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Editorial on the Research Topic

Remote Sensing for Aquaculture

While the sustainability of aquaculture is crucial for global food security, aquaculture development
faces major threats and challenges, such as the increasing competition for land, water, and energy
resources, as well as vulnerability to global warming, sea level rise, water pollution, increased
occurrence of extreme events, harmful algal blooms (HABs), and disease outbreaks (Froehlich
et al., 2018; Soto et al., 2019). Compared to land-based aquaculture where suitable areas are limited
by space constraints, there is immense potential for the expansion of aquaculture in the coastal
and open oceans (Gentry et al., 2017). The intensification of marine aquaculture, if not managed
properly, could, however, lead to serious environmental impacts and socio-economic conflicts, and
there is a clear need for ecosystem-based approaches to aquaculture planning in the marine realm
(Lester et al., 2018).

In the ocean, most aquaculture species, equipment, and operations are sensitive to the variability
of environmental parameters, such as sea surface temperature (SST), currents, wave height,
underwater irradiance, and/or water quality in terms of suspended particulate matter (SPM) and
phytoplankton. All of these parameters are highly variable over time and space, adding to the
complexity of planning and management. Due to its ability to map essential variables at multiple
scales and resolutions, Earth Observation (EO) can help to comprehensively optimize aquaculture
location and type in both the nearshore and offshore oceans (Meaden and Aguilar-Manjarrez,
2013). Spatially-explicit time-series of remotely-sensed parameters have been used for site selection
of fish (IOCCG, 2009), shellfish (Saitoh et al., 2011; Thomas et al., 2011; Gernez et al., 2014; Snyder
et al., 2017), and kelp aquaculture (Radiarta et al., 2010). Remote sensing can also contribute to
aquaculture planning, with the integration of EO into Geographic Information Systems (GIS)
(Falconer et al., 2020) and spatial multi-criteria evaluation (SMCE) methodologies to resolve
complex environmental and socioeconomic constraints (Kapetsky and Aguilar-Manjarrez, 2007;
Radiarta et al., 2008; Brigolin et al., 2017; Barillé et al., 2020). Besides site-selection and planning,
aquaculture could also benefit from EO for water quality monitoring (Gernez et al., 2017; Soriano-
González et al., 2019), notably in the case of HAB detection (Gokul et al., 2020; Rodríguez-Benito
et al., 2020; Torres Palenzuela et al., 2020), assessment of fish farming environmental impact (Bengil
and Bizel, 2014), and modeling of species invasion associated with aquaculture (Thomas et al.,
2016).

The objectives of this Research Topic were to assess the use of advanced EO products over a
variety of scales and resolutions, and to document the latest developments in coupling EO with
biological and ecological models applied to a variety of aquaculture contexts. All articles focused

on offshore marine aquaculture, with the exception of one article dedicated to nearshore intertidal
waters. All types of mariculture were investigated: fish, shellfish, and macroalgae aquaculture.
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Although most articles were based on satellite remote sensing,
the use of unmanned aerial vehicle (UAV) was also tackled, and
a large range of spatial scales considered. Overall, the articles
concerned three types of study: site selection, risk to aquaculture
(HABs), and production monitoring.

The use of EO for site suitability and selection was addressed
in four articles. In Porporato et al., EO-derived SST data was
coupled with an ecophysiological model based on a dynamic
energy budget (DEB) and incorporated into a SMCE framework
to optimize the design of allocated aquaculture zones for
fish farming (European seabass and gilthead seabream) in
the Italian offshore waters. In Palmer et al., EO-derived SST,
Chlorophyll and SPM concentration were also coupled with
DEB modeling for Pacific oyster aquaculture site selection
in a French macrotidal bay, demonstrating the potential of
strategically selected offshore sites compared to the traditionally-
farmed, albeit less productive, intertidal zone. In Jossart et al.,
statistical spatial autocorrelation techniques were incorporated
into the planning framework, improving upon conventional site
selection approaches. Two approaches were demonstrated for
northeastern US case studies; one assessing the relative suitability
for mussel farming, the other assessing patterns in modeled and
remotely-sensed oceanographic data important to aquaculture.
High-resolution SST imagery from Landsat-8 was used as a proxy
for surface nitrate concentration by Snyder et al., in their study of
offshore kelp farm optimal placement.

The Research Topic also documented some of the latest
developments in HAB remote sensing using the new generation
of Sentinel-3 satellites. In Smith and Bernard, an indicator to
identify the bloom-dominant phytoplankton type was developed
for aquaculture risk mitigation. Spectral features in the red
and NIR were used to discriminate two types of HABs (high
biomass dinoflagellate vs. Pseudo-nitzschia blooms) from other
phytoplankton assemblages in South Africa. The red-edge
spectral signature of various HAB types was also documented
in Wolny et al., where promising algorithms to detect common
marine and estuarine HAB species (Alexandrium monilatum,
Karlodinium veneficum, Margalefidinium polykrikoides, and
Prorocentrum minimum) were investigated in the Chesapeake
Bay (US).

Finally, the performance of several remote-sensing platforms
to monitor offshore kelp farming along the eastern Pacific

coastline was compared in Bell et al.: satellite sensors, UAV-
mounted optical sensors, underwater imagery and sonar
scanning. Using field observations and deep learning, this study
provided a valuable analysis of strength, weakness, opportunity,
and threat for future developments in the monitoring of far-field
kelp production.

In summary, this Research Topic compiled some of the latest
remote sensing developments for aquaculture. While three types
of studies were addressed (site selection, production monitoring,
and HAB remote sensing), there is no doubt that EO could
also benefit other aquaculture topics, notably environmental
impact assessment. EO-based analyses of land cover changes
associated with aquaculture (Proisy et al., 2018) could, for
example, be translated to the seascape. Whatever the topic, future
developments of innovative EO products (habitat mapping,
phytoplankton groups, species identification, particulate organic
carbon, or nitrogen content), as well as advances in data
processing (process-based modeling approach, deep learning,
and big data analysis) are expected to further improve
aquaculture studies. Concurrent to such progress, the uptake of

EO data by the aquaculture industry, environmental managers,

and policy makers will certainly increase as higher temporal and
spatial imagery become available, including very high-resolution
observations and services from commercial providers.
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Farm site selection plays a critical role in determining the productivity, environmental
impact, and interactions of aquaculture activities with ecosystem services. Satellite
Remote Sensing (SRS) provide spatially extensive datasets at high temporal and spatial
resolution, which can be useful for aquaculture site selection. In this paper we mapped
a finfish aquaculture Suitability Index (SI) applying the Spatial Multi-criteria Evaluation
(SMCE) methodology. The robustness of the outcome of the SMCE was investigated
using Uncertainty Analysis (UA), and in parallel we evaluate a set of alternative scenarios,
aimed at minimizing the subjectivity associated with the decision process. The index
is based on the outputs of eco-physiological models, which were forced using time
series of sea surface temperature data, and on data concerning Significant Wave Height
(SWH), distance to harbor, current sea uses, and cumulative impacts. The methodology
was applied to map the suitability for farming of European seabass (Dicentrarchus
labrax) and gilthead seabream (Sparus aurata) within the Italian Economic Exclusive
Zone (EEZ), under three scenarios: Blue Growth, Economic and Environment. Tyrrhenian
and Ionian coastal areas were found to be more suitable, compared to the Northern
Adriatic and southern Sicilian ones. In the latter, and in the western Sardinia, the index is
also affected by higher uncertainty. The application presented suggests that SRS data
could play a significant role in designing the Allocated Zones for Aquaculture, assisting
policy makers and regulators in including aquaculture within maritime spatial planning.

Keywords: aquaculture zoning, offshore aquaculture, spatial multi-criteria evaluation, maritime spatial planning,
deterministic models, sea surface temperature, significant wave height, remote sensing

INTRODUCTION

Human population growth and changes in eating habits are leading to a global increase in fish
protein demand (Delgado et al., 2003; World Bank, 2013; FAO, 2018), generating an increased
interest in sustainable aquaculture and fisheries to guarantee food security (e.g., Béné et al., 2015;
Longo et al., 2019). The potential for the development of marine fish culture is high (Gentry et al.,
2017) and could play an important role in reducing the fishing pressure on wild fish stocks (see
for example Little et al., 2016), the majority of which are fully exploited or overexploited (Branch
et al., 2011; Costello et al., 2016; FAO, 2018). The presence of an aquaculture farm can alter health
and productivity of the surrounding marine ecosystem in diverse and complex ways (Black, 2001;
McKindsey et al., 2006). The effects of farms on the environments include eutrophication, chemicals
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and medicines release, modification of the benthic community
(Ahmed and Thompson, 2019). Moreover, preserving water
quality assures provisions of high-quality aquaculture products
(Gentry et al., 2017; Clavelle et al., 2019). Therefore, the site
selection process should take into account a set of criteria in
order to avoid negative effects on the local environment. The
identification of Allocated Zones for Aquaculture (AZAs – FAO,
2012), following the principles of the ecosystem approach (Soto
et al., 2008), can boost the integration of this industry with
other existing marine uses, allowing a better and profitable
coordination among decision makers involved in licensing and
monitoring processes (FAO and World Bank, 2015).

Aquaculture is strongly supported by the policies and
initiatives of the European Union, i.e., the EU Blue Growth
strategy (European Commission [EC], 2012) and the strategic
guidelines for the sustainable development of EU aquaculture
(European Commission [EC], 2013). Offshore aquaculture (i.e.,
aquaculture located in open water; Gentry et al., 2017), instead
of coastal aquaculture, may help mitigating and avoiding some
of the well-known local environmental impact of cage culture,
due to the higher carrying and assimilative capacity of open
water sites (Tacon and Metian, 2016; Gentry et al., 2017; Troell
et al., 2017). However, to date, little is known about the spatial
extent and potential expansion of this activity (Froehlich et al.,
2017; Gentry et al., 2017). Scientists and policymakers have
recommended Maritime Spatial Planning (MSP – EC Directive,
2014/89/EU) as an approach to harmonize multiple uses of
the marine environment. In this context, current marine uses
should be integrated together with the human impacts (da
Luz Fernandes et al., 2017), to develop sustainable spatial
management plans (Stelzenmüller et al., 2008; Halpern et al.,
2009, 2015; Micheli et al., 2013; Kelly et al., 2014). The
implementation of the MSP Directive can assume a critical role
in the effective management of marine resources (Margules and
Pressey, 2000; Pressey et al., 2007; Ban et al., 2010; da Luz
Fernandes et al., 2017). In the MSP context, the marine space
rationalization requires a multisectoral approach and the AZAs
evaluation represent only one component.

At the operational level, the implementation of the site
selection procedure can make use of valuable methodologies,
such as the Spatial Multi-Criteria Evaluation (SMCE), being able
to support the stakeholders in complex decisions procedure,
through the combination of different criteria (Radiarta et al.,
2008). In this framework, the increasing availability of Earth
Observation data created opportunities for aquaculture
suitability evaluation, farming management, and ecosystem
studies (Saitoh et al., 2011; Gernez et al., 2014, 2017). Beginning
in the 1980s, Satellite Remote Sensing (SRS) technologies
represented a very effective means for providing data for
aquaculture site selection at high temporal and spatial resolution
(Kapetsky and Aguilar-Manjarrez, 2007). More recently,
starting from 2017, the Copernicus Marine Environment
Monitoring Service (CMEMS) EU initiative made available
data from 5 new satellites (Sentinel-3, Jason-3, Saral Altika,
Cryosat-2, and Jason-2N). The above-mentioned SRS data
can be used as an input for dynamic models, simulating
growth and physiology of farmed organisms, in order to

determine the suitability for aquaculture activities through
growth performance indicators, such as the organisms weight
at harvest (Thomas et al., 2011), or the condition index
(e.g., Filgueira et al., 2013). Together with consolidated
environmental variables (i.e., sea surface temperature and
Chlorophyll-a concentration data), Significant Wave Height
(SWH) data are now accessible. These latter data can be useful
for evaluating which areas have higher probability of being
affected by storms.

The present study focuses on the estimation of a Suitability
Index (SI) for new marine finfish aquaculture offshore activities,
using SRS data and the SMCE methodology. The analysis was
performed under three different scenarios of growth for the
aquaculture industry. The robustness of the outcome of the
SMCE was assessed based on an Uncertainty Analysis (UA),
which was carried out by treating the weights in the SMCE as
stochastic variables.

Spatial multi-criteria evaluation was applied for mapping
suitability indices for seabass and seabream over the whole Italian
Economic Exclusive Zone (EEZ). The methodology, previously
applied to shellfish farming (Brigolin et al., 2017), was tested
for identifying AZA for seabass/seabream farming. In particular,
specific objectives were: (i) evaluating the suitability for finfish
aquaculture in areas subjected to multiple human impacts; (ii)
estimate the uncertainty in the suitability indices. The following
methodological section will present: (1) the study area in which
the application was performed and the SRS data used; (2)
details for SMCE application, including scenarios construction
and UA; (3) the definition of criteria and constraints used
in the analysis.

MATERIALS AND METHODS

Study Area and Data Description
The SMCE methodology was applied to the Italian EEZ,
which covers different sub-basins of the Mediterranean Sea,
namely Adriatic, Ionian and Tyrrhenian Seas (see Figure 1).
In accordance with the definition of offshore aquaculture given
by Gentry et al. (2017), areas deeper than 100 m and farther
than 25 nm from the coast were excluded “a priori” from the
analysis (Figure 1).

The two farmed species considered were European seabass
(herein seabass) and gilthead seabream (herein seabream). These
are among the most important species for the EU marine
aquaculture, along with salmon, mussels and oysters, and in
2015 they together accounted, respectively, for 21% and 12% of
the total production, in terms of value and volume (European
Commission, 2018). Italy is the third European producer of
these species, after Greece and Spain (8% and 7%, respectively;
EUMOFA database1; last access 07/01/2019). In 2015–2016 Italy
produced 6800 metric tonnes of seabass and 7400 tonnes of
seabream: these productions are far from satisfying the internal
demand, as the import amounted to 26500 tonnes of seabass and
26000 of seabream (EUMOFA, 2017, 2019).

1https://www.eumofa.eu
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FIGURE 1 | Study area within the Italian EEZ and maps of anthropogenic and natural constraints: commercial harbor, shellfish farm, Posidonia oceanica meadows,
Marine Protected Area (MPA), dredging, military practice area, danger zones, hydrocarbon extraction (active licenses), and dump munitions.

SRS data were obtained from the CMEMS data portal2,
selecting the Level 4 data (i.e., model output resulting from
the statistical analysis of multiple measurements), cloud free
and gridded continuously over time and space, from January
2016 until December 2017. Time series of SST daily data at
1 km2 spatial resolution were selected. These data are based
on the night-time images recorded by the infrared sensors
of different satellites and, subsequently interpolated by means
of the algorithm described by Buongiorno Nardelli et al.
(2013). Sea surface SWH data are produced by the Hellenic
Center for Marine Research (HCMR), also available through
the CMEMS data portal. This dataset provides hourly data at
a spatial resolution of ca. 4 km2, and is based on satellite
altimetry data, including wave products derived from Jason-3 and
Sentinel-3A altimeters, assimilated within the CMEMS numerical

2http://marine.copernicus.eu/

real-time Mediterranean Waves Model (Med-waves), a coupled
hydrodynamic-wave model implemented in the Mediterranean
Sea, and based on the WAM Cycle 4.5.4 wave model.

SMCE, Scenarios Considered and
Uncertainty Analysis
The finfish aquaculture suitability was assessed by applying the
SMCE methodology (Malczewski, 2006), which is based on the
analytic hierarchical process (Saaty, 1980). The present study
considered 2 macro-criteria: Economic (EC) and Environmental
(EN). As presented in Figure 2, aquaculture was assumed to
develop under 3 scenarios, reflecting different social perceptions
of this activity. These were defined by initially assigning the same
weight to EC and EN (Blue Growth, EC 0.5/EN 0.5), and therefore
decreasing by 50% each macro-criterion (Economic, EC 0.75/EN
0.25; Environmental, EC 0.25/EN 0.75). EC macro-criterion
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FIGURE 2 | Framework adopted for the scenario analyses. (A) Scenarios, weights assigned to the economic (W1) and environmental (W2) macro-criteria combined
to obtain the Economic, Blue Growth and Environmental scenarios. (B) Macro-criterion economic, bass, bream, Significant Wave Height (SWH), Distance to Harbors
(DH), W1, W2, W3, and W4 the weights assigned to each ILC. (C) Macro-criterion environmental, map of cumulative impact index.

included the following Intermediate Level Criteria [ILC – sensu
Radiarta et al. (2008)]: (i) number of days required to reach the
market size for seabass (BASS), (ii) number of days required
to reach the market size for seabream (BREAM), (iii) distance
of the farm facilities from harbors (DH), and (iv) SWH. EN
was based on a single criterion, the multiple impact index
estimated by Micheli et al. (2013). The raster used for site
suitability, the data used for the analysis, the spatial resolution
and data sources were reported in Supplementary Material.

In order to perform the SMCE analysis, criteria were
normalized, weighted and combined linearly, thus obtaining a
SI ranging from 0 to 1, where values close to 1 indicate the
highest suitability. Each criterion was normalized by linearly re-
scaling each value in the range 0–1, by subtracting the minimum
value and dividing by the range of the raw data (Eastman,
1999). Finally, in order to rank the areas, SI was aggregated
in 5 suitability classes: 0.0 – 0.2, not suitable; 0.2 – 0.4, low
suitability; 0.4 – 0.6, medium suitability; 0.6 – 0.8, high suitability;
0.8 – 1.0, very high suitability. This partitioning was performed
by choosing the same number of classes, namely 5, considered
by current European directives (see e.g., WFD, European
Community, 2000), and equally spacing SI among these.

The robustness of the outcome of the SMCE was therefore
evaluated by means of an UA, which allows one to quantify
the output variability with respect to a set of input factors,

e.g., driving function, model parameters. The results of UA are
very relevant in decision making, as they provide information
about the confidence in model output (Gómez-Delgado and
Tarantola, 2006): in this paper, we used UA for investigating
how the weighting of criteria could affect the SI. This point
could be very relevant in the implementation of the MSP
Directive, which requires a participatory process, involving
different stakeholders: weights could, therefore, be selected
on the basis of the indications provided by expert panels.
To this regard, it would be very relevant to understand
in advance how the ranking provided by the index could
change, as a consequence of different weighting. In order
to demonstrate the use of this methodology, we focused on
the EC macro-criterion. Two of the ILC weights, i.e., seabass
and seabream days to harvest, were fixed in this analysis,
respectively, w1 = 0.25 and w2 = 0.25, assuming that there
is no “a priori” reason for preferring the farming of one
species. In order to perform the UA, the weights w3 and
w4 were treated as stochastic variables, normally distributed
with mean µ = 0.25 and standard deviation σ = 0.05. Their
joint probability density function (pdf) was randomly sampled
by extracting 100 values of w3 and calculating w4 from the
following Equation,

w3 + w4 = 0.5 (1)
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This procedure generated 100 independent results for the SI,
from which the median and the interquartile range (i.e., distance
between the 25th and 75th percentile) were calculated. Within the
Blue Growth scenario we also identified those areas in which SI
resulted to be stable within 0.8 and 1.0 in all the 100 results. These
areas were called “high-suitability stable areas.”

Definition of Criteria and Constraints
The spatial resolution of the SI map, 1 km2, was determined by
the resolution of SST data, which represent a key input for the
eco-physiological models of the two farmed species. The latter
were used for estimating the number of days required to reach
the market size of 400 g both for seabream and seabass3 using the
R package RAC4 (Baldan et al., 2018). Fish growth was simulated
for each grid point, assuming that fish are fed ad libitum. Feed
composition, in terms of proteins, lipids, and carbohydrates,
was set on the basis of values which were considered to be
representative of currently used commercial formulations for
the two species5,6 (last access 15/04/2019). The simulations were
run for a period of 18 months, with a juvenile stocking size
of 6 g, and a rearing cycle starting in July 2016, and ending
in December 2017. Model formulations and parameters, both
for seabass and seabream, are reported in previously published
papers (Brigolin et al., 2010, 2014; Baldan et al., 2018), and in
the demo dataset provided within the RAC package. Only one
parameter was modified with respect to these works, namely
the seabream fasting catabolism at 0◦C, for which the value
of k0 = 0.0012 day−1 was used, as suggested by Libralato and
Solidoro (2008). The distance to harbor criterion was estimated
by measuring the distance, in km, from each center of the grid
to the nearest harbor, through the nearest neighbor analysis
in QGIS (version Las Palmas, 2.18.24). The SWH criterion,
providing a measure of the roughness of the sea at each specific
site, selected to evaluate which areas have higher probability of
being affected by storms, was estimated on the basis of the 90th

percentile of the sea surface SWH, estimated for each center
grid, by interpolating the data downloaded from the CMEMS
website though a nearest neighbor interpolation algorithm. It
is important to notice that downscaling satellite data implies
several issues, depending on the algorithms applied, which
influence the accuracy, outputs resolution and robustness (see
for example Ramírez Villegas and Jarvis, 2010). We decided to
use the nearest neighbor interpolation algorithm based on the
consideration that this simple technique, taking the value of the
nearest observed point does not change the input raster values
(Hengl and Reuter, 2008). The SWH data were downscaled to the
same spatial resolution of SST data allowing us to run the SMCE
analysis at 1 km2.

The estimation of EN macro-criterion was based on the
results presented in Micheli et al. (2013), who produced a

3http://www.fao.org/fishery/culturedspecies/search/en
4https://cran.r-project.org/package=RAC
5http://www.fao.org/fishery/affris/species-profiles/gilthead-seabream/gilthead-
seabream-home/en/
6http://www.fao.org/fishery/affris/species-profiles/european-seabass/european-
seabass-home/en/

cumulative human impacts index for the Mediterranean coasts,
following the approach described by Halpern et al. (2008).
The impacts were calculated considering multiple drivers (e.g.,
temperature, acidification, nutrient input, and risk of hypoxia)
and ecosystems, which values were combined and weighted. The
sum of these weighted combinations represented the relative
cumulative impacts of human activities on ecosystems (Halpern
et al., 2008; Micheli et al., 2013). Data were extracted from the
NCEAS website7 (last access 15/04/2019).

Spatial constraints imposed by existing anthropogenic
activities considered to be in conflict with the presence
of aquaculture were also considered. Data on uses such
as hydrocarbon extraction, dump munition areas, danger
zones, and military practice area, were downloaded from
EMODnet8 and Adriplan portals9. Moreover, we considered
the Posidonia oceanica meadows distribution, extracted for
the study area from the Mediterranean Sensitive Habitats
(MediSeH) project (Giannoulaki et al., 2013; Telesca et al.,
2015), and the Marine Protected Areas, which were downloaded
from the World Database on Protected Areas10. Under a
precautionary approach, around marine protected areas and
seagrass meadows a security distance buffer of 500 meters was
considered (see Holmer et al., 2008).

As a final step, all the constraints were merged, in order to
identify unavailable space for aquaculture, and superimposed to
the suitability map for finfish aquaculture, by using a Boolean
classification scheme (suitable areas 1, unsuitable areas 0)
(Falconer et al., 2013). Analyses were performed using free open
software R 3.5.1, R packages RAC – R package for AquaCulture,
raster, ncdf4 and maptools (R Core Team, 2018), and QGIS
2.18.24 Las Palmas (Quantum GIS Development Team, 2018).

RESULTS

All the considered constraints, together with Marine Protected
Areas and seagrass meadows are mapped in Figure 1. The Central
and North Adriatic Sea is the area with most anthropogenic
activities, while in the southern part of the Tyrrhenian Sea,
along the Sicilian and Calabrian coasts these activities are almost
absent. Figures 3A–C shows the median values of the SI with
the constraints superimposed for the three considered scenarios:
Environmental (EC 0.25/EN 0.75), Blue Growth (EC 0.5/EN 0.5),
and Economic (EC 0.75/EN 0.25). The “constraints-free” maps
are reported in Supplementary Figures S2A–C. Figures 4A–C
shows the uncertainty in terms of interquartile range for the
Environmental, Blue Growth and Economic scenarios. Low
SI values with similar uncertainties for the three considered
scenarios are estimated in the following two areas: (1) offshore
area of the Northern Adriatic Sea, along the coasts of Friuli
Venezia Giulia, Veneto, Emilia-Romagna and Apulia regions; (2)
offshore area of the Southern part of Sicily. Globally, the Italian

7https://www.nceas.ucsb.edu/globalmarine
8http://www.emodnet-humanactivities.eu/about.php#humanactivities
9http://data.adriplan.eu/
10https://protectedplanet.net/
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FIGURE 3 | Spatial multi-criteria evaluation median results for the 3 scenarios considering the current sea uses and protected areas. (A) Environmental. (B) Blue
Growth. (C) Economic. Scenarios were defined by initially assigning the same weight to EC and EN (Blue growth, EC 0.5/EN 0.5), and therefore decreasing by 50%
each macro-criterion (Economic, EC 0.75/EN 0.25; Environmental, EC 0.25/EN 0.75).

FIGURE 4 | Spatial multi-criteria evaluation uncertainty (interquartile range/median) for the 3 scenarios considering the current sea uses and protected areas:
(A) Environmental. (B) Blue Growth. (C) Economic.

EEZ, both inshore and offshore, results to be suitable for seabass
and seabream farming, with the notable exception of the Adriatic
Sea offshore areas. Indeed, the lowest SI values (0.2 – 0.4) are
estimated for this area, in front of the Po river outlet. Most
of the investigated marine space presents SI values comprised
between 0.6 and 0.8, while the highest SI values (0.8 – 1.0) are
recorded in the Tyrrhenian and Ionian area. In particular, the
suitable space (SI > 0.6) results around 60% of the total space
for the Environmental and Blue Growth scenarios, while is ca.
54% for the Economic scenario (Supplementary Figure S3A).
In details, in the Environmental scenario 59.87% of the total
space (53,412 km2) presents high and very high suitability values,
followed by the Blue Growth scenario with the 58.63% of the
total space (52,301 km2), and the Economic scenario with 53.73%
(47,928 km2) of the total space.

The highest uncertainties were found in the Economic and
Blue Growth scenarios, with very similar values, followed by
the Environmental scenario (Figure 4). The UA highlighted low

values with a common uncertainty for all considered scenarios
in three areas: (1) offshore area of the Northern Adriatic
Sea, along the coasts of Veneto, Emilia-Romagna and Marche
regions; (2) inshore and offshore Western and Northern coasts of
Sardinia region; (3) inshore areas of the Southern part of Sicily.
Considering the Blue Growth scenario, the uncertainty values
and the current marine sea uses are represented in Figure 5, along
with the high-suitability stable areas (areas in which the SI scored
between 0.8 and 1.0, see section “SMCE analysis and scenarios
construction”). The high-suitability stable areas are located in the
Tyrrhenian and Ionian Seas, and almost in the whole area the
lowest uncertainty is recorded with the exception of the Sardinian
and western Sicilian coasts. In particular, in Figure 5A is possible
to highlight in the Southern part, two stable areas, one with low
uncertainty values and the other with high uncertainty values.
Moreover, in the Sicilian area (Figure 5B), the highest uncertainty
is recorded in two stable areas, where is located the Egadi Island
Marine Protected Area.
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FIGURE 5 | Blue Growth uncertainty considering the area with a persistent high SI and the current sea uses: (A) Sardinia. (B) East Sicily.

DISCUSSION

The first step in a process for aquaculture site selection is
related with the identification of priority areas at the national
level, afterward detailed plans are developed at regional level
(FAO and World Bank, 2015). The Strategic Guidelines for
Aquaculture delivered by the (European Commission [EC],
2013) considered spatial planning for aquaculture as a key
issue and all EU Member States developed the Multi-annual
aquaculture plans with the aim to increase their productions.
In this context, the first objective of the Italian national
strategic plan for aquaculture (PSA, 2014-2020) is to develop

the aquaculture activity in the Italian seas in order to create
economy, employment and social benefits. Considering also the
Blue Growth strategy perspective, the Italian national growth
objective for the 2013 – 2025 is to increase of 58% in volume
the current marine fish farming production (PSA, 2014-2020).
The response to the EU strategic guidelines to achieve this
objective includes the coordinated spatial planning (macro-
objective 2 of the PSA, 2014-2020), through the implementation
of the MSP Directive and coherently with the FAO-GFCM
resolution of 2012 (Recommendation GFCM/36/2012/1; GFCM,
2012), with the aim to identify the priority areas for aquaculture
activities. In particular, there is a need of national guidelines
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for the identification of AZAs able to support regions in the
adoption of MSP plans.

As highlighted by our results, the Italian EEZ is a complex
system in which different users coexist, with a wide range
of purposes and conflicts of interest (tourism, industry,
fisheries and transport). Understanding and quantifying the
spatial distribution of constraints and multiple stressors should
help to improve and rationalize the spatial management of
human activities, considering both the Water Framework
Directive (WFD; Directive 2000/60/EC) and the Marine Strategy
Framework Directive (MSFD; Directive 2008/56/EC). The
identification of suitable areas for the expansion of aquaculture
presents both purely technical-scientific aspects, linked to the
current scientific knowledge, and problems connected to the
decision-making aspects and the planning process. In recent
years, there was a rise in the usage of “virtual technologies”
(sensu Ferreira et al., 2012) for the sustainable development
and management of aquaculture activities, also related mainly
with the increasing availability of SRS data (see e.g., Radiarta
et al., 2008; Brigolin et al., 2015, 2017; Gernez et al., 2017).
The application presented in this study confirms the potential
of SRS for MSP and, based on the generality and transferability
of the applied methodology, could be both tested in other areas
and extended to different species. With respect to this latter
point, it is worth remarking that the present work used SST
satellite data as inputs for mechanistic models simulating eco-
physiology and growth of seabass and seabream, while recent
studies considered directly the water temperature values in
relation to the thermal tolerance of the selected species (e.g.,
Longdill et al., 2008; Radiarta et al., 2008; Gentry et al., 2017;
Weiss et al., 2018). The advantage of using a mechanistic model is
related to the possibility of obtaining the integrated assessment of
the temperature effects on fish physiology and growth over time.
Consistently with the results from a mechanistic model based on
the dynamic energy budget theory (Sarà et al., 2018), our analysis
showed that, fixing the husbandry practices, fish growth appeared
strongly related to the spatio-temporal variability in SST. Indeed,
a latitudinal gradient was highlighted for both species, with a
better growth performance highlighted in the southern part of
the Italian EEZ.

SI and Estimated Criteria
Consistently with the approach promoted by the EU Directive
on Maritime Spatial Planning, the definition of weights should
be the results of a participatory process involving different
stakeholders. Indeed, as remarked by Radiarta et al. (2008),
weighting is one of the primary challenges when a multicriteria
evaluation is applied. To the knowledge of the authors, a univocal
and objective procedure to determine the importance of each
criterion does not exist.

According to the results obtained in this work, the areas
less suitable were the Adriatic Sea and the southern part of
Sicily, were a high uncertainty was also recorded. On the
opposite side, the western and northern Sardinian coasts were
classified as highly suitable but, in these areas, high uncertainty
values were also estimated. Considering current constraints,
the areas not available for seabass, and seabream farming

are located in the Northern Adriatic Sea, in the same areas
where the estimated SI presents lower values. High suitability
was the most represented class for all the scenarios analyzed,
(Supplementary Figures S3A,B) (ca. 50% of the EEZ), followed
by the medium suitability (around 40%). SI maps before and after
considering constraints, highlight that available areas with very
high suitability were, respectively, reduced by 2500, 1300, and
750 km2 under the Environmental, Blue Growth and Economic
scenarios (Supplementary Figure S3B). Few areas resulted
highly suitable for seabass/seabream cage culture, in particular
2%, 5%, and 9% of the study area for the Economic, Blue Growth
and Environmental scenario, respectively. Noteworthy, for this
suitability class, very similar values were recorded both taking
and not taking into account the current sea uses and constraints.
Low suitability area, SI values comprised between 0.2 and 0.4,
resulted marginally represented with values comprised between
2.5% and 0.5% of the total area, while SI values below 0.2
were never recorded.

In general, the most constraining Intermediate Level Criteria
(ILC), was Bream, followed by DH, Bass, SWH, and Impact
(see Supplementary Figure S4). Maps of EC and EN criteria
used to calculate the SI are reported in Figure 6 (raw values)
and in Supplemetary Figure S1 (normalized values), and
briefly presented in the following. Days required to reach the
commercial size (400 g) were estimated and mapped for the entire
study area (Figures 6A,B and Supplementary Figures S1A,B).
The values are comprised between 320 and 443 for seabream,
and 385 and 518 days for seabass. For seabream, the lowest
growth values were found in the Northern Adriatic Sea, with a
decreasing tendency moving offshore. The highest growth values
are located in the southern part of the Sicily channel, followed
by the western part of Sardinia island, and the Tyrrhenian Sea,
showing fewer variable values, of ca. 330 days. The growth
performance estimated for seabass are comparable to those
described for seabream but, in general, a higher number of days
is required to reach the commercial size. Distance to harbor
(Figure 6C and Supplementary Figure S1C normalized values)
results homogenously distributed in the whole study area, with
the highest values in the Adriatic Sea and Sicily channel. The
most exposed areas, through the SWH analysis (Figure 3D and
Supplementary Figure S1D), are located in the western and
northern Sardinia, and in the southern part of Sicily. Regarding
the cumulative impact index (Figure 6E and Supplementary
Figure S1E), the highest values are present offshore, both in the
Adriatic and Sicily channel areas, and in the Central and North
Tyrrhenian areas.

SMCE Use for Aquaculture Planning
In the aquaculture suitability analysis presented in this work, the
UA performed allows to understand the SI variability depending
on the respective weights assigned to distance of the farm
facilities from harbors and SWH criteria (Figure 6). Overall,
the introduction of the UA marks an element of novelty of this
work with respect to previous similar applications (e.g., Radiarta
et al., 2008; Brigolin et al., 2015, 2017). With respect to this,
results obtained in the present application highlight that the
average map could provide an incomplete view, if not integrated
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FIGURE 6 | Maps of criteria considered in the analyses. (A) Days required by seabass to reach the commercial size. (B) Days required by seabream to reach the
commercial size. (C) Distance to harbor. (D) SWH. (E) Cumulative impact within the study area.

with the uncertainty associated, which can provide a measure
of the stability of results under criteria weights modifications.
This is easily detectable in the Western and Northern Sardinian
coasts under the Blue Growth scenario, where we estimated high
suitability but also the highest uncertainty. To this regard, it is
worth noting that high values of uncertainty are detected in the
areas were the two criteria SWH and DH, for which the respective
weights were treated as stochastic variables in the analysis, show
the more pronounced spatial gradients. This suggests, as a general
rule, to carefully identify the factors considered in the UA.

In this work we used the cumulative human impact map
(Halpern et al., 2008; Micheli et al., 2013), which allowed
us to take advantage of an indicator of ecosystem status to
identify which areas are already heavily impacted, and in which
a new anthropogenic activity could push the system beyond
the resilience limits. Indeed, these impacted areas have high
priority for management and conservation actions (Coll et al.,
2012; Micheli et al., 2013) and it could be difficult to integrate
new aquaculture activities with the impacts already present.
We are aware that this approach has two main limitations
related with (i) the linear combination of the impacts, that does
not consider the different combinations of drivers which can
also determine a non-linear response to cumulative impacts,
and (ii) the variable quality of the available data (see for

example comments by Halpern et al., 2008; Micheli et al., 2013;
Stock and Micheli, 2016). At the same time, the wide spatial scale
and the completeness of the drivers considered, represented
a great opportunity for the implementation in this study of
the environmental components within the design of AZAs. In
agreement with the procedure suggested by FAO (FAO and
World Bank, 2015), we remark that the a priori evaluation of
cumulative impacts presented here should be accompanied by
a quantification of the local interaction of the planned facilities,
once the location of aquaculture management areas is established.
This step, which goes in the direction of characterizing the
Allowable Zone of Effect (AZE), should be based on a more
comprehensive set of environmental data, including time series
of local currents, dissolved oxygen concentrations, and water
transparency (e.g., through light extinction coefficient, Kd).

Offshore aquaculture activities are increasing in other
European Seas (e.g., Buck and Langan, 2017): our findings
could provide a basis for feasibility studies, aimed at evaluating
the possibility of developing them also in Mediterranean
areas. The co-use and development of offshore aquaculture in
combination with other activities (e.g., wind farms, oil, and
gas decommissioned platforms, etc.) could boost this industry
helping in different aspects, including attachment points for
cages, less cost in maintenance operation, and sharing of
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infrastructural costs (Buck and Langan, 2017). In the meantime,
future development of control-engineering farming practices
(i.e., Precision Fish Farming – Føre et al., 2018) can help
overcoming some of the logistic problems, potentially related to
the distance from the harbors (Naylor and Burke, 2005). Finally,
it is worth remarking that economic and social-acceptability
aspects (see e.g., Gentry et al., 2017; Kluger et al., 2019), may limit
aquaculture production. Therefore, we advocate for the inclusion
of social carrying capacity considerations (McKindsey et al., 2006;
Gentry et al., 2017; Kluger et al., 2019) in the future applications
of the methodology presented in this work, in order to obtain
more realistic expansion scenarios.

Management Recommendations
Our results estimated a potential suitability for marine
aquaculture within most of the Italian EEZ, above all in
the Tyrrhenian and Ionian Seas, suggesting the potential
development of this activity. Less suitable marine space was
recorded in the northern Adriatic Sea, in western Sardinia,
and southern Sicily, were the highest uncertainty was also
recorded. The application highlights the possibility of providing
an estimation of the suitability of different areas, along with
an uncertainty associated, through the Spatial Multi-Criteria
analysis and making use of SRS data, mechanistic models, existing
impacts and uses of marine space. This could assist policy makers
and regulators in promoting a development of aquaculture which
follows the ecosystem approach. Indeed, spatial planning will
be only the first step of this process, which will also include
environmental impact assessment and monitoring programs
(Sanchez-Jerez et al., 2016). We believe that the approach
and the findings reported in this work can contribute to the
identification of priority areas for aquaculture activities within
the Italian EEZ. It is worth remarking that the identification
carried out here with respect to finfish aquaculture needs,
must be extended to consider also the potential for extractive
aquaculture (shellfish and macroalgae). This step should take
into account interactions and possibilities for Integrated Multi-
Trophic Aquaculture (IMTA) development in this area. IMTA
implementation is seen as a possible way to develop an ecological
intensification of aquaculture activities (BLUEMED Italian White
Paper Working Group, 2018). Once identified suitable areas, as
in the present study, a more downscaled approach could allow to
deeply examine the complex mosaic of local factors interacting
with aquaculture installations. Specifically, the availability of
local data, such as marine currents, and the application of
depositional models, could determine a more precise and site-
specific results allowing to highlight possible obstacles for
seabass and seabream aquaculture development at the finest
spatial scale. After the AZAs identification, carrying capacity,
cost/benefit analysis and environmental quality standards should

be taken into account to define the Allowable Zone Effect and
the Aquaculture Management Area (Sanchez-Jerez et al., 2016).
These evaluations, being site-specific and depending on both
environmental and socio-economic factors, should be considered
as a further development of the analysis presented here.

The set of indicators used in this study could be expanded
in different ways, however, this should be carried out by taking
into account the availability of data, and the reliability of the
models needed to derive the indicators. In perspective, model
results could be improved by the development of new algorithms
and new SRS products, such as organic fraction of the suspended
matter and the detection of Harmful Algal Blooms, which will
provide new opportunities in this area (Gernez et al., 2014, 2017).
Future availability of SRS at highest resolution could improve
the accuracy of suitability predictions, allowing to disentangle
the complex mosaic of site-specific factors influencing the
aquaculture activities. Finally, we remark that eco-physiological
mathematical models, which within this work were forced by
using SST data, could in perspective be applied for forecasting the
effects of climate changes, by using as an input the downscaling
simulation produced by hydrodynamic numerical models (e.g.,
Euro-CORDEX initiative11).
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Aquaculture increasingly contributes to global seafood production, requiring new farm
sites for continued growth. In France, oyster cultivation has conventionally taken
place in the intertidal zone, where there is little or no further room for expansion.
Despite interest in moving production further offshore, more information is needed
regarding the biological potential for offshore oyster growth, including its spatial and
temporal variability. This study shows the use of remotely-sensed chlorophyll-a and
total suspended matter concentrations retrieved from the Medium Resolution Imaging
Spectrometer (MERIS), and sea surface temperature from the Advanced Very High
Resolution Radiometer (AVHRR), all validated using in situ matchup measurements, as
input to run a Dynamic Energy Budget (DEB) Pacific oyster growth model for a study
site along the French Atlantic coast (Bourgneuf Bay, France). Resulting oyster growth
maps were calibrated and validated using in situ measurements of total oyster weight
made throughout two growing seasons, from the intertidal zone, where cultivation
currently takes place, and from experimental offshore sites, for both spat (R2 = 0.91;
RMSE = 1.60 g) and adults (R2 = 0.95; RMSE = 4.34 g). Oyster growth time series
are further digested into industry-relevant indicators, such as time to achieve market
weight and quality index, elaborated in consultation with local producers and industry
professionals, and which are also mapped. Offshore growth is found to be feasible and
to be as much as two times faster than in the intertidal zone (p < 0.001). However,
the potential for growth is also revealed to be highly variable across the investigated
area. Mapping reveals a clear spatial gradient in production potential in the offshore
environment, with the northeastern segment of the bay far better suited than the
southwestern. Results also highlight the added value of spatiotemporal data, such as
satellite image time series, to drive modeling in support of marine spatial planning. The
current work demonstrates the feasibility and benefit of such a coupled remote sensing-
modeling approach within a shellfish farming context, responding to real and current
interests of oyster producers.

Keywords: satellite image, time series, bivalve, dynamic energy budget, growth modeling, MERIS, AVHRR, marine
spatial planning
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INTRODUCTION

Marine aquaculture (mariculture) now accounts for more than
half of the world’s total seafood production (FAO, 2018). It is
responsible for the overall increase in production observed over
recent decades, and is expected to continue to bridge the gap
between the ever-growing demand for seafood and supply by
capture fisheries, which have been stagnant since the 1980s (FAO,
2018). Whereas nearly all mariculture currently takes place in the
nearshore environment, the combination of increased demand
for seafood, and environmental impacts, overcrowding and
conflicting uses in the near-coastal zone has resulted in increasing
interest in moving mariculture further offshore (Kapetsky et al.,
2013). At the same time, technical advances, including in offshore
submerged structures and multi-use platforms, render offshore
mariculture increasingly feasible (Buck and Langan, 2017).

French shellfish production has taken place in the intertidal
zone for over a century, and now occupies much of the suitable
area (Goulletquer and Le Moine, 2002). Moving production
further offshore, in this case beyond the intertidal area, has
been considered for several commercial species in France
as a means to expand and improve production, beginning
with scallops (Buestel et al., 1982) and mussels (Prou and
Goulletquer, 2002) in the 1980s, and eventually offshore oyster
cultivation (Goulletquer and Le Moine, 2002). Results from
experimental offshore oyster cultivation have been promising,
generally characterized by faster growth compared with that
in the intertidal zone and yielding a product of good quality
(e.g., Mille et al., 2008; Glize and Guissé, 2009; Glize et al.,
2010; Louis, 2010). Although offshore cultivation is still not
commonplace, due largely to administrative barriers (Barillé
et al., submitted), it continues to be of interest to producers
who seek to optimize production and an alternative to the
overcrowded intertidal zone.

