small residual non-linearity in the
input mapping. Note that the simulations take into account
the quasi-linear input mapping of the MZM, but seemingly
underestimate the residual non-linearities to be insignificant.
The imperfection of the MZM tuning also leads to a small
residual bias component to the optical injected field, resulting
in a small non-zero capacity of degree 1. Numerical simulations
of linear (γ = 0) and non-linear (γ = γKerr) reservoirs

in Figures 5B,C, respectively, show the same growth in the
memory capacity of degree 1 at the expense of the memory
capacity of degree 2 when the bias is changed. Note that
both simulations seem to overestimate the minimal bias
required to obtain a significant memory capacity of degree
1. At this sample duration (tS = 2tM) neither simulations
indicate any significant contributions of capacities with
degrees beyond 2.

When increasing the sample duration (tS = 6tM and tS =

10tM), the experimental results in Figures 5D,G show a steady
increase in the contributions of capacities with degrees 3 and
4. This increase is attributed to the non-linear Kerr effect, due
to the larger accumulation of non-linear phase during the time
each sample is presented to the reservoir. At the same time
we see a decrease in the capacities of degrees 1 and 2. As
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explained before, due to the PD these capacities capture the
reservoir’s capacity to linearly retain past samples. This trade-
off between linear memory capacity (here degrees 1 and 2) and
non-linear computational capacity (here degrees 3 and 4) is well-
documented [20]. Because we use the sample duration (tS =

ktM ≈ ktR) to control the cumulative non-linear effect inside
the reservoir, we inevitably increase the mismatch between the
inherent timescale of the input data (i.e., the sample duration
tS) and the inherent timescale of the reservoir (i.e., the cavity
roundtrip tR). and alter the reservoirs internal topology. When
each sample is presented longer, past samples have spent more
time inside the lossy cavity by the time they are accessed through
the reservoirs noisy readout. Thus, on the longer timescales
(tS) at which information is now processed, it is harder for the
reservoir (operating at timescale tR) to retain past information.
These aspects explain why the overall total memory capacity
(summed over all degrees) decreases with increased sample
duration tS. The numerical results on both the linear reservoir
(γ = 0) in Figures 5E,H and the non-linear reservoir (γ =

γKerr) in Figures 5F,I correctly predict a drop in the total linear
memory capacities (degrees 1 and 2). Due to the memory
capacity cutoff explained in section 2.5, small capacities are
harder to quantify accurately and systematic underestimation
can occur. This explains why the small total memory capacities
obtained experimentally are larger than the small total memory
capacity obtained numerically. The correspondence for large
total memory capacities is better as they are largely unaffected
by the cutoff. But besides the drop in linear memory capacities,
only the non-linear reservoir model can explain the steady
increase in non-linear memory capacities (degrees 3 and 4) with
longer sample durations. With increasing sample duration tS
the simulated non-linear reservoir shows the contribution of the
total non-linear memory capacity (degrees 3 and 4) to the total
memory capacity (all degrees) growing from 0 to 25.4%, and
in the experiment this contribution starts at 6.4% and grows
up to 23.6%. This sizable increase in non-linear computation
capacity can be of considerable significance to the reservoir’s
performance on other tasks, as shown earlier. When comparing
the experimental results with the non-linear reservoir model for
all given sample durations tS, the main difference is that the
capacities of degree 3 seem to appear sooner (i.e., for smaller
sample duration) in the experiment. This can be explained by
the residual bias component to the optical injected field. Such
a bias makes it easier to produce polynomial functions of odd
degrees, thus explaining their earlier onset. This can be explained
by the quadratic nature of the Kerr non-linearity, as the reasoning
previously applied to the quadratic non-linearity of the PD
in Equation (20) can be generalized to memory capacities of
higher degree.

4. DISCUSSION

We have identified and investigated the role of non-linear
transformation of information inside a photonic computing
system based on a passive coherent fiber-ring reservoir. Non-
linearities can occur at different places inside a reservoir
computer: the input layer, the bulk and the readout layer.

State-of-the-art opto-electronic RC systems often include one or
several components which inevitably introduce non-linearities
to the computing system. On the reservoir’s input side, we have
compared a linear input regime with the usage of a MZM, which
has a non-linear transfer function, to convert electronic data to an
optical signal. On the reservoir’s output side, we have compared
a linear output regime with the usage of a PD which measures
optical power levels, that scale quadratically with the optical
field strength of the neural responses. We numerically evaluated
such systems using a benchmark test and found that non-linear
input and/or output components are needed to obtain good RC
performance when the optical reservoir itself (i.e., the core of the
RC system) is a strictly linear system.

Internal to the reservoir, we investigated the effect of
the optical Kerr non-linear effect on RC performance. Our
numerical benchmark test showed a large band of optical
powers where the presence of this distributed non-linear effect,
caused by the waveguiding material of the reservoir, significantly
decreased the RC’s error figure. Our numerical and experimental
measurements of the linear and non-linear memory capacity
of this RC system showed that the accumulation of non-linear
phase due to the distributed non-linear Kerr effect strongly
improves the system’s non-linear computational capacity. We
can thus conclude that for photonic reservoir computers with
non-linear input and/or output components, the presence of a
distributed non-linear effect inside the optical reservoir improves
the RC performance. Furthermore, the distributed non-linearity
is essential for good performance in the regime where non-
linearities are absent from both the input and output layer. This
may be the case in an all-optical reservoir computer (i.e., with
optical input and output layers). We have shown that the effect of
the distributed non-linearity is strong enough to compensate for
the lack of non-linear transformation of information elsewhere
in the system, and that it allows to build a computationally strong
photonic computing system.

Finally, we expect a design approach including distributed
non-linear effects to improve the scalability of these types
of computational devices. In general, when harder tasks are
considered, larger reservoirs are required. One way to increase
the size of a delay-based reservoir is to implement a longer
delay-line. This increase in length of the signal propagation
path naturally increases the effect of distributed non-linearities
as considered in this work. Similarly, increasing the size
of a network-based reservoir will also lead to more and/or
longer signal paths, resulting in the increased accumulation of
non-linear effects, although waveguides with stronger non-linear
effects may have to be considered to compensate for the shorter
connection lengths in on-chip implementations. We believe
that the natural increase in the strength of non-linear effects,
following the increase in size of the reservoir, may diminish
the need to place discrete non-linear components inside large
networks used for strongly non-linear tasks. As such, both
the complexity and cost of such systems would be reduced.
Since the waveguiding material itself is used to induce non-
linear effects, the waveguide properties (such as material and
geometry) determines the optical field confinement and thus
regulate the strength of non-linear interactions. Consequently it
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may be possible to create reservoirs where deliberate variations
in the waveguide properties are used to tune the strength of the
distributed non-linear effect in different regions of the system.
This would allow for a trade off between the system’s linear
memory capacity and its non-linear computational capacity,
such that a large number of past input samples can be retained
(in some parts of the system) and then non-linearly processed
to solve difficult tasks (in other parts of the system). These
considerations indicate why distributed non-linear effects may
play a major role in future implementations of powerful photonic
reservoir computers.
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We review prediction efforts of El Niño events in the tropical Pacific with particular focus

on using modern machine learning (ML) methods based on artificial neural networks.

With current classical prediction methods using both statistical and dynamical models,

the skill decreases substantially for lead times larger than about 6 months. Initial ML

results have shown enhanced skill for lead times larger than 12 months. The search for

optimal attributes in thesemethods is described, in particular those derived from complex

network approaches, and a critical outlook on further developments is given.

Keywords: El Niño, prediction, machine learning, neural networks, attributes, climate networks

1. INTRODUCTION

Techniques of Artificial Intelligence (AI) and Machine Learning (ML) are very well developed [1],
and massively applied in many scientific fields, like in medicine [2], finance [3], and geophysics
[4]. Although the application to climate research has been around for a while [5–7], there is
much renewed interest recently [8–10]. A main issue in which breakthroughs are expected is the
representation of unresolved processes (e.g., clouds, oceanmixing) in numerical weather prediction
models and in global climate models. For example, recently a ML-inspired (random-forest)
parameterization of convection gave accurate simulations of climate and precipitation extremes in
an atmospheric circulation model [11]. ML has also been used to train statistical models which
mimic the behavior of climate models [12, 13]. Another area of potential breakthrough is the
skill enhancement of forecasts for weather and particular climate phenomena, such as the El
Niño-Southern Oscillation (ENSO) in the tropical Pacific.

During an El Niño, the positive phase of ENSO, sea surface temperatures in the eastern Pacific
increase with respect to average values and upwelling of colder, deep waters diminishes. The
oscillation phase opposite to El Niño is La Niña, with a colder eastern Pacific and increased
upwelling. A measure of the state of ENSO is the NINO3.4 index (Figure 1A), which is the area-
averaged Sea Surface Temperature (SST) anomaly (i.e., deviation with respect to the seasonal cycle)
over the region 170–120◦W × 5◦S–5◦N. Averaging over other areas defines other indices such as
NINO3. For ENSO predictions, often the Oceanic Niño Index (ONI) is used which refers to the
3-months running mean of the NINO3.4 index.

El Niño events typically peak in boreal winter, with an irregular period between two and seven
years, and strength varying irregularly on decadal time scales. The most recent strong El Niño
had its maximum in December 2015 (Figure 1A). The spatial pattern of ENSO variability is often
represented by methods from principal component analysis [14], detecting patterns of maximal
variance. The first Empirical Orthogonal Function (EOF) of SST anomalies, obtained from the

39
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Hadley Centre Sea Ice and Sea Surface Temperature (HadISST)
dataset [15] over the period 1950–2010, shows a pattern strongly
confined to the equatorial region with largest amplitudes in the
eastern Pacific (Figure 1B).

El Niño events typically cause droughts on the western part
of the Pacific and flooding events on the eastern part and hence
affect climate worldwide. Estimated damages for the 1997–1998
event were in the order of billions of US$ [16]. The development
of skillful forecasts of these events, preferably with a one year
lead time, is hence important. These forecasts will enable policy
makers to mitigate the negative impacts of the associated weather
anomalies. For example, farmers can be advised to use particular
types of corn in El Niño years and others during La Niña years
(see e.g., http://globalagrisk.com).

Although more detailed regional measures are sometimes
desired in a forecast, most focus is on spatially averaged indices
such as the NINO3.4 (cf. Figure 1A). Forecasting this time series
is an initial value problem requiring the specification of initial
conditions (of relevant observables) and a model, which can
be either statistical or dynamical. With this model, one can
predict future values of these observables or of other ones from
whichmeaningful diagnostics, such as the NINO3.4 index, can be
obtained. Due to many efforts in the past, detailed observations
of relevant oceanic and atmospheric variables are available (since
the mid-1980s) through the TAO-TRITON observation array
in the tropical Pacific, and satellite data of sea surface height,
surface wind stress and sea surface temperature [17]. In addition,
reanalysis data (i.e., model simulations which assimilate existing
observations) such as ERA-Interim [18] provide a rather detailed
characterization of present and past state of the Pacific, essential
for successful prediction of the future.

This paper provides an overview of efforts to use ML, mainly
Artificial Neural Network (ANN) approaches, to predict El Niño
events, and putting them in the context of classical prediction
methodologies. In section 2, we describe the state-of-the-art in
current prediction practices, the efforts to understand the results,
and in particular what determines the skill of these forecasts.
Then results of ML-based approaches are described in section 3
and challenges and outlook are described in section 4.

2. EL NIÑO PREDICTION: STATE OF
THE ART

There have been many reviews on El Niño predictability (e.g.,
[19–22]) and a recent one [23], reviewing also most of the
Chinese-community studies on this topic. Over the last decade,
a multitude of models is used for El Niño prediction and results
are available at several websites. Multi-model ensemble results
are given at the International Research Institute for Climate and
Society (IRI)1 providing results from both dynamical models
(i.e., models based on underlying physical conservation laws) and
statistical models (those capturing behavior of past statistics).
The NCEP Climate Forecast System CFSv2 [24]2, provides a

1https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?

enso_tab=enso-sst_table
2https://www.cpc.ncep.noaa.gov/products/CFSv2/CFSv2seasonal.shtml

dynamical single-model ensemble forecast. The forecast systems
developed in China, such as the SEMAP2 and the NMEFC/SOA
are discussed in detail in Tang et al. [23] so they are further
discussed here. It is illustrative to show the results of both the
IRI and CFSv2 model systems for the last strong El Niño event,
that of 2015–2016, which was discussed in detail by L’Heureux
et al. [25]. Forecasts starting in June 2015 are shown in Figure 2

indicating that these models are able to provide a skillful forecast
of NINO3.4. Nevertheless, the dispersion in the predictions of the
different models is huge, and even between ensemble members of
the same model, highlighting the difficulty of reliable prediction.

The US National Oceanic and Atmospheric Administration
(NOAA) will release an El Niño advisory when (i) the 1-month
NINO-3.4 index value is at or in excess of 0.5◦C, (ii) the
atmospheric conditions are consistent with El Niño (i.e., weaker
low-level trade winds, enhanced convection over the central or
eastern Pacific Ocean), and (iii) at least five overlapping seasonal
(3-months average) NINO3.4 SST index values are at or in excess
of 0.5◦C, supporting the expectation that El Niño will persist. The
purpose of the forecasting efforts such as those in Figure 2 is to
predict in advance when those conditions will occur. Both the IRI
and CFSv2 predicted already in June 2014 an El Niño event for
next winter which turned out to be wrong as there was a dip in
NINO3.4 at the end of 2014 (due to easterly winds). However,
most models did very well in predicting (from June 2015) the
winter 2015-2016 strong event (see Figure 2).

The skill of El Niño forecasts is usually measured by the
anomaly correlation coefficient (AC) given by:

AC =
m′o′

σmσo
, (1)

where m′ indicates NINO3.4 index of the model, o′ that of
observations and σx indicates the standard deviations of the
time series x. The overbar indicates averaging of all time series
elements. The AC is the Pearson correlation coefficient between
prediction and observation. In Barnston et al. [21], the skill
of the models over the period 2002–2011 was summarized
with help of Figure 3A which indicates that skill beyond a 6-
months lead time becomes overall lower than 0.5. Some general
conclusions from these and many other prediction exercises are
that (i) dynamical models do better than statistical models and
(ii) models initialized before the Northern-hemispheric spring
perform much worse than models initialized after spring. The
latter notion is known as the “spring predictability barrier”
problem. The concept of persistence is another way to look
at the predictability barrier. It can be defined in terms of
autocorrelation coefficients and in particular their decay with
increasing lead times. SST anomalies originating from the
spring seasons have the least persistence while those originating
from summer seasons (Figure 3B) tend to have the greatest
persistence [27].

El Niño events are difficult to predict as they have an irregular
occurrence, and each time have a different development [17, 22].
The ENSO phenomenon is thought to be an internal mode of
the coupled equatorial ocean-atmosphere system which can be
self-sustained or excited by random noise [28]. The interactions
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FIGURE 1 | (A) NINO3.4 index (◦C) over the period 1950–2019. (B) Pattern of the first EOF (arbitrary units) of Sea Surface Temperature determined from the HadISST

data set over the period 1950–2010. Data source: Climate Explorer (http://climexp.knmi.nl).

FIGURE 2 | (A) Predictions of NINO3.4 from the IRI multi-model ensemble initialized with data up to mid-June 2015. Full and empty symbols are predictions from

dynamical and statistical models, respectively. Continuous lines without symbols display the average of the predictions of all the dynamical models, of all the statistical

ones, and of the four models run at the NOAA Climate Prediction Center (CPC). The black line with black symbols is the observed seasonal NINO3.4 index (from

ERSST.v5 [26]). (B) Predictions from the CFSv2 single-model ensemble (each member of the ensemble is initialized slightly differently at mid-July). The continuous

black line is the (later added) observed monthly NINO3.4 index (from ERSST.v5) and the dashed line is the forecast ensemble mean. Both panels are slightly modified

(by adding the later observed values) from the ones on the websites listed in the footnotes.

of the internal mode and the external seasonal forcing can
lead to chaotic behavior through nonlinear resonances [29, 30].
On the other hand, the dynamical behavior can be strongly
influenced by noise, in particular westerly wind bursts [31] which
can either be viewed as additive [32] or multiplicative noise
[33]. Coupled processes between the atmosphere and ocean are
seasonally dependent. During boreal spring the system is most
susceptible to perturbations [34] leading to a spring predictability
barrier [35]. The growth of perturbations from a certain initial
state has been investigated in detail from one of the available
intermediate-complexity models, the Zebiak-Cane model (ZC,

[36]), using the methodology of optimal modes [37–39]. It
was indeed shown that spring is the most sensitive season as
perturbations are amplified over a 6-months lead time.

In summary, the low skill after 6 months as seen in Figure 3A

is believed to be due to both effects of smaller scale processes
(noise) and nonlinear effects. Moreover, it is supposed that the
period 2002-2011 was particularly difficult to predict because of
the frequent occurrence of central Pacific (CP) El Niño types [40]
for which the zonal advection feedback plays a key role for the
development. In contrast, for an eastern Pacific (EP) El Niño, the
thermocline feedback ismost important [41]. As can be seen from
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FIGURE 3 | (A) Correlation skill (AC as in 1) of NINO3.4 prediction for different models from the IRI ensemble over the period 2002–2011 [figure from Barnston et al.

[21], with permission from the AMS]. Continuous lines are for dynamical models, whereas dashed lines are for statistical ones. The yellow “PERSIST” line assumes

simply the persistence of the initial conditions. (B) Pearson correlation between the ONI index (source https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt,

which is computed as the 3-months running mean NINO3.4 value) at the target season (x-axis) and itself at the specified lag time previous to the target season (y-axis)

for the period between 1980 and 2018. The contour lines indicate the 90% (dotted), 95% (dashed), and 99% (solid) two-sided significance levels for a positive

autocorrelation.

the NINO3.4 time series (Figure 1A) strong events appear about
every 15 years (1982, 1996, 2015). There are likely other factors
involved in the prediction skill of these strong events [42, 43],
which we do not further discuss here.

3. MACHINE LEARNING APPROACHES

ML is being used in a variety of tasks that include regression
and classification. ML algorithms can be divided into three main
categories [44]: supervised, unsupervised, and reinforcement
learning. In supervised learning, a model is build from labeled
instances. In a unsupervisedmodel, there are no labeled instances
and the goal is to find hidden patterns (e.g., clustering) in the
available data. In reinforcement learning, a particular target is
pursued and feedbacks from the environment drive the learning
process [1]. The usual procedure in supervised learning is as
follows: the predictor model [e.g., an artificial neural network
(ANN) or genetic programming (GP)] is trained with data
from a training set in order to determine a set of optimal
parameter values. Then the generalization capabilities of the
model are tested on a validation data set. Once the predictor
model is validated, a third so-called test data set that was hold
out during training and validation can be used to evaluate the
prediction skill.

Many types of ML methodologies have been developed. In
ANNs, the basic element is the neuron, or perceptron (i.e., logistic
or other function units which locally discriminate different
inputs). An ANN has a multilayer structure—an input layer,
an output layer and a few (or zero) hidden layers, in which
each neuron is connected to all neurons in the previous and
following layers. The system thus maps some input applied to
the input layer to some output or prediction. The weights of the
neuron connections are tuned to provide the optimal predictor
model. Another ML technique, GP, is a symbolic regression

method used to find, by optimization procedures inspired by
biological evolutionary processes, the functional form that fits
the available data [45]. Reservoir computing [46] is another type
of ML methodology in which input is injected into a high-
dimensional dynamical system called “reservoir.” The response
of the reservoir is recorded at particular output nodes with
associated “output weights,” and linear regression is used to
optimize these weights so that the recorded response performs
the desired prediction.

Although there are a few ML attempts to forecast El Niño
events by evolutionary or genetic algorithms [47, 48], and by
other methods [49], we will focus here onML prediction schemes
based on the most popular approach, which is the use of feed-
forward ANNs. Such ANNs with at least one hidden layer, also
called multilayer perceptrons, have the powerful capability to
approximate any nonlinear function to an arbitrary accuracy
given enough input data and hidden-layer neurons (e.g., [1, 50]).

3.1. Early ML Approaches
There is a large freedom on the implementation of ANNmethods
and choices have to be made regarding which variables to
use as inputs (called in this context the attributes, features, or
predictors), the architecture of the ANN and training method.
ANNs, as any other supervised learning technique, require to
split the available data in at least two parts: a training set, on
which parameters of the ANN are optimized, and a test set, on
which the skill of the optimized ANN is evaluated. Furthermore,
it is good practice to use a third data set, often called validation
data set, to tune hyperparameters and to check for overfitting.
For ENSO prediction, it is of particular importance to split the
data into connected time series. If instead the data set would be
split by random sampling, training and test data points would be
temporally close to each other. Due to the strong autocorrelations
within the ENSO system, the test data set would be strongly
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correlated with the training data set and hence could not serve as
an independent data set. Because of the shortness of the available
time series, the fact that El Niño repeats only about every four
years on average, and that only a subset of them are strong,
training and validation sets do not contain many significant
events and statistical estimation of ANN skills is not very precise.

In using ANN’s one can basically focus on two different
supervised learning tasks: classification (will there be an El Niño
event or not) and regression (predicting an index, e.g., the
NINO3.4, with a certain lead time). Early ANN-based El Niño
predictions [51] for the regression task used as predictors wind-
stress fields and the NINO3.4 time series itself. More explicitly,
the time series of the seven leading principal components of the
wind-stress field (i.e., the amplitudes of their seven leading EOFs)
in a large region of the tropical Pacific were averaged seasonally
in each of the four seasons previous to the start of prediction.
These numbers, together with the last value of the NINO3.4 time-
series make a total of 4 × 7 + 1 = 29 inputs to be fed into the
ANN. Tangang et al. [52] noticed that using sea level pressure
(SLP) fields gave better results at long lead times than using
wind-stress fields. Also, averaging forecasts from an ensemble of
ANNs with different random weights assigned to the neurons
at the start of the learning phase improved results with respect
to using the results of a single ANN. Maas et al. [53] further
analyzed this fact and suggested using it to estimate prediction
reliability. Tangang et al. [54] simplified the ANN architecture by
using extended EOFs (EEOFs), which project the observed fields
(wind stress or SLP) onto spatio-temporal patterns, instead of
on spatial ones (using EOFs). In this way, input from the year
previous to the forecast start was compressed to 7 + 1 = 8
variables, instead of the previous 29. In these earlier studies, all of
which used a single hidden layer in the ANN, high forecast skills
(values of the correlation AC above 0.6 even at lead times above
one year) were reported. However, there were large differences in
performance depending, for example, on the season of the year
or the particular year or decade being predicted.

Later implementations of these early ANNmethods indicated
that the skill was relatively low. For example, the curve labeled
UBC-NNET in Figure 3A (coming from the ANN model by
the University of British Columbia group, based in Tangang
et al. [54]) has the second lowest skill at 6 months lead time,
improving only the forecast made by the simple “persistence”
assumption. This can partially be attributed to the fact that the
model architecture of the UBC-NNET changed in May 2004
from predicting the ONI to predicting the amplitudes of the
leading EOFs. There are also differences in the climatology used
by UBC-NNET and the one used for the tests in Barnston
et al. [21]. Moreover, only during December 2004 and November
2005 the UBC-NNET included subsurface temperature data,
while the thermal state of the subsurface can contain important
information about the future state of the ENSO [55]. For the
remaining period, the model lacked this subsurface information.
Ideas to improve ANN performance included optimization
regularization [56] and linear corrections that help to quantify
prediction errors [57]. Another one to focus on forecasting
individual principal components of the SST field and combining
them to obtain climatic indices such as NINO3.4 [58], instead

of trying to predict directly the climatic index. In general, for
a one year lead time, no AC values higher than 0.5–0.6 were
obtained with these methods, although larger AC values have
been reported for specific seasons or years.

An exception is the work of Baawain et al. [59] in which
very high correlations (above 0.8 for lead times between 1
and 12 months) were reported for prediction of the NINO3
index using as inputs the two surface-wind components and
the SAT at four selected locations in the Pacific (thus, 12
inputs). The high forecast skill may arise from the careful
and systematic determination of the ANN architecture (again
a single hidden layer but with up to 16 neurons, and different
activation functions), or perhaps from the choices of training
and validation data sets. Some of the practices in Baawain et al.
[59], however, are rather questionable and can lead to substantial
overfitting for the ENSO prediction. First, they perform the
hyperparameter optimization on their test data set. A better
practice is to tune hyperparameters on an additional validation
data set and hold out the test data set completely during the
training and hyperparameter optimization. Second, they do not
precisely report how the data is split into the training and test data
set. If they split the data by random splitting, the model is likely
overfitted due to the problem mentioned earlier. The very small
difference between the prediction skill on the training (r = 0.91)
and the test (r = 0.90) data set indicates that they might split
their data set by random splitting. A better practice would be to
split the data into two connected time series. In addition to pure
ANN prediction, also hybrid approaches that use a dynamical
ocean model driven by wind stresses provided by an ANN fed
by the ocean state have been applied [60, 61]. Skill in predicting
El Niño is similar to purely dynamical models, but at a smaller
computational cost.

The key for a successful application of ANNs to ENSO
prediction is to determine the correct attributes to include in
the training of the model. The attributes used in Tangang et al.
[54], based on EEOFs of SLP and SST, may be not optimal
considering where the memory of the coupled ocean-atmosphere
system originates from, i.e., from the subsurface ocean.

3.2. Attributes: Role of Network Science
Although network science had been applied to many other
branches of science, it was not applied to climate science until
one realized that easy mappings between continuous observables
(e.g., temperature) and graphs could be made [62–64]. One can
consider these observables to be on a grid (observation locations
or of model grid points), which then are the “nodes” of the
graph. A measure of correlation between the time series of an
observable at two locations, such as the Pearson correlation or
mutual information, can then be used to define a “connection”
or “link,” and eventually to assign a “strength” or “weight” to that
connection [65].

Ludescher et al. [66] used the link strength concept for El
Niño prediction. They determined the average link strength S of
the climate network constructed from a Surface Air Temperature
(SAT) data set. They suggested that when S crosses a threshold
2 while monotonically increasing, an El Niño will develop about
one year later. The rationale behind this is that, during El Niño,
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correlations of climatic variables at many locations with variables
in the tropical Pacific are very high, so that an increase of
these correlations, conveniently revealed by the connectivity (or
“cooperativity”) of the climate network, is an indicator of an
approach to an El Niño state. A training set over the period 1950–
1980 was used to determine the threshold 2. The result for the
test period 1980–2011 showed a remarkable skill of this predictor
[66]. By using this method, also a successful prediction of the
onset of the weak 2014 El Niño was made [67].

The time-varying characteristics of climate networks (where
correlations defining link strength between nodes are calculated
on successive time windows) has also been used in a different
way. The increase of connectivity of the climate network,
occurring when approaching an El Niño event, may lead to a
percolation transition [68] in which initially disconnected parts
of the network become connected into a single component.

The study by Rodríguez-Méndez et al. [69] introduced
percolation-based early warnings in climate networks for an
upcoming El Niño/La Niña event. Here, the climate networks
are generated with a relatively high threshold for the cross-
correlation between two nodes to be considered as connected.
Hence, one finds a lot of isolated nodes in these networks.

However, even long before an El Niño event is approached
these isolated nodes become connected to other ones building
clusters of size two since correlations between nodes increase.
If the correlation building continues, more small clusters of size
two emerge and the proportion of nodes in clusters of size two,
indicated by c2, increases. Approaching further the transition,
small clusters can connect to more nodes and form even bigger
clusters counter-balancing the increased probabilities for smaller
clusters. Hence, in a typical percolation transition, the first sign of
the transition is indicated by a peak of c2. This peak is followed by
peaks in the proportion of nodes in clusters of increasing size, the
closer the system is to the percolation point. At the percolation
point spatial correlations in the system become so strong that
a giant component in the network emerges and incorporates
nearly all nodes of the system [69, 70]. If the system moves again
away from the transition point, peaks in the proportion of nodes
in clusters of different sizes appear in reversed order, starting
with peaks coming from larger clusters followed by peaks from
smaller clusters.

3.3. Recent ML-Based Predictions
Networks are often associated with machine learning techniques,
either to generate attributes or to create the learningmethod itself
[71]. The advantage of using the network approach in climate
research is that, during network construction, the temporal
information is often included to determine the properties of
climate networks. In this way, the machine learning techniques
will, by default, take the temporal information into account in
making predictions of the future states of the system.

A first effort to combine complex network metrics with ANN’s
for the prediction of the NINO3.4 index was made in Feng et al.
[72]. They considered the classification problem (determining if
El Niño will occur) with an ANN (two hidden layers with three
neurons each) in which attributes were only the climate-network-
based quantities from Gozolchiani et al. [64]. The period May

1949 to June 2001 was used as a training set, and the period June
2001 to March 2014 as the test set. The prediction lead time was
set to 12months. Classification results on the test set are shown in
Figure 4A. Here a 1 indicates the occurrence of an El Niño event
(in a 10-days window) and 0 indicates no event. When a filter
is applied which eliminates the isolated and transient events and
joins the adjacent events, the result is shown in Figure 4B. This
forecasting scheme can hence give skillful predictions 12 months
ahead for El Niño events.

The regression problem, i.e., forecasting the values of time
series such as NINO3.4, was addressed by Nooteboom et al.
[73] who combined the use of network quantities with a
thorough search for attributes based on the physical mechanism
behind ENSO. A two-step methodology was used which resulted
in a hybrid model for ENSO prediction. In a first step, a
classical Autoregressive Integrated Moving Average (ARIMA)
linear statistical method [74] is optimized to perform a linear
forecast using past NINO3.4 values. Specifically, ARIMA(12,1,0)
and ARIMA(12,1,1) were implemented, which means that the
NINO3.4 values in the 12 months previous to the start of the
prediction were used. The linear prediction was far from perfect,
and then an ANN was trained from single-time attributes to
forecast the residuals between the linear prediction and the true
NINO3.4 values. The sum of the linear forecast and the nonlinear
ANN prediction completes the final hybrid model forecast. In
Hibon and Evgeniou [75], it is shown that, compared to a single
prediction method, this hybrid methodology is more stable and
reduces the risk of a bad prediction. This is probably due to the
fact that long memory is taken into account, but not in the ANN
part, which remains then relatively simple with respect to inputs
and can then be more efficiently trained.

To motivate the choice of the attributes in the ANN,
Nooteboom et al. [73] used the ZC model [36]. In this model,
the physical mechanisms of ENSO are clearly represented and
it can be used for extensive testing of different attributes,
specially network-based ones which contain correlations and
spatial information. Several interesting network variables, such as
the cross clustering and an eigenvalue quantifying the coupling
between wind and SST networks, were determined from an
analysis of the ZC model. More importantly, it revealed the
importance of the dynamics of the thermocline, which can be
quantified in properties of the thermocline-depth network or
the related sea surface height (SSH) network. Also the zonal
skewness in the degree field of the thermocline network and two
variables related to a percolation-like transition [69, 70], namely
the temporal increment in the size of the largest connected cluster
and the fraction of nodes in clusters of size two c2 (see previous
subsection) in the SSH network, had good prediction properties.
These variables taken from the SSH network are related to the
warm water volume (WWV, the integrated volume above the
20◦C isotherm between 5◦N–5◦S and 120-280◦E), which was also
tested as input in the ANN forecast, and contain information on
the physics of the recharge/discharge mechanism of ENSO [76].
It turns out that c2 performs better than WWV when used in
long-lead-time predictions.

Furthermore, apart from these “recharge/discharge” related
quantities, a sinusoidal seasonal cycle (SC), introducing
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FIGURE 4 | Prediction results for occurrence (from June 2001 to March 2014) of El Niño in time windows of 10 days. Dashed line gives actual observations and the

solid one is the prediction. (A) Raw prediction. (B) With filtering of isolated and transient events. Reproduced from Feng et al. [72] under open access license.

information needed for the phase locking of ENSO, and
the second principal component (PC2) of a modified zonal
component of the wind stress, which carries information on
westerly wind bursts, were included as predictors. A single
sinusoid is not a complete representation of the annual solar
forcing, but it gives to the algorithm the phase information
necessary to lock El Niño events to the annual cycle. The hybrid
model improves on the CFSv2 ensemble at short lead times (up
to 6 months) and it had also a better prediction result than all
members of the CFSv2 ensemble in the case study of January
2010 [73]. From now on, the Normalized Root Mean Squared
Error (NRMSE) is used to indicate the skill of prediction within
the test set:

NRMSE(yA, yB) (2)

=
1

max
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yA, yB
)

−min
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√
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n
.

Here yA
k
, yB

k
are respectively theNINO3.4 index and its prediction

at time tk in the test set. n is the number of points in the test set.
A low NRMSE indicates the prediction skill is better.

For short lead times, the hybrid model was used with the
WWV, PC2, SC and NINO3.4 itself as attributes. A temporal shift
can be seen in the CFSv2 ensemble NINO3.4 results, both for
the 3- and 6-months lead-time prediction (Figure 5). The hybrid
model predictions used ARIMA(12,1,0) for the linear part, and
the eighty-four possible ANN structures with three hidden layers
with up to four neurons each were tested. Figure 5 shows the
results from the structures giving the lowest NRMSE.

The prediction skill of the hybrid model decreased at a 6-
months lead, while the shift and amplification of the CFSv2
prediction increased. Although the hybrid model did not suffer
as much from the shift, at this lead time it underestimated (or
missed) the El Niño event of 2010. In terms of NRMSE the
hybrid model still obtained a better prediction skill than the
CFSv2 (Figures 5A,B). The attributes from the shorter lead time

predictions were found to be insufficient for the 12-months-lead
prediction. However, c2 of the SSH network was predictive at
this lead time and hence the WWV was replaced by c2. The 12-
months lead time prediction of the hybrid model even improved
the 6-months lead time prediction. On average the prediction did
not contain a shift for this lead time (Figure 5C).

A prediction was made in Nooteboom et al. [73] for the year
2018, starting in May 2017 (Figure 6A). Different hybrid models
were used at different lead times, always with ARIMA(12,1,0).
The training set was from 1980 until May 2017 and the ANN
structures used are the optimal ones at different lead times. For
the predictions up to 5 months, the attributes WWV, PC2, and
SC were used whereas for the 12 months lead time prediction,
the WWV was replaced by c2. Here c2 was computed from the
SSALTO/DUACS altimetry dataset3, which starts from 1993, and
thus leads to a reduced training set. The hybrid model typically
predicted much lower Pacific temperatures than the CFSv2
ensemble and was much closer to the eventual observations
(black curve in Figure 6A). The uncertainty of the CFSv2
ensemble was large, since the spread of predictions is between
a strong El Niño (NINO3.4 index between 1.5 and 2) and a
moderate La Niña (NINO3.4 index between –1 and –1.5◦C) for
the following 9 months, being the ensemble average prediction
close to a neutral state. The hybrid model of Nooteboom et al.
[73] predicted development of a strong La Niña (NINO3.4 index
lower than –1.5◦C) the coming year. There was indeed a La Niña
event in 2017/2018, although the NINO3.4 index remained above
–1◦C. A new prediction starting from December 2018 with the
hybrid model is presented in Figure 6B, indicating the weak El
Niño 2018–2019 to end by June 2019.

3.4. Prediction Uncertainty
In contrast to ensemble predictions of dynamical models, the
proposed simple ANN-models lack the ability to estimate the
predictive uncertainty. For instance, the ensemble spread of 84

3http://marine.copernicus.eu
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FIGURE 5 | NINO3.4 predictions of the CFSv2 ensemble mean (red) and the hybrid model of Nooteboom et al. [73] (blue), compared to the observed index (black).

For the hybrid model predictions, ARIMA(12,1,0) was used and the eighty-four possible ANN structures with three hidden layers with up to four neurons each were

tested. Results from the structures giving the lowest NRMSE are presented. (A) The 3-months lead time prediction of CFSv2 and 4-months lead time prediction of the

hybrid model, (B) the 6-months lead time predictions and (C) 12-months lead prediction. The CFSv2 ensemble does not predict 12 months ahead. (D) Table
containing information about all predictions: ANN optimal hidden-layers structures of the hybrid model, NRMSEs of the CFSv2 ensemble mean/NRMSE of the hybrid

model, and attributes used in the hybrid model predictions. Reproduced from Nooteboom et al. [73] under open access license.

FIGURE 6 | (A) Result of the NINO3.4 prediction from May 2017 as in Nooteboom et al. [73]. The dashed blue line is the running 12-months lead-time prediction and

in black the (later added) observed index. Red is the CFSv2 ensemble prediction mean and the shaded area is the spread of the ensemble. The hybrid model

prediction in blue is given by predictions from hybrid models found to be most optimal at the different lead times, always with ARIMA(12,1,0) and starting on May

2017. (B) The most recent prediction of the hybrid model starting from December 2018. The black line is the observed index, blue line the prediction starting from

December 2018, and dashed red line is the running 12-months lead-time prediction. (A) is slightly adapted from Nooteboom et al. [73] under open access license.
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ANNs in Figure 8 of Nooteboom et al. [73] does not encompass
most of the observed NINO3.4 index values. Hence, although
the 84 ANN models had different architectures and initial
weights (but were trained on the same training data set), the
trained models predicted nearly the same NINO3.4 index values.
Bootstrap-aggregating (bagging) methods [77] can be used to
obtain a larger and more realistic ensemble spread. Another
approach to better estimate the predictive uncertainty for neural
networkmodels is the so-called Bayesian neural networks (BNN).
Here, all weights of the network have a distribution that can
be learned by Bayesian inference. A first application to ENSO
prediction in combination with a recurrent neural network
(RNN) architecture is shown in McDermott and Wikle [78].
Unfortunately, the authors just present results for a short time
period between 2015 and 2016. A comprehensive analysis of the
application of BNNs for ENSO prediction is still lacking.

The endeavor of training a BNN is a far from trivial task. A
simpler approach to estimate uncertainties in the prediction of
ENSO is the application of the so-called Deep Ensembles (DEs)
as presented in Lakshminarayanan et al. [79]. These DEs consist
of multiple feed-forward neural network models that have two
output neurons to predict the mean and the standard deviation
of a Gaussian distribution. Instead of choosing the weights that
minimize the mean-squared error, the models are trained by
minimizing the negative log-likelihood of a Gaussian distribution
with the predicted mean µ̂ and variance σ̂

2, given the
observation y, i.e.,

− logP(y|µ̂, σ̂ 2) =
1

2
log σ̂

2 +
(y− µ̂)2

2σ̂ 2
+ constant , (3)

The final prediction for the variable and its uncertainty is
obtained by combining the Gaussian distributions from all
members of the ensemble. In plain words, if the model does
not find strong relations between predictor variables and the
predicted variable in the training data, it is still able to optimize
the negative log-likelihood to some extent by increasing σ̂ .
Therefore, it is less prone to be overconfident about any weak
relationship in the data.

Here, we give an example [80] of the application of this
method for the prediction of the NINO3.4 index. For this, a
DE was trained to predict the future values of the 3-month
running mean NINO3.4 index. To keep the example simple, the
NINO3.4 index, WWV and SC were used as input variables,
where for each variable the past 12 months were included in
the feature set. Hence, each ANN had 36 inputs. Each ensemble
member had one hidden layer with 16 neurons with a Rectified
Linear Unit as activation function. The output neuron for
the mean was equipped with a linear activation function and
the output neuron for the standard deviation with a softplus
function (f (x) = log(1 + ex)). To avoid overfitting, various
regularization techniques were applied (early stopping, Gaussian
noise to the inputs, dropout and L1 as well as L2 penalty terms).
The training/validation period was set to be 1981-2002 and the
test period 2002–2018. The training/validation data was further
divided into 5 segments. One ensemble member was trained on
4 segments and validated on the remaining one to check for

overfitting. This was repeated until each segment was one time
the validation data set. Therefore, the DE had in total 5 ensemble
members. Here, lead time was defined as in Barnston et al. [21]
being the time that passed between the last date of the initial
period and the first date of the target period.