Aquaculture is not necessarily feasible everywhere, however,
and appropriate site selection for new mariculture farms is key
to their success and sustainability. Several socioeconomic (e.g.,
existing tourism, military, or fishing uses) and environmental
(e.g., existing protected areas, adequate ranges of temperature,
and other parameters) constraints and influences need to be
considered as part of spatial multicriteria evaluation and marine
spatial planning endeavors (Falconer et al., 2019). Several recent
studies have thusly aimed to determine the potential for various
mariculture subsectors at the global scale using such criteria, and
at identifying “hot spots” of potential production at the country
level (e.g., Kapetsky et al., 2013; Gentry et al., 2017; Oyinlola
et al., 2018). Other studies have placed aquaculture site selection
within the context of use conflicts and potential environmental
impacts at the regional scale (e.g., Falconer, 2013; Brigolin et al.,
2017; Depellegrin et al., 2017; Gimpel et al., 2018; Barillé et al.,
forthcoming). The biological growth potential for a given species
is another key factor for site selection and is expected to vary
spatially (Barillé et al., forthcoming), likely at even finer, local
scales. Spatially-explicit methods are therefore essential to assess
farmed species’ growth potential across areas of interest, and to
thereby inform site selection in the offshore as well as in the
nearshore environment.

Satellite remote sensing is increasingly well-suited for
mapping the biological potential of various aquaculture
subsectors at the local scale, given recent improvements to
spatial, temporal, and spectral resolutions of sensors. Shellfish
growth is governed by environmental parameters, including
inorganic particulate matter and phytoplankton concentrations
in the water column, proxies for which can now be mapped by
the European Space Agency (ESA) Sentinel-3 Ocean and Land
Color Imager (OLCI) at a 300 m scale, with satellite overpasses
for a given location occurring every two days or less. This extends
the ESA Medium Resolution Imaging Spectrometer (MERIS)
legacy from 2002 to 2012 of the same spatial resolution and
2–3-day overpass frequency. Other images are available at a
higher spatial, but lower temporal resolution (e.g., Sentinel-2
MultiSpectral Instrument (MSI); 20–60 m every five days for
most coastal locations), or vice versa [e.g., NASA Moderate
Resolution Imaging Spectroradiometer (MODIS); 1km every
day], with other trade-offs in terms of spectral and/or radiometric
resolutions. Water temperature is also critical to shellfish growth,
survival, and reproduction. Frequent measurements, via sea
surface temperature, are also possible using satellite thermal
infrared data, from sensors such as the ESA Sentinel-3 Sea
and Land Surface Temperature Radiometer (SLSTR; near-daily
revisit at 1 km spatial resolution) and the NOAA Advanced
Very High Resolution Radiometer (AVHRR; daily revisit at 1 km
spatial resolution). The use of remote sensing time series to
drive ecophysiological modeling of shellfish growth, including
the use of Dynamic Energy Budget (DEB) theory, has been
demonstrated for several species and sites, for both aquaculture
and environmental applications (e.g., Thomas et al., 2011,
2016; Brigolin et al., 2017; Porporato et al., 2019), but with
coarser-resolution data. Satellite imagery has more often been
used to generally constrain areas that fall within known tolerance
ranges of farmed species and rate suitability in this way (e.g.,
Radiarta and Saitoh, 2009; Kapetsky et al., 2013; Aura et al., 2016;
Snyder et al., 2017).

The current work makes use of a nine-year archive of
MERIS and AVHRR time series remote sensing products along
with experimental in situ oyster growth measurements to
demonstrate the feasibility and benefit of such an approach
at higher resolutions within a shellfish farming context. We
thereby respond to real and current interest by existing oyster
producers in Bourgneuf Bay, France, who are considering
offshore production as a possible response to overcrowding in
the intertidal zone and related issues. Calibration and validation
of satellite-derived chlorophyll-a (Chl-a), total suspended matter
(TSM), and sea surface temperature (SST) products, used to
drive ecophysiological growth modeling, is followed by the
calibration and validation of the Pacific oyster DEB model itself.
Several industry-relevant production scenarios and performance
indicators have been elaborated from the oyster growth time
series results, selected with input from producers and industry
professionals to provide realistic insight into how offshore
production can be expected to compare to existing intertidal
production. These are mapped for Bourgneuf Bay, for each
full year for which all satellite data products were available
(2003–2011), and spatial patterns, contrasting potential new sites,

Frontiers in Marine Science | www.frontiersin.org 2 January 2020 | Volume 6 | Article 80220

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00802 December 27, 2019 Time: 17:7 # 3

Palmer et al. Remote Sensing-Driven Oyster Growth Modeling

FIGURE 1 | The study site, Bourgneuf Bay, on the French Atlantic coast (indicated in subset). Intertidal (light gray) and offshore (white) zones, in addition to the
locations of current aquaculture farms in the intertidal zone and in situ water and experimental oyster sampling sites are indicated.

and interannual variation in these growth indicators are explored
with respect to the feasibility and site selection of future offshore
Pacific oyster farms.

MATERIALS AND METHODS

Study Site
Bourgneuf Bay, located on the French Atlantic coast in the Pays
de la Loire region (Figure 1), is a 340 km2 macrotidal embayment
(maximal tidal range of 6 m during spring tides and 2 m during
neap tides). It is open to the Atlantic Ocean to the northwest,
and largely enclosed by the mainland and the Noirmoutier
island otherwise, except for a 800 m-wide channel separating
the two. Strong spatial gradients in the turbidity of the water
column have been observed, with highly turbid conditions [TSM
typically > 10 g m−3, and up to more than an order of magnitude
higher (Gernez et al., 2017)] in parts of the intertidal zone related
to tidal- and wind-driven resuspension of surface sediment at
shallower water depths, and relatively clear conditions offshore
(Gernez et al., 2014). A predominant intertidal-offshore gradient
similar to that of turbidity also exists for Chl-a concentration,
related to the contribution of microphytobenthos resuspension
at shallow depths (Hernández Fariñas et al., 2017), as well as
nutrient loading in the nearshore environment via river discharge
and overland runoff, and subsequent dilution and progressive
uptake by phytoplankton toward the offshore environment. Chl-
a concentration in Bourgneuf Bay has been reported to span
several orders of magnitude, and typically ranges from 0.1 mg
m−3 to occasionally > 5 mg m−3 offshore (data from the
French Observation and Monitoring program for Phytoplankton
and Hydrology in coastal waters database (REPHY, 2017);
Bois de la Chaise large sampling site) to ∼1–30 mg m−3

across the intertidal zone (Barillé-Boyer et al., 1997; Dutertre
et al., 2009; Gernez et al., 2017). From northeast to southwest

within the intertidal zone, La Coupelasse (site 1, Figure 1) is
on average five times more turbid and comprises an overall
smaller sediment grain size (Dutertre et al., 2009; Gernez et al.,
2014), as well as a higher concentration of particulate inorganic
matter (PIM) than Graisselous (site 2, Figure 1; Méléder et al.,
2005). Chl-a concentration also tends to be two to four times
higher at La Coupelasse than at Graisselous (Dutertre et al.,
2009). Superimposed on the general patterns of turbidity and
productivity are the effects of currents, bathymetry, and sediment
type within the bay.

There are currently 283 mainly small oyster farms occupying
leases over approximately 10% of the 100 km2 intertidal zone,
producing Pacific oysters (Crassostrea gigas) in approximately
three-year growth cycles for sale in the local market (Guillotreau
et al., 2018). Expanding production to the offshore environment
has been of interest to Bourgneuf Bay farmers for some time
now, as there is no more room to expand in the intertidal
zone. Furthermore, successful offshore experiments in the nearby
Marennes-Olérons Bay in the 1990s (Mille et al., 2008) and in
Bourgneuf Bay since the late 2000s (Glize and Guissé, 2009; Glize
et al., 2010; Louis, 2010) suggest enhanced growth conditions in
the offshore environment. Offshore production is seen as a means
to increase and diversify production and to shorten the overall
production cycle duration within the bay. It is also thought to
have the potential to decrease the density of production in the
over-crowded intertidal zone, thereby decreasing the probability
of disease and related mortality (Pernet et al., 2018).

Satellite Data and Processing
All environmental variables, namely SST, TSM concentration,
and Chl-a concentration, were derived from satellite
observations. Although more recent satellite data are now
available, for example from Sentinel-2 MSI, Sentinel-3 OLCI,
and Landsat 8 Operational Land Imager sensors, these are only
available for later periods (i.e., from 2015 and 2013 respectively),
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and as such do not coincide with our earlier in situ data
(described in detail below) needed for algorithm validation.
MERIS and AVHRR data from 2003 to 2011 were therefore used
here. For SST retrieval, the operational non-linear split-window
algorithm (Brewin et al., 2017) was applied to data from the US
National Oceanic and Atmospheric Administration (NOAA)
AVHRR daytime and nighttime scenes with a 1 km spatial
resolution. Data from the ESA MERIS have been widely used
for the retrieval of optical water quality parameters, including
Chl-a as a proxy for phytoplankton concentration and TSM, in
a variety of inland and coastal settings (e.g., Matthews, 2011;
Odermatt et al., 2012; Blondeau-Patissier et al., 2014; Mouw et al.,
2015; Palmer et al., 2015). Nevertheless, there exist no globally-
validated retrieval algorithms for the optically dynamic and
near-coast environment studied here. Therefore, we investigated
full resolution and swath (FRS; spatial resolution 300 m) MERIS
data, processed using the Calimnos processing chain, which is
designed to dynamically resolve optical water quality parameters
in a variety of optically complex inland waters (Simis et al.,
2018). Version 1.21 of the processing chain was applied to the
1934 level 1 (L1b) FRS images including our site from the period
2003–2011, and comprised Polymer atmospheric correction with
a mineral absorption model, the removal of flagged invalid and
suspect pixels, and the application of Chl-a and TSM retrieval
algorithms to obtain L2 products.

The MERIS Chl-a and TSM products available through
Calimnos and tuned to lake optical properties according to
the water types described by Spyrakos et al. (2018) were not
found to adequately match the concentrations measured in situ
at our site, but several had robust linear relationships with
the in situ data. We therefore recalibrated these algorithms for
Bourgneuf Bay to improve confidence in the results and applied
the recalibrated algorithms to the full time series of interest.
The overall best performing algorithms for the detection of
water column constituents including both offshore and intertidal
matchups (highest coefficient of determination, R2, for model
fit) were OC2 (O’Reilly et al., 2000) for Chl-a retrieval, which
is a fourth-order polynomial relationship between the ratio of
the MERIS band centered at 490 nm to that centered at 560 nm
and Chl-a, and the Binding et al. (2010) algorithm for TSM,
which uses the MERIS band centered at 754 nm in semi-analytical
inverse modeling. Recalibration and validation of Chl-a and TSM
retrieval algorithms was carried out by splitting our in situ data
set into two groups at random; one (70%) to determine the
tuning coefficients (i.e., recalibration) and the other (30%) to
assess how accurately the tuned algorithm retrieved the absolute
concentrations (i.e., validation), in terms of mean bias and
absolute and relative root mean square error (RMSE):

Bias =
1
n

n∑
1

(M − O)

RMSE =

√∑ n
1(M − O)2

n

Rel. RMSE(%) = RMSE/(max(O)− min (O))× 100,

where M refers to the model-predicted value, O refers to
the observed, or in situ-measured value, and n to the
number of validation matchups. The original SST retrieval
algorithm calibration was similarly validated, but without
splitting the matchup dataset into calibration and validation
subsets for recalibration.

The archive in situ datasets used to recalibrate and validate
the satellite products used in this work comprised measurements
made at three locations across the bay; the northern La
Coupelasse (47.026 N; -2.032 E) and the southern Graisselous
(46.951 N; -2.132 E) sites in the intertidal zone, and Bois de
la Chaise large (47.042 N; -2.061 E), located offshore near
Noirmoutier island (Figure 1). Multi-parameter water quality
probes (YSI 6600) were attached to oyster racks at a height of
approximately 0.6 m from the bottom for a duration of two years
(2005–2006) at La Coupelasse and Graisselous. These were
cleaned manually of biofouling every two months, and turbidity
and fluorescence sensors were cleaned with an automatic brush
system every 15 min. Hourly measurements of temperature, Chl-
a fluorescence, and turbidity, as well as salinity were recorded,
and fluorescence and turbidity converted to Chl-a and TSM
concentration respectively using field-calibrated relationships
obtained and provided in Dutertre et al. (2009). Approximately
bi-weekly samples acquired from Bois de la Chaise large for Chl-a
quantification by monochromatic spectrophotometry and in situ
temperature measurements collected from the surface layer (0–
1 m depth) beginning in March 2007 were used here (REPHY,
2017). For all three sites, same-day matchup data were selected
from within a 3 h window of the corresponding MERIS overpass,
with the closest hour to overpass chosen in the case of the hourly
probe data, and comprise the value obtained from the MERIS
pixel coinciding with the given in situ sampling location. The
total number of matchup points for each parameter and per site,
which span all seasons of multiple years, are provided in Table 1.

Following recalibration and validation using daily matchups,
all Earth Observation-derived data were processed at and
provided by Plymouth Marine Laboratory, and aggregated to
L3 ten-day averages from 2003 to 2011 to create the full-year,
regular time series data to run the DEB model, given irregular

TABLE 1 | Total and per site numbers of in situ-satellite retrieval matchups for
each of the variables used as input into DEB modeling.

Variable Site # of matchups

Chl-a La Coupelasse 23

Graisselous 23

Bois de la Chaise large 16

Total 62

TSM La Coupelasse 22

Graisselous 24

Bois de la Chaise large 0

Total 46

SST La Coupelasse 17

Graisselous 23

Bois de la Chaise large 78

Total 119
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overpass frequency (2–3 days) and gaps from cloud cover in
the original data.

Pacific Oyster Dynamic Energy Budget
(DEB) Model
DEB theory was used here to model the growth of Pacific
oyster. This is a generic (i.e., non-species specific) approach to
mechanistically model the uptake and flow of energy through,
and eventual growth and reproduction of an organism, based on
its environmental conditions (Kooijman, 2010; Sousa et al., 2010).
DEB models have been adapted and published for a broad range
of species1.

The DEB model equations and parameters applied here for
Pacific oyster are detailed in Thomas et al. (2016), building on
previous work by Bernard et al. (2011) and Pouvreau et al.
(2006). Essentially, food availability (mainly phytoplankton and
resuspended microphytobenthos, represented here using satellite
image-derived Chl-a) and water temperature (using satellite
image-derived SST in this well-mixed water column) interactively
and variably influence rates of ingestion, assimilation, storage,
and metabolism, resulting in energy for growth and/or
reproduction depending on reserves and additional conditions
being met (Figure 2; Thomas et al., 2016). In coastal areas,
highly turbid conditions can also have a substantial impact on
clearance rate, food consumption, and ingestion (Barillé et al.,
1997; Gernez et al., 2014, 2017), subsequently limiting growth.
Thomas et al. (2016) have included the effect of high turbidity in
Pacific oyster DEB modeling through the inclusion of PIM, which
we have also done here (represented using satellite image-derived
TSM). The degree to which the ingestion rate is influenced
by food availability and TSM in the current work is modeled
using calibrated ingestion half-saturation coefficients, Xk and
Xky respectively; all other equations and parameters are those
reported in Thomas et al. (2016, S1). Model output is dry flesh
mass (DFM; g) and shell length (L; cm) at the same spatial and
temporal resolutions as the MERIS input data (i.e., 300 m and
every ten days here). To compare with in situ measurements of
oyster morphology and to transform into the industry-relevant
indicators described below, L was converted to total weight (TW;

1https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/

g) using the biometric relationship found between measurements
of the two variables from the extensive Réseau d’observations
conchylicoles database (RESCO; Fleury et al., 2018; Equation
1). Flesh weight (FW; g) was likewise calculated from DFM,
using the relationship obtained between RESCO measurements
from Bourgneuf Bay specifically (n = 2943, R2 = 0.83; 2008–
2017) (Equation 2).

TW = 0.076× L3 (1)

FW = 3.99× DFM + 0.97 (2)

For calibration and validation of the ingestion half saturation
coefficients (Xk and Xky; see above), the DEB model was
initialized with oyster measurements made at the beginning
of in situ experiments carried out by the Syndicat Mixte
pour le Développement de l’Aquaculture et de la Pêche en
Pays de la Loire (SMIDAP), a regional association supporting
shellfish farmers and fishers, over the course of two growing
seasons (2008; 2010) (Glize and Guissé, 2009; Glize et al., 2010;
Louis, 2010). The model was run for the specific date range
of the in situ measurements for the years in question. The
2010 measurements (May 6 through October 17) were used
in the iterative optimization-based calibration, as more data
were available and over a longer period for this year. The 2008
measurements and corresponding date range (May 20 through
August 14) were then used to independently validate model
output with calibration results applied. The model was run for
an immersion time of 100% for the offshore site (i.e., constant
immersion) and of 75% for the intertidal zone (i.e., under water
75% of the time on average), as calculated by Thomas et al. (2016).

Resulting total oyster weight was extracted for the locations
and dates coinciding with the in situ measurements, and model-
predicted values were evaluated through regression against
measured in situ values. Ingestion half-saturation coefficients
were selected in the calibration process as the combination of
Xk and Xky that maximized the coefficient of determination
(i.e., R2). Model performance was validated through the mean
bias and absolute and relative RMSE. This was carried out
for adult and spat life stages separately, given morphological
differences between them that may affect ingestion efficiency,

FIGURE 2 | Schematic of the Dynamic Energy Budget (DEB) modified and parameterized from Thomas et al. (2016).
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TABLE 2 | Total Pacific oyster weight ranges and quality indices corresponding to
French market calibers and classes (AFNOR, 1985; Gosling, 2003).

Caliber Total weight range (g) Quality index (%)

0 >150 NA

1 121–150 NA

2 86–120 NA

3 66–85 NA

4 46–65 NA

5 30–45 NA

Normales >30 <6.5

Fines >30 6.5–10.5

Spéciales >30 >10.5

and for offshore and intertidal sites, to obtain the ingestion half-
saturation coefficients to be used to model the growth of each
under various production cycle scenarios.

Pacific Oyster Production Cycle
Scenarios and Growth Performance
Indicators
Pacific oyster production is typically divided into three stages.
The first is pre-growing, whereby spat, often weighing less
than 1 g, are grown out to a certain size range (on the
order of 10–20 g) for resale, or are then thinned out to allow
for sufficient space to continue to grow on the same farm.
Here, spat of the industrial size scale T6/T8, corresponding
to a total weight of 0.5 g, grown out to size T20/T25, or
14 g total weight, are considered. Although this can take
place in marine water or in nurseries, only the former is
considered here. From this stage, adults are grown-out to
final market size, which ranges from a minimum of 30 g
(caliber 5 in France; Table 2) to upward of 150 g (caliber 0
in France; Table 2; Gosling, 2003). Finally, for a short period
(several weeks to months) following grow-out, many producers
undertake finishing or fattening, which aims to increase the
quality index, essentially the fleshiness of the oyster (i.e.,
ratio of flesh weight to total weight), rather than the total
weight, starting with an already market-weight product (i.e.,
≥30 g). In France, defined quality index thresholds correspond
to certain classes: Normales, Fines, and Spéciales, with Fines
obtaining higher market prices than Normales, and Spéciales

obtaining higher market prices than Fines (AFNOR, 1985;
Gosling, 2003).

Validated half-saturation coefficients were used in DEB
modeling of the scenarios described in Table 3, and resulting
oyster growth curves were transformed into the associated
industry-relevant growth performance indicators (Figure 3).
In addition to the initial oyster sizes and scenario dates
(Table 3), which were chosen in consultation with regional
oyster producers and professionals, indicators were also
elaborated based on producer and professional input and
feedback. These include the time required to reach a target
marketable size for both spat (sale to another farm) and adults
(sale to market for consumption); total weight achieved
by a particular date (here, the main December market
corresponding to the traditional peak of oyster consumption
for Christmas and New Year celebrations (Buestel et al., 2009),
is selected for demonstration); quality index after targeted
finishing periods; and the number and timing of spawning
events. The latter could be seen as either favorable (i.e., for
including or optimizing spat settling and collection as a
complementary economic avenue within a grower’s production)
or unfavorable (i.e., resulting in additional biofouling as spat
settle on cages or other equipment, and (at least temporarily)
reducing the quality index of the animal) to production and
operations, depending on a particular grower’s specialization
and objectives. Overall, our goal was to provide a suite of
industry-relevant indicators of which locations would be best
suited for oyster farming, and this for various stages and
considerations of production.

Oyster growth curves were generated for each MERIS pixel
and for each year of input data (2003–2011). The indicators
described above were mapped for each year, and the interannual
means and standard deviations were then calculated and mapped,
with a single-iteration 3 × 3 pixel median filter applied. By
using this multi-year approach, we reduced the chance of
unintentionally only mapping an uncharacteristic year (i.e.,
substantially more or less productive or turbid than usual;
much higher or lower temperatures) and thereby capture
more typically representative conditions across Bourgneuf Bay.
This also allowed us to explicitly consider the interannual
variability in the indicators, which is of interest to the farmers,
as they seek to optimize production, reducing unnecessary
inputs and losses, and therefore seek consistent (akin to

TABLE 3 | Scenarios and indicators for different production cycle stages (spat; adult grow-out; finishing/fattening) processed from Pacific oyster DEB growth modeling.

Production stage ∗Initial oyster size Scenarios Indicators

Spat pre-growing 0.5 g total weight, 1.9 cm shell length,
0.05 g dry flesh mass

Apr. 1 start date (Dec. 6 end)
Jun. 30 start date (Dec. 6 end)
Aug. 29 start date (Dec. 6 end)

Days to reach T20/T25 (14g)

Adult grow-out 14 g total weight, 5.7 cm shell length,
0.3 g dry flesh mass

Jun. 30 start date (Dec. 6 end) Time to reach minimum market weight
(30 g), Total weight at end date,
Number of spawning events

Finishing/fattening 76 g total weight, 10 cm shell length,
0.9 g dry flesh mass

Jul. 30 start date (Dec. 6 end)
Aug. 29 start date (Dec. 6 end)
Sep. 28 start date (Dec. 6 end)

Quality index (QI = flesh weight/total
weight)

∗ Initial sizes correspond to commercial ratings of T6–T8 for spat pre-growing, T20–T25 for adult grow-out, and Caliber 3 for finishing.

Frontiers in Marine Science | www.frontiersin.org 6 January 2020 | Volume 6 | Article 80224

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00802 December 27, 2019 Time: 17:7 # 7

Palmer et al. Remote Sensing-Driven Oyster Growth Modeling

FIGURE 3 | Conceptual schematics of the types of growth performance indicators developed in consultation with oyster growers and professionals and extracted
from our modeled growth time series maps. (A) Total oyster weight as a function of time throughout the growing season. (i) Represents the date a target weight is
achieved as the parameter of interest, e.g., minimum market weight (30 g). (ii) Takes a given date of interest as the starting point (e.g., early December, in time for the
main French oyster market), and looks at what total weight is achieved by this date. (B) Dry flesh mass (DFM) over time throughout the growing season; sharp
decreases in DFM indicate spawning events. (iii) and (iv) Indicate the timing of these spawning events, and can also be summed to determine the number of
spawning events at a given site in a given year.

more reliable) and stable conditions in addition to higher
growth potential.

Demonstration of Offshore and Intertidal
Farm Site Comparison
Two hypothetical lease sites were considered; one situated in the
northeast and the other in the southwest, near the mouth of
the bay (Figure 1). The sites were selected in order to appraise
the diversity of growth conditions in the offshore area, the
northeastern site being located in more turbid and Chl-a-rich
waters than the southeastern site. Each comprised a five-by-
five-pixel region of interest, corresponding to approximately
2.25 km2 and similar in size to some of the existing leases
in the intertidal zone (Figure 1). Descriptive statistics were
then extracted and visualized for each hypothetical offshore
farm and for the existing intertidal leases for comparison, for
each selected growth indicator. Following testing for normality
(Shapiro–Wilk) and equal variance, the annual means of
each indicator were also compared between sites through
parametric one-way ANOVA, or using the Kruskall–Wallis one-
way ANOVA by ranks when either normality (Shapiro–Wilk)
or equal variance testing failed, with post hoc Tukey tests for
pairwise comparison. In all cases, an α = 0.05 was selected
for significance.

RESULTS

Satellite Input Data Calibration,
Validation, and Mapping
Results from the empirical recalibration and validation
of Chl-a (OC2) and TSM (Binding et al., 2010) retrieval
algorithms, and the validation of the original SST (operational
NOAA AVHRR) calibration, can be found in Figure 4.
For Chl-a and TSM, retrievals using the original algorithm
parameterization showed either a strong linear over- or

underestimation (Figures 4A,C), and linear recalibration
(n = 44 and 32 respectively) was therefore performed
(Figures 4B,D), improving retrievals of the three parameters,
with only slight positive mean bias in the satellite retrievals
for each (Chl-a = 0.74 mg m−3, n = 18; TSM = 2.6 g m−3,
n = 14). The original SST calibration (n = 119) was found to
sufficiently reproduce in situ measurements from the three
sites (Figure 4E), and was therefore applied as-is to the
nine-year time series.

Maps of the interannual mean and standard deviation
of the three parameters (Figure 5) highlight the general
spatial patterns observed and their interannual variability
across Bourgneuf Bay. As expected, both Chl-a (Figures 5a,b)
and TSM (Figures 5c,d) are higher on average and more
variable in the intertidal and adjacent areas than further
offshore at greater water depths, with both the absolute
concentration range and variability of the latter being much
greater. Likewise, higher average SST (Figure 5e) is found
in the nearshore areas, with higher variability in the central
bay (Figure 5f).

DEB Model Calibration and Validation
A good fit was found between DEB-modeled spat and adult
oyster total weight growth and weights measured in situ
throughout the growing season following calibration of the
ingestion half saturation coefficients, Xk and Xky (Figure 6
and Table 4). Modeled spat (0.5–13.45 g) and adult (20.9–
47.1 g) total weight corresponded to a RMSE of 1.30 g (13.4%)
and 4.34 g (17.4%) and mean biases of 0.55 and -3.37 g
respectively, compared with measured in situ values. In both
in situ measurements and modeled values (in both 2010 and
2008), we see higher weight gain offshore compared with the
same amount of time in the intertidal zone. This is most
notable for 2010, for which in situ measurements were taken
over a longer period than in 2008 (May 1 through October 17
versus May 20 through August 14), thereby allowing growth
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FIGURE 4 | Recalibration (A,C) and validation (B,D) of MERIS OC2 Chl-a (A,B) and Binding et al. (2010) TSM (C,D) retrieval algorithms, and validation of original
SST (E) retrieval algorithm calibration, used to drive the DEB model, with corresponding in situ data from Bourgneuf Bay (Figure 1).

to heavier weights to be achieved. Even spat grown from an
initial weight of < 1 g were able to reach market weight
offshore by mid-September (Figure 6A) in 2010, although this

was slightly underestimated by the MERIS-DEB-modeled results.
Note that initial measurements (i.e., from May 1, 2010 and
May 20, 2008) were used in model initialization for calibration
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FIGURE 5 | Maps of interannual mean (left) and standard deviation (right) for input products across the full nine-year time series; (A,B) Chl-a, (C,D) TSM, and (E,F)
SST. In the intertidal zone, the Chl-a, TSM, and SST mean and standard deviation are shown within the farming sites only (i.e., unmapped for the white area).

and validation respectively, and therefore were not included in
matchup statistics or graphing.

Growth Indicator Mapping
The Pacific oyster production scenarios and growth indicators
detailed in Table 3 were modeled for each of the nine
full years of satellite image input data. For each scenario,
the resulting interannual mean and standard deviation
are mapped in Figures 7, 8 respectively. Mapping trends
across the nine indicators and three production cycles
suggest generally enhanced growth in the northeastern
offshore segment of the bay across all indicators, higher
than in the intertidal zone where production is currently
practiced and higher than in the southwestern offshore
segment (Figure 7).

For the spat pre-growing phase, industry size T6–T8 spat
(initial total weight of 0.5 g) were put in place at staggered start
times (April 1, June 30, and August 29) and highlight that, in the
northeastern offshore segment of the bay, it would be possible to
begin this phase at later dates than in the southwestern offshore
and intertidal areas, as late as the end of August (Figure 7C), and
still achieve the target size (T20–T25; 14 g) for sale in under 2
months. Indeed, in the intertidal area, pre-growing must begin in
the spring to achieve the target weight gain of a T20–T25 spat
by October, over 6 months later. In the southwestern offshore
segment, it must begin by early summer at the latest (i.e., June
30; Figure 7B), to reach the target weight within 6 months, by
late November/early December.

For adult grow-out, a single time frame was considered (June
30 through December 6), but three different growth indicators
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FIGURE 6 | Calibration of DEB-modeled (A) spat and (C) adult growth using corresponding 2010 in situ data from intertidal and offshore zones; validation for spat
(B) and adult (D) growth modeled with calibrated coefficients using in situ data from 2008 (see Figure 1 for sampling locations).

were of interest. First, the time to reach the minimum market
size for consumption (30 g; Figure 7D) as well as the total
weight by early December (Figure 7E) were jointly assessed
as they are of primary interest for the industry. Although
minimum market weight was able to be reached for a few,
dispersed areas in the intertidal zone for an average year, this
took until the end of the growing season considered here (i.e.,
early December, after 160 days), which was also the case for
the southwestern offshore segment (Figure 7D). Instead, 30 g
(i.e., minimum market weight) is achieved by mid-August to
early October on average on the northeastern offshore segment

(Figure 7D). Total weight by early December, for the initial
conditions and dates considered here, tends to remain on the
order of 15–25 g (Figure 7E) for the southwestern offshore
area and the existing intertidal farms, and oysters would require
another season before marketable. In contrast, total weight by
the end of the season for the northwestern offshore segment
is on average greater than 45 g for some areas (i.e., Caliber 4
oysters; Table 2 and Figure 7E). Certain offshore areas, notably
the eastern and central portion of the bay, are associated with
slightly more spawning activity on average (Figure 7F), which
could indicate areas to avoid or to target for farm placement,
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TABLE 4 | Calibrated half-saturation coefficients (Xk, Xky) used in MERIS-driven
DEB modeling of Pacific oyster spat and adult growth, and applied to all
nine modeled years.

Production stage Zone Parameter Value

Spat (T6–T8) Intertidal Xk 1.9

Xky 23.7

Offshore Xk 0.6

Xky 27.2

Final year adult Intertidal Xk 2.5

Xky 17.0

Offshore Xk 1.1

Xky 16.8

All other parameters used in the model are from Thomas et al. (2016, S1).

depending on whether spat collection is foreseen as part of a given
production cycle.

The quality index and classification according to French
standards (Normales, Fines, or Spéciales) for sale to the main

French market in early December that was achieved by starting
at three different dates, from large Caliber 3 (76 g) Normales
oysters (QI = 6%) was considered for a final fattening phase
(Figures 7G–I). Throughout most of the intertidal area, only
Normales classification was achieved on average (orange in
Figures 7G–I), whereas at least Fines was possible throughout
much of the offshore area (pale yellow in Figures 7G–I).
An early start to fattening (late July/early August) resulted in
Spéciales classification over a large part of the offshore area
(blue in Figure 7G).

Intertidal and Offshore Farm Site
Comparison
Modeled growth indicators were compared statistically for
the two potential offshore farm sites located in contrasting
conditions, one in the northeastern segment of the bay,
the other in the southwestern segment, with average values
across existing farms in the intertidal zone (Figure 9).
Although these hypothetical sites were chosen here to simplify

FIGURE 7 | Maps of the nine-year interannual means for the scenarios and growth indicators detailed in Table 3, for the spat pre-growing phase (A–C), from an
initial T6–T8 (0.5 g) size, adult grow-out phase (D–F), from an initial T25 (14 g) size, and final fattening phase (G–I), from an initial Caliber 3 Normale size (76 g;
QI = 6%). Note that dark gray water areas in a-d correspond to areas where the target weight (i.e., 14 g for spat and 30 g for adults) was not achieved by the end of
the growing season.
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FIGURE 8 | Maps of the nine-year interannual standard deviations for the scenarios and growth indicators detailed in Table 3, for the spat pre-growing phase (A–C),
from an initial T6–T8 (0.5 g) size, adult grow-out phase (D–F), from an initial T25 (14 g) size, and final fattening phase (G–I), from an initial Caliber 3 Normale size
(76 g; QI = 6%). These correspond to the means presented in Figure 7. Note that dark gray water areas in (A–D) correspond to areas where the target weight (i.e.,
14 g for spat and 30 g for adults) was not achieved by the end of the growing season.

the demonstration of our approach, such a comparison
could be made for any selected site, and these findings are
expected to extend beyond the hypothetical new farm sites
considered here, with similar findings mapped across larger areas
in Figures 7, 8.

It is clear that although enhanced growth is expected in the
offshore environment, as already observed in in situ experimental
data for single point locations (Figure 6) and in mapped
interannual average indicator values (Figure 7), this is highly
variable across the approximately 240 km2 of the offshore area
considered. Notably, we consistently see faster growth and higher
quality products at the northeastern site (Figure 9; dark blue
box), with the southwestern site (Figure 9; turquoise box) most
often either statistically indistinguishable (KW and Tukey test
p < 0.005) from growth on the existing intertidal farms (Figure 9;
magenta), or falling in between the NE and intertidal sites.
Exceptions are the number of days for spat to reach 14 g from
the second start date, June 30, where this is reached for the SW
site, but not in the intertidal zone (Figure 9B), and the slightly
higher average number of spawning events per year observed

in the intertidal zone, with the two offshore sites statistically
indifferent (Figure 9F).

DISCUSSION

DEB Input and Output Validation:
General Findings and Limitations
Due to the empirical calibration of Chl-a and TSM algorithms,
these are only considered to be valid for Bourgneuf Bay without
wider validation, and specifically for the conditions encountered
in the in situ matchup dataset. This remains an important
consideration here, and in the use of calibrated satellite products
for water quality parameter retrieval generally. Ongoing work
on automatized algorithm selection based on satellite-observed
optical characteristics promises a robust solution to this issue
through the provision of more globally-valid products (e.g.,
work of Spyrakos et al., 2018; Neil et al., 2019 for lakes), but
was not yet adapted for the optical conditions of our site for
use in this work. Similar validation, and possibly calibration,
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FIGURE 9 | Comparison of interannual indicator values for two hypothetical offshore sites (see Figure 1) (dark blue (NE) and turquoise (SW)) and existing intertidal
farms (pink) for the scenarios and growth indicators detailed in Table 3, for the spat pre-growing phase (A–C), from an initial T6–T8 (0.5 g) size, adult grow-out
phase (D–F), from an initial T25 (14 g) size, and final fattening phase (G–I), from an initial Calibre 3 Normale size (76 g; QI = 6%). Different letters above boxes are
associated with statistically different groups (Kruskall–Wallis one-way ANOVA on ranks and Tukey test p < 0.05). Note that missing boxes associated with given sites
(B,C) correspond to the target weight not being achieved for that site within the defined time range.

of satellite products would also be required in future work at
other sites until a more automated approach is available, and
limits the spatial range over which results can be expected to be
valid. Given the range of conditions and temporal coverage (i.e.,
interseasonal and interannual; spanning all seasons of several
years, as well as multiple sites within the bay comprised of
contrasting conditions) of the in situ matchup dataset, such
local calibration was possible in the current work and the
resulting satellite products are expected to adequately represent
the conditions for the area and time period of interest for the
current modeling application.

For both DEB modeling results and input parameter
validation, single-point measurements taken in situ are compared
with satellite pixel data integrating the signal of 0.09 km2, which
is a well-known source of error inherent to the methodology.
In addition, whereas same-day matchups were used to calibrate
and validate the input products, in the DEB modeling, daily
images were aggregated to ten-day mean products to reduce
gaps and noise in the data. Modeled oyster growth extracted
for matchup validation are then the ten-day modeled periods
within which the given in situ measurements were taken, and
represent an additional, temporal source of uncertainty. More
recent satellite image data, for example from the ESA Sentinel-2

MultiSpectral Instrument and Sentinel-3 Ocean and Land Color
Imager, improve upon the spatial and temporal resolutions
respectively of the data used here and the availability and use of
such higher resolution data will offer potential new insights and
directions for future work. It is also worth noting that although
the oyster growing season typically begins in March and ends in
December, in situ data were only available from May through
August (2008) and October (2010), which corresponds to the
period of most and most rapid growth in the year. Nonetheless,
growth dynamics were found to be well-captured here using
the coupled MERIS-DEB results. Following the calibration of
the half-saturation coefficients (Xk, Xky), modeled results were
found to robustly capture oyster growth over time, for spat as
well as for adults, and for both intertidal and offshore sites
alike. The differences in the half-saturation coefficients resulting
for the two life stages may be explained by developmental
differences in their gills and labial palp morphologies affecting
their respective ingestion efficiencies (Dutertre et al., 2007, 2017).
With regard to site differences, food quality (and phytoplankton
composition in particular) is recognized to be key to bivalve
nutrition (Picoche et al., 2014). Differences in the composition of
phytoplankton communities between the intertidal and offshore
sectors could therefore explain the differences in Xk, which were
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higher in the intertidal sector for both spat and adult oysters.
The high Chl-a concentrations measured in the intertidal zone
may therefore be associated with phytoplankton or resuspended
microphytobenthos of poorer food quality, in addition to the
negative impact of the higher turbidity on oysters’ filtering ability.

Given the investigative and experimental nature of offshore
oyster cultivation in this area, in situ data for model calibration
and validation are limited to only the two periods presented
here (2008 and 2010), each with only one intertidal and one
offshore site. These are, however, expected to represent the main
component of variability in the input parameters, and therefore
in oyster growth, within the bay overall. As for the satellite input
data, however, empirical DEB model calibration using this local
in situ data means that application of this model and similar
methods at other sites would require recalibration with data from
the given site. As offshore shellfish production remains quite
experimental in nature and is not common either commercially
or experimentally, such data are very seldom available and
may present a barrier to carrying out similar future work
elsewhere. Monaco et al. (2019) observed the inability to transfer
DEB parameterization of the Mediterranean mussel (Mytilus
galloprovincialis) validated at a native site to a South African
site and suggested unaccounted environmental variables and
phenotypic plasticity as underlying this observation. Proposed
alternatives to address the issue related to the former explanation
are by adapting the ingestion half-saturation coefficients as a
function of the given phytoplankton density (Alunno-Bruscia
et al., 2011) or the ratio of Chl-a to TSM (Thomas and Bacher,
2018), providing a means to apply such work across larger
spatial scales without needing to manually recalibrate the half-
saturation coefficients.

Spatial Trends in Growth Parameters to
Inform Site Selection
In all of the mapped oyster growth indicators (Figure 7) and
their interannual variability (Figure 8), variability across the bay
is clearly observed, including between farmed intertidal sites
and the offshore environment, as well as across the offshore
environment itself. Although oyster growth clearly has high
potential offshore, improving greatly upon the intertidal status
quo in some areas, this is not spatially uniform. Instead, this
is highly variable, and there are large areas of the offshore
environment where production is expected to not be even as good
as in the intertidal area where farming currently takes place, in
addition to the areas where higher growth would be expected.
Generally, there is a consistent spatial gradient, with greater
growth potential in the northeast offshore segment of the bay and
less in the southwest offshore segment, found to be comparable
or sometimes even less favorable than in the intertidal zone.
This highlights the value of using spatialized data in such an
approach, as the finding from in situ data alone that growth is
higher offshore is limited spatially and may be misleading when
proceeding to either future experimental work or commercial
operations offshore, depending on where in the bay they are
located. For example, locating a new cage or farm where the 2010
experimental cage was located (Figure 1) would not result in

the most optimal growth possible within the bay, and locating it
further west (e.g., just north of Noirmoutier island) would result
in even more limited growth (Figure 7). The results from the
current work then guide more optimal offshore cage or long-line
placement as a result of their spatially-explicit nature.

The overall spatial structure in the resulting mapped
indicators is, expectedly, due to the variability observed in
satellite image input parameters, Chl-a, TSM, and SST, which
underlie oyster growth. The very high TSM concentrations in
the intertidal zone are at levels that substantially limit oyster
growth in this area (Gernez et al., 2014). TSM concentrations
gradually become lower and reach sub-impacting levels offshore,
but Chl-a also decreases toward the offshore environment in
a similar fashion. The spatial patterns in both TSM and Chl-a
are expected to be related to benthic resuspension only possible
at shallower depths, with water column Chl-a concentrations
comprising phytoplankton and resuspended microphytobenthos
(Hernández Fariñas et al., 2017), as well as current and water
circulation patterns. Concentrations of both in the offshore
waters are higher in the northeastern segment of the bay, but
the yearly average TSM seems to be low enough to not hinder
growth. In the southwestern segment, however, where TSM
concentrations are lower, Chl-a concentration is also too low to
support accelerated growth compared with the intertidal zone.
At the temperatures observed for Bourgneuf Bay, higher SST
is generally expected to promote oyster growth, and there is
a more linear gradient from near- to offshore compared with
Chl-a or TSM, with overall warmer temperatures in shallower
waters. Multiple spawning events (Figure 7F) are also associated
with these generally warmer shallower areas (Figure 5E) and
with areas with higher SST variability (Figure 5F), likely due to
the required 18◦C spawning threshold being met or exceeded
more frequently (Barillé et al., 2011). Additionally, outside of
the intertidal zone, oysters are immersed in the water full-time
(i.e., 100% immersion), whereas the average immersion time for
intertidal zone farms is only 75% (Thomas et al., 2016, Suppl.
Info). This means that on average oysters are able to ingest food
25% less of the time in the intertidal zone compared with offshore.
In preliminary sensitivity analyses carried out ahead of this work,
the variability of immersion time was also found to significantly
affect resulting oyster growth, and to play a role in the higher
growth observed offshore.

For spat, the consistently faster growth observed in the
northeastern offshore segment over the different timeframes
tested suggests that pre-growing multiple batches of spat within
the same year may be possible there. For example, starting
pre-growing in early April, as in Figure 7A, the target 14 g
is achieved within approximately 90 days, corresponding to
late June, potentially allowing for a second or even third pre-
growth cycle for those farmers choosing to specialize in spat
production for resale or to stock other concessions within their
own production. Likewise, the later start of a single offshore pre-
growth cycle may be chosen to better fit within a farmer’s overall
production, which may include other phases, or to better coincide
with sale or thinning (i.e., when oyster densities are reduced
to allow continued growth on the same farm) dates of interest.
Comparatively, to achieve the target spat weight (14 g) over the
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full time period (eight months) considered here, spat cultivation
would need to begin in the spring in the intertidal zone, or
early summer at the latest in the southwestern offshore segment
(Figures 7A–C), and only one cycle per year would be possible.

Alternatively, rapid adult oyster growth offshore
(Figures 7D,E) may allow producers to purchase pre-grown
spat, specialize in the offshore adult production stage, and either
move adults to a fattening pond within their own operation
or sell to a fattening-specialized grower, keeping this part of
their production cycle to within a single year. Overall, in moving
either adult or spat production offshore, approximately a full year
of the total production cycle can be saved, reducing this from
approximately three to two years. Producers may also consider
areas with higher spawning potential (in the central-eastern and
intertidal areas of the bay; Figure 7F) as either favorable, in cases
where spat capture is targeted as part of their overall production
and therefore desirable, or unfavorable, where capture is not
intended and rather leads to issues of biofouling, requiring added
maintenance, and decreased quality index, at least temporarily.

Fattening may also be possible offshore, in the northeastern
segment of Bourgneuf Bay (Figures 7G–I), allowing Fines, if not
Spéciales, classification, and removing the need for a separate
fattening facility (ponds, typically located inshore and with
high concentrations of phytoplankton). Although interannual
variability was found to be slightly higher at the northeastern
offshore hypothetical site considered here than elsewhere in
the bay (Figures 8, 9G–I), it is still relatively low, such that
at least Fines and possibly Spéciales class oysters could be
expected from year to year, compared with consistently Normales
in the intertidal zone. However, attaining the higher Spéciales
classification was found to only be possible by beginning fattening
in the summer months, suggesting that flesh weight gain during
the late summer/early fall months can be critical in natural
waters under the scenarios considered. All options are to be
considered by producers in terms of the cost-benefit balance of
moving offshore for their given situation, for any production
stage of interest, and with particular consideration for risks,
infrastructure and technical investment, and additional (or less)
labor that would be required of them (Buck and Langan, 2017).

Adaptability of Growth Indicators and
Production Scenarios
Given the nature of the DEB model outputs driven by remote
sensing data, mapped and at regular time steps, oyster growth can
be transformed to provide meaningful information to producers
or other decision-makers or professionals, and targeted to their
specific cases and interests. A suite of indicators was selected here
to demonstrate the broad range of indicator types possible to
easily adapt to a particular production specialization of interest.
For example, Bourgneuf Bay oysters are sold for consumption
primarily within the local market, with peak sales and therefore
target peak production, occurring in December, in association
with the French tradition of eating oysters at Christmas and
New Year celebrations (Buestel et al., 2009). An additional
summer market was indicated as being of secondary interest
in France, and may be the primary domestic market in other

oyster-producing countries. Although not demonstrated here,
a similar exercise could be undertaken targeting, for example,
starting production in spring and assessing adult oyster weight
achieved in July, or another date deemed to be of interest
for a particular site. Likewise, whereas minimum weight for
the French market (30 g) was considered here, a range of
different production targets could be considered, in terms of
product size and weight, notably considering the different market
calibers (Table 2), where the most popular size is typically
considered to be Caliber 3 (ranging from 66 to 85 g total
weight). Several examples, for spat, adult, and finishing stages
have been demonstrated in a mapping and statistical application
here, but weight thresholds and timings can easily be adjusted to
correspond to specific calibers or other targets.

Likewise, various scenario combinations could be considered,
including different start dates and moving oysters between
offshore and intertidal concessions at different stages. The start
and end dates considered are part of model initialization and
can be modified to correspond to a particular scenario of
interest. Faster growth is observed for both spat and adults in
the northeastern offshore segment compared with the intertidal
zone, and other noted benefits include reduced mortality from
viral disease (Pernet et al., 2018). However, it is generally
considered unfavorable to complete an entire production cycle
(i.e., spat through market size) offshore. This is due to observed
physiological effects (e.g., underdeveloped adductor muscles;
relatively weak or malformed shell) and parasite damage, such
as from the shell-boring worm, Polydora sp. (e.g., Glize et al.,
2010), associated with constant immersion, and the negative
impact on the marketability of the resulting product. Given the
various possible offshore and intertidal production cycle stage
combinations (e.g., beginning with pre-growing in the intertidal
zone, then moving offshore for grow-out or finishing or vice
versa), and this imperative to choose which production cycle
stage would best be moved offshore, potential time savings and
other gains generated by completing different stages within the
full production cycle offshore versus in the intertidal zone can
be assessed and compared. Again, the farmer can then determine
if such gains are worth the various investments that would
be required in moving part of their production offshore and
optimize which phases take place where (i.e., offshore or in the
intertidal zone).

Additional Considerations for Site
Selection and Future Directions
An important consideration that is beyond the scope of
the current work is the effect of stocking density and
carrying capacity on growth potential (Smaal and Van Duren,
2019). Trophic interactions and population dynamics are not
considered here, and carrying capacity is known to be a limitation
to production within the bay (Le Grel and Le Bihan, 2009).
Indeed, the current modeling is based on a calibration where
quite dense oyster cultivation takes place in the intertidal zone,
where more than 5,000 tons of Pacific oyster are harvested per
year (Agreste, 2015), but no cultivation takes place offshore
(i.e., the current results relate to a single cage with no
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additional cultivation in the vicinity, as per the experimental
data used for DEB calibration and validation). This can be
expected to have an impact on modeled results, favorably biasing
offshore growth potential. Were stocking density to increase
offshore, through adding concessions there, growth potential
could reasonably be expected to decline as carrying capacity is
met or especially if it is exceeded. Furthermore, the addition
of more farms to the bay could be expected to impact the
overall carrying capacity at the bay level, and adding farms
offshore may also negatively affect existing cultivation in the
intertidal zone. Offshore leases could be offset by requiring that
an equivalent lease be ceded in the intertidal zone (Le Bihan
and Le Grel, 2008). As a next step, the inclusion of carrying
capacity assessments (e.g., Filgueira et al., 2015) to inform
farm and stocking density would be invaluable. Likewise, the
environmental impacts of shellfish farms, via their enrichment
of surface sediment organic matter, have been modeled using
spatialized data elsewhere (Brigolin et al., 2017), and should be
considered in offshore site selection for Bourgneuf Bay in terms
of overall sustainability.

The value of using remote sensing data has been demonstrated
here for modeling growth potential, and its use could be extended
to coupling with other models to inform shellfish aquaculture
[e.g., scope for growth (e.g., Barillé et al., 2011), the R package
for AquaCulture (RAC; Baldan et al., 2018), ShellSim (Ferreira
et al., 2008; Hawkins et al., 2013), Farm Aquaculture Resource
Model models (FARM; Ferreira et al., 2007)]. DEB modeling,
like several of these alternative or complementary models, is
generic, simulates the entire life cycle of species, and elsewhere
has been parameterized for a variety of species, including several
of interest from an aquaculture perspective and in Bourgneuf Bay
in particular. These include blue mussel (Thomas et al., 2011) and
great scallop (Gourault et al., 2019). Given in situ data for the
location and species of interest, other potential opportunities for
farmers could be similarly assessed and compared, and included
in broader feasibility and economic analyses.

Whereas the use of satellite remote sensing only allows the
retrospective consideration of conditions at potential or current
aquaculture sites, coastal zones and shellfish are known to be
sensitive to the effects of climate change (Thomas et al., 2016,
2018; FAO, 2018). A similar approach as presented here could
also make use of spatialized data from ecological models, such as
the Finite Volume Coastal Ocean Model (FVCOM; Cowles, 2008)
or the Proudman Oceanographic Laboratory Coastal Ocean
Modeling System (POLCOMS; Holt and James, 2001) coupled
with the European Regional Seas Ecosystem Model ERSEM
(Baretta et al., 1995; Butenschön et al., 2016), to consider present-
day as well as various future climate change scenarios to more
fully plan for these potential effects in choosing and developing
new aquaculture sites (e.g., Palmer et al., 2019). Such data
often provide fuller spatial and temporal coverage than satellite
observations, since issues like cloud cover do not apply. Like
satellite data, such data are associated with their own inherent
error and uncertainty and with trade-offs in terms of their spatial
resolutions and coverage (i.e., POLCOMS-ERSEM spans all of the
western North Atlantic and Mediterranean, but at a 0.1◦ spatial
resolution; Ciavatta et al., 2016).

In addition to the growth potential, assessed here, which is
crucial and underlies the potential success of a given operation
at a given location, such results should eventually be combined
with other environmental, technical, and socioeconomic
considerations (Longdill et al., 2008; Brigolin et al., 2017).
Barillé et al. (forthcoming) have assessed a suite of these for
offshore Pacific oyster cultivation at the regional scale within
which Bourgneuf Bay is located, and note in particular that
bathymetry, as well as distance to and harbor capacity entail
real constraints to which locations the small-scale producers
of Bourgneuf could consider in terms of what upgrades to
materials, boats, and then boat licenses would be required
should certain ranges be exceeded (i.e., bathymetry ranging
from 5 to 10 m for cages and from 10 to 20 m for longlines, and
within 5 nm of a harbor with sufficient capacity). Certain other
environmental and socioeconomic factors were likewise found
to impose constraints as to where aquaculture would be feasible
(e.g., areas where protected habitat or fishing areas are found, of
seabed mining, sand deposits, or commercial traffic channels).
Others were considered in terms of their favorable or unfavorable
impact, but were not considered preclusive to oyster cultivation
(i.e., presence of underwater pipes or cables, militarized zones,
current rates and benthic substrate type) in resulting suitability
indices. Whereas physical conditions (e.g., wave height, swell)
will substantially limit which sites are suitable in more exposed
open ocean sites (Buck and Langan, 2017), for the relatively
sheltered conditions within Bourgneuf Bay, even offshore, this
is not expected to be a major issue. Barillé et al. (forthcoming)
also considered DEB-modeled oyster growth, but using reduced
resolution input products more relevant to the regional-scale
analysis they undertook, and therefore at a much coarser scale
than is demonstrated here. The combination of a GIS-based
spatial multi-criteria evaluation with the oyster growth indicator
mapping at a finer spatial scale relevant to site selection at the
bay scale, as demonstrated here, will be invaluable next step in
moving Pacific oyster production offshore in Bourgneuf Bay.

CONCLUSION

Here, medium-resolution satellite data were coupled with
ecophysiological DEB modeling to demonstrate the feasibility,
but also the high degree of spatial variability of offshore
Pacific oyster growth potential in Bourgneuf Bay, France, where
cultivation currently takes place in the intertidal zone with
little to no room for further expansion. Both satellite (MERIS
and AVHRR)-derived input products, Chl-a, TSM, and SST,
and DEB modeled outputs were successfully validated with
coinciding in situ measurements, and mapped across existing
farm sites in the intertidal zone and the full offshore extent
of the bay. The use of DEB modeling allowed us to integrate
the non-linear effects of Chl-a, TSM, and SST throughout
the production cycle. Mapped oyster growth at regular time
intervals was then transformed into a suite of industry-relevant
indicators established in consultation with oyster producers and
professionals, and tailored to different production stages; spat
pre-growing, adult grow-out, and fattening. Across all indicators,
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a large area of the northeast offshore segment of the bay
was found to be characterized by particularly enhanced
growth potential, suggesting the potential to reduce the
current total production cycle duration by up to a full year,
whereas the southwest offshore segment was found to perform
similarly to or less well than existing intertidal farms. Such
spatially-explicit data are crucial as part of site selection,
to be included with other environmental and socioeconomic
considerations, with as much as a threefold difference in
growth potential revealed across the ∼200 km2 of the offshore
Bourgneuf Bay.
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Interest and growth in marine aquaculture are increasing around the world, and with
it, advanced spatial planning approaches are needed to find suitable locations in
an increasingly crowded ocean. Standard spatial planning approaches, such as a
Multi-Criteria Decision Analysis (MCDA), may be challenging and time consuming to
interpret in heavily utilized ocean spaces. Spatial autocorrelation, a statistical measure of
spatial dependence, may be incorporated into the planning framework, which provides
objectivity and assistance with the interpretation of spatial analysis results. Here, two
case studies highlighting applications of spatial autocorrelation analyses in the northeast
region of the United States of America are presented. The first case study demonstrates
the use of a local indicator of spatial association analysis within a relative site suitability
analysis – a variant of a MCDA – for siting a mussel longline farm. This case study
statistically identified 17% of the area as highly suitable for a mussel longline farm,
relative to other locations in the area of interest. The use of a clear, objective, and efficient
analysis provides improved confidence for industry, coastal managers, and stakeholders
planning marine aquaculture. The second case study presents an incremental spatial
autocorrelation analysis with Moran’s I that is performed on modeled and remotely
sensed oceanographic data sets (e.g., chlorophyll a, sea surface temperature, and
current speed). The results are used to establish a maximum area threshold for each
oceanographic variable within the online decision support tool, OceanReports, which
performs an automated spatial analysis for a user-selected area (i.e., drawn polygon)
of ocean space. These thresholds provide users guidance and summary statistics of
relevant oceanographic information for aquaculture planning. These two case studies
highlight practical uses and the value of spatial autocorrelation analyses to improve the
siting process for marine aquaculture.

Keywords: spatial planning, marine aquaculture, spatial autocorrelation, Local Indicator of Spatial Association,
Moran’s I, Multi-Criteria Decision Analysis

INTRODUCTION

The demand for marine aquaculture products in the United States is growing, with
domestic sales from 2007 to 2012, increasing 13% per year (National Marine Fisheries
Service [NMFS], 2017). Marine aquaculture development in the United States has been
increasing 3.3% annually from 2009 to 2011 (National Marine Fisheries Service [NMFS],
2017) and the use of traditional siting analyses will aid development by identifying
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optimal locations that minimize conflict with other industries
and environmental constraints. Spatial autocorrelation, a
statistical measure of spatial dependence, has emerged as a
powerful means to improve the siting of marine aquaculture
development in areas with high competition for ocean space.
Spatial autocorrelation analyses may be incorporated into
planning for marine aquaculture to increase the confidence
of spatial planners, stakeholders, and coastal managers
overseeing development.

Marine Spatial Planning (MSP) provides a framework
for the responsible siting of marine aquaculture and relies
on representative and authoritative data. Remote sensing
platforms – such as satellites, Global Positioning System based
technologies (e.g., Vessel Monitoring Systems (VMS), data buoy
networks), or other similar devices – provide data with a
broad spatio-temporal range and resolution to inform the MSP
process. For example, vessel traffic information derived from
VMS or Automatic Identification Systems (AIS) is used to
characterize navigation-related ocean space-use conflicts among
ocean industries, such as renewable energy (Rawson and Rogers,
2015), commercial fishing (Rouse et al., 2017), and marine
aquaculture (Tlusty et al., 2018). Satellite derived oceanographic
variables are frequently used to site marine aquaculture. For
example, Radiarta et al. (2011) created a suitability model for
Japanese kelp (Laminaria japonica) in Hokkaido, Japan, using
Moderate Resolution Imaging Spectroradiometer (MODIS)
Sea Surface Temperature (SST) data and suspended solid
concentrations calculated from Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) data to identify suitable locations. Reliable
remote sensing data combined with authoritative or regulatory
data, such as shipping lanes or marine protected areas, are
essential for MSP.

Following the collection of reliable data, the next step
in the MSP framework is to evaluate an area for potential
environmental impacts, conflicts with other ocean industries,
and compliance with applicable laws (Douvere, 2008; Collie
et al., 2013; Stelzenmüller et al., 2017). A Multi-Criteria Decision
Analysis (MCDA), also referred to as Multi-Criteria Decision
Making or Multi-Criteria Evaluation, is a commonly used spatial
analysis technique for the MSP of aquaculture (Longdill et al.,
2008; Radiarta et al., 2008; Gimpel et al., 2015; Bwadi et al., 2019).
MCDA allows for numerous environmental and stakeholder
interests to be evaluated within an area of ocean space and has
demonstrated value for the siting of marine aquaculture (Aguilar-
Manjarrez et al., 2017; Lester et al., 2018). Variants of a MCDA
have been conducted to guide aquaculture management decisions
around the world (Aguilar-Manjarrez et al., 2017); examples
include shellfish aquaculture siting in South America (Silva et al.,
2011), siting of kelp in Japan (Radiarta et al., 2011), and siting for
marine fish farms in Italy (Dapueto et al., 2015). The results of a
MCDA are used by resource managers and regulatory authorities
to understand potential environmental or space-use conflicts
associated with a proposed operation while allowing industry to
identify prospective sites with the highest return on investment.

A limitation of using a MCDA within the MSP framework is
the ease and lack of data accessibility, which may be overcome
through the use of an online Decision Support Tool (DST).

Viewing and analyzing spatial data sets requires technical
knowledge of Geographic Information Science and software,
which may prevent stakeholders, industry, or coastal managers
from being able to examine remote sensing or authoritative data
efficiently. Online DSTs provide users of varying skill levels a
rapid and cost-effective method to interactively explore spatial
data and receive summarized results for an area of interest
(Pınarbaşı et al., 2017). Online DSTs may be used to screen an
area of interest prior to a MCDA, to remove areas with known
constraints to reduce computer processing time. Puniwai et al.
(2014) demonstrates the use of an online DST to present the
results of a MCDA identifying areas in the nearshore and offshore
waters of Hawai’i to inform aquaculture sector development
and management. Online DSTs assist planners by providing
quick access and simplified results to various user groups during
the MSP process.

Both MCDA and online DSTs may incorporate spatial
autocorrelation analyses, which have been developed by
geostatisticians and applied to numerous fields of study, to
improve the quality and confidence of results. Landscape
ecologists commonly use spatial autocorrelation analyses, and
have shown that not including a measure of spatial dependence
into an analysis may lead to erroneous results (Legendre, 1993;
Diniz-Filho et al., 2003; Hawkins et al., 2007; Kühn, 2007).
Increasingly, spatial autocorrelation is incorporated into MSP
and marine aquaculture siting analyses as part of a model or
statistical analysis to improve reliability and rigor (Tavornpanich
et al., 2012; Brager et al., 2015; Overton et al., 2018). Spatial
autocorrelation also provides the foundation for identifying
statistically significant high and low clusters, with analytical
approaches being utilized within a variety of fields, including
ecology (Nelson and Boots, 2008), epidemiology (Izumi et al.,
2015), and spatial planning (Truong and Somenahalli, 2011).
For example, Rauner et al. (2016) demonstrated how high
and low clusters of demand for electricity and the supply of
renewable energy systems may be used to guide renewable
energy development in Germany. Similar methods of identifying
clusters within a data set and siting analysis may be applied
to the results of a MCDA. Furthermore, knowledge of cluster
sizes within a data set may be leveraged for use within a DST to
provide users with additional information regarding remotely
sensed or modeled data sets.

Two case studies displaying how spatial autocorrelation
analyses improve on the standard MSP framework for marine
aquaculture are presented. The first case study presents a MCDA
that uses a Local Indicator of Spatial Association (LISA) analysis
to enhance the interpretation of the results. The second case study
demonstrates how an incremental spatial autocorrelation analysis
may be used to calculate area thresholds for key oceanographic
parameters by identifying distances when clustering is most
significant. These area thresholds are used within OceanReports1,
a recently released online DST co-developed by the United States
National Oceanic and Atmospheric Administration (NOAA)
and Bureau of Ocean Energy Management (BOEM). Both case
studies demonstrate how the siting process and planning for

1https://coast.noaa.gov/digitalcoast/tools/ort.html
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marine aquaculture may be enhanced by the inclusion of spatial
autocorrelation analyses.

MATERIALS AND METHODS

Case Study 1: MCDA With Cluster and
Outlier Analysis
A relative suitability analysis, a variant of a MCDA, was
conducted to evaluate potential sites for a hypothetical mussel
longline aquaculture operation in and around Buzzards Bay in
the state waters of Massachusetts, United States (Figure 1A).
This location was selected for use within this case study because
of data availability, known potential conflicts (e.g., extensive
vessel traffic and industrial activities), and increasing regional
interest in marine aquaculture. Table 1 provides the generalized
steps followed for performing the relative suitability analysis
used here. The presented results are for demonstrative purposes
and do not guarantee a location’s suitability with aquaculture.
Further investigation and analysis should be executed if an
aquaculture operation is proposed within this area. Incorporation
of additional data sets and considerations relevant to the type
of aquaculture and geographic setting should be performed
when using this or similar methods that evaluate a location’s
compatibility for marine aquaculture.

With the project goal of siting a mussel longline farm and
target geography identified, a grid with 1 ha grid cells (100 m
by 100 m) was established for an area of interest, containing
a total of 133,776 grid cells (Figure 1A). Cell size for the grid
was determined based on the resolution of available spatial data
for the analysis, inherent spatial variability of the data, and an
industry-standard farm footprint size (Hengl, 2006). Grid cells
shallower than 10 m were removed, leaving 98,369 grid cells
within the acceptable depth range for this aquaculture siting
exercise. Spatial data sets containing potential space-use conflicts
with marine aquaculture operations, such as active military areas,
maritime navigation, ocean industries, and natural resource
management, were collated (Table 2 and Figures 1B–D). Data
sets were individually assigned a score ranging from 0 (low
suitability) to 1 (high suitability) determined by its compatibility
with mussel longlines (Table 2).

TABLE 1 | Generalized steps performed for the relative suitability analysis,
including the Local Indicator of Spatial Association (LISA) analysis.

Steps for relative suitability analysis workflow

1. Define project goal.

2. Identify area of interest.

3. Select grid cell size and create grid.

4. Refine grid based on known constraints.

5. Evaluate spatial data sets relationship with each grid cell.

6. Score each spatial data sets relationship (0–1 Scale).

7. Calculate relative suitability scores.

8. Run a LISA analysis on the relative suitability scores.

9. Extract significantly high clusters of grid cells.

10. Review extracted clusters for further evaluation or site surveys.

Each data set was subsequently evaluated to determine if
a spatial data set was present or absent within each grid cell.
For example, a shipping lane was considered to be present if
it intersected a grid cell, and that grid cell would receive a
score of 0. For continuous data, such as bathymetry, fishing
effort, and sediment grain size, the mean value for each grid cell
was calculated and scores were assigned based on operational
constraints associated with mussel longlines (e.g., low suitability
scores were assigned for areas corresponding with high fishing
effort because of the potential for space-use conflict; Tables 3, 4).
Vessel traffic from 2017 was categorized by type, and the sum
of vessel transits per grid cell was calculated2. The 25th, 50th,
and 75th, percentiles for each vessel type were calculated for the
values in the grid and used to create and categorize the scoring
schema (Tables 5, 6). Any grid cell that contained a data set with
a score of 0 was considered to be unsuitable regardless of the
other scores as that single conflict is completely incompatible for
siting. All data sets were integrated by summing all individual
scores for each grid cell across all data sets and dividing the sum
by the total number of data sets, providing a proportion from
0 to 1, with 0 representing “low suitability” and 1 representing
“high suitability” relative to other grid cells. This final proportion
provides the relative suitability of that cell to all other grid cells in
the area of interest.

A LISA analysis, which is used to identify statistically
significant clusters and outliers within a data set, is then
performed on the final proportion of the relative suitability
analysis (Anselin, 1995). Esri ArcGIS Pro’s “Cluster and Outlier
Analysis” tool was used to perform the LISA analysis (ESRI,
2019)3. The inverse distance spatial conceptualization with a
100 m search distance is used as it includes all grid cells; however,
proximal cells have more influence than distant cells. Row
standardization, application of a false discovery rate correction,
and 999 iterations were all applied for more conservative and
robust results. Statistically significant clusters of the highest
suitable scores were identified, and any clusters smaller than
20 ha were excluded. A minimum size of 20 ha was used
as smaller mussel farms have less economic sustainability and
less flexibility for optimal farm configuration (Ahsan and Roth,
2010; Rosland et al., 2011). The LISA analysis is similar to the
Getis–Ord Gi∗ statistic, but in addition to identifying significant
high and low clusters, this method identifies outliers (Getis and
Ord, 1992; Anselin, 1995). Knowledge of outliers is useful when
interpreting results of a MCDA as it highlights areas that may
need to be avoided when identifying suitable locations for an
aquaculture operation. For example, a sewage discharge pipe or
piece of unexploded ordnance may be surrounded by otherwise
suitable locations.

Case Study 2: Incremental Spatial
Autocorrelation Analysis With Moran’s I
OceanReports enables the public to explore an ocean
neighborhood by drawing a polygon anywhere within the

2https://marinecadastre.gov/ais/
3https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/cluster-and-
outlier-analysis-anselin-local-moran-s.htm
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FIGURE 1 | (A) Area of interest (133,776 ha) located in the state waters of Massachusetts, United States. (B) Pleasure and sailing vessel traffic sum of transits per
1 ha for 2017. (C) Submarine cable area presence (in) or absence (out) for each 1 ha grid cell. (D) Tug and tow vessel traffic sum of transits per 1 ha for 2017.

United States Exclusive Economic Zone (EEZ) to visualize spatial
data within that polygon. An immediate report is provided that
includes location-based, regulatory, abiotic, biotic, cultural, and
geophysical characteristics specific to the user-defined area.
Within the Oceanographic and Biophysical information section
of the tool, descriptive statistics from a variety of remotely
sensed oceanographic data sets are generated for the custom area
(Figure 2A). A user could draw a polygon to inspect and visualize

a large area (e.g., the East Coast of the United States), however,
the summary statistics of oceanographic data for this expansive
area may provide inconsequential information. On the other
hand, drawing a smaller polygon would produce more useful
localized descriptive statistics of oceanographic parameters for
MSP. To address this issue maximum area thresholds were
developed for all oceanographic data sets by identifying the
amount of area at which spatial dependence or clustering was the
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TABLE 2 | Discrete spatial data sets included in the relative suitability analysis with
scores ranging from 0 (low suitability) to 1 (high suitability) and proportion of grid
cells that the parameter is present in along with the data source.

Parameter/data set Score Proportion
of grid

Data source*

Active renewable energy leases 0.5 0 BOEM

Aids to navigation 0 <0.01 NOAA OCM

Anchorage area 0.1 0.27 NOAA OCM

Aquaculture 0.1 <0.01 NROC

Artificial reefs 0 0 NOAA OCM

Audubon important bird areas 0.9 0.01 NAS

Coastal barrier resource system 0.5 0.02 US FWS

Coastal critical habitat designations 0.5 0 NOAA OCM

Coastal wetlands 0.5 <0.01 US FWS

Coastally maintained channel 0 0.01 NOAA OCS

Danger and restricted zones 0.1 0.01 NOAA OCM

Eelgrass 0 <0.01 NROC

MA wind energy areas 0.5 0.07 MA CZM

Military operating area 0.5 0.02 USN

Military range complex 0.5 0.02 USN

Obstructions 0 <0.01 NOAA OCS

Ocean disposal sites 0 <0.01 NOAA OCM

Pipeline areas 0 <0.01 NOAA OCM

Pipelines 0 0 NOAA/BOEM

Protected areas 0.5 1.00 US DOI

Recreational SCUBA diving areas 0.1 0.17 NROC

Right whale seasonal management area 0.5 0.06 NFMS SERO

Shellfish habitats 0.5 0.52 MA DMF

Shipping lane 0 0.03 NOAA OCS

Shipwreck 0 <0.01 NOAA OCS

Submarine cable 0 <0.01 NOAA CSC

Submarine cable areas 0 0.08 NOAA OCM

Unexploded ordnance 0.5 <0.01 NOAA OCM

Unexploded ordnance FUDS** 0.5 0.30 NOAA OCM

*Bureau of Ocean Energy Management (BOEM), National Oceanic and
Atmospheric Administration (NOAA), Office for Coastal Management (OCM),
Northeast Regional Ocean Council (NROC), National Audubon Society (NAS), Fish
and Wildlife Service (FWS), Office of Coast Survey (OCS), Massachusetts (MA)
Office of Coastal Zone Management (CZM), United States Navy (USN), Department
of the Interior (DOI), National Marine Fishery Service (NMFS), Southeast Regional
Office (SERO), Division of Marine Fisheries (DMF), Coastal Services Center (CSC).
**Formerly Used Defense Sites (FUDS).

most pronounced using an incremental spatial autocorrelation
analysis with Moran’s I. OceanReports will not return descriptive
statistics for an oceanographic variable if the user-drawn area
is greater than the maximum area threshold for that data set.

Rather, the tool informs the user to draw a smaller area to receive
summary statistics for that variable (Figure 2B). Thus, the
likelihood of a user receiving meaningless or misrepresentative
summary statistics is reduced.

For this case study, long-term monthly climatologies of
remotely sensed chlorophyll a, SST, and current speed, were
evaluated within the northeast region of the United States,
including state waters to the 200 nm federal waters boundary
of the EEZ (Table 7). These three environmental variables
are commonly used in siting analyses for marine aquaculture
(Radiarta et al., 2008; Snyder et al., 2017; Tung and Son, 2019).
Monthly climatologies of surface chlorophyll a concentrations
produced by the National Aeronautics and Space Administration
(NASA) MODIS-Aqua from July 2002 to February 2019
provide insight into an area’s potential food availability
(i.e., phytoplankton biomass) or possible nutrient loading
(Gentry et al., 2017; NASA Goddard Space Flight Center,
2018; Theuerkauf et al., 2019). Monthly climatologies of water
temperature and current magnitude from October 1992 to
December 2012 were derived from the three-dimensional,
physical oceanographic Hybrid Coordinate Ocean Model
(HYCOM) and Navy Coupled Ocean Data Assimilation
(NCODA) 1/12◦ reanalysis daily 1200 hr measurement (Bleck
et al., 2002; Halliwell, 2004). Water temperature is critical for
evaluating optimal growth ranges, approximate harvest times,
and potential thermal stress thresholds for finfish, shellfish, and
macroalgae aquaculture (Gentry et al., 2017). Oceanographic
current speed is important to consider when siting aquaculture
as well, and is useful for understanding shellfish food availability,
equipment limitations, and fish welfare (Ferreira et al., 2007;
Huang et al., 2008; Jónsdóttir et al., 2019).

An incremental spatial autocorrelation analysis using the
global Moran’s I spatial autocorrelation index with a fixed
distance spatial conceptualization was performed for each
monthly climatology using the “spdep” library in R v3.6.1
(R Core Team, 2019). An incremental spatial autocorrelation
analysis calculates the Moran’s I index and z score at multiple
distances for a single data set. The fixed distances analyzed
were derived from each possible distance between one data
point and all other data points. For example, if 100 possible
distances existed in a data set, Moran’s I index would be run
100 times or once for each distance. The resulting z scores
are then plotted by distance, rather than using the Moran’s I
index value, as the z scores allow for a standardized comparison
of significance by distance (i.e., larger positive z scores have
more significant clustering). The distances at the first peak and

TABLE 3 | Continuous spatial data sets included in the relative suitability analysis with scores ranging from 0 (low suitability) to 1 (high suitability) and proportion of grid
cells that the parameter is present in.

Parameter Value Score Proportion of grid Data source*

Mean bathymetry (m) >−10 0.1 0.04 NOAA NCEI

≤−10 1 0.96

Sediment grain size (mm) ≤2 1 0.87 TNC

>2 0.5 0.13

* United States National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI), The Nature Conservancy (TNC).
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TABLE 4 | Commercial fishing effort 2015–2016 Vessel Monitoring System (VMS) derived (Northeast Regional Ocean Council 2019) categories and scoring schema
ranging from 0 (low suitability) to 1 (high suitability), and the proportion of grid cells in each category by fishery (NMS = Multispecies groundfish, Pelagic includes
mackerel, squid, and herring, SCO = Quahog, SES = Scallop).

Fishing effort Score Proportion of grid by fishery

Herring Monkfish NMS Pelagic SCO SES Squid

<−1 1 0.007 0.017 0.094 0.055 0.074 0.090 0.041

−1 – 0 0.8 0.013 0.027 0.130 0.079 0.025 0.215 0.070

0 – 1 0.6 0.000 0.017 0.039 0.043 0.002 0.034 0.043

1 – 2 0.4 0.001 0.015 0.021 0.029 0.000 0.004 0.028

>2 0.2 0.001 0.005 0.003 0.037 0.001 0.001 0.036

NA 1 0.978 0.920 0.714 0.757 0.898 0.657 0.782

TABLE 5 | Automatic Identification System (AIS) vessel counts by vessel type categories is the count of vessels that passed through a grid cell over the course of 2017
with the corresponding scores ranging from 0 (low suitability) to 1 (high suitability).

Vessel count categories by type Score Proportion of grid by type

Fishing Passenger Pleasure Other Fishing Passenger Pleasure Other

0 0 0 0 1 0.26 0.38 0.13 0.13

1–3 1–2 1–9 1–4 0.8 0.23 0.22 0.22 0.23

4–9 3–5 10–22 5–10 0.6 0.15 0.11 0.21 0.24

10–31 6–16 23–40 11–21 0.4 0.18 0.14 0.22 0.19

≥32 ≥17 ≥41 ≥22 0.2 0.18 0.15 0.21 0.21

The proportion of grid cells in each category by vessel type; for example, 26% of the grid cells had 0 fishing vessel transits and received a score of 1.

TABLE 6 | Larger vessels with limited maneuverability associated with established shipping lanes from the 2017 Automatic Identification System (AIS) data.

Vessel count categories by type Score Proportion of grid by type

Cargo Tanker Tug/Tow Cargo Tanker Tug/Tow

0 0 0 1 0.92 0.96 0.51

1 1–2 1–2 0.5 0.04 0.01 0.15

2 3–6 3–7 0.3 0.01 0.01 0.10

3–9 7–14 8–26 0.1 0.02 0.01 0.12

≥10 ≥15 ≥27 0 0.02 0.01 0.12

With scores ranging from 0 (low suitability) to 1 (high suitability) and the proportion of grid cells in each category by vessel type.

maximum peak were identified for each plot. The first peak
indicates smaller significant clustering and the maximum peak
indicates the distance that clustering or spatial autocorrelation
was most significant in the data set. The distance of the first
z score peak, which also was the maximum peak for all data
sets, provided a radius, and the standard formula for the
area of a circle was performed to calculate an area for each
monthly climatology.

OceanReports provides descriptive statistics for each month
in a user drawn area, and therefore, the smallest area threshold
or the most conservative estimate was chosen as the threshold
for each oceanographic parameter. Using the smallest area
threshold from all monthly climatologies assists in ensuring
a user defined area contains appropriate summary statistics
within the online DST. A temporal component was not included
within this spatial dependence analysis, because the objective
was simply to identify the smallest or most conservative area
as determined by the distance at which spatial clustering was

most significant. Therefore each monthly climatology was treated
as an independent data set. Methodologies for using a spatio-
temporal Moran’s I index have been developed, and examine
how spatial dependence patterns change over time or at different
time scales. For example, Shen et al. (2016) demonstrate how
a temporally detrended global spatio-temporal Moran’s I index,
which accounts for temporal data that is not stationary, may be
used to examine changes in the spatial and temporal dependence
of daily precipitation data sets in China.

RESULTS

Case Study 1: MCDA With Cluster and
Outlier Analysis
The MCDA identified roughly 26% of the area of interest as
unsuitable (i.e., received a score of 0) for mussel longlines. Vessel
traffic, specifically “tug and tow” vessel traffic, and submarine
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FIGURE 2 | Example output from OceanReports providing (A) descriptive statistics for a number of oceanographic variables based on a custom drawn area and (B)
an error message indicating the maximum area threshold has been exceeded.

cable areas removed the greatest amount of suitable area
(Figures 1C,D). The remaining 74% varied in levels of suitability
(i.e., suitability scores ranging from >0 to 1; Figure 3A). The
LISA analysis identified statistically significant highly suitable

clusters with at least 20 ha of a contiguous area within 17% of the
total area (Figure 3D). Within these highly suitable grid cells, the
most considerable constraints were “pleasure and sailing craft”
and “other” vessel traffic, as well as the presence of protected
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TABLE 7 | Oceanographic data sets examined with units, spatial resolution, and source of data.

Data set Resolution (km) Min. distance (km) Max. area (km2) Data source*

Surface chlorophyll a (mg m−3) 4.6 103 33,329 NASA

Surface water temperature (◦C) 9.4 255 204,282 HYCOM NCODA

Surface current speed (m s−1) 9.4 217 147,934 HYCOM NCODA

*National Aeronautics and Space Administration (NASA), Hybrid Coordinate Ocean Model (HYCOM), and Navy Coupled Ocean Data Assimilation (NCODA). The minimum
distance is the smallest value of the first peak over all months from the incremental spatial autocorrelation analysis. The maximum area is the area of a circle using the
minimum distance as the radius. All distance and area calculations performed in North America Albers Equal Area Conic (WKID 102008).

areas and shellfish habitats (Figure 1B; Tables 2, 5). A few
outliers with unsuitable cells adjacent to highly suitable cells
were identified; these were either aids to navigation or other
navigational obstructions (e.g., shipwrecks; Figure 4).

Case Study 2: Incremental Spatial
Autocorrelation Analysis With Moran’s I
The Moran’s I z scores plotted by distance identified the
distances at which clustering was most significant for the three
oceanographic variables presented. Throughout the monthly
climatologies, the distances of the first peak for chlorophyll a z
scores ranged from 103 to 124 km, with the smallest distance of
103 km occurring in April, May, and July (Figures 5A,B). Water
temperature distances had a range of 255 to 453 km, with the
shortest distance in February at 255 m (Figures 5C,D). The first
peak distances for current magnitude ranged from 217 to 245 km,
exhibiting the shortest distance of 217 km in July, August, and
October (Figures 5E,F). Plotting the distance values at the first
peak for all variables by month demonstrates how the sizes of
clusters within a data set fluctuates throughout the year. The
smallest distance is used to calculate the maximum area threshold
used by OceanReports (Table 7 and Figure 6).

DISCUSSION

As global interest in “blue economy” initiatives and strategies
expands, the MSP framework and associated geospatial analyses
will be increasingly relied upon to minimize anthropogenic
impacts on the ocean environment and space-use conflicts
(Golden et al., 2017). Spatial autocorrelation approaches improve
the reliability, rigor, and utility of the decision support guidance
provided by MSP analyses. The two presented case studies
showcase the utility of spatial autocorrelation analyses to (1)
inform identification of clusters of highly suitable ocean areas
for marine aquaculture that minimizes space-use conflict, and
(2) prevent users from receiving misrepresentative summary
statistics for oceanographic parameters within an online DST by
defining maximum area thresholds. The potential applications
of spatial autocorrelation analyses to help resource managers
and industry better understand and apply these analyses
are diverse and hold great promise to reduce uncertainty
and provide a data-driven approach to the interpretation
of results.

The first case study successfully identifies areas that are
completely unsuitable (received a score of 0) for mussel
longline aquaculture. Submarine cable areas, ocean disposal sites,

and other navigational constraints were present; however, the
“cargo”, “tanker,” and “tug and tow” vessel traffic in transit
to the Cape Cod Canal in the area of interest was the most
considerable constraint (Figure 1D and Table 6). Quantifying
vessel traffic from AIS land-based or satellite data ensures
vessel-related considerations are adequately characterized within
spatial analyses to reduce potential conflict with other ocean
industries, such as shipping, fishing, or recreation (Metcalfe
et al., 2018; Tlusty et al., 2018). Any grid cells with values
greater than 0 in the relative suitability analysis are considered
negotiable ocean space.

The LISA analysis identified statistically significant clusters
of cells that have low conflict relative to other grid cells, which
is an improvement over other methods. Typically, the results
of a MCDA for marine aquaculture (e.g., suitability maps) are
visually and qualitatively assessed to identify areas with high
potential for compatibility with marine aquaculture (Figure 3A).
The simplest approach is to exclude areas that were completely
unsuitable and evaluate all other areas by examining constraints
(Figure 3B). Additionally, a threshold may be applied to the
score; for example, grid cell values greater than the 75th percentile
could be considered highly suitable and examined apart from
the other grid cells (Figure 3C). Both approaches may aid in
identifying potential areas, however, simply excluding unsuitable
areas generally leaves a large area that must be sifted through, cell
by cell, to identify sites. Establishing a score threshold reduces
the amount of area; however, choosing a “good” suitability score
threshold may be difficult to establish and justify.

Use of a LISA analysis identified 17% of the total area as
having statistically higher suitable scores relative to the other
grid cells (Figure 3D) and identified outliers that should be
avoided (Figure 4). Compared to the two other approaches
described, the LISA analysis identified a smaller area by means
of spatial statistics, which provides decision makers and coastal
managers increased confidence when examining the results of
a spatial planning analysis. Regardless of the analysis used,
further review of the highly suitable locations is required for
the creation and evaluation of alternative sites for any marine
aquaculture operation. The benefit of the LISA analysis is the
standardized process and method for identifying statistically
significant clusters, which serves as a basis for discussion with
local managers and stakeholders.

Regardless of the methods used to calculate the suitability
scores, a LISA analysis can be used to identify statistically
significant clusters of high values and detect outliers. Methods
range from a simple exclusion analysis (i.e., excluding areas
representing known constraints) to more complicated MCDA
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FIGURE 3 | (A) The relative suitability analysis results. A score of 0 indicates completely unsuitable, while a score closer to 1 indicates higher relative suitability with
aquaculture. (B) Suitable area using a traditional binary exclusion analysis (Suitability score >0). (C) Suitable area using a threshold (Suitability score >75th
percentile). (D) Highly suitable areas greater than 20 ha based on the Local Indicator of Spatial Association (LISA) analysis using the relative suitability score.

suitability modeling that include weighted variables. For example,
Pérez et al. (2005) used a weighted linear combination method
for development of a MCDA whereby decision makers assign
weights to each factor considered within the analysis, with
the final output being a weighted average. Weighted variables

provides more confidence in determining what a “good”
score is; however, setting a score threshold (e.g., 0.80) and
interpreting the results may still be challenging. Thus, a LISA
analysis provides a robust approach that may be used to
guide interpretation of suitability analysis outputs by identifying
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FIGURE 4 | Results of the Local Indicator of Spatial Association (LISA) analysis displaying the highly suitable high clusters, with outliers and low clusters. Groups of
high clusters less than 20 ha were not considered highly suitable.

statistically significant clusters and outliers. In the presented case
study, all data sets were equally weighted, however, if weights
were applied, standardized methods of collecting stakeholder
input or expert knowledge should be used over arbitrary
assignment of values (Alexander et al., 2012; Klain and Chan,
2012; Teniwut et al., 2019).

Similar to other MSP analyses, the relative suitability
and LISA analyses presented here have various assumptions
and limitations. Marine aquaculture spatial planning projects
typically rely upon the best available data for planning despite
known data limitations and gaps (Longdill et al., 2008). For
example in this case study, the most recent and best available
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FIGURE 5 | (A) Chlorophyll a z scores plotted by distance band for each month, vertical red dotted line indicates the smallest distance of the first peak, 103 km.
(B) June chlorophyll a climatology with the red circle having an area of 33,329 km2. (C) Sea Surface Temperature (SST) z scores plotted by distance band for each
month, vertical red dotted line indicates the smallest distance of the first peak, 255 km. (D) February SST climatology, red circle with area of 204,282 km2.
(E) Surface current speed z scores plotted by distance band for each month, vertical red dotted line indicates the smallest distance of the first peak, 217 km.
(F) October current speed climatology, red circle with area of 147,934 km2.
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FIGURE 6 | Distance band at first peak by month for the three oceanographic variables examined. The month with the smallest minimum distance band was used to
calculate the maximum area threshold to be used within the decision support tool, OceanReports.

vessel traffic data was used, however, vessels not required to
carry an AIS transponder were not represented. Using the best
available data and noting any assumptions or limitations can
improve trust and reliability in the results, while also highlighting
future data needs. Appropriate grid cell size and search distances
are required, and should be based on the data and size of
area being examined, as using inappropriate sizes or distances
may provide limited results. Additionally a relative suitability
analysis was performed, which means a highly suitable cluster
does not guarantee a location is highly suitable for aquaculture,
only that it is highly suitable relative to the other locations
examined. Regardless of the type of spatial planning analysis,
onsite surveys will be required to ensure a site’s compatibility with
marine aquaculture.

Within the second case study, the distance at which the
Moran’s I index z score first peaked for chlorophyll a, SST,
and current speed, was identified for each month. These
distances are consistent with known regional oceanographic
patterns. Monthly climatological values for chlorophyll a, which
is frequently used as a surrogate variable for phytoplankton
biomass, displayed a general pattern of phytoplankton blooms
in early spring and summer, which is typical in the North
Atlantic (Friedland et al., 2016; Figure 5A). The surface water
temperature displayed higher clustering in the winter months
when temperature differences increase among the estuaries, the
Gulf of Maine, and the Gulf Stream, while in the summer
months, the water temperatures are more uniform throughout
the northeast region (Shearman and Lentz, 2010; Figure 5C).
Surface current speeds had higher clustering in late summer,
which may be related to increased storm activity (Fewings et al.,
2008; Figure 5E). The area threshold for each oceanographic
parameter was calculated by using the smallest distance observed
over the 12 months (Figure 6 and Table 7). The incorporation of
these into OceanReports lessen the possibility of a user receiving
potentially misrepresentative descriptive statistics.