Exemplary results for a 3-month lead-time prediction are
shown in Figure 7A. In contrast to Nooteboom et al. [73], the
confidence intervals of the prediction using the test data (blue
line and shadings) could incorporate actual observation (black
line) to a good extend. In fact, 55% were incorporated in the 1-
standard deviation and 91% were inside the 2-standard deviation
interval for the predictions on the test data. This indicated that
such a predictionmodel could estimate the predictive uncertainty
to a good extend. Interestingly, the predicted uncertainty had a
seasonal cycle with lower uncertainties during boreal summer
and higher uncertainties during boreal winter. This fitted the
observations of the NINO3.4 values that follow the (same)
seasonal cycle. The correlation skill on the test data set between
the predicted mean and the observed NINO3.4 index is shown
in Figure 7B. The relatively low skill values during the seasons
AMJ to JAS indicates the spring predictability barrier. The overall
correlation skill of the predicted mean on the test data set was
0.65 and the overall root-mean-square error 0.68.

4. DISCUSSION AND OUTLOOK

Machine Learning techniques are potentially useful to improve
the skill of El Niño predictions. The choice of attributes is
crucial for the degree of improvement. We have highlighted
here the use of network science based attributes and the benefits
of using physical knowledge to select them. Network variables
provide global information on the building of correlations which
occur when approaching an El Niño event, and knowledge of
the physical mechanisms behind ENSO helps in determining
which variables store relevant memory of the dynamics, and help
to overcome the spring predictability barrier. Several network
variables resulted in a clear success when applied to the ZC
model [73], but not necessarily when predicting the real climatic
phenomena. Work on the systematic identification of good
attributes needs to be continued.

Most of the ANN studies to predict El Niño used simple
architectures with a single hidden layer. Recently deeper
architectures have been successfully tested [72, 73]. Nevertheless,
a very complex ANN architecture will face the problem of
overfitting, since the available time series are not very long
and the number of parameters to optimize grows rapidly with
ANN complexity. Probably, what makes El Niño prediction so
challenging is that every event looks somehow different [17],
and we still lack enough data to systematize these differences.
Most of the methods aimed for a prediction model being most
optimal in terms of least squares minimization. However, it
could be interesting to put larger weight at predicting the
extreme events in the optimization scheme. For example, the
6-months lead predictions of Nooteboom et al. [73] hybrid
model missed the 2010 El Niño event (cf. Figure 5). Apart from
this, it is important to investigate the exact reason why the
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FIGURE 7 | (A) Results from the DE prediction approach [80]. Predictions for the 3-month lead time for the training data set (green) and the test data set (blue). The

solid line indicates the mean of the predictions. The dark shading shows the 1-standard deviation confidence interval and the brighter shading the 2-standard

deviation confidence interval. (B) Correlation skill of the predicted mean on the test data set of the DE for various seasons for the 3-month lead time.

hybrid model [73] provides such a good skill for a one-year
lead time.

Despite the positive findings in applying ANNs for the ENSO
prediction in work of the British Columbia group [58] or
of Nooteboom et al. [73], the application of neural networks
to ENSO prediction is still surrounded by inconsistent, non-
transparent and unfavorable practices. Whereas, Tangang et al.
[54] defined lead time as in Barnston et al. [21], i.e., as the time
between the latest observed date and the first date of the target
period, Wu et al. [58] defined lead time as the time from the
center of the period of the latest predictors to the center of the
target period. We suggest to use the definition of lead time as
given in Barnston et al. [21], as also applied in Feng et al. [72]
or Nooteboom et al. [73], in future research.

Furthermore, the problem of ENSO prediction is limited
by a very low amount of data. Since 1980 there have been
just 3–4 major El Niño (and a similar number of major La
Niña) events. This little amount of data makes neural networks
extremely susceptible to overfitting. To avoid this, it is necessary

to regularize neural networks using methods such as Gaussian
Noise layers, Dropout, Early Stopping, L1 or L2 penalty terms.
Another problem that can arise due to the low amount of data
is, that accidentally a signal in a variable exists in the training
and the test data set, making the researcher confident that the
model is a good generalization of the system. However, as the
failure of the UBC-NNET model in the [21] study indicates,
one has to be careful and not to put too much trust into
the neural network predictions on ENSO considering the low
amount of data. We advice not to use any variables as input to
the neural network that do not have a justified reason to be a
predictor for ENSO (e.g., the 9th leading EOF of the SSTA used in
Wu et al. [58]).

The low amount of data, e.g., just three major El Niño
events occurred since 1980, can make an educated choice
of predictors very beneficial for the forecast model. This is
because the ML-model cannot distinguish between relevant
(deterministic concurrence) and non-relevant (random
concurrence) information in a relatively large predictor
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data set when the amount of training data is low. In general,
if rather vague variables are used, there should be a method such
as the L1-penalty term, also called Lasso (least absolute shrinkage
and selection operator), that is able to perform a feature selection
and regularization [81].

Finally, past studies often did not provide the codes that they
used for their results. This makes it increasingly difficult for the
reader to build upon previous work and check the work for
mistakes. Nowadays online platforms exist that make it easily
possible to share code in a public repository and we advice
that this should be the standard for any future research in the
ML-ENSO prediction. To develop the idea of public available
codes mentioned above one step further, we want to motivate
that it would be very beneficial for this community to work
together on a public repository that provides a framework for
new investigations. All definitions, i.e., the lead time, as well as
the used data sources with the applied preprocessing should be
incorporated in this framework. Such a framework would lead
to more transparency, prevent inconsistency between different
research efforts as well as foster collaboration. A starting point
for this endeavor could be the repository ClimateLearn published
for the study of Feng et al. [72] on GitHub (https://github.com/
Ambrosys/climatelearn).
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Recent advance on quantum devices realizes an artificial quantum spin system known

as the D-Wave 2000Q, which implements the Ising model with tunable transverse

field. In this system, we perform a specific protocol of quantum annealing to attain

the ground state, the minimizer of the energy. Therefore the device is often called the

quantum annealer. However the resulting spin configurations are not always in the

ground state. It can rather quickly generate many spin configurations following the

Gibbs-Boltzmann distribution. In the present study, we formulate an Isingmodel to control

a large number of automated guided vehicles in a factory without collision. We deal with

an actual factory in Japan, in which vehicles run, and assess efficiency of our formulation.

Compared to the conventional powerful techniques performed in digital computer, still

the quantum annealer does not show outstanding advantage in the practical problem.

Our study demonstrates a possibility of the quantum annealer to contribute solving

industrial problems.

Keywords: quantum annealing, automated guided vehicle (AGV), optimization problem, Ising model,

digital annealer

1. INTRODUCTION

Quantum annealing is a technology recently attracting attentions from both of academic and
business sides. It solves the unconstrained binary quadratic programming problem (recently also
termed as the quadratic unconstrained binary optimization (QUBO) problem) written as the
following cost function

E(q) = qTQq, (1)

where q is a vector of binary variables and Q is a matrix characterizing the problem to be solved.
Surprisingly, QA is realized in an actual quantum device using present-day technology (Berkley
et al., 2010; Harris et al., 2010; Johnson et al., 2010; Bunyk et al., 2014). We call the device
performing the protocol of QA as the quantum anneler. However the optimization problem, which
includes the unconstrained binary quadratic programming problem, is solved following adequate
algorithm on the digital computer. In this sense, QA is not necessarily an alternative way to solve
the optimization problem but it rather provides Because QA is one of the natural computing,
utilizing quantum tunneling effect, which escapes from local minima into a global minimum

52

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2019.00009
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2019.00009&domain=pdf&date_stamp=2019-11-19
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mohzeki@tohoku.ac.jp
https://doi.org/10.3389/fcomp.2019.00009
https://www.frontiersin.org/articles/10.3389/fcomp.2019.00009/full
http://loop.frontiersin.org/people/467478/overview
http://loop.frontiersin.org/people/673464/overview
http://loop.frontiersin.org/people/716411/overview


Ohzeki et al. Control of AGVs by Quantum Annealer

(Kadowaki and Nishimori, 1998), compared to the conventional
approach solving the optimization problem, it does without
program a priori. In addition, the well-known quantum annealer,
the D-Wave 2000Q, does not demand a huge amount of electric
power for the computational part of the quantum devices
compared to the high-performance computing. In this sense,
QA is an optional way of computing, and main target of
researches on QA can be searching its applicable situation in
practical problems.

Unfortunately the range of applications is restricted to the
case with the specific form as in Equation (1). The well-
known optimization problem can be recasted by the form as
in Equation (1) (Lucas, 2014), but the performance of QA
is not necessarily revealed. The formulations of the specific
form and QA for them have been tested such as portfolio
optimization (Rosenberg et al., 2016), protein folding (Perdomo-
Ortiz et al., 2012), the molecular similarity problem (Hernandez
and Aramon, 2017), computational biology (Li et al., 2018), job-
shop scheduling (Venturelli et al., 2015), election forecasting
(Henderson et al., 2018), and machine learning (Crawford et al.,
2016; Arai et al., 2018a; Khoshaman et al., 2018; Neukart et al.,
2018; Ohzeki et al., 2018b; Takahashi et al., 2018). In addition,
studies on implementing the quantum annealer to solve various
problems have been performed (Arai et al., 2018a; Ohzeki et al.,
2018a,b,b; Takahashi et al., 2018). The potential of QA might
be boosted by the nontrivial quantum fluctuation, referred to
as the nonstoquastic Hamiltonian, for which efficient classical
simulation is intractable (Seki andNishimori, 2012, 2015; Ohzeki,
2017; Arai et al., 2018b; Okada et al., 2019b). Most of them
have not sufficed demand from practical situations as the size of
the problems and time to solutions. Even one of the attractive
formulations, the traffic optimization (Neukart et al., 2017), has
not reached a level at the practical demand.

In a point of theoretical view, the potential performance
of QA is well known. When the protocol of QA follows the
quantum adiabatic condition, the ground state can be efficiently
attained (Suzuki and Okada, 2005; Morita and Nishimori,
2008; Ohzeki and Nishimori, 2011b). This is not a realistic
situation in performing QA in quantum devices such as D-Wave
2000Q. Thus, in the current version of quantum annealer, the
attained solution is not always optimal owing to the limitations
of devices and environmental effects (Amin, 2015). Although
several protocols based on QA do not follow adiabatic quantum
computation are proposed (Ohzeki, 2010; Ohzeki and Nishimori,
2011a; Ohzeki et al., 2011; Somma et al., 2012, the application of
QA should be considered by taking account into an uncertain
behavior of outputs from the quantum annealer. Recently,
characteristic behavior on outputs of the quantum annealer is
partially clarified. The outputs fall into a wide-flat valley of
the cost function to be solved by QA rather than a sharp one
(Kadowaki and Ohzeki, 2019). This fascinating property of QA
is found in its application to the machine learning (Ohzeki
et al., 2018a). The solutions in a wide-flat valley have robustness
against the errors in the cost function. In the context of the
machine learning, the errors in the cost function exist between
formulations for the training and test data. However the solutions
attained by QA shows good performance for the test data

even although optimization is performed for the training data.
In the case of formulating the optimization problem, we can
not avoid the error in the cost function because we do not
necessarily find the way to accomplish the desired task or we
do not directly optimize the desired quantity by controlling the
tunable parameters.

In the present study, we deal with the controlling problem
of automated guided vehicles (AGVs), which are portable robots
for moving materials in manufacturing facilities and warehouses
(Ullrich, 2014; Fazlollahtabar et al., 2015; Fazlollahtabar and
Saidi-Mehrabad, 2016), by use of the quantum annealer. The
automated guided vehicles move along markers or wire on floors
or uses vision, magnets, or lasers for navigation in a few cases.
Currently, in most of factories, transportations of materials relies
on AGVs and their smooth control. However, in limited-size
factories, AGVs are frequently involved in traffic congestion
around intersections because a large number of AGVs cross them
simultaneously. Then we need a simple but smart system for
controlling the AGVs without any collision. In the control of
AGVs, rapid response is necessary for dealing with instantaneous
changes in a system. Thus, it is expected that D-Wave 2000Q can
provide a method for establishing the future infrastructure for
controlling AGVs because it can output approximate solutions in
a few tens of microseconds. The practical problem on facilities
in actual factory has not been considered yet in the context of
practical application of QA.

The remaining part of the paper is organized as follows: In
the next section, we formulate the control of AGVs as the QUBO
problem, which can be solved using D-Wave 2000Q. The solution
does not always satisfy certain constraints for controlling AGVs,
and output solutions must be postprocessed. We explain how to
attain reasonable solutions via the postprocessing. In the third
section, we solve the QUBO problem via D-Wave 2000Q and the
corresponding integer programming via the Gurobi Optimizer
(Gurobi Optimization, 2018) to check the validity of the solutions
from the quantum annealer. In the following section, we report
the results attained by D-Wave 2000Q and other solvers as
references. In the last section, we summarize our study and
discuss the direction of future work of the quantum annealer.

2. METHODS

We give the Ising model or QUBO problem for controlling
AGVs in this section. Below we demonstrate their movements
in the Japanese actual factory following our formulation, but
it is generic and not specific to individual situations. We do
not formulate the entire plan as QUBO problem to control all
AGVs simultaneously. This is one of the essential bottleneck
of the current version of quantum annealaer. We must reduce
the number of binary variables to describe the problems within
the maximum number of qubits in the quantum annealer, and
simplify the formulation as far as possible. We consider iterative
scheme to provide an adequate route for each AGV during time
period T. At time t0, we gather information on the location,
xi, and the task, si, distributed to each AGV. We solve our
QUBO problem and employ its solution to control the AGVs
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during time period T. After moving the AGVs at t0 + T, we
again gather information on the current situation and iterate the
above procedure.

We focus on a controlling plan in time period T. We define
the binary variable for each AGV as qµ,i = 0, 1, where µ is the
index for a route and i is that for an AGV. The index of the
route is selected from a set of routes, M(xi, si), where si is the
given task for the i-th AGV. The index of i runs from 1 to N,
which is the number of AGVs. The set of routes is constructed a
priori following the tasks and the structure of the factory in which
the AGVs run. One of the indicators for representing efficiency
of the controlling AGVs is their waiting rate. The waiting rate
is calculated by the ratio of the number of stopping AGVs and
the total number of AGVs. However it is not straightforward to
formulate the cost function to minimize the waiting rate. Instead
we simply maximize the movements of AGVs while avoiding the
collisions between them as

E(q) = −

N
∑

i=1

∑

µ∈M(xi ,si)

dµqµ,i

+λ1

N
∑

i=1





∑

µ∈M(xi ,si)

qµ,i − 1





2

+λ2

∑

e∈E

T
∑

t=1





N
∑

i=1

∑

µ∈M(xi ,si)

Fµ,t,eqµ,i − 1





2

, (2)

where E denotes all edges of the network along which the AGVs
move in the factory, λ1 and λ2 are predetermined coefficients,
and dµ is the length of the route µ. The first term in Equation
(2) is to achieve an efficient control of the AGVs, we define the
simple cost function for increasing the total length in traveling
of the AGVs. We count the total length of the routes employed
by each AGV dµqµ,i. The second and third terms represent
the penalties for avoiding unfeasible solutions. The second term
ensures that each AGV qµ,i select a single route. The third term
avoids collision between different AGVs for each t, which ranges
from t = 1 to t = T and each e, which denotes an edge in
the routes for Fµ,t,e 6= 0 in the factory. Here we define a binary
quantity for characterizing the µ-th route as Fµ,t,e with 0 and 1.
For each route, Fµ,t,e = 1 on the edge occupied by the selected
route, µ, at time t. On the contrary, Fµ,t,e = 0 on the edge
unoccupied by the selected route, µ, at time t.

We here add a comment on the relationship of our problem
with the previous study for reducing the traffic flow of taxis
in the literature (Neukart et al., 2017). The similar formulation
was proposed for the traffic-flow optimization of moving
taxis. However, the previous study did not consider the time
dependence of Fµ,t,e. In the present study, we assume that the
speed of the AGVs is almost constant. In addition, the AGVs can
move as expected and can be predicted precisely. They did not
also include the length of tours for each taxi and time dependence
on movement along the tour of each taxi. In order to more
clarify the connection with the previous study, let us expand the
third term in Equation (2). We then obtain a quadratic term as

λ2
∑

e∈E

∑T
t=1

(

∑N
i=1

∑

µ∈M(xi ,si)
Fµ,t,eqµ,i

)2
and a linear term

as −2λ2
∑N

i=1

∑

µ∈M(xi ,si)
dµqµ,i, because

∑

e∈E

∑T
t=1 Fµ,t,e =

dµ. When λ2 = 1, the first term in Equation (2) vanishes with
the resultant linear term and then the cost function (2) coincides
with that in the previous study. In this sense, the present study
is an extension of the previous one. We apply our formulation
straightforwardly to the optimization problem on the traffic flow
of taxis.

Once we formulate the QUBO problem, we immediately
generate the binary configurations as the outputs of the D-Wave
2000Q. We attain numerous outputs from D-Wave 2000Q for
the same QUBO problem in a short time. In our case, we set
the annealing time to attain a single output as 20 [µs] due to
limitation of the quantum coherence time. It is thus difficult to
certainly attain the ground state of the QUBO problem. In this
sense, the quantum annealer does not work well for solving the
optimization problem. The short annealing time is a bottleneck
of the D-Wave 2000Q in a sense. However the outputs can be
quickly attained. Let us here take the bottleneck as advantage of
the D-Wave 2000Q. We generate many of outputs from the D-
Wave 2000Q as sampling of binary configurations. The samples
follow the Gibbs-Boltzmann distribution of the QUBO problem
but with a finite strength of the quantum fluctuation as discussed
in the literature (Amin, 2015). However, the solutions employed
to control the AGVs must satisfy all constraints. We then filter
out the outputs that do not satisfy the constraints from those of
D-Wave 2000Q. As a result, we obtain feasible solutions without
collisions and the multiple selection of routes. We check the
efficiency of our postprocessed solutions in the next section to
verify the capability of the D-Wave 2000Q in a limited practical
application such as controlling the AGVs in factories.

We formulate the QUBO problem for the quantum annealer
to contribute to the practical application appearing in various
factories but we may utilize other solvers rather than the D-
Wave 2000Q. In the present study, we also test the Fujitsu digital
annealer (DA), which can solve the QUBOproblem quickly as the
D-Wave 2000Q (Tsukamoto et al., 2017; Aramon et al., 2018).

In order to check the validity of our QUBO problem, which
is not a direct formulation of the efficiency controlling the
AGVs, we solve it in an adequate way. Our formulation can be
reformulated as the integer programming as

max
q







N
∑

i=1

∑

µ∈M(xi ,si)

dµqµ,i







, (3)

s.t.
∑

µ∈M(xi ,si)

qµ,i = 1 ∀i and

N
∑

i=1

∑

µ∈M(xi ,si)

Fµ,t,eqµ,i = 1 ∀t, ∀e.

We solve this integer programming by the branch and bound
method via the Gurobi Optimizer (Gurobi Optimization, 2018)
to confirm validity of our formulation.

We describe our whole system for controlling the AGVs in
Figure 1. In order to shorten the time of the whole procedure
to control the AGVs, we prepare a database that stores the set
of routes when we create the QUBO during the time period T.
In advance, we generate the shortest paths from an origin to a
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FIGURE 1 | Our system for controlling AGVs. In the sector of classical computer, we prepare the QUBO at each time according to the current situation of the factory

(xi , si ). For this task, we have database storing the set of routes.

destination for each task. We divide the shortest paths into sets
of several vertices at the longest vT, where v is the maximum
speed of the AGVs, and store them. When we build the QUBO
matrix, we only elucidate a vertex set included in a part of the
shortest paths for achieving the given task beginning at xi up to
the reachable position at the end of period T. For instance, let us
consider the case as in Figure 1. We take the first AGV at x1 = 8
at t = 0, which has the shortest path of the route for achieving its
task consisting of the node set {8, 9, 7, 4, 5, 6}. Then, we prepare
the route set as {8}, {8, 9}, {8, 9, 7}, {8, 9, 7, 4}, {8, 9, 7, 4, 5}, and
{8, 9, 7, 4, 5, 6}, which indicate “stop,” “1 step ahead,” and “2
steps ahead,” etc.. The second AGV at x2 = 1 at t = 0 has
the route set at {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}, and
{1, 2, 3, 4, 5, 6}. In order to increase the total length of the routes,
two AGVs prefer to select {8, 9, 7, 4, 5, 6} and {1, 2, 3, 4, 5, 6},
respectively. However the third term in Equation (2) does not
allow this solution. The overlap between two routes increases
the value of f (q). The minimization of f (q) avoids collision
between two AGVs and select the solution with {8, 9, 7, 4} and
{1, 2, 3, 4, 5, 6}, or {8, 9, 7, 4, 5, 6} and {1, 2, 3, 4}. The solution of
q comes from the D-Wave 2000Q, the digital annealer etc.. in
short time. As detailed below, we need to filter out the infeasible
solutions satisfying the constraints for safely controlling the
AGVs in practice. The whole time for the above procedure
should be short for efficient control of the AGVs. We ere utilize
the current version of the quantum annealer, which does not
necessarily find the optimal solutions of our QUBO problem but
quickly generates feasible solutions. Belowwe confirm availability
of the D-Wave 2000Q in our proposed system by simulating

the whole system utilizing the feasible solutions attained from
our scheme.

3. RESULTS

In this section, we report the results attained by iteratively solving
the QUBO problem by using the D-Wave 2000Q at each time
period for controlling the AGVs. For proving the efficiency of
our method, we prepare a simulation environment for an actual
factory as shown in Figure 2. The map is one of the actual
factories in Japan. Although we below take a single map as a test
of our formulation, we prepare different situations by increasing
the number of AGVs and changing initial conditions. These are
the essentially different situations in terms of that we attain a
completely different matrix Q.

First, we test our formulation in the real setting of the actual
factory. The factory usually utilizes 10 AGVs for product delivery,
and the AGVs move simultaneously along four fixed routes
according to predetermined tasks. We generate six candidates
movement of each AGV. Thus the maximum size of the QUBO
matrix is 60, which is embeddable in the D-Wave 2000Q. Notice
that the QUBO matrix becomes very sparse in our formulation.
Thus we further enlarge the size of the problem without an
efficient embedding program (Okada et al., 2019a,c). The speed
of each AGV is 0.5 m/s. The distance between nodes is 10 m.

We simulate the controlled AGV movement following
the results by the following different methods. One is the
conventional method, and the other is our method attained by
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FIGURE 2 | Factory used in the present study. In this factory, 10 AGVs move

along a road and complete their tasks.

the outputs from D-Wave 2000Q. Notice that the conventional
method for controlling the AGVs is a rule-based method at every
intersection in the actual factory. The rule is that when the AGVs
require the same intersection route, only one AGV can move in
and out at the intersection. For example, when two AGVs require
the same intersection, one AGV waits until the other AGV leaves
the intersection. The AGVs that move along the circumference
of the factory have higher priority for entering an intersection
for increasing the working rate. On the other hand, we solve the
QUBO problem via D-Wave 2000Q at each time period. The time
period is set to be 3 s, namely T = 3 [s]. We set the parameters
as λ1/(1 + λ2) = 1.0 and λ2/(1 + λ2) = 2.0. Because D-Wave
2000Q does not deal with large elements of QUBO matrix Qij,
the elements of the QUBO matrix is rescaled within the range
of the available magnitude. D-Wave 2000Q solves the QUBO
problem 1000 times for finding reasonable solutions. We filter
the solutions that do not satisfy the constraints and select one of
the reasonable solutions formoving the AGVs further. The AGVs
move following the selected solution during the time period of 3
s. The solution indicates the movement in the next 5 s. Thus, the
movement of the AGVs is updated before they reach the end of
the given route.

First the results attained by the conventional method and D-
Wave 2000Q are shown in Figure 3. We simulate the AGVs in the
actual factory for 1,000 s and indicate the accumulated waiting
time by circles. The waiting rate is calculated by the ratio of
the number of stopping AGVs and the total number of AGVs.
Several circles represent the locations that frequent traffic jams
of the AGVs happened. The size of a circle is proportional to
the accumulated waiting time of the AGVs at that point. In
the case of the conventional method, the time average of the
waiting rate converges to 20%. On the other hand, in the case
with the D-Wave 2000Q, It can be seen from Figure 3 that the
number of circles, which represent the accumulated waiting time,
is considerably reduced compared to the conventional method.
The time average of the waiting rate converges to 5%. The actual
movement of the AGVs from an initial condition is shown in
the Supplemental Video Files. Compared to the result of the
conventional method, the AGVs move smoothly following the
solution attained by our method with the D-Wave 2000Q. The
readers can find the smooth movements of the AGVs in the
Supplemental Video Files.

FIGURE 3 | Comparison among the solvers: (upper) Conventional method and

(bottom) D-Wave 2000Q. The green dots denote the locations of the AGVs at

the end. The blue circles represent the accumulated waiting time for the AGVs.

4. OTHER SOLVERS AND VALIDITY OF
FORMULATION

It is not necessary to solve our QUBO problem using D-Wave
2000Q; one can utilize other solvers. One method is the DA,
which solves the QUBO problem using an improved version of
SA. Notice that the DA can solve the QUBO problem with a
large number of binary variables compared to D-Wave 2000Q.
The number of binary variables in our QUBO problem is 60,
which is the product of the actual number of the AGVs (10) in
the Japanese factory and the number of candidates of routes (6),
which is set a priori so as to be embedded on the D-Wave 2000Q.
Thus, the number of the binary variables is quite small. Even
though theDA does not exhibit its potential efficiency in this case,
we find that the time average of the waiting rate converges around
6% as shown in Figure 4. Similarly to the case with the D-Wave
2000Q, DA also leads to nice performance to control the AGVs
by use of our formulation.

In addition, in order to verify our formulation of the QUBO
problem, we solve the corresponding integer programming
through the relaxation of the binary variables to continuous
variables by utilizing the branch and bound method via Gurobi
Optimizer version 8.01 on a 4-core Intel i7 4770K processor
with 32 GB RAM. In this case, we attain the optimal solution
of the corresponding integer programming in a very short time
and utilize the optimal solution to control the AGVs. Similarly
to the previous results attained by the D-Wave 2000Q and DA,
the optimal solutions controlls the AGVs without collisions.
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FIGURE 4 | Comparison among the solvers: (upper) Fujitsu digital annealer

and (bottom) Gurobi Optimizer as a reference. The same symbols are used

in Figure 3.

The time average of the waiting rate converges to 7%, which
is slightly higher than the results of D-Wave 2000Q and DA.
This is due to stochasticity of D-Wave 2000Q and the DA.
The cost function itself is not necessarily a direct indicator of
performance. Thus the optimal solution for the cost function is
not always optimal for the actual performance in terms of the
waiting rate. Similar phenomena appear in machine learning.
Generalization performance, which is the measure of potential
power in machine learning but not directly related to the cost
function to be optimized, can be enhanced via stochastic methods
to optimize cost functions. In particular, QA actually leads to
better generalization performance, as shown in the literature
(Ohzeki et al., 2018a). This is indirect evidence of the robustness
of the solutions in the wide-flat minimum attained in the
quantum annealer as reported in the literature (Kadowaki and
Ohzeki, 2019).

In order to assess the typical performance of our QUBO
problem, we repeat the iterative optimization for controlling the
AGVs at each time period starting from the same initial condition
10 times. Because the D-Wave 2000Q and DA have stochasticity,
we compute the average and maximum performance, as shown
in Table 1. As shown in Table 1, the variances among the
different runs are small for each solver. The Gurobi Optimizer
always leads to the optimal solutions, but the waiting rates
are not less than the results obtained by D-Wave 2000Q and
DA. This is because the optimal solutions do not always lead
to the best control of the AGVs in terms of the waiting rate.
Our QUBO problem is not directly related to the waiting
rate. In order to reduce the waiting rate, we add another

TABLE 1 | Working rates of the AGVs obtained by the conventional method,

D-Wave 2000Q, Fujitsu digital annealer, Gurobi Optimizer, and modified

optimization problem for Gurobi Optimizer.

2pt Conventional D-Wave

2000Q

Fujitsu digital

annealer

Gurobi Gurobi +

Average 80 94.2± 1.2 93.4± 1.2 93 96

Max 80 96 94 93 96

constraint for the AGVs such that if several AGVs reach the
same intersection, the AGV with more following AGVs is
preferentially allowed to enter the intersection. We solve the
improved integer programming with the additional constraint by
employing the Gurobi Optimizer and also show its efficiency in
Table 1. As shown in Table 1, the waiting rate is reduced by the
improved integer programming and the result is comparable with
the D-Wave 2000Q and DA with stochasticity. As well known,
the integer programming can be easily improved by considering
deeply the structure of the target problem. In addition, the
digital computer can accept any formulation of the integer
programming. This is themost advantage of the digital computer.
The quantum annealer is not acceptable for an intricate QUBO
problem due to the limitation of the quantum device. However
our QUBO problem is simple but valuable for the quantum
annealer to control the AGV in the factory, which is one of
the important problems in industry. This is the first evidence
showing possibility for the quantum annealer to contribute on
the practical application although it has many bottlenecks to
be solved.

Below, we discuss the efficiency of the solvers from another
point of view, the computational time. We investigate the
“actual” computational time, which is obtained in a standard-
user environment, and the quality of the attained solutions
against the increase in the number of the AGVs and candidate
routes. We prepare a hundred of different initial locations of the
AGVs such as each pair of the AGVs encounter at an intersection
and solve the optimization problem. We report the comparison
results in average and variance below.

The D-Wave 2000Q takes 20 µs, which is predetermined by
users, to once solve the optimization problem in the quantum
chip with superconducting qubits. However preprocessing
and postprocessing for preparation to solve the optimization
problem, the latency of the network when we utilize the D-
Wave 2000Q via cloud service, and the queueing time can not
be avoided. Thus the actual computational time takes a little
bit longer. The D-Wave 2000Q outputs many samples of the
solutions once. We set the number of samples as 1,000 and
measure the actual computational time. We then estimate the
actual computational time per output sample as 1.39(33) ms for 9
spins, 1.33(11) ms for 21 spins, 1.51(5) ms for 30 spins, 1.45(12)
ms for 39 spins, 1.90(16) ms for 51 spins, and 2.22(22) ms for 60
spins. These computational times per output sample are only to
solve the QUBO problems without any assurance of precision of
the attained solutions. The probability for attaining the ground
state P0 gradually decreases as the number of spins increases. In
fact, P0 = 1.00 for 9 spins, P0 = 0.99(6) for 21 spins, P0 = 0.97(2)
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for 30 spins, P0 = 0.91(1) for 39 spins, P0 = 0.87(2) for 51 spins
and P0 = 0.74(2) for 60 spins.

The number of binary variables consists of the multiplication
of that of the AGVs and the routes. The computational time
drastically increases for the case of D-Wave 2000Q beyond 60
spins. This is due to the limitation of the number of binary
variables to be solved simultaneously. We solve the case with
a larger number of binary variables by utilizing qbsolv, which
divides the original problem into a number of small problems. To
iteratively use D-Wave 2000Q, we must wait for several seconds
owing to the job queue via the cloud service provided by the D-
Wave systems Inc. at each iteration to solve the small problems.
The actual computational time per output sample and iteration is
1.80(44) ms for 90 spins, 1.77(59) ms for 399 spins, and 1.37(53)
ms for 900 spins. The iteration numbers become 2 × 10 for
90 spins, 8 × 10 for 399 spins, and 33 × 10 for 900 spins.
The former number in the product is the number of division
of the original large problem into small subproblems, and the
latter one is that of repetition to solve the optimization problem.
Thus, the actual computational time can be extremely long. In
addition, the probabilities for attaining the ground state get worse
as P0 = 0.27(12) for 90 spins P0 = 0.03(5) for 399 spins and
P0 = 0.001(9) for 900 spins. This is a weak point to employ the
D-Wave 2000Q to solve the QUBO problem. Although it seems
that the computational time does not depend on the number of
binary variables, the probability for attaining the ground state
gradually decreases as the number of binary variables increases.
On the other hand, the Gurobi Optimizer leads to the optimal
solutions for each case. Its computational time to attain the
optimal solution depends on the number of binary variables.
2.79(6) ms for 30 spins, 3.46(5) for 60 spins 4.25(6) for 90 spins,
and 8.70(6) ms for 400 spins.

On the other hand, for the DA, the machine time is set to
be enough to solve the optimization problem about 8 ms. The
actual computational time per output sample takes a little bit
longer than the machine time as 0.216(2) s for 9 spins, 0.219(4)
s for 21 spins, 0.222(6) s for 30 spins, 0.220(7) s for 39 spins,
and 0.232(9) for 51 spins, 0.240(11) for 60 spins, 0.230(6) ms for
90 spins, 0.336(18) s for 399, and 0.519(32) ms for 900 spins.
Up to 1,024 spins, the current version of the DA can solve
once the optimization problem without dividing it into small
subproblems. This is an advantage point of the DA in comparison
with the D-Wave 2000Q. In addition, the probability for attaining
the ground state P0 is relatively higher compared to that of the
D-Wave 2000Q as P0 = 1.0 for 9, 21, 30, 39, and 51 spins, P0 =

1.000(5) fpr 60 spins, P0 = 0.97(3) for 90 spins, P0 = 0.71(3) for
399 spins, and 0.37(12) for 900 spins. Notice that the higher value
of the probability for attaining the ground state is obtained by
tuning the annealing schedule. Instead, the actual computational
time takes longer.

We compute the time to solutions (TTS) defined as

TTS(p) = tc
log(1− p)

log(1− P0)
, (4)

where tc is the actual computational time per output sample and p
is a predetermined precision to attain the ground state. The time

FIGURE 5 | Comparison of the time to solution (TTS). The horizontal axis

denotes the number of AGV N and the vertical one represents time to solution

in seconds. The filled circles and squares denote the TTS obtained by D-Wave

2000Q and the DA, respectively. The outlined circles and squares represent

the actual computational time (upper bound of the TTS) by the D-Wave 2000Q

and the DA. In addition, we plot the actual computational time by the Gurobi

Optimizer by the triangles. The directions of the triangles distinguish the results

by different levels of the “presolve” option for the Gurobi Optimizer as “default,”

“none,” “conservative,” and “aggressive”.

to solution is an indicator of the performance of the solver in the
stochastic way.We show the comparison data of TTS (0.99) of the
D-Wave 2000Q and the DA and the actual computational time of
the Gurobi Optimizer in Figure 5. In the successful cases with
P0 = 1.0, we plot the actual computational time instead of the
TTS. The actual computational time per output sample can be
upper bound for the TTS.

5. CONCLUSIONS

We formulate the QUBO problem for controlling the AGVs in
the actual factory in Japan. This is the first step of the practical
application of the quantum annealer to the actual situation in
industry. In order to reduce the number of binary variables,
which is embeddable on the D-Wave 2000Q, we do not deal
with the whole control of the AGVs but iterate the procedure
in the predetermined time period, T = 3 s. The numbers of
the binary variables that can be solved within T = 3 s, which
is determined by the product of the numbers of AGVs and
routes, are up to ∼ 400 for D-Wave 2000Q with a technique
of division of the large problem, known as qbsolv, ∼ 90 for the
DA, and over 10,000 for the Gurobi Optimizer in terms of the
TTS and the actual computational time to attain the optimal
solution. Notice that, in order to control the AGVs, it is not
necessarily to find the optimal solutions. In this sense, the present
study discovers possibility of the current version of the quantum
annealer for contributing on the practical applications in the
actual situation in industry. We emphasize that our formulation
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is very simple to control the AGVs, which can bemapped into the
integer programming. The quantum annealer is not acceptable
for an intricate QUBO problem, as in our formulation, due
to the limitation of the quantum device. The digital computer
can accept any formulation of the integer programming. Thus
further improvements of our formulation will be achievable by
considering a better problem setting. This is the most advantage
of the digital computer. In this sense, this is the first evidence
showing possibility for the quantum annealer to contribute on
the practical application although it has many bottlenecks to
be solved.

Notice that we employ the actual computational time basically
to estimate the performance of the D-Wave 2000Q and the DA,
not the machine time. In future, if we can avoid the latency of
the communication and queuing time for dealing with the jobs
to solve the optimization problem in both of the devices via
cloud services, better efficiency can be achieved. In this sense,
the computational time of the D-Wave 2000Q and the DA can
be reduced significantly. For instance, the machine time for
solving the QUBO problem by the D-Wave 2000Q can be set to
be 20µs and that of the DA is 8 ms. The D-Wave 2000Q can
be a candidate for controlling the AGVs in real factories. The
time period was set in the present study following the current
situation of the real factory, in which several workers walks,
In the cases without any workers, the AGVs can move faster
than the setting of the present study. Then shorter response
time for controlling the AGVs is necessary. The next-generation
quantum annealer beyond the D-Wave 2000Q is expected as a
candidate for controlling the AGVs in such future factories. The
D-Wave quantum processing units continues to steadily grow
in number of qubits. The precision to find the ground state
getting better, the TTS becomes shorter. In this sense, the shorter
response time can be achieved and such future factories can be
created by the next-generation quantum annealer, although the
current version, the D-Wave 2000, is just a proof of concept.
In the intermediate stage, the hybrid computation of the digital

computer and the quantum annealer, or several simulations on
the digital hardware are valuable as discussed in the literatures
(Ohzeki, 2019; Waidyasooriya et al., 2019). Although the digital
computer works quite well at the level of our formulation only
with a few ingredients to control the AGVs, the present study
is the first step toward the efficient control of AGVs in future
factories as one of the candidates in the real-world application of
the QA.
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Outlier detection in high-dimensional datasets is a fundamental and challenging problem

across disciplines that has also practical implications, as removing outliers from the

training set improves the performance of machine learning algorithms. While many outlier

mining algorithms have been proposed in the literature, they tend to be valid or efficient

for specific types of datasets (time series, images, videos, etc.). Here we propose two

methods that can be applied to generic datasets, as long as there is a meaningful

measure of distance between pairs of elements of the dataset. Both methods start

by defining a graph, where the nodes are the elements of the dataset, and the links

have associated weights that are the distances between the nodes. Then, the first

method assigns an outlier score based on the percolation (i.e., the fragmentation) of the

graph. The second method uses the popular IsoMap non-linear dimensionality reduction

algorithm, and assigns an outlier score by comparing the geodesic distances with the

distances in the reduced space. We test these algorithms on real and synthetic datasets

and show that they either outperform, or perform on par with other popular outlier

detection methods. A main advantage of the percolation method is that is parameter free

and therefore, it does not require any training; on the other hand, the IsoMap method has

two integer number parameters, and when they are appropriately selected, the method

performs similar to or better than all the other methods tested.

Keywords: outlier mining, anomaly detection, complex networks, machine learning, unsupervised learning,

supervised learning, percolation

1. INTRODUCTION

When working with large databases, it is common to have entries that may not belong to the
database. Sometimes this is because they were mislabeled, or some automatic process failed and
introduced artifacts. On the other hand, anomalous items that appear not to belong, may actually
be legitimate, just extreme cases of the variability of a large sample. All these elements are usually
referred to as outliers [1, 2]. In general, outliers are observations that appear to have been generated
by a different process than that of the other (normal) observations.

There aremany definitions of what an outlier is, which vary with the system under consideration.
For example, rogue waves (or freak waves), which are extremely high waves that might have
different generating mechanisms than normal waves [3], have been studied in many fields [4–8],
including hydrodynamics and optics. They are usually defined as the extremes in the tail of the
distribution of wave heights, however, their precise definition varies, as in hydrodynamics a wave
whose height is larger than three times the average can be considered extreme, while in optics, much
higher waves compared to the average can be observed [9].
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In the field of computer science, a practical definition of
outlier elements is that they are those elements that, when they
are removed from the training data set, the performance of
a machine learning algorithm improves [10]. Outlier mining
allows to identify and eliminate mislabeled data [11, 12]. In other
situations, the outliers are the interesting points, for example to
perform fraud detection [13, 14] or novelty detection [15]. The
terms novelty detection, outlier detection and anomaly detection
are sometimes used as synonyms in the literature [15, 16].

In spatial objects, the identification of anomalous regions
that have distinct features from those of their surrounding
regions can reveal valuable information [17–19]. This is
the case of biomedical images where particular anomalies
characterize the presence of a disease [20, 21]. For example, [22]
recently proposed a generative adversarial network for detecting
anomalies in OCT retinal images. Another relevant problem
consists in anomaly detection in sequences of ordered events,
a comprehensive review was provided in Chandola et al. [23],
where three main types of formulations of the problem were
identified: (i) to determine if a given sequence is anomalous with
respect to a database of sequences; (ii) to determine if a particular
segment is anomalous within a sequence; and (iii) to determine if
the frequency of given event of sequence of events is anomalous
with respect to the expected frequency.