Alternative methods of establishing maximum area thresholds
exist, but the target audience and industry of the DST should
be used to guide any thresholds. For example, a DST built
solely for marine aquaculture planning could use an area
threshold determined by industry or regulatory standards. Since
OceanReports was designed for a variety of industries with
varying needs, determining area thresholds that accommodate
different user groups was required. The incremental spatial
autocorrelation analysis is able to accomplish this by producing
thresholds for each oceanographic variable based on cluster sizes
within that data set. For example, different descriptive statistics
(i.e., changes in the mean concentration of chlorophyll a) are
obtained as the area of interest changes, and once the area
exceeds the threshold the results begin to mean less for localized
planning (Figures 7A,B). When the custom area is smaller than
the threshold a user may still receive inconsequential descriptive
statistics for an oceanographic variable within OceanReports,
because of where and how the area is drawn. However, the
use of a maximum area threshold reduces the likelihood
of this occurring. Inclusion of maximum area thresholds
for oceanographic parameters used by OceanReports provides
guidance for users, especially those unfamiliar with descriptive
statistics and oceanographic parameters, during exploratory
analysis of an area.

Several other pragmatic applications of spatial autocorrelation
analyses may be assimilated into the MSP process for marine
aquaculture, such as spacing of environmental monitoring
stations or farms. Key environmental variables, such as
nutrient input and impact to benthic habitat, may require
monitoring to be performed (Holmer et al., 2008). Environmental
variables with significant spatial autocorrelation (i.e., High
clustering of a variable) around a farm should be sampled at
additional locations, while variables with no significant spatial
autocorrelation (i.e., Random distribution of a variable) require
less spatial coverage for monitoring (Foster et al., 2018). The
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FIGURE 7 | (A) Example of different hypothetical areas of interest
(A1 = 625 km2, A2 = 4,778 km2, A3 = 22,428 km2, A4 = 76,995 km2).
(B) Mean chlorophyll a concentration for each of the area sizes, A1, A2, A3,
and A4.

spacing and distance of sample points may be calculated after
initial survey data has been collected, using a semivariogram
or an incremental spatial autocorrelation analysis. The resulting
distances may be used to space farm sites as well. As marine

aquaculture development continues, so too will the need for
rigorous analysis to provide assurance to stakeholders and coastal
managers that a location is suitable.

CONCLUSION

The marine aquaculture industry needs efficient, objective, and
accessible spatial planning tools in order to responsibly and
efficiently plan for aquaculture. In the first case study, the relative
suitability analysis and LISA analysis identified highly suitable
locations for a hypothetical mussel longline farm in 17% of
the area examined. The use of these analyses to statistically
identify high clusters provides confidence and reliability for
industry, coastal managers, and stakeholders, that these locations
are the most suitable for a mussel longline farm in the area
of interest. The second case study calculated maximum area
thresholds using an incremental spatial autocorrelation analysis
for chlorophyll a, SST, and current speed, to be used within
OceanReports. These area thresholds were determined by the
distance that spatial dependence or clustering was greatest within
each data set, rather than arbitrarily assigning an area threshold.
These maximum area thresholds provide users guidance and
descriptive statistics that are meaningful for MSP activities.
Incorporating spatial autocorrelation analyses into the MSP
process improves efficiency and confidence when planning for
marine aquaculture.
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Offshore aquaculture of giant kelp (Macrocystis pyrifera) has been proposed by the
US Department of Energy for large scale biofuel production along the west coast
of California. The Southern Californian Bight provides an ideal area for offshore kelp
aquaculture as the upwelling and advection of cool, nutrient-rich waters supports the
growth of vast native giant kelp populations. However, concentrations of nutrients vary
greatly across space, can be limiting for kelp growth over seasonal to interannual time
scales, and inputs of nutrients to surface waters may be subject to local circulation
processes. Therefore, it is important to understand both the spatiotemporal variability
of seawater nitrate concentrations and the appropriate scale of observation in order
for offshore kelp aquaculture to be successful. Here, we use a combination of satellite
sea surface temperature imagery, in situ measurements, and modeling to determine
seawater nitrate fields across multiple spatial and temporal scales. We then combine
this information with known giant kelp physiological traits to develop a kelp stress
index (KSI) for the optimal siting of offshore kelp aquaculture over seasonal to decadal
scales. Temperature to nitrate relationships were determined from in situ measurements
using generalized additive models and validated with buoy data. Summer and winter
relationships were significantly different, and satellite-derived products compared well
to buoy validations. Surface nitrate patterns, as derived from satellite temperature
products, reveal the spatial variability in nitrate concentrations, and indicate areas that
that may cause nutrient stress seasonally and during the negative phase of the North
Pacific Gyre Oscillation. As the spatial scale of the surface nitrate product decreased,
the negative bias increased and fine scale spatial variability was lost. Similarly, the
averaging of daily nitrate concentration determinations over longer time scales increased
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the negative bias. We found that daily, 1 km spatial resolution nitrate products were
most sufficient for identifying localized upwelling and areas of consistently high surface
nitrate concentrations, and that areas in the northern and western-most portions of the
Southern California Bight are the most suitable for sustained offshore kelp aquaculture.

Keywords: sea surface temperature, remote sensing, kelp, spatiotemporal, aquaculture, scaling, modeling

INTRODUCTION

Satellite remote sensing allows for the daily determination
of global sea surface temperature (SST), which can be used
to estimate nutrient concentrations in the surface water via
empirical temperature to nutrient relationships. Over the last
four decades, the rapid increase in global satellite missions and
freely available satellite-based data products have led to spatially
explicit seawater nutrient estimates in many regions. Early work
by Kamykowski and Zentara (1986) modeled temperature to
nutrient relationships globally using in situ temperature, nitrate,
phosphate, and silicic acid measurements for use with Coastal
Zone Color Scanner SST imagery. Others have built upon this
technique to include additional nutrients for marine flora and
established time series over large spatial extents in various regions
(Sathyendranath et al., 1991; Morin et al., 1993; Dugdale et al.,
1997; Kamykowski et al., 2002; Son et al., 2006). The more
recently launched Landsat 8 Operational Land Imager has the
capability to monitor surface temperatures at a finer spatial
resolution than traditional ocean observing satellites. Landsat 8
imagery is particularly useful for work in coastal environments
because the thermal infrared sensor (TIRS) has a high signal-
to-noise ratio and 100-m spatial resolution. High-resolution SST
from Landsat 8 can be accurately determined after accounting for
atmospheric effects using coincident satellite imagery and have
been used to aid in the siting of aquaculture, such as oyster farms
in Maine (Snyder et al., 2017).

Recently, the United States Department of Energy has invested
in research to develop offshore giant kelp aquaculture farms for
the production of biofuels and other products (e.g., fertilizer,
animal feed, and chemicals). Thus, a temporospatial knowledge
of nutrient availability in these often nutrient-poor offshore
waters is required. The floating kelp canopy exists at the sea
surface, so while nutrients at depth may fluctuate depending on
seasonal stratification, year-round estimations of SST should be
sufficient for this application. Seawater nitrate concentration is
strongly and inversely related to seawater temperature in regions
influenced by coastal upwelling and empirical temperature to
nitrate relationships (T2N) have been developed for this region
(Eppley et al., 1979; Dugdale et al., 1997; Kim and Miller, 2007;
McPhee-Shaw et al., 2007; Omand et al., 2012; Jacox et al., 2015)
to study ocean dynamics and biophysical interactions in a variety
of ecosystems (Kamykowski and Zentara, 1986; Kamykowski
et al., 2002; Edwards and Estes, 2006; Fram et al., 2008;
Stewart et al., 2009).

The growth, distribution, and lifespan of giant
kelp (Macrocystis pyrifera) fluctuates due to multiple
environmental drivers, such as wave disturbance, temperature,
nutrients, light availability, and herbivory (Gerard, 1982a;

Graham et al., 2007; Parnell et al., 2010; Bell et al., 2015a).
The spatial and temporal variability of these drivers must be
quantified to optimize the spatial planning of these large-scale,
offshore kelp aquaculture operations (Gentry et al., 2017;
Lester et al., 2018). Two of these physical parameters, seawater
temperature and nutrient concentration, are particularly
relevant as upwelling processes deliver cool, nutrient-rich
water to the surface and fuel giant kelp growth, while water
temperatures >23◦C can lead to severe reductions in canopy
biomass (Zimmerman and Kremer, 1984; Deysher and Dean,
1986; Cavanaugh et al., 2019). The upwelling and advection of
nutrient-rich seawater to the surface varies greatly across space
and through time and is associated with seasonal to interannual
fluctuations in giant kelp abundance over local to regional scales
(Bell et al., 2015a). Ambient seawater nitrate accounts for a
large portion of readily available inorganic nutrients and is a
necessary ion for tissue building and photosynthesis, where frond
elongation rate declines dramatically when nitrate concentrations
are <1 µmol L−1 (Zimmerman and Kremer, 1984; Rodriguez
et al., 2016). While seawater nitrate concentration is closely
related to kelp frond elongation and biomass accumulation in
natural kelp forest systems (Zimmerman and Kremer, 1984;
Bell et al., 2018), other forms of nitrogen, such as ammonia and
urea, have been proposed for the maintenance of photosynthetic
processes during periods of low nitrate availability (Brzezinski
et al., 2013; Smith et al., 2018). However, the benthic sources
of these reduced forms of nitrogen (Brzezinski et al., 2013;
Burkepile et al., 2013; Peters et al., 2019) suggest they will be less
important in offshore areas. Furthermore, while kelp can absorb
nitrogen throughout the water column, the photosynthetic
condition of the canopy is strongly related to seawater nitrate
concentrations at the surface (Fram et al., 2008; Konotchick
et al., 2012; Bell et al., 2018; Bell and Siegel, in review). Since the
surface canopy exists in a high light environment and provides
the largest contribution to production, the assessment of surface
seawater nitrate concentration is an essential first step in the
aquaculture siting process (Colombo-Pallotta et al., 2006).

Since seawater nutrient concentrations are dynamic and can
be limiting for kelp forest growth, this variability across space
and through time needs to be well understood if offshore kelp
aquaculture is to be successful. It is also necessary to understand
the appropriate spatial and temporal scale to observe these
nutrient dynamics, as local circulation processes may play a
critical role in nutrient delivery to aquaculture farms. This is
especially important as aquaculture farms are usually on the
scale of 10’s to 100’s of meters and may be subject to processes
operating over a variety of scales. Larger spatial and longer
temporal resolution satellite data products may mask smaller
scale nutrient inputs that may be important to kelp growth in
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proposed offshore aquaculture areas. Since T2N relationships
tend to be non-linear, the mean seawater temperature state
across several days or over several kilometers may lead to a
vastly different estimate of mean nitrate concentration when
compared to estimates determined from sensors with increased
temporal or spatial resolution. With the numerous spatial
and temporal scale SST products available to the aquaculture
community, a quantification of error associated with changes in
spatial/temporal resolution is necessary. In order to determine
the optimal spatial and temporal scale to observe seawater
nitrate dynamics for use with offshore kelp aquaculture, we
(1) used high spatial resolution (100 m) SST imagery from
Landsat 8 to quantify the error associated with determining
nitrate concentrations at several common spatial resolutions,
(2) determined the error associated with averaging temperature
data across various temporal scales, and (3) determined the
optimal spatial/temporal scale of observation and combined these
analyses with known kelp physiological traits to develop a kelp
stress index (KSI) to aid in a siting analysis of offshore kelp farms
in the Southern California Bight.

MATERIALS AND METHODS

Study Area
The United States portion of the Southern California Bight is
a part of the California Current System that stretches from
Point Conception to San Diego, California, and experiences
a Mediterranean climate of cool, wet winters and warm, dry
summers. Seasonal upwelling of cool, nutrient rich waters is
driven by intensified winds in late winter and spring along
the west coast of the United States (Harms and Winant, 1994;
Otero and Siegel, 2004; Henderikx-Freitas et al., 2016). This
season is followed by a period of reduced upwelling, when waters
warm and stratify throughout the summer and fall months.
The Santa Barbara Channel falls within the Southern California
Bight and is defined by the Channel Islands to the south, Point
Conception to the northwest, and the Santa Clara River to the
southeast. A strong east/west gradient in seawater temperature
(typically > 5◦C) often exists in the Santa Barbara Channel in the
late spring and early summer (e.g., Otero and Siegel, 2004).

Development of Temperature to Nitrate
Relationships
In order to derive surface water temperature to nitrate
relationships which can be applied to remotely sensed SST
data, we used in situ seawater temperature and seawater nitrate
concentration measurements across seasons and locations in the
Southern California Bight. Generalized additive models (Wood,
2006) were used to model these relationships for nitrate+ nitrite,
hereafter referred to as nitrate (Kamykowski et al., 2002; Parnell
et al., 2010; Bell et al., 2018). In previous studies of the Southern
California Bight, nitrate represented the vast majority of nutrients
in pooled nitrate + nitrite samples (Paulson, 1972; ∼98%
CalCOFI). Input to the model was from all data collections
spanning 1980–2018 at depths from 0 m to 3 m within the
Southern California Bight (Figure 1). For analyses using Landsat

FIGURE 1 | In situ data collection sites (orange, yellow, and blue markers) in
the Southern California Bight used for temperature to nitrate relationships in
the Santa Barbara Channel, California.

8 imagery of the Santa Barbara Channel, data were used from a
subset of CalCOFI cruises within the boundaries of the Landsat 8
overpass over the Santa Barbara Channel (33.496◦N to 35.706◦N;
and −118.594◦E to −121.186◦E), Santa Barbara Coastal Long
Term Ecological Research cruises, and UCSB Plumes and
Blooms cruises1,2,3.

Temperature and nitrate data from all cruises were binned
into two groups according to a seasonal, climatological pattern
in the Southern California Bight: cool and wet winter months
(December – May), and warm and dry summer months (June –
November) (Otero and Siegel, 2004). Temperature and nitrate
data were also binned by coastal vs. offshore (at least 10 km
from the nearest coast), and sub-regionally, (northern: >34.15◦N
and <−120.5◦E, central: from 33.75◦N to 34.41◦N and−120.4◦E
to −119.3◦E, and southern: < 34.03◦N and >−119.3◦E) inside
the Southern California Bight (Supplementary Figure S1).
A GAM was fit for the two seasonal, three regional, and
coastal/offshore temperature and nitrate datasets using the
mgcv package in R with a Tweedie error structure (power
function = 1.3; k = 10).

Satellite Imagery
Sea surface temperature (SST) imagery from multiple satellite
sensors were used to produce seawater nitrate estimates with
the empirical seasonal T2N relationships developed in this

1CalCOFI.org
2http://sbc.lternet.edu/
3http://www.oceancolor.ucsb.edu/plumes_and_blooms/
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study. One kilometer resolution SST imagery was obtained via
a combined MODIS/VIIRS-derived product for the Southern
California Bight4; while 100 m resolution data from the Landsat
8 TIRS thermal band was used to derive high spatial resolution
SST products in the Santa Barbara Channel5. An atmospheric
correction was applied to the Landsat 8 imagery by scaling
brightness values with fully processed 1 km SST product data
(Snyder et al., 2017). Clouds, cloud shadows and land were
masked from the Landsat 8 SST imagery using the Fmask
algorithm (Zhu et al., 2015), and fog banks and airplane contrails
were manually removed. Imagery was processed for twelve clear
Landsat 8 overpass dates between 2016 and 2018, and then
five of these images that displayed the best results from the
atmospheric correction step (as well as the greatest dynamic
range in nutrient values throughout the Channel), were chosen to
represent the highest spatial resolution imagery available. Landsat
8-derived SST imagery were validated with SST data from four
NOAA ocean observing buoys in the Santa Barbara Channel
(buoys 46218 Harvest, 46054 West Santa Barbara, 46053 East
Santa Barbara, and 46217 Anacapa Passage; r2 = 0.93, mean
error = 0.23◦C, mean absolute error = 0.59◦C, and linear fit
equation y = 1.2x − 1.2). Buoy temperature time series from
the Santa Monica Basin and West Santa Barbara (Figure 1) were
also converted to time series of nitrate concentration using the
T2N relationships developed in this study. These buoy time series
were used to validate seawater nitrate estimates from the 1 km
MODIS/VIIRS-derived product described above.

Spatial Scaling Analysis
We performed a scaling analysis to examine the effect of using
SST products with different spatial resolutions to produce maps
of seawater nitrate concentration. We started with a processed
Landsat 8 100 m SST image and degraded the spatial resolution
to produce 1, 2, 4, 9, 15, and 25 km pixel scale imagery of nitrate
concentration via two methods (Figure 2).

The first method preserves the high-resolution nitrate
estimates by spatially degrading a 100 m nitrate product
(assuming this product is “truth”), and the second method
simulates the use of a lower resolution SST product by first
spatially degrading the 100 m SST image before estimating
the nitrate concentrations. We then found the difference in
nitrate concentration between the two methods as the spatial
resolution of the imagery was decreased. Differences in modeled
seawater nitrate concentration were quantified using simple
linear regressions. We also investigated the spatial error within
a spatially degraded pixel by quantifying the fine scale physical
processes hidden by using lower spatial resolution imagery.
These fine scale (100 m) errors due to changing resolution were
quantified by fitting normal probability distribution functions to
the error distributions at each spatial scale.

Temporal Scaling Analysis
We performed a temporal scaling analysis to examine the effect
of averaging SST through time on estimated seawater nitrate

4http://spg-satdata.ucsd.edu/
5earthexplorer.usgs.gov

concentration. Temperature measurements were made every
10 min by the Santa Monica Basin buoy and West Santa Barbara
buoy, and we sampled the timeseries (blue trace, Figure 3) at
1:30PM local time each day to mimic a satellite SST acquisition.
These daily temperatures were then averaged over several time
intervals (5, 10, 15, and 30 days) to simulate SST products at
commonly available temporal resolutions (Figure 3).

These averaged temperature intervals were then converted
to nitrate concentration and compared to the mean nitrate
concentration estimated from the individual daily buoy
temperatures over the same time period. The accuracy of the
nitrate concentration estimate was determined using the mean
absolute error for each temporal resolution (MAEk), defined as:

MAEk =
1
n

n∑
i=1

|NSatellite
k,i − NBuoy

k,i | (1)

where NSatellite
k,i is the estimated nitrate concentration from

the simulated daily satellite SST averaged over each temporal
resolution k, NBuoy

k,i is the estimated nitrate concentration from
the continuous buoy temperature measurements, and n is the
total number of absolute error determinations. Mean absolute
error is an unambiguous measure of error compared to root mean
squared error because it is less sensitive to the distribution of
error magnitudes (Willmott and Matsuura, 2005). To quantify
bias in the estimation of nitrate concentration, we determined
the mean error for each temporal resolution (MEk) which was
calculated as:

MEk =
1
n

n∑
i=1

(
NSatellite
k,i − NBuoy

k,i

)
(2)

Cloud cover limits the ability of satellites to measure SST and
varies seasonally. In order to account for the effect of variable
cloud cover, a fraction of daily SST values (0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, and 0.8) were randomly removed from each time
interval before averaging was completed. Mean absolute error
and mean error were then determined from these estimated
nitrate concentrations as stated above.

Siting Analysis
We performed a siting analysis for all areas in the United States
portion of the Southern CA Bight. Since the technology of
farm design is changing rapidly, we included areas regardless of
depth. We used daily, 1 km SST from the MODIS/VIIRS-derived
product from 2002 to 2018 (see text footnote 4) and converted to
nitrate concentration according to the seasonal T2N relationships
derived in this study. We then calculated the mean and coefficient
of variation of nitrate concentration in the surface water across all
dates and the mean nitrate concentration for each season.

We also determined the proportion of time that giant kelp
farms exist in nutrient conditions to support adequate growth
rates. Giant kelp has internal nitrogen stores to support growth
for roughly 2 to 3 weeks (Gerard, 1982a) and frond elongation
rate maximizes at seawater nitrate concentrations of 1 µmol L−1

(Zimmerman and Kremer, 1984). Therefore, we examined the
number of consecutive days when surface nitrate concentrations
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FIGURE 2 | Description of the two methods of estimating nitrate from sea surface temperature (SST) imagery for the Santa Barbara Channel region using Landsat 8
thermal images from October 22, 2017. Method 1 preserves the magnitude of nitrate estimations at the native 100 m scale by first passing the SST data through the
empirical temperature to nitrate (T2N) relationship, then degrading the spatial resolution. Method 2 approximates a data user selecting a SST product at a commonly
available spatial resolution and then applying the T2N relationship. The bottom rows show the difference in estimated nitrate concentrations between Method 1 and
2 at each spatial resolution.

FIGURE 3 | (1) Continuous temperature data (blue line) from a buoy was sampled daily to simulate daily satellite SST determinations (red dots). (2) These daily
temperatures are then averaged over four temporal resolutions (5, 10, 15, and 30 days; shown as colored lines plotted over the continuous buoy data). The mean
SST across the entire time series for each temporal resolution is shown. (3) Use empirical temperature to nitrate relationship (T2N) to estimate time series of nitrate
concentration which are plotted over the continuous estimated nitrate concentration derived from the buoy temperature data (maroon line). The mean estimated
nitrate concentration across the entire time series for each temporal resolution is shown.

fell below 1 µmol L−1 after interpolating each 1 km pixel’s SST
time series with a piecewise cubic spline to remove missing values
(Matlab function interp1 – “pchip”). When there were >21 days
in a row below the 1 µmol L−1 nitrate concentration threshold,

we counted those days as a period of giant kelp nutrient stress.
We then found the fraction of days with kelp nutrient stress to
determine the KSI for each season for the entire study area. Low
frequency climate cycles, like the North Pacific Gyre Oscillation
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FIGURE 4 | (A) Temperature and nitrate measurements separated by season in the Southern California Bight. Blue markers are datapoints collected during
wintertime, red markers are datapoints collected during summertime. (B) Generalized additive model fit for temperature to nitrate relationships in the winter and
summer months in the Santa Barbara Channel from 1980 to 2018 above 3 m depth. Blue line is the winter GAM, and red line is the summer GAM. Gray bars are the
standard error about the curve.

(NPGO), affects nitrate delivery to the Southern California Bight
(Di Lorenzo et al., 2008; Parnell et al., 2010). Stronger winds
drive increased upwelling during positive NPGO years, and
greater concentrations of nutrients are delivered to the surface
(Di Lorenzo et al., 2008). We also determined the difference in
the KSI for each season when the NPGO was in a negative versus
a positive mode.

RESULTS

Temperature to Nitrate Relationship and
Satellite Imagery
There were significant seasonal differences found in the T2N
relationships developed from in situ temperature and nitrate
data. The winter GAM had an R2 = 0.83; p < 0.001; n = 2691;
and the summer GAM had an R2 = 0.91; p < 0.001; n = 2758,
with winter months defined as December – May and summer
months defined as June – November (Figure 4). The summer
T2N relationship showed higher nitrate concentrations than the
winter T2N relationship between 11 and 15◦C. These seasonally
specific relationships were used for all further analyses.

There were no significant differences found between coastal
and offshore T2N relationships, nor were significant differences
found between the three sub-regional T2N relationships
(Supplementary Figure S1). The results are qualitatively similar
to prior work in the region (cf. Omand et al., 2012 or Jacox et al.,
2015 for summaries of coastal and offshore T2N relationships
derived from in situ observations).

High spatial resolution maps of SST and estimated nitrate
concentration (Figure 5) were generated for the Santa Barbara
Channel on five clear days between 2016 and 2018 (October 3,
2016, October 19, 2016, October 22, 2017, November 10, 2018,
and December 28, 2018).

Landsat 8-derived temperature data compared well to buoy
validation data in the Santa Barbara Channel (r2 = 0.93). Surface
nitrate concentrations followed an inverse pattern to SST, as

expected, where nitrate concentrations in the Santa Barbara
Channel are typically highest in the western half of the channel,
where cold, nutrient rich waters upwelled along the central coast
of California are advected southward toward the western Channel
Islands (Figure 5). This is observed in all five sets of Landsat
imagery analyzed (Supplementary Figures S3–S6).

Satellite retrievals of SST (1 km MODIS/VIIRS product) and
estimated nitrate concentration matched the general patterns of
variability estimated from the continuous data at both buoys
(Figure 6). General temperature patterns followed a seasonal
cycle of highest values in the summer and lower values in the
winter, while nitrate concentrations had an inverse pattern of
peaks during the spring/winter and lows during the summer/fall.

Comparisons of SST between the buoys (West Santa Barbara
and Santa Monica Basin) and the satellite product were highly
significant and more strongly correlated (r2 = 0.93 and 0.95,
p < 0.001) than the estimated seawater nitrate concentrations
(r2 = 0.89 and 0.79, p < 0.001) because nitrate estimates contain
error from both satellite temperature estimates as well as the
T2N relationship. Both mean absolute error and mean error were
greater in magnitude for both SST and nitrate concentration
for the West Santa Barbara buoy than the Santa Monica Basin
buoy (Table 1).

Spatial Scaling Analysis
The spatial scaling analysis showed that values of T2N estimated
nitrate concentrations were reduced as the spatial resolution of
the image was decreased (Figure 7). As the spatial resolution was
degraded from 1 km to 25 km, nitrate concentrations greater
than 1 µmol L−1 were disproportionately underestimated and
pixel nitrate concentration magnitude was reduced (Figure 7 and
Supplementary Figures S3–S6).

As the spatial resolution was degraded, local scale variations
in nitrate concentration were lost. As spatial resolution decreased
from 1 km to 25 km, the standard deviation of the distribution of
errors became larger, indicating that the level of error increased
over a greater number of pixels (Figure 8). The mean of the error
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FIGURE 5 | Landsat 8-derived SST and T2N estimated nitrate concentration imagery of the Santa Barbara Channel on October 19, 2016. Spatial resolution is
100 m.

FIGURE 6 | Continuous temperature and estimated nitrate concentrations time series from the Santa Monica Basin and West Santa Barbara buoys are shown as
blue lines. The red dots show the daily SST and daily estimated nitrate concentrations from the 1 km, MODIS/VIIRS-derived SST product.

distribution decreased from zero to negative values as the spatial
scale increased from 1 km to 25 km, indicating that local scale
nitrate concentration was more often underestimated.

Maps of the difference in estimated nitrate concentration
between the 100 m product and the 25 km product show the
higher values of nitrate were diminished, (up to 5 µmol L−1)
in places where there was higher spatial variability in SST, such
as around Point Conception in the northwest and around the
Channel Islands (Figure 9).

Temporal Analysis Results
The temporal scaling analysis showed that increasing the
temporal averaging of daily SST imagery negatively biased
nitrate concentration estimates (Figure 10). The average MAE

(µmol L−1) across all cloud contamination fractions did not
show large changes as temporal scale increased for both buoys
(West Santa Barbara, 0.66 to 0.64 and Santa Monica Basin, 0.13
to 0.14). However, there were large increases in MAE as the
degree of cloud contamination increased, when averaged over
all temporal scales (West Santa Barbara, 0.47 to 0.86 and Santa
Monica Basin, 0.10 to 0.17), meaning that a reduction in the
number of images due to cloud cover affected MAE more than
averaging samples over a specific time period. The magnitude
of the ME (µmol L−1) increased and became more negative
as the temporal scale increased (West Santa Barbara, −0.27 to
−0.50 and Santa Monica Basin, −0.06 to −0.12) and displayed
a smaller effect associated with increasing cloud contamination
(West Santa Barbara, −0.42 to −0.32 and Santa Monica Basin,
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TABLE 1 | The mean absolute error (MAE), mean error (ME), coefficient of
determination (r2), and linear equation for relationships between sea surface
temperature (SST) and estimated nitrate concentration (Est. NO3) between buoys
and satellite determinations (1 km) MODIS/VIIRS-derived SST product.

Buoy Variable MAE ME r2 Equation

Santa Monica
Basin

SST (◦C) 0.49 0.31 0.95 y = 1.00x + 0.04

Est. NO3 (µmol L−1) 0.23 −0.02 0.79 y = 0.91x + 0.04

West
Santa Barbara

SST (◦C) 0.51 0.23 0.93 y = 0.98x + 0.57

Est. NO3 (µmol L−1) 0.91 −0.52 0.89 y = 0.85x + 0.05

All relationships significant at the p < 0.001 level.

−0.09 to −0.07). Meaning that averaging samples over a specific
time period led to a greater negative bias compared to a reduction
in available imagery due to cloud cover.

Siting Analysis
The siting analysis shows areas in the Southern California Bight
that maintain consistent nitrate levels above 1 µmol L−1 at the
surface in all seasons, and some areas that exhibit seasonal and
interannual differences. We found that nitrate concentrations
remain elevated in areas north of Pt. Conception and in the
western SB Channel throughout the time series, with a coefficient
of variation of nitrate concentration close to 1 (Figure 11).

The coefficient of variation was higher in the rest of the SB
Channel and close to 2 in much of the southeastern quadrant
of our study area. Seasonal patterns of nitrate concentration
were >1 µmol L−1 for most of the study area in winter with
increased concentrations in the northern half of the study area
in spring. Summer and fall were characterized by reduced nitrate
concentrations over the vast majority of the study area.

The KSI was low during the winter and spring seasons, the
fraction of nutrient stress was close to zero throughout most of
the Santa Barbara Channel and into the open ocean beyond the
Channel Islands (Figure 12A). In the summer season KSI values
were high, especially in the eastern half of the Channel and close
to shore, where the fraction of nutrient stress was well above 0.8.
There was moderate nutrient stress in the fall season, the stress
fraction was above 0.5 in most of the SB Channel and southward.

During the positive phase of the NPGO the spatial pattern
of nutrient stress changed the most during the spring season
(Figure 12B). There was a decrease in KSI in areas offshore and
south of the channel, in some places by as much as 0.5. The winter
season also had a strong reduction in stress fraction, especially
along the coast and to the southeast. The summer only had weak
reductions in KSI near Point Conception, and the fall had mild
reductions in the channel and along the southeast coast.

DISCUSSION

Siting of Kelp Aquaculture Farms
Estimated surface nitrate concentration imagery show seasonal
means that follow expectations for the Southern California
Bight (Figure 11). Spring upwelling leads to elevated nitrate
concentrations, especially in the northern and western halves

of the study area. The SE quadrant of the study area can
have less than 1 µmol L−1 nitrate in surface waters for much
of the year; and with CV’s of around 2, this area shows a
great degree of variability through time. For kelp aquaculture,
and especially farms fixed to the seafloor, areas with more
stable nutrient conditions (both seasonally and interannually,
i.e., the northern and western areas) should lead to more
stable aquaculture production and should be considered in
spatial planning analyses (Gentry et al., 2017; Lester et al.,
2018). The Santa Barbara Channel is uniquely protected from
exposure to wave action and high-resolution thermal imagery
could be especially useful for identifying areas with nutrient
concentrations high enough to support year-round kelp growth
(Cabral et al., 2016).

The analysis of the KSI (i.e., fraction of days with kelp nutrient
stress) shows that much of the study area is not under potential
nitrate stress for the winter and spring seasons (Figure 12).
During summer and fall the northern half of the study area can
still display low kelp nutrient stress, but low nutrient surface
waters dominate during summer in the SE quadrant and as
they flow into the Santa Barbara Channel from the east and
increase nutrient stress (Harms and Winant, 1994; Otero and
Siegel, 2004). There are areas in the Southern California Bight
that maintain less than ideal conditions for kelp growth (mean
nitrate concentration stays below 1 µmol L−1 nitrate as indicated
by the white contour line in Figure 11). Nevertheless, there are
kelp forests that occur for periods of several years in the SE
quadrant of the map despite a high average KSI, for example,
along the coast of San Diego, CA.

By incorporating decadal forcing like NPGO into the siting
analysis we found valuable information that may have otherwise
been missed by the averaged data through time. When the
NPGO was positive, areas in the southern portion of the
study area increased in their proportion of time with adequate
nutrients for kelp growth, especially in the winter and spring.
In fact, the NPGO is an important interannual driver of kelp
canopy biomass dynamics along the California coast and natural
kelp forests in these southern areas may only form canopies
during positive NPGO years (Parnell et al., 2010; Cavanaugh
et al., 2011; Bell et al., 2015a). It follows that engineered kelp
farms planted in areas that typically experience low nitrate
conditions may only be successful during high NPGO periods.
We can learn from the dynamics of natural kelp systems
in these low nitrate areas, especially if planned aquaculture
requires that no external fertilizers are applied. The KSI is
modulated by factors other than mean seasonal temperature
and nutrient concentrations, so it is helpful to consider low
frequency marine climate oscillations, like the NPGO, that
may allow kelp to persist (Di Lorenzo et al., 2008). In the
Santa Barbara Channel the KSI never exceeds 0.5, except in the
Summer and Fall seasons near the eastern section and along
the mainland coast. This highlights the western Santa Barbara
Channel as an ideal site for maintaining kelp growth at
the surface in offshore aquaculture during both negative and
positive NPGO years.

It is important to note that this study only covers nitrate
concentrations at the surface, and stratification and internal
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FIGURE 7 | Nitrate concentrations for 25, 15, 9, 4, 2, and 1 km spatial resolution nitrate products calculated from the 100 m Landsat 8 SST product (x-axis) and the
larger spatial resolution Landsat 8 SST product (y-axis). Red line is regression fit, dashed black line is 1:1. Image was collected on October 19, 2016.

FIGURE 8 | Normal curve fit of error distribution in nitrate product from
October 19, 2016. Black stars are the mean error at each spatial resolution.

waves may be responsible for translocation of nutrients at depth
(Zimmerman and Kremer, 1984; McPhee-Shaw et al., 2007).
Despite this, we know that kelp canopy health declines when
surface waters warm and nitrate decreases, both seasonally and
during marine heatwaves, and thus surface waters are very
important to monitor for kelp canopy condition and growth

(Bell et al., 2018; Cavanaugh et al., 2019). While the spatial
resolution of the MODIS 1 km product adequately captures
surface patterns of SST and nitrate, it is important to note
that the temporal resolution of satellite imagery only provides
a snapshot of conditions at a single moment during the day. As
such, this daily measurement likely misses oceanographic events,
some of which could be especially important for supporting
kelp growth. Internal waves are strong at 12 h periods and
drive influxes of upwelled water into the Santa Barbara Channel,
so for siting purposes it would be advantageous to collect
continuous or hourly measurements with moored sensors that
can capture these events and supplement satellite datasets
(Zimmerman and Kremer, 1984).

These maps do not directly identify the best overall areas
to site a kelp farm, but they do offer spatially and temporally
explicit information to help with the decision-making process,
as several factors will come into play depending on farm
design, permitting, economic forces, and environmental impacts.
As a foundation species and ecosystem engineer, giant kelp
serves as a habitat for bryozoans, bacterial colonies, fishes
etc, and floating kelp farms in the open ocean could have
positive and/or negative effects on surrounding ecosystems by
modulating local nutrient availability. Rather than solely rely
on nitrate concentration, it is better to map how the organism
of interest will respond to these nutrient dynamics. Maps
of nutrient stress periods show areas where kelp production
may suffer seasonally. Sainz et al. (2019) showed that bivalve
aquaculture is also expected to do poorly in the Southern
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FIGURE 9 | Difference between nitrate calculated from 100 m SST product and nitrate calculated from coarser spatial resolution SST products. Lower spatial
resolution products diminished areas with high nitrate levels. Original Landsat 8 imagery was collected on October 19, 2016.

FIGURE 10 | Mean absolute error and mean error in estimated nitrate concentration (µmol L−1) as a function of the temporal resolution of the simulated SST
imagery and the fraction of daily temperature images contaminated with cloud cover.

California Bight during these negative NPGO periods, however,
Lester et al. (2018), showed that finfish aquaculture may benefit
from warmer waters, conditions that would be common during

this period. Due to the nature of decadal climate cycles in the
Southern California Bight, it may be worthwhile to examine
a dynamic approach to marine spatial planning, where kelp
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FIGURE 11 | Top row: Mean and coefficient of variation (CV) of estimated nitrate concentration over the study area across all seasons. Bottom row: Mean
estimated nitrate concentration across each season over the study area. White contour line shows the location of the 1 µmol L−1 nitrate concentration front.

FIGURE 12 | (A) The Kelp Stress Index (KSI) for each season over the study area. The KSI is the proportion of the season where kelp is nutrient stressed. Nutrient
stress is defined as greater than 21 consecutive days of seawater nitrate concentration less than 1 µmol L−1. (B) The difference in the KSI for each season when the
North Pacific Gyre Oscillation (NPGO) is in a positive versus a negative mode.

aquaculture could shift to other products during negative
periods of the NPGO.

Effect of Spatial Scaling on Nitrate
Estimates
Spatially degrading SST tends to underestimate the amount of
nitrate in the surface waters due to the non-linearity of the
T2N relationship. This is most apparent at the lowest spatial
resolutions (25, 15, and 9 km in Figure 7) where the best
fit line slope is lower than the 1:1 line. The largest effect is
seen at nitrate values between 1 and 4 µmol L−1 because this
area is located at the curve of the T2N relationship, where the

relationship is the most non-linear (Figure 4). At low nitrate
values there is less of an effect because there is little nitrate in
the water from 16◦C to 24◦C, thus averaging does not affect these
lower values as much. Accurate nitrate concentration estimates
around 1 – 4 µmol L−1 are important because this is a critical
concentration range for the growth of giant kelp (Gerard, 1982b;
Bell et al., 2015a). Uptake rates by giant kelp vary non-linearly
with ambient seawater nitrate concentration, and the nitrogen
uptake rate changes the fastest over this 1 – 4 µmol L−1 range
(Gerard, 1982b). Thus, an error in estimating sea surface nitrate
concentration, especially at low spatial resolutions, can lead to
disproportionate errors in estimating nitrogen uptake by kelp.
As errors tend to underestimate nitrate concentrations, larger

Frontiers in Marine Science | www.frontiersin.org 11 January 2020 | Volume 7 | Article 2263

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00022 January 28, 2020 Time: 16:49 # 12

Snyder et al. Spatiotemporal Nutrient Patterns for Aquaculture

spatial scale estimates may exclude areas as potential sites for
kelp aquaculture.

Fine scale physical processes that bring cool, nutrient-rich
water to specific sites can be hidden when the spatial resolution
of remote sensing imagery is degraded. This is shown in the
probability distribution functions (Figure 8) and maps of error
(red and blue areas in Figure 9) at the 25, 15, and 9 km scale.
Localized areas of upwelling, such as coastline and seamounts,
or eddy formation (around the Channel Islands and headlands)
may be good places for aquaculture but are often missed in lower
spatial resolution imagery (Broitman and Kinlan, 2006; Bell et al.,
2015b). The spatial scaling analysis showed that, under most
circumstances, 1, 2, and 4 km resolution imagery compared well
to the 100 m scale nitrate estimates for this study area.

Effect of Temporal Scaling on Nitrate
Estimates
One-kilometer MODIS satellite retrievals performed well for SST
and nitrate dynamics as seen in validation data by continuous
buoy measurements in both cool and warm areas of the
Southern California Bight (Table 1). The increased magnitude
of MAE and ME of estimated nitrate concentrations in the West
Santa Barbara buoy were likely caused by the higher magnitudes
of nitrate at that site relative to the Santa Monica Basin site.
As part of the temporal scaling analysis, higher values in MAE
were due to the higher fraction of cloud contaminated daily
SST estimates as opposed to the increase in temporal scale
(Figure 10). Offshore areas to the west of the Channel Islands
and Pt. Conception are generally cloudier than areas inside the
Channel Islands (Supplementary Figures S2A,B), and overcast
and cloudy conditions often persist throughout the summer
and fall seasons over the Santa Barbara Channel. This makes
it difficult to build an accurate climatology, as clear imagery
are sometimes only available once or twice per week. We see
that as new satellites come online, such as VIIRS in 2012, the
increased number of passes allows at least one sensor to get a clear
image of daily SST more often. The future launch of Landsat 9,
scheduled for 2020, promises an improved TIRS-2 sensor that will
reduce stray light issues in Landsat 8’s thermal imagery, as well
as increase global coverage and data collection. Improvements in
future satellite missions, the addition of geostationary satellites,
and greater cooperation between global space agencies will
continue to mitigate this limitation (Castelao et al., 2006). For
areas with persistent cloud cover and frequent storms (and thus
lower SST and possibly higher nitrate concentrations) in situ
monitoring will be necessary for farmers and stakeholders to
observe local conditions.

On the contrary, increases in the ME are driven mostly by
increases in temporal averaging and not cloud contamination.
It is important to note that ME is always negative and becomes
more negative as temporal scale (the averaging of daily SST
determinations) increases. We cannot control the level of cloud
contamination, but we can control the temporal scale at which
we convert SST to nitrate concentrations. We would recommend
that each daily determination of SST is converted to nitrate before
averaging over time (Figure 2).

Conclusion
It is important to understand the implications of spatial and
temporal scale of temperature data when estimating seawater
nutrient fields for assessing the suitability of kelp aquaculture
sites. We found that daily, 1 km SST imagery does an adequate
job of replicating continuous buoy measurements. For studies
in the NE Pacific, a merged daily 1 km multi-satellite product,
like the one used in this study, captures a great deal of the
variability in temperature and nitrate concentration in this
system at a fine spatial and temporal scale. It is also important
to remember that SST does not estimate temperature dynamics
below the surface of the water, and that waters can be stratified
in the summer. This stratification may hide subsurface dynamics
of seawater nutrients. Future offshore aquaculture farms may
use technology to overcome this, like farms which can alter
buoyancy to sink below a nutricline or employ the use of artificial
upwelling devices.
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The aquaculture industry of southern Africa faces environmental threats from harmful

algal blooms (HABs), which have the potential to cause devastating economic losses

(Pitcher et al., 2019). Satellite earth observation offers a systematic and cost effective

method for operational monitoring of HABs over large areas. Whilst the chlorophyll-a

concentration ([Chl-a]) product, often used as a proxy for phytoplankton biomass, can

be used to indicate high biomass blooms (elevated biomass against a background

signal of 5–10 mgChl m−3), there is a clear need for value-added products that not

only alert on bloom presence, but also on the bloom type and persistence. This study

demonstrates the identification of different phytoplankton communities that can feasibly

be identified in bloom concentrations from space, relevant to the aquaculture industry

of South Africa. In terms of water-leaving reflectance, 76 % of the variance in the red

and NIR spectral region is significantly positively correlated to phytoplankton abundance,

[Chl-a], and the maximum line height (MLH) (defined as the height of the maximum

reflectance peak above a baseline between 665 and 753 nm). The MLH is related

to dominant phytoplankton types derived from phytoplankton count data, in order to

identify thresholds which represent blooms that pose a high hypoxia and/or toxicity risk;

whilst 0.0016 < MLH < 0.003 represent low to moderate concern mixed assemblage

blooms, MLH > 0.003 has a strong likelihood of indicating high biomass dinoflagellate

or Pseudo-nitzschia blooms. These techniques are routinely used by the aquaculture

industry in South Africa for decision support and risk mitigation. The high biomass

nature of the South African regional waters provide strong assemblage-related spectral

variability, which can be exploitedwith the spectral bands of OLCI andMERIS. Application

to these sensors not only ensures future monitoring capability, but also allows the creation

of a historical risk climatology that can guide the site selection of industries sensitive to

the presence of HABs, such as aquaculture facilities and desalination plants.
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1. INTRODUCTION

Aquaculture is a burgeoning industry in South Africa and plays a
vital role in the country’s blue economy. The marine aquaculture
sector centers around mussel Mytilus galloprovincialis, Pacific
oyster Crassostrea gigas and abalone Haliotis midae farming
(DAFF, 2017), with most facilities situated along the west
coast in close proximity to the productive Benguela current
upwelling system.

Mostmussel and oyster farms utilize in-water culturemethods
such as rafts and cages (DAFF, 2017) located in Saldanha
Bay (Figure 1). Abalone are farmed commercially along the
west and southwest coasts of the country, with the majority
of abalone operations situated near Walker Bay; the most
common production methods utilize land-based flow-through
systems (Urban-Econ Development Economists, 2018) which
necessitates a close proximity to the ocean to allow large volumes
of sea-water to be pumped up to the farm for optimal water
exchange, temperature control, and removal of metabolic waste.

The global marine aquaculture sector faces environmental
threats from harmful algal blooms (HABs), with impacts from
these events amounting to approximately 8 $billion/yr (Brown
et al., 2019). Within the South African aquaculture industry
the HAB-related risk factors and mitigation strategies differs
within the various sub-sectors. Whilst the herbivorous abalone
are at risk of physical damage and paralysis attributed to some
dinoflagellate species (e.g., Pitcher et al., 2019), the filter-feeders
(i.e., mussels and oysters) are vulnerable to growth arrest (Pitcher
and Calder, 2000) and the accumulation of biotoxins which
affects their safety of consumption and can cause poisoning
syndromes in humans. On a larger environmental scale, some
non-toxic dinoflagellate blooms can result in marine mortalities
and anoxia following the collapse of blooms with very high
biomass (e.g., Ndhlovu et al., 2017).

Routine management and risk assessment at aquaculture
facilities includes monitoring the flesh of mussels and oysters
for specific biotoxins and regular phytoplankton counts of water
samples. Counts include total abundance counts and HAB
species monitoring focusing on toxic dinoflagellates known to
cause paralytic shellfish poisoning (PSP) (e.g., Alexandrium spp.)

and diarrhetic shellfish poisoning (DSP) (e.g., Dinophysis spp.),
diatoms known to cause amnesic shellfish poisoning (ASP) (e.g.,
some Pseudo-nitzschia spp.), as well as dinoflagellates known to
produce yessotoxins (e.g., Lingulodinium polyedrum).

HABs have the potential to cause devastating economic losses
in the aquaculture and fisheries industries. The Saldanha Bay
mussel aquaculture industry was first affected in 1994 due to
PSP (Pitcher et al., 1994), while the presence of brown tides in
1997–1999 resulted in reduced growth rates of the filter feeding
bivalves and 80 % reduction in monthly sales (Probyn et al.,
2001); in 2015 farms were closed 13 times due to the presence
of bio-toxins in shellfish flesh above acceptable regulatory limits
(DAFF, 2017). Dinoflagellate blooms have previously impacted
wild and farmed abalone (Pitcher et al., 2001; Botes et al., 2003)
in South Africa, even leading to mortalities of wild adult abalone
(Horstman et al., 1991); abalone have been known to contain
paralytic shellfish toxins following some dinoflagellate blooms

FIGURE 1 | Map showing the west coast aquaculture facilities, with important

bays and towns for reference. The location of the sampling station off

Lamberts Bay is indicated by a green diamond. Abalone farms are shown as

blue dots and mussel farms are shown in red (adapted from DAFF, 2017).

(Harwood et al., 2014; Hallegraeff and Bolch, 2016). HABs can
also pose a threat to the physical condition of sardines and
associated fisheries (Van der Lingen et al., 2016). The decay of
high biomass dinoflagellate blooms have often lead to marine
mortalities and mass rock-lobster strandings in the St Helena Bay
region (e.g., Pitcher et al., 2011, 2014) with losses valued up to 50

million US dollars in some cases (Ndhlovu et al., 2017).
Ocean color remote sensing provides a cost-effective and

valuable tool in the detection and monitoring of various types
of phytoplankton blooms (see references in Blondeau-Patissier
et al., 2014). The most common method, using the concentration
of Chlorophyll a ([Chl-a]) as a proxy for biomass, has often
been used to define blooms as anomalous [Chl-a] above a pre-
determined threshold (e.g., Stumpf et al., 2003). [Chl-a] has
traditionally been used to detect phytoplankton blooms and
HABs in the southern Benguela (Bernard et al., 2014; Smith
and Bernard, 2018) where concentrations in the coastal waters
are known to vary from <1 mg m−3 in newly upwelled water
(Barlow, 1982) to well over 100 mg m−3 in bloom conditions
(Pitcher andWeeks, 2006). Although [Chl-a] is routinely derived
from satellite reflectance using regionally optimized algorithms
(e.g., Smith and Bernard, 2018), it does not provide direct
information about inherent phytoplankton-related risk.
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The optical environment off the west coast of South
Africa can be described as phytoplankton dominated, with
other constituents (e.g., colored dissolved organic matter
and suspended inorganic material) contributing relatively
little to the water-leaving reflectance signal (Bernard et al.,
2009). The blue-green water-leaving reflectance signal generally
dominates in low biomass open ocean environments, which
is considered to be [Chl-a] < 1 mg m−3 in the context
of this study. As the phytoplankton biomass increases, the
reflectance signal is increasingly affected by a combination
of the peaks of Chl-a absorption near 465 and 665 nm, the
Chl-a fluorescence peak near 685 nm, as well as increased
phytoplankton-related backscattering and the absorption of
water; these effects result in the shift of the dominant
reflectance signal to the red-NIR spectral region at Chlorophyll
a concentrations ([Chl-a]) of approximately >15 mg m−3

(Robertson Lain et al., 2014).
It should be noted that the term “bloom” and “HAB”

should be considered within a specific ecological and
environmental context; some HABs can be toxic at low
biomass or do not manifest as high [Chl-a], and there are
generally no set abundance values to define when a HAB
species is considered to be a “bloom” (Glibert et al., 2018).
When contextualized within the highly productive waters
of the southern Benguela, a phytoplankton “bloom” needs
to be identifiable against a background biomass signal of
approximately [Chl-a] of 5 to 10 mg m−3 (Demarcq et al.,
2003); since a variety of different phytoplankton types
commonly reach [Chl-a] of 20–50 mg m−3 and above
(Bernard et al., 2014), a detection technique focusing on
the red/NIR was deemed most appropriate for regional harmful
bloom identification.

Spectral band difference algorithms are often used to relate the
reflectance peak in the red/NIR to phytoplankton biomass, the
most well-known version of which is arguably the fluorescence
line height (FLH) (Letelier and Abbott, 1996; Gower et al.,
1999); FLH provides a quantification of the height of the Chl-
a fluorescence peak above a baseline formed by the Chl-a
absorption trough near 665 and a NIR wavelength (usually
near 750 nm). Several studies have used a variant of this line
height detection method, whether on its own or in combination
with other optical properties (e.g., backscattering) or true color
imagery, for the detection of HABs in coastal waters using ocean
color remote sensing (Gower et al., 2005; Ryan et al., 2008;
Matthews et al., 2012; Al Shehhi et al., 2013; Ghanea et al., 2016).

This study aims to relate spectral features of water-leaving
reflectance in the red-NIR directly to phytoplankton types of
particular concern to the marine aquaculture industry of South
Africa. We focus on application to reflectance data from the
MEdium Resolution Imaging Spectrometer (MERIS) and the
Ocean and Land Colour Imager (OLCI), as both sensors have
good spectral covarage in the red-NIR region and high (300
m) spatial resolution. The objective is to determine probabilistic
ecosystem-contextualized identifiers for waters dominated by
either dinoflagellates or the diatom Pseudo-nitzschia (PN)
as these are high risk HAB types that offer distinct ocean
color signals.

2. MATERIALS AND METHODS

In situ water samples were collected at a station in St Helena Bay
approximately 4 km off of Lambert’s bay (32.0845oS 18.2691oE)
in late summer (between February and April) of 2004–2008.
Chlorophyll a concentration was measured by fluorometric
analysis (Holm-Hansen et al., 1965) using 90% acetone with
the use of a Turner Designs 10-AU Fluorometer according to
accepted protocols (Knap et al., 1996; Mueller et al., 2003).
Phytoplankton samples were taken at the surface, fixed in
buffered formalin to a concentration of 0.5%, and counted
using the Utermöhl method (Hasle, 1978). Count data were
grouped into diatoms, dinoflagellates, flagellates, cilliates, and
coccolithophores; PN was treated separately, in an attempt to
determine unique spectral characteristics. A >50 % abundance
threshold was used as the primary simplistic phytoplankton
population metric.

In-water radiometric measurements were made with a
hyperspectral Tethered Satlantic Radiometric Buoy (TSRB);
further details on measurements, processing, and uncertainties
can be found in Smith and Bernard (2018). The in situ
radiometric data (N = 68) were resampled to MERIS/OLCI
wavelength bands centered at 665, 681.25, 708.75, and 753.75 nm.

A line height (or spectral band difference) algorithm, similar
to the fluorescence line height (Gower et al., 1999), with a
baseline formed by the water-leaving reflectance (ρw) between
665 and 753 nm was applied to all spectra. In the case of the
hyperspectral in situ data the remote sensing reflectance (Rrs)
were converted to ρw by multiplying spectra by π (Antoine and
Morel, 2005) prior to application of the line height algorithms.
The line heights at both 681 (LH681) and 709 nm (LH709) were
calculated as follows:

LH(λ) = ρw(λ)−ρw(665)−[(ρw(753)−ρw(665))×(
λ − 665

753− 665
)]

(1)
The maximum line height (MLH) was calculated as follows:

MLH = max[LH681, LH709] (2)

The reflectance peak at 681 nm is generally associated with Chl-a
fluorescence emission; however, at higher biomass this peak shifts
to longer wavelengths due to the combined effects of increased
phytoplankton absorption and backscattering, as well as pure
water absorption. The ratio of LH709 to LH681, also known
as the line height ratio (LHR) (Tao et al., 2011), provides an
indication of this red shift, and was calculated as follows:

LHR =

LH709

LH681
(3)

Principal component analysis (PCA) was applied as an
exploratory data analysis step in order to assess the variance
structure within the dataset. This analysis technique reduces
the dimensionality of a dataset by breaking it down into a set
of geometrically independent (orthogonal) modes of oscillation
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which represent all the variability in the data (Craig et al., 2012).
PCA was performed on the resampled and standardized (i.e.,
removing the mean and scaling to unit variance) reflectance data
using eigenvalue decomposition of the data covariance matrix.
The scores of the first three principal components (modes) of
variance were use in correlation analysis with the following
variables: [Chl-a], MLH, LHR, the percentage compositions by
abundance of diatoms, PN, dinoflagellates, flagellates, cilliates,
coccolithophores, and the total cell counts for each sample.
The authors note that although PN is a diatom it was assessed
separately in an attempt to find an unique identification criteria
given that is the only potentially toxic diatom genus appearing in
the Benguela.

Satellite data from the Ocean and Land Colour Imager
(OLCI) on board Sentinel-3A (processing baseline 2.23; IPF
version 06.11) were obtained from the Copernicus online data
access website (https://coda.eumetsat.int/) while data from
the 3rd reprocessing for the Medium Resolution Imaging
Spectrometer (MERIS) were obtained from the MERIS catalog
and inventory (MERCI) website. In the case of both sensors the
bright pixel (atmospheric) correction (Moore and Lavender,
2011) is universally applied over the coastal waters of the
southern Benguela. The water-leaving reflectance (ρw) from
the Level 2 data files were used in all calculations. The flags
that were applied to maintain the quality of the data during
the phytoplankton type detection algorithm application to
MERIS data included “CLOUD,” “LAND,” uncorrected sun glint
(“HIGLINT”), and reflectance confidence flags (“PCD1_13”);
for OLCI data these included land and cloud flags (“LAND,”
“CLOUD,” “CLOUD_AMBIGUOUS,” “CLOUD_MARGIN”)
missing, invalid or transmission errors (“INVALID,” “SUSPECT,”
and “COSMETIC”), suspect atmospheric correction and
saturated pixels (“AC_FAIL,” “SATURATED”), and unreliable
sun glint correction flags (“RISKGLINT”).

3. RESULTS

The first three principal components accounted for 98.8 %
of the total variance in the red-NIR region of the remote
sensing reflectance (Rrs) dataset (Figure 2). The first mode,
which accounts for 76% of the total variance within the
dataset, represents an amplitude effect with a significant positive
correlation to MLH, total cell count, [Chl-a] and LHR; this
indicates that the biomass drives the magnitude of the Rrs
spectra in the red-NIR. The second mode indicates significant
yet opposing spectral responses between Rrs(665) and Rrs(709)
to variations in [Chl-a], LHR, MLH, and total cell counts.
Mode two also had a significant positive correlation to the
percentage coccolithophores in the sample; the highly scattering
nature of these cells tend to increase the magnitude of the
reflectance in the green, which in turn can partially mask some
of the Chl-a absorption near 665 nm. The third mode, although
contributing to a relatively small percentage of the total variance,
is significantly negatively and positively related to the percentage
composition of PN and dinoflagellates respectively; increases
in the percentage of PN and dinoflagellates in water samples

respectively are associated with increases in the LH681 and
LH709, respectively, indicating a potential approach for the
optical distinction of these two phytoplankton types.

Figure 3 shows the statistics of the MLH, LHR, and [Chl-
a] associated with the dominance (i.e., >50 %) of diatoms,
PN, and dinoflagellates respectively; only samples with total cell
concentration over 106 cells L−1 were included in order to
capture scenarios of likely phytoplankton bloom conditions. As
the sample sizes were quite small, the Kruskal-Wallis H Test was
used to compare the distributions of the three samples (diatom,
PN, and dinoflagellates) for each variable (MLH, LHR, and [Chl-
a]); this test found no significant differences between any of
the samples. Bloom conditions dominated by diatoms tend to
have a MLH < 0.0038; thus there is a high probability that
conditions with MLH > 0.0038 is either PN or dinoflagellate
dominated. For all three phytoplankton types approximately 75
% of the bloom samples had MLH > 0.0019; this was chosen as
the lower threshold for mixed bloom conditions. Approximately
half of the PN and 25 % of the diatom bloom samples had
a MLH > 0.0027; this was chosen as the lower threshold for
mixed bloom conditions that have a slightly higher potential
for harm. All bloom conditions dominated by diatoms and PN
displayed a LHR under 0.6; thus it is very likely that LHR > 0.6
would be dinoflagellate dominated. Similarly, valid samples of
blooms dominated by either PN or other diatoms had maximum
[Chl-a] under approximately 30 mg m−3. Therefore, it is very
likely that a bloom with [Chl-a]>30 mg m−3 is dinoflagellate
dominated; Bernard et al. (2014) also defined the lower end of the
probabilistic range of dinoflagellate dominance as [Chl-a] above
30 mg m−3. It should be noted that dinoflagellate dominance is
entirely possible at lower [Chl-a] and/or LHR<0.6, but would
most likely be associated with low total cell concentrations and
related risk.

Some of the key values indicated above are used as
baseline thresholds for a reflectance classification framework
to determining phytoplankton types, which is presented in
Table 2. An LHR > 0.6 is used as a probabilistic dinoflagellate
identifier, while the MLH of 0.0019, 0.0027, and 0.0038 is used
to represent increasing likelihood and potential severity of either
dinoflagellates or PN blooms. Figure 4 shows the total cell counts
and [Chl-a] that roughly corresponds to these in situ MLH
thresholds; when using the regression lines of these figures there
is a 63 % chance that a MLH of 0.0038 relates to total cell
counts of approximately 6.4 million cells L−1, and a 70% chance
of it relating to [Chl-a] of approximately 23 mg m−3. A small
sample (N = 19) of coincident MERIS reflectance data were
available to enable the comparison of satellite-derived MLH to
in situ total cell counts and [Chl-a] (Figure 5); the coefficient of
determination decreased from 0.63 to 0.52 for total cell counts,
but increased from 0.70 to 0.74 for [Chl-a]. The thresholds for
MLHwere adjusted using the [Chl-a] associated with the original
threshold values in Figure 3 and the new regression equation
between satelliteMLH and in situ [Chl-a]; the adjusted thresholds
are shown in bold in Table 2, and are used for all satellite
image classification.

Assessing the performance of algorithms designed to classify
satellite data into discrete groups can be challenging, particularly
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FIGURE 2 | Results from the principal component analysis of the in situ reflectance between 665 and 754 nm (N = 68). In the left panel the gray lines indicate

individual Rrs samples, while the colored lines show the loadings of the top three modes of variability in the Rrs dataset. In the right panel the bars are color-coded

according to the corresponding modes of variance to show the correlation with [Chl-a], maximum line height, line height ratio, percentage composition of diatoms,

Pseudo-nitzschia, dinoflagellates, flagellates, cilliates, and coccolithophores, as well as the total cell counts per sample. The gray horizontal lines indicate the 95 %

significance level.

FIGURE 3 | Boxplots of the MLH, LHR, and [Chl-a] for samples with total cell concentration over 106 cells L−1. Each column represents the statistics associated with

the dominance (i.e., >50 % composition as relative abundance to the total cell count) of a given phytoplankton type, i.e., diatoms, Pseudo-nitzschia, and

dinoflagellates. The horizontal lines of the boxes represent the 25th, 50th (median), and 75th percentiles, whereas the whiskers represent the valid minimum and

maximum; outliers are indicated as diamonds. The colored dashed horizontal lines indicate the thresholds used in the initial probabilistic phytoplankton community

classification.

when sample sizes are small, and often requires indicators other
than the standard metrics (e.g., bias, RMSD) used for ocean
color product validation (Melin et al., 2019); in these cases
confusion/contingency/error matrices can be more useful (e.g.,
Carvalho et al., 2011; Wang and Hu, 2017). In the present
study the performance of the satellite classification algorithm
was assessed (in terms of correctly identifying pixels as either
“bloom” or “non-bloom”) using Figure 5D as a reference;
three confusion matrices (depicted in Table 1) were created to

represent classification results of samples with in situ [Chl-a]
above approximately 8.9, 14.2, and 22.1 mg m−3, corresponding
to MLH above the thresholds of 0.0016, 0.0022, and 0.003,
respectively. Note that for the purpose of this assessment it is
assumed that all samples above the specified [Chl-a] are true
“blooms”. The classification accuracy is lowest (64%) at the low
[Chl-a], with the satellite-derived classification indicating some
false negatives; classification accuracy increases with increasing
[Chl-a], with the highest accuracy obtained at [Chl-a] > 22.1 mg
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FIGURE 4 | Linear regression analysis between maximum line height and total cell counts (left) and between maximum line height and [Chl-a] (right); all data were

log-transformed before analysis. The black line represents the regression line with the corresponding equation, coefficient of determination (R2) and the sample size

(N). Samples with more than 50% Pseudo-nitzschia, diatoms, or dinoflagellates are shown in red, green, and blue, respectively. The shaded areas represent cell

counts and [Chl-a] associated with MLH below 0.0019, 0.0027, and 0.0038, respectively.

m−3. These results are based on very small sample sizes and are
only used to provide an indication of the classification algorithm’s
operational limits.

Several studies have noted that the line height algorithms
operating in the red/NIR can be affected by high concentrations
of suspended sediment or atmospheric dust, producing apparent
reflectance peaks in this spectral region (e.g., Zhao et al., 2015)
or masking the reflectance peak signal (e.g., McKee et al.,
2007; Gilerson et al., 2008). For the purposes of this study
the area under the baseline of the MLH, i.e., the integral of
the water-leaving reflectance values between the 665 and 753
nm wavebands, was used as a quality control measure for
highly scattering (possibly inorganic) substances. The maximum
MLH baseline integral of both the in situ and satellite-derived
reflectance datasets was 0.5; thus for satellite application the
classification algorithm was not applied to pixels where the
integral was > 0.5 (i.e., these pixels are displayed as unclassified).

4. DISCUSSION

4.1. HABs in the Southern Benguela
The southern Benguela is a wind-driven, pulsed upwelling
system forced by equatorward winds from the south Atlantic
high pressure system, and modulated by low-pressure systems
moving eastwards past the southern tip of Africa; these
conditions supports elevated phytoplankton biomass over the
wide continental shelf (Verheye et al., 2016) dominated by
primarily large celled diatoms (Hutchings et al., 2012) that thrive
in the nutrient-rich turbulent environment of upwelling systems
(Sathyendranath et al., 2014). Succession within the system
generally follows known conceptual frameworks (Margalef,

1987) where diatoms dominate during turbulent upwelling
phases, followed by a shift to dinoflagellate dominance during
quiescent periods. A decrease in upwelling-favorable winds
toward the end of austral summer (between January and
May) are usually associated with more frequent dinoflagellate-
dominance in the near-shore waters of the southern Benguela
during the latter stages of the upwelling season (Pitcher
and Calder, 2000). HABs within the southern Benguela are
largely attributable to dinoflagellates (Pitcher and Weeks,
2006). Although the prevalence of PN has been established
in both the northern (Louw et al., 2016) and the southern
(Fawcett et al., 2007) Benguela, there are no recorded
impacts to the aquaculture industry (Pitcher et al., 2014).
The type of harm caused by HABs within upwelling systems
are diverse, with the impact attributed to organism type,
concentrations they occur in, and whether toxins are present
(Pitcher et al., 2017).

Whilst HABs were considered to be relatively scarce along
the southern coastline of South Africa prior to 1997 (Pitcher
and Calder, 2000), several extensive dinoflagellate blooms,
some consisting of previously unobserved species, have notably
impacted the region in recent years (Pitcher et al., 2014); these
events included Gonyaulax polygramma blooms that negatively
affected physical condition of the regional sardine stock in 2011
(Van der Lingen et al., 2016), and blooms of Lingulodinium
polyedrum impacting hundreds of kilometers along the south
coast during 2013/2014 (Pitcher et al., 2014). Most notably
for the aquaculture industry was the bloom co-dominated by
Lingulodinium polyedrum and Gonyaulax spinifera at the end of

2016 which lead to the mortalities of over 250 tons of farmed
abalone by February 2017 (Pitcher et al., 2019).
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FIGURE 5 | (A–D) Linear regression analysis between maximum line height and in situ total cell counts (top) and between maximum line height and [Chl-a] (bottom);

all data were log-transformed before analysis. The black line represents the regression line with the corresponding equation, coefficient of determination (R2) and the

sample size (N). The shaded areas represent cell counts and [Chl-a] associated with MLH below 0.0016, 0.0022, and 0.003, respectively. Samples with more than

50% Pseudo-nitzschia, diatoms, or dinoflagellates are shown in red, green, and blue, respectively in the left panels. Right-hand panels show the classification of these

samples using the satellite derived MLH and LHR. Please refer to Table 2 for a detailed color key.

The occurrence and frequency of HABs are thought to be
increasing worldwide, and within the context of a changing
climate the global distribution and occurrence of different
HAB species are likely to change in the future (Glibert and
Burford, 2017). Pitcher et al. (2017) noted the continuously
changeable nature of the species that constitute HABs in
upwelling systems, and the inherently diverse threats posed
to industries and humans relying on these systems. These
concepts support the notion that the southern Benguela
aquaculture industries requires adaptable and robust HAB
monitoring strategies to safeguard the economic viability of
these facilities.

4.2. Probabilistic Phytoplankton
Community Classification (PPCC)
Algorithm Functioning and Suitability
There are a multitude of methods to obtain information on

phytoplankton functional types from remotely sensed ocean
color data (see Sathyendranath et al., 2014), however many of

these techniques were designed for oligotrophic andmesotrophic
waters and/or operate in the blue-green spectral region. At lower

biomass levels the spectral features in the blue-green wavelengths
are potentially more useful for distinguish certain HABs from

non-harmful blooms and other water types from an ocean color
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TABLE 1 | Confusion matrices describing the performance of the satellite

classification model in terms of correctly identifying satellite-derived pixels as

either “bloom” or “non-bloom.”

Example 1 Satellite

prediction

Non-bloom Bloom

In situ Non-bloom TN = 0 FP = 0

measurement Bloom FN = 0 TP = 4

Classification

accuracy

=100%

Example 2 Satellite

prediction

Non-bloom Bloom

In situ Non-bloom TN = 0 FP = 0

measurement Bloom FN = 2 TP = 6

Classification

accuracy

=75%

Example 3 Satellite

prediction

Non-bloom Bloom

In situ Non-bloom TN = 0 FP = 0

measurement Bloom FN = 5 TP = 9

Classification

accuracy

=64%

Examples 1, 2, and 3 represent samples with in situ [Chl-a] above 22.1, 14.2, and 8.9 mg

m−3 respectively as depicted in Figure 5D. TP, TN, FP, and FN represent conditions of

true positive (i.e., correctly classified as a bloom), true negative (i.e., correctly classified

as non-bloom), false positive and false negative classification, respectively. Classification

accuracy is calculated as (TP + TN) / (TP + TN + FP + FN).

perspective (e.g., Cannizzaro et al., 2008; Kurekin et al., 2014;
Tao et al., 2015); particularly the phytoplankton backscaterring-
driven signal in the 520–600 nm range has shown potential for
phytoplankton functional type applications (Lain and Bernard,
2018). However, at the relatively high concentration of biomass
that regularly occurs in the southern Benguela, the largest spectral
signal is often found in the red/NIR.

It was shown in Figure 2 that the variability in the red-NIR
is largely driven by total phytoplankton biomass, and has the
greatest correlation with theMLH. The position of the reflectance
peak in the red/NIR, indicated in this study by the LHR, together
with the MLH, provides some information on the phytoplankton
communities present in the water. Diatoms have developed
rapid photo-protective capability in response to the dynamic
light levels of a high-mixing upwelling environment, which can
manifest as elevated fluorescence (Lavaud et al., 2002); it appears
as though PN might have additional spectrally-based advantage
linked to its fluorescence quantum yield (Brunet et al., 2014). As
a result, also impacted by differences in IOPs, the fluorescence
peak remains evident even at relatively high concentrations,
meaning that the fluorescence signal (LH681) exceeds the
phytoplankton backscattering-related signal (LH709), producing
lower LHR values.

TABLE 2 | The framework for probabilistic phytoplankton community classification

(PPCC), based on thresholds of maximum line height (MLH) and line height ratio

(LHR).

MLH LHR<0.6 LHR>0.6

> 0.0016 (0.0019) Mixed assemblage diatoms,

low concern [pink]

Dinoflagellate dominated

[green]

> 0.0022 (0.0027) Mixed assemblage diatoms,

moderate concern [blue]

Dinoflagellate dominated

[green]

> 0.003 (0.0038) High likelihood of

Pseudo-nitzschia dominance

[yellow]

High likelihood of

dinoflagellate dominance, very

high biomass [red]

MLH thresholds based on in situ regression analysis are shown in brackets, and the

adjusted values for application to satellite data are shown in bold text. The colors in square

brackets represent the color-key used during PPCC algorithm application.

For application to the MERIS and OLCI sensors, the
traditional FLH utilizes wavebands centered at 665, 681, and 709
nm, while the Maximum Chlorophyll Index (MCI) uses 681,
709, and 753 nm (Gower et al., 2005). This relatively narrow
positioning of the baseline and signal bands limits the application
of the FLH to low-moderate biomass waters, whereas the MCI
only functions in high biomass waters (i.e., [Chl-a] >20 mg m−3

when the red-shift, associated with increasing phytoplankton
biomass, produces a discernible reflectance peak in the red/NIR).
Zhao et al. (2015) found that using a wide baseline modified FLH
provided improved results compared to either the traditional
FLH or MCI for qualitatively distinguish HABs from other
blooms in the Arabian Gulf. The wide baseline and the dominant
peak selectionmethod are similar in functioning to themaximum
peak-height (MPH) algorithm (Matthews et al., 2012) and the
adaptive reflectance peak height (ARPH) algorithm (Ryan et al.,
2014), which are both used in the operational quantification of
different phytoplankton populations in eutrophic waters.

The generally weaker positive correlation between total cell
counts, dominant phytoplankton types, and the reflectance-
based signal in the red-NIR indicates that this relationship
is not straight-forward, and that care should be taken when
attempting to quantify phytoplankton abundance from remotely
sensed information. Although not directly related to probabilistic
phytoplankton community information, accurate [Chl-a] can
provide a valuable supplementary indication on phytoplankton-
related risk.

4.3. Phytoplankton Community
Identification Using Remote Sensing
Both MERIS and OLCI offer good spectral resolution in the
red/NIR region as well as high spatial resolution (300 m) which
is often necessary at the small spatial scale and near coastal
aquaculture applications. With two satellites in orbit (Sentinel
3A and 3B), the OLCI sensor provides near daily coverage. In
the generally eutrophic conditions of the southern Benguela it
is useful to avoid the blue-green spectral region when using
satellite-derived reflectance data, where the uncertainty resulting
from aerosol extrapolation can be more extreme than in the red-
NIR. The use of thresholds based on line height algorithms and
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FIGURE 6 | Satellite products derived from full resolution S3A-OLCI for the

25th of February 2019. The top panel shows [Chl-a], whilst the bottom panel

shows the probabilistic phytoplankton community classification (PPCC);

classes include dinoflagellate (red) and Pseudo-nitzschia (yellow) dominated

waters, as well as high (green) and moderate (blue) biomass mixed

assemblages. Please refer to Table 2 for a detailed PPCC color key. The

locations of two of the primary water intake pipes for abalone farms in the area

are indicated by blue diamonds.

ratios, instead of absolute reflectance values, also mitigates the
potential spectral offsets and errors that might result from the
atmospheric correction process. MERIS and OLCI utilize the
bright pixel correction (Moore and Lavender, 2011) in addition
to the standard atmospheric correction, which was universally
applied across the satellite images. This atmospheric correction
is considered generally appropriate for the southern Benguela
(Bernard et al., 2014), as it is capable of adjusting for non-zero
reflectance in the NIR.

Although the algorithm was validated with MERIS matchup
data, the similar radiometric heritage between sensors means
that this classification scheme is applicable to OLCI (example
image shown in Figure 7), ensuring utility of this classification
technique for the next 20 years, whilst also being application
to ten years of archive MERIS data. In the current study we
demonstrate the application of the PPCC to MERIS and OLCI
images representing two different HAB events.

Yessotoxin producing blooms of Lingulodinium polyedrum
and Gonyaulax spinifera impacted the Walker Bay abalone
industry in December 2016 to February 2017 (Pitcher et al.,
2019). A similar dinoflagellate bloom was recorded in the

Walker Bay area during February of 2019, which persisted
until May 2019; during the stages of the bloom depicted
in Figure 6, cell concentrations of over 2 million cells L−1

(dominated by Gonyaulax spinifera) were measured at some of
the aquaculture farm intake pipes (personal communication with
farm managers). The probabilistic classification clearly shows
the spatial extent and associated patches of this dinoflagellate
bloom; the [Chl-a] map shows good spatial coherence with the
classification while providing an indication of bloom intensity.

The probabilistic classification method was applied to four
MERIS images (Figure 7) that coincided with the March 2006
field campaign where a Pseudo-nitzschia bloom was sampled
off Lambert’s Bay (Fawcett et al., 2007). The PPCC correctly
identified the presence of PN at the sampling station on the 12th
of March, where [Chl-a] of 57.1 mg m−3 and PN concentrations
of 8 million cells L−1 were measured in situ. Although the highest
number of PN cells were measured on the 18th of March, the
PPCC indicated only a high biomass mixed assemblage; this
could potentially be due to the relatively lower in situ [Chl-a]
(compared to the 12th of March), producing a poorer optical
signal in the red/NIR. Both the 15th and 22nd ofMarch coincided
with decreased phytoplankton counts and [Chl-a], which were
similarly reflected in the unclassified pixels over the sampling
site. It is clear that the highest chance of successful classification
is achieved under conditions of the highest biomass (i.e., on the
12th of March). Special precaution is also advised for regions
classified as “high biomass mixed assemblages,” as they could
likely contain high concentrations of PN.

4.4. Algorithm Limitations
This study is based on a relatively small in situ dataset (N = 68)
with only a limited number of samples that included coincident
radiometric measurements and phytoplankton counts; however,
it did comprise a wide range of phytoplankton types and biomass
concentrations enabling a first order determination of ecosystem-
contextualized thresholds. Although these thresholds are based
upon statistical indicators, the algorithm is not specifically
meant to be a quantitative translation between MLH and cell
counts or [Chl-a]. The aim was to provide simple intuitive
map-based indication of probabilistic phytoplankton-related risk
to the aquaculture industry of southern Africa. If/when more
data become available these classification methods and detection
accuracy could potentially be refined further.

The application of the PPCC to coincident satellite reflectance
demonstrated that there was the highest likelihood of correct
classification of phytoplankton community dominance at [Chl-
a] > 23 mg m−3. Although it is possible that HAB identification
could be more straight-forward at lower biomass levels under
mono-specific bloom conditions, it is unlikely for any one
species of phytoplankton to out-compete others under nutrient-
rich upwelling conditions. DSP toxin producing species of the
genus Dinophysis, usually D. acuminata or D. fortii, often form
small components of blooms dominated by other dinoflagellates
in the southern Benguela (Pitcher and Calder, 2000); these
species also pose different threat levels to shellfish cultivation,
as mussels are more susceptible to the accumulation of DSP
toxins (Pitcher et al., 2011). Conversely it is also possible for
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FIGURE 7 | The top panels show the satellite-derived probabilistic phytoplankton community classification (PPCC) from MERIS for the 12th, 15th, 18th, and 22nd of

March 2006, with the location of the Lambert’s Bay sampling station indicated by a diamond; classes include high biomass dinoflagellate blooms (red), dinoflagellate

dominated blooms of moderate biomass (green), Pseudo-nitzschia (yellow) dominated waters, as well as high (blue) and low (pink) biomass mixed assemblages.

Please refer to Table 2 for a detailed PPCC color key. The lower panel provides the phytoplankton count data at the Lambert’s Bay station for the 2006 sampling

period (adapted from Fawcett et al., 2007), with available in situ [Chl-a] overlayed.

some very high biomass dinoflagellate blooms to not result in any
harmful impacts.

It should be noted that in situ and in vitro techniques far
outweigh current remote sensing capabilities when it comes to
phytoplankton identification at the species level. The strength of
using remote sensing for HAB detection lies in the repeatability
of measurements over the same location at higher spatial scales
than is attainable by in situ methods. The utility of ocean
color remote sensing for in HAB monitoring is most powerful
when informed by coincident in situ information such as
species-level phytoplankton identification and abundance, and
toxicity. Remote sensing should ideally be utilized as part of
a larger multi-scale monitoring approach: where a bloom has
been identified as harmful, the PPCC method can aid in the
continued monitoring of the bloom’s spatial extent, trajectory,

and possible intensification or dissipation, thereby supporting
decision making and risk mitigation processes at environmental
and aquaculture management level.

The successful application of the algorithm to remote
sensing data is dependent on the appropriate and successfully
applied atmospheric correction and the resultant reflectance
product quality. The algorithm functions in the red/NIR
where the problems associated with aerosol correction
are generally less than in the blue-green wavelengths. Line
height algorithms are also generally less affected by absolute
magnitude changes than ratios. Caution is advised when
interpreting the Chl-a fluorescence signal from phytoplankton
for quantitative determination of phytoplankton biomass,
as the fluorescence efficiency of phytoplankton can be
affected by various factors including taxonomy, physiology,
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nutrient availability, light history, and temperature (Babin
et al., 1996). Increased backscattering across the red/NIR,
as might be caused by inorganic matter, could dampen the
effect of the red/NIR reflectance peaks by increasing the
reflectance of the baseline; studies have demonstrated that
the FLH signal could be masked by non-algal materials
in turbid waters (McKee et al., 2007; Gilerson et al.,
2008).

4.5. Concluding Remarks and Future
Outlook
This study represents a spectral classification scheme, applicable
to both in situ and satellite reflectance, for the detection
of phytoplankton communities relevant to the aquaculture
industry of South Africa. Although the classification is
primarily qualitative, it is based on species-related optical
signatures and abundance data, and provides more direct
risk-related information for aquaculture management than
traditional maps of [Chl-a]. Future models could potentially
incorporate environmental and/or nutrient information within
the phytoplankton risk probability, as changes in these variables
have been linked with bloom toxicity (e.g., Torres Palenzuela
et al., 2019).

Whilst the classification system was contextualized for the
southern Benguela, its utility is potentially appropriate to similar
upwelling systems; for instance the northern Benguela is also
known to experience frequent occurrences of toxic dinoflagellates
(Dijerenge, 2015) and PN blooms (Louw et al., 2016), which
could negatively impact regional marine aquaculture in Namibia.
Following several years of severe drought in the western
Cape province, there has been a rise in the number of
planned desalination plants in the region; these facilities require
appropriate phytoplankton monitoring practices, as both toxic
and non-toxic algae can impact operations by clogging pre-
treatment filters, causing saltwater reverse osmosis membrane

fouling, and affecting the taste and odor of the water (Al Shehhi
et al., 2017; Anderson et al., 2017). The PPCC could potentially
be applied to 10 years of MERIS data and recent OLCI data to
produce probability maps (e.g., Ryan et al., 2008) which could be
used to guide future aquaculture and desalination site selection.

The routine high spatial information provided by the PPCC,
used together with corroborative in situ phytoplankton cell
counts, provides a powerful combination for operational HAB
monitoring and daily decision support within the aquaculture
industry. It is important that the limitations and strengths of the
classifier be clearly delineated to users to ensure the appropriate
level of response and mitigation, allowing different industries to
use the information as they see fit.
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Harmful algal bloom (HAB) species in the Chesapeake Bay can negatively impact
fish, shellfish, and human health via the production of toxins and the degradation
of water quality. Due to the deleterious effects of HAB species on economically and
environmentally important resources, such as oyster reef systems, Bay area resource
managers are seeking ways to monitor HABs and water quality at large spatial and
fine temporal scales. The use of satellite ocean color imagery has proven to be a
beneficial tool for resource management in other locations around the world where
high-biomass, nearly monospecific HABs occur. However, remotely monitoring HABs
in the Chesapeake Bay is complicated by the presence of multiple, often co-occurring,
species and optically complex waters. Here we present a summary of common marine
and estuarine HAB species found in the Chesapeake Bay, Alexandrium monilatum,
Karlodinium veneficum, Margalefidinium polykrikoides, and Prorocentrum minimum, that
have been detected from space using multispectral data products from the Ocean and
Land Colour Imager (OLCI) sensor on the Sentinel-3 satellites and identified based
on in situ phytoplankton data and ecological associations. We review how future
hyperspectral instruments will improve discrimination of potentially harmful species from
other phytoplankton communities and present a framework in which satellite data
products could aid Chesapeake Bay resource managers with monitoring water quality
and protecting shellfish resources.

Keywords: aquaculture, Chesapeake Bay, harmful algal bloom (HAB), ocean color, OLCI, remote sensing, shellfish

INTRODUCTION

The Chesapeake Bay is the largest estuary in the United States. The annual temperature cycle
combined with numerous freshwater inputs and the tidal influx of high salinity ocean water makes
it a suitable habitat for many juvenile and adult stages of important commercial and recreational
fish and shellfish species and one of the country’s most productive estuaries. Maintaining a viable,
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Bay-wide population of the eastern oyster (Crassostrea virginica)
is of particular concern because of its role in supporting
ecosystem health (Kennedy et al., 2011; Grabowski et al., 2012)
and regional economies (Hicks et al., 2004; Haddaway-Riccio,
2019). Virginia shellfish aquaculture, which produces the most
eastern oysters on the United States East Coast, had a farm gate
value of $53.3 million in 2018 and is first in the United States
for production of hard clams (Mercenaria mercenaria) (Hudson,
2019). Similarly, Maryland’s oyster industry was valued at $10.6
million between 2016 and 2017 (Tarnowski, 2017) and Maryland
has modest soft shell (Mya arenaria), stout razor (Tagelus
plebeius), and hard clam industries (Roegner and Mann, 1991;
Glaspie et al., 2018).

Abundant Chesapeake Bay oyster populations were cataloged
in the early 1900s, with approximately 250,000 acres of oyster
reefs in both Maryland and Virginia (Mann, 2000). However,
beginning in the late 1950s extensive oyster mortality events
occurred Bay-wide due to outbreaks of the diseases MSX
(Haplosporidium nelsoni) and Dermo (Perkinsus marinus) as
drought conditions changed salinity gradients in the Bay and
its tributaries (Mann, 2000; Carnegie and Burreson, 2011).
While the threat from disease remains (Powell et al., 2012;
Tarnowski, 2017), over the past 15–20 years oyster populations
have been additionally stressed by reduced water quality and
habitat loss (Kemp et al., 2005; Harding et al., 2019) and
episodic harmful algal blooms (HABs) (Tango et al., 2005;
Glibert et al., 2007; Mulholland et al., 2009; May et al., 2010;
Griffith and Gobler, 2020).

Assessment of the state of the health of the Chesapeake Bay
includes results from routine water quality and phytoplankton
monitoring. Monthly water quality and phytoplankton
monitoring throughout the Chesapeake Bay has occurred
since the mid-1980s through the auspices of the Chesapeake Bay
Program (CBP) (Marshall et al., 2005, 2009) by officials at the
Maryland Department of Natural Resources (MDNR), Morgan
State University (MSU), Old Dominion University (ODU) and
the Virginia Department of Environmental Quality (VDEQ).
Currently, the phytoplankton community at 32 stations in the
Chesapeake Bay and its tributaries is monitored monthly from
above pycnocline or from whole water column composited
samples1. Surface water samples collected routinely throughout
the Bay and its tributaries are also examined for phytoplankton
community composition as part of monitoring and research
programs at MDNR, ODU, the Virginia Department of Health
(VDH), and the Virginia Institute of Marine Science (VIMS).
In Maryland, Chesapeake Bay shellfish harvesting areas are
monitored by the Maryland Department of Environment (MDE)
for water quality and bacteria concentrations. In Virginia these
activities are conducted by VDH. The state agencies responsible
for shellfish health and safety regularly monitor for fecal
coliforms at 800 sites in Maryland and 2,500 sites in Virginia
for the purpose of classifying shellfish growing areas for wild
harvest and aquaculture in the Bay and estuarine portion of its
tributaries. This routine sampling is based off guidelines provided

1https://www.chesapeakebay.net/what/downloads/baywide_cbp_plankton_
database for sample collection metadata

in the National Shellfish Sanitation Program (NSSP) in which
a systematic random sampling strategy is used to visit shellfish
sites six to twelve times per year (National Shellfish Sanitation
Program [NSSP], 2017). Additionally, in accordance with NSSP
guidelines, each state has a marine biotoxin contingency plan
to facilitate response and monitoring strategies in the event of a
toxigenic HAB outbreak and/or human illness.

Phytoplankton data collected via the CBP between 1984
and 2004 indicated a phytoplankton community dominated by
diatoms throughout the year with periodic dinoflagellate blooms
(Kemp et al., 2005; Marshall et al., 2005, 2009). In 2002, a
bloom of the dinoflagellate Dinophysis acuminata in the Potomac
River and its sub-estuaries at concentrations > 200,000 cells·L−1

caused the first and only precautionary closure of Chesapeake
Bay shellfish harvesting areas due to a toxigenic algal species
(Marshall et al., 2004; Tango et al., 2004). This precautionary
closure of regional oyster harvesting areas in the Potomac River
was issued while water samples and oyster tissues were assayed
for the presence of okadaic acid (OA), a diarrhetic shellfish
poisoning (DSP) toxin produced by many Dinophysis species.
Marshall and Egerton (2009a,b), Li et al. (2015), and Wolny et al.
(2020) have summarized common marine and estuarine HAB
species in Bay waters that have historically been present but are
increasing in abundance and extent: Alexandrium monilatum,
Dinophysis acuminata, Karlodinium veneficum, Margalefidinium
polykrikoides, and Prorocentrum minimum. Each of these bloom-
forming dinoflagellate species have different harmful or toxic
properties that can negatively impact larval oyster development
and recruitment and cause physiological stress in adult oysters
or threaten human health due to toxin accumulation in
shellfish harvested for consumption. Additionally, Chesapeake
Bay populations of A. monilatum and M. polykrikoides have been
shown to produce cysts, a resting stage that ensures long-term
survival and can seed future blooms (Seaborn and Marshall, 2008;
Pease, 2016; Van Hauwaert, 2016).