With increasing computer power, neural networks are also an
attractive option for detecting outliers [24, 25] and anomalies
[26]. Hodge and Austin [2] have classified outlier detection
methods in three groups: unsupervised (methods that use no
prior knowledge of the data), supervised (methods which model
both normal and outlier points), and semi-supervised (methods
that model only normal points, or only outliers), although the
latter can also include a broader spectrum of algorithms (for
example a combination of fully unsupervised method and a
supervised one). A recent review of outlier definitions and
detection methods is presented in Zimek and Filzmoser [27].

We are interested in outlier detection in data that belong
to a metric space [28–31]. In this type of dataset, a distance
can be defined between items. A relevant example is a wireless
sensor network, where localization is based on the distances
between nodes and the presence of outliers in data results in
localization inaccuracy [32, 33]. Abukhalaf et al. [34] presents
a comprehensive survey of outlier detection techniques for
localization in wireless sensor networks.

Here we propose two methods that use, as input, only the
distances between items in the dataset. Both methods define a
graph, or a network, where the nodes are the items of the dataset,
and the links have associated weights which are the distances.
Then, each method identifies outliers by analyzing the structure
of the graph. The first method assigns to each item an outlier
score based on the percolation (i.e., the fragmentation) of the
graph. The second method uses the IsoMap algorithm [35] (a
non-linear dimensionality reduction algorithm that learns the
manifold in which the data is embedded in a reduced space),
and assigns to each element an outlier score by comparing the
geodesic distances with the distances in the reduced space.

Numerous algorithms have been proposed in the literature
that use manifold embedding, or more in general, graph

embedding, either explicitly or implicitly, to detect anomalies
in data [36–41]. A comprehensive review of the literature is
out of the scope of the present work, but here we discuss a
few relevant examples. Agovic et al. [42, 43] and Wang et al.
[44] used the IsoMap algorithm as a preprocessing step, before
applying the actual outlier finding algorithm. Our approach
differs fundamentally because we take into account how well or
how poorly items fit in the manifold, which is disregarded by
the cited methods, as they only perform outlier detection in the
reduced space.

In Brito et al. [45] the authors use the distance matrix to
build a graph where two nodes are connected if each of them is
between the k’s closest neighbors. For a sufficiently large value
of k, the graph will be connected, while, for small values of k,
disjoint clusters will appear. If the clusters that appear are large
enough, they are considered as classes, while if they are small,
they can be interpreted as outliers. In contrast to traditional
k-NN algorithms, where the number of neighbors has to be
determined a priori, the method proposed by Brito et al. [45]
finds the value of k automatically. Nevertheless, the method is
not truly parameter-free, as there are two parameters that have
to be adjusted which depend on both the dimension and size of
the dataset. We speculate that this graph fragmentation method
identifies similar outliers as our percolation method, which has
the advantage of being parameter free.

We demonstrate the validity of the percolation and IsoMap
methods using several datasets, among them, a database of optical
coherence tomography (OCT) images of the anterior chamber
of the eye. OCT anterior chamber images are routinely used for
the early diagnosis of glaucoma. We show that, when images
with artifacts (outliers) are removed from the training dataset,
the performance of the unsupervised ordering algorithm [46]
improves significantly. We also compare the performance of
these methods with the performance of other popular methods
used in the literature. We show that our results are at worst
comparable to those methods.

The paper is organized as follows, in section 2 we describe the
proposed methods and also, other popular methods that we use
for comparison. In section 3, we describe the datasets analyzed. In
section 4 we present the results and in section 5, we summarize
our conclusions.

2. METHODS

In this section we describe the two proposed methods, which we
refer to as percolation-based method and IsoMap-based method.
Both methods require the definition of a distance measure
between pairs of elements of the dataset. We also describe three
other outlier mining methods, which we used for comparison.

We consider a dataset with N elements and let i and j be
two elements, which have associated vectors with m features,
Vi = {vi1 . . . vim} and Vj = {v

j
1 . . . v

j
m}. The distance between

these elements can be defined as

Dij =

(

∑

k

∣

∣

∣
vik − v

j

k

∣

∣

∣

p
)1/p

(1)
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with p an integer number, taken equal to 2 (Euclidian distance)
unless otherwise stated. The selection of an appropriate distance
measure is of the utmost importance, since it must capture the
similarities and differences of the data. Adding a preprocessing
step before calculating the distance matrix may also be necessary
to obtain significant distances.

2.1. Percolation-Based Method
The method is described in Figure 1 (a video is also included
in the Supplementary Information). We begin by considering
a fully connected graph, where the nodes are the elements of the
set and where the links are weighted by the distance matrix Dij.
Now, we proceed in the following way: we remove the links one
by one, from higher to lower weights (i.e., the link representing
the highest distance between a pair of elements is removed
first). If only a few links are removed, the graph will remain
connected, but if one continues, the graph will start to break
into different components. As it is well-known from percolation
theory [47, 48], it is expected for most of the nodes to remain
connected inside a single giant connected component (GCC), and
for the rest of them to distribute into many small components. If
we remove enough links, even the giant component disappears.
This transition between the existence and non-existence of a giant
component is known as a percolation transition, and is one of
the most studied problems of statistical physics [49, 50]. Here,
we are interested in the percolated state, i.e., when such a giant
component exists. In particular, the nodes that do not belong to
the GCC are candidates for being considered as outliers, as they
are relatively distant to the rest of the graph.

Following this idea, we can label each node with an outlier
score (OS), defined as the weight of the link that, after being
removed, separates the node from the GCC. Thus, the first
elements to leave the GCC are the ones with the highest OS, while
the last ones have the lowest OS.

For this method to correctly identify the outliers, we assume
that normal points occupy more densely populated zones
than outliers, thus having (normal points) local neighborhoods
connected with small distances while outliers are connected to
normal points via longer distances. Such outliers will become
disconnected from the giant connected component sooner than
the normal ones in the described procedure.

It is worth noting that the computation of the GCC
can be performed efficiently using a variation of the union-
find algorithm [51], thus making this method suitable for
large datasets.

2.2. IsoMap-Based Method
The basic idea of this method is to use the well-known algorithm
IsoMap [35] to perform dimensionality reduction on the raw
data, and to analyze the manifold structure in the reduced space,
assigning to each point an outlier score that measures how well it
fits in the manifold.

The method consists of the following steps

- We apply IsoMap to the distance matrix Dij (computed from
the raw features) and obtain two matrices: 1) a new set of
features for each element of the database, V i = {v′i1 . . . v′ir }
with i = 1 . . .N and 2) a matrix of graph distances, DG

ij in the

geodesic space as described in Tenenbaum et al. [35].
- Using the new set of features, we calculate a new distance
matrix D̃ij, using the Euclidean distance (Equation 1
with p = 2).

- The third step is to compare D̃ij with D
G
ij : for each element i we

compute the similarity, ρi, between vectors (DG
i1, . . .D

G
iN) and

(D̃i1, . . . D̃iN), using the Pearson correlation coefficient.
- The final step is to define the outlier score as OSi = 1 − ρi

2.
For “normal” elements, we expect high similarity, while for
abnormal ones, we expect low similarity.

With this method, the assumption is that normal points lie in
a low dimensional manifold embedded in the full-dimensional
space, and outliers lie outside such manifold. If the parameters of
the IsoMap are such that the low dimensional manifold structure
is recovered successfully, the distances between points in the
new set of features (D̃ij), the geodesic distances in the manifold,

and the graph distances (DG
ij an approximation of the geodesic

distance) should all be similar for normal points lying on the
manifold. However, for outliers the geodesic distance is not
defined and thus, the graph distances and the distances in the new
set of features will disagree. When we compute the similarity, ρi,
assessing this disagreement, normal points will have a high value
ρi (near 1) and outliers a low value of ρi, therefore the outlier
score should be high for outliers and low for normal points.

FIGURE 1 | Example of application of the percolation method. Starting with a fully connected graph (A) links are removed according to their distances (longer

distances are removed first). In (B) some of the longest connections have been eliminated, but the graph remains fully connected, in (C) the first outlier is identified as

the first element that becomes disconnected from the giant connected component, and in (D) two elements are disconnected. A video illustrating the procedure is

presented in the Supplementary Information.
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The parameters of this method, are the parameters of the
IsoMap algorithm, namely, the dimensionality of the objective
space (d) and neighborhood size (number of neighbors, k)
to construct the graph. In this work, the parameters of the
IsoMap were optimized (when a training set was available) by
maximizing the average precision doing an extensive search in
the parameter space.

2.3. Other Methods
We compared the performance of both methods with:

- The simplest way to define an outlier score: the distance to
the center-of-mass (d2CM) in the original feature space, Vi =

{vi1 . . . vim}. For “normal” elements, we expect short distance,
while for abnormal ones, we expect high distance.

- A popular distance-based method, which will be referred to
as Ramaswamy et al. [29]. This method is based on the
distance of a point from its kth nearest neighbor, in the raw
(original) high-dimensional feature space. The method assigns
an outlier score to each point equal to its distance to its kth
nearest neighbor.

- And a very popular method, One Class Support Vector
Machine (OCSVM) which uses the inner product between the
elements in the database to estimate a function that is positive
in a subset of the input space where elements are likely to be
found, and negative otherwise [52].

2.4. Implementation
All the methods were implemented and run in MatLab. The
IsoMap method was build modifying the IsoMap algorithm
implementation by Van Der Maaten et al. [53], the percolation
method was implemented using graph objects in MatLab. With

a simple database of 1,000 elements with 30 dimensions, the
percolation method takes around 6 s to run and the IsoMap
method takes around 18 s, while One Class Support Vector
Machine takes around 0.2 s to run, Ramaswamy about 0.04 s
to run, and distance to center of mass 0.01 s to run on an Intel
i7-7700HQ laptop. Both methods could significantly improve
their runtime by optimizing the code and translating it into a
compiled language.

3. DATA

We tested the above described methods in several databases.
In the main text we present three examples: a database of
anterior chamber Optical Coherent Tomography (OCT) images,
a database of face images with added artifacts, and a database
of credit card transactions. Additional synthetic examples are
presented in the Supplementary Information.

3.1. Anterior Chamber OCT Images
This database consists of 1213 OCT images of the anterior
chamber of the eye of healthy and non-healthy patients of the
Instituto de Microcirugia Ocular in Barcelona. The database was
analyzed in Amil et al. [46] where an unsupervised algorithm
for ordering the images was proposed. The images had been
classified in four categories (closed, narrow, open, and wide
open) by two expert ophthalmologists. By using manually
extracted features, and the features returned by the unsupervised
algorithm, a similar separation in the four classes was found.
Here we will demonstrate that the similarity is further improved
when images containing artifacts (outliers) are removed from the
dataset given to the unsupervised algorithm.

Examples taken from the database are shown in Figure 2.

FIGURE 2 | Example images from the OCT database, all except the first one were randomly sampled. Marked images correspond to top 15% outlier score for

OCSVM (Blue), distance to center of mass (Orange), IsoMap (Yellow), Percolation (Purple), and Ramaswamy (Green). The first image corresponds to the marked

improvement in Figure 4.
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The distance matrix Dij was calculated as described in detail
in Amil et al. [46]: by comparing pixel-by-pixel, after pre-
processing the images to adjust the alignment and to enhance
the contrast. For the algorithms that don’t use the distance
matrix (OCSVM and distance to center of mass), the same
pre-processing was used.

3.2. Face Database
This publicly available database [54], kindly provided by
AT&T Laboratories Cambridge, is constituted by face images
(photographs of 40 subjects with 10 different images per subject)
with outliers that were added similarly to Ju et al. [55]: first
we rescaled the images to 64 by 64 pixels, and then, we added
a square of noise to one randomly selected image per subject.
Examples are shown in Figure 3. When using the parameters
proposed in Ju et al. [55] to generate the artifacts, all the
methods have a perfect performance (average precision = 1), so
we generated the artifacts in the following manner: We used only
square artifacts whose size we varied from 0 (no artifact added)
to 64 (the whole image), the square was placed randomly in
the image and its content was gray-scale pixels whose gray-scale
value was randomly sampled such that the distribution was the
same as the gray-scale value distribution of the combination of
all the images in the database. We also generated a database with
outliers whose brightness was modify by simply multiplying all
the image by a constant factor.

For this database (and also for the databases analyzed in the
Supplementary Information, which also have added outliers),
we generated two independent sets for each square size: one was
used to find, in the case of the IsoMap and Ramaswamymethods,
the optimal parameters, and the second one was used for testing.

For this database, the distance matrix was calculated as the
Euclidean pixel-by-pixel distance.

3.3. Credit Card Transactions
This publicly available database [56–61] contains credit card
transactions made in September 2013 by European cardholders.
It contains 284807 transactions made in 2 days, of which 492
correspond to frauds. In order to preserve confidentiality, for
each transaction the data set only includes the amount of money
in the transaction, a relative time, and 28 features that are
the output of a principal component analysis (PCA) of all the

other metadata related to the transaction. In our analysis we
divided the total dataset into 8 sets of about 4,000 entries (due
to computational constrains) according to the amount of the
transaction and computed the distance as the euclidean distance
using these 28 features.

4. RESULTS

4.1. Anterior Chamber OCT Images
For the OCT database, there is no a priori definition of outliers
(i.e., no ground truth), all the images were drawn from the same
database. However, as a proxy for determining the performance
of the outlier finding methods, we used the performance of
the unsupervised methods proposed in Amil et al. [46] when
ignoring the images identified as outliers.

As removing outliers should improve the performance of
machine learning algorithms, we performed two tests: first, we
recalculated the correlation metrics presented in Amil et al. ([46],
Table 1), removing the first n outliers that were identified by
each method. Second, to test the significance of the improved
performance, we repeated the calculation, now removing random
images. The results presented in Figure 4 confirm that removing
the detected outliers improves the performance, while removing
random images has no significant effect. We also see that
IsoMap is the method that produces the highest improvement,
while d2CM and OCSVM have low-significance performance
improvement. For the IsoMap method we set the parameters to
d = 10 and k = 15, while for the Ramaswamy method we
used k = 6.

4.2. Face Database
For this database, as explained in section 3.2, we generated
artifacts artificially and tried to find the images presenting
artifacts as outliers. We varied the size of the artifact generated
to evaluate the robustness of the methods. For each size, we
generated two different databases with artifacts (with the same
parameters but different random seeds), we used the first one to
optimize the parameters of IsoMap and Ramaswamy algorithms,
and the second one to test the algorithms. We show the results
of evaluating the performance on the second database for each
square size in Figure 5A, we used the average precision based on
the precision-recall curve as performance measure, this measure

FIGURE 3 | Example images from the face database. Eight original images at the top, and eight images with added artifacts at the bottom. Marked images

correspond to top 10% outlier score for OCSVM (Blue), distance to center of mass (Orange), IsoMap (Yellow), Percolation (Purple), and Ramaswamy (Green).
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FIGURE 4 | Performance of the OCT image ordering algorithm as a function of the number of outliers that are removed from the database. As expected, we see that

the performance, which is measured by the correlation coefficient between the feature returned by the ordering (unsupervised) algorithm and the feature provided by

manual expert annotation (mean angle), improves as the outliers detected are removed. The different lines indicate the method of outlier identification and the colored

region indicates results when the images removed are randomly selected, one standard deviation is shown in dark coloring, while three standard deviations is shown

in light coloring. In this case, as expected, no significant change in the performance is seen. For some methods a sharp improvement is observed when eliminating

one specific image (marked with a black circle), this image corresponds to the first one shown in Figure 2.

computed as the area under the precision-recall curve [62] is
more appropriate than other more commonly used metrics for
class imbalance scenarios. In Figure 5A we see that Ramaswamy
tends to slightly outperform all other methods, in particular, the
percolation-based method shifts from being the worst method
(when the squares are small) to the second best (when the squares
are large). In Figure 5D we show the performance of the IsoMap
method as a function of its parameters, we depict two zones with
better performance, one with fairly low dimensionality and a
low number of neighbors (more neighbors translate to a more
linear mapping), and another zone with greater dimensionality
and almost the maximum possible number of neighbors. In
general, performance is very sensitive to parameter variations. In
Figure 5C we show how altering the brightness of some images
can also be perceived as outliers due to the distance measure used
(Euclidean pixel-by-pixel).

Also, to evaluate how robust the methods are when changing
the distance measure, we varied p in the Minkowski distance
family (Equation 1), and evaluated the methods for the
parameters optimized for p = 2 (Euclidean), p = 1 and p = 10,
the average precision as a function of p for the distance-based
methods is shown in Figure 5B. As we can see, for p > 4
Ramaswamy and Percolation-based perform similarly well, also,
the parameters of Ramaswamy are very robust when changing p
in the training set (the Ramaswamy method was also train with
p = 1 and p = 10 obtaining the same parameters as for p = 2),
while IsoMap is very sensitive to such changes.

We generated a different dataset whose outliers were images
that, instead of having added noise, were multiplied by a
constant (brightness) factor.We varied the brightness from 0 (the
image being all black) to 3. The results of this study is shown
in Figure 5C.

4.3. Credit Card Transactions
In this database the ground truth (the fraud credit card
transactions) is known and thus, the performance of the different
methods is, as in the prior example, quantified with the average
precision based on the precision-recall curve.

The database was divided into several subsets according to
the amount of money of each transaction (see Figure 6), each
set (of around 4,000 transactions) was further randomly divided
into two sets in order to use one for training and the other one
for testing. The results are summarized in Figure 6 that displays
the average precision for all testing sets. We can see that the
performance of the methods is very heterogeneous.

To try to understand the origin of the large variability, we
conducted an additional experiment in which we considered
groups of 3,900 normal transactions chosen at random (without
considering the amount of the transaction) and 100 frauds also
chosen at random, which were divided equally in training and test
subsets. We repeat this experiment 8 times with different random
seeds, and the results are presented in Figure 7 in this experiment
the average precision of themethods was increased due to a larger
fraction of frauds in the test sets.
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FIGURE 5 | Analysis of the face database. (A) Average precision as a function of the square size for the different outlier finding methods, One Class Support Vector

Machine (OCSVM) in blue, distance to center of mass (d2CM) in orange, IsoMap in yellow, Percolation-based method in purple, and Ramaswamy in green. The

Average precision was calculated on databases independently generated from those used to set the parameters of the methods. (B) Average precision as a function

of the distance measure for different outlier finding methods with a square size of 36 pixels, IsoMap (trained with p = 1) in blue, IsoMap (trained with p = 2) in orange,

IsoMap (trained with p = 10) in yellow, Percolation-based method in purple, and Ramaswamy in green. The Average precision was calculated on databases

independently generated from those used to set the parameters of the methods. (C) Average precision as a function of the brightness multiplier of the outliers. (D)

Average precision in the training set as a function of the IsoMap parameters with a square size of 30 pixels.

4.4. Discussion
Figure 8 presents the comparison of the results obtained with the
five methods used, for the three databases analyzed. Figure 8A
summarizes the results for the OCT database, with the boxplot
we can see the minimum, first quartile, median, third quartile,
and maximum of the correlation coefficient when varying
the amount of outliers considered (corresponds to Figure 4).
Figure 8B summarizes, in a similar manner, the results for
the face database showing the boxplot of the average precision
values when varying the square size (corresponds to Figure 5A).
Figure 8C summarizes the results for the credit card transactions
showing the boxplot of the average precision values when
changing the amount range (corresponds to Figure 6). As we
can see in Figure 8, the IsoMap and Percolation methods
perform well in the three databases; their performance being
either better than or comparable to the performance of the

other three methods. Additional examples presented in the
Supplementary Information confirm the good performance of
IsoMap and Percolation methods.

Figure 5B shows how the performance of distance-based
methods is affected by the definition of the distance. We can see
that the performance of all themethods depends on the definition
of the distance. The methods are also sensitive to changes in
the preprocessing of the data, therefore, well-prepared data with
a meaningful distance definition is needed for optimizing the
performance of all methods.

It is important to consider how the two methods proposed
here scale with the dimension of the data, d (i.e., the number of
features of each sample), and the number of samples, N, in the
database. Since both methods begin by calculating the distance
matrix, the processing time is at least of the order dN2 because
the calculation of the distance between pairs of elements linearly
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FIGURE 6 | Performance of all the outlier finding methods for the credit card transactions on the test subsets for each amount range.

FIGURE 7 | Performance of all the outlier finding methods for the credit card transactions on the test subsets of the random groups. The random groups were

generated by randomly choosing 3,900 normal transactions and 100 frauds, and it was further randomly divided into two subsets, a training and a testing subsets.

increases with d and quadratically with N. Both methods need to
store in memory the distance matrix and analize it, this imposes
memory requirements that can limit their applicability for large
datasets. In the case of IsoMap, this analysis is of order N2.

In the case of the percolation method, a threshold needs to be
gradually varied in order to precisely identify the order in which
the elements became disconnected from the giant component.
This results in a runtime of the order of N2 using the algorithm
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FIGURE 8 | Box-plot summarizing the results of all the outlier finding methods

in all the databases. (A) Anterior Chamber OCT images, (B) Face database

(only testing groups), (C) Credit Card transactions (only testing groups).

proposed in Newman and Ziff [51]. Regarding the dimensionality
of the data, because both methods only need to hold in memory
theN2 distancematrix (and not the dN features of theN samples)
they are suitable for very high dimensional data (where d ≫ N)
because once the distances of an element to all other elements
have been computed, the d features of that element will not be
needed again.

5. CONCLUSIONS

We have proposed two methods for outlier mining that rely on
the definition of a meaningful measure of distance between pairs
of elements in the dataset, one being fully unsupervised without
the need of setting any parameters, and other which has 2 integer
number parameters that can be set using a labeled training set.
Both methods define a graph (whose nodes are the elements of
the dataset, connected by links whose weights are the distances
between the nodes) and analyze the structure of the graph. The
first method is based on the percolation of the graph, while
the second method uses the IsoMap non-linear dimensionality

reduction algorithm. We have tested the methods on several real
and synthetic datasets (additional examples are presented in the
Supplementary Information), and compared the performance
of the proposed algorithms with the performance of a “naive”
method (that calculates the distance to the center of mass) and
two popular outlier finding methods, Ramaswamy and One Class
Support Vector Machine (OCSVM).

Although the percolation algorithm performs comparably to
(or slightly lower than) other methods, it has the great advantage
of being parameter-free. In contrast, the IsoMap method has
two parameters (natural numbers) that have to be selected
appropriately. The performance of the methods varies with the
dataset analyzed because the underlying assumption of what an
outlier is, is different for the different methods. The percolation
method assumes that the normal elements will be in one large
cluster, with outliers being far from that cluster; IsoMap assumes
that the normal elements lie on a manifold, and that outliers lie
outside such manifold; the Ramaswamy and OCSVM methods
assume that the outliers lie in a less densely populated sector
of the space, while the “naive” method simply assumes that
outliers are the furthest elements from the center of mass.
These assumptions do not always hold, which results in the
identification of normal elements as outliers. For example, in the
OCT database there were some duplicated entries which were
assigned by the Ramaswamy method the least outlier score, in
spite of having a minor artifact.

The percolation algorithm is immune to duplicate entries,
as it assigns the same outlier score as if there was only one
element. On the other hand, the effect of duplicate entries on the
IsoMap and “naive” methods is more difficult to asses, but is to be
expected that if the duplicated elements are only few, they won’t
have a large effect in the manifold learned, or in the center of
mass calculated.

The execution time of both methods scales at least as dN2

where d is the number of features of each item and N is the
number of items in the database (as dN2 is the time needed
to compute the distance matrix). Therefore, the methods are
suitable for the analysis of small to medium-size databases
composed of high-dimensional items.
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We study the role of the system response time in the computational capacity of

delay-based reservoir computers. Photonic hardware implementation of these systems

offers high processing speed. However, delay-based reservoir computers have a

trade-off between computational capacity and processing speed due to the non-zero

response time of the non-linear node. The reservoir state is obtained from the sampled

output of the non-linear node. We show that the computational capacity is degraded

when the sampling output rate is higher than the inverse of the system response time.

We find that the computational capacity depends not only on the sampling output

rate but also on the misalignment between the delay time of the non-linear node

and the data injection time. We show that the capacity degradation due to the high

sampling output rate can be reduced when the delay time is greater than the data

injection time. We find that this mismatch gives an improvement of the performance

of delay-based reservoir computers for several benchmarking tasks. Our results show

that the processing speed of delay-based reservoir computers can be increased while

keeping a good computational capacity by using a mismatch between delay and data

injection times. It is also shown that computational capacity for high sampling output

rates can be further increased by using an extra feedback line and delay times greater

than the data injection time.

Keywords: reservoir computing, delayed-feedback systems, memory capacity, system response time, information

processing rate

1. INTRODUCTION

Reservoir computing (RC) is a successful brain-inspired concept to process information with
temporal dependencies [1, 2]. RC conceptually belongs to the field of recurrent neural networks
(RNN) [3]. In these systems, the input signal is non-linearly projected onto a high-dimensional
state space where the task can be solved much more easily than in the original input space. The
high-dimensional space is typically a network of interconnected non-linear nodes (called neurons).
The ensemble of neurons is called the reservoir. RC implementations are generally composed of
three layers: input, reservoir, and output (see Figure 1). The input layer feeds the input signal to
the reservoir via fixed weighted connections. The input weights are often chosen randomly. These
weights determine how strongly each of the inputs couples to each of the neurons. In traditional
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FIGURE 1 | Schematic illustration of delay-based RC. NL stands for Non-linear Node. The NL can have one (β2 = 0) or two delay lines. The points ri (n) represent the

virtual nodes separated by time intervals θ . The masked input u(n+ 1) ⊗ Mask is injected directly following u(n) ⊗Mask.

RNN the connections among the neurons are optimized to
solve the task. Nevertheless, in RC, the coupling weights in the
reservoir are not trained and can be chosen at random. The
reservoir state is given by the combined states of all the individual
nodes. Under the influence of input signals, the nodes of the
reservoir remain in a transient state such that each input is
injected in the presence of the response to the previous input.
As a result the reservoir can retain input data for a finite amount
of time (short-term memory [4]), and it can compute linear and
non-linear functions of the retained information. The reservoir
output is constructed through a linear combination of neural
responses, with readout weights that are trained for the specific
task. These weights are typically obtained by a simple linear
regression. The strength of the reservoir computing scheme
lies in the simplicity of its training method, where only the
connections with the output are optimized.

Hardware implementations of RC are sought because they
offer high processing speed [5], parallelism, and low power
consumption [6] compared to digital implementations. However,
traditional RC involves a large number of interconnected
non-linear neurons, so the hardware implementation is very
challenging. Recently, it has been shown that RC can be
efficiently implemented using a single non-linear dynamical
system (neuron) subject to delayed feedback (delay-based
RC) [7]. This architecture emulates the dynamic complexity
traditionally achieved by a network of neurons. In delay-based
RC, the spatial multiplexing of the input in standard RC systems
with N neurons is replaced by time-multiplexing (see Figure 1).
The reservoir is composed of N sampled outputs of the non-
linear node distributed along the delay line, called virtual nodes.
Connections between these N virtual nodes are established
through the delayed feedback when a mismatch between the
delay and data injection times is introduced [8]. Delay-based RC
has facilitated hardware implementation in photonic systems that
have the potential to develop high-speed information processing.
An overview of recent advances is given in Van der Sande

et al. [9]. However, the information processing rate is limited by
the non-zero response time of the system. The reservoir state
is obtained from the sampled output of the non-linear node.
The information processing (or data injection) time is given by
Tp = Nθ , where θ is the inverse of the output sampling rate, i.e.,
the time interval between two virtual nodes (see Figure 1). The
information processing rate Tp

−1 can be increased by decreasing
the node distance (higher sampling output rate). However, when
θ is less than the response time of the system T, virtual nodes
are connected through the non-linear node dynamics. Network
connections due to inertia lead to virtual node-states with similar
dependence on inputs. Then the number of independent virtual
nodes decreases and the diversity of the reservoir states is
reduced. As a consequence computational capacity is degraded.
Then there is a trade-off between information processing capacity
and rate in delay-based reservoir computers.

In this work we show, using numerical simulations, that the
computational capacity is degraded when the sampling output
rate is higher than the inverse of the system response time.
We obtain the memory capacities for different values of θ/T
and the mismatch between the delay and data injection times.
Until now only two different delay-based reservoir architectures
have been considered: θ < T without mismatch [7] and θ ≫

T with mismatch time θ [8]. We find that the computational
capacity depends not only on the sampling output rate but
also on the misalignment between the delay time of the non-
linear node and the data injection time. We show that the
capacity degradation due to high sampling output rate can be
reduced when the delay time is greater than the data injection
time. We also find that this mismatch gives an improvement of
the performance of delay-based reservoir computers for several
benchmarking tasks. Then, delay-based reservoir computers can
achieve a high processing speed and good computational capacity
using a mismatch between delay and data injection times.

We first consider a simple architecture of a single non-linear
node with one feedback delay line. The linear and non-linear
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information processing capacities are obtained for different
values of θ/T. It is found that information processing capacity
is boosted for small values of θ/T if the delay of the non-linear
node τ is greater than Tp. A similar performance is obtained
for small and large values of θ/T for channel equalization and
also for NARMA-10 task if values of the delay time greater than
Tp are used. Then the information processing rate is increased
without causing system performance degradation. This is due to
the increase in reservoir diversity. Another strategy to increase
reservoir diversity is to use an extra feedback line. We show that
memory capacity can be further increased with this architecture
for small values of θ/T when the delay time is greater than the
information processing time.

2. MATERIALS AND METHODS

2.1. Delay-Based Reservoir Computers
Traditional RC implementations consist of a large number N of
randomly interconnected non-linear nodes [3]. The state of the
reservoir at time step n, r(n), is determined by:

r(n) = f (γWinu(n)+ βWr(n− 1)), (1)

where u(n) is sequentially injected input data and f is the
reservoir activation function. The matrices W and Win contain
the (generally random) reservoir and input connection weights,
respectively. The matrix W (Win) is rescaled with a connection
(input) scaling factor β (γ ). The exact internal connectivity is
not crucial. In fact, it has been shown that simple non-random
connection topologies (e.g., a simple chain or ring) gives a good
performance [10].

Delay-based RC is a minimal approach to information
processing based on the emulation of a recurrent network
via a single non-linear dynamical node subject to delayed
feedback. The reservoir nodes (called virtual nodes) are the
sampled outputs of the non-linear node distributed along the
delay line (see Figure 1). In the time delay-based approach
there is only one real non-linear node. Thus, the spatial
multiplexing of the input in standard RC is replaced here by
time multiplexing. The advantage of delay-based RC lies in the
minimal hardware requirements. There is a price to pay for
this hardware simplification: compared to an N-node standard
spatially-distributed reservoir, the dynamical behaviour in the
system has to run at an N-times higher speed in order to have
equal input-throughput.

The dynamics of a delay-based reservoir has been described as
[7, 11–16]:

Tẋ(t) = −x(t)+ f
(

βx(t − τ )+ γ J(t)
)

, (2)

where T is the response time of the system, τ the delay time,
β > 0 the feedback strength and γ the input scaling. The masked
input J(t) is the continuous version of the discrete random
mapping of the original input Winu(n). In our approach, every
time interval of the data injection/processing time Tp represents
another discrete time step. This time is given by Tp = Nθ , where
θ is the temporal separation between virtual nodes. Individual

virtual nodes are addressed by time-multiplexing the input signal.
An input mask is used to emulate the input weights of traditional
RC. This mask function is a piecewise constant function, constant
over an interval of θ , and periodic with period Tp. The N mask
values mi are drawn from a random uniform distribution in the
interval [–1,1] The procedure to construct the continuous data
J(t) is the following. First, the input stream u(n) undergoes a
sample and hold operation to define a stream which is constant
during one Tp, before it is updated. Every segment of length
Tp is multiplied by the mask (see Figure 1). The masked input
u(n+ 1)⊗Mask is injected directly following u(n)⊗Mask. After
a time Tp, each virtual node is updated.

The reservoir state that corresponds to the input u(n), r(n) =
[r1(n) . . . rN(n)], is the collection of N outputs of the dynamical
system, ri(n) = x(nTp − (N − i)θ), where i = 1, . . . ,N (see
Figure 1). These N points are called virtual nodes because they
correspond to taps in the delay line and play the same role as the
neurons in standard RC. The node responses ri(n) are used to
train the reservoir to perform a specific task. As in the standard
RC [1, 17], only the output weightsWout are computed to obtain
the output ŷ = Woutr. A linear regression method is used to
minimize the error between the output ŷ and the desired target
y in the training phase. The testing is then performed using
previously unseen input data of the same kind as those used
for training.

2.1.1. Interconnection Structure of Delay-Based

Reservoir Computers
In delay-based reservoir computers virtual nodes are connected
through the feedback loop with nodes affected by previous
inputs. Virtual node states also depend on close (in time) nodes
through the inherent dynamics of the non-linear node. We can
identify four time scales in the delayed feedback system with
external input described by Equation (2): the response time
T of the non-linear node, the delay time τ , the separation of
the virtual nodes θ , and the data injection/processing time Tp.
Setting the values of the different time scales creates a fixed
interconnection structure. The virtual nodes can set up a network
structure via the feedback loop by introducing a mismatch
between Tp and τ . Interconnection between virtual nodes due to
the inherent dynamics of the non-linear node is obtained if the
node separation θ is smaller than the response time of the system
T. Due to inertia the response of the system is not instantaneous.
Therefore, the state of a virtual node depends on the states of
nodes that correspond to previous taps in the delay line. However,
if θ is too short, the non-linear node will not be able to follow
the changes in the input signal and the response signal will be
too small to measure. Typically, a number of θ = 0.2T is quoted
[7, 11–16, 18].

When θ ≫ T the state of a given virtual node is independent
of the states of the neighboring virtual nodes. Then virtual nodes
are not coupled through the non-linear node dynamics. The
reservoir state is only determined by the instantaneous value of
the input J(t) and the delayed reservoir state. The system given
by Equation (2) can then be described with a map:

x(t) = f
(

βx(t − τ )+ γ J(t)
)

. (3)
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A network structure can be obtained via the feedback loop by
introducing a mismatch between Tp and τ . This mismatch can
be quantified in terms of the number of virtual nodes by α =

(τ − Nθ)/θ . In the case of 0 ≤ α < N and θ ≫ T, the virtual
node states are given by:

ri(n) =

{

f (βri−α(n− 1)+ γmiu(n)) if α < i ≤ N
f (βrN+i−α(n− 2)+ γmiu(n)) if i ≤ α

The network topology depends on the value of α. When α = 1
(i.e., τ = Tp+θ) the topology is equivalent to the ring topology in
standard RC systems [10]. When α < 0, a number |α| of virtual
nodes are not connected through the feedback line with nodes at
a previous time. When α and N have no common divisors, all
virtual nodes are connected through feedback in a single ring.
However, when N and α are not coprimes, subnetworks are
formed with a similar dependence on inputs and the reservoir
diversity is reduced.

Although the two types of virtual node connections are not
exclusive, only two cases have been considered until now: delay-
based reservoirs connected through system dynamics (α = 0 and
θ < T) [7, 12–18], or by the feedback line (θ ≫ T) [8, 15, 19].

It is clear that the information processing rate of delay-based
reservoir computers Tp

−1 depends on the node separation. Then
reservoir computers with nodes connected only through the
feedback line (θ ≫ T) are slower than a counterpart exploiting
the virtual connections through the system dynamics (θ < T).
However, as we will show in 3.1, information processing capacity
is degraded when θ < T. In this case, the computational capacity
increases with the mismatch between the delay and data injection
times (see section 3.1).

2.2. Computational Capacity
Delay-based reservoir computers can reconstruct functions of h
previous inputs yk(n) = y(u(n − k1), . . . , u(n − kh)) from the
state of a dynamical system using a linear estimator ŷk. Here k
denotes the vector (k1, . . . , kh). The estimator ŷk is obtained from
N internal variables (node states) of the system. The suitability
of a reservoir to reconstruct yk can be quantified by using the
capacity [20]:

C
[

yk
]

= (1−

∑

n(ŷk(n)− yk(n))
2

∑

n(yk(n))
2

). (4)

The capacity is C
[

yk
]

= 1 when the reconstruction error for yk
is zero. The capacity for reconstructing a function of the inputs
y, C

[

y
]

, is given by the sum of C
[

yk
]

over all sequences of past
inputs [20]:

C
[

y
]

=
∑

k

C
[

yk
]

. (5)

The total computational capacity CT is the sum of C
[

yk
]

over
all sequences of past inputs and a complete orthonormal set
of functions. When yk is a linear function of one of the past
inputs, yk(n) = u(n − k), the capacity C

[

y
]

corresponds to the
linear memory capacity introduced in Jaeger [4]. The capacity
of the system to compute non-linear functions of the retained

information is given by the non-linear memory capacity [20].
The computational capacity is given by the sum of the linear and
non-linear memory capacities. The total capacity is limited by the
dimension of the reservoir. As a consequence, there is a trade-off
between linear and non-linear memory capacities [20].

The total computational capacity of delay-based reservoirs
is given by the number of linearly independent virtual nodes.
The computational power of delay-based reservoir computers
is therefore hidden in the diversity of the reservoir states. In
the presence of inertia (θ < T) non-linear node dynamics
couples close (in time) virtual nodes. This coupling reduces
reservoir diversity, and then computational capacity is degraded.
The computational capacity of delay-based reservoir depends not
only on the separation between the virtual nodes but also on
the misalignment between Tp and τ , given by α. When α <

0, the state of a virtual node of index i > (N − |α|), ri(n),
is a function of the virtual node state ri−N+|α|(n) at the same
time. Then the reservoir diversity and computational capacity are
reduced. Computational capacity is also reduced if |α| and N are
not coprimes. In this case, the N virtual nodes form gcd(|α|,N)
ring subnetworks, where gcd is the greatest common divisor.
Each subnetwork has p = N/gcd(|α|,N) virtual nodes. Virtual
node-states belonging to different subnetworks have a similar
dependence on inputs and reservoir diversity is reduced.

2.3. Reservoir Computers With Two Delay
Lines
An architecture with several delay lines has been proposed [21,
22] to increase the memory capacity of delay-based reservoir
computers with virtual nodes connected only through non-linear
system dynamics (θ < T and α = 0). Several delay lines are
added to preserve older information. The longer the delay, the
older the response that is being fed back. Even without explicitly
reading the older states from the delay line, the information is
re-injected into the system and its memory can be extended.
We apply this approach to delay-based reservoir computers
with virtual nodes that are connected through non-linear node
dynamics and by the feedback line.

The dynamics of reservoir computers with two delay lines is
described by:

Tẋ(t) = −x(t)+ f
(

β1x(t − τ1)+ β2x(t − τ2)+ γ J(t)
)

, (6)

where βi ≥ 0 is the feedback strength of the delay line i. The total
feedback strength is β = β1 + β2. The corresponding delays are
given by τ1 = Nθ + α1 and τ2 = 2Nθ + α2, where 0 ≤ αi < Nθ .
The reservoir state is the same as in one delay-based RC, i.e., the
virtual nodes correspond to taps only in the shorter (τ1) delay
line. In the case of α1 = 0, it has been shown [23] that the best
performance for NARMA-10 task is obtained when τ1 and τ2 are
coprimes. In this case, the number of virtual nodes that are mixed
together within the history of each virtual node is maximized.

If the mismatches αi (i = 1, 2) are zero, the virtual node states
at time n depend on the reservoir state at time (n−1) and (n−2)
via the delay line 1 and 2, respectively. In one-delay reservoirs
(β2 = 0), the number of virtual nodes whose state at time n
depends on the reservoir state at time (n − 2) increases with
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the mismatch (see Equation 2.1.1 for the case without inertia).
When a second delay is added with a mismatch α2 > 0, some
virtual nodes at time n are connected with nodes at time (n− 3).
The number of virtual nodes with states at time n that depend
on the reservoir state at time (n − 3) increases with α2. These
connections with older states can extend the memory of the
two-delay reservoir computer.