Both Marshall and Egerton (2009b) and Li et al. (2015)
reported that HABs occur more frequently in the mesohaline and
polyhaline regions of the tributaries and the Bay shoreline than in
the mainstem of the Chesapeake. These are the same geographic
regions that are conducive to productive oyster reefs (Smith
et al., 2005; Carnegie and Burreson, 2011). In the mid-2000s,
meetings and surveys conducted jointly with government officials
and shellfish growers from Maryland and Virginia identified
several needs of the shellfish industry. One of the most critical
needs identified was the establishment and maintenance of
good water quality specific to the shellfish species being grown
(Oesterling and Luckenbach, 2008; Webster, 2009). Growers
also identified a need for technology that would detect blooms
more rapidly in order to better assess human health risks and
respond if there was a need to conduct shellfish relays between
aquaculture sites (Webster, 2009; Sea Grant Association [SGA],
2016). Incorporating satellite technology to improve monitoring
for HAB communities was outlined as a priority by the Interstate
Shellfish Sanitation Commission (Interstate Shellfish Sanitation
Commission [ISSC], 2016). Shellfish industry members want
government agencies to provide timely information about
water quality and HABs from remote sensing, yet challenges

Frontiers in Marine Science | www.frontiersin.org 2 May 2020 | Volume 7 | Article 33781

https://www.chesapeakebay.net/what/downloads/baywide_cbp_plankton_database
https://www.chesapeakebay.net/what/downloads/baywide_cbp_plankton_database
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00337 May 25, 2020 Time: 16:49 # 3

Wolny et al. Remote Sensing HABs in Chesapeake Bay

remain (Schaeffer et al., 2013; National Aeronautics and Space
Administration Goddard Space Flight Center [NASA GSFC],
2018, 2019; Schollaert Uz et al., 2019). However, the need for
near-real time and high-resolution water quality and HAB data is
expected to grow as the shellfish industry is projected to increase
in economic value and geographic expanse into the next decade
in both Maryland (Kobell, 2017) and Virginia (Hudson, 2019).

While the sampling approaches currently used by state
agencies appear to be historically successful, and no biotoxin-
related human illnesses resulting from shellfish consumption
have been reported from either state, the scale and variability
of algal blooms exceeds what is fully captured by the states’
phytoplankton, water quality, and shellfish health monitoring
programs. HAB species can remain cryptic in the environment,
blooms can initiate and intensify over the course of days or
weeks, and may occur in areas that are not routinely monitored
by state agencies (Anderson et al., 2012). Bloom patterns also
respond to regional climatic variations (Miller and Harding,
2007; Morse et al., 2014). Hence, state officials could augment
current monitoring systems with greater spatial and temporal
coverage from satellites. During blooms, a timely view from
space could guide resource manager sampling strategies and
help inform the decision-making process that safeguard natural
resources, shellfish industry assets, and the public. Satellite
data can also be used to fill data gaps when routine in situ
monitoring plans are seriously interrupted, such as during the
COVID-19 outbreak that disrupted the United States workforce
beginning in March 2020.

Over the past decade, satellite ocean color imagery has
proven to be a useful tool to identify and track HABs globally
(Stumpf and Tomlinson, 2005; Davidson et al., 2016). In
the United States, several optical techniques pertaining to
absorption, backscatter, and chlorophyll-a (chl-a) anomalies
have been used for the detection of the toxic dinoflagellate
Karenia brevis in the Gulf of Mexico (Tomlinson et al., 2004,
2009; Cannizzaro et al., 2008; Soto et al., 2015). Currently,
shellfish resource managers in Florida incorporate satellite data
products produced by the National Oceanic and Atmospheric
Administration (NOAA) and the National Atmospheric and
Space Administration (NASA) into their decision-making
processes when monitoring for K. brevis blooms (Heil, 2009).
In California, a joint academic and government monitoring
program, the California-Harmful Algae Risk Mapping (C-
HARM) System, incorporates ecological models, Moderate
Resolution Imaging Spectroradiometer (MODIS) remote sensing
reflectance (Rrs) ratios and chl-a data to better inform coastal
resource managers about Pseudo-nitzschia blooms and domoic
acid toxicity risks (Anderson et al., 2011, 2016). A spectral
shape algorithm that identifies the unique spectral signature of
cyanobacteria is being used to forecast Microcystis aeruginosa
blooms in Lake Erie, as well as to monitor cyanobacteria blooms
in other large lakes around the United States (Wynne et al.,
2010, 2013; Schaeffer et al., 2015; Clark et al., 2017). The
Ohio Environmental Protection Agency has incorporated the
use of this cyanobacteria-specific satellite data product into the
monitoring plan for the state’s public drinking water supply (Ohio
Environmental Protection Agency [Ohio EPA], 2019).

The suitability of similar data products for the Chesapeake Bay
region is still being investigated as both a research application
and a monitoring tool. New hyperspectral sensors currently
being studied, designed, and built for satellites will change
the way we monitor water quality from space with increased
spectral, temporal, and spatial resolution. The NASA Plankton,
Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled
to launch by 2023, will fly the Ocean Color Imager (OCI)
with a spatial resolution of 1 km, 1–2 days global repeat,
spanning 340 to 890 nm with a spectral resolution (bandwidth)
of 5 nm, plus seven short-wave infrared bands at wider spectral
resolution. The OCI instrument performance specifications
for water-leaving reflectances constrain the errors, i.e., 350–
400 nm at 20% uncertainty; 400–600 nm at 5% uncertainty;
600–710 nm at 10% uncertainty (Werdell et al., 2019). This
sensitivity will enable PACE to improve the identification
of phytoplankton community composition and to separate
phytoplankton pigment absorption from that of colored dissolved
organic matter (CDOM) (Blough and Del Vecchio, 2002;
Catlett and Siegel, 2018). Furthermore, the spectral slope of
CDOM absorption will provide an indication of its terrestrial
or aquatic source (Siegel et al., 2002, 2005). Less sensitive,
the Geostationary Littoral Imaging and Monitoring Radiometer
(GLIMR) instrument will be delivered to NASA in 2023/2024 and
launched into geosynchronous orbit above the Gulf of Mexico
and southeastern United States, including the Chesapeake Bay,
with the potential for up to seven observations per day at
300 m spatial resolution, 350–890 nm spectral resolution at less
than 10 nm, plus one near-infrared band at 1020 nm (National
Aeronautics and Space Administration [NASA], 2019). A NASA
Surface Biology and Geology observable platform recommended
in the 2017 Decadal Survey (National Academies of Sciences,
Engineering, and Medicine [NASEM], 2018) for studying coastal
and inland aquatic ecosystems worldwide, among other variables,
is currently in architecture study with a potential launch around
2027 and is likely to have PACE-like spectral range and sensitivity
with higher spatial resolution (tens of meters) but less frequent
revisit (16-day). Combining these new observations with others
from sub-orbital and in situ sensors through assimilation and
modeling will help overcome limitations, such as cloud gaps.

In advance of the expanded capability afforded by these
future hyperspectral missions, we examined the suitability of
existing multispectral satellite ocean color products, particularly
from the Ocean Land Colour Instrument (OLCI) on the
Copernicus Sentinel-3 satellite constellation, to detect the spatial
and temporal extent of several HAB species common to the
Chesapeake Bay. OLCI currently has the most spectral bands of
any satellite-based routine monitoring sensor, as well as nearly
daily coverage, making it the best sensor for timely response and
for evaluation of capabilities that will only be enhanced with
the hyperspectral data products that are anticipated after 2022.
Red-edge algorithms, which use the strong spectral variability
in chlorophyll and reflectance from 650 to 750 nm, have been
developed with OLCI. Some algorithms, such as the Maximum
Chlorophyll Index (MCI) of Gower et al. (2008) and the Red
Band Difference (RBD) of Amin et al. (2009), do not require
a full atmospheric correction and have also been designed
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specifically to locate algal blooms. As red-edge bands are much
less sensitive to interference by non-algal pigments (dissolved or
particulate), they can provide more specific information on algal
blooms. However, scattering by sediments may still interfere with
algorithms like the MCI (Zeng and Binding, 2019), a potential
problem in an estuary, such as Chesapeake Bay, with large
tributary rivers and multiple turbidity maxima. The RBD was
designed to detect chl-a fluorescence in a harmful algal bloom
(K. brevis) without interference from sediment (Amin et al.,
2009). This method, applied to OLCI data, provides a HAB
monitoring tool for resource managers supporting aquaculture
in the Chesapeake Bay. Here, we present some preliminary work
that shows the use of multispectral OLCI data from the Sentinel-
3 satellite constellation to detect HABs in Chesapeake Bay and
we propose how model development and hyperspectral data will
improve bloom detection.

MATERIALS AND METHODS

Satellite Product Generation
Imagery from OLCI on the Sentinel-3 satellites covering
Chesapeake Bay (36–39◦N, 75–77◦W) were obtained from
EUMETSAT. OLCI has 300 m pixels, which provide useful
information for the Chesapeake Bay and its tributaries. The level
1 granules were processed using the NOAA satellite automated
processing system, which incorporates the NASA standard ocean
color satellite processing software distributed within the Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) Data Analysis
System (SeaDAS) package (version 7.5.3) and the European
Space Agency’s (ESA) Sentinel Application Platform (SNAP)
package (version 6). The Rrs and top-of-atmosphere reflectance
(Rrhos) products corrected for molecular scattering (Rayleigh)
and absorption were created for the visible and near-infrared
bands using SeaDAS l2gen with the system defaults except for
cloud, stray light, and high light masking disabled. Products
were mapped to a Universal Transverse Mercator (zone 18N)
projection at 300 m pixel resolution to produce level 3 multi-band
GeoTiffs. Multiple granules overlapping the area of interest from
the same day were composited based on time of swath.

During product generation from the level 3 files, a custom
flagging algorithm was applied to identify clouds, glint, mixed
pixels, and snow and ice (Wynne et al., 2018). Clouds were
flagged using NIR albedo, with the threshold adjusted for the
presence of turbid water. For atmospheric correction, we used
Rrs determined from Rrhos with a fixed maritime aerosol (Stumpf
and Pennock, 1989, after Gordon et al., 1983). With dense, highly
reflective biomass and the optically complex water of Chesapeake
Bay, the standard (complex) coastal atmospheric corrections
often lead to areas of negative or anomalous Rrs fields. As a
result, algorithms that require accurate Rrs of the water, such as
the neural network algorithms available for Sentinel-3, perform
inconsistently or can fail.

The typical ocean color algorithms developed for open ocean
waters use blue and green spectral bands to determine chl-a
concentration. These algorithms confuse CDOM and sediment as
chlorophyll, which can lead to high rates of false positive bloom

detections. Chl-a fluorescence in the red has been shown to be
useful in detecting dense blooms of K. brevis, providing a way to
avoid high CDOM conditions (Hu et al., 2005; Amin et al., 2009).
While some fluorescence algorithms also respond to sediment,
the RBD fluorescence algorithm described in Amin et al. (2009) is
insensitive to interference from sediment, making it a particularly
useful detection method in Chesapeake Bay, which frequently has
strong sediment/turbidity gradients near areas of dense blooms.
The RBD was modified for OLCI Rrhos bands as:

RBD = Rrhos(681) − Rrhos(665) (1)

to highlight areas of high algal biomass, using only pixels within
the valid Rrhos range (0–1). The differencing method is a variant of
a derivative, which produces an implicit atmospheric correction
over this short (16 nm) difference in wavelength (Philpot, 1991).
Due to the increase in reflectance caused by chl-a fluorescence at
681 nm, the RBD will be positive in areas of chl-a fluorescence.

The Cyanobacteria Index (CI), an algorithm developed by
Wynne et al. (2008), identifies blooms that combine strong
scattering and chl-a absorption with weak chl-a fluorescence –
optical characteristics of cyanobacterial blooms (Stumpf et al.,
2016). The CI has also proven useful in identifying weakly
fluorescing algae within the Chesapeake Bay (detailed in Wynne
et al., 2018). To summarize, the spectral shape around 681 nm
[SS(681)] product, later renamed the Cyanobacteria Index by
Wynne et al. (2010), was developed for Lake Erie using Medium
Resolution Imaging Spectrometer (MERIS) data to detect large
monospecific blooms of cyanobacteria, primarily M. aeruginosa.
Cyanobacteria typically show negligible chl-a fluorescence at
681 nm, so the CI captures the chl-a absorption peak, which also
occurs around 681 nm. The CI is calculated based on a spectral
shape (SS) around 681 nm using the following equation:

CI = −SS =
(
ρλ1 − ρλ2

)
+

(
ρλ3 − ρλ1

)
∗
(λ2 − λ1)

(λ3 − λ1)
(2)

Where ρλ is the Rrhos measured at wavelength λ, and subscripts
1 = 665 nm, 2 = 681 nm, and 3 = 709 nm, and values less than zero
are assumed to be non-detect and linearly related to the biomass
(Lunetta et al., 2015). While the CI was developed for blooms of
cyanobacteria in Lake Erie, it will detect strongly scattering and
weakly fluorescing algae (Stumpf et al., 2016). As such it can be
applied to areas with more complex phytoplankton assemblages,
such as Chesapeake Bay, to look for potential physiological
(fluorescence) differences in the algal blooms, even where there
are no reported occurrences of cyanobacteria.

In situ Data
Phytoplankton and water quality data collected between 2016
and 2018 through the CBP were downloaded from https://
datahub.chesapeakebay.net/ and sorted for cell concentrations of
A. monilatum, K. veneficum, M. polykrikoides, and P. minimum.
Cell concentration data collected at the same station location,
on the same date, and at sampling depths ≤ 1.0 m were
selected for satellite ocean color imagery match ups. Additional
phytoplankton and water quality observations collected between
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2016 and 2020 as part of Maryland2 and Virginia3 routine
environmental monitoring and HAB event response activities
were also included to increase the spatial and temporal
distribution of in situ cell concentration data. Data retrieval
parameters for these data were the same as described above
for the CBP data. The phytoplankton cell concentration data
retrieved from the CBP, MDNR, and VDH data portals are
comparable as the sample processing methods between these
agencies are similar. Phytoplankton samples (0.5–1 L) were
preserved with a 5% Lugol’s iodine solution. A known sample
volume was allowed to settle in a settling chamber for a minimum
of 60 min before species were identified and enumerated using
an inverted light microscope, following the modified Utermöhl
method of Marshall and Alden (1990). Species identifications
were based on morphological characteristics (see Tomas, 1997),
enumerated as individual cells per volume, and then extrapolated
to a per L concentration.

In situ phytoplankton cell concentration data determined
using light microscopy were augmented with cell concentration
data obtained through quantitative PCR (qPCR) assays. For
each sample a known volume of water, 25–100 ml, was filtered
through a 3 µm Isopore membrane filter (Millipore Corp.,
Darmstadt, Germany) using sterile technique for DNA extraction
and PCR analysis. Filters were placed into 5 ml centrifuge
tubes and frozen at −20◦C until DNA extraction. DNA was
extracted from the filters using the QIAamp Fast Stool Mini Kit
(QIAGEN, Inc., Germantown, MD, United States) according to
the manufacturer’s protocol with the following modifications.
Rather than centrifuging the sample and using only 200 µL
of the lysate, per the manufacturer’s instructions, the entire
sample was retained and carried through the extraction protocol.
Reagent volumes were increased in the subsequent steps to
maintain a ratio of sample to reagent consistent with that in the
manufacturer’s protocol. The eluted DNA was stored at −20◦C
until needed. A “blank” extraction (reagents only) was performed
alongside each set of environmental samples to ensure there was
no contamination.

A previously published TaqMan R© qPCR assay was used
to target A. monilatum (see Vandersea et al., 2017). We
developed a new TaqMan qPCR assay to target M. polykrikoides.
The M. polykrikoides primers are MpolyLSU_703F (5′-
TCTTTCCGACCCGTCTTGAA-3′) and MpolyLSU_875R
(5′-CCATCTTTCGGGTCCTAGCA-3′). The probe is
MpolyLSU 828Pr (5′FAM -TTGCGAGACGTTTGAGTGTG-3′
MGBNFQ). Stock cultures of York River A. monilatum
and M. polykrikoides were maintained at VIMS. The cell
concentration of A. monilatum and M. polykrikoides cultures
were determined and DNA was extracted from a known number
of cells to use as positive control material and to generate
standard curves by serially diluting the DNA to achieve a range
of cell number equivalents. The qPCR assays were done on
7500 Fast, QuantStudio 6, or QuantStudio 3 Real-Time PCR
systems (Applied Biosystems, Thermo Fisher, Foster City, CA,

2http://eyesonthebay.dnr.maryland.gov/eyesonthebay/DataInfo.cfm
3http://www.vdh.virginia.gov/environmental-health/environmental-health-
services/shellfish-safety/

United States) using the following cycling parameters: an initial
denaturation step at 95◦C for 20 s followed by 40 cycles of 95◦C
for 3 s to denature and 60◦C for 30 s to anneal and extend. All
reactions were run in duplicate with reagent concentrations for
each reaction at 0.9 µM for each primer, 0.1 µM for the probe,
and 1X of the TaqMan Fast Advanced Master Mix (Applied
Biosystems, Thermo Fisher) in a 10 µL final volume.

Satellite Imagery Comparison With
in situ Data
In situ field data were used to perform same day pixel extractions
from imagery at bloom sample locations. Cell concentration
data > 50,000 cells·L−1 [the limit of detection for Gulf of Mexico
K. brevis blooms via legacy satellites (Tester et al., 1998)] were
compared with same day Sentinel-3 scenes. The mean Rrhos
spectra from the level 3 OLCI satellite data products within
a 3 pixel × 3 pixel window centered on the location of each
field sample were extracted and plotted for each wavelength,
by individual species (Figure 1). Match ups containing invalid
pixels (e.g., cloud, land, and mixed pixels) were excluded.
Separate spectral plots from the match up data were created for
A. monilatum, K. veneficum, M. polykrikoides, and P. minimum.

RESULTS AND DISCUSSION

While the analysis of historic phytoplankton datasets indicates
a phytoplankton community dominated by diatoms, the
Chesapeake Bay can experience blooms dominated by the
dinoflagellates A. monilatum, K. veneficum, M. polykrikoides, and
P. minimum, throughout the year. Each of these species have
unique harmful or toxic properties which are of concern for
the region’s shellfish industry. Due to the optical complexity
of Chesapeake Bay waters, remote sensing has not previously
been used extensively to detect and track these blooms for
resource management applications. However, the 2016 launch
of the Copernicus Sentinel-3 constellation of satellites that
are flying the OLCI sensor has given us the opportunity to
investigate the possibility of monitoring these species in the
Chesapeake Bay using multispectral ocean color satellite data.
We speculate how the hyperspectral assets expected after 2022,
through the launch of several new NASA satellites, will improve
our ability to monitor blooms and will increase the data available
to couple ocean color satellite imagery, water quality, and
ecological associations.

Alexandrium monilatum and
Margalefidinium polykrikoides
Margalefidinium polykrikoides (formerly Cochlodinium
polykrikoides and C. heterolobatum) blooms have been reported
in the York River, Virginia since the 1960s (Mackiernan, 1968).
Since the 1990s there has been an increase in bloom occurrence
and intensity throughout Virginia waters (Marshall, 1996;
Marshall et al., 2005) with a geographic expansion of the blooms
from the York River, primarily southwards to the James River
(Marshall and Egerton, 2009a), and to a lesser degree northwards
to the Rappahannock River (Marshall and Egerton, 2009b).
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FIGURE 1 | Ocean and Land Colour Imager (OLCI) Rrhos spectral plots coinciding with locations of in situ cell concentrations > 50,000 cells L−1 collected on the
same day for Margelefidinium polykrikoides (top left), Alexandrium monilatum (top right), Karlodinium veneficum (bottom left), and Prorocentrum minimum
(bottom right). Colored lines and random linestyles were used for better separation of individual spectra.

Globally, M. polykrikoides blooms upward of 106 cells·L−1

generally occur when the water temperature is >20◦C and when
the salinity ranges from 30–33 (Kudela et al., 2008; Kudela and
Gobler, 2012). However, in the Chesapeake Bay these blooms
occur at lower salinities (21–28) (Mulholland et al., 2009).
Mulholland et al. (2009) documented that M. polykrikoides
blooms caused mortalities in both juvenile oysters and fish
exposed to live cells. Tang and Gobler (2009) demonstrated that
cell toxicity was tied to bloom stage, with the early exponential
growth phase being more toxic than late exponential growth or
stationary phases. More recently Griffith et al. (2019) showed,
using juvenile oysters, hard clams, and bay scallops (Argopecten
irradians) contained in bags on grow-out rafts, that shellfish
position within the water column impacts animal susceptibility
to M. polykrikoides blooms. In their study, animals in surface
waters had higher mortality rates than those at depth and
reduced growth rates were exhibited in animals exposed to
M. polykrikoides blooms, regardless of position in the water

column, thus having implications for aquaculture management
in regions where M. polykrikoides blooms are common (Griffith
et al., 2019). The timing of M. polykrikoides blooms often
coincide with the region’s maximum water temperatures
(July–September) and blooms intensify after strong rain events
during drought conditions (Mulholland et al., 2009). These are
climatic scenarios predicted to increase in frequency within
the Chesapeake Bay region (Najjar et al., 2010; Reidmiller
et al., 2018); Mulholland et al. (2009) and Griffith and Gobler
(2016) hypothesize that this shift could cause a longer and
more toxic M. polykrikoides bloom season that would overlap
with the shellfish larval recruitment and growing season
within Chesapeake Bay.

In 2007, A. monilatum blooms were first reported in the
York River (Harding et al., 2009; Marshall and Egerton, 2009b).
Since 2007, A. monilatum has bloomed nearly annually in
the late summer, typically co-occurring with or following
M. polykrikoides blooms, when water temperatures are >24◦C
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and the salinity is 18–24 (Mulholland et al., 2018). Blooms
have been measured at concentrations > 108 cells·L−1 and have
intensified and expanded from the York River basin southwards
to the Hampton Roads area and Virginia Beach coastline
(Pease, 2016; Robison, 2019). The 2007 bloom in the lower
York River was responsible for a veined rapa whelk (Rapana
venosa) mortality event wherein whelk tissues tested positive for
elevated concentrations of the hemolytic and neurotoxic toxin
goniodomin A, produced by A. monilatum (Harding et al., 2009).
Subsequent laboratory experiments conducted by May et al.
(2010) indicated that adult oysters exposed to A. monilatum cells
and cell extracts had decreased clearance rates and reduced valve
gapes, which influences the animals’ pumping rate. In studies
focusing on larval oysters May et al. (2010) demonstrated that
animals were not affected by the presence of A. monilatum
cells, but that larval mortality rates increased when exposed to
A. monilatum cell extracts that contained extracellular toxins.
Through field and laboratory studies, Pease (2016) found that
extended exposure (>96 h) to both A. monilatum cells and cell
extracts caused erosion to gill and mantle tissues in 94% of adult
oysters and led to a 67% mortality rate.

Alexandrium monilatum and M. polykrikoides bloom in the
same geographic regions of the lower Chesapeake Bay and at
similar times of the year. While these blooms are detectable by
satellite imagery through the RBD algorithm (Figures 2A,B), they
cannot be distinguished from each other with existing satellite
ocean color data products alone (Figure 1). In situ monitoring
by state agencies is needed to confirm species identification.
Currently, by applying the RBD algorithm to Sentinel-3 image
products, NOAA officials are able to alert resource managers
to the presence of a high biomass phytoplankton bloom in
these areas. With the addition of space-based hyperspectral
sensors in the future, we hope to develop the capability to
further differentiate these blooms. From a resource management
perspective, knowing which dinoflagellate species is blooming,
where it is blooming, and the duration of blooms for each species
would be useful to shellfish industry partners who may be able
to mitigate damage to shellfish crops by adjusting spat planting
schedules, conducting shellfish relays, adjusting crop position in
the water column, or avoiding moving shellfish crops or gear
from areas with blooms to areas without blooms to limit the
spread of HAB cells or cysts.

Karlodinium veneficum
Discolored water caused by a bloom of K. veneficum (reported
as Gyrodinium galatheanum) was first noted in the Chesapeake
Bay in 1994 (Li et al., 2000). In 1996, a striped bass (Morone
spp.) mortality event was caused by this same organism (reported
as Karlodinium micrum) in an aquaculture facility on the Bay’s
eastern coast (Deeds et al., 2002). This mixotrophic dinoflagellate
was identified (as Gymnodinium estuariale and Gyrodinium
estuariale) in the Chesapeake Bay phytoplankton community in
the late 1970s by Marshall (1980) and Chrost and Faust (1983);
however, annual blooms were not reported until the mid-2000s
(Marshall et al., 2005; Place et al., 2012). Since the mid-2000s
there has been an increase in bloom occurrence and intensity,
though fish kills remain sporadic as K. veneficum toxicity seems

to be regulated by a series of environmental conditions such as
increased CO2 concentrations and P-limitation (Fu et al., 2010),
water column stratification that alters salinity and nutrient flow
regimes (Hall et al., 2008), and the abundance and nutritional
status of cryptophyte prey (Adolf et al., 2008; Lin et al., 2017).
Since first being documented in the mainstem of the Chesapeake
Bay and in the Tangier Sound region of the Bay’s eastern coast,
K. veneficum has been found as far north as the Bush River in
Maryland and as far south as the western branch of the Elizabeth
River in Virginia. While K. veneficum cells can be found year-
round in waters with temperatures of 7–28◦C and salinities of 3–
29, blooms with cell concentrations > 5× 105 cells·L−1 typically
occur between May and September (Glibert et al., 2007; Li et al.,
2015), though more recently blooms also have been detected in
Maryland waters in winter months (November–December) (J.
Wolny, unpublished data).

Karlodinium veneficum produces strong ichthyotoxic
and hemolytic compounds, called karlotoxins, that disrupt
osmoregulatory processes across gill tissues and lead to acute
fish kills, as well as cause deformations in shellfish larvae that
impact larval development, dispersal, and recruitment (Deeds
et al., 2006; Glibert et al., 2007). Thus, K. veneficum blooms pose
a risk to both finfish and shellfish populations, but are not a risk
to human health (Place et al., 2012, 2014). Deeds et al. (2002,
2006) showed that larval, juvenile, and adult stages of various
finfish species are all susceptible to the effects of karlotoxin.
Pre-bloom concentrations as low as 6.2× 104 cells·L−1 increased
immune system stress responses in adult blue mussels (Mytilus
edulis) indicating that exposure to background concentrations
of K. veneficum may negatively impact shellfish health before
blooms occur (Galimany et al., 2008). Brownlee et al. (2008)
showed that oyster spat exposed to K. veneficum cells at a
concentration of 107 cells·L−1 had depressed growth rates and
reduced organ development. Glibert et al. (2007) and Lin et al.
(2017) demonstrated that oyster spawning and the early life
stages of oysters are very susceptible (as shown through larval
deformation and mortality > 80%) to K. veneficum cells and
to karlotoxin exposure at concentrations of 107 cells·L−1 and
that the nutritional status of the cryptophyte prey plays a role
in K. veneficum toxicity. Because the risk to finfish and shellfish
can be severe and acute at both high (>107 cells·L−1) and low
(105 cells·L−1) K. veneficum cell densities, monitoring schemes
that identify temperature and salinity fronts, assess nutrient
concentrations, and cryptophyte abundance may be more
critical than monitoring for K. veneficum cell concentrations
alone if toxin risks are to be forecasted or mitigated for the
aquaculture industry.

Currently, K. veneficum blooms are identified by resource
managers as fish kills occur and are reported to state agencies.
However, recent blooms of K. veneficum have been identified
through remote sensing using both the RBD (fluorescence)
(Figure 3A) and CI (weakly fluorescing) algorithms (Figure 3B).
While this result appears contradictory and OLCI spectra from
K. veneficum blooms are inconsistent in the red bands (Figure 1),
it may be explained by a few simple hypotheses. The detection
of bloom presence with the RBD algorithm indicates some chl-a
fluorescence, as the radiance returned at 681 nm is greater than
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FIGURE 2 | Sentinel-3a OLCI images with RBD algorithm captured two dinoflagellate blooms in late summer 2016. (A) The image from August 11, 2016 shows a
bloom of M. polykrikoides in the southern Chesapeake Bay with a concentrated bloom patch off the York River. Yellow circles show in situ cell concentration data
obtained using light microscopy for water samples collected August 11–15, 2016. Yellow triangles represent cell concentrations measured using qPCR for the same
date range. (B) The image from August 30, 2016 shows a bloom of A. monilatum in the Rappahannock, York, and James Rivers. Yellow circles show in situ cell
concentration data obtained using light microscopy for water samples collected August 28 – September 02, 2016. Yellow triangles represent cell concentrations
measured using qPCR for the same date range. Data from September 09, 2016 (orange circle) indicate A. monilatum was confirmed in the Rappahannock River a
week later. Black pixels indicate no bloom detected. Yellow symbol size represents cell concentration ranges for in situ data. The dark red dots indicate shellfish
growing area classification locations.

that returned from 665 nm, even though 681 nm also includes
strong chl-a absorption. Near-surface blooms reflect the red-
edge, 709 nm band, strongly. A weakly fluorescing bloom would
combine a slight increase in 681 nm with a large increase at
709 nm, leading to identification with the CI algorithm.

Why might this occur with K. veneficum blooms? Field and
laboratory studies need to be conducted with K. veneficum
specifically, but Dower and Lucas (1993) and Gasol et al.
(2016) suggested that photosynthetic irradiance measurements
could provide information about spatial and temporal variability
in light-dependent phytoplankton reactions. This information
would aid in explaining the factors influencing the variability,
including regionality and seasonality in environmental or growth
conditions. Accordingly, at least four hypotheses could be
considered when examining K. veneficum blooms with RBD and
CI algorithms: heterotrophy vs. autotrophy, turbidity, seasonal
light availability, and/or nutrient availability. K. veneficum
blooms only fluoresce when cells are photosynthesizing and
their optical characteristics change to a high-biomass, non-
fluorescing algae under heterotrophic conditions. However, we
cannot dismiss ecological considerations; K. veneficum blooms
occur in high turbidity areas within Chesapeake Bay tributaries
and may not receive enough light to emit excess photons as
fluorescence. For example, on November 16, 2017 OLCI imagery

showed a sediment plume [as shown by Rrs(665 nm)] from the
Susquehanna River impacting the Bay’s northwestern tributaries
where the CI algorithm more accurately identified K. veneficum
blooms (Figures 3B,C). Similarly, time of year could also be
a factor due to light availability (low light near the winter
solstice). Figure 3A shows an example where K. veneficum
appears to be detected using the RBD algorithm in mid-
spring (May); however, the CI algorithm was more useful in
detecting it in late fall (November) when Karlodinium cells were
documented to be actively feeding on cryptophytes (Figure 3B).
Finally, the concentration and availability of nutrients may
influence how K. veneficum cells respond to light. Gameiro et al.
(2011) demonstrated that increased water column turbidity led
to increased photosynthetic efficiency and low light-saturation
photosynthetic rates in algal cells. Vonshak et al. (2000) showed
an increase in photosynthetic efficiency when cultured algal cells
were grown mixotrophically as opposed to phototrophically.
Similarly, Skovgaard et al. (2000) showed that when the prey
of the dinoflagellate Fragilidium subglobosum is abundant most
of the carbon uptake occurs through mixotrophic feeding,
not photosynthesis, even when photosynthetic irradiance is at
sufficient levels. In a laboratory study with phototrophically
grown K. veneficum cultures, Cui et al. (2017) showed that the
capacity to dissipate excess light energy was correlated with
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FIGURE 3 | Sentinel-3a OLCI images showing blooms of the dinoflagellate K. veneficum. (A) The RBD algorithm captured a bloom on May 16, 2017 throughout the
Maryland portion of the Chesapeake Bay. Yellow circles indicate in situ cell concentrations determined using light microscopy for water samples collected on the
same day, with symbol size representing cell concentration ranges. (B) The CI algorithm captured a bloom on November 16, 2017 in the Bush River, Maryland.
Yellow circles indicate in situ cell concentrations determined using light microscopy for water samples collected November 13–16, 2017, with symbol size
representing cell concentration ranges. K. veneficum cells in the Bush River bloom were documented to be actively feeding on cryptophyte prey. (C) The Rrs(665 nm)
image from November 16, 2017 shows a sediment plume from the Susquehanna River, with warmer colors indicating higher sediment concentrations. Black pixels
indicate no bloom detected. The dark red dots on (A,B) indicate shellfish growing area classification locations.

phosphorus concentrations; in Chesapeake Bay the availability of
phosphorus varies seasonally (Li et al., 2017). If the cells’ feeding
state is a factor, it may be possible to use the visualization of the
bloom with the RBD or CI algorithm to estimate high or low
toxicity risks as K. veneficum is known to be more toxic when in
a heterotrophic state (Adolf et al., 2008, 2009; Place et al., 2012).

Prorocentrum minimum
In his summary of 30 years of phytoplankton data, Marshall
(1996) reported P. minimum as the most common dinoflagellate
in the Chesapeake Bay. Reports of P. minimum blooms within
Bay and tributary waters date back to the 1960s (Mackiernan,
1968). In a more recent analysis using Chesapeake Bay Program
data, Li et al. (2015) determined that in the 1990s an average
of 13 P. minimum blooms (cell concentrations ≥ 108 cells·L−1)
were reported annually and in the 2000s this number increased
to 23 blooms annually. While P. minimum is found throughout
the year in the Bay and its tributaries when water temperatures
are between 6–28◦C and 5–14 salinity, blooms occur most
frequently April through June when waters are between 13–19◦C
and 6–10 salinity (Marshall and Egerton, 2009a; Li et al., 2015).
Recently, high biomass blooms (108 cells·L−1) of P. minimum
were documented in the Maryland portion of the Bay from
December 2017 to January 2018 and again in December 2019 to
January 2020 (Figure 4). Both Tango et al. (2005) and Marshall
and Egerton (2009a) reported that the cell concentrations of
P. minimum blooms were considerably greater in the 2000s
(107–108 cells·L−1) than in the 1980s and 1990s (106 cells·L−1)
and that temporally extensive blooms contributed to degraded
water quality conditions, especially with regards to dissolved
oxygen concentrations, which lead to finfish and shellfish
mortalities and the loss of submerged aquatic vegetation due to
decreased water clarity.

In short-term (2–3 days) laboratory exposure experiments,
embryonic, juvenile, and adult oysters exposed to P. minimum
concentrations ≤ 107 cells·L−1 did not exhibit any negative
impacts to growth or survival (Stoecker et al., 2008). Similarly,
Brownlee et al. (2005, 2008) found that growth rates of oyster
spat were comparable between P. minimum and a commercial
hatchery food mix in both laboratory and field settings. However,
Glibert et al. (2007) reported that at a cell concentration of
107 cells·L−1 P. minimum caused the mortality of days-old
oysters after a 48 h exposure and reduced motility after 2-
week-old oysters were exposed for 72 h. Tango et al. (2005)
reported that a week-long P. minimum bloom in the lower
Potomac River caused the mortality of 78% of juvenile oysters
at an aquaculture facility. The different effects of P. minimum
on shellfish has been hypothesized to be the result of the
growth stage of the bloom, with blooms in decline to be more
detrimental than those exponentially growing (Wikfors, 2005).
If the stage of the bloom is as critical as monitoring for cell
concentrations, then future remote sensing assets that offer
greater spectral, temporal, and spatial coverage should aid the
monitoring of P. minimum blooms within the framework of
safeguarding aquaculture interests. As dinoflagellates tend to
produce ultraviolet photo-protective mycosporine-like amino
acids (MAAs), UV remote sensing from instruments like OCI
on PACE may help in distinguishing these blooms and associated
physiological effects (Korbee et al., 2010; Carreto et al., 2018).

Future Remote Sensing Strategies
In addition to distinguishing HABs that have unique spectral
signatures, it may be possible to detect indicators of harmful
species through other means, such as the unique optical
signatures of prey and associated environmental monitoring.
For example, multiple species within the heterotrophic genus
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FIGURE 4 | Sentinel-3a OLCI image with RBD algorithm captured on January 16, 2020 showing a bloom of the dinoflagellate P. minimum throughout the Maryland
portion of the Chesapeake Bay. In situ data indicated a widespread P. minimum bloom, however, the satellite ocean color data collected during this time were limited
by cloud cover. Yellow circles indicate cell concentrations determined using light microscopy for samples collected January 13–16, 2020, with symbol size
representing cell concentration ranges. Medium and dark gray pixels represent no retrievals due to clouds. Black pixels indicate no bloom detected. The dark red
dots indicate shellfish growing area classification locations.
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Dinophysis have been reported in the lower Chesapeake Bay since
the late 1970s (Marshall, 1980, 1982). Dinophysis can produce
OA and/or dinophysistoxins (DTXs), all of which contribute to
DSP, a human illness consisting of severe vomiting, diarrhea, and
abdominal pain shortly after the consumption of contaminated
shellfish (Barceloux, 2008). The region’s first D. acuminata bloom
and precautionary shellfish harvesting area closure occurred in
2002 (Marshall et al., 2004; Tango et al., 2004). Dinophysis can
be toxic at cell concentrations well below the limit of detection
by satellite sensors (e.g., 200 cells·L−1 for Dinophysis fortii;
Yasumoto et al., 1985). To date, the toxicity of Dinophysis spp. in
Maryland and Virginia waters appears to be minimal compared
to other regions (Wolny et al., 2020). However, there recently has
been a precedent for blooms of these species to intensify in cell
concentration and toxicity in New York and New England waters
(Hattenrath-Lehmann et al., 2013, 2015; J. Deeds, unpublished
data). This elevated human health risk necessitates a more robust
monitoring system.

The use of ocean color imagery to visualize Dinophysis
blooms directly for resource management applications is unlikely
as these species can be highly toxic at low cell densities.
The detection of D. acuminata within the phytoplankton
community at the low concentrations it is typically found
in the Chesapeake Bay region (average of 403 cells·L−1;
Wolny et al., 2020), may be aided by using its prey items
as a proxy. Dinophysis prey, the ciliate Mesodinium rubrum
which feeds on cryptophytes, has unique bio-optical properties
(Guzmán et al., 2016) and can co-occur with Dinophysis in
thin layers within the water column (González-Gil et al., 2010;
Sjöqvist and Lindholm, 2011) or can form distinctive surface
features (Dierssen et al., 2015; Guzmán et al., 2016). Because
M. rubrum is found in Chesapeake Bay waters year-round
(Johnson et al., 2013) detection of M. rubrum blooms with
satellite imagery would have to be coupled with regionally
tuned ecological models that characterize both the Dinophysis
and Mesodinium population patterns observed in this region.
Using the ecological patterns of M. rubrum blooms as predictive
guidelines for Dinophysis ovum blooms has proven successful
along the Texas coast (Harred and Campbell, 2014). Over
the past two decades artificial neural networks, hydrodynamic
and lagrangian models, as well as satellite-derived sea surface
temperature (SST) data has been used to predict blooms of
Dinophysis along the European Atlantic coast (Velo-Suárez and
Gutiérrez-Estrada, 2007; Reguera et al., 2014; Díaz et al., 2016;
Moita et al., 2016; Ruiz-Villarreal et al., 2016). Dierssen et al.
(2015) demonstrated the successful use of the Hyperspectral
Imager for the Coastal Ocean (HICO) that flew aboard the
International Space Station from 2009 to 2014 to detect
a bloom of M. rubrum in Long Island Sound, NY. The
successful exploitation of future hyperspectral satellite missions
to distinguish a HAB, such as Dinophysis, from above a
background community in the optically complex Chesapeake
Bay and to differentiate M. rubrum and cryptophytes from
other phytoplankton constituents, will require a combination of
efforts and many in situ observations for validation. Finer-scale
oceanographic observations available through a combination of
future satellite platforms may aid in the development of similar

systems for the Chesapeake Bay that have proven beneficial in
other waters.

SUMMARY

We have outlined emerging optical remote sensing techniques
being used to identify the most common marine and estuarine
HABs in the Chesapeake Bay. Although challenges remain, the
methodology continues to improve with the implementation of
new technology and the incorporation of ecological data either
gathered from long-standing data archives (i.e., Chesapeake Bay
Program, 2019) or in real-time (i.e., radiometry) as blooms
occur. Utilizing remote sensing to its maximum potential is
of increased importance as more frequent, potentially toxic
blooms are projected to occur at the same time that the
region’s shellfish aquaculture industry is growing. Additionally,
the state agencies that manage these resources need to
increase their efficiencies in order to monitor these systems
more often with fewer assets and funding. The launch of
orbiting and geostationary satellites with hyperspectral sensors
after 2022 could further enhance our ability to distinguish
blooms and improve upon these efforts. The HAB detection
and monitoring systems developed for the optically complex
Chesapeake Bay have the potential to provide a framework
for monitoring HABs in other bodies of water with mixed
harmful algae assemblages, elevated turbidity, and frequent
sediment plumes.

The preliminary use of the RBD algorithm to help guide
state agencies in detecting and monitoring dinoflagellate
blooms in the Chesapeake Bay has been presented here.
Our cursory examination of other algorithms in the red-
edge portion of the electromagnetic spectrum, such as the
Algal Bloom Index (ABI; Hu and Feng, 2016), which is
another algorithm that includes fluorescence, and Maximum
Peak Height (MPH) chlorophyll (Matthews and Odermatt,
2015) indicates that RBD is more useful at delineating these
blooms when they are fluorescing. The RBD, as a fluorescence
algorithm, requires algae to fluoresce to be detected, so false
negatives are possible for blooms that are not fluorescing.
Additionally, while the RBD algorithm is successful in detecting
large biomass blooms, mismatches between in situ data and
satellite imagery have occurred (e.g., within the August 2016
A. monilatum bloom, Figure 2B). This is also visible in
the variability in the slope between 665 and 681 nm in
Figure 1, indicative of the RBD algorithm. Patchiness of
these dinoflagellate blooms (Mackiernan, 1968; Marshall and
Egerton, 2009a; Mulholland et al., 2009) or sub-pixel variability,
coupled with tidal flow and the difference between the time
of in situ data collection and satellite overpass may be
causing these discrepancies. More work will need to be done
to determine the frequency of these mismatches in shellfish
aquaculture areas. Numerous studies have shown the utility and
statistical rigor of determining cell concentrations using qPCR
compared to other visual detection methods for the HAB species
presented here (e.g., Handy et al., 2008; Eckford-Soper and
Daugbjerg, 2015; Lee et al., 2017; Vandersea et al., 2017). Our
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preliminary assessment of A. monilatum and M. polykrikoides
in situ cell concentrations collected using both qPCR and
light microscopy versus relative cell abundance determined
from pixel retrievals shows promise for the algorithms under
development. This review highlights current uses of the RBD
algorithm for fluorescing algal blooms in the Chesapeake
Bay. A more rigorous analysis is underway to determine
the success of the method for not only detecting, but for
quantifying these HABs.