3. RESULTS

In this section, we show the numerical results obtained for
the memory capacities and performance of a non-linear delay-
based RC system. We study a delay-based reservoir computer
with a single non-linear node for the one and two delay lines
architectures. The one-delay system is governed by Equation (2)
and the two-delay reservoir by Equation (6). In both cases the
reservoir activation function f is given by:

f (z) = fs
1− exp(−λz)

a+ exp(−λz)
, (7)

where a = 2 and λ = 1. The value of fs = 2.5 is
chosen to have, when β < 1, a stable fixed point for the
system defined by Equation (2) in absence of input (γ =

0). This non-linear function is asymmetric to allow that the
reservoir computer reconstructs even functions of the input.
Similar results are obtained for different reservoir activation
functions, in particular for a sin2 function, that corresponds to
an optoelectronic implementation [8, 11, 13–15].

The number of virtual nodes used in the numerical
simulations is a prime number, N = 97, to avoid the capacity
degradation due to the formation of subnetworks. The rest of
fixed parameters are: T = 1 and β = β1 = 0.8 for the one-
delay reservoir computer and β1 + β2 = β = 0.8 for the
two-delay reservoir computer. The effective non-linearity of the
delay-based reservoir computer can be changed with the scaling
input parameter γ . In this work, we consider γ = 0.1 and γ = 1
that correspond to low-to-moderate and strong non-linearity,
respectively. The total capacity of a linear reservoir computer
with f (z) = z will also be analyzed.

All the results presented in this paper are the average over
5 simulation runs with different training/test sets and different
masks. A total of 8,000 inputs (6,000 for training and 2,000 for
testing) are used for computational capacities and the NARMA-
10 task. The dataset for the channel equalization task has 10,000
points for training and 6,000 for testing.

3.1. Computational Capacity
To analyze the computational capacity of the non-linear delay-
based reservoir computer, we calculate by using (Equations 4 and
5) four capacities as in Duport et al. [19], namely linear (LMC),
quadratic (QMC), cubic (CMC) and cross (XMC) memory
capacities, which correspond to functions y given by the first,
second and third order Legendre polynomials, respectively. In
order to obtain these capacities a series of i.i.d. input samples
drawn uniformly from the interval [–1, 1] is injected into the
reservoir. The LMC is obtained by summing over k the capacity

C
[

yk
]

for reconstructing yk(n) = u(n− k). It corresponds to the
linear memory capacity introduced in Jaeger [4]. The QMC and
CMC are obtained by summing over k the capacity for yk(n) =

(3u2(n − k) − 1)/2 and yk(n) = (5u3(n − k) − 3u(n − k))/2,
respectively. The XMC is obtained by summing over k, k′ for
k < k′ the capacities for the product of two inputs, yk,k′ =

u(n− k) · u(n− k′). In non-linear systems, the sum Cs = LMC+

QMC+CMC+XMC does not include all possible contributions
to CT , so Cs ≤ CT , whereas for linear systems Cs = LMC = CT .
Finally, note that in some cases the main contribution to the
LMC is due to the sum of C

[

yk
]

over a large range of values
of k greater than a certain value kc with large normalized-root-

mean-square reconstruction errors NRMSRE(k)=
√

1− C
[

yk
]

.

This corresponds to a memory function m(k) = C
[

yk
]

with
a long tail. In these cases a high LMC can be obtained but the
reconstruction error for yk when k > kc is large. This low quality
memory capacity leads to poor performance for tasks requiring
long memory, such as NARMA-10 task [10]. A memory capacity
with good quality (quality memory capacity) can be calculated
by summing only the capacities for yk over k until they drop
below a certain value q. If we consider that the error is small when
NRMSRE(k) < 0.3, this corresponds to C

[

yk
]

> 0.91. Then we
consider a value q = 0.9 to obtain the quality memory capacity

C
[

y
]q= 0.9

.

3.1.1. Memory Capacities of One-Delay Reservoir

Computers
First, we simulate a delay-based reservoir computer with a single
delay line. We focus on the influence of the system response
time on the computational capacity for different values of the
mismatch α between the data injection and delay times. Until
now two values of the mismatch have been used: α = 0 with
θ = 0.2T [7, 12–18], and α = 1 with θ ≫ T [8, 15, 19].

We first consider a linear system with f (z) = z in Equation
(2). As stated before, the total computational capacity of this
system can be obtained from the linear memory capacity, e.g.,
Cl
T = LMC. Figure 2 shows the total computational capacity of

the linear reservoir computer as a function of the node separation
for two different values of the detuning between Tp and τ : α = 0

and α = 1. For α = 1 (Figure 2B), Cl
T increases with θ/T and

the upper bound CT = N = 97 is almost reached for θ/T = 10.
Similar behaviour is obtained for detuning values 1 < α < N.
Then almost all the nodes are linearly independent for θ/T = 10

and non-zero α. The quality memory C
l(q= 0.9)
T = LMCq=0.9

of the linear delay-based reservoir computer also increases with
θ/T following the same behavior than Cl

T for α = 1. However,

when θ < T a total capacity Cl
T < 50 is obtained. Then a

clear degradation of the capacity is observed with respect to its
upper bound, given by N = 97, when the node separation is
smaller than the response time of the non-linear node dynamics.
In this case virtual nodes with an index difference smaller than
T have similar states. Then reservoir diversity is reduced and
the information processing capacity is degraded. When θ/T
increases the coupling between close (in time) virtual nodes
decreases, and the capacity increases.
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FIGURE 2 | Computational capacity of the linear delay-based RC with one delay line as a function of θ/T for (A) α = 0 and (B) α = 1. The solid line with blue circles is

the total computational capacity (Cl
T ) and the dashed line with black points is the total quality computational capacity calculated for q = 0.9.

In the special case of zero detuning (α = 0), the only coupling
between the virtual nodes is through the system dynamics with
non-zero response time. For α = 0, the total capacity of the linear
delay-based reservoir computer has a maximum value Cl

T = 38
at θ/T ∼ 1.2 (see Figure 2A). In this case a clear degradation of
the capacity is observed for any value of θ/T. The maximum is
due to the trade-off between the fading of the coupling through
the system dynamics for low sampling output rates and the very
similar responses to different inputs for small θ . Furthermore,
for α = 0, the quality memory capacity decreases with θ/T

and the maximum C
l(q=0.9)
T is obtained at θ/T = 0.2. For low

inertia, θ/T = 4, we obtain a normalized-root-mean-square
reconstruction error NRMSRE(k) > 0.6 when k > 2. For θ/T
= 1 a NRMSRE(k) > 0.3 when k > 12 is obtained.

We consider now a non-linear delay-based reservoir
computer with an activation function given by Equation (7) and
a low-to-moderate non-linearity (γ = 0.1). In this case, the
capacity Cs has a behaviour as a function of θ similar to that of
the total capacity of the linear case Cl

T (see Figure 3). For α = 1,
Cs increases with θ/T, and a value of Cs = 93 is obtained at
θ/T = 4. If all the capacities would be considered for α = 1,
CT ∼ N. The increase in Cs with θ/T is mainly due to the XMC
and to the LMC. When θ/T < 1 a capacity Cs < 75 is obtained.
However, this degradation in Cs is smaller than in the linear case.
It is worth mentioning that for α = 1, Cs is greater than the total
capacity of the linear case Cl

T . Then we have Cl
T < Cs ≤ Cnl

T ,

where Cnl
T is the total capacity of the non-linear system. This is

due to the fact that non-linearity increases the number of linearly
independent virtual node states, since correlations between
virtual nodes are smaller for non-linear delay-based reservoir
computer. In the case without mismatch (α = 0) the capacity
Cs of the non-linear reservoir computer (see Figure 3A) has a
maximum as in the linear case at θ/T ∼ 1.2. The degradation of
Cs is smaller than that of Cl

T in the linear case.
We have shown that the computational capacity is degraded

when the sampling output rate is higher than the inverse of
the system response time. However, the information processing

capacity of delay-based reservoir computers depends not only
on output sampling rate (i.e., the separation between the virtual
nodes) but also on the detuning between Tp and τ , i.e., α. To
study this dependency, we calculate the memory capacities as a
function of α for a non-linear delay-based reservoir computer
with two different response times: an instantaneous response to
the input T = 0 (Figures 4C,D) and T = θ/0.2 (Figures 4A,B).
This node separation θ = 0.2T is the one used in most of the
reservoirs with connections through system dynamics [7, 12–18].
The capacities for T = 0 correspond to a node separation much
larger than T. When θ/T ≫ 1 the nodes response to an input
reach the steady state after a time θ . Then the reservoir state
is given by Equation (2) for T = 0. As a consequence, when
θ/T ≫ 1 the computational capacity tends to the value obtained
for T = 0. For a mismatch α = 1 this limit is reached for

θ/T > 4 (see Figure 3B). Two values of γ = 0.1 and γ = 1
that correspond to low-to-moderate and strong non-linearity,
respectively are considered. We also calculate the total capacity

as a function of α for a linear reservoir computer with θ = 0.2T

(Figure 4B).
The virtual states of delay-based systems with an

instantaneous response to the input are given by the map
of Equation (3). When N and α are coprimes, we have for
0 < α < N a total capacity CT ≈ N. Thus, increasing α in
the case of T = 0 does not increase the total capacity; it only

changes the relative contribution of the different capacities to

Cnl
T . This is clearly shown in Figure 4D where a low-to-moderate

non-linearity (γ = 0.1) is considered. Here, the non-linear

memory capacities of degree greater than two are zero (i.e.,

CMC), and Cs ∼ 95 for 0 < α < 90. This value is very close
to the upper bound for the capacity CT = N = 97. Since

CT is limited by N, there is a trade-off between the linear and
non-linear capacities. Then the increase in the LMC with α is
compensated by a decrease of the XMC in Figure 4D. In the
case of strong non-linearity (γ = 1), Figure 4C shows that Cs

is not close to the upper bound for the capacity CT = N = 97.
Then there is a significant contribution to Cnl

T of capacities with
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FIGURE 3 | Memory capacities of the non-linear delay-based RC with one delay line as a function of θ/T for (A) α = 0 and (B) α = 1 when γ = 0.1. The blue stars,

red circles, green crosses, pink diamonds correspond to the LMC, QMC, CMC, and XMC. The black solid line is the Cs.

FIGURE 4 | Memory capacities of the one delay-based RC as a function of α. Left panels (A,C): γ = 1. Right panels (B,D): γ = 0.1. Top panels (A,B): T = θ/0.2.

Bottom panels (C,D) T = 0. The blue stars, red circles, green crosses, pink diamonds correspond to the LMC, QMC, CMC, XMC, respectively. The solid black line is

the Cs. The dotted black line in (B) is the Cl
T .
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a non-linear degree greater than the ones considered in Cs. An
increase in Cs with α is obtained. This increase is mainly due
to LMC and XMC. It only indicates that the contribution to Cnl

T
of the capacities with a lower non-linear degree considered in
Cs increases.

Now we analyze the capacity dependence on α when θ/T =

0.2. We consider integer values of α. Similar results are obtained
when α is not an exact integer. We first consider the linear
system. In this case the total capacity Cl

T is given by the LMC.
As seen in Figure 2A the capacity is degraded when θ < T due
to the similar evolution in time of close (in time) virtual nodes
connected through non-linear node dynamics. Figure 4B shows
that Cl

T increases with α. A significant increase of nearly 50%
is obtained for the capacity when the mismatch is large. This is
due to an increase in reservoir diversity. When the mismatch α is
increased, virtual nodes are connected through feedback to nodes
that are not connected through system dynamics. This improves
reservoir diversity, and a larger capacity can be achieved.

In the non-linear case with θ/T = 0.2, Figures 4A,B show
that regardless of the non-linearity, Cs increases with α. This
increase can not be attributed only to a change in the contribution
of linear and non-linear capacities to the total capacity Cnl

T . As
seen for the linear case, when θ/T = 0.2 the total capacity
Cl
T increases with α due to an increase in reservoir diversity.

This should also lead in the non-linear case to an increase in
the total capacity Cnl

T with α. It is worth mentioning that in the
case of T = θ/0.2 we obtain a similar Cs for low-to-moderate
(see Figure 4B) and strong (Figure 4A) non-linearity. However,
the relative contribution of the linear memory capacity is higher
for low non-linearity. Finally, note that regardless of the non-
linearity and T, higher order capacities such as QMC and CMC
remain almost constant with α and the change of Cs is due to
LMC and XMC.

3.1.2. Memory Capacities of Two-Delay Reservoir

Computers
We have shown that the computational capacity is boosted for
small values of θ/T when the delay time of the non-linear node
is greater than the data injection time. This mismatch between τ

and Tp allows higher processing speeds of delay-based reservoir
computers without performance degradation. This is due to
the increase in reservoir diversity. To further increase reservoir
diversity in the case of T = θ/0.2, we explore the effect of adding
a extra feedback line to the non-linear node. Figure 5 shows the
Cs of the two-delay reservoir computer vs. the misalignment of
the second delay when γ = 0.1. The mismatch of the first delay
is fixed at α1 = 73 (Figure 5, left) and α = 1 (Figure 5, right). In
both cases the maximum of Cs reached for the two-delay system
is Cs ∼ 61. This value is obtained in the two cases, α1 = 1 and
α1 = 73, for α2 ∼ 70 when β2 = 0.75 and just in the case of
α1 = 73 also for α2 ∼ 82 and β2 = β1 = 0.4. The maximum Cs

obtained for the two-delay system is slightly higher than the one
reached for its one-delay counterpart. In the one-delay system
the maximum capacity is Cs ∼ 57 that is obtained for α ∼ 80
(see Figure 4B). Therefore, the calculated information processing
capacity for high sampling output rates can be further increased
by using an extra feedback line and delay times greater than the

information processing time. However, the second delay does not
significantly improve the computational capacity of the one-delay
system. Moreover, when the first delay mismatch is fixed near its
optimal value for the one-delay system (α ∼ 80), the effect of
the second delay feedback strength or misalignment is small [see
Figure 5 (right)]. However, when the first delay mismatch is not
close to its optimal value for the one-delay system, the maximum
Cs reached for the one-delay system is outperformed by adding
a second delay with a high strength (β2 = 0.75) and a mismatch
10 < α2 < 90 [see Figure 5 (left)].

The contributions of the individual memory capacities to Cs

for the two-delay system are depicted in Figures 6, 7 for α1 = 1
and α1 = 73, respectively. Figure 6 shows that the increase in
Cs obtained for α1 = 1 is mainly due to the increase in LMC
and QMC. It is interesting that in the case of α2 = 73, the same
Cs ∼ 61 can be obtained with different relative contributions of
the memory capacities to Cs. The case of α2 ∼ 70 and β2 = 0.75
yields to a higher LMC and a lower XMC than in the one-delay
system. The case of α2 ∼ 82 and β2 = 0.4 gives the Cs ∼ 61
thanks mainly to the increase in the XMC.

3.2. Delay-Based Reservoir Computer
Performance
Finally we study the effect of increasing the mismatch α on
the performance of a delay-based reservoir computer for two
different response times of the non-linear node dynamics: T = 0
and T = 0.2θ . Two tasks are considered: the NARMA-10 task
and the equalization of a wireless communication channel. These
two tasks are benchmarking tasks used to assess the performance
of RC [1, 10].

The NARMA-10 task consists in predicting the output of an
auto-regressive moving average from the input u(t). The output
y(t + 1) is given by:

y(t+1) = 0.3y(t) + 0.05y(t)

9
∑

i=0

y(k−i) + 1.5u(t−9)u(t)) + 0.1

(8)
The input u(t) is independently and identically drawn from
the uniform distribution in [0, 0.5]. Solving the NARMA-10
task requires both memory and non-linearity. Figure 8 (left)
shows the normalized-root-mean-square error (NRMSE) of the
NARMA-10 task as a function of α for γ = 0.1. We consider
a small value of γ = 0.1 because a long memory is required to
obtain a good performance for NARMA-10 task. Regardless the
response time (T = 0 or T = θ/0.2), the NRMSE decreases
when the processing and delay times are mismatched (α > 0).
However, for T = 0 the NRMSE is almost the same for a wide
variety of values of α, and a mismatch α = 1 is enough to
obtain a NRMSE= 0.31 close to the absolute minimum (NRMSE
= 0.28 for α = 78). When the response time of the non-
linear node is larger than node separation (T = θ/0.2), the
NRMSE decreases from a NRMSE ≈ 0.46 at α = (0, 1) to a
NRMSE = 0.34 at α ∼ 72. This is due to the long memory
required to obtain a good performance for NARMA-10 task.
In the case of T = θ/0.2, the required LMC is not reached
until α ∼ 72 (see Figure 4B). Our results show that a similar
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FIGURE 5 | Cs of the two-delay-based RC as function of α2. Left: α1 = 1. Right: α1 = 73. The solid black line is the value of Cs for the one-delay case with α = α1.

Red circles, green diamonds and blue starts correspond to the Cs with two delays and a β2 of 0.05, 0.4, and 0.75, respectively. These results are obtained for

T = θ/0.2 and γ = 0.1.

FIGURE 6 | Memory capacities for the two-delay RC as function of α2 for a fixed α1 = 1, T = θ/0.2 and γ = 0.1. The red circles, green diamonds and blue stars

correspond to β2 equal to 0.05, 0.4, and 0.75, respectively. The solid black line is for β2 = 0 and corresponds to the one-delay system with α = 1 and β = 0.8.

performance can be obtained for small and large values of T/θ

thanks to the mismatch α. Therefore, increasing α allows a faster
processing information (higher sampling output rate) without
causing system performance degradation.

The equalization of a wireless communication channel
consists in reconstructing the input signal s(i) from the
output sequence of the channel u(i) [1]. The input to
the channel is a random sequence of values s(i) taken in
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FIGURE 7 | Memory capacities for the two-delay-based RC as function of α2 for a fixed α1 = 73, T = θ/0.2 and γ = 0.1. The red circles, green diamonds and blue

stars correspond to β2 equal to 0.05, 0.4, and 0.75, respectively. The solid black line is for β2 = 0 and corresponds to the one-delay case with α = 1 and β = 0.8.

{−3,−1, 1, 3}. The input s(i) first goes through a linear
channel yielding:

q(i) = 0.08s(i+2)− 0.12s(i+1)+ s(i)+ 0.18s(i−1)− 0.1s(i−2)

+ 0.091s(i−3)− 0.05s(i−4)+ 0.04s(i−5)+ 0.03s(i−6)+ 0.01s(i−7)

It then goes through a noisy non-linear channel:

u(i) = q(i)+ 0.036q(i)2 − 0.011q(i)3 + v(i), (9)

where v(i) is a Gaussian noise with zero mean adjusted in power
to give a signal-to-noise ratio (SNR) of 20 dB. The performance is
measured using the Symbol Error Rate (SER), that is the fraction
of inputs s that are misclassified. The SER for the equalization
with a SNR of 20dB is depicted as a function of α for γ =

1 in Figure 8 (right). In the case of T = 0, there is a clear
improvement of the performance from α = 0 to α = 1 but
the errors are almost constant when α is further increased. When
T = θ/0.2 performance improves with α until a minimum SER
= 0.012 is reached when α ∼ 4. This SER is similar to that
obtained when T = 0. Then, regardless the value of T/θ , a
similar performance is obtained by using the mismatch α. A SER

of 0.01 for the channel equalization task has been obtained using
an optoelectronic reservoir computer [15].

It is not straightforward how the processing capacity will
translate into the performance for specific tasks. Different
tasks require to compute functions with different degrees of
non-linearity and memory. Information processing capacity
should be complemented with those requirements to identify
optimized operating conditions for the reservoir. For the channel
equalization task, when T = 0 the capacities LMC and XMC
increase with α showing a very large increase from α = 0 to
α = 1 (see Figure 4C). The SER shows also a clear decrease
from α = 0 to α = 1 but it is almost constant when α > 1
[see Figure 8 (right)]. The capacities LMC and XMC achieved for
α = 1 when T = 0 are enough to solve the channel equalization
task. However, the quadratic capacity QMC is almost constant
when α > 1. As a consequence the SER is almost constant for
α > 1. When taking a small node separation (θ = 0.2T) the
capacities LMC and XMC increase with α (see Figure 4A). This
increase in processing capacity leads to a better performance with
α and the SER decreases from 0.017 for α = 0 to a minimum
error of 0.012 for α = 4. This is an improvement in performance
of around 30%. However, the increase in the total capacity for
α > 4 (mainly due to the LMC) does not translate into the
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FIGURE 8 | Performance of the non-linear one delay-based RC for two tasks as function of α. Left: NARMA-10 for γ = 0.1. Right: Equalization with SNR = 20 dB

and γ = 1. The blue stars correspond to the case of T = 0 and the red circles to the case of T = θ/0.2.

performance. The reason is the same as for the case of T = 0.
The capacities LMC and XMC achieved for α = 4 are enough to
solve the channel equalization task while the capacities QMC and
CMC do not increase with α.

The addition of the second delay line to the non-linear node
does not improve the performance for the equalization task. In
the case of T = 0, the extra delay line slightly improves the
performance for the NARMA-10 task. The minimum error is
NRMSE ∼ 0.25 when α1 = 77, α2 = 20 and β1 = β2 = 0.4.
When T = θ/0.2 a NRMSE= 0.27 is obtained for α1 = 77, α2 =

86, β1 = 0.05, and β2 = 0.75, while a minimum NRMSE=0.34
was obtained with one delay line for α ∼ 72. This performance
improvement for the NARMA-10 task when T = θ/0.2 is at the
cost of adding second delay line and optimizing more parameters
to minimize the error. A NRMSE of 0.22 for the NARMA-10 task
has been obtained using a photonic reservoir computer based on
a coherently driven passive cavity with a greater number of virtual
nodes N = 300 [24] than the one we used, N = 97.

4. DISCUSSION

We have investigated the role of the system response time in the
computational capacity of delay-based reservoir computers with
a single non-linear neuron. These reservoir computers can be
easily implemented in hardware, potentially allowing for high-
speed information processing. The information processing rate,
given by 1/Tp = (Nθ)−1, can be increased by using a high
sampling output rate (small node separation θ). However, we
have shown that the computational capacity is reduced when
node separation is smaller than system response time. We can
thus conclude that there is a trade-off between information
capacity and rate in delay-based reservoir computers. In this
context, parallel-based architectures with k non-linear nodes
reduce the information processing time by a factor of k for the
same total number of virtual nodes. It has been shown [16, 25]
that for (θ/T) < 1 and without mismatch between Tp and
τ , performance is improved when different activation functions

are used for the non-linear nodes. However, the hardware
implementation becomes more involved than the one of a delay-
based reservoir computer with a single non-linear node.

We have considered a different strategy still based on the
simple architecture of a single non-linear node to tackle the trade-
off between information capacity and rate. In this strategy, the
mismatch between delay and data injection times α is used to
increase reservoir diversity when θ < T. For small values of
(θ/T) and α, the states of virtual nodes that are separated by
less than T (i.e., with an index difference smaller than T/θ)
are similar. When the mismatch is increased, virtual nodes are
connected through feedback to nodes that are not connected
through non-linear node dynamics. Reservoir diversity is then
increased. Our results show that the linear memory capacity
increases the mismatch α. In this way the capacity degradation
due to high sampling output rate is reduced by increasing α.

Another strategy to increase reservoir diversity when θ < T
is to use an extra feedback line. We show that the linear memory
capacity can be further increased with this architecture by using
long delay times (large mismatch α). However, only a slight
increase in the calculated capacity is obtained.

We have also obtained the performance of delay-based
reservoir computers for two benchmarking tasks: channel
equalization and NARMA-10. Our results show that for fast
reservoirs with θ < T performance improves when themismatch
α increases. A similar performance is obtained for small and large
values of (θ/T) for channel equalization and also for NARMA-10
tasks if delay and injection times are mismatched.

We can thus conclude that the processing speed of delay-
based reservoir computers can be increased while keeping a good
computational capacity by using a mismatch between delay and
data injection times.
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A Bayesian Approach to the Naming
Game Model
Gionni Marchetti, Marco Patriarca* and Els Heinsalu

NICPB–National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

We present a novel Bayesian approach to semiotic dynamics, which is a cognitive analog

of the naming game model restricted to two conventions. The model introduced in

this paper provides a general framework for studying the combined effects of cognitive

and social dynamics. The one-shot learning that characterizes the agent dynamics in

the basic naming game is replaced by a word-learning process in which agents learn

a new word by generalizing from the evidence garnered through pairwise-interactions

with other agents. The principle underlying the model is that agents—like humans—can

learn from a few positive examples and that such a process is modeled in a Bayesian

probabilistic framework. We show that the model presents some analogies with the basic

two-convention naming game model but also some relevant differences in the dynamics,

which we explain through a geometric analysis of the mean-field equations.

Keywords: complex systems, language dynamics, bayesian statistics, cognitive models, consensus dynamics,

semiotic dynamics, naming game, individual-based models

1. INTRODUCTION

A basic question in complexity theory is how the interactions between the units of the system lead
to the emergence of ordered states from initially disordered configurations [1, 2]. This general
question can concern different phenomena ranging from phase transitions in condensed matter
systems and self-organization in living matter to the appearance of norm conventions and cultural
paradigms in social systems. In order to study social interactions and cooperation, different models
have been used: from those based on analogies with condensed matter systems (such as spin
systems) or statistical mechanical models (e.g., using a master equation approach) to those formally
equivalent to ecological competition models [1] or many-agents models in a game-theoretical
framework [3–5]. Among the various models, opinion dynamics and cultural spreading models
represent an example of a valuable theoretical framework for a quantitative description of the
emergence of social consensus [2].

Within the spectrum of phenomena associated with consensus dynamics, the emergence of
human language remains a challenging question because of its multi-fold nature, characterized
by biological, ecological, social, logical, and cognitive aspects [6–10]. Language dynamics [11, 12]
has provided a set of models describing various phenomena of language competition and language
change in a quantitative way, focusing on themutual interactions of linguistic traits (such as sounds,
phonemes, grammatical rules, or the use of languages understood as fixed entities), possibly under
the influence of ecological and social factors, modeling such interactions through analogy with
biological competition and evolution.

However, even the basic learning process of a single word has a complex dynamics due to the
associated cognitive dimension: to learn a word means to learn both a concept, understood as a
pointer to a subset of objects [10, 13, 14], and a corresponding linguistic label, for example the
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name used for communicating the concept. The double
concept↔name nature of words has been studied in semiotic
dynamics models, which study the consensus dynamics of
language, i.e., if and how consensus about the use of certain
names to refer to a certain object-concept emerges in a group of
N interacting agents.

Examples of semiotic models are those of Hurford [15] and
Nowak et al. [16] (see also [17, 18]). In the basic version of
the model of Nowak et al. [16], the language spoken by each
agent i (i = 1, . . . ,N) is defined by two personal matrices, U(i)

and H(i), representing the links of a bipartite network joining Q
names and R concepts: (1) the active matrix U(i) represents the

concept→ name links, where the element U
(i)
q,r (q ∈ (1,Q), r ∈

(1,R)) gives the probability that agent i will utter the qth name
to communicate the rth concept; (2) the passive matrix H(i)

represents the name→ concept links, in which the element

H
(i)
q,r represents the probability that an agent interprets the qth

name as referring to the rth concept. In Hurford’s and Nowak’s
models, the languages (i.e., the active and passive matrices) of
each individual evolve over time according to a game-theoretical
dynamics in which agents gain a reproductive advantage if their
matrices are associated with a higher communication efficiency.
These studies have achieved interesting results, showing, e.g.,
that the system self-organizes in an optimal way with only non-
ambiguous one-to-one links between objects and sounds, when
possible, and explaining why homonyms are more frequent than
synonyms [15–18].

Another example of a semiotic model is the naming game
(NG) model [19, 41], detailed below, where only one concept is
considered (R = 1) together with its links to a set of Q > 1
different names. It is possible to reformulate the model through
the lists of the name↔concept connections Li known to each
agent i rather than in terms of the matrices U(i) and H(i). In the
case of the NG with two names A and B, the list of the generic ith
agent can be Li = ∅ if no such connection is known, Li = (A)
or Li = (B), if only one name is known to refer to concept C,
or Li = (A,B) if both name↔concept connections are known.
At variance with Hurford’s and Nowak’s models, in the basic
NG model, there is no population dynamics, and consensus is
achieved through horizontal interactions between pairs of agents,
who carry out a negotiation dynamics in which theymay agree on
the use of a word, possibly erasing the other word from their lists.

In the signaling game of Lenaerts et al. [20], the basic
add/remove agreement dynamics of the NG model is replaced
by a reinforcement scheme describing an underlying cognitive
dynamics. Such a scheme is defined within a learning automata
framework in which the single probabilities, linking the qth word
and the rth object, are updated in time depending on the outcome
of pair-wise communications—the system is characterized by
the same complex landscape of R concepts and Q names as
in Hurford’s and Nowak’s models. The model works with a
basic horizontal dynamics, as in the NG model, but it has
a general framework of language change, which can include
oblique (teacher↔student) and vertical (parent↔offspring)
communications. An NG-like language dynamics, with a
similar cognitive reinforcement mechanism, was also studied by

Lipowska & Lipowski, both in the single- and the many-object
version [21]. They also studied how the underlying topology, e.g.,
a random network or a regular lattice, can have a crucial role
in determining the type of final state, characterized by a global
consensus or by different types of local consensus fragmented
into patches.

In the models mentioned, words and concepts are fixed,
though their links are dynamically determined through the
interactions between agents. To make further extensions of such
semiotic dynamics models toward a cognitive direction is not
a trivial task, both because of the complexity of the problem—
for example, a two-opinion variant of the NG model that takes
into account committed groups produces a remarkable phase
diagram [22]—and because, in order to describe mathematically
actual cognitive effects, entirely new features need to be taken
into account [23]. A natural framework is represented by
Bayesian inference, both for its general analogy with actual
learning processes and especially because supported by various
experiments. For example, Bayes inference underlies the agent-
based model of binary decision-making introduced by [24],
which is shown to interpolate well some real datasets on binary
option choices. See Pérez et al. [25] for another example of
Bayes-based modeling and reproduction of a real decision-
making experiment.

The goal of the present paper is to construct a minimal

model to study the interplay of cognitive and social dynamical

dimensions. The new model (see section 2.3) is similar to
the two-conventions NG but contains relevant differences

that describe the cognitive dimension of word-learning. Using
semiotic dynamics models as a starting point is a natural
choice, and the NG is a convenient framework due to its
simple yet general underlying idea, which allows applications
to the emergence of different conventions. Furthermore, the
NG can be coupled to various underlying processes, such
as mutations, population growth, and ecological constraints,
and can be easily embedded in the topology of a complex
network [19, 26]. The cognitive extension of the NG is done
within the experimentally validated Bayesian framework of
Tenenbaum [10] (see also [13, 14, 27–30]). In the resulting
cognitive framework, an individual can learn a concept from
a small number of examples, a very remarkable feature of
human learning [10, 31, 32], in contrast with machine learning
algorithms, which require a large number of examples to
generalize successfully [33–35]. In section 3, we present and
discuss the features of the semiotic dynamics emerging from
the numerical simulations and quantitatively compare them with
those of the two-conventions NG model. It is shown that while
the Bayesian NG model always reaches consensus, like the basic
NG, the corresponding dynamics presents relevant differences
related to the probabilistic learning process. We study in detail
the stability and the other novel features of the dynamics in
section 4. A summary of the work and a discussion of other
possible outcomes to be expected from the interplay of the
cognitive and the social dynamics, not considered in this paper
but representing natural extensions of the present study, are
outlined in section 5.
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2. A BAYESIAN LEARNING APPROACH TO
THE NAMING GAME

2.1. The Two-Conventions Naming Game
Model
Before introducing the new model, we outline the basic two-
conventions NG model [36], in which there is a single concept
C, corresponding to an external object, and two possible names
(synonyms) A and B for referring to C. Thus, the possibility of
homonymy is excluded [26]. Each agent i is equipped with the
list Li of the names known to the agent. We assume that at t = 0,
each agent i knows either A or B and therefore has a list Li = (A)
or Li = (B), respectively.

During a pair-wise interaction, an agent can act as a speaker,
when conveying a word to another agent, or as a hearer, when
receiving a word from a speaker. One can think of an agent
conveying a word as uttering a name, e.g., A, while pointing
at an external object, corresponding to concept C: thus, the
hearer records not only the name A but also the name↔concept
association between A and C. At a later time t > 0, the list Li

of the ith agent can contain one or both names, i.e., Li = (A),
(B), or (A,B).

The system evolves according to the following update rules
[26]:

1. Two agents i and j, the speaker and the hearer, respectively, are
randomly selected.

2. The speaker i randomly extracts a name (here, either A
or B) from the list Li and conveys it to the hearer j.
Depending on the state of agent j, the communication is
usually described as:

a. Success: the conveyed name is also present in the hearer’s
list Lj, i.e., agent j also knows its meaning; then, the two
agents erase the other name from their lists, if present.

b. Failure: the conveyed name is not present in the hearer’s list
Lj; then, agent j records and adds it to list Lj.

3. Time is increased by one step, t → t + 1, and the simulation
is reiterated from the first point above.

Examples of unsuccessful and successful communications are
each schematized in the left panel (A) of Figure 1; see [41] for
more examples. Despite its simple structure, the basic NG model
describes the emergence of consensus about which name to use,
which is reached for any (disordered) initial configuration [37].

2.2. Toward a Bayesian Naming Game
Model
From a cognitive perspective, a “communication failure” of the
NG model can be understood as a learning process in which the
hearer learns a new word. It is a “one-shot learning process”
because it takes place instantaneously (in a single time step)
and independently of the agent’s history (i.e., of the previous
knowledge of the agent). However, modeling an actual learning
process should take into account the agents’ experience, based
on previous observations (the data already acquired) as well as

the uncertain/incomplete character naturally accompanying any
learning process.

Here, the one-shot learning is replaced by a process that can
describe basic but realistic situations, such as the prototypical
“linguistic games” [38]. For example, consider a “lecture game,”
in which a lecturer (speaker) utters the name A of an object and
shows a real example “+” of the object to a student (hearer),
repeating this process a few times. Then, the teacher can e.g.,
(a) show another example and ask the student to name the
object, (b) utter the same name and ask the student to show
an example of that object, or (c) do both things (uttering the
name and showing the object) and asking the student whether the
name↔object correspondence is correct. The student will not be
able to answer correctly if they have not received some examples
enabling them to generalize the concept C corresponding to the
object in association with name A. To model these and similar
learning processes, we need a criterion enabling the hearer to
assess the degree of equivalence between the new example and
the examples recorded previously.

The starting point for the replacement of the one-shot learning
is Bayes’ theorem. According to Bayes’ theorem, the posterior
probability p

(

h|X
)

that the generic hypothesis h is the true
hypothesis, after observing new evidence X, reads [39, 40],

p
(

h|X
)

=
p
(

X|h
)

p
(

h
)

p (X)
. (1)

Here, the prior probability p
(

h
)

gives the probability of
occurrence of the hypothesis h before observing the data, and
p
(

X|h
)

gives the probability of observing X if h is given. Finally,
p (X) gives the normalization constraint; in applications, it can
be evaluated as p (X) =

∑

h′ p
(

X|h′
)

p
(

h′
)

, where {h′} ∈ H
represents the set of hypotheses, within the hypothesis space H.

The next step is to find a way to compute explicitly the
posterior probability p

(

h|X
)

through a representation of the
concepts and their relative examples in a suitable hypothesis
space H of the possible extensions of a given concept C,
constituted by the mutually exclusive and exhaustive hypotheses
h. Following the experimentally verified Bayesian statistical
framework of Tenenbaum [10, 31], we adopt the paradigmatic
representation of a concept as a geometrical shape. For example,
the concept of the “healthy level” of an individual in terms of
the levels of cholesterol x and insulin y, defined by the ranges
xa ≤ x ≤ xb and ya ≤ y ≤ yb, where xi and yi (i = a, b) are
suitable values, represents a rectangle in the Euclidean x-y plane
R
2. Examples of healthy levels of specific individuals 1, 2, . . .

correspond to points (x1, y1), (x2, y2), · · · ∈ R
2. In the following,

we assume that a hypothesis h is represented by an axis-parallel
rectangular region in R

2. Figure 2 shows four positive examples,
denoted by the symbol “+,” associated to four different points
of the plane, consistent with (i.e., contained in) three different
hypotheses, shown as rectangles.

The problem of learning a word is now recast into an
equivalent problem, consisting of acquiring the ability to infer
whether a new example z recorded, corresponding to a new
point “+” in R

2, corresponds to the concept C after having seen

Frontiers in Physics | www.frontiersin.org 3 February 2020 | Volume 8 | Article 1086

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Marchetti et al. Bayesian Approach to Naming Game

FIGURE 1 | Comparison of the basic and Bayesian NG models. (A) Basic two-conventions NG model. In a communication failure (upper figure), the name conveyed,

B in the example, is not present in the list of the hearer, who adds it to the list. In a communication success (lower figure), the word B is already present in the hearer’s

list, and both agents erase A from their lists. (B) Bayesian NG model. In order to convey an example “+” to the hearer in association with name A, the speaker must

have already generalized concept C in association with A, represented here by the label [A]. In a communication failure (upper figure), the hearer computes the Bayes

probability p, and the result is a p < 1/2; then, the only outcome is that the hearer records the example (reinforcement). In the Bayesian NG, there are two ways in

which the communication can be successful. The first way (lower figure) is when p ≥ 1/2: the hearer generalizes C in association with A and attaches the label [A] to

the inventory. The second way (not shown) is the agreement process, analogous to that of the basic NG, when both agents had already generalized concept C in

association with name A and remove label [B] from their lists, if present. See text for further details.

FIGURE 2 | Three different hypotheses represented as axis-parallel rectangles

in R
2, and four positive examples “+” that are all consistent with the three

hypotheses. The set of all the rectangles that can be drawn in the plane

constitutes the hypothesis space H.

a small set of positive examples “+” of C. More precisely, let
X =

{(

x1, y1
)

, . . . ,
(

xn, yn
)}

be a sequence of n examples of the
true concept C, already observed by the hearer, and z = (z1, z2)
the new example. The learner does not know the true concept
C, i.e., the exact shape of the rectangle associated to C, but can
compute the generalization function p (z ∈ C|X) by integrating
the predictions of all hypotheses h, weighted by their posterior
probabilities p

(

h|X
)

:

p (z ∈ C|X) =

∫

h∈H
p
(

z ∈ C|h
)

p
(

h|X
)

dh . (2)

Clearly, p
(

z ∈ C|h
)

= 1 if z ∈ h and 0 otherwise. By
means of Bayes’ theorem (1), one can obtain the right Bayesian
probability for the problem at hand. A successful generalization
is then defined quantitatively by introducing a threshold p∗,
representing an acceptance probability: an agent will generalize
if the Bayesian probability p (z ∈ C|X) ≥ p∗. The value p∗ = 1/2
is assumed, as in Tenenbaum [31].

We assume that an Erlang prior characterizes the agents’
background knowledge. For a rectangle in R

2 defined by the
tuple

(

l1, l2, s1, s2
)

, where l1, l2 are the Cartesian coordinates of
its lower-left corner and si its sides along dimension i = 1, 2, the
Erlang prior density is Tenenbaum [10, 31]

pE = s1s2 exp

{

−

(

s1

σ1
+

s2

σ2

)}

, (3)

where the parameters σi represent the actual sizes of the concept,
i.e., they are the sides of the concept rectangle C along dimension
i. The choice of a specific informative prior, such as the Erlang
prior, is well motivated by the fact that, in the real world,
individuals always have some prior knowledge or expectation. In
fact, a Bayesian learning framework with an Erlang prior of the
form (3) well describes experimental observations of the learning
processes of human beings [31]. The final expression used below
for computing the Bayesian probability p that, given the set of
previous examplesX, the new example z falls in the same category
of concept C, reads [31].

p (z ∈ C|X) ≈
exp

{

−

(

d̃1
σ1

+
d̃2
σ2

)}

[(

1+ d̃1
r1

) (

1+ d̃2
r2

)]n−2
. (4)

Here, ri (i = 1, 2) is an estimate of the extension of the set
of examples along direction i, given by the maximum mutual

distance along dimension i between the examples of X; d̃i
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measures an effective distance between the new example z and

the previously recorded examples, i.e., d̃i = 0 if zi falls inside the
value range of the examples of X along dimension i, otherwise

d̃i is the distance between z and the nearest example in X along
the dimension i. Equation (4) is actually a “quick-and-dirty”
approximation that is reasonably good, except for n ≤ 3 and
ri ≤ σ/10, estimating the actual generalization function within
a 10% error; see Tenenbaum [10, 31] for details. Despite these
approximations, Equation (4) will ensure that our computational
model, described in the next section, retains the main features
of the Bayesian learning framework. It is to be noticed that,
for the validity of the Bayesian framework, it is crucial that
the examples are drawn randomly from the concept (strong
sampling assumption), i.e., they are extracted from a probability
density that is uniform in the rectangle corresponding to the true
concept [31]. This definition of generalization is now applied
below to word-learning.

2.3. The Bayesian Word-Learning Model
Based on the Bayesian learning framework discussed above, in
this section we introduce a minimal Bayesian individual-based
model of word-learning. For the sake of clarity, in analogy with
the basic NG model, we study the emergence of consensus in the
simple situation, in which two names A and B can be used for
referring to the same concept C in pair-wise interactions among
N agents.

At variance with the NG model, here, in each basic pair-wise
interaction, an agent i, acting as a speaker, conveys an example
“+” of concept C, in association with either name A or name B,
to another agent j, who acts as hearer (i, j = 1, . . . ,N). In order
to be able to communicate concept C by uttering a name, e.g.,
name A, the speaker i must have already generalized concept C
in association with name A. This is signaled by the presence of
name A in list Li. On the other hand, the hearer j always records
the example received in the respective inventory, in the example,
the inventory [+++ . . . ]A.

The state of a generic agent i at time t is defined by:

• List Li, to which a name is added whenever agent i generalizes
concept C in association with that name; agent i can use any
name in Li to communicate C;

• Two inventories [+ + + . . . ]A and [+ + + . . . ]B containing
the examples “+” of concept C received from the other agents
in association with name A and B, respectively.

It is assumed that, initially, each agent knows one word: a fraction
nA(0) of the agents know concept C in association with name
A, and the remaining fraction nB(0) = 1 − nA(0) in association
with name B—no agent knows both words, nAB(0) = 0. We will
examine three different initial conditions:

Symmetric initial conditions (SIC): nA(0) = nB(0) = 0.5

Asymmetric initial conditions (AIC): nA(0) = 0.3, nB(0) = 0.7

Reversed case of AIC (AICr): nA(0) = 0.7, nB(0) = 0.3

Initially, each agent i, within the fraction nA(0) of agents that
know name A is assigned nex,A = 4 examples “+” of concept C in

association with name A but no examples in association with the
other name B, so that agent i has an A-inventory [++++]A and
an empty B-inventory [·]B. The complementary situation holds
for the other agents that know only name B, who initially receive
nex,B = 4 examples of concept C in association with name B
but none in association with A. This choice, somehow arbitrary,
is dictated by the condition that (Equation 4) becomes a good
approximation for n > 3 [10].

Examples are points uniformly generated inside the fixed
rectangle corresponding to the true concept C, here assumed
to be a rectangle with lower-left corner coordinates (0, 0) and
sizes σ1 = 3 and σ2 = 1 along the x- and y-axis, respectively.
Results are independent of the assumed numerical values; in
particular, no appreciable variation in the convergence times tconv
is observed as the rectangle area is varied, which is consistent with
the strong sampling assumption on which the Bayesian learning
framework rests; see Tenenbaum [10] and section 3.

Furthermore, we introduce an element of asymmetry between
the namesA and B, related to the word-learning process: different
minimum numbers of examples n∗ex,A = 5 and n∗ex,B = 6 will
be used, which are needed by agents to generalize concept C
in association with A and B, respectively. This is equivalent to
assuming that concept C is slightly easier to learn in association
with name A than B. Such an asymmetry plays a relevant role in
themodel dynamics in differentiating the Bayesian generalization
functions pA and pB from each other; see section 4.

The dynamics of the model can be summarized by the
following dynamical rules:

1. A pair of agents i and j, acting as speaker and hearer,
respectively, are randomly chosen among the agents.

2. The speaker selects randomly (a) a name from the list Li (or
selects the name present if Li contains a single name), for
example, A (analogous steps follow if the word B is selected);
(b) an example z among those contained in the corresponding
inventory [+++ . . . ]A;
then the speaker i conveys the example extracted z in
association with (e.g., uttering) the name selected A to the
hearer j.

3. The hearer adds the new example z (in association with A) to
the inventory [+++ . . . ]A. This reinforcement process of the
hearer’s knowledge always takes place.

4. Instead, the next step depends on the state of the hearer:

(a) Generalization. If the selected name, A in the example,
is not present in the hearer’s list Lj, then the hearer j
computes the relative Bayesian probability pA = p(z ∈

C|XA) that the new example z falls in the same category
of concept C, using the examples previously recorded in
association with A, i.e., from the set of examples XA ∈

[+ + + . . . ]A. If pA ≥ 1/2, the hearer has managed to
generalize concept C and connects the inventory [+ +

+ . . . ]A to name A; this is done by adding name A to list
Lj. Starting from this moment, agent j can communicate
concept C to other agents by conveying an example taken
from the inventory [+ + + . . . ]A while uttering the
name A. If pA < 1/2, the hearer has not managed to
generalize the concept and nothing more happens (the
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reinforcement of the previous point is the only event
taking place).

(b) Agreement. The name uttered by the speaker, A in the
example, is present in the hearer’s list Lj, meaning
that agent j has already generalized concept C in
association with name A and has connected the
corresponding inventory [+ + + . . . ]A to A. In this
case, the hearer and the speaker proceed to make
an agreement, analogous to that of the NG model,
leaving A in their lists Li and Lj and removing B,
if present. No examples contained in any inventory
are removed.

5. Time is updated, t → t + 1, and the simulation is reiterated
from the first point above.

Two examples of the Bayesian word-learning process, a
successful and an unsuccessful one, are illustrated in the cartoon
in the Figure 1B. Table 1 lists the possible encounter situations,
together with the corresponding relevant probabilities.

Notice that an agent i can enter a pair-wise interaction with a
non-empty inventory of examples, e.g., [+++ . . . ]A, associated
to name A, without being able to use name A to convey examples
to other agents, i.e., without having the name A in list Li due to
not having generalized concept C in association with A. Those
examples can have different origins: (1) in the initial conditions,
when nex,A randomly extracted examples associated to A and
nex,B to B are assigned to each agent; (2) in previous interactions,
in which the examples were conveyed by other agents; (3) in
an agreement about convention B, which removed label A from

list Li while leaving all the corresponding examples in the
inventory associated to name A. In the latter case, the inventory
[+ + + . . . ]A may be “ready” for a generalization process, since
it contains a sufficient number of examples, i.e., agent i will
probably be able to generalize as soon as another example is
conveyed by an agent. This situation is not as peculiar as it may
look at first sight. In fact, there is a linguistic analog in the case
where a speaker that loses the habit of using a certain word (or a
language) A can regain it promptly if exposed to A again.

Notice also that without the agreement dynamics scheme
introduced in the model, borrowed from the basic NGmodel, the
population fraction nAB of individuals who know both A and B
(nA+nB+nAB = 1) would be growing, until eventually nAB = 1.

3. RESULTS

In this section, we numerically study the Bayesian NG
model introduced above and discuss its main features. We
limit ourselves to studying the model dynamics of a fully-
connected network.

In the new learning scheme, which replaces the one-shot
learning of the two-conventions NG model, an individual
generalizes concept C on a suitable time scale 1t > 1 rather
than during a single interaction. However, a few examples are
sufficient for an agent to generalize concept C, as in a realistic
concept-learning process. This is visible from the Bayesian
probabilities pA and pB computed by agents in the role of
hearer, according to Equation (4), once at least n∗ex,A = 5 and
n∗ex,B = 6 examples “+”, respectively, have been stored in the

TABLE 1 | Pair-wise interactions in the Bayesian NG model.

S-List Name H-List Branching Process Condition S-List H-List

(before) conveyed (before) probability (after) (after)

(A)
A

−→ (A) (q = 1) Reinforcement always (A) (A)

(A)
A

−→ (B) (q = 1) Reinforcement pA < 1/2 (A) (B)

(q = 1) Learning pA ≥ 1/2 (A) (A,B)

(A)
A

−→ (A,B) (q = 1) Agreement always (A) (A)

(B)
B

−→ (A) (q = 1) Reinforcement pB < 1/2 (B) (A)

(q = 1) Learning pB ≥ 1/2 (B) (A,B)

(B)
B

−→ (B) (q = 1) Reinforcement always (B) (B)

(B)
B

−→ (A,B) (q = 1) Agreement always (B) (B)

(A,B)
A

−→ (A) q = 1/2 Agreement always (A) (A)

(A,B)
B

−→ (A) q = 1/2 Reinforcement pB < 1/2 (A,B) (A)

Learning pB ≥ 1/2 (A,B) (A,B)

(A,B)
A

−→ (B) q = 1/2 Reinforcement pA < 1/2 (A,B) (B)

Learning pA ≥ 1/2 (A,B) (A,B)

(A,B)
B

−→ (B) q = 1/2 Agreement always (B) (B)

(A,B)
A

−→ (A,B) q = 1/2 Agreement always (A) (A)

(A,B)
B

−→ (A,B) q = 1/2 Agreement always (B) (B)

The speaker (S) conveys a name
A

−→ or
B

−→ to the hearer (H) together with an example taken from the speaker’s inventory, [+ + + . . . ]A or [+ + + . . . ]B, respectively—this happens

with a branching probability q = 0.5 if the speaker has the list (A,B) and knows the meaning of both names. The outcome can be: (1) reinforcement (only); (2) generalization of concept

C if the Bayes probability is p ≥ 1/2; (3) an agreement between hearer and speaker if both agents know the meaning of the conveyed name. Even if not indicated, reinforcement takes

place also in cases (2) and (3).
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inventories associated with the names A and B: Figure 3 shows
the histograms of the pAs and pBs computed from the initial
time until consensus for a single run with N = 2000 agents and
starting with SIC. The low frequencies at small values of pA and
pB and the highest frequencies at values close to unity are due to
the fact that the Bayesian probabilities reach values pA ≈ pB ≈ 1
very fast, after a few learning attempts, consistently with the size
principle, on which the Bayesian learning paradigm, and in turn
Equation (4), are based [10].

In order to visualize how the system approaches consensus, it
is useful to consider some global observables, such as the fractions
nA(t), nB(t), and nAB(t) of agents that have generalized concept C
in association with name A only, name B only, or both names A
and B, respectively, or the success rate S(t). The dynamics of a
population of N = 1, 000 agents (Figures 4A,B) using different
initial conditions, SIC, AIC, and AICr, and that of a population
of N = 100 agents starting with SIC (Figures 4C,D) are shown
in Figure 4.

Figure 4A shows only the population fractions corresponding
to the name found at consensus, for the sake of clarity (the
remaining population fractions eventually go to zero). For an
asymmetrical initial condition (AIC or AICr), it is the initial
majority that determines the convention found at consensus (that
is, B for AIC and A for AICr). If the system starts from SIC,
convention A, for which agents can generalize earlier (n∗ex,A =

5 < n∗ex,B = 6), is always found at consensus—in this case, it is
the asymmetry in the thresholds n∗ex,A and n∗ex,B, characterizing
the Bayesian learning process, that determine consensus.

Figure 4B shows the success rate S(t = tk), representing the
average over different runs of the instantaneous success rate Sk
of the kth interaction at time tk, defined as follows: Sk = 1 in
case of agreement between the two agents or when successful
learning by the hearer takes places, following a Bayes probability
p ≥ 1/2; or Sk = 0 in case of unsuccessful generalization, when
p < 1/2 and only reinforcement takes place. The success rate S(t)
varies between S(0) ≈ (nA(0))

2
+ (nB(0))

2, due to the respective
fractions of agents that initially know the two conventions A and
B, to S ≈ 1 at consensus, following a typical S-shaped curve of
learning processes [41]. In the case of SIC, the initial value is
S(0) ≈ 0.52 + 0.52 = 0.5, while for AIC or AICr the initial value
is S(0) ≈ (0.3)2 + (0.7)2 ≈ 0.58.

We now investigate how the modified Bayesian dynamics
affects the convergence times to consensus. The study of the size-
dependence of the convergence to consensus shows that there is a
critical value N∗ ≈ 500 in the case of SIC, such that for N ≤ N∗,
there is a non-negligible probability that the final absorbing state
is B. Figures 4C,D, representing the results for a system starting
with SIC and a smaller size N = 100, show the existence of
two possible final absorbing states, and that there are different
timescales associated with the convergence to consensus: name
A is found at consensus in about 90% of cases and name B
in the remaining cases. The branching probability into A or B
consensus is further investigated in Figure 5A, where we plot
the branching probabilities pe,A, pe,B vs. the system sizes N. The
nonlinear behavior (symmetrical sigmoid) signals the presence of
finite-size effects, which are particularly clear for relatively small
N-values. In fact, when the fluctuations in the system are larger,

FIGURE 3 | Histograms of the Bayesian probabilities pA,pB computed by

agents during their learning attempts during a single run (for N = 2000 agents,

starting with SIC; n*ex,A = 5, n*ex,B = 6).

the system size can play an important role in the dynamics of
social systems, as an actual thermodynamic limit is only allowed
for simulations of macroscopic physical systems [42].

The convergence time tconv follows a simple scaling rule with
the system size N, related to the average number of examples
n̄ex,A, n̄ex,B relative to A,B respectively, stored in the agents’
inventories at consensus. These values depend on the number of
learning and reinforcement processes, and hence are related to
the system sizeN. The average number of interactions undergone
by the agents until the system reaches the consensus is given by
the sum n̄int = n̄ex,A + n̄ex,B

1. One expects that:

tconv ≈ n̄intN , (5)

which suggests a linear scaling law (tconv ∼ N) for convergence
time with the system size N for all the possible initial
conditions. Linear behavior is indeed confirmed by the numerical
simulations with population sizes N = 50, 100, 500, 1,000,
1,500, and 2,000 starting from SIC, AIC, and AICr. The relative
numerical results are reported in Table 2. Moreover, in Equation
(5) the size-dependence of n̄int is ignored as it shows a weak
dependence upon N; see Figure 5B.

From the above-mentioned scaling law, it is clear that
the average number of examples stored by the agents at
consensus plays an important role in the semiotic dynamics.
In particular, it is found that if the final absorbing state is A
(or B), then n̄ex,A > n̄ex,B (n̄ex,B > n̄ex,A). Moreover, the
average number of examples, relative to the absorbing state,
always increases monotonically with the system size while a
size-independent behavior is observed in the opposite case;
see Figure 5B.

Finally, we compare the convergence time of the Bayesian
word-learning model, tconv, with that of the two-conventions
NG model, t̄conv [36] by studying the corresponding ratio

1The nex,A = nex,B = 4 examples given initially to each agent are not accounted

for by n̄ex,A and n̄ex,B.
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FIGURE 4 | Average population fraction associated to the name shared in the final consensus state (A,C) and success rate S(t) (B,D) vs. time. (A,B) System with

N = 1, 000 agents starting from different initial conditions, SIC, AIC, and AICr; averages obtained over 600 runs. (C,D) System with N = 100 agents starting from SIC;

averages obtained over 1, 000 runs—notice that due to the smaller size N = 100, the system can converge to consensus both with name A (in a fraction of cases

pe,A ≈ 0.9) and with name B (pe,B ≈ 0.1).

FIGURE 5 | (A) Probabilities pe,A and pe,B that the system reaches consensus at A and B respectively, vs. the system size N, obtained by averaging over 1, 000 runs

of a system starting with SIC. (B) Average number of examples n̄ex,A and n̄ex,B recorded by an agent at consensus for a system of N = 50, 100, 500, 1,000, 1,500, or

2,000 agents, starting with SIC, AIC, and AICr. Averages are obtained over 600 runs.

R = tconv/t̄conv for common initial conditions and population
sizes. When starting with SIC, the values of the convergence
times obtained from the two models become of the same
order by increasing N: R decreases with N, reaching unity
for N = 10, 000; see Figure 6. In other words, the time
scales of the two models become equivalent for relatively
large system sizes, i.e., the learning processes of the two
models perform equivalently and the Bayesian approach
roughly gives rise to the one-shot learning that characterizes
the two-conventions NG model. In the next section, we
discuss how the Bayesian model becomes asymptotically
equivalent to the minimal NG model. The inset of Figure 6

represents R vs. N for N < 2000, given different starting
configurations, with SIC, AIC, and AICr, and different
population sizes.

4. STABILITY ANALYSIS

In this section, we investigate the stability and convergence
properties of the mean-field dynamics of the Bayesian NGmodel,
in which statistical fluctuations and correlations are neglected.

4.1. Mean-Field Equations
In the Bayesian NGmodel, as in the basic NG, agents can use two
non-excluding options A and B to refer to the same concept C.
The main difference between the Bayesian model and the basic
NG model is in the learning process: a one-shot learning process
in the basic NG and a Bayesian process in the Bayesian NG
model. In the latter case, the presence of a name in the word
list indicates that the agent has generalized the corresponding
concept from a set of positive recorded examples.
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TABLE 2 | Scaling laws tconv ∼ Nα with the system size N.

α n̄ex,A n̄ex,B Outcome

SIC 1.06 20 8 A,B

AIC 1.08 3 19 B

AICr 1.09 18 3 A

Here the parameters are n*ex,A = 5, n*ex,B = 6 with initial conditions SIC, AIC, and AICr.

The average number of examples, n̄ex,A, n̄ex,B, stored at tconv , are obtained by averaging

over 600 runs of a system with N = 1,000 agents.

FIGURE 6 | The ratio of the convergence times of the Bayesian word-learning

model and the two-conventions NG model, R = tconv/t̄conv vs. the system size

N for a system starting with SIC. The inset illustrates the dependence of R on

different initial conditions. The curves are obtained by averaging over 900 runs.

FIGURE 7 | Model scheme with two non-excluding options. Arrows indicate

allowed transitions between the “bilingual” state (A,B) and the “monolingual”

states A and B. Direct A ↔ B transitions are not allowed.

The NG model belongs to the wide class of models with
two non-excluding options A and B, such as many models of
bilingualism [43], in which transitions between state (A) and state
(B) are allowed only through an intermediate (“bilingual”) state
(A,B), as schematized in Figure 7. The mean-field equations for
the fractions nA(t) and nB(t) can be obtained by considering
the gain and loss contributions of the transitions depicted
in Figure 7,

ṅA = pAB→A nAB − pA→AB nA ,

ṅB = pAB→B nAB − pB→AB nB . (6)

Here, ṅa(t) = dna(t)/dt and the quantities pa→b represent the
respective transition rates per individual, corresponding to the
arrows in Figure 7 (a, b = A,B,AB). The equation for nAB(t)
was omitted, since it is determined by the condition that the total
number of agents is constant, nA(t)+ nB(t)+ nAB(t) = 1.

The details of the possible pair-wise interactions in the
Bayesian naming game are listed in Table 1. By adding the
various contributions, one obtains the equation for the average
population fractions,

ṅA = −pBnAnB + n2AB +
3− pB

2
nAnAB ,

ṅB = −pAnAnB + n2AB +
3− pA

2
nBnAB , (7)

which can be rewritten in the form (6) with transition rates per
individual given by:

pA→AB = pBnB +
1

2
pBnAB , pB→AB = pAnA +

1

2
pAnAB ,

(8)

pAB→A =
3

2
nA + nAB , pAB→B =

3

2
nB + nAB .

(9)

Equations (8) provide the transition rates of learning
processes, while Equations (9) give the transition rates of
agreement processes.

In the rest of the paper, we set x ≡ nA, y ≡ nB, and z = nAB ≡

1− x− y, so that the autonomous system (7) becomes:

ẋ = fx
(

x, y
)

≡ −pBxy+ (1− x− y)2 +
1

2
(3− pB)x(1− x− y) ,

(10)

ẏ = fy
(

x, y
)

≡ −pAxy+ (1− x− y)2 +
1

2
(3− pA)y(1− x− y) ,

(11)

in which we have defined the velocity field v =
(

fx(x, y), fy(x, y)
)

in the phase plane. The Bayesian probabilities pA and pB appear
in these equations as time-dependent parameters of the model,
but they are actually highly non-linear functions of the variables.
In fact, they can be thought as averages of the microscopic
Bayesian probability in Equation (4) over the possible dynamical
realizations. For this reason, they have also a complex non-
local time-dependence on the previous history of the interactions
between agents. For the moment, we assume pA(t) = pB(t) =

p(t), returning later to the general case.
From the conditions defining the critical points, fx

(

x, y
)

=

fy
(

x, y
)

= 0, one obtains
(

x− y
)

z = 0. Setting z = 0, one
obtains two solutions that correspond to consensus in A or B,
given by (x1, y1, z1) = (1, 0, 0) and (x2, y2, z2) = (0, 1, 0). Instead,
setting

(

x− y
)

= 0 leads to the equation:

2x2 − (p+ 5)x+ 2 = 0 , (12)

Frontiers in Physics | www.frontiersin.org 9 February 2020 | Volume 8 | Article 1092

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Marchetti et al. Bayesian Approach to Naming Game

which has the solutions,

x± =
p+ 5±

√

(p+ 5)2 − 16

4
. (13)

One can check that for every value of p ∈ (0, 1], the
corresponding solutions (x±, x±, 1 − 2x±) are not suitable
solutions, because z± = 1− 2x± < 0.

This analysis is valid for p > 0. In fact, p = p(t) is a
function of time and, for a finite interval of time after the initial
time, one has that p = 0, which defines a different dynamical
system: the transition from p = 0 to p > 0 is accompanied
by a bifurcation, as becomes clear by analyzing the equilibrium
points. In the initial conditions used, z(0) = 0, which implies
z(t) = 0, x(t) = x(0), and y(t) = y(0) at any later time t as long
as p(t) = 0, since ẋ(t) = ẏ(t) = ż(t) = 0 (see Equation 7); in
fact, the whole line x + y = 1 (for 0 < x, y < 1) represents
a continuous set of equilibrium points. The reason why, in this
model, p(0) = 0 at t = 0 and also during a subsequent finite
interval of time is twofold. First, agents do not have any examples
associated to the name not known, and they have to receive at
least n∗ex,A or n∗ex,B examples before being able to compute the
corresponding Bayesian probability pA(t) or pB(t)—thus, it is
to be expected that p(t) = 0 meanwhile. Furthermore, even
when agents can compute the Bayesian probabilities, the effective
probability to generalize is actually zero, due to the threshold
p∗ = 0.5 for a generalization to take place. The existence of
the (temporary) equilibrium points on the line x + y = 1 ends
as soon as the parameter p(t) > p∗ and, according to Equation
(7), a bifurcation takes place: the two A- and B-consensus states
become the only stable equilibrium points, and the representative
point in the x-y-plane is deemed to leave the initial conditions on
the z = 1 − x − y = 0 line due to the stochastic nature of the
dynamics, which is not invariant under time reversal [44].

To determine the nature of the critical points (x1, y1) = (1, 0)
and (x2, y2) = (0, 1), one needs to evaluate at the equilibrium
points the 2× 2 Jacobian matrix A(x, y) = {∂ifj}, where i, j = x, y.
Equations (10, 11) give:

A(1, 0) =

(

1
2

(

p− 3
)

− 1
2

(

p+ 3
)

0 −p

)

,A(0, 1) =

(

−p 0

− 1
2

(

p+ 3
)

1
2

(

p− 3
)

)

, (14)

whose eigenvalues at a given time t are λ1 = [p(t) − 3]/2
and λ2 = −p(t). As they are both negative and distinct for
0 < p ≤ 1, λ1 < λ2 < 0, the critical points (0, 1) and (1, 0)
are asymptotically stable [45]. It can be easily checked that these
conclusions are unchanged if the generalization probabilities are
different, pA(t) 6= pB(t). For instance, one would have:

A(1, 0) =

(

1
2

(

pB − 3
)

− 1
2

(

pB + 3
)

0 −pA

)

, (15)

associated to eigenvalues with different numerical values but the
same sign, not changing the nature of the critical point. Thus, the
asymptotically stable nodes (x1, y1) = (1, 0) and (x2, y2) = (0, 1)
are the only absorbing states of the Bayesian naming game.

4.2. A Geometric Analysis of Consensus
We consider a system starting from SIC, defined by the point
(x0, y0) = (0.5, 0.5) located on the line x + y = 1 of the phase
plane, representing a system that initially has 50% of agents with
list (A), 50% with list (B), and no agent with list (A,B).

From Equation (7) and the fact that, initially, pA(0) = pB(0) =
0 (and z(0) = 0), one can see that the corresponding velocity
is v(0) = (fx(x(0), y(0)), fy(x(0), y(0))) = (0, 0), meaning that
the initial SIC state (x(0), y(0)) = (0.5, 0.5) is a temporary
equilibrium point. As soon as pA(t), pB(t) > 0, at a time t =

t∗ > 0, the velocity becomes different from zero, and the
representative point (x(t), y(t)) moves away in the phase plane
with velocity v(t) = (fx(x(t), y(t)), fy(x(t), y(t))). The system is
observed to eventually reach either A-consensus at (x1, y1) =

(1, 0) or B-consensus at (x2, y2) = (0, 1). These two types of
evolution are illustrated in Figure 8 through the population
fractions nA(t) and nB(t) vs. time t taken from two single runs
of a population with size N = 100 agents.

In order to determine the conditions for this to happen, we
evaluate the scalar product between the velocity v(t∗) at time t∗

and the versor u = (1/
√
2,−1/

√
2), parallel to the line x+ y = 1

and directed toward the A-consensus state (1, 0); see Figure 9.
If the velocity vector v has a positive component along u, the
representative point will move from the initial state (0.5, 0.5)
toward the A-fixed point (1, 0); instead, in the case of a velocity
vector v′ with a negative component along u, the representative
point will move toward the B-fixed point (1, 0); see Figure 9.
From the simulations, we know that during the initial transient,
the population dynamics is characterized by a nA(t) ≈ nB(t),
until the critical time t = t∗ is reached. This allows one to set
x ≈ y in this interval of time—this phenomenon is a sort of
stiffness of the system before starting to explore the phase plane.
The scalar product u · v, where the velocity vector’s components
are given explicitly in Equation (7), is positive at t = t∗ when:

u · v =
fx − fy
√
2

=
1
√
2

[

pA(t
∗)− pB(t

∗)
]

x2

+
1

2
√
2

[

pA(t
∗)− pB(t

∗)
]

x(1− 2x) > 0 , (16)

which gives the condition:

pA
(

t∗
)

> pB
(

t∗
)

. (17)

Equation (17) clearly shows that the values of the Bayesian
probabilities pA, pB become different at the critical time t∗, thus
allowing the solutions to split into different orbits, going toward
the state of consensus in A and B. The same reasoning, applied
to the case of an orbit bending toward the consensus state in B
at (0, 1), would give pA(t

∗) < pB(t
∗). The difference between

the probabilities pA and pB can be traced back to the way the
generalization function p(t) is used by agents to compute either
pA(t) or pB(t). In fact, the value of p(t) depends on the examples
recorded, which constitute the inputs of the function. We argue
that this behavior is due to the fluctuations of the numbers
of examples n̄ex,A(t) and n̄ex,B(t), recorded by the agents until
time t, together with the initial asymmetry of the thresholds
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FIGURE 8 | Results from two single simulations of a system with N = 100 agents, starting from SIC at (x0, y0) = (0.5, 0.5) and reaching two different consensus states

about name A or B. (A,C) Show the population fractions x(t) = nA(t) and y(t) = nB(t). (B,D) Show the corresponding average number of examples recorded by an

agent, n̄ex,A (t) and n̄ex,B(t).

for generalizing, n∗ex,A 6= n∗ex,B. In fact, the stochastic nature of
the pairwise-interactions leads to different examples (that can
be better or worse for the aim of generalizing) and to different
inventory sizes, i.e., the numbers of examples stored by agents
at time t; clearly all this strongly affects the path to consensus.
Furthermore, asymmetrical thresholds (n∗ex,A = 5 < n∗ex,B = 6
were used) produce a bias favoring consensus in A and play a
crucial role in the subsequent Bayesian semiotic dynamics, letting
concept C be learnedmore often in association withA than B and
contributing to making consensus in Amore frequent: swapping
the threshold values (setting n∗ex,A = 6 > n∗ex,B = 5), the
approach to consensus occurs with the outcomes A, B swapped.

For N & N∗ ≈ 500, the chances that the system converges
to (B) become negligible. This can be seen in of Figures 8B,D,
showing n̄ex,A(t) and n̄ex,B(t) vs. time (averaged over the agents
of the system) for a single run of a system with a population of
N = 100 agents, starting with SIC. Panels (B) and (D) compare
the results obtained from selected runs ending at consensus A
and B, respectively. It is evident that, after an initial transient,
in which n̄ex,A(t) ≈ n̄ex,B(t), they start to differ more and more
significantly from each other at times t > t∗. In turn, starting
from this point, also pA and pB begin to differ significantly from
each other, thus affecting the rate of depletion of the populations
during the subsequent dynamics. For instance, if pA > pB,
then pB→AB > pA→AB (see Equations (8)), which means that
the depletion of nB occurs faster then that of nA. In turn, this
favors the decay of the mixed states (A,B) into the state (A) (see
Equations (9)), being nA > nB.

The asymmetry discussed above, about the rate of convergence
toward the final consensus states, also affects the values of
convergence times tAconv and tBconv needed for a system to reach
consensus at A and B, respectively: we find tBconv > tAconv in all
the numerical simulations. The difference in the convergence
times is already appreciable, despite the noise, in the output
of a single run, such as the population fractions shown in
Figures 8A,C. Mean fractions nA(t), nB(t), and nAB(t) vs. time,

obtained by averaging overmany runs, result in less noisy outputs
and provide a more clear picture of the difference, which is
visible in Figure 10, obtained using 600 runs starting with SIC
and for N = 100 agents (Figures 10A,C) and N = 200
agents (Figures 10B,D). In addition, one can notice that the
convergence times strongly depend on the system size: increasing
the number of agents N slows down the relaxation, and both
the times tAconv and tBconv increase, as is evident by comparing the
(Figures 10A,C) (N = 100 agents) with the (Figures 10B,D)
(N = 200 agents).

The possibility that a system starting with the same initial
conditions and with the same parameters can reach both
consensus states is a consequence of the stochastic nature of
the pairwise-interactions, together with the asymmetry in the
threshold values n∗ex,A = 5 and n∗ex,B = 6. It stops occurring for
N & N∗, when both n̄ex,A and n̄ex,B reach some threshold values
close to those observed at tconv, which is clearly a value sufficient
for the agents to generalize concept C. In fact, the scaling law of
tconv withN shows that the sum of n̄ex,A with n̄ex,B becomes nearly
constant for N & N∗, implying that the dynamics is uniquely
determined, that is, the consensus always occurs at A from SIC,
once the agents have stored a threshold number of n̄ex,A, n̄ex,B. It
is found that these threshold values correspond to n̄ex,A = 21,
n̄ex,B = 12. Note that, to the latter values n̄ex,A, n̄ex,B, we also add
the four initial given examples stored in the agents’ inventories
at the beginning. This is because the generalization function p(t)
outputs will effectively depend on them all. Therefore, at these
threshold values, it would be very unlikely that pB > pA, and so
it would be the same for the consensus at B.

Now, we consider some variables that characterize the
Bayesian process underlying pair-wise interactions and how they
vary with time, in particular the Bayesian probabilities pA(t) and
pB(t), computed by agents, and the corresponding number of
learning attempts noA(t) and noB(t) made by agents at time t to
learn concept C in association with word A or B, respectively, i.e.,
the number of times that the agents compute pA or pB. Only the
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case of a system starting with SIC is considered, but the other
cases present similar behaviors. We consider a single run of a
system with N = 5, 000 agents and study the average values
p̄A(t), p̄B(t) obtained by averaging pA(t) and pB(t) over the agents
of the system. Furthermore, employing a coarse-grained view,
an additional average (of both the probabilities p̄A(t), p̄B(t) and
the numbers of attempts noA, noB) over a suitable time-interval
(a temporal bin 1t = 16 × 103) reduces random fluctuations.
Figure 11 shows the time evolution of the average probabilities
p̄A(t) and p̄B(t) in the time-range where data allow good statistics.
The probabilities grow monotonically and eventually reach the
value one. While this points at an equivalence between the
mean-field regime of the Bayesian naming game and that of the
two-conventions NG model, in which agents learn at the first
attempt (one-shot learning), such an equivalence is suggested

FIGURE 9 | The vectors v and v′ represent two possible velocities emerging

from the point (x0, y0) = (0.5, 0.5) at t = t*. The unit vector u is directed along

the line x + y = 1 joining the asymptotically stable nodes (x1, y1) = (1, 0) and

(x2, y2) = (1, 0).

but not fully reproduced by the coarse-grained analysis. The
time evolution of the number of learning attempts noA(t) and
noB(t) shows that they are negligible both at the beginning and
at the end of the dynamics—see inset in Figure 11. This is due
to the fact that at the beginning it is most likely that either
interactions between agents with the same conventions take place
(starting with SIC, each agent has a probability of 50% to interact
with an agent having the same convention) or that interactions
between agents with different conventions but with still too
small inventories to be able to generalize concept C take place,
leading to reinforcement processes only. When approaching

FIGURE 11 | Average values p̄A(t) and p̄B(t) computed using a (temporal) bin

1t = 16× 103 vs. time from for a single run of a system reaching consensus

at A. The convergence time is tconv ≈ 160× 103, and the population size is

N = 5, 000. The inset shows the average number of learning attempts noA,

noB vs. time for the same single run.

FIGURE 10 | Population fractions nA(t), nB(t), and nAB(t) vs. time, starting from SIC; results are obtained by averaging over 600 runs. Left column (A,C): a system with

N = 100 agents can reach consensus with name A (A, about 91% of runs) or name B (C, about 9% of runs). Right column (B,D): system with N = 200 agents,

reaching consensus with name A in about 96% of runs (B) and with name B in about in the remaining 4% of runs (D).
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consensus, agents with one of the conventions constitute the large
majority of the population, and thus they are again most likely to
interact through reinforcements only. Thus, the largest numbers
of attempts to learn concept C in association with A and B are
expected to occur at the intermediate stage of the dynamics. In
fact, noA(t) and noB(t) are observed to reach a maximum at
t ≈ tconv/2 for any given system size N, as is visible in the inset
of Figure 11. Notice that also the fraction of agents nAB who
know both conventions and can communicate using both name
A and name B, possibly allowing other agents to generalize in
association with name A or B, reaches its maximum roughly at
the same time.

5. CONCLUSION

We constructed a new agent-based model that describes the
appearance of linguistic consensus through a word-learning
process, representing an original example of an opinion dynamics
or culture competition model translated at a cognitive level,
something that is not apparent. The model represents a Bayesian
extension of the semiotic dynamics of the NG model, with an
underlying cognitive process that mimics the human learning
processes; it can describe in a natural way the uncertainty
accompanying the first phase of a learning process, the gradual
reduction of the uncertainty as more and more examples are
provided, and the ability to learn from a few examples.

The work presented is exploratory in nature, concerning the
minimal problem of a concept, C that can be associated to
two different possible names A and B. The resulting semiotic
dynamics of the synonyms is different from the basic NG, in
that it depends on parameters that are strictly cognitive in nature,
such as a minimum level of experience (quantified by the number
of examples n∗ex necessary for generalizing) and the threshold
for generalizing a concept (represented by a critical value of
the Bayesian acceptance probability p∗). The interplay between
the asymmetry of the conventions A and B, the system size,
and the stochastic character of the time evolution have dramatic
consequences on the consensus dynamics, leading to a critical
time t∗ > 0 before the system begins to move in the phase-plane,
to converge eventually toward a consensus state; a critical system
size N∗, below which there is an appreciable probability that the
system can end up in any of the two possible consensus states
and, in general, a dependence of the convergence times on N;
an asymmetry in the convergence times and the corresponding
branching probabilities that the system converges toward one of
the two possible conventions; different scaling of the convergence
times vs.N with respect to those observed in the basic NGmodel,
due to the dependence on the learning experience of the agents.

The cognitive dimension of the novel model offers the
possibility to study the effects that are out of the reach of other
opinion dynamics or cultural exchange models, such as the basic
NG model. The corresponding dynamical equations, Equations
(10, 11), provide a general mean-field description of a group of
individuals communicating with each other while undergoing
cognitive processes. The cognitive dynamics are fully contained
in the functions pA(t) and pB(t). Similar models but with different

or more general underlying cognitive dynamics are expected to
leave the form of Equations (10, 11) unchanged, only changing
the functional forms of pA(t) and pB(t). In this sense, the model
introduced in this work represents a step toward a generalized
Bayesian approach to the problem of how social interactions can
lead to cultural conventions.

Future work can address specific problems of current interest
from the point of view of cognitive processes or features relevant
from the general standpoint of complexity theory. In the first
case, it is possible to study the semiotic dynamics of homonyms
and synonyms, e.g., the problem of a name A1, associated to a
concept C1, that at some points splits into two related but distinct
concepts C1 and C2, analyzing the cognitive conditions for the
corresponding splitting of name A1 into two names A1 and A2,
as the two concepts eventually become distinguishable to the
agents—this type of problem cannot be tackled within models of
cultural competition. In the second case, one can mention the
classical problem of the interplay between a central information
source (bias) and the local influences of individuals—this time,
in a cognitive framework—and the role of heterogeneity. In fact,
heterogeneity concerns most of the known complex systems at
various levels, from the diversity in the dynamical parameters
of, e.g., the different competing names and concepts to that
of the agents. The heterogeneity of individuals is known to
lead to counter-intuitive effects, such as resonant behaviors
[46, 47]. Furthermore, the complex, heterogeneous nature of a
local underlying social network can drastically change the co-
evolution of the conventions in competition with each other and
therefore the relaxation process [48].
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Machine learning (ML) and artificial intelligence (AI) algorithms are now being used to

automate the discovery of physics principles and governing equations frommeasurement

data alone. However, positing a universal physical law from data is challenging without

simultaneously proposing an accompanying discrepancy model to account for the

inevitable mismatch between theory andmeasurements. By revisiting the classic problem

of modeling falling objects of different size and mass, we highlight a number of nuanced

issues that must be addressed by modern data-driven methods for automated physics

discovery. Specifically, we show that measurement noise and complex secondary

physical mechanisms, like unsteady fluid drag forces, can obscure the underlying law of

gravitation, leading to an erroneous model. We use the sparse identification of non-linear

dynamics (SINDy) method to identify governing equations for real-world measurement

data and simulated trajectories. Incorporating into SINDy the assumption that each

falling object is governed by a similar physical law is shown to improve the robustness

of the learned models, but discrepancies between the predictions and observations

persist due to subtleties in drag dynamics. This work highlights the fact that the naive

application of ML/AI will generally be insufficient to infer universal physical laws without

further modification.

Keywords: dynamical systems, system identification, machine learning, artificial intelligence, sparse regression,

discrepancy modeling

1. INTRODUCTION

The ability to derive governing equations and physical principles has been a hallmark feature
of scientific discovery and technological progress throughout human history. Even before the
scientific revolution, the Ptolemaic doctrine of the perfect circle (Peters and Knobel, 1915; Ptolemy,
2014) provided a principled decomposition of planetary motion into a hierarchy of circles, i.e., a
bona fide theory for planetary motion. The scientific revolution and the resulting development
of calculus provided the mathematical framework and language to precisely describe scientific
principles, including gravitation, fluid dynamics, electromagnetism, quantummechanics, etc. With
advances in data science over the past few decades, principled methods are emerging for such
scientific discovery from time-series measurements alone. Indeed, across the engineering, physical
and biological sciences, significant advances in sensor andmeasurement technologies have afforded
unprecedented new opportunities for scientific exploration. Despite its rapid advancements and
wide-spread deployment, machine learning (ML) and artificial intelligence (AI) algorithms for
scientific discovery face significant challenges and limitations, including noisy and corrupt data,
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latent variables, multiscale physics, and the tendency for
overfitting. In this manuscript, we revisit one of the classic
problems of physics considered by Galileo and Newton, that of
falling objects and gravitation. We demonstrate that a sparse
regression framework is well-suited for physics discovery, while
highlighting both the need for principled methods to extract
parsimonious physics models and the challenges associated with
the naive application of ML/AI techniques. Even this simplest of
physical examples demonstrates critical principles that must be
considered in order to make data-driven discovery viable across
the sciences.