Higher spatial resolution can be of value in smaller tributaries.
The Multispectral Imager (MSI) on the Sentinel-2 satellites
has some red-edge bands, with 20 m pixels and 5-day repeat
but is potentially glint-limited in summer, when the majority
of Chesapeake Bay HABs occur. Landsat-8, while having 30
m pixels, has only 16-day repeat, and only one red band,
greatly limiting its value for monitoring blooms. The MSI
does not have a band at the chl-a fluorescence peak, but
other red-edge algorithms have been applied to the MSI data.
Algorithms, such as the ratio of 704–665 nm (Gilerson et al.,
2010) and a form of the MCI from Gower et al. (2008), can
be applied to Sentinel-2/MSI data and have the potential for
identifying high biomass blooms in Chesapeake Bay. Gernez
et al. (2017) demonstrated how satellite data could be used
to monitor shellfish health through a unique application of
suspended particulate matter and chl-a algorithms to Sentinel-
2 imagery. The resulting model allowed the effects of tide-driven
dynamics on oyster feeding rates to be examined in Bourgneuf
Bay, along the French Atlantic coast. Further validation studies
of these various approaches and the utility of higher spatial
resolution (20 m) Sentinel-2 products are warranted to provide
increased monitoring into narrower portions of Chesapeake Bay
tributaries where aquaculture operations often occur. A key
question for future research will be to determine the minimum
algal cell concentrations that can be detected with these
different algorithms.

The CI algorithm has also been proposed as a way to
detect weakly fluorescing blooms, which occasionally occur in
Chesapeake Bay estuarine waters. A more rigorous validation
to determine accuracy in detection and a detailed comparison
with these other algorithms is underway. It is possible that an
ensemble approach, including turbidity, SST, and salinity, may
provide improved bloom separation during scenarios when algal
cells are weakly fluorescing and the RBD algorithm fails. In
addition, these other algorithms are being investigated to provide
general chlorophyll concentration information for the Bay as
the currently available ocean color algorithms are insufficient in
these complex waters.

While many of the high-biomass algal blooms in the optically
complex Chesapeake Bay are detected with OLCI image products,
such as the RBD and CI, further discrimination to genus or
species level is unlikely with current satellite-derived products.
The alternative is to combine ecological associations (i.e.,
salinity/temperature regimes, nutrient preferences, time of year,
and location within Chesapeake Bay), with near real-time daily
satellite imagery. This combination would allow us to develop
a monitoring system for individual blooms across the Bay.
Such an approach was developed to detect K. brevis blooms

along the Florida West Coast (Stumpf et al., 2003), where
seasonality and geography were combined with an algorithm
for bloom detection. Habitat models are also being applied for
Pseudo-nitzschia blooms and domoic acid events in California
(Anderson et al., 2011, 2016) and are likely suitable for some
HAB species found in Chesapeake Bay (Brown et al., 2013).
The output of these heuristic (rule-based) models can be further
combined with remote-sensing products to develop a classified
product for individual blooms. Therefore, future work will
investigate combinations of model outputs and remote-sensing
products that could provide resource managers and the shellfish
industry a method to monitor a suite of potentially harmful
species throughout Chesapeake Bay. The launch of satellites with
hyperspectral sensors after 2022 will further enhance these efforts.
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The emerging sector of offshore kelp aquaculture represents an opportunity to produce

biofuel feedstock to help meet growing energy demand. Giant kelp represents an

attractive aquaculture crop due to its rapid growth and production, however precision

farming over large scales is required to make this crop economically viable. These

demands necessitate high frequency monitoring to ensure outplant success, maximum

production, and optimum quality of harvested biomass, while the long distance from

shore and large necessary scales of production makes in person monitoring impractical.

Remote sensing offers a practical monitoring solution and nascent imaging technologies

could be leveraged to provide daily products of the kelp canopy and subsurface

structures over unprecedented spatial scales. Here, we evaluate the efficacy of remote

sensing from satellites and aerial and underwater autonomous vehicles as potential

monitoring platforms for offshore kelp aquaculture farms. Decadal-scale analyses of the

Southern California Bight showed that high offshore summertime cloud cover restricts

the ability of satellite sensors to provide high frequency direct monitoring of these

farms. By contrast, daily monitoring of offshore farms using sensors mounted to aerial

and underwater drones seems promising. Small Unoccupied Aircraft Systems (sUAS)

carrying lightweight optical sensors can provide estimates of canopy area, density, and

tissue nitrogen content on the time and space scales necessary for observing changes

in this highly dynamic species. Underwater color imagery can be rapidly classified using

deep learning models to identify kelp outplants on a longline farm and high acoustic

returns of kelp pneumatocysts from side scan sonar imagery signal an ability to monitor

the subsurface development of kelp fronds. Current sensing technologies can be used

to develop additional machine learning and spectral algorithms to monitor outplant

health and canopy macromolecular content, however future developments in vehicle

and infrastructure technologies are necessary to reduce costs and transcend operational

limitations for continuous deployment in an offshore setting.

Keywords: autonomous vehicles, remote sensing, sUAS, giant kelp, side scan sonar, deep learning (DL), drones

(unmanned aerial vehicles or UAVs), biofuel
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INTRODUCTION

As the global population grows, so do food and energy demands.
One possibility for meeting these demands is aquaculture in
offshore areas (Lovatelli et al., 2013; Gentry et al., 2017a). This
challenging marine environment has become a viable option due
to recent developments in engineering, while advancements in
offshore marine spatial planning can serve to reduce conflicts and
environmental impacts (Shainee et al., 2012; Gentry et al., 2017b;
Lester et al., 2018).

Giant kelp (Macrocystis pyrifera) is an ideal candidate for
offshore aquaculture because it is among the world’s fastest
growing autotrophs, with elongation rates in excess of 0.5m d−1

under ideal conditions, biomass turnover rates of ∼12 times per
year, and year-round production (Clendenning, 1971; Graham
et al., 2007; Reed et al., 2008; Correa et al., 2016; Rassweiler et al.,
2018). Biomass can be used as a biofuel feedstock, fertilizer, and
animal feed, which all require specific tissue nutrients and sugars
to be maximized (Neushul, 1987; Gutierrez et al., 2006; Wargacki
et al., 2012). However, the same high growth rate and versatility
that makes giant kelp an attractive aquaculture crop necessitates
high frequency monitoring to ensure outplant success, maximize
production, and optimize the nutritional content of harvested
biomass for its various uses.

Since distance from shore, labor costs, and the necessary
scale of production makes in person monitoring unrealistic,
remote sensing is a practical monitoring solution. Fortunately,
the use of remote sensing for the quantification of giant kelp
biomass dynamics and tissue composition has progressed in step
with advancements in sensor technology and data availability.
The advent of freely available, multispectral Landsat imagery in
2008 (Woodcock et al., 2008) enabled the monitoring of the
floating surface canopy of giant kelp over large space and time
scales. Cavanaugh et al. (2011) used linear unmixing methods
to produce a time series of kelp canopy biomass in the Santa
Barbara Channel, calibrated using a monthly time series of
diver-estimated canopy biomass. Airborne imaging spectroscopy
was used to estimate the physiological condition of the floating
canopy, which is related to tissue nitrogen content and frond
senescence and has implications for optimizing biomass quality

and timing of harvest (Card et al., 1988; Bell et al., 2015, 2018;
Rodriguez et al., 2016). Acoustic sensors have also been used
to successfully estimate the density of subsurface giant kelp
plants (Zabloudil et al., 1991; Parnell, 2015). While much of
this work has focused on natural populations of giant kelp,
these methods are readily adaptable to offshore kelp aquaculture
farms and provide an excellent foundation to innovate with
emerging technologies.

Leveraging existing and nascent technologies may allow for

the development of effective monitoring platforms for offshore
kelp aquaculture farms. Several new multispectral satellite

systems have started acquiring free, publicly available imagery

with increases in pixel resolution and sensor sensitivity (Drusch
et al., 2012; Markham et al., 2018). Additionally, a global, repeat
imaging spectrometer will likely start acquiring imagery in the
mid-2020’s (National Academies of Sciences, Engineering, and
Medicine, 2018). Furthermore, cloud-based archive and analysis

platforms, such as Google Earth Engine, have democratized
the processing of satellite imagery by removing the need for
expensive software and local computing resources (Gorelick
et al., 2017). Nascent autonomous vehicle technologies deploying
both optical and acoustic sensors have the potential to provide
rapid, repeat monitoring capabilities both above and below the
ocean surface (Ackleson et al., 2017; Hardin et al., 2019). Small
Unoccupied Aircraft Systems (sUAS; aerial drones) have been
rapidly adopted for high temporal and spatial scale monitoring
of agriculture and advances in sensor miniaturization have
allowed a suite of multispectral and hyperspectral sensors to
be carried by these lightweight vehicles (Zhang and Kovacs,
2012). The recent increase in availability of low-cost remotely
operated vehicles (ROVs) and autonomous underwater vehicles
(AUVs) along with machine learning-based image processing,
signal future innovations in subsurface monitoring capabilities
(Salman et al., 2016; Fedorov et al., 2017; Manley and Smith,
2017; Lund-Hansen et al., 2018). All of these technologies possess
unique advantages that could be leveraged to develop an offshore
aquaculture monitoring system.

To assess the ability of spaceborne, aerial, and subsurface
remote sensing technologies to provide products necessary for
the monitoring of offshore kelp aquaculture farms we ask the
following questions: (1) Does cloud cover limit the ability of
satellite sensors to monitor kelp farms in the offshore areas of the
Southern California Bight? (2) Can commercially available sUAS-
mounted optical sensors provide spatial estimates of kelp canopy
area, biomass, and tissue nitrogen content? (3) Are deep learning
classified underwater color imagery and side scan sonar able to
identify kelp outputs on a longline aquaculture farm? Based on
the monitoring capabilities of these remote sensing platforms
on natural kelp forest canopies and nearshore kelp farms we
determine the optimal use of each sensor platform and discuss
the operational risks and limitations of these platforms for use in
an offshore aquaculture setting.

MATERIALS AND METHODS

Overview
Here, we use three approaches to examine the capabilities
of various remote sensing platforms to monitor offshore kelp
aquaculture farms. First, we examine the feasibility of spaceborne
monitoring by analyzing several decades of Landsat imagery
to produce maps of the mean seasonal cloud cover over
the United States portion of the Southern California Bight
(SCB). Second, we deploy multiple sUAS-mounted sensors (color
camera, multispectral, hyperspectral) to image a natural kelp
forest canopy located in the western Santa Barbara Channel
(Arroyo Quemado; 34.467◦N 120.118◦W) and show monitoring
products developed using the different types of imagery. All
sUAS imagery was acquired on June 30, 2019 between 9 a.m.
and 12 p.m. local time with clear skies and light wind at an
altitude of 120m above ground level, and concurrent with a
Landsat satellite overpass. Tidal height fell from 1.05 to 0.67m
over the 3-h period as recorded from the Santa Barbara, CA
tide station. Third, we image juvenile giant kelp outplants with
underwater color imagery and side scan sonar on a longline
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aquaculture farm located approximately 1.2 km off the coast of
Santa Barbara, California (Santa Barbara Mariculture; 34.392◦N
119.759◦W). We develop deep learning models to classify kelp
from the color imagery and assess the acoustic returns before
and after the formation of pneumatocysts (gas bladders). Juvenile
giant kelp sporophytes (outplanted between microscopic and
∼2 cm in length; n = 2,500) were outplanted along long lines
over 5 days fromMay 5 throughMay 9, 2019 to assess the growth
and production of different giant kelp genotypes under farmed
conditions. All underwater imagery and diver measurements
were collected along a subset of the farm lines between July 11
and August 1, 2019.

Cloud Cover Analysis to Examine Satellite

Monitoring Potential
Mean seasonal cloud cover over the SCB was determined using
Landsat satellite imagery from 1984 to 2019. The Landsat satellite
sensors provide multispectral imagery at a 30m pixel resolution
with a repeat frequency of 16 days during periods with one
satellite sensor and 8 days when two sensors are in orbit.
Three Landsat sensors were used: Landsat 5 Thematic Mapper
(TM; 1984–2011), Landsat 7 Enhanced Thematic Mapper Plus
(ETM+; 1999 – present), and Landsat 8 Operational Land Imager
(OLI; 2013 – present). Due to the scan line corrector error on
the Landsat 7 ETM+ instrument, only data from 1999–May
2003 were used in the cloud cover analysis. All Landsat images
were acquired as atmospherically corrected surface reflectance
images and the pixel quality assessment band associated with
each image was used to determine cloud containing pixels. The
analysis was completed for the four Landsat tiles which cover the
SCB (path/row: 042/036, 041/036, 041/037, 040/037).Mean cloud
cover was then determined for each offshore pixel (USA federal
waters; >3 nautical miles from the coast) for each season across
all years. All cloud cover analysis was completed in Google Earth
Engine (Gorelick et al., 2017).

In order to estimate the number of seasonal cloud-free views
of each remote sensing pixel in the offshore region we used:

S = (1− x) × (L/r) (1)

where S is the mean number of usable satellite views per season,
x is the mean cloud covered fraction of all offshore pixels, L is the
length of the season in days, and r is each satellite sensor’s repeat
period in days. Repeat periods for several medium resolution
(10–30m pixel resolution) satellite sensors were used, including
the multispectral Landsat sensors (16 days) and Sentinel-2
sensors (twin satellites; 5 days), and the hyperspectral sensor
on the planned Surface Biology and Geology (SBG) designated
observable (proposed 16 days; Table 1).

Canopy Analysis Using Landsat Imagery
Landsat 7 ETM+ imagery from June 30, 2019 was
downloaded from the USGS Earth Explorer website (Table 2;
earthexplorer.usgs.gov) as atmospherically corrected surface
reflectance imagery. Kelp canopy fraction was determined
following methods described in Cavanaugh et al. (2011) and
Bell et al. (2020). Briefly, Landsat pixels were classified as

containing kelp canopy using a binary decision tree using
spectral bands 1–5, and 7. The fractional cover of kelp canopy
inside each pixel was determined using Multiple Endmember
Spectral Mixture Analysis (MESMA; Roberts et al., 1998), where
the reflectance spectrum (spectral bands 1–4) of each pixel is
iteratively modeled as a linear combination of one kelp canopy
spectral endmember and one of 30 seawater endmembers.
The 30 seawater endmembers were taken from Landsat pixels
classified as seawater to account for varying spectral qualities due
to sun glint, phytoplankton blooms, and suspended sediment.
The optimal model, and resulting kelp canopy fraction estimate,
minimizes the root mean squared error between the modeled
and observed pixel reflectance spectrum. Kelp canopy fraction
has been found to be linearly correlated with canopy biomass
density using the empirical relationship between a time series
of Landsat kelp canopy fraction estimates and monthly diver
estimated canopy biomass at two permanent transects in the
Santa Barbara Channel from 2003 to 2017 (Cavanaugh et al.,
2011; Bell et al., 2020).

Canopy Analysis Using sUAS Color

Imagery
Aerial color digital imagery was obtained for the Arroyo
Quemado kelp forest using a DJI Phantom 4 Pro sUAS, which is
equipped with a 20MP (1′′ CMOS sensor, 84◦ FOV) color camera
and can image areas of ∼40 hectares in one flight (Table 2).
All camera settings were set to automatic and there was no
spectral calibration using calibration targets. Photogrammetric
software (Agisoft Metashape Pro Version 1.5.0) was used to
produce a georeferenced orthomosaic from the color imagery.
Georeferencing was validated using known ground control
points on land, approximately 200m from the inshore edge of the
kelp canopy. After land and breaking waves were removed from
the color orthomosaic, floating kelp canopy was classified using a
simple band ratio where Red is the red band and Blue is the blue
band of the color image:

Kelp Canopy,
Red

Blue
≥ 1 (2)

Seawater,
Red

Blue
< 1 (3)

Canopy Analysis Using sUAS Multispectral

Imagery
Multispectral aerial imagery was collected for the Arroyo
Quemado kelp forest using theMicaSense Altum sensormounted
on a DJI Matrice 200 sUAS, which can also image areas
of ∼40 hectares in one flight (Table 2). The Altum sensor
has five individual 3.2 MP cameras which simultaneously
capture images across five spectral bands: blue (475 nm center,
32 nm bandwidth), green (560 nm center, 27 nm bandwidth),
red (668 nm center, 14 nm bandwidth), red edge (717 nm
center, 12 nm bandwidth), near infrared (840 nm center, 57 nm
bandwidth). A 50% gray panel with a known reflectance
across each of the five spectral bands was captured before and
after the flight to convert each image to reflectance. Agisoft
Metashape Pro software was used to produce a georeferenced
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TABLE 1 | Various current and planned satellites systems which are potentially useful for kelp aquaculture.

Satellite system Sensor type Spatial resolution (m) Repeat period (days) Winter Spring Summer Fall

Landsat

(1 satellite)

Multispectral 30 16 4.1 (0.37) 3.0 (0.6) 1.9 (1.1) 3.7 (0.5)

Landsat

(2 satellites)*

Multispectral 30 8 8.1 (0.74) 6.0 (1.1) 3.7 (2.3) 7.4 (1.0)

Sentinel-2 Multispectral 10 5 13.0 (1.2) 9.6 (1.8) 5.9 (3.7) 11.8 (1.6)

SBG† Hyperspectral† 30† 16† 4.1 (0.37) 3.0 (0.6) 1.9 (1.1) 3.7 (0.5)

“Sensor Type” and “Spatial Resolution” refer to the sensors’ visible and near infrared bands. Seasonal values show the estimated mean number of usable views per season (standard

deviation) of the offshore region of the Southern California Bight (USA federal waters; >3 nautical miles from the coast). SBG is the initialization for the Surface Biology and Geology

designated observable, whose targeted observation capabilities include a global, repeat imaging spectrometer.

*Landsat 7 ETM+ & Landsat 8 OLI (2013 – present), Landsat 8 OLI & Landsat 9 OLI-2 (starting 2021).
†
Planned (mid-2020’s).

TABLE 2 | Remote sensing technologies that can be used to monitor giant kelp aquaculture farms and the products which can be derived from the imagery.

Application Vehicle Sensor type Sensor Spatial scale Products

Canopy Satellite Multispectral Sentinel-2/Landsat 10m /30m Areaa, Biomassb

Hyperspectral† SBG† 30 m† Pigmentc/Nitrogen§/

Sugar‡ Content, Age‡

sUAS Color Camera 1′′ sensor, 84◦ FOV, 20 MP 3.2 cm* Area§

Multispectral Micasense Altum 6.5 cm* Areaa, Biomassb

Hyperspectral Headwall

Nano-Spec

7.5 cm* Pigmentc/

Nitrogen§/Sugar‡

Content, Age‡

Subsurface ROV/AUV/

surface craft

Color Camera 1/2.9′′ sensor, 80◦ FOV,

1,080 p

2.6mm at

3m distance

Identification§, Size‡,

Disease‡, Herbivory‡

Sidescan Sonar Edgetech 4215/Marine

Sonic MKII (900 kHz)

1 cm across track Identification§, Size‡,

Biomass‡

†
Planned, ‡ in principle, §this study, *120m above ground level altitude.

aHamilton et al. (2020).
bCavanaugh et al. (2011).
cBell et al. (2015).

orthomosaic for each spectral band (version 1.5.0). Kelp canopy
density was determined using MESMA across all five spectral
bands using one kelp spectral endmember and 10 seawater
spectral endmembers (similar to the methods used with Landsat
imagery in section Canopy Analysis Using Landsat Imagery).
The kelp spectral endmember was determined using the mean
spectrum of the 100 kelp canopy pixels with the highest near
infrared reflectance (Supplementary Figure 1). Kelp canopy,
like all photosynthetic material, displays a high reflectance
in the near infrared, while seawater rapidly attenuates near
infrared radiation (Cavanaugh et al., 2011; Bell et al., 2015).
The 10 seawater endmembers were randomly chosen from
seawater areas at least 50m from the nearest kelp canopy
(Supplementary Figure 1).

Canopy Analysis Using sUAS

Hyperspectral Imagery
Hyperspectral aerial imagery was collected over the Arroyo
Quemado kelp forest using a Headwall Nano-Hyperspec VNIR
sensor mounted on a DJI Matrice 600 Pro sUAS, which can

image areas of ∼20 hectares in one flight (Table 2). The Nano-
Hyperspec VNIR sensor measures a continuous reflectance
spectrum from 400 to 1,000 nm across 270 contiguous 2.2 nm
spectral bands. The sensor is a push broom scanner with
640 spatial bands and a 12mm focal length lens, delivering
a 7.2 cm pixel resolution at an altitude of 120m. The sensor
was calibrated before each flight by capturing a dark reference
and a white reference using a 50% gray panel with a known
spectral reflectance from 400 to 1,000 nm. A 3 × 3m spectral
reflectance calibration tarp comprised of three 3 × 1m gray
sections (11, 32, and 56% reflectance) was placed on the
beach approximately 175m inshore of the kelp canopy and
was captured in the hyperspectral imagery. Image swaths
were processed to surface reflectance data by first converting
the recorded digital numbers to radiance using the dark
reference and a sensor specific radiometric calibration file.
Second, radiance was converted to surface reflectance using
the three panels of the spectral reflectance calibration tarp
captured in the imagery. The processed surface reflectance
image swaths were individually orthorectified and georeferenced,
and the positioning of each swath was then adjusted to
match overlapping pixels between neighboring image swaths.
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All image processing was completed using the Headwall
SpectralView software.

Each georeferenced image swath was then processed further
using Matlab (version 2018b) first by smoothing all reflectance
spectra using a Savitzky-Golay filter with a three-band window
(Savitsky andGolay, 1964). Pixels containing glint were identified
as all pixels where reflectance was >30% at the band centered at
731 nm and removed. Pixels were classified as kelp canopy where
the ratio of reflectance at the band centered at 731 nm to the band
centered at 509 nm was >3. Kelp canopy density was determined
using MESMA across the entire reflectance spectrum using one
kelp spectral endmember and 10 seawater spectral endmembers.
The kelp spectral endmember was determined as the mean
of the 100 kelp canopy pixels with the highest near infrared
reflectance across all image swaths. The 10 seawater endmembers
were randomly chosen from seawater areas at least 50m from
the nearest kelp canopy. After these additional processing steps,
the resulting hyperspectral image was then georeferenced for a
second time using the orthomosaic captured by the color camera
sUAS to correct any spatial discrepancies.

Nitrogen Content Spectral Algorithm

Development
In order to use spectral imagery to assess the condition of the kelp
canopy using metrics such as tissue nitrogen content, empirical
relationships must be developed between the spectra and the
condition metric of interest. We used data of giant kelp blade
reflectance with corresponding data of blade tissue nitrogen
content collected monthly from 2012 to 2015 at three kelp forests
in the Santa Barbara Channel to develop these relationships (see
Bell et al., 2018 for detailed methods). Briefly, every month 15
mature canopy blades were collected at each of the three sites
and their reflectance between 350 and 800 nm (1 nm intervals)
was measured in the laboratory using a Shimadzu UV 2401PC
spectrometer with an integrating sphere attachment. A 5 cm2 disc
was excised from the central portion of each blade and placed
in a drying oven at 60◦C for several days until completely dry.
The dried discs were then combined, weighed, ground to a fine
powder, and analyzed for nitrogen content using an elemental
analyzer (Carlo-Erba Flash EA 1112 series, Thermo-Finnigan
Italia, Milano, Italy). The mean reflectance spectra averaged
over the 15 blades collected monthly for each site was paired
with the pooled tissue nitrogen content of the 15 blades for the
purpose of assessing the relationship between blade reflectance
spectra and nitrogen content (n = 101 paired reflectance &
nitrogen samples).

We focused on changes in the shape of the reflectance
spectrum rather than the magnitude since sun glint or the
proportion of kelp canopy inside an imaged pixel can have a large
effect on reflectance magnitude (Cavanaugh et al., 2011). We
first interpolated the 1 nm laboratory reflectance onto the 2.2 nm
spectral bands associated with the Nano-Hyperspec sensor (full
width at half maximum = 6.6 nm). Normalized reflectance
(Nr) was determined by scaling reflectance (between 0 and 1)
based on the maximum and minimum reflectance values of the
spectral bands between 596 and 670 nm, an area of the spectrum

important for diagnosing kelp physiological condition (Bell et al.,
2015), and then adding a value of 1 to all spectral bands so
that all values were positive. The bands in the range used for
normalization represent wavelengths with low and relatively flat
seawater reflectance and avoid the rapid increase in reflectance
associated with the red edge of kelp canopy reflectance.

The ratio of Nr for all band pairs between 596 and 670 nm
were iteratively compared to tissue nitrogen content across
all 101 samples using linear and generalized additive models
(GAMs; R package mgcv; Wood, 2017). Each GAM was fit
between tissue nitrogen content and the predictor variable(s)
with a Tweedie error structure (power function = 1.01; k = 5).
In the visible light bands, differences in the spectral shape of
reflectance are not a direct function of the tissue nitrogen content
itself but are due to the additive absorption and fluorescence
properties of various pigments (Gates et al., 1965; Woolley,
1971; Gausman, 1983; Hochberg et al., 2004). Photosynthetic
pigment concentrations are modulated by both the ambient
seawater nitrate concentration and available light, and different
relationships may exist between pigment concentration and
nitrogen content under nutrient vs. light limited conditions
(Laws and Bannister, 1980). Due to these potential differences,
photosynthetically active radiation (PAR) during the 30 days
prior to sample collection was included as a predictor in the
models. We compared model parsimony using the Akaike
information criterion (AIC). Photosynthetically active radiation
was determined using the closest 4 km daily MODIS Aqua
product to each site (oceandata.sci.gsfc.nasa.gov; Bell et al., 2018).

Application of Nitrogen Algorithm to sUAS

Hyperspectral Imagery
In order to create maps of kelp canopy nitrogen content,
the tissue nitrogen content algorithm must be applied to the
reflectance spectra measured by the Nano-Hyperspec VNIR.
The hyperspectral image spectra were first normalized in the
same manner as the laboratory reflectance spectra. Since each
7.2 cm pixel is a combination of kelp canopy and seawater, we
used MESMA to estimate the fractional cover of kelp canopy
and removed all pixels with a relative canopy fraction of <0.1
to minimize the effect of seawater on the reflectance spectra.
Pixels with excessive noise were removed if the mean coefficient
of variation of Nr between 565 and 610 nm (an area of the
spectrum with low absorption by chlorophyll a) exceeded 10%.
The nitrogen content spectral algorithm determined from the
laboratory spectra was then applied to the hyperspectral imagery.

Subsurface Analysis Using Side Scan

Sonar Imagery
Acoustic imagery of the aquaculture farm was captured using an
Edgetech 4125 400/900 kHz side scan sonar system mounted 1m
below the water surface along the side of a 22-foot vessel moving
at 3 km h−1 (Table 2). The system’s 900 kHz Compressed High-
Intensity Radiated Pulse (CHIRP) pulse delivers an across track
resolution of 1 cm and an onboard inertial measurement unit
allows for correction of the imagery due to surface motion side
scan imagery was collected on July 12 and July 30, 2019 along the
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length of one of the longlines of the Santa Barbara Mariculture
giant kelp facility.

Subsurface Analysis Using Color Imagery
Underwater color imagery and video was captured by a high
definition 1,080 p (1/2.9′′ sensor, 80◦ FOV) color camera
mounted on a Blue Robotics Remotely Operated Vehicle (ROV)
on July 11 and July 29, 2019 along a portion of the same longline
surveyed using side-scan sonar (Table 2). Visual analysis of the
juvenile kelp growing on the longlines (number of pneumatocysts
individual−1) were performed for the portion of the longline
surveyed on both dates using video collected by the ROV. The
length of each kelp individual growing on the longline was
measured by divers on July 12 and August 1, 2019. Elongation
rate was determined for each individual kelp outplant that was
measured on both dates by dividing the difference in maximum
length by the number of days between surveys.

The images collected by the ROV were automatically analyzed
for subsurface kelp outplant distribution using deep learning
models trained from a set of human annotated imagery (ViQi,
Inc.). The models used a Convolutional Neural Network (CNN;
CaffeNet), which was pre-trained on the ImageNet dataset and
used transfer learning techniques to train the models. Transfer
learning was optimized to retrain the neural network while
only fine-tuning the convolutional, feature retrieval, layers. This
approach is especially useful when training with a small number
of samples and when visual features created for natural image
recognition are descriptive for the task in hand. Our training
dataset consisted of five classes including ocean, kelp, longline,
tag, and wire tie (plants were individually marked with tags
affixed to the line with wire ties). Each class was manually
annotated using polygonal outlines (405 ocean, 370 kelp, 316 long
line, 338 tag, and 230 wire tie polygons). Since small numbers
of training samples require additional methods to render good
models, we exacted multiple samples from polygons using
uniform gridding. The final training set consisted of >125,000
samples of ocean,>11,000 of kelp,>12,000 longline,>4,000 tags
and >2,000 wire ties. The augmented dataset was then randomly
partitioned into a training subset using 60% of the samples,
withholding 20% for testing, and the final 20% for validation.

RESULTS

Effect of Cloud Cover on the Usefulness of

Satellite Observations
Cloud cover, which limits the ability of satellites to observe the
ocean surface, displayed seasonal variability in the SCB over
decadal time scales. Cloud cover over offshore areas was generally
lowest in the winter (x = 29.0%), increased in spring (x = 47.2%)
to a maximum in summer (x = 67.5%) and declined in fall
(x = 35.4%). The seasonal pattern of cloud cover varied spatially
(Figure 1), as cloud cover was fairly consistent in winter, spring,
and fall (σ = 3.3, 5.0, and 4.3%, respectively), while offshore
areas and windward coasts were generally cloudier than the
leeward coasts of the mainland and islands during the summer
(σ = 10.0%). The various satellite systems produced different
numbers of usable images ranging from ∼2 to 13 per season

depending on their repeat time, number of satellites in a system,
and seasonal cloud cover (Table 1).

Kelp Canopy Nitrogen Content Spectral

Algorithm
Several spectral band ratios displayed strong linear and non-
linear relationships with tissue nitrogen content. The ratio of Nr
for any band located between 603 and 644 nm, and any band
located between 665 and 680 nm was significantly and strongly
linearly correlated with tissue nitrogen content. The changes in
spectral shape in this region of the spectrum were superior for
the estimation of tissue nitrogen content compared to spectral
features in the blue, green, and near infrared wavelengths
(Figure 2). The use of GAMs to incorporate the non-linearity
of the relationship between the spectral band ratios and tissue
nitrogen content led to the selection of the bands centered at 640
and 670 nm as the optimized wavelengths for the model:

Nr670nm / Nr640nm (4)

where Nr670nm and Nr640nm are the normalized reflectance at
the bands centered at 670 and 640 nm, respectively (r2 =

0.57; p < 0.0001; Figure 3A). Using both Nr670nm / Nr640nm
and PAR as predictor variables (R2

= 0.60; p < 0.0001, p =

0.015, respectively) decreased the AIC from 142.9 to 130.9,
indicating a more parsimonious model. The effect of PAR on
tissue nitrogen is demonstrated by the different relationships
between Nr670nm / Nr640nm and tissue nitrogen content during
high light (April–September) and low light (October–March)
periods of the year (Figure 3A). The non-linear relationship
betweenNr670nm /Nr640nm and tissue nitrogen content displayed
an effect size range of−0.48 to 0.68, and the relationship became
positive at values >0.62 (Figure 3B). Photosynthetically active
radiation displayed a linear relationship with tissue nitrogen
content where the effect size of the relationship became positive
at values >41 E m−2 d−1, with an effect size range of −0.11 to
0.09 (Figure 3C).

Assessment of Kelp Canopy

Characteristics From Satellite and Aerial

Imagery
In order to compare the various types of imagery and derived
products, we surveyed a 10-hectare area containing kelp forest
canopy with four different sensors over the course of a 3-h period.
We first imaged the kelp canopy using the color camera on
the Phantom 4 Pro sUAS, which produced a color orthomosaic
with a final pixel resolution of 3.2 cm (Figure 4A). Kelp canopy
and seawater were then classified from the color orthomosaic
using (Equations 2 and 3) for a total estimated canopy area of
1.39 hectares (Figure 4B). The multispectral sensor onboard the
Matrice 200 sUAS then imaged the study area, which produced an
orthomosaic with a final pixel resolution of 6.5 cm. Kelp canopy
fraction was then estimated using MESMA for the entire survey
area (x = 0.059; σ = 0.174) and from all pixels containing kelp
canopy (kelp canopy fraction >0; x = 0.424; σ = 0.250) for
a total estimated canopy area of 1.41 hectares (Figure 4C). The
hyperspectral sensor on the Matrice 600 Pro sUAS then imaged
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FIGURE 1 | Mean seasonal cloud cover for areas offshore of Southern California at a 30 × 30m pixel resolution, determined from 35 years of Landsat imagery

(1984–2019). Red dot shows the location of the kelp forest in Figure 4.

the study area to produce amap of canopy tissue nitrogen content
(x = 2.32%; σ = 0.465%). The native 7.2 cm pixels were then
interpolated onto a 25 cm grid, and all grid cells with less than
three tissue nitrogen estimates were discarded (Figure 4D).

The Landsat 7 ETM+ satellite sensor imaged the survey
area simultaneous to the sUAS flights and kelp canopy fraction
was estimated from the entire survey area (Figure 4F; x =

0.037; σ = 0.088) and for all pixels classified as containing
kelp canopy (x = 0.196; σ = 0.099). Kelp canopy fraction
ranged from 0.074 to 0.523, corresponding to a 0.78–3.71 kg m−2

range of canopy biomass density. Kelp canopy fractions from
the multispectral sUAS imagery (6.5 cm) were interpolated to the
30m Landsat grid and were compared using a linear regression
(Figures 4E–G; r2 = 0.853, p < 0.0001; y = 1.087 + 0.015).
Overall, Landsat underestimated kelp canopy fractional cover by
33% when fractions were summed (6.71 vs. 4.50 summed kelp
canopy fraction, respectively).

Acoustic Analysis of Juvenile Kelp

Outplants on Farm Longlines
Kelp outplants increased in size between the two acoustic survey
dates and diver measurements of the kelp outplants displayed an
average elongation rate of 0.55 cm d−1 (σ = 0.38; n = 50). Video
analysis showed an increase in the number of pneumatocysts per

outplant from 1.15 (σ = 1.87; n = 108) on July 11 to 6.18 (σ
= 6.12; n = 97) on July 29, 2019 (Figure 5A). Side scan sonar
imagery showed high acoustic returns for the longline and its
structural buoys and weights during the survey on July 12, 2019.
The subsequent side scan sonar survey on Jul 30, 2019 showed
high acoustic returns for the same farm structures, as well as
many objects attached to the top of the farm line (Figure 5B).
These high acoustic returns were regularly spaced along the farm
line and correspond to the general distance between the kelp
outplants (∼0.5 m).

Kelp Outplant Visualization Using Deep

Learning Models
The resulting deep learning classification model, which included
all five object classes, detected kelp with 72% accuracy (percent of
kelp class polygons correctly identified) and 32% error (percent
of non-kelp class polygons incorrectly identified as kelp). After
initial validation, we refined the model by disabling poorly
performing classes (accuracy<25%). Since our primary objective
was to detect kelp outplants, we also disabled classes deemed
unnecessary (background ocean and wire tie). Disabling the
ocean and wire tie classes reduced errors introduced to other
classes and positively affected model performance, with the final
model detecting kelp with 91% accuracy and 7% error, while
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FIGURE 2 | (A) Smoothed normalized reflectance spectra of giant kelp canopy blades with different tissue nitrogen contents measured in the laboratory. (B)

Smoothed normalized reflectance spectra of the giant kelp canopy using the sUAS hyperspectral sensor. Tissue nitrogen content estimated using the ratio of the

spectral bands centered at 670 and 640 nm (dashed black lines). The bottom panels show enlargements of the areas inside the black boxes in the top panels.

longline detection demonstrated 68% accuracy and 2% error.
The model produced polygonal annotations of kelp and longline
classes that visually resembled human annotations (Figure 6).

DISCUSSION

Remote Monitoring of the Kelp Canopy
Aerial and spaceborne imaging of the floating kelp canopy
have the potential to deliver several actionable products to
offshore aquaculture managers (Table 2 and Figure 4). Satellite
observations of the kelp canopy represent the most mature sector
of the aquaculture monitoring platforms examined in this study
as these sensors have been used to assess natural kelp forest
dynamics over 100’s of km (Cavanaugh et al., 2019). The spectral
and spatial resolution (30m) of the Landsat satellite sensors
can provide estimates of canopy biomass that compare well
to over a decade of in situ diver estimates (Bell et al., 2020).

However, because existing operational multispectral satellites
were primarily designed for terrestrial targets (Table 1), only
the area or biomass of canopy forming kelp species can be
determined. The mixture of kelp canopy and seawater in each
10–30m pixel limits their ability to use common multispectral
band ratios to estimate plant physiological condition or the
elemental content of the tissue (Table 2; Cavanaugh et al.,
2010, Cavanaugh et al., 2011; Bell et al., 2015). In the near
future, opportunities exist for more comprehensive spaceborne
monitoring of kelp aquaculture farms using global, repeat
hyperspectral imaging. The Surface Biology and Geology (SBG)
designated observable (a set of targeted observation capabilities
from a future spaceborne mission) will provide the spectral
coverage and resolution necessary to estimate the physiology and
macromolecular content of the kelp canopy in the presence of
seawater (Bell et al., 2015; Lee et al., 2015). For example, the
spectral bands centered at 640 and 670 nm will be measured by
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FIGURE 3 | (A) Scatterplot of the spectral band ratio of normalized reflectance for bands centered at 670 and 640 nm (Nr670nm/Nr640nm) and tissue nitrogen content.

Colored lines represent best fit lines between Nr670nm/Nr640nm and tissue nitrogen content in the high light season (yellow; April–September) and low light season

(blue; October–March). Mean photosynthetically active radiation (PAR) for 30 days prior to the sampling date. (B) The additive effect of Nr670nm/Nr640nm on tissue

nitrogen content and (C) the additive effect of PAR on tissue nitrogen content produced using a generalized additive model estimating tissue nitrogen content from

both Nr670nm/Nr640nm and PAR. Black lines show the mean relationship and shaded gray areas show the standard error.

the proposed satellite sensor and can assess the physiological
condition and nitrogen content of the kelp canopy without
relying on bands in the red edge (680–750 nm) and near infrared
(>750 nm) regions, which are rapidly attenuated by seawater
(Mobley, 1994).

The temporal resolution of satellite imagery and the lack of
flexibility in image acquisition timing restrict the monitoring
capabilities of satellite imagery for offshore aquaculture. Publicly
available imagery (Table 1) are acquired on a 5 to 16 day repeat
cycle regardless of cloud cover. Cloud cover in offshore areas of
the Southern California Bight is considerably higher than coastal
areas especially in the summer (Figure 1), a period when frequent
monitoring may be vital to optimize production and harvest
timing. However, by combining the imagery of multiple satellite
systems there is an enhanced opportunity of a cloud-free view in
any season (Li and Roy, 2017). Additionally, spatial resolution
may also be problematic since pixel resolution is typically
between 10 and 30m (Table 2). Fine scale canopy features will
likely be lost as the reflectance signal is averaged over larger
areas, whichmay include floating farm structures (Figures 4E–G;
Cui et al., 2019). Higher resolution satellite imagery (0.5–3m)
can be expensive to acquire, not publicly available, and/or not
feasible for repeat imaging on the time scales necessary to deliver
actionable information (Fan et al., 2018; Fu et al., 2019; Zhu
et al., 2019). Despite the increased cloud cover in the offshore
zone, moderate spatial resolution satellite sensors (daily repeat
interval, more consistent coverage) could be used to monitor the
farm environment (e.g., sea surface temperature). While these
sensors cannot provide direct observations of the kelp canopy,
valuable products such as seawater nitrate concentration can be
empirically derived from satellite determinations of sea surface
temperature (Kamykowski and Zentara, 1986; Snyder et al.,
2020).

While there has been an increased use of sUAS for agricultural
crop monitoring over the past decade (reviewed in Puri et al.,
2017), their use in aquaculture has been rare (Reshma and

Kumar, 2016). Despite their paucity of use, quality imagery
of the kelp canopy can be acquired with a variety of sUAS
mounted sensors, delivering maps of canopy area, canopy
biomass, and physiological metrics such as tissue nitrogen
content (Figures 4A–D). Commercially available color and
multispectral sensors can rapidly capture imagery over ∼40
hectares in a single flight, and canopy area can be classified
without the need for sophisticated analysis or expensive sensors
(Figure 4B). The considerable differences in reflectance between
seawater and the floating kelp canopy allows for a simple
band ratio of the red and blue spectral bands to differentiate
the classes. Furthermore, the high spatial resolution (∼5 cm)
of this imagery can quantify sparse canopy which may be
missed by the lower resolution imagery acquired by satellite
sensors (Figures 4E–G). Hyperspectral sensors can provide the
spectral data necessary to estimate the physiological and tissue
content metrics of the kelp canopy through the quantification
of photosynthetic pigment concentrations (Figure 4D; Bell et al.,
2015; Adão et al., 2017). The chlorophyll a pigment absorbs
blue and red wavelengths to drive the photosynthetic process,
with absorption peaks at 430 nm and 662 nm. Giant kelp
lacks the chlorophyll b pigment (absorption peaks at 453 and
642 nm) but possesses the chlorophyll c pigment (absorption
peaks at 444 and 626 nm; Wheeler, 1980). The absence of the
chlorophyll b pigment produces a peak in the kelp reflectance
spectrum at ∼640 nm and provides a reference point to assess
the relative spectral absorption associated with the chlorophyll a
pigment at ∼670 nm (Figure 2). While the spectral information
at 640 and 670 nm can be used to assess the concentration of
the chlorophyll a pigment (Bell et al., 2015), the relationship
between pigment concentration and tissue nitrogen content
is also a function of the amount of sunlight reaching the
surface canopy (Figure 4). Marine photosynthetic organisms
optimize pigment concentrations in response to available light
through photoacclimation, where increased solar irradiance
lessens the need for high pigment concentrations to maximize
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FIGURE 4 | (A) Color orthomosaic of the Arroyo Quemado kelp forest canopy using the color camera on the Phantom 4 Pro sUAS (pixel resolution of 3.2 cm). (B)

Kelp canopy classified from the color orthomosaic. (C) Fraction of each pixel covered by kelp canopy determined using Multiple Endmember Spectral Mixture Analysis

(MESMA) with imagery from the sUAS multispectral sensor (pixel resolution of 6.5 cm). (D) Kelp canopy nitrogen content determined using the nitrogen content

spectral algorithm with imagery from the sUAS hyperspectral sensor (pixel resolution 25 cm). (E) The mean kelp canopy fraction from the multispectral sensor binned

into 30m pixels to compare with (F). Kelp canopy fraction determined from the Landsat 7 ETM+ multispectral satellite sensor. (G) Comparison of the kelp canopy

fraction from the multispectral sUAS sensor binned into 30m pixels and the Landsat 7 ETM+ sensor. Pale yellow color shows areas not imaged by the sensor. All

imagery acquired between 9:30 a.m. and 12 p.m. local time on June 30, 2019.

photosynthesis (Laws and Bannister, 1980). While an increase
in photosynthetic pigment is positively associated with a higher
tissue nitrogen content, this relationship is modulated by light
(Figure 3), and these functions can be applied to spectral imagery
to generate maps of tissue nitrogen content across large areas of
kelp canopy (Figure 4D). Knowledge of the spatial patterns of
physiological condition and tissue content metrics of the kelp
canopy can be used to map farm production and time harvest
to maximize desired biomass quality (i.e., nitrogen content).
However, the sheer volume of data collected by hyperspectral
sensors is immense, spectra are difficult to process, and pre-
flight calibration procedures make these sensors challenging to
use in an operational capacity. Research using hyperspectral

imaging to identify the specific spectral bands necessary for
the simultaneous estimation of valuable canopy traits (e.g.,
biomass, nitrogen/sugar content, age) could lead to user-friendly
multispectral sensors with specific bands tailored for kelp canopy
monitoring (Figure 2).