Measurements have long provided the basis for the discovery
of governing equations. Through empirical observations
of planetary motion, the Ptolemaic theory of motion was
developed (Peters and Knobel, 1915; Ptolemy, 2014). This was
followed by Kepler’s laws of planetary motion and the elliptical
courses of planets in a heliocentric coordinate system (Kepler,
2015). By hand calculation, he was able to regress Brahe’s state-of-
the-art data on planetary motion to the minimally parameterized
elliptical orbits which described planetary orbits with a terseness
the Ptolemaic system had nevermanaged to achieve. Suchmodels
led to the development of Newton’s F = ma (Newton, 1999),
which provided a universal, generalizable, interpretable, and
succinct description of physical dynamics. Parsimonious models
are critical in the philosophy of Occam’s razor: the simplest
set of explanatory variables is often the best (Blumer et al.,
1987; Domingos, 1999; Bongard and Lipson, 2007; Schmidt and
Lipson, 2009). It is through such models that many technological
and scientific advancements have been made or envisioned.

What is largely unacknowledged in the scientific discovery
process is the intuitive leap required to formulate physics
principles and governing equations. Consider the example of
falling objects. According to physics folklore, Galileo discovered,
through experimentation, that objects fall with the same constant
acceleration, thus disproving Aristotle’s theory of gravity, which
stated that objects fall at different speeds depending on their
mass. The leaning tower of Pisa is often the setting for this
famous stunt, although there is little evidence such an experiment
actually took place (Cooper, 1936; Adler and Coulter, 1978;
Segre, 1980). Indeed, many historians consider it to have been
a thought experiment rather than an actual physical test. Many
of us have been to the top of the leaning tower and have longed
to drop a bowling ball from the top, perhaps along with a golf
ball and soccer ball, in order to replicate this experiment. If
we were to perform such a test, here is what we would likely
find: Aristotle was correct. Balls of different masses and sizes do
reach the ground at different times. As we will show from our
own data on falling objects, (noisy) experimental measurements
may be insufficient for discovering a constant gravitational
acceleration, especially when the objects experience Reynolds
numbers varying by orders of magnitudes over the course of
their trajectories. But what is beyond dispute is that Galileo did
indeed posit the idea of a fixed acceleration, a conclusion that
would have been exceptionally difficult to come to from such
measurement data alone. Gravitation is only one example of the
intuitive leap required for a paradigm shifting physics discovery.
Maxwell’s equations (Maxwell, 1873) have a similar story arc

revolving around Coulomb’s inverse square law. Maxwell cited
Coulomb’s torsion balance experiment as establishing the inverse
square law while dismissing it only a few pages later as an
approximation (Bartlett et al., 1970; Falconer, 2017). Maxwell
concluded that Faraday’s observation that an electrified body,
touched to the inside of a conducting vessel, transfers all its
electricity to the outside surface as much more direct proof of the
square law. In the end, both would have been approximations,
with Maxwell taking the intuitive leap that exactly a power of
negative two was needed when formulating Maxwell’s equations.
Such examples abound across the sciences, where intuitive leaps
are made and seminal theories result.

One challenge facing ML and AI methods is their inability
to take such leaps. At their core, many ML and AI algorithms
involve regressions based on data, and are statistical in
nature (Breiman, 2001; Bishop, 2006; Wu et al., 2008; Murphy,
2012). Thus by construction, a model based on measurement
data would not produce an exact inverse square law, but rather
a slightly different estimate of the exponent. In the case of
falling objects, ML and AI would yield an Aristotelian theory
of gravitation, whereby the data would suggest that objects
fall at a speed related to their mass. Of course, even Galileo
intuitively understood that air resistance plays a significant role
in the physics of falling objects, which is likely the reason he
conducted controlled experiments on inclined ramps. Although
we understand that air resistance, which is governed by latent
fluid dynamic variables, explains the discrepancy between the
data and a constant gravity model, our algorithms do not.
Without modeling these small disparities (e.g., due to friction,
heat dissipation, air resistance, etc.), it is almost impossible to
uncover universal laws, such as gravitation. Differences between
theory and data have played a foundational role in physics,
with general relativity arising from inconsistencies between
gravitational theory and observations, and quantum mechanics
arising from our inability to explain the photoelectric effect with
Maxwell’s equations.

Our goal in this manuscript is to highlight the many subtle
and nuanced concerns related to data-driven discovery using
modern ML and AI methods. Specifically, we highlight these
issues on the most elementary of problems: modeling the
motion of falling objects. Given our ground-truth knowledge
of the physics, this example provides a convenient testbed for
different physics discovery techniques. It is important that one
clearly understands the potential pitfalls in such methods before
applying them to more sophisticated problems which may arise
in fields like biology, neuroscience, and climate modeling. Our
physics discovery method is rooted in the sparse identification for
non-linear dynamics (SINDy) algorithm, which has been shown
to extract parsimonious governing equations in a broad range of
physical sciences (Brunton et al., 2016). SINDy has been widely
applied to identify models for fluid flows (Loiseau and Brunton,
2018; Loiseau et al., 2018), optical systems (Sorokina et al., 2016),
chemical reaction dynamics (Hoffmann et al., 2019), convection
in a plasma (Dam et al., 2017), structural modeling (Lai and
Nagarajaiah, 2019), and for model predictive control (Kaiser
et al., 2018). There are also a number of theoretical extensions
to the SINDy framework, including for identifying partial
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differential equations (Rudy et al., 2017; Schaeffer, 2017), and
models with rational function non-linearities (Mangan et al.,
2016). It can also incorporate partially known physics and
constraints (Loiseau and Brunton, 2018). The algorithm can be
reformulated to include integral terms for noisy data (Schaeffer
and McCalla, 2017) or handle incomplete or limited data (Tran
and Ward, 2016; Schaeffer et al., 2018). In this manuscript we
show that group sparsity (Rudy et al., 2019) may be used to
enforce that the same model terms explain all of the observed
trajectories, which is essential in identifying the correct model
terms without overfitting.

SINDy is by no means the only attempt that has been made
at using machine learning to infer physical models from data.
Gaussian processes have been employed to learn conservation
laws described by parametric linear equations (Raissi et al.,
2017a). Symbolic regression has been successfully applied to
the problem of inferring dynamics from data (Bongard and
Lipson, 2007; Schmidt and Lipson, 2009). Another closely related
set of approaches are process-based models (Bridewell et al.,
2008; Tanevski et al., 2016, 2017) which, similarly to SINDy,
allow one to specify a library of relationships or functions
between variables based on domain knowledge and produce an
interpretable set of governing equations. The principal difference
between process-basedmodels and SINDy is that SINDy employs
sparse regression techniques to perform function selection which
allows a larger class of library functions to be considered than is
tractable for process-based models. Deep learning methods have
been proposed for accomplishing a variety of related tasks, such
as predicting physical dynamics directly (Mrowca et al., 2018),
building neural networks that respect given physical laws (Raissi
et al., 2017b), discovering parameters in non-linear partial
differential equations with limited measurement data (Raissi
et al., 2017c), and simultaneously approximating the solution
and non-linear dynamics of non-linear partial differential
equations (Raissi, 2018). Graph neural networks (Battaglia et al.,
2018), a specialized class of neural networks that operate on
graphs, have been shown to be effective at learning basic physics
simulators from measurement data (Battaglia et al., 2016; Chang
et al., 2016) and directly from videos (Watters et al., 2017).
It should be noted that the aforementioned neural network
approaches either require detailed prior knowledge of the form
of the underlying differential equations or fail to yield simple sets
of interpretable governing equations.

2. MATERIALS AND METHODS

2.1. Fluid Forces on a Sphere: A Brief
History
It must have been immediately clear to Galileo and Newton that
committing to a gravitational constant created an inconsistency
with experimental data. Specifically, one had to explain why
objects of different sizes and shapes fall at different speeds
(e.g., a feather vs. a cannon ball). Wind resistance was an
immediate candidate to explain the discrepancy between a
universal gravitational constant and measurement data. The fact
that Galileo performed experiments where he rolled balls down

inclines seems to suggest that he was keenly aware of the need
to isolate and disambiguate the effects of gravitational forces
from fluid drag forces. Discrepancies between the Newtonian
theory of gravitation and observational data of Mercury’s orbit
led to Einstein’s development of general relativity. Similarly, the
photoelectric effect was a discrepancy in Maxwell’s equations
which led to the development of quantum mechanics.

Discrepancy modeling is therefore a critical aspect of building
and discovering physical models. Consider the motion of falling
spheres as a prototypical example. In addition to the force of
gravity, a falling sphere encounters a fluid drag force as it passes
through the air. A simple model of the drag force FD is given by:

FD =
1

2
ρv2ACD, (1)

where ρ is the fluid density, v is the velocity of the sphere
with respect to the fluid, A = πD2

/4 is the cross-sectional
area of the sphere, D is the diameter of the sphere, and CD

is the dimensionless drag coefficient. As the sphere accelerates
through the fluid, its velocity increases, exciting various unsteady
aerodynamic effects, such as laminar boundary layer separation,
vortex shedding, and eventually a turbulent boundary layer and
wake (Moller, 1938; Magarvey andMacLatchy, 1965; Achenbach,
1972, 1974; Calvert, 1972; Smits and Ogg, 2004). Thus, the
drag coefficient is a function of the sphere’s velocity, and this
coefficient generally decreases for increasing velocity. Figure 1
shows the drag coefficient CD for a sphere as a function of
the Reynolds number Re = ρvD/µ, where µ is the dynamic
viscosity of the fluid; for a constant diameter and viscosity, the
Reynolds number is directly proportional to the velocity. Note
that the drag coefficient of a smooth sphere will differ from that
of a rough sphere. The flow over a rough sphere will become
turbulent at lower velocities, causing less flow separation and a
more streamlined, lower-drag wake; this explains why golf balls
are dimpled, so that they will travel farther (Smits and Ogg,
2004). Thus, (1) states that drag is related to the square of the
velocity, although CD has a weak dependence on velocity. When
Re is small, CD is proportional to 1/v, resulting in a drag force
that is linear in v. For larger values of Re, CD is approximately
constant (away from the steep drop), leading to a quadratic
drag force. Eventually, the drag force will balance the force of
gravity, resulting in the sphere reaching its terminal velocity. In
addition, as the fluid wake becomes unsteady, the drag force will
also vary in time, although these variations are typically fast and
may be time-averaged. Finally, objects accelerating in a fluid will
also accelerate the fluid out of the way, resulting in an effective
mass that includes the mass of the body and an added mass
of accelerated fluid (Newman, 1977); however, this added mass
force will typically be quite small in air.

In addition to the theoretical study of fluid forces on an
idealized sphere, there is a rich history of scientific inquiry into
the aerodynamics of sports balls (Mehta, 1985, 2008; Smits and
Ogg, 2004; Goff, 2013). Apart from gravity and drag, a ball’s
trajectory can be influenced by the spin of the ball via theMagnus
force or lift force which acts in a direction orthogonal to the
drag. Other factors that can affect the forces experienced by a
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FIGURE 1 | The drag coefficient for a sphere as a function of Reynolds

number, Re. The dark curve shows the coefficient for a sphere with a smooth

surface and the light curve a sphere with a rough surface. The numbers

highlight different flow regimes. (1) attached flow and steady separated flow;

(2) separated unsteady flow, with laminar flow boundary layer upstream of

separation, producing a Kármán vortex street; (3) separated unsteady flow

with a chaotic turbulent wake downstream and a laminar boundary layer

upstream; (4) post-critical separated flow with turbulent boundary layer.

falling ball include air temperature, wind, elevation, and ball
surface shape.

2.2. Data Set
The data considered in this manuscript are height measurements
of balls falling through air. These measurements originate
from two sources: physical experiments and simulations. Such
experiments are popular in undergraduate physics classes where
they are used to explore linear vs. quadratic drag (Owen and
Ryu, 2005; Kaewsutthi and Wattanakasiwich, 2011; Christensen
et al., 2014; Cross and Lindsey, 2014) and scaling laws Sznitman
et al. (2017). In June 2013 a collection of balls, pictured in
Figure 2, were dropped, twice each, from the Alex Fraser Bridge
in Vancouver, BC from a height of about 35 meters above the
landing site. In total 11 balls were dropped: a golf ball, a baseball,
two whiffle balls with elongated holes, two whiffle balls with
circular holes, two basketballs, a bowling ball, and a volleyball
(not pictured). More information about the balls is given in
Table 1. The air temperature at the time of the drops was 65◦F
(18◦C). A hand held iPad was used to record video of the drops
at a rate of 15 frames per second. The height of the falling objects
was then estimated by tracking the balls in the resulting videos.
Figure 3 visualizes the second set of ball drops. As one might
expect, the whiffle balls all reach the ground later than the other
balls. This is to be expected since the openings in their faces
increase the drag they experience. Even so, all the balls reach the
ground within a second of each other. We also plot the simulated
trajectories of two spheres falling with constant linear (in v)
drag and the trajectory predicted by constant acceleration. Note
that, based on the log-log plot of displacement, none of the balls
appears to have reached terminal velocity by the time they hit the
ground. This may increase the difficulty of accurately inferring
the balls’ governing equations. Given only measurements from
one regime of falling ball dynamics, it may prove difficult to infer
models that generalize to other regimes.

Drawing inspiration from Aristotle, one might form the
hypothesis that the amount of time taken by spheres to reach the
ground should be a function of the density of the spheres. Density
takes into account both information about the mass of an object
and its volume, whichmight be thought to affect the air resistance
it encounters. We plot the landing time of each ball as a function
of its density for both drops in Figure 4. To be more precise,
because some balls were dropped from slightly different heights,
we measure the amount of time it takes each ball to travel a fixed
distance after being dropped, not the amount of time it takes
the ball to reach the ground. There is a general trend across the
tests for the denser balls to travel faster. However, the basketballs
defy this trend and complete their journeys about as quickly as
the densest ball. This shows there must be more factors at play
than just density. There is also variability in the land time of the
balls across drops. While most of the balls have very consistent
fall times across drops, the blue basketball, golf ball, and orange
whiffle ball reach the finish line faster in the first trial than the
second one. These differences could be due to a variety of factors,
including the balls being released with different initial velocities,
or errors in measuring the balls’ heights.

There are multiple known sources of error in the
measurement data. The relatively low resolution of the videos
means that the inferred ball heights are only approximate. In
the Supplementary Material we attempt to infer the level of
noise introduced by our use of heights derived from imperfect
video data. Furthermore, the camera was held by a person,
not mounted on a tripod, leading to shaky footage. The true
bridge height is uncertain because it was measured with a laser
range finder claiming to be accurate to within 0.5 m. Because
the experiments were executed outside, it is possible for any
given drop to have been affected by wind. Detecting exactly
when each ball was dropped, at what velocity it was dropped,
and when it hit the ground using only videos is certain to
introduce further error. Finally, treating these balls as perfect
spheres is an approximation whose accuracy depends on the
nature of the balls. This idealization seems least appropriate
for the whiffle balls, which are sure to exhibit much more
complicated aerodynamic effects than, say, the baseball. The
bowling ball was excluded from consideration because of
corrupted measurements from its first drop.

The situation we strive to mimic with this experiment is
one in which the researcher is in a position of ignorance about
the system being studied. In order to design an experiment
which eliminates the effects of confounding factors, such as
air resistance one must already have an appreciation for which
factors are worth controlling; one leverages prior knowledge as
Galileo did when he employed ramps in his study of falling
objects to mitigate the effect of air resistance. In the early stages of
investigation of a physical phenomenon, one must often perform
poorly-controlled experiments to help identify these factors. We
view the ball drop trials as this type of experiment.

In addition to the measurement data just described, we
construct a synthetic data set by simulating falling objects
with masses of 1 kg and different (linear) drag coefficients. In
particular, for each digital ball, we simulate two drops of the
same length as the real data and collect height measurements at
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FIGURE 2 | The balls that were dropped from the bridge, with the volleyball omitted. From left to right: Golf Ball, Tennis Ball, Whiffle Ball 1, Whiffle Ball 2, Baseball,

Yellow Whiffle Ball, Orange Whiffle Ball, Green Basketball, and Blue Basketball. The two colored whiffle balls have circular openings and are structurally identical. The

two white whiffle balls have elongated slits and are also identical.

TABLE 1 | Physical measurements, maximum velocities across the two drops, and maximum Reynolds numbers for the dropped balls.

Ball Radius (m) Mass (kg) Density (kg/m) Max vel. (m/s) Max Re

Golf ball 0.021963 0.045359 1022.066427 26.63 1.75× 105

Baseball 0.035412 0.141747 762.037525 26.61 2.83× 105

Tennis ball 0.033025 0.056699 375.813253 21.95 2.18× 105

Volleyball 0.105* NA NA 22.09 6.96× 105

Blue basketball 0.119366 0.510291 71.628378 24.80 8.88× 105

Green basketball 0.116581 0.453592 68.342914 25.06 8.77× 105

Whiffle ball 1 0.036287 0.028349 141.641937 16.91 1.84× 105

Whiffle ball 2 0.036287 0.028349 141.641937 16.35 1.78× 105

Yellow whiffle ball 0.046155 0.042524 103.250857 15.30 2.12× 105

Orange whiffle ball 0.046155 0.042524 103.250857 15.77 2.18× 105

*We do not have measurement data for the volleyball, but obtained an estimate for its radius based on other volleyballs in order to approximate its maximum Reynolds number.

a rate of 15 measurements per second. The balls fall according
to the equation ẍ(t) = −9.8 + Dẋ(t), with each ball having
its own constant drag coefficient, D < 0. We simulate five
balls in total, with respective drag coefficients −0.1, −0.3, −0.3,
−0.5, and −0.7. These coefficients are all within the plausible
range suggested by the simulated trajectories shown in Figure 3.
Each object is “dropped” with an initial velocity of 0. Varying
amounts of Gaussian noise are added to the height data so that
we may better explore the noise tolerance of the proposed model
discovery approaches:

x̃i = xi + ηǫi.

where η ≥ 0 and ǫi ∼ N(0, 1); that is to say ǫi is normally
distributed with unit variance.

2.3. Methods
In this section we describe the model discovery methods we
employ to infer governing equations from noisy data. We
first give the mathematical background necessary for learning
dynamics via sparse regression and provide a brief overview of
the SINDy method in section 2.3.1. In section 2.3.2 we propose
a group sparsity regularization strategy for improving the
robustness and generalizability of SINDy. We briefly discuss the
setup of the model discovery problem we are attempting to solve
in section 2.3.3. Finally, we discuss numerical differentiation, a
subroutine critical to effective model discovery, in section 2.3.4.

2.3.1. Sparse Identification of Non-linear Dynamical

Systems
Consider the non-linear dynamical system for the state vector
x(t) = [x1(t), x2(t), . . . , xn(t)]

⊤ ∈ R
n defined by

ẋ = f(x(t)).

Given a set of noisy measurements of x(t), the sparse
identification of non-linear dynamics (SINDy) method,
introduced in Brunton et al. (2016), seeks to identify f :Rn → R

n.
In this section we give an overview of the steps involved in the
SINDy method and the assumptions upon which it relies.
Throughout this manuscript we refer to this algorithm as
the unregularized SINDy method, not because it involves no
regularization, but because its regularization is not as closely
tailored to the problem at hand as the method proposed in
section 2.3.2.

For many dynamical systems of interest, the function
specifying the dynamics, f, consists of only a few terms. That is
to say, when represented in the appropriate basis, there is a sense
in which it is sparse. The key idea behind the SINDy method
is that if one supplies a rich enough set of candidate functions
for representing f, then the correct terms can be identified using
sparse regression techniques. The explicit steps are as follows.
First we collect a set of (possibly noisy) measurements of the
state x(t) and its derivative ẋ(t) at a sequence of points in
time, t1, t2, . . . , tm. These measurements are concatenated into
two matrices, the columns of which correspond to different
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FIGURE 3 | Visualizations of the ball trajectories for the second drop. (Top) Subsampled raw drop data for each ball. (Bottom left) Height for each ball as a function of

time. We also include the simulated trajectories of idealized balls with differing levels of drag (black and blue) and a ball with constant acceleration (red). (Bottom right)

A log-log plot of the displacement of each ball from its original position atop the bridge. Note that we have shifted the curves vertically and zoomed in on the later

segments of the time series to enable easier comparison. In this plot a ball falling at a constant rate (zero acceleration) will have a trajectory represented by a line with

slope one. A ball falling with constant acceleration will have a trajectory represented by a line with slope two. A ball with drag will have a trajectory which begins with

slope two and asymptotically approaches a line with slope one.

state variables and the rows of which correspond to points
in time.

X =











x(t1)
⊤

x(t2)
⊤

...

x(tm)
⊤











=











x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
...

. . .
...

x1(tm) x2(tm) . . . xn(tm)











,

Ẋ =











ẋ(t1)
⊤

ẋ(t2)
⊤

...

ẋ(tm)
⊤











=











ẋ1(t1) ẋ2(t1) . . . ẋn(t1)
ẋ1(t2) ẋ2(t2) . . . ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)











.

Next we specify a set of candidate functions, {φi(x) : i =
1, 2, . . . , p}, with which to represent f. Examples of candidate
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FIGURE 4 | The amount of time taken by each ball to travel a fixed distance as a function of ball density.

functions include monomials up to some finite degree,
trigonometric functions, and rational functions. In practice the
selection of these functions can be informed by the practitioner’s
prior knowledge about the system beingmeasured. The candidate
functions are evaluated on X to construct a library matrix

8(X) =



φ1(X) φ2(X) . . . φp(X)



 .

Note that each column of8(X) corresponds to a single candidate
function. Here we have overloaded notation and interpret φ(X) as
the column vector obtained by applying φi to each row of X. It is
assumed that each component of f can be represented as a sparse
linear combination of such functions. This allows us to pose a
regression problem to be solved for the coefficients used in these
linear combinations:

Ẋ = 8(X)4. (2)

We adopt MATLAB-style notation and use 4(:,j) to denote the j-
th column of 4. The coefficients specifying the dynamical system
obeyed by xj are stored in 4(:,j):

ẋj = fj(x) = 8

(

x⊤
)

4(:,j),

where 8

(

x⊤
)

is to be interpreted as a (row) vector of symbolic
functions of components of x. The full system of differential
equations is then given by

ẋ = f(x) = 4
⊤

(

8

(

x⊤
))⊤

.

For concreteness we supply the following example. With
the candidate functions

{

1, x1, x2, x1x2, x
2
1, x

2
2

}

the Lotka-
Volterra equations

{

ẋ1 = αx1 − βx1x2,

ẋ2 = δx1x2 − γ x2

can be expressed as

ẋ =

[

ẋ1
ẋ2

]

= 4
⊤

(

8

(

x⊤
))⊤

=

[

0 α 0 −β 0 0
0 0 −γ δ 0 0

]

















1
x1
x2
x1x2
x21
x22

















Were we to obtain pristine samples of x(t) and ẋ(t) we
could solve (2) exactly for 4. Furthermore, assuming we chose
linearly independent candidate functions and avoided collecting
redundant measurements, 4 would be unique and would exhibit
the correct sparsity pattern. In practice, however, measurements
are contaminated by noise and we actually observe a perturbed
version of x(t).

Inmany cases ẋ(t) is not observed directly andmust instead be
approximated from x(t), establishing another source of error. The
previously exact Equation (2), to be solved for 4 is supplanted by
the approximation problem

Ẋ ≈ 8(X)4.

To find 4 we solve the more concrete optimization problem

min
4

1

2

∥

∥Ẋ−8(X)4
∥

∥

2

F
+�(4), (3)

where �(·) is a regularization term chosen to promote sparse
solutions and ‖ · ‖F is the Frobenius norm. Note that because
any given column of 4 encodes a differential equation for a
single component of x, each column generates a problem that is
decoupled from the problems associated with the other columns.
Thus, solving (3) consists of solving n separate regularized least
squares problems. Row i of 4 contains the coefficients of library
function φi for each governing equation.
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The most direct way to enforce sparsity is to choose � to
be the ℓ0 penalty, defined as ‖M‖0 =

∑

i,j |sign(Mij)|. This

penalty simply counts the number of non-zero entries in a matrix
or vector. However, using the ℓ0 penalty makes (3) difficult to
optimize because ‖·‖0 is non-smooth and non-convex. Another
common choice is the ℓ1 penalty defined by ‖M‖1 =

∑

i,j |Mij|.

This function is the convex relaxation of the ℓ0 penalty. The
LASSO, proposed in Tibshirani (1996), with coordinate descent
is typically employed to solve (3) with �(·) = ‖ · ‖1, but this
method can become computationally expensive for large data sets
and often leads to incorrect sparsity patterns (Su et al., 2017).
Hence we solve (3) using the sequential thresholded least-squares
algorithm proposed in Brunton et al. (2016), and studied in
further detail in Zheng et al. (2018). In essence, the algorithm
alternates between (a) successively solving the unregularized
least-squares problem for each column of 4 and (b) removing
candidate functions from consideration whose corresponding
components in 4 are below some threshold. This threshold or
sparsity parameter, is straightforward to interpret: no governing
equations are allowed to have any terms with coefficients of
magnitude smaller than the threshold. Crucially, it should be
noted that just because a candidate function is discarded for one
column of 4 (i.e., for one component’s governing equation) does
not mean it is removed from contention for the other columns.
A simple Python implementation of sequentially thresholded
least-squares is provided in the Supplementary Material.

We note that if we simulate falling objects with constant
acceleration, ẍ(t) = −9.8, or linear drag, ẍ(t) = −9.8+Dẋ(t), and
add no noise, then there is almost perfect agreement between the
true governing equations and the models learned by SINDy. The
Supplementary Material contains a more thorough discussion
of such numerical experiments and another example application
of SINDy.

SINDy has a number of well-known limitations. The biggest
of these is the effect of noise on the learned equations. If one does
not have direct measurements of derivatives of state variables,
then these derivatives must be computed numerically. Any noise
that is present in the measurement data is amplified when it
is numerically differentiated, leading to noise in both Ẋ and
8(X) in (3). In its original formulation, SINDy often exhibits
erratic performance in the face of such noise, but extensions
have been developed which handle noise more gracefully (Tran
and Ward, 2016; Schaeffer and McCalla, 2017). We discuss
numerical differentiation further in section 2.3.4. As with other
methods, each degree of freedom supplied to the practitioner
presents a potential source of difficulty. To use SINDy one
must select a set of candidate functions, a sparse regularization
function, and a parameter weighing the relative importance of
the sparseness of the solution against accuracy. An improper
choice of any one of these can lead to poor performance. The
set of possible candidate functions is infinite, but SINDy requires
one to specify a finite number of them. If one has any prior
knowledge of the dynamics of the system being modeled, it can
be leveraged here. If not, it is typically recommended to choose a
class of functions general enough to encapsulate a wide variety
of behaviors (e.g., polynomials or trigonometric functions). In
theory, sparse regression techniques should allow one to specify

a sizable library of functions, selecting only the relevant ones.
However, in practice, the underlying regression problem becomes
increasingly ill-conditioned as more functions are added. If
one wishes to explore an especially large space of possible
library functions it may be better to use other approaches, such
as symbolic regression with genetic algorithms (Bongard and
Lipson, 2007; Schmidt and Lipson, 2009). A full discussion of
how to pick a sparsity-promoting regularizer is beyond the scope
of this work. We do note that there have been recent efforts to
explore different methods for obtaining sparse solutions when
using SINDy (Champion et al., 2019). An appropriate value
for the sparsity hyperparameter can be obtained using cross-
validation. We note that the need to perform hyperparameter
tuning is by no means unique to SINDy. Virtually all machine
learning methods require some amount of hyperparameter
tuning. There are two natural options for target metrics during
cross-validation. The derivatives directly predicted by the linear
model can be compared against the measured (or numerically
computed) derivatives. Alternatively, the model can be fed into
a numerical integrator along with initial conditions to obtain
predicted future values for the state variables. These forecasts
can then be judged against the measured values. To achieve
a balance between model sparsity and accuracy, information
theoretic criteria, such as the Akaike information criteria (AIC)
or Bayes information criteria (BIC) can be applied (Mangan et al.,
2017).

2.3.2. Group Sparsity Regularization
The standard, unregularized SINDy approach attempts to learn
the dynamics governing each state variable independently. It
does not take into account prior information one may possess
regarding relationships between state variables. Intuitively
speaking, the balls in our data set (whiffle balls, perhaps,
excluded) are similar enough objects that the equations
governing their trajectories should include similar terms. In this
subsection we propose a group sparsity method which can be
interpreted as enforcing this hypothesis when seeking predictive
models for the balls.

We draw inspiration for our approach from the group LASSO
of Yuan and Lin (2006), which extends the LASSO. The classic
LASSO method solves the ℓ1 regularization problem

β = argmin
β

1

2
‖Xβ − Y‖22 + λ ‖β‖1 . (4)

which penalizes the magnitude of each component of β

individually. The group LASSO approach modifies (4) by
bundling sets of related entries of β together when computing the
penalty term. Let the entries of β be partitioned into G disjoint
blocks {β1,β2, . . . ,βG}, which can be treated as vectors. The
group LASSO then solves the following optimization problem

β = argmin
β

1

2
‖Xβ − Y‖22 + λ

G
∑

i=1

‖βi‖2 . (5)

In the case that the groups each consist of exactly one
entry of β , (5) reduces to (4). When blocks contain multiple
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Algorithm 1: A group sparsity algorithm for the sequential
thresholded least squares method.

Data: Ẋ ∈ R
m×d, 8(X) ∈ R

m×p, and δ > 0
Result: coefficient matrix 4 ∈ R

p×d

while not converged do
// Solve a least squares problem for

each state variable
for j← 1 to d do

4(:,j) ← argmin
ξ

1
2

∥

∥Ẋ−8(X)ξ
∥

∥

2

2
;

end

// Remove library functions with low
salience

for i← 1 to p do
if R(4(i,:)) < δ then

Delete 4(i,:) and 8(X)(:,i);
end

end

end

Replace deleted rows of 4 and deleted columns of 8(X)
with 0’s;

entries, the group LASSO penalty encourages them to be
retained or eliminated as a group. Furthermore, it drives
sets of unimportant variables to truly vanish, unlike the ℓ2

regularization function which merely assigns small but non-zero
values to insignificant variables.

We apply similar ideas in our group sparsity method for
the SINDy framework and force the models learned for each
ball to select the same library functions. Recall that the model
variables are contained in 4. To enforce the condition that each
governing equation should involve the same terms, we identify
rows of 4 as sets of variables to be grouped together. Borrowing
MATLAB notation again, we let 4(i,:) denote row i of 4. To
perform sequential thresholded least squares with the group
sparsity constraint we repeatedly apply the following steps until
convergence: (a) solve the least-squares problem (3) without a
regularization term for each column of 4 (i.e., for each ball), (b)
prune the library, 8(X), of functions which have low relevance
across most or all of the balls. This procedure is summarized in
Algorithm 1.
Here R is a function measuring the importance of a row of
coefficients. Possible choices for R include the ℓ1 or ℓ2 norm of
the input, themean ormedian of the absolute values of the entries
of the input, or another statistical property of the input entries,
such as the lower 25% quantile. In this work we use the ℓ1 norm.
Convergence is attained when no rows of 4 are removed. Note
that while all the models are constrained to be generated by the
same library functions, the coefficients in front of each can differ
from one model to the next. The hyperparameter δ controls the
sparsity of 4, though not as directly as the sparsity parameter for
SINDy. Increasing it will result in models with fewer terms and
decreasing it will have the opposite effect. Since we use the ℓ1

norm and there are 10 balls in our primary data set, rows of 4

whose average magnitude is <
δ

10 are removed.

Because the time series are all noisy, it is likely that some
the differential equations returned by the unregularized SINDy
algorithm will acquire spurious terms. Insisting that only terms
which most of the models find useful are kept, as with our group
sparsity method, should help to mitigate this issue. In this way
we are able to leverage the fact that we have multiple trials
involving similar objects to improve the robustness of the learned
models to noise. Even if some of the unregularized models from
a given drop involve erroneous library functions, we might still
hope that, on average, the models will pick the correct terms.
Our approach can also be viewed as a type of ensemble method
wherein a set of models is formed from the time series of a given
drop, they are allowed to vote on which terms are important,
then the models are retrained using the constrained set of library
functions agreed upon in the previous step.

2.3.3. Equations of Motion
Even the simplest model for the height, x(t), of a falling object
involves an acceleration term. Consequently, we impose the
restriction that our model be a second order (autonomous)
differential equation:

ẍ = f (x, ẋ). (6)

The SINDy framework is designed to work with first order
systems of differential equations, so we convert (6) into such
a system:

{

ẋ = v

v̇ = g(x, v).

We then apply SINDy, with x =
[

x v
]⊤

and f (x) =
[

v g(x)
]⊤

,
and attempt to learn the function g. In fact, because we already
know the correct right-hand side function for ẋ, we need only
concern ourselves with finding an expression for ˙v.

Our non-linear library consists of polynomials in x and v up
to degree three, visualized in Figure 5:

8(X) =



1 x(t) v(t) x(t)v(t) x(t)2 v(t)2 . . . v(t)3



 . (7)

Assuming that the motion of the balls is completely determined
by Newton’s second law, F = ma = mẍ, we may interpret the
SINDy algorithm as trying to discover the force (after dividing by
mass) that explains the observed acceleration.

Thoughwe know now that the acceleration of a ball should not
depend on its height, we seek to place ourselves in a position of
ignorance analogous to the position scientists would have found
themselves in centuries ago. We leave it to our algorithm to sort
out which terms are appropriate. In practice onemight selectively
choose which functions to include in the library based on domain
knowledge, or known properties of the system being modeled.

2.3.4. Numerical Differentiation
In order to form the non-linear library (7) and the derivative
matrix, Ẋ, we must approximate the first two derivatives of
the height data from each drop. Applying standard numerical
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FIGURE 5 | Visualizations of non-linear library functions corresponding to the second green basketball drop. If the motion of the balls is described by Newton’s

second law, F = mẍ, then these functions can be interpreted as possible forcing terms constituting F.

differentiation techniques to a signal amplifies any noise that
is present. This poses a serious problem since we aim to fit
a model to the second derivative of the height measurements.
Because the amount of noise in our data set is non-trivial, two
iterations of numerical differentiation will create an intolerable
noise level. To mitigate this issue we apply a Savitzky-Golay
filter from Savitzky and Golay (1964) to smooth the data before
differentiating via second order centered finite differences. Points
in a noisy data set are replaced by points lying on low-degree
polynomials which are fit to localized patches of the original data
with a least-squares method. Other available approaches include
using a total variation regularized derivative as in Brunton et al.
(2016) or working with an integral formulation of the governing
equations as described in Schaeffer and McCalla (2017). We
perform a detailed analysis of the error introduced by smoothing
and numerical differentiation in the Supplementary Material.

3. RESULTS

3.1. Learned Terms
In this section we compare the terms present in the governing
equations identified using the unregularized SINDy approach
with those present when the group sparsity constraint is imposed.
We train separate models on the two drops. The two algorithms
are given one sparsity hyperparameter each to be applied for
all balls in both drops. The group sparsity method used a
value of 1.5 and the other method used a value of 0.04.
These parameters were chosen by hand to balance allowing the
algorithms enough expressiveness to model the data, while being
restrictive enough to prevent widespread overfitting; increasing
them produces models with one or no terms and decreasing
them results in models with large numbers of terms. See the
Supplementary Material for a more detailed discussion of our
choice of sparsity parameter values.

Figure 6 summarizes the results of this experiment. Learning
a separate model for each ball independent of the others allows
many models to fall prey to overfitting. Note how most of
the governing equations incorporate an extraneous height term.
On the other hand, two of the learned models involve only
constant acceleration and fail to identify any effect resembling
air resistance.

The method leveraging group sparsity is more effective at
eliminating extraneous terms and selecting only those which are
useful across most balls. Moreover, only the constant and velocity
terms are active, matching our intuition that the dominant forces
at work are gravity and drag due to air resistance. Interestingly,
the method prefers a linear drag term, one proportional to v,
to model the discrepancy between measured trajectories and
constant acceleration. Even the balls which don’t include a

velocity term in the unregularized model have this term when
group sparsity regularization is employed. This shows that
group penalty can simultaneously help to dismiss distracting
candidate functions and promote correct terms that may have
been overlooked. Is is also reassuring to see that, compared to
the other balls, the whiffle ball models have larger coefficients on
the v terms. Their accelerations slow at a faster rate as a function
of their velocities than do the other balls.

The actual governing equations learned with the group
sparsity method are provided in Table 2. Every equation has
a constant acceleration term within a few meters per second
squared of −9.8, but few are quite as close as one might
expect. Thus even with a stable method of inferring governing
equations, based on this data one would not necessarily conclude
that all balls experience the same (mass-divided) force due
to gravity. Note also that some of the balls mistakenly adopt
positive coefficients multiplying v. The balls for which this
occurs tend to be those whose motion is well-approximated
by constant acceleration. Because the size of the discrepancy
between a constant acceleration model and these balls’ measured
trajectories is not much larger than the amount of error suspected
to be present in the data, SINDy has a difficult time choosing an
appropriate value for the v terms. One would likely need higher
resolution, higher accuracy measurement data in order to obtain
reasonable approximations of the drag coefficients or v2 terms.

At 65◦F, the density of air ρ at sea level is 1.211kg/m3

White and Chul (2011) and its dynamic viscosity µ is 1.82 ×
10−5kg/(m s). The Reynolds number for a ball with diameter D
and velocity v will then be

Re = 0.667Dv× 105.

Table 1 gives the maximum velocities of each ball over the
two drops and the corresponding Reynolds numbers. Note that
these are the maximum Reynolds numbers, not the Reynolds
numbers over the entire trajectories. With velocities under 30m/s
and diameters from 0.04 to 0.22 m we should expect Reynolds
numbers with magnitudes ranging from 104 to 105 over the
course of the balls’ trajectories (apart from the very beginnings
of each drop). The average trajectory consists of about 49
measurements, just over one of which corresponds to a Reynolds
number that is O

(

103
)

. About 13 of these measurements are
associated with Reynolds numbers on the order of 104 and
roughly 33 with Reynolds numbers of magnitude 105. Note that
this means the majority of data points were collected when the
balls were in the quadratic drag regime. Based on Figure 1 we
should expect balls with Reynolds numbers < 105 to have drag
coefficients of magnitude about 0.5. Figure 1 suggests that balls
experiencing higher Reynolds numbers, such as the volleyball and
basketballs should have smaller drag coefficients varying between
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FIGURE 6 | Magnitudes of the coefficients learned for each ball by models trained on one drop either with or without the proposed group sparsity approach. The

unregularized approach used a sparsity parameter of 0.04 and the group sparsity method used a value of 1.5. Increasing this parameter slightly in the unregularized

case serves to push many models to use only a constant function.

0.05 and 0.3 depending on their smoothness. The predicted
(linear) drag coefficients for the volleyball lie in this range
while the basketballs’ learned drag coefficients are erroneously
positive. If the basketballs are treated as being smooth, their drag
coefficients predicted by Figure 1 may be too small for SINDy
to identify given the noisy measurement data. A similar effect
seems to occur for the golf ball. Though it experiences a lower
Reynolds number, its dimples induce a turbulent flow over its

surface, granting it a small drag coefficient at a lower Reynolds
number. Overall, the linear drag coefficients predicted by the
model are at least within a physically reasonable range, with some
outliers having incorrect signs.

Next we turn to the simulated data set. We perform the
same experiment as with the real world data: we apply both
versions of SINDy to a series of simulated ball drops and then
note the models that are inferred. Our findings are shown in
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TABLE 2 | Models learned by applying SINDy with group sparsity regularization

(sparsity parameter δ = 1.5) to each of the two ball drops.

Ball First drop Second drop

Golf ball ẍ = −9.34+ 0.05v ẍ = −9.44− 0.03v

Baseball ẍ = −8.51+ 0.14v ẍ = −7.56+ 0.14v

Tennis ball ẍ = −9.08− 0.13v ẍ = −8.64− 0.12v

Volleyball ẍ = −8.11− 0.08v ẍ = −9.64− 0.23v

Blue basketball ẍ = −6.71+ 0.15v ẍ = −7.50+ 0.07v

Green basketball ẍ = −7.36+ 0.10v ẍ = −8.05+ 0.02v

Whiffle ball 1 ẍ = −8.24− 0.34v ẍ = −9.44− 0.43v

Whiffle ball 2 ẍ = −9.81− 0.56v ẍ = −9.79− 0.48v

Yellow whiffle ball ẍ = −8.50− 0.47v ẍ = −8.45− 0.46v

Orange whiffle ball ẍ = −7.83− 0.35v ẍ = −8.03− 0.42v

Figure 7. We need not say much about the standard approach:
it does a poor job of identifying coherent models for all levels
of noise. The group sparsity regularization is much more robust
to noise, identifying the correct terms and their magnitudes for
noise levels up to half a meter (in standard deviation). For more
significant amounts of noise, even this method is unable to decide
between adopting x or v into its models. Perhaps surprisingly,
if a v2 term with coefficient ∼ 0.1 is added to the simulated
model1, the learned coefficients look nearly identical. Although
this additional term visibly alters the trajectory (before it is
corrupted by noise), none of the learned equations capture it,
even in the absence of noise. One reason for this is because the
coefficient multiplying v2 is too small to be retained during the
sequential thresholding least squares procedure. If we decrease
the sparsity parameter enough to accommodate it, the models
also acquire spurious higher order terms. To infer the v2 term
using the approach outlined here, one would need to design and
carry out additional experiments which better isolate this effect,
perhaps by using a denser fluid or by dropping a ball with a larger
diameter of relatively small mass, thereby increasing the constant
multiplying v2CD in (1). A much more realistic drag force based
on (1) can be used to simulate falling balls. Such a drag force will
shift from being linear to quadratic in v over the course of a ball’s
trajectory. In this scenario neither version of SINDy identifies a v2

term, regardless of how much many measurements are collected,
but both detect linear drag, exhibiting similar performance as
is shown here. A more detailed discussion can be found in the
Supplementary Material.

3.2. Model Error
We now turn to the problem of testing the predictive
performance of models learned from the data. We benchmark
four models of increasing complexity on the drop data. The
model templates are as follows:

1. Constant acceleration: ẍ = α

2. Constant acceleration with linear drag: ẍ = α + βv

1It should be noted that, based on the balls’ approximated velocities, the largest

coefficient multiplying v2 (i.e., 1
2mρACD from (1), wherem is the mass of a ball), is

< 0.08 in magnitude, across all the trials.

3. Constant acceleration with linear and quadratic drag: ẍ =
α + βv+ γ v2

4. Overfit model: Set a low sparsity threshold and allow SINDy
to fit a more complicated model to the data

The model parameters α, β , and γ are learned using the
SINDy algorithm using libraries consisting of just the terms
required by the templates. The testing procedure consists of
constructing a total of 80 models (4 templates × 10 balls × 2
drops) and then using them to predict a quantity of interest.
First a template model is selected then it is trained using one
ball’s trajectory from one drop. Once trained, the model is
given the initial conditions (initial height and velocity) from
the same ball’s other drop and tasked with predicting the ball’s
height after 2.8 s have passed2. Recall from Figure 4 that the
same ball dropped twice from the same height by the same
person on the same day can hit the ground at substantially
different times. In the absence of any confounding factors, the
time it takes a sphere to reach the ground after being released
will vary significantly based on its initial velocity. Since there
is sure to be some error in estimating the initial height and
velocity of the balls, we should expect only modest accuracy
in predicting their landing times. We summarize the outcome
of this experiment in Figure 8. The error tends to decrease
significantly between model one and model two, marking a
large step in explaining the discrepancy between a constant
acceleration model and observation. There does not appear to
be a large difference between the predictive powers of models
two and three as both seem to provide similar levels of accuracy.
Occam’s razor might be invoked here to motivate a preference
for model two over model three since it is simpler and has
the same accuracy. This provides further evidence that the level
of noise and error in the data set is too large to allow one
to accurately infer the dynamics due to v2. Adding additional
terms to the equations seems to weaken their generalizability
somewhat, as indicated by the slight increase in errors for
model four.

Figure 9 visualizes the forecasts of the learned equations
for two of the balls along with their deviation from the true
measurements. The models are first trained on data from drop
2, then they are given initial conditions from the same drop
and made to predict the full trajectories. There are a few
observations to be made. The constant acceleration models
(model one) are clearly inadequate, especially for the whiffle
ball. Their error is much higher than that of the other models
indicating that they are underfitting the data, though constant
acceleration appears to be a reasonable approximation for a
falling golf ball. Models two through four all seem to be
imitating the trajectories to about the level of the measurement
noise, which is about the most we could hope of them. It is
difficult to say which model is best by looking at these plots
alone. To break the tie we can observe what happens if we

2This number corresponds to the shortest set of measurement data across all the

trials. All models are evaluated at 2.8 s to allow for meaningful comparison of error

rates between models.
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FIGURE 7 | A comparison of coefficients of the models inferred from the simulated falling balls. The top row shows the coefficients learned with the standard SINDy

algorithm and the bottom row the coefficients learned with the group sparsity method. η indicates the amount of noise added to the simulated ball drops. The

standard approach used a sparsity parameter of 0.05 and the group sparsity method used a value of 1.5. The balls were simulated using constant acceleration and

the following respective coefficients multiplying v: −0.1, −0.3, −0.3, −0.5, −0.7.

FIGURE 8 | The error in landing time predictions for the four models. The results for the models trained on drops one and two are shown on the left and right,

respectively. We have intentionally jittered the horizontal positions of the data points to facilitate easier comparison.
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FIGURE 9 | Predicted trajectories and error for the Golf Ball (top) and Whiffle Ball 2 (bottom). On the left we compare the predicted trajectories against the true path

and on the right we show the absolute error for the predictions. The “Observed” lines in the error plots show the difference between the original height measurements

and the smoothed versions used for differentiation. They give an idea of the amount of intrinsic measurement noise. All models plotted were trained and evaluated on

drop 2.

evaluate the models in “unfamiliar” circumstances and force
them to extrapolate.

Supplying the same initial conditions as before, with initial
height shifted up to avoid negative heights, we task the models
with predicting the trajectories out to 15 s. The results are
shown in Figure 10. All four models fit the observed data itself
fairly well. However, 6 or 7 s after the balls are released, a
significant degree of separation has started to emerge between
the trajectories. The divergence of the model four instances is
the most abrupt and the most pronounced. The golf ball’s model
grows without bound after 7 s. It is here that the danger of
overfit, high-order models becomes obvious. In contrast, the
other models are better behaved. For the golf ball models one
through three agree relatively well, perhaps showing that it is
easier to predict the path of a falling golf ball than a falling whiffle
ball. That model two is so similar to the constant acceleration
of model one also suggests that the golf ball experiences very
little drag. The v2 term for model three has a coefficient which
is erroneously positive and essentially cancels out the speed
dampening effects of the drag term, leading to an overly rapid
predicted descent. Models two and three agree extremely well
for the whiffle ball as the learned v2 coefficient is very small
in magnitude.

4. DISCUSSION AND CONCLUSIONS

In this work, we have revisited the classic problem of modeling
the motion of falling objects in the context of modern machine

learning, sparse optimization, and model selection. In particular,
we develop data-driven models from experimental position
measurements for several falling spheres of different size,
mass, roughness, and porosity. Based on this data, a hierarchy
of models are selected via sparse regression in a library of
candidate functions that may explain the observed acceleration
behavior. We find that models developed for individual ball-
drop trajectories tend to overfit the data, with all models
including a spurious height-dependent force and lower-density
balls resulting in additional spurious terms. Next, we impose the
assumption that all balls must be governed by the same basic
model terms, perhaps with different coefficients, by considering
all trajectories simultaneously and selecting models via group
sparsity. These models are all parsimonious, with only two
dominant terms, and they tend to generalize without overfitting.

Although we often view the motion of falling spheres as a
solved problem, the observed data is quite rich, exhibiting a
range of behaviors. In fact, a constant gravitational acceleration
is not immediately obvious, as the falling motion is strongly
affected by complex unsteady fluid drag forces; the data alone
would suggest that each ball has its own slightly different gravity
constant. It is interesting to note that our group sparsity models
include a drag force that is proportional to the velocity, as
opposed to the textbookmodel that includes the square of velocity
that is predicted for a constant drag coefficient. However, in
reality the drag coefficient decreases with velocity, as shown in
Figure 1, which may contribute to the force being proportional
to velocity. Even when a higher fidelity drag model is used—
a model containing rational terms missing from and poorly
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FIGURE 10 | Fifteen seconds forecasted trajectories for the Golf Ball (left) and Whiffle Ball 2 (right) based on the second drop. Part of the graph of Model 4 (red) is

omitted in the Golf Ball plot because it diverged to −∞.

approximated by the polynomial library functions—to collect
measurements uncorrupted by noise, SINDy struggles to identify
coherent dynamics. In general SINDy may not exhibit optimal
performance if not equipped with a library of functions in
which dynamics can be represented sparsely. We emphasize that
although the learned models tend to fit the data relatively well,
it would be a mistake to assume that they would retain their
accuracy for Reynolds numbers larger than those present in the
training data. In particular we should expect the models to have
trouble extrapolating beyond the drag crisis where the dynamics
change considerably. This weakness is inherent in virtually all
machine learning models; their performance is best when they
are applied to data similar to what they have already seen and
dubious when applied in novel contexts. That is to say they excel
at interpolation, but are often poor extrapolators.

Collecting a richer set of data should enable the development
of refined models with more accurate drag physics3, and this is
the subject of future work. In particular, it would be interesting
to collect data for spheres falling from greater heights, so that
they reach terminal velocity. It would also be interesting to
systematically vary the radius, mass, surface roughness, and
porosity, for example to determine non-dimensional parameters.
Finally, performing similar tests in other fluids, such as water,
may also enable the discovery of added mass forces, which are
quite small in air. Such a dataset would provide a challenging
motivation for future machine learning techniques.

We were able to draw upon previous fluid dynamics
research to establish a “ground truth” model against which
to compare the models proposed by SINDy. However, in
less mature application areas one may not be fortunate
enough to have a theory-backed set of reference equations,
making it challenging to assess the quality of learned models.
Many methods in numerical analysis come equipped with
a priori or a posteriori error estimators or convergence
results to give one an idea of the size of approximation
errors. Similarly, in statistics goodness of fit estimators exist
to help guide practitioners about what type of performance
they should expect from various models. A comprehensive

3We note that in order to properly resolve these more complex drag dynamics with

SINDy the candidate library would likely need to be enriched.

study into whether similar techniques could be adopted for
application to SINDy would be an interesting topic for future
research efforts.

We believe that it is important to draw a parallel between
great historical scientific breakthroughs, such as the discovery
of a universal gravitational constant, and modern approaches in
machine learning. Although computational learning algorithms
are becoming increasingly powerful, they face many of the same
challenges that human scientists have faced for centuries. These
challenges include trade offs between model fidelity and the
quality and quantity of data, with inaccurate measurements
degrading our ability to disambiguate various physical effects.
With noisy data, one can only expect model identification
techniques to uncover the dominant, leading-order effects,
such as gravity and simple drag; for subtler effects, more
accurate measurement data is required. Modern learning
architectures are often also prone to overfitting without careful
cross-validation and regularization, and models that are both
interpretable and generalizable come at a premium. Typically
the regularization encodes some basic human assumption,
such as sparse regularization, which promotes parsimony in
models. More fundamentally, it is not always clear what
should be measured, what terms should be modeled, and
what parameters should be varied to isolate the effect one
wishes to study. Historically, this type of scientific inquiry
has been driven by human curiosity and intuition, which
will be critical elements if machine intelligence is to advance
scientific discovery.
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Complex global behavior patterns can emerge from very simple local interactions

between many agents. However, no local interaction rules have been identified that

generate some patterns observed in nature, for example the rotating balls, rotating

tornadoes and the full-core rotating mills observed in fish collectives. Here we show that

locally interacting agents modeled with a minimal cognitive system can produce these

collective patterns. We obtained this result by using recent advances in reinforcement

learning to systematically solve the inverse modeling problem: given an observed

collective behavior, we automatically find a policy generating it. Our agents are modeled

as processing the information from neighbor agents to choose actions with a neural

network and move in an environment of simulated physics. Even though every agent is

equipped with its own neural network, all agents have the same network architecture

and parameter values, ensuring in this way that a single policy is responsible for the

emergence of a given pattern. We find the final policies by tuning the neural network

weights until the produced collective behavior approaches the desired one. By using

modular neural networks with modules using a small number of inputs and outputs,

we built an interpretable model of collective motion. This enabled us to analyse the

policies obtained. We found a similar general structure for the four different collective

patterns, not dissimilar to the one we have previously inferred from experimental zebrafish

trajectories; but we also found consistent differences between policies generating the

different collective pattern, for example repulsion in the vertical direction for the more

three-dimensional structures of the sphere and tornado. Our results illustrate how new

advances in artificial intelligence, and specifically in reinforcement learning, allow new

approaches to analysis and modeling of collective behavior.

Keywords: collective behavior, multi agent reinforcement learning, deep learning, interpretable artificial

intelligence, explainable artificial intelligence

1. INTRODUCTION

Complex collective phenomena can emerge from simple local interactions of agents who lack the
ability to understand or directly control the collective [1–14]. Examples include cellular automata
for pattern generation [3, 6, 10], self-propelled particles (SPP) [2, 4, 5, 7, 11, 13], and ant colony
models for collective foraging and optimization [8, 12].

If in one of such systems we observe a particular collective configuration, how can we infer the
local rules that produced it? Researchers have relied on the heuristic known as the modeling cycle
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[15, 16]. The researcher first proposes a set of candidate local rules
based on some knowledge of the sensory and motor capabilities
of the agents. The rules are then numerically simulated and
the results compared with the desired outcome. This cycle is
repeated, subsequently changing the rules until an adequate
match between simulated trajectories and the target collective
configuration is found.

Studies in collective behavior might benefit from a more
systematic method to find local rules based on known global
behavior. Previous work has considered several approaches.
Several authors have started with simple parametric rules of local
interactions and then tuned the parameters of the interaction
rules via evolutionary algorithms based on task-specific cost
functions [17, 18]. When the state space for the agents is small, a
more general approach is to consider tabular rules, which specify
a motor command for every possible sensory state [19].

These approaches have limitations. Using simple parametric
rules based on a few basis functions producesmodels with limited
expressibility. Tabular mapping has limited generalization ability.
As an alternative not suffering from these problems, neural
networks have been used as the function approximator [20–
22]. Specifically, neural network based Q-learning has been used
to study flocking strategies [23] and optimal group swimming
strategies in turbulent plumes [24]. Q-learning can however run
into optimization problems when the number of agents is large
[25]. Learning is slow if we use Q-functions of collective states
(e.g., the location and orientation of all agents) and actions,
because the dimensionality scales with the number of agents.
When implementing a separate Q-function for the state and
action of each agent, the learning problem faced by each agent
is no longer stationary because other agents are also learning
and changing their policies simultaneously [26]. This violates
the assumptions of Q-learning and can lead to oscillations or
sub-optimal group level solutions [27].

Despite these difficulties, very recent work using inverse
reinforcement learning techniques has been applied to find
interaction rules in collectives [28, 29]. These approaches
approximate the internal reward function each agent is following,
and require experimental trajectories for all individuals in
the collective. Here, we follow a different approach in which
we aim at finding a single policy for all the agents in the
collective, and with the only requirement of producing a desired
collective configuration.

Our approach includes the following technical ingredients.
We encode the local rule as a sensorimotor transformation,
mathematically expressed as a parametric policy, which maps the
agent’s local state into a probability distribution over an agent’s
actions. As we are looking for a single policy, all agents have
the same parametric policy, with the same parameter values,
identically updated to maximize a group level objective function
(total reward during a simulated episode) representing the
desired collective configuration. A configuration of high reward
was searched for directly, without calculating a group-level value
function and thus circumventing the problem of an exploding
action space. For this search, we use a simple algorithm of the
class of Evolution Strategies (ES), which are biologically-inspired
algorithms for black-box optimization [30, 31]. We could have

chosen other black-box optimization algorithms instead, such as
particle swarm algorithms [32]. However, this ES algorithm has
recently been successful when solving Multi-Agent RL problems
[33], and when training neural-network policies for hard RL
problems [34].

We applied this approach to find local rules for various
experimentally observed schooling patterns in fish. Examples
include the rotating ball, the rotating tornado [35], the full-
core rotating mill [36], and the hollow-core mill [37]. To our
knowledge, with the exception of the hollow-core mill [38, 39],
these configurations have not yet been successfullymodeled using
SPP models [11].

2. METHODS

We placed the problem of obtaining local rules of motion
(policies) that generate the desired collective patterns in
the reinforcement learning framework [40]. As usual in
reinforcement learning, agents learn by maximizing a reward
signal obtained from their interaction with the environment in a
closed-loopmanner, i.e., the learning agents’s actions influence its
later inputs Figure 1. To describe this interaction, it is necessary
to specify a model of the agents and the environment, a reward
function, a policy representation and a method to find the
gradient of the reward function with respect to the parameters
of the policy. Both the environment update and the reward are
history-independent, and thus can be described in the framework
of multi-agent Markov decision processes [41]. We describe
the four components (agent and environment model, reward
function, policy parameterization, and learning algorithm) in the
following subsections.

2.1. A Model of the Agent and the
Environment
We model fish as point particles moving trough a viscous three-
dimensional environment. In this section, we explain how we
update the state of each and every fish agent.

Let us define a global reference frame, with Z axis parallel
to the vertical, and X and Y in a horizontal plane. Length is
expressed in an arbitrary unit, which we call body length (BL)
because it corresponds to the body length of agents in the retina
experiments that we describe in the Supplementary Text.

In this reference frame, we consider a fish agent moving with
a certain velocity. We describe this velocity as three numbers: the
speed V , elevation angle θ (i.e., its inclination angle is π

2 − θ) and
azimuth angle φ. In the next time step, we update the X, Y , and Z
coordinates of the fish as

X(t + 1) = X(t)+ δ V(t) cosφ(t) cos θ(t), (1)

Y(t + 1) = Y(t)+ δ V(t) sinφ(t) cos θ(t), (2)

Z(t + 1) = Z(t)+ δ V(t) sin θ(t), (3)

where δ corresponds to the duration of a time step (see Table 1
and Table S2 for parameter values).

The elevation angle, azimuth angle change, and speed change
are updated based on three outputs of the policy network, p1,
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FIGURE 1 | Framework to obtain an interaction model producing a desired collective behavior. Upper: The policy network is a neural network that transforms the

observation of an agent into its action. Its parameters are the same for all agents and chosen to produce a target collective behavior. For each focal fish (purple), the

observation used to generate actions is formed by: the horizontal and vertical components of the focal fish, plus the three components of the relative position and

three components of the absolute velocity of each of the neighbors. In the diagram, a single example neighbor fish is shown (green). From the observations of each

focal fish, the policy network generates an action for each fish, modifying their heading and speed in the next time step according to the physics imposed for the

environment. The new locations, velocities and orientations define a new state. Lower: Repeating the loop described above a number of times, we obtain a trajectory

for each fish. We compare the trajectories with the selected desired configuration (rotating sphere, rotating tornado, rotating hollow-core mill and rotating full-core mill)

producing a reward signal that it is used to change the parameters of the policy network.

TABLE 1 | Environment parameters described in the methods.

α (viscous drag) 1

1Vmax 6.75 BL s−1

1φmax
10π

16 rad s−1

θmax
π

3 rad

p2, and p3, each bounded between 0 and 1. The three outputs
of the policy network are independently sampled at time t from
a distribution determined by the observation at time step t (see
section 2.3).

The azimuth, φ, is updated using the first output of the
policy, p1:

φ(t + 1) = φ(t)+ δ 1φmax 2

(

p1 −
1

2

)

, (4)

with 1φmax the maximum change in orientation per unit time,
and δ is the time step duration.

The elevation angle, θ , is calculated based on the second
output of the policy network, p2, as

θ(t) = θmax 2

(

p2 −
1

2

)

. (5)

where the maximum elevation is θmax

Finally, the speed change is the sum of two components: a
linear viscous drag component (with parameter α) and an active
propulsive thrust determined by the third output of the policy
network, p3,

V(t + 1) = V(t)+ δ

(

1Vmax p3 − αV(t)

)

. (6)

The parameter 1Vmax is the maximum active change of speed
of a fish. This equation for the change in velocity captures that
deceleration in fish is achieved through the passive action of
viscous forces [42].

At the beginning of each simulation, we initialize the positions
and velocities of all fish randomly (see Supplementary Text for
details). The same state update Equations (1)–(6) are applied
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identically to all fish while taking into account that each one has
a different position, speed, orientation and neighbors.

2.2. Reward Function
In our simulations, the final behavior to which the group
converges is determined by the reward function. We
aim to model four different collective behaviors, all of
which have been observed in nature. These behaviors are
called the rotating ball [16], the rotating tornado [35], the
rotating hollow core mill [11, 37], and the rotating full core
mill [36].

At each time step, the configuration of agents allows
to compute an instantaneous group level reward r(t).
The objective of the reinforcement learning algorithm is
to find ways to maximize the reward R in the episode,
which is the sum of r(t) over the N steps of simulation
time. The instantaneous reward r(t) is composed of several
additive terms. In this section we will explain the terms
used in the instantaneous reward function for the rotating
ball, and in Supplementary Text we give mathematical
expressions for the terms corresponding to the four
collective structures.

The first term is composed of collision avoidance rewards, rc.
It provides an additive negative reward for every pair of fish (i, j)
based on their mutual distance di,j. Specifically, for each neighbor
we use a step function that is zero if di,j > Dc and −1 otherwise.
This term is meant to discourage the fish from moving too close
to one another.

The second term is an attraction reward, ra, which is negative
and proportional to the sum of the cubed distances of all fish
from the center of mass of the group. This attraction reward
will motivate the fish to stay as close to the center of mass as
possible while avoiding mutual collisions due to the influence of
the collision reward. Together with rc, it promotes the emergence
of a dense fish ball.

The third term in the instantaneous reward, rr , is added to
promote rotation. We calculate for each fish i its instantaneous
angular rotation about the center of mass in the X − Y plane,
�i. The rotation term, rr , is the sum of beta distributions of that
angular rotation across all fish.

The fourth and final term, rv, penalizes slow configurations. It
is a step function that is 0 if the mean speed is above Vmin and
−1 otherwise. Vmin is small enough to have a negligible effect
in the trained configuration, but large enough to prevent the
agents from not moving. As such, this last term encourages the
agents to explore the state-action space by preventing them from
remaining still.

The reward functions designed to encourage the emergence
of a rotating tornado and the rotating mills are described in the
Supplementary Text but they in general consist of similar terms.

Unlike previous work in which each agent is trying to
maximize an internal reward function [28, 29], we defined the
reward functions globally. Although each agent is observing and
taking actions independently, the collective behavior is achieved
by rewarding the coordination of all the agents, and not their
individual behaviors.

2.3. The Policy Network
We parameterize our policy as a modular neural network with
sigmoid activation functions, Figure 2. In our simulations, all fish
in the collective are equipped with an individual neural network.
Each network receives the state observed by the corresponding
agent and outputs an action that will update its own position
and velocity.

All the networks have the sameweight values, but variability in
the individual behaviors is still assured for two reasons. First, we
use stochastic policies, which makes sense biologically, because
the same animal can react differently to the same stimulus.
In addition, a stochastic policy enables a better exploration of
the state-action space [43]. Second, different fish will still act
following different stochastic distributions if they have different
surroundings. In the next section we will describe these networks
and the implementation of stochasticity in the policy.

2.3.1. Inputs and Outputs
At each time step, the input to the network is information about
the agent surroundings. For each focal fish, at every time step
we consider an instantaneous frame of reference centered on the
focal fish, with the z axis parallel to the global Z axis, and with
the y axis along the projection of the focal velocity in the X − Y
plane. For each neighbor, the variables considered are xi, yi, zi
(the components of the neighbor i position in the new frame
of reference) and vx,i, vy,i, vz,i (the components of the neighbor
velocity in the new frame of reference). In addition, we also use
vy and vz (the components of the focal fish velocity in the new
frame of reference). Please note that the frame is centered in the
focal fish, but it does not move nor rotate with it, so all speeds are
the same as in the global frame of reference.

The policy network outputs three numbers, p1, p2, and p3 (see
next section for details), that are then used to update the agent’s
azimuth, elevation angle and speed, respectively.

2.3.2. Modular Structure
To enable interpretability, we chose a modular structure for the
policy neural network. Similar to our previous work [44], we
chose a network architecture with two modules, Figure 2. Both
modules have the 8 inputs we detailed above and two hidden
layers of 100 and 30 neurons.

The first module, the pairwise-interaction module, contains 6
output neurons, Figure 2A. For each neighbor i, they produce
6 outputs {p

µ

j,i, p
σ

j,i}j=1,2,3. The outputs are symmetrized with

respect to reflections in the x − y and y − z planes, with the
exception of p1,i (mean azimuth angle change, anti-symmetrized
with respect to the x − y plane) and p2,i (mean elevation change,
anti-symmetrized with respect to the y− z plane).

The previous values, {p
µ

j,i, p
σ

j,i}j=1,2,3, encode the mean and the

scaled variance of three normal distributions (clipped between 0
and 1) used to sample three variables,

pj,i ∼ N(p
µ

j,i, 0.48 p
σ

j,i + 0.02). (7)

For each neighbor, i, we sample values of p1,i, p2,i and p3,i
independently from the respective distributions, Figure 2B.
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FIGURE 2 | Modular structure of the policy network. (A) Pair-interaction module, receiving asocial variables, vy and vz, and social variables, xi , yi , zi , vx,i , vy,i , vz,i , from a

single neighbor i, and outputting 6 numbers (three mean values and three variance values). (B) Three numbers are sampled from three clipped Gaussian distributions

with mean and variances given by the output of the pair-interaction module. (C) Aggregation module. Same structure as A, but with a single output that is passed

through an exponential function to make it positive. (D) Complete structure of the modular network, showing how the outputs of the pair-interaction and aggregation

modules are integrated. The resulting output, p1,p2,p3, determines the heading and speed of the focal fish in the next time step.

The second module, the aggregation module, has a single
output, W (Figure 2C). It is symmetrized with respect to both
the x − y and y − z planes. It is clipped between −15 and 15
and there is an exponential non-linearity after the single-neuron
readout signal to make it positive.

The final output combines both modules, Figure 2D. It is
calculated by summing the outputs of the pairwise-interaction
modules applied to the set of all neighbors, I, using the outputs
of the aggregation module as normalized weights,

P =
∑

i∈I

Pi
Wi

∑

j∈I Wj
(8)

where we combined p1,i, p2,i, and p3,i as components of a vector
Pi. The final outputs used to update the dynamics of the agent,
p1, p2, p3 are the components of P.

Everywhere in this paper, the set of neighbors considered, I,
consists of all the other fish in the same environment as the
focal. Even if this is the case, note that the introduction of the
aggregation module acts as a simulated attention that selects
which neighbors are more relevant for a given state and policy.

2.4. Optimizing the Neural Network
Parameters
Following previous work [33, 34], we improved the local rule
using an “Evolution Strategies” algorithm [30, 31]. The text in this
section is an explanation of its main elements.

Let us denote by #»
ω the neural network weights at every

iteration of the algorithm, and by R( #»
ω) the reward obtained in

that iteration (sum during the episode). A change in parameters
that improves the reward can be obtained by following the
gradient with small steps (gradient ascent),

#»
ω ← #»

ω + λ
#»

∇R( #»
ω), (9)

where λ is the learning rate (see Supplementary Text for the
values of hyper-parameters in our simulations). Repeating this
gradient ascent on the reward function, we approach the desired
collective behavior over time. As we explain below, we perform
this gradient while co-varying the parameters of all agents.
In contrast, the naive application of policy gradient would
be equivalent to performing the gradient with respect to the
parameters of one of the agents, keeping the parameters of
others constant. This could produce learning inefficiencies or
even failure to find the desired policy.
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We estimate the gradient numerically from the rewards of
many simulations using policy networks with slightly different
parameters. We first sample K vectors #»

ǫi independently from a
spherical normal distribution of mean 0 and standard deviation
σ , with as many dimensions as parameters in the model. We
define #      »

ǫi+K = −
#»
ǫi , i = 1,...,K. We calculate 2K parameter

vectors #»
ω i =

#»
ω + #»

ǫi . We then conduct a single simulation of
a fish collective —all agents in the same environment sharing
the same values #»

ω i— and we record the reward Ri. Then, we
use 1

2σ 2K

∑

i
#»
ǫ iRi as an approximation of

#»

∇R( #»
ω) to perform

gradient ascent [34].

#»
ω ← #»

ω + λ
1

2σ 2K

2K
∑

i=1

#»
ǫ iRi (10)

We refer to Figure 3 for four example training runs using the
algorithm, and to Figure 4 for the pseudo-code of the algorithm.

2.5. Measurements of XY-Plane Interaction
As in previous work [44], we described changes in the azimuth
angle using the approximate concepts of attraction, repulsion,
and alignment. We define the attraction-repulsion and the
alignment score as useful quantifications of these approximate
concepts. Please note that these scores are not related to reward.

We obtained the attraction-repulsion and alignment scores
from a centered and scaled version of p

µ

1 :

p̂1,i(φi) = 2

(

p
µ

1,i(φi)−
1

2

)

(11)

where we chose to only explicitly highlight its dependence with
the relative neighbor orientation in the XY plane, φi. This relative
neighbor orientation can be calculated as the difference of the
azimuth angle of the neighbor and the azimuth angle of the
focal fish.

Attraction-repulsion score is defined by averaging p̂1,i over all
possible relative orientations of the neighbor in the XY plane.

sign(x)〈p̂1,i(φi)〉φi∈[−π ,π), (12)

We would say there is attraction (repulsion) when the score is
positive (negative).

The alignment score is defined as

max
φi∈[−π ,π)

{p̂1,i(φi) sign(φi)} − max
φi∈[−π ,π)

{−p̂1,i(φi) sign(φi)}. (13)

As in [44], we arbitrarily decided that alignment is dominant
(and thus that the point is in the alignment area) if p̂1,i changes
sign when changing the relative orientation of the neighbor in
the XY plane, φi. Otherwise, it is in an attraction or repulsion
area, depending on the sign of the attraction-repulsion score [44].
Under this definition, repulsion (attraction) areas are the set of
possible relative positions of the neighbor which would make a
focal fish turn away (toward) the neighbor, independently of the
neighbor orientation relative to the focal fish

3. RESULTS

To simulate collective swimming, we equipped all fish with an
identical neural network. At each time step, the neural network
analyzes the surroundings of each fish and produces an action
for that fish, dictating change in its speed and turning, Figure 1.
Under such conditions, the neural network encodes a local
rule and by varying the weights within the network, we can
modify the nature of the local rule and thus the resulting group
level dynamics.

As in previous work [44], we enabled interpretability by using
a neural network built from two modules with a few inputs
and few outputs each, Figure 2. A pairwise-interaction module
outputs turning and change of speed with information from a
single neighbor, i, at a time. It is composed of two parts. The first
part outputs in a deterministic way mean values and variances
for each of the three parameters encoding turning and change
of speed, Figure 2A. The second part consists in sampling each
parameter, p1,i, p2,i, p3,i, from a clipped Gaussian distribution
with the mean and variance given by the outputs of the first
part, Figure 2B.

An aggregation module outputs a single positive number
expressing the importance carried by the signal of each neighbor,
Figure 2C. The final outputs of the complete modular neural
network are obtained by summing the results of the pairwise-
interaction module, weighting them by the normalized outputs
of the aggregation module, Figure 2D. The final outputs,
p1, p2 and p3, determine the motor command. We perform
these computations for each agent, and use the outputs to
determine the position and speed of each agent in the next time
step (Equations 1–3).

We introduced a reward function, measuring how
similar are the produced trajectories to the desired group
behavior (see section 2 for details). We used one of four
different reward functions to encourage the emergence
of one of four different collective configurations, all of
which have been observed in natural groups of fish.
These patterns are the rotating ball, the rotating tornado,
the rotating hollow core mill and the rotating full
core mill.

We used evolutionary strategies to gradually improve the
performance of the neural network at the task of generating
the desired collective configurations. The value of the reward
function increased gradually during training for all four
patterns, Figure 3. After several thousand time steps, the reward
plateaued and the group collective motion was visually highly
similar to the desired one (see Supplementary Videos 1–4).
We tested that the agents learned to generate the desired
collective configurations by using independent quantitative
quality indexes (Supplementary Text and Figure S1). They
show that agents learn first to come together into a compact
formation, and then to move in the right way, eventually
producing the desired configurations. We also checked that
the configurations are formed also when the number of
agents is different to the number used in training (see
Supplementary Videos 5–8 for twice as many agents as those
used in training).
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FIGURE 3 | Training makes reward to increase and group behavior to converge to the desired configuration. Reward as a function of number of training epochs in an

example training cycle for each of the four configurations. In each of the examples, we show two frames (agents shown as blue dots) from the generated trajectories,

one early in the training process (100 epochs) and a second after the reward plateaus (8,000 epochs).

3.1. Description of Rotating Ball Policy
Here, we use the low dimensionality of each module in terms of
inputs and outputs to describe the policy with meaningful plots.
We describe here the policy of the rotating ball (Figure 5). The
equivalent plots for the other three configurations can be found
in Figures S2–S4.

The pairwise-interaction module outputs three parameters
for each focal fish, all bounded between 0 and 1. The first
one, p1, determines the change in azimuth, that is, rotations
in the XY plane (Figure 5, first column). To further reduce
dimensionality in the plots, we simplify the description of the
policy in this XY plane by computing attraction-repulsion and
orientation scores (see Equations 12, 13, section 2). These scores
quantify the approximate concepts of attraction, repulsion and
orientation. In Figure 5, we plot the alignment score in the
areas where alignment is dominant, and the attraction-repulsion
score otherwise.

The attraction areas give the neighbor positions in this XY
plane which make a focal fish (located at xi = yi = 0) swim

toward the neighbor, independently of the neighbor orientation
(Figure 5, first column, orange). The focal fish turns toward the
neighbor if the neighbor is far (> 1.5 BL). Repulsion areas are
the relative positions of the neighbor which make a focal fish
swim away from the neighbor (Figure 5, first column, purple).
If the neighbor is closer than 1 BL, but not immediately in front
or at the back of the focal, the focal tends to turn away from
the neighbor (purple). In the areas where alignment is dominant
(alignment areas), we plotted the alignment score (Figure 5, first
column, gray). If the neighbor is at an intermediate distance, or in
front or in the back of the focal fish, the focal fish tends to orient
with respect to the neighbor in the XY plane.

The second parameter, p2, determines the elevation angle
(Figure 5, second column). p2 is 0.5 on average, and thus
elevation angle is zero on average, when the neighbor is on the
same XY plane as the focal (Figure 5, second column, second
row).When the neighbor is above, the focal agent tends to choose
a negative elevation when the neighbor is close (Figure 5, second
column, blue), and a positive elevation if it is far (red). The
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#»
ω
0 ←Xavier initialization

for i = 1, ..., n epochs do
for j = 1, ...,K random perturbation do

sample ǫj← σ
#           »

N(0, I)
reset environment to random initialization Si,j

compute R+j , reward of simulation with parameter #»
ω
i−1 + ǫj

reset environment to previous initialization Si,j

compute R−j , reward of simulation with parameter #»
ω
i−1 − ǫj

end for

normalize {Rj}1,...K
#»
ω
i ← #»

ω
i−1 + λ

1
2σ 2K

∑

#»
ǫ j(R

+
j − R−j )

anneal learning rate: λ← γλλ

anneal s.d. of perturbations: σ ← γσ σ

end for

FIGURE 4 | Evolution strategies algorithm.

FIGURE 5 | Policy producing a rotating ball, as a function of neighbor relative location. Each output (three from the pair-interaction, one from the aggregation) is

shown in a different column. All columns have three diagrams, with the neighbor 1 BL above (top row), in the same XY plane (middle row) and 1 BL below the focal

(bottom row). Speed of both the focal and neighbor has been fixed to the median in each configuration. In addition, in columns 2–4, we plot the average with respect

to an uniform distribution over all possible relative neighbor orientations (from −π to π ). First column: Interaction in the XY plane (change of azimuth). Instead of

plotting p1, we explain interaction using the approximate notions of alignment (gray), attraction (orange), and repulsion (purple) areas, as in [44]. Alignment score (gray)

measures how much the azimuth changes when changing the neighbor orientation angle, and it is computed only in the orientation areas (see Methods, Section 2.5).

Attraction (orange) and repulsion scores (purple) measure how much the azimuth change when averaging across all relative orientation angles, and we plot it only

outside orientation areas. Second column: Elevation angle, through the mean value of the p2 parameter. Blue areas indicate that the focal fish will move downwards

(p2 < 0.5), while red areas indicate that the focal fish will move upwards (p2 > 0.5). Third column: Active change in speed, through the mean value of the p3
parameter. Darker areas (large mean p3) indicate increase in speed, and lighter areas indicate passive coast. Fourth column: Output of the aggregation module.

Neighbors in the darker areas weight more in the aggregation.
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opposite happens when the neighbor is below: the focal agent
tends to choose a positive elevation when the neighbor is close,
and a negative elevation if it is far (Figure 5, second column,
third row).

The third parameter, p3, determines the active speed change
(Figure 5, third column). The active speed change is small, except
if the neighbor is in a localized area close and behind the focal.

The aggregation module outputs a single positive output,
determining the weight of each neighbor in the final aggregation.
In the rotating ball policy, the neighbors that are weighted the
most in the aggregation are the ones closer than 1 BL from
the focal (Figure 5, third column). Neighbors located in a wide
area behind the focal, but not exactly behind it, are assigned a
moderate weight.

Note that the aggregation module is not constrained to
produce a local spatial integration, since the network has access
to every neighboring fish. However, we can observe how an
aggregation module like the one shown for the rotating ball
(Figure 5, third column) would preferably select a subset of
closest neighbors—i.e., integration is local in space. This is also
true for the other configurations: for each desired collective
configuration we could always find policies with local integration
(e.g., Figures S2–S4).

3.2. Description of Policy Differences
Between Configurations
In the previous section, we described the policy we found to
best generate a rotating ball. The policies we found that generate
the other three configurations have many similarities and some
consistent differences, Figure 6. In this section, we will highlight
these differences.

The policy generating a tornado has an attraction-repulsion
pattern somewhere in between the rotating ball and the full core
milling (Figure 6, first row). The major feature that distinguishes
this policy from the others is a strong repulsion along the z-axis,
i.e., the area of the plot where the focal fish changes elevation to
move away from the neighbor is larger (Figure 6, second column,
second row, blue area). This was expected, as to form the tornado
the agents need to spread along the z-axis much more than they
do in the other configurations.

The policy generating a full-core mill has an increased
repulsion area, particularly in the frontal and frontal-lateral areas
(Figure 6, third column, first row, purple areas). The policy
generating a hollow-core mill has an increased alignment area,
weakening the repulsion area (Figure 6, fourth column, first row,
gray area). It also has an increased area with a high change in
velocity (Figure 6, fourth column, third row, red area). Both mill
policies have an extended aggregation area, especially the hollow
core (Figure 6, third and fourth column, fourth row), and lack
an area where the focal fish changes elevation to move away from
the neighbor (Figure 6, third and fourth column, second row, red
area). The almost absence of repulsion in the z-direction makes
both mills to be 2D structures, whereas repulsion in the sphere
and tornado makes them 3D.

The highlighted differences between policies are robust (see
Figure 5 and the Supplementary Material for Figures S2–S4 and

Figures S6–S13 to see the robustness of the results in different
runs). For instance, we have compared the policies by restricting
the fish to move at the median speed is each configuration. The
highlighted differences are still valid when the fish move with a
common median speed across configurations (Figure S5).

3.3. Adding a Retina to the Agents
In the preceding section, the observations made by each agent
were simple variables like position or velocities of neighbors. This
simplification aided analysis, but animals do not receive external
information in this way but by sensory organs.

We checked whether we could achieve the group
configuration we have studied when the input to the policy
for each agent is the activation of an artificial retina observing the
other agents. The retina is modeled using a three-dimensional
ray-tracing algorithm: from each agent, several equidistant rays
project until they encounter a neighbor, or up to a maximum
ray length r. The state, i.e., the input to the policy, is the list of
the ray lengths. Information about the relative velocity was also
given as input to the policy by repeating this computation with
the current position and orientation of the focal, but the previous
position of all the other agents. See Supplementary Text for a
detailed description.

We approximated the policy using a single fully-connected
network. Using the interaction and attention modules described
in section 2.3.2 would not have added interpretability in this
case, because the number of inputs is too large. By using the
same evolutionary strategy, we were able to obtain a decision
rule leading to the desired collective movement configurations
(Supplementary Videos 9–12).

Although these configurations were qualitatively similar to
the ones we obtained with the modular network (Figure S14),
the average inter-agent distance was greater. This resulted in less
compact configurations (Tables S3, S5). This effect might be the
result of the increased complexity and decreased accuracy of the
inputs given to the policy by the retina, which causes the agents
to avoid each other more than in simulations without retina.

4. DISCUSSION

We have applied evolutionary strategies (ES) to automatically
find local rules able to generate desired group level movement
patterns. Namely, we found local rules that generate four complex
collectivemotion patterns commonly observed in nature [35, 45].
Three of these four patterns have, to our knowledge, not yet been
generated using self-propelled particle models with local rules.

We used neural networks as approximators of the policy,
the function mapping the local state to actions. The naive
use of a neural network would produce a black-box model,
that can be then analyzed with different post-hoc explainability
strategies (inversion [46], saliency analysis [47], knowledge
distillation [48], etc.; see [49, 50] for reviews). Instead, as
we did in [44], we designed and trained a model that is
inherently transparent (interpretable). This alternative improves
our confidence in the model understandability: the model is its
own exact explanation [51].
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FIGURE 6 | Policies producing different configurations. Each column corresponds to one of the four desired configurations. Each panel is the equivalent of the middle

row in Figure 5, except in the case of the elevation (second column), that is equivalent to the panel in the top row. For each configuration, the speed of the focal and

neighbor has been fixed to the configuration median: 0.42, 0.32, 0.75, and 1.54 BL/s, respectively.

We used a modular policy network, composed by two
modules. Each module is an artificial neural network with
thousands of parameters, and therefore it is a flexible universal
function approximator. However, we can still obtain insight,
because each module implements a function with low number
of inputs and outputs that we can plot [44]. Similar to
what we obtained from experimental trajectories of zebrafish
[44], we found the XY-interaction to be organized in areas
of repulsion, orientation, and attraction, named in order of
increasing distance from the focal fish. We were also able to
describe differences between the policies generating each of the
configurations.

To find the local rules generating the desired configurations,
we used a systematic version of the collective behavior modeling
cycle [15]. The traditional collective behavior modeling cycle

begins with the researcher proposing a candidate rule and
tuning it through a simulation based feedback process. Here, we
parameterize the local rule as a neural network. Since neural
networks are highly expressive function approximators which
can capture a very diverse set of possible local rules, our method
automates the initial process of finding a set of candidate rules.
As in the case of the traditional modeling cycle, our method also
relies on a cost function (the reward function) and numerical
simulations to measure the quality of a proposed rule. The
process of rule adaptation is automated by following a gradient of
the reward function with respect to neural network weights. Just
like the modeling cycle, our method uses iterations that gradually
improve the policy until it converges to a satisfactory solution.

There are theoretical guarantees for convergence in tabular
RL, or when linear approximators are used for the value functions
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[40]. However, these theoretical guarantees do not normally
extend to the case where neural networks are used as function
approximators [52], nor to multi-agent RL [25]. Here we report
an application where the ES algorithm was able to optimize
policies parameterized by deep neural networks in multi-agent
environments. To our knowledge, there were no theoretical
guarantees for convergence for our particular setting.

The method we have proposed could have several other
interesting applications. In cases where it is possible to record
rich individual level data sets of collective behavior, it can be
possible to perform detailed comparisons between the rules
discovered by our method and the ones observed in experiments
[44, 53]. The method could also be applicable to answer
more hypothetical questions such as what information must be
available in order for a certain collective behavior to emerge.
Animals may interact in a variety of ways including visual
sensory networks [54], vocal communication [55], chemical
communication [56] and environment modification (stigmergy)
[57]. Animals also have a variety of cognitive abilities such
as memory and varying sensory thresholds. By removing or
incorporating such capabilities into the neural networks it is now
possible to theoretically study the effects these factors have on
collective behavior patterns.

Here we relied on an engineered reward function because
the behaviors we were modeling have not yet been recorded in
quantitative detail. In cases where trajectory data is available,
detailed measures of similarity with observed trajectories
can be used as a reward [33, 58]. Moreover, we can use
adversarial classifiers to automatically learn these measures of
similarity [19, 59]. Further interesting extensions could include
creating diversity within the group by incorporating several
different neural networks into the collective and studying the
emergence of behavioral specialization and division of labor
[60].

The present work may be used as a normative framework
when the rewards used represent important biological functions.
While prior work using analytic approaches has been successful
for simple scenarios [42, 61], the present approach can
extend them to situations in which no analytic solution can
be obtained.
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Supplementary Video 1 | Simulation of the agents trained to adopt a Rotating

ball, with the modular deep networks. Here the number of agents is the same as

the number of agents used in the training.

Supplementary Video 2 | Simulation of the agents trained to adopt a Tornado,

with the modular deep networks. Here the number of agents is the same as the

number of agents used in the training.

Supplementary Video 3 | Simulation of the agents trained to adopt a Full core

milling, with the modular deep networks. Here the number of agents is the same

as the number of agents used in the training.

Supplementary Video 4 | Simulation of the agents trained to adopt a Hollow

core milling, with the modular deep networks. Here the number of agents is the

same as the number of agents used in the training.

Supplementary Video 5 | Simulation of the agents trained to adopt a Rotating

ball, with the modular deep networks. Here the number of agents is 70 while the

number of agents used in training is 35.

Supplementary Video 6 | Simulation of the agents trained to adopt a Tornado,

with the modular deep networks. Here the number of agents is 70 while the

number of agents used in training is 35.

Supplementary Video 7 | Simulation of the agents trained to adopt a Full core

milling, with the modular deep networks. Here the number of agents is 70 while

the number of agents used in training is 25.

Supplementary Video 8 | Simulation of the agents trained to adopt a Hollow

core milling, with the modular deep networks. Here the number of agents is 70

while the number of agents used in training is 35.

Supplementary Video 9 | Simulation of the agents trained to adopt a Rotating

ball, when the network received the activation of a simulated retina as input.

Supplementary Video 10 | Simulation of the agents trained to adopt a tornado,

when the network received the activation of a simulated retina as input.

Supplementary Video 11 | Simulation of the agents trained to adopt a full core

milling, when the network received the activation of a simulated retina as input.

Supplementary Video 12 | Simulation of the agents trained to adopt a hollow

core milling, when the network received the activation of a simulated retina

as input.
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One proposal to utilize near-term quantum computers for machine learning are

Parameterized Quantum Circuits (PQCs). There, input is encoded in a quantum state,

parameter-dependent unitary evolution is applied, and ultimately an observable is

measured. In a hybrid-variational fashion, the parameters are trained so that the function

assigning inputs to expectation values matches a target function. The no-cloning

principle of quantum mechanics suggests that there is an advantage in redundantly

encoding the input several times. In this paper, we prove lower bounds on the number

of redundant copies that are necessary for the expectation value function of a PQC to

match a given target function. We draw conclusions for the architecture design of PQCs.

Keywords: parameterized quantum circuits, quantum neural networks, near-term quantum computing, lower

bounds, input encoding

1. INTRODUCTION

Quantum Information Processing proposes to exploit quantum physical phenomena for the
purpose of data processing. Conceived in the early 80’s [1, 2], recent breakthroughs in building
controllable quantum mechanical systems have led to an explosion of activity in the field.

Building quantum computers is a formidable challenge—but so is designing algorithms which,
when implemented on them, are able to exploit the advantage that quantum computing is widely
believed by experts to have over classical computing on some computational tasks. A particularly
compelling endeavor is to make use of near-term quantum computers, which suffer from limited
size and the presence of debilitating levels of quantum noise. The field of algorithm design for Noisy
Intermediate-Scale Quantum (NISQ) computers has scrambled over the last few years to identify
fields of computing, paradigms of employing quantum information processing, and commercial
use-cases in order to profit from recent progress in building programmable quantum mechanical
devices—limited as they may be at present [3].

One use-case area where quantum advantage might materialize in the near term is that of
Artificial Intelligence [3, 4]. The hope is best reasoned for generative tasks: several families of
probability distributions have been theoretically proven to admit quantum algorithms for efficiently
sampling from them, while no classical algorithm is able or is known to be able to perform that
sampling task. Boson sampling is probably the most widely known of these sampling tasks, even
though the advantage does not seem to persist in the presence of noise (cf. [5]); examples of some
other sampling procedures can be found in references [6, 7].

Promising developments have also been made available in the case of quantum circuits that
can be iteratively altered by manipulation of one or several parameters: Du et al. [8] consider so-
called Parameterized Quantum Circuits (PQCs) and find that they, too, yield a theoretical advantage
for generative tasks. PQCs are occasionally referred to as Quantum Neural Networks (QNNs) (e.g.,
in [9]) when aspects of non-linearity are emphasized, or as Variational Quantum Circuits [10]. We
stick to the term PQC in this paper, without having in mind excluding QNNs or VQCs.
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The PQC architectures which have been considered share
some common characteristics, but an important design question
is how the input data is presented. Input data refers either to a
feature vector, or to output of another layer of a larger, potentially
hybrid quantum-classical neural network. The fundamental
choice is whether to encode digitally or in the amplitudes of
a quantum state. Digital encoding usually entails preparing a
quantum register in states

∣

∣bx
〉

, where bx ∈ {0, 1}n is binary
encoding of input datum x. Encoding in the amplitudes of a
quantum state, on the other hand, refers to preparing a an n-bit

quantum register in a state of the form |φx〉 : =
∑2n−1

j=0 φj(x)
∣

∣j
〉

,

where φj, j = 0, . . . , 2n − 1 is a family of encoding functions
which must ensure that |φx〉 is a quantum state for each x, i.e.,

that
∑

j

∣

∣φj(x)
∣

∣

2
= 1 holds for all x. We refer the reader to the

discussion of these concepts in Schuld and Petruccione [11] for
further details.

The present paper deals with redundancy in the input
data, i.e., giving the same datum several times. The most
straightforward concept here is that of “tensorial” encoding [12].
Here, several quantum registers are prepared in a state which
is the tensor product of the corresponding number of identical
copies of a data-encoding state, i.e., |φx〉⊗· · ·⊗|φx〉. For example,
Mitarai et al. [13], propose the following construction: To encode
a real number x close to 0, they choose the state

∣

∣φ
x
〉

= Ry(arcsin(x)/2)|0〉 = sin(arcsin(x)/2)|0〉

+ cos(arcsin(x)/2)|1〉, (1)

where Ry(θ) : = e−iθσY/2 is the 1-qubit Pauli rotation around
the Y-axis (and σY the Pauli matrix). But then, to construct a
PQC that is able to learn polynomials of degree n in a single
variable, they encode the polynomial variable x into n identical
copies,

⊗n
j=1 |φ

x〉. It is noteworthy, and the starting point of our

research, that the number of times that the input, x, is encoded
redundantly, depends on the complexity of the learning task.

Encoding the input several times redundantly, as in tensorial
encoding, is probably motivated by the quantum no-cloning
principle. While classical circuits and classical neural networks
can have fan-out—the output of one processing node (gate,
neuron, . . . ) can be the input to several others—the no-cloning
principle of quantum mechanics forbids to duplicate data which
is encoded in the amplitudes of a quantum state. This applies to
PQCs, and, specifically, to the input that is fed into a PQC, if the
input is encoded in the amplitudes of input states.

1.1. The Research Presented in This Paper
The no-cloning principle suggests that duplicating input data
redundantly is unavoidable. The research presented in this paper
aims to lower bound how often the data has to be redundantly
encoded, if a given function is to be learned. The novelty in this
paper lies in establishing that these lower bounds are possible.
For that purpose, the cases for which we prove lower bounds are
natural, but not overly complex, thus highlighting the principle
over the application.

The objects of study of this paper are PQCs of the following
form. The input consists of a single real number x, which is

encoded into amplitudes by applying a multi-qubit Hamiltonian
evolution of the form e−iη(x)H at one point (no redundancy),
or several points in the quantum circuit. The function η and
Hamiltonian H may be different at the different points the
quantum circuit.

Hence, our definition of “input” is quite general, and allows,
for example, that the input is given in the middle of a quantum
circuit—mimicking the way how algorithms for fault-tolerant
quantum computing operate on continuous data: the subroutine
for accessing the data be called repeatedly; cf., e.g., the description
of the input oracles in van Apeldoorn and Gilyén [14]. It
should be pointed out, however, that general state preparation
procedures as in Harrow et al. [15] and Schuld et al. [12] cannot
not be studied with the tools of this paper, because they apply
many operations with parameters derived from a collection of
inputs, instead of a single input.

Our lower bound technique is based on Fourier analysis.

1.2. Example
Take, as example, the parameterized quantum circuits of Mitarai
et al. [13] mentioned above. Comparing with (1) shows: The
single real input x close to 0 is prepared by performing,
at n different positions in the quantum circuit, Hamiltonian
evolution e−iηj(x)Hj with ηj(x) : = arcsin(x), and Hj : = σY/2,
for j = 1, . . . , n.

We say that the input x to the quantum circuits of Mitarai
et al. are encoded with input redundancy n—meaning, the input
is given n times.

The example highlights the ostensible wastefulness of giving
the same data n times, and the question naturally arises whether
a more clever application of possibly different rotations would
have reduced the amount of input redundancy.

In the case of Mitarai et al.’s example, it can easily be seen—
from algebraic arguments involving the quantum operations
which are performed—that, in order to produce a polynomial
of degree n, redundancy n is best possible for the particular
way of encoding the value x by applying the Pauli rotation to
distinct qubits, we leave that to the reader. However, already the
question whether by re-using the same qubit a less “wasteful”
encoding could have been achieved is quite not so easy. Our
Fourier analysis based techniques give lower bounds for more
general encodings, in particular, for applying arbitrary single-
qubit Pauli rotations to an arbitrary set of qubits at arbitrary time
during the quantum circuit.

Figure 1 next page shows the schematic of quantum circuits
with input x. The setup resembles that of a neural network layer.
The j’th “copy” of the input is made available in the quantum
circuit by, at some time, performing the unitary operation
e2π iηj(x)Hj on one qubit, where ηj(x) = ϕ(ajx + bj), for an
“activation function” ϕ. (We switch here to adding the factor 2π ,
to be compatible with our Fourier approach).

In the above-mentioned example in Mitarai et al. [13], the
activation function is ϕ : = arcsin. Figure 1 aims at making
clear that the input can be encoded by applying different unitary
operations to different qubits, or to the same qubit several
times, or any combination of these possibilities. Generalization
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FIGURE 1 | Schematic for the PQCs we consider. The classical input x, after being subjected to a transformations ηj (x) = ϕ(ajx+ bj ) with “activation function” ϕ, is fed

into the QNN/PQC through Hamiltonian evolution operations e2π iηj (x)Hj . Quantum operations which do not participate in entering the input data into the quantum circuit

are not shown; these include the operations which depend on the training parameters θ .

of our results to several inputs is straightforward, if the activation
functions in Figure 1 have a single input.

1.3. Our Results
As hinted above, our intention with this paper is to establish, in
two natural examples, the possibility of proving lower bounds on
input redundancy. The first example is what we call “linear” input
encoding, where the activation function is ϕ(x) = x. The second
example is Mitarai et al. [13] approach, where the activation
function is ϕ(x) = arcsin(x).

For both examples, we prove lower bounds on the input
redundancy in terms of linear-algebraic complexity measures of
the target function. We find the lower bounds to be logarithmic,
and the bounds are tight.

To the best of our knowledge, our results give the first
quantitative lower bounds on input redundancy. These lower
bounds, as well as other conclusions derived from our
constructions, should directly influence design decisions for
quantum neural network architectures.

1.4. Paper Organization
In the next section we review the background on the PQC model
underlying our results. Sections 3 and 4 contain the results on
linear and arcsine input encoding, respectively. We close with a
discussion and directions of future work.

2. BACKGROUND

2.1. MiNKiF PQCs
We now describe parameterized quantum circuits (PQCs) in
more detail. Denote by

UH(α) : ρ 7→ e−2π iαH
ρe2π iαH (2)

the quantum operations of an evolution with Hamiltonian H
(operating on some set of qubits); the 2π factor is just
a convenience for us and introduces no loss of generality.
Following, in spirit, Mitarai et al. [13], in this paper we consider
quantum circuits which apply quantum operations each of which
is one of the following:

1. An operation as in (2), with a parameter α : = η which will
encode input, x (i.e., η is determined by x);

2. An operation as in (2), with a parameter α : = θ which
will be “trained” (we refer to these parameters as the
training parameters);

3. Any quantum operation not defined by any parameter
(although its effect can depend on θ , η, e.g., via dependency
on measurement results).

Denote the concatenated quantum operation by E(η, θ). Now
let M be an observable, and consider its expectation value on
the state which results if the parameterized quantum circuit is
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applied to a fixed input state ρ0, e.g., ρ0 : = |0〉〈0|. We denote the
expectation value with parameters set to η, θ by f (η, θ):

f : R
n × R

m → R : (η, θ) 7→= tr(ME(η, θ)ρ0). (3)

The PQCs could havemultiple outputs, but we do not consider
that in this paper.We refer to PQCs of this type asMiNKiF PQCs,
as [13] realized the fundamental property

∂θj f (η, θ) = π

(

f (η, θ + 1
4 ej)− f (η, θ − 1

4 ej)
)

, (4)

where ej is the vector with a 1 in position j and 0 otherwise.
This equation characterizes trigonometric functions. (The same
relation holds obviously for derivatives in ηj direction.)

The setting we consider in this paper is the following.

• The training parameters, θ , have been trained perfectly and
are thus ignored, in other words, omitting the θ argument, we
conveniently consider f to be a function defined onR

n (instead
of on R

n × R
m);

• The inputs, x, are real numbers;
• The parameters η of f are determined by x, i.e., η is replaced

by (ϕ(a1x + b1), . . . ,ϕ(anx + bn)), where a, b ∈ R
n; in other

words, we study the function

R → R : x 7→ f (ϕ(a1x+ b1), . . . ,ϕ(anx+ bn)).

We allow a, b to depend on the target function1.
This setting is restrictive only in as far as the input is one-

dimensional; the reason for this restriction is that this paper aims
to introduce and demonstrate a concept, and not be encyclopedic
or obtain the best possible results.

This setting clearly includes the versions of amplitude
encoding discussed in the introduction by applying operations
UHj (ϕ(ajx+bj)) to |0〉〈0| states (of appropriatelymany qubits) for
several j’s, with suitableHj’s. However, the setting is more general
in that it doesn’t restrict to encode the input near the beginning
of a quantum circuit, indeed, the order of the types of quantum
operations is completely free.

To summarize, we study the functions

f : R → R : η 7→ f (η) (5a)

: = tr
(

MVn Un(ηn)Vn−1 Un−1(ηn−1) . . . V1 U1(η1)V0 ρ0

)

where

U1 : = UH1 , . . . ,Un : = UHn for Hamiltonians Hj, j = 1, . . . , n.
(5b)

and

R → R : x 7→ f (η(x)) (6)

where η : R → R
n
: x 7→ ϕ(a1x+ b1), . . . ,ϕ(anx+ bn). Then we

ask the question: How large is the space of the x : f (η(x)), for a
fixed activation function ϕ, but variable vectors a, b ∈ R

n?

1Cf. Remarks 6 and 12. Indeed, our analysis suggests that the a, b should be training

parameters if the goal is to achieve high expressivity; see the Conclusions.

2.2. Fourier Calculus on MiNKiF Circuits
This paper builds on the simple observation of [16] that, under
assumptions which are reasonable for near-term gate-based
quantum computers, the Fourier spectrum, in the sense of the
Fourier transform of tempered distributions, is finite and can
be understood from the eigenvalues of the Hamiltonians. In
particular, if, for each of the Hamiltonians Hj, j = 1, . . . , n,
the differences of the eigenvalue of Hj are integer multiples of a
positive number κj, then η 7→ f (η) is periodic.

Take, for example, the case of Pauli rotations (e−2π iσ⋆/2 in
our notation): There, each of the Hj is of the form σuj/2 (with
uj ∈ {x, y, z}). The eigenvalues of Hj are ±1/2, the eigenvalue
differences are 0,±1, and f : R

n → R is 1-periodic2 in every
parameter, with Fourier spectrum contained in

Z
n
3 : = {0,±1}n. (7)

More generally, if the Hj have eigenvalues, say, λ
(0)
j ∈

R and λ
(s)
j = λ

(0)
j + s for s = 1, . . . ,Kj, then the

eigenvalue differences are {−Kj, . . . ,Kj}, and f : R
n → R is 1-

periodic in every parameter, with Fourier spectrum contained in
∏n

j=1{−Kj, . . . ,Kj}.

We refer to [16] for the (easy) details. In this paper, focusing
on the goal of demonstrating the possibility to prove lower
bounds on the input redundancy, we mostly restrict to 2-level
Hamiltonians with eigenvalue difference 1 (such as one-half
times a tensor product of Pauli matrices), which gives us the
nice Fourier spectrum (7), commenting on other spectra only
en passant.

For easy reference, we summarize the discrete Fourier analysis
properties of the expectation value functions that we consider
in the following remark. The proof of the equivalence of the
three conditions is contained in the above discussions, except
for the existence of a quantum circuit for a given multi-linear
trigonometric polynomial, for which we defer [17], as it is not
the topic of this paper.

REMARK 1. The following three statements are equivalent. If they
hold, we refer to the function as an expectation value function,
for brevity (suppressing the condition on the eigenvalues of the
Hamiltonians). The input redundancy of the function is n.

1. The function f is of the form 5, where the Hj, j = 1, . . . , n, have
eigenvalues±1/2.

2. The function f is a real-valued function R
n → R which

is 1-periodic in every parameter, and its Fourier spectrum is
contained in Z

n
3 . Hence,

f (η) =
∑

w∈Z
n
3

f̂ (w)e2π iw•η (8)

where w • η : =
∑n

j=1 ηjwj is the dot product (computed in

R), and f̂ the usual periodic Fourier transform of f , i.e., f̂ (w) =
∫

[0,1]n e
−2π iw•ηf (η) dη.

2This is where the factor 2π in the exponent is used.

Frontiers in Physics | www.frontiersin.org 4 August 2020 | Volume 8 | Article 297131

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gil Vidal and Theis Input Redundancy for Parameterized Quantum Circuits

3. The function f is a multi-linear polynomial in the sine and
cosine functions, i.e.,

f (η) =
∑

τ∈{1,cos,sin}n

f̃τ

n
∏

j=1

τj(2πηj), (9)

(where “1” under the sum denotes the all-1 function).

3. LINEAR INPUT ENCODING

We start discussing the case where the input parameters are affine
functions of the input variable, e.g., ϕ = id and η(x) = x · a + b
for some a, b ∈ R

n, so the input redundancy is n.
For a ∈ R

n define

Ka : =
{

w • a
∣

∣ w ∈ Z
n
3

}

, (10a)

spread(a) : =
1

2
|Ka \ {0}|, (10b)

with |·| denoting set cardinality; we refer to spread(a) as the
spread of a. We point the reader to the fact that Ka is symmetric
around 0 ∈ R and 0 ∈ Ka, so that the spread is a non-
negative integer.

For every k ∈ R, consider the function

χk : R → C : t 7→ e2π ikt . (11)

These functions are elements of the vector space C
R of all

complex-valued functions on the real line. We note the following
well-known fact.

LEMMA 2. The functions χk, k ∈ R, defined in (11) are linearly
independent (in the algebraic sense, i.e., every finite subset is
linearly independent).

Moreover, for every x0 ∈ R and ε > 0, the restrictions of these
functions to the interval ]x0 − ε, x0 + ε[ are linearly independent.

Proof: We refer the reader to Appendix 1 for the first statement
and only prove the second one.

Suppose that for some finite set K ⊂ R and complex numbers
αk, k ∈ K we have g(z) : =

∑m
j=1 αjχkj (z) = 0 for all

z ∈ ]x0 − ε, x0 + ε[. Since g is analytic and non-zero analytic
functions can only vanish on a discrete set, we then must also
have g(z) = 0 for all z ∈ C. This means that the linear
dependence on an interval implies linear dependence on the
whole real line. This proves the second statement, and the proof
of Lemma 2 is completed.

We can now give the definition of the quantity which will
lower-bound the input redundancy for linear input encoding.

DEFINITION 3. The Fourier rank of a function h : R → R at a
point x0 ∈ R is the infimum of the numbers r such that there exists
an ε > 0, a set K ⊂ R \ {0} of size 2r, and coefficients αk ∈ C,
k ∈ {0} ∪ K such that

h(x) =
∑

k∈{0}∪K

αk χk(x) for all x ∈ ]x0 − ε, x0 + ε[. (12)

Note that the Fourier rank can be infinite, and if it is finite,
then it is a non-negative integer. Indeed, from h∗ = h it
follows that

∑

k∈{0}∪K αkχk =
∑

k∈{0}∪K α
∗
k
χ−k, so that by the

linear independence of the χ ’s (Lemma 2) we have α−k = α
∗
k
,

which means that in a minimal representation of h, the set K is
symmetric around 0 ∈ R.

EXAMPLES.

• Constant functions have Fourier rank 0 at every point.
• The trigonometric functions x 7→ cos(κx + φ), with κ 6= 0,

have Fourier rank 1 at every point.
• Trigonometric polynomials of degree d, x 7→

∑d
j=0 αj cos

j(κjx + φj), have Fourier rank d at every point, if
αd 6= 0, κd 6= 0.

• The function x 7→
∣

∣sin(πx)
∣

∣ has Fourier rank 1 at every
x0 ∈ R \ Z and infinite Fourier rank at the points x0 ∈ Z.

• The function x 7→ x has infinite Fourier rank at every point.

THEOREM 4. Let f be an expectation value function, i.e., as in
Remark 1. Moreover, let a, b ∈ R

n, and h : R → R : x 7→

f (x · a + b). For every x0 ∈ R, the Fourier rank of h at x0 is less
than or equal to the spread of a.

Proof: With the preparations above, this is now a piece of cake.
Let x0 ∈ R and set ε : = 1. With Ka as defined in (10), for
x ∈ ]x0 − ε, x0 + ε[, we have

h(x) = f (x · a+ b) =
∑

w∈Z
n
3

f̂ (w)e2π iw•(x·a+b)
[Remark 12]

=
∑

w∈Z
n
3

f̂ (w)e2π iw•be2π ix·w•a

=
∑

k∈Ka

(

∑

w∈Z
n
3 ,

w•a=k

f̂ (w)e2π iw•b
)

e2π ix·k

=
∑

k∈Ka

αk χk(x),

where we let

αk : =
∑

w∈Z
n
3 ,

w•a=k

f̂ (w)e2π iw•b

This shows that h has a representation as in (12) with K : = Ka \

{0}. It follows that the Fourier rank of h is bounded from above
by |Ka|/2 = spread a. This completes the proof of Theorem 4.

The theorem allows us to give the concrete lower bounds for
the input redundancy.

COROLLARY 5. Let h be a real-valued function defined in some
neighborhood of a point x0 ∈ R.

Suppose that in a neighborhood of x0, h is equal to an
expectation value function with linear input encoding, i.e., there is
an n, a function f as in Remark 1, vectors a, b ∈ R

n, and an ε > 0
such that h(x) = f (x · a+ b) holds for all x ∈ ]x0 − ε, x0 + ε[.

The input redundancy, n, is greater than or equal to log3(r+1),
where r is the Fourier rank of h at x0.
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To represent a function h by aMiNKiF PQCwith
linear input encoding in a tiny neighborhood of a
given point x0, the input redundancy must be at
least the logarithm of the Fourier rank of h at x0.

Proof of Corollary 5: For every a ∈ R
n, we have |Ka| ≤ 3n, by the

definition of Ka, and hence spread(a) ≤ (3n − 1)/2.
We allow that a, b are chosen depending on h (see the

Remark 6 below). Theorem 4 gives us the inequality

r ≤ max
a

spread(a) ≤ (3n − 1)/2,

which implies n ≥ log3(2r + 1) ≥ log3(r + 1), as claimed. (We
put the +1 to make the expression well-defined for r = 0.) This
concludes the proof of Corollary 5.

REMARK 6. If the entries of a are all equal up to sign, then we
have spread(a) = n. It can be seen that if the entries of a are
chosen uniformly at random in [0, 1], then spread(a) = (3n−1)/2.
Hence, it seems that some choices for a are better than others.
Moreover, looking into the proof of Theorem 4 again, we see that
the χk, k ∈ Ka, must suffice to represent (or approximate) the target
function, and that the entries of b play a role in which coefficients
αk can be chosen for a given a. Hence, it is plausible that the choices
of a, b should depend on h.

REMARK 7. Our restriction to Hamiltonians with two eigenvalues
leads to the definition of the spread in (10). If the set of eigenvalue
distances of the Hamiltonian encoding the input ηj is Dj ⊂ R, then,
for the definition of the spread, we must put this:

Ka : =
{

w • a
∣

∣ w ∈

n
∏

j=1

Dj

}

.

Theorem 4 and Corollary 5 remain valid, with essentially the same
proofs, but with a higher base for the logarithm.

4. ARCSINE INPUT ENCODING

We now consider the original situation of the example in Mitarai
et al. [13], where the activation function is ϕ = arcsin. More
precisely, for a, b ∈ R

n, we consider

η(x) : = arcsin((ax+ b)/(2π)).

Abbreviating sj : = ajx + bj and cj : =
√

1− s2j for j = 1, . . . , n,

Remark 13, gives us that the expectation value functions with
arcsine input encoding are of the form

h(x) = f (η(x)) =
∑

S,C⊆[n]
S∩C=Ø

f̃S,C
∏

j∈S

sj
∏

j∈C

cj

=
∑

S,C⊆[n]
S∩C=Ø

f̃S,C
∏

j∈S

(ajx+ bj)
∏

j∈C

√

1− (ajx+ bj)2, (13)

where we use the common shorthand [n] : = {1, . . . , n}, and set
f̃S,C : = f̃τ (S,C) with τj(S,C) = sin if j ∈ S, τj(S,C) = cos if j ∈ C,
and τj(S,C) = id otherwise.

Consider a formal expression of the form

µ
(a,b)
S,C : =

∏

j∈S

(ajx+ bj)
∏

j∈C

√

1− (ajx+ bj)2 (14)

where x is a variable (for arbitrary a, b ∈ R
n and S,C ⊆ [n] with

S ∩ C = Ø). We call it an sc-monomial of degree |S| + |C|. An
sc-monomial can be evaluated at points x ∈ R for which the
expression under the square root is not a negative real number,
i.e., in the interval

Iµ : =
⋂

j∈C

]

−1−bj
aj

,
+1−bj

aj

[

(15)

(which could be empty), and it defines an analytic function there.
Note, though, that it can happen that an sc-monomial can be
continued to an analytic function on a larger interval than Iµ.
The obvious example where that happens is this: For j, j′ ∈ C
with j 6= j′ we have (aj, bj) = ±(aj′ , bj′ ). In that case, the
formal power series of the sc-monomial simplifies, and omitting

the interval
]

−1−bj
aj

,
+1−bj

aj

[

(also for j′) from (15) makes the

intersection larger.
The following technical fact can be shown (cf. [17]).

LEMMA 8. Let g =
∑

j αjµj be a linear combination of sc-

monomials with degrees at most d, and suppose that
⋂

j Iµj 6= Ø.

If an analytic continuation of g to a function g̃ : R → R exists,
then g̃ is a polynomial of degree at most d.

From this lemma, we obtain the following result.

COROLLARY 9. Let h : R → C be an analytic function, and
x0 ∈ R.

Suppose that in a neighborhood of x0, h is equal to an
expectation value function with arcsine input encoding, i.e., there
is an n, a function f as in Remark 1, vectors a, b ∈ R

n, and an
ε > 0 such that

1. −1 ≤ x · aj + bj ≤ +1 for all x ∈ ]x0 − ε, x0 + ε[, and
2. h(x) = f (arcsin(x · a+ b)) holds for all x ∈ ]x0 − ε, x0 + ε[.

Then h is a polynomial, and the input redundancy, n, is greater
than or equal to the degree of h.

To represent a polynomial h by a MiNKiF
PQC with arcsine input encoding in a tiny
neighborhood of a given point x0, the input
redundancy must be at least the degree of h.

Proof of Corollary 9: Let us abbreviate g : x 7→ f (arcsin(x ·

a + b)) : ]x0 − ε, x0 + ε[ → R. From the discussion
above, we know that g is a linear combination of
sc-monomials.

Both functions h and g are analytic, and they coincide on
an interval. Hence, g has an analytic continuation, h, to the
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real line so that Lemma 8 is applicable, and states that h is a
polynomial with degree at most n. This completes the proof of
Corollary 9.

As indicated in the introduction, in the special case
which is considered in Mitarai et al. [13]—where the input
amplitudes are stored (by rotations) in n distinct qubits
before any other quantum operation is performed—this
can be proved by looking directly at the effect of a Pauli
transfer matrix on the mixed state vector in the Pauli
basis. Our corollary shows that this effect persists no
matter how the arcsine-encoded inputs are spread over the
quantum circuit.

The corollary allows us to lower bound the input redundancy
for some functions.

EXAMPLES. There is no PQC with arcsine input encoding that
represents the function x 7→ sin x (exactly) in a neighborhood
any point. Indeed, the same holds for any analytic function
defined on the real line which is not a polynomial: the exponential
function, the sigmoid function, arcus tangens, . . .

Unfortunately, from these impossibility results, no
approximation error lower bounds can be derived. Indeed,
in their paper [13], Mitarai et al. point out that, due to the

√
·

terms, the functions represented by the expectation values can
more easily represent a larger class of functions than polynomials.

To give lower bounds for the representation of functions
which are not analytic on the whole real line, we proceed as
follows. For fixed n ≥ 1, x0 ∈ R and a, b ∈ R

n, denote by

Mn;a,b
x0 the vector space spanned by all functions of the form

]x0 − ε, x0 + ε[ → R : x 7→ f (arcsin(x · a + b)) for an3 ε > 0,
where f ranges over all expectation value functions with input
redundancy n, i.e., functions as in Remark 1, a, b ∈ R

n satisfy
−1 < ajx0 + bj < +1, and the arcsin is applied to each
component of the vector.

PROPOSITION 10. The vector space Mn;a,b
x0 has dimension at

most 3n, and is spanned by the sc-monomials (14) of degree n.

Proof: With a, b fixed, there are at most 3n sc-monomials (14) of
degree n, as S,C ⊆ [n] and S∩C = Ø hold. Hence, the statement
about the dimension follows from the fact that the elements of
Mn;a,b

x0 are generated by sc-monomials.
The fact that the sc-monomials generate the expectation

value functions with arcsine input-encoding of redundancy n is
just the statement of (13) above. This concludes the proof of
Proposition 10.

We can now proceed in analogy to the case of linear input
encoding. Let us define the sc-rank at x0 of a function h defined
in a neighborhood of x0 as the infimum over all r for which
there exist sc-monomials µ1, . . . ,µr , an ε > 0, and real numbers
α1, . . . ,αr such that x0 ∈

⋂

j Iµu , and

h(x) =

r
∑

j=1

αjµj(x) for all x ∈ ]x0 − ε, x0 + ε[.

3Mathematically rigorously speaking,Mn;a,b
x0 is the germ of functions at x0.

Proposition 10 now directly implies the following result.

COROLLARY 11. Let h be a real-valued function defined in some
neighborhood of a point x0 ∈ R.

Suppose that in a neighborhood of x0, h is equal to an
expectation value function with arcsine input encoding, i.e., there
is an n, a function f as in Remark 1, vectors a, b ∈ R

n, and an
ε > 0 such that h(x) = f (arcsin(x · a + b)/(2π)) holds for all
x ∈ ]x0 − ε, x0 + ε[.

The input redundancy, n, is greater than or equal to log3(r),
where r is the sc-rank of h at x0.

To represent a function h by aMiNKiF PQCwith
arcsine input encoding in a tiny neighborhood of
a given point x0, the input redundancy must be
at least the logarithm of the sc-rank of h at x0.

We conclude the section with a note on the choice of the
parameters a, b.

REMARK 12. It can be seen [17] that the dimension of the space
Mn

x0
is 3n, if aj, bj j = 1, . . . , n are chosen in general position,

but only O(n) if a is a constant multiple of the all-ones vector.
Moreover, as indicated in Proposition 10, the basis elements which

span the space depend on a, b, and hence the space Mn;a,b
x0 will

in general be different for different choices of a, b. Again, we find
that it is plausible that the choices of a, b should depend on the
target function.

5. CONCLUSIONS AND OUTLOOK

To the best of our knowledge, our results give the first rigorous
theoretical quantitative justification of a routine decision for the
design of parameterized quantum circuit architectures: Input
redundancymust be present if good approximations of functions
are the goal.

Both activation functions we have considered give clear
evidence that input redundancy is necessary, and grows at
least logarithmically with the “complexity” of the function:
The complexity of a function f with respect to a family B of
“basis functions” is the number of functions from the family
which are needed to obtain f as a linear combination. In
our results, the function family B depends on the activation
function. In the case of linear input encoding (activation function
“identity”), the basis functions are trigonometric functions t 7→
e2π ikt , whereas for the arcsin activation function, we obtain
the basis monomials (14) already used, in a weaker form, in
Mitarai et al. [13].

From Remarks 6 and 12 we see that the weights a, b, i.e.,
the coefficients in the affine transformation links in Figure 1,
should have to be variable in order to ensure a reasonable
amount of expressiveness in the function represented by the
quantum circuit. We use the term variational input encoding
to refer to the concept of training the parameters involved
in the encoding with other model parameters. A recent set
of limited experiments [18] indicate that variational input
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encoding improves the accuracy of Quantum Neural Networks
in classification tasks.

While we emphasize the point that this paper demonstrates
a concept—lower bounds for input redundancy can be
proven—there are a few obvious avenues to improve
our results.

Most importantly, our proofs rely on exactly representing a
target function. This is an unrealistic scenario. The most pressing
task is thus to give lower bounds on the input redundancy when
an approximation of the target function with a desired accuracy
ε > 0 in a suitable norm is sufficient.

Secondly, we thank an anonymous reviewer for pointing out
to us that lower bounds formanymore activation functions could
be proved.

Finally, Remark 1 mentions that for every multi-
linear trigonometric polynomial f , there is a PQC whose
expectation value function is precisely f . It would be
interesting to lower-bound a suitable quantum-complexity
measure of the PQCs representing a function, e.g.,
circuit depth. While comparisons of the quantum vs.
classical complexity of estimating expectation values
have attracted some attention [19], to our knowledge,
the same question in the “parameterized setting” has not
been considered.
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A. PROOF OF LEMMA 2

We have to prove that the functions χk, k ∈ R, defined in (11)
are linearly independent (in the algebraic sense, i.e., considering
finite subsets of the functions at a time). There are several ways
of proving this well-known fact; we give the proof that probably
makes most sense to a physics readership: The Fourier transform
(in the sense of tempered distributions) of the function χk is
δ(k− ∗), the Dirac distribution centered on k. These generalized
functions are clearly linearly independent for different values of k.
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