Remote Quantification of Subsurface Kelp

Outplants
Since juvenile kelp stages are especially sensitive to changing
environmental conditions, competition, and herbivory, it may
be important to assess the state of kelp outplants prior to
canopy development using subsurface sensors (Dean et al., 1984;
Hernández-Carmona et al., 2001; Gorman and Connell, 2009).
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FIGURE 5 | (A) Histogram showing the number of pneumatocysts per individual determined from video captured by a remotely operated vehicle (ROV) on a section of

each line at each date. (B) Side scan sonar imagery of the line on July 12 and July 30, 2019 showing farm structures and a drifting kelp frond caught on the farm

buoy. Insets inside the orange boxes show enlarged areas of sonar returns along the farm lines between the two dates. Orange arrows show high acoustics returns at

the locations of probable kelp outplants. Color images captured by the ROV showing typical size of individual kelp outplants for each date.

FIGURE 6 | Schematic showing the steps to develop and validate the deep learning model used to automatically classify giant kelp juveniles on an aquaculture farm.

(1) Collect imagery of the farm lines using a color camera mounted on an underwater vehicle. (2) The images (n = 137) were classified by hand into five classes: Kelp,

Line, Tag, Ocean, and Wire Tie. Light blue areas show sections of the background ocean which were not classified by hand. (3) The number of samples for model

training was augmented by extracting multiple samples from inside the polygons of each class. The model was then trained using 60% of the images with a

convolutional neural network and refined using 20% of the images. Model refinement involves identifying and removing poorly performing classes. (4) The final model

was validated using the final 20% of the imagery by comparing hand classifications to the deep learning classifications.

The automated analysis of underwater color imagery using deep
learning models could enable repeat monitoring of kelp juveniles
on offshore farms. Machine learning based methods have already

been successfully applied to underwater color imagery to classify
fish species and quantify the biodiversity of marine sessile
communities (Rahimi et al., 2014; Salman et al., 2016). In
this study, a small set of underwater imagery collected by an

inexpensive color camera mounted on an ROV was used to train
a deep learning model and successfully classify kelp, tags, and
longlines despite changes in kelp orientation due to water motion

(Figure 6). Thesemethods have advantages over spectral analyses
as depth, bottom reflectance, and standoff distance of the sensor
can significantly change the measured reflectance spectrum
(Mobley, 1994). These tools should also be adaptable to other
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kelp aquaculture monitoring tasks such as quantifying epibiont
load or identifying the presence of herbivores. Capturing usable
underwater color imagery requires clear water and sufficient
solar illumination to produce satisfactory results. Fortunately,
suspended particle concentrations are reduced in the offshore
environments off the Southern California coast which should
lead to greater opportunities for underwater image collection
(Henderikx Freitas et al., 2017). Additionally, offshore farm
structures can be equipped with inexpensive turbidity or light
sensors in order to optimize the timing of image acquisition.

Acoustic measurements do not require light and are also less
sensitive to water clarity than optical imaging and high-quality
measurements can be acquired at any time of day and across a
range of seawater conditions (Gonzalez-Socoloske et al., 2009).
Side scan sonar is particularly useful to identify kelp outplants
once the juveniles produce gas filled pneumatocysts, which lead
to enhanced acoustic returns (Figure 5; Wilson, 2011). Since a
pneumatocyst exists at the base of each giant kelp blade, there
is a strong linear relationship between total gas volume and kelp
biomass, such that acoustic imagery is ideal for monitoring the
spatial arrangement and growth of subsurface stages of giant
kelp on aquaculture farms (Wilson, 2011). Future development
of these technologies also brings new opportunities, as many
farmed kelp species never produce a floating canopy and require
subsurface monitoring using acoustic sensors or color imaging
(Fischell et al., 2019). These techniques could be deployed to
survey numerous species and have potential for monitoring
across aquaculture industries.

Operational Risks and Limitations
While the use of remote sensing platforms for offshore
aquaculture monitoring reduces risks and costs related to in situ
monitoring there are several limitations to these platforms that
must be addressed before they are used in an operational context
(Table 3). At the present time,monitoring with satellite platforms
presents the fewest operational limitations. Sensor hardware
failures are rare, though they may occasionally lead to missing
data or failure of the sensor system (Markham et al., 2004; Chan
et al., 2018). While the advent of freely available imagery has led
to massive increases in both research and commercial remote
sensing applications, there is no guarantee that these policies will
exist in perpetuity (Zhu, 2019).

A major limiting factor for sUAS monitoring of offshore kelp
aquaculture farms is the lack of available docking, charging, and
data downlink infrastructure necessary for the autonomous and
repeat deployment of these systems. However, there are several
recent patents outlining the design of these systems, suggesting
that such capabilities may be available in the near future (Garrec
and Cornic, 2012; Yu et al., 2016; Gentry et al., 2018). While
consumer grade sUAS equipped with color cameras are relatively
inexpensive (<$1,500 USD), multispectral sensors can cost
several thousand dollars. Processing of the individual images
(e.g., orthorectification, mosaicking) is the responsibility of the
user and precise georeferencing and radiometric calibrationmust
be performed before mosaics and their derived products can
be compared (Cruzan et al., 2016; Doughty and Cavanaugh,
2019). These tasks have been greatly simplified for users
without image analysis training by several companies who offer

cloud-based image processing through subscription services.
Any autonomous vehicle carries a risk of loss associated with
mechanical failure, GPS signal interference, and an inability to
react to novel situations (Milanés et al., 2008). Additionally, while
the U.S. Federal Aviation Administration adopted regulations
allowing for extensive agricultural monitoring activities by sUAS
in 2016, current regulations only allow for ‘line of sight’ operation
where the pilot must maintain visual observation of the vehicle
(Patel, 2016). Such rules will need to be adjusted for the sUAS
monitoring of offshore aquaculture to become a reality.

While autonomous underwater vehicles are a promising
monitoring platform for both acoustic and color imaging, there
are both significant cost and operational risk barriers thatmust be
crossed before these systems become viable monitoring options.
Research-grade side scan sonar systems cost tens of thousands
of dollars, although there has been recent success in monitoring
submerged aquatic vegetation with less expensive consumer-
grade systems (Greene et al., 2018).While the cost of autonomous
underwater vehicles is currently prohibitive to most aquaculture
operations, several small and low-cost vehicles are entering the
market space andmay revolutionize the collection of acoustic and
color imagery in the coming years, and the development cost-
effective infrastructure for docking, charging, and data downlink
for these vehicles is an active area of research (Hobson et al., 2003;
Pyle et al., 2012; Manley and Smith, 2017). Due to these high
costs, the loss of underwater vehicles and their associated sensors
a paramount concern. New statistical approaches to inform the
probability of vehicle loss could be used to determine low risk
conditions and provide adaptive mission management for these
autonomous platforms (Brito and Griffiths, 2016).

Additionally, it is important to assess the risks these
monitoring platforms and large-scale offshore aquaculture farms
present to the environment. While sUAS carry limited risk
to the environment outside of vehicle loss, their potential
effects on the behavior of seabirds is an often-cited concern.
Studies have found minimal negative effects of sUAS while
censusing nesting colonies (Brisson-Curadeau et al., 2017)
however aquaculture operations should be situated away from
wildlife areas to avoid potential interactions. Below water, the
acoustic imaging systems examined in this study (side scan
sonar) generate high-frequency sound at the upper limit of
the audible spectrum and are unlikely to cause a behavioral
response from marine mammals (MacGillivray et al., 2013).
Potential negative impacts of large-scale offshore aquaculture
structures including wildlife interactions, shipping hazards, and
the generation of marine debris are valid concerns and robust
spatial planning should be prioritized to reduce conflicts and
avoid environmental impacts (Gentry et al., 2017b; Lester et al.,
2018).

CONCLUSIONS

This examination of remote sensing technologies guides the
best uses of these platforms to deliver actionable products
for offshore kelp aquaculture farms. Kelp outplant viability
and growth are most readily assessed using underwater color
imagery classified with deep learning models. This combination
of inexpensive cameras and machine learning leads to the rapid
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TABLE 3 | The advantages, disadvantages, risks, and future opportunities of various remote sensing technologies applicable to offshore kelp aquaculture farms.

Application Tool Advantages Disadvantages Risks Future opportunities

Canopy Satellite

Imagery

- Extensive prior work

- Free/publicly

available

- Cloud-based

processing

- Large areal coverage

- Spatial resolution

(10’s m)

- Cloud cover

- No flexibility in timing

- Only canopy species

- Funding dependent

- Sensor malfunction

- Higher spectral

resolution

- High spatial/temporal

resolution

constellations

sUAS

Imagery

- Flexibility on timing

- Spatial resolution

(cm’s)

- Farm scale (10’s

hectares)

- Multiple sensors

avail.

- Consumer-grade

inexpensive

- Depend on

infrastructure

- Only canopy species

- Expensive sensors

- Image processing

- Vehicle/sensor loss

- Government

regulation

- Vehicle improvements

- Specific kelp

aquaculture sensor

development

Subsurface Acoustic

Imagery

- Monitoring of juvenile

stages

- Water clarity less

important

- Expensive vehicles

- Expensive sensors

- Depend on

infrastructure

- Image processing

- Vehicle/sensor loss - Potential for lower

cost vehicles/sensors

- Applications for

multiple aquaculture

sectors

Deep Learning

Classifications of

Imagery

- Monitoring of juvenile

stages

- Tools are nascent

- Customizable/multiple

uses

- Inexpensive sensors

- Water clarity

important

- Development of

specific algorithm

- Vehicle/sensor loss - Potential for lower

cost vehicles

- Stereo cameras

- Applications for

multiple aquaculture

sectors

identification and sizing of small juvenile kelps, measuring
survivorship and growth much earlier than other subsurface
monitoring technologies. The use of deep learning models to
detect kelp in color imagery could be enhanced by future research
developing additional models that quantify the abundance of
kelp herbivores and epibionts. Acoustic imaging from side scan
sonar is most effective once pneumatocysts have developed and
used to track the growth of subsurface kelp fronds that are too
large to be imaged using color imagery (Wilson, 2011). While the
monitoring of kelp farms with underwater side scan sonar and
color imaging shows great promise, their implementation relies
on the development of low-cost AUVs and docking infrastructure
(Hobson et al., 2003; Pyle et al., 2012; Manley and Smith,
2017). Additional research using consumer-grade side scan sonar
sensors to quantify subsurface kelp will also reduce costs (Greene
et al., 2018). Due to high summertime cloud cover in offshore
areas, satellite imagery is most useful for large-scale monitoring
of the farm environment using daily, moderate spatial resolution
estimates of sea surface temperature and derived products such
as seawater nitrate concentration (Snyder et al., 2020). Due to
the rapid growth, turnover, and senescence rates of giant kelp,
observations of kelp canopy biomass quantity and condition,
such as tissue nitrogen content, are most readily achieved
using sUAS imagery (Clendenning, 1971; Rodriguez et al., 2013;
Rassweiler et al., 2018). Improvements in sUAS infrastructure,
multispectral sensors customized for estimating kelp canopy
traits, and a relaxation of the ‘line of sight’ regulation for
offshore areas will strengthen the role of kelp canopy monitoring
by sUAS.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

TB, RM, NNi, and DS conceived the study and wrote the
manuscript. TB, JS, and MG processed satellite imagery for the
cloud cover analysis. TB, JS, and CM collected and processed
the sUAS imagery of kelp canopy. DS, TB, KyC, and KaC
developed the color and multispectral sUAS algorithms. TB, JS,
NNe, andDR collected the laboratory spectral measurements and
performed the pigment and elemental analyses. TB, NNe, and
MG developed the tissue nitrogen content spectral algorithm.
NNi and CM collected and processed the underwater color
and acoustic imagery of the kelp outplants. DF and CM
developed the deep learning algorithms. DR, RM, and CY
collected and processed the in situ data of the kelp outplants.
All authors contributed to interpreting the results and revising
the manuscript.

FUNDING

This was supported by the US Department of Energy’s Advanced
Research Projects Agency–Energy (ARPA-E; DE-AR0000922
and DE-AR0000914), the US National Science Foundation
(OCE 1831937), and by the National Aeronautics and Space
Administration (NNX14AR62A).

Frontiers in Marine Science | www.frontiersin.org 13 December 2020 | Volume 7 | Article 520223108

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Bell et al. Autonomous Monitoring of Offshore Aquaculture

ACKNOWLEDGMENTS

We would like to thank all individuals involved with the
UCSB/USC/UWM ARPA-E MARINER kelp genetics project
who outplanted and maintained the kelp farm off the coast of
Santa Barbara. We would also like to extend a sincere thanks to
the many field technicians and student volunteers who conduct
field and laboratory work for the Santa Barbara Coastal LTER.

Special thanks go to guest editors Dr. Stephanie Palmer, Dr.
Pierre Gernez, Dr. Rodney Forster, and Dr. Yoann Thomas.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2020.520223/full#supplementary-material

REFERENCES

Ackleson, S. G., Smith, J. P., Rodriguez, L.M.,Moses,W. J., and Russell, B. J. (2017).

Autonomous coral reef survey in support of remote sensing. Front. Mar. Sci.

4:325. doi: 10.3389/fmars.2017.00325

Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., et al.

(2017). Hyperspectral imaging: a review on uav-based sensors, data

processing and applications for agriculture and forestry. Remote Sens. 9:1110.

doi: 10.3390/rs9111110

Bell, T. W., Allen, J. G., Cavanaugh, K. C., and Siegel, D. A. (2020). Three decades

of variability in California’s giant kelp forests from the Landsat satellites. Remote

Sens. Environ. 238:110811. doi: 10.1016/j.rse.2018.06.039

Bell, T.W., Cavanaugh, K. C., and Siegel, D. A. (2015). Remote monitoring of giant

kelp biomass and physiological condition: an evaluation of the potential for the

Hyperspectral Infrared Imager (HyspIRI) mission. Remote Sens. Environ. 167,

218–228. doi: 10.1016/j.rse.2015.05.003

Bell, T. W., Reed, D. C., Nelson, N. B., and Siegel, D. A. (2018). Regional patterns

of physiological condition determine giant kelp net primary production

dynamics. Limnol. Oceanogr. 63, 472–483. doi: 10.1002/lno.10753

Brisson-Curadeau, É., Bird, D., Burke, C., Fifield, D. A., Pace, P., Sherley, R. B.,

et al. (2017). Seabird species vary in behavioural response to drone census. Sci.

Rep. 7:17884. doi: 10.1038/s41598-017-18202-3

Brito, M., and Griffiths, G. (2016). A Bayesian approach for predicting risk of

autonomous underwater vehicle loss during their missions. Reliab. Eng. Syst.

Saf. 146, 55–67. doi: 10.1016/j.ress.2015.10.004

Card, D. H., Peterson, D. L., Matson, P. A., and Aber, J. D. (1988). Prediction

of leaf chemistry by the use of visible and near infrared reflectance

spectroscopy. Remote Sens. Environ. 26, 123–147. doi: 10.1016/0034-4257(88)

90092-2

Cavanaugh, K., Siegel, D., Kinlan, B., and Reed, D. (2010). Scaling giant kelp field

measurements to regional scales using satellite observations. Mar. Ecol. Prog.

Ser. 403, 13–27. doi: 10.3354/meps08467

Cavanaugh, K., Siegel, D., Reed, D., and Dennison, P. (2011). Environmental

controls of giant kelp biomass in the Santa Barbara Channel, California. Mar.

Ecol. Prog. Ser. 429, 1–17. doi: 10.3354/meps09141

Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. N., and Beas-Luna,

R. (2019). Spatial variability in the resistance and resilience of giant kelp in

southern and Baja California to a multiyear heatwave. Front. Mar. Sci. 6:413.

doi: 10.3389/fmars.2019.00413

Chan, S. K., Bindlish, R., O’Neill, P., Jackson, T., Njoku, E., Dunbar, S., et al. (2018).

Development and assessment of the SMAP enhanced passive soil moisture

product. Remote Sens. Environ. 204, 931–941. doi: 10.1016/j.rse.2017.08.025

Clendenning, K. A. (1971). “Photosynthesis and general development,” in The

Biology of Giant Kelp Beds (Macrocystis) in California. Beihefte Zur Nova

Hedwigia. Lehre, ed W. J. North (Coley: Verlag Von J. Cramer), 169–190.

Correa, T., Gutiérrez, A., Flores, R., Buschmann, A. H., Cornejo, P., and Bucarey,

C. (2016). Production and economic assessment of giant kelp Macrocystis

pyrifera cultivation for abalone feed in the south of Chile. Aquac. Res. 47,

698–707. doi: 10.1111/are.12529

Cruzan, M. B., Weinstein, B. G., Grasty, M. R., Kohrn, B. F., Hendrickson, E. C.,

Arredondo, T. M., et al. (2016). Small unmanned aerial vehicles (micro-uavs,

drones) in plant ecology. Appl. Plant Sci. 4:1600041. doi: 10.3732/apps.1600041

Cui, B., Fei, D., Shao, G., Lu, Y., and Chu, J. (2019). Extracting raft aquaculture

areas from remote sensing images via an improved U-Net with a PSE structure.

Remote Sens. 11:2053. doi: 10.3390/rs11172053

Dean, T. A., Schroeter, S. C., and Dixon, J. D. (1984). Effects of grazing

by two species of sea urchins (Strongylocentrotus franciscanus and

Lytechinus anamesus) on recruitment and survival of two species of kelp

(Macrocystis pyrifera and Pterygophora californica). Mar. Biol. 78, 301–313.

doi: 10.1007/BF00393016

Doughty, C., and Cavanaugh, K. (2019). Mapping coastal wetland biomass from

high resolution unmanned aerial vehicle (UAV) imagery. Remote Sens. 11:540.

doi: 10.3390/rs11050540

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon,

F., et al. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission

for GMES Operational Services. Remote Sens. Environ. 120, 25–36.

doi: 10.1016/j.rse.2011.11.026

Fan, J., Zhao, J., Song, D., Wang, X., Wang, X., and Su, X. (2018). Marine floating

raft aquaculture dynamic monitoring based on multi-source GF Imagery. in

2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics)

(Hangzhou: IEEE), 1–4. doi: 10.1109/Agro-Geoinformatics.2018.8476085

Fedorov, D. V., Kvilekval, Kristian, G., Doheny, B., Sampson, S., Miller, R. J.,

and Manjunath, B. S. (2017). Deep Learning for All: Managing and Analyzing

Underwater and Remote Sensing Imagery on the Web Using BisQue. UC Santa

Barbara. Retrieved from: https://escholarship.org/uc/item/9z73t7hv (accessed

November 29, 2020).

Fischell, E. M., Gomez-ibanez, D., Lavery, A., Stanton, T., and Kukulya, A. (2019).

“Autonomous underwater vehicle perception of infrastructure and growth for

aquaculture,” in IEEE ICRA Workshop, Underwater Robotic Perception 2019

(Montreal, QC), 1–7

Fu, Y., Ye, Z., Deng, J., Zheng, X., Huang, Y., Yang, W., et al. (2019). Finer

resolution mapping of marine aquaculture areas using worldview-2 imagery

and a hierarchical cascade convolutional neural network. Remote Sens. 11:1678.

doi: 10.3390/rs11141678

Garrec, P., and Cornic, P. (2012). Autonomous and Automatic Landing System

for Drones. U.S. Patent No. 8,265,808 B2. Washington, DC: U.S. Patent and

Trademark Office.

Gates, D. M., Keegan, H. J., Schleter, J. C., and Weidner, V. R. (1965). Spectral

properties of plants. Appl. Opt. 4:11. doi: 10.1364/AO.4.000011

Gausman, H. W. (1983). Visible light reflectance, transmittance, and absorptance

of differently pigmented cotton leaves. Remote Sens. Environ. 13, 233–238.

doi: 10.1016/0034-4257(83)90041-X

Gentry, N., Hsieh, R., and Nguyen, L. (2018). Multi-Use UAV Docking Station

Systems and Methods. U.S. Patent No. 9,387,928 B1. Washington, DC: U.S.

Patent and Trademark Office.

Gentry, R. R., Froehlich, H. E., Grimm, D., Kareiva, P., Parke, M., Rust, M., et al.

(2017a). Mapping the global potential for marine aquaculture. Nat. Ecol. Evol.

1, 1317–1324. doi: 10.1038/s41559-017-0257-9

Gentry, R. R., Lester, S. E., Kappel, C. V., White, C., Bell, T. W., Stevens, J.,

et al. (2017b). Offshore aquaculture: spatial planning principles for sustainable

development. Ecol. Evol. 7:2637. doi: 10.1002/ece3.2637

Gonzalez-Socoloske, D., Olivera-Gomez, L. D., and Ford, R. E. (2009). Detection of

free-ranging West Indian manatees Trichechus manatus using side-scan sonar.

Endanger. Species Res. 8, 249–257. doi: 10.3354/esr00232

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.

(2017). Google earth engine: planetary-scale geospatial analysis for everyone.

Remote Sens. Environ. 202, 18–27. doi: 10.1016/j.rse.2017.06.031

Gorman, D., and Connell, S. D. (2009). Recovering subtidal forests

in human-dominated landscapes. J. Appl. Ecol. 46, 1258–1265.

doi: 10.1111/j.1365-2664.2009.01711.x

Frontiers in Marine Science | www.frontiersin.org 14 December 2020 | Volume 7 | Article 520223109

https://www.frontiersin.org/articles/10.3389/fmars.2020.520223/full#supplementary-material
https://doi.org/10.3389/fmars.2017.00325
https://doi.org/10.3390/rs9111110
https://doi.org/10.1016/j.rse.2018.06.039
https://doi.org/10.1016/j.rse.2015.05.003
https://doi.org/10.1002/lno.10753
https://doi.org/10.1038/s41598-017-18202-3
https://doi.org/10.1016/j.ress.2015.10.004
https://doi.org/10.1016/0034-4257(88)90092-2
https://doi.org/10.3354/meps08467
https://doi.org/10.3354/meps09141
https://doi.org/10.3389/fmars.2019.00413
https://doi.org/10.1016/j.rse.2017.08.025
https://doi.org/10.1111/are.12529
https://doi.org/10.3732/apps.1600041
https://doi.org/10.3390/rs11172053
https://doi.org/10.1007/BF00393016
https://doi.org/10.3390/rs11050540
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1109/Agro-Geoinformatics.2018.8476085
https://escholarship.org/uc/item/9z73t7hv
https://doi.org/10.3390/rs11141678
https://doi.org/10.1364/AO.4.000011
https://doi.org/10.1016/0034-4257(83)90041-X
https://doi.org/10.1038/s41559-017-0257-9
https://doi.org/10.1002/ece3.2637
https://doi.org/10.3354/esr00232
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1111/j.1365-2664.2009.01711.x
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Bell et al. Autonomous Monitoring of Offshore Aquaculture

Graham, M. H., Vasquez, J. A., and Buschmann, A. H. (2007). Global ecology of

the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr. Mar. Biol.

An Annu. Rev. 45, 39–88. doi: 10.1201/9781420050943.ch2

Greene, A., Rahman, A. F., Kline, R., and Rahman, M. S. (2018). Side

scan sonar: A cost-efficient alternative method for measuring seagrass

cover in shallow environments. Estuar. Coast. Shelf Sci. 207, 250–258.

doi: 10.1016/j.ecss.2018.04.017

Gutierrez, A., Correa, T., Muñoz, V., Santibañez, A., Marcos, R., Cáceres, C.,

et al. (2006). Farming of the giant kelp Macrocystis pyrifera in southern

chile for development of novel food products. J. Appl. Phycol. 18, 259–267.

doi: 10.1007/s10811-006-9025-y

Hamilton, S. L., Bell, T. W., Watson, J. R., Grorud-Colvert, K. A., and

Menge, B. A. (2020). Remote sensing: generation of long-term kelp bed

data sets for evaluation of impacts of climatic variation. Ecology 101:e03031.

doi: 10.1002/ecy.3031

Hardin, P. J., Lulla, V., Jensen, R. R., and Jensen, J. R. (2019). Small

Unmanned Aerial Systems (sUAS) for environmental remote sensing:

challenges and opportunities revisited. GIScience Remote Sens. 56, 309–322.

doi: 10.1080/15481603.2018.1510088

Henderikx Freitas, F., Siegel, D. A., Maritorena, S., and Fields, E. (2017). Satellite

assessment of particulate matter and phytoplankton variations in the Santa

Barbara Channel and its surrounding waters: role of surface waves. J. Geophys.

Res. Ocean. 122, 355–371. doi: 10.1002/2016JC012152

Hernández-Carmona, G., Robledo, D., and Serviere-Zaragoza, E. (2001). Effect

of nutrient availability on Macrocystis pyrifera recruitment and survival

near its southern limit off Baja California. Bot. Mar. 44, 221–229.

doi: 10.1515/BOT.2001.029

Hobson, B., Schulz, B., Pinnix, H., and Moody, R. (2003). Low-Cost UUVs for Task

Specific and Expendable Missions. Technol. [C/CD], 2–5. Available online at:

https://www.researchgate.net/publication/228902666_Low-cost_UUVs_for_

task_specific_and_expendable_missions (accessed November 29, 2020).

Hochberg, E. J., Atkinson, M. J., Apprill, A., and Andréfouët, S., (2004). Spectral

reflectance of coral. Coral Reefs 23, 84–95. doi: 10.1007/s00338-003-0350-1

Kamykowski, D., and Zentara, S.-J. (1986). Predicting plant nutrient

concentrations from temperature and sigma-t in the upper kilometer of

the world ocean. Deep Sea Res. Part A Oceanogr. Res. Pap. 33, 89–105.

doi: 10.1016/0198-0149(86)90109-3

Laws, E., and Bannister, T. (1980). Nutrient and light-limited growth of

Thalassiosira fluviatilis in continuous culture, with implications for

phytoplankton growth in the ocean. Limnol. Oceanogr. 25, 457–473.

doi: 10.4319/lo.1980.25.3.0457

Lee, C. M., Cable, M. L., Hook, S. J., Green, R. O., Ustin, S. L., Mandl, D. J.,

et al. (2015). An introduction to the NASA hyperspectral InfraRed imager

(HyspIRI) mission and preparatory activities. Remote Sens. Environ. 167, 6–19.

doi: 10.1016/j.rse.2015.06.012

Lester, S. E., Stevens, J. M., Gentry, R. R., Kappel, C. V., Bell, T. W., Costello, C. J.,

et al. (2018). Marine spatial planning makes room for offshore aquaculture in

crowded coastal waters.Nat. Commun. 9:945. doi: 10.1038/s41467-018-03249-1

Li, J., and Roy, D. P. (2017). A global analysis of sentinel-2A, sentinel-2B and

landsat-8 data revisit intervals and implications for terrestrial monitoring.

Remote Sens. 9:902. doi: 10.3390/rs9090902

Lovatelli, A., Aguilar-Manjarrez, J., and Soto, D. (2013). Expanding mariculture

farther offshore: Technical, environmental, spatial and governance

challenges. FAO Technical Workshop (p. 73). Orbetello: FAO Fisheries

and Aquaculture Department.

Lund-Hansen, L. C., Juul, T., Eskildsen, T. D., Hawes, I., Sorrell, B., Melvad, C.,

et al. (2018). A low-cost remotely operated vehicle (ROV) with an optical

positioning system for under-ice measurements and sampling. Cold Reg. Sci.

Technol. 151, 148–155. doi: 10.1016/j.coldregions.2018.03.017

MacGillivray, A. O., Racca, R., and Li, Z. (2013). Marine mammal audibility of

selected shallow-water survey sources. J. Acoust. Soc. Am. 135, EL35–EL40.

doi: 10.1121/1.4838296

Manley, J. E., and Smith, J. (2017). Rapid Development and Evolution of a Micro-

UUV. Ocean. 2017 – Anchorage.

Markham, B., Barsi, J., Montanaro, M., McCorkel, J., Gerace, A., Pedelty, J., et

al. (2018). “Landsat-8 on-orbit and Landsat-9 pre-launch sensor radiometric

characterization,” in Proc. SPIE 10781, Earth Observing Missions and

Sensors: Development, Implementation, and Characterization, Vol. 1078104.

doi: 10.1117/12.2324715

Markham, B. L., Storey, J. C.,Williams, D. L., and Irons, J. R. (2004). Landsat sensor

performance: history and current status. IEEE Trans. Geosci. Remote Sens. 42,

2691–2694. doi: 10.1109/TGRS.2004.840720

Milanés, V., Naranjo, J. E., González, C., Alonso, J., and De Pedro, T. (2008).

Autonomous vehicle based in cooperative GPS and inertial systems. Robotica

26, 627–633. doi: 10.1017/S0263574708004232

Mobley, C. D. (1994). Light and Water: Radiative Transfer in Natural Waters. New

York, NY: Academic Press.

National Academies of Sciences, Engineering, and Medicine (2018). Thriving on

Our Changing Planet: A Decadal Strategy for Earth Observation from Space.

Washington, DC: The National Academies Press.

Neushul, M. (1987). “Energy from marine biomass: the historical record,” in

Seaweed Cultivation for Renewable Resources, eds K. T. Bird and P. H. Benson

(Amsterdam: Elsevier Science Publishers), 1–37.

Parnell, P. E. (2015). The effects of seascape pattern on algal patch structure, sea

urchin barrens, and ecological processes. J. Exp. Mar. Biol. Ecol. 465, 64–76.

doi: 10.1016/j.jembe.2015.01.010

Patel, P. (2016). Agriculture drones are finally cleared for takeoff [News]. IEEE

Spectr. 53, 13–14. doi: 10.1109/MSPEC.2016.7607013

Puri, V., Nayyar, A., and Raja, L. (2017). Agriculture drones: a modern

breakthrough in precision agriculture. J. Stat. Manag. Syst. 20, 507–518.

doi: 10.1080/09720510.2017.1395171

Pyle, D., Granger, R., Geoghegan, B., Lindman, R., and Smith, J. (2012).

“Leveraging a large UUV platform with a docking station to enable forward

basing and persistence for light weight AUVs,” in OCEANS 2012 MTS/IEEE:

Harnessing the Power of the Ocean (Hampton Roads, VA: IEEE), 1–8.

doi: 10.1109/OCEANS.2012.6404932

Rahimi, A. M., Miller, R. J., Fedorov, D. V., Sunderrajan, S., Doheny, B.

M., Page, H. M., et al. (2014). “Marine biodiversity classification using

dropout regularization,” in Proceedings - 2014 ICPR Workshop on Computer

Vision for Analysis of Underwater Imagery, CVAUI 2014 (Stockholm), 80–87.

doi: 10.1109/CVAUI.2014.17

Rassweiler, A., Reed, D. C., Harrer, S. L., and Nelson, J. C. (2018). Improved

estimates of net primary production, growth, and standing crop ofMacrocystis

pyrifera in Southern California. Ecology 99, 2132–2132. doi: 10.1002/ecy.2440

Reed, D. C., Rassweiler, A., and Arkema, K. K. (2008). Biomass rather than growth

rate determines variation in net primary production by giant kelp. Ecology 89,

2493–2505. doi: 10.1890/07-1106.1

Reshma, B., and Kumar, S. S. (2016). “Precision aquaculture drone algorithm for

delivery in sea cages,” Proc. 2nd IEEE Int. Conf. Eng. Technol. ICETECH 2016

(Coimbatore), 1264–1270. doi: 10.1109/ICETECH.2016.7569455

Roberts, D., Gardner, M., Church, R., Ustin, S., Scheer, G., and

Green, R. O. (1998). Mapping chaparral in the Santa Monica

Mountains using multiple endmember spectral mixture models.

Remote Sens. Environ. 65, 267–279. doi: 10.1016/S0034-4257(98)

00037-6

Rodriguez, G., Rassweiler, A., Reed, D., and Holbrook, S. (2013). The importance

of progressive senescence in the biomass dynamics of giant kelp (Macrocystis

pyrifera). Ecology 94, 1848–1858. doi: 10.1890/12-1340.1

Rodriguez, G. E., Reed, D. C., and Holbrook, S. J. (2016). Blade life span, structural

investment, and nutrient allocation in giant kelp. Oecologia 182, 397–404.

doi: 10.1007/s00442-016-3674-6

Salman, A., Jalal, A., Shafait, F., Mian, A., Shortis, M., Seager, J., et al. (2016). Fish

species classification in unconstrained underwater environments based on deep

learning. Limnol. Oceanogr. Methods 14, 570–585. doi: 10.1002/lom3.10113

Savitsky, A., and Golay, M. J. E. (1964). Smoothing and differentiation of

data by simplified least squares procedures. Anal. Chem. 36, 1627–1639.

doi: 10.1021/ac60214a047

Shainee, M., Haskins, C., Ellingsen, H., and Leira, B. J. (2012). Designing

offshore fish cages using systems engineering principles. Syst. Eng. 15, 396–406.

doi: 10.1002/sys.21200

Snyder, J. N., Bell, T.W., Siegel, D. A., Nidzieko, N. J., and Cavanaugh, K. C. (2020).

Sea surface temperature imagery elucidates spatiotemporal nutrient patterns

and serves as a tool for offshore aquaculture siting in the Southern California

Bight. Front. Marine Sci. 7, 1–14. doi: 10.3389/fmars.2020.00022

Frontiers in Marine Science | www.frontiersin.org 15 December 2020 | Volume 7 | Article 520223110

https://doi.org/10.1201/9781420050943.ch2
https://doi.org/10.1016/j.ecss.2018.04.017
https://doi.org/10.1007/s10811-006-9025-y
https://doi.org/10.1002/ecy.3031
https://doi.org/10.1080/15481603.2018.1510088
https://doi.org/10.1002/2016JC012152
https://doi.org/10.1515/BOT.2001.029
https://www.researchgate.net/publication/228902666_Low-cost_UUVs_for_task_specific_and_expendable_missions
https://www.researchgate.net/publication/228902666_Low-cost_UUVs_for_task_specific_and_expendable_missions
https://doi.org/10.1007/s00338-003-0350-1
https://doi.org/10.1016/0198-0149(86)90109-3
https://doi.org/10.4319/lo.1980.25.3.0457
https://doi.org/10.1016/j.rse.2015.06.012
https://doi.org/10.1038/s41467-018-03249-1
https://doi.org/10.3390/rs9090902
https://doi.org/10.1016/j.coldregions.2018.03.017
https://doi.org/10.1121/1.4838296
https://doi.org/10.1117/12.2324715
https://doi.org/10.1109/TGRS.2004.840720
https://doi.org/10.1017/S0263574708004232
https://doi.org/10.1016/j.jembe.2015.01.010
https://doi.org/10.1109/MSPEC.2016.7607013
https://doi.org/10.1080/09720510.2017.1395171
https://doi.org/10.1109/OCEANS.2012.6404932
https://doi.org/10.1109/CVAUI.2014.17
https://doi.org/10.1002/ecy.2440
https://doi.org/10.1890/07-1106.1
https://doi.org/10.1109/ICETECH.2016.7569455
https://doi.org/10.1016/S0034-4257(98)00037-6
https://doi.org/10.1890/12-1340.1
https://doi.org/10.1007/s00442-016-3674-6
https://doi.org/10.1002/lom3.10113
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1002/sys.21200
https://doi.org/10.3389/fmars.2020.00022
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Bell et al. Autonomous Monitoring of Offshore Aquaculture

Wargacki, A. J., Leonard, E., Win, M. N., Regitsky, D. D., Santos, C. N. S., Kim, P.

B., et al. (2012). An engineeredmicrobial platform for direct biofuel production

from brown macroalgae. Science 335, 308–313. doi: 10.1126/science.1214547

Wheeler, W. N. (1980). Pigment content and photosynthetic rate of the fronds of

macrocystis pyrifera.Mar. Biol. 56, 97–102. doi: 10.1007/BF00397127

Wilson, C. J. (2011). The acoustic ecology of submerged macrophytes (Ph.D.

dissertation), Department of Marine Science. University of Texas at Austin.

Available online at: https://repositories.lib.utexas.edu/handle/2152/ETD-UT-

2011-12-4742 (accessed November 29, 2020).

Wood, S. N. (2017).Generalized Additive Models: An Introduction with R, 2nd Edn.

New York, NY: Chapman and Hall/CRC.

Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R.,

Cohen, W., et al. (2008). Free access to landsat imagery. Science 320:1011.

doi: 10.1126/science.320.5879.1011a

Woolley, J. T. (1971). Reflectance and transmittance of light by leaves. Plant

Physiol. 47, 656–662. doi: 10.1104/pp.47.5.656

Yu, Y., Lee, S., Lee, J., Cho, K., and Park, S. (2016). Design and implementation

of wired drone docking system for cost-effective security system in IoT

environment. 2016 IEEE Int. Conf. Consum. Electron. ICCE 2016 (Las Vegas,

NV), 369–370. doi: 10.1109/ICCE.2016.7430651

Zabloudil, K. F., Reitzel, S., Schroeter, S. C., Dixon, D., Dean, T. A., and Norall, T.

L. (1991). “Sonar mapping of giant kelp density and distribution, coastal zone

’91,” in Proc., 7th Symp. on Coast. and Dc. Mgmt., ASCE (New York, NY).

Zhang, C., and Kovacs, J. M. (2012). The application of small unmanned

aerial systems for precision agriculture: a review. Precis. Agric. 13, 693–712.

doi: 10.1007/s11119-012-9274-5

Zhu, H., Li, K., Wang, L., Chu, J., Gao, N., and Chen, Y. (2019). spectral

characteristic analysis and remote sensing classification of coastal aquaculture

areas based on GF-1 data. J. Coast. Res. 90:49. doi: 10.2112/SI90-007.1

Zhu, Z. (2019). Science of landsat analysis ready data. Remote Sens. 11:2166.

doi: 10.3390/rs11182166

Conflict of Interest: DF was employed by the company ViQi, Inc.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Bell, Nidzieko, Siegel, Miller, Cavanaugh, Nelson, Reed, Fedorov,

Moran, Snyder, Cavanaugh, Yorke and Griffith. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Marine Science | www.frontiersin.org 16 December 2020 | Volume 7 | Article 520223111

https://doi.org/10.1126/science.1214547
https://doi.org/10.1007/BF00397127
https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2011-12-4742
https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2011-12-4742
https://doi.org/10.1126/science.320.5879.1011a
https://doi.org/10.1104/pp.47.5.656
https://doi.org/10.1109/ICCE.2016.7430651
https://doi.org/10.1007/s11119-012-9274-5
https://doi.org/10.2112/SI90-007.1
https://doi.org/10.3390/rs11182166
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	RemoteSensing for Aquaculture
	Table of Contents
	Editorial: Remote Sensing for Aquaculture
	Author Contributions
	Funding
	References

	Site Suitability for Finfish Marine Aquaculture in the Central Mediterranean Sea
	Introduction
	Materials and Methods
	Study Area and Data Description
	SMCE, Scenarios Considered and Uncertainty Analysis
	Definition of Criteria and Constraints

	Results
	Discussion
	SI and Estimated Criteria
	SMCE Use for Aquaculture Planning
	Management Recommendations

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Remote Sensing-Driven Pacific Oyster (Crassostrea gigas) Growth Modeling to Inform Offshore Aquaculture Site Selection
	Introduction
	Materials and Methods
	Study Site
	Satellite Data and Processing
	Pacific Oyster Dynamic Energy Budget (DEB) Model
	Pacific Oyster Production Cycle Scenarios and Growth Performance Indicators
	Demonstration of Offshore and Intertidal Farm Site Comparison

	Results
	Satellite Input Data Calibration, Validation, and Mapping
	DEB Model Calibration and Validation
	Growth Indicator Mapping
	Intertidal and Offshore Farm Site Comparison

	Discussion
	DEB Input and Output Validation: General Findings and Limitations
	Spatial Trends in Growth Parameters to Inform Site Selection
	Adaptability of Growth Indicators and Production Scenarios
	Additional Considerations for Site Selection and Future Directions

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Applications of Spatial Autocorrelation Analyses for Marine Aquaculture Siting
	Introduction
	Materials and Methods
	Case Study 1: MCDA With Cluster and Outlier Analysis
	Case Study 2: Incremental Spatial Autocorrelation Analysis With Moran's I

	Results
	Case Study 1: MCDA With Cluster and Outlier Analysis
	Case Study 2: Incremental Spatial Autocorrelation Analysis With Moran's I

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Sea Surface Temperature Imagery Elucidates Spatiotemporal Nutrient Patterns for Offshore Kelp Aquaculture Siting in the Southern California Bight
	Introduction
	Materials and Methods
	Study Area
	Development of Temperature to Nitrate Relationships
	Satellite Imagery
	Spatial Scaling Analysis
	Temporal Scaling Analysis
	Siting Analysis

	Results
	Temperature to Nitrate Relationship and Satellite Imagery
	Spatial Scaling Analysis
	Temporal Analysis Results
	Siting Analysis

	Discussion
	Siting of Kelp Aquaculture Farms
	Effect of Spatial Scaling on Nitrate Estimates
	Effect of Temporal Scaling on Nitrate Estimates
	Conclusion

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Satellite Ocean Color Based Harmful Algal Bloom Indicators for Aquaculture Decision Support in the Southern Benguela
	1. Introduction
	2. Materials and Methods
	3. Results
	4. Discussion
	4.1. HABs in the Southern Benguela
	4.2. Probabilistic Phytoplankton Community Classification (PPCC) Algorithm Functioning and Suitability
	4.3. Phytoplankton Community Identification Using Remote Sensing
	4.4. Algorithm Limitations
	4.5. Concluding Remarks and Future Outlook

	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	Current and Future Remote Sensing of Harmful Algal Blooms in the Chesapeake Bay to Support the Shellfish Industry
	Introduction
	Materials and Methods
	Satellite Product Generation
	In situ Data
	Satellite Imagery Comparison With in situ Data

	Results and Discussion
	Alexandrium monilatum and Margalefidinium polykrikoides
	Karlodinium veneficum
	Prorocentrum minimum
	Future Remote Sensing Strategies

	Summary
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	The Utility of Satellites and Autonomous Remote Sensing Platforms for Monitoring Offshore Aquaculture Farms: A Case Study for Canopy Forming Kelps
	Introduction
	Materials and Methods
	Overview
	Cloud Cover Analysis to Examine Satellite Monitoring Potential
	Canopy Analysis Using Landsat Imagery
	Canopy Analysis Using sUAS Color Imagery
	Canopy Analysis Using sUAS Multispectral Imagery
	Canopy Analysis Using sUAS Hyperspectral Imagery
	Nitrogen Content Spectral Algorithm Development
	Application of Nitrogen Algorithm to sUAS Hyperspectral Imagery
	Subsurface Analysis Using Side Scan Sonar Imagery
	Subsurface Analysis Using Color Imagery

	Results
	Effect of Cloud Cover on the Usefulness of Satellite Observations
	Kelp Canopy Nitrogen Content Spectral Algorithm 
	Assessment of Kelp Canopy Characteristics From Satellite and Aerial Imagery
	Acoustic Analysis of Juvenile Kelp Outplants on Farm Longlines
	Kelp Outplant Visualization Using Deep Learning Models

	Discussion
	Remote Monitoring of the Kelp Canopy
	Remote Quantification of Subsurface Kelp Outplants
	Operational Risks and Limitations

	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover



