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Background: Lung adenocarcinoma (LUAD) is the leading cause of cancer-related

mortality worldwide. Molecular characterization-based methods hold great promise for

improving the diagnostic accuracy and for predicting treatment response. The DNA

methylation patterns of LUAD display a great potential as a specific biomarker that will

complement invasive biopsy, thus improving early detection.

Method: In this study, based on the whole-genome methylation datasets from The

Cancer Genome Atlas (TCGA) and several machine learning methods, we evaluated the

possibility of DNA methylation signatures for identifying lymph node metastasis of LUAD,

differentiating between tumor tissue and normal tissue, and predicting the overall survival

(OS) of LUAD patients. Using the regularized logistic regression, we built a classifier based

on the 3616 CpG sites to identify the lymph node metastasis of LUAD. Furthermore, a

classifier based on 14 CpG sites was established to differentiate between tumor and

normal tissues. Using the Least Absolute Shrinkage and Selection Operator (LASSO)

Cox regression, we built a 16-CpG-based model to predict the OS of LUAD patients.

Results: With the aid of 3616-CpG-based classifier, we were able to identify the lymph

node metastatic status of patients directly by the methylation signature from the primary

tumor tissues. The 14-CpG-based classifier could differentiate between tumor and

normal tissues. The area under the receiver operating characteristic (ROC) curve (AUC)

for both classifiers achieved values close to 1, demonstrating the robust classifier effect.

The 16-CpG-based model showed independent prognostic value in LUAD patients.

Interpretation: These findings will not only facilitate future treatment decisions based

on the DNA methylation signatures but also enable additional investigations into the

utilization of LUAD DNA methylation pattern by different machine learning methods.

Keywords: LUAD, DNA methylation, regularized logistic regression, recursive feature elimination, LASSO Cox

regression, metastasis
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INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality
globally, causing over a million deaths a year (Genome Atlas
Research Network., 2014; Jemal et al., 2018). There are two

clinical types, one is the aggressive subtype small cell lung cancer
and the other is non-small cell lung cancer (Hankey et al., 1999).
Non-small cell lung cancer is histologically classified into four

major subtypes by pathological and molecular characteristics:
adenocarcinoma, large cell lung cancer, squamous cell lung

cancer, and other types (Ettinger et al., 2010). Adenocarcinoma
is the most common histological subtype of non-small cell
lung cancer. Tobacco smoking is the major cause of lung
adenocarcinoma (Toh et al., 2006). However, with the decrease
in the number of smokers in many countries, the occurrence of

LUAD in non-smokers has increased (Genome Atlas Research
Network., 2014).

An accurate diagnosis of LUAD is one precondition to achieve
a better treatment effect. Although the Mayo Clinic stage, size,
grade, and necrosis (SSIGN) score, as well as the University
of California Integrated Staging System can help improve the
accuracy of the prognosis (Travis et al., 2011), the outcomes
of patients with similar clinical characteristics or integrated
systems scores still differ. Molecular characteristics may provide
an indication for predicting the LUAD prognosis and response
to therapy, thus offering great potential for improving individual
treatment. Moreover, molecular characterization-based methods
do not generally require bulk tissue samples, which can improve
the patients’ tolerance and reduce unnecessary operation steps.
Among all the molecular characteristics, DNA methylation of
CpG sites plays a crucial role in epigenetic regulation by reducing
the activity of a DNA segment and repressing gene transcription
(Jones, 2012; Du et al., 2015; Schübeler, 2015). DNA methylation
is associated with carcinogenesis by repressing the expression
of the tumor suppressor gene and promoting the expression of
oncogenes (Herman et al., 1995; Schübeler, 2015; Vizoso et al.,
2015; Klutstein et al., 2016). Hence, the cancer tissues have a
distinct DNA methylation pattern compared to normal tissues.
More importantly, unlike somatic genetic mutations in tumor
tissues, DNA methylation patterns are inherently reversible
changes and can therefore be promising targets for drug
treatments (Ramchandani et al., 1999). Using DNA methylation
signatures can help us make a better prognosis and predict the
treatment response, thus prolonging the patients’ survival.

Machine learning is a novel method to learn concept
from data, which will help researchers discover the hidden
insights. Based on DNA methylation patterns, machine learning
techniques are developed and used to design models for precise
classification and accurate prediction in medicine. In this study,
we evaluated the possibility of DNA methylation signatures
in identifying LUAD lymph node metastasis, differentiating
between tumor tissue and normal tissue and predicting the OS
of LUAD patients by applying TCGAwhole-genomemethylation
datasets to several machine learning methods. Our results
showed robust classifier effects with the AUC of both classifiers
achieving values close to one for identifying lymph node
metastasis and differentiating between tumor tissue and normal

tissue. Cross-validation was applied to prevent overfitting. The
LASSO Cox regression model was used to evaluate the patients’
OS. Risk scores from the LASSO Cox model were combined with
other clinicopathological risk factors to generate a nomogram
to predict the prognosis and help the doctors to manage
LUAD patients.

METHODS

Data Source
The DNA methylation files and patients’ information were
obtained from Xena (https://xenabrowser.net/). Complete
clinical, molecular, and histopathological data-sets are available
at the TCGA website (https://portal.gdc.cancer.gov/).

Feature Selection for DNA CpG Sites
We formulate critical methylation identification as a feature
selection problem. Each CpG site is treated as a feature here
and our goal is to find out which features are important for
different tasks.

Variance Based Filtering
Variance is the squared deviation of the data from its mean,
showing the spread of numbers. It is an important characteristic
that reflects the distribution and discriminability of a feature.
The variance σ of an observed sample sequence of a given
feature {x1, x2, . . . , xi, . . . , xN} is computed by averaging across
the squared difference of each value to the mean µ.

σ 2 =

∑

(xi − µ)2

N

µ =

∑

xi

N

In general, a larger variance σ means a wider distributed and
more separable feature space, which facilitates training a classifier
to find class boundaries. On the other hand, variance σ is
positively correlated with information entropy E, meaning that
more information could be obtained with a larger variance
σ . When σ is small, all the data is compressed and provides
insufficient information for a classifier, so that we would avoid
features with a small variance by setting a minimum threshold to
filter out the indiscriminate features.

E = −

∫

P (x) log P (x)dx

Regularized Logistic Regression Model
Logistic regression is a widely applied and useful statistical, non-
linear model for predicting a binarized outcome based on a
sequence of independent features. Assuming we have a general
linear regression model y, which satisfies

y =

N
∑

i=0

βixi

where xi stands for the i-th feature and βi is the correspondent
coefficient. Since there is no constraint on the range of βi and xi,
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there is no maximum or minimum limit for y, i.e., y ∈ [−∞,∞].
Consider a standard logistic function

f (x) =
1

1+ e−x

This could map an input space from an infinite [−∞,∞] to a
finite [0, 1]. By combining the linear regression model with the
logistic function, we obtain the logistic regression model

y =
1

1+ e−
∑N

i=1 βixi

By thresholding y with threshold t, we obtain the
binarized output.

o =

{

1, y ≥ t
0, y < t

Note that, regularization term can be compounded with a
logistic regression model, to force the learned coefficients to
be sparser and more resistant to overfitting, which is highly
beneficial for feature selection as well. We term the logistic
regression model with regularization term as “Regularized
logistic regression model.”

Recursive Feature Elimination
Recursive feature elimination (RFE) adopts a brute-force and
recursive way of undermining important features. Given a pre-
defined model, which weighs all the features internally, RFE
recursively uses the set of features to train the model and discard
features that are the least important for the model (e.g., small
weights) and repeats the training with the remaining features.
This operation keeps recycling until certain expectations are
reached, such as the maximum number of expected featuresNexp.
The process is described in Algorithm 1.

Algorithm 1: Recursive Feature Elimination.

INPUT: a set of features S = {f1, f2, . . . , fi, . . . , fn}, expected
feature number Nexp

OUTPUT: a set of kept features
Sbest = {fs1 , fs2 , . . . , fsi , . . . , fsn}

WHILE size (S) > Nexp DO

1 Train a model with the set of features in S

2 Get the coefficients for the features learned from the
classification model

3 Prune features with small coefficients Snon−important

4 Update feature set S = S− Snon−important

ENDWHILE

Keep the final set of features as the set of most important
features Sbest = S

Cox Regression
Cox regression, also called Proportional Hazards Regression, is a
survival analysis model. It can be used to analyze relationships
between different features and the survival time. The Cox
model is based on the proportional hazards condition, which
assumes that features have a proportional relationship to the
exponential change of hazard. Thus, the model is formulated as
a multiplication of a baseline hazard function with a sole time
variable t, and an exponential function of the linear combination
of all of the features as an input. Given a set of n samples
{(Xi,Yi, si) | 0 ≤ i ≤ n, i ∈ R}, where Xi = (xi0, xi1, . . . , xik)
and stands for the i-th sample of all the k features, Yi is
the observation time and si is the survival status, the hazard
function is

Hi (t) = H0 (t) eX
T
i β

β= (β0,β1, . . . ,βk) is the coefficient vector weighing the
contribution of the features. The partial likelihood of all the
samples is

L (β) =

n
∏

i=1

Li (β)

=

n
∏

i=1

Hi (Yi | Xi)
∑

j :Yj≥Yi
Hi

(

Yi| Xj

)

=

n
∏

i=1

eX
T
i β

∑

j :Yj≥Yi
e
XT
j β

By penalizing -log (L (β)), the optimal β could be uncovered.

LASSO Regularization
LASSO (Least Absolute Shrinkage and Selection Operator) is an
important regularization in many regression analysis methods.
The concept behind LASSO is that an L1-norm is used to penalize
the weight of the model parameters. Assuming a model has a set
of parameters {w0, w1, . . . , wn}, the LASSO regularization can be
written as

λ ·

n
∑

i=0

‖wi‖1

It can be also expressed as a constraint to the targeted
objective function

∑
∥

∥Y − Y∗
∥

∥

2
, s.t. ‖wi‖1 < t

An important property of the LASSO regularization term is
that it can force the parameter values to be 0, thus generating
a sparse parameter space, which is a desirable character for
feature selection.

Workflow of the Coding Process
When it came to selecting the methylation features for the
metastasis and tumor identification problems, we first used
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variance-based filtering to eliminate some of the least important
CpG sites, and to decrease the computation for the following
Regularized Logistic Regression Model and RFE. To avoid model
overfitting and bias in the feature selection, cross validation was
used in the following stages. The dataset was evenly divided
into 5-folds, and further feature selections were conducted by
applying Logistic Regression Model and RFE, following the
standard pipeline of cross validation.

When predicting the OS of LUAD patients, we built
the Cox proportional hazard regression model with LASSO
regularization. 5-fold cross-validation was applied to avoid the
overfitting. We plotted the plots in R software (R Foundation
for Statistical Computing, Vienna, Austria. Version 3.4.3)
and Python (Python Software Foundation. Python Language
Reference, version 3.7).

RESULTS

Preparation of LUAD DNA
Methylation Datasets
LUAD DNA methylation data and corresponding clinical data
were downloaded from Xena (https://xenabrowser.net/) (Cline
et al., 2013). After removing samples without a survival status
and normalization, a total of 478 samples were analyzed in the
present study (Supplementary File 1). The datasets included 409
samples for the recognition of metastasis, 428 samples for the
recognition of tumor from normal tissue, and 446 samples for
the prediction of OS [(Supplementary Files 2–(4].

Identification of 3616-CpG-Based
Signature for the Recognition
of Metastasis
Variance-based selection was applied to filter features
(methylation CpG sites). Features with small variances tend
to be less discriminative, so we filtered out features with a
standard variance smaller than 0.01 and 135,094 methylation
signatures were selected. Regularized logistic regression and
cross-validation were then applied to weigh the importance of
each feature. The 428 LUAD samples were randomly assigned
to a test set or a validation set by the cross-validation method.
In short, five rounds of cross-validation were performed using
different partitions and the validation results were combined
over five rounds to overcome overfitting. By varying the value
of the coefficient threshold, we obtained a different number of
features that could be kept. When we used those kept features to
regress the linear Logistic model by 5-fold cross-validation, the
mean accuracy trend was as follows (Figure 1A). The number
of kept features with regard to the different values of coefficient
thresholds was shown in Figure 1B. The best performance was
achieved at the threshold value 0.05 with 6,198 features kept with
a 5-fold cross-validation. Recursive feature elimination with the
same cross-validation configuration was tested and the result
indicated that the kept features were the optimum minimal set
of all the features (Figure 1C). The value of kept methylation
CpG sites was shown in Figure 1D. We assessed the accuracy
of the 3616-CpG-based classifier for detecting metastasis with
a ROC analysis (Figure 1E) with the same cross-validation

configuration, and averaged the weights of selected features
across different set as the final coefficients. Furthermore, the
metastatic probability of each sample were calculated by the
coefficients of kept methylation CpG sites (Figure 1F and
Supplementary File 5). The AUC for the classifier achieved
values close to 1in all of the 5-fold cross-validation, indicating
the robust classifier effect. The tumor tissues in total dataset
were divided into high metastatic risk score and low metastatic
risk score groups, respectively, using 0.5 as the cutoff. The
patients in the low metastatic risk score group have a longer OS
than those in the high metastatic risk score group in the total
datasets (p< 0.0001, Figure 1G) as well as in the separated 5-fold
training and validation sets (p < 0.05, Supplementary Figure 1).
We assessed the prognostic accuracy of the 3616-CpG-based
classifier metastatic classifier with a time-dependent ROC
analysis at varying follow-up times (500, 1,000, 1,500, 2,000,
2,500, 3,000 days) (Supplementary Figure 2). The accuracy was
all around 66%, indicating that the 3616-CpG-based classifier for
identifying metastasis could also work well for predicting the OS
of LUAD patients.

Identification of 14-CpG-Based Signature
to Recognize Tumor and Normal Tissues
134,015 features were kept by variance thresholding (0.01).
Regularized Logistic regression and cross-validation were applied
to weigh the importance of each feature as mentioned above.
An accuracy of 100% can easily be achieved for the number of
features range from 14 to 43,246 (Figure 2A). The number of
kept features with regard to the different thresholding values was
shown in Figure 2B. Recursive feature elimination with cross-
validation was tested and the result indicated that an accuracy
of 100% can be achieved when the kept feature numbers reached
14 (Figure 2C). 14 CpG sites were kept: cg25774643, cg03502002,
cg14789818, cg23479922, cg04864807, cg07915921, cg20146541,
cg08862830, cg01016533, cg19191888, cg08094098, cg01912692,
cg10707110, cg24103195. The value of kept methylation CpG
sites was shown in Figure 2D. We then calculated the probability
of being tumor for each sample by the coefficients of kept
methylation CpG sites (Supplementary File 6 and Figure 2E)
in the same tradition as of the recognition of metastasis. The
accuracy of the 14-CpG-based classifier was assessed by means of
ROC analysis (Figure 2F). The results showed that the accuracy
reached 100% in all 5-fold cross-validation, indicating the high
sensitivity and specificity of the 14-CpG-based classifier in
differentiating between LUAD tumor tissues and corresponding
normal tissues. Furthermore, we applied the 14-CpG-based
classifier on an external dataset to confirm the accuracy of the
14-CgG-based classifier (Figure 2G). The AUC value was 98.4%
for differentiating the tumor and normal tissues (Figure 2H). The
analysis before showed the regularized logistic model we applied
worked well in different datasets.

Identification of 16-CpG-Based Signature
to Predict the OS of LUAD Patients
We used a LASSO Cox regression to build a prognostic model,
which selected 16 methylation CpG sites from the CpG sites
identified by the DNA methylation 450 k chip: cg00161124,
cg01105229, cg03923535, cg10976778, cg12141052, cg12240358,
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FIGURE 1 | Linear logistic classifier using a 5-fold cross-validation for the metastatic analysis and the efficiency for the 3616-CpG-based classifier. (A) The mean

accuracy trend for the number of features and mean accuracy for the cross-validation. (B) The methylation features with regard to the different values of coefficient

thresholds. (C) Recursive feature elimination with a cross-validation test. (D) Unsupervised hierarchical clustering and heat map associated with the methylation profile

(according to the color scale shown) to recognize metastasis in LUAD. (E) ROC curves for 5-fold cross-validation showing the high sensitivity and specificity of the

classifier in predicting metastasis. (F) The metastatic probability of each sample calculated by coefficients of the methylation signature. (G) Kaplan-Meier survival

analysis for LUAD patients, which are divided into low-risk and high-risk groups using a cutoff value of 0.5. LNM: lymph node metastasis.
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cg13297560, cg14139311, cg14184729, cg18140857, cg19410791,
cg20268054, cg23146197, cg25229048, cg26709300, cg27018309
(Figures 3A,B). The values of the 16 methylation CpG sites for
each patient were shown in Figure 3B. A formula was derived to
calculate the risk score for every patient based on their individual
16 methylation β values (Supplementary File 7). The risk scores
of tumor samples were calculated by the coefficients of the kept
methylation CpG sites (Figure 3C). The patients were divided
into high risk score and low risk score groups, respectively, with
a cutoff of −0·54. Kaplan-Meier survival analysis (Figure 3D)
showed that the survival probability of patients in lower risk
score was significantly better than in high risk score group (log-
rank test, all p < 0.0001). We assessed the prediction accuracy
of the 16-CpG-based model by means of time-dependent ROC
analysis at varying follow-up times. The AUC values for 500,
1,000, 1,500, 2,000, 2,500, and 3,000 days were 0.688, 0.681,
0.697, 0.685, 0.738, and 0.758, respectively, which confirmed the
effectiveness of the 16-CpG-based model to predict the OS of
LUAD patients (Figure 3E).

According to their clinicopathological conditions, like
epidermal growth factor receptor (EGFR) mutation, K-ras
or Ki-ras (KRAS) mutation, lymph node metastatic (LNM)
condition, and AJCC stage, LUAD patients were divided up
into several subgroups to validate the independent diagnostic
value of the methylation signature. EGFR mutation showed a
striking correlation with LUAD patient characteristics, which
were correlated with the clinical treatment response and then
affected the OS of LUAD patients. The Kaplan-Meier curves
regarding EGFR mutation and wildtype groups were shown
in Figures 4A,B. Patients with low risk scores generally had
significantly better survival than those with high risk scores in
both groups (p < 0.0001). Similarly, patients with low risk scores
had a significantly longer OS than those with high risk scores
in both KRAS mutation and wildtype subgroup and both LNM
positive and negative groups (Figures 4C–F, p < 0.0001). For
the patients in AJCC stage I and AJCC stage II-IV, the survival
probability of patients with low risk scores was higher than
those with low risk scores (Figures 4G,H). The stratification
analysis above revealed that the 16-CpG-based model could
effectively predict the OS of patients regardless of the patients’
clinicopathological properties, and provide prognostic power to
complement the clinical stage and SSIGN scores.

Lastly, the risk scores were applied to the Cox regression
model with the clinicopathological risk factors to perform
multivariable survival analysis, thereby generating a nomogram
to predict patients’ survival probability for 3 and 5 years
(Figure 5A). In the multivariable survival analysis, we included
age, gender, EGFR status, AJCC stage, and risk scores from 16-
CpG-based model. The nomogram was further verified with
calibration plots (Figure 5B). The results showed that the
nomogram fared well with the ideal mode for 3 and 5 years,
indicating the nomogram worked well in predicting the OS of
LUAD patients. According to the risk scores from the nomogram,
patients were divided into high risk and low risk group. Kaplan-
Meier survival analysis showed that the survival probability of
patients with low risk score was significantly higher than those
with high risk score (Figure 5C, log-rank test, p < 0.0001). The

prognostic accuracy of the nomogram was further accessed by
time-dependent ROC curves (Figure 5D). The results showed
that the AUC values were all around 0.7 at varying follow-up
times (500, 1,000, 1,500, 2,000, 2,500, 3,000 days), indicating the
high effectiveness of the nomogram in predicting the prognostic
OS of LUAD patients.

DISCUSSION

The present study demonstrates the potential of using DNA
methylation signatures to identify the lymph node metastasis of
primary LUAD tissues, to differentiate between the LUAD tumor
and normal tissues, and to predict the OS of LUAD patients.
Invasive biopsy is the gold standard for the validation of tumor
tissues and identification of histological subtypes. However,
the collection of bulk tissue samples for immunohistochemical
(IHC) staining may cause secondary damage to patients. An
inadequate tissue yield or quality also creates barriers for the
histological diagnosis. Besides, it may be difficult to identify
lymph node metastasis during operation. Nowadays, molecular
characterization methods provide new insights in pathological
diagnosis (Tsou et al., 2007; Selamat et al., 2012; Zhang et al.,
2013; Ogino et al., 2016). Since the global change of DNA
methylation takes place at the beginning of carcinogenesis, DNA
methylation has been considered a promising biomarker for the
early detection and diagnosis of cancers (Franco et al., 2008;
Hatano et al., 2015; Wu and Ni, 2015), which can complement
the pathological IHC staining. Moreover, DNA methylation
analysis does not require bulk tissue samples. Small amounts of
tissue are enough for DNA extraction and methylation-chip or
methylation-seq analysis, whichwill reduce the patients suffering.
Hundreds of thousands of the DNA methylation CpG sites can
be identified through genome-wide DNA methylation detection
by DNA methylation chips or methylation-seq. Discovering a
potential panel of DNA methylation-based biomarkers from
the large DNA methylation files can be beneficial for the early
diagnosis of cancer initiation and metastasis. Several research
studies have shown the potential of utilizing DNA methylation
profiles to help the diagnosis of different cancers (Diaz-Lagares
et al., 2016; Zhang et al., 2017; Sandanger et al., 2018). One study
applied an unsupervised clustering method on DNAmethylation
profiles to find potential subtypes of childhood B-cell acute
lymphoblastic leukemia. The patients were allocated into two
subgroups by the unsupervised hierarchical clustering of DNA
methylation profiles, which showed a significant association
between DNA methylation and disease-free survival (Sandoval
et al., 2013a). Another study also utilized a similar strategy
to find the association between DNA methylation signatures
and the recurrence-free survival in non-small-cell lung cancer
samples (Sandoval et al., 2013b). In our study, we applied
supervised learning strategy (regularized logistic regression) to
find the prognostic CpG cites in LUAD primary tissues. The
RFE helped to eliminate the unnecessary features in regression,
which constrained the numbers of key CpG sites for prognosis.
Besides, LASSO Cox regression was useful to reduce the feature
numbers in the COX survival analysis. One study built a
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FIGURE 2 | Linear logistic classifier using a 5-fold cross-validation to differentiate between LUAD tumor tissues and corresponding normal tissues, and the efficiency

for the 14-CpG-based classifier. (A) The mean accuracy trend for the number of features and mean accuracy for the cross-validation. (B) The methylation features

with regard to the different values of coefficient thresholds. (C) Recursive feature elimination with a cross-validation test. (D) Unsupervised hierarchical clustering and

heat map associated with the methylation profile (according to the color scale shown) to differentiate between LUAD tumor tissues and corresponding normal tissues.

(E) The probability of being tumor for each sample calculated by the coefficients of methylation signatures. (F) ROC curves showing the high sensitivity and specificity

in differentiating between LUAD tumor tissues and normal tissues. (G) The workflow of model construction, internal validation and external validation. (H) ROC curve

showing the high sensitivity and specificity in differentiating between LUAD tumor tissues and corresponding normal tissues on an external dataset.
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FIGURE 3 | Lasso Cox analysis to predict the OS of LUAD patients. (A) The selection of λ value for Lasso Cox regression. (B) Unsupervised hierarchical clustering

and heat map associated with the methylation profile (according to the color scale shown) to predict the OS of LUAD patients. (C) The risk scores of each sample

calculated by the coefficients of methylation signatures from Lasso Cox analysis. (D) Kaplan-Meier curves of LUAD patients with a low or high risk of death, according

to risk scores from the 16-CpG-based classifier. (E) Time-dependent ROC analysis at varying follow-up times (500, 1,000, 1,500, 2,000, 2,500, 3,000 days). We used

AUC values at 500, 1,000, 1,500, 2,000, 2,500, 3000 days to assess the prognostic accuracy.

prognostic signature by LASSO Cox regression to predict the
progression-free survival of LUAD patients and demonstrated
the potential biological significance of DNA methylation in
the etiology of LUAD (Bjaanæs et al., 2016). Another study
built a mortality risk score by LASSO Cox regression (Zhang
et al., 2017). The signature based on ten selected CpG sites

exhibited strong association with all-cause mortality. Moreover,
one recent study used blood-derived DNA methylation and
gene expression profiles to identify CpG lung cancer markers
prior to diagnosis. They emphasized the difference of prognostic
CpG sites in smoking and non-smoking lung cancer patients
(Sandanger et al., 2018). In this study, based on the methylation
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FIGURE 4 | Kaplan-Meier survival analysis for LUAD patients according to the 16-CpG-based classifier. Patients were classified according to clinicopathological risk

factors. (A,B) EGFR status; (C,D) KRAS status; (E,F) lymph node metastatic (LNM) status; (G,H) AJCC stage I and II-IV. The patients were divided into low-risk and

high-risk groups. P-values were calculated using the log-rank test.
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FIGURE 5 | The nomogram to predict the risk of death in 3 and 5 years of LUAD patients. (A) The nomogram to predict the risk of death in 3 and 5 years of LUAD

patients. (B) Plots depict the calibration of each model in terms of agreement between predicted and observed 3- and 5-year outcomes. The dashed line represents

the ideal line of a perfect match between nomogram-predicted and observed OS. The blue and red line indicate the performance of the proposed nomogram for 3

and 5 years, respectively. (C) Kaplan-Meier survival analysis for the OS of LUAD patients according to the risk scores from the nomogram. (D) Time-dependent ROC

curves from the nomogram for overall survival in 3 and 5 years.

profiles of LUAD patients, we performed regularized logistic
regression and LASSO Cox regression to identify the lymph node
metastasis, to differentiate between tumor and normal tissues and
to predict the OS of LUAD patients. From the primary LUAD
tumor tissues, 3616 methylation CpG sites were kept to build a
classifier to identify LUAD lymph node metastasis. ROC curves
showed the high sensitivity and specificity of the 3616-CpG-
based classifier in identifying lymph node metastasis from CpG
sites of primary tumor tissues. All the samples came from the
primary tumor tissues, which means that the metastatic behavior
can be identified even without extracting tissues from lymph
nodes. Therefore, it would work as a biomarker to predict the
diagnosis of lymph nodemetastasis. Since themetastatic behavior

of LUAD affects the OS of LUAD patients dramatically, we
applied the metastatic classifier to check whether the model can
be used to predict the OS of LUAD patients. The time-dependent
ROC curves showed the effectiveness of the metastatic classifier
in predicting the OS of LUAD patients at varying follow-up times.
As expected, the patients in the high metastatic risk score group
have a significantly worse OS than those in the lowmetastatic risk
score group.

Tumor tissues are heterogeneous tissues that include cancer
cells (epithelial cells), cancer stem cells, vascular epithelial cells
and so on (Reya et al., 2001; Marusyk et al., 2012). More than 70%
of the tumor tissues are cancer cells. The heterogeneity of tumor
tissuesmay influence the accuracy of the diagnosis.We compared

Frontiers in Genetics | www.frontiersin.org 10 April 2019 | Volume 10 | Article 34915

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al. DNA Methylation Signatures in LUAD

the heterogeneous tumor tissues with the normal tissues, which
also include the vascular epithelial cells and other cell types.
Considering the heterogeneous tumor tissues and heterogeneous
normal tissues as a whole for each, we tried to eliminate the
influence brought about by heterogeneity (Li et al., 2014). In
this study, to differentiate between tumor and normal tissues,
we concluded that 14 CpG methylation sites were enough for
the diagnosis. To check the overfitting potential, we applied
5-fold cross-validation. The efficiency of the model above was
tested by a ROC curves in five different training and validation
datasets, which showed the high efficiency and specificity of
the 14-CpG-based classifier in differentiating between LUAD
tumor tissues and the normal tissues. Furthermore, we also
validated our regression model on the external dataset from one
study (Bjaanæs et al., 2016). Results showed an AUC value of
98.4% to differentiate the tumor and normal tissues by the ROC
analysis. The external dataset further confirmed the accuracy
of the regularized logistic model which we applied to build the
both classifiers above. From the two classifiers, we obtained an
overlap cluster of CpG sites: cg03502002 and cg07915921. The
information for cg07915921 is not clear. cg03502002 is on the
CpG island of the promotor region of the GALR1 gene. The
methylation status of the GALR1 promoter and the level of
GALR1 gene expression have been correlated in a large number of
head and neck squamous tumor specimens (Misawa et al., 2008).
Ectopic expression of GALR1 suppresses tumor cell proliferation
through Erk1/2-mediated regulation of cyclin-dependent kinase
inhibitors and cyclin D1 (Kanazawa et al., 2009). One study
revealed that hypermethylated GALR1 plays important roles in
smoking-associated LUAD (Tan et al., 2013).

We also built a model to predict the OS of LUAD patients
by means of methylation CpG sites. The LASSO Cox regression
model generated risk score for each patient. When we assessed
the survival status and distribution of risk scores, patients with
low risk scores generally had a better OS than those with high
risk scores. The model will help guide individualized follow-up
schedules for LUAD patients. The high-risk patients have poor
OS prediction. This could be the basis of a future clinical trial.
The LASSO Cox regression results were further confirmed by
the time-dependent ROC analysis. When we compared the time-
dependent ROC from the OS-prediction model and metastasis-
prediction classifier, the OS-prediction model turned out to be
more precise in the long-term survival prediction while the
metastasis-prediction classifier worked better in the short-term
survival prediction. One explanation could be that when the
LUAD patients were accompanied by lymph node metastasis,
the tumor progressed and the patients had a poorer prognosis.
The OS expectation of patients with lymph node metastasis
was shorter than those without lymph node metastasis. Hence,
the metastasis-prediction classifier would work better for the
short-term prediction.

To further utilize the risk scores from the Cox regression
model, we classified patients into several subgroups according
to the clinicopathological risk factors (EGFR mutation, KRAS
mutation, LNM status and AJCC stages). The 16-CpG-based
classifier still showed clinical and statistical significance
regardless of the clinicopathological status of LUAD patients.

The independent prognostic values of the 16-CpG-based
model were validated by multivariable survival analysis, which
integrated other clinicopathological risk factors for the OS of
LUAD patients. The Cox regression risk scores were applied
together with age, gender, EGFR status, AJCC stages as indicators
to generate a nomogram to predict the 3- and 5-year survival
probability. We verified the performance of the nomogram by
calibration plots. The predicted OS of LUAD patients by the
nomogram was highly consistent with the observed 3- and 5-year
OS of LUAD patients. Log-rank test and time-dependent ROC
curves at vary follow-up times further confirmed the nomogram.
Thus, the nomogram could provide an accurate and simple
prognostic prediction for LUAD patients.

In previous studies, mRNA expression files (Beer et al., 2002),
the mutation of key genes (Takano et al., 2008; Kosaka et al.,
2009), long no-coding RNA expressions (Kosaka et al., 2009;
Huarte, 2015; Zhou et al., 2016), and histone modifications
(Seligson et al., 2009; Zhou et al., 2016) showed the prognostic
potential for different types of cancer. Here, we emphasized
that the methylation patterns could also be a meaningful
tool for the prognosis of LUAD patients. Some studies have
identified that multiple CpG sites are differentially methylated
in lung cancer compared to normal tissues (Genome Atlas
Research Network., 2014; Poirier et al., 2015; Hao et al.,
2017). The key for methylation pattern-based early diagnosis
is the identification of crucial CpG sites in LUAD. The use of
supervised machine learning methods allowed us to integrate
all methylation CpG sites identified by the methylation chip
into one model, which improved the prognostic accuracy
over that of a single CpG site alone. Our findings show
that three DNA CpG signature-based models can effectively
identify lymph node metastasis by the CpG sites from primary
tumor tissues, differentiate between tumor and normal tissues,
and predict the OS of LUAD patients. The tissues would be
collected by preoperative biopsy or at surgery. The classifiers
for identifying lymph node metastasis and differentiation
between tumor and normal tissues would help the preoperative
diagnosis. The Lasso Cox model would be helpful for adjuvant
treatment and prognostic planning. Therefore, the 3 methylation
signatures could be of great value in assessing the status,
predicting prognosis and achieving individualized treatments of
LUAD patients.

The limitations of our study should be mentioned. The
methylation 450 k chip did not identify as many CpG sites
as the methylation 850 k chip or methylation sequencing. The
methylation CpG site candidates identified here did not represent
the complete CpG sites in the genome of LUAD patients.

In conclusion, we built three DNA CpG signature-based
models to identify LUAD lymph node metastasis by the
CpG sites from primary tumor tissues, differentiate between
tumor tissue and normal tissue, and predict the OS of LUAD
patients, which highlight the relationship between clinical
results (metastasis, survival) and methylation biomarkers in
LUAD patients. The nomogram comprising LASSO Cox risk
scores and clinicopathological factors may help predict the
OS of LUAD patients and help individualized treatment of
LUAD patients.
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Supplementary Figure 1 | Kaplan-Meier survival according to risk scores from

the 3616-CpG-based classifier in the training, validation sets for 5-fold

cross-validation. (A, C, E, G, I) The training sets 1-5. (B, D, F, H, J) The validation

sets 1-5.

Supplementary Figure 2 | Time-dependent ROC analysis at varying follow-up

times (500, 1,000, 1,500, 2,000, 2,500, 3,000 days) according to risk scores from

the 3616-CpG-based classifier.
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Background and Objective: Lung adenocarcinoma (LUAD) is the most common
histological type of all lung cancers and is associated with genetic and epigenetic
aberrations. The tumor, node, and metastasis (TNM) stage is the most authoritative
indicator of the clinical outcome in LUAD patients in current clinical practice. In this
study, we attempted to identify novel genetic and epigenetic modifications and integrate
them as a predictor of the prognosis for LUAD, to supplement the TNM stage with
additional information.

Methods: A dataset of 445 patients with LUAD was obtained from The Cancer
Genome Atlas database. Both genetic and epigenetic aberrations were screened for
their prognostic impact on overall survival (OS). A prognostic score (PS) integrating all
the candidate prognostic factors was then developed and its prognostic value validated.

Results: A total of two micro-RNAs, two mRNAs and two DNA methylation sites were
identified as prognostic factors associated with OS. The low- and high-risk patient
groups, divided by their PS level, showed significantly different OS (p < 0.001) and
recurrence-free survival (RFS; p = 0.005). Patients in the early stages (stages I/II) and
advanced stages (stages III/IV) of LUAD could be further subdivided by PS into four
subgroups. PS remained efficient in stratifying patients into different OS (p < 0.001)
and RFS (p = 0.005) when the low- and high-risk subgroups were in the early stages
of the disease. However, there was only a significant difference in OS (p = 0.04) but
not RFS (p = 0.2), between the low-risk and high-risk subgroups when both were in
advanced stages.

Conclusion: PS, in combination with the TNM stage, provides additional precision in
stratifying patients with significantly different OS and RFS prognoses. Further studies are
warranted to assess the efficiency of PS and to explain the effects of the genetic and
epigenetic aberrations observed in LUAD.
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INTRODUCTION

Lung cancer is the leading cause of global cancer-related
mortality, and ranks second in the estimated new cases of cancer
in both sexes in the United States (Siegel et al., 2017). Lung
adenocarcinoma (LUAD) is the most common histological type
of lung cancer, accounting for approximately 50% (Shedden
et al., 2008; Warth et al., 2012; Cancer Genome Atlas Research
Network, 2014). Currently, the tumor, node, and metastasis
(TNM) stage is the most accepted system for estimating the
prognosis of patients with LUAD in clinical practice (Warth et al.,
2012). However, prognoses of LUAD patients who share the same
pathological stage vary considerably (Tsao et al., 2015; Zhang
et al., 2015; Liang et al., 2017; Dalwadi et al., 2018). Therefore,
a more accurate system is in demand to predict the outcomes of
patients with LUAD that can add further valuable information
to the TNM stage.

Aberrant genetic and epigenetic modifications of oncogenes
and tumor suppressors contribute to the tumorigenesis and
progression of LUAD (Khalil et al., 2018; Rowbotham et al.,
2018; Tessema et al., 2018; Toyokawa et al., 2018; Wang
et al., 2018). Genetic and epigenetic abnormalities have been
associated with LUAD patient survival, especially the aberrant
expression of cancer-related genes and DNA methylation
at specific sites (Uruga et al., 2017; Zhang et al., 2017;
Gonzalez-Vallinas et al., 2018; Wang et al., 2018). For
instance, using genome-scale DNA methylation profiling, a study
identified 164 hypermethylated genes and 57 hypomethylated
genes involved in cell differentiation and the epithelial-to-
mesenchymal transition in LUAD (Selamat et al., 2012).
Notably, DNA methylation also accounts for the alteration
of gene expression in LUAD (Zhang et al., 2017; Gao et al.,
2018; He et al., 2018), and may thus indirectly affect the
biological behaviors and processes of LUAD. Specifically, He
et al. (2018) identified an association between aberrant CpG-
methylation and the prognostic value of the corresponding gene
expression based on 1095 LUAD samples, and identified 10
aberrantly methylated and dysregulated genes with independent
prognostic value.

In recent years, a class of small non-coding RNA molecules,
called microRNA (miRNA), has been increasingly investigated
(Fu et al., 2017; Greenawalt et al., 2018; Othman and Nagoor,
2019). miRNAs can regulate the expression of protein-coding
genes by base pairing with the target mRNAs, inducing the
degradation or translational repression of the bound mRNAs (Ha
and Kim, 2014; Hou et al., 2018). The prognostic significance
of miRNAs has also been investigated and confirmed in many
studies (Zhang et al., 2017; Gonzalez-Vallinas et al., 2018; Xu
et al., 2018). For instance, mir-486 was shown to be a miRNA
that is differentially expressed in LUAD and potentially interacts
with ITGA11, a cancer-promoting gene (Zhang et al., 2017).
Gonzalez-Vallinas et al also reported a significant association
between mir-539, mir-323b, and mir-487a upregulation and
worse disease-free survival in non-smoker patients with LUAD
(Gonzalez-Vallinas et al., 2018).

So far, many studies have established panels of prognostic
factors that predict the outcomes of patients with LUAD, based

on multiple lines of evidence. However, most studies were
conducted without integration of the network constituted by
dysregulations at different levels. Because LUAD represents a
set of heterogeneous diseases in which aberrations can exist at
genome and epigenome levels, we performed a genome-wide
analysis, which should provide more comprehensive insight into
survival prediction. Using the data of 445 patients from The
Cancer Genome Atlas (TCGA) database, we identified prognostic
value of two miRNAs, two mRNAs and two methylation sites.
A prognostic score (PS) was developed by integrating these
factors to stratify LUAD patients with different lengths of survival
into subgroups. From our data, combining PS and the TNM
stage achieved greater accuracy in predicting the prognoses of
patients with LUAD, indicating that PS is a promising system for
personalized and precise medicine.

MATERIALS AND METHODS

Data Extraction and Prepossessing
The genome-wide data for 706 LUAD patients was downloaded
from TCGA database1, including the expression levels of 20530
mRNAs, 2228 miRNAs and 485577 DNA methylation sites,
together with the outcomes of 630 patients. The exclusion
criteria were listed as follows: (1) Patients whose genomic
or epigenomic information was absent; (2) Genes lacking
information on either their transcript (mRNA or miRNA) or
DNA methylation levels in more than half the LUAD samples; (3)
Patients whose survival information was unavailable. Ultimately,
a total of 445 LUAD patients were included in the study,
together with 16928 mRNAs, 453 miRNAs and 395963 DNA
methylation sites.

Identification of Survival-Associated
Transcripts and DNA Methylation Sites
A Cox regression model was used to evaluate the association of
gene transcripts (mRNA or miRNA) and DNA methylation sites
with lengths of overall survival (OS). A univariate Cox regression
analysis was initially used, followed by the screening of included
potential factors with a p ≤ 0.1 for further analysis.

Afterward, considering the remaining large numbers of gene
transcripts and methylated sites, we performed a Lasso-Cox
analysis to screen and shrink the data. We then used multivariate
Cox regression to further analyze the association between the
gene transcripts or DNA methylation sites with OS, while
adjusting for other clinicopathological factors.

Identifying and Screening Potential
miRNA Targets
We retrieved the potential target genes of miRNAs that had
already been shown to be significantly associated with OS
from miRTarBase (the experimentally validated microRNA-
target interactions database, release 7.0) (Hou et al., 2018).
Lasso-Cox regression was then used to screen the mRNAs of

1https://xenabrowser.net
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genes which were identified as targets of miRNAs with high-
confidence (p ≤ 0.05).

Calculation of Spearman’s Correlation
Coefficients
The direction of association among the transcripts and
methylation sites were calculated with Spearman’s correlation in
the 445 LUAD tissues. If an mRNA tended to increase when
miRNA or methylation increased, the Spearman’s correlation
coefficient was positive. If an mRNA tended to decrease when
miRNA or methylation increased, the Spearman’s correlation
coefficient was negative. We set a threshold of 0 with which
to assess the candidate miRNAs, mRNAs and methylation sites.
Any pair with a correlation coefficient value < 0 was considered
to be negatively correlated, whereas any pair with a correlation
coefficient value > 0 as positively correlated.

External Validation of Identified
Transcripts and Methylation Sites
We validated the prognostic value of our candidate transcripts
in KM-Plot2. The impact of the candidate methylation sites on
survival was confirmed in MethSurv3 (Modhukur et al., 2018).
We used Jetset to select the corresponding probe sets for the
candidate mRNAs and miRNAs because a given gene may be
detected by multiple probe sets, which may lead to inconsistent
or even contradictory measurements (Li et al., 2011).

Construction and Validation of PS
To further assess the predictive ability of the significant factors
identified, we constructed a PS as an integrated predictor. PS
was calculated as a weighted sum of the expression levels of the
transcripts and DNA methylation sites present in a given sample
(Hou et al., 2018). For specimen i the calculation formula for PS
was shown as follows:

PS =
n∑

i=1

βixi

The weight of each variable is represented by the Cox
regression coefficient β, and the expression level is denoted by x.
A greater value of PS indicates a worse prognosis.

We divided the patients into either the high-risk or low-risk
group according to the median value of PS. Each group was
subdivided into the early-stage (stages I–II) and advanced-stage
(stages III–IV) subgroups based on the pathological stage. The
Kaplan–Meier method and log-rank tests were used to assess the
differences in OS and RFS between in the subgroups.

Statistical Analysis
All statistical analyses were performed with R version 3.4.4
(packages glmnet_2.0-16, survival_2.4-3; Institute for Statistics
and Mathematics, Vienna, Austria). A two-tailed p < 0.05 was
considered statistically significant.

2http://kmplot.com/analysis/index.php?p=background
3https://biit.cs.ut.ee/methsurv/

RESULTS

General Information on Patients With
LUAD
The clinicopathological characteristics of the LUAD patients in
our study are shown in Table 1. Of the 445 patients, 210 (47.2%)

TABLE 1 | Distributions of the demographic and clinical variables of 445 patients
with lung adenocarcinoma patients.

Characteristic Number (range)

Age at first diagnosis (median, range) 66 (39–88)

Gender

Male 210

Female 235

Pathology (Histologic subtypes)

Lepidic-predominant Adc 10

Acinar-predominant Adc 59

Papillary-predominant Adc 20

Micropapillary-predominant Adc 21

Solid-predominant Adc 34

Invasive mucinous Adc 7

Pathological stages

Stage I 239

Stage II 109

Stage III 72

Stage IV 20

Unknown 5

Smoking history

Lifelong non-smoker 65

Smoker 359

Current smoker 103

Current reformed smoker for < or = 15 years 145

Current reformed smoker for > 15 years 111

Number of packs smoked (N) per year

N = 0 65

0 < N ≤ 20 112

20 < N ≤ 40 140

40 < N ≤ 60 113

60 < N ≤ 80 29

N > 80 38

Additional pharmaceutical therapy

Yes 54

No 72

Additional radiation therapy

Yes 65

No 63

Targeted molecular therapy

Yes 138

No 247

Location

RUL 159

RML 19

RLL 83

LUL 103

LLL 69

Adc, adenocarcinoma; RUL, right upper lobe; RML, right middle lobe; RLL, right
lower lobe; LUL, left upper lobe; LLL, left lower lobe.
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TABLE 2 | Risk factors in the patient cohort in our study.

Univariate analysis Multivariate analysis

Characteristics HR 95%CI p-value HR 95%CI p-value

Age

≤ 65

> 66 1.233 0.900–1.688 0.192 1.153 0.652–2.041 0.624

Gender

Female

Male 1.016 0.744–1.386 0.922 1.259 0.712–2.226 0.428

Histologic subtypes

Acinar predominant Adc

Lepidic predominant Adc 1.067 0.356–3.197 0.907 0.782 0.233–2.625 0.69

Micropapillary predominant Adc 2.015 0.890–4.566 0.093 1.365 0.594–3.135 0.464

Papillary predominant Adc 1.48 0.685–3.197 0.318 0.899 0.397–2.036 0.799

Solid predominant Adc 2.66 1.375–5.148 0.004 1.752 0.855–3.593 0.126

Invasive mucinous Adc 0.81 0.186–3.527 0.779 0.709 0.156–3.223 0.656

Pathological stage

Stage I

Stage II 2.371 1.609–3.493 0 2.569 1.332–4.956 0.005

Stage III 3.419 2.280–5.128 0 2.16 1.060–4.400 0.034

Stage IV 3.863 2.146–6.951 0 2.139 0.715–6.403 0.174

T stage

T1

T2 1.42 0.978–2.060 0.065 NA NA NA

T3 2.411 1.341–4.333 0.003 NA NA NA

T4 2.727 1.396–5.330 0.003 NA NA NA

N stage

N0

N1 2.184 1.502–3.176 0 NA NA NA

N2 3.111 2.096–4.619 0 NA NA NA

M stage

M0

M1 2.155 1.208–3.845 0.009 NA NA NA

Adc, adenocarcinoma; HR, hazard ratio; CI, confidence interval; NA, not available.

were male and 235 (52.8%) were female. The median age was 66
years (ranging from 39 to 88). Patients with early-stage LUAD
constituted the majority of our cohort. The primary tumor
mainly was mainly located in the upper lobe on either side.

As shown in Table 2, we examined the association between
each clinicopathological characteristic and OS. A univariate Cox
regression analysis indicated that a higher TNM stage was
significantly associated with poorer OS (Table 2). Meanwhile,
a Kaplan-Meier survival analysis showed significantly different
OS among the patients with different TNM stages (Figure 1C),
but not among those who differed in age or sex (Figures 1A,B).
Interestingly, a trend toward different OS among patients with
different histologic subtypes was observed, but the p value was
only marginally significant (Figure 1D). In the multivariate
regression analysis, only a higher TNM stage remained a
significant risk factor for OS (Table 2).

Identification of Transcripts and DNA
Methylation Sites as Prognostic Factors
From 16928 mRNAs, 453 miRNA and 395963 DNA methylation
sites, a total of 26 miRNAs, 15 mRNAs and 11 DNA methylation

sites were initially identified as factors associated with OS
using univariate Cox and Lasso-Cox analyses (Supplementary
Table S1). Next, a list of 2882 genes was then retrieved from
the miRTarBase database, of which 21 were identified as high-
confidence (p ≤ 0.05) targets of the 26 survival-associated
miRNAs. A Lasso-Cox analysis was used to select the mRNAs
of the 21 genes that interacted with the corresponding survival-
related miRNAs. After a multivariate Cox regression analysis
of the 73 potential prognostic factors, the overexpression of
two miRNAs (MIMAT0002890 and MIMAT0000426) and the
hypermethylation of two sites (cg12141052 and cg16404170)
were confirmed as significant predictors of worse prognosis
(Table 3), and the higher expression level of two mRNAs
(CDADC1, FAHD2B) was significantly associated with a better
prognosis (Table 3). Therefore, the final list of candidate
prognostic factors for LUAD contained 6 biomarkers, including
two miRNAs, two mRNAs and two methylation sites.

The Spearman’s rank correlation coefficients for these
candidate transcripts and methylation levels were then
calculated for the LUAD cohort of 445 patients (Table 4
and Supplementary Figure S1).
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FIGURE 1 | Overall survival was compared among patients stratified by (A) age, (B) sex, (C) pathological stage and (D) histologic subtypes.

TABLE 3 | Genome-wide prognostic factors identified in our study.

Molecular Name Coefficient HR 95% CI SE z-value p-value

miRNA MIMAT0002890 0.358 1.431 1.191, 1.718 0.094 3.829 0

MIMAT0000426 0.246 1.278 0.999, 1.635 0.126 1.954 0.051

mRNA CDADC1 −0.578 0.561 0.387, 0.814 0.19 −3.047 0.002

FAHD2B −0.276 0.759 0.643, 0.895 0.084 −3.281 0.001

Methylation site cg12141052 4.045 57.117 8.653, 377.015 0.963 4.201 0

cg16404170 3.495 32.959 6.593, 164.761 0.821 4.257 0

HR, hazard ratio; CI, confidence interval; SE, standard error; z value, Wald z-statistic value.

External Validation of Candidate
Transcripts and Methylation Sites
As shown in Supplementary Figures S2–S4, a univariate Cox
proportional hazards regression analysis showed that the six

candidate factors identified from either genome or epigenome of
LUAD were significantly associated with the survival of patient
cohorts in other databases. Moreover, the relationships between
their expression levels and the survival rate of LUAD patients
were consistent with our findings.
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TABLE 4 | Spearman’s correlation coefficients among the prognostic factors identified in the study.

Factors MIMAT0002890 MIMAT0000426 CDADC1 FAHD2B cg12141052 cg16404170

MIMAT0002890 1.000 0.245 −0.004 −0.028 −0.119 0.136

MIMAT0000426 0.245 1.000 −0.042 0.000 −0.029 0.145

CDADC1 −0.004 −0.042 1.000 0.174 −0.160 −0.165

FAHD2B −0.028 0.000 0.174 1.000 −0.053 −0.143

cg12141052 −0.119 −0.029 −0.160 −0.053 1.000 0.021

cg16404170 0.136 0.145 −0.165 −0.143 0.021 1.000

FIGURE 2 | Median overall survival (A) and recurrence-free survival (B) in patients in the high-risk (PS > 1.88) and low-risk groups (PS < 1.88). Patients in the
high-risk group showed a significantly shorter survival than those in the low-risk group (∗∗∗p < 0.001).

Validation of the Integrated Prognostic
Factors
To further assess the predictive capacity of all the candidate
prognostic factors, PS was established as an integrated prognostic
predictor. To verify the efficiency of PS, the 445 LUAD patients
were divided into two groups stratified by the median PS. The
high-risk group (PS > 1.88) included 223 patients and the
low-risk group (PS < 1.88) included 222 patients. As shown
in Figure 2, the patients in the low- and high-risk groups
displayed significantly different median OS (1070.8 vs. 753.9
days, p < 0.001) and RFS (900.8 vs. 668.2, p = 0.005). As
shown in Figures 3A, 4A, the Kaplan-Meier curves and log-
rank tests indicated significant differences in the OS [hazard
ratio (HR): 2.861, 95% confidence interval (CI): 2.052–3.988,
p < 0.001] and RFS (HR: 1.77, 95% CI: 1.255–2.497, p = 0.001)
between two groups.

Significantly different OS and RFS were also observed among
the subgroups in further analyses (Figures 3B, 4B). On the
one hand, PS remained efficient in stratifying the patients into

different OS (HR: 3.177, 95%CI: 2.110–4.783, p < 0.001) and
RFS (HR: 1.752, 95% CI: 1.184–2.595, p = 0.005) when the low-
risk and high-risk subgroups were in the early stages of the
disease (Figures 3C, 4C). However, there was only a significant
difference in OS (HR: 1.806, 95% CI: 1.019–3.200, p = 0.04) but
not RFS (HR: 1.594, 95% CI: 0.763–3.333, p = 0.2) between the
two subgroups when both were in the advanced stages of the
disease (Figures 3D, 4D). On the other hand, the pathological
stage could distinguish significantly different OS (low-risk group:
HR: 3.341, 95% CI: 1.888–5.912, p < 0.001; high-risk group:
HR: 1.955, 95% CI: 1.305–2.929, p < 0.001) but not RFS (low-
risk group: HR: 1.472, 95% CI: 0.878–2.467, p = 0.1; high-risk
group: HR: 1.604, 95% CI: 0.829–3.104, p = 0.2) in the low-
risk and high-risk groups. Thus, PS was proved to be a useful
prognostic indicator that can supplement additional information
to the TNM stage, especially for LUAD patients in the early
stages of the disease. Our study suggests that the combination of
the TNM stage and PS increases the accuracy in predicting the
outcomes of patients with LUAD.
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FIGURE 3 | Kaplan Meier curve showing the overall survival (OS) of the patient cohort grouped by (A) prognostic score (PS), and (B) PS plus pathological stage. OS
of patients stratified by PS in subgroups with (C) early-stage tumors and (D) advanced- stage tumors.

DISCUSSION

The past decade has witnessed rapid progress in next-generation
sequencing and its increasing application in preclinical practice.
In recent years, several studies have attempted to associate
the transcriptome or epigenome with the clinical outcomes of
patients with LUAD (Selamat et al., 2012; Zhang et al., 2017;
Gao et al., 2018; He et al., 2018). Zhang et al. analyzed and
validated the expression profiles and prognostic values of the
mRNAs of five differentially expressed genes associated with
DNA methylation in LUAD (Zhang et al., 2017), increasing
the likelihood that altered signature genes will become useful
biomarkers. Using a TCGA dataset, He et al. (2018) disentangled

the relationships between aberrant CpG-methylation and gene
expression to identify 10 aberrantly methylated and dysregulated
genes. However, their study only focused on the ability
of individual genes to predict OS. Another TCGA-based
study examined the feasibility of integrating prognosis-related
methylation-driven genes into a risk model to predict the OS
of patients with LUAD, which also involved a joint survival
analysis based on methylation sites and gene expression (Gao
et al., 2018). Nevertheless, it remained unclear whether a risk
model could improve the accuracy of the TNM stage for
survival estimation. Furthermore, no information was given on
the predictive value of their method in distinguishing RFS in
LUAD patients. None of these studies included the histologic
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FIGURE 4 | Kaplan Meier curve showing recurrence-free survival (RFS) of the patient cohort grouped by (A) prognostic score (PS), and (B) PS plus pathological
stage. RFS of the patients stratified by PS in subgroups with (C) early-stage tumors and (D) advanced-stage tumors.

subtypes proposed by the International Association for the
Study of Lung Cancer/American Thoracic Society/European
Respiratory Society (IASLC/ATS/ERS) (Travis et al., 2011;
Warth et al., 2012; Hung et al., 2014) as an independent
prognostic factor.

To the best of our knowledge, this is the first study to integrate
genetic and epigenetic modifications for survival prediction in
LUAD patients using TCGA samples. With a comprehensive
analysis and screening of mRNA expression, miRNAs and DNA
methylation sites based on samples from 445 patients, we
identified a set of prognostic factors from both the transcriptome
and epigenome. Notably, we included the histologic subtypes and
the TNM stages in our initial survival analysis. In this way, we

developed a novel subgrouping system that integrates PS and the
TNM stage to predict the survival of patients with LUAD.

We started by identifying the clinicopathological
characteristics associated with the OS of patients with LUAD.
Both Cox regression and Kaplan-Meier survival analyses
confirmed the significant prognostic impact of the TNM stage
(Table 2 and Figure 1). Further screening of genetic and
epigenetic aberrations identified a collection of 26 miRNAs,
15 mRNAs and 11 DNA methylation sites whose expression
or methylation levels were significantly associated with OS
(Supplementary Table S1). Since miRNAs exert their function
by regulating the expression of their target mRNAs, we retrieved
the potential targets of these 26 miRNAs and performed a
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LASSO-Cox analysis to select 21 mRNAs as high-confidence
miRNA targets. This provided clues to the potential molecular
interactions by which these miRNAs affect the clinical outcomes.
Considering the interactions between these candidate prognostic
factors into consideration, we performed a multivariate Cox
regression to finally identify a list of six survival-related
biomarkers. From our data, the expression levels of two mRNAs
(CDADC1 and FAHD2B), two miRNAs (MIMAT0002890 and
MIMAT0000426) and methylation of two sites (cg12141052 and
cg16404170) were strongly associated with the clinical outcomes.
PS was then computed as a predictor that integrated these
candidate biomarkers and stratified the patients into low-risk
(PS < 1.88) and high-risk groups (PS > 1.88). The efficiency of
PS was confirmed by our success in distinguishing the OS and
RFS of LUAD patients (Figures 3, 4). A subgroup analysis further
demonstrated that a more precise prediction of survival could be
achieved for patients with LUAD by combining PS with the TNM
stage, which should allow more timely therapeutic interventions.

To be noted, Targetscan4 was preferentially considered for the
validation of our candidate miRNAs, however, the small number
of miRNA targets shared between miRTarBase and Targetscan
limited its use (Supplementary Figure S5).

Ten survival-associated genes, whose aberrant expression was
affected by methylation, have been identified previously by He
et al. (2018) from the TCGA data portal5. Therefore we attempted
to include the mRNAs of these 10 genes in our transcripts
for further screening. However, as shown in Supplementary
Table S2 and Supplementary Figures S6–S8, integrating the
mRNA of BLK which was identified in the Cox regression analysis
into PS did not improve its predictive ability.

In terms of the disproportionate number of non-smokers in
the selected patient cohort, secondary analyses were therefore
performed to assess the potential value of PS in predicting
the survival of the non-smokers and smokers in our cohort.
As shown in Supplementary Figure S9A, Kaplan-Meier curves
and the log-rank test indicated a significant difference in OS
between two groups (HR: 2.785, 95% CI: 1.071–7.24, p = 0.03).
Significantly different OS was also observed among subgroups
stratified by PS plus the TNM stage (Supplementary Figure S9B).
However, the performance of PS was not satisfactory for the
non-smokers (Supplementary Figures S9C,D), especially in
stratifying patients with advanced-stage LUAD into subgroups
with different OS, which might be attributed to the limited
number of non-smokers (n = 65). On the contrary, PS remained
consistently efficient in stratifying OS in the smokers (n = 359)
(Supplementary Figure S10).

There were several limitations to our study. For instance,
risk factors such as packages of cigarettes and adjuvant
therapy were not included in our analysis because of their
interpatient heterogeneity. Moreover, the histologic subtypes was
unsatisfactory in distinguishing prognoses in the multivariate
analysis which could be explained by the missing histologic
information for almost half the patients. It is noteworthy that the
failure of PS to distinguish RFS in the advanced-stage subgroups

4http://www.targetscan.org/vert_72/
5https://cancergenome.nih.gov

(p = 0.2) should be possibly attributed to the limited number of
LUAD patients with advanced-stage disease. Last but not least, the
clinical utility of PS identified here may be limited in patients with
small-sized lesions because of the difficulty in extracting sufficient
RNA and protein. More studies are warranted to assess the roles
of these candidate prognostic factors in LUAD.

CONCLUSION

In conclusion, using a TCGA dataset of 445 LUAD patients,
we identified six prognostic factors (two mRNAs, two miRNAs
and two DNA methylation sites) for LUAD from the genome
and epigenome, and developed PS from them. Combining the
TNM stage and PS provided additional precision in stratifying
patients into significantly different OS and RFS subgroups.
Further studies are warranted to assess the efficiency of PS and
to explain the effects of these observed genetic and epigenetic
aberrations in LUAD.
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FIGURE S1 | Plot of Spearman’s rank correlation coefficients among candidate
transcripts and methylation levels in LUAD (n = 445).

FIGURE S2 | Differential expression and prognostic impact of (A) FADH2B and
(B) CDADC1 (two candidate mRNAs) in LUAD patients. Kaplan-Meier curves of
720 LUAD patients, who were separated into high-expression and low-expression
groups, using as cutoffs the best-performing thresholds of the different genes. All
values were significant (p < 0.05).
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FIGURE S3 | Differential expression and prognostic impact of (A) MIMAT0002890
and (B) MIMAT0000426 (two candidate miRNAs) in LUAD patients. Kaplan-Meier
curves of 720 LUAD patients, who were separated into high-expression and
low-expression groups, using as cutoffs the best-performing thresholds of the
different miRNAs. All values were significant (p < 0.05).

FIGURE S4 | Differential expression and prognostic impact of (A) cg12141052
and (B) 16404170 (two candidate methylation sites) in LUAD patients.
Kaplan-Meier curves of 720 LUAD patients, who were separated into
high-expression and low-expression groups, using as cutoffs the best-performing
thresholds. All values were significant (p < 0.05).

FIGURE S5 | Venn diagrams representing 1161 miRNA targets that overlapped
between miRTarBase and Targetscan.

FIGURE S6 | Median overall survival (A) and recurrence-free survival (B) of
patients in the high-risk (PS > 2.78) and low-risk groups (PS < 2.78). Patients in
the high-risk group showed a significantly shorter survival than those in the
low-risk group (∗∗∗p < 0.001).

FIGURE S7 | Kaplan Meier curve showing the overall survival (OS) of the patient
cohort grouped by (A) recombinant prognostic score (PS), and (B) recombinant

PS plus pathological stage. OS of the patients stratified by PS in subgroups with
(C) early-stage disease and (D) advanced-stage disease.

FIGURE S8 | Kaplan Meier curve showing recurrence-free survival (RFS) of the
patient cohort grouped by (A) recombinant prognostic score (PS), and (B)
recombinant PS plus pathological stage. RFS of the patients stratified by PS in
subgroups with (C) early-stage disease and (D) advanced-stage disease.

FIGURE S9 | Kaplan Meier curve showing the overall survival (OS) of the
non-smokers in our cohort grouped by (A) prognostic score (PS), and (B) PS plus
pathological stage. OS of the patients stratified by PS in subgroups with (C)
early-stage disease and (D) advanced-stage disease.

FIGURE S10 | Kaplan Meier curve showing the overall survival (OS) of the
smokers in our cohort grouped by (A) prognostic score (PS), and (B) PS plus
pathological stage. OS of the patients stratified by PS in subgroups with (C)
early-stage disease and (D) advanced-stage disease.

TABLE S1 | Transcripts and DNA methylation sites whose expression levels
showed significant association with overall survival.

TABLE S2 | Integrated genome-wide prognostic factors in our study.
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Diverse DNA structural variations (SVs) in human cancers and several other diseases are
well documented. For genomic inversions in particular, the disease causing mechanism
may not be clear, especially if the inversion border does not cross a coding sequence.
Understanding about the molecular processes of these inverted genomic sequences, in
a mainly epigenetic context, may provide additional information regarding sequence-
specific regulation of gene expression in human diseases. Herein, we study one
such inversion hotspot at Xq28, which leads to the disruption of F8 gene and
results in hemophilia A phenotype. To determine the epigenetic consequence of this
rearrangement, we evaluated DNA methylation levels of 12 CpG rich regions with the
coverage of 550 kb by using bisulfite-pyrosequencing and next-generation sequencing
(NGS)-based bisulfite re-sequencing enrichment assay. Our results show that this
inversion prone area harbors widespread methylation changes at the studied regions.
However, only 5/12 regions showed significant methylation changes, specifically in case
of intron 1 inversion (two regions), intron 22 inversion (two regions) and one common
region in both inversions. Interestingly, these aberrant methylated regions were found to
be overlapping with the inversion proximities. In addition, two CpG sites reached 100%
sensitivity and specificity to discriminate wild type from intron 22 and intron 1 inversion
samples. While we found age to be an influencing factor on methylation levels at some
regions, covariate analysis still confirms the differential methylation induced by inversion,
regardless of age. The hemophilia A methylation inversion “HAMI” assay provides an
advantage over conventional PCR-based methods, which may not detect novel rare
genomic rearrangements. Taken together, we showed that genomic inversions in the F8
(Xq28) region are associated with detectable changes in methylation levels and can be
used as an epigenetic diagnostic marker.
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INTRODUCTION

Implications of human DNA sequence variations have received
considerable attention in recent years and structural variants
(SVs) are considered an important contributor among them. SVs,
particularly inversions, can vary in size from few nucleotides
to large-scale chromosomal rearrangements. The inversions can
have functional consequences by truncating a given gene (or
genes) or by rearranging the regulatory element in the local
proximity, both having a disproportionate impact on gene
expression and transcriptional variability (Puig et al., 2015).

Hemophilia A (OMIM #306700), an inherited bleeding
disorder, harbors two such rearrangements at chromosome
X (Xq28) involving the coagulation factor VIII (F8) gene.
F8 (∼186 kb; 26 exons) is located at the telomeric end
of the X- chromosome and contains regions with high GC
content, which makes it more susceptible toward the methylated
cytosine deamination mutations [2,537 mutations, reported by
CDC Hemophilia A Mutation Project (CHAMP) (Payne et al.,
2013)]. In addition, two hotspot inversions (known as intron
1 and intron 22 inversions) are reported accounting for 40–
50% of patients with severe hemophilia A (Andrikovics et al.,
2003; Oldenburg and El-Maarri, 2006; Zimmermann et al.,
2011). These hotspot recurring inversions are caused by intra-
chromosomal homologous recombination between identical
inverted repeats: two long repeats located within the F8 locus:
the Int22h-1 in intron 22 and the Int1h-1 in intron 1 (Lakich
et al., 1993; Naylor et al., 1995). The former is 9.1 kb in length
and has two additional homologs (Int22h-2 and 3) at about 500–
580 kb distance toward the telomere, while the latter is about
1 kb and has one homolog located 141 kb toward the telomere
(Figure 1) (UCSC genome browser). Both repeats are prone
to intra-chromosomal homologous recombination leading to an
inversion of the intervening sequence, thus leaving the F8 split
into two parts of opposite transcriptional direction (Bagnall et al.,
2002, 2006). The clinical result of such inversions is a severe
hemophilia A (HA) phenotype with no functional FVIII protein.
Inversion events leading to human diseases are not limited to F8
gene, other genes, such as IDS gene (Hunter syndrome), MSH2
gene (Lynch syndrome), EML4-ALK rearrangement in non-small
cell lung cancer (NSCLC), AP3B1 (Hermansky-Pudlak syndrome
type 2), have been previously implicated (Bondeson et al., 1995;
Soda et al., 2007; Jones et al., 2013; Rhees et al., 2014).

However, the effect of a given DNA inversion may not
be as clear as the above examples. It is not known whether
SVs without a clear gene-destruction effect are still benign in
nature. For instance, it is likely that an inversion can disturb
normal chromatin architecture and this could be translated into
interchanging of hetero- and euchromatic states. This would lead
to abnormal methylation patterns, and ultimately to alterations in
gene expression that may have a phenotypic impact. Thus, a given
gene could cross the borders between an actively transcribed and
a non-active region as a result of the inversion. A clear example is
what has been observed in Drosophila position-effect variegation,
where an inversion of DNA shifts the w+ and rst+ genes from
an euchromatin to a heterochromatin domain, thus resulting in
white color eyes (Schotta et al., 2003).

In humans, indications for the none gene breaking effects
of inversions came from Gonzalez et al. (2014) who reported
on the effect of a common 0.45 Mb inversion at 16p11.2 on
local gene expression and found that inverted alleles strongly
correlated to neighboring gene expression. Expression effects
were seen on single copy genes within the inverted regions as
well as on genes flanking the duplicated regions (where the
inversion breakpoints occur). Additionally, the multiple copy
genes located in the duplications were also affected. Some
genes are over-expressed, while others are under-expressed
in the inverted allele. However, a large proportion remained
unaffected. Although the molecular mechanism behind this
set of observations goes beyond the scope of this particular
study, it provides an indication for a cause-effect relationship
between common human inversions and gene expression and
its link to a disease phenotype: the joint susceptibility to
asthma and obesity.

To date, there is no molecular mechanism that explains the
biogenesis for the inversion effect on expression. Furthermore,
it is still not possible to predict the effects of a given inversion.
It has been hypothesized that changes in the chromatin structure
comprise a possible underlying reason, but a clear model detailing
the interplay between a given methylation and the different
parameters that affect the gene expression, such as histones
modifications, DNA methylation, nucleosome occupancy and
three-dimensional chromatin structure, remains elusive. The
above-described F8 inversions are well characterized and their
breakpoints are within defined unique repeats regions. Therefore,
these two inversions are a suitable model for investigating the
effect of inversions on gene expression as well as chromatin
structure and epigenetic modifications.

In this study, we took advantage of the F8 gene inversions
model to analyze DNA methylation levels of CpG rich regions
within and flanking the inverted DNA regions in wild type
and inverted DNA (with intron 1 or intron 22 inversions). In
summary, our results show clear detectable DNA methylation
changes associated with inversions that are flanking the
inverted regions. Therefore, methylation aberrations are a useful
diagnostic tool to identify inversion structural variations.

MATERIALS AND METHODS

DNA Samples
DNA samples corresponding to healthy controls (21 non-
hemophilic males) and to male hemophilia patients with known
intron 1 (16 samples) or intron 22 inversions (19 samples)
were obtained from the hemophilia center at the Institute of
Experimental Hematology and Transfusion Medicine (University
Clinic Bonn, Germany) and from the Institute for Human
Genetics (University of Wuerzburg, Germany). The samples
used are derived from DNA collected for molecular diagnostic
purposes. All blood samples from patients and healthy controls
were obtained upon written informed consent. The Ethics
Committee of the University Clinic Bonn authorized the use
of pre-collected DNA samples for research purposes (approval
number 091/09 date 05/06/2009).
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FIGURE 1 | Continued
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FIGURE 1 | Pyrosequencing methylation data on 12 selected regions from intron 22 and intron 1-inversion samples as well as healthy male controls. (A) Detailed
map on X chromosome (Chr X: 154,027,275-154,751,861:hg19) showing F8, the three Int22h and the two Int1h repeats involved in the inversion mutations. The
positions of the studied regions are indicated in the middle region by capital letters. The inversion prone regions are labeled with red and blue horizontal lines for
intron-22 and intron-1 inversions, respectively. (B) Methylation data represented by heatmaps, sample PCA and variable PCA plots. (C) Detailed data of the
methylation values for individual samples at the two best regions (H and F) that clearly distinguish between inverted and non-inverted control samples.

Methylation Analysis and
Pyrosequencing Assays
CpG rich regions within and around the inverted sequences
were identified using the UCSC website. Feasible regions for
primer designs were selected for methylation analysis. Primers
for PCR amplifications as well as pyrosequencing primers
were designed using the PyroMark assay-design Q24 software
(Qiagen, Germany). Bisulfite treatment was done using the
EZ 96-DNA methylation kit (Zymo Research, Irvine, CA,
United States) following manufacturer’s protocol. Bisulfite PCRs
were done using HOT FIREPol (Solis Biodyne, Tartu, Estonia).
Pyrosequencing was done on a PyroMark Q24 or Q96 machine
(Qiagen, Germany). Primers used for amplification are listed
in Supplementary Table S1. In total, 12 different regions were
studied and designated as regions A to O.

Verification of Results by Bis-Seq NGS
Based Assay
Since the pyrosequencing assay is restricted to check only
few individual CpGs and provides an estimated average of
methylation the results had to be verified by covering relatively
larger regions and the spatial relationships (phase) between
different CpGs in the same region had to be revealed. Such
data could be provided by NGS-based resequencing assays. For
this purpose, we chose the SeqCap Epi Enrichment system from
NimbleGen (Roche, Switzerland). Using this system, we targeted
the F8 region: chrX: 154,027,275-154,751,861. Samples included
four intron 1, six intron 22 inversions and four wild type controls.
After obtaining the data we filtered for the overlapping reads with
our pyrosequencing assays. All data are submitted to EBI as a
mapped “BAM” file under study accession number “ERP113762.”

Next Generation Sequencing Analysis
Sequencing data was generated using Illumina HiSeq 2500 v4
with read length of 2× 125 bp. Reads were generated in fastq file
format. Reads were pre-filtered for any adapters’ sequence. Reads
quality was tested using fastqc1 and all reads were passed for the
quality cut-off of 10. Reads were mapped using BSMAP (Xi and
Li, 2009) program to HG38 genome downloaded from UCSC
with parameter settings to WGBS mode (−s = 16), all four strands
mapping (−n = 1) and with parallel computing of four processor
cores (−p = 4). Mapped reads were split into top and bottom
strand using bamtools (Barnett et al., 2011) to separately remove
duplicates for both strands. Duplicates were removed using the
“MarkDuplicates” function in picard tool2. Removed duplicate
removed strands were merged together into single mapped file

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc
2http://broadinstitute.github.io/picard/

using bamtools. Filtered reads were filtered again for the properly
paired reads using bamtools filter with parameters of “-isMapped
true,” “isPaired true” and “isProperPair true.” Properly paired
reads were further processed using “clipOverlap” function in
“bamUtil” (Jun et al., 2015) to clip overlapping paired-end
reads to correct bias for methylation calculation. Methylation
percentages were determined using the “methRatio.py” function
in BSMAP with the parameters of minimum number of reads
per CpGs set to 1 (m = 1) and report to zero methylation (−z).
A final methylation table with number of Cs, Ts and coverage
for every CpG was created by removing the uncovered region
via NimbleGen. Methylation analyses were further carried out
in R using the “methylkit” (Akalin et al., 2012) package. Fisher’s
exact test was performed to calculate the p-value between samples
for every CpG site.

Statistical Analysis and Data
Visualization
Statistical analysis was done using R or Prism (GraphPad
software). Additional data analysis and visualization were
done using Qlucore Omics Explorer (Sweden) and ProFit
software from Quatum Soft (Switzerland). Regression
analyses using R were performed to understand the effect
of covariates (age). Formula for regression analysis used were
“aov(lm(MethDiff∼CaseControl+Age+CaseControl∗Age).”

RESULTS

CpGs Regions at the Border of the
Inverted DNA Are Prone to Significant
Differential Methylation
The main aim of this study was to detect differential methylation
region(s) that could serve as markers for identification of F8
inversions rearrangements. We initially designed and selected
the regions based on (1) feasibility of reading methylation of at
least three CpGs, (2) their presence in a region between the three
prime regions of F8 and the Int22h3 repeat regions, and (3) their
presence in non-repetitive regions (like L1 and Alu). Next, we
could retain 12 regions whose methylation was neither constantly
0 nor 100% for all samples: i.e., variable methylation. We then
studied three groups of samples: int22 and int1 inversions and
healthy controls. Three of the regions failed to show significant
statistical differences when applying statistical test to compare
between the groups, namely regions G, E, and O (Figure 1).

The rest of the nine regions showed statistical significance
for at least one CpG at one of three comparisons (Figure 1 and
Supplementary Table S2). For intron 22 inversion samples, eight
individual CpGs in six regions (regions H, L, A, N, J, and I) were
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statistically different compared to healthy controls. The most
significant region was region H (average meth. diff. = 6% at CpG2;
t-test p < 0.0001) embedded within the Int22h repeats, followed
by region L in exon 14 of factor 8 (average meth. diff. = 4% at
CpG2; t-test p = 0.0005).

For intron 1 inversion samples, eight individual CpGs
were statistically also significantly differentially methylated in
comparison to healthy controls (Figure 1 and Supplementary
Table S2), covering five different regions: A, C, F, J, and I. The
most significant region was region F embedded in the Int1h
repeat (average meth. diff. = 23.7% at CpG3; t-test p < 0.0001),
followed by region C (average meth. diff. = 2.9% at CpG1; t-test
p = 0.0004). However, region I showed higher average differential
methylation reaching 12.6%, but a p-value of 0.0011.

Of significance, the regions that showed the highest
differential methylation were situated either within the repeats
involved in the homologous recombination leading to the
inversion (region H: intron 22 inversion and region F: intron 1
inversion) or close to that border (region C, L, and I).

Two Regions Show Promising
Biomarkers Properties: High Sensitivity
and Specificity, Making Them Eligible as
Diagnostic Markers
In order to use methylation at a given CpG as a diagnostic marker
to detect inverted DNA we calculated sensitivity and specificity
for each CpG that showed a statistical significance difference
between inversions and healthy controls. For this purpose, we
defined sensitivity as the fraction of the inverted DNA sample
that is identified as differentially methylated in comparison to the
wild type controls. Whereas specificity is defined as the fraction
of healthy samples within the normal range of methylation and
not overlapping with inverted DNA. For intron 1 and intron
22 inversions, a sensitivity and specificity of 1 were reached for
region F CpG3 and region H CpG2 (Supplementary Table S2).

Investigation of Factors Influencing DNA
Methylation: Age and DNA
Polymorphism
Age Effect: Healthy Group Shows Statistically
Significant Linear Correlation Between Age and
Methylation at Regions F and I and a Clear Tendency
at Region L
A significant correlation between age and methylation difference
was observed for some CpG sites. In order to understand
whether the difference is due to age or rearrangements
of the inversion region, we performed rigorous regression
analysis between inversion samples and controls with age as
a covariate (Supplementary Figure S2). Regression analysis
revealed that some CpGs sites, i.e., F-CpG1, F-CpG2, F-CpG3,
I-CpG1, and I-CpG2, showed statistical significance between
intron-1 inversion and control in the difference between age
and methylation and the difference between phenotype and
methylation, while the difference between age and phenotype was
not found to be significant. Thus, the difference in methylation
due to intron-1 inversion will be statistically significant at

any age range (Supplementary Figure S2A). Regarding intron-
22 inversion, we found no statistically significant difference
between age to methylation or phenotype to methylation
(Supplementary Figure S2B).

In order to re-emphasize the age effect on region F and
to exclude an effect on the ability to discriminate wild type
from inversions at any age group, we calculated observed –
expected – methylation levels for all samples in the healthy and
the intron 1 inversion groups. For this purpose, we calculated
the expected methylation values according to an equation of
best fit linear regression model of healthy samples for each of
the three CpGs and the average of the three CpGs in region
F (Supplementary Figure S3A). Comparison of observed and
expected levels showed a highly significant difference only at
intron1 samples (at all three CpGs), which indicates that the
observed differences between intron 1 inversions and healthy
controls are not solely due to an age effect (Supplementary
Figure S3B). Moreover, observed methylation values minus
calculated expected methylation values (according to age using
the linear regression fitting equation of the healthy samples)
revealed high significance between healthy controls and intron
1 inversion compared to intron 22 inversions (Supplementary
Figure S3C). This once more indicates that the differences in
comparison to healthy controls are largely due to the intron 1
inversion of DNA.

DNA Polymorphism Effect
As the DNA polymorphism may affect the level of methylation
at neighboring CpGs, we searched the UCSC databases
for occurrences of polymorphisms in a window of 1 Kb
surrounding each investigated CpG. The results are displayed
in Supplementary Table S3. While we found some SNPs with
minimum allele frequency up to 0.21 in European populations,
especially in the two regions with high discrimination power to
detect intron 1 (region F) and intron 22 (region H), no reported
SNPs with MAF > 0.05 have been reported. Therefore, we could
largely exclude a broader effect of polymorphism on the level of
methylation at the two relevant regions H and F.

Methylation Correlation Between
Different Regions Suggests Stochastic
Random Effect, While Top Differentially
Methylated Regions Are Indeed
Correlated
In intron 1 and intron 22 inversions, we observed abnormal
methylation at several CpG sites. Therefore, we queried
whether these changes are coordinated and if they are
correlated. In other words, are these changes in methylation
in parallel at two or more altered regions for a given
inversion type. If this is the case, a statistically significant
correlation should be observed. Indeed, we calculated all
correlations pairwise for all 22 CpG sites for every group
(intron 22, intron 1 and healthy controls as separate groups).
While we observed 15, 15, and 16 inter CpGs correlations
in intron 22, intron 1 and healthy controls, we found little
overlaps between all three groups. This was mainly observed
at the intra-CpG correlations within the regions N and F
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FIGURE 2 | Correlation analysis between the studied CpG sites. (A) Heatmaps representing Pearson correlation (left upper triangle) and p-values (right lower
triangle). The CpG rich region names are labeled with capital letters, while the individual CpGs are labeled with numbers, whereby red ones represent statistically
significant ones. When two significant CpGs from two regions are correlated they are highlighted with a blue circle. (B) Correlation graphs of the circled ones of part
A. The best fit linear curves as well as the 95% confidence intervals are shown in red.

(Figure 2A). The absence of overlap suggests a change in the
nature of epigenetic marks from the normal non-inverted to
an inverted DNA.

In this context, three inter region correlations were observed
in inversion groups that involve regions that are differentially
methylated between inversions and controls. Two of these are
observed in intron 22 only and are not present in controls,
namely H-CpG1 vs. I-CpG1 and L-CpG2 vs. N-CpG2 (Figure 2).
Possibly, this is specific for the inversion samples and is induced
by the rearrangement. This hypothesis is supported by two
arguments: (1) all four involved CpGs are at the top differentially
methylated between intron 22 inversions and controls and (2)
such correlation is absent in normal samples.

Yet, the third correlation was observed in intron 1 samples
between F-CpG1 and I-CpG1. These CpGs also showed a
significant methylation difference between intron 1 inversion
samples and controls. In fact, these two CpGs are the highest
two differentially methylated CpGs with an average difference
between intron 1 samples and controls of 23.7 and 12.6% for
F-CpG1 and I-CpG1, respectively. However, this correlation is
induced by the age effect on methylation as this involves two
CpGs that show high correlation between age and methylation
(Supplementary Figure S2). In addition, this correlation is
observed in healthy controls, re-emphasizing that the correlation
between age and methylation is the driving force behind this
correlation between the CpG1 at region F and CpG1 at region I.
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FIGURE 3 | Continued
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FIGURE 3 | NGS results of the studied regions shown in Figure 1A. (A) Each graph represents one region; regions A and N have no enough coverage and are
absent. The number of reads for each CpG is shown below the corresponding CpG, the p-value of Fisher’s exact test is shown when significant (marked by X)
between healthy samples (green) and intron 1-inversion samples (blue) or intron 22-inversion samples (red). The corresponding pyrosequencing CpGs are in red and
underlined. (B) Correlation graphs between the pyrosequencing and the NGS methylation levels results.

Targeted Bisulfite Re-sequencing
Largely Confirms the Pyrosequencing
Results
Confirmation of Bisulfite Pyrosequencing
In order to further confirm the above results via an alternative
method, we performed targeted bisulfite re-sequencing with
the SeqCap Epi Enrichment system from NimbleGen (Roche,
Switzerland) to capture a region containing the F8 and extending
up to the extragenic Int22h repeats (hg19, ChrX: 154,027,275–
154,751,861; Figures 3, 4). Ten of the studied pyrosequencing
regions could be covered, while two were insufficiently covered
with low read counts (regions A and N). In order to increase
coverage and to decrease the effect of inter-individual differences,
we merged the reads that belonged to the same group of samples.
This resulted in a pool of reads of three groups including six,
two and four individual DNA samples for intron 22 inversion,
intron 1 inversion and healthy controls, respectively. Moreover,
this merging approach increased the read numbers at each CpG
site with ranges 23-717, 4-227, and 9-466 for intron 22 inversion,
intron-1 inversion and healthy controls, respectively.

Nineteen individual CpGs were overlapping between the
pyrosequencing and the NGS enrichment approach, of which 12
were showing complete concordance in results of significance
(Figure 3 and Supplementary Figure S1). This is also reflected by
the correlation of average methylation between both approaches
across the three samples cohorts (Figure 3B). Of particular
interest are the two highly differentially methylated regions that
showed high sensitivity and high specificity for distinguishing
inversions from non-inversions, namely regions F and H for
detecting intron 1 and intron 22, respectively. Both showed high
significance in correlation values and overlapping, confirming
results in both methods. The bisulfite targeted enrichment
analysis provided additional confidence in the inversion-induced
methylation aberrations and in the ability of such methylation
assays to detect the inversions.

Trend Line of Methylation Changes Over
the F8 Till Intr22h3 Covered Region
Next, a global trend line was drawn of the methylation
differences including all CpGs captured by the enrichment
protocol (i.e., not only overlaps with pyrosequencing results
as presented in the previous section). For this approach,
we filtered the data to exclude any CpG overlapping with
a repeat or a known SNP. Additionally, we excluded data
for any CpG that had less than 30 reads in one of the
two compared categories. In a next step, a trend line of
difference in methylation to the healthy male controls was
plotted in a map showing relative position to the studied
pyrosequencing regions (Figure 4A). As expected, this approach
indicated a major hypermethylated domain overlapping with

the regions F and H for intron 1 and intron 22, respectively.
However, we also noticed that the inversion breakpoints
(shown as blue and red stars in Figure 4A) are lying
in “methylation-disturbed” domains. The largest methylation
disturbance in both magnitude and length of the domain
appear to be overlapping with the inversion junctions. All of
the above suggest that the observed methylation alterations
are indeed reflection of new genomic architecture caused by
the DNA inversion.

Characteristics of CpGs Showing
Differential Methylation
We investigated the relationship between the degree of CpG
methylation difference and the density of CpGs in a window of
50 bp where the CpG in question is in the center (Figure 4B).
Using all data for all CpGs (regardless of statistical significance)
we found that a clear and highly significant relationship between
the methylation differences and CpG density exists where
relatively CpG dense regions are more stable and show smaller
methylation differences. This applies for the comparisons healthy
vs. intron 1 (r = −0.909, Fisher’s exact test p < 0.0001) and
healthy vs. intron 22 (r = −0.904, Fisher’s exact test p < 0.0001)
(Figure 4B). It is our opinion that this is a general phenomenon
of variability of methylation at “stand-alone” CpGs where they
are more prone to uncontrolled “natural” fluctuations. However,
the CpG methylation at significantly differentially methylated
CpGs failed to show this correlation indicating that the latter
are the result of induced aberrant methylation due to DNA
rearrangement. From this analysis, we conclude that statistically
significant methylation changes are more likely to occur at CpG
rich regions or at clusters rather than at sole dispersed (non-
clustered) CpGs.

DISCUSSION

The human genome shows significant variability between
individuals (Auton et al., 2015). This variability is caused
by single nucleotide polymorphisms, deletions, duplications,
translocations and inversions. The effect of which may either be
detectable as a change in the phenotype (which include disease
manifestation) or be benign without observable phenotype. The
molecular mechanism for the former can be explained for SNPs,
deletions or duplications by virtue of possible changes in the DNA
sequences leading to altered gene expression or protein structure.
However, in the cases of translocations or inversions, there is no
net gain or loss in DNA. Therefore, the association to a phenotype
is difficult to explain by DNA changes unless the breakpoints
disrupt a coding sequence or an expression-regulatory element
(like a promoter or enhancer) (Harewood and Fraser, 2014).
However, an additional scenario could be responsible to cause a
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FIGURE 4 | Continued
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FIGURE 4 | Global visualization of NGS data in the F8 region (hg19: Chr X 154,027,275–154,751,861). (A) Upper panel shows the relative positions of the studied
pyrosequencing regions, the middle panel shows the NGS data for intron 1 inversion samples and the lower panel the intron 22 inversion samples. The covered
individual CpG methylation data are represented by a gray dot, while additionally, the data is represented by a smooth curve representing the trend of changes
between the inverted and the control samples. CpG sites with less than 30 coverage or overlapping with known SNPs or repeats were excluded. Red and blue stars
indicate the DNA inversion junctions. (B) Correlation between the methylation differences at a given CpG and the density of CpG within 50 bp flanking region. Left
and right side include all CpG data and only significant data (Fisher’s exact test), respectively.

phenotype: a shift in chromatin structure or – as it is also known –
a position effect variegation (PEV).

Position effect variegation is one of similar phenomena which
occur due to relocation of a genomic segment from one region
to another and it has been extensively studied in Drosophila,
yeast, mice and cultured human cells (Tham and Zakian, 2002;
Pedram et al., 2006; Elgin and Reuter, 2013; Tchasovnikarova
et al., 2015). Inversion prone position effects are not only
limited to other species, it has also been reported in some
human disease conditions, such as aniridia (PAX6), campomelic
dysplasia (SOX9), familial adenomatous polyposis (APC) and
Saethre-Chotzen syndrome (TWIST1) (Fantes et al., 1995; de
Chadarevian et al., 2002; Cai et al., 2003; Velagaleti et al., 2005).
Of note, some inversion variants can also act as risk factor for the
offspring in microdeletion syndromes, such as Williams–Beuren
syndrome, Angelman syndrome and Sotos syndrome (Osborne
et al., 2001; Gimelli et al., 2003; Visser et al., 2005).

The above would lead to recreation of chromatin domains
that result in local and regional epigenetic changes like DNA
methylation aberrations. In this study, we used the two inversion
hotspots in the F8 gene at Xq28 as a model to investigate
the global methylation aberration. Indeed, we found specific
changes associated with each of the two inversions. With
one specific region for each of the inversions showing high
sensitivity and high specificity, our results pave the way for
the use of methylation-based assay to detect the inversion. The
hemophilia A methylation inversion “HAMI” assay will have
several advantages over traditional assays. It is noteworthy to
mention that repetitive elements also play an important role in
generating structural variants (SVs) in humans (Xing et al., 2009).
Among all mobile element types, long interspersed element-
1 (LINE-1, or L1) has been previously investigated for DNA
methylation-related changes in diseased conditions (Nusgen
et al., 2015; Sharma et al., 2019). In this particular study, we took
advantage of one such full length L1 repeat (region O) located
in the vicinity of the F8 gene and evaluated the methylation
status of this repeat in both inversion type patients. However, no
differences were found between inversion and wild type.

Currently, the gold standard molecular diagnostic assay to
detect the inversion is the inverse based PCR assay (Rossetti
et al., 2005), a procedure that needs up to 2–3 working days
to complete and requires a skilled technician to perform a
critical ligation step. In comparison, the HAMI assay includes
three fail-free steps: (1) bisulfite conversion, (2) PCR and (3)
quantitative pyrosequencing, all of which could be performed
in 1 day. An additional advantage for HAMI is that it does
not detect a specific DNA junction. Therefore, no specific
amplification primers to detect only known inversions are
required, while any rearrangement that could still be missed
by specific amplification across known rearrangement junctions

will be detected. However, disadvantages and limitations of such
an assay include establishment of controls to define the relative
borders (cut-off) of normal levels, as this could be population- or
ethnicity-specific.

Overall, we could determine the methylation levels at
multiple regions surrounding/overlapping F8 associated genomic
inversions at Xq28 region. Further evaluations are required
to establish whether these epigenetic changes are cause or
consequence of these inversion events.
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FIGURE S1 | Detailed pyrosequencing methylation data on 12 selected
regions from intron 22 and intron 1-inversion samples as well as healthy male
controls. (A) Detailed map of X chromosome (154,027,275–154,751,861:hg19)
showing the F8, the three Int22h and the two Int1h repeats involved in the
inversion mutations. The positions of the studied regions are represented in the
middle by capital letters, below which is the max-observed difference in
methylation average. The inversion prone regions are labeled with red
and blue horizontal lines for the intron-22 and intron-1 inversions, respectively.
(B) Vertical scatter plots represent the detail methylation levels of individual
studied samples for all individual CpG sites. The significant t-test is
shown in the figure.

FIGURE S2 | Age covariate regression analysis showing correlation between age
and methylation levels for healthy controls in comparison to intron 1-inversion
samples (A) and to intron 22-inversion samples. (B) Every plot shows methylation
data vs. age. Above the individual plots are Pearson correlation p and rho values,
while below the p-values of age-covariate analysis are shown. All significant
p-values are written in bold. In case of significant Pearson correlation, the values
are labeled with solid transparent red, green or blue rectangles. The plots
corresponding to significant differences between cases and controls, even after

considering age as covariates (P-value. MethDiff∼CaseControls), are
indicated by a red cadre.

FIGURE S3 | Calculation of observed vs. expected methylations values according
to predicted linear regression formula of methylation vs. age of healthy group. (A)
Linear regression curves of methylation vs. age for the three groups of samples
(intron 1-inversion samples, intron 22-inversion samples and healthy controls).
Also, equations are shown for every CpG (red, green, and blue for CpGs 1, 2, and
3, respectively) and for the average methylation of three CpGs (in black). (B)
Comparison between observed and calculated expected values according to the
linear regression equation of healthy controls. T-test p-values showed
significance of all CpGs and their average only in the intron 1 inversion group.
(C) Comparisons of observed-expected methylation values between inversion
groups and healthy controls.

TABLE S1 | Primers list used in this study.

TABLE S2 | Summary values of data presented in Figure 1 together with
calculated sensitivity and specificity.

TABLE S3 | Common SNPs around the studied CpG site.
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Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects about 1% of
the world’s population. The etiology of RA remains unknown. It is considered to occur
in the presence of genetic and environmental factors. An increasing body of evidence
pinpoints that epigenetic modifications play an important role in the regulation of RA
pathogenesis. Epigenetics causes heritable phenotype changes that are not determined
by changes in the DNA sequence. The major epigenetic mechanisms include DNA
methylation, histone proteins modifications and changes in gene expression caused
by microRNAs and other non-coding RNAs. These modifications are reversible and
could be modulated by diet, drugs, and other environmental factors. Specific changes in
DNA methylation, histone modifications and abnormal expression of non-coding RNAs
associated with RA have already been identified. This review focuses on the role of these
multiple epigenetic factors in the pathogenesis and progression of the disease, not only
in synovial fibroblasts, immune cells, but also in the peripheral blood of patients with RA,
which clearly shows their high diagnostic potential and promising targets for therapy in
the future.

Keywords: rheumatoid arthritis, epigenetics, DNA methylation, miRNA, histone modifications, circRNA

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic auto-inflammatory disease of connective tissue with
progressive joint damage and systemic disorders that affects around 1% of the world’s population
(Cribbs A. et al., 2015). RA can cause various symptoms, clinical forms and prognoses. The
incidence of RA begins to increase at the age of 25 years; at the age of 55, the incidence of RA
is reaching a plateau (Gabriel, 2001). For example, RA is more than six times greater in 60- to 64-
year-old women compared to 18- to 29-year-old women (Melorose et al., 2015). The prevalence
of RA varies in different ethnic groups. For example, the incidence of RA among American
Indians is 7%, while for some other nations it is 0.2–0.4% (Ferucci et al., 2005). As in most other
autoimmune diseases, RA is more common among women than among men in a ratio of 2–3 to 1
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(van Vollenhoven, 2009). Based on this fact, there are
assumptions that estrogens are actively involved in the
pathogenesis of the disease (Wluka et al., 2000).

The etiology of RA remains unknown. It is considered
to occur in the presence of genetic predispositions and
provoking environmental factors. The heritability of RA has been
shown from twin studies to be 60% (Yarwood et al., 2016).
Earlier genealogical studies and modern molecular-genetic
investigations confirm the involvement of genetic factors in RA
development. Accumulation of the disease cases was revealed
within families along with an increased risk of RA among first-
degree relatives of the patients (Sparks and Costenbader, 2014).

The pathological process in RA represents an autoimmune
inflammation of the synovial membrane of joints with synovial
cells proliferation and pannus formation. This tumor-like
aggressive granulation tissue promotes articular cartilage
erosion and bones destruction. Synovial tissue dysfunction
allows macrophages, fibroblasts and activated lymphocytes
to penetrate into it. T-lymphocytes produce a variety of
proinflammatory cytokines, predominantly belonging to tumor
necrosis factor (TNF) and interleukin (IL) superfamilies as well
as growth factors (Firenstein et al., 2013). B-lymphocytes are
involved in the production of autoantibodies such as rheumatoid
factor (RF) and antibodies against cyclic citrullinated peptide
(anti−CCP). Differencies in expression of anti−CCP and RF,
rate of disease manifestation and variability of response to
therapy cause heterogeneity of RA patients indicating different
pathophysiological mechanisms implication in the disease
development and progression.

Genetic heterogeneity does not explain all the features of RA
(Viatte et al., 2013). Thus, investigation of epigenetic factors and
mechanisms associated with the progression of the disease and
response to treatment is increasingly important. Investigation
of the epigenetic landscape can provide novel therapeutic
targets (Glant et al., 2014).

Different levels of DNA organization and chromatin packing
in the eukaryotic cell’s nucleus are points of application for the
epigenetic regulation. Epigenetic mechanisms regulate chromatin
structure and create clear patterns of gene expression during
cell differentiation.

The chromatin structure regulates gene transcription by
altering DNA regulatory regions (such as promoters and
enhancers) availability for transcription factors (TF). An open
chromatin structure, euchromatin, enables DNA-binding
proteins and TF to interact with regulatory DNA sequences,
leading to active gene transcription. Conversely, heterochromatin
is a closed condensed chromatin state, where DNA is tightly
bound to protein complexes forming a superspiralized structure.
It prevents TF interaction with regulatory sequences, thus
inactivating gene expression and leading to its silencing.
Transcription factors, non-coding RNAs (ncRNAs), DNA
methylation, histone modification and microRNAs (miRNAs)
affect gene transcription without changing the DNA sequence
itself (reviewed by Golbabapour et al., 2011). Specific epigenetic
landscape of chromatin determines a differential gene expression
and regulates various cellular processes in physiological and
pathological conditions.

Epigenetic changes in RA have been studied both in
mononuclear cells of peripheral blood and in different types
of immune cells such as monocytes, T-cells and B-cells
(Ospelt, 2016). At the same time, the epigenetic modifications
in the rheumatoid arthritis synovial fibroblasts (RASFs)
are of particular interest because of their aggressive
phenotype, which is stable for several passages in cell culture
(Hardy et al., 2013). RASFs are clue cells of joint damage
and inflammation development due to pro-inflammatory
and catabolic molecules synthesis, promoting abnormal
proliferation and invasiveness. Implantation of RASFs together
with normal human cartilage to immunodeficient mice
revealed cell attachment and cartilage destruction without any
proinflammatory stimuli. Such behavior was not observed in
osteoarthritis (OA) synovial fibroblasts and is presumably related
to epigenetic changes in these cells due to the specific pathology
only (Lefèvre et al., 2009).

ABERRANT DNA METHYLATION IN
IMMUNE CELLS AND PERIPHERAL
BLOOD CELLS IN RA

DNA methylation is a biochemical process of methyl group
binding with the cytosine ring carbon at position 5 to form 5-
methylcytosine (5-mC). In mammals, DNA methylation occurs
preferentially in CpG dinucleotides located throughout the
whole gene either as single dinucleotide or concentrated into
CpG-islands in vicinity of gene promoters. Hypermethylation
of the promoters is an indicator of dense heterochromatin
conformation, which blocks the binding of TF to DNA
and leads to inactivation of gene transcription. The low-
level methylation of promoters (hypomethylation) is associated
with open chromatin conformation and active transcription
of the gene (Eden and Cedar, 1994). DNA methylation is a
reversible process, which could therefore be considered as a
therapeutic target.

Recent studies confirmed a global DNA hypomethylation
in T-cells and monocytes of RA patients compared to
healthy individuals (de Andres et al., 2015). Genome-wide
analysis of DNA methylation by microarrays revealed its
alterations in B-cells on the early stages of RA in patients
who have not yet received treatment compared to healthy
donors (Glossop et al., 2016).

Cribbs et al. (2014) analyzed an aberrant function of
regulatory T cells (Treg) in RA patients and found a specific
region in the promoter of the CTLA-4 (−658 CpG), which was
hypermethylated in comparison with healthy controls. DNA
hypermethylation prevents binding of the nuclear factor of
activated T cells (NF-AT) with cytoplasmic one, called NF-ATc2,
which leads to decrease of CTLA-4 expression. As a consequence,
Treg cells were unable to induce expression and activation of
the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase
(IDO), which in turn resulted in a failure to activate the
immunomodulatory kynurenine pathway (Cribbs et al., 2014).
Furthermore, treatment with methotrexate induced DNA
hypomethylation of FoxP3 locus in Treg. This results in the gene
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upregulation with consequent increase of CTLA-4 concentration
and normalization of Treg function in RA. These studies
clearly illustrate how aberrant DNA methylation can affect cell
functions and how epigenetic mechanisms can be used in therapy
(Cribbs A.P. et al., 2015). To determine differentially methylated
regions as potential epigenetic risk factors and markers of
RA predispositions, Liu et al. (2013) performed epigenome-
wide association study. Using Illumina 450k microarrays they
examined more than 485,000 CpG sites in peripheral blood of 354
RA patients and 337 healthy donors. As a result, 10 differentially
methylated CpG sites were identified. All of them are localized
on 6p12.1 and form two separate clusters within the locus also
containing the genes of the major histocompatibility complex
(MHC) that is known as the risk locus of RA (Raychaudhuri
et al., 2012). This confirms the role of DNA methylation as
an additional mechanism determining susceptibility to RA.
Importantly, the heterogeneity of cell population isolated from
a whole blood may cause diverse methylation profile. Thus, this
factor should be taken into account in bioinformatic analysis to
reduce possible biases.

Some of these results were confirmed by other studies.
Aberrant DNA methylation was detected in peripheral blood
mononuclear cells (PBMCs) of RA patients. For example, van
Steenbergen et al. (2014) demonstrated that cg23325723 site
was significantly associated with RA (p = 0.026) in PBMCs.
Four other CpG sites (cg16609995, cg19555708, cg19321684,
and cg25949002) demonstrated similar different methylation in
PBMCs comparing to control samples, which was not, however,
statistically significant.

Other studies have shown abnormal methylation of one
cytosine in the IL-6 promoter in RA PBMCs associated with
reduction of its transcription (Nile et al., 2008). At the same time
the loss of cytosine methylation in the IL-10 promoter correlates
with higher expression of IL-10 in such cells (Chen et al., 2011).

LRPAP1 gene is expressed in PBMCs and encodes the
chaperone of low density lipoprotein receptor-related protein 1,
that affects the activity of transforming growth factor beta
(TGF-β) (Kolker et al., 2012). It was found that 4 CpG-
dinucleotides in exon 7 of LRPAP1 were hypermethylated in
patients who demonstrated no response to the therapy by TNF
inhibitors (etanercept) compared to responders. The locus of
cg04857395 overlaps structures involved in alternative splicing:
the region associated with trimethylation of histone H3 at
lysine 36 (H3K36me3) and the binding site of CCCTC-binding
factor, which is a methyl-sensitive transcriptional repressor
(Lev Maor et al., 2015).

An important point to consider in epigenetic studies of
PBMCs is the effect of cell heterogeneity. If the experimental
data are not normalized according to the proportion of the cells
of different types in the fraction of PBMCs, the differentially
methylated regions (DMRs) in certain cell types could be missed.

DNA methylation in peripheral blood mononuclear cells
was recently described by Zhu et al. (2019). DNA methylation
profiling and gene expression profiling were measured in patients
with RA and in healthy controls. Differentially methylated sites
and genes identified an interferon inducible gene interaction
network. The significance of PARP9 gene methylation and its

associated change in the expression in the pathogenesis of RA was
demonstrated. In addition, its ability to positively regulate IL2,
which stimulates various cells of the immune response, has been
revealed (Zhu et al., 2019).

Epigenetic regulation of immune cells can be crucial for
the development and maintenance of autoimmune diseases,
such as RA. Julià et al. (2017) investigated the methylation
patterns of B lymphocytes in patients with RA and systemic
lupus erythematosus. Differentially methylated in patients
and in the control group CpG sites were located in the
CD1C, TNFSF10, PARVG, NID1, DHRS12, ITPK1, ACSF3,
and TNFRSF13C genes and two intergenic regions (10p12.31).
Differential methylation of these genes was also reproduced in
the cohort of patients with SLE. This indicates similar patterns of
epigenetic changes in B-lymphocytes in these two autoimmune
diseases (Julià et al., 2017).

ABERRATIONS OF DNA METHYLATION
IN SYNOVIAL FIBROBLASTS IN RA

Rheumatoid arthritis synovial fibroblasts (RASFs) have a
unique, non-random methylation pattern - methylome, which
is specifically reorganized during the disease progression
and varies depending on the joint localization. A precise
mechanism of the methylome changing remains still unclear,
but the overall pattern of differential methylation corresponds
to the aggressive phenotype acquisition in SF results in
the development of the disease. Earlier studies of epigenetic
changes in RASFs demonstrated an abnormal expression of
retroviral sequences LINE-1, associated with loss of silencing
of these mobile elements as a result of hypomethylation
(Neidhart et al., 2000). Global DNA hypomethylation is observed
in many hyperproliferating tissues and is associated with a
relative lack of methyl groups’ donor S-adenosylmethionine
(SAM). SAM is required to restore the DNA methylation after
cell division, as well as for polyamines recycling. Increased
cell proliferation leads to increased polyamines processing,
competing with DNA methylation (Brooks, 2012). Interestingly,
the key enzymes that are involved in the polyamine synthesis
are encoded in the X chromosome and an elevated level of
polyamines is found in many autoimmune diseases including
RA (Furumitsu et al., 1993). Thus, high level of polyamines is
associated not only with DNA hypomethylation, but also with an
increased risk of RA development in women.

Nakano et al. (2013a) have shown that DNA hypomethylation
increases expression of numerous genes: growth factors/
receptors, extracellular matrix proteins, adhesion molecules,
and matrix degrading enzymes, etc. Expression of the DNA
methyltransferase-1 (DNMT1) is reduced on protein level in
RASFs comparing to the osteoarthritis synovial fibroblasts
(OASF), particularly when stimulated with cytokines or growth
factors. However, DNMT1A transcripts levels are similar in both
of these cell types. Additionally, transcription of DNMT1 could
be reduced by stimulation of IL-1 (Nakano et al., 2013a).

A number of differentially methylated loci were reported
in RASFs. For example, hypomethylation of CXCL12
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(chemokine C-X-C motif ligand 12) promoter is associated with
the gene’s upregulation and accumulation of the protein in the
joints of RA patients that contributes to chronic inflammation.
TBX5 regulates expression of proinflammatory cytokines and
chemokines in SF including CXCL12 chemokine, which is the
downstream effector of the same pathway. Hypomethylation of
TBX5 (T-box transcription factor 5) increases its own expression
as well as CXCL12 expression in RASFs. Treatment of SF
cell culture with 5-aza-2′-deoxycitidine (5-aza-dC) to achieve
DNA demethylation induces hypomethylation of promoter
region and subsequent re-activation of CXCL12 expression
(Karouzakis et al., 2014).

Comprehensive analysis of DNA methylation in RASFs by
Nakano et al. (2013b) identified 1 859 differently methylated loci.
Some of the hypomethylated loci that were critically important
for RA pathogenesis were located in the genes CHI3L1, CASP1,
STAT3, MAP3K5, MEFV, and WISP3. Conversely, genes
TGFBR2 and FOXO1 were hypermethylated. As shown by
analyzing regulatory pathways, the aberrantly methylated genes
were involved in cell migration, adhesion, transendothelial
penetration and interactions in the extracellular matrix
(Nakano et al., 2013b).

Analyzed patterns of DNA methylation suggest its aberrations
do not occur randomly, but are specifically related to regulatory
pathways involved in RA pathogenesis. Interestingly, RASFs
DNA methylation patterns are altering during disease
development and progression from early to chronic stage
(Whitaker et al., 2013).

A recent study reported genome differently methylated
sites that are localized in CpG-islands regions in promoters
of RA patients with different clinical symptoms and age of
manifestation (Karouzakis et al., 2018). Specifically methylated
CpG-islands were found on every stage of the disease.
Significant hypermethylation of CpG-islands was revealed in
the promoters of peptidase M20 containing domain-1 gene
(PM20D1), SHROOM1 and engrailed-1 homeobox protein (EN1)
at very early RASFs compared to normal SFs. SHROOM1
gene is involved in the development of nervous tissue and
the rearrangement of microtubules during cell division. The
chondrocytes of knee joints in early RA and transient arthritis
patients significantly differ in SHROOM1 methylation making
it a valuable biomarker for early diagnostics of the disease
(Bonin et al., 2016).

Another set of genes with hypermethylated promoters has
been identified in patients with chronic disease: microfibrillar-
associated protein 2 (MFAP2), discoidin domain receptor
(DDR1) tyrosine kinase and the major histocompatibility
complex HLA-C. Several identified CpG-islands were
specifically hypermethylated in the SFs of very early
and/or chronic RA. The MFAP2 binds TGFβ and the
members of bone morphogenetic protein (BMP) family,
thus regulates release and activation of these factors involved
in the development of arthritis (Weinbaum et al., 2008).
Tyrosine kinase DDR1 binds collagens and can regulate
various cellular processes such as cell migration, invasion,
and proliferation (Juskaite et al., 2017). This indicates
promising targets for further functional experiments that

could explain the phenotypic changes in RASFs and their
invasive behavior.

To identify novel therapeutic targets for RA treatment, the
analysis of the methylome was recently suggested along with
other data on RASFs. Whitaker et al. (2015) have combined
findings from genome-wide association studies and analysis
of differential gene expression and DNA methylation analysis
in RASFs and OASFs. As a result, a number of genes were
chosen as prominent candidates for further investigation relevant
for RA pathogenesis: ELMO1, LBH, and PTPN11, which are
directly involved in the pathogenesis of RA and may be used as
therapeutic targets.

ELMO1 encodes a protein involved in cytoskeleton
reorganization, which is crucial for phagocytosis of apoptotic
cells and cell motility. ELMO1 promoter is hypermethylated
in RASFs, and its knockdown suppresses the RASFs migration
and invasion by reducing the activation of RAC1 GTPase
(Whitaker et al., 2015). These results demonstrate how the
integration of datasets from genome-wide methylation and
gene expression analyses allows identifying proteins with
previously unknown critical role in RA development. Such a
complex “omics” approach can be extended from studying only
promoter regions of the genes to enhancers, silencers and other
regulatory sequences with almost unknown effect of methylation.
The application of such approaches led to discovery of novel
differentially methylated loci in the RASFs.

Previously it was thought a protein encoded by LBH
contributes only in embryonic development. However, LBH
promotor was found to be hypomethylated in RASFs as well as
its enhancer. The gene knockdown affected the transcriptome
including pathways that control cell growth and proliferation in
RASFs (Ekwall et al., 2015). Interestingly, its enhancer domain
contains single nucleotide polymorphism (SNP) rs906868
associated with RA. The combination of the SNP genotype and
methylation affects the activity of enhancer and, consequently,
expression of LBH (Hammaker et al., 2016).

PTPN11 encodes the tyrosine phosphatase SHP2 and is
upregulated in RASFs (Stanford et al., 2013). Analysis of the
PTPN11 enhancer in RASFs revealed hypermethylation, which
increased the sensitivity of cells to glucocorticoids and their
aggressiveness. This not only explained the mechanism of action
of PTPN11 in RASFs but also demonstrated SHP2 as a potential
therapeutic target in RA. The results were confirmed on mouse
models of arthritis (Whitaker et al., 2016).

Summing up, analysis of the methylome in RASFs contributes
to understanding of RA pathogenesis. Not only local cytokine
environment but other factors can potentially affect DNA
methylation pattern and participate in establishing a stable
phenotype of RASFs. Identification of these environmental
factors could shed light on the predisposition to RA development
and progression. In addition, studies of RASFs used the
novel “omics” technologies – include not only methylome
but also the other types of epigenetic markers – will help
discover novel molecular factors in the RA pathogenesis and
determine potential therapeutic targets. Considering the role of
differentially methylated genes from the pathway perspective,
several cascades were reported to be usually disturbed in very
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early RASFs and chronic RASFs in comparison with normal SFs
but exhibit no changes in the SFs in transient arthritis. These
regulatory pathways include cadherin, integrin, WNT signaling
of cell adhesion, components of the actin cytoskeleton and
antigen presentation.

HISTONE MODIFICATIONS IN IMMUNE
CELLS IN RA

Histone modifications are important epigenetic marks that affect
gene expression and determine phenotype of cells. Histone
proteins are bound to DNA and regulate the accessibility of gene
promoters for transcription factors. The basic functional unit
of chromatin is the nucleosome. It contains 147 base pairs of
DNA, which are wrapped around a histone octamer that consists
of two copies each of histones H2A, H2B, H3, and H4. The
epigenetic landscape of histones can be modified by numerous
mechanisms including acetylation, methylation, citrullination,
phosphorylation, ubiquitinylation, and sumoylation (Tessarz and
Kouzarides, 2014). Some histone marks are associated with
an open chromatin structure. This makes chromatin accessible
to transcription factors and can significantly increase gene
expression. These include histones lysine residues acetylation
(H3K9, H3K14, H4K5, and H4K16) and methylation (H2BK5,
H3K4, H3K36, and H3K79); phosphorylation of histone H3
threonine 3 (H3T3) and serines (H3S10 and H3S28), and as
well as histone 4 serine 1 (H4S1) and H2BK120 ubiquitinylation.
On the other hand, repressive histone marks that correlate with
heterochromatin state and gene repression include methylation
of H3K9, H3K27, and H4K20; ubiquitination of H2AK119;
and sumoylation of H2AK126, H2BK6, and H2BK7 (Araki and
Mimura, 2016). Most studies have focused on the acetylation and
methylation of histones, although citrullinated histones in RASFs
has also been reported (Wang et al., 2016).

Different types of histone modifications are colocalized
throughout the genome in order to stabilize active or repressed
chromatin states. This complicates analysis of RA-specific
alterations of histone marks. The expression of histone-
modifying enzymes (e.g., histone deacetylases and HDAC) could
be studied instead. The interest to the expression of HDAC in
RA arose after reports on its inhibitors, which were considered
as novel and promising therapeutic strategy of inflammatory
diseases. One of the studies revealed activation of HDAC in
PBMCs of RA patients compared to healthy controls (Toussirot
et al., 2013). Controversial data were also obtained for HDAC
activity in the synovial tissues of RA patients. Presumably, HDAC
activity depends strongly to the disease progression and therapy.
This may explain discrepancies in the measurements among
different cohorts of patients whereas the changes that were
identified in larger and clearly defined groups got lost.

HISTONE MODIFICATIONS IN RASFs

Similarly as in immune cells, direct studies of histone
modifications in synovial fibroblasts are quite rare.

Huber et al. (2007) demonstrated an overall increase of
acetylation associated with reduced HDAC activity as a result
of decreased HDAC1 and HDAC2 gene expression in the
synovial tissue of RA patients. Suppression of HDAC1 and
HDAC2 suggests the balance between histone acetylases (HAT)
and HDAC activity shifts toward hyperacetylation in RA
synovial tissues. However, another study demonstrated that
HDAC activity and HDAC1 expression were upregulated in
RA synovial tissue (Kawabata et al., 2010). Not all members of
the HDAC family have pro-inflammatory effect. For example,
HDAC5 demonstrates anti-inflammatory functions in SFs.
That indicates the applicability of specific rather than general
HDAC inhibitors for the RA treatment (Angiolilli et al., 2016).
Recently, suppression of HDAC3 expression was found to be as
effective in suppressing pro-inflammatory factors in the RASFs as
general inhibition of HDAC, which makes HDAC3 a promising
candidate for targeted therapy (Angiolilli et al., 2017).

Abnormal Modifications of Histones Are
Involved in the Activation of RASFs
H3K27 specific histone methyltransferase (HMT) – the
enhancer of zeste homolog 2 (EZH2) – is highly expressed in
RASFs as a result of TNFα induction of nuclear factor kappa
B (NF-KB) and mitogen-activated protein kinase (MAPK)
pathways. The expression of the secreted frizzled-related
protein 1 (SFRP1) – a EZH2 target gene – is increased under
the active histone marks (H3K4me3 and H3K27me3) in
its promoter that leads to the Wnt (wingless-type MMTV
integration site signaling)-pathway inhibition in RASFs
(Trenkmann et al., 2011).

Transcription factor T-box transcription factor 5 (TBX5) is
overexpressed in RASFs and active histone marks – including
H4K4me3 and histone acetylation – are widely represented in
its promoter. The overexpression of TBX5 affects expression
of 790 genes including IL-8, chemokine C-X-C motif ligand
12 (CXCL12) and chemokine C-C motif ligand 20 (CCL20)
confirming its role as an inductor and regulator of chemokines
important in RA development (Karouzakis et al., 2014).

Ai et al. (2018) performed the comprehensive study,
describing histone modification, open chromatin, RNA
expression, and genome-wide DNA methylation in
synovial fibroblasts in RA patients. To determine complex
multidimensional interactions in the epigenetic regulation of
RA, an integrative analysis was performed using a new method
for detecting genomic regions with similar profiles. In addition
to the known pathological pathways that are activated in RA,
the authors found novel pathway activated in RA that was
previously known to be associated with Huntington’s disease
(Ai et al., 2018).

In the other paper (Webster et al., 2018) epigenetic changes
in RASF in 79 pairs of discordant on RA monozygotic twins
were revealed. An epigenetic signature has been shown to indicate
the association of stress response pathways and RA pathogenesis.
It is noteworthy that potential epigenetic disruption of multiple
RUNX3 transcription factor binding sites was proposed to be
associated with disease development.
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Histones Modifications Affect Matrix
Metalloproteinase Genes Regulation
Araki et al. (2015) reported significantly higher levels of
the activating trimethylation mark H3K4me3 in promoters of
MMP-1, MMP-3, MMP-9, and MMP-13 along with reduced
of the repressive modification H3K27me3 in promoters of
MMP-1 and MMP-9 in RASFs. Furthermore, the elevated level
of histone H4 acetylation was associated with upregulation of
MMP-1 (Maciejewska-Rodrigues et al., 2010).

Tryptophan-aspartate (WD) repeat-containing protein 5
(WDR5) is a major subunit of the proteins bound with SET1
(COMPASS) or COMPASS-like complexes that catalyze H3K4
methylation. WDR5 knockdown reduces the level of H3K4me3
marks as well as the abundance of MMP-1, MMP-3, MMP-9,
and MMP-13 in RASFs. IL-6 and soluble IL-6 receptor α

(sIL-6Rα) induce the expression of MMP-1, MMP-3, and MMP-
13 but not of MMP-9: It has been shown that IL-6-induced signal
transducer and activator of transcription 3 (STAT3) binds to
MMP-1, MMP-3, and MMP-13 promoters but not with that of
MMP-9. High expression of IL-6 was associated with high level
of histone H3 acetylation (H3ac) of the IL-6 promoter in RASFs
(Wada et al., 2014).

microRNAs AS AN EPIGENETIC FACTOR
ASSOCIATED WITH THE DEVELOPMENT
OF RA

MicroRNAs (miRNAs) are small non-coding RNAs of 17–25 nt
that regulate gene expression by either repressing the
translation or causing degradation of multiple target mRNAs
(Fabian et al., 2010). miRNAs play an important role in many
biological processes including the development of the immune
system and the subsequent regulation of immunity both innate
and acquired (Chen et al., 2016). Currently more than 100
miRNAs have been identified that could potentially affect the
molecular pathways in immune cells development and their
functions regulation (Baulina et al., 2016).

ABERRATIONS OF microRNA
EXPRESSION IN RA

Aberrant miRNA regulation occurs in various cells and tissues
in RA (Tavasolian et al., 2018). The role of miRNA in
the inflammatory process includes both control of cytokine
production and protection of cartilage tissue by regulating
catabolic activity, proliferation and resistance to apoptosis.

The increased production of IL-17 by T helper cells
(Th17) in the synovial fluid may suppress miRNA-23b and
so enhance expression of (TGF)-β-activated kinase 1/MAP3K7-
binding protein and Iκβ kinase α contributing to inflammation.
miRNA-21 promotes the differentiation of Th2 and Treg cells and
is also associated with the regulation of Treg apoptosis (Salehi
et al., 2015). Pro-inflammatory phenotype of Treg is determined
by an aberrant miRNA-146a expression; thus its reduction in RA

patients inversely correlated with disease activity and expression
of its direct target gene STAT1 (Zhou et al., 2015).

A number of studies have described miRNAs that modulate
inflammatory or catabolic functions of RASFs thereby
contributing to the development of the aggressive phenotype in
RA (Vicente et al., 2016).

miRNA-146 and miRNA-155 were first described as
abnormally expressed in synovial tissue, RASFs and synovial
fluid of patients with RA and still remain the best characterized
candidates. miRNA-155 is upregulated in RASFs, where –
in addition to the pro-inflammatory activity – it regulates
destructive processes due to the matrix metalloproteinases
MMP-1 and MMP-3 expression repressing (Long et al., 2013).
Similarly, miRNA-146a express increasingly in RASFs, despite a
known role as a negative regulator of inflammation in immune
cells (Vicente et al., 2016).

Increased expression in RASFs has also been
determined for a number of other transcripts: miRNA-203
(Stanczyk et al., 2011), miRNA-221 (Yang and Yang, 2015),
miRNA-663 (Miao et al., 2015a), miRNA-222 and miRNA-323-
3p (Pandis et al., 2012). Besides their role in immune processes,
these microRNAs are involved in oncogenesis by regulating cell
invasiveness and migration in different types of tumors.

Earlier reports show miRNA-203 overexpression associated
with hypomethylation of MMP1 and IL-6 gene promoters
induces these proteins production. Regulation by DNA
methylation was also observed in mir-203. Interestingly, this
miRNA high-level expression in RASFs is observed with its own
promoter hypomethylation (Stanczyk et al., 2011).

Suppression of miRNA-221 inhibits the production
of pro-inflammatory cytokines by fibroblasts, causes cell
apoptosis and reduces their migration and invasion of RASFs
(Yang and Yang, 2015).

miRNA-663 regulates proliferation of RASFs and production
of IL-6 via inhibition of the tumor suppressor APC thereby
affecting the Wnt signaling pathway (Miao et al., 2015a).

Overexpression of miRNA-124a in RASFs may disrupt
the cell cycle and lead to inhibition of cell proliferation
through repression of its target genes CDK-2 and MCP-1.
Additionally, it was shown that miRNA-124a expression is
regulated by methylation of the gene from which it is transcribed.
Demethylation of the miRNA-124a gene by 5-aza-dC reduces
RASF proliferation and expression of TNF-α (Zhou et al., 2016).
Regulation by DNA methylation was also observed in mir-203.
Its high expression in RASFs is associated with the promoter
hypomethylation (Stanczyk et al., 2011).

The similar effect on RASFs proliferation has miRNA-34a∗
(Niederer et al., 2012). It regulates genes of the apoptosis
inhibitor XIAP. Furthermore, direct correlation of miRNA-21,
miRNA-25, and miRNA-124a from peripheral blood cells with
estradiol level in plasma was described in women with RA. The
effect of estradiol on miRNA-124a is particularly interesting,
as this miRNA has an effect on synovial proliferation (Singh
et al., 2013). Decreased expression of both miRNA-124a and
miRNA-34a∗ as well as the others: miRNA-152, miRNA-375,
and miRNA-22 in RASFs contributes to RA development
(Vicente et al., 2016).
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miRNA-152 and miRNA-375 directly target DNMT1.
Thus, the increase of their expression leads to activation of
Wnt-signaling pathway (Miao et al., 2015b).

Cyr61 expression is increased by miRNA-22 suppression,
affecting various genes involved in different processes:
angiogenesis, inflammation, matrix structure reorganization,
IL-6 production with subsequent differentiation of Th17
and synovial hyperplasia. Earlier data show that the reduced
expression of miRNA-22 is caused by p53 mutation that is
frequent in RASFs (Lin et al., 2014).

The loss of miRNA-10a-5p expression in RASFs upregulates
target gene TBX5 thereby promoting the production of TLR3,
MMP-13 and a number of pro-inflammatory cytokines (Hussain
et al., 2018). Suppressed expression of miRNA-10a may cause
the activation of NF-κB and enhancing the release of pro-
inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8, chemokine
MCP-1 and matrix metalloproteinases MMP-1 and MMP-13
(Mu et al., 2016).

Deregulations of expression affect entire miRNA clusters.
However, the expression of individual miRNAs of a cluster
may be altered differentially. For example, miRNA-18a is
upregulated in the miRNA-17-92 cluster, which plays an
important role in the regulation of apoptosis in the RASFs
while miRNA-19a/b, miRNA-20a and miRNA-30a-3p are
downregulated. Such an effect may be caused by the different
target genes affection and different signal pathways regulation
(Vicente et al., 2016).

The RA associated changes of miRNA expression were
also confirmed in other cells of the joint capsule. For
example, miRNA-323-3p is involved in the regulation
of Wnt and cadherin signaling pathways, and its
overexpression in chondrocytes causes degradation of
the cartilaginous matrix and promotes bone erosion.
Similar effect was demonstrated for miRNA-140,
which contributes to reduction of joint destruction
via suppression of ADAMSTS5. Upregulation of
some miRNAs (miRNA-30a, miRNA-204, miRNA-211,
miRNA-320, and miRNA-335) is associated with suppression
of osteoblast differentiation via RUNX2 regulation
(Moran-Moguel et al., 2018).

CIRCULATING miRNAs AS POTENTIAL
MARKERS OF RA DEVELOPMENT

In addition to aberrant miRNAs expression in the joint area,
they were also detected in blood: plasma, serum, and various
blood cells (Table 1). In one of the first studies of miRNA
expression in RA a significant difference between the 26
microRNAs expression patterns was demonstrated in patients
compared to healthy donors. Three of those, namely miRNA-24,
miRNA-26a, and miRNA-125a-5p have been proposed as a
potential diagnostic panel with sensitivity and specificity of 78.4
and 92.3%, respectively (Murata et al., 2013).

Nevertheless, estimation of two other miRNAs
expression level is considered more prominent at the
moment. miRNA-146a and miRNA-155 are overexpressed

both in whole blood and PBMCs of RA patients
(Mookherjee and El-Gabalawy, 2013).

Many miRNAs that are aberrantly expressed in synovial tissues
in RA are also deregulated in peripheral blood. However, these
changes are not always similar. The concentrations of miRNA-16,
miRNA-132, and miRNA-223 were significantly lower in the
synovial fluid than in plasma of patients with RA, and no
correlation between them was found (Murata et al., 2010).
Elevated level of miRNA-125b was observed in both serum and
synovial tissues of RA patients (Zhang B. et al., 2017).

While miRNA-146a is overexpressed in synovial
tissue of RA patients comparing with healthy donors,
a reduction of circulating miR-146a was reported in
the peripheral blood (Wang et al., 2012). Besides,
miRNA-146a from PBMCs does not demonstrate any
correlation with disease activity. That is in contrast
with the same miRNA quantified in serum. Thus, the
miRNAs obtained from different types of samples may
have different prognostic value or not have it at all
(Ayeldeen et al., 2018).

Changes in the expression of miRNAs may be associated
with the RA therapy (Table 1). Specifically, miRNA-
146a, miRNA-155, and miRNA-16 levels were decreased
in serum at the early RA stages after treatment with
disease-modifying antirheumatic drugs (DMARDs) (Filková
et al., 2014). In contrast the quantity of miRNA-16-5p,
miRNA-23-3p, miRNA125b-5p, miRNA-126-3p, miRNA-
146a-5p, and miRNA-223-3p in plasma was significantly
elevated after combined anti-TNF-α/DMARD therapy
(Castro-Villegas et al., 2015).

miRNAs Genes Polymorphism
Associated With RA
miRNAs not only regulate gene expression in RA but also
are themselves subject to regulation by various factors. As
in protein-coding genes, polymorphism of miRNA genes or
their target genes may be associated with predisposition to
RA. The number of studies has reported a significant role
of some nucleotide polymorphisms located in the genes of
miRNA-146a and miRNA-499 precursors (Ayeldeen et al., 2018).
For example, the importance of polymorphism rs3746444 in
miRNA-499 was confirmed for the RA development among
the patients of Caucasian race. Genotypes TC and CC and
allele C at this SNP in miRNA-499 were characterized as
independent risk factors of joint erosion in RA patients. The
frequency of GG genotype of rs2910164 in miRNA-146a is
significantly higher in patients with RA compared to healthy
donors (Ayeldeen et al., 2018). Another study that included
200 RA patients and 120 healthy donors has demonstrated
the correlation of SNP rs22928323 in miRNA-149 with
RA development but no association with further clinical
characteristics (Xiao et al., 2015).

DNA Methylation of miRNA Genes
Similarly to protein-coding genes, DNA methylation is an
important mechanism of miRNA regulation. It was demonstrated
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TABLE 1 | Potential diagnostic and prognostic markers of RA among miRNAs.

Clinical potential miRNA Type of sample Expression References

Diagnostic marker miRNA-16 Synovial fluid Increased, comparing to another
autoimmune diseases

Mi et al., 2013

miRNA -223 Synovial fluid Increased, comparing to another
autoimmune diseases

Shibuya et al., 2013

miRNA-24, miRNA-30a-5p,
miRNA-125a-5p

Plasma Increased in ACPA-positive and
ACPA-negative donors before
clinical symptoms appear

Murata et al., 2013

miRNA-22, miRNA-382, miRNA-486-3p Whole blood Increased in ACPA-positive donors
before clinical symptoms appear

Ouboussad et al., 2017

miRNA-10a Whole blood Decreased in RA patients Hong et al., 2018

miRNA-155 Serum Increased in RA patients Abdul-Maksoud et al., 2017

miRNA-210 Serum Decreased in RA patients Abdul-Maksoud et al., 2017

miRNA-26à Serum/plasma Increased in RA patients Murata et al., 2013

Disease progression miRNA-146a, miRNA-16,
miRNA-150

PBMCs Correlates with disease progression Filkova et al., 2012

miRNA-16,
miRNA-146a, miRNA-155

Whole blood Lower level on early stages, than in
advanced disease

Filková et al., 2014

miRNA-146a Synovial fluid,
blood

Correlates with disease progression Chung et al., 2016

miRNA-16 Plasma Correlates with disease progression Murata et al., 2010

Response to treatment:

Adalimumab miR-22 Whole blood Better response to therapy when
decreased

Krintel et al., 2016

miR-886-3p Whole blood Better response to therapy when
increased

Krintel et al., 2016

Rituximab miRNA-125b Serum Better response to therapy when
increased

Duroux-Richard et al., 2014

Methotrexate miR-10a Whole blood Better response to therapy when
decreased

Hong et al., 2018

Anti-TNF-α therapy miR-5196 Serum Better response to therapy when
increased

Ciechomska et al., 2017

miR−146a−5p Serum Better response to therapy when
increased

Bogunia-Kubik et al., 2016

Anti-TNF/DMARD
therapy

miR-16-5p, miR-23-3p, miR125b-5p,
miR-126-3p, miR-146a-5p, miR-223-3p

Serum Prognostic panel of therapy
efficiency

Castro-Villegas et al., 2015

DMARD therapy and
glucocorticoids

miR-16, miR-223 Serum Better response to therapy when
increased

Filková et al., 2014

that miRNA-124a and miRNA-203 are controlled by DNA
methylation of respective genes in RASFs. In vitro 5-azacitidine
treatment leads to DNA demethylation and transcriptional
re-activation (Stanczyk et al., 2011; Zhou et al., 2016).
de la Rica et al. (2013) provided additional evidence of such
epigenetic regulation in the whole genome by profiling of the
methylome and analysis of miRNA and mRNA expression in
RASFs in parallel. Expression of 11 miRNAs was reduced in RA
samples comparing to control osteoarthritis samples and was
associated with hypermethylated genes thereof. In contrast, four
other miRNAs were upregulated upon hypomethylation of CpG
sites in vicinity of their genes (de la Rica et al., 2013).

Long Non-coding and Circular RNAs
in RA
Several long non-coding RNAs (lncRNAs) were deregulated
in RA by miRNAs. The expression of the most characterized

lncRNA HOTAIR (HOX transcript antisense RNA) was
significantly reduced in chondrocytes that were pretreated
with lipopolysaccharide in order to suppress the inflammatory
process. This transcript is able to suppress mir-138-mediated
synthesis of NF-κB, since miRNA-138 is a HOTAIR direct target
(Zhang H. et al., 2017).

Expression of the other lncRNA ZFAS1 (zinc finger
antisense 1) is increased in RA synovial tissue compared to
healthy donors and can enhance migration and invasion of
RASFs by directly affecting miRNA-27a (Ye et al., 2018).

lncRNA GAPLINC (Gastric Adenocarcinoma Predictive
Long Intergenic Non-coding RNA) is overexpressed in
RASFs and regulates their proliferation, migration and
pro-inflammatory cytokine production by operating
as a sponge for miRNA-382-5p, and miRNA-575
(Mo et al., 2018).

A possible effect of circular RNAs (circRNAs) on miRNAs
in RA was revealed, too. Presumably, these transcripts
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complementarily bind to miRNAs thereby preventing their
interaction with target genes (Zheng et al., 2017).

SUMMARY AND FUTURE DIRECTIONS

In the last few decades, many studies have shown that epigenetic
mechanisms are involved in the regulation of all biological
processes in the body from impregnation to death. These
functional mechanisms are involved in genome reorganization,
control of gametogenesis and early embryogenesis, and play
an important role in cell differentiation. Changes in DNA
methylation and posttranslational modifications of histones
are key epigenetic events contributing to the reorganization
of chromatin into euchromatin, heterochromatin, and regions
of nuclear compartmentalization, which allow to regulate
gene expression by forcing them to be consistently switched
on and off for the normal development of a multicellular
organism. Epigenetic changes may form and appear over a long
period of time, for example, during the training and organiz-
ation of memory (Moosavi and Motevalizadeh Ardekani, 2016).
Aberrations of epigenetic modifications can cause the
development of congenital defects, hereditary diseases
and multifactorial diseases including malignant tumors
in different periods of life. DNA methylation, histone
modifications, expression of proteins that generate or
remove epigenetic marks, and ncRNAs affect inflammatory
and matrix-degrading pathways and could be changed in
RA. Epigenetic mechanisms play an important role in the
pathogenesis of the disease.

Unlike genetic lesions, epigenetic alterations are reversible
and could be modulated by diet, drugs and other environmental
factors. This epigenetic flexibility suggests strategies for
prevention and therapy of diseases with confirmed pathogenic
role of epigenetic factors (Pashayan et al., 2016).

Therapeutic targeting of epigenetic mechanisms can be a
successful approach in the treatment of chronic inflammatory
diseases. Significant efforts have already been made to
develop drugs that able to restore or alter the epigenetic
mechanisms. DNA methyltransferase inhibitors (DNMT),
5-azacitidine (Vidaza) and 5-Aza-2′deoxy-5-azacitidine
(Decitabine) are already being used to treat inflammatory
conditions in pancreatitis therapy. Two types of HDAC
inhibitors (HDACi) are used for treatment: pan-inhibitors
with broad spectrum of action and specific inhibitors
that target a specific class of HDAC enzyme. To date,
the Food and Drug Administration (FDA) has approved
four HDACi: Vorinostat, Romidepsin, Panobinostat, and
Belinostat. These products have the minimal side effects and
are mainly used for the hematological tumors treatment
(Samanta et al., 2017).

Moreover epigenetic alterations are a source of diagnostic
and prognostic markers. The gradual changes of epigenetic
marks that may be caused by environmental factors
can result in both the development and progression of
pathological conditions. DNA methylation marks are the

best characterized, its role is comprehensively studied in cancer
development. The existence of loci and genes with differential
methylation patterns, varying, respectively, the stage of the
disease, was also revealed in patients during RA progression
(Ai et al., 2015). However, the plasticity of the epigenome is
a complication for the researches. The prognostic markers
panels consisted of epigenetically modified genes could
differs individually due to the variability of environmental
factors affecting patients. Smoking is the most common
environmental risk factor in RA development and its severity
determination. In addition to directly affecting lung tissues,
smoking alters the expression of sirtuins (SIRT), the proteins
of the deacetylase families that are involved in modification
of histone and non-histone proteins. SIRT maintain the
integrity of the genome during the cellular response to
stress by using epigenetic mechanisms, and are therefore key
molecules in the body’s adaptation process. The change of
expression of SIRT1 and SIRT6 in RASFs was demonstrated
(Engler et al., 2016).

In contrast to genetic aberrations that are persist
throughout life, epigenetic changes may vary in different
cell populations as well as in the same cell depending on
conditions and developmental stage. Since the whole blood
cells, T- and B-lymphocyte populations, and SFs exhibit
different DNA methylation patterns, the analysis of epigenetic
markers in a mixed cell population may hamper in the
correct evaluation of the epigenetic panel (Liu et al., 2013;
Glossop et al., 2016).

Similarly, miRNA profiles differ across individuals, cell
populations and may be affected by concomitant diseases
(Huang et al., 2011). Thus, it is important to consider the
extracted cell type during the development of RA epigenetic
markers panel. Individual patient therapeutic response could
also be predicted with the epigenetic panel use. Currently,
a large number of drugs for RA treatment is undergoing
preclinical and clinical trials, however, the existing data
linked the epigenetic changes and response to therapy is
limited. Thus, intensive investigations in this field are critically
needed. International cooperation will enable the access to
larger patient cohorts thereby improving the quality of
studies. However, when planning international consortia, it is
important to consider the differences in ethnic composition
that may be reflected in epigenetic variations (Rawlings-
Goss et al., 2014). Some differences that were related to
race and nationality of patients were demonstrated even for
genetic markers.

Nevertheless, despite of the complications, investigation
of epigenetic markers is undoubtedly a great achievement
of molecular biology and molecular medicine. Epigenetic
changes are the earliest factors that are associated with the
development of the disease before its clinical manifestation.
They can be used for prevention and monitoring of
patient condition and also are the earliest to reflect
the effect of the drug at the cellular level, before any
systemic response of organism manifested as certain
symptoms. Moreover, some of epigenetic markers, such
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as changes in circulating miRNAs level in plasma,
may be more accessible for evaluation than the other
molecular markers.
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Transposable elements (TEs) are highly repetitive DNA sequences in the human genome
that are the relics of previous retrotransposition events. Although the majority of TEs are
transcriptionally inactive due to acquired mutations or epigenetic processes, around 8%
of TEs exert transcriptional activity. It has been found that TEs contribute to somatic
mosaicism that accounts for functional specification of various brain cells. Indeed,
autonomous retrotransposition of long interspersed element-1 (LINE-1) sequences has
been reported in the neural rat progenitor cells from the hippocampus, the human fetal
brain and the human embryonic stem cells. Moreover, expression of TEs has been found
to regulate immune-inflammatory responses, conditioning immunity against exogenous
infections. Therefore, aberrant epigenetic regulation and expression of TEs emerged as a
potential mechanism underlying the development of various mental disorders, including
autism spectrum disorders (ASD), schizophrenia, bipolar disorder, major depression,
and Alzheimer’s disease (AD). Consequently, some studies revealed that expression of
some sequences of human endogenous retroviruses (HERVs) appears only in a certain
group of patients with mental disorders (especially those with schizophrenia, bipolar
disorder, and ASD) but not in healthy controls. In addition, it has been found that
expression of HERVs might be related to subclinical inflammation observed in mental
disorders. In this article, we provide an overview of detrimental effects of transposition
on the brain development and immune mechanisms with relevance to mental disorders.
We show that transposition is not the only mechanism, explaining the way TEs might
shape the phenotype of mental disorders. Other mechanisms include the regulation of
gene expression and the impact on genomic stability. Next, we review current evidence
from studies investigating expression and epigenetic regulation of specific TEs in various
mental disorders. Most consistently, these studies indicate altered expression of HERVs
and methylation of LINE-1 sequences in patients with ASD, schizophrenia, and mood
disorders. However, the contribution of TEs to the etiology of AD is poorly documented.
Future studies should further investigate the mechanisms linking epigenetic processes,
specific TEs and the phenotype of mental disorders to disentangle causal associations.
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INTRODUCTION

Mental disorders represent complex phenotypes and are the
leading causes of global disease burden (Vigo et al., 2016).
The phenotype complexity of mental disorders manifests in
symptomatic and biological overlap, impeding a diagnostic
process that is based on a clinical consensus without a crucial role
of biological markers. Heritability rates of mental disorders are
high, exceeding 80% in twin studies of schizophrenia and bipolar
disorder (Cardno and Gottesman, 2000; McGuffin et al., 2003;
Misiak et al., 2016). However, monogenic determinants with high
penetrance rates have not been identified so far, and the concept
of major mental disorders as the polygenic phenotypes prevails
in the research approaches. Consequently, a paradigm shift
toward investigating polygenic signatures, gene × environment
(G× E) interactions and epigenetic mechanisms has been widely
observed in the recent years.

The term ‘epigenetics’ refers to a number of reversible
mechanisms that impacts gene expression without altering
DNA sequence, and include DNA methylation and
hydroxymethylation at the CpG islands, histone modifications as
well as the regulation by microRNA species. It is now increasingly
being recognized that the brain development is a complex process
during which there is an increased sensitivity to the regulatory
effects of epigenetic mechanisms (Nagy and Turecki, 2012). In
light of existing evidence, major mental disorders, especially
schizophrenia and autism spectrum disorders (ASD), are
perceived as the neurodevelopmental disorders, occurring due
to the effects of various genetic and environmental factors that
affect critical periods of the brain development (Meredith, 2015).

Transposable elements (TEs) are the highly repetitive DNA
sequences that constitute more than 50% of the human genome
and contain about 52% of all CpG dinucleotides (Cordaux and
Batzer, 2009; Su et al., 2012). Therefore, methylation at TEs is
believed to serve as a proxy measure of global DNA methylation.
Some TEs share similarity to exogenous viral agents and thus they
are called endogenous retroviruses (Griffiths, 2001). Only about
7% of TEs are transcriptionally active (Oja et al., 2008). It has been
estimated that approximately 0.27% of human genetic diseases
are caused by retrotransposition (Callinan and Batzer, 2006).

Less is known about the contribution of TEs to the etiology of
mental disorders. However, there is accumulating evidence that
retrotransposition plays an important role in shaping somatic
mosaicism that accounts for functional specification of brain
cells (Baillie et al., 2011; Poduri et al., 2013). For instance, it
has been reported that the transposition of long interspersed
element (LINE)-1 sequences may play a role in differentiation
of neurons during the brain development (Muotri et al., 2010).
Moreover, this sequence exerts autonomous retrotransposition
activity in the neural rat progenitor cells from the hippocampus,
the human fetal brain and the human embryonic stem cells
(Muotri et al., 2005; Coufal et al., 2009). Therefore, aberrant
epigenetic regulation of TEs has been hypothesized to play an
important role in the development of mental disorders. In this
article, we provide an overview of transposition processes with
relevance to major psychiatric disorders. Next, we review human
and animal model studies investigating expression and epigenetic

regulation of TEs in various mental disorders. Finally, we provide
a summary of evidence with future directions and potential
translation of findings to personalized precision medicine.

BRIEF OVERVIEW OF TEs IN THE
HUMAN GENOME – CLASSIFICATION
AND NOMENCLATURE

Classification of TEs in the human genome was shown in
Figure 1. A detailed description of the structure and function
of various TEs can be found elsewhere (Darby and Sabunciyan,
2014). All TEs can be divided into two subgroups – type I
TEs (retrotransposons) and type II TEs (DNA transposons).
Type I TEs can be divided into two subgroups – long
terminal repeat (LTR) elements, represented by the human
endogenous retroviruses (HERVs) and non-LTR sequences
that include LINEs, short interspersed elements (SINEs) and
processed pseudogenes (Dewannieux and Heidmann, 2005).
Retrotransposons act via RNA intermediates that are converted
to DNA sequences before transposition (reverse transcription)
(Munoz-Lopez and Garcia-Perez, 2010). Type II TEs encode
enzymes required for insertion and excision, enabling direct
transposition processes without the use of RNA intermediates
(Pray, 2008b). Some TEs are autonomous and encode all enzymes
that are necessary for transposition, while the rest of them require
a transcriptional activity of other transposons. Type II TEs have
lost a transposition activity (Darby and Sabunciyan, 2014).

The HERV sequences have likely existed as exogenous
infectious factors; however, they have lost this activity due
to acquired mutations (Bannert and Kurth, 2006). These TEs
constitute 8% of the human genome and contain genes that
are conservative for all retroviruses, including the gag, pro, pol,
and env genes (Lander et al., 2001; Vargiu et al., 2016). The
gag gene encodes proteins that build up matrix, capsid and
nucleocapsid. Pro and pol encode protease, reverse transcriptase
and integrase. In turn, the env gene is expressed to surface and
transmembrane proteins. The HERV sequences in the human
genome represent three classes of retroviruses: class I (e.g.,
HERV-E, HERV-W, HERV-FRD, and HERV-H), class II (e.g.,
HERV-K), and class III (e.g., HERV-L). This classification is
based on the similarity to exogenous retroviruses. The HERV-K
sequences are the youngest and exert the highest transcriptional
activity. The HERV sequences can provide promoters, enhancers,
repressors, poly-A signals and alternative splicing sites for human
transcripts (Vargiu et al., 2016).

The LINEs that represent non-LTR elements, possess an
autonomous retrotransposition activity and include LINE-1 and
LINE-2 sequences. These sequences make up approximately 21%
of the human genome (Lander et al., 2001; Schumann et al.,
2010). The LINE-1 sequences contain their own promoters and
encode two open reading frame proteins – ORF1 that is an
RNA-binding protein and ORF2 with endonuclease and reverse
transcriptase activities. They are the most abundant sequences
from the LINE family, making up 18% of the human genome
(Lander et al., 2001). The majority of LINE-1 sequences are
transcriptionally inactive. The LINE-2 sequences in the human
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FIGURE 1 | Classification of transposable elements in the human genome.

genome are highly defective and can encode either one or two
ORF proteins (Darby and Sabunciyan, 2014).

The SINEs are active and non-autonomous TEs, represented
by the Alu and the Mammalian wide Interspersed Repeat (MIR)
elements (11 and 3% of the human genome, respectively). The
Alu sequences were named based on sharing a common cleavage
site for the AluI restriction enzyme (Houck et al., 1979). The
Alu sequences are active but require the reverse transcriptase
that is encoded by LINE-1 sequences (Pray, 2008a). In turn,
the MIR elements are inactive. It has recently been shown that
SINEs may form more complex sequences that are classified as
the SVA retrotransposons. The SVA sequences have been formed
by coupling the SINEs, a variable number of tandem repeats
and the Alu retrotransposons. The SVAs also require the LINE-1
expression for mobilization. These sequences contribute to about
0.1% of the human genome and are the most active group of
retrotransposons (Ostertag et al., 2003; Wang et al., 2005).

In turn, pseudogenes are DNA sequences that are related
to real genes but they have lost at least some protein-coding
abilities. It has been found that mRNA of pseudogenes can
be reverse transcribed by the proteins encoded by LINE-1
sequences and transferred into other regions of the genome,
creating processed pseudogenes. It has been estimated that the
human genome consists of over 7,800 pseudogenes (Zhang
et al., 2003). In case of integration close to active promoters,
processed pseudogenes can be further transcribed. As listed by
Kazazian (2014), they share the following characteristics: (1) their
sequences are similar to the transcribed part of the parent gene;
(2) they lack all or most introns; (3) they contain a poly-A tail
attached to the 3′-most transcribed nucleotide; and (4) they are
flanked at their 5′ and 3′ terminals by target site duplications of
5–20 nucleotides.

Finally, little is known about type II TEs (DNA transposons)
that have never been active in the human genome. Type II TEs
include the hAT, MuDR, piggyBac, and Tc1/mariner sequences
(Munoz-Lopez and Garcia-Perez, 2010). These transposons
do not act via RNA intermediates and encode enzymes
that enable their mobilization. Due to their inactivity their
causal role in the etiology of human diseases is less likely
(Darby and Sabunciyan, 2014).

INSIGHTS INTO POTENTIAL
MECHANISMS UNDERLYING THE ROLE
OF TEs IN MENTAL DISORDERS

A recent review of human monogenic diseases that occur due to
retrotransposition suggests that only the transposition of LINE-
1, Alu, and SVA sequences might be deleterious, underlying the
development of monogenic diseases (Kaer and Speek, 2013).
Retrotransposition might affect various gene regions via altering
their sequence or influencing expression activity. For instance,
the Alu sequences contain several stop codons that may result in a
truncated protein (Mighell et al., 1997). This mechanism has been
discovered in patients with hemophilia B caused by transferring
the Alu-Ya5 element into a protein coding region of the factor IX
gene (Vidaud et al., 1993). In case of transposition into promoter
regions, these sequences might impact gene expression. Another
scenario originates from sequence homology that can promote
homologous recombination, leading to insertions and deletions.
Finally, the SVA tandems can mobilize exons, contributing to
complex rearrangements.

However, the effects of alterations in DNA sequence triggered
by retrotransposition have not been found to underlie the
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development of common mental disorders. In the majority
of studies of patients with mental disorders (reviewed in
detail below), altered expression and/or epigenetic regulation
of retrotransposons have been reported. There are several
epigenetic processes that act as defense mechanism against
retrotransposition, including DNA methylation, histone
modifications, small RNA-mediated regulation and post-
transcriptional silencing by DICER and siRNA (Lapp and
Hunter, 2016). Indeed, the majority of TEs in the human
genome are hypermethylated (Pray, 2008b). Although DNA
methylation acts as a defense mechanism, it cannot be excluded
that hypermethylation of newly inserted TEs can lead to
further changes in chromatin conformation, triggering changes
in the expression of adjacent genes. It is most likely that
retrotransposition occurs during early development when
epigenetic marks are removed (Darby and Sabunciyan, 2014).
There are also some well characterized histone modifications,
including trimethylation of lysine 9 and lysine 27 at histone
H3 (H3K9me3 and H3K27me3, respectively), which lead to
heterochromatin formation and transcriptional silencing of TEs
(Day et al., 2010; Baker et al., 2012).

It should be noted that only a small subset of TEs has
been reported to be involved in retrotransposition. For instance,
only 30–60 LINE-1 sequences in diploid cells are capable of
retrotransposition (Sassaman et al., 1997). In addition, the
majority of LINE-1 sequences are methylated to a certain
degree. It has been found that LINE-1 methylation might
impact gene expression via specific mechanisms [for review
see (Kitkumthorn and Mutirangura, 2011)]. Firstly, LINE-1
sequences may produce unique RNA transcripts that act beyond
the LINE-1 location. Alternatively, the reverse LINE-1 promoter
can transcribe unique DNA sequences beyond the 5′ end of
LINE-1. The second scenario is that intragenic LINE-1 RNAs
decrease the expression of host gene via the nuclear RNA-
induced silencing complexes. Indeed, it has been found that
the Argonaute-2 (AGO2) protein targets intronic LINE-1 pre-
mRNA complexes leading to down-regulation of gene expression
in cancer cells (Aporntewan et al., 2011).

Global DNA hypomethylation that progresses with aging
has been associated with genomic instability (Jung and
Pfeifer, 2015). Hypomethylated genome regions are prone
to accumulate various types of DNA lesions that include
oxidative damage, depurination, depyrimidation and pathologic
endogenous double-strand breaks (Mutirangura, 2019). The
latter ones are now believed to act as intermediate products that
drive genomic instability (Mutirangura, 2019). Accumulating
evidence indicates that methylation of TEs might protect
against genomic instability processes. For instance, it has been
demonstrated that Alu siRNA increases Alu methylation levels,
lowers endogenous DNA damage and increases DNA resistance
to DNA damaging agents (Patchsung et al., 2018). Similarly,
LINE-1 hypomethylation may contribute to genomic instability
via interactions with the ATM gene expression (Kitkumthorn
and Mutirangura, 2011). However, the contribution of a
reduction in the Alu methylation to genomic instability
might be greater than that of LINE-1 or HERV sequences
(Jintaridth and Mutirangura, 2010).

It remains largely unknown how changes in the expression of
TEs might contribute to the development of mental disorders. It
has been hypothesized that the presence of TEs in the human
genome provides immunity against several infectious agents.
Indeed, the mechanisms that contributed to HERV insertions are
analogous to those used for replication by exogenous retroviruses
(Grandi and Tramontano, 2018). Therefore, changes in the
expression of TEs, e.g., via epigenetic processes, might impact
immune responses and make the host more liable to exogenous
infections. There is evidence that HERV-derived peptides may
interact with innate immunity via various mechanisms. For
instance, HERV proteins are able to interact with pattern
recognition receptors (PRRs) that play a pivotal role in antiviral
responses (Hurst and Magiorkinis, 2015). Emerging evidence
indicates that exogenous viruses, including herpesviruses and
influenza virus, might modulate the expression of HERV
sequences. This mechanism might play a protective role and
has been reviewed in detail by Grandi and Tramontano (2018).
In brief, HERV transcripts might interact with homologous
RNA from exogenous retroviruses, leading to the formation of
molecules that are recognized by PRRs, acting as innate immunity
sensors. The similarity of HERV proteins to those exogenous
retroviruses allow them to compete with cellular receptors. This
similarity might also trigger complementation events that impair
formation of viral particles after cellular infection. On the other
site, HERV proteins may suppress innate immunity. It has been
reported that HERV-K proteins inhibit the activation of T cells
(Morozov et al., 2013) as well as reduce the levels of interleukin-6
and Toll-like Receptor 7 (Laska et al., 2017).

TRANSPOSABLE ELEMENTS AND THEIR
EPIGENETIC REGULATION IN MENTAL
DISORDERS

As mentioned above, expression of TEs might play an important
role in shaping immune responses against exogenous infections.
Aberrant immune-inflammatory responses have been reported in
several mental disorders. Also, a number of exogenous infections
have been found to impact a risk of mental disorders. Below, we
review studies investigating TEs and their epigenetic regulation
in specific mental disorders, starting from the rationale of
these studies that is based on the contribution of immune-
inflammatory processes. A summary of human studies was
provided in Table 1.

Autism Spectrum Disorders (ASD)
Overexpression of HERV-H has been observed in peripheral
blood mononuclear cells (PBMC) of children with ASD
(Balestrieri et al., 2012, 2016). Similar findings have also been
observed in two different ASD mouse models – inbred BTBR
T+tf/J mice and CD-1 outbred mice prenatally exposed to
valproic acid. In both of these mouse models, the expression of
several endogenous retrovirus (ERV) families (ETnI, ETnII-α,
ETnII-β, ETnII-γ, MusD, and IAP) was significantly higher in
comparison with corresponding controls (Cipriani et al., 2018).
Interestingly, the studies in mouse models provide additional
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TABLE 1 | Overview of human studies investigating the role of TEs in mental disorders.

Diagnosis Study N Methods Main findings

ASD Balestrieri et al.,
2012

28 ASD children 28
HCs

Expression of
HERV sequences
(E, H, K, and W) in
PBMCs – RT-PCR

The percentage of HERV-H and HERV-W positive samples was significantly
higher in ASD patients compared to HCs. HERV-H was more abundantly
expressed and HERV-W had lower abundance in ASD patients than in HCs.
PBMCs from ASD patients had an increased potential to up-regulate the
HERV-H expression upon stimulation.

Balestrieri et al.,
2016

30 ASD children 30
HCs

Expression of
HERV sequences
(H, K, and W) in
PBMCs – RT-PCR

There were significantly higher expression levels of HERV-H in PBMCs from
ASD children compared to HCs. In turn, expression levels of HERV-K and
HERV-W were significantly higher in PBMCs from healthy controls compared to
ASD children.

Saeliw et al., 2018 36 ASD patients 20
HCs Publicly
available datasets
of DNA expression
profiling (465 ASD
patients and 276
HCs)

Methylation
(COBRA) and
expression of Alu
sequences
(RT-PCR) in
lymphoblastoid cell
lines

A total of 320 Alu-inserted genes were differentially expressed. These genes are
known to be associated with neurodevelopmental and neurological disorders.
Pathway analysis revealed that these genes are involved in inflammation,
estrogen receptor and androgen signaling.

Shpyleva et al.,
2018

13 ASD patients 13
HCs

LINE-1 methylation
(the
5-methylcytosine
MeDIP assay) and
expression
(RT-PCR) as well as
H3K9me3 (ChIP) in
post-mortem brain
samples

LINE-1 expression was significantly higher in the cerebellum but not in the BA9,
BA22, and BA24 brain regions from ASD patients. The binding of repressive
MeCP2 protein and histone H3K9me3 to LINE-1 was significantly lower in the
cerebellum of ASD patients. Higher LINE-1 expression was associated with
elevated levels of oxidative stress. Overall, no significant differences in
methylation levels between ASD patients and HCs were found. However,
significantly altered Alu methylation patterns were observed in ASD cases
sub-grouped based on clinical manifestation compared with HCs.

SCZ Bundo et al., 2014 48 SCZ patients 13
BD patients 12
MDD patients 47
HCs

The number of
LINE-1 copies in
brain samples and
induced pluripotent
cells (RT-PCR)

The LINE-1 retrotransposition in neurons from the prefrontal cortex of patients
with schizophrenia was increased, especially in the genes involved in synaptic
functions. These findings were confirmed in induced pluripotent cells from
patients with 22q11 deletion syndrome as well as in a mouse model of
schizophrenia (maternal immune activation paradigm).

Doyle et al., 2017 36 SCZ patients 26
HCs

LINE-1 insertions in
the dorsolateral
prefrontal cortex
samples (qPCR)

A significant increase in the number of intragenic LINE-1 insertions has been
observed in the dorsolateral prefrontal cortex of patients with schizophrenia
compared to healthy controls.

Fachim et al., 2019 35 FES patients 21
siblings of SCZ
patients 35 HCs

LINE-1 methylation
(pyrosequencing) in
peripheral blood
leukocytes

LINE-1 methylation was significantly higher in FES patients and siblings of
schizophrenia patients compared to HCs.

Frank et al., 2005 39 SCZ patients 39
HCs

Expression of
HERV sequences in
brain samples
(HERV chip and
RT-PCR)

Overrepresentation of the HERV-K(HML2) group in the brain samples of SCZ
patients was found.

Huang et al., 2006 58 recent-onset
SCZ patients 38
HCs

Expression of the
HERV pol gene in
peripheral blood
leukocytes
(RT-PCR)

The HERV pol gene expression was detected in 34.5% of SCZ patients but not
in HCs.

Kalayasiri et al.,
2019

31 paranoid SCZ
patients 94 MIP
patients 163 HCs

LINE-1 methylation
in PBMCs (COBRA)

Methylation levels of LINE-1 sequences were significantly higher in paranoid
SCZ patients and MIP patients compared to HCs.

Karlsson et al.,
2002

35 FES and FESaff
patients 20 SCZ
and SCZaff patients
22 patients with
non-inflammatory
neurological
disorders 30 HCs

Detection of HERV
sequences in CSF
(cDNA synthesis,
pan-retroviral PCR,
cloning and
sequencing)

Nucleotide sequences homologous to those of the HERV-W pol gene were
found in CSF of 28.6% of FES patients and in 5% of patients with SCZ and
SCZaff. These sequences were not detected in the CSF of individuals with
non-inflammatory neurological diseases and healthy controls.

(Continued)
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TABLE 1 | Continued

Diagnosis Study N Methods Main findings

Karlsson et al.,
2004

54 FES and FESaff
patients 46 HCs

The presence of HERV-W
sequences in plasma
samples (RT-PCR)

The HERV-W gag sequences were detected in 16.7% of patients and
4.3% of HCs.

Li et al., 2019 32 SCZ patients 51
HCs

Analysis of post-mortem
brain samples (RNAseq
data)

Increased transcription of HERV, especially HERV-W and HERV-H
elements, was found in the anterior cingulate cortex, hippocampus, and
orbitofrontal cortex of patients with SCZ.

Mak et al., 2019 100 MES patients
49 FES patients 97
HCs

Methylation of HERV-K
sequences in peripheral
blood leukocytes (COBRA)

There were no significant differences in the level of HERV-K methylation
between MES patients and HCs. In turn, FES patients had significantly
lower HERV-K methylation than HCs. There was a significant positive
correlation between a cumulative dosage of antipsychotic and the
HERV-K methylation level in MES patients.

Melbourne et al.,
2018

17 SCZ patients 16
HCs

Expression of HERV-W env
and gag in PBMCs
(RT-PCR)

There were no significant differences in the level of expression. In all
participants, higher expression of HERV-W env and gag was related to
higher levels of interleukin-6. There was a negative correlation between
the dosage of atypical antipsychotic and the level of HERV-W env and
gag expression.

Misiak et al., 2015 48 FES patients 48
HCs

Methylation of LINE-1
sequences in peripheral
blood leukocytes (COBRA)

There were no significant differences in the level of LINE-1 methylation
between FES patients and HCs. However, FES patients with a positive
history of childhood trauma had significantly lower LINE-1 methylation
than HCs. More specifically, a higher level of emotional abuse was
related to lower LINE-1 methylation in FES patients.

Perron et al., 2012 45 SCZ patients 91
BD patients 73 HCs

Expression of HERV-W env
gene in PBMCs (RT-PCR)

There were significantly elevated transcription levels of the HERV-W env
sequence in SCZ patients compared to HCs. However, the levels of
HERV-W env expression were significantly lower compared to BD
patients.

Weis et al., 2007 15 SCZ patients 15
HCs

Expression of HERV-W gag
protein in brain samples
(immunohistochemistry)

Expression level of the HERV-W gag protein has been found to be
decreased in the cingulate gyrus and the hippocampus of patients with
SCZ.

Mood
disorders

Frank et al., 2005 38 BD patients 39
HCs

Expression of HERV
sequences in brain samples
(HERV chip and RT-PCR)

Overrepresentation of the HERV-K(HML2) group in the brain samples of
BD patients was found.

Li et al., 2018 24 BD patients 51
HCs

Analysis of post-mortem
brain samples (RNAseq
data)

Increased transcription of HERV, especially HERV-W and HERV-H
elements, was found in the anterior cingulate cortex, hippocampus, and
orbitofrontal cortex of patients with BD.

Perron et al., 2012 91 BD patients 45
SCZ patients 73
HCs

Expression of HERV-W env
gene in PBMCs (RT-PCR)

There were elevated transcription levels of the HERV-W env sequence
in SCZ patients compared to SCZ and HCs.

Weis et al., 2007 15 BD patients 15
MDD patients 15
HCs

Expression of HERV-W gag
protein in brain samples
(immunohistochemistry)

Expression level of the HERV-W gag protein has been found to be
decreased in the cingulate gyrus and the hippocampus of patients with
BD and SCZ.

AD Bollati et al., 2011 43 AD patients 38
HCs

Methylation of LINE-1
sequences in peripheral
blood leukocytes
(pyrosequencing)

Increased LINE-1 methylation level was found in AD patients, especially
those with better cognitive performance.

Hernández et al.,
2014

28 AD patients 30
HCs

Methylation of LINE-‘
sequences in peripheral
blood leukocytes
(MS-HRM)

No significant differences in LINE-1 methylation levels between AD
patients and HCs were found.

Protasova et al.,
2017

18 AD patients 20
HCs

LINE-1 – the number of
copies and expression level
in post-mortem samples of
frontal cortex (RT-PCR)

No significant differences in LINE-1 expression or the number of LINE-1
copies between AD patients and HCs were found.

AD, Alzheimer’s disease; ASD, autism-spectrum disorder; BD, bipolar disorder; COBRA, combined bisulfite restriction analysis; CSF, cerebrospinal fluid; FES, first-
episode schizophrenia; FESaff, first-episode schizoaffective disorder; H3K9me3, histone H3 lysine 9 trimethylation; HCs, healthy controls; MeCP2, methyl CpG binding
protein 2; MDD, major depressive disorder; MIP, methamphetamine-induced psychosis; MS-HRM, methylation-sensitive high-resolution melting; PBMCs, peripheral blood
mononuclear cells; RT-PCR, real-time polymerase chain reaction; SCZ, schizophrenia; SCZaff, schizoaffective disorder; qPCR, quantitative polymerase chain reaction.

information on the potential use of ERV sequences as biomarkers:
(i) a higher expression of ERV was observed both in the
peripheral blood mononuclear cells and the brain, suggesting
that altered profile of peripheral ERV sequences may reflect

similar alterations at the brain level; (ii) ERV overexpression
in ASD mouse models is detectable from prenatal stage till the
adulthood and (iii) ERV overexpression in ASD mouse models is
also accompanied by increased expression of pro-inflammatory
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cytokines and Toll-like receptors. Furthermore, a subsequent
study in one of the models (mice prenatally exposed to valproic
acid) provided evidence that higher levels of ERVs are also
detectable in the offspring (second and third generations) of those
mice exposed prenatally to valproic acid (Tartaglione et al., 2018).

Also LINE-1 retrotransposons have been associated with ASD
(Shpyleva et al., 2018; Suarez et al., 2018). The levels of LINE-
1 ORF1 and ORF2 transcripts have been investigated in four
brain regions of patients with idiopathic autism (the frontal
cortex, anterior cingulate, auditory cortex, and cerebellum).
Elevated LINE-1 expression together with lower binding affinity
of repressive MeCP2 protein and histone H3K9me3 to LINE-
1 sequences was observed only in the cerebellum, suggesting a
lessening of epigenetic repression and consequently an increase
in chromatin accessibility. Interestingly, the increase in LINE-1
expression was also inversely correlated with glutathione redox
status, consistent with reports indicating that LINE-1 expression
is increased under pro-oxidant conditions (Shpyleva et al., 2018).
The overexpression of LINE-1 within a single brain region is
suggestive of a mosaicism-like impact of retrotransposons and
definitively needs further investigation. In partial agreement
with the findings of increased LINE-1 expression in ASD,
data concerning LINE-1 methylation status in lymphoblastoid
peripheral cells have provided evidence of reduced methylation
in a subgroup of patients with severe language impairment
(Tangsuwansri et al., 2018).

It has also been shown that the Alu sequence, the
most abundant of all TEs in the human genome, deserves
further research in ASD (Saeliw et al., 2018). Indeed, this
study investigated the Alu methylation and expression in
lymphoblastoid peripheral cells from ASD patients. Although
the global methylation of Alu subfamilies was not significantly
different between ASD and control group, when ASD samples
were divided according to phenotypic subgroups, methylation
patterns of the AluS subfamily were different from those in
relative controls in two of the ASD subgroups, and within
one of the subgroup (mild phenotype), the Alu expression
was correlated with methylation status. Despite the limited
sample size (particularly of subgroups), these data suggest that
classification of ASD patients in phenotypic subgroups may
represent a useful tool in investigating associations of TEs with
the highly heterogeneous ASD diagnostic construct.

Schizophrenia-Spectrum Disorders
It has been clearly demonstrated that winter-spring seasonality
of birth as well as prenatal and postnatal infections increase a
risk of developing schizophrenia (McGrath and Welham, 1999;
Davies et al., 2003; Khandaker et al., 2013). Moreover, the
largest genome-wide association study revealed that variation
within the HLA genes is strongly associated with schizophrenia
susceptibility (Ripke et al., 2014). Finally, schizophrenia patients
present with several indices of subclinical inflammation in
terms of pro-inflammatory cytokine profiles (Miller et al.,
2011; Frydecka et al., 2018), alterations of lymphocyte counts
(Miller et al., 2013; Karpiǹski et al., 2016, 2018) and elevated
levels of C-reactive protein (CRP) (Fernandes et al., 2016).
On the basis of a meta-analysis, Arias et al. (2012) found a

higher prevalence of infections with several agents, including
Human Herpesvirus (HHV) 2, Borna Disease Virus, Chlamydia
pneumoniae, Chlamydia psittaci, and Toxoplasma gondii in
patients with schizophrenia compared to healthy controls.

Accumulating evidence indicates altered expression of HERV
sequences in patients with schizophrenia. Karlsson et al. (2002)
found nucleotide sequences homologous to those of the HERV-
W pol gene in the cerebrospinal fluid (CSF) of 28.6% of first-
episode schizophrenia patients and in 5% of patients with
chronic schizophrenia. These sequences were not detected in
the CSF of individuals with non-inflammatory neurological
diseases and healthy controls. Increased levels of HERV-W-
related gag and pol transcripts and a higher prevalence of the
gag and pol antigenemia in peripheral blood from patients with
schizophrenia compared to healthy controls have been reported
by several studies (Karlsson et al., 2004; Huang et al., 2006;
Perron et al., 2008; Yao et al., 2008). The study by Perron et al.
(2008) also revealed significantly higher rates of positive HERV-
W env antigenemia in patients with schizophrenia than in healthy
controls. The HERV-W gag and env antigenemia has been also
associated with subclinical inflammation in terms of elevated
levels of CRP and pro-inflammatory cytokines (Perron et al.,
2008; Melbourne et al., 2018). Interestingly, Huang et al. (2011)
found that overexpression of the HERV-W env in the human
U251 glioma cells up-regulated a number of schizophrenia-
associated genes, including those that encode brain-derived
neurotrophic factor, neurotrophic tyrosine kinase receptor type
2 and the dopamine D3 receptor as well as increased the
phosphorylation of cyclic adenosine monophosphate response
element-binding protein. In this study, mRNA of the HERV-
W env gene was detected in plasma from 42 out of 118
recent-onset schizophrenia patients but not in healthy controls.
There is also evidence that the expression of HERV-W env
induces calcium influx and down-regulates the DISC1 gene
expression in the human neuroblastoma cells (Chen et al., 2018).
Interestingly, expression level of the HERV-W gag protein has
been found to be decreased in the cingulate gyrus and the
hippocampus of patients with schizophrenia (Weis et al., 2007).
However, a recent analysis of RNA-seq data in the human
post mortem brain samples revealed increased transcription
of HERV, especially HERV-W and HERV-H elements, in the
anterior cingulate cortex, hippocampus and orbitofrontal cortex
of patients with schizophrenia and bipolar disorder (Li et al.,
2019). Interestingly, the HERV sequences within the ERVWE1
gene (7q21.2) exhibited the highest levels of transcription across
all brain regions examined in this analysis. The env gene
in this locus encodes syncytin-1, expressed at high levels in
the human placenta (Blond et al., 2000; Mi et al., 2000).
However, altered expression of this gene has been reported
in the areas of active demyelination in patients with multiple
sclerosis (Mameli et al., 2007). At this point, it should be noted
that myelin alterations are widely observed in patients with
schizophrenia (Mighdoll et al., 2015). Although initial results
regarding expression of the HERV-W sequences in schizophrenia
patients are promising, caution should be taken on the way these
results are being interpreted. Indeed, the majority of studies in
this field analyzed the overall expression of HERV-W sequences
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without investigating specific HERV-W loci. Moreover, no
conclusive association between the HERV-W expression and
other human pathologies has been documented so far [for review
see (Grandi and Tramontano, 2017)].

Less is known about other families of HERVs in patients
with schizophrenia. Frank et al. (2005) found overrepresentation
of the HERV-K(HML2) group in brain samples of patients
with schizophrenia and bipolar disorder. Our group also tested
peripheral blood methylation levels of HERV-K sequences in
first-episode and multi-episode schizophrenia patients (Mak
et al., 2019). We found significantly lower levels of HERV-K
methylation in first-episode schizophrenia patients compared to
healthy controls. These alterations were not observed in multi-
episode schizophrenia patients. Moreover, we did not find an
association between HERV-K methylation levels and the deficit
schizophrenia subtype that refers to a subgroup of patients
with enduring and persistent negative symptoms. However, we
found a significant positive correlation between the dosage of
antipsychotics and HERV-K methylation levels in multi-episode
schizophrenia patients. These findings imply that the HERV-K
methylation might normalize in the course of schizophrenia. It
is also likely that antipsychotic drugs might impact methylation
and expression of HERV-K sequences. In contrast to our findings,
Diem et al. (2012) found no significant effects of valproic
acid, haloperidol, risperidone and clozapine on the HERV-K
expression levels in the human brain cell lines. However, valproic
acid was found to strongly up-regulate expression of HERV-W
and ERV9 elements.

Some studies also investigated methylation status and
expression levels of non-LTR sequences in patients with
schizophrenia. Bundo et al. (2014) demonstrated increased LINE-
1 retrotransposition in neurons from the prefrontal cortex of
patients with schizophrenia, especially in the genes involved in
synaptic functions. These findings were confirmed in induced
pluripotent cells from patients with 22q11 deletion syndrome
as well as in a mouse model of schizophrenia (maternal
immune activation paradigm). In agreement with these results,
a significant increase in the number of intragenic LINE-1
insertions has been observed in the dorsolateral prefrontal cortex
of patients with schizophrenia compared to healthy controls
(Doyle et al., 2017). Over-representation of these insertions
appeared within the gene ontologies called “cell projection”
and “postsynaptic membrane,” suggesting their role in the brain
development. In some studies, LINE-1 methylation was tested
in peripheral blood leukocytes of patients with schizophrenia,
providing mixed findings (Misiak et al., 2015; Li et al., 2018;
Fachim et al., 2019; Kalayasiri et al., 2019). The study by our
group revealed lower LINE-1 methylation only in patients with
first-episode schizophrenia and a positive history of childhood
trauma. Among various childhood adversities, emotional trauma
was most strongly associated with the LINE-1 methylation
status. These results are in agreement with a previous study,
showing that the LINE-1 methylation might be involved in
resilience and susceptibility to develop post-traumatic stress
disorder (Rusiecki et al., 2012). Moreover, increased expression
of LINE-1 in response to stress has been reported in various
cell lines (Li and Schmid, 2001; Capomaccio et al., 2010).

Lower LINE-1 methylation levels in patients with schizophrenia
and bipolar disorder were also reported by Li et al. (2018).
Other studies revealed hypermethylation of LINE-1 sequences
in patients with first-episode psychosis, paranoid schizophrenia
and methamphetamine-induced paranoia (Fachim et al., 2019;
Kalayasiri et al., 2019).

Mood Disorders
A recent systematic review indicates that prenatal infections
might impact the risk of bipolar disorder (Marangoni et al.,
2016). However, this observation is based on a lower number
of studies compared to studies addressing the impact of prenatal
infections on schizophrenia risk. There is evidence that influenza
infection during pregnancy is associated with a fourfold increase
in the risk of bipolar disorder in the offspring (Parboosing et al.,
2013). Another study demonstrated that prenatal flu exposure
increases the risk of bipolar disorder with psychotic features
(Canetta et al., 2014). However, no association was found between
prenatal infections with HHV-1, HHV-2, Cytomegalovirus or
Toxoplasma gondii and bipolar disorder risk (Mortensen et al.,
2011). Maternal infections in the second trimester might also
contribute to the development of depressive symptoms in the
adolescent offspring (Murphy et al., 2017). However, the impact
of specific infectious agents has not been tested so far.

Although all major mental disorders are characterized
by co-existing subclinical inflammation, some differences,
regarding specific pro-inflammatory markers can be indicated
(Goldsmith et al., 2016; Misiak et al., 2019). Therefore,
it might be hypothesized that the mechanisms leading to
subclinical inflammation in bipolar disorder, major depression
and schizophrenia-spectrum disorders are different. However,
studies investigating expression of TEs do not support this
hypothesis. For instance, over-expression of HERV-K sequences
has been reported in brain samples of patients with bipolar
disorder and schizophrenia (Frank et al., 2005). Similarly,
decreased expression of the HERV-W gag protein has been
reported in the cingulate gyrus and hippocampus of patients
with schizophrenia, bipolar disorder, and major depression
(Weis et al., 2007). Finally, hypomethylation of LINE-1 elements
in peripheral blood has been observed in patients with
bipolar disorder and schizophrenia (Li et al., 2018). Some
differences have been detected with respect to the expression
of HERV-W sequences. Indeed, Perron et al. (2012) found
elevated transcription levels of the HERV-W env sequence in
the peripheral blood of patients with bipolar disorder and
schizophrenia compared to healthy controls. Expression levels
of the HERV-W env sequence were also significantly higher in
patients with bipolar disorder than in those with schizophrenia.

Alzheimer’s Disease
There is a general consensus that aging processes are associated
with progressive loss of global DNA methylation and site-specific
DNA hypermethylation (Jung and Pfeifer, 2015). Similarly, TEs
are subjected to profound epigenetic modifications during aging
that appear in the context of organismal and cellular senescence
(Cardelli, 2018). For instance, age-related loss of Alu and HERV-
K methylation has been well-documented (Bollati et al., 2009;

Frontiers in Genetics | www.frontiersin.org 8 June 2019 | Volume 10 | Article 58062

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00580 June 21, 2019 Time: 16:38 # 9

Misiak et al. Transposable Elements in Mental Disorders

Jintaridth and Mutirangura, 2010; Gentilini et al., 2013).
Moreover, it has been found that the expression of HERV-H,
HERV-K and HERV-W changes during the lifespan with distinct
patterns (Balestrieri et al., 2015). Importantly, the study by
Gentilini et al. (2013) demonstrated that age-related loss of Alu
methylation was less apparent in the offspring of centenarians,
suggesting the effects of genetic factors associated with longevity.
In turn, studies investigating changes of LINE-1 methylation have
provided mixed findings (Bollati et al., 2009; Talens et al., 2012;
Cho et al., 2015). Finally, there is evidence that chromatin of Alu,
SVA, and LINE-1 becomes relatively more open in senescent cells
(De Cecco et al., 2013).

Age-related changes in epigenetic modifications of TEs
have provided basis for investigating alterations of these
processes in Alzheimer’s disease. In a single study of early-
onset Alzheimer’s disease family, it has been reported that large
genomic rearrangements might affect the presenilin-1 gene via
the mechanisms involving recombination stimulated by the
Alu sequence (Hiltunen et al., 2000). However, subsequent
studies have not provided compelling evidence regarding the
contribution of TEs to the etiology of Alzheimer’s disease. There
is only one study, showing increased LINE-1 methylation in
peripheral blood leukocytes of patients with Alzheimer’s disease,
especially those with better cognitive performance, compared to
healthy controls (Bollati et al., 2011). However, the authors did
not find significant between-group differences in the levels of
Alu and SAT-α methylation. Other studies did not confirm these
findings regarding LINE-1 methylation (Hernández et al., 2014;
Protasova et al., 2017). Alterations of other TEs in patients with
Alzheimer’s disease have not been tested so far.

SUMMARY OF EVIDENCE AND FUTURE
DIRECTIONS

Although specific retrotransposition events that may account for
mental disorders in the manner observed in case of Mendelian
diseases have not been identified so far, accumulating evidence
indicates the involvement of altered expression and epigenetic
regulation of TEs in the pathophysiology of schizophrenia,
mood disorders and ASD. Most consistently, previous studies
indicate altered expression of HERVs and methylation of
LINE-1 sequences. However, specific findings are similar in
patients with various mental disorders and thus their use as
biomarkers is largely limited. Moreover, the direction of causality
is yet to be determined. For instance, it cannot be excluded
that altered expression of HERV appears as a consequence
of other epigenetic dysregulations that are widely observed
in mental disorders. Additionally, severe mental disorders,
including schizophrenia and mood disorders, are associated
with high prevalence rates of somatic comorbidities, including
autoimmune diseases, type 2 diabetes and cardiovascular diseases
that have also been associated with altered epigenetic regulation
of TEs (Cash et al., 2011; De Hert et al., 2011; Misiak et al.,
2013; Nestler et al., 2016; Zhao et al., 2018). Interestingly, there
are studies showing that the expression of various HERV
sequences appears in a certain subgroup of patients with

schizophrenia but not in healthy controls. These findings
are consistent with previous studies, showing that immune
alterations can be observed only in a subgroup of patients
characterized by poor response to treatment and support the
concept of psychosis subtypes (Frydecka et al., 2015; Mondelli
et al., 2015; Fillman et al., 2016). Other clinical correlates of
subclinical inflammation in schizophrenia include, i.e., more
severe cognitive deficits (Misiak et al., 2017b), persistent negative
symptoms (Goldsmith et al., 2018) and certain neurostructural
abnormalities (Najjar and Pearlman, 2015). However, so far
studies investigating expression and epigenetic regulation of TEs
in schizophrenia have been based on relatively small samples
without comprehensive clinical assessment. Similarly, studies
investigating the expression of TEs in patients with bipolar
disorder did not control for mood status and a severity of
psychopathological symptoms.

Another important point is that causal inferences between TEs
and mental disorders cannot be established. Firstly, it remains
unknown what are the critical periods when alterations in
epigenetic regulation and expression of TEs appear. Therefore,
future studies should examine epigenetic processes that regulate
expression of TEs in patients at early stages of mental disorders
or individuals from clinical high risk groups. This is particularly
important since several lifestyle characteristics that are highly
prevalent among patients with mental disorders, e.g., cigarette
smoking and poor dietary habits, might impact TEs per se
(Miglino et al., 2014; Miousse et al., 2015). Secondly, the role
of HERVs in shaping innate immunity also remains problematic
with respect to understanding causal associations. On one side,
expression of HERVs might condition resistance to exogenous
infections; on the other, exogenous retroviruses have been found
to impact the expression of HERVs. Therefore, it remains
unknown whether altered expression profiles of HERVs in
mental disorders represent cause or consequence of exogenous
infections. Future studies should necessarily examine the
biological nature and the extent of associations between immune
alterations in mental disorders and expression of various TEs.

Finally, more global concordance patterns of different TEs
expression in mental disorders are yet to be examined: this could
provide further insight into specificity of methylation patterns
across different TEs and provide additional information of their
use as potential biomarkers. At this point, it is important to note
that similar DNA methylation patterns have been described in
brain samples and peripheral blood leukocytes of patients with
schizophrenia (Van Den Oord et al., 2016).

Another direction for the field is to disentangle the effects of
stressful life events on epigenetic regulation of TEs expression.
Early-life stress is a known risk factor for mood and psychotic
disorders as well as correlates with a number of biological
dysregulations in adults (Misiak et al., 2017a; Bielawski et al.,
2019; Jaworska-Andryszewska and Rybakowski, 2019). Acute
stress has been found to increase the levels of H3K9me3 as
well as decrease the levels of H3K9me1 and H3K27me3 in
the dentate gyrus and the CA1 layer of the hippocampus in
rats (Milne et al., 2009). In turn, chronic restraint stress for
21 days mildly increased the levels of H3Kme4 and reduced
the levels of H3K9me3 in the dentate gyrus. Treatment with
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fluoxetine reversed changes in the levels of H3K9me3 during
chronic restraint stress. More specifically, the same group found
that acute stress had increased H3K9me3 enrichment at SINEs
(Baker et al., 2012). In turn, our group found lower methylation
of LINE-1 sequences in peripheral blood leukocytes of patients
with first-episode schizophrenia reporting a positive history of
childhood trauma (Misiak et al., 2015). In light of these findings,
future studies should further examine the effects of stress on the
expression of TEs in patients from various clinical groups and
preclinical studies could contribute to this aim.
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Epigenetic alterations play a key role in the initiation and progression of cancer. Therefore, 
it is possible to use epigenetic marks as biomarkers for predictive and precision 
medicine in cancer. Precision medicine is poised to impact clinical practice, patients, 
and healthcare systems. The objective of this review is to provide an overview of the 
epigenetic testing landscape in cancer by examining commercially available epigenetic-
based in vitro diagnostic tests for colon, breast, cervical, glioblastoma, lung cancers, and 
for cancers of unknown origin. We compile current commercial epigenetic tests based on 
epigenetic biomarkers (i.e., DNA methylation, miRNAs, and histones) that can actually be 
implemented into clinical practice.

Keywords: precision medicine, epigenetic biomarker, In Vitro Diagnostic (IVD), DNA methylation, miRNA, cfDNA, 
circulating nucleosomes

INTRODUCTION

Epigenetics, a breakthrough discipline in biomedicine, aims to improve precision medicine by 
discovering new epigenetic mechanisms and providing new epigenetic biomarkers, therapeutic 
targets, and epigenetic drugs with potential uses in clinical practice.

Most human diseases have complex multifactorial pathologies that result from a pathogenic 
polymorphism in human genes, besides epigenetic mechanisms, which can modulate the expression 
of functional genes. Currently, several IVD molecular-based tests contribute to the development of 
precision oncology, which already offers viable alternatives for cancer diagnostics and prognostics. 
The Food and Drug Administration (FDA) lists several IVD tests that have been cleared and 
approved for diagnostics, which can be consulted by searching Nucleic Acid-Based Test (Food and 
Drug Administration, 2019a) and List of Cleared or Approved Companion Diagnostic Devices (In 
Vitro and Imaging Tools) (Food and Drug Administration, 2019b).

For a given phenotype, there is a causal contribution of genetic mutations, copy number variations, 
epigenetic control, and altered transcription programs and altered complex metabolic inputs. The 
contribution of the aforementioned factors renders the use of different approaches necessary to 
understand the physiopathology of complex and multifactorial diseases. In line with this, epigenetic 
biomarkers can help early diagnosis, disease progression monitoring, disease outcome prediction, 
selection and stratification of patients by risk, prediction of future comorbidities, and even the 
evaluation of the positive or negative effects of therapeutic interventions in specific patient subsets. 
Among others, DNA methylation and microRNAs are markedly more stable than RNA and 
proteins, which renders the use of these biomarkers more practical and viable in clinical settings 
(Faruq and Vecchione, 2015; Hashimoto et al., 2016; García-Giménez et al., 2017b). In particular, 
DNA methylation, microRNAs, and post-translational modifications of histones offer high stability 
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in biofluids and in samples with a compromised quality, such as 
formalin-fixed paraffin embedded (FFPE). Other advantages of 
epigenetic biomarkers over genetic or protein-based biomarkers 
are as follows: 1) their dynamic nature; 2) they provide 
information about the gene function; 3) they inform about the 
specific genetic programs that alter during disease; and 4) most 
techniques to analyze epigenetic biomarkers (i.e., RT-qPCR) have 
already been introduced into clinical laboratories. Therefore, 
epigenetics has a tremendous potential to improve predictive and 
precision medicine.

Precision Medicine was defined by the National Research 
Council’s Toward Precision Medicine in 2008 as: “The tailoring 
of medical treatment to the individual characteristics of each 
patient … to classify individuals into subpopulations that differ 
in their susceptibility to a particular disease or their response to a 
specific treatment. Preventative or therapeutic interventions can 
then be concentrated on those who will benefit, sparing expense 
and side effects for those who will not” (Ginsburg and Phillips, 
2018). Therefore, precision medicine has started to use potential 
epigenetic biomarkers in clinical settings.

We recently defined an epigenetic biomarker as “any epigenetic 
mark or altered epigenetic mechanism which generally serves to 
evaluate health or disease status and is particularly stable and 
reproducible during sample processing.” An ideal biomarker can 
be measured in body fluids (i.e., plasma, serum, saliva, semen, 
urine, etc.) or primary tissue samples (fresh tissue, cells, single cell 
isolated, fine-needle aspirates, FFPE, etc.). However, for clinical 
settings, minimal invasive procedures are preferable. In line 
with this, human plasma as a source of miRNAs and circulating 
cell-free DNA (cfDNA) is, therefore, the best option. An ideal 
epigenetic biomarker for precision medicine applications may 
cover at least one of the following properties: i) predicts the 
risk of future disease development (risk); ii) defines a disease 
(detection); iii) reveals information about the natural history 
of the disease; iv) predicts the outcome of disease (prognostic); 
v) responds to therapy (predictive); vi) monitors responses 
to therapy or medication (therapy monitoring); vii) allows to 
simultaneously make a diagnosis and perform targeted therapy 
(theragnosis) (García-Giménez et al., 2017b).

To achieve the precision medicine goals, the current challenge 
is knowing how to obtain a reliable useful biomarker for clinical 
routine because, for this purpose, the new biomarker requires high 
accuracy and robustness (Li et al., 2010; Diamandis, 2012) and cost-
effectiveness. It is noteworthy that less than 1% of the biomarkers 
obtained in biomedical research is finally implemented into the 
clinical laboratory (Kern, 2012), with an even lower percentage 
for epigenetic biomarkers. This low percentage of commercialized 
IVD tests based on epigenetic biomarkers suggests that the 
precision medicine ecosystem formed by distinct stakeholders 
(i.e., patients, providers, payers, and regulators) may increase 
their knowledge about the impact of epigenetic biomarkers on 
precision medicine, and might also work together to successfully 
implement this breakthrough technology in clinical practice.

A number of precision medicine applications are contributing 
to health care improvements by allowing the precise diagnosis 
of diseases or by identifying specific disease subsets or stages, 
and by also improving personalized treatments. Specifically, 

for cancer, which remains the second leading cause of death 
worldwide, early detection, the identification of cancer subtypes, 
and the selection of appropriate therapies are crucial to increase 
the survival of cancer patients. However, the identification of 
new tumor biomarkers, especially those based on epigenetic 
biomarkers with the capability to identify tumor origin or cancer 
subsets, advances in assay technologies, and the development 
of sophisticated analytical software techniques (i.e., machine 
learning and artificial intelligence), will help to improve precision 
medicine in cancer (Ahlquist, 2018).

TECHNOLOGIES FOR EPIGENETIC 
BIOMARKER ANALYSES IN CLINICAL 
LABORATORIES

Given the prevalence of the DNA methylation alterations at specific 
genes under a variety of human disease conditions, a promising 
future is coming for the DNA methylation analysis as an epigenetic 
biomarker. In fact, DNA methylation is the best-studied epigenetic 
modification since it was discovered. In addition, miRNAs have 
attracted a great deal of interest in clinical research for their role 
in gene regulation, tissue signaling and cellular homeostasis, their 
high stability in practically all types of biospecimens, and the 
relatively easy way by which to measure miRNAs in a wide array 
of biospecimens. Histone variants and histone post-translational 
modifications are other potential markers that can be analyzed in a 
wide array of biospecimens for clinical settings.

Therefore, it is not surprising that most current commercial 
in vitro diagnostic tests are based on either the analysis of DNA 
methylation of specific genes or the measurement of the relative 
expression of microRNAs, which can be easily measured by 
RT-qPCR-based methods (i.e., methyLight, methyl-specific 
PCR, and methylation-sensitive high-resolution melting) and 
pyrosequencing technologies (García-Giménez et al., 2017a).

There are other assays based on high-throughput analyses to 
simultaneously measure several CpG sites. This is, for example, 
the case of the EPICUP® assay, which is based on using human 
methylation array Beadchip 450K (Illumina). In the following 
section, we provide details of a selection of current IVD 
tests based on epigenetic biomarkers that are currently being 
commercialized for in vitro diagnostic in cancer (Table 1).

IN VITRO DIAGNOSTIC TESTS BASED 
ON EPIGENETIC BIOMARKERS

Epigenetic-Based IVD Test for Colorectal 
Cancer
Colorectal cancer (CRC) (MIM 11 4500) is the third most 
frequent cancer in men and the second most frequent cancer in 
women worldwide, and accounts for nearly 10% of cancers (Ferlay 
et al., 2015). CRC is the second leading cause of death by cancer. 
Five-year survival rates range from more than 90% for stage I 
to less than 10% for stage IV CRC (Siegel et al., 2012). CRC is 
characterized by slow progression from detectable precancerous 
lesions and has a good prognosis when patients are diagnosed 
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in early stages. Non-invasive fecal immunochemical test (FIT) 
for hemoglobin detection in stools is the most widely used test, 
but its sensitivity is relatively low in detecting early stage I CRC 
(53%) and advanced adenomas (≥ 1.0 cm) (27%) (Morikawa et al., 
2005). Therefore, the potential for reducing the burden of CRC by 
early detection is significant, and efforts are currently being made 
to develop CRC screening tests and to improve the adherence 
rates of participation for screening because people scarcely 
comply with currently available methods (Issa and Noureddine, 
2017). The selection of appropriate therapies for CRC patients 
is also a clinical need. Among the therapies proposed for CRC, 
anti-epidermal growth factor receptor (EGFR) mAb therapy is 
not indicated for carriers of RAS mutations [approximately 50% 
of patients with metastatic CRC because the mutations in the 
RAS gene (mainly in exons 2, 3, and 4 of KRAS and NRAS) make 
metastatic CRC patients non responders to anti-EGFRs mAB 
treatment] (Boleij et al., 2016). So, the identification of additional 
biomarkers to allow clinicians to select those patients who could 
benefit by the established therapies is needed.

The Cologuard® Stool DNA-Based Test
The first FDA-approved DNA methylation assay for general 
CRC screening for average-risk adults older than 50 years was 
Cologuard® (Exact Sciences Corp., Madison, WI). The Cologuard® 
IVD test is a multitarget stool deoxyribonucleic acid (MT-sDNA) 
screening test based on the analysis of the methylation levels of 
genes N-Myc downstream-regulated gene 4 (NDRG4) and bone 
morphogenetic protein 3 (BMP3), a mutation in the KRAS gene 
(exon 2, codons 12, 13, using ß-actin as the reference gene), and 
a non-DNA immunochemical assay for human hemoglobin that 
allows the precise detection of colon neoplasia (Imperiale et al., 
2014). The methylation analysis of NDRG4 and BMP3 using 
ACTB (ß-actin) as the reference gene is performed according to 
the method described by Zou et al. (2012), while fecal hemoglobin 
biomarker values are obtained by the analytical method described 
by Lidgard et al. (2013). Cologuard® uses a composite score 
algorithm that is incorporated into the multitarget stool DNA 
analytic device software as described by Imperiale et al. (2014).

Cologuard® sensitivity and specificity for CRC detection in 
a study performed with 9,989 subjects was 92.3% and 86.6%, 
respectively (Imperiale et al., 2014). Although the Cologuard® 
test sensitivity was higher than FIT (which measures the presence 
of blood in the colon in fewer fecal samples) for detecting CRC 
(92% vs. 74%, p = 0.015), specificity was lower than that shown 
by the FIT ((87% vs. 95%) (Imperiale et al., 2014). Moreover, the 
Cologuard® test detected less than half largely advanced adenomas 
(precancerous lesions), but performs better than the FIT. In fact, the 
sensitivity for detecting advanced precancerous lesions was 42.4% 
with DNA testing and 23.8% with the FIT (P < 0.001). These results 
reinforce the potential of the Cologuard® test as an alternative for 
surveillance colonoscopy (van Lanschot et al., 2017). However, 
its high cost and difficult sample pretreatment and management 
for each analysis type are considered disadvantages for its rapid 
implementation into clinical routine. Accordingly, the results 
obtained with the Cologuard® test are delivered to the healthcare 
provider within 2 weeks from receiving the stool sample.

Despite these disadvantages, both the US Food and Drug 
Administration and the US Preventive Services Task Force 
(USPSTF) include the Cologuard® test in their screening exam 
recommendations (Lin et al., 2016).

The Epi proColon® 2.0 Test
The Epi proColon® test (Epigenomics AG, Berlin, Germany) was 
designed to minimize invasive tests and to increase the adherence 
rates of the participation of those people screened for CRC. The 
Epi proColon® test uses peripheral blood samples to analyze 
the methylation status of the SEPT9 gene. Septins are essential 
proteins during cell division, and SEPT9 hypermethylation has 
been proposed as a key factor in CRC (Song and Li, 2015). The 
original assay was designed to extract DNA from 5 ml of plasma 
samples, bisulfite conversion of DNA, and its purification by a 
particle-based bis-DNA purification method to improve the 
recovery of bisulfite-treated DNA, the quantification of converted 
DNA by real-time PCR, and the subsequent measurement of 
SEPT9 methylation, and ACTB (ß-actin) as a reference gene, by 
real-time PCR in a Lightcycler LC480 system (Roche Applied 

TABLE 1 | Commercially available Epigenetic IVD tests with the potential of improving precision medicine in cancer.

Diseases Epigenetic biomarkers Commercial tests Technology for 
the analysis

Biospecimen Sn (%) Sp (%)

Colorectal cancer DNA methylation (NDRG4 and 
BMP3)

Cologuard® stool-DNA-based test Stool-based CRC 
test

Stool 92.3 86.6

DNA methylation (SEPT9) Epi proColon® 2.0 test MethyLight CfDNA from blood 75-81 96-91
DNA methylation (SDC2) EarlyTect® CRC assay MethyLight CfDNA from blood 87 95.2
miR-31-3p miRPreDX-31-3p RT-qPCR FFPE NA NA

Breast cancer DNA methylation (PITX2) Therascreen PITX2 RGQ PCR kit. MethyLight FFPE; DNA from blood NA NA
Cervical cancer DNA methylation (ZNF582) Cervi-M® assay Methyl-specific 

PCR
Epithelial cells from 
cervical brush

73 80

Glioblastoma DNA methylation (MGMT) Therascreen MGMT Pyro Kit Pyrosequencing FFPE, DNA from blood 95-97 NA
Lung cancer DNA methylation (SHOX2 and 

PTGER4)
Epi proLung BL Reflex Assay® Methyl-specific 

PCR
CfDNA from blood 78 96

Cancers of 
unknown origin

Analysis of 450K CpGs EPICUP™ Human methylation 
Beadchip 450 K 
(Illumina)

FFPE 97.7 99.6

cfDNA, circulating cell-free DNA; FFPE, formalin-fixed, paraffin-embedded; Sn, Sensitivity; Sp, specificity; NA, data not available.
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Science) and the Quantitect Multiplex PCR mastermix (Qiagen) 
(DeVos et al., 2009). Epi proColon® 2.0 (Epigenomics Inc., 
Germany) was approved by the FDA in 2016 as the first blood 
test intended for early CRC detection. In a large clinical trial 
using 1,544 plasma samples from the PRESEPT study cohort 
(ClinicalTrials.gov, Trial Registration ID: NCT00855348), Epi 
proColon® demonstrated high sensitivity, which ranged from 
77.0% to 81.4%, and specificity from 77.9% to 92.1% (Potter et al., 
2014). However, some studies have shown some flaws in the use 
of Epi proColon® to diagnose CRC, such as its lower sensitivity 
for stage I than for stages II, III, or IV (Jin et al., 2015). A large 
multicenter prospective study using blood samples from 53 CRC 
cases and from 1,457 subjects without CRC from the PRESEPT 
cohort (ClinicalTrials.gov, Trial Registration ID: NCT00855348) 
showed low sensitivity (48.2%) for detecting CRC and very low 
sensitivity (11.2%) for identifying advanced adenoma, with 
91.5% specificity (Church et al., 2014). One noteworthy result 
was that the positive detection rate of the SEPT9 methylation 
assay increased exponentially as colorectal lesions became more 
severe and with more advanced CRC stages (Song et al., 2018), 
although a negative result does not guarantee absence of cancer.

The results obtained by Song et al. (2018) and He et al. (2018) 
suggest that the methylation status of SEPT9 could be applied 
to CRC stage, size, invasion depth, future risk assessment, 
metastasis, disease progression monitoring, and therapeutic 
effect evaluation. A possible flaw of this test is that Epi proColon® 
detected the methylated status of the same region of the SEPT9 
gene in some patients affected by other cancers (i.e., prostate, 
breast, lung or other diseases, hypertension, hyperlipidemia, 
diverticulitis, chronic gastritis, or cardiovascular) and according 
to their age (Ørntoft et al., 2015). Indeed, the Epi proColon® 
test was positive in 72 (42%) of 173 patients with other cancers 
and positive in 33 of 191 patients (17%) with other diseases. In 
addition, an active clinical trial was run to evaluate the potential 
of the Epi proColon® test for detecting hepatocellular carcinoma 
among cirrhotic patients (ClinicalTrials.gov, Trial Registration ID: 
NCT03311152). These scenarios suggest the potential of this test 
to diagnose other cancers, such as breast cancer, as demonstrated 
by Shen et al. (2018), but also the inconvenience of the positive 
results given for cancer patients who were negative for CRC.

It is worth mentioning that colonoscopy remains the universal 
gold standard method for CRC diagnostics. In Europe and 
Asia Pacific, only the use of fecal occult blood test (gFOBT) or 
quantitative FIT for non-invasive screening is still recommended. 
However, Chinese guidelines have recently recommended using 
the test as a complement to other diagnostic approaches, like 
the guaiac-based gFOBT. In the United States, Epi proColon® is 
not intended to replace the CRC screening tests recommended 
by clinical guidelines (i.e., colonoscopy, sigmoidoscopy, and 
gFOBT), but the Epi proColon® test was FDA-approved for CRC 
screening those patients unwilling or unable to be screened by 
recommended methods following guidelines.

The EarlyTect® Colorectal Cancer Assay
The EarlyTect® CRC test (Genomictree Inc. Daejeon, South 
Korea) has recently received CE-IVD certification for the 
diagnosis of CRC. The EarlyTect™-GI Syndecan2 Methylation 

Assay is an IVD assay that uses cfDNA isolated from 0.5 ml of 
serum to analyze the methylation status of SDC2 (Syndecan-2).

Previous studies have demonstrated the potential of the 
analysis of the methylation status of the SDC2 gene for the early 
diagnosis of CRC. For example, the studies performed by Mitchell 
et al. (2016) showed lower sensitivity (59%), but relatively good 
specificity (84%), of methylation-specific PCR assays (probe-
based MethyLight assays) for SDC2 in the early detection of CRC. 
At this point, it is worth mentioning that the amplicon selected to 
study the methylation status of this gene slightly differed (420 bp 
downstream to the CpG proposed by Oh et al., 2017).

More recent studies performed by Oh et al. (2017), which 
evaluated the methylation analysis of SDC2 to detect CRC using 
isolated DNA from stool samples, demonstrated a good sensitivity 
of 90.0% for detecting CRC and 33.3% for small polyps, with a 
specificity of 90.9%. Furthermore, these authors demonstrated 
that the SDC2 methylation level was linked to cancer severity in 
CRC patients in stages I to IV (n = 50). Similarly, Niu et al. (2017) 
evaluated the methylation levels of the SDC2 gene in 497 stool 
samples and found sensitivities of 81.1% and 58.2% for detecting 
CRC (n = 196) and adenoma (≥1 cm) (n = 122), respectively, 
with 93.3% specificity. These results were comparable to that 
observed by Park et al. (2018), who found that the SDC2 gene 
methylation analysis performed with methyl-specific PCR in 
bowel lavage fluid collected during colonoscopy could detect 
CRC and precancerous lesions. In this study, SDC2 methylation 
was positive in 100% of villous adenoma, high-grade dysplasia, 
and hyperplastic polyp biopsies in 88.9% of tubular adenoma 
samples and in 0% of normal mucosal samples. These findings 
indicate the potential of SDC2 methylation as a biomarker for 
early CRC detection with a sensitivity of 80% and a specificity 
of 88.9%.

The clinical validation of SDC2 methylation in serum DNA 
from the CRC patients (n = 131) in stages I to IV (stage I, 26; 
II, 57; III, 36; IV, 12) and from healthy individuals (n = 125) by 
quantitative methylation-specific PCR using the methylation-
specific TaqMan probe demonstrated 87% sensitivity [114/141; 
95% confidence interval (CI), 80.0% to 92.3%] and 95.2% 
specificity (10/125; 95%CI, 89.8% to 98.2%) (Oh et al., 2013). 
The sensitivity of the patients in stage I was particularly high 
with 92%, which suggests the potential utility of this test for early 
CRC detection and identification of precancerous lesions, such 
as polyps.

A recent observational clinical trial conducted with the 
EarlyTect® CRC test (ClinicalTrials.gov, Trial Registration ID: 
NCT03146520) was designed to validate the clinical performance 
of the EarlyTect® Colon Cancer test in stool DNA to detect CRC in 
a case-control study with 634 participants (Dae Han et al., 2019). 
Of the 585 evaluated subjects, 245 had CRC, 44 had various sized 
adenomatous polyps, and 245 obtained negative colonoscopy 
results. The EarlyTect® CRC test gave an overall sensitivity of 
90.2% with area under the curve (AUC) of 0.902 in detecting 
CRC (0–IV) not associated with tumor stage, and a specificity of 
90.2%. The sensitivity for detecting early stages (0-II) was 89.1% 
(114/128). The EarlyTect® CRC test also detected 66.7% (2/3) 
and 24.4% (10/41) of advanced and non-advanced adenomas, 
respectively (Dae Han et al., 2019).
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Genomictree Inc. has performed experiments to evaluate the 
cross-reactivity of the EarlyTect® CRC test in an interim clinical 
validation with stool DNA from 50 CRC patients (stage I, 10; II, 16; 
III, 14; IV, 10), 14 irritable bowel syndrome (no colonoscopy was 
performed), 4 with acute colitis, 11 Crohn’s disease (colonoscopy 
was performed), 14 ulcerative enteritis (colonoscopy was 
performed), and 50 healthy subjects (endoscopy was not 
performed). In this study, the sensitivity was 90.0% (45/50) and 
specificity was 90.9% (5/55). The methylation positivity for SDC2 
was observed in 14.3% (2/14) of the irritable bowel syndrome 
patients, 25.0% (1/4) of the acute colitis patients, and 35.7% 
(5/14) of the ulcerative colitis patients, while no Crohn’s disease 
case was positive for the EarlyTect® assay. Notably, sensitivity 
was 84.6% (22/26) in CRC in stages I and II, which suggests the 
potential applicability of this test for colorectal detection testing 
using stool DNA.

miRPreDX-31-3p
The miRpredX-31-3p kit (IntegraGen S.A., France) is a CE-IVD 
marked theranostic test intended to identify patients with 
metastatic CRC who can benefit from anti-EGFR (epidermal 
growth factor receptor) therapy. The miRpredX-31-3p kit 
quantifies relative miR-31-3p levels by RT-qPCR from the total 
RNA extracted from FFPE samples in primary tumors of patients 
with metastatic CRC, using a cutoff value of 1.36 for the miR-
31-3p expression level to define patients as being low or high 
expressers of this miRNA (Ramon et al., 2018).

miRpredX-31-3p predicts the potential clinical benefits 
associated with first-line anti-EGFR (epidermal growth factor 
receptor) therapy compared with anti-vascular endothelial growth 
factor receptor (VEGF) therapy or when second or further lines 
of treatment with anti-EGFR mAB therapy is more beneficial 
versus chemotherapy alone for multiple patient outcomes 
(Laurent-Puig et al., 2015). Specifically, on one hand, a low miR-
31-3p expression in affected tissue is associated with a 12-month 
survival advantage and a 40% reduced risk of death when using 
anti-EGFR (cetuximab) therapy versus anti-VEGF (bevacizumab) 
therapy in patients with metastatic CRC. On the other hand, 
those patients expressing high miR-31-3p levels displayed no 
differences in outcomes when treated with either anti-EGFR or 
anti-VEGF therapy (Laurent-Puig et al., 2015; Laurent-Puig et al., 
2017). Furthermore, the miR-31-3p expression was evaluated 
for its potential as a predictive biomarker for anti-EGFR mAb 
therapy in the patients without mutations in KRAS with operable 
colorectal liver metastases (Pugh et al., 2017).

In an interventional clinical trial in 1,808 subjects 
(ClinicalTrials.gov, Trial Registration ID: NCT03362684), the 
predictive potential of the miR-31-3p expression level was studied 
for the prognostic of patient outcomes, as was the predictive 
value of the benefit of anti-EGFR therapy (cetuximab) in stage 
III CRC patients (the patients enrolled in the PETACC-8 Study) 
(Taieb et al., 2014). The results obtained from this clinical trial 
demonstrated that patients with the RAS/BRAF wild type who 
showed low miR-31-3p expression when tumors were treated 
with cetuximab plus FOLFOX-4 presented improved disease-free 
survival, overall survival, and survival after recurrence compared 
with the patients treated with FOLFOX-4 alone.

More recently with logistic regression models, including the 
miR-31-3p expression level adjusted for potential confounding 
factors, Laurent-Puig et al. (2019) validate the use of miR-
31-3p to differentiate RAS wt metastatic CRC patient outcomes 
from patients treated with anti-EGFR mAb or anti-VEGF mAb 
therapy. Those patients with low miR-31-3p levels showed 
better outcomes when treated with cetuximab compared with 
bevacizumab.

The miRpredX-31-3p kit was developed on the basis of a 
standardized RT-qPCR assay for miRNA detection. Several 
extraction kits (miRNeasy FFPE kit (Qiagen), AllPrep DNA/RNA 
FFPE Kit (Qiagen), QIAsymphony RNA kit (Qiagen), and Maxwell 
16 LEV RNA FFPE kit (Promega)) have been tested to evaluate the 
efficiency of miRNA extraction from five formalin-fixed, paraffin-
embedded (FFPE) 5-mm-thick slides. In addition, the analytical 
sensitivity and specificity, assay robustness, reproducibility, 
and accuracy of miR-31-3p detection were also demonstrated 
in different quantitative PCR systems like ABI 7900HT®, ABI 
StepOne+®, and ABI QS5® (Applied Biosystems) and LightCycler® 
480 (Roche) (Ramon et al., 2018). These results demonstrated the 
good versatility of the miRpredX-31-3p assay and its feasibility for 
being easily implemented into clinical diagnostic laboratories. The 
time to perform the assay was not as long after total RNA was 
isolated from FFPE tumor samples because the assay is based on 
a simple RT-qPCR reaction (reverse transcription and subsequent 
real-time PCR). Hence the miRpredX-31-3p assay can analyze up 
to 12 samples and provide the results in 1 day (see version 8 of the 
mirpredx instructions manual).

The Nu.Q™ Colorectal Cancer Screening Triage Test
NuQ® tests (Volition SA; Namur, Belgium) are intended for 
diagnosing CRC by analyzing different nucleosome characteristics, 
including the DNA methylation of DNA bound to nucleosomes, 
post-translational modifications in histones and histone variants, 
and the detection of cell-free nucleosomes, although the company 
is developing a new test based on these biomarkers. NuQ® tests are 
based on Enzyme-linked immunosorbent assay (ELISA) technology 
and require only one drop of blood from patients (a 10-μl sample).

The most advanced test is the Nu.Q™ Colorectal Cancer 
Screening Triage Test, which consists in combining different 
NuQ® previously CE-IVD marked tests. One of them is the 
NuQ®X test, which detects the 5-methylcytosine levels present in 
DNA bound to cell-free circulating nucleosomes.

In a validation study performed by Holdenrieder et al. (2014), 
serum samples were used in two independent cohorts of subjects: 
i) 90 subjects, including CRC patients (n = 24), benign colorectal 
diseases (BCD) (n = 10), and healthy controls (n = 56); ii) 113 
subjects, including CRC patients (n = 49), BCD (n = 26), and 
healthy controls (n = 38). Holdenrieder et al. (2014) used the 
Nu.Q®X test to evaluate its differential diagnostic performance. 
Their study showed that the circulating methylated DNA levels 
significantly lowered in CRC and BCD compared with the 
healthy controls (p < 0.05), although no difference was found 
between BCD and CRC. The AUC on the receiver operating 
characteristic curve was 0.78, and sensitivity was 33% at 95% 
specificity for CRC and BCD compared to HC, with a sensitivity 
of 75% at 70% specificity for CRC compared to HC.
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To improve both the sensitivity and specificity of the assays, 
two new tests were designed: the Nu.Q®T test and the NuQ®V 
test. Both obtained the CE-IVD mark. The Nu.Q®T test was 
designed for the diagnostic of CRC by detecting total free 
circulating nucleosomes (cell-free nucleosome). Nu.Q®V focused 
on detecting CRC by analyzing histone variants. Finally, they 
were included in a NuQ® test based on the same nucleosomics 
ELISA technology (Holdenrieder et al., 2014).

Rahier et al. (2017) used the Nu.Q® assay to evaluate the 
levels of 12 epitopes [including nucleosome-associated histone 
modifications: H4K20me3 (mAb), H4PanAc (mAb), pH2AX 
(mAb), H3K9Me3 (pAb), H2AK119Ub (mAb), H3K9Ac 
(mAb), and H3K27Ac (mAb); nucleosome-associated DNA 
modification: 5mC (mAb); nucleosome containing histone 
variants: H2AZ (mAb); nucleosome-protein adducts: HMGB1 
(mAb) and EZH2 (mAb); and finally a conserved nucleosome 
epitope as reference of total nucleosome content] in the sera of 
58 individuals referred for endoscopic CRC detection [patients 
with CRC (n = 23), patients with pre-cancerous lesions (polyps) 
(n = 16), and healthy controls (n = 19)]. The multivariate 
analysis defined a panel of four age-adjusted cf-nucleosomes that 
provided an AUC of 0.97 for the CRC discrimination of healthy 
controls with high sensitivity in initial stages (sensitivity of 75% 
and 86% and specificity of 90% for stages I and II, respectively). 
The second combination of four cf-nucleosome biomarkers 
provided an AUC of 0.72 for the identification of patients with 
pre-cancerous lesions (polyps) (n = 16) in healthy subjects 
(Rahier et al., 2017).

The Nu.Q™ Colorectal Cancer Screening Triage Test, which 
is based on the previous described Nu.Q® tests, was evaluated in 
blinded serum samples from 1,961 FIT-positive individuals. In a set 
of samples “training set” (n = 1,907), the Nu.Q™ Colorectal Cancer 
Screening Triage test had the potential to identify a subset of 477 
subjects in which colonoscopy was applied and could be avoided. 
Moreover, the test detected 96.6% of CRCs and 88.5% of high-
risk adenomas. The results were corroborated in the “validation 
set” of samples (n = 1,961), which gave a sensitivity of 91.2% for 
CRC and 83.0% for high-risk adenoma. Ii was noteworthy that 
the sensitivity for “screen relevant neoplasia” (considering patients 
with CRC and high-risk adenomas) was about 86% compared with 
the 80% obtained with positive FIT and a cutoff value of 200 ng/ml. 
The results of this large cohort evaluation were promising as the 
Nu.Q™ Colorectal Cancer Screening Test can reduce unnecessary 
colonoscopies by 20%, while maintaining sensitivity for CRC close 
to 90% (Marielle et al., 2017).

The Volition Company announced that the new Nu.Q™ assay 
would have the potential to detect 81% of CRCs with a specificity 
of 78% in a cohort of 4,800 CRC patients. Furthermore, the new 
Nu.Q™ assay detected up to 67% of high-risk adenomas with a 
specificity of 80% in a cohort of 530 symptomatic patients and 
initial stage I cancers with a sensitivity of 74% and a specificity 
of 90% in a pilot study of 58 asymptomatic patients. However, 
we were unable to find any published results or any registered 
clinical trial results of this study apart from the company’s 
published interim results.

The Volition Company is developing new-generation Nu.Q 
assays for other intended uses, such as pancreatic cancer. In fact 

the Nu.Q assay was also evaluated for the diagnostic of pancreatic 
cancer. By using a combination of carbohydrate antigen 19-9 
(CA 19-9) levels with a panel of four cf-nucleosome markers, 
Bauden et al. (2015) obtained an AUC of 0.98 with an overall 
sensitivity of 92% at a 90% specificity to detect pancreatic cancer 
in serum samples from a cohort of 59 subjects [including patients 
with resectable pancreatic cancer (n = 25), patients with benign 
pancreatic disease (n 0), and healthy individuals (n = 24)].

An Epigenetic-Based IVD Test for Breast 
Cancer
Breast cancer (MIM 114480) is the most commonly diagnosed 
cancer in women (Torre et al., 2017) and the leading cause of 
death from cancer in women worldwide (Torre et al., 2016). 
It is noteworthy that breast cancer can also affect men and, 
consequently, around 2,670 new cases of invasive breast cancer 
are expected to be diagnosed in men in 2019. About 20% of 
breast cancers worldwide are due to environmental or lifestyle 
risk factors, such as alcohol abuse, excess body weight and 
fat, and a sedentary lifestyle (Danaei et al., 2005). In addition, 
screening with the mammography technique has demonstrated 
its ability to detect breast cancer in early stages, which reduces 
the mortality risk and increases treatment success (Lauby-
Secretan et al., 2015). As a result, new methods that contribute 
to early diagnosis, the identification of specific subtypes, and the 
selection of patients who can benefit from specific therapies will 
increase patient survival for this cancer.

Breast cancer mortality rates are higher than those for any 
other cancer and account for 25% of cancer cases and 15% 
of cancer-related deaths (Ferlay et al., 2015). Breast cancer 
mortality also depends on the cancer subtype. Breast cancer 
presents several classifications depending on different aspects. 
It can be classified according to their histological origin, cell 
differentiation degree, stage, the presence or absence of certain 
hormone receptors [i.e., hormonal receptors, like estrogen 
receptor (ER), and progesterone receptor (PR); and the ERBB2 
receptor], and molecular subtype (i.e., luminal A, luminal B, 
HER2, basal-like subtype, normal-like subtype, and Claudin-low 
subtype).

Tumors classified as triple-negative breast cancer (TNBC) and 
HER2-positive breast cancer are classified as high-risk cancer 
with a poor prognosis (Harbeck and Gnant, 2017). Enhancing 
breast cancer survival and outcome by early detection remains 
one of the main breast cancer priorities according to the World 
Health Organization (WHO). Therefore, several efforts are 
being made by the research community to provide not only new 
drugs and therapies to treat breast cancer, but to also identify 
new biomarkers to help implement precision medicine into the 
clinical management of breast cancer patients (Low et al., 2018). 
Breast cancer treatment depends partially on the disease state and 
the breast cancer subtype. Generally speaking, the commonest 
treatments are targeted therapy, hormonal therapy, radiation 
therapy, surgery, and chemotherapy, although immunotherapy is 
being increasingly utilized. Fortunately, the therapeutic options 
for breast cancer patients are further improved thanks to the use 
of biomarkers and the implementation of precision medicine 
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(Meisel et al., 2018), in which epigenetic biomarkers can further 
improve the battery of in vitro assays to manage breast cancer.

The Therascreen PITX2 RGQ PCR Kit
The Therascreen PITX2 RGQ PCR kit (Qiagen, Germany) is 
a methylation-based CE-IVD marked assay that predicts the 
response of lymph node-positive, ER-positive, and HER2-negative 
high-risk breast cancer patients. The test differentiates between the 
patients more likely to respond to anthracyclines chemotherapy 
(Aubele et al., 2017), and it obtained the CE-IVD mark in 2018.

The methylation analysis of PITX2 (a promoter of transcription 
factor 2 of the pituitary homeobox) demonstrates a high 
correlation with other diagnostic techniques, has the predictive 
and prognostic capability for patient identification, and supports 
clinicians by being the most effective therapy option. PITX2 
methylation has attracted the attention of clinicians for not only 
breast cancer (Widschwendter et al., 2004; Aubele et al., 2017), 
but also for other tumor types. Continuous scientific evidence 
indicates the potential of the PITX2 methylation analysis to predict 
breast cancer outcomes in lymph node-positive, ER-positive, and 
HER2-negative breast cancer patients to adjuvant anthracycline-
based chemotherapy. Therefore, these clinical observations 
reinforce the idea of using PITX2 methylation status to support 
clinicians as the most effective therapy option (Hartmann et al., 
2009; Absmaier et al., 2018).

Hartmann et al. (2009) showed that the PITX2 DNA 
methylation improved the prediction by using only clinical 
factors like tumor stage, grade, or age in a cohort of >200 patients. 
PITX2 plays an essential role in the disease pathogenesis. In fact, 
tumors with a hypermethylated PITX2 status correlate with 
poorer survival (overall survival and reduced metastasis-free 
survival), and also with resistance to treatment. In addition, 
PITX2 methylation has been associated with the response to 
adjuvant chemotherapy (Absmaier et al., 2018; Sheng et al., 2017).

Absmaier et al. (2018) explored the validity of this new 
predictive candidate biomarker in a retrospective exploratory 
study. To do so, these authors determined the PITX2 DNA 
methylation status in non-metastatic TNBC patients treated 
with adjuvant chemotherapy with anthracycline by a molecular 
analysis of breast cancer tissues. Univariate and multivariate 
analyses demonstrated the statistically independent predictive 
value of PITX2 DNA methylation. The authors concluded that 
for those patients with non-metastatic TNBC, the selective 
determination of the PITX2 DNA methylation status can serve as 
a cancer biomarker to predict responses to anthracycline-based 
adjuvant chemotherapy (Absmaier et al., 2018).

Schriker et al. (2018) performed a clinical study to analyze 
the performance of the PITX2 DNA methylation assay 
compared to microarray technology. These authors concluded 
that the performance of the Therascreen PITX2 RGQ PCR assay 
showed high reliability and robustness to predict the outcome 
of patients with high-risk breast cancer to anthracycline-based 
chemotherapy. In this study, three CpGs from the PITX2 
promoter 2 gene (PITX2P2; 4q25) contained in the methylation 
array (Maier et al., 2007) were selected, and the appropriate 
Taqman probes were designed to cover these three CpGs in the 
Therascreen PITX2 RGQ assay (Schricker et al., 2018).

The Therascreen PITX2 RGQ PCR assay, developed by Perkins 
et al. (2018) in conjunction with the Therawis Diagnostics 
Company, analyzes the methylation status of the PITX2 
gene obtained from the DNA of FFPE biospecimens. PITX2 
methylation is assessed by methylation-specific real-time PCR 
and exploits the quantitative PCR (qPCR) oligonucleotide 
hydrolysis principle of two TaqMan probes labeled with different 
fluorescent dies (FAM™ for fully methylated and HEX™ for 
fully unmethylated DNA) in combination with methylation 
nonspecific primers to measure the methylation status of the 
target sequences of PITX2 gene promoter 2 in bisulfite-treated 
DNA. The Therascreen PITX2 RGQ PCR kit (Qiagen, Catalog no. 
873211) has been currently CE-IVD marked and is commercially 
available (Aubele et al., 2017; Schricker et al., 2018). It runs in 
the real-time Rotor-Gene Q MDx thermal cycler (Qiagen) 
or a Rotor-Gene Q MDx 5plex HRM instrument (Qiagen). 
The percentage of the methylation ratio (PMR  =  100/
(1 + 2exp(CtFAM(methylated) − CtHEX(unmethylated))]) 
is calculated by the Rotor-Gene AssayManager® software with 
a Gamma Plug-in plus a kit-specific PITX2 Assay Profile for 
automated analyses and quality control, including all the validity 
criteria. Detailed information about the method is described by 
Schricker et al. (2018) and Maier et al. (2007). The Therascreeen 
PITX2 RGQ PCR assay can be easily adopted in clinical laboratories 
that already run other Therascreen assays commercialized by 
Qiagen. The complete workflow is streamlined throughput for a 
medium sample with highly reliable and robust readouts and can 
be performed in a time of 2 working days (Perkins et al., 2018).

The Epigenetic-Based IVD Test  
for Cervical Cancer
Cervical cancer (MIM 603956) is the fourth most frequent cancer 
in women, with an estimation of 570,000 new cases in 2018, 
which represents 6.6% of all female cancers. Cervical cancer is 
the fourth commonest cause of death from cancer in women (Vu 
et al., 2018), which is approximately 8% of the total deaths from 
cancer. Furthermore, as cervical cancer has no shown symptoms 
in its early stages, early identification of cervical precancerous 
lesions is of critical importance (Gradíssimo and Burk, 2017).

More than 90% of cases are due to infection with human 
papillomavirus (HPV) (Kumar et al., 2007; Crosbie et al., 2013), 
and despite people having had HPV infections and them not 
developing cervical cancer (Dunne and Park, 2013), organized 
vaccination and screening programs are essential to lower the 
cervical cancer incidence (Vu et al., 2018).

Thus, cytology-based screening is widespread and has proven 
to effectively lower cervical cancer incidence rates in many 
countries (Anttila and Nieminen, 2000). However, the relatively 
low sensitivity of a single Pap smear and the higher false-negative 
results, and sometimes the requirement of multiple Pap tests, 
make cytology-based screening costs prohibitive for the early 
identification of precancerous lesions. Therefore, preventive 
programs focus on HPV testing as a primary screening tool 
for the early detection of the causative agent of cervical cancer 
(Dillner et al., 2008). In fact, primary high-risk HPV (hrHPV) 
screening has recently become an accepted stand-alone or 
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co-test with conventional cytology in preventive cervical cancer 
programs.

Chang et al. (2015) found that several genes, such as PAX1, 
ZNF582, and SOX1, were hypermethylated in cervical cancer 
compared to normal cervical tissue. Shen-Gunter et al. (2016) 
evaluated the performance of analyzing the HPV genotype and 
measuring DNA methylation at promoters ADCY8, CDH8, 
and ZNF582 correlated with the cytological grade, therefore 
demonstrating their potential to be useful biomarkers for the 
molecular classification of Pap smears. With their systematic 
literature review, Wentzensen et al. (2009) attempted to identify 
promising methylation-based biomarkers for the early detection 
of cervical cancer. These authors found that the elevated 
methylation of DAPK1, CADM1, and RARB in cervical cancer 
was consistently observed in several studies and thus became 
interesting candidates to be validated in large cohorts during 
standardized clinical trials (Wentzensen et al., 2009). However, 
no consensus has been reached about which promoter or gene 
methylation should be analyzed, and whether these will develop 
into molecule tests with sufficient predictive values or be useful 
for the early detection of precancerous lesions. One epigenetic 
test, based on the analysis of the methylation of genes ZNF582 
and PAX1, is being commercialized.

The Cervi-M® and Oral-M® DNA assays
The Cervi-M® and Oral-M® DNA assays (by Epigene, iStat 
Biomedical Co.; Taiwan) obtained CE-IVD approval for the 
diagnostic of cervical and oral cancers. iStat Biomedical Co. 
commercializes the Cervi-M®, ZNF582 DNA, and the Oral-M® 
assay, which are based on the methylation analysis of genes 
ZNF582 and PAX1. These genes are highly methylated in cervical 
and oral cancers, as described by Lin et al. (2014) and Chang 
et al. (2015). Gene ZNF582 codifies for zinc finger protein 582, 
which plays a key role in transcriptional regulation. ZNF582 
methylation status has been demonstrated as a good biomarker 
for cervical cancer induced by HPV, with a sensitivity of 73% 
and a specificity of 80% (Lin et al., 2014). Furthermore, ZNF582 
methylation status shows high sensitivity for the detection of 
grade-3 cervical intraepithelial neoplasia or in a higher stage 
(CIN3+) (Liou et al., 2016), and demonstrates its utility to 
improve diagnostic accuracy more than single HPV DNA testing 
(Li et al., 2019). In addition, the PAX1 DNA methylation assay 
allows the detection of cervical cancers graded as CIN3+, as 
described by Lai et al. (2008) and Lai et al. (2010). This assay 
generates clinical sensitivity and specificity above 80% when 
used with the DNA purified from Pap smears (data provided by 
the company).

The ZNF582/PAX1 assay consists of the bisulfite treatment of 
DNA obtained from human epithelial cells collected by cervical 
brush. Then 20 to 80 ng of bisulfite-converted DNA is analyzed 
by methyl-specific quantitative PCR in a LightCycler® 480 
Instrument (Roche) or an Applied Biosystems® 7500 fast system 
following the protocol described by the manufacturer (see the 
instructions in the manual). As the analysis depends on the 
kit used for the bisulfite treatment of DNA, which can last up 
to 1 day, the complete workflow to perform the Cervi-M® and 
Oral-M® DNA assays takes about 2 working days.

It is interesting to note that although the Cervi-M® assay 
has been tested only in the DNA obtained from epithelial cells 
collected by cervical brush, as the female reproductive tract 
and regular uterine endometria shedding into the vagina may 
exfoliate cells, Bakkum-Gamez et al. (2015) proposed using 
vaginal tampons as a source of DNA to detect endometrial cancer 
by an assay of methylated DNA markers.

The Epigenetic-Based IVD Test for 
Glioblastoma
Glioblastoma (GBM, MIM 137800) is the most common primary 
malignant brain tumor in adults with an unfavorable prognosis 
and limited treatment options despite innovative diagnostic 
strategies and new therapies having been developed (Lombardi 
and Assem, 2017). GBM constitutes approximately 45% to 50% 
of all primary malignant brain tumors and is diagnosed more 
frequently in patients aged between 55 and 85 years, with a 
mean age of 64 years in the United States (Louis et al., 2016). 
Evidence in recent years has demonstrated that tumors are made 
of multiple populations of cancerous cells by harboring specific 
genetic alterations in addition to the classic founder genetic 
abnormalities and epigenetic alterations that drive intratumor 
heterogeneity with multiple different cell subpopulations 
(Gerlinger and Swanton, 2010; Lombardi and Assem, 2017).

EGFR amplification, IDH1/2 mutations, and MGMT promoter 
methylation have been proposed as prognostic biomarkers 
for their molecular and clinical significance. MGMT promoter 
methylation is one of the most relevant prognostic markers and 
can be used to also predict the therapeutic response to one of 
the therapeutic strategies for GBM based on the use of alkylating 
agents like carmustine (BCNU, Gliadel®) and temozolomide 
(Temodar®). This is because MGMT, an O6-methylguanine-
DNA-methyltransferase, is a DNA-repairing gene whose 
silencing may increase the susceptibility of cells to temozolomide 
concurrently with radiation therapy (Zawlik et al., 2009). 
Furthermore, increased methylation of the MGMT promoter 
measured by pyrosequencing has been related to increased GBM 
patient survival (Zhao et al., 2016).

The PyroMark Therascreen MGMT Kit and the 
PyroMark Q96 CpG MGMT Kit
The MGMT methylated status is a strong predictor of the 
response to temozolomide in patients with GBM during therapy 
with alkylating agents. Therefore, the DNA methylation of this 
gene has been postulated as a biomarker to classify gliomas and 
to guide treatment decision-making (Gusyatiner and Hegi, 2018).

Quillien et al. (2012) found that pyrosequencing led to the 
highest reproducibility and sensitivity in MGMT methylation status 
analyses, as was also confirmed by Hsu et al. (2017) after testing four 
different techniques (e.g., immunohistochemistry, MSP, qMSP, 
and pyrosequencing) to analyze the MGMT methylation status. 
Different commercialized kits are available for the pyrosequencing 
methodology, such as the PyroMark Q96 CpG MGMT kit (cat. 
number 972032; Qiagen), which uses the PyroMark Q96 MD 
system (Qiagen), and the test Therascreen MGMT PyroKit 
(cat. number 972032; Qiagen), which uses the pyrosequencing 
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PyroMark Q24 system (Qiagen) with specific sequencing primers. 
The PyroMark Q96 CpG MGMT kit detects five CpG sites located 
in exon 1 (CpG 74–78), whereas the CE-IVD commercialized kit, 
the PyroMark Therascreen MGMT kit, detects four CpG sites in 
the same location (CpG 76–79) of the human MGMT gene in DNA 
samples obtained from blood or FFPE biospecimens. Briefly, the 
assay consists of using bisulfite converted genomic DNA (with the 
EpiTect Bisulfite kit, cat. number 59104; Qiagen) for subsequent 
PCR amplification to sequencing it by pyrosequencing using the 
kits and systems described above to analyze the methylation status 
of exon 1 of the MGMT gene. The sequences surrounding the 
defined positions serve as normalization and reference peaks for 
the quantification and quality assessment of the analysis (see the 
manufacturer’s instructions). The time it takes to obtain results 
relies on the bisulfite treatment of DNA, which needs 6 to 8 h to 
complete the workflow of the MGMT methylation status analysis 
and lasts about 2 working days.

After performing the PCR using primers by targeting the defined 
region of exon 1, amplicons are immobilized on Streptavidin 
Sepharose High Performance beads. Then single-stranded DNA 
is prepared, and the sequencing primers are annealed to DNA. 
Samples are then analyzed in the PyroMark Q24 system.

Both kits (PyroMark Q24 CpG MGMT and Therascreen 
MGMT PyroKit) have demonstrated their capability to stratify 
patients with GBM according to its prognostic after measuring 
MGMT promoter methylation (Johannessen et al., 2018). 
Quillien et al. (2017) evaluated the ability of the Therascreen 
MGMT kit in 102 glioblastoma patients and found that using a 
binary classification of methylated/unmethylated MGMT gene 
with cutoffs of 8% and 12%, 95% and 97% of GBM patients 
were well classified. Quillien et al. (2017) also found an excellent 
prognostic capability of the assay and indicated median overall 
survival of 15.9 and 34.9 months, respectively, for unmethylated 
and methylated patients. Moreover, the use of the MGMT 
methylated status as a predictor of meningioma has been recently 
tested by Panagopoulos et al., but these authors concluded that the 
methylation frequency of the MGMT promoter in meningioma is 
very low (6%) and, therefore, suggested that Therascreen MGMT 
PyroKit is not suitable for meningiomas.

As MGMT is methylated to 25% to 50% in numerous cancers, 
including brain, colon, lung, breast, gastric, and ovarian cancer 
(Gerson, 2004), it involves the risk of offering positive results for 
cancer patients who were found negative for GBM.

The Epigenetic-Based IVD Test for Lung 
Cancer
Lung cancer (MIM 211980) is the leading cause of death from 
cancer worldwide (Siegel et al., 2017), and 8 or 9 of 10 lung 
cancer cases occur in smokers. Thus, smoking is the biggest risk 
factor of this disease. The 5-year survival rate after diagnosis is 
15.6%, which is lower than the survival rates for breast, colon, 
and prostate cancers. The WHO classifies lung cancer into two 
broad histological subtypes. The first one is non–small-cell lung 
cancer (NSCLC), which causes about 85% of cases, including 
lung squamous carcinoma (LUSC), lung adenocarcinoma 
(LUAD), and large cell carcinoma subtypes. The second subtype is 

small-cell lung cancer (SCLC), which accounts for the remaining 
15% (Couraud et al., 2012).

The treatment that includes surgical, medical, and 
radiotherapeutic interventions did not much improve the long-
term survival rate of those patients diagnosed with primary lung 
neoplasms. Moreover, classic cisplatin-based chemotherapy 
for NSCLC, which can be combined with anti-angiogenic 
bevacizumab, gives low to moderate satisfactory results. The use 
of specific tyrosine kinase inhibitors (TKi) in EGFR-mutated, 
ALK/ROS1-rearranged NLSC, and the development of new 
immunotherapy strategies based on anti-PD1/PD-L1 mAb are 
currently improving the clinical outcomes of lung cancer patients 
(Duruisseaux and Esteller, 2018). Yet despite new therapies having 
been designed and applied, tumor resistance to treatments mean 
that about 154,050 people died from lung cancer in 2018 only in the 
United States (https://www.cancer.org/). To increase survival rates 
in lung cancer, early diagnosis is a priority. However, one of the 
most widely used techniques is the computed tomography (CT) 
of the thorax and bronchoscopy. CT gives rise to false positives in 
lung-cancer free patients, delays lung cancer diagnosis, and also 
exposes these subjects unnecessarily to radiation. Bronchoscopy 
fails in about half those diagnosed with lung cancer. Therefore, 
a diagnostic test based on the biological material obtained from 
non-invasive or minimally invasive samples with high specificity 
may cut the need for more costly invasive diagnostic procedures.

The current hypothesis to explain lung carcinogenesis 
considers that tumor development occurs in a multistage 
stepwise manner that contributes to the accumulation of 
genetic and epigenetic alterations (Lantuéjoul et al., 2009). 
Therefore, epigenetic signatures based on dysregulated DNA 
methylation differentially express miRNA, and altered post-
translational modified histones can reflect the driving force 
of lung carcinogenesis. Accordingly, given the pivotal role of 
epigenetic disruption during this process, the epigenomic marks 
detected in tissue or body fluids represent a feasible biomarker 
to identify disease in its early stages, establish a prognostic, and 
monitor treatment response (Bhargava et al., 2018). In a recent 
relevant work, Duruisseaux and Esteller (2018) describe several 
epigenetic mechanisms that underlie the acquisition of the 
cancerous phenotype and the aggressive behavior of lung cancer. 
They also propose circulating epigenetic biomarkers and the 
therapeutic potential of epigenetic drugs to implement precision 
medicine in lung cancer.

The Epi proLung BL Reflex Assay®
SHOX2, or short stature homeobox gene two, methylation has 
been identified as a biomarker capable of reliably differentiating 
between lung tumor tissue and normal tissues (Lewin et al., 2007; 
Schmidt et al., 2010).

SHOX2 methylation, as determined from bronchial aspirates, 
has demonstrated good sensitivity and a high specificity 
as a biomarker for lung cancer (Dietrich et al., 2012b). 
Epigenomics AG commercializes the Epi proLung BL Reflex 
Assay® (Epigenomics AG, Berlin, Germany), a CE-IVD test for 
quantifying SHOX2 methylation using methyl-specific PCR with 
AUC [95% confidence intervals] = 0.94 [0.91–0.98], sensitivity 
78% [69–86%], and specificity 96% [90–99%] in bronchial lavage 
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specimens (Dietrich et al., 2012b), albeit with lower sensitivity 
(about 40%) in malignant pleural effusions (Ilse et al).

The Epi proLung BL Reflex Assay® is composed of three 
individual kits: The Epi proLung BL DNA Preparation Kit 
to prepare bisulfite converted DNA by ammonium bisulfite 
chemistry, the Epi proLung BL real-time PCR Kit for the 
quantitative and sensitive analyses of the relative amount of 
methylated SHOX2 gene, and the Epi proLung BL Work Flow 
Control Kit for monitoring and controlling the whole workflow. 
A detailed explanation of the different steps performed in the 
SHOX2 gene methylation analysis using the Epi proLung BL 
Reflex assay® is described by Dietrich et al. (2012a). Like other 
methylation-based assays, the time to obtain the results relies 
on the bisulfite treatment of DNA, which requires about 8 h. 
Therefore, 2 working days are needed to complete the workflow 
of the Epi proLung BL Reflex Assay®.

In 2011, SHOX2 methylation was assessed in circulating cell-
free DNA obtained from blood plasma and showed a sensitivity 
of 60% and a specificity of 90% for lung cancer diagnosis in a 
case-control study with 343 subjects (Kneip et al., 2011). Since 
then, Epigenomics AG has been working on demonstrating the 
test’s utility. In 2017, the Epi proLung® blood-based version for 
the lung cancer test received the CE-IVD mark, which is based 
on a combination of the methylation analyses of SHOX2 and 
PTGER4 (the prostaglandin E receptor 4 gene). In fact, Weiss et al. 
(2017) demonstrated significant discriminatory performance for 
distinguishing patients with lung cancer from subjects with no 
malignancy (AUC [95% confidence intervals] = 0.88, sensitivity 
90%, and specificity 73%) in circulating DNA from plasma samples 
by the methylation analysis of genes SHOX2 and PTGER4.

The current commercial Epi proLung® assay consists of the 
Epi proLung PCR Kit (M6-02-002) and the Epi proLung Control 
Kit (M6-02-003), and has been validated with bisulfited-treated 
DNA prepared with the Epigenomics Epi BiSKit (M7-01-
001) from cell free-circulating DNA present and isolated from 
3.5 ml of plasma. The methylation of the ACTB gene (ß-actin) is 
measured as an internal control to assess input adequacy. It also 
provides positive and negative controls for each run by starting 
with DNA extraction from plasma. Two methylated SHOX2- and 
PTGER4-specific fluorescent detection probes are used in this 
MethyLight-based assay to exclusively identify the methylated 
target sequences amplified during the PCR reaction. The assay, 
with an area under the ROC curve (AUC = 0.82), displays 
the observed likelihood of being diagnosed with lung cancer 
according to the EPLT score (ranging from threshold −0.43 to 
−1.85), together with the corresponding sensitivity (59% to 85%, 
respectively) and specificity (95% to 50%, respectively), which 
depends on a given specific threshold (see the Epi proLung® 
instruction manual for more details)

Epigenomics has performed experiments to evaluate the cross-
reactivity of the Epi proLung® assay. Both BLAST alignment 
searches and PCR analyses against the human genome with the 
Epi proLung PCR assay (blockers, primers, and probes) have been 
performed. This analysis showed that the test is specific and only 
gives the amplification of the bisulfite-treated DNA sequence of 
methylated SHOX2 and PTGER4, respectively, and not the other 
regions in the human genome. Epi proLung® was also checked 

to evaluate the methylated status of SHOX2 and PTGER4 in the 
patients affected by other lung-associated diseases. Fifty-seven (57) 
samples from patients with non-malignant lung diseases [Chronic 
obstructive pulmonary disease (COPD), pneumonia, lung 
emphysema, interstitial lung disease] were evaluated to determine 
cross-reactivity. The Epi proLung® test discriminated malignant 
disease from non-malignant disease with an AUC of 0.73.

The Epigenetic-Based IVD Test for 
Cancers of Unknown Origin
Cancer of an unknown primary site (CUP) is a heterogeneous 
group of cancers for which the anatomical site of origin remains 
hidden after detailed clinical and histological investigations 
(Briasoulis et al., 2005; Varadhachary and Raber, 2014). CUP 
is clinically characterized as an aggressive disease with early 
dissemination (Pentheroudakis et al., 2013) that contributes to 
their presentation (Varadhachary and Raber, 2014). CUP accounts 
for 3% to 5% of all cancer diagnoses and is the third commonest 
cause of death from cancer because, unfortunately, most patients 
(80–85%) do not respond appropriately to treatment (Pavlidis 
and Fizazi, 2009; Pavlidis and Pentheroudakis, 2012). Therefore, 
patient survival is very limited.

Tumors in CUP share biologic and molecular properties, but 
tumors in CUP are currently indicated to maintain the signature 
of the putative primary origin. The general characteristics of CUP 
are: 1) short natural history with symptoms and signs associated 
with metastatic sites; 2) early rapid dissemination in the 
absence of a primary tumor (three organs or more are involved 
upon diagnosis in one third of patients); 3) aggressive clinical 
progression; and 4) sometimes an unpredictable metastatic 
pattern that differs from those of known primary tumors (Pavlidis 
and Fizazi, 2009; Pavlidis and Pentheroudakis, 2012).

The heterogeneous CUP presentations mean that 
immunohistochemical testing, the characterization of tissue-of-
origin molecular profiling, and the assignation of appropriate 
therapies present a challenge (Varadhachary and Raber, 2014). 
Classifying CUP patients into several clinicopathological subsets 
is necessary for oncologists to manage these patients and to decide 
about appropriate therapies. This classification is done according to 
socio-demographic criteria, such as age and gender, histopathology 
patterns, clinico-pathological data, laboratory tests, and image 
data (MRI, PET, CT scanning, mammography, etc.), and also to 
the affected organ or site. Despite several immunohistochemistry 
panels having been developed to diagnose CUP, the primary cancer 
site remains unknown in about 75% of patients (Varadhachary and 
Raber, 2014). Therefore, the need to find new diagnostic tools to 
discover the tissue of origin is substantial.

EPICUP™

EPICUP™ (Ferrer, Spain) is a CE-IVD test used to biologically 
define the tissue of origin in CUP. EPICUP™ was the first 
epigenetic test designed to identify tumors of unknown primary 
and claims that it can identify up to 87% of cases of cancer of 
unknown origin (Moran et al., 2016). The EPICUP™ test is based 
on the analysis of 485,577 CpG sites measured by the human 
methylation matrix Infinium HumanMethylation450 Beadchip 
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microarray (Illumina), and the test was designed to look for 
similarities in the methylation patterns of cancers of unknown 
primary and known primary tumors. Based on the results, the 
EPICUP™ test is able to perform an epigenetic identification and 
subsequent categorization of the primary site in CUP cancers 
from FFPE or frozen tissue samples (Moran et al., 2016). This 
is not a suitable assay for all clinical laboratories because the 
EPICUP™ test is based on Illumina methylation BeadChip. 
Therefore, the mean time to provide results takes about 2 weeks 
if it is to consider DNA purification from tissue, the bisulfite 
treatment of purified DNA, array hybridization, and, finally, 
bioinformatic data analyses and their interpretations.

EPICUP™ classifies the tumor type based on the study of DNA 
methylation profiles using the Infinium HumanMethylation450 
Beadchip microarray DNA methylation signature. It offers a 
specificity of 99.6%, a sensitivity of 97.7%, a positive predictive 
value of 88.6%, and a negative predictive value of 99.9% in a 
validation set of 7,691 tumors. Thus, with the samples of 216 
CUP patients (FFPE tissue), the DNA methylation profile was 
able to predict a cancer of primary origin in 188 patients (87%) 
(Moran et al., 2016).

EPICUP™ demonstrates its ability to provide the correct 
treatment to CUP patients. In fact, the patients who received 
tumor-specific therapy diagnosed with EPICUP showed better 
overall survival than those who received empirical therapy [hazard 
ratio (HR) 3.24, p = 0.0051 (95% CI, 1.42–7.38); log-rank p = 
0.0029] (Moran et al., 2016). Likewise, EPICUP in a study of DNA 
methylation profiles was proven a cost-effective test in breast, 
pancreas, colon, lung (NSCLC), and prostate cancers and increased 
the overall survival adjusted for quality (Gracia et al., 2015).

CONCLUSIONS

Modern medicine moves toward more personalized practice and 
theragnosis, and epigenetic biomarkers can further contribute 
to all of this. This review describes the most advanced and 
commercially available tests based on epigenetic biomarkers 
that help to improve precision medicine. In some cancers, such 
as CRC, several options are available, based on stool DNA (i.e., 
Cologuard® and EarlyTect®), liquid biopsy (Epi ProColon®, 
EarlyTect® and NuQ™), and FFPE (miRPredX-31-3p). Other 
tests, such as the Therascreen MGMT Pyro kit for glioblastoma, 
can be used in the DNA obtained from blood and FFPE tissues. 
Obviously, for clinical settings and to avoid invasive procedures, 
tests based on a liquid biopsy are preferable.

Methodologically speaking, to implement these new 
epigenetic tests into clinical routine, most of these tests have 

adopted easy-to-use inexpensive analytical methods, like those 
based on RT-qPCR and microarrays for both DNA methylation 
and miRNA analyses. There is still a long way ahead before these 
epigenetic tests can be completely implemented into clinical 
routine. The companies developing epigenetic tests should 
focus their efforts on simplifying the technology used to analyze 
epigenetic biomarkers in a clinical laboratory environment by, 
for example, using qPCR-based technology, which is easy to use 
and cost-effective. Moreover, companies have to make efforts to 
identify biomarkers in non-invasive biospecimens, which will 
contribute to anticipate cancer diagnosis and to also increase 
patient compliance with screening campaigns.

We are witnessing a revolution by adapting machine learning 
procedures to epigenetic biomarkers analyses that will contribute 
to definitely implement new epigenetic biomarkers into clinical 
routine. In fact, advanced computational techniques have taken 
us closer to realize the application of epigenetics to personalized 
medicine (Holder et al., 2017). One important scenario is that 
the cost of specific treatments and the appropriate use of targeted 
therapies guided by epigenetic biomarkers are expected to 
streamline the immense cost required to receive personalized 
therapies.
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Objective: Obesity and obesity-related metabolic diseases are characterized by gut 
microbiota and epigenetic alterations. Recent insight has suggested the existence of a 
crosstalk between the gut microbiome and the epigenome. However, the possible link 
between alterations in gut microbiome composition and epigenetic marks in obesity has 
been not explored yet. The aim of this work is to establish a link between the gut microbiota 
and the global DNA methylation profile in a group of obese subjects and to report potential 
candidate genes that could be epigenetically regulated by gut microbiota in adipose tissue.

Methods: Gut microbiota composition was analyzed in DNA stool samples from 45 obese 
subjects by 16S ribosomal RNA (rRNA) gene sequencing. Twenty patients were selected 
based on their Bacteroidetes-to-Firmicutes ratio (BFR): HighBFR group (BFR > 2.5, n = 
10) and LowBFR group (BFR < 1.2, n = 10). Genome-wide analysis of DNA methylation 
pattern in both whole blood and visceral adipose tissue of these selected patients was 
performed with an Infinium EPIC BeadChip array-based platform. Gene expression 
analysis of candidate genes was done in adipose tissue by real-time quantitative PCR.

Results: Genome-wide analysis of DNA methylation revealed a completely different 
DNA methylome pattern in both blood and adipose tissue in the low BFR group vs. 
the high BFR group. Two hundred fifty-eight genes were differentially methylated in both 
blood and adipose tissue, of which several potential candidates were selected for gene 
expression analysis. We found that in adipose tissue, both HDAC7 and IGF2BP2 were 
hypomethylated and overexpressed in the low BFR group compared with the high BFR 
group. β values of both genes significantly correlated with the BFR ratio and the relative 
abundance of Bacteroidetes and/or Firmicutes.

Conclusions: In this study, we demonstrate that the DNA methylation status is associated 
with gut microbiota composition in obese subjects and that the expression levels of 
candidate genes implicated in glucose and energy homeostasis (e.g., HDAC7 and 
IGF2BP2) could be epigenetically regulated by gut bacterial populations in adipose tissue.

Keywords: obesity, gut microbiota, methylation, epigenetics, adipose tissue
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INTRODUCTION

Obesity has reached a pandemic scale worldwide, mainly caused 
by changes in lifestyles that include regular consumption of 
high-calorie food and a critical reduction of physical activity. 
Emerging evidence suggests that an altered composition and 
diversity of gut microbiota could play an important role in 
the development of obesity and related metabolic disorders 
such as type 2 diabetes (T2D) or non-alcoholic fatty liver 
disease (Cani, 2013; Han and Lin, 2014; Moreno-Indias et al., 
2014; Leung et al., 2016; Cani, 2019). The relative amount 
of the two dominant phyla in gut microbiota, Firmicutes 
and Bacteroidetes, is altered in obesity conditions both in 
humans and in animal models (Ley et al., 2005; Ley et al., 
2006; Turnbaugh et al., 2006; Verdam et al., 2013). Besides, 
the Bacteroidetes-to-Firmicutes ratio (BFR) has been widely 
associated with the inflammatory and metabolic state in obesity 
(Cani et al., 2009; de La Serre et al., 2010; Verdam et al., 2013). 
Several mechanisms have been proposed as a link between 
obesity and gut microbiota, for instance, the production 
of microbial metabolites that regulate energy metabolism, 
metabolic endotoxemia, or the modulation of the secretion of 
hormones by intestinal cells (Cani, 2019).

Epigenome captures environmental and lifestyle events. 
Recent insight has suggested a role of epigenetics in the 
development of obesity and related metabolic disorders (van 
Dijk et al., 2015; Davegardh et al., 2018). More recently, the 
existence of a crosstalk between the gut microbiome and the 
epigenome has been suggested (Qin and Wade, 2018). It has 
been proposed that certain metabolites generated by the gut 
microbiota such as short-chain fatty acids (SCFAs), folate, 
and polyamines can act as epigenetic modulators by affecting 
DNA methylation and inducing histone modifications (Crider 
et al., 2012; Paul et al., 2015; Bhat and Kapila, 2017; Soda, 2018; 
Cuevas-Sierra et al., 2019; Ramos-Molina et al., 2019). However, 
the possible link between alterations in gut microbiome 
composition and epigenetic marks in the context of obesity has 
been not explored yet.

In this work, we have established a link between the gut 
microbiota and the global DNA methylation profile in a group of 
obese subjects by integrating 16S rRNA gene sequence analysis 
and epigenome-wide association studies, and we have reported 
potential candidate genes that could be epigenetically regulated 
by gut microbiota in adipose tissue.

MATERIAL AND METHODS

Study Participants
This is a cross-sectional analysis of 45 morbidly obese subjects 
[body mass index (BMI) > 40 kg/m2] who were consecutively 
recruited at the Virgen de la Victoria University Hospital 
for bariatric surgery (Malaga, Spain) from 2015 to 2017. All 
participants provided written informed consent, and the study 
protocol and procedures were approved according to the ethical 
standards of the Declaration of Helsinki by the Research Ethics 
Committees from all the participating institutions.

Laboratory Measurements
Blood samples were obtained from the antecubital vein and 
placed in vacutainer tubes after an overnight fast. The serum 
was separated by centrifugation for 15 min at 4,000 rpm at 
4°C and frozen at −80°C until analysis. Enzymatic methods 
(Randox Laboratories Ltd). were employed to analyze the levels 
of serum cholesterol, triglycerides, HDL-cholesterol, glucose, 
and glycosylated hemoglobin (HbA1c) using a Dimension Vista 
autoanalyzer (Siemens Healthcare Diagnostics). Serum insulin 
levels were measured by immunoassay using an ADVIA Centaur 
autoanalyzer (Siemens Healthcare Diagnostics). Insulin resistance 
(IR) was calculated from the homeostasis model assessment of IR 
(HOMA-IR) with the following formula: HOMA-IR = [fasting 
serum insulin (μU/ml) × fasting blood glucose (mmol/L)]/22.5.

Gut Microbiota Analysis
Stool samples were collected and immediately frozen at −80°C 
until DNA extraction. DNA was extracted from fecal samples 
using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, 
Germany) following the manufacturer’s protocol. Ribosomal 
16S rRNA gene sequences were amplified from cDNA 
using  the 16S Metagenomics Kit (Thermo Fisher Scientific, 
Italy). The kit included two primer sets that selectively amplify 
the corresponding hypervariable regions of the 16S region 
in bacteria: primer set V2–4–8 and primer set V3–6, 7–9. 
Libraries were created using the Ion Plus Fragment Library 
Kit (Thermo Fisher Scientific). Barcodes were added to each 
sample using the Ion Xpress Barcode Adapters kit (Thermo 
Fisher Scientific). Emulsion PCR and sequencing of the 
amplicon libraries were performed on an Ion 520 chip (Ion 
520™ Chip Kit) using the Ion Torrent S5™ system and the Ion 
520™/530™ Kit-Chef (Thermo Fisher Scientific) according to 
the manufacturer’s instructions.

Base calling and run demultiplexing were performed by 
using Torrent Suite™ Server software (Thermo Fisher), version 
5.4.0, with default parameters for the 16S Target Sequencing 
(bead loading ≤ 30, key signal ≤ 30, and usable sequences ≤ 30). 
Quality sequences were analyzed using QIIME 1.9.1 software. 
Briefly, the workflow was the following: operational taxonomic 
units (OTUs) were calculated by clustering sequences at 
a similarity of 97% with a closed-reference OTU picking 
approach. The representative sequences were submitted to the 
UCLUST to obtain the taxonomy assignment and the relative 
abundance of each OTU using the Greengenes 16S rRNA gene 
database. OTUs were collapsed to phylum level in order to 
calculate the BFR. Raw data can be found in the SRA database 
public repository from NCBI within the BioProject accession 
number PRJNA539905.

DNA Methylation Profiling Using Universal 
Bead Array
Visceral adipose tissue (VAT) was obtained during bariatric 
surgery. Biopsy samples were washed in physiological saline and 
immediately frozen at −80°C until analysis. DNA was extracted 
from blood and VAT using Zymo ZR 96 Quick gDNA kit (Zymo 
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Research Corp., Irvine, CA, USA) following manufacturer’s 
instructions. After quantification and purity assessment, 
a total of 500 ng of genomic DNA was bisulfite treated using 
the ZymoResearch Infinitum HD FFPE Methylation kit (Zymo 
Research Corp, Irvine, CA, USA) and was purified by DNA-
Clean-Up kit (Zymo Research Corp, Irvine, CA, USA). Over 
850,000 methylation sites were interrogated with the Infinium 
Methylation EPIC Bead Chip Kit (Illumina, San Diego, CA, USA) 
following the Infinium HD Assay Methylation protocol, and raw 
data (idat files) were obtained from iScan (Illumina) software.

Methylation Data Analysis
Raw data files (idat files) were processed to derive beta values 
after background correction and normalization by BMIQ 
(Teschendorff et al., 2013). The beta value is the ratio of the 
methylated probe intensity and the overall intensity, which 
resulted from the sum of methylated and unmethylated probe 
intensities. The beta value results in a number between 0 and 
1, in which a value of zero indicates that all copies of the CpG 
site in the sample were completely unmethylated and a value 
of one indicates that every copy of the site was methylated (Du 
et al., 2010). Differential methylation, gene set enrichment, 
and pathway analyses were performed using Partek Genomics 
Suit with Pathway (version 7.0). To complete the analysis, we 
used EnrichR (https://amp.pharm.mssm.edu/Enrichr/) (Chen 
et al., 2013) and the analysis of some ontologies such as Online 
Mendelian Inheritance in Man (OMIM) diseases. Raw data can 
be found in the GEO database public repository from NCBI 
within the accession number GSE131461.

Gene Expression Analysis
Frozen VAT was homogenized with an Ultra-Turrax 8 (Ika, 
Staufen, Germany). Total RNA was extracted by RNeasy lipid 
tissue midi kit (QIAGEN Science, Hilden, Germany) and treated 
with 55 U of RNase-free deoxyribonuclease (QIAGEN Science, 
Hilden, Germany), following the manufacturer’s instructions. 
RNA purity and concentration were determined by 260/280 
absorbance ratios on a Nanodrop ND-1000 spectrophotometer 
(Thermo Fisher Scientific Inc., Waltham, MA). Total purified 
RNA integrity was checked by denaturing agarose gel 
electrophoresis and SYBR Safe DNA gel staining (Invitrogen). 
Total RNA was reverse transcribed to cDNA by a high-capacity 
cDNA reverse transcription kit with RNase inhibitor (Applied 
Biosystems, Foster City, CA). Quantitative real-time PCR with 
duplicates was done with the cDNA. The amplifications were 
performed using a MicroAmpH Optical 96-well reaction plate 
(Applied Biosystems, Foster City, CA) on an ABI 7500 Fast 
Real-Time PCR System (Applied Biosystems, Foster City, CA). 
Commercially available and pre-validated TaqMan® primer/
probe sets were used as follows: cyclophilin A (PPIA, 4333763), 
used as endogenous control for the target gene in each 
reaction; fibroblast growth factor 1 (FGF1, Hs01092738_m1); 
fibroblast growth factor 10 (FGF10, Hs00610298_m1); lysine 
demethylase 4B (KDM4B, Hs00392119_m1); interleukin-7 (IL7, 
Hs00174202_m1); insulin-like growth factor 2 mRNA-binding 

protein 2 (IGF2BP2, Hs01118009_m1); histone deacetylase 
7 (HDAC7, Hs01045864_m1); ER degradation enhancing 
alpha-mannosidase-like protein 1 (EDEM1, Hs00976004_m1); 
activating transcription factor 6 (ATF6, Hs00232586_m1); 
and cyclin-dependent kinase 6 (CDK6, Hs01026371_m1). A 
threshold cycle (Ct value) was obtained for each amplification 
curve and normalized by subtracting the Ct value of the 
endogenous gene and expressed as ΔCt value and expressed in 
linear scale as 2−ΔCt.

Statistical Analysis
Continuous variables are summarized as means ± SD or SE. 
Discrete variables are presented as frequencies and percentages. 
Differences in clinical characteristics between two groups 
were analyzed using the Mann–Whitney U test. The Spearman 
correlation coefficients were calculated to estimate the 
correlations between variables. Statistical analyses were carried 
out with the statistical software package SPSS version 15.0 (SPSS 
Inc., Chicago, IL, United States). Values were considered to be 
statistically significant when the p < 0.05. Association analysis 
between phenotypes and probes was assessed with the R package 
CpGassoc in R 3.3.3 (Barfield et al., 2012). FDR-corrected p < 
0.01 was considered statistically significant.

RESULTS

Analysis of the gut microbiota composition was performed in a 
group of 45 patients with morbid obesity (Table S1). Moreover, 
to determine the potential contribution of gut microbiota 
composition to the global DNA methylome, we extracted 
genomic DNA from whole blood and VAT of these 45 patients 
and performed EWAS on the Illumina platform using the 
Infinium HumanEPIC BeadChip array. From the 45 patients 
with morbid obesity, 20 subjects were selected based on the 
relative abundances of the predominant phyla, Bacteroidetes 
and Firmicutes: high BFR (HighBFR group; BFR > 2.5; n = 10) 
vs. low BFR (LowBFR group; BFR < 1.2; n = 10) (Table S2). As 
expected, the HighBFR group (n = 10) exhibited predominance 
of the Bacteroidetes phylum (p < 0.0001), whereas Firmicutes 
was predominant in the LowBFR group (n = 10) subjects (p < 
0.0001) (Figure 1). No statistical differences between other phyla 
such as Proteobacteria, Actinobacteria, or Fusobacteria were 
found between groups (Figure 1). The general characteristics 
of both study groups are summarized in Table 1. There were 
no significant differences in age, sex, and BMI between the two 
study groups. Glucose and HbA1c levels were significantly lower 
in the HighBFR group when compared with the LowBFR group 
(p < 0.05). There were no significant differences in HOMA-IR, 
HDL-cholesterol, and triglycerides between the two study groups 
(p > 0.05).

To determine the potential contribution of gut microbiota 
composition to the global DNA methylome, we extracted 
genomic DNA from whole blood and VAT and performed 
EWAS on the Illumina platform using the Infinium 
HumanEPIC BeadChip array. As shown in Figure 2, the two 
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groups showed a different methylation profile in both whole 
blood and VAT (Figure 2A and B). We found 1,658 and 1,421 
differentially methylated genes between study groups in whole 
blood and VAT, respectively (Figure 2C; Tables S3 and S4). 
We classified them as hypermethylated and hypomethylated, 
differentiating those that were significant in both whole blood 
and VAT from those that were only significant in whole blood 
or VAT (Table S5). Remarkably, 258 genes were differentially 
methylated both whole blood and VAT (Figure 2C; Table 
S6). Pathway enrichment analysis revealed that most of the 
genes differentially methylated in whole blood and VAT 
were involved in glycerophospholipid metabolism and cell 
adhesion molecules, respectively (Table S7). Moreover, a 
further enrichment analysis on an ontology basis such as 
OMIM diseases revealed that the top three categories enriched 
were related to diabetes. In order to better understand these 

results, a further association analysis between the probes and 
the phenotype characteristics of the patients was performed 
(Table S8). Many associations were found, but HOMA-IR, 
HbA1c, weight, and BMI were found to be the most relevant 
variables.

Following an exhaustive analysis of the list of genes, we 
focused on genes previously related to obesity, metabolic 
disease, and/or T2D. Thus, we tested the impact of changes 
in the methylation levels on the mRNA expression levels in 
VAT of the following genes: FGF1, FGF10, KDM4B, HDCA7, 
IGF2BP2, IL7, EDEM1, ATF6, and CDK6 (Sharma et al., 
2008; Makki et al., 2013; Ohta and Itoh, 2014; Dai et al., 2015; 
Cheng et al., 2018; Davegardh et al., 2018; Hou et al., 2018). 
As shown in Figure S1, HDAC7 and IGF2BP2 mRNA 
levels were significantly different between study groups; no 
differences in the expression levels were found for the rest 

TABLE 1 | Baseline clinical and biochemical variables of the study subjects divided by Bact/Firm ratio.

HighBFR (n = 10) LowBFR (n = 10) p value

Age, years 42.2 ± 10.6 46.1 ± 7.2 0.353
Gender, f (%) 8/10 (80) 8/10 (80) —
Weight, kg 144.1 ± 18.9 133.8 ± 25.5 0.796
BMI, mg/kg2 52.5 ± 5.4 49.4 ± 8.1 0.579
Glucose, mg/dl 93.0 ± 17.9 141.2 ± 75.3 0.015
HbA1c, % 5.7 ± 0.6 6.8 ± 2.0 0.011
HOMA-IR 6.3 ± 4.0 10.7 ± 6.6 0.089
HDL-cholesterol, mg/dl 42.5 ± 10.1 48.5 ± 9.4 0.247
Triglycerides, mg/dl 168.2 ± 111.9 147.0 ± 108.1 0.796

Data are means ± SD. p values were calculated for the difference between study groups using Mann–Whitney U test. p < 0.05 was considered significant. HOMA-IR, homeostasis 
model assessment of IR; HDL, high-density lipoprotein.

FIGURE 1 | Categorization of study patients into the HighBFR and LowBFR groups according to dominant bacterial phyla. Box plots (range min–max) show the 
Bacteroidetes-to-Firmicutes ratio and the relative abundance (%) of five more predominant bacterial phyla: Bacteroidetes, Firmicutes, Proteobacteria, Acidobacteria, 
and Fusobacteria. Comparisons between groups were performed using t test analysis (***p < 0.0001).

85

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Crosstalk Microbiome-Epigenome in ObesityRamos-Molina et al.

5 July 2019 | Volume 10 | Article 613Frontiers in Genetics | www.frontiersin.org

of the analyzed genes. Further, we assessed the association 
between the gut microbiota composition and the methylation 
levels of both HDAC7 and IGF2BP2. As shown in Figure 3A, 
the β values of HDAC7 (indicatives of the DNA methylation 
status of the gene) were significantly higher in the HighBFR 
group in both whole blood and VAT. Correlation analysis in 
the whole cohort of obese subjects (n = 45) demonstrated that 
the β values of HDAC7 in both whole blood and VAT were 
positively associated with the BFR (Figure 3B). Additionally, 
whereas β values of HDAC7 in blood correlated negatively 
with the relative abundance of Firmicutes (Figure 3C), 
β  values of HDAC7 in VAT were positively associated with 
the relative abundance of Bacteroidetes (Figure 3D). Like 
HDAC7, the β values of IGF2BP2 were significantly higher 
in the HighBFR group in both whole blood and VAT (Figure 
4A). Furthermore, IGF2BP2 β values in VAT significantly 
correlated with the BFR and the relative abundance of 
Bacteroidetes (Figure 4B). No significant correlation was 

observed between gut microbiota composition and β values 
of IGF2BP2 in whole blood. It is noteworthy that some of 
these correlations remain still significant when patients 
with the most extreme BFR values were excluded (validation 
cohort; n = 25). Thus, we found that the relative abundance 
of Bacteroidetes positively correlated with the methylation 
levels of HDAC7 (r = 0.500, p = 0.011) and IGF2BP2 (r = 
0.597, p = 0.002) in adipose tissue, and the relative abundance 
of Firmicutes negatively correlated with the methylation 
levels of HDAC7 (r = −0.465, p = 0.019) in whole blood. These 
results reinforce the relationship between gut microbiota and 
DNA methylation within these genes.

FIGURE 2 | Association between the gut microbiota composition and the 
DNA methylome in blood (A) and visceral adipose tissue (VAT) (B). The 
analysis of methylation data yielded a set of genes that were significant 
differentially methylated among subjects with a predominance of either 
Bacteroidetes (HighBFR) or Firmicutes (LowBFR) in the gut microbial 
population. Green indicates decreased and red indicates increased 
methylation in the LowBFR group compared with the promoter methylation 
in the HighBFR group. (C) Venn diagram of genes differentially methylated in 
both whole blood and visceral adipose tissue.

FIGURE 3 | Association between the DNA methylation status of histone 
deacetylase 7 (HDAC7) and the gut microbiota composition in obese 
subjects. (A) Methylation of HDAC7 (β value) in the HighBFR vs. LowBFR 
groups in both visceral adipose tissue and whole blood. Data (n = 10 per 
group) are plotted as means ± SE. Significance was tested using Mann–
Whitney U test and is indicated as *p < 0.05. (B) Spearman correlations 
between HDAC7 methylation and the ratio Bact/Firm in both visceral 
adipose tissue and whole blood. (C) Spearman correlation between HDAC7 
methylation and the relative abundance (%) of Firmicutes in whole blood. 
(D) Spearman correlation between HDAC7 methylation and the relative 
abundance (%) of Bacteroidetes in visceral adipose tissue.
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DISCUSSION

Obesity is a pathological condition highly associated with lifestyle. 
Epigenome and gut microbiota are two factors clearly impacted 
by lifestyle. Recent evidence has proposed that certain metabolites 
produced by microbial metabolism can influence the epigenetic 
profile in several conditions (Hullar and Fu, 2014; Cuevas-
Sierra et al., 2019). Despite the possible role of gut microbiota 
as epigenetic regulator, the number of works associating gut 
microbiome and epigenetics is scarce. Moreover, most of these 
studies were focused on histone acetylation, with little attention 
paid to DNA methylation status. Here, we have demonstrated for 
the first time an association between the composition of certain 
bacterial populations in the gastrointestinal tract with specific 
DNA whole-genome methylation states in both blood samples and 
adipose tissue biopsies in the context of extreme obesity. Overall, 
the subjects included in the present study were characterized 
by a heterogeneous gut microbiota composition. However, 
we found that, independently on their clinical characteristics, 
classification of patients clustered into two groups according to 
their gut microbiota profile measured by the relative abundance 
of the predominant phyla Bacteroidetes and Firmicutes. These 
clusters of obese individuals presented similar BMI and clinical 
parameters related to lipid metabolism but significant differences 
in markers of glucose metabolism. In particular, individuals with 
low Bact/Firm ratio displayed higher levels of fasting glucose and 
HbA1c. Microbiota profile is influenced by the environmental 

conditions (Rothschild et al., 2018). Within the gut, microbiota 
is influenced by the host phenotype. Gut microbiota has been 
extensively related to glucose levels and metabolism, although 
a clear conclusion about the cause or consequence has not 
completely been achieved (Utzschneider et al., 2016). Thus, 
glucose levels could drive the clusters of these patients and could 
influence the gut microbiota profiles and consequently the Bact/
Firm ratio used in the study. The classification of obese patients 
according to their Bact/Firm ratio showed a clear association 
between the relative abundance of these phyla with the DNA 
methylation profile in both blood and adipose tissue, supporting 
the idea that the gut microbiota could act as an epigenetic 
regulator in obesity, as previously indicated by others for other 
pathological conditions (Yang et al., 2013; Hullar and Fu, 2014; 
Sook Lee et al., 2017; Watson and Søreide, 2017; Qin and Wade, 
2018). In fact, the furthest association analysis between the DNA 
methylation results and the phenotypes of the patients revealed 
that weight and BMI, as well as HOMA-IR and HbA1c levels, 
were the variables more related to DNA methylation status. 
Interestingly, the enrichment analysis based on OMIM diseases 
database showed that diabetes, and particularly type 2 diabetes, 
was the disease most related to the DNA methylation status, 
which mirrored the results showed through the clustering of the 
patients according to their Bact/Firm ratio.

Previous studies have suggested that gut microbiota may 
impact the epigenetic landscape of the host. In animal models, 
it has been previously shown that microbial metabolites such 
as SCFAs can influence epigenetic programming in various 
tissues, including proximal colon, liver, and white adipose tissue 
(Krautkramer et al., 2016). Because most of butyrate-producing 
bacteria belong to the Firmicutes phyla (Vital et al., 2014), 
differences in the Bact/Firm ratio within our cohort of obese 
individuals could result in different circulating levels of butyrate 
or other SCFAs, which would explain the observed differences 
in the DNA methylation status in both blood cells and adipose 
tissue. In addition to SCFAs, other metabolites produced by 
the bacteria from the gastrointestinal tract have been related to 
epigenetic modifications (Bhat and Kapila, 2017). In particular, 
gut bacteria can produce high levels of folic acid and polyamines, 
which are molecules highly related to carbon metabolism and 
therefore with potential impact in the DNA methylation status 
(Crider et al., 2012; Soda, 2018; Ramos-Molina et al., 2019). 
Nevertheless, whether the changes in the methylome associated 
with alterations in gut microbiome are related to changes in the 
levels of these or other bacterial metabolites requires further 
investigation.

As described above, in this study, we report for the first time 
a possible crosstalk between the gut microbiome and the DNA 
methylation state in obesity. Our results are supported by multiple 
studies performed in cohorts of non-obese individuals. For instance, 
a recent pilot study performed in pregnant women demonstrated 
an association between the relative abundance of dominant phyla 
(Bacteroidetes and Firmicutes) and the DNA methylation profile 
in blood samples (Kumar et al., 2014). In another interesting 
work, Kelly et al. reported an association between gut microbiota 
and histone methylation signature of intestinal epithelial cells in 
patients with inflammatory bowel syndrome (Kelly et al., 2018). 

FIGURE 4 | Association between the DNA methylation status of insulin like 
growth factor 2 mRNA binding protein 2 (IGF2BP2) and the gut microbiota 
composition in obese subjects. (A) Methylation of IGF2BP2 (β value) in the 
HighBFR vs. LowBFR groups in both visceral adipose tissue and whole blood. 
Data (n = 10 per group) are plotted as means ± SE. Significance was tested 
using Mann–Whitney U test and is indicated as *p < 0.05. (B) Spearman 
correlations between IGF2BP2 methylation in visceral adipose tissue and the 
ratio Bact/Firm or the relative abundance (%) of Bacteroidetes.
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In a mouse model of diet-induced obesity, Qin et al. demonstrated 
that changes in the gut microbiome could result in epigenetic 
alterations associated with the development of colon cancer (Qin 
et al., 2018). There is no evidence, however, of a relationship 
between the composition of the gut microbiome and the 
methylation status in adipose tissue. Previous work from our lab 
demonstrated that the DNA methylation of certain genes related 
to adipogenesis and lipid metabolism is impaired in adipose tissue 
of subjects with metabolic syndrome (Castellano-Castillo et al., 
2019). Nevertheless, whether these changes in the methylation 
pattern are related to differences in the gut microbiota composition 
remains unknown.

On the other hand, we have found that the promoters of both 
HDAC7 and IGF2BP2 genes were hypomethylated in whole blood 
and adipose tissue of the study patients with low Bact/Firm ratio. 
These genes were further studied based on their relationship with 
metabolism. However, it is worthy to mention that only two of the 
nine studied genes achieved a statistically significant difference 
between BFR groups, indicative of the complex machinery 
regulating gene expression and representing DNA methylation 
in only one of the mechanisms implicated. On the one hand, 
HDAC7 gene encodes a histone deacetylase (HDAC). Histone 
deacetylase enzymes repress gene expression by removing an acyl 
group bound to chromatin. Although it is widely known that class 
I HDACs (mainly 1, 2, and 3) are inhibited by microbial products 
as SCFAs, mainly butyrate (Yuille et al., 2018), this is the first time 
that a class IIb HDAC is related with gut microbiota. In line with 
our results, a previous work demonstrated that the HDAC7 gene 
was hypomethylated and overexpressed in islets from donors 
with T2D (Dayeh et al., 2014), which could have pathological 
implications given that Hdac7 overexpression in rat islets and 
β-cell lines resulted in impaired insulin secretion (Daneshpajooh 
et al., 2017). Our results show that hypomethylation in the 
HDAC7 promoter in both whole blood and adipose tissue is 
also associated with disturbances in glucose metabolism, as both 
study groups displayed marked differences in glucose and HbA1c 
levels. This suggests that the changes in the methylation profile in 
the HDAC7 gene are related not only to the composition of the 
gut microbiota but also to the metabolic profile of the subjects, at 
least in blood and adipose tissue. However, further investigation 
is required to examine in detail the implication of the microbial 
population.

On the other hand, hypomethylation of IGF2BP2 also 
resulted in higher mRNA levels in adipose tissue. In adipose 
tissue, IGF2BP2 is able to downregulate the expression of IGF2, a 
growth factor that plays a pivotal role in controlling adipogenesis 
(Louveau and Gondret, 2004). Therefore, impaired IGF2BP2 
expression levels may contribute to the development of metabolic 
disorders such as obesity and T2D through alterations in the 
function of the adipose tissue. In this regard, inactivation of the 
IGF2BP2 in mice induces resistance to diet-induced obesity and 
fatty liver due in part to increased energy expenditure, suggesting 
that IGF2BP2 has an important role in the regulation of energy 
homeostasis (Dai et al., 2015). Thus, gut microbiota profile could 
be participating in the homeostasis of the host through the 
methylation of particular genes as IGF2BP2. Interestingly, these 
associations between gut microbiota and HDAC7 and IGF2BP2 

gene expression and methylation levels seem to be driven by the 
phylum Bacteroidetes. The major end products of Bacteroidetes 
are succinate, acetate, and, in some cases, propionate (Chakraborti, 
2015). Methylation rates depend on the availability of one- and 
two-carbon substrates (Su et al., 2016). Acetate is a two-carbon 
substrate, while succinate is able to follow the tricarboxylic acid 
cycle. Thus, although classically Firmicutes has been the main 
phylum related to epigenetic modifications, Bacteroidetes could 
be more related to methylation and Firmicutes to acetylation 
modifications. However, phylum is a phylogenetic level that 
groups different microbial members with different SCFAs and 
other metabolites that should be carefully studied.

In conclusion, we demonstrate that the methylation status 
could be largely affected by the gut microbiota composition in 
obese subjects and that the expression levels of genes implicated 
in glucose and energy homeostasis (e.g., HDAC7 and IGF2BP2) 
could be epigenetically regulated by gut bacterial populations in 
adipose tissue. In order to understand how gut microbiota can 
influence DNA methylation in adipose tissue and other target 
organs, further studies are needed.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the manuscript 
and the supplementary files.

ETHICS STATEMENT

All participants provided written informed consent, and the 
study protocol and procedures were approved according to the 
ethical standards of the Declaration of Helsinki by the Research 
Ethics Committees from the participating institution (Virgen de 
la Victoria University Hospital, Malaga, Spain)

AUTHOR CONTRIBUTIONS

BR-M, IM-I, and FT designed research. BR-M, LS-A, AC-M, 
RL-D, and PC-S conducted research. EG-F provided essential 
materials. BR-M and IM-I analyzed the data. BR-M, IM-I, and FT 
wrote the paper. BR-M, IM-I, and FT had primary responsibility 
for the final content. All authors read and approved the final 
manuscript.

FUNDING

This study was supported by the “Centros de Investigación 
Biomédica en Red” (CIBER) of the Institute of Health Carlos III 
(ISCIII) (CB06/03/0018) and research grants from the ISCIII 
(grant numbers PI15/01114 and PI18/01160) and co-financed 
by the European Regional Development Fund (ERDF). BR-M 
was a recipient of a Sara Borrell postdoctoral fellowship from 
the ISCIII (CD16/0003) and co-funded by the ERDF. IM-I was 
supported by the Miguel Servet Type I program (CP16/00163) 
from the ISCIII and co-funded by the ERDF.

88

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Crosstalk Microbiome-Epigenome in ObesityRamos-Molina et al.

8 July 2019 | Volume 10 | Article 613Frontiers in Genetics | www.frontiersin.org

REFERENCES

Barfield, R. T., Kilaru, V., Smith, A. K., and Conneely, K. N. (2012). CpGassoc: an 
R function for analysis of DNA methylation microarray data. Bioinformatics 28 
(9), 1280–1281. doi: 10.1093/bioinformatics/bts124

Bhat, M. I., and Kapila, R. (2017). Dietary metabolites derived from gut microbiota: 
critical modulators of epigenetic changes in mammals. Nutr. Rev. 75 (5), 374–
389. doi: 10.1093/nutrit/nux001

Cani, P. D. (2013). Gut microbiota and obesity: lessons from the microbiome. 
Briefings Func. Genomics 12 (4), 381–387. doi: 10.1093/bfgp/elt014

Cani, P. D. (2019). Microbiota and metabolites in metabolic diseases. Nat. Rev. 
Endocrinol. 15 (2), 69–70. doi: 10.1038/s41574-018-0143-9

Cani, P. D., Possemiers, S., Van de Wiele, T., Guiot, Y., Everard, A., Rottier, O., et al. 
(2009). Changes in gut microbiota control inflammation in obese mice through 
a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58 
(8), 1091–1103. doi: 10.1136/gut.2008.165886

Castellano-Castillo, D., Moreno-Indias, I., Sanchez-Alcoholado, L., Ramos-
Molina, B., Alcaide-Torres, J., Morcillo, S., et al. (2019). Altered adipose tissue 
DNA methylation status in metabolic syndrome: relationships between global 
DNA methylation and specific methylation at adipogenic, lipid metabolism 
and inflammatory candidate genes and metabolic variables. J. Clin. Med. 8 (1). 
doi: 10.3390/jcm8010087

Chakraborti, C. K. (2015). New-found link between microbiota and obesity. World 
J. Gastrointest. Pathophysiol. 6 (4), 110–119. doi: 10.4291/wjgp.v6.i4.110

Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., et al. (2013). 
Enrichr: interactive and collaborative HTML5 gene list enrichment analysis 
tool. BMC Bioinf. 14, 128. doi: 10.1186/1471-2105-14-128

Cheng, Y., Yuan, Q., Vergnes, L., Rong, X., Youn, J. Y., Li, J., et al. (2018). KDM4B 
protects against obesity and metabolic dysfunction. Proc. Natl. Acad Sci. U. S. A. 
115 (24), E5566–E5575. doi: 10.1073/pnas.1721814115

Crider, K. S., Yang, T. P., Berry, R. J., and Bailey, L. B. (2012). Folate and DNA 
methylation: a review of molecular mechanisms and the evidence for folate’s 
role. Adv. Nutr. 3 (1), 21–38. doi: 10.3945/an.111.000992

Cuevas-Sierra, A., Ramos-Lopez, O., Riezu-Boj, J. I., Milagro, F. I., and Martinez, 
J. A. (2019). Diet, gut microbiota, and obesity: links with host genetics and 
epigenetics and potential applications. Adv. Nutr. 10 (suppl_1), S17–S30. doi: 
10.1093/advances/nmy078

Dai, N., Zhao, L., Wrighting, D., Kramer, D., Majithia, A., Wang, Y., et al. (2015). 
IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of 
Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins. Cell Metab. 
21 (4), 609–621. doi: 10.1016/j.cmet.2015.03.006

Daneshpajooh, M., Bacos, K., Bysani, M., Bagge, A., Ottosson Laakso, E., Vikman, 
P., et al. (2017). HDAC7 is overexpressed in human diabetic islets and impairs 
insulin secretion in rat islets and clonal beta cells. Diabetologia 60 (1), 116–125. 
doi: 10.1007/s00125-016-4113-2

Davegardh, C., Garcia-Calzon, S., Bacos, K., and Ling, C. (2018). DNA methylation 
in the pathogenesis of type 2 diabetes in humans. Mol. Metab. 14, 12–25. doi: 
10.1016/j.molmet.2018.01.022

Dayeh, T., Volkov, P., Salo, S., Hall, E., Nilsson, E., Olsson, A. H., et al. (2014). 
Genome-wide DNA methylation analysis of human pancreatic islets from type 2 
diabetic and non-diabetic donors identifies candidate genes that influence insulin 
secretion. PLoS Genet. 10 (3), e1004160. doi: 10.1371/journal.pgen.1004160

de La Serre, C. B., Ellis, C. L., Lee, J., Hartman, A. L., Rutledge, J. C., and Raybould, 
H. E. (2010). Propensity to high-fat diet-induced obesity in rats is associated 
with changes in the gut microbiota and gut inflammation. Am. J. Physiol. 
Gastrointest. Liver Physiol. 299 (2), G440–448. doi: 10.1152/ajpgi.00098.2010

Du, P., Zhang, X., Huang, C. C., Jafari, N., Kibbe, W. A., Hou, L., et al. (2010). 
Comparison of Beta-value and M-value methods for quantifying methylation 
levels by microarray analysis. BMC Bioinf. 11, 587. doi: 10.1186/1471-2105-11-587

Han, J.-L., and Lin, H.-L. (2014). Intestinal microbiota and type 2 diabetes: from 
mechanism insights to therapeutic perspective. World J. Gastroenterol. 20 (47), 
17737–17745. doi: 10.3748/wjg.v20.i47.17737

Hou, X., Zhang, Y., Li, W., Hu, A. J., Luo, C., Zhou, W., et al. (2018). CDK6 inhibits 
white to beige fat transition by suppressing RUNX1. Nat. Commun. 9 (1), 1023. 
doi: 10.1038/s41467-018-03451-1

Hullar, M. A. J., and Fu, B. C. (2014). Diet, the gut microbiome, and epigenetics. 
Cancer J. 20 (3), 170–175. doi: 10.1097/PPO.0000000000000053

Kelly, D., Kotliar, M., Woo, V., Jagannathan, S., Whitt, J., Moncivaiz, J., et al. (2018). 
Microbiota-sensitive epigenetic signature predicts inflammation in Crohn’s 
disease. JCI Insight 3 (18). doi: 10.1172/jci.insight.122104

Krautkramer, K. A., Kreznar, J. H., Romano, K. A., Vivas, E. I., Barrett-Wilt, G. 
A., Rabaglia, M. E., et al. (2016). Diet–microbiota interactions mediate global 
epigenetic programming in multiple host tissues. Mol. Cell 64 (5), 982–992. doi: 
10.1016/j.molcel.2016.10.025

Kumar, H., Lund, R., Laiho, A., Lundelin, K., Ley, R. E., Isolauri, E., et al. (2014). 
Gut microbiota as an epigenetic regulator: pilot study based on whole-genome 
methylation analysis. MBio 5 (6). doi: 10.1128/mBio.02113-14

Leung, C., Rivera, L., Furness, J. B., and Angus, P. W. (2016). The role of the gut 
microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 13 (7), 412–425. doi: 
10.1038/nrgastro.2016.85

Ley, R. E., Turnbaugh, P. J., Klein, S., and Gordon, J. I. (2006). Microbial ecology: 
human gut microbes associated with obesity. Nature 444 (7122), 1022–1023. 
doi: 10.1038/4441022a

Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., and Gordon, 
J. I. (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad Sc.i U. S. A. 
102 (31), 11070–11075. doi: 10.1073/pnas.0504978102

Louveau, I., and Gondret, F. (2004). Regulation of development and metabolism 
of adipose tissue by growth hormone and the insulin-like growth factor 
system. Domest. Anim. Endocrinol. 27 (3), 241–255. doi: 10.1016/j.domaniend. 
2004.06.004

Makki, K., Froguel, P., and Wolowczuk, I. (2013). Adipose tissue in obesity-related 
inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN 
Inflamm. 2013, 139239. doi: 10.1155/2013/139239

Moreno-Indias, I., Cardona, F., Tinahones, F. J., and Queipo-Ortuno, M. I. (2014). 
Impact of the gut microbiota on the development of obesity and type 2 diabetes 
mellitus. Front. Microbiol. 5, 190. doi: 10.3389/fmicb.2014.00190

ACKNOWLEDGMENTS

The authors thank the Metagenomic Platform of the CIBER 
Physiopathology of Obesity and Nutrition (CIBERobn), Institute 
of Health Carlos III (ISCIII), Madrid, Spain.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.00613/
full#supplementary-material

TABLE S1 | Baseline clinical characteristics of study subjects.

TABLE S2 | Relative abundance of bacterial phyla in fecal microbiota.

TABLE S3 | List of genes differentially methylated in whole blood.

TABLE S4 | List of genes differentially methylated in visceral adipose tissue.

TABLE S5 | Genes differentially hypomethylated and hypermethylated in both 
whole blood and visceral adipose tissue.

TABLE S6 | List of genes differentially methylated both in whole blood and 
visceral adipose tissue.

TABLE S7 | Pathway analysis.

TABLE S8 | Association analysis between methylation levels and the phenotype 
characteristics of the study patients.

89

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1093/bioinformatics/bts124
https://doi.org/10.1093/nutrit/nux001
https://doi.org/10.1093/bfgp/elt014
https://doi.org/10.1038/s41574-018-0143-9
https://doi.org/10.1136/gut.2008.165886
https://doi.org/10.3390/jcm8010087
https://doi.org/10.4291/wjgp.v6.i4.110
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1073/pnas.1721814115
https://doi.org/10.3945/an.111.000992
https://doi.org/10.1093/advances/nmy078
https://doi.org/10.1016/j.cmet.2015.03.006
https://doi.org/10.1007/s00125-016-4113-2
https://doi.org/10.1016/j.molmet.2018.01.022
https://doi.org/10.1371/journal.pgen.1004160
https://doi.org/10.1152/ajpgi.00098.2010
https://doi.org/10.1186/1471-2105-11-587
https://doi.org/10.3748/wjg.v20.i47.17737
https://doi.org/10.1038/s41467-018-03451-1
https://doi.org/10.1097/PPO.0000000000000053
https://doi.org/10.1172/jci.insight.122104
https://doi.org/10.1016/j.molcel.2016.10.025
https://doi.org/10.1128/mBio.02113-14
https://doi.org/10.1038/nrgastro.2016.85
https://doi.org/10.1038/4441022a
https://doi.org/10.1073/pnas.0504978102
https://doi.org/10.1016/j.domaniend.2004.06.004
https://doi.org/10.1016/j.domaniend.2004.06.004
https://doi.org/10.1155/2013/139239
https://doi.org/10.3389/fmicb.2014.00190
https://www.frontiersin.org/articles/10.3389/fgene.2019.00613/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00613/full#supplementary-material


Crosstalk Microbiome-Epigenome in ObesityRamos-Molina et al.

9 July 2019 | Volume 10 | Article 613Frontiers in Genetics | www.frontiersin.org

Ohta, H., and Itoh, N. (2014). Roles of FGFs as adipokines in adipose tissue 
development, remodeling, and metabolism. Front. Endocrinol. (Lausanne) 5, 
18. doi: 10.3389/fendo.2014.00018

Paul, B., Barnes, S., Demark-Wahnefried, W., Morrow, C., Salvador, C., Skibola, C., 
et al. (2015). Influences of diet and the gut microbiome on epigenetic 
modulation in cancer and other diseases. Clin. Epigenet. 7, 112. doi: 10.1186/
s13148-015-0144-7

Qin, Y., and Wade, P. A. (2018). Crosstalk between the microbiome and epigenome: 
messages from bugs. J. Biochem. 163 (2), 105–112. doi: 10.1093/jb/mvx080

Qin, Y., Roberts, J. D., Grimm, S. A., Lih, F. B., Deterding, L. J., Li, R., et al. (2018). 
An obesity-associated gut microbiome reprograms the intestinal epigenome 
and leads to altered colonic gene expression. Genome Biol. 19 (1), 7. doi: 
10.1186/s13059-018-1389-1

Ramos-Molina, B., Queipo-Ortuño, M. I., Lambertos, A., Tinahones, F. J., and 
Peñafiel, R. (2019). Dietary and gut microbiota polyamines in obesity- and age-
related diseases. Front. Nutr. 6. doi: 10.3389/fnut.2019.00024

Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., 
et al. (2018). Environment dominates over host genetics in shaping human gut 
microbiota. Nature 555 (7695), 210–215. doi: 10.1038/nature25973

Sharma, N. K., Das, S. K., Mondal, A. K., Hackney, O. G., Chu, W. S., Kern, P. A., 
et al. (2008). Endoplasmic reticulum stress markers are associated with obesity 
in nondiabetic subjects. J. Clin. Endocrinol. Metab. 93 (11), 4532–4541. doi: 
10.1210/jc.2008-1001

Soda, K. (2018). Polyamine metabolism and gene methylation in conjunction with 
one-carbon metabolism. Int. J. Mol. Sci. 19 (10). doi: 10.3390/ijms19103106

Sook Lee, E., Ji Song, E., and Do Nam, Y. (2017). Dysbiosis of gut microbiome 
and its impact on epigenetic regulation. J. Clin. Epigenet. 03 (02). doi: 
10.21767/2472-1158.100048

Su, X., Wellen, K. E., and Rabinowitz, J. D. (2016). Metabolic control of methylation 
and acetylation. Curr. Opin. Chem. Biol. 30, 52–60. doi: 10.1016/j.cbpa.2015.10.030

Teschendorff, A. E., Marabita, F., Lechner, M., Bartlett, T., Tegner, J., Gomez-
Cabrero, D., et al. (2013). A beta-mixture quantile normalization method for 
correcting probe design bias in Illumina Infinium 450 k DNA methylation 
data. Bioinformatics 29 (2), 189–196. doi: 10.1093/bioinformatics/bts680

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., and Gordon, 
J. I. (2006). An obesity-associated gut microbiome with increased capacity for 
energy harvest. Nature 444 (7122), 1027–1031. doi: 10.1038/nature05414

Utzschneider, K. M., Kratz, M., Damman, C. J., and Hullar, M. (2016). Mechanisms 
linking the gut microbiome and glucose metabolism. J. Clin. Endocrinol. Metab. 
101 (4), 1445–1454. doi: 10.1210/jc.2015-4251

van Dijk, S. J., Tellam, R. L., Morrison, J. L., Muhlhausler, B. S., and Molloy, P. L. 
(2015). Recent developments on the role of epigenetics in obesity and metabolic 
disease. Clin. Epigenet. 7 (1). doi: 10.1186/s13148-015-0101-5

Verdam, F. J., Fuentes, S., de Jonge, C., Zoetendal, E. G., Erbil, R., Greve, J. W., et al. 
(2013). Human intestinal microbiota composition is associated with local and 
systemic inflammation in obesity. Obesity (Silver Spring) 21 (12), E607–615. 
doi: 10.1002/oby.20466

Vital, M., Howe, A. C., Tiedje, J. M., and Moran, M. A. (2014). Revealing the 
bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 
5 (2). doi: 10.1128/mBio.00889-14

Watson, M. M., and Søreide, K. (2017). “Chapter 32 the gut microbiota influence 
on human epigenetics, health, and disease” in Handbook of Epigenetics (The 
New Molecular and Medical Genetics, 2nd Edn). 495–510. doi: 10.1016/
B978-0-12-805388-1.00032-8

Yang, T., Owen, J. L., Lightfoot, Y. L., Kladde, M. P., and Mohamadzadeh, M. 
(2013). Microbiota impact on the epigenetic regulation of colorectal cancer. 
Trends Mol. Med. 19 (12), 714–725. doi: 10.1016/j.molmed.2013.08.005

Yuille, S., Reichardt, N., Panda, S., Dunbar, H., and Mulder, I. E. (2018). Human 
gut bacteria as potent class I histone deacetylase inhibitors in vitro through 
production of butyric acid and valeric acid. PLoS One 13 (7), e0201073. doi: 
10.1371/journal.pone.0201073

Conflict of Interest Statement: The authors declare that the research was 
conducted in the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Copyright © 2019 Ramos-Molina, Sánchez-Alcoholado, Cabrera-Mulero, Lopez-
Dominguez, Carmona-Saez, Garcia-Fuentes, Moreno-Indias and Tinahones. This 
is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) and the copyright owner(s) are credited 
and that the original publication in this journal is cited, in accordance with accepted 
academic practice. No use, distribution or reproduction is permitted which does not 
comply with these terms.

90

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.3389/fendo.2014.00018
https://doi.org/10.1186/s13148-015-0144-7
https://doi.org/10.1186/s13148-015-0144-7
https://doi.org/10.1093/jb/mvx080
https://doi.org/10.1186/s13059-018-1389-1
https://doi.org/10.3389/fnut.2019.00024
https://doi.org/10.1038/nature25973
https://doi.org/10.1210/jc.2008-1001
https://doi.org/10.3390/ijms19103106
https://doi.org/10.21767/2472-1158.100048
https://doi.org/10.1016/j.cbpa.2015.10.030
https://doi.org/10.1093/bioinformatics/bts680
https://doi.org/10.1038/nature05414
https://doi.org/10.1210/jc.2015-4251
https://doi.org/10.1186/s13148-015-0101-5
https://doi.org/10.1002/oby.20466
https://doi.org/10.1128/mBio.00889-14
https://doi.org/10.1016/B978-0-12-805388-1.00032-8
https://doi.org/10.1016/B978-0-12-805388-1.00032-8
https://doi.org/10.1016/j.molmed.2013.08.005
https://doi.org/10.1371/journal.pone.0201073
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 August 2019 | Volume 10 | Article 724

ORIGINAL RESEARCH

doi: 10.3389/fgene.2019.00724
published: 16 August 2019

Frontiers in Genetics | www.frontiersin.org

Edited by: 
Yun Liu,  

Fudan University, China

Reviewed by: 
Erietta Stelekati,  

University of Pennsylvania,  
United States 

Chang Sun,  
Shaanxi Normal University, China

*Correspondence: 
Zhihuang Hu  

zhihuanghu@hotmail.com 
Xiyu Yuan 

15816818820@qq.com 
Jianghui Xiong 

xiongjh77@163.com

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted to 

Epigenomics and Epigenetics,  
a section of the journal  

Frontiers in Genetics

Received: 05 March 2019
Accepted: 10 July 2019

Published: 16 August 2019

Citation: 
Xue G, Cui Z-J, Zhou X-H, Zhu Y-X, 

Chen Y, Liang F-J, Tang D-N,  
Huang B-Y, Zhang H-Y, Hu Z-H, 

Yuan X-Y and Xiong J (2019) 
DNA Methylation Biomarkers 

Predict Objective Responses to  
PD-1/PD-L1 Inhibition Blockade.  

Front. Genet. 10:724.  
doi: 10.3389/fgene.2019.00724

DNA Methylation Biomarkers Predict 
Objective Responses to PD-1/PD-L1 
Inhibition Blockade
Gang Xue 1,2†, Ze-Jia Cui 2,3†, Xiong-Hui Zhou 2, Yue-Xing Zhu 1, Ying Chen 1, Feng-Ji Liang 3, 
Da-Nian Tang 4, Bing-Yang Huang 5, Hong-Yu Zhang 2, Zhi-Huang Hu 6*, Xi-Yu Yuan 7*  

and Jianghui Xiong 1,3*

1 SPACEnter Space Science and Technology Institute, Shenzhen, China, 2 College of Informatics, Huazhong Agricultural 
University, Wuhan, China, 3 State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut 
Research and Training Center, Beijing, China, 4 Gastro-Intestinal Surgery Department, Beijing Hospital, Beijing, China, 
5 Department of Cardiothoracic Surgery, Strategic Support Force Medical Center of PLA. No. 9, Beijing, China, 6 Department 
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Immune checkpoint inhibitor (ICI) treatment could bring long-lasting clinical benefits to 
patients with metastatic cancer. However, only a small proportion of patients respond 
to PD-1/PD-L1 blockade, so predictive biomarkers are needed. Here, based on DNA 
methylation profiles and the objective response rates (ORRs) of PD-1/PD-L1 inhibition 
therapy, we identified 269 CpG sites and developed an initial CpG-based model by 
Lasso to predict ORRs. Notably, as measured by the area under the receiver operating 
characteristic curve (AUC), our model can produce better performance (AUC = 0.92) than 
both a model based on tumor mutational burden (TMB) (AUC = 0.77) and a previously 
reported TMB model (AUC = 0.71). In addition, most CpGs also have additional synergies 
with TMB, which can achieve a higher prediction accuracy when joined with TMB. 
Furthermore, we identified CpGs that are associated with TMB at the individual level. 
DNA methylation modules defined by protein networks, Kyoto Encylopedia of Genes and 
Genomes (KEGG) pathways, and ligand-receptor gene pairs are also associated with 
ORRs. This method suggested novel immuno-oncology targets that might be beneficial 
when combined with PD-1/PD-L1 blockade. Thus, DNA methylation studies might hold 
great potential for individualized PD1/PD-L1 blockade or combinatory therapy.

Keywords: PD-1/PD-L1 inhibition therapy, objective response rate, DNA methylation, biomarkers, Lasso model

INTRODUCTION

Cancer immunotherapies have increasingly become a promising treatment strategy in the past few 
years. These therapies are designed to help the immune system identify and destroy cancer cells by 
targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and its ligand (PD-
L1) (Mahoney et al., 2015). PD-1 is expressed on the surface of activated T lymphocyte cells, and its 
major role is to inhibit T cell activation by binding to the PD-L1 ligand on cancer cells, leading to 
immune suppression (Medina and Adams, 2016). A number of immune checkpoint-modulating drugs 
that target PD-1/PD-L1 have shown remarkable clinical benefits in multiple cancers. For instance, 
nivolumab and pembrolizumab, the first two monoclonal antibodies approved by the US Food and 
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Drug Administration (FDA) (Prasad and Kaestner, 2017), have 
already been registered for treatment of malignant melanoma 
(MM), advanced non-small-cell lung cancer (NSCLC), urothelial 
cancer, renal cell cancer, and head and neck squamous cell cancer 
(HNSCC) (Motzer et al., 2015; Robert et al., 2015; Reck et al., 2016; 
Bellmunt et al., 2017; Forster and Devlin, 2018). These drugs act 
by influencing the interaction between PD-1 and PD-L1, whose 
unobstructed interaction will downregulate T cells, causing cancer 
cells to evade immune surveillance (Prasad and Kaestner, 2017).

Compared with conventional therapy, inhibitors of PD-1 or 
PD-L1 can induce long-lasting responses in patients with metastatic 
cancer, but only one fourth to one third of patients have objective 
responses to immune checkpoint blockade therapy (Schachter et al., 
2016). Additionally, these treatments are costly and might have some 
associated toxicities (Schmidt, 2017). Therefore, it is important to 
accurately identify the applicable population. Currently, emerging 
primary biomarkers used in response to immunotherapy are PD-1/
PD-L1 protein expression, microsatellite instability (MSI), and 
tumor mutational burden (TMB) (Topalian et al., 2016; Chalmers 
et al., 2017; Chang et al., 2017). However, obvious limitations exist 
among these biomarkers due to low efficacy, antibody discrepancy, 
sampling bias, and strict requirements for cancer tissue. Achieving 
accurate forecasts and guiding clinical treatment remain critical 
challenges (Johnson et al., 2016).

The abnormal epigenomic landscape is one of the hallmarks of 
tumor initiation and progression (Esteller, 2008; Tsai and Baylin, 
2011). In particular, aberrant patterns of DNA methylation 
can alter chromatin structure and gene transcription without 
altering the DNA sequence (Bird, 2007); these patterns have 
been extensively studied. In mammals, DNA methylation is 
almost exclusively found in CpG dinucleotides (CpGs). Recent 
work has revealed that DNA methylation affects tumorigenesis 
by regulating the tumor microenvironment (Xiao et al., 2016; 
Zhang et al., 2017). There are a multitude of DNA methylation 
biomarkers for the prognosis, diagnosis, and response to 
treatment in several types of cancer (Rodriguez-Paredes and 
Esteller, 2011). Based on the above evidence, we hypothesize 
that DNA methylation signatures could act as reliable immune 
checkpoint blockade biomarkers.

Ideally, abundant tumor molecule profiles along with patient 
objective response rates of immune inhibitors can be used to train 
reliable multiple biomarkers. However, in reality, only a small 
number of samples have both types of data. Alternatively, the tumor 
profiles are probably not the same ones whose response rates are 
assessed. For example, the research of Yarchoan et al. (2017) assessed 
the relationship between the tumor mutational burden and the 
objective response rate of PD-1/PD-L1 inhibition by pooling the 
response data from the published studies and the tumor mutational 
burden for each tumor type, which was provided by Foundation 
Medicine (Chalmers et al., 2017), and their analysis was that the 
sequenced tumor specimens may be different from those whose 
clinical responses were evaluated (Yarchoan et al., 2017). Similar 
to their method, we collected a large amount of DNA methylation 
profiles from 18 cancer types in The Cancer Genome Atlas (TCGA, 
https://tcga-data.ncbi.nih.gov/tcga/) and corresponding objective 
response rates from the largest published studies. We calculated the 
correlations between CpG probes and response rates in the 18 cancer 

types and then used CpG probes that were significantly correlated 
with response rates to construct a model for predicting the objective 
response rate by the Lasso regression method. We proposed that, 
compared with the model of predicting the response rate with TMB, 
the method with the CpG signatures was more accurate. Next, we 
utilized multimethod detection to verify the reliability of the DNA 
methylation signatures as surrogate biomarkers to predict the 
objective response rate of PD-1/PD-L1 inhibition.

MATERIALS AND METHODS

Data Availability
The objective response rate (ORR) data for PD-1/PD-L1 
inhibitors were obtained from the study of Yarchoan et al. (2017), 
and the data sets of the samples of each cancer were retrieved 
from TCGA (https://tcga-data.ncbi.nih.gov/tcga/). Each data 
set contained DNA methylation profiles obtained by Illumina 
450K methylation assays. According to the research of Yarchoan 
et al. (2017) and the cancer types of TCGA, 18 cancer types have 
validated both ORRs and 450K methylation array data. In this 
study, these 18 cancer data sets were analyzed (Table 1).

TABLE 1 | Objective response rates (ORRs) collection of 18 cancer types.

Tumor types Abbreviation ORR (literature)

Adrenocortical carcinoma ACC 0.06 (Le Tourneau et al., 2017)
Bladder urothelial carcinoma BLCA 0.182 (Rosenberg et al., 2016; 

Apolo et al., 2017; Bellmunt 
et al., 2017; Powles et al., 2017; 
Sharma et al., 2017)

Breast invasive carcinoma BRCA 0.052 (Dirix et al., 2018)
Cervical squamous cell 
carcinoma and
endocervical 
adenocarcinoma

CESC 0.208 (Hollebecque et al., 2017)

Esophageal carcinoma ESCA 0.112 (Chung et al., 2016; Fuchs 
et al., 2017)

Glioblastoma multiforme GBM 0.08 (Reardon et al., 2017a; 
Reardon et al., 2017b)

Head and neck squamous 
cell carcinoma 

HNSC 0.16 (Ferris et al., 2016; Bauml 
et al., 2017)

Kidney renal clear cell 
carcinoma

KIRC 0.25 (Motzer et al., 2015)

Liver hepatocellular 
carcinoma

LIHC 0.2 (El-Khoueiry et al., 2017; 
Wainberg et al., 2017)

Lung adenocarcinoma LUAD 0.19 (Borghaei et al., 2015)
Lung squamous cell 
carcinoma

LUSC 0.2 (Brahmer et al., 2015)

Mesothelioma MESO 0.167 (Scherpereel et al., 2017)
Ovarian serous 
cystadenocarcinoma

OV 0.097 (Brahmer et al., 2012; 
Hamanishi et al., 2015; Disis 
et al., 2016)

Pancreatic adenocarcinoma PAAD 0 (Brahmer et al., 2012)
Sarcoma SARC 0.11 (Dangelo et al., 2017; Tawbi 

et al., 2017)
Skin cutaneous melanoma SKCM 0.387 (Larkin et al., 2015; Robert 

et al., 2015)
Uterine corpus endometrial 
carcinoma

UCEC 0.13 (Fleming et al., 2017)

Uveal melanoma UVM 0.036 (Algazi et al., 2016)
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For independent verification to assess the robustness of our 
model, we collected the 450K methylation array data of NSCLC 
from the NCBI Gene Expression Omnibus (GEO) (http://www.
ncbi.nlm.nih.gov/geo/) under accession number GSE39279, 
which includes 444 patient samples.

To calculate the TMB of the 18 cancer types, 18 Mutation 
Annotation Format (MAF) files processed by MuSE (Fan et al., 
2016) were downloaded from the GDC data portal (https://
portal.gdc.cancer.gov/repository). The MAF files contained the 
somatic mutations of TCGA cohorts.

Three hundred twenty-four annotated KEGG pathways 
comprising 7,448 genes (Entrez Gene IDs) were retrieved from Kyoto 
Encylopedia of Genes and Genomes (KEGG) pathway database 
(https://www.genome.jp/kegg-bin/get_htext?hsa00001+3101). 
These data were used for pathway analysis.

A human protein-protein interaction (PPI) network was 
derived from the STRING database (STRING, http://www.
string-db.org). The default score threshold of interactions is 
typically 400 (Franceschini et al., 2013). Therefore, interactions 
with scores lower than 400 were discarded. These PPIs were used 
to construct subnetworks for a given gene.

Identification of CpG Probes Associated 
With ORR
We used the β values reported by the 450K Illumina platform 
for each probe as the methylation level measurement for 
the targeted CpG site. The range of the β value is from 0 
(no methylation) to 1 (100% methylation). A higher β value 
indicates a higher DNA methylation level. Each CpG value in 
a cancer type was represented by the mean β values in the 
tumor samples; then, the Spearman’s rank correlation test 
was used to quantify the association strength between the 
methylation level of the CpGs and the ORRs of the 18 cancer 
types. Since Bonferroni adjustment for multiple comparisons 
of the ~480,000 CpGs is too conservative, especially with the 
small sample size (18 cancer types) in our research, we used 
a less stringent threshold of P value ≤0.001 and an absolute 
value [Spearman’s rank correlation coefficient (Spearman’s 
rho)] = 0.7 to obtain reliable ORR-associated CpG signatures. 
The annotation of each CpG, such as CpG’s position in the 
genome and its corresponding gene, was derived from the 
GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GPL13534).

Defining Methylation Levels of Functional 
Modules Based on Entropy
At a wide range of genomic positions, the CpG signals do not 
conform to a normal distribution but are distributed in a nearly 
bimodal distribution. Thus, too much information would be lost 
when simply averaging the β values.

In information theory, concept entropy is the average rate 
at which information is produced by a stochastic source of 
data. When the data source has a lower probability value (i.e., 
when a low-probability event occurs), the event carries more 
“information” (“surprisal”) than when the source data have a 
higher probability value. The amount of information conveyed by 

each event defined in this way becomes a random variable whose 
expected value represents the information entropy. Generally, 
entropy refers to disorder or uncertainty. Here, we capture the 
methylation levels of various functional modules based on 
Shannon’s entropy, which is described as follows:

 H p lnpi i
i 1

n

= −
=

∑( )  

In this equation, pi is the β value of each CpG probe and n 
is the number of CpG probes within the functional modules 
(protein network, KEGG pathway, and ligand-receptor gene 
pairs). Likewise, we used the Spearman correlation test to 
quantify the strength of associations between each functional 
unit and the ORRs of 18 cancer types.

Construction of the CpG-Based Lasso 
Regression Model
To predict the objection response rate of PD-1/PD-L1 inhibition 
with reliable CpG signatures for clinical applications, additional 
selection and model construction are necessary. The Lasso 
algorithm is used to perform the variable selection procedure 
by estimating linear regression coefficients by L1-constrained 
least squares. It minimizes the sum of squared residuals, which is 
affected by the sum of the absolute values of the coefficients being 
less than the constant. Because of this constraint, Lasso regression 
tends to produce some coefficients that are precisely 0. Finally, a 
robust and interpretable model can be given. The original linear 
regression model can be written as follows:

 y x x xp p= + + + + +αα ββ ββ ββ ∈∈1 1 2 2   

The Lasso estimates for the constant term (α) and the 
regression coefficient (β) are as follows:

 αα ββ αα ββ ββ
====

 , ( ) , | |( ) = − − ∑∑argmin y x s ti i j ij
2

j 1

p

i 1

n

j. . ≤≤∑ λλ
==j 1

p

 

Here, y represents the ORR values of 18 cancers, x represents 
the β values of CpG probes that are significantly associated with 
ORR, and λ is a nonnegative adjustment parameter that controls 
the amount of shrinkage. The determination of λ can be estimated 
using the cross-validated (CV) method proposed by Efron and 
Tibshirani in 1997 (Efron and Tibshirani, 1997). In this study, 
the Lasso function in MATLAB was used to fit the equation, and 
the CV was set to 10.

Tumor Mutational Burden (TMB) 
Calculations
TMB is a measure of the number of somatic protein-coding 
base substitutions and insertion/deletion mutations occurring 
in a tumor specimen. To calculate the TMB, the total number 
of mutations counted is divided by the size of the genome 
examined. Here, we used 38Mb as the estimate of the exome 
size. The somatic mutations were counted from the MAF files of 

93

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://www.genome.jp/kegg-bin/get_htext?hsa00001+3101
http://www.string-db.org
http://www.string-db.org
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13534
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13534


DNA methylation Biomarkers of PD-1/PD-L1 BlockadeXue et al.

4 August 2019 | Volume 10 | Article 724Frontiers in Genetics | www.frontiersin.org

TCGA, and the tumor mutational burden for each patient was 
estimated as follows:

 TMB n=
38  

In this equation, n is the total number of missense mutations 
of a patient.

The median TMB for each cancer type can then be estimated 
as follows:

 Median TMB N==
38  

In this equation, N is the median number of coding somatic 
missense mutations in a cancer type.

Next, in line with Yarchoan et al.’s work, a new linear 
correlation formula that evaluates the relationship between the 
TMB and ORR was constructed as follows:

 ORR = 0.0768* In(X)+0.1313  

Here, X is the median TMB of each cancer type.

Synergy Index Calculations
A synergy index (S) was calculated to determine the presence 
of the interactions of the β values of each ORR-associated CpG 
probe and TMB. The synergy index is equal to 1 (S = 1) in the 
absence of a synergistic interaction; in such a case, the joint 
effect of two predictive variables is equal to the sum of their 
independent effects (i.e., it is additive). A synergy index greater 
than 1 (S > 1) suggests the presence of a synergistic interaction; 
the observed joint effect is greater than that expected from the 
sum of the independent effects of the component variables (i.e., 
it is synergistic). Conversely, a synergy index less than 1 (S < 1) 
suggests an “antagonistic” effect or a negative interaction. Here, 
the synergy index was calculated via a logistic regression model.

RESULTS

Identifying CpGs Associated With the 
Objective Response Rate (ORR) of PD-1/
PD-L1 Inhibition Therapy
Based on Yarchoan et al.’s extensive literature searches, we 
obtained 18 cancer types for which validated ORRs and the 450K 
methylation array data are both available. From Table 1, we can 
observe that most ORRs of cancer types are less than 0.2.

We first performed Spearman’s rank correlation test to 
identify CpGs whose methylation level was associated with the 
ORRs of anti-PD-1/anti-PD-L1 therapy. We collected current 
global immuno-oncology targets as the gold standard to assess 
our result by the Kolmogorov–Smirnov (KS) test (Tang et al., 
2018). The targets that were more enriched in high Spearman 
rank correlation coefficient (Spearman’s rho) ORR-associated 
genes exhibited a smaller P value (derived from the KS test), 
which indicated that our result was reliable (P value = 0.0249). 
At the threshold of an absolute value (Spearman’s rho) ≥0.7 and 

a P value ≤0.001, we identified 269 genome-wide significant 
CpGs corresponding to 191 genes (Table 2 and Supplementary 
Table S1). Then, we investigated the number of CpGs enriched 
in these 191 genes. The more enriched, the more likely they can 
be considered marker genes of anti-PD-1/anti-PD-L1 therapy. 
We annotated the functions of the top enriched genes from the 
UniProt database (https://www.UniProt.org/) and the literature 
(Table 3). For example, HLA-E [human leukocyte antigen (HLA) 
class I histocompatibility antigen, alpha chain E] is the most 
enriched gene in our results, and some studies have indicated that 
HLA class I antigen expression can be utilized in select patients 
who may benefit from anti-PD-1/PD-L1-based immunotherapy 
(Sabbatino et al., 2016; Chowell et al., 2018). Therefore, we 
have reasons to infer that other enriched genes could also be 
considered potential markers for anti-PD-1/PD-L1 therapy.

We next examined the functional enrichment of these 191 
genes using KEGG pathway analysis via cluster Profiler of R (Yu 
et  al., 2012). Notably, we found that most of these genes were 
related to immunological KEGG pathways, such as antigen 
processing and presentation, natural killer (NK) cell-mediated 
cytotoxicity, and autoimmune thyroid disease (Supplementary 
Table S2). A recent study showed that the capacity of antigen 
presentation influences responses to checkpoint immunotherapy 
(Kvistborg and Yewdell, 2018), and tumor immunity is mediated 
mainly by NK cells (Ferrari de Andrade et al., 2018). Furthermore, 
we detected the signature genes that belong to multiple relevant 
immunological pathways. From Figure 1, we can clearly observe 
that HLA class I antigens are related to all these pathways, which 
highlights their importance in immunotherapy.

Construction of the CpG-Based ORR 
Prediction Model by Lasso
To predict the objection response rate of PD-1/PD-L1 inhibition 
with reliable signatures for clinical applications, we used 269 
CpGs that were obtained in the above section as initial variables to 
construct a model to predict ORR values by the Lasso algorithm.

First, we considered whether our CpG-based Lasso regression 
model method was generalized and practicable for predicting the 
ORRs of 18 cancer types. Therefore, we adopted a “leave-one-out 
cross validation” method to assess the feasibility of our model. 
Leave-one-out cross validation has been shown to give an almost 
unbiased estimator of the generalization properties of statistical 
models. Briefly, 17 cancer type-related data sets were used as 
training data sets for constructing the model, and the remaining 
data set was used as an independent data set. Then, we repeated 
this process 18 times to obtain the predicted ORRs of 18 cancer 
types. The Spearman’s rank correlation coefficient between the 
predicted and real ORRs was 0.75 (P value = 0.00029). This result 
indicated that our CpG-based Lasso regression model can be 
used to predict the ORRs of the 18 cancer types.

After the Lasso method was confirmed as being generalized and 
practicable, we used 269 CpGs and the ORR values of 18 cancer 
types to construct a prediction model by the Lasso algorithm. We 
chose the regression result when the mean square error (MSE) 
was minimum (MSE = 0.0042); there were eight CpG probe 
variables left: cg03749154, cg16051114 (DHCR24), cg04144714 
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(LYST, MIR1537), cg20395773 (ZBTB38), cg17484237 (HAVCR2), 
cg15006881 (GDF6), cg24644201 (CREB3L1), and cg13038847. 
The CpG-based prediction model is as follows:

y 0.793 0.526 xORR cg cg== −− −− ×××× x 03749154 160511140 0269. −−−−

×× ++ ×× −− ××

0 711

0 263 0 0008604144714 20395773

.

. .x x xcg cg ccg17484237

15006881 246442010 012 1 058−− ×× ++ ××. .x xcg cg −−−−

××

0 0603

13038847

.

xcg

To assess the performance of the CpG-based prediction model 
for the 18 cancer types, we calculated the difference between 
predicted ORR values and true ones. As shown in Figure 2, 
except for PAAD, SKCM, and KIRC, the difference for other 
cancer types was very small. Moreover, to assess the robustness 
of our prediction model, we evaluated its performance in an 
independent sample of NSCLC from the GEO database. The 
ORR value of this independent data set was predicted to be 
0.245, which was close to the real value of 0.2. This result further 
demonstrated that our model was accurate and robust.

The CpG-Based Model Performs Better 
than the TMB-Based Model in ORR 
Prediction
In a study by Yarchoan et al., researchers evaluated the relationship 
between the TMB and the ORR. A linear correlation formula was 
constructed that can be used to make hypotheses with respect to 
the ORR rate in tumor types for which anti-PD-1/PD-L1 therapy 
has not been explored. Here, we compared the performance of our 
CpG-based model and our TMB-based model with respect to 18 
cancer types.

First, we adopted the root-mean-square error (RMSE), the 
mean absolute error (MAE), and Spearman correlations to 
compare the performance of the above two prediction models. 
As shown in Table 4, compared with the TMB model, the CpG-
based model predicted ORR more accurately. Moreover, ROC 
curves were plotted to assess the sensitivities and specificities of 
these two models. As shown in Figure 3A, for the 18 cancer types, 
our model performs better than the TMB model in both sensitivity 
and specificity when 0.2 is used as a cutoff. The average area under 
the ROC curve (AUC) of the CpG-based model was 0.92, which 
was greater than the AUC of the TMB model, which was 0.71. 
For each cancer type, the performance evaluation criteria for the 
two models are compared to the actual ORR value of the cancer. 
The smaller the difference, the better the model effect. Except for 
CESC, HNSC, LUAD, and UVM, CpG-based model performs 
better than the TMB-based model in 14 cancer types. For the other 
four types of cancer, although CpG-based model is less powerful, 
our prediction is very close to the actual ORRs (Supplementary 
Table S3).

To maintain data consistency between methylation and 
TMB, we recalculated the TMB of 18 cancer types from 
TCGA and constructed another linear correlation formula 
according to the results of Yarchoan et al.’s study. Then, we 
compared the performance of these two models as above 
(Table 4). As shown in Figure 3B, the AUC of our model was 
0.92, which was greater than the AUC of the TMB model, 
which was 0.77. For each cancer type, except for ACC, BRCA, 
and UVM, CpG-based model performs better than the TMB 
(TCGA)-based model in 15 cancer types (Supplementary 
Table S3). This  result further demonstrated that our CpG-
based model was more accurate than the TMB-based model 
in ORR prediction.

TABLE 2 | List of the top 10 ORR-associated CpGs.

CpG Gene symbol Chromosome Genomic coordinate Spearman’s rho P value

cg02358190 MAST4 5 66187002 −0.92514 3.91E−08
cg04033580 C22orf45; UPB1 22 24891666 −0.8539 6.53E−06
cg13459303 TMEM176B; TMEM176A 7 1.5E+08 −0.82912 2.11E−05
cg24644201 CREB3L1 11 46299066 0.822922 2.74E−05
cg25626312 CREB3L1 11 46299204 0.81776 3.39E−05
cg03885527 PLIN2 9 19125654 −0.81363 4.00E−05
cg05690644 GDF6 8 97158015 −0.81053 4.52E−05
cg23393637 14 95513095 −0.81053 4.52E−05
cg26981651 RNF5; RNF5P1 6 32147670 −0.81053 4.52E−05

These are the top 10 ORR-associated CpGs, and the 269 ORR-associated CpGs corresponding to 191 genes are provided in Supplementary Table S1.

TABLE 3 | Top enriched genes and function.

Gene symbol CpGs count Function

HLA-E 6 HLA-E has a very specialized role in cell 
recognition
by natural killer cells (NK cells)

PLEC 4 Interlinks intermediate filaments with 
microtubules and
microfilaments and anchors intermediate 
filaments to
desmosomes or hemidesmosomes

HIVEP3 4 Plays a role of transcription factor;
binds to recognition signal sequences for 
somatic recombination of immunoglobulin 
and T-cell receptor gene segments

FOXD2- AS1 4 lncRNA FOXD2-AS1 promotes NSCLC 
progression through
Wnt/β-catenin signaling (Rong et al., 2017)

FOXD2 4 Probable transcription factor involved in 
embryogenesis
and somatogenesis

CREB3L1 4 Transcription factor involved in unfolded 
protein response (UPR)

NSCLC, non-small-cell lung cancer.
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Combining CpGs and TMB in ORR 
Prediction
TMB and DNA methylation describe different aspects of 
immunotherapy work against cancer. TMB reflects the mutation 
signatures in cancer, while DNA methylation affects the tumor 
microenvironment (TME), which plays an important role in 

supporting cancer progression and tumor immunity (Zhang 
et al., 2017; Sanmamed and Chen, 2018). Therefore, after 
confirming that the methylation level of a few CpGs performs 
better at ORR prediction than TMB, we tried to combine these 
two types of information by computing the synergy index (S) 
between each ORR-related CpG and TMB.

A synergistic index greater than 1 (S > 1) suggests the 
presence of a synergistic interaction between TMB and ORR-
associated CpGs, so combining TMB information could 
enhance the predictive ability of these CpGs. Furthermore, we 
investigated the top 10 CpGs that, in conjunction with TMB, 
have a synergistic effect (Table 5). Notably, TNFSF10 and 
HIVEP3, which were identified as being strongly correlated 
withPD-1/PD-L1 inhibition therapy in the previous section 
[rho (TNFSF10) = −0.75; rho (HIVEP3) = 0.75], also displayed 
strong synergy with TMB. This result indicated that these CpGs 
could also be applied jointly with TMB to achieve a higher 
prediction performance.

FIGURE 1 | Enriched immunological pathway and genes. The words in wine represent the Kyoto Encylopedia of Genes and Genomes (KEGG) pathway, and the 
purple circles represent objective response rate (ORR)-associated genes enriched in the KEGG pathway. The HLA class I antigens (HLA-B, HLA-C, HLA-E, HLA-G, 
and HLA-F) are related to all these pathways.

FIGURE 2 | Differences between the predicted ORRs and true ORRs of 18 
cancer types. Except for PAAD, SKCM, and KIRC, most of the ORRs of the 
cancer types could be predicted fairly robustly.

TABLE 4 | Comparison of model performance.

Assessment index CpG-based
model

TMB-based 
model

TMB 
(TCGA)-based

model 

MAE 0.03 0.05 0.05
RMSE 0.04 0.07 0.06
Spearman correlation 0.93 0.58 0.69

TMB, tumor mutational burden; TCGA, The Cancer Genome Atlas; mean absolute 
error; RMSE, root-mean-square error.
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The Methylation Level of CpGs 
Is Associated With TMB at the 
Individual Level
The above work involved mainly identifying CpG signatures 
of ORRs; these signatures are meaningful and could be used 
to construct a model to predict ORRs at the cancer type level. 
However, for clinical applications, we are more concerned about 
whether these signatures could also work for individuals. Since 
TMB has become a relatively mature biomarker of sensitivity to 
immune check points in individuals, we identified these 269 CpG 
signatures whose methylation levels were associated with TMB 
at the individual level. Most of these CpGs were significantly 
associated with TMB with an FDR = 0.0001 (Supplementary 
Table S4). Moreover, we investigated the top associated CpGs 
and found that specimens with relatively high methylation 
levels of these CpGs are more likely to have relatively high TMB 
(Figure 4). These CpG signatures could also become biomarkers 
of PD-1/PD-L1 inhibition therapy for individual patients.

Identification of DNA Methylation 
Modules Related to ORRs
A challenge of epigenetic studies is that DNA methylation 
changes can occur at a wide range of genomic positions, and their 
relationship between each single site and phenotype is not direct. 
A statistic to summarize the effects of environmental stimuli 
on gene regulation and the use of this feature to predict future 
medical events are highly desired. Here, we proposed a method 
to determine DNA methylation levels based on the entropy 
concept at different system levels, including protein networks, 
KEGG pathways, and ligand-receptor gene pairs, to represent 
coregulation units between two interactive cell types.

At the protein network level, we found 787 subnetworks 
that were significantly associated with ORRs at a P value <0.05 
threshold (Supplementary Table S5). Then, we focused on the 
subnetwork that contained PD-1 (PDCD1) and PD-L1 (CD274) 
(Figure 5A). This subnetwork is mainly involved in two pathways: 
antigen processing and presentation (Figure 5B) and cell adhesion 
molecules (Figure 5C). β2-Microglobulin (B2M) is a component 
of the HLA class I complex and functions in immunosurveillance. 
Carolina et al. reported that mutations in B2M could impair the 
correct formation of the HLA-I complex, which subsequently 
affects the response to anti-PD-1/anti-PD-L1 therapies (Pereira 
et al., 2017). Here, based on entropy to quantify the level of DNA 
methylation in a subnetwork, we obtained a similar observation. 
Except for PD-1/PD-L1, we should also pay more attention to the 
other subnetwork genes that may inspire new immunotherapies.

At the KEGG pathway level, 37 KEGG pathways were 
significantly associated with ORRs at a P value <0.05 threshold. 
Among them, several KEGG pathways were related to immune 
processes (Supplementary Table S6), such as the B cell receptor 
signaling pathway, the T cell receptor signaling pathway, natural killer 

TABLE 5 | List of the top 10 synergy sites.

CpG Gene symbol Synergy index

cg09248054 AGRN 37.17457358
cg22572614 TNFSF10 25.020374
cg23485436 KDM4B 24.3314227
cg25607920 HIVEP3 11.65557467
cg23902361 VAMP5 11.25511323
cg14116139 5.878589192
cg08405073 CCDC159 5.626048429
cg08405073 TMEM205 5.626048429
cg14615152 CSMD2 5.612506908
cg25577670 SVIL 5.466948003

FIGURE 3 | (A) Performance comparison of the CpG-based model and tumor mutational burden (TMB)-based model. The area under the receiver operating 
characteristic curve (AUC) scores of the CpG-based model and TMB-based model were 0.92 and 0.71, respectively, which indicated that our model had better 
performance. (B) Performance comparison of the CpG-based model and TMB-based model using The Cancer Genome Atlas (TCGA) samples. The AUC scores of 
the CpG-based model and TMB (TCGA)-based model were 0.92 and 0.77, respectively, which indicated that our model had better performance.
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FIGURE 5 | ORR-associated subnetwork map of KEGG pathways. (A) PDCD1 and its interacting genes in protein-protein interaction (PPI). (B) The pathway of 
antigen processing and presentation. (C) The pathway of cell adhesion molecules (CAMs); the golden yellow color represents the genes in the subnetwork of PDCD1.

FIGURE 4 | Plot of mutation burden in specimens with hypermethylation and specimens with hypermethylation of top TMB-associated CpGs (n (specimens) = 5,104).
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cell-mediated cytotoxicity, and autoimmune thyroid disease. These 
results were consistent with the previously enriched pathway by 269 
CpGs. Moreover, although other KEGG pathways are not directly 
related to immunotherapy, they are also meaningful. For instance, 
riboflavin metabolism is strongly significantly associated with 
ORRs; previous research has shown that metabolites of vitamin B 
represent a class of antigens that are represented by MHC class I-like 
molecules (MR1s) for mucosal-associated invariant T (MAIT) cell 
immunosurveillance (Kjernielsen et al., 2012). Therefore, our results 
may provide new insights into PD-1/PD-L1 inhibition therapy.

Unlike the PPI network, which depicts the intracellular network, 
ligand-receptor mediated cell-to-cell communication across multiple 
cell types and tissues could inspire new immunotherapy techniques 
(Ramilowski et al., 2015). Ligands, receptors, and their interactions 
were retrieved from the CellPhoneDB (https://www.cellphonedb.
org/) database. Including PD-1 and PDCD1, 103 ligand-receptor 
pairs were significantly associated with ORRs at a P value ≤0.05 
threshold (Supplementary Table S7). The ligand-receptors of CD44 
and HGF was the most significantly associated with ORR. Thus, we 
observed the cell-to-cell networks of CD44-HGF (Figure 6). We 
noted that CD44-HGF was expressed in monocytes at notable levels 
[≥10 Transcripts Per Kilobase Million (TPM)]. Although there is 

still no evidence that CD44-HGF affects the response to anti-PD-1/
anti-PD-L1 therapies, a recent study identified types of immune cells 
known as classical monocytes (CD14+CD16–HLA-DRhi) in the 
peripheral blood as potential biomarkers for responses to anti-PD-1 
immune checkpoint therapy in metastatic melanoma (Goswami 
et al., 2018).

From the above analyses, based on the entropy concept, we 
identified various functional modules associated with ORRs 
from the protein network, KEGG pathways, and ligand-receptor 
gene pairs. Some of these modules have been reported by other 
research groups, which confirmed the reliability of the DNA 
methylation signatures as surrogate biomarkers to predict the 
objective response rate of PD-1/PD-L1 inhibition.

DISCUSSION

Compared with conventional therapies, immune check point 
inhibitor treatments represented by PD-1/PD-L1 have shown 
remarkable clinical benefits (Yarchoan et al., 2017), but predictive 
biomarkers are needed. In this study, using DNA methylation 
profiles and the objective response rates (ORR) of 18 cancer 
types, we successfully identified 269 CpG signatures related to 

FIGURE 6 | CD44-HGF signaling network interface. In this network, both CD44 and hepatocyte growth factor (HGF) were expressed in monocytes (≥10 TPM). The 
interface is available at http://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/.
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ORRs and developed an initial CpG-based objective response 
rate (ORR) prediction model by Lasso. We showed that these 269 
CpG signatures (corresponding to 191 genes) can be considered 
potential immuno-oncology targets. Furthermore, the CpG-
based ORR prediction model performed better than the TMB-
based model. In the independent test of NSCLC data, our model 
also made accurate predictions. Moreover, we also identified 
CpGs that are associated with TMB at the individual level.

To further investigate the relationship between methylation 
and phenotype (i.e., ORR), we introduced a new method based 
on the entropy concept and identified various functional modules 
associated with ORR, from protein networks to KEGG pathways 
and ligand-receptor gene pairs, which may provide new insights 
into PD-1/PD-L1 inhibition therapy.

One limitation of our analysis is that the sequenced tumor 
samples were probably not the same for those whose ORRs were 
assessed, which would introduce deviation in our result. Matched 
clinical and genetic (i.e., DNA methylation profiles) data would 
help us develop a more robust and reliable model. The independent 
verification by bisulfite pyrosequencing of several most significant 
CpGs/genes can better demonstrate the accuracy of our conclusion. 
However, in the present study, we mainly focused on investigating 
the correlation between CpG methylation in genome and response 
to PD-1 or PD-L1 therapy and predicting ORR of cancer based 
on methylation level of several CpG sites in the patients. Based on 
statistical analysis and the evidence from the literature, it should be 
sufficient to draw a conclusion that such DNA methylation studies 
hold great potential for individualized PD1/PD-L1 blockade or 
combinatory therapy. Furthermore, CpG sites could also be applied 
jointly with other types of biomarkers, for instance, TMB, to achieve 
increased prediction performance to help oncologists select patients 
who are more likely to benefit from PD-1/PD-L1 inhibition therapy.
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DNA methylation is a widely investigated epigenetic mark that plays a vital role in 
tumorigenesis. Advancements in high-throughput assays, such as the Infinium 450K 
platform, provide genome-scale DNA methylation landscapes in single-CpG locus 
resolution, and the identification of differentially methylated loci has become an insightful 
approach to deepen our understanding of cancers. However, the situation with extremely 
unbalanced numbers of samples and loci (approximately 1:1,000) makes it rather difficult 
to explore differential methylation between the sick and the normal. In this article, a hybrid 
approach based on ensemble feature selection for identifying differentially methylated 
loci (HyDML) was proposed by incorporating instance perturbation and multiple function 
models. Experiments on data from The Cancer Genome Atlas showed that HyDML 
not only achieved effective DML identification, but also outperformed the single-feature 
selection approach in terms of classification performance and the robustness of feature 
selection. The intensive analysis of the DML indicated that different types of cancers have 
mutual patterns, and the stable DML sharing in pan-cancers is of the great potential to 
be biomarkers, which may strengthen the confidence of domain experts to implement 
biological validations.

Keywords: DNA methylation, differentially methylated loci, ensemble feature selection, robustness, pan-cancers

INTRODUCTION

DNA methylation is one of the essential epigenetic mechanisms, which plays a vital role in normal 
development and is closely correlated with the cell growth, differentiation, and transformation in 
eukaryotes (Robertson, 2005; Suzuki and Bird, 2008; Laird, 2010; Jones, 2012).Failure of proper 
maintenance of epigenetic marks, like abnormal DNA methylation, may result in inappropriate 
activation or inhibition of various signaling pathways, leading to diseased states, even cancers 
(Esteller, 2007; Hanahan and Weinberg, 2011; Dawson and Kouzarides, 2012; Aran and Hellman, 
2013; Tolstorukov et al., 2013). For example, aberrant promoter hypermethylation that is associated 
with inappropriate gene silencing affects virtually every step in tumor progression (Jones and Baylin, 
2002). So, the investigation of differential methylation, which displays the inherent difference 
between normal and tumor samples, could help us deepen our perception of oncogenesis and may 
assist in the early diagnosis of cancers (Tost, 2007; Deng et al., 2010).

High-throughput bisulfite sequencing provides a new stage for researchers to analyze methylation 
variability at single-base resolution, and the identification of differentially methylated loci (DML) 
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has become an insightful attempt for detection of tumor markers 
(Cokus et al., 2008; Down et al., 2008). In the early stage, obtaining 
methylation data is based on bisulfite sequence technique 
(BS-seq), and Lister et al. (2009) first use Fisher exact test to select 
differential methylation sites. Then, more R packages have been 
developed for identifying DML with this kind of data. BiSeq 
(Hebestreit et al., 2013) and DSS (Feng et al., 2014) concentrate 
on identifying DML through Wald tests, whereas MethylSig (Park 
et al., 2014) applies likelihood ratio tests for DML identification. 
Infinium HumanMethylation450 BeadChip is now widely used 
in methylation analysis for its advantages of lower cost and easier 
experimental protocol compared with BS-seq, like WGBS, and is 
suggested to be suitable for large-scale studies (Dedeurwaerder et al., 
2011). For example, IMA achieves detection of site-level differential 
methylation using Wilcoxon rank-sum tests with HM450 data 
(Wang et al., 2012). Compared with IMA, based on the analysis 
of covariance, FastDMA performs better in identifying DML 
with higher computational efficiency (Wu et al., 2013). RnBeads 
provides a comprehensive pipeline for analysis and interpretation 
of DNA methylation with t statistics analysis based on linear model 
and empirical Bayes (Assenov et al., 2014). We consider that the 
identification of DML is to search for loci that can significantly 
distinguish between the normal and the sick, and therefore the 
essence of this problem can be regarded as applying feature 
selection to the identification of DML. Additionally, compared with 
the methods mentioned above, feature selection approaches can 
take the feature redundance and irrelevance into account, and this 
could be a benefit for selecting more significant DML. 

However, considering that the HM450 data have a small 
number of samples but high dimensional features (approximately 
1:1,000), the results from general feature selection methods 
for identifying DML will have poor robustness (Kim, 2009). 
The robustness (reproducibility or stability) of selected loci is 
extremely important for identifying DML, as domain experts 
tend to do subsequent analysis and validations with stable results. 
While feature selection has been considered a de facto standard 
in microarray data mining (Bolon-Canedo et al., 2014), how to 
identify robust DML with feature selection has received little 
attention. Recent advancements in ensemble feature selection 
provide a promising approach to solve the robustness problem in 
large-scale biological data (Saeys et al., 2008; Abeel et al., 2010; 
Liu et al., 2010; Yang et al., 2010; Haury et al., 2011; Yang et al., 
2011; Yu et al., 2012). The rationale for this idea is combining 
single, less stable feature selectors to yield a more robust one, 
which is the same as ensemble learning: in a first step, a number 
of different feature selectors are used, and in a final phase, the 
output of these separate selectors is aggregated and returned as the 
final (ensemble) result. Specifically, there are two major means to 
achieve ensemble feature selection; one of them is data diversity 
(instance perturbation), which uses the same feature selection 
method on different data subsets from multiple sampling on 
the original data set, and the other is function diversity, which 
implements different feature selection methods on the original 
data set (Saeys et al., 2008; Yang et al., 2010; Awada et al., 2012; 
Yu et al., 2012).

In this article, we aggregate data diversity and function 
diversity to propose a hybrid ensemble approach for identification 

of DML (HyDML). Under the framework of ensemble feature 
selection, this newly proposed method not only can realize the 
effective identification of DML, but also can accommodate for 
the robustness of the results. Additionally, taking advantage 
of the large-scale Infinium 450K methylation data produced 
by The Cancer Genome Atlas (TCGA) project, we performed 
intensive analysis to look further into interrelationships between 
differential methylation and cancers and found that different 
cancers have common patterns, and robust DML sharing in pan-
cancers is of the great potential to be biomarkers.

MATERIALS AND METHODS

Cancers and Samples
For feeding the algorithm and analysis, in total 13 cancers are 
selected with both normal and tumor samples. Specifically, these 
cancers are bladder urothelial carcinoma (BLCA), breast invasive 
carcinoma (BRCA), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), head and neck squamous cell carcinoma 
(HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal 
papillary cell carcinoma (KIRP), liver hepatocellular carcinoma 
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell 
carcinoma (LUSC), prostate adenocarcinoma (PRAD), thyroid 
carcinoma (THCA), and uterine corpus endometrial carcinoma 
(UCEC). In all, there are 6,189 samples including 699 normal 
samples and 5491 tumor samples (Table S1).

DNA Methylation Data and Preprocess
We downloaded the DNA methylation data from TCGA data 
portal (https://tcga-data.nci.nih.gov/tcga/) for our selected 
samples. The methylation data are generated by Illumina 
Infinium HumanMethylation450k BeadChip technique. The 
Illumina Infinium assay utilizes a pair of probes for each CpG 
site, one probe for the methylated allele and the other for the 
unmethylated version. The methylation level is then estimated, 
based on the measured intensities of this pair of probes, as 
the ratio of methylated signal to the sum of methylated and 
unmethylated signal, which ranges from 0 (absent methylation) 
to 1 (completely methylated). To assess the ability of the selected 
DML to distinguish between the two types of samples (tumor 
and normal), we retrieved three independent test sets from 
the NCBI database. The three data sets are also obtained by 
HM 450 technique, including samples of breast (GSE52635), 
liver (GSE54503), and lung (GSE66836) cancer, as well as 
corresponding normal tissue data records (Table S1). For 
each type of cancer, the original methylation data record 
the methylation level at more than 450,000 loci. A series of 
preprocessing is required before implementing the selection of 
DML, which can reduce the computational complexity as well as 
improve the accuracy of the final results. The preprocessing steps 
for the methylation data are as follows: i) The 450k methylation 
chip uses two different types of probes (type I and type II) when 
measuring the locus methylation and results in two different 
types of data distribution. We use the SWAN algorithm to 
eliminate the abiotic variation caused by the measurement 
of the two probes while preserving the biological differences 
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of the samples (Maksimovic et al., 2012). ii) Eliminate batch 
effects caused by system bulk effects or abiotic differences 
using empirical Bayesian (EB) methods (Johnson et al., 2007). 
iii) Filter out some of the minimal variance loci to avoid 
dimensionality disasters and remove significantly unrelated 
redundant loci. After completing all of the preprocessing steps, 
approximately 350,000 feature sites are obtained for each cancer 
for subsequent feature selection. Considering polymorphisms 
(single-nucleotide polymorphisms), we chose to mark these 
sites in the results, and users can decide the stringency of probe 
filtering appropriate for their analysis.

Hybrid Ensemble Approach for 
Identification of DML
First, in order to obtain a diverse set of feature selectors, we 
perform multiple samplings on training samples to generate 
data subsets. To this end, we make use of resampling and cross-
validation, integrating classifier training into the ensemble 
feature selection framework for selecting loci that are informative 
for classifying tumor and normal samples. In each sampling, the 
whole data set is divided into 10 pieces with the same number 
of samples, and each of them can be regarded as a test subset 
to validate subsequent classification performance, while the rest 
automatically becomes a training set for feature selection and 
classifier training (constructed with support vector machine) 
(Cortes and Vapnik, 1995). The instance level perturbation here 
can bring in the stability for feature selection after aggregating 
the result of each data subset, because the stable features are 
more likely to appear in different training subsets when the 
sample changes slightly. Then, generating functional diversity 
is achieved by using multiple feature selection methods on the 
same training set. With consideration of high dimensionality 
and small sample size of the 450k methylation data, embedded 
feature selection methods could be a practical choice for 
the appropriate computation complexity. Thus, we choose R 
packages “glmnet,” “MDFS” and “rmcfs” as the basic feature 
selection approaches (Friedman et al., 2010; Draminski and 
Koronacki, 2018; Piliszek et al., 2018). Taking the advantages 
of combing L1 and L2 regularization (elastic net), glmnet can 
achieve variable extraction for the microarray data with high 
dimension but small number of samples. Combining linear 
model with elastic net for feature selection, the optimization 
function is as follows:
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where w  represents the feature weight coefficient, m represents 
the number of samples, and p represents the total number of 
features in the data set. λ is used to balance the empirical risk and 
model complexity, whereas α is used to balance the regularization 
of L1 and L2. In MDFS, we apply feature selection with max 
information gain criterion, which measures the worth of a 
feature by computing the information gain values with respect 

to the class. For rmcfs, it relies on a Monte Carlo approach to 
select informative features and is capable of incorporating 
interdependencies between features. The three basic feature 
selection algorithms can be well adapted to the high-dimensional 
and small-sample characteristics of 450k methylation data, and 
the whole calculation amount is moderate, while classification 
performance can be guaranteed. For each data subset, aggregating 
the results of multiple feature selection methods could further 
enhance the stability. More formally, consider an ensemble 
feature selector E = {F1, F2,… ,Fs} and each Fi provides a feature 
ranking fi = …( )f f fi i i

N1 2, , ,  , fi denotes the feature weight of each 
Fi and N represents the nth feature. Hence, a general aggregation 
formulation for the ensemble ranking f, obtained by weighted 
summing the ranks over all fi, is as follows:

 
f f= ∗

=
∑

i

s

i iacc
1  

where acci donates the accuracy of the corresponding test set 
on the classifier trained by feature selector Fi, and f also can be 
regarded as the aggregation ranking for the ensemble feature 
selector. Here, s = 3, which represents the three basic feature 
selection methods, and we can get the preliminary DML at this 
level of aggregation. Then, taking the union set of obtained loci 
subsets is the second level of aggregation, and the corresponding 
formula representation is as follows:

 
f f=

=
∑

i

s

1

i

 

where s donates the number of data subsets, and fi is the feature 
ranking of corresponding data subset. In this way, one aggregated 
ranking of all the features for each sampling can be yielded. 
We perform 10 iterations for generating more data subsets to 
further improve the stability of selected loci, and with the idea 
of bagging, the final DML set consisted of loci that appear more 
than five times in 10 iterations. The overall algorithm framework 
for one sampling is shown in Figure 1, and pseudo code flow is 
as follows:

ALGORITHM: HYDML

Require: methylation data D 
Ensure: Divide data set D into {D1, D2,…, Dk,…D10} for 10-fold cross-validation;
1: begin
2:  for k = 1 to 10 do. The data subset Dk is used as a test set, while other data 

subsets are used as a training set to produce DML with multiple feature 
selection methods; calculate fi

k fk   for each feature in Dk with acci(i = 1, 
2, 3); filter out loci with the fk < 0.01; end for;

3: Take union set of {f1, f2,,, f10} to obtain F1

4: for t = 1 to 10 do, step 2 and step 3; end for;
5:  Aggregate F1 ~ F10 with bagging which filters out loci which appears less than 

five times; record as F

6: return F;
7: End
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PERFORMANCE EVALUATION AND 
COMPARISON

Stability Measure
To measure the effect of our hybrid ensemble technique on 
the feature selection results, following Saeys et al. (2008), 
we take a similarity-based approach where feature stability 
is measured by comparing the signatures from the k feature 
selectors. The more similar all signatures are, the higher the 
stability measure will be. The overall stability can be defined as 
the average over all pairwise similarity comparisons between 
different signatures:

S
S f f

k ktot
i

k

j i

k

i j

=
( )

−( )
= = +∑ ∑2

1
1 1

,

where fi represents the signature obtained by the selection 
method on subsampling i(1 ≤ i ≤ k); k is the number of data 
subsets; S(fi, fj) is a similarity measure for feature subsets, which 
denotes the stability of fi and fj. Here, we use Jaccard index (Saeys 
et al., 2008) as S(fi, fj):

S f f
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where the indicator function I(.) returns 1 if its argument is 
true, and zero otherwise. In the sequel, the overall stability Stot is 
simply denoted by S(fi, fj).

Classification Performance Measure
To evaluate the classification performance and perform 
comparisons, we use several characteristics of classification 
performance all derived from the confusion matrix. These 
characteristics are TP, TN, FP, and FP, which denote true-
negatives, true-positives, false-negatives, and false-positives, 
respectively. All the performance metrics are calculated by 
these characteristics, including TPR (true-positive rate), FPR 
(false-negative rate), ACC (classification accuracy), Precision, 
Recall, and F1 score. We also include the area under the receive 
operating characteristic curve, which is defined by a function of 
sensitivity and specificity, further abbreviated as AUC.

RESULTS

Characteristics of Differentially Methylated 
Loci in 13 Cancers
For each of the 13 cancers, we finally obtained a set of DML, 
which varies from 5,700 in COAD to 14,516 in THCA (Table S2). 
Through t-SNE clustering (van der Maaten and Hinton, 2008), 
we found that these differential methylation sites were able 
to distinguish the difference between the normal and the sick, 
especially in COAD, ESCA, and KIRC (Figure 2). While very few 
samples were misclassified, it was probably due to the information 
compression since the original feature dimension is reduced by 
thousands of times during the t-SNE clustering process.

We first explored the distribution of DML in 22 pairs of 
autosomes for each cancer, which could help us to find out which 
chromosome gets potential extensive genetic variation when 
cancer occurs. To this end, we calculated the distribution density 
of the DML on each autosome, using ratio of the number of 
DML to the number of CpG sites determined by the 450K chip 
(Figure S1A). We can see from the results that chromosome 20 was 

FIGURE 1 | The framework of HyDML for identifying differentially methylated loci using hybrid ensemble feature selection approach.
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enriched with more sites, whereas the DML were less distributed 
on chromosome 1, 9, oppositely. Combining the functional regions 
of genes on the chromosome, we further analyzed the distribution 
of DML in the promoter region (regions from 2,000 bps upstream 
to the transcription start site), gene body (excluding promoter 
region), and intergenic region for each cancer. Most of DML 
were located in nonpromoter regions (gene body and intergenic 
region; Figure  S1B). However, considering that the promoter 
region occupied only a small part of the genome, the number of 
DML accounted for more than 20%, indicating that the abnormal 
methylation of this short functional region had an important 
impact on the tumorigenesis (Jones and Baylin, 2002; Baylin 
and Ohm, 2006). Most DML were distributed on CpG islands 
(Figure S1C), which has been reported that aberrant methylation 
of CpG islands was related to transcriptional gene silencing or 
activation of multiple oncogenes (Costello et al., 2000; Chan et al., 
2002; Klutstein et al., 2016; Soozangar et al., 2018).

We also observed that biologically similar cancers shared more 
mutual DML through hierarchical clustering using similarity metric 
based on Jaccard index (Figure S2). Specifically, smoking- and drug 
addiction-related cancers, like LUSC and HNSC, were clustered 
together (Brennan et al., 1995; Johnson et al., 2005; Campbell et al., 
2016). KIRC and KIRP were both due to renal lesion. High-risk 
cancers that were predisposed to women, such as BRCA and UCEC, 
shared more DML and were clustered together.

Robust Feature Selection Improves the 
Classification Performance
First, we compared our newly proposed method to its baseline 
methods, glmnet, rmcfs, and MDFS when the number of loci 
gradually decreased. This could help us analyze the robustness 

of the results from different feature selection methods as the 
features reduced, or if a feature selection method could identify 
more robust features, the decrement of features would not 
have a significant impact on the results. Here, for the three 
baseline methods, the feature sets were produced by a default 
configuration. Using the comprehensive classification metric, 
AUC, Figure 3A displays the trend of AUC change as the feature 
number reduced on PRAD data set. It can be observed that 
our ensemble approach clearly improved upon the baselines in 
terms of classification performance as the loci decreased. We also 
implemented the comparison on data of the other 12 cancers, 
and the results showed that the hybrid ensemble framework was 
superior to single-feature selection methods, thus demonstrating 
that the ensemble methods were better capable of eliminating 
noisy and irrelevant dimensions (Figure S3). We also compared 
the stability or robustness measure Stot (based on Jaccard Index, 
see Materials and Methods), and the results in all 13 cancers 
showed the hybrid ensemble approach (HyDML) performed 
better than single-feature selection methods, which could be 
a benefit in performing subsequent analysis with the selected 
differential methylation sites (Figure 3B).

Moreover, three independent test sets from the NCBI database 
(BRCA: GSE52635; LIHC: GSE54503; LUAD: GSE66836) were 
used to compare HyDML with classical DML identification 
methods, including FastDMA and RnBeads, for analyzing the 
differences between the ensemble feature selection approach and 
the statistical test method. Using the original DML previously 
selected from the three cancers as training sets, we constructed 
a classification model based on SVM and performed the 
verification with the test sets. The results showed that DML 
selected by HyDML performed better than FastDMA and 
RnBeads (Table  1). Compared with the two classical DML 

FIGURE 2 | The clustering results by t-SNE using the obtained differential methylation sites for each cancer.
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finding approaches, the selected feature from HyDML showed 
better generalization ability in distinguishing the normal and 
tumor samples. Then, we analyzed the loci selected by the three 
methods to verify whether the loci were distinct from each other. 
Experiments on data of the three cancers showed that most DML 
were identical for the three methods, whereas FastDMA and 
RnBeads shared more mutual DML (Figure 3C). To capture the 
key differences of the three methods, we further studied the DML, 
which were uniquely selected by the corresponding method (the 
loci selected by one of the methods and not selected by the other 
two methods), through t-SNE clustering, and the results of BRCA 

showed that the uniquely selected DML from HyDML were more 
able to describe the difference between the normal and the sick 
(Figure 3D). The clustering results of the other two cancers can 
be obtained in Figure S4, and HyDML not surprisingly displayed 
better performance in classifying normal and tumor samples. 
This indicated that the differential methylation sites obtained 
by the hybrid ensemble approach were more likely to be reliable 
in biological validations. One evident reason for this was that 
HyDML takes the robustness of selected loci into account, and this 
could be rewarding to produce better DML in terms of analyzing 
the difference between the normal and the sick.

FIGURE 3 | Thorough classification performance and the robustness measure to compare different models in identifying differential methylation sites. 
(A) Classification performance of HyDML and its corresponding submethods as the selected features (loci) gradually reduce in PRAD. (B) Comparison of robustness 
measure using Jaccard index in 13 cancers for HyDML and its corresponding submethods. (C) Relationship of differential methylation sites obtained by HyDML/
FastDMA/RnBeads in BRCA; LIHC and LUAD (corresponding to the three independent test sets) using a Venn picture. (D) T-SNE clustering results in BRCA using 
the unique differential methylation sites selected by each method.

108

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Identifying Robust Differentially Methylated LociTian et al.

7 September 2019 | Volume 10 | Article 774Frontiers in Genetics | www.frontiersin.org

Pan-Cancer–Related DML Provide a 
Landscape of Commonality in Different 
Cancers
In order to further analyze the association between DNA methylation 
and cancer, we investigated the differential methylation sites that 
occurred in multiple cancers, which could help us reveal the pan-
cancer–associated methylation patterns. First, we defined a selected 
site as a pan-cancer differentially methylated locus (pDML) if it 
occurred no less than 10 times in 13 cancers. We in total obtained 
338 pDML, in which some of them presented as hypermethylated, 
whereas the others presented obvious hypomethylation, expressed 
by median value in normal and tumor samples (Table S3). By 
combining the methylation expression levels of pDML in tumor 
samples, different cancers reflected similarities in methylation 
variation (Figure 4). For example, LUAD and LUSC were clustered 
together as a result of carcinogenesis of lung tissues, and kidney 
disease–related cancer, such as KIRC and KIRP, were also shown 
to be similar in terms of pDML. This verified the methylation 
specificity expression caused by the differentiation of tissues, and 
even when the tissues were cancerous, there was a certain degree of 
difference in methylation variability between tissues, or the cancer 
subtypes of the same tissue had more similar methylation patterns.

In these pDML, we also found that, one probe, cg02829688, 
was significantly hypermethylated (the methylation level of loci in 
tumor samples was higher than that in normal samples) in all 13 
cancers (Figure 5). Through the annotation files, we found that it 
was located at chr1:119527008 in a CpG island and belonged to 
a differentially methylated region (experimentally determined). 
Moreover, the corresponding upstream and downstream regions 
were located in a target gene, TBX15. It has been demonstrated that 
TBX15 plays a vital role in multiple cancers, such as non–small cell 
lung cancer (Carvalho et al., 2013), thyroid cancer (Arribas et al., 
2015), and ovarian carcinoma (Gozzi et al., 2016), and especially has 
been proved to be a methylation marker of prostate cancer (Kron et 
al., 2012). Moreover, Chelbi et al. (2011) identified a region located in 
the distal promoter of the TBX15 that was differentially methylated 
and suggested that TBX15 might be involved in the pathophysiology 
of placental diseases.

Using AME (McLeay and Bailey, 2010), the motif 
enrichment tool of MEME Suite, we detected sequence motifs 
that were enriched in the background sequences generated 
from the pDML, which were located in promoter regions and 
identified 84 motifs (Table S4). The motif of IRF3 was the most 
significantly enriched one (P = 5.55e-21) (Figure 6A), and the 
gene expression for IRF3 has been experimentally determined 
in multiple tissues (Figure 6B). IRF3 as a transcription factor 
has been reported as a regulator in type I interferon genes 
playing a vital role in mammalian response to pathogens and 
considered to be implicated in various biological pathological 
conditions, including cancer (Wang et al., 2017; Andrilenas 
et al., 2018). Baylin et al. (2006) also demonstrated that 
DNA methyltransferase inhibitors triggered viral defense 
and induced IRF3 to translocate to the nucleus and activated 
transcription of IFNβ1 to influence immune signaling in 
cancers (Chiappinelli et al., 2015).

Additionally, we had a deeper insight into the relationship 
between methylation and cancers through analyzing the 
corresponding biological pathways. Using the KEGG pathway 
database (Kanehisa and Goto, 2000), Figure 7 showed the 
number of metabolic pathways for DML-associated genes in 
each cancer (P < 0.05). Then, we summarized the pathways that 
occurred in at least seven cancers and denoted as pan-cancer 
methylation-related pathways (PMPs) and obtained in total 11 
PMPs, where 10 of them have been reported to be associated 
with cancers (Table 2). The only one PMP, neuroactive ligand-
receptor interaction, has not been proven to be directly or 
indirectly associated with cancers, but further research is needed 
for deeper exploration.

DISCUSSION

Identifying DML is a promising approach to reveal the 
inherent intricacy between aberrant DNA methylation and 
tumorigenesis, and recent studies have paid more attention 
to this essential epigenetic mechanism. Taking advantage of 
the large-scale DNA methylation data produced by TCGA, 

TABLE 1 | Classification performance comparison on three independent test sets.

GSE52635

TPR FPR ACC AUC Precision Recall F1
FastDMA 0.958 0.083 0.938 0.924 0.921 0.958 0.939
RnBeads 0.938 0.042 0.948 0.935 0.957 0.938 0.947
HyDML 0.979 0.042 0.969 0.968 0.959 0.979 0.969

GSE54503

TPR FPR ACC AUC Precision Recall F1
FastDMA 0.909 0.1667 0.8712 0.897 0.779 0.909 0.839
RnBeads 0.955 0.1515 0.9016 0.923 0.863 0.955 0.906
HyDML 0.969 0.091 0.9408 0.962 0.914 0.969 0.941

GSE66836

TPR FPR ACC AUC Precision Recall F1
FastDMA 0.909 0.316 0.886 0.876 0.961 0.909 0.934
RnBeads 0.915 0.263 0.896 0.893 0.968 0.915 0.940
HyDML 0.951 0.158 0.94 0.943 0.981 0.951 0.966

In bold font: best performance.
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FIGURE 5 | Probe cg02829688 showed significant hypermethylation (the methylation level of loci in tumor samples were higher than those in normal samples) in all 
13 cancers.

FIGURE 4 | The hierarchical clustering with heat map using all predefined pan-cancer differential methylation sites in 13 cancers.
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we investigated the differential methylation in 13 cancers with 
a newly proposed approach under hybrid ensemble feature 
selection framework. Compared with single-feature selection 
methods in identifying DML, HyDML could achieve identifying 
more robust loci, and the improvement of reproducibility of 
feature selection algorithm’s results can enhance the confidence 
of researchers in experimental verification, especially in finding 
biomarkers. Compared with classical DML identification 

methods based on traditional statistic theory (such as FastDMA 
and RnBeads), feature selection–based approaches could select 
more informative loci that are closely related to the difference 
between the normal and the sick, as well as eliminating noisy 
and irrelevant loci, especially when dealing with microarray 
data of sparse samples and high-dimensional features. By 
t-SNE clustering, the results showed that the selected loci could 
distinguish between the normal and the sick well in each cancer, 
and the results from the independent test sets demonstrated that 
the classification model constructed by loci from HyDML had 
better generalization ability.

Additionally, comprehensive investigation of the pDML 
showed that different cancers shared some common patterns 
in methylation variability at CpG locus resolution and revealed 
the potential similarities in different cancers. We found that 
same tissues share more abnormal methylation patterns 
with different subtypes of tumorigenesis, such as KIRC and 
KIRP, and LUAD and LUSC. This may indicate that the tissue 
specificity of methylation is preserved even when the tissue 
is cancerous. We also found a locus (cg02829688), which 
was hypermethylated in 13 cancers, located in a functional 
region on the genome, and could be of great potential to be 
an oncogenesis biomarker. Enriched motifs analysis from 
the background sequences of pDML revealed the potential 
influence on transcription function by CpG methylation, 
and the most significantly enriched motif, IRF3, has been 
reported playing a vital role in tumorigenesis. Through 
pathway analysis, some pan-cancer–related pathways were also 
determined, which have been reported playing a vital role in 
start, development, and metastasis of tumors.

As an import epigenetic mark, DNA methylation has been 
widely investigated to deepen our understanding of its mechanism 
and correlation with human illness, and it is possible to analyze 
methylation at all levels with the massive data generated by high-
throughput detection technology. However, how to effectively 
identify DML from high-throughput methylation data is still 
a tough challenge even if feature selection methods have been 
extensively explored in the context of gene expression data. 
Innovatively, combining the instance perturbation and function 
diversity, the newly proposed method HyDML achieved effective 
identification of DML, and this demonstrated that ensemble 

FIGURE 6 | The most significantly enriched motif, IRF3. (A) The motif logo of IRF3. (B) The gene expression for IRF3 in multiple tissues.

TABLE 2 | PMPs and their corresponding relations to cancer.

Pan-cancer methylation related pathways Related to cancer? 

Antigen processing and presentation (Chapman et al., 2013) Yes
Allograft rejection (Leone et al., 2013) Yes
cAMP signaling pathway (Fajardo et al., 2014) Yes
Cell adhesion molecules (Okegawa et al., 2004) Yes
Graft-versus-host disease (Curtis et al., 2005) Yes
MicroRNAs in cancer (Wiemer, 2007) Yes
Nicotine addiction (Benowitz, 2009) Yes
Rap1 signaling pathway (Zhang et al., 2017) Yes
Type II diabetes mellitus (Shlomai et al., 2016) Yes
Autoimmune thyroid disease (Turken et al., 2003) Yes
Neuroactive ligand-receptor interaction Unknown

FIGURE 7 | The number of metabolic pathways for DML-associated genes 
in each cancer.
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feature selection could be used in dimension reduction for large-
scale biological data. This will not only facilitate future early 
diagnosis of cancers based on the DNA methylation signatures but 
also enable additional investigations into the utilization of feature 
selection on other biomarker analysis domains. In the future, 
we will continue to study in depth the application of machine 
learning in biomarker identification and achieve better selection 
and prediction effect by combining more related information.

CONCLUSION

In this article, a hybrid ensemble approach is proposed by 
incorporating instance perturbation and multiple functions to 
identify differential methylation sites across 13 cancers from TCGA. 
The specially designed framework makes it possible to select robust 
differential methylation sites, which not only improves the accuracy 
of the classifier built by the selected sites, but also enhances the 
confidence of domain experts to implement biological validations. 
Further intensive analysis reveals that different cancer types 
have common methylation patterns, and part of the differential 
methylation sites shared in pan-cancers is of great potential to be 
crucial in the early diagnosis of cancers. All findings demonstrate 
that abnormal DNA methylation could be regarded as a marker that 
expresses the difference between the normal and the sick.
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FIGURE S1 | (A) The distribution density of DML in 22 pairs of autosomal 
chromosomes in 13 cancers. (B) The distribution of DML in different functional 
regions in 13 cancers. (C) The distribution of DML in CpG island and non-CpG 
island in 13 cancers.

FIGURE S2 | Unsupervised hierarchical clustering of mutual DML in 13 cancers 
using similarity measure with Jaccard distance.

FIGURE S3 | The AUC changed when the number of selected loci gradually 
reduced in each cancer. All the results show that HyDML performed better than 
single-feature selection methods as it can select more robust loci for distinguish 
normal and tumor samples.

FIGURE S4 | The t-SNE clustering results with the loci that were uniquely 
selected by the three methods, HyDML, FastDMA, and RnBeads. Each row 
represents the loci from the corresponding cancer type, and each column 
represents the result of corresponding method.
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Maternal Smoking During Pregnancy 
Induces Persistent Epigenetic 
Changes Into Adolescence, 
Independent of Postnatal Smoke 
Exposure and Is Associated With 
Cardiometabolic Risk
Sebastian Rauschert 1, Phillip E. Melton 2,3, Graham Burdge 4, Jeffrey M. Craig 5,6, 
Keith M. Godfrey 4,7, Joanna D. Holbrook 4, Karen Lillycrop 8, Trevor A. Mori 9, 
Lawrence J. Beilin 9, Wendy H. Oddy 10, Craig Pennell 11 and Rae-Chi Huang 1*

1 Telethon Kids Institute, University of Western Australia, Perth, WA, Australia, 2 Centre for Genetic Origins of Health 
and Disease, The University of Western Australia and Curtin University, Perth, WA, Australia, 3 School of Pharmacy and 
Biomedical Sciences, Curtin University, Bentley, WA, Australia, 4 Human Development and Health, Faculty of Medicine, 
University of Southampton, Southampton, United Kingdom, 5 Early Life Epigenetics Group, MCRI, Royal Children’s Hospital, 
Flemington Road, Parkville, VIC, Australia, 6 Centre for Molecular and Medical Research, School of Medicine, Deakin 
University, Geelong, VIC, Australia, 7 MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research 
Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United 
Kingdom, 8 Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, 
Southampton, United Kingdom, 9 Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, 
Australia, 10 Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia, 11 University of Newcastle, 
Newcastle, NSW, Australia

Background: Several studies have shown effects of current and maternal smoking 
during pregnancy on DNA methylation of CpG sites in newborns and later in life. Here, we 
hypothesized that there are long-term and persistent epigenetic effects following maternal 
smoking during pregnancy on adolescent offspring DNA methylation, independent 
of paternal and postnatal smoke exposure. Furthermore, we explored the association 
between DNA methylation and cardiometabolic risk factors at 17 years of age.

Materials and Methods: DNA methylation was measured using the Illumina 
HumanMethylation450K BeadChip in whole blood from 995 participants attending 
the 17-year follow-up of the Raine Study. Linear mixed effects models were used to 
identify differential methylated CpGs, adjusting for parental smoking during pregnancy, 
and paternal, passive, and adolescent smoke exposure. Additional models examined the 
association between DNA methylation and paternal, adolescent, and passive smoking 
over the life course. Offspring CpGs identified were analyzed against cardiometabolic risk 
factors (blood pressure, triacylglycerols (TG), high-density lipoproteins cholesterol (HDL-
C), and body mass index).

Results: We identified 23 CpGs (genome-wide p level: 1.06 × 10−7) that were 
associated with maternal smoking during pregnancy, including associated genes AHRR 
(cancer development), FTO (obesity), CNTNAP2 (developmental processes), CYP1A1 
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INTRODUCTION

Maternal smoking during pregnancy is associated with an 
increased risk in the offspring of chronic diseases including 
asthma, certain cancers, and cardiovascular disease in adulthood 
(Wakschlag et al., 2002; Hofhuis et al., 2003; DiFranza et al., 2004; 
Oken et al., 2005; Agrawal et al., 2010; Bhattacharya et al., 2014). 
Together with the association of antenatal exposure to maternal 
smoking with DNA methylation, this highlights the importance of 
the early environment on the development of diseases (Gillman, 
2005; Hanson and Gluckman, 2008; Schulz, 2010; Nielsen et al., 
2016). Furthermore, associations with maternal smoking during 
pregnancy have been associated with differential methylation 
of cytosine–phosphate–guanine (CpG) base pairs in newborns 
(Joubert et al., 2016), children (Rzehak et al., 2016), young adults 
(Lee et al., 2015), and middle aged adults (Sun et al., 2013).

An epigenome-wide DNA methylation meta-analysis by 
Joubert et al. with combined sample size of 6,685 newborns and 
3,187 older children previously identified 2,965 methylated CpGs 
in the offspring that associated with maternal smoking during 
pregnancy (Joubert et al., 2016). Methylation levels at CpGs 
most strongly associated with maternal smoking were contained 
within genes also implicated in other studies including MYO1G 
(myosin 1G), CYP1A1 (cytochrome P450 family 1 subfamily A 
member 1), GFI1 (growth factor independent 1 transcriptional 
repressor), CNTNAP2 (contactin-associated protein-like 2) 
(Rotroff et al., 2016; Rzehak et al., 2016; Tehranifar et al., 2018), 
and xenobiotics (AHRR, aryl-hydrocarbon receptor repressor) 
(Finkelstein and Jeong, 2017). These genes have been associated 
with tumorigenesis and metastasis (in the case of MYO1G, 
CTNAP2, GFI1, and AHRR), activation of compounds with 
carcinogenic properties (in the case of CYP1A1 and AHRR), and 
autism (CNTNAP2), as well as mediating the effect of maternal 

smoking and birthweight (in the case of GFI1) (Finkelstein, 
2017), thereby suggesting a possible epigenetic mechanism 
linking exposure to smoking during pregnancy with adverse 
outcomes such as obesity or cancer risk in the offspring.

Several studies have focused on the effect of current 
smoking on CpG methylation in adults and conclude that it 
strongly affects DNA methylation within the genes of AHRR, 
GFI1, and MYO1G and mediates risk of disease (Su et al., 
2016; Bojesen et al., 2017; Wilson et al., 2017; Li et al., 2018). 
However, the studies did not account for the influence of 
maternal smoking during pregnancy (Wilson et al., 2017; Li 
et al., 2018). The overlap of CpGs sites that associate with both 
current (adolescent or adult) smoking and maternal smoking 
during pregnancy indicates the need for caution in attributing 
causation to postnatal smoke exposure (Lee et al., 2015; Joubert 
et al., 2016; Rzehak et al., 2016). Richmond et al. (2015) for 
example showed associations between maternal smoking during 
pregnancy and CpG methylation measured at three different 
timepoints. In utero smoke exposure was associated with CpGs 
within AHRR, MYO1G, CYP1A1, and CNTNAP2 independent 
of current smoking of the adolescents. Furthermore, a recent 
study in 40-year-old women showed associations between 
CpG methylation levels in FTO (fat mass and obesity-
associated protein), CYP1A1, MYO1G, AHRR, ANPEP (alanyl 
aminopeptidase, membrane), ZNF536 (zinc finger protein 536), 
and GFI1 and a history of exposure to maternal smoking in 
utero, which was independent of their own smoking status 
(Tehranifar et al., 2018). Socioeconomic status is potentially 
an important confounder in the association between CpG 
methylation and offspring smoking. Low socioeconomic status 
has, for example, been associated with both smoking in general 
(Rosemary et al., 2012) and offspring smoking (Gilman et al., 
2003) and DNA methylation levels (McDade et al., 2019).

(detoxification), MYO1G (cell signalling), and FRMD4A (nicotine dependence). A sensitivity 
analysis showed a dose-dependent relationship between maternal smoking and offspring 
methylation. These results changed little following adjustment for paternal, passive, or 
offspring smoking, and there were no CpGs identified that associated with these variables. 
Two of the 23 identified CpGs [cg00253568 (FTO) and cg00213123 (CYP1A1)] were 
associated with either TG (male and female), diastolic blood pressure (female only), or 
HDL-C (male only), after Bonferroni correction.

Discussion: This study demonstrates a critical timing of cigarette smoke exposure over 
the life course for establishing persistent changes in DNA methylation into adolescence 
in a dose-dependent manner. There were significant associations between offspring 
CpG methylation and adolescent cardiovascular risk factors, namely, TG, HDL-C, and 
diastolic blood pressure. Future studies on current smoking habits and DNA methylation 
should consider the importance of maternal smoking during pregnancy and explore 
how the persistent DNA methylation effects of in utero smoke exposure increase 
cardiometabolic risk.

Keywords: DNA methylation, maternal smoking during pregnancy, epigenetics, Raine Study, cardiometabolic 
health, adolescence
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A recent study analyzed the association between eight CpGs, 
located in the GFI1 gene region and cardiovascular health (Parmar 
et al., 2018). The authors found three out of the eight CpGs to be 
associated with maternal prenatal smoking and the remaining 
five to be associated with adolescents own smoking. They found 
the strongest associations between some of the CpGs with BMI, 
waist circumference, blood pressure, and triacylglycerol (TG), 
with the most consistent associations between CpGs and TG. 
This highlights the potential for maternal smoking to induce long 
lasting changes in association with both DNA methylation and 
cardiometabolic health.

The present study aimed to investigate whether there is 
an association between maternal smoking during pregnancy 
and DNA methylation in the offspring at 17 years of age and 
if methylation levels at the differentially methylated CpGs 
were associated with cardiometabolic risk factors, using data 
from the second generation (Gen2) of the Raine Study (www.
rainestudy.org.au). We further determined if the relationships 
between methylation levels at these particular CpGs and 
maternal smoking were independent of paternal smoking, 
passive smoke exposure during childhood, and adolescent self-
reported smoking. We hypothesized that there are long-term 
and persistent postnatal epigenetic effects following maternal 
smoking during pregnancy on adolescent offspring DNA 
methylation, relatively unaffected by smoke exposure from 
other sources. Furthermore, we hypothesize that these changes 
are associated with an adverse effect on cardiometabolic health.

METHODS

Study
The study design and initial characteristics of the Raine Study 
have been previously described (Newnham et al., 1993). From 
1989 to 1999, a total of 2,900 pregnant women were enrolled to 
take part in this longitudinal cohort study. Recruitment took 
part at King Edward Memorial Hospital and surrounding private 
hospitals. The 2,868 live births (Gen2) have been followed up at 
1, 2, 3, 5, 8, 10, 14, and 17 years during which anthropometric 
(e.g., height, weight, skinfolds), clinical, and biochemical data 
have been collected.

Ethics approval for conducting the epigenetic analysis at the 
17-year follow-up was given by the Human Ethics Committee of 
the University of Western Australia. Informed and written consent 
was provided by the participants and their parents or carer.

The present analyses included 790 participants that had data 
for the variables of interest, being maternal educational level, 
family income, gestational weight gain, gestational age, maternal 
age, maternal prepregnancy BMI, birthweight, age, Caucasian 
ethnicity, and sex of the child. In separate analyses, we examined 
the potential confounding effects of offspring smoking (n = 663), 
passive smoking (n = 513), and paternal smoking (n = 781).

Smoking Variables
Maternal self-reported smoking during the 18th and 34th 
week of gestation and paternal smoking behavior (reported 
by the mother) at the 18th week of gestation were obtained by 

questionnaire. Smoking behavior of the adolescents at 17 years 
of age was self-reported in a confidential online questionnaire. 
Adolescents self-reported cigarette consumption over their 
lifetime (yes/no), in the past month (yes/no), and past 7 days (yes/
no). Different smoking variables were derived for the analyses: 
Maternal smoking during pregnancy was coded as “never” versus 
“ever” smoking during pregnancy, based on the categorical 
variables for the number of cigarettes smoked daily at 18 and 34 
weeks of gestation. Furthermore, maternal smoking at 18 and 34 
weeks of gestation was analyzed in association with CpG in two 
separate statistical models, to ascertain if smoking during mid- or 
late-term pregnancy had a different effect on CpG methylation 
in the offspring. Smoking of the offspring was coded as a binary 
variable (“never” vs. “ever” smoked). Passive smoking exposure 
during childhood was defined by aggregating questionnaire data 
from the caregiver on smoking at eight intervening time points 
until 17 years (1, 2, 3, 5, 8, 10, 14, and 17) and coded as “never” 
versus “ever” exposed to passive smoking if the average number of 
cigarettes smoked over all time points was ≥1 (Le-Ha et al., 2013).

Cardiovascular and Anthropometric 
Variables
Height was measured using a stadiometer (Holtain, Crosswell, 
UK) to the nearest 0.1 cm. Weight was measured using a digital 
chair scale (Wedderburn, New South Wales, Australia) to the 
nearest 100 g. Body mass index (BMI) was calculated as weight 
(kilograms)/height (meters)2. Waist circumference was measured 
to the nearest centimeter.

Venous blood samples were taken after an overnight fast. 
Serum insulin, glucose, high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol (LDL-C), and 
triacylglycerols (TG) were measured in the PathWest Laboratory 
at Royal Perth Hospital as described (Huang et al., 2012). 
HOMA-IR (molar units) was calculated by insulin (mIU/L) × 
glucose (mmol/l)/22.5 (Matthews et al., 1985).

Laboratory Measures
DNA Methylation Profiling
Using whole-blood samples collected at age 17 years, epigenome-
wide DNA methylation profiles for 1,192 (58 technical replicates) 
individuals were generated at the Centre for Molecular Medicine 
and Therapeutics, University of British Columbia using the 
Illumina Infinium HumanMethylation450 BeadChip array 
(Illumina San Diego, CA). Quality control was performed using 
the statistical software R and Bioconductor packages shinyMethyl 
(Fortin et al., 2014), MethylAid (Van Iterson et al., 2014), and 
RnBeads (Assenov et al., 2014).

Four participants with inconsistent results and identified as 
outliers (n = 3) or sex misclassification (n = 1) were removed. 
Sixty-five CpGs for which a common SNP disrupted the site 
leading to genotypic specific methylation levels, 11,648 sex 
chromosome CpGs and 10,777 CpGs with a detection p > 0.05 
in any sample were removed. A further 160 probes with bead 
counts <3 in more than 5% of samples were removed. Batch effects 
persisted after beta-mixture quantile normalization (BMIQ) was 
applied (Teschendorff et al., 2013). Therefore, plate, slide, and 
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well number were included in all statistical models. As cellular 
heterogeneity can influence methylation profiles and drive some 
of the methylation differences detectable across individual blood 
samples, we adjusted for estimated cell counts using the Houseman 
estimating method (Houseman et al., 2014) as implemented in 
the R statistical package, minfi (Aryee et al., 2014) for six cell 
types (CD8T, CD4T, NK, B cell, monocytes, and granulocytes). 
Mapping of the CpG to the nearest gene was performed using the 
Illumina Infinium annotation genomic coordinates.

Genome-Wide Genotype Data
DNA was collected from blood samples from 74% of the 
adolescents who attended the 14-year follow-up and a further 
5% who attended the 16-year follow-up, using standardized 
procedures. SNP data for this study were obtained from genome-
wide genotype data as described previously (Jones et al., 2013). 
Briefly, genotyping was performed on the Illumina Human 
660W Quad Array (Illumina, San Diego, California, USA), and 
exclusion criteria were low genotyping success (>3% missing), 
excessive heterozygosity, relation with another sample (identity 
by descent > 0.1875), ambiguous sex, and mislabeling. There 
were 1,494 individuals whose DNA samples passed the quality 
control criteria and were eligible for genetic analyses, and 965 
of them had completed the AQ. Out of those, 753 samples 
overlapped with the 790 samples that had epigenetic information 
and nonmissing data in the covariates.

Statistical Analysis
All models were analyzed using R Version 3.4.3. A flow diagram 
of models and sample size is presented in Figure 1, showing the 

different analysis steps and the number of complete cases per 
analysis. Full results are presented in the Supplemental Tables.

Effect Modifier
Studies previously conducted to analyze the association 
between maternal smoking during pregnancy and offspring 
CpG methylation levels have controlled for a variety of effect 
modifiers with a high level of commonalities between studies. 
Potential maternal confounders included prepregnancy BMI and 
socioeconomic variables including family income and maternal 
education, gestational weight gain, maternal alcohol consumption 
during pregnancy, and maternal age. Offspring variables included 
birthweight, sex, and age. Analyses were adjusted for cell count 
using the reference-based Houseman approach (Sun et al., 2013), 
for batch effect and measurement derived variability utilizing 
linear mixed effect models with plate number as the random 
effect and the aforementioned variables. Hypothesis testing 
for differences between the maternal smoking exposed and 
the nonexposed group in the variables used in this study were 
performed using chi-squared tests for categorical and t-tests and 
Wilcoxon tests for continuous variables.

Models
Identification of CpGs Whose Methylation Levels Associated 
With Maternal Smoking
We used a linear mixed-effects model as our main model. The 
outcome was percent methylation at one single CpG per model, 
and the predictor was maternal smoking, adjusted for exact age 
of the adolescent, sex, and maternal, and offspring confounders 
as described previously (n = 790). The same model was run twice, 
with the second application also adjusted for blood cell count 

FIGURE 1 | Flow diagram of the analysis and sample size per model.
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estimate (Houseman et al., 2014). This stepwise approach ensures 
that differences in the adjustment for cell count are accessible. 
To account for multiple testing, we utilized a conservative 
Bonferroni approach (genome-wide p level: 1.06 × 10−7).

The main model with maternal smoking was then assessed for 
a sex interaction to examine if the effect of maternal smoking on 
the CpG methylation levels differed between male and female.

Additionally, we used the information on maternal average 
cigarette consumption during pregnancy (six categories: none, 
1–5 daily; 6–10 daily; 11–15 daily; 16–20 daily; and 31 or more, 
with none as the reference group) to test for dose-dependent 
methylation in the identified sites.

Assessing the Effect of Paternal, Passive, and Adolescent 
Smoking on DNA Methylation
We included the covariates “ever smoking at 17 years of age” (yes/
no) (n = 663), paternal smoking during pregnancy (n = 781) and 
passive smoking exposure during childhood (n = 513) (Le-Ha 
et al., 2013) to the main model predicting the CpGs associated 
with maternal smoking, to ascertain if they changed the effect 
size of maternal smoking. We also examined the effect of those 
variables in separate models as predictors.

For adolescent smokers, we split the data into those who were 
exposed to maternal smoking during pregnancy (n = 168) and 
those who were not exposed (n = 495) to explore any potential 
differences in effect sizes. The model was the same as described 
above, including confounders as described earlier.

Assessing the Genetic Effect on the Association Between 
Maternal Smoking and CpG Methylation
To assess if the association between maternal smoking and CpG 
methylation persists after taking SNPs into account, we utilized 
the GEM bioconductor package (Pan et al., 2016) to identify 
significant SNP–CpG associations in the Raine study. The 
GEM package is a computational efficient approach to identify 
methylation quantitative trait loci, perform DNA-methylation 
wide association studies, and assess the interaction of CpG 
methylation and SNPs on outcomes.

With GEM, those SNPs were identified, which were 
significantly associated with the CpGs associated with maternal 
smoking during pregnancy in this study. The identified SNPs 
were added to the respective main model with CpG as outcome 
and maternal smoking during pregnancy as predictor, adjusted 
for the aforementioned variables.

RESULTS

Characteristics of the Population
The characteristics of the participants are shown in Table 1. Of the 
995 Caucasian participants, 30% were exposed to maternal smoking 
during pregnancy. Paternal, passive, and adolescent smoking rates 
were higher in the group exposed to maternal smoking. Of those 
exposed to maternal smoking during pregnancy, 60% had fathers 
who also smoked during the pregnancy period, 41% were exposed 
to passive smoking, and 30% reported smoking themselves. Of 
those not exposed to maternal smoking, 24% had fathers who 

smoked during the pregnancy period, 25% were exposed to passive 
smoking, and 40% reported smoking themselves.

TABLE 1 | Characteristics of the participants of the Raine Study. The p value 
refers to chi-square test results for categorical and t-test/Wilcoxon test for 
continuous variables.

No maternal 
smoking

Maternal 
smoking

p value

N 699 296

ADOLESCENT CHARACTERISTICS 
Sex of the child [n(%)]  0.17
 Female 337 (48.21) 157 (53.04)
 Male 362 (51.79) 139 (46.96)
Adolescent age  0.133
 Mean 17.24 17.29
 SD 0.58 0.61
Birthweight  2.09E−11
 Mean 3,430.85 3,137.17
 SD 526.64 657.46
Corrected gestational age 
(days)

 0.00071

 Mean 276.59 272.52
 SD 12.18 19.31
Waist circumference (cm)  0.039
 Mean 79.03 81.15
 SD 11.11 12.55
Adolescent BMI (kg/m²)  0.001
 Mean 22.8 24.12
 SD 4.16 5.19
Adolescent HDL-C (mg/dl)  0.03337
 Mean 1.3 1.27
 SD 0.29 0.3
Adolescent LDL-C (mg/dl)  0.35
 Mean 2.33 2.38
 SD 0.66 0.71
Adolescent triacylglycerol 
(mg/dl)

 0.012

 Mean 1.04 1.15
 SD 0.5 0.67
Adolescent systolic blood 
pressure (mmHg)

 0.3247

 Mean 114.99 115.69
 SD 11.37 10.73
Adolescent diastolic blood 
pressure (mmHg)

 0.6639

 Mean 59.43 59.6
 SD 6.56 6.78
Adolescent HOMA-IR  0.1503
 Mean 2.04 2.11
 SD 2.85 1.82
SMOKE EXPOSURE DURING
OTHER PERIODS OF LIFE
Paternal smoking during 
pregnancy [n(%)]

  <2.2E−16

 No 519 (74.25) 113 (38.18)
 Yes 174 (24.89) 178 (60.135)
 Missing 6 (0.86) 5 (1.69)
Passive smoking [n(%)]   <2.2E−16
 No 292 (41.77) 20 (6.76)
 Yes 134 (19.17) 122 (41.22)
 Missing 273 (39.06) 154 (52.03)
Adolescent smoking  0.002541
 Yes 381 (54.51) 119 (40.20)
 No 158 (22.60) 75 (25.34)
 Missing 160 (22.89) 102 (34.46)

(Continued)
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Offspring exposed to maternal smoking during pregnancy 
included 49% from families in the lowest income bracket 
compared with 29% of those not exposed to maternal smoking. 
The group exposed to maternal smoking during pregnancy had 
significantly more mothers with a lower educational attainment 
(p < 0.001). Mothers who smoked during pregnancy were 
younger (26.76 ± 5.63 vs. 29.17 ± 5.8 years old) than those who 
did not smoke.

Those exposed to maternal smoking had significantly higher 
waist circumference (p = 0.039), BMI, and TG and lower HDL-C 
at 17 years of age compared to the nonexposed group.

For all smoking variables, those study participants of the original 
cohort who are not included in this study (n = 1,317) had higher 
numbers of smokers and smoke exposed individuals as well as lower 
socioeconomic status assessed by family income compared to the 
participants included in our study [n = 995 (Supplement Table S1)].

Epigenome-Wide DNA Methylation Analysis
Effects of Maternal Smoking on Offspring DNA 
Methylation
One identified CpG, namely, cg04224247 (WWC3), showed 
a bimodal distribution in the histogram, suggestive of a 

genotype driven rather than an environmental influence (Teh 
et al., 2014) and hence was excluded from further analysis.

Associations between any maternal smoking during pregnancy 
and methylation levels at individual CpG sites are shown in a forest 
plot (Figure 2). The analysis showed that inclusion or exclusion 
of cell count estimation based on the Houseman method did 
not change the number of CpGs whose methylation levels were 
associated with maternal smoking after Bonferroni correction 
(genome-wide p level: 1.06 × 10−7, Supplemental Tables S2, S3, 
and S4). The smoking variables that combined data from 18 and 
34 weeks did not differ in the direction of their association with 
CpGs in that methylation at the same CpGs was associated with 
maternal smoking at i) 18 weeks, ii) 34 weeks, and iii) combined 
18 or 34 weeks (Supplemental Tables S1, S5, and S6).

The final model, including all confounding variables and 
batch number as random effect, showed methylation levels at 
23 CpGs associated with maternal smoking during pregnancy 
after conservative Bonferroni correction; these 23 CpGs mapped 
to 10 genes (Table 2). Overall, seven CpGs (genes: CNTNAP2, 
GFI1, WWC3, AHRR, and APOB) showed hypomethylation 
in association with mothers who reported they were smoking 
during pregnancy, whereas 16 CpGs (associated genes: CYP1A1/
CYP1A2, MIR548T, AHRR, FRMD4A, FTO, and MYO1G) 
were hypermethylated in those whose mothers smoked during 
pregnancy compared to offspring of nonsmokers. The highest 
percentage difference in DNA methylation between maternal 
smoking categories was 8.3% at cg12803068 (mapped to 
MYO1G). The remainder of the top 23 CpGs show methylation 
changes in association with in utero smoke exposure in the range 
of 1–6% (Table 2, coefficient times 100).

Inclusion or exclusion of cell count estimation in the model 
did not change either the number or direction of association 
CpGs falling under the Bonferroni threshold (genome-wide 
p  level: 1.06 × 10−7, Supplemental Tables S2 and S3).

Dose Dependency With Maternal Smoking:  
Sensitivity Analysis
A sensitivity analysis for dose-dependent methylation with 
maternal smoking showed a significant trend towards hyper- 
or hypomethylation with an increasing number in cigarettes 
consumed (Wilcoxon significance test between groups p < 0.05). 
These results can be seen in the supplement (Supplemental 
Figure 1).

Effect of Other Sources of Smoke Exposure on 
Offspring DNA Methylation
Adjusting the main maternal smoking model for all additional 
smoking variables reduced the sample size due to missing values 
in the offspring self-reported smoking to 506 but did not change 
the direction of the estimates, as can be seen in the forest plot, 
comparing the models by beta coefficients (Supplemental 
Figure 2 and Supplemental Table S7). Methylation levels at four 
CpGs (cg04180046, cg12803068, cg25949550, and cg05549655) 
were still significantly associated with maternal smoking 
(Supplemental Table S6 and S7). These were also the most 
significant CpGs in the main model.

TABLE 1 | Continued

No maternal 
smoking

Maternal 
smoking

p value

N 699 296

MATERNAL AND FAMILIAL
CHARACTERISTICS 

Maternal alcohol 
consumption during 
pregnancy [n(%)]

 0.4107

 no 354 (50.64) 147 (49.66)
 yes 344 (49.21) 149 (50.34)
 missing 1 (0.14)
Maternal school level 
[n(%)]

 1.65E−11

 None 292 (41.77) 182 (61.49)
  Trade certificate or 

apprenticeship
55 (7.87) 27 (9.12)

  Professional registration 
(nondegree)

90 (12.88) 22 (7.43)

 College diploma or degree 129 (18.45) 40 (13.51)
 University degree 102 (14.59) 10 (3.38)
 Other 31 (4.43) 15 (5.07)
Family income [n(%)]  2.91E-06
 <24,000 AUD per annum 206 (29.47) 127 (42.91)
 >24,000 AUD per annum 475 (67.95) 148 (50)
 NA 18 (2.58) 21 (7.09)
Maternal age (years)  1.62E−12
 Mean 29.17 26.76
 SD 5.8 5.63
Maternal prepregnancy 
BMI (kg/m²)

 0.3591

 Mean 22.66 22.25
 SD 4.45 4.51
Maternal pregnancy 
weight gain ratio

 0.9944

 Mean 0.5 0.5
 SD 0.2 0.21
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Stratified analysis for methylation levels at the identified 23 
CpGs for male and female did not show significant effect size 
changes compared to the full model (Supplemental Figure 3). 
Furthermore, Supplemental Figure 4 shows a barplot comparing 
the methylation change between those not exposed to any 
smoking (n = 381), those only smoking at 17 years (n = 158), 
those only exposed to maternal smoking during pregnancy (n = 
119), and those exposed to both types of smoking (n = 75).

Effect of Paternal Smoking During Pregnancy
Paternal smoking (yes/no) during pregnancy (n = 692) was not 
significantly associated with methylation levels at any of the 23 
CpGs detected in the maternal smoking EWAS (all genome-
wide p > 1.06 × 10−7, Supplemental Table S8). Adding paternal 
smoking to the main model did not change the effect size for the 
effect of maternal smoking on CpG methylation levels. An EWAS 
of paternal smoke exposure did not detect any associations with 
CpG methylation levels at the genome-wide significance p < 
1.06 × 10−7 (Supplemental Table S8).

Effect of Childhood Exposure to Smoking
No significant associations were detected for passive smoke 
exposure of the adolescent (n = 530) (Le-Ha et al., 2013) with 
DNA methylation at any CpG (all genome-wide p > 1.06 × 10−7) 
(Table 2, Supplemental Table S9). Adding passive childhood 
exposure to the main model did not change the effect size for 
the effect of maternal smoking on CpG methylation levels. An 
EWAS of passive smoke exposure did not show any associations 
with CpG methylation levels at the genome-wide significance p < 
1.06 × 10−7 (Supplemental Table S9).

Effect of Adolescent Smoking
Adolescent reported smoking behavior (yes/no, n = 663) was not 
associated with the methylation level of any of the 23 CpGs detected 
in the maternal smoking EWAS (full results of the adolescent 
smoking EWAS: Supplemental Table S10). The p  values, effect 
sizes and standard errors are reported in Table 2. Adding active 
adolescent smoking to the main model did not change the effect 
size for the effect of maternal smoking on CpG methylation. An 

FIGURE 2 | Forrest plot for the epigenome-wide association study with maternal smoking as predictor and individual CpG sites as outcome, adjusted for sex, offspring 
age, age of the mother, birthweight, gestational weight gain, maternal alcohol consumption during pregnancy, maternal school level, maternal prepregnancy BMI, family 
income during pregnancy, cell count, and batch effects. Stratified by models without further adjustment (n = 790), adjustment for paternal smoking (n = 692), passive 
smoking (n = 530), and adolescent smoking (n = 663). X-axis: effect size from the linear mixed effects model and confidence interval; Y-axis: individual CpGs.
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TABLE 2 | CpGs associated with maternal smoking during pregnancy with UCSC gene annotation and model p-values, beta-coefficients and standard errors from the epigenome wide association study. The 
Bonferroni significance threshold is 1.06 × 10–7.

Chromosome ID Function Gene Location UCSC_CpG_Islands_Name Relation_to_
UCSC_CpG_

Island

P.Value Coefficient Standard 
Error

7 cg04180046 intronic MYO1G Body chr7:45002111-45002845 Island 8.93E-31 0.059451122 0.004899729

7 cg12803068 intronic MYO1G Body chr7:45002111-45002845 S_Shore 1.04E-22 0.083162901 0.008174077

15 cg05549655 intergenic CYP1A1,CYP1A2 TSS1500 chr15:75018186-75019336 Island 5.83E-19 0.032945838 0.003593891

7 cg25949550 intronic CNTNAP2 Body chr7:145813030-145814084 S_Shore 1.39E-18 –0.013562513 0.001496779

7 cg22132788 exonic MYO1G Body chr7:45002111-45002845 Island 5.43E-17 0.043777558 0.005088082

7 cg19089201 UTR3 MYO1G 3’UTR chr7:45002111-45002845 Island 2.76E-15 0.040922837 0.005057333

1 cg14179389 intronic GFI1 Body chr1:92945907-92952609 Island 1.53E-14 –0.032050625 0.004077831

7 cg11207515 intronic CNTNAP2 Body 3.80E-13 –0.033065175 0.004462166

15 cg13570656 intergenic CYP1A1,CYP1A2 TSS1500 chr15:75018186-75019336 Island 4.33E-13 0.037564996 0.005082323

15 cg11924019 intergenic CYP1A1,CYP1A2 TSS1500 chr15:75018186-75019336 Island 6.07E-12 0.029699312 0.004240665

15 cg12101586 intergenic CYP1A1,CYP1A2 TSS1500 chr15:75018186-75019336 Island 6.16E-12 0.033228312 0.004745949

15 cg22549041 intergenic CYP1A1,CYP1A2 TSS1500 chr15:75018186-75019336 Island 1.02E-11 0.045041658 0.00650389

15 cg18092474 intergenic CYP1A1,CYP1A2 TSS1500 chr15:75018186-75019336 Island 2.95E-11 0.03943739 0.005831697

5 cg17924476 intronic AHRR Body chr5:320788-323010 S_Shore 1.16E-10 0.021888448 0.003342621

15 cg17852385 intergenic CYP1A1,CYP1A2 TSS1500 chr15:75018186-75019336 Island 2.05E-10 0.025807923 0.003996831

16 cg00253658 intergenic FTO, LOC100996338 4.50E-10 0.032150112 0.005079598

X cg04224247 intronic WWC3 5’UTR chrX:9982513-9984583 Island 9.01E-10 –0.029045508 0.004673566

5 cg05575921 intronic AHRR Body chr5:373842-374426 N_Shore 1.26E-09 –0.020194441 0.003278542

15 cg00213123 intergenic CYP1A1,CYP1A2 TSS1500 chr15:75018186-75019336 Island 5.06E-09 0.013568664 0.002291017

10 cg15507334 upstream FRMD4A TSS200 5.57E-09 0.023297316 0.003944714

7 cg15578140 ncRNA_intronic MIR548T Body 8.41E-09 0.017756893 0.003043603

5 cg01899089 intronic AHRR Body chr5:370185-370422 N_Shore 1.06E-08 –0.015519815 0.002679093

2 cg24935556 intergenic APOB, LOC645949       3.37E-08 –0.012281317 0.002198374
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EWAS of adolescent smoking did not detect any associations 
with CpG methylation levels at genome-wide significance p < 
1.06 × 10−7 (Supplemental Table S9). We performed a stratified 
analysis for adolescents who were smoking, but were not exposed 
to maternal smoking during pregnancy, versus those who were 
exposed. Comparison of the beta coefficients suggested a stronger 
effect of maternal smoking than of adolescent smoking; for the 
group of not exposed adolescent smokers, the beta coefficients 
were smaller than the ones for those exposed to maternal smoking, 
but none of the CpGs were significantly associated with adolescent 
smoking (Figure 3, Supplemental Tables S11 and S12).

Cardiometabolic Variables
Analyses that examined the methylation levels at the 23 
CpGs associated with maternal smoking and cardiometabolic 
risk factors in the entire study population and separately for 
male and female, showed methylation levels at two CpGs 
(cg00253568 and cg00213123, located in the FTO and CYP1A1 
region) significantly associated with TG (cg00253568, full study 
population; coefficient, 1.97; standard error, 0.63; Bonferroni 
p value, 0.041), diastolic blood pressure (cg00253568, female 
subset; coefficient, 3.06; standard error, 0.91; Bonferroni p 
value, 0.021), and HDL-C (cg00213123, male subset; coefficient, 

FIGURE 3 | Adolescent smoking, stratified by exposure to maternal smoking during pregnancy, and compared to the effect of maternal smoking during pregnancy 
(maternal smoking n = 790, adolescent smoking, maternal smoking n = 168, adolescent smoking, no maternal smoking n = 495). Models adjusted for sex, offspring 
age, age of the mother, birthweight, gestational weight gain, maternal alcohol consumption during pregnancy, maternal school level, maternal prepregnancy BMI, 
family income during pregnancy, cell count, and batch effects. X-axis: effect size from the linear mixed effects model and confidence interval; Y-axis: individual CpGs. 
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6.72; standard error, 2.04; Bonferroni p value, 0.025), whereas 
almost all of the 23 CpGs showed trends of either hyper- or 
hypomethylation in association with cardiometabolic variables, 
indicating a potentially long lasting effect of maternal smoking 
on cardiometabolic health of the offspring (Boxplots for 
cardiometabolic variables, stratified by exposure to maternal 
smoking: Supplemental Table S5).

Effect of SNPs on the Association Between CpG 
Methylation and Maternal Smoking
When adding the SNPs that were associated with the identified 23 
CpGs in this study to the main model, the significant association 
between CpG methylation and maternal smoking persisted 
(Supplemental Table S13). Furthermore, the SNPs were not 
significantly associated with exposure to maternal smoking 
during pregnancy. This means that the association between DNA 
methylation and maternal smoking during pregnancy seems to 
be independent of SNPs, highlighting the potential importance 
of environmental influences on DNA methylation.

DISCUSSION

In this study, we showed associations between in utero maternal 
smoking exposure and CpG methylation in whole-blood DNA 
from adolescents, independent of paternal smoking during 
the period of pregnancy, cumulative passive smoke exposure, 
and adolescent smoking. Additionally, we showed a trend for 
dose-dependent effects of maternal smoking on offspring CpG 
methylation levels. The CpG methylation level associations with 
maternal smoking are in accordance with previous findings 
at birth (Joubert et al., 2016), during childhood (Rzehak 
et al., 2016), adolescence (Lee et al., 2015), and in middle age 
(Sun et   al., 2013). Apart from cg24935556 (APOB), all CpGs 
identified in this study were identified in the meta-analysis by 
Joubert et al. (2016).

We did not detect associations between paternal smoking 
during pregnancy, adolescent smoking, or passive smoking 
exposure and DNA methylation. Our findings suggest that 
maternal smoking during pregnancy induces long-lasting DNA 
methylation changes in the offspring established by adolescence, 
which are not greatly modified by postnatal smoke exposure. 
Furthermore, we found that methylation levels at two CpGs 
(cg00253568 and cg00213123, located in the FTO and CYP1A1 
region) identified in association with maternal smoking during 
pregnancy were also associated with cardiometabolic health 
variables, suggesting that maternal smoking during pregnancy 
may induce changes that affect offspring cardiometabolic health.

Maternal Smoking
Differential hypermethylation associated with AHRR, 
CNTNAP2, CYP1A1, FRMD4A, GFI1, MYO1G, and CYP1A1 
has been shown previously in the same CpGs that we 
identified (Rotroff et al., 2016; Tehranifar et al., 2018). A 
study analyzing the associations between maternal smoking 
during pregnancy and adolescent CpG methylation levels in 

a discovery population of 132 and a replication cohort of n 
= 447 also showed methylation levels associated to maternal 
smoking within MYO1G, CNTANAP2, GFI1, CYP1A1, and 
AHRR but did not analyze the effect of any other sources of 
smoke exposure on CpG methylation levels (Lee et al., 2015). 
The majority of CpG sites in the meta-analysis by Joubert et 
al. (2016) were identified with the same direction of effect 
as in our study. Given Joubert et al. analyzed cord blood 
and our study used whole blood, these findings demonstrate 
consistent methylation patterns over different tissue types and 
time of sampling, which suggests lasting effects of maternal 
smoking during pregnancy on offspring DNA methylation. The 
specific methylation sites that we identified are consistent with 
previous reports in neonates (from cord blood) and middle-
age populations [whole blood, lymphocytes (mononuclear)] 
(Philibert et al., 2013; Zeilinger et al., 2013). This establishes 
a high consistency of DNA methylation markers related to 
maternal smoking during pregnancy. Such lifetime persistence 
and consistency are essential prerequisites for using DNA 
methylation as a valid biomarker for exposure and potentially 
a predictor for future adverse health outcomes. Therefore, this 
study fills the gap in the literature confirming stable changes in 
DNA methylation in adolescence.

Overall, the findings from our study suggest that methylation 
changes are induced in early life and persist into adolescence. 
Maternal smoking during pregnancy potentially exposes the 
fetus to cigarette-related chemicals and toxins leading to an early 
life “programming” effect that persists into adolescence and 
potentially affects long-term health.

Paternal Smoking Effects
There are fewer studies examining the effect of paternal than 
maternal smoking on offspring health, although prepregnancy 
exposure to paternal smoking is associated with a higher risk 
of leukemia, childhood cancers, and asthma in the offspring 
(Jenkins et al., 2017).

Analyses in the ALSPAC study suggested associations between 
paternal prepregnancy smoking and offspring BMI (Pembrey 
et al., 2005). In this study, 166 fathers were identified who started 
smoking before their offspring was aged 11 years. Compared to the 
nonsmoking fathers and fathers with later onset of smoking, the 
male offspring of fathers who commenced smoking before they 
were 11 years old had a higher BMI at 9 years of age. When tested 
in the Raine study with paternal smoking during pregnancy and 
BMI of the offspring at 16 years of age, a significant association  
(p = 0.008) was found after adjusting for age and sex.

In another study, Jenkins et al. used the Illumina 450K 
BeadChip to examine the effect of paternal cigarette smoking on 
sperm DNA methylation (Jenkins et al., 2017) in 78 male never 
smokers compared to 78 smokers. They showed that 141 CpG 
loci were differentially methylated in the sperm of smokers and 
suggested transgenerational inheritance. In our study, we did not 
find any effects of paternal prepregnancy smoking on offspring 
whole-blood DNA methylation, possibly due to our sample being 
insufficiently statistically powered. It is also possible that the 
effect of paternal smoking might be less prominent and too small 
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to detect given our sample size. However, the inability to detect 
associated CpG methylation at genome-wide significance, while 
being able to detect a large number of CpGs with methylation 
levels associated maternal smoking, suggests a dominant effect of 
maternal smoke exposure.

Adolescent Smoking
There are some studies that have consistently shown cross-
sectional associations of CpG methylation with current smoking 
in adults and adolescents. For example, the CpG cg05575921, 
mapped to AHRR in our study, has been associated with smoking 
in a recent study (Li et al., 2018). Similarly, a study that analyzed 
the effect of smoking on several timepoints and after smoking 
cessation (Wilson et al., 2017) showed that cg05575921 and five 
other CpGs related to AHRR associated with smoking. Another 
study by Lee et al. in a Korean population with a sample size 
of 100 (31 current, 30 former, and 39 never smoker) showed 
similar results, with the strongest association again being with 
cg05575921 (Lee et al., 2016).

A limitation of each of these studies that have examined the 
effect of adolescent smoking on DNA methylation is attributing 
the findings to current smoking without consideration of the 
possible effects of in utero exposure in the form of maternal 
smoking during pregnancy. This is very likely a complication, 
as offspring of maternal smokers are more likely to smoke 
themselves (Gilman et al., 2003; Rosemary et al., 2012). Within 
our study, 55% of adolescent smokers had mothers who smoked.

In the current study, we addressed this issue by running 
separate analyses for those adolescents who smoked themselves 
and were exposed to maternal smoking during pregnancy versus 
the ones who were not exposed. This showed that the beta 
coefficients in the adolescent smokers who were also exposed to 
maternal smoking were most similar to the CpGs associated with 
maternal smoking in our main analysis. Although the sample size 
is too small to show significant effects, this suggests a dominant 
effect of in utero smoke exposure. This tendency can be seen in 
Supplemental Figure 4, when comparing the methylation change 
between the study participants not exposed to any smoking, those 
smoking at 17 years, those exposed to maternal smoking during 
pregnancy, and those exposed to both types of smoking. In this 
barplot, the exposure to maternal smoking during pregnancy 
causes the majority of the methylation change, mostly equal to 
those exposed to maternal smoking and smoking themselves.

Passive Smoking
To our knowledge, there are no studies to date analyzing the 
effect of passive smoke exposure over the life course on DNA 
methylation, despite the evidence that passive smoking is 
associated with manifold diseases such as chronic obstructive 
pulmonary disease, wheeze, asthma, and food allergy, as well as 
cancer (Le-Ha et al., 2013; Saulyte et al., 2014; Vardavas et al., 
2016). A study in the Avon Longitudinal Study of Parents and 
Children analyzed passive smoke exposure as paternal smoking 
during pregnancy and mothers exposure to smoking of her father 
and mother but did not assess the offspring’ s postnatal passive 
smoke exposure (Richmond et al., 2018).

In our analysis, we did not detect associations between 
lifetime passive smoke exposure and CpG methylation in 
adolescence. The accuracy and reliability of measurement of 
passive exposure may be limited. However, validity is enhanced 
in the current study by repeated longitudinal measures, which 
act as internal validation and prospective collection of data. The 
consistent answering of the question on maternal and paternal 
smoking over eight follow-ups, rather than from a single time 
point, increases the likelihood of a valid measure.

Cardiometabolic Risk-Related Genes
We observed increased methylation, within the FTO gene 
(cg00253658; chr16:54210496), in the offspring of mothers 
who had smoked during pregnancy. Variants in this gene have 
previously been shown to associate with birthweight and the 
development of obesity and diabetes (Frayling et al., 2007) 
Their functional impact may be in modifying expression of 
the IRX3 and IRX5 genes, rather than FTO itself (Smemo 
et  al., 2014). Others have found hypermethylation in the 
region of this gene in relation to maternal smoking, in African 
American and Hispanic populations although in a different 
CpG, namely cg03687532 (chr16:54228358) (Tehranifar et al., 
2018). Furthermore, methylation levels are FTO, and CYP1A1 
mapped CpGs were significantly associated with TG, diastolic 
blood pressure and HDL-C in our study, suggesting correlation 
with early life environments (i.e., smoke exposure) and later 
cardiometabolic health.

Another study found that CpGs associated with exposure 
to maternal smoking during pregnancy were also associated 
with all cause as well as cardiovascular mortality. This study 
identified significant associations for all cause and cardiovascular 
specific mortality with the CpGs cg05575921 and cg06126421 
(Zhang et  al., 2016). In our study, cg05575921 was associated 
with maternal smoking during pregnancy but not significantly 
associated with any of the cardiometabolic risk factors. However, 
methylation levels at cg05575921 were associated with the lowest 
p value across the genome with systolic blood pressure in the male 
and female combined analysis (uncorrected p = 0.02, Bonferroni 
corrected = 0.47), the lowest p value in the female only association 
with systolic blood pressure (uncorrected p = 0.006, Bonferroni 
corrected = 0.14), among the top 5 lowest p values in the female 
only with diastolic blood pressure analysis (uncorrected p = 
0.017, Bonferroni corrected = 0.39), and methylation levels 
at this CpG with the second lowest p value in the female only 
analysis with TG (uncorrected p = 0.01, Bonferroni corrected = 
0.34). Considering the low sample sizes, especially of the female 
subset (n = 370), there may be a suggestive association.

The beforementioned study by Parmar et al. (2018) found a 
most significant association between CpG methylation levels and 
maternal prenatal smoking with waist circumference, TG, and 
blood pressure with cg14179389 (GFI1). As stated previously, 
this CpG was also among the 23 CpGs identified as having 
methylation levels significantly correlated with maternal smoking 
in our study, but methylation levels for cg14179389 were not 
significantly associated with cardiometabolic risk in our analysis. 
For the female subset in the TG analysis, however, methylation 
at this CpG had the lowest uncorrected p value (uncorrected  
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p = 0.01, Bonferroni corrected = 0.27). This sex-specific tendency 
seems to be in line with what Parmer et al. observed, as they 
stated that adjusting their model for sex, age, and adult own 
smoking strengthened the association. Furthermore, considering 
they found associations with a Bonferroni corrected p ≤ 0.01 
within a meta-analysis, accessing a sample size of 18,212 adults, 
our findings only showing tendencies with a maximum of n = 
870 is not surprising.

Strengths and Limitations
Strengths of this study are the prospective and repeated measures 
(at eight time points) of cigarette smoke exposure in ~800 
participants. The internal validation of cross-checking answers 
across time increases the reliability of the questionnaire data. 
Our findings accord with the same CpG sites that associate with 
smoking in studies that have used cotinine levels to confirm 
smoking status (Joubert et al., 2012; Philibert et al., 2013; Lee 
et al., 2016; Morales et al., 2016; Rotroff et al., 2016). DNA 
methylation sites identified in our study are in gene regions 
previously associated with maternal smoking and are in the same 
direction of association (Joubert et al., 2016).

While cotinine is considered the gold standard for evaluation 
of smoking, a number of studies have shown very high 
correlations between cotinine levels and questionnaire data, up 
to 97% (Patrick et al., 1994; Parazzini et al., 1996; Vartiainen 
et al., 2002; Dolcini et al., 2003). A subset of the Raine study 
mothers (n = 238) had cotinine measures available at 28 weeks 
of gestation, and, as previously shown, cotinine concentration 
significantly differed between the groups of reported number of 
cigarettes smoked, highlighting the validity of the Raine study 
maternal smoking questionnaire data (Stick et al., 1996).

A further strength of our study is the ability to adjust for a 
wide range of possible confounders, in particular socioeconomic 
status, which is associated with smoking behavior and DNA 
methylation (McDade et al., 2019). However, it is still possible 
that other unmeasured environmental factors in pregnancy 
or postnatally could be influencing or modifying some of 
these findings. Owing to the deeply phenotyped character 
of the Raine study, we were able to adjust all the models for 
multiple sources of smoke exposure, narrowing down to the 
specific effect of maternal smoking on DNA methylation in 
the offspring. The fact that we found associations between 
methylation levels at the identified CpGs and cardiometabolic 
health-related variables suggests correlations between smoke 
exposure and offspring health.

A further strength of our study is that we integrated genetic 
(SNPs) and epigenetic (CpG methylation) information and 
assessed if the association between CpG methylation and maternal 
smoking during pregnancy still persists when accounting for 
SNPs. To our knowledge, this was not done to this extent in any 
DNA methylation wide association study previous to ours.

The majority of CpG sites in the meta-analysis by Joubert et al. 
(2016) were identified with the same direction of effect as in our 
study. Given that Joubert et al. analyzed cord blood and our study 
used whole blood, these findings demonstrate consistent DNA 
methylation patterns over different sample types and time points 
in response to maternal smoking during pregnancy.

A potential limitation is that we only examined methylation 
from whole-blood DNA, which might not be the site of change in 
association with smoking. Few population studies have cell-sorted 
DNA methylation, and our findings suggest that some of these 
changes may be induced across multiple cell types. Furthermore, 
the sample sizes of some of the analysis that we conducted are 
below 200, making them potentially underpowered to detect 
small epigenetic changes.

It is known that up to 6% of the probes in the Illumina 
Methylation450 BeadChip kit could give false positives, due to 
known cross-reactivity. Furthermore, the array only covers 2% 
of the epigenome CpG DNA methylation sites (Kurdyukov and 
Bullock, 2016). To mitigate some of these limitations, we performed 
thorough preprocessing and QC steps to remove any problematic 
probes and samples. In addition, we accounted for batch effects 
in all our models and used a conservative Bonferroni correction 
for multiple testing to minimize any false positives that may have 
arisen due to technical issues from probes on the 450k array.

In our cohort, it is encouraging that we show similar 
associations between in utero smoke exposure and CpG 
methylation, both in amount and specific sites (Breton et al., 2017). 
However, performing independent methylation analysis such as 
pyrosequencing would have further strengthened the inferences. 
Lastly, for the dose–response relationship, the questionnaire 
variable for the number of cigarettes consumed needs to be 
analyzed with caution. With questionnaire data, there is always a 
chance of recall bias or underreporting, especially when it comes 
to behaviors such as cigarette or alcohol consumption.

CONCLUSIONS

We have shown associations between maternal smoking 
during pregnancy and offspring DNA methylation at 23 
CpGs in adolescents at age 17 years. These associations were 
predominantly driven by maternal smoking and not modified 
by paternal, passive, or adolescent smoking. Furthermore, we 
are unable to detect genome-wide significant associations with 
paternal smoking and passive smoke exposure at any CpG sites. 
Our data that suggest DNA methylation changes in offspring 
are likely due to the direct effect of maternal smoking during 
pregnancy, rather than current, passive, or paternal smoking. 
Future studies on smoking habits and DNA methylation should 
adjust for maternal smoking, in addition to socioeconomic 
status of the mother and/or offspring, depending on the age of 
the offspring. The specific methylation sites that we identified 
are in agreement with previous reports in neonates (from cord 
blood) and middle aged populations [whole blood, lymphocytes 
(mononuclear)] (Philibert et al., 2013; Zeilinger et al., 2013). 
This establishes a high consistency of DNA methylation markers 
related to maternal smoking during pregnancy. Such persistence 
and consistency are essential prerequisites for using DNA 
methylation as a valid biomarker for exposure and potentially a 
predictor for future adverse health outcomes. Furthermore, we 
showed that maternal-smoking-induced methylation changes 
are associated with cardiometabolic variables, suggesting early 
life “programming” of later life cardiometabolic health.
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Breast cancer (BrC) is the most frequent malignancy and the leading cause of cancer 
death among women worldwide. Approximately 70% of BrC are classified as luminal-
like subtype, expressing the estrogen receptor. One of the most common and effective 
adjuvant therapies for this BrC subtype is endocrine therapy. However, its effectiveness is 
limited, with relapse occurring in up to 40% of patients. Because microRNAs have been 
associated with several mechanisms underlying endocrine resistance and sensitivity, they 
may serve as predictive and/or prognostic biomarkers in this setting. Hence, the main 
goal of this study was to investigate whether miRNAs deregulated in endocrine-resistant 
BrC may be clinically relevant as prognostic and predictive biomarkers in patients treated 
with adjuvant endocrine therapy. A global expression assay allowed for the identification 
of microRNAs differentially expressed between luminal BrC patients with or without 
recurrence after endocrine adjuvant therapy. Then, six microRNAs were chosen for 
validation using quantitative reverse transcription polymerase chain reaction in a larger set 
of tissue samples. Thus, miR-30c-5p, miR-30b-5p, miR-182-5p, and miR-200b-3p were 
found to be independent predictors of clinical benefit from endocrine therapy. Moreover, 
miR-182-5p and miR-200b-3p displayed independent prognostic value for disease 
recurrence in luminal BrC patients after endocrine therapy. Our results indicate that 
selected miRNAs’ panels may constitute clinically useful ancillary tools for management 
of luminal BrC patients. Nevertheless, additional validation, ideally in a multicentric setting, 
is required to confirm our findings.

Keywords: Breast cancer, luminal subtype, endocrine therapy, endocrine resistance, biomarkers, microRNAs

INTRODUCTION

Breast cancer (BrC) is the second most common cancer worldwide and the most frequent cancer 
among women. Despite advances in screening, early diagnosis, and treatment strategies, BrC still 
constitutes the leading cause of cancer-related death among women (Bray et al., 2018). BrC is a 
highly heterogeneous disease with distinct biological features and clinical outcomes. Based on 
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gene expression profiling, BrC is often classified into four well-
established intrinsic subtypes (Table 1) (Sørlie, 2004; Parker 
et al., 2009). However, due to logistic and economical constraints, 
surrogate approaches have been developed for routine clinical 
practice, using widely available immunohistochemistry (IHC) 
assays for estrogen receptor (ER), progesterone receptor (PR), 
and Ki-67 index, together with IHC and/or in situ hybridization 
for human epidermal growth factor 2 receptor (HER2) 
overexpression/amplification (Senkus et al., 2015).

In addition to surgery, therapeutic strategies for BrC patients 
include neoadjuvant, adjuvant, and palliative treatments. 
Adjuvant systemic therapy, aiming to prevent BrC recurrence 
by eradicating micrometastases present at diagnosis, includes 
three modalities: chemotherapy, anti-HER2 therapy (e.g., 
trastuzumab), and endocrine therapy (ET). ER and HER2 
status are used as predictive factors to select patients for specific 
adjuvant therapies (Table 1). ET, which blocks ER activation, 
is recommended for patients with ER-positive disease, to stop 
or slow the growth of hormone-sensitive BrC (Curigliano et 
al., 2017). Most luminal A BrC tumors do not require adjuvant 
chemotherapy, except those with the highest risk of relapse, 
whereas most luminal B tumors, especially those with HER2 
overexpression, benefit from chemotherapy in addition to 
trastuzumab (Slamon et al., 2011). Although ET results in 
substantial improvement of patients’ outcome, resistance to 
treatment is a major hurdle (Zhang et  al., 2014a), affecting 
30–40% of ER-positive BrC patients, with all those treated in the 
metastatic setting eventually progressing (Normanno et al., 2005; 
Murphy and Dickler, 2016). According to the 3rd ESO–ESMO 
International Consensus Guidelines, endocrine resistance may be 
defined as primary endocrine resistance, when patients relapse 

within the first 2 years of adjuvant ET, or as secondary (acquired) 
endocrine resistance, when patients relapse while on adjuvant 
ET after the first 2 years of treatment or within 12 months after 
completing treatment (Cardoso et al., 2017).

MicroRNAs (miRNAs), a class of small (~22 nucleotides) 
non-coding single-stranded RNAs, have shown promise 
for assisting in clinical management of BrC as diagnostic, 
prognostic, or predictive biomarkers (Amorim et al., 2016), 
namely, through assessment in liquid biopsies (plasma, serum, 
and urine) (Schwarzenbach et al., 2014). Indeed, several 
studies have associated miRNAs deregulation with endocrine 
resistance and prognosis in luminal BrC (Rodriguez-Gonzalez 
et al., 2011; Muluhngwi and Klinge, 2015; Barbano et al., 
2017; Muluhngwi and Klinge, 2017). Whereas decreased ER 
expression and endocrine resistance may be due to miR-
221/222 overexpression (Zhao et al., 2008; Rao et al., 2011; 
Wei et al., 2014; Song et al., 2017), miR-342-3p expression 
positively correlated with ER mRNA transcript levels, being 
downregulated in tamoxifen-refractory BrC (Cittelly et  al., 
2010). Moreover, miRNAs regulating growth, survival, and 
apoptosis of BrC cells may also be implicated in loss of 
responsiveness to ET by endowing tumor cells with alternative 
proliferative and survival stimuli (Thiantanawat et al., 2003). 
Indeed, miR-519a associated with worse prognosis in luminal 
BrC patients, directly targeting the transcripts of cyclin 
dependent kinase inhibitor 1A (CDKN1A) and phosphatase and 
tensin homolog (PTEN), allowing for enhanced signaling of the 
phosphoinositide3-kinase (PI3K) growth and survival pathway 
(Ward et al., 2014) and reducing sensitivity and tumor cell 
apoptosis in response to apoptotic stimuli (Breunig et al., 2017). 
Furthermore, miRNA-mediated endocrine resistance might be 

TABLE 1 | Breast cancer molecular subtypes characterization (Perou et al., 2000; Sørlie et al., 2001; Oh et al., 2006; Eroles et al., 2012; Haque et al., 2012; 
Network, 2012; Howell, 2013; Zhang et al., 2014a; Senkus et al., 2015).

Breast cancer subtypes Clinicopathological surrogate markers Signature genes Adjuvant systemic 
therapeutic options

Luminal A ER+

PR high1

HER2-

Ki-67 low2

ESR1 and/or PGR, KRT8/18, GATA3, 
XBP1, FOXA1, and ADH1B

ET alone in most of cases + 
ChT if high tumor burden 

(≥N3, ≥T3)

Luminal B HER2- ER+

HER2-

Ki-67 high or PR low

ESR1 and/or PGR, KRT8/18, FGFR1, 
ERBB1, MKI67 and/or CCNE1, CCNB1, 

and MYBL2

ET + ChT for the most of 
cases

HER2+ ER+

HER2+

Any Ki-67
Any PR

ChT + anti-HER2 + ET for 
all patients

Basal-like ER-

PR-

HER2-

KRT5/6, KRT17, ERBB1 and/or KIT, 
FOXC1, TP63, CDH3, VIM, and LAM

ChT

HER2-enriched HER2+

ER-

PR-

ERBB2 and GRB7 ChT + anti-HER2

1Suggested cutoff value is 20%. 2Ki-67 scores should be interpreted in the light of local laboratory median values. ER, estrogen receptor; PR, progesterone receptor; HER2, 
human epidermal growth factor receptor 2; ESR1, estrogen receptor 1; PGR, progesterone receptor; KRT, keratin; GATA3, GATA binding protein 3; XBP1, X-box binding protein 1; 
FOX, forkhead box; ADH1B, alcohol dehydrogenase 1B (Class I), beta polypeptide; FGFR1, fibroblast growth factor receptor 1; ERBB, Erb-B2 receptor tyrosine kinase; MKI67, 
marker of proliferation Ki-67; CCN, cyclin; MYBL2, MYB proto-oncogene like 2; MYBL2, MYB proto-oncogene like 2; KIT, KIT proto-oncogene receptor tyrosine kinase; TP63, tumor 
protein P63; CDH, cadherin; VIM, vimentin; LAM, laminin; GRB7, growth factor receptor bound protein 7; ChT, chemotherapy; ET, endocrine therapy; N, nodal stage; T, tumor size.
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related with epithelial-to-mesenchymal transition (EMT) and 
metastatic potential of BrC cells, as members of the miR-200 
family (miR-200f), which act as major regulators of EMT, were 
found downregulated in endocrine-resistant BrC vs. endocrine-
sensitive cell lines (Burk et al., 2008; Manavalan et al., 2013).

Herein, we aimed to identify miRNAs that might predict 
endocrine resistance in luminal BrC patients undergoing ET, by 
comparing expression levels between BrC samples of patients 
that developed endocrine resistance with those that did not, 
after long-term follow-up. Expression levels of the miRNAs 
identified might allow for stratification of luminal BrC cases 
into a low-risk patient subgroup, for which additional adjuvant 
systemic treatment can be safely omitted, and a high-risk group 
comprising patients at high risk for recurrence, allowing for 
detection of resistance to ET at an early stage.

MATERIALS AND METHODS

Patients and Samples Collection
For this study, 139 BrC tissue samples were prospectively 
collected, after informed consent, from patients with luminal 
BrC and without metastasis at diagnosis, aged between 41 
and 75 years, submitted to adjuvant ET (with or without other 
adjuvant modalities), after first-line surgical treatment, from 
1995 to 2002 at the Portuguese Oncology Institute of Porto 
(IPO-Porto). Furthermore, 26 normal breast tissue samples were 
collected from reduction mammoplasties of contralateral breast 
from BrC patients. All these specimens were obtained from 
patients without BrC hereditary syndrome and no evidence 
of preneoplastic/neoplastic lesions. After surgical resection, 
samples were immediately frozen at −80°C. Relevant clinical 
and pathological data were retrieved from patients’ charts. 
Five-micrometer frozen sections were cut and stained with 
hematoxylin–eosin (H&E) staining for confirmation of BrC by 
an experienced pathologist, ensuring that samples contained 
at least 70% of tumor cells, and confirm that tissues obtained 
from reduction mammoplasties harbored normal epithelial 
cells. This study was approved by institutional ethical committee 
(CES-IPOFG-120/015).

BrC Subtyping
IHC was performed to identify the molecular subtype of each 
tumor tissue included in this study. Commercially available 
antibodies were used for ER (Clone 6F11, mouse, Leica), PR 
(Clone 16, mouse, Leica), HER2 (Clone 4B5, rabbit, Roche), 
and Ki-67 (Clone MIB-1, mouse, Dako). IHC was carried out 
in BenchMark ULTRA (Ventana, Roche) using ultraView 
Universal DAB Detection Kit (Ventana, Roche) according to 
the manufacturer’s instructions. Each case was evaluated by an 
experienced pathologist; it was classified according to the College 
of American Pathologists recommendations (Fitzgibbons et al., 
2014) and categorized according to ESMO guidelines (Senkus 
et al., 2015). Cutoffs for Ki-67 and PR expression were set at 15% 
and 25% of positive cells, respectively, according to the optimized 
protocols of Department of Pathology.

RNA Extraction From Fresh Frozen 
Tissues
Total RNA was extracted from fresh frozen tissues using the 
TRIzol® Reagent (Invitrogen, Carlsbad, CA, USA) according 
to the manufacturer’s recommendations. RNA concentrations 
and purity ratios were ascertained using a NanoDrop Lite 
spectrophotometer (NanoDrop Technologies, Wilmington, DE, 
USA), and RNA samples were stored at −80ºC.

MiRNA cDNA Synthesis
cDNA synthesis was performed in a Veriti® Thermal Cycler 
(Applied Biosystems, Foster City, CA, USA) using miRCURY 
LNA™ Universal RT microRNA PCR (Exiqon, Vedbaek, 
Denmark) following the manufacturer’s instructions. cDNA 
samples were then stored at −20ºC.

Global Focus MiRNA PCR Panel
Global miRNAs’ expression was evaluated using a Cancer Focus 
microRNA PCR Panel, 384-well (V4.R) (Exiqon). Each plate, 
besides containing 80 lyophilized LNA™ miRNA primer sets 
focusing on cancer-relevant human miRNAs, also contained 
interplate calibrators, candidate reference genes [miRNAs and 
small nuclear RNAs (snRNAs)], and one water blank. In each 
well, 0.05 μl of cDNA previously synthesized, 5 μl of SYBR® Green 
master mix (Exiqon), and 4.95 μl of nuclease-free water (Exiqon) 
were added. Quantitative reverse transcription polymerase chain 
reactions (RT-qPCR) were performed in the LightCycler 480 
instrument (Roche Diagnostics, Manheim, Germany) according 
to the following conditions: 95ºC for 10 min and 45 cycles at 
95ºC for 10 s and 60ºC for 1 min.

The median values of miR-103a-3p, miR-107, miR-191-5p, and 
SNORD38B were used for normalization, as these genes were the 
most stably expressed candidate reference genes (Supplementary 
Figure 1). Differences in expression values for target miRNAs were 
calculated using the 2−ΔΔCT method. The selection of deregulated 
miRNAs for further validation was performed considering 
prominent fold change, good sensitivity for qRT-PCR detection 
(Ct values, in general, below 30), and novelty.

Individual Assays
Initially, cDNA samples were diluted 80× in sterile distilled water 
(B. Braun, Melsungen, Germany). Then, on ice, per each well of 
a 384-well plate, the following were added: 5 μl of NZYSpeedy 
qPCR Green Master Mix (2×) (NZYTECH, Portugal), 1 μl of 
miRNA specific primer mix (microRNA LNA™ PCR primer set, 
Exiqon), and 4 μl of previously diluted cDNA. Each amplification 
reaction was performed in triplicate on a LightCycler 480 
instrument (Roche Diagnostics, Manheim, Germany). Each 
plate also contained two negative template controls. RT-qPCR 
protocol consisted of a denaturation step at 95ºC for 2 min, 
followed by 40 amplification cycles at 95ºC for 5 s and 60ºC for 
20 s. Melting curve analysis was performed according to the 
instrument’s manufacturer’s recommendations.

SNORD38B was used as a reference gene for data 
normalization, as this gene was the most stably expressed over 
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the whole range of the samples used for the global expression 
assay. Notwithstanding, the stability of SNORD38B expression 
was empirically validated in additional samples. Relative 
miRNA expression in each sample was calculated by the 2−ΔΔCT 
method (the target sequences of mature miRNAs analyzed are 
provided in Supplementary Table 1).

Statistical Analysis
Statistical analysis was performed using SPSS software (SPSS 
Version 24.0, Chicago, IL), and two-tailed p values were 
considered statistically significant when p < 0.05. Graphs were 
constructed using GraphPad 6 Prism (GraphPad Software, USA).

MiRNA Expression Analysis
Fold changes for single miRNAs were calculated using the 2−ΔΔCT 
method (Livak and Schmittgen, 2001).

Association Between MiRNA Expression  
and Clinicopathological Features
To ascertain statistical significance for continuous variables, 
comparisons were made between independent samples and non-
parametric Mann–Whitney U tests were performed. Spearman 
nonparametric correlation test was performed to assess the 
association between continuous variables. Chi-square test or 
Fisher’s exact test were used as appropriate to compare proportions 
between two groups.

Survival Analysis
Some clinicopathological features were grouped, including pT 
stage (T1 and T2 and T3 and T4), pN stage (N0 and N1 and 
N2 and N3), and grade [grade (G)1 and G2 and G3] (Lakhani, 
2012). Age was categorized into four groups (≤44, 45–64, 
65–74, and ≥75), and miRNA expression levels were categorized 
according to 25th or 75th percentile. All survival analyses were 
restricted to 15 years of follow-up. Cox regression univariable 

and multivariable models were computed to assess standard 
clinicopathological variables and miRNA prognostic value. 
Hazard ratios (HRs) along with respective 95% confidence 
interval (95% CIs) were reported. Multivariable Cox models only 
included the statistically significant variables. Kaplan–Meier with 
log rank test was used to construct and compare survival curves 
according to categorized miRNA expression levels. Endocrine 
resistance-free survival (ERFS) was defined as the time between 
surgery and the recurrence dates. Recurrences occurring after 
12 months of completing ET were not considered events for this 
analysis. Disease-free survival (DFS) was defined as the time 
between surgery date and recurrence date. Distant metastasis-
free survival (DMFS) was defined as the time between surgery 
and the development of distant metastases. For prognostic 
assessment of miRNAs combined in panels, the miRNAs that 
remained statistically significant in multivariable analysis were 
differently combined, considering the same categories used in 
previous survival analysis (expression above or below P25). The 
best panels were selected based on the individual markers value 
in the Cox model: better HR, smaller 95% CI and p value, as well 
as value in stratified analysis.

RESULTS

Characteristics of Study Populations
The discovery cohort (n = 16), used for global expression assay 
analysis, consisted of four luminal A and four luminal B tumors 
from BrC patients who relapsed, and the same number of patients 
who did not relapse after adjuvant ET. Patients who relapsed 
during adjuvant ET or within the first 12 months of completing 
adjuvant ET were considered endocrine-resistant (Table 2).

The validation cohort was composed of a total of 149 subjects, 
comprising 123 luminal BrC and 26 normal breast tissues. 
Among 34 cancer patients that recurred during follow-up time, 

TABLE 2 | Clinical and pathological data of luminal tumors included in the discovery cohort.

Molecular 
subtype

Age at diagnosis Grade Stage ChT RT Recurrency site Endocrine-
resistant

Patients 
who 
relapsed

Luminal A 82 G2 IIIA NO NO Liver YES
41 G3 IIA YES YES Bone YES
60 UNKN IA NO YES Contralateral breast NO
43 G2 IIB YES YES Lymph nodes NO

Luminal B 65 G3 IIIC YES YES Lung YES
63 G2 IIIA NO YES Bone YES
67 G2 IIB NO NO Bone NO
66 G3 IIIA NO NO Locoregional NO

Patients 
who did not 
relapse

Luminal A 70 G3 IIB NO YES

n.a. n.a.

68 G2 IIB NO YES
69 G2 IIIA NO NO
69 G2 IA NO YES

Luminal B 65 G3 IIIC YES YES
72 G3 IIIC NO YES
70 G1 IIB NO YES
73 G1 IIIC NO YES

ChT, chemotherapy; RT, radiotherapy; UNKN, unknown; n.a., not applicable.
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20 were considered endocrine-resistant. Clinical and pathological 
characteristics of patients and controls included in this study are 
shown in Table 3. Endocrine-sensitive and endocrine-resistant 
groups did not significantly differ concerning age distribution 
(p = 0.136). As expected, most of the endocrine-resistant cases 
were classified as luminal B (p = 0.011) and depicted high 
Ki-67 index (p = 0.001). Moreover, this group also showed a 
higher number of high-grade (G3) cases (p = 0.027). For the 

remaining clinicopathological features or treatment modalities, 
no significant differences were depicted.

Global Focus MiRNA PCR Panel Analysis
In the global expression assay, one luminal A case with recurrence 
was excluded from the analysis, due to low RT-qPCR success 
rate (25% of the miRNAs did not amplify, and the remaining 
showed Ct values higher than 30). Likewise, 3 (miR-202-3p, -206, 
and -20b-5p) out of the 80 miRNAs were excluded due to low 
real-time PCR success rates. MiRNAs with fold variation values 
higher than 1 were selected, resulting in a panel comprising 56 
miRNAs (Table 4).

Gene-Specific Assays
From the global expression assay analysis, miR-30b-5p, miR-
30c-5p, miR-181a-5p, miR-182-5p, miR-200b-3p, and miR-
205-5p were selected for further validation. All these miRNAs 
disclosed prominent fold change and good sensitivity for 
qRT-PCR detection, with different ranges of expression. MiR-
30b-5p was chosen because several studies focused on other 
members of the miR-30 family (miR-30f) and, to the best of 
our knowledge, its predictive potential for ET had not been 
assessed previously (Cheng et al., 2012; Bockhorn et al., 2013; 
Zhang et al., 2014b; D’aiuto et al., 2015; Yang et al., 2017). 
MiR-181a-5p and miR-200b-3p were selected to confirm the 
reported association with endocrine resistance in in vitro 
studies (Hiscox et al., 2006; Maillot et al., 2009; Manavalan 
et al., 2011; Vesuna et al., 2012; Manavalan et al., 2013). 
Furthermore, miR-182-5p was also selected to better ascertain 
its role in endocrine resistance due to controversial results in 
global focus miRNA PCR panel, since it was overexpressed in 
luminal B tumors from recurrent patients and downregulated 
in luminal A tumors from recurrent patients. Finally, miR-
30c-5p was chosen as a positive control since higher expression 
levels of this miRNA had been positively associated with 
benefit of ET, in multivariate analysis, in advanced ER-positive 
BrC (Rodriguez-Gonzalez et al., 2011).

Except for miR-205-5p expression (p = 0.001), miR-181a-5p 
(p = 0.004), miR-182-5p (p < 0.001), and miR-200b-3p (p < 
0.001), expression levels were significantly higher in luminal 
BrC tissues than in normal breast tissues (Figure 1), whereas no 
differences were depicted for the levels of the remaining miRNAs. 
Nonetheless, miR-30b-5p (p = 0.031), miR-30c-5p (p = 0.002), 
and miR-200b-3p (p = 0.021) were significantly downregulated 
in endocrine-resistant BrC samples compared to endocrine-
sensitive tumors (Figure 2).

Association Between MiRNA Expression 
and Clinicopathological Features
Higher miR-30b-5p and miR-30c-5p expression levels were found in 
tumors lacking HER2 overexpression (HER2-negative) (p = 0.010, 
p = 0.014, respectively). Conversely, lower miR-205-5p expression 
levels were found in high grade (G3) BrC (p = 0.009) compared 
to G1/G2 BrC (Figure 3). Moreover, miR-205-5p expression levels 
inversely correlated with patients’ age (R = −0.200, p = 0.027).

TABLE 3 | Clinical and pathological data of luminal tumors and normal breast 
samples included in the validation cohort.

Clinipathological features Endocrine-
sensitive

Endocrine-
resistant

NBr

Patients (n) 103 20 26
Age median (range) 61 (43–73) 59 (41–75) 54 (40–70)

61 (41–75)
Molecular subtype (%)
 Luminal A
 Luminal B

47 (45.6)
56 (54.4)

3 (15.0)
17 (85.0)

n.a.

Histological type (%)
 Invasive carcinoma of NST (IDC)
 Invasive lobular carcinoma
 Other special subtype carcinoma
 Mixed type carcinoma

89 (86.4)
5 (4.8)
1 (1.0)
8 (7.8)

17 (85.0)
2 (10.0)
1 (5.0)
0 (0.0)

n.a.

Progesterone receptor 
status (%)
 Positive
 Negative

85 (82.5)
18 (17.5)

13 (65.0)
7 (35.0)

n.a.

HER2 receptor status (%)
 Positive
 Negative

9 (8.7)
94 (91.3)

5 (25.0)
15 (75.0)

n.a.

Ki-67 index (%)
 <15%
 >15%
 UNKN

78 (75.7)
20 (19.4)
5 (4.9)

6 (30.0)
10 (50.0)
4 (20.0)

n.a.

Grade (%)
 G1
 G2
 G3
 Not determined

16 (15.5)
53 (51.5)
28 (27.2)
6 (5.8)

0 (0.0)
8 (40.0)
10 (50.0)
2 (10.0)

n.a.

Pathological T Stage (%)
 pT1
 pT2
 pT3
 pT4
 Not determined

30 (29.1)
50 (48.5)
3 (2.9)
5 (4.9)

15 (14.6)

5 (25.0)
13 (65.0)
0 (0.0)
1 (5.0)
1 (5.0)

n.a.

Pathological N Stage (%)
 pN0
 p N1
 p N2
 p N3
 Not determined

40 (38.8)
38 (36.9)
7 (6.8)
3 (2.9)

15 (14.6)

8 (40.0)
8 (40.0)
3 (15.0)
0 (0.0)
1 (5.0)

n.a.

Adjuvant RT
 Yes
 No
 Not determined

76 (73.8)
17 (16.5)
10 (9.7)

17 (85.0)
3 (15.0)
0 (0.0)

n.a.

Adjuvant ChT
 Yes
 No
 Not determined

37 (35.9)
50 (48.6)
16 (15.5)

11 (55.0)
7 (35.0)
2 (10.0)

n.a.

NBr, normal breast tissues; NST, no special type; IDC, invasive ductal carcinoma; 
HER2, human epidermal growth factor receptor 2; G, grade; RT, radiotherapy; 
ChT, chemotherapy; n.a., not applicable.
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Survival Analyses
The median follow-up time was 180 months (17.4–180 months). 
At 15 years of follow-up, 70 (56.9% of total) patients were alive, of 
whom 66 (53.7% of total) had no evidence of cancer. Moreover, 
from the 53 patients (43.1% of total) who died, death was due to 
BrC in 30 (24.4% of total).

Overall, in univariable analysis, most standard clinicopathological 
parameters were significantly associated with ERFS. Specifically, 
patients with HER2 positivity (HR = 2.91, p = 0.039), high Ki-67 
index (HR = 5.59, p = 0.001), high grade (G3) (HR = 2.84, p = 0.028), 
and luminal B subtype (HR  = 4.48, p = 0.017) disclosed shorter 

ERFS. Importantly, the same was observed for patients with lower 
miR-30c-5p, miR-30b-5p, miR-182-5p, and miR-200b-3p levels 
(Table 5, Figure 4). In multivariable analysis, all miRNAs remained 
independent predictors of ERFS adjusted for Ki-67 index (Table 5). 
After stratification for Ki-67 index, miR-30c-5p, miR-182-5p, and 
miR-200b-3p only independently predicted shorter ERFS in highly 
proliferative tumors, whereas miR-30b-5p was significant in tumors 
with low proliferative (Table 6).

Regarding DFS, in addition to HER2 positivity (HR = 2.40, p = 
0.039), high Ki-67 index (HR = 3.01, p = 0.003), and high grade 
(G3) (HR = 2.65, p = 0.006), lower miR-30c-5p, miR-30b-5p, 

TABLE 4 | MiRNAs with fold variation values higher than 1 in the global expression assay.

LumA Rec vs. LumA NRec LumB Rec vs. LumB NRec Lum Rec vs. Lum NRec

microRNA Fold Change microRNA Fold Change microRNA Fold Change

miR-196a-5p 2.1281 miR-9-5p1 2.5978 miR-9-5p1 1.4448
miR-181b-5p −1.0119 miR-210-3p1 1.7178 miR-149-3p1 1.23995
miR-130a-3p1 −1.0519 miR-182-5p2 1.6028 miR-126-3p −1.0909
miR-29b-3p −1.1169 miR-7-5p1 1.3978 miR-1 −1.1352
let-7b-5p −1.1269 miR-200c-3p 1.2778 miR-148a-3p −1.1419
let-7i-5p −1.1369 miR-31-5p1 1.0928 miR-30d-5p −1.2139
miR-106b-5p −1.1419 miR-221-3p 1.0128 miR-181a-5p2 −1.4322
miR-132-3p1 −1.1519 miR-125b-5p −1.0172 miR-200a-3p −1.5732
miR-26b-5p −1.1619 miR-146a-5p −1.0372 miR-205-5p2 −2.3252
miR-19b-3p −1.1769 miR-181a-5p2 −1.0622
miR-192-5p1 −1.1969 miR-205-5p2 −1.1172
let-7g-5p −1.2019 miR-11 −1.1472
miR-16-5p −1.2319 miR-10b-5p −1.4022
miR-15a-5p −1.2619
miR-106a-5p −1.2669
miR-20a-5p −1.2769
let-7a-5p −1.3019
miR-21-5p −1.3169
miR-214-3p −1.3569
miR-93-5p −1.4119
let-7f-5p −1.4369
miR-222-3p −1.4419
miR-200c-3p −1.4719
miR-155-5p −1.5119
let-7e-5p −1.5119
let-7d-5p −1.5619
miR-148a-3p −1.6369
miR-181a-5p2 −1.6519
miR-23b-3p −1.7569
miR-23a-3p −1.8069
miR-19a-3p −1.8519
miR-11 −1.8869
miR-221-3p −1.9319
miR-195-5p −1.9369
miR-18a-5p1 −1.9919
miR-30c-5p2 −2.0419
miR-182-5p2 −2.1119
miR-186-5p1 −2.1319
miR-141-3p −2.1619
miR-17-5p1 −2.1919
miR-30d-5p −2.2769
miR-30b-5p2 −2.4819
miR-101-3p −2.5319
miR-200b-3p2 −3.0019
miR-92b-3p1 −3.1069
miR-200a-3p −3.2169
miR-205-5p2 −4.1269

1Cps higher than 30. 2miRNAs chosen for further validation. Lum, luminal; Rec, recurrent.
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miR-182-5p, miR-200b-3p, and miR-205-5p expression levels 
associated with decreased DFS in univariable analysis (Table 
5, Figure 5). Nonetheless, in the multivariable model, only 
miR-30c-5p, miR-200b-3p, and miR-182-5p were disclosed as 
independent prognostic predictors adjusted for Ki-67 index 
(Table 5), and after stratification according for Ki-67 index, all 
miRNAs retained statistical significance in high Ki-67 index 
BrC patients (Table 6). Similarly, HER2 positivity (HR = 2.63, 
p = 0.024), high Ki-67 index (HR = 2.48, p = 0.021), and high 
grade (G3) (HR = 2.69, p = 0.007) associated with worse DMFS, 
along with lower miR-182-5p and miR-200b-3p expression levels, 
in univariate analysis (Table 5). However, only miR-182-5p 
retained statistical significance when adjusted for tumor grade 
in multivariable analysis (Table 5). After stratification by tumor 
grade, miR-182-5p showed prognostic value in patients harboring 
low/intermediate-grade tumors (Table 6).

Furthermore, the prognostic value of the miRNAs that 
individually predicted ERFS and DFS was assessed when 
combined in panels. For ERFS, the patients were grouped as 
expression above P25 for 3 or 4 miRNAs versus expression below 
P25 for 2 or more miRNAs. Thus, the combination of miR-
30c-5p, miR-30b-5p, miR-182-5p, and miR-200b-3p was shown as 

the best predictors of ERFS. Patients with miRNAs’ expression 
below P25 displayed a shorter ERFS (p < 0.001), paralleling the 
results obtained in single miRNAs analysis (Figure 6, Table 7).  
In multivariable analysis, miRNAs combined in panel were 
found to be independent ERFS predictors after Ki-67 index 
stratification (Table 7). Regarding DFS, the best predictive panel 
was composed of miR-182-5p and miR-200b-3p. The patients 
were grouped as expression above P25 for both miRNAs versus 
expression below P25 for at least one miRNA. Patients with both 
miRNAs’ expression levels above P25 showed longer DFS (p < 
0.001) (Figure 6, Table 7). In multivariable analysis, miRNAs 
combined in panel remained independent DFS predictors, 
although only in cases with high Ki-67 index (Table 7).

DISCUSSION

BrC remains the most common malignancy in women and 
a major cause of morbidity and mortality (Bray et al., 2018). 
De-escalation of both systemic and local adjuvant treatment, 
paralleling trends in surgery, is critical to provide patient-tailored 
treatment and avoid harmful side effects (Hwang, 2014; Senkus 

FIGURE 1 | Scatterplots of miR-181a-5p (A), miR-182-5p (B), miR-200b-3p (C), and miR-205-5p (D) relative expression levels in luminal tumor tissues and normal 
breast tissues. A ** denotes p value <0.01 and a *** denotes p value <0.001 by non-parametric Mann–Whitney U test. Y-axis denotes 2−ΔΔCT values multiplied by 
1000. Red horizontal lines represent median value.
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FIGURE 2 | Scatterplots of miR-30c-5p (A), miR-30b-5p (B), and miR-200b-3p (C) relative expression levels in tumor tissues from endocrine-sensitive and 
-resistant patients. A * denotes p value <0.05 and a ** denotes p value <0.01 by non-parametric Mann–Whitney U test. Y-axis denotes 2−ΔΔCT values multiplied by 
1000. Red horizontal lines represent median value.

FIGURE 3 | Scatterplots of miR-30c-5p relative expression levels according to HER2 status (A), miR-30b-5p relative expression according to HER2 status (B), and 
miR-205-5p relative expression according to grade (C). A * denotes p value <0.05 and a ** denotes p value <0.01 by non-parametric Mann–Whitney U test. Y-axis 
denotes 2−ΔΔCT values multiplied by 1000. Red horizontal lines represent median value.
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et al., 2015). Indeed, identification of luminal BrC patients with low 
recurrence risk after or while on ET, for which additional adjuvant 
systemic treatment can be safely omitted, is very important. On 
the other hand, identification of high-risk luminal BrC patients 

requiring more aggressive treatment regimens is critical to avoid 
recurrence and subsequent metastatic disease, which currently 
affects approximately 40% of luminal BrC patients after adjuvant 
ET (Guarneri and Conte, 2004; Normanno et al., 2005; Murphy 

TABLE 5 | Univariable and multivariable Cox regression models assessing the association between microRNAs expression levels and clinical outcome.

Model Outcome Variable HR (95% CI) p value

Univariate Analysis ERFS miR-30c-5p expression categorized
≤P25
 >P25

1
0.283 (0.117–0.683)

0.005

miR-30b-5p expression categorized
≤P25
 >P25

1
0.338 (0.141–0.812)

0.015

miR-182-5p expression categorized
≤P25
 >P25

1
0.207 (0.082–0.519)

0.001

miR-200b-3p expression categorized
≤P25
 >P25

1
0.245 (0.098–0.615)

0.003

DFS miR-30c-5p expression categorized
≤P25
 >P25

1
0.422 (0.214–0.832)

0.013

miR-30b-5p expression categorized
≤P25
 >P25

1
0.458 (0.231–0.907)

0.025

miR-182-5p expression categorized
≤P25
 >P25

1
0.259 (0.120–0.558)

0.001

miR-200b-3p expression categorized
≤P25
 >P25

1
0.267 (0.127–0.562)

0.001

miR-205-5p expression categorized
≤P25
 >P25

1
0.494 (0.250–0.979)

0.043

DMFS miR-182-5p expression categorized
≤P25
 >P25

1
0.356 (0.153–0.828)

0.017

miR-200b-3p expression categorized
≤P25
 >P25

1
0.354 (0.158–0.794)

0.012

Multivariate analysis ERFS miR-30c-5p expression categorized1

≤P25
 >P25

1
0.223 (0.076–0.649)

0.006

miR-30b-5p expression categorized1

≤P25
 >P25

1
0.344 (0.120–0.987)

0.047

miR-182-5p expression categorized1

≤P25
 >P25

1
0.174 (0.057–0.529)

0.002

miR-200b-3p expression categorized1

≤P25
 >P25

1
0.184 (0.060–0.561)

0.003

DFS miR-30c-5p expression categorized1

≤P25
 >P25

1
0.417 (0.193–0.902)

0.026

miR-182-5p expression categorized1

≤P25
 >P25

1
0.190 (0.078–0.463)

 <0.001

miR-200b-3p expression categorized1

≤P25
 >P25

1
0.231 (0.094–0.564)

0.001

DMFS miR-182-5p expression categorized2

≤P25
 >P25

1
0.302 (0.111–0.825)

0.020

1Cox regression model adjusted for Ki-67 index. 2Cox regression models adjusted for grade. ERFS, endocrine resistance-free survival; DFS, disease-free survival; DMFS, distant 
metastasis-free survival.
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and Dickler, 2016). Thus, identification of biomarkers providing 
predictive and prognostic information in this group of patients 
is clinically relevant. Assessment of specific miRNAs’ expression 
deregulation, which has been associated with several mechanisms 
underlying endocrine resistance and sensitivity (Muluhngwi and 
Klinge, 2015; Muluhngwi and Klinge, 2017), might provide such 
kind of information. Nonetheless, most of those studies have been 
performed in cancer cell lines and display several limitations, 
including absence of epithelial–stromal and tumor–host 
interactions, that could modulate sensitivity in vivo (Shekhar et al., 
2003). Conversely, tissue analysis from patients treated with ET may 
allow for broader insight into biologically and clinically relevant 
miRNAs that may serve as markers of response or resistance to 
ET. Thus, we focused on the identification of aberrantly expressed 
miRNAs in endocrine-resistant BrC, exploring its predictive and 
prognostic value in luminal BrC patients treated with adjuvant ET.

The first step of this study consisted on the profiling of 
miRNAs’ expression patterns, looking for differences between 
endocrine-sensitive and endocrine-resistant luminal BrC. 
Hence, miR-30c-5p, miR-30b-5p, miR-181a-5p, miR-182-5p, 
miR-200b-3p, and miR-205-5p were selected for validation in a 
larger set of luminal BrC and normal breast tissues. Upregulation 

of miR-181a-5p and miR-182-5p and downregulation of miR-
205-5p in this BrC tissue cohort was consistent with previous 
reports (Hui et al., 2009; Li et al., 2014a; Zhang and Fan, 2015), 
providing indirect validation of our methodological approach. 
However, miR-200b-3p downregulation in tumor compared 
to normal tissues has been previously reported (Ye et al., 
2014; Yao et al., 2015). Nevertheless, these studies have used 
non-cancerous tissues from breasts harboring carcinoma as 
controls, which may not represent truly normal breast tissues. 
Our results also confirm the biomarker potential of miR-30c-5p, 
which was found downregulated in endocrine-resistant BrC 
patients and independently predicted ERFS in luminal BrC 
patients, particularly in highly proliferative tumors. Moreover, 
miR-30c-5p expression correlated with HER2 status, one of the 
most important predictive factors for ET sensitivity (Konecny 
et al., 2003). In fact, HER2 signaling activation has been 
widely implicated in endocrine resistance (Moon et al., 2011; 
AlFakeeh and Brezden-Masley, 2018). Moreover, miR-200b-3p 
expression levels displayed the same trend and, together with 
miR-30b-5p and miR-182-5p, also independently predicted 
ERFS in luminal BrC patients. Importantly, we were able to 
validate in primary BrC the association between miR-200b-3p 

FIGURE 4 | Endocrine resistance-free survival (ERFS) curves (Kaplan–Meier with log rank test) of miR-30b-5p (A), miR-30c-5p (B), miR-182-5p (C), and miR-
200b-3p (D). P25, Percentile 25.
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and endocrine-resistance, which was previously reported 
only in in vitro models (Manavalan et al., 2013). Interestingly, 
several members of miR-30f have been reported as markers 
of favorable prognosis in BrC (Cheng et al., 2012; Bockhorn 
et al., 2013; Zhang et al., 2014b; D’aiuto et al., 2015; Croset et al., 
2018) and our study also revealed that miR-30b-5p might be 
predictive of response to ET. Finally, concerning miR-182-5p, 
our results extended previous observations on the correlation 
with clinical benefit from therapy with tamoxifen in advanced-
stage BrC, only previously demonstrated in univariable analysis 
(Rodriguez-Gonzalez et al., 2011).

In addition to their predictive value, miR-30b-5p and miR-30c-5p 
lower expression levels also associated with decreased DFS, although 
in univariable analysis only. Indeed, the role of miR-30f members as 
tumor suppressors in BrC has been previously reported (Bockhorn 
et al., 2013; Zhang et al., 2014b). Furthermore, decreased levels of 
miR-30f members in BrC patients have been associated with poor 
relapse-free survival (Croset et al., 2018). Importantly, lower miR-
182-5p and miR-200b-3p expression levels independently associated 
with decreased DFS in highly proliferative tumors. The role of miR-
200b-3p as a prognostic marker in BrC is not a novelty (Ye et al., 2014; 
Yao et al., 2015). Indeed, members of miR-200f are known to act as 

TABLE 6 | Cox regression models stratified according to the clinicopathological features with statistical significance in the multivariate analysis.

Outcome Layering Variable Variable HR (95% CI) p value

ERFS Ki-67 index <15% miR-30c-5p expression categorized
≤P25
 >P25

–
0.175

Ki-67 index >15% miR-30c-5p expression categorized
≤P25
 >P25

1
0.171 (0.047–0.619)

0.007

Ki-67 index <15% miR-30b-5p expression categorized
≤P25
 >P25

1
0.149 (0.027–0.813)

0.028

Ki-67 index >15% miR-30b-5p expression categorized
≤P25
 >P25

–
0.334

Ki-67 index <15% miR-182-5p expression categorized
≤P25
 >P25

–
0.537

Ki-67 index >15% miR-182-5p expression categorized
≤P25
 >P25

1
0.137 (0.037–0.503)

0.003

Ki-67 index <15% miR-200b-3p expression categorized
≤P25
 >P25

–
0.610

Ki-67 index >15% miR-200b-3p expression categorized
≤P25
 >P25

1
0.121 (0.033–0.447)

0.002

DFS Ki-67 index <15% miR-30c-5p expression categorized
≤P25
 >P25

–
0.247

Ki-67 index >15% miR-30c-5p expression categorized
≤P25
 >P25

1
0.268 (0.088–0.815)

0.020

Ki-67 index <15% miR-182-5p expression categorized
≤P25
 >P25

–
0.141

Ki-67 index >15% miR-182-5p expression categorized
≤P25
 >P25

1
0.137 (0.037–0.503)

0.003

Ki-67 index <15% miR-200b-3p expression categorized
≤P25
 >P25

–
0.202

Ki-67 index >15% miR-200b-3p expression categorized
≤P25
 >P25

1
0.121 (0.033–0.447)

0.002

DMFS Grades 1 and 2 miR-182-5p expression categorized
≤P25
 >P25

1
0.255 (0.079–0.823)

0.022

Grade 3 miR-182-5p expression categorized
≤P25
 >P25

–
0.076

ERFS, endocrine resistance-free survival; DFS, disease-free survival; DMFS, distant metastasis-free survival; HER2, human epidermal growth factor 2 receptor.
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enforcers of epithelial phenotype through either Zinc finger E-box-
binding homeobox (ZEB)-dependent or -independent pathways 
(Li et al., 2014b). Intriguingly, most in vitro studies consistently 
attributed an oncogenic role to miR-182-5p (Chiang et al., 2013; 
Zhan et al., 2017). Nonetheless, higher miR-182-5p expression levels 
were associated with poor clinical outcome in BrC patients (Song 
et al., 2016), contrarily to our findings. It should be recalled, however, 

that miR-182-5p is a member of a miRNA family comprising three 
homologous, coordinately expressed, miRNAs (miR-183, miR-182, 
and miR-196), which are clustered in chromosome 7q32.2 and that 
members of this cluster have been associated with both pro- and 
anti-metastatic behavior in BrC, suggesting that miR-183/96/182 
cluster members may have divergent functions that are regulated 
in a context- and tissue-dependent manner (Lowery et al., 2010;  

FIGURE 5 | Disease-free survival (DFS) curves (Kaplan–Meier with log rank test) of miR-30b-5p (A), miR-30c-5p (B), miR-182-5p (C), miR-200b-3p (D), and miR-
205-5p (E). P25, Percentile 25.
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Li et al., 2014a; Hong et al., 2016). Furthermore, the 7q32.2 locus 
has been considered a metastasis suppressor locus, enduring genetic 
copy number losses in BrC progression (Png et al., 2011). Thus, 
the association between miR-182-5p downregulation and worse 
prognosis probably results from a complex molecular scenario and 
additional studies are required to discriminate which members of 
the miR-183/96/182 cluster might contribute and to which extent to 
BrC prognosis.

BrC tissues displayed higher miR-182-5p and miR-200b-3p 
levels compared to normal breast, although miR-182-5p and miR-
200b-3p downregulation associated with shorter DMFS. Because 
development of solid neoplasms results from multiple sequential 
steps in which malignant cells undergo widespread modifications 

allowing for successful migration and colonization of other organs, 
we are tempted to speculate whether a context-dependent role of 
these miRNAs might contribute to the emergence of a malignant 
phenotype. Indeed, decreased expression of miR-200f members 
might be associated with EMT initiation, enabling cells with 
invasive capabilities, whereas subsequent upregulation might be 
associated with mesenchymal-to-epithelial transition, facilitating 
colonization (Gravgaard et al., 2012; Hilmarsdottir et al., 2014).

Combined expression levels of miR-30c-5p, miR-30b-5p, 
miR-182-5p, and miR-200b-3p independently predicted ERFS, 
when adjusted for confounding factors (Ki-67 index). In fact, 
this combined miRNA panel was associated with ERFS in both 
low and highly proliferative tumors. In parallel, the miR-182-5p/

FIGURE 6 | ERFS curves (Kaplan–Meier with log rank test) of combined miR-30b-5p, miR-30c-5p, miR-182-5p and miR200b-3p (A) and DFS curves  
(Kaplan–Meier with log rank test) of combined miR-182-5p and miR-200b-3p panel (B).

TABLE 7 | Univariable and multivariable Cox regression models assessing the association between combined microRNAs expression panel and clinical outcome.

Model Outcome Layering Variable Variable HR (95% CI) p value

Univariate Analysis ERFS NA Combined miRNA panel
2 or more miRNAs below P25

3 or 4 miRNAs above P25

1
0.183 (0.075–0.448)

 <0.001

DFS NA Combined miRNA panel
1 or 2 miRNAs below P25

All miRNAs above P25
1

0.283 (0.139–0.575)

 <0.001

Multivariate Analysis ERFS NA Combined miRNA panel 1

2 or more miRNAs below P25
3 or 4 miRNAs above P25

1
0.126 (0.042–0.380)

 <0.001

DFS NA Combined miRNA panel 1

1 or 2 miRNAs below P25
All miRNAs above P25

1
0.205 (0.088–0.476)

 <0.001

Multivariate Analysis ERFS Ki-67 index <15% Combined miRNA panel
2 or more miRNAs below P25

3 or 4 miRNAs above P25
1

0.129 (0.024–0.703)

0.018

Ki-67 index >15% Combined miRNA panel
2 or more miRNAs below P25

3 or 4 miRNAs above P25
1

0.134 (0.037–0.485)

0.002

DFS Ki-67 index <15% Combined miRNA panel
1 or 2 miRNAs below P25

All miRNAs above P25
–

0.184

Ki-67 index >15% Combined miRNA panel
1 or 2 miRNAs below P25

All miRNAs above P25
1

0.100 (0.027–0.367)

0.001

1Cox regression model adjusted for Ki-67 index. ERFS, endocrine resistance-free survival; DFS, disease-free survival; NA, not applicable.
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miR-200b-3p panel was shown to independently predict DFS in 
highly proliferative tumors. As previously reported in different 
tumor models, the combination of miRNAs in a panel might 
enable a more efficient diagnostic, predictive, and prognostic 
model overcoming the questionable value of single miRNAs 
(Sahlberg et al., 2015; Chen et al., 2018).

Although the retrospective design of the study and the relatively 
small number of samples of the discovery cohort constitute 
important limitations, our results suggest that a panel of miRNAs 
might be tested in primary tumor tissues to assess the likelihood 
of recurrence and resistance to ET in newly diagnosed luminal 
BrC. Nevertheless, these miRNAs need to be carefully validated, 
ideally in multicenter studies, to generate more conclusive 
results. Furthermore, in vitro studies, including gain- and loss-
of-function assays following in vitro treatment with ET, are also 
critical to functionally characterize the role of these miRNAs. As a 
future perspective, we intend to evaluate the putative role of these 
miRNAs in tumor progression and dissemination. Additionally, we 
also intend to evaluate the potential role of these miRNAs in liquid 
biopsies, evaluating their potential as non-invasive biomarkers. 
Indeed, miRNAs in circulation would enable the repeated noninvasive 
monitoring of miRNA expression profile changes during treatment’s 
course, which could allow for early detection of ET resistance and/
or recurrence, potentially improving the management and care of 
luminal BrC patients.
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Ovarian cancer (OC) causes significant morbidity and mortality as neither detection

nor screening of OC is currently feasible at an early stage. Difficulty to promptly

diagnose OC in its early stage remains challenging due to non-specific symptoms

in the early-stage of the disease, their presentation at an advanced stage and poor

survival. Therefore, improved detection methods are urgently needed. In this article,

we summarize the potential clinical utility of epigenetic signatures like DNA methylation,

histone modifications, and microRNA dysregulation, which play important role in ovarian

carcinogenesis and discuss its application in development of diagnostic, prognostic, and

predictive biomarkers. Molecular characterization of epigenetic modification (methylation)

in circulating cell free tumor DNA in body fluids offers novel, non-invasive approach

for identification of potential promising cancer biomarkers, which can be performed at

multiple time points and probably better reflects the prevailing molecular profile of cancer.

Current status of epigenetic research in diagnosis of early OC and its management are

discussed here with main focus on potential diagnostic biomarkers in tissue and body

fluids. Rapid and point of care diagnostic applications of DNA methylation in liquid biopsy

has been precluded as a result of cumbersome sample preparation with complicated

conventional methods of isolation. New technologies which allow rapid identification

of methylation signatures directly from blood will facilitate sample-to answer solutions

thereby enabling next-generation point of care molecular diagnostics. To date, not a

single epigenetic biomarker which could accurately detect ovarian cancer at an early

stage in either tissue or body fluid has been reported. Taken together, the methodological

drawbacks, heterogeneity associated with ovarian cancer and non-validation of the

clinical utility of reported potential biomarkers in larger ovarian cancer populations

has impeded the transition of epigenetic biomarkers from lab to clinical settings. Until

addressed, clinical implementation as a diagnostic measure is a far way to go.

Keywords: biomarker, cell free DNA, diagnosis, DNA methylation, epigenetics, epithelial ovarian cancer
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KEYPOINTS

• Prompt diagnosis remains challenging due to non-specific
symptoms in the early-stage of the disease, their presentation
at an advanced stage and poor survival.

• DNA methylation occurs very early in malignant
transformation and their utility as biomarker holds great
promise to overcome the false positive detection of ovarian
cancer using current standard serum marker CA125.

• Not even a single report has suggested or demonstrated a
good epigenetic marker for early and accurate detection of OC
in either tissue or fluid. Thus, early detection still remains a
huge unmet need. However, analysis of a panel of aberrant
methylation based epigenetic markers in blood-based non-
invasive assay could pave its way into clinical implementation.

INTRODUCTION

Ovarian cancer, a molecularly heterogeneous disease, remains
the most lethal disease among gynecological malignancies.
Representing as the third most frequent cancer among female
gynecological system carcinoma, ovarian cancer is associated
with the highest mortality rates. Despite constituting only 3%
of all female cancer, the annual incidence of ovarian cancer
worldwide is 220,000 with 21,290 estimated numbers of new cases
and 14,600 estimated deaths annually (Siegel et al., 2015). Typical
diagnosis of more than 70% of OC cases, at an advanced disease
stage is one of the potent reasons for high fatality rate and carries
poor prognosis with current therapies. The median age of disease
presentation in ovarian cancer is 60 years and its lifetime risk is
one in seventy with an overall lifetime mortality of one in ninety
five (Cannistra, 2004; Howe et al., 2006).

Epithelial ovarian cancer (E0C) comprises 90% of all
forms of OC cases and is characterized by heterogeneity
at histopathological, clinical and molecular level. The exact
cause for the ovarian malignancy still remains unknown. A
strong familiar history either of ovarian or breast cancer has
been described as important risk factors associated with OC.
More than one-fifth of ovarian carcinomas (about 23%) have
hereditary susceptibility and germline mutations of BRCA1 and
BRCA2 tumor suppressor genes; in particular contribute to
65–85% of these cases (Ramus et al., 2007). An association
of hormonal risk in postmenopausal women is suggested by
over 50% of deaths. In addition, parity, pregnancy, lactation,
tubal ligation, and oral contraceptive use are associated with
reduced risk and have been found to be protective factors against
disease development.

Rapid growth, non-specific clinical symptoms at early stage
of the disease and lack of early diagnostic methods make
prompt diagnosis challenging. As a result, EOC is typically
diagnosed at an advanced stage (FIGO III/IV), when the
tumor has spread beyond the pelvis and even unlikely to
be completely removed by surgery. The long term survival
rates for women with disseminated malignancies are low (10–
30%). However, diagnosis of ovarian cancer at the localized
stage (confinement of lesion still to the ovaries) is highly
curable (over 95% 5 year survival rate; Siegel et al., 2011). To

improve the overall survival of women diagnosed with EOC
and to overcome the non-specific clinical manifestation of EOC,
identification of molecular biomarkers of preclinical or early
stage EOC tumors is critically needed. A better understanding
of EOC genome portrait will help in the identification of
promising biomarkers of clinical utility for early diagnosis
of OC.

MOLECULAR CLASSIFICATION

The primary OC were classified into epithelial (60%), germ cell
(30%), and sex-cord stromal tumors (8%), by the World
Health Organization (WHO) classification and tumor
morphology system (2014). A large majority of OC, almost
80–85%, are of epithelial origin. However, a small proportion
accounting approximately 10% of all OC falls into germ
cell and sex-cord stromal tumor categories (Devouassoux-
Shisheboran and Genestie, 2015). Further on the basis of
disease dissemination, the American Joint committee on
Cancer/Tumor Node Metastasis (AJCC/TNM) and International
Federation of Gynecology and Obstetrics (FIGO) staging
systems, classified ovarian cancer into various stages. The
confinement of tumors to the ovaries is represented by stage
I and II whereas stage III is associated with local metastasis
(usually lymph) and stage IV with distal organ metastases
(Yarbro et al., 1999).

EOCs have been further sub-categorized based on following
two criteria: (a) firstly, on the degree of proliferation, grade and
extent of invasion into Benign (adenoma and cystadenoma), low
malignant potential (LMP) and malignant (b) and secondly
based on tumor histopathological grade and molecular
characteristics, EOC malignant tumors are classified into
serous (70%, most common), endometrioid (10–20%), clear
cell (12%), mucinous (3%) and less commonly, transitional
(6%), squamous, mixed, and undifferentiated (<1%) subtypes
(Bowtell, 2010; Devouassoux-Shisheboran and Genestie,
2015; Earp and Cunningham, 2015; Figure 1) On the basis
of histological type and grade, these tumors exhibit different
genetic and epidemiological risk factors, pattern of spread,
molecular abnormalities, response to targeted therapies and
disease prognosis (Devouassoux-Shisheboran and Genestie,
2015; Earp and Cunningham, 2015).

Almost a decade ago, a dualistic classification system
recognized Type I and Type II EOC tumors (Shih and Kurman,
2004; Vang et al., 2009). Type I EOCs are generally low grade
serous carcinomas but also include mucinous, endometrioid,
and clear cell subtype tumors. They are thought to arise
from a low malignant potential precursor, are characterized
as slow growing with low levels of chromosomal instability,
intact DNA repair machinery and harbor mutations in KRAS,
BRAF, and ERBB2 at a high frequency. Type II EOCs arise de
novo and are comprised of high-grade serous carcinoma. These
aggressive tumors also include malignant mixed mesodermal
and undifferentiated carcinomas, are characterized by rapid
growth with no identified precursor lesions, high levels of
chromosomal aberrations along with high frequency of TP53,
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FIGURE 1 | Sub-classification of epithelial ovarian tumors.

BRCA1/2 mutations. They constitute 70% of EOC cases (Jayson
et al., 2014; Figure 2).

The cells of origin of ovarian cancer are still debated. Two
models with respect to the origin of ovarian cancer have been
proposed: (1) origin from ovarian surface epithelium (OSE), (2)
from the fallopian tube. Taken together, the pro-inflammatory
environment due to ovulation events, expression pattern of
ovarian inclusion cysts and biomarkers which are shared by
OSE and malignant growth, form the basis of first model. On
contrary, tubal precursor lesions, genetic evidence of BRCA1/2
mutation carriers and recent studies strongly implicate a non-
ovarian origin and form the basis of the later model. To date,
neither model has evidently revealed superiority over the other.
Thus, it is speculated that the HGSOC could have arisen from
two different sites which undergo similar changes and could be a
possible reason for tumor heterogeneity (Klotz and Wimberger,
2017). It has also been postulated that aberrantly methylated
Mullerian duct cells migrate into ovarian stroma where they
are supported by the epigenetically/ genetically altered stromal
environment, facilitating a cascade of events which culminate
in ovarian carcinogenesis. Epigenetic profiling of endocervical
glandular cells would facilitate in prediction of risk or early
detection of ovarian cancer (Jones et al., 2010).

SCREENING AND EARLY DETECTION

OC is generally characterized by few non-specific early
symptoms, presentation of the disease at a late stage and
poor survival. Difficulty to diagnose it in its early stages still
remains challenging. Early diagnosis, screening and personalized
treatment is still the biggest unmet need to combat this
devastating disease. Unavailability of early cancer-specific
diagnostic markers and ubiquitous acquisition of drug resistance
to targeted therapies are the most striking obstacles for the
effective OC treatment.

Clinically, serum antigen-125 (CA125) is the most
extensively studied, established and utilized diagnostic
marker of EOC, despite its elevation marked by only 47%
of early-stage EOC (Woolas et al., 1993). Additionally,
aberrantly elevated serum CA125 have been reported in
several benign conditions of endometriosis, pregnancy,
peritonitis, pelvic inflammatory disease, uterine fibroids,
menstrual cycle, liver cirrhosis. Its elevation is also associated

with several malignancies such as lung and colorectal cancer
(Jacobs and Bast, 1989). Moreover, poor specificity, high
false positive rate, and low positive prediction value make
CA125 alone unsuitable as an EOC diagnostic marker.
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FIGURE 2 | Phenotypic- genotypic classification of epithelial ovarian cancer subtypes.

However, CA125 is more suitable markers for tumor recurrence
(Clarke-Pearson, 2009).

For clinical needs to diagnose OC at an early stage, the
conventional screening methods such as serum cancer antigen
125 (CA125) concentrations, transvaginal ultrasound probe
and magnetic resonance imaging have not shown reliability in
reducing population mortality or morbidity due to high false-
negatives rates and lower sensitivity and specificity (Menon and
Jacobs, 2000; Jacobs and Menon, 2004; Munkarah et al., 2007).
Therefore, methods for early detection are critically required.
Owing to the low incidence rate of OC amongst postmenopausal
women, a logistic diagnostic screening test warrants the need
of high sensitivity (>75%) and specificity (>99.6%) to attain a
positive prediction value (PPV) of 10%. Novel biomarkers for
early-stage diagnosis are being explored and it is more likely
that a combination of biomarkers could achieve these required
diagnostic criteria (Moore et al., 2010).

To determine the effect of screening on OC mortality, several
randomized controlled trial in general population had been
undertaken. Recently, both CA125 and transvaginal sonography
(TVS) was evaluated in the Prostate, Lung, Colorectal, and
Ovarian (PLCO) cancer screening trial, however no significant
difference was observed in OC mortality between screening and
conventional care arms (Buys et al., 2011). The United Kingdom
Collaborative Trial of Ovarian Cancer Screening (UKCTOCS),
being considered as the largest prospective randomized trial,

comprised of over 200,000 asymptomatic postmenopausal
women who were screened with TVS alone and combined TVS
and CA125. Although improvement in specificity of detection
was achieved on combining CA125 with TVS, however these
trials failed to attain the requisite diagnostic accuracy of 99.6%
specificity (Menon et al., 2009). CA125 together with HE4
has somewhat improved sensitivity and specificity of detection
which correctly identified 76.4% of cancer samples and 95%
of cancer negative samples. This accuracy was notably higher
than either marker alone. However further validation is still
required (Moore et al., 2010). According to the Guide to
Clinical Preventive Services 2010–2011, it has been mentioned
that neither of any screening test [serum antigen-125 (CA-
125), ultrasound imaging, pelvic examination or any earlier
diagnosis methods] was able to improve OC survival rates
U. S. Preventive Services Task Force (2010).

The Risk of Malignancy Index, widely used at present,
particularly UK, is a score based on ultrasound variables,
menopausal status and CA125 (Jacobs et al., 1990). Its sensitivity
is the determining criteria for a patient to be sent to experts
by referring gynecologist provided objective assessment score is
lower (78%) (Geomini et al., 2009). Transvaginal sonography
(TVS) is based on a formal scoring model system. Though
highly sensitive and being considered as an ideal method for
second stage diagnosis, the major limitation associated with this
method is its high dependency on individual expertise (Yazbek
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et al., 2008). Therefore, in clinical practice to discriminate
benign and malignant ovarian tumors is still a significant
challenge. The availability of biomarker or their combination
which can potentially detect ovarian cancer at its earliest stage
with required sensitivity and specificity would help in improving
clinical outcomes.

MARKERS FOR OVARIAN CANCER
DIAGNOSIS AND MANAGEMENT

Protein Markers
As discussed before, a suitable screening test for OC early
stage diagnosis will require high sensitivity and high specificity.
Current practices for screening of OC include transvaginal
ultrasonography, biomarker analysis, or a combination of both.
To date, a number of potential biomarkers for early diagnosis of
OC have been identified through intense research in proteomic
and genomic. Here, we summarize a comprehensive account of
recent researches on explored novel and robust serum based
biomarkers for the non-invasive early stage screening of ovarian
cancer (Table 1).

Although being considered as the “gold standard” biomarker
for detection of OC, its clinical relevance mainly falls in
evaluating disease recurrence. Other biochemical markers such
as lysophosphatidic acid, human epididymis protein 4 (HE4),
inhibins (which are members of TGF-β subfamily), Mesothelin
(associated with migration and metastasis) (Huang et al., 2006),
Osteopontin, and YKL-40 have been reported to be elevated in
sera of patients with OC amongst various studies, which could
be of diagnostic significance for improved cancer detection, most
likely in various combination with one another and /or with
CA125 (Rosenthal et al., 2006; Moore et al., 2010). The most
promising molecular biomarker of all these, to date are HE4
and Mesothelin. So far, US FDA has only approved CA125 and
HE4 for monitoring disease progression/recurrence, but not for
screening purpose (Rosenthal et al., 2006).

For the triage of pelvic mass, the multivariate index assay
OVA1, constituting measurements of 5-proteins: CA125-II,
apolipoprotein A1, transthyretin, beta 2 microglobulin, and
transferrin, has been approved by FDA since 2009. Although,
the test had improved sensitivity but compromised in revealing
diagnostic potential with its low specificity upon replacement of
CA125 with the multivariate index assay (Nguyen et al., 2013).
Elevated levels of Kallikrein 6 and 7 (KLK6 and KLK7) was
reported in sera of ovarian carcinoma subtypes, depicting their
potential to improve early detection of OC. Other biomarkers
with potential clinical significance for early diagnosis in women
with EOC include GSTT1, Prostasin (PRSS8), KLK6, KLK7,
FOLR1, and ALDH1, which are currently under research and
clinical trials (Sarojini et al., 2012).

Evaluation of several prediagnostic multimarker panels along
with PLCO screening trial has identified promising biomarkers
which are able to distinguish ovarian cancer cases from normal
control groups; for instance, a four biomarker panel consisting
of CA-125, HE4, CEA, and VCAM-1 effectively discriminated
early stage OC from healthy controls with sensitivity of 86%

at 98% specificity (Lin et al., 2009). Another panel constituting
of CA-125, ApoA1, TTR, and H418, was able to differentiate
OC patients at early stage of disease from cancer-free healthy
control samples with 74% sensitivity at 97% specificity (Zhang
et al., 2004). Still to date, no panel of biomarkers that has been
examined amongst numerous studies could outperform CA125
alone, in distinguishing between the two groups. The sensitivity
and specificity of serum based non-invasive biomarkers for
improved ovarian cancer detection from various studies as well
as the currently active/completed clinical trials evaluating potent
biochemical markers of clinical significance for early diagnosis of
EOC are summarized in Tables 2, 3 respectively.

Genetic Marker
About 23% of ovarian tumors have been associated with
hereditary conditions and the genetic abnormalities in about
65–85% of hereditary ovarian carcinomas is the germline
mutation in BRCA (breast cancer early onset genes BRCA1
and BRCA2) genes which are essential for DNA repair as
well as in maintaining genomic stability and integrity. The
cumulative lifetime risk of EOC for a woman with BRCA1 and
BRCA2 mutation is 39–46% and 12–20%, respectively (Ramus
et al., 2007). Lifetime risk to develop breast cancer and ovarian
cancer is enhanced up to 85% and up to 54% respectively
in the carriers of BRCA1 and BRCA2 mutations. Association
of several tumor suppressor genes and oncogenes (tumor
suppressor gene TP53 in Li- Fraumeni syndrome, mismatch
repair genes (MMR) in Lynch syndrome, genes involved with
double strand break repair system: BARD1, CHEK2, RAD51,
and PALB2) with hereditary ovarian cancer has been reported.
Till date, around 16 genes have been reported to be associated
with hereditary ovarian carcinogenesis while several other
mutations are yet unknown and need to be further explored
(Toss et al., 2015).

Epigenetic Marker
Epigenetics is the mechanism for the regulation of gene
expression without any alternation in the primary DNA sequence
(Jones and Laird, 1999; Jones and Baylin, 2002; Feinberg and
Tycko, 2004). DNAmethylation, modification of histone proteins
and miRNAs are the key modulator in regulating several cellular
processes such as cell differentiation, embryogenesis, inactivation
of X chromosome, genome imprinting, and many others (Jones,
2001; Reik and Lewis, 2005; Kacem and Feil, 2009; Portela
and Esteller, 2010). The epigenetic alternations involve interplay
between DNAmethylation, histonemodification andmicro RNA
expression to modulate gene expression during development
and cancer progression. (1) The global hypomethylation, largely
of repetitive DNA which results in demethylation of several
oncogenes and (2) localized hypermethylation at promoters of
various tumor suppressor genes leading to their transcriptional
silencing, are two opposite epigenetic phenomenon involved
in tumorigenesis (Sharma et al., 2010). DNA methyltransferase
(DNMT) mediated methylation of deoxycytosine located within
the CpG dinucleotides is the best known and widely studied
epigenetic mechanism leading to transcription repression in
cancer (Bird and Wolffe, 1999; Hendrich and Bird, 2000; Bird,
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TABLE 1 | Novel tumor biochemical markers for early detection of ovarian cancer.

Biochemical

marker

Nature Origin/function Status Source Clinical utility References

CA125 Glycoprotein antigen Expressed by fetal

amniotic epithelium

and coelomic

epithelium

Elevated

Early stage: 47%

Advanced

stage: >90%

Serum Valuable marker for tumor

recurrence

Limitations: Unsuitable for

early detection due to

insufficient sensitivity and

being elevated in

other conditions

Clarke-Pearson, 2009;

Moore et al., 2010

HE4 Protease Serum maturation Elevated

Serous: 93%

Endometrioid: 100%

Serum Histotype differentiation

and screening

Hough et al., 2000; Lu

et al., 2004; Moore

et al., 2008

Mesothelin Glycosylphosphatidylinositol-

linked cell surface

molecule

*Expressed by

mesothelial cells

*Involved in metastasis

Elevated

Early stage: 60%

Urine Early screening McIntosh et al., 2004;

Tang et al., 2013

Transthyretin An acute phase reactant

and major carrier of serum

thyroxine

Tumor development Downregulated in

EOC patients

Serum Early stage screening Mählck and Grankvist,

1994; Schweigert and

Sehouli, 2005; Nosov

et al., 2009

ApoA1 Constituent of high density

lipoproteins

Prevents tumor

development

Downregulated in

ovarian cancer

patients

Serum Early stage screening Gadomska et al., 2005;

Kim et al., 2012

Kallikrein Family of Serine proteases

*Human KLK family: 15

members

*Chromosome

position: 19q13.3–4

Regulates proteolytic

cascades

Elevated:

12KLK/15

Serum Elevated KLK-6 and−10 in

OC cases with low level of

CA125.

Useful marker for

OC detection

Borgoño and

Diamandis, 2004;

Rosen et al., 2005

Osteopontin An adhesive glycoprotein *Synthesized by

osteoblasts and

vascular endothelial

cells

*Associated with bone

remodeling and

immune function

Elevated in

invasive and

borderline ovarian

cancer tumors

Plasma Early stage screening Kim et al., 2002

2002). DNA methylation is known to be the earliest event
during carcinogenesis and plays a crucial role in silencing of
tumor suppressor genes (Sharma et al., 2010; Teschendorff and
Widschwendter, 2012; Teschendorff et al., 2012, 2016; Bartlett
et al., 2016). Promoter methylation mediated epigenetic silencing
of gene is regulated by the recruitment of MBD (methyl CpG
binding proteins such as MeCP2, MBD1, MBD2, and MBD4)
which in turn regulates chromatin state by recruiting histone
modifying and chromatin-remodeling complexes (repressors) at
the site of methylation, which subsequently generates condensed
chromatin structure and results in transcriptional repression
(Esteller, 2007; Lopez-Serra and Esteller, 2008). On contrary,
epigenetic activation of gene is regulated by recruitment
of Cfp1 and histone methyltransferase Setd1 which aids in
generating an open chromatin structure by creating domains
which are enriched with active histone marks (acetylation and
H3K4 trimethylation) (Thomson et al., 2010, p. 1; Jones and
Baylin, 2007; Supplementary Figure 1). Increasing evidences
has revealed the significant role of DNA methylation in
cancer development and progression, right from transcriptional
silencing of tumor suppressor genes to the activation of
oncogenes and consequently promoting metastasis (Costello
and Plass, 2001; Herman and Baylin, 2003; Wilting and

Dannenberg, 2012). Apparently, it is quite evident now that
DNA methylation plays an equal or possibly even greater
role than the genetic lesion such as mutations, deletion and
translocations which have been associated for long, with
malignant transformations and carcinogenesis (Chan T. A.
et al., 2008). For instance, though the familial breast cancer
susceptibility gene 1 (BRCA1) mutations contributes to 5–10% of
EOC, promoter hypermethylation of non-mutated BRCA1 allele
is the second disruptive event to the development of this cancer
(Barton et al., 2008).

Tissue Biomarkers

Diagnosis
So far, several methylation based signatures have been reported
in EOC. Here, we summarize an overview of some of the
extensively studied potential biomarkers of diagnostic utility in
ovarian cancer (Table 6). In ovarian cancer, a large number
of tumor suppressor genes have been identified to be silenced
by promoter hypermethylation and downregulated includes
DAPK, LOT1, TMS1/ASC, and PAR4 (pro-apoptotic function
and cell cycle regulation), p16, SPARC, ANGPTL2, and CTGF
(tumor suppressor activity), ICAM-1 and CDH1 (cell adhesion),
PEG31 (role in imprinting) and many others (Tables 4, 5). In
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TABLE 2 | Specificity and sensitivity of early detection biomarkers for ovarian cancer from various studies.

Biochemical

biomarker

Source Population tested Clinical prediction References

Sensitivity Specificity

HE4 Serum 147 Cancer (111 ovarian cancer

cases), 285 Benign, 66 controls

79.3% 98.9% Molina et al., 2011

HE4 + CA125 Serum 383 Benign and 89 Cancer 100%

92.30%

74.20%

76.0 %

Moore et al., 2011

Osteopontin Plasma 46 Benign, 47 cancer, 51 ovarian

cancer, 107 controls

- - Kim et al., 2002

Prostasin + CA125 Serum 64 cancer, 137 control 92% 94% Mok et al., 2001

KLK6 Serum 141 Benign, 146 ovarian cancer, 97

controls

21–26% 95% Diamandis et al., 2003

KLK6+ CA125 Serum 141 Benign, 146 ovarian cancer, 97

controls

42% 90% Diamandis et al., 2003

B7-H4 Serum 1,023 cancer, 997 Benign (236

ovarian cancer cases, 260 controls)

45% 97% Simon et al., 2006

B7-H4 + CA125 Serum 1,023 cancer, 997 Benign (236

ovarian cancer cases, 260 controls)

65% 97% Simon et al., 2007

CA125/IL-6/IL-8/VEGF/EGF Serum 44 Early-stage cancers

37 Benign, 45 controls

84% 95% Gorelik, 2005

CA125/IL-6/G-CSF/VEGF/EGF Serum 44 Early-stage cancers

37 Benign, 45 controls

86.5% 93% Gorelik, 2005

CA125/HE4/Glycodelin/

PLAUR/MUC1/PAI-1

Serum 200 Cancers (133 stage I/II), 396

Healthy controls

80.5% 96.5% Havrilesky et al., 2008

Leptin/Prolactin/ Osteopontin/IGF2 Serum 100 Cancers, 106 controls 95% 94% Mor et al., 2005

CA125

HE4

Mesothelin

Serum 143 Cancers, 124 benign, 344

controls

78%

68–82%

31–44%

98%

98%

98%

Shah et al., 2009

Leptin/Prolactin/ Osteopontin/IGF2/MIF/

CA125

Serum Training: 113 cancers, 181 controls

Test: 43 cancers, 181 Controls

95.3% 99.4% Visintin et al., 2008

CA125/ CA19- 9 /EGFR /CRP/

Myoglobin/APOA1/ APOC3/MIP1A/

IL-6/IL-18/ Tenascin C

Serum 115 Cancers, 93 benign 24

Controls, 13 non-ovarian cancers

91.3% 88.5% Amonkar et al., 2009

CA-125, HE4, SI Serum 74 cancer, 137 controls 84% 98.5% Andersen et al., 2010

RIM, ROMA, CA-125, HE4, Serum 445 Benign, 31 borderline, and 162

malignant tumors

Postmenopausal 89, 91,

92, and 72%

Premenopausal 87, 87,

96, and 83%

Postmenopausal 80, 77,

80, and 92%

Premenopausal 90, 81,

60, 91%

Lycke et al., 2018

CA-125

HE4

TTR

Serum 130 Benign, 126 ovarian cancer,

400 controls

64.29%

46.4%

78.6%

53.57%

43.3%

68.8%

Zheng et al., 2018

CA-125, HE4, TK1 Serum 75 ovarian cancer, 40 Benign, 35

controls

94.18% 79.53% Xi et al., 2017

CA-125+HE4,

HE4+FOLR1

Serum 150 benign controls, 216 ovarian

cancer, 20 controls

67%

65%

95%

95%

Leung et al., 2016

CA-125, ApoA1, TTR Serum 200 cancer, 142 controls 74% 97% Zhang et al., 2004

CA125, HE4, MMP-7, CA72-4 Serum 142 stage I cancer, 217 controls 83.2% 98% Simmons et al., 2016

CA-125, CA 72–4, MCSF Plasma 123 cancer, 224 controls 70% 98% Edgell et al., 2010

CA-125, TTR, ApoA1 Serum 20 cancer, 82 controls 89% 92% Su et al., 2007

CA-125, HE4, CEA, VCAM-1 Serum 456 cancer, 2,000 controls 86–93% 98% Lin et al., 2009

CA-125, CRP, SAA, IL-6, IL-8 Plasma 150 cancer, 212 controls 94.1% 91.3% Edgell et al., 2010

S100A4 Serum 160 cancer, 52 Benign, 52 controls 78% 92% Lv et al., 2018

KPNA2 Serum 162 cancer, 48 controls 71.4% 81.2% Huang et al., 2017

Septin-9

Clusterin

Plasma 137 EOC, 12 borderline,51 benign,

58 controls

82.5%

71.5%

50.0%

41.4%

Lyu et al., 2018
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TABLE 3 | Clinical trials (currently active or completed) for evaluating novel biomarkers of ovarian cancer.

Biochemical

marker

Setting Phase Samples (n) Status Clinical trial no. Primary clinical outcome References

All biomarkers Adnexal mass 1 500 (E) Completed NCT01466049 Screening NA

HE4 + CA125 Pelvic mass 0 566 Completed NCT00315692 Cancer vs. benign disease Moore et al.,

2009

CA125 Low risk women 1 9500 (E) Recruiting NCT00539162 Rate of increase in CA125

over time

NA

HE4 + CA125 Adnexal mass 1 512 Completed NCT00987649 Initial cancer risk

assessment

NA

CA125+ HE4 High risk women 1 1208 (E) Active, not

recruiting

NCT01121640 PPV of screening protocol NA

CA125 High risk women 2 2400 (E) Withdrawn NCT00080639 Screening NA

Mesothelin Low risk women 0 250 (E) Unknown NCT000155740 Screening NA

FOLR1 Stage I ovarian cancer 2 50 (E) Terminated NCT01511055 Sensitivity and specificity of

Intraoperative imaging (IOI)

with folate

NA

CA125 + TVU Ovarian disease 0 750 (E) Terminated NCT01292733 CA125 measurement in

blood over time

NA

CA125± TVU Postmenopausal 0 48230 Completed NCT00058032 Screening post

menopausal women

Menon et al.,

2009; Jacobs

et al., 2011

CA125 High risk women 0 2430 Unknown NCT00039559 Sensitivity and specificity of

early detection for ovarian

cancer

NA

CA125+ TVU High genetic risk women 0 5000 (E) Completed NCT00033488 Screening women at high

genetic risk for ovarian

cancer

NA

CA125 High risk women 0 6000 (E) Recruiting NCT00005095 Screening NA

Combined methods Ovarian neoplasms 0 36000 Unknown NCT01178736 Low- cost screening NA

Interventional High risk women 0 1500 Recruiting NCT00849199 Genetic testing, screening NA

All biomarkers High risk women 0 250 (E) Unknown NCT00854399 Overall survival NA

Tumor markers High risk women 0 5000 Completed NCT00267072 Early stage detection NA

DNA markers Ovarian cancer 0 118 (E) Active, not

recruiting

NCT00879840 Assessment of screening

modalities

NA

BRCA1/2 Mutation Ovarian neoplasms 0 1500 Completed NCT00001468 Identifying BRCA1/2

mutation

NA

BRCA Epithelial ovarian cancer 0 600 (E) Completed NCT03229122 Genetic Testing of BRCA NA

All biomarkers High risk women 0 500(E) Recruiting NCT03150121 Identification of uterine

lavage-based biomarkers

for early detection

NA

All biomarkers High risk women 0 6000 Recruiting NCT00005095 Early stage detection and

prevention

NA

CA125 High genetic risk women 0 40 Completed NCT00043472 Screening NA

DNA markers Women with serous

epithelial ovarian cancer

0 250 Not yet

recruiting

NCT03622385 Early detection of high

grade serous epithelial

ovarian cancer

NA

TVU, transvaginal ultrasonography; (w), women; (E), estimated enrollment; IOI, intraoperative imaging. Source: http://clinicaltrials.gov/.

ovarian cancer, some of the most frequently methylated genes
include OPCML (tumor suppressor activity), TES (involved in
regulation of cell motility) and RASSF1A (tumor suppressor
activity as well as an inhibitor of the anaphase-promoting
complex) (Barton et al., 2008). Promoter methylation of
HOXA10 and HOXA11, which are involved in very early
ovarian tumor initiation effectively distinguished normal and
malignant ovaries (Fiegl et al., 2008; Widschwendter et al.,
2009). Methylation induced silencing of PTEN has also been

frequently observed in primary epithelial ovarian carcinomas
(Kurose et al., 2001). CTGF (encodes the connective tissue
growth factor) (Kikuchi et al., 2007; Barbolina et al., 2009),
CCBE1 (hypothesized to be involved in regulation of cell
motility) (Barton et al., 2010), HIC1 (a p53 target gene)
(Rathi et al., 2002), CDH13 (Makarla et al., 2005), and CDH1
(the loss of which correlates with the upregulation of matrix
metalloproteinases and metastasis- promoting protein a 5-
integrin) (Sawada et al., 2008) act as metastasis suppressors.
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TABLE 4 | List of most frequently epigenetically dysregulated genes in ovarian cancer.

S. No Gene Function Epigenetic event References

1. Survivin Apoptotic inhibitor Downregulated Mirza et al., 2002

2. GATA 4 Transcription factor Downregulated Caslini et al., 2006; Cai et al., 2009

3. APC Regulation of cell adhesion Downregulated Tam et al., 2007

4. ARHI Ras homolog, maternally imprinted putative tumor

suppressor. Negative regulator of cancer growth and

progression

Downregulated Yu et al., 2003; Fu et al., 2015

5. BRCA 1 DNA damage response Downregulated Baldwin et al., 2000; Wilcox et al.,

2005; Press et al., 2008

6. DAPK Apoptosis Downregulated Bai et al., 2004

7. Estrogen receptor β Transcriptional activator Downregulated Suzuki et al., 2008

8. hMLH 1 DNA mismatch repair Downregulated Meng et al., 2008; Zhang H. et al.,

2008

9. hMSH 2 DNA mismatch repair Downregulated Zhang H. et al., 2008

10. ICAM 1 Cell/matrix adhesion Downregulated Arnold et al., 2001

11. LOT1 Apoptosis Downregulated Abdollahi et al., 2003; Kamikihara

et al., 2005

12. OPCML Cell adhesion Downregulated Sellar et al., 2003; Teodoridis et al.,

2005; Zhang J. et al., 2006

13. PACE-4 Serine protease Downregulated Fu et al., 2003

14. RASSFIA Microtubule stability Downregulated Agathanggelou et al., 2001; Yoon

et al., 2001

15. PEG 3 Apoptosis Downregulated Feng W. et al., 2008

16. DLEC 1 Unknown Downregulated Kwong et al., 2006

17. ARLTS 1 Premature termination of translation Downregulated Petrocca et al., 2006

18. TCEAL 7 Cell death regulation Downregulated Chien et al., 2005

19. P16 Cell cycle control Downregulated Milde-Langosch et al., 1998;

Katsaros et al., 2004

20. TMS1 Apoptosis Downregulated Akahira et al., 2004a

21. WT1 Transcription factor Downregulated Kaneuchi et al., 2005

22. 14-3-3 SIGMA Regulation of cell growth and differentiation Downregulated Kaneuchi et al., 2004

23. DR 4 Apoptosis Downregulated Horak et al., 2005

24. FBXO 32 Apoptosis (?) Downregulated Chou et al., 2010

25. IGFBP-3 Antiproliferative, pro-apoptosis, and invasion suppressor Downregulated Torng et al., 2009

26. SFRP5 Modulator of Wnt signaling Downregulated Su et al., 2010

27. CCBE 1 Migration and cell survival Downregulated Barton et al., 2010

28. RUNX3 Transcription factor Downregulated Zhang et al., 2009

29. CHFR Cell cycle control Downregulated Gao et al., 2009

30. Maspin(SERPINBS) Protease inhibitor Expressed Rose et al., 2006

31. FANCF DNA repair(?) Up regulated Taniguchi et al., 2003

32. Synuclein gamma Unknown Up regulated Gupta et al., 2003

33. TUBB3 Formation of microtubules Up regulated Izutsu et al., 2008

34. CLDN3 Tight junction protein Up regulated Honda et al., 2007

35. HOXA10 Transcription factor Up regulated Cheng et al., 2010

36. FBXW7 Ubiquitin ligase mediates ubiquitylation of oncoproteins Downregulated Kitade et al., 2016

37. SPARC Membrane-associated glycoprotein, normal development,

anti-proliferative, and de-adhesive properties angiogenesis,

ECM production

Downregulated Socha et al., 2009

38. HIC1 Transcriptional repressor Downregulated Pieretti et al., 1995; Rathi et al., 2002;

Teodoridis et al., 2005; Tam et al.,

2007

39. Rarβ Transcriptional regulator of cell growth Downregulated Makarla et al., 2005; Tam et al., 2007

40. GSTP1 Intra cellular detoxification Downregulated Makarla et al., 2005; Bol et al., 2010

(Continued)
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TABLE 4 | Continued

S. No Gene Function Epigenetic event References

41. TBX15 Development of mesodermal derivative Downregulated Gozzi et al., 2016

42. HUSIF 1 Modulate heparin binding growth factor signaling promote

Wnt signaling pathway

Downregulated Staub et al., 2007

43. SFRP1 Inhibitor of Wnt/β-catenin signaling pathway Downregulated Su et al., 2009; Kardum et al., 2017

44. RunX1T1 Putative SMAD4 target/TGFβ/SMAD4 signaling Downregulated Yeh et al., 2011

45. ANGPTL2 Secreted glycoprotein involved in angiogenesis Downregulated Kikuchi et al., 2008

46. CTGF Adhesion molecule, motility modulator Downregulated Kikuchi et al., 2007

47. FOXD3 Transcriptional regulator of development, cell maintenance,

and lineage specification

Downregulated Luo et al., 2019

48. NISCH Encodes imidazoline receptor Nischarin, regulates cellular

migration, and invasion upon interacting with PAK1, LIMK,

Rac1, and LKB1

Downregulated Li J. et al., 2015

49. ABCA1 A TGF-β target, regulator of cholesterol efflux and metabolism Downregulated Chou et al., 2015, p. 1

50. TIMP2 A EZH2 target, endogenous regulator of matrix

metalloproteinases, repressor of metastasis

Downregulated Yi et al., 2017

51. PCDH17 Transmembrane protein belonging to cadherin superfamily,

potential calcium-dependent cell-adhesion protein

Downregulated Baranova et al., 2018

52. LDOC1 A nuclear transcription factor, regulator of NFκB Signaling Downregulated Buchholtz et al., 2014

53. RGS2 Regulator of GTPase activity of G protein subunits. Negative

regulator of angiotensin-activated signaling pathway

Downregulated Cacan, 2017

54. PRTFDC1 Unknown Downregulated Cai et al., 2007

55. DDR Subclass of RTKs, associated with cell differentiation,

proliferation, adhesion, migration, and invasion

Downregulated Chung et al., 2017

56. ARNTL Circadian gene Downregulated Yeh et al., 2014

57. GULP1 Apoptosis, lipid homeostasis, regulator of Arf6-mediated

signaling

Downregulated Maldonado et al., 2018, p. 1

58. TGFB1 Adhesion, essential for function of microfibrils and interacts

with fibronectin and integrins

Downregulated Kang et al., 2010

59. SALL2 Cellular quiescence factor, neural development Downregulated Sung et al., 2013

60. PDZ-LIM Ubiquitination of nuclear p65, inflammation Downregulated Zhao et al., 2016

61. KLF11 Inhibitory regulator of TGFβ signaling, promotes apoptosis Downregulated Wang et al., 2015

62. GBGT1 Encodes glycosyltransferase which plays role in synthesis of

Forssman glycolipid

Downregulated Jacob et al., 2014

Methylation induced repression of these suppressors correlates
with invasive EOC.

Several studies have identified the association of tumor-
specific gene methylation with molecular, clinical, and
pathological characteristics of epithelial ovarian carcinomas.
For instance, highest degree of promoter methylation of SFN
(an inhibitor of cell cycle progression), TMS1 and WT1 has
been demonstrated in clear-cell ovarian tumors than in other
histological types (Kaneuchi et al., 2004, p. 14; Terasawa et al.,
2004; Kaneuchi et al., 2005; Teodoridis et al., 2005). Another
finding suggests that promoter methylation of RASSF1A, APC,
GSTP1, and MGMT correlates with the presence of invasive
ovarian carcinomas (Makarla et al., 2005). Hypermethylation of
FOXD3 correlated with tumor suppressive role (inhibition of
proliferation, migration and promotion of apoptosis) in ovarian
cancer cells and thus could serve as a potential therapeutic target
for diagnosis of ovarian cancer (Luo et al., 2019).

Using a high–throughput approach to screen genes that
showed highest differential methylation between ovarian cancer

and normal tissue, Melnikov et al. identified 10 genes to be
informative in tissue samples which include: BRCA1, EP300,
NR3C1, MLH1, DNAJC15, CDKN1C, TP73, PGR, THBS1, and
TMS1. A maximum sensitivity of 69% with 70% specificity was
attained on testing the potential of several combinations of these
genes to discriminate normal from cancer tissue. Since, all tumors
analyzed were of advanced stage (either stage IIIA or higher),
therefore, the potential of this panel to diagnose EOC at an early
stage is unknown (Melnikov et al., 2009). Ibanez de Caceres
et al. demonstrated that hypermethylation of atleast one of the
six genes in panel (BRCA1, RASSF1A, APC, p14arf, p16ink4a,
and DAPK) could be detected in 70/ 71 (99%) of EOCs using
methylation specific PCR. Furthermore, none of the normal
non-neoplastic tissue showed methylation, revealing a specificity
of 100%. Additionally, across all histological subtypes, grades,
stages as well as age, hypermethylation of TSGs was observed
(Ibanez de Caceres et al., 2004). Taken together, these results
support hypermethylation of these tumor suppressor genes as a
relatively early event in ovarian carcinogenesis and could serve as
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TABLE 5 | List of hypermethylated genes in ovarian cancer.

Gene Frequency of

hypermethylation in

ovarian cancer

Ovarian cancer

subtype

Frequency of

hypermethylation

in normal tissue

Method References

RASSF1A 15.6–50% S, M, E, CC 0–13% MSP Yoon et al., 2001; Makarla et al.,

2005; Choi et al., 2006; Bol et al.,

2010

DAPK 50–67% (full) S, CC, E, M, CS, PDA 50% (Partial) MSP Collins et al., 2006; Häfner et al.,

2011

p16(CDKN2A) 16.9–42% S, M, E 0–25% MSP Strathdee et al., 2001; Rathi et al.,

2002; Tam et al., 2007

HIC1 15.9–51.7% Not specific 12.5–19%; 11.1% MSP Strathdee et al., 2001; Ongenaert

et al., 2008

OPCML 46.5–83.3% Not specific 0% Restriction enzyme

cut analysis, MSP

Czekierdowski et al., 2006a; Zhang J.

et al., 2006

MLH1 10% S, E, M, CC, MIX 0% ADJ NLS MSP Strathdee et al., 2001

TERT 29.8% S, M, E, CC 30% qMSP Widschwendter A. et al., 2004

PTEN 16.9% E, S, M, CC 0% MSP Ongenaert et al., 2008

ING1 24% S, M, E, CC, PDA 0% MSP Shen et al., 2005

ITGA8 13.3% S, E, M, CC, SCC 0% END cyst MSP Cai et al., 2007

MGMT 9% S, M, CC, E, UN 16% MSP Makarla et al., 2005

MINT25 16% S, E, M, CC, MIX 0% ADJ NLS MSP Strathdee et al., 2001

APC 18–47.2% S, M, CC, E, UN 0–25% MSP Rathi et al., 2002; Makarla et al.,

2005; Ongenaert et al., 2008

BRCA1 10–24% S, E, M, CC, MIX 0–5.5% ADJ NLS MSP Strathdee et al., 2001; Rathi et al.,

2002; Ibanez de Caceres et al., 2004

CASP8 3% S, E, M, CC, MIX 0% ADJ NLS MSP Strathdee et al., 2001

CDH1

(E-

cadherin)

26–29% S, M, CC, E, UN 6% MSP Rathi et al., 2002; Makarla et al., 2005

CDH13

(H-

cadherin)

18–22% S,M, CC, E, UN 8–13% MSP Rathi et al., 2002; Makarla et al., 2005

DCR1 43% NS 0% MSP Shivapurkar et al., 2004

GPR150 26.6% S, E, M, CC, SCC 0% END cyst MSP Cai et al., 2007

Htr

(TERC)

24% S, E, M, CC, MIX 0% ADJ NLS MSP Strathdee et al., 2001

ADJ NLS, Adjacent normals; CC, Clear cell; CS, Carcinosarcoma; E, Endometroid; END, Endometrial; M, Mucinous; MIX, Mixed; MSP, Methylation-specific PCR; NS, Not specified;

PDA, Poorly differentiated adenocarcinoma; QMSP, Quantitative methylation-specific PCR; S, Serous; SCC, Squamous cell carcinoma; UN, Undifferentiated.

a potential biomarker for detection and accurate discrimination
of EOC at early stage.

Using 7- genes panel [secreted frizzled receptor proteins 1, 2
4, 5 (SFRP1, 2, 4, 5), SRY box1 (SOX1), paired box gene 1(PAX1),
and LIM homeobox transcription factor 1, alpha (LMX1A)], Sui
et al. investigated methylation in 126 primary ovarian tumors, 75
benign ovarian tumors and 14 borderline ovarian tumors and in
26 OC serum samples. Their findings indicated that promoter
methylation of any one of SOX1, PAX1, and SFRP1 could
distinguish EOC patients from normal control with a sensitivity
of 73.08% and a specificity of 75%. Though these test scores are
higher than those of CA125 alone, however it is probably not
high enough to warrant its implementation as a diagnostic test
for individual patients. Moreover, as no specification of tumor
stage within the studied group was provided, the performance of
this panel in detection of EOC at an early stage therefore remains
unclear (Su et al., 2009).

Hypomethylation induced abnormal expression of several
oncogenes such as CLDN4 (encodes an integral component of
tight junctions) (Honda et al., 2006; Litkouhi et al., 2007), MAL
(mal, T-cell differentiation protein) (Lee et al., 2010), BORIS (a
cancer testis antigen family candidate oncogenes) (Woloszynska-
Read et al., 2007), and IGF2 (an imprinted gene involved in
other malignancies) (Murphy et al., 2006) has been demonstrated
in ovarian carcinomas. Promoter hypomethylation induced
upregulation of other cancer-associated genes in ovarian cancer
includes maspin (SERPINB5) (Rose et al., 2006), MCJ (Strathdee
et al., 2004, 2005), and SNCG (synucelin-γ) (Gupta et al., 2003;
Czekierdowski et al., 2006b), which encodes an activator of the
MAPK and Elk-1 signaling cascades. Hypomethylation of SNCG,
MASPIN, and CLDN4 correlates with advanced-stage and
metastasis while that of BORIS is linked with disease presence.

Hypomethylation of Sat2 (satellite 2) DNA in the
juxtacentromeric region of chromosome 1 and 16 has been
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TABLE 6 | Epigenetic biomarkers for ovarian cancer detection.

Epigenetic marker Source Sensitivity /specificity Technique References

GTF2A1 and HAAO Tumor tissue Presence of malignancy

95/88%;

89/82%

qMSP Huang et al., 2009

HOXA9 and SCGB3A1 Tumor tissue Early stage carcinoma

(18/24, p = 0.002)

(5/25, p = 0.020)

MSP Wu et al., 2007

RASSF1A and HIC1 Tumor tissue Early stage ovarian carcinomas

34/100, 2/68, OR = 0.3

34/100, 10/68, OR = 0.4

MSP Feng Q. et al., 2008

RASSF1A, GSTP1, MGMT,

APC

Tumor tissue Presence of invasive tumors

RASSF1A: 30% vs. 0%;

GSTP1: 9% vs. 0%;

MGMT: 9% vs. 0%;

APC:22% vs. 0%;

MSP Barton et al., 2008

SPARC Tumor tissue Association with tumor grade

Methylation frequency: 68%

MSP Socha et al., 2009

CDH13, CRABP1, HOXA9,

and SCGB3A1

Tumor tissue Histological subtype differentiation

CDH13, CRABP1, HOXA9 and SCGB3A1 (P =

0.041, P < 0.001, P = 0.007, P < 0.001)

MSP Wu et al., 2007

CTGF Tumor tissue Inversely correlated with invasive disease cDNA microarray analysis Barbolina et al., 2009

CCBE1 Tumor tissue Inversely correlated with metastasis

6/11 (55%) in OC cell lines

38/81 (41%) OC tumors.

Small-interfering RNA

(siRNA)-mediated knockdown

Barton et al., 2010

HIC1 Tumor tissue Presence of malignancy

Methylation frequency: 35%

MSP Rathi et al., 2002

CDH1 Tumor tissue Inversely correlated with metastasis Small-interfering RNA

(siRNA)-mediated knockdown

Sawada et al., 2008

SFN, TMS1, and WTI Tumor tissue Methylation exclusive for Clear cell subtype MSP Barton et al., 2008

hMLH1, CDKN2A, and MGMT Matched tumors Associated with development of Synchronous

endometrial and ovarian cancer

Methylation frequency: 39, 41, and 48%

MSP Furlan, 2006

14–3-3s Tumor tissue Advanced stage ovarian carcinomas MSP, quantitative reverse

transcription-PCR

Akahira et al., 2004b

HOXA11 Tumor tissue Presence of malignancy, Suboptimal tumor

debulking and poor outcome (relative risk for death

= 3.4)

MethyLight assay Fiegl et al., 2008

10 gene panel Tumor tissue Presence of serous adenocarcinoma (69.4%

sensitivity and 70.2% specificity)

Microarray Mediated

Methylation Assay (MethDet

test)

Melnikov et al., 2009

Polycomb group target genes

in particular HOXA9

Normal

endometrium

Hoxa9 hypermethylation association with increased

risk (12.3 fold) of ovarian cancer

MethyLight assay Widschwendter et al., 2009

SNCG, MASPIN, and CLDN4 Tumor tissue Advanced stage ovarian carcinomas Small-interfering RNA

(siRNA)-mediated knockdown,

qRT-PCR

Gupta et al., 2003; Rose et al.,

2006; Choi et al., 2007; Honda

et al., 2007

PCDH17 Tumor tissue Presence of malignancy Next-generation sequencing,

Methylation-sensitive

high-resolution melting

Analysis

Baranova et al., 2018

EGFL7 and RASSF1 Tumor tissue Early stage disease detection and progression DNA methylation microarray

assay, Bisulfite pyrosequencing

Rattanapan et al., 2018

LDOC1 Ovarian cancer

cell line

Early stage disease detection RT-PCR and real-time PCR Buchholtz et al., 2014

GPR150, ITGA8, and

HOXD11

Ovarian cancer

cell line

Tumor marker Methylation-sensitive-

representational difference

analysis (MS-RDA) and MSP

Cai et al., 2007

(Continued)
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TABLE 6 | Continued

Epigenetic marker Source Sensitivity /specificity Technique References

TGFBI Tumor tissue

and ovarian

cancer cell line

Presence of malignancy Real-time RT-PCR, MS-PCR,

and bisulfite sequencing

Kang et al., 2010

DAPK1 and SOX1 Tumor tissue Early stage disease MethyLight Kaur et al., 2016

BORIS Tumor tissue Presence of malignancy qRT-PCR Woloszynska-Read et al., 2007

long-intergenic non-coding

RNA (lincRNA) gene

(LOC134466)

Tumor tissue

and ovarian

cancer cell line

Potential novel diagnostic biomarker for high grade

(Type II) serous ovarian carcinoma (HGSOC)

MeDIP-Chip and Sequenom

massARRAY methylation

analysis

Gloss et al., 2012

reported in ovarian cancer (Qu et al., 1999). A significant increase
in hypomethylation of chromosome 1 Sat2 and chromosome
1 satellite α from non-neoplastic tissue toward ovarian cancer
tissue was observed. Higher hypomethylation levels were
observed in serous and endometrioid tumors in comparison to
mucinous. Moreover, extensive hypomethylation was prevalent
in high grade or advanced stage tumors (WidschwendterM. et al.,
2004). Taken together, consistent higher expression levels along
with hypomethylation of L1 and human endogenous retrovirus-
W retrotransposons (repetitive sequences widely distributed
throughout the genome) has been reported in malignant ovarian
tumors against normal control samples (Menendez et al.,
2004). It has been hypothesized that promotion in homologous
recombination as a result of increased hypomethylation, leads
to chromosomal aberrations associated with carcinogenesis
(Kolomietz et al., 2002; Symer et al., 2002).

Prognosis
Potential prognostic biomarker includes FBXO32, which
correlates with advanced stage and shorter disease free survival
(Chou et al., 2010), Ribosomal DNA (18S and 28S) linked with
prolonged disease free survival (Chan, 2005), IGFBP-3, correlates
with disease progression and death in early stage EOC (Wiley
et al., 2006b) andHOXA11, association with postsurgical residual
tumor and poor outcome (Fiegl et al., 2008). Methylation of ≥1
gene of SFRP1, SFRP2, and SOX1 correlated with short disease
free survival while SOX1, LMX1A, and SFRP1 methylation
was associated with recurrence and short overall survival (Su
et al., 2009). A progression-free survival prediction accuracy
of 95% is reported by Wei et al. with hMLH1, IGFP3, and
NEUROD1 among a panel of 112 highly discriminatory loci
(Wei, 2006). Furthermore, detection of prognostic epigenetic
biomarker has also been described in plasma as well as peritoneal
fluid. Methylation of hMLH1, analyzed in 138 plasma samples
predicted poor survival (hazard ratio: 1.99) (Gifford, 2004) while
CDH1, CDH13, and APC (out of a 15 gene panel) analyzed in
peritoneal fluid from 57 ovarian cancer patients could predict
overall survival (Suehiro et al., 2008). Huang et al. recently
reported that the epigenetic loss of heparin sulfate 3-O-sulfation
makes ovarian cancer cells sensitive to oncogenic signals and
could predict prognosis, thereby reflecting the utility of HS3ST2
for targeted therapy (Huang et al., 2018).

Recently using genome-wide methylation data analysis, five-
methylation signature (SLC39A14, PREX2, KCNIP2, CORO6,

and EFNB1) were reported as novel independent prognostic
biomarker for patients with ovarian serous cystadenocarcinoma,
which significantly associated with OS of patients. Moreover,
these signatures exhibited higher sensitivity and specificity
to predict OSC prognosis (AUC = 0.715), which reflects
their clinical significance in improving outcome prediction.
Furthermore, these 5-methylation signatures weremore accurate
over known biomarkers in predicting prognostic survival of
OSC patients (Guo T. Y. et al., 2018). Promoter methylation
of BRCA1 has been reported to be associated significantly
with increased PFS of patients with OC undergoing adjuvant
platinum–taxane-based chemotherapy (P = 0.008) as well for
the patients with disease recurrence (PFS = 18.5 months over
12.8 months for patients without BRCA1 promoter methylation),
thereby reflecting that promoter methylation of BRCA1 could be
a better predictive marker of response to platinum–taxane-based
chemotherapy in sporadic Epithelial ovarian carcinoma (Ignatov
et al., 2014).

Another study highlights the potential of CDH1, DLEC1,
and SFRP5 gene methylation panel as a prognostic biomarker
in advanced stage OC patients. Presence of two or more
methylated genes in patients significantly correlated with disease
recurrence (hazard ratio: 1.91; p = 0.002) and shorter overall
survival and disease free survival (hazard ratio: 1.96; p =

0.006) (Lin et al., 2018). Liu et al. reported the prognostic
potential of C/EBPβ (a transcription factor) which augments
chemoresistance of ovarian cancer cells by maintaining an
open chromatin state via reprogramming H3K79 methylation
of multiple drug-resistance genes upon direct interaction with
DOT1L (DNA methyltransferase), thus provides a new insight
for more precise therapeutics options in OC by identifying and
targeting the key regulators of epigenetics (Liu et al., 2018).

Several recent researches have suggested the hypermethylation
and reduced expression is prognostic for shorter progression
free survival. For instance, using genome wide array analyses,
Hafner et al. reported 220 differentially methylated region with
short and long PFS. Validation experiments on a large cohort of
type II EOC revealed the association of RUNX3/CAMK2N1 with
poor clinical outcome (Lower PFS), indicating the prognostic
potential of these genes (Häfner et al., 2016). Few studies
have highlighted the tight link between promoter methylation
and metastasis. For instance, stimulation of ovarian cancer cell
lines by TGFβ, which is a key player in metastasis, extensively
change promoter methylation of genes that are associated with
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EMT (Epithelial-mesenchymal transition) and progression of
cancer (Cardenas et al., 2014). Deng et al. reported the tumor
suppressive role of IQGAP2 which suppresses the ovarian cancer
progression via suppressing Epithelial-mesenchymal transition
by regulating Wnt/β signaling, thereby providing a potential
biomarker and therapeutic strategy to combat ovarian cancer
diagnosis (Deng et al., 2016).

Brachova et al. studied the association of oncomorphic TP53
mutation on patient outcome diagnosed with advanced EOC.
Oncomorphic TP53 mutation correlated with worse progression
free survival, higher risk of recurrence and higher rate of
platinum resistance (Brachova et al., 2015). Dai et al. explored
the association of methylation-based prognostic biomarkers
within key ovarian cancer-related pathways with progression free
survival to platinum based chemotherapy in HGSOC. NKD1,
VEGFB, and PRDX2 were identified as the best predictors of
progression free survival (PFS: HR = 2.3 p = 3.3 × 10–5;
Overall Survival: HR = 1.9, p = 0.007). Further validation using
independent TCGA data set revealed the significant association
of VEGFA, VEGFB, and VEGFC promoter methylation with
progression free survival (Dai et al., 2013).

Promoter hypomethylation and expression of PRAME
correlates with increased survival in high grade serous ovarian
carcinoma (Zhang et al., 2016). Promoter hypomethylation and
increased expression of proto-oncogenes is predictive for more
aggressiveness and metastasis of disease and thereby lower
survival, which is evident from recent studies on GABRP,
SLC6A12, MGAT3, CT45, CA9, MUC13, and AGR2 (Sung et al.,
2014a,b,c, 2017a,b; Zhang et al., 2015; Kohler et al., 2016).
Hypomethylation of Sat2 DNA (Chr 1) was associated relapse
and poor prognosis (Widschwendter M. et al., 2004), and LINE1
was linked with poorer overall survival and lower progression
free survival (Pattamadilok et al., 2008; Table 7).

Another important study by Wei et al. reported 112
methylated loci which were prognostic for reduced PFS
and could predict PFS with an accuracy of 95% using
Significance Analysis of Microarray and Prediction Analysis of
Microarray algorithm (Wei, 2006). Twenty-two hypermethylated
loci were identified by global methylation profiling of 485
tumor samples of clear-cell ovarian cancer in a recent
study. These hypermethylated loci were associated with 9
genes (VWA1, FOXP1, FGFRL1, LINC00340, KCNH2, ANK1,
ATXN2, NDRG21, and SLC16A11). Further, methylation
induced silencing of KCNH2 (HERG, a potassium channel)
could be a better prognostic factor for poor survival provided
increased proliferation was mediated by overexpression of Eag
family members. However, further validation on larger cohort
is still warranted (Cicek et al., 2013). Huang et al. identified
63 differentially methylated regions of prognostic relevance
which significantly correlated with poor PFS. Further, epigenetic
silencing of regulators of hedgehog signaling pathway ZIC1 and
ZIC4 was associated with increased proliferation, migration,
and invasion. Additionally, promoter hypermethylation of ZIC1
significantly correlated with poor survival and thus could serve as
prognostic determinant for patient outcome (Huang et al., 2013).

Another study describes that the global methylome status
of HGSOC PDX (patient-derived xenografts) resembled with

global methylation in corresponding patient tumor over several
generations and could be efficiently modulated by demethylating
agents. C-terminal Src kinase (CSK), a novel epigenetically
regulated gene and associated pathways were also identified.
Low CSK methylation significantly correlated with improved
PFS and OS in HGSOC patients (Tomar et al., 2016). Koestler
et al. using integrative global methylation and single nucleotide
polymorphisms analysis identified DNA methylation marks (13
unique CpGs and 17 unique SNPs) which could mediate EOC
genetic risk (Koestler et al., 2014).

Recently, Sharma et al. investigated epigenetic regulation
of POTE gene family, which is localized to autosomal
pericentromeric region. POTE gene family is over-expressed in
HGSOC. Epigenetic silencing of POTE gene was functionally
verified by experiments involving treatment with Decitabine and
DNMT knockout cell lines. In addition expression of individual
gene in POTE gene family correlated with chemoresistance and
poor clinical outcome in HGSOC patients. Furthermore, several
epigenetic alternations (pericentromeric activation, global and
locus-specific L1 hypomethylation, and locus-specific 5’ CpG
hypomethylation) served as a determinant for regulation of
epigenetic activation of POTE gene (Sharma et al., 2019).

In conclusion, these studies provides insight to the association
of several potential methylation based prognostic biomarkers
with clinical outcome in ovarian carcinoma and further
suggest that these reports on epigenome wide interrogation of
DNA methylation warrants detailed functional analysis of loci
sufficiently discriminating OC with normal state. New targets
identified through comprehensive methylome analysis in OC
have significant translational potential to pave the design of
future clinical investigations and therapeutics.

Predictive
Methylation mediated transcriptional repression of specific
drug-response genes results in acquisition of drug resistance
and significantly extends its impact on different facets
of chemotherapeutic actions: membrane entry/exit, drug
metabolism, response to cellular injury, DNA repair, apoptosis
etc., in cancer cells. Hypermethylated genes such as hMLH1,
ASS1 (arginine biosynthesis-related gene), ESR2 (encoding ER-
β), and SFRP5 (encodes an inhibitor of oncogenicWNT signaling
pathway) have been implicated in platinum resistance. Three
studies well defined in ovarian cancer includes: Methylation of
either BRCA1, GSTP1, or MGMT significantly correlates with
improved response to chemotherapy (p = 0.013) (Teodoridis
et al., 2005). Hypermethylation of RASSF1A and CABIN1 have
been reported to correlate with response to adjuvant therapy.
Patients who responded to therapy had moderately higher
frequencies of RASSF1A hypermethylation (OR = 0.4) and
significantly higher frequencies of CABIN1 hypermethylation
(OR = 0.1) (Feng Q. et al., 2008). Strathdee et al. demonstrated
that high levels of MCJ methylation significantly correlated with
poor response to therapy (p = 0.027) and poor overall survival
(p = 0.023; HR = 2.9) (Strathdee et al., 2005). Hypomethylation
induced upregulation of ABCG2 (multidrug transporter) MAL
(determinant of platinum resistance) and TUBB3 (determinant
of taxane resistance) genes have been described in advanced
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TABLE 7 | Epigenetic biomarkers for ovarian cancer prognostication.

Epigenetic marker Source Clinical prediction References

182-gene panel Tumor tissue HR 2.5 for PFS Wei et al., 2002

112-gene panel Tumor tissue Prediction accuracy of 95% for

shorter Disease free survival

Wei, 2006

SFRP1, SFRP2, and SOX1 Tumor tissue Correlates with shorter Disease free

survival

Su et al., 2009

SOX1, LMX1A, and SFRP1 Tumor tissue Correlates with shorter overall survival Su et al., 2009

hMLH1 Plasma If hypermethylated HR:1.99 for OS Gifford, 2004

HOXA10, HOXA11 Tumor tissue RR for death:3.4, if HOXA11

methylated

Fiegl et al., 2008, p. 11

18S and 28S rDNA Tumor tissue Prolonged DFS Chan, 2005

EN2 Tumor tissue Short progression free survival McGrath et al., 2018

MYLK3 Tumor tissue Higher methylation level significantly

predicted better overall survival with

least residual disease

Phelps et al., 2017

FBXO32 Tumor tissue Advanced stage and short DFS Chou et al., 2010

Panel of IGFFBP3, p16, BRCA1, GSTP1, ER-α, hMLH1 Tumor tissue Seven fold increased risk of short

DFS

HR: 6.53 for disease progression

Wiley et al., 2006a

RUNX3, CAMK2N1 Tumor tissue and ovarian cancer cell line Short overall survival Häfner et al., 2016

ABCA1 Tumor tissue and ovarian cancer cell line Shorter overall survival Chou et al., 2015

GULP1 ovarian cancer cell line Residual disease, worse overall

survival, and disease specific survival

Maldonado et al., 2018,

p. 1

FZD4, DVL1, and ROCK1 Tumor tissue Correlated with early disease relapse Dai et al., 2011

DNA hypomethylated genes

15 gene panel Peritoneal fluid Short overall survival Muller, 2004

Sat 2 DNA (Chr1) Tumor tissue RR for relapse:4.1, RR for death:9.4 if

region methylated

Widschwendter M.

et al., 2004

LINE1 Tumor tissue Lower methylation level significantly

predicted poor OS and PFS

Pattamadilok et al.,

2008

ATG4A, HIST1H2BN Tumor tissue Poor progression free survival Liao et al., 2014

ovarian carcinoma cases with drug-acquired chemoresistance
(Izutsu et al., 2008; Balch et al., 2010; Lee et al., 2010; Table 8).

Recently Pulliam et al. demonstrated the combinatorial effect
of DNA methyltransferase inhibitor (DNMTi) guadecitabine
and the Poly (ADP-ribose) polymerase (PARP) inhibitors
(PARPi) talazoparib in resensitizing PARPi resistant breast
and ovarian cancer irrespective of BRCA status. Synergistic
effect of guadecitabine and talazoparib increased ROS
accumulation, and further sensitized the breast and ovarian
cancer cells toward PARPi sensitivity by subsequent activation
of cAMP/PKA signaling which in turn promoted PARP
activation. Furthermore, DNMTi augmented PARP “trapping”
by talazoparib. The finding of this complementary model
supports further clinical exploration of this combination therapy
in PARPi-resistant cancers (Pulliam et al., 2018). Another
study using integrated global methylation analysis on extreme
chemoresponsive HGSOC patients identified four genes of
clinical relevance (FZD10, FAM83A, MYO18B, and MKX)
as epigenetic marker of platinum based chemoresponse, of
which, FZD10 was reported as functionally validated marker of
platinum sensitivity (Tomar et al., 2017). Promoter methylation
of OPCML was significantly associated with poor overall survival

of OC patients and thus could be of use in predicting disease
prognosis (Zhou et al., 2014).

A recent study has described induction of hypomethylation in
resistant ovarian cancer patients upon treatment with cisplatin,
though, in the intergenic regions, the loss of methylation
was primarily observed (Lund et al., 2017). Hypomethylation
of developmental genes MSX1 and TMEM88 correlated with
platinum resistance in patients with ovarian cancer (Bonito
et al., 2016; de Leon et al., 2016). Stimulation of EMT by non-
coding RNA HOTAIR has been reported to be regulated by
DNA methylation and is indicative of resistance to carboplatin
(Teschendorff et al., 2015). Likewise, another study highlights
promotion of platinum resistance by TET. Induction of EMT
by TET is mediated by demethylation of Vimentin promoter in
ovarian carcinoma (Han et al., 2017).

A recent study has described how methylome-targeting
strategies could bring forth anti-tumor effect. Guadecitabine-
mediated induction of global hypomethylation not only affects
metabolic and immune responses but also activates tumor
suppressor genes which eventually contribute to platinum drug
re-sensitization in ovarian cancer. This might offer utility in
improving survival outcomes of patients with ovarian cancer
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TABLE 8 | Epigenetic biomarkers for ovarian cancer prediction.

Epigenetic marker Source Clinical prediction References

Methylation of >1 of BRCA1, GSTP1, and MGMT Tumor tissue Association with improved response to chemotherapy Teodoridis et al., 2005

RASSF1A, CABIN1 Tumor tissue Association with response to chemotherapy Feng Q. et al., 2008

ASS1 Tumor tissue Determinant of Platinum resistance Nicholson et al., 2009

HSulf1 Tumor tissue Determinant of Platinum resistance Staub et al., 2007

SFRP5 Tumor tissue Determinant of Platinum resistance Su et al., 2010

hMLH1 Plasma Relapse of Chemoresistant tumor Gifford, 2004

ESR2 Tumor tissue Determinant of Platinum resistance Yap et al., 2009

MCJ Tumor tissue Association with response to chemotherapy and overall survival Strathdee et al., 2005

TUBB3 Tumor tissue Taxane resistance Izutsu et al., 2008

MSX1 Ovarian cancer cell line Sensitivity to platinum drug Bonito et al., 2016

TBX2 Tumor tissue Sensitivity to platinum drug Tasaka et al., 2017

MAL Tumor tissue Platinum resistance Lee et al., 2010

(Fang et al., 2018). Another recent study has highlighted the
tumor suppressor role of ZNF671 and its methylation could act
as a predictor for early recurrence of serous ovarian carcinoma
(Mase et al., 2019). Another important study by M. Keita et al.
has for the first time reported the exclusive association of massive
DNA hypomethylation with poorly differentiated tumors, which
correlates with disease aggressiveness and progression. This
report also raises concern over the adverse effect of use of
demethylating agents which probably aid the activation of
oncogenes and prometastatic genes (Keita et al., 2013).

In conclusion, it is speculated that the combinatorial therapies
utilizing epigenetic inhibitors holds promise and would be most
effective for chemo-resensitization of resistant tumors, possibly
by restoration of pathways associated with drug response, and
thus would subsequently implicate improved survival outcomes
as well as personalized treatment for this devastating disease.

Histone Modifications in Ovarian Cancer
Compared with DNA methylation, the evidence on chromatin
modification in development of ovarian cancer is limited.
Histone modification mediated regulation of cell cycle regulatory
proteins such as cyclin B1 (Valls et al., 2005), p21 (Richon
et al., 2000), and ADAM19 (Chan M. W. et al., 2008) have been
described in various reports. Association of histonemodifications
with aberrant class III β tubulin protein expression (Izutsu et al.,
2008), reduction of PACE3 expression (Fu et al., 2003) and
silencing of survivin (Mirza et al., 2002) has been reported
in ovarian tumorigenesis. Upregulation of tumor suppressor
Rb and CDKN1 (cyclin-dependent kinase inhibitor) by histone
acetylation was described by Strait et al. (2002). Moreover,
the overexpression of HDACs 1–3 in ovarian cancer has been
reported to be associated with high grade tumors and resulting
poor prognosis (Weichert et al., 2008). On the other note,
the derepression of claudin-3 and claudin-4 was found to
be associated with loss of trimethylated histone 3 lysine 27
(H3K27me3) (Kwon et al., 2010). The transcriptional repression
of osteoprotegerin (OPG) has been reported to be mediated
by reduced histone 3 lysine 4 trimethylation (H3K4me3)
and increased H3K27me3 (Lu et al., 2009). Similarly, the
association of transcriptional silencing of GATA4 and GATA6

with hypoacetylation of histones H3 and H4 and loss of
trimethylated histone 3l ysine 4 (H3K4me3) has been described
by Caslini et al. (2006).

A very recent report has provided insight into the
mechanism associated with development and progression
of OC. Early Loss of E3 ubiquitin ligase RNF20 and histone
H2B monoubiquitylation (H2Bub1) has been reported to drive
ovarian tumorigenesis by altering chromatin accessibility and
thereby activating immune signaling pathways (IL6), and
this loss has been defined by majority of high grade serous
ovarian carcinomas tumors (Hooda et al., 2019). Cacan et al.
reported that the loss of FAS expression which contributes to
drug resistance is mediated by histone deacetylase 1 (HDAC1)
in chemoresistant OC cells (Cacan, 2016). Recently Tang
et al. highlighted the repression of histone H3 lysine 27
trimethylation (H3K27me3) which was mitigated by AMP-
activated protein kinase (AMPK) phosphorylation upon
treatment with metformin thus implicated the antitumor effect
of metformin and suggested its utility in the treatment of EOC
patients who are not diabetic (Tang et al., 2018).

In another study, the mechanism associated with upregulation
of ABCB1 was conferred to chromatin remodeling (via p300
mediated H3K9ac and AR complex binding to ARE4) which in
turn leads to the development of taxol resistant phenotype. It
was shown that the upregulation of p300 and GCN5 (HATs) was
associated with overexpression of ABCB1 and resistance to taxol
and PI3K/AKT pathway which is activated by taxol, mediates the
regulation of the expression of p300 and AR. These results further
reveal the significance of AKT/p300/AR axis as a novel treatment
strategy in combating taxol resistance (Sun et al., 2019). Using
ChIP-seq approach, Curry et al. identified genome-wide bivalent
domains (H3K27me3 and H3K4me3) at gene promoter in tumor
samples which were collected pre and post platinum resistance
acquisition, and showed that these representative poised gene
sets are pre-disposed to hypermethylation induced epigenetic
silencing during acquisition of drug resistance, thus provides
novel insights to prevent emergence of drug resistance (Curry
et al., 2018).

Yi et al. reported that Enhancer of zeste homolog 2 (EZH2)
mediates repression of tissue inhibitor of metalloproteinases
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2(TIMP2) by H3K27me3 and DNA methylation thereby
facilitating ovarian cancer metastasis (Yi et al., 2017). In similar
context, another study highlighted silencing of ARHI in ovarian
cancer which was synergistically mediated by Enhancer of zeste
homolog 2 (EZH2) induced H3K27me3 and DNA methylation.
Furthermore increased EZH2 expression correlated with worse
overall survival rates, implicating prognostic potential of EZH2
in EOC (Fu et al., 2015). Repression of Regulator of G-protein
signaling 2 (RGS2) via histone deacetylases (HDACs) and DNA
methyltransferase I in chemoresistant OC cells has been reported
recently by Cacan et al., and utility of their inhibitors might serve
as a novel approach to overcome chemoresistance in ovarian
cancer (Cacan, 2017).

Clinical Application of Epigenetic
Biomarker in Liquid Biopsies for Ovarian
Cancer Management
Cell Free DNA Biology
Advancement in the understanding underlying molecular
pathogenesis of cancer, along with advancements in molecular
techniques has facilitated the study of molecular alternations
associated with cancer development at an early stage in body
fluids. Circulating cell free DNA which are believed to have
derived from tumor cells, reflect specific genetic and epigenetic
alternations, and thus may offer potential non-invasive viable
biomarkers for several cancer, capable of providing valuable
information regarding disease progression and response to
therapy in real time.

In 1948, the existence of cell free DNA was first described
by Mandel and Métais. Cell free DNA are derived from necrotic
and apoptotic cells, commonly released by all cell types. Further,
numerous subsequent studies confirmed that the tumor-specific
pattern of alterations, such as chromosomal abnormality, somatic
mutations, resistance mutation, aberrant methylation and copy
number variations could be found in cfDNA, which can serve
as potential target for diagnosis of cancer through non-invasive
approach (Leon et al., 1977; Polivka et al., 2015; Figure 3).

Numerous studies support the detection of methylation
signature in almost any body fluid (such as serum, plasma,
smears, nipple fluid aspirate, and vaginal fluid etc.). As sampling
of blood can be considered as minimal invasive process, thus
serves as an ideal substrate for methylation analysis. The
average concentrations of circulating cell free DNA in healthy
subjects is 30 ng/ml. However, in cancer patients, the average
concentration of cell free serum DNA is higher, approximately
180 ng/ml as dying cancer cells release tumor DNA into the
blood (Gormally et al., 2007). The average length of circulating
cfDNA, which are usually fragmented, is 140 to 170 bp and of
which, only a fraction of few thousand amplifiable copies of
cfDNA /ml of blood, might be of diagnostic relevance (Gormally
et al., 2007; Polivka et al., 2015). The levels of circulating
cell free DNA in serum is abnormally high in early as well
as advanced-stage tumors (Perlin and Moquin, 1972; Leon
et al., 1977). For this phenomenon, the proposed two primary
mechanisms includes: either cells in cancer tissue undergoes
in situ apoptosis and/or necrosis or cells might detach from

tumors and extravasate into bloodstream where they undergo
lysis (Figure 4).

Since its first validation, the potential application of
circulating DNA in research settings and for non-invasive
management of cancer as “liquid biopsy” is expanding with
improvement in molecular and genomic techniques. Numerous
studies have demonstrated that tumor specific aberrant
methylation can also be detected in cfDNA of patients with
different tumor types such as lung, prostate, breast and colorectal
cancer and further confirmed altered methylation as an
independent diagnostic/ prognostic marker (Board et al., 2008;
Brock et al., 2008; Lofton-Day et al., 2008; Vlassov et al., 2010).
Warren et al. developed a highly sensitive non-invasive test for
screening of colorectal cancer based on methylation of SEPT9
in plasma which could specifically detect all stages and locations
of colorectal cancers (Warren et al., 2011). Hypermethylation of
Vim gene is strongly correlated with the occurrence of colorectal
cancer. Similarly hypermethylation of SHOX2 in sputum has
been used as biomarker for distinguishing malignant and benign
lung diseases (Kneip et al., 2011). Gstp1 methylation status in
urine is strongly correlated with early onset of prostate cancer
(Belinsky, 2004).

Numerous reports have highlighted the potential of DNA
methylation based biomarkers for non-invasive detection of
cancer utilizing cell free DNA. Recently, using integrated
methylome analysis Wei et al. reported hypermethylation of
SPG20, a putative STAT3 target, for non-invasive detection of
gastric cancer at an early stage (Wei et al., 2019). Yang et al.
explored the potential of eight gene panel for non-invasive
detection of lung cancer using qMSP and revealed that the
promoter methylation of any of the eight gene could detect the
disease with a sensitivity of 72% with 91% specificity, reflecting
the utility of plasma DNA methylation as a novel approach for
detection of lung cancer at early stage (Yang et al., 2018).

Similarly, promoter methylation of OPCML and HOXD9
assessed in serum cell free DNA using methylation-sensitive
high-resolution melting, was detected with a sensitivity of
62.50% with specificity of 100%, thus could serve as a non-
invasive differential biomarker to prevent misdiagnosis of
cholangiocarcinoma (CCA) and other biliary diseases (Wasenang
et al., 2019). Further, for the management of pancreatic cancer
and its early detection Eissa et al. analyzed the methylation of
ADAMTS1 and BNC1 in cfDNA using qMSP, which exhibited
a sensitivity of 94.8% and specificity of 91.6% with a AUC of 0.95
reflecting diagnostic potential of this blood based two-gene panel
in detection of pancreatic cancer at an early stage (Eissa et al.,
2019). Methylation of APC, FOXA1, and RASSF1A in cell free
DNA served as a best performing cassette in terms of diagnostic
and prognostic value, revealing a sensitivity, specificity and
accuracy over 70% suggesting its putative utility in management
of breast cancer (Salta et al., 2018).

Other studies using genome-wide methylation profiling of
serum/plasma cell-free DNAhave identified potential biomarkers
for clinical utility. For instance, Xu et al. using MeDIP-seq
approach reported 10 significant differentially methylated genes
as potent biomarker for lung cancer clinical application (Xu et al.,
2019). Similarly, using genome-wide methylome profiling and
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FIGURE 3 | Timeline reflecting the detection of genetic and epigenetic alternations in Cell-free DNA in blood of patients with different cancer type.

FIGURE 4 | Origin of Cell-free DNA in blood.

SequenomMassARRAY approach, it was reported that promoter
methylation of CASZ1, CDH13, and ING2 could serve as a potent
noninvasive biomarker for detection of esophageal cancer at
early stage (Wang H.Q. et al., 2018).

Challenges
The analysis of blood borne cell-free DNA has tremendous
potential to enable rapid, non-invasive molecular diagnosis of
cancer. They are of great clinical relevance as they provide
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specific targets for initial diagnosis, permit monitoring of
treatment efficacy as well as information about tumor profile
and its dynamics which are critical for treatment decisions (De
Mattos-Arruda et al., 2014; Lewis et al., 2015).

The advantages of analyzing tumor specific DNA methylation
in cell free serum DNA includes, improved sensitivity as
cfDNA can be easily amplified by PCR, fewer false positive
rate as methylation pattern is generally conserved throughout
the progression of disease, stability during sample collection as
abnormal DNA methylation is chemically as well as biologically
stable and remains relatively unaffected by physiological
condition at the time of sample collection, increased technical
sensitivity and specificity for gene specific assays as well as
offers assay design advantages over genetic alternation that might
be interspersed throughout a given gene. Furthermore, DNA
methylation is a positively detectable signal, unlike a loss of signal
as in chromosomal deletions (Wittenberger et al., 2014).

Several limitations in the methylation detection of cell free
serum DNA includes extremely low amount of available cfDNA,
missing bisulfite conversions as they are usually fragmented,
low sensitivity demonstrated by a single marker and time-

consuming, complicated and expensive conventional techniques
for cfDNA isolation. The most commonly used technique for
methylation detection is MSP PCR (methylation specific PCR)
which is a bisulfite-conversion- based method. The limitation of
bisulfite conversion of cfDNA is the missing DNA. Because of the
technical difficulties of DNAmethylation analysis, only few DNA
methylation based markers has been identified to date, which
apply only to a fraction of gynecological cancers including breast,
ovarian and endometrial cancers (Wittenberger et al., 2014; Lewis
et al., 2015).

The two technological challenges to be addressed include (1)
the detection of low abundant tumor-specific DNA methylation
patterns through methylation specific PCR priming or probing
with high signal-to-noise ratio (2) the determination of
methylation status of consecutive sites in individual DNA
molecules with single base-pair resolution. This requires
methylation-independent priming and sequence analysis of
combined PCR product. Clinically the major problem associated
with DNA methylation assays is to detect scarcely abundant
alleles within high background levels of non-target molecules.
However, with the advent of digital MethyLight assay together
with rapid advances in next generation sequencing based
technologies, these issues can be overcome. One example of
this novel approach is the development of the PraenaTestTM

(LifeCodexx, Germany) (Weisenberger et al., 2008).

Serum Based Epigenetic Biomarker
Tumor-specific methylation-based biomarkers might possibly
prove valuable for monitoring disease prognosis and different
pathological determinants; however, non-invasive analysis and
characterization of biomarkers in body fluids offers more
feasibility in early screening and detection of the disease
as well in monitoring the response to therapy. Numerous
studies have reported aberrant methylation in ovarian cancer as
discussed earlier; there are relatively few reports of serum/plasma
methylation biomarkers for earlier detection of OC. Various

studies that demonstrated striking detection sensitivities and
specificities in non-invasive assays, thereby supporting the
promising utility of these biomarkers for early screening and
detection of OC has been summarized in Table 9.

MicroRNAs in Ovarian Cancer
Aberrant expression of microRNAs has been confirmed in
ovarian carcinogenesis. A decrease in mRNA levels of the miR-
processing enzymes in OC malignant cases against normal
controls, strongly implicates an overall tumor suppressive
role of miRs in ovarian tumorigenesis (Merritt et al., 2008;
Pampalakis et al., 2010). Overexpression of Drosha and Dicer
was significantly associated with better survival, while low
expression of Drosha was associated with suboptimal surgical
cytoreduction and low expression of Dicer with advanced
tumor stage, thereby further implicating the tumor suppressive
role of microRNAs in OC (Merritt et al., 2008; Faggad
et al., 2010). With respect to ovarian cancer, the potential
targets for several upregulated miRs includes pro-apoptotic,
metastasis-suppressing or antiproliferation gene products while
those for the downregulated miRs includes growth signaling,
prometastatic- or anti-apoptosis-associated proteins. A list of
upregulated/downregulated miRs involved in ovarian cancer
development is shown in Table 10. A list of aberrantly expressed
miRs which could serve as a promising biomarker for detection
of ovarian cancer has been summarized in Table 11. Chao
et al. reported that in advanced stage cancer, miR-187 regulates
carcinogenesis through Dab2 dependent EMT (epithelial-to-
mesenchymal transition) (Chao et al., 2012, p. 2). Furthermore,
other studies have described miR-199a, miR-200a, miR-200b,
miR-200c, and miR-214 as significantly overexpressed and
miR-100 and miRNAlet-7i as significantly downregulated in
ovarian tumors (Iorio et al., 2007; Yang H. et al., 2008;
Yang N. et al., 2008). Several miRNA signatures that could
distinguish ovarian tumors based on histological subtypes has
been studied such as miR-200b and miR-141 was observed
to be overexpressed in serous and endometrioid subtypes;
upregulated of miR-21, miR-203, and miR-205 correlated
with endometrioid histotype; downregulated miR-145 correlated
with serous and clear cell subtype, while downregulated miR
222 was associated with endometrioid and clear cell subtype
(Iorio et al., 2007).

Recently, Braga et al. described methylation of miR-9-1, miR-
9-3, and miR-130b which strongly correlated with progression
of OC (Braga et al., 2018a). Different histotype of ovarian
carcinomas reflect differential expression of specific miRNAs
which might serve as a valid biomarker. Agostini et al. reported
significant overexpression of miR-192, miR-194, and miR-215
in mucinous subtype of ovarian carcinomas. However their
expression was downregulated in other subtypes and sex cord-
stromal tumors (Agostini et al., 2018).

A list of promising aberrantly expressed miRs which could
be of prognostic and predictive relevance in ovarian cancer
has been summarized in Table 11. A lower ratio of miR-221
to miR-222 significantly correlated with worse overall survival
in predominantly high grade, advanced stage sporadic ovarian
carcinomas (Wurz et al., 2010). Downregulation of miR-141,
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TABLE 9 | Non-invasive epigenetic DNA methylation biomarkers for ovarian cancer.

Epigenetic marker(s) Source Patient/sample Clinical prediction Technology References

Methylation of ≥1 gene of

BRCA1, RASSF1A, APC,

p14ARF, p16INK4A, or

DAPK

Serum and

cytologically negative

peritoneal fluid

50 serum, 40 peritoneal

fluid from EOC patients

along with 40 control

serum and peritoneal

fluid samples

Presence of malignancy

Sensitivity:

41/50 (82% for serum)

28/30 (93% for peritoneal fluid),

Specificity: 100% (all tumor stages).

Methylation-specific-

PCR

(MSP)

Ibanez de Caceres et al.,

2004

DAPK Whole peripheral

blood DNA

26 peripheral blood

samples

Sensitivity: 14/16 (54%) for

DAPK-methylation-positive samples:

Specificity: 10/10 (100%) for DAPK

methylation negative

Methylation-specific

PCR (MSP)

Collins et al., 2006

Methylation of ≥1 gene of

SOX1, PAX1 or SFRP1

Serum 46 (26 ovarian cancer

cases and 20 patients

with a benign condition

Sensitivity: 73.08% Specificity: 75% Methylation-specific

PCR (MSP)

Su et al., 2009

Methylation of 7-gene panel

(APC, RASSF1A, CDH1,

RUNX3, TFPI2, SFRP5, and

OPCML

Serum 202 patients (87 EOC

cases, 53 benign cases

and 62 controls)

Sensitivity of 7-gene panel: 85.3%

Specificity of 7-gene panel: 90.5% in

stage I EOC

Sensitivity of CA125: 56.1%

Specificity of CA125: 64.15%

Multiplex

methylation-specific

PCR (MSP)

Zhang et al., 2013

10-gene panel

(Combination of BRCA1,

HIC1,PAX5,PGR, THBS1)

Plasma 66 (33 cancer cases

and 33 control)

Presence of malignancy

Sensitivity: 61%

Specificity: 85%

Microarray based

multiplex

assay(MethDet56

technique)

Melnikov et al., 2009

Several gene panel

(RASSF1A and PGR-PROX)

(RASSF1A, CALCA

and EP300)

Serum 90 (30 EOC cases, 30

cases with Benign

disease along with 30

controls non neoplastic

samples)

Methylation of RASSF1A and

PGR-PROX Sensitivity: 80.0%

Specificity:73.3%

Methylation of RASSF1A, CALCA and

EP300 Sensitivity: 90.0%

Specificity: 86.7%.

Microarray based

Assay(MethDet 56)

Liggett et al., 2011

OPCML Serum 194 (71 EOC, 43 benign

and 80 controls non

neoplastic samples)

Sensitivity: 87.18%

Specificity: 93.75%

Accuracy: 90.14%

Nested Methylation

-specific PCR (MSP)

Wang et al., 2017

RASSF1A Plasma 53 samples including

OC tumors, adjacent

tumor cell free tissues

and paired plasma

circulating tumor DNA

Sensitivity: 33/53 (62.3%),

RASSF1A methylation of paired plasma

CtDNA showed slight concordant with

primary tumor samples (P = 0.227,

2-sided Pearson χ2 test, k = 0.156).

Significantly correlates with

overall survival

Real-time

methylation

specific-PCR

(real-time MSP) and

methylation-

sensitive

high-resolution

melting analysis

(MS-HRMA)

Giannopoulou et al., 2017

ESR1 Plasma Group A: 66 OC cases

Group B: 53 OC case

along with 50 paired

plasma samples

Sensitivity of detection: 38%.

ESR1 methylation predicted better

clinical outcomes: overall survival (P =

0.027), progression-free survival (P

= 0.041)

Real-time

methylation-specific

PCR (real-time MSP)

assay

Giannopoulou et al., 2018

3-gene panel Serum For assay development:

151 cases and for

validation study 250

cases with different

conditions in 3 sets

Pre-chemotherapy

Sensitivity: 41.4%

Specificity: 90.7%

Post chemotherapy

Responders: 78%

non-responders: 86%

Targeted ultra-high

coverage bisulfite

sequencing

Widschwendter et al., 2017

miR−200a, miR-200b, miR-200c, and miR-429 correlated with
poor progression free survival. Moreover, multivariate analysis
of relevant clinicopathological variables such as debulking status,
stage and grade of tumor revealed the correlation of miR-
429 expression with recurrence-free survival (Leskela et al.,
2010). Downregulated miR-422b and miR-34c correlated with
decreased disease-specific survival in HGSOC patients with
BRCA1/2 abnormalities (Lee et al., 2009).

In ovarian cancer, overexpression of miR-214 has been
specifically associated with the degradation of PTEN mRNA
which further leads to the activation of Akt pathway and has
been correlated with platinum resistance (Yang H. et al., 2008).
Downregulation of miR-Let7i has been reported in platinum-
resistance ovarian tumors; however its gain of function resulted
in restoration of drug sensitivity of chemoresistance OC cells
(Yang N. et al., 2008).
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TABLE 10 | List of dysregulated miRNAs in ovarian cancer.

Mechanism(s) miR(s) Targets Consequence(s) leading to

tumorigenesis

References

Upregulated c-myc activation 130a MCSF, GAX and HOXA5 Chemotherapy resistance,

angiogenesis, and

dedifferentiation

Taylor and Gercel-Taylor, 2008;

Eitan et al., 2009

Copy gain 27a and 451 ZBTB10, Myt-1, HMGB2,

HOXA2, and CYP1B1

Multidrug export, oncogenic

signaling and reduced

apoptotic potential

Shibata et al., 2006; Zhang L. et al.,

2006

213 APP and SATB2 Chemoresistance Boren et al., 2009

199a, 200a, b, c and

335

TGFβ, ZEB1, ZEB2,

BAP1, GATA4, GATA6,

TNC, FN1, EXOC5, and

TUBB3

Mesenchymal–epithelial

transition

Weisenberger et al., 2008; Su et al.,

2009; Liggett et al., 2011;

Giannopoulou et al., 2017; Wang

et al., 2017

Hypomethylation 203 p63, SOCS-3, ABL1,

MCEF, and ADAMTS6

Unknown Iorio et al., 2007; Lee et al., 2009

205 ZEB1, ZEB2, E2F1,

ERBB3, PKCe, and SHIP2

Mesenchymal–epithelial

transition, oncogenic signal

transduction

Iorio et al., 2007; Yu et al., 2008;

Lee et al., 2009

21 PDCD4
†
, RPS7

†
,

NCAPG
†
, TPM1, and

PTEN

Reduced apoptotic potential

and anchorage independence

Iorio et al., 2007; Laios et al., 2008;

Sorrentino et al., 2008; Eitan et al.,

2009; Lee et al., 2009; Resnick

et al., 2009; Yang et al., 2009

Unknown 340 PAM, RTN3, PPL, RNF34,

and ZNF513

Chemoresistance Boren et al., 2009

221/222 KIT, AIP1, p21, p57,

TCF12, RIMS3, and ARNT

Cell cycle progression and

angiogenesis

Merritt et al., 2008; Vlassov et al.,

2010; Kneip et al., 2011

Downregulated C/EBPα

Downregulation

1 FOXP1, HDAC4 c-Met,

Pim1 and HAND2

Tumor growth, cell motility

and proliferation

Iorio et al., 2007

DNA methylation

and copy loss

137 CDK6, MITF, KLF12, and

PDLIM3

Cell cycle progression and

dedifferentiation

Iorio et al., 2007; Zhang L. et al.,

2008

140 c-SRK, MMP13 and FGF2 Oncogenic signaling Iorio et al., 2007; Zhang L. et al.,

2008

150 c-Myb, MAK9, Akt3, and

MAP2K4

Oncogenic signaling Zhang L. et al., 2008

551a LPHN1, ERBB4, and

ZFP36

Oncogenic signaling Dahiya et al., 2008

9 NF-kB†, Bcl2†, Bcl6,

FGF†, and b-Raf

Oncogenic signaling Leon et al., 1977; Weisenberger

et al., 2008; Faggad et al., 2010;

Kneip et al., 2011

184 TTK69, K10, and Sax(A) Dedifferentiation Zhang L. et al., 2008

Unknown 30b and d CTGF Invasion/metastasis Laios et al., 2008

98 HMGA2, LIN28B, and

HIC2

Oncogenic signaling and

cancer stemness

Dahiya et al., 2008

517a and b CREAP-1, MAPKAPK5,

NFKBIE, and PTK2B

Chemoresistance and

oncogenic signaling

Lee et al., 2009

Let-7i HMGA2, LIN28Bm

TRIM71, and IGF2BP1

Chemoresistance Yang N. et al., 2008

662 NEGR1, MKX, and CSF3 Unknown Dahiya et al., 2008

Several studies have recently highlighted the diagnostic and
prognostic relevance of several miRNAs, their association with
overall survival of patients and have shown that they could serve
as putative biomarker as well as therapeutic target for ovarian
cancer management. For instance, Li et al. have reported tumor
suppressive role of miR-542-3p, which directly targets CDK14
and was observed significantly downregulated in EOC tissue and
OC cell lines (Li et al., 2019).

Si et al. highlighting the therapeutic significance of miR-27a
in OC, reported miR-27a mediated regulation of proliferation,
chemosensitivity and invasion of OC by targeting Cullin 5
(CUL5) (Si et al., 2019, p. 5). Another study by Jia et al.
reported the tumor suppressive role of miR-34 in regulation of
tumor proliferation via inducting autophagy and apoptosis and
suppression of cell invasion by targeting Notch 1 (Jia et al., 2019,
p. 1). Wang et al. utilizing integrated meta-analysis approach
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TABLE 11 | List of misexpressed miRNAs in ovarian cancer.

Epigenetic marker Alternations in

miRNAs

Source Methodology Clinical prediction References

Dicer, Drosha mRNA Downregulated Tumor tissue and

ovarian cancer cell lines

Quantitative RT-PCR,

gene expression

array

Advanced tumor stage

and Suboptimal tumor

debulking

Merritt et al., 2008; Faggad

et al., 2010; Pampalakis

et al., 2010

let-7i, miR-221,−30c,−152

and−193

miR-185,−106a,−181a,

−210,−423,−103,−107

and let-7c

Downregulated

Upregulated

Tumor tissue from

Endometrial cancer,

normal endometrial and

atypical hyperplasia

Quantitative RT-PCR,

microarray analysis

Association with

Endometrial cancer

development

Boren et al., 2008

miR-124-1,−124-2,−124-

3,−127,−132,−137,−193A,

375 and−339

Downregulated Tumor tissue Quantitative RT-PCR,

MSP, direct Sanger

sequencing

EOC metastasis (including

peritoneal

macro-metastases)

Loginov et al., 2018

let-7i Downregulated Tumor tissue and

ovarian cancer cell lines

miRNA Microarray,

Stem-loop real-time

RT-PCR (TaqMan

miRNA assay)

Associated with increased

resistance to

chemotherapy drugs,

cis-platinum, and short

progression-free survival

Yang N. et al., 2008

miR-30c,−130a, and−335 Downregulated Paclitaxel and cisplatin

resistant cancer cell

lines

miRNA Microarray,

qPCR, Northern blots

Association with

development of

chemoresistance

Sorrentino et al., 2008

miR- 199b-5p Downregulated Cisplatin-sensitive and

-resistant ovarian cancer

cell lines

miRCURY LNATM

microRNA array and

Q-PCR

Development of acquired

chemoresistance through

the activation of

JAG1-Notch1 signaling

cascade

Liu et al., 2014

miR-34a, miR-34b*/c Downregulated Tumor tissue Quantitative RT-PCR,

in- situ hybridization

Associated with motility

and invasion by regulation

of MET, progression of

disease to advanced

stages

Corney et al., 2010

miR−34a,−200a,−200b,

−449b,−509-3p,−509-3-5p,

−513a-5p and −574-5p

Upregulated Tumor tissue MicroRNA microarray Differentially expressed in

Stage I disease

Eitan et al., 2009

miR-302b,−22, and−373

miR-148b and−211

Upregulated

Downregulated

Tumor tissue and

ovarian cancer cell lines

MicroRNA microarray,

Quantitative Real time

PCR (Taqman based)

Discriminates serous vs.

non-serous disease

Iorio et al., 2007

miR-7, 34c-5p, 146b-5p and

449a

Upregulated Tumor tissue Massively parallel

pyrosequencing,

TaqMan qRT-PCR

assays

Serous adenocarcinoma Wyman et al., 2009

miR-23p,−125a-3p,−125a-

5p,−130a,−146b-5p,−193a-

3p,−193a-5p,−423-5p,−451

and−491-5p

Upregulated Tumor tissue MicroRNA microarray Differentially expressed in

Stage III disease

Eitan et al., 2009

miRs 100, 199a, 200a, and

214

Upregulated Tumor tissue and

ovarian cancer cell line

miRNA array and

Northern blot

analysis, quantitative

reverse

transcription-PCR.

Late clinical stage and

high-grade tumors,

negative regulation of

PTEN by miR-214 thereby

inducing cell survival and

cisplatin resistance

Yang H. et al., 2008

miR-302b,−325,−299-

5p,−222, and−324-3p

miR-212 and−150

Upregulated

Downregulated

Tumor tissue and

ovarian cancer cell lines

MicroRNA microarray,

Quantitative Real time

PCR (Taqman based)

Differentiates Serous vs.

endometrioid disease

Iorio et al., 2007

miR-325,−22,−302c,−299–

5p,−373, and−196b

miR-9 and−18

Upregulated

Downregulated

Tumor tissue and

ovarian cancer cell lines

MicroRNA microarray,

Quantitative Real time

PCR (Taqman based)

Associated with Poor

differentiation

Iorio et al., 2007

miR-30a,−30a*, and−486-5p Upregulated Tumor tissue and

ovarian cancer cell lines

MicroRNA microarray,

Quantitative Real time

PCR (Taqman based)

Clear cell disease Iorio et al., 2007

(Continued)
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TABLE 11 | Continued

Epigenetic marker Alternations in

miRNAs

Source Methodology Clinical prediction References

Methylation of let-7a-3 Downregulated Tumor tissue Real-time

methylation-specific

PCR and real-time

reverse

Transcription-PCR,

direct

Sanger sequencing

Favorable prognosis Lu et al., 2007, p. 3

miR-449b Upregulated Tumor tissue MicroRNA microarray Good prognosis Eitan et al., 2009

let-7e Upregulated Paclitaxel and cisplatin

resistant cancer cell

lines

miRNA Microarray,

qPCR, Northern blots

Associated with

resistance to Paclitaxel

Sorrentino et al., 2008

miR-200a,−200b, and−429 Upregulated Primary tumor and

ovarian cancer cell line

Real-time reverse

transcription-PCR

Long disease free survival

and delayed recurrence,

prognostic marker in

advanced ovarian cancer

Cochrane et al., 2009; Hu

et al., 2009

miRs 100, 199a, 200a, and

214

Upregulated Tumor tissue and

ovarian cancer cell line

miRNA array and

Northern blot

analysis, quantitative

reverse

transcription-PCR.

Late clinical stage and

high-grade tumors

Yang H. et al., 2008

Methylation of miR-34a Downregulated Tumor tissue Quantitative reverse

transcription-PCR,

MethyLight assay

Inversely associated with

grade, p53 mutation, and

dualistic tumor type.

Reduced progression free

survival and worsen

overall survival.

Schmid et al., 2016

Methylation of miR-199a-3p Downregulated Tumor tissue and

ovarian cancer cell line

Methylation-specific

PCR and bisulphite

sequencing

Tumor aggressiveness

and enhanced cisplatin

resistance through

promoting DDR1

expression

Deng et al., 2017

Methylation of 10 miRNA

genes

(miR-124-2,−124-3,−125B-

1,−127,−129-2,−137,

−193A,−203A,−339,−375)

Downregulated Tumors tissue and

matched peritoneal

metastases

Methylation-specific

PCR

Involved in metastasis Loginov et al., 2018

(miR-34b/c, miR-9-1,

miR-124-3, miR-129-2, and

miR-107)

Downregulated Tumor tissue Methylation-specific

PCR

Associated with clinical

grade and metastasis.

High sensitivity and

specificity reveals its

diagnostic potential

(87–94%, AUC = 0.92).

Braga et al., 2018b

miR-150 Downregulated Tumor tissue Real time PCR Correlated with shorter

progression free survival

Wilczynski et al., 2018

miR-4443 and miR-5195-3p Downregulated Tumor tissue Real time PCR Correlates with metastasis

and tumor progression

Ebrahimi and Reiisi, 2019

miR-148a Downregulated Plasma samples and

ovarian cancer cell line

Real time PCR Associated with poor

prognosis, tumor growth

and metastasis

Gong et al., 2016

(hsa-miR-135, 150,−340,

625, 1908,

3187,−96,−196b,−449c,

and−1275)

Downregulated Tumor tissue Small RNA

sequencing,

quantitative RT-PCR

Associated with survival Chen et al., 2018

miR-595 Downregulated Tumor tissue qRT-PCR Correlated with shorter

overall survival

Zhou et al., 2017

miR-498 Downregulated Tumor tissue qPCR Correlated with shorter

overall survival and

progression free survival

Cong et al., 2015

(Continued)
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TABLE 11 | Continued

Epigenetic marker Alternations in

miRNAs

Source Methodology Clinical prediction References

miR-9 Downregulated Tumor tissue and

ovarian cancer cell line

Real time PCR,

luciferase reporter

assay, Western Blot,

Methylation study,

RNAi technique, and

cytotoxicity

Assay

Resistance to paclitaxel by

targeting CCNG1.

Li X. et al., 2015

miR-508-3p Downregulated Tumor tissue and

ovarian cancer cell line

System biology

approach, qRT-PCR,

methylation PCR,

RNA sequencing,

immuno blot

Predictor for

mesenchymal subtype

and metastasis

Zhao et al., 2019

hsa-miR-1273g-3p Downregulated Serum samples of

recurrent epithelial

ovarian cancer patients

Microarray and

qRT-PCR

Prognostic biomarker for

recurrence

Günel et al., 2018

have shown the oncogenic role of miRNA-27a by mediating
FOXO1 and its inhibition could serve as a new strategy in
combating ovarian cancer (Wang Z. et al., 2018, p. 1). Hu
et al. identified miR-934 as an oncogene in OC by directly
targeting BRMS1L, and thus could serve as a therapeutic marker
(Hu et al., 2019). It has been reported that miR-1294 was
identified to be downregulated in EOC and correlated with tumor
progression and shorter overall survival, thereby could serve as
an independent prognostic indicator (Guo W. et al., 2018).

Liu et al. provided insights into the oncogenic role of
microRNA-96 (miR-96-5p) in ovarian cancer. Its significant
overexpression was found in tissue as well as serum samples.
Overexpression of miR-96-5p was correlated with increased
proliferation and migration by suppressing Caveolae1 (CAV1)
and inhibiting AKT signaling pathway and its downstream
proteins (Cyclin D1 and P70), thus implying that miR-96-5p
could serve as a promising therapeutic target for ovarian cancer
(Liu et al., 2019, p. 1). Similarly, Chaluvally-Raghavan et al.
reported that miR551b-3p which is an oncogenic microRNA,
directly upregulates STAT3 expression and further deregulates
proliferation and metastasis in vivo and in vitro. Reduced
expression of STAT3 in OC cells in vitro and in vivo via
anti-miR551b-3p leads to reduction in growth of ovarian tumor
in vivo, thereby implying that it could serve as promising
therapeutic target in future for ovarian cancer (Chaluvally-
Raghavan et al., 2016).

In another study, miR-152 mediated suppression of tumor
proliferation along with promotion of apoptosis via repression of
ERBB3 was reported, thus demonstrating miR-152 as a potential
therapeutic target (Li et al., 2017, p. 3). Liu et al. reported
association of miR-506 with better response to therapy as well as
long PFS and overall survival in OC patients. Further, it sensitized
cancer cells to chemotherapy by directly targeting RAD51 and
thus could be of therapeutic importance (Liu et al., 2015).

10 miRs which were identified using genome wide MicroRNA
expression profiling were capable to discriminate malignant
tissue samples from normal with a sensitivity of 97% and

specificity of 92% (Wang et al., 2014). Biamonte et al. have
reported tumor suppressive role of miR-let-7g and significant
association of its reduced expression in both tissue as well as
serum with chemoresistance in advanced stage EOC patient
which reflects its potential as a predictive biomarker to monitor
response to chemotherapy (Biamonte et al., 2019). Kobayashi
et al. have shown significant overexpression of serum miR-
1290 in advance stage HGSOC in comparison to early stage.
Moreover, it was capable to discriminate patients with HGSOC
from patients with malignancies of other histological subtypes
with a sensitivity of 47% and specificity of 85% (AUC = 0.76),
thus reflecting diagnostic potential of miR-1290 for HGSOC
(Kobayashi et al., 2018).

Mahmoud et al. examined the diagnostic significance of serum
miR-21 and reported that its upregulation was significantly
negatively correlated with Programmed Cell Death-4 (PDCD4)
expression in EOC patients (Mahmoud et al., 2018). Another
study highlighted significantly elevated expression of serum
exosomal miR-93, miR-145, and miR-200c in OC. Moreover,
the sensitivity for miR-145 and miR-200c was 91.6 and 90.0%
which was far superior in comparison with CA125, thus these
serum exosomal microRNAs could be of diagnostic relevance
for preoperative diagnosis of OC (Kim et al., 2019). miR-21
was observed significantly overexpressed in the sera of EOC
patients and its elevated expression correlated with shorter
overall survival (Xu et al., 2013). Further, downregulation of
serum miR-25 and miR-93 and upregulation of miR-7 and miR-
429 have been reported in OC patients. In addition, the sensitivity
and specificity achieved by these four serum miRs were 93 and
92% to discriminate cancer patients from non-neoplastic control
samples, deciphering their diagnostic significance in EOC.
Moreover serum miR-429 correlated with overall survival and
could serve as an independent prognostic indicator (Meng et al.,
2015). Findings from another study reveal the relevance of serum
miR-141 and miR-200c in OC diagnosis and prognosis. Both of
these miRs were identified to be overexpressed in serum of EOC
patients; however miR-200c displayed a descending expression
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trend across tumor stage (early to advance) while an escalating
expression trend was observed in case of miR-141. Moreover,
the sensitivity for miR-141 and miR-200c were 0.69 and 0.72
with a specificity of 0.72 and 0.70, respectively, to discriminate
cancerous samples from normal control [AUC = 0.75 and 0.79,
respectively]. Furthermore, high serummiR-200c correlated with
higher survival rate. On contrary, low serum miR-141 correlated
with higher survival rate (Gao and Wu, 2015).

Langhe et al. using Exiqon platform explored a 4-miR
panel in serum of EOC patients for their diagnostic utility
and found that these miRs were significantly downregulated in
EOC patients. Furthermore these miRs target WNT signaling,
AKT/mTOR signaling and TLR-4/MyD88 to regulate ovarian
cancer progression and resistance (Langhe et al., 2015).
Overexpression of serum miR-200a, miR-200b, and miR-200c
which have been observed in EOC patients, correlates with
aggressive disease progression and could be indicative of disease
prognosis and patient survival (Zuberi et al., 2015). Higher serum
concentration of exosomal miR-200b and miR-200c correlated
with shorter overall survival, which suggests its prognostic
relevance. (Meng et al., 2016b) Serum miR-200a, miR-200b, and
miR-200c differentiated cancerous and benign tumors with 83%
sensitivity and 100% specificity, which reflect that these miRs
could be of diagnostic utility (Meng et al., 2016a).

These miRs though hold great potential for their utility
in ovarian cancer management; however its therapeutical
implementation still remains a challenge. To address this, well-
designed clinical study as well as validated methodologies is
essentially warranted.

Expert Commentary
It is now well-established that DNA methylation occurs very
early in malignant transformation and their utility as biomarker
holds great promise to overcome the false positive detection of
ovarian cancer using current standard serum marker CA125.
In this review, we highlight the recent epigenetic biomarkers
analyzed in tissue and body fluids for early detection of OC.
Strikingly; to date no single epigenetic biomarker facilitating
early diagnosis of OC has made transition to the clinics.
The probable reasons for this could be: the heterogeneous
nature of EOC, difference in sample processing, assay design,
technique used and approach could explain the variations
observed in methylation frequencies amongst various studies
for individual genes. Most of the studies for methylation
analysis of genes were conducted on small sample size and
in particular the normal control samples were insufficient
to conclude the specificity of the assay. Therefore, further
studies on larger sample size are necessary to be conducted
to determine the potential of methylation if it could serve as
biomarker for early EOC screening or not. Another limitation
is the absence of standardized reference value for methylation
analysis when trying to analyze if a particular locus is hyper or
hypomethylated. To overcome this, currently, methylation cut off
points which are based on already published reports or consensus
are used.

The majority of the reports highlight the methylation
status of gene or genes in a panel. No epigenetic biomarker

screening study has been performed till date. However, for
the detection figures approaching current screening modalities
(89.5% sensitivity and 99.8% specificity) has been achieved by
Ibanez de Caceres et al. (2004) with 82% sensitivity and 100%
specificity (Ibanez de Caceres et al., 2004). All 30 control cases
showed 0 false positive rate and further replication of the study
on the basis of this sample size would give a false positive
rate between 0 and 11.4% (95% confidence interval), thereby
indicating that perfect specificity would unlikely hold up in the
follow-up studies. In view of these considerations regarding the
study of Ibanez de Caceres et al. are left to follow-up studies
to shed light on. However, none of the report has been further
validated undertaking follow up studies on a larger cohort
and prospective study design thereby limiting the utility of the
reported findings.

Molecular analysis of epigeneticmodification (methylation) in
circulating cell free tumor DNA in fluids serves as a novel, non-
invasive approach for identification of potential promising cancer
biomarkers, which can be performed at multiple time points and
probably better reflects the prevailing molecular profile of cancer.
Very few studies analyzing the methylation status of genes in
blood-based assay for ovarian cancer diagnosis has been reported.
Careful precision handling and processing of liquid biopsy for
cell free DNA extraction is critically needed.

Future Prospects
Over the last decade, an exponential progress in DNA
methylation based biomarker development has been witnessed.
Owing to the stability of DNA and methylation pattern, a
number of cfDNA as well as tissue based screening assay has
paved its way into clinics. The commercial success of several
tests based on DNA methylation biomarkers for early detection
of colon, lung and prostate cancer and prediction of bladder
cancer along with various markers under validation study
shows that the time for transition into clinics can be relatively
rapid. New technologies which allow rapid identification of
methylation signatures directly from blood will facilitate sample-
to answer solutions thereby enabling next-generation point
of care molecular diagnostics. Moreover, ongoing work on
liquid biopsies together with the recent advanced technologies
such as digital PCR, bisulfite sequencing, methyl immune-
precipitation coupled with next-generation sequencing, and
methylation arrays along with advanced statistical data analysis
may mitigate the problematic issues for the development of non-
invasive method thereby overcoming the existing challenges to
personalized medicine.
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A Novel DNA Methylation-Based 
Signature Can Predict the Responses 
of MGMT Promoter Unmethylated 
Glioblastomas to Temozolomide
Rui-Chao Chai 1,2†‡, Yu-Zhou Chang 2,3†, Qiang-Wei Wang 1†‡, Ke-Nan Zhang 1,2,3‡, 
Jing-Jun Li 1‡, Hua Huang 1‡, Fan Wu 1*‡, Yu-Qing Liu 1*‡ and Yong-Zhi Wang 1,2,3*‡

1 Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical 
University, Beijing, China, 2 China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, 
Capital Medical University, Beijing, China, 3 Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 
Beijing, China

Glioblastoma (GBM) is the most malignant glioma, with a median overall survival (OS) of 
14–16 months. Temozolomide (TMZ) is the first-line chemotherapy drug for glioma, but 
whether TMZ should be withheld from patients with GBMs that lack O6-methylguanine-
DNA methyltransferase (MGMT) promoter methylation is still under debate. DNA 
methylation profiling holds great promise for further stratifying the responses of MGMT 
promoter unmethylated GBMs to TMZ. In this study, we studied 147 TMZ-treated MGMT 
promoter unmethylated GBM, whose methylation information was obtained from the 
HumanMethylation27 (HM-27K) BeadChips (n = 107) and the HumanMethylation450 
(HM-450K) BeadChips (n = 40) for training and validation, respectively. In the training set, 
we performed univariate Cox regression and identified that 3,565 CpGs were significantly 
associated with the OS of the TMZ-treated MGMT promoter unmethylated GBMs. 
Functional analysis indicated that the genes corresponding to these CpGs were enriched 
in the biological processes or pathways of mitochondrial translation, cell cycle, and DNA 
repair. Based on these CpGs, we developed a 31-CpGs methylation signature utilizing 
the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm. 
In both training and validation datasets, the signature identified the TMZ-sensitive GBMs 
in the MGMT promoter unmethylated GBMs, and only the patients in the low-risk group 
appear to benefit from the TMZ treatment. Furthermore, these identified TMZ-sensitive 
MGMT promoter unmethylated GBMs have a similar OS when compared with the MGMT 
promoter methylated GBMs after TMZ treatment in both two datasets. Multivariate Cox 
regression demonstrated the independent prognostic value of the signature in TMZ-
treated MGMT promoter unmethylated GBMs. Moreover, we also noticed that the 
hallmark of epithelial–mesenchymal transition, ECM related biological processes and 
pathways were highly enriched in the MGMT unmethylated GBMs with the high-risk score, 
indicating that enhanced ECM activities could be involved in the TMZ-resistance of GBM. 
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INTRODUCTION

Glioma is the most common type of malignant brain tumor in 
adults (Jiang et al., 2016; Chai et al., 2019b). Glioblastoma (GBM, 
WHO IV) is the most malignant glioma, accounting for 50–60% 
of total glioma (Louis et al., 2016). Currently, the prognosis for 
patients with GBM is still dismal, with a median overall survival 
(OS) of 14–16 months (Jiang et al., 2016; Louis et al., 2016; 
Chai et al., 2019a). The alkylating agent temozolomide (TMZ) 
is the first-line chemotherapy drug for glioma. TMZ is used 
concurrently with radiation and then provided as monotherapy 
during adjuvant treatment. The promoter methylation level 
of the O6-methylguanine-DNA methyltransferase (MGMT), 
a ubiquitous DNA repair enzyme which can rapidly reverse 
alkylation at the O6 position, has been acknowledged as a 
predictive marker for TMZ sensitivity (Hegi et al., 2005; Chai 
et al., 2019a; Chai et al., 2019e). MGMT promoter methylated 
GBM displays higher sensitivity to TMZ treatment than MGMT 
promoter unmethylated GBM (Hegi et al., 2005; Wick et al., 
2014; Chai et al., 2019a). However, we noticed that the prognosis 
for TMZ treated MGMT promoter unmethylated GBM is still 
largely heterogeneous, indicating that some other factors may 
also affect the sensitivity of MGMT promoter unmethylated 
GBM to TMZ treatment. Thus, further stratification of these 
GBM is urgently needed.

In the central nervous system, DNA methylation profiling 
has been used as a robust and reproducible method to further 
stratify the tumors into different subgroups (Sturm et al., 2012; 
Pajtler et al., 2015; Sturm et al., 2016). Moreover, general DNA 
methylation or a group of CpGs methylation profiling could 
also serve as biomarkers to evaluate drug- or radio-therapeutic 
sensitivity in various diseases, including tumors (Kumar 
et al., 2018; Zhao et al., 2018b; Chen et al., 2019b). In a recent 
study, a five-CpG DNA methylation score has shown its value 
in predicting metastatic-lethal outcomes of males suffering 
localized prostate cancer, treated with radical prostatectomy 
(Zhao et al., 2018b). The rapid accumulation of DNA methylation 
datasets makes it also possible to further stratify the glioma and 
may uncover novel biomarkers for management of gliomas. 
Recently, DNA methylation profiling of 23 DNA damage 
response (DDR) genes was shown to be associated with benefit 
from RT or TMZ therapy in IDH mutant low-grade glioma 
(Bady et al., 2018). Nevertheless, whether a group of CpGs DNA 
methylation profiling can predict the TMZ sensitivity of MGMT 
promoter unmethylated GBM remains unclear.

Here, we aimed to identify TMZ-sensitive GBMs in the 
entity of MGMT promoter unmethylated GBMs, using DNA 
methylation profiling. We adopted 107 and 40 TMZ treated 
MGMT promoter unmethylated GBMs as the training set and 

the validation set, respectively. We identified a list of CpGs 
whose methylation levels are significantly associated with the 
OS of TMZ-treated MGMT promoter unmethylated GBMs by 
univariate Cox regression analyses. Based on this, we developed 
a 31-CpGs TMZ therapeutic prognosis risk signature in the 
MGMT promoter unmethylated GBMs. This risk signature 
could successfully identify a subgroup of TMZ treated MGMT 
promoter unmethylated GBMs which have a similar prognosis 
when compared with the TMZ treated MGMT promoter 
methylated GBMs.

MATERIALS AND METHODS

Samples Information
A total of 376 cases were enrolled in this study according to 
the following criteria: (a) diagnosed with GBM; (b) the DNA 
methylation data could be obtained; (c) the TMZ treatment 
option is available. The DNA methylation data and corresponding 
clinicopathological features for these cases were obtained from 
The Cancer Genome Atlas (TCGA) (http://cancergenome.
nih.gov/). Within the 376 cases, the DNA methylation 
information of 279 cases (the 27K cohort) was collected from 
the HumanMethylation27 (HM-27K) BeadChips dataset, 
and the other 97 cases (the 450K cohort) were obtained from 
the HumanMethylation450 (HM-450K) BeadChips dataset. 
Clinicopathological information for all cases is summarized in 
Supplementary Table 1.

Of all 279 cases in the 27K cohort, 107 cases who received 
TMZ treatment and also with unmethylated MGMT were used 
to investigate the TMZ therapeutic prognosis value of CpGs 
methylation levels, and we also developed a risk signature using 
these cases. Of the 97 cases in the 450K cohort, 40 TMZ treated 
cases with unmethylated MGMT were used as the validation 
cohort. Clinicopathological information for these 147 cases 
is summarized in Table 1. There is no statistically significant 
difference for the clinicopathological features between the 
training and validation cohorts.

Analytical Approach
The approach and workflow for the selection of TMZ 
therapeutic prognosis associated CpGs, functional annotation 
for the genes corresponding to these CpGs, development and 
validation of a TMZ therapeutic prognostic risk signature, 
analysis of the correlation between the risk signature and 
other clinicopathological features, and the functional analysis 
of genes associated with the risk signature are summarized 
in Figure 1.

In conclusion, our findings promote our understanding of the roles of DNA methylation in 
MGMT umethylated GBMs and offer a very promising TMZ-sensitivity predictive signature 
for these GBMs that could be tested prospectively.

Keywords: glioblastoma, DNA methylation, temozolomide, MGMT, signature
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Identification of the Risk Signature
We performed univariate Cox regression analysis of the CpGs 
methylation to identify CpGs significantly correlated with the 
prognosis of TMZ treated MGMT unmethylated GBM in the 
27K cohort. Then, we used the least absolute shrinkage and 

selection operator (LASSO) Cox regression algorithm to develop 
an optimal risk signature with the minimum number of CpGs 
(Dai et al., 2018; Zhou et al., 2018; Chai et al., 2019d). Finally, 
a set of 31 CpGs and their coefficients were determined by the 
minimum criteria, which involves selecting the best penalty 

TABLE 1 | Clinicopathological characteristics for MGMT unmethylated GBM patients who received TMZ.

The 27K cohort The 450K cohort P-value

Number Percentage Number Percentage

Total 107 100.00% 40 100.00%
Age 20–89 (57) 23–78 (58) 0.99a

< median 50 46.73% 19 47.50%
≥ median 57 53.27% 21 52.50%

Gender 0.53b

Male 69 64.49% 28 70.00%
Female 38 35.51% 12 30.00%

IDH 0.32b

Mutant 4 3.74% 0 0.00%
Wildtype 90 84.11% 37 92.50%
NA 13 12.15% 3 7.50%

TCGA defined subgroup 0.10b

Neural 10 9.35% 2 5.00%
Proneural 18 16.82% 6 15.00%
Classical 30 28.04% 12 30.00%
Mesenchymal 43 40.19% 12 30.00%
NA 6 5.61% 8 20.00%

Chr 7 gain/Chr 10 loss 0.37b

Combined alteration 73 68.22% 28 70.00%
No combined alteration 29 27.10% 12 30.00%
NA 5 4.67% 0 0.00%

aP-value is calculated by the nonparametric test. bP-value is calculated by the Chi-square tests.

FIGURE 1 | The workflow for this study. The workflow for the selection of TMZ therapeutic prognosis related CpGs, development and validation of a TMZ 
therapeutic prognostic risk signature, and the functional analysis of genes that are correlated with the signature risk score.
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parameter λ associated with the smallest 10-fold cross validation 
within the training set. The risk score for the risk signature was 
calculated using the formula:

 Risk score= ∗=Σi
n

i iCoef x1  

where Coef is the coefficient and xi is the beta-value of each 
selected CpGs. In both groups (cohorts), we used the beta-
value [beta-value = the methylated signal/(methylated signal + 
unmethylated signal)] to represent the methylation level of each 
CpGs. Since the Risk score was calculated as a weighted sum of 
the methylation level of all selected CpG sites (Chai et al., 2019d; 
Chen et al., 2019a), we just used the original beta value of each 
CpG sites to calculate the risk scores.

We did not directly compare the samples in two different 
groups (cohorts). In order to avoid the bias caused by the different 
arrays, we only compared the methylation levels among samples 
in the same cohort. We first developed the risk signature in 107 
samples used HumanMethylation27 (HM-27K) BeadChips. 
Then, we used another 40 samples to validate the prognostic value 
of the proposed signature. Patients were divided into “high-risk” 
and “low-risk” groups using the respective median risk score as 
the cutoff value in both the training and validation datasets.

Bioinformatic Analysis
Significance analysis of microarray (SAM) was performed to 
identify differentially expressed genes within the low- and high- 
risk scores. We performed Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analyses with the Database for Annotation, Visualization, and 
Integrated Discovery (http://david.abcc.ncifcrf.gov/home.jsp) 
to functionally annotate genes corresponding to the CpGs with 
prognosis of TMZ treated MGMT unmethylated GBM and genes 
that were differentially expressed between the low- and high-risk 
groups in the 27K cohort. Gene Set Enrichment Analysis (GSEA) 
was performed to investigate the functions of genes that were 
differentially expressed between the low- and high-risk groups 
in the 27K cohort.

Statistical Analysis
We used the nonparametric test to compare the distribution 
of age between the low- and high-risk groups, and Chi-
square tests were used to compare the distribution of other 
clinicopathological features. A one-way analysis of variance was 
performed to compare the risk scores in patients grouped by 
the TCGA defined subtypes. Student’s t test was performed to 
compare the risk scores in patients grouped by other clinical or 
molecular-pathological characteristics.

Univariate and multivariate Cox regression analysis was 
performed to determine the prognostic value of the risk score 
and various clinical and molecular–pathological characteristics.

The Kaplan–Meier method with a two-sided log-rank test was 
used to compare the OS of patients stratified by the risk scores 
or other clinicopathological features. All statistical analyses were 
conducted using R v3.4.1 (https://www.r-project.org/), SPSS 16.0 

(SPSS, Inc., Chicago, IL, USA) and Prism 7 (GraphPad Software, 
Inc., La Jolla, CA, USA).

RESULTS

A Set of CpGs’ Methylation Profile Could 
Predict the TMZ Therapeutic Response of 
MGMT Unmethylated GBMs
To assess the TMZ therapeutic response value of the methylation 
of CpGs, we performed univariate Cox regression analysis of 
all CpGs methylation levels in the 107 TMZ treated MGMT 
unmethylated GBMs of the 27K cohort. We found that the 
methylation levels of 3,565 CpGs were significantly correlated 
with the OS of these GBMs (Supplementary Table 2). Based 
on the methylation profile of these genes, we could divide the 
107 TMZ treated MGMT unmethylated GBMs into 3 clusters 
(Cluster A–C) in the heatmap (Figure 2A). We observed that 
patients in the Cluster A had significantly shorter survival than 
patients in the Cluster B and C, and the patients in the Cluster B 
and C had a similar OS with the TMZ treated MGMT methylated 
GBM patients (Figure 2B).

We also investigated the functions of the respective genes for 
the 3,565 CpGs. Three thousand one hundred eighty-two of these 
CpGs methylation levels were found to have a HR < 1 and were 
considered protective-associated, and the remaining 383 CpGs 
methylation levels with a HR >1 were considered risk-associated. 
GO terms of biological progress (BP) and KEGG pathway 
analysis indicated that the genes corresponding to the protective-
associated CpGs were enriched in the processes of mitochondrial 
translation, protein modification, cell cycle, DNA repair, others, 
and pathways in cancer (Figures 2C, D). In contrast, the genes 
corresponding to the risk-associated CpGs were mainly enriched 
in the cellular membrane-associated biological processes and 
pathways (Figures 2C, D).

Identification of a 31-CpGs Panel as 
a TMZ Therapeutic Prognosis Risk 
Signature in MGMT Unmethylated GBMs
We next sought to develop a representative “risk signature” with a 
small number of CpGs to predict the TMZ therapeutic responses 
of the MGMT unmethylated GBMs. We applied the LASSO Cox 
regression algorithm to the 3,565 CpGs in 107 GBMs of the 27K 
cohort (Figure 3A). Finally, a total of 31 CpGs were contained in 
the risk signature, and the respective genes and the coefficients 
of these CpGs were also shown (Figure 3B and Supplementary 
Table 3). Twenty-four of the 31 CpGs are located in the CpG 
islands of prospective genes, and 5 of the other 7 CpGs are 
located within 200 bp of the transcription start site of the 
prospective genes (Supplementary Table 3). Most of the genes 
corresponding to the 31 CpGs have been reported to be involved 
in the tumorigenesis or prognosis of cancer, including ATOH1, 
ATPIG1, ELL3, RBM15B, GATA4, TXN, DLX5, THSD4, Polr2d, 
LGALS3BP, HIST1H3D, FLRT1, IFI35 and OSBPL5. Among 
these genes, hypermethylation of THSD4 has been reported 
to be associated with the prediction of prognosis in GBM 
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 (Ma et al.,  2015), and Polr2d expression is associated with the 
therapy response of GBM (Serao et al., 2011).

We divided patients into high-risk and low-risk groups using 
their median risk-score as the cutoffs. We observed significant 
differences between the low- and high- risk groups with respect 
to IDH status (P = 0.0431), age (P = 0.0069) and TCGA defined 
subtype (0.0047), but no differences in gender or chromosome 7 
gain combined with chromosome 10 loss (chr 7 gain and chr 10 
loss) (Figure 3B and Supplementary Table 4).

Then we investigated the relationship between the risk 
signature and OS of TMZ treated MGMT unmethylated GBM 
patients. The data showed that patients with low-risk-scores 
had significantly longer OS than patients with high-risk-scores 
in both the training (P < 0.0001) and validation (P = 0.0331) 

datasets (Figures 3C, D). In addition, although the OS of MGMT 
methylated GBM patients was significantly longer than that of 
MGMT unmethylated GBM patients (Supplementary Figure 1), 
we noticed that the OS of MGMT unmethylated GBM patients 
in the low-risk group was similar to that of MGMT methylated 
GBM patients in both the training and validation datasets 
(Figures 3C, D).

Association of the Risk Signature and 
Other Clinicopathological Features
Considering that the TMZ therapeutic prognosis value of the risk 
signature may be associated with other known clinicopathological 
features, we examined this in the MGMT unmethylated GBMs. 

FIGURE 2 | TMZ therapeutic prognosis associated CpGs’ methylation profile in MGMT unmethylated GBMs. (A) Heatmap showing the methylation levels of the 
3,565 GpGs associated with the overall survival of TMZ treated patients with MGMT unmethylated GBMs. The MGMT unmethylated GBMs could be clustered into 
3 clusters (Cluster A–C) according to the CpGs methylation levels. (B) Kaplan–Meier overall survival (OS) curves of TMZ treated MGMT unmethylated GBM patients 
(stratified by Cluster A–C) and TMZ treated MGMT methylated GBM patients. (C, D) GO biological process terms (C) and KEGG pathways (D) enriched among the 
genes positively and negatively corresponding to the 3,565 GpGs.
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We observed that the risk scores were only significantly different 
between patients stratified by age (P < 0.05), rather than gender, 
chr 7 gain and chr 10 loss, and the TCGA defined subtypes 
(Supplementary Figure 2). We did not compare the risk scores 
in patients with different IDH status, as there were only four 
IDH-mutant patients.

We also performed univariate and multivariate Cox 
regression analyses in the TMZ treated MGMT unmethylated 
GBMs of both the training and validation datasets. By 
univariate analysis, the risk score [hazard ratio (HR) = 12.674 
(7.661–20.968) in the training set; HR = 1.685 (1.058–2.682) 
in the validation set] and age [HR = 1.029 (1.009–1.048) in 
the training set; HR = 1.075 (1.023–1.13) in the validation set] 
were significantly correlated with the OS in both two datasets 
(Table 2). When including these factors into the multivariate 
Cox regression analysis, the risk score remained significantly 
associated with the OS in the training [HR = 12.748 (7.767–
21.173)] and validation [HR = 2.157 (1.139–4.086)] datasets 
(Table 2). These results indicated that the risk score can 

independently predict the TMZ therapeutic prognosis of 
patients with MGMT unmethylated GBMs.

We also investigated the association of risk scores and 
clinicopathological features in all GBM. We found that the risk 
scores were only significantly different between patients with 
different IDH status (P < 0.0001) or between Proneural subtype 
and Mesenchymal subtype (P < 0.01), but not between patients 
stratified by age, gender, MGMT promoter methylation status, 
chr 7 gain and chr 10 loss, or treated with or without TMZ 
(Supplementary Figure 3).

Prognosis Value of the Risk Signature in 
Stratified GBMs
To further understand the TMZ therapeutic prognostic value of 
the risk signature in MGMT unmethylated GBMs, we compared 
the OS of MGMT unmethylated GBMs patients stratified by TMZ 
treatment status in the low-risk and high-risk groups respectively. 
The results indicated that patients with TMZ treatment had 

FIGURE 3 | Identification of the risk signature could stratify the TMZ therapeutic prognosis of the MGMT unmethylated GBM. (A) Ten-fold cross validation for tuning 
parameter selection in the LASSO model. The minimum criterion was indicated by the dashed vertical line (left). (B) Heatmap shows the association of risk scores 
and clinicopathological features based on the methylation profile of the 31 CpGs in the signature. The coefficients were calculated by multivariate Cox regression 
analysis using LASSO. (C–D) Kaplan–Meier overall survival (OS) curves for TMZ treated patients with MGMT methylated GBMs, TMZ treated patients with MGMT 
unmethylated GBMs with low- or high-risk significance scores in the training set (C) and validation set (D), respectively.
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longer OS than that of patients without TMZ treatment in the 
low-risk group of both the training set (P < 0.0001, Figure 4A) 
and the validation set (P = 0.0456, Figure 4F). In contrast, there 
was no significant difference between patients with or without 
TMZ treatment in the high-risk group (Figures 4B, G).

We also investigated the prognostic value of the risk signature 
in other stratified GBMs. We respectively stratify the GBM 
patients into four subgroups according to MGMT status and 
TMZ treatment option. In the training set, the risk signature 
could not stratify the prognosis of three subgroups (TMZ non-
treated MGMT unmethylated GBM, TMZ treated MGMT 
methylated GBM, and TMZ non-treated MGMT methylated 
GBM) (Figures 4C–E). Similar results could also be observed in 
the validation set except TMZ non-treated MGMT unmethylated 
GBM (Figures 4G, H).

The Potential Functions Underlying the 
TMZ Therapeutic Prognostic Value of the 
Risk Signature
To determine the functional differences between the high-risk 
and low-risk cases of the TMZ treated MGMT unmethylated 
GBM in the 27K cohort, we identified the differentially (P < 
0.05) expressed genes by SAM (Figure 5A). GO and KEGG 
analyses revealed that extracellular matrix related biological 
processes and signaling pathways were significantly enriched in 
the high-risk group (Figures 5B, C). In contrast, the biological 
processes of T cell differentiation, nervous system development, 
and transcription were significantly enriched in the low-risk 
group (Figure 5B). Meanwhile, GSEA also indicated that the 
high-risk cases showed enrichment of “regulation of endothelial 
cell apoptotic process,” “extracellular structure organization,” 

FIGURE 4 | Clinical outcomes prediction of the signature in patients with stratified GBMs. (A–B) Kaplan–Meier overall survival (OS) curves for MGMT unmethylated 
GBM patients with or without TMZ treatment in the low-risk group (A) and high-risk groups (B) of the training set. (C–E) Kaplan–Meier overall survival (OS) curves for 
stratified GBM patients (C) MGMT unmethylated GBM without TMZ; (D) MGMT methylated GBM with TMZ; (E) MGMT methylated GBM without TMZ) with low- or 
high-risk scores in the training set. (F–J) Kaplan–Meier overall survival (OS) curves for stratified GBM patients in the validation set.

TABLE 2 | Univariate and multivariate Cox regression analyses for the risk score in the training and validation set, respectively.

Univariate Cox regression Multivariate Cox regression

P-valuea HR 95% CI P-Valueb HR 95% CI

Lower Higher Lower Higher

The training set Age 0.028 1.029 1.009 1.048 0.858 0.998 0.974 1.022
Gender 0.15 0.705 0.438 1.134 – – – –
Risk score  <0.001 12.674 7.661 20.968  <0.001 12.748 7.676 21.173

The validation 
set

Age 0.004 1.075 1.023 1.13 0.03 1.093 1.03 1.16
Gender 0.654 0.802 0.305 2.107 – – – –
Risk score 0.028 1.685 1.058 2.682 0.018 2.157 1.139 4.086

aThe P-value is the sig. value in the univariate cox regression, and the method is Enter; bThe p-value is the sig. value in the multivariate cox regression analysis, and the method is Enter. 
P-value <0.05 are highlighted by bold front.
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“aminoglycan metabolic process,” and “extracellular matrix 
disassembly biological progresses” (Figure 5D). Moreover, the 
hallmarks of “epithelial–mesenchymal transition,” “PI3K-AKT-
mTOR signaling,” “glycolysis”, and “angiogenesis” also enriched 
in the high-risk cases (Figure 5E). The results indicated that 
the extracellular matrix related functions and mesenchymal 
phenotype could contribute to the TMZ-resistant of glioma.

DISCUSSION

Undoubtedly, MGMT promoter methylation status is critical 
for the chemotherapeutic management of glioma, especially for 
GBM (Hegi et al., 2005; Chai et al., 2019a; Chai et al., 2019e). 
However, whether TMZ should be withheld from patients with 
GBMs that lack MGMT promoter methylation is still under 
debate, and some of these patients indeed benefit from the 
treatment (Wick et al., 2014). Thus, it is critical to uncover novel 
biomarkers to identify TMZ-sensitive individuals with MGMT 

promoter unmethylated GBMs. In this study, we successfully 
developed a 31-CpG methylation signature which could identify 
the TMZ-sensitive GBMs in the MGMT promoter unmethylated 
GBMs from both the training and validation datasets, and OS 
of these TMZ-sensitive GBMs is similar to that of the MGMT 
promoter methylated GBMs after TMZ treatment in both two 
datasets. Considering the robust and reproducible nature of DNA 
methylation in the classification of brain tumors, this signature 
has great value in predicting the TMZ sensitivity of the GBMs 
that lack MGMT promoter methylation.

In this study, we systematically investigated 107 MGMT 
promoter unmethylated GBMs to obtain the TMZ therapeutic 
prognostic value of each of the CpGs that were included in 
the HM-27K BeadChip, and we identified that 3,565 CpGs are 
significantly associated with the OS of these GBMs. Previous 
studies have indicated that abnormal metabolism could alter the 
response of tumor cells to chemotherapy through inhibiting the 
activities of DNA repair enzymes (Gusyatiner and Hegi, 2018). 
DNA instability and DNA injury repair have been linked to the 

FIGURE 5 | Functional annotation for genes differentially expressed between low- and high-risk groups. (A) The differential genes between low- and high-risk 
groups are shown by green (enriched in the low-risk group) and red (enriched in the high-risk group) dots. (B–C) Go analysis (B) and KEGG analysis (C) are used to 
evaluate differential genes between low-and high-risk groups. (D and E) GSEA analysis reveals the biological processes (D) and cancer hallmarks (E) enriched in the 
high-risk groups.
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chemo-resistance of cancer cells (Kanai et al., 2012; Roos et al., 
2018; Zhao et al., 2018a; Ha Thi et al., 2019; Zhang et al., 2019). 
Here we also investigated the functions of genes corresponding 
to the 3,565 CpGs, and the results indicated that biological 
processes or pathways of mitochondrial translation, cell cycle 
and DNA repair could be involved in the TMZ-sensitivity 
of MGMT promoter unmethylated GBMs. Given that DNA 
proliferation rate is positively correlated to the sensitivity to 
chemotherapy (Li et al., 2017; Krell et al., 2019; Qiang et al., 
2018), our finding supports that transcriptional activities of 
genes enriched in mitochondria, DNA injury and repair, and 
cell cycle processes could be important in the sensitivity of GBM 
cells to TMZ chemotherapy.

The extracellular matrix (ECM) components and their 
partners, including the glycosaminoglycans, glycoproteins, 
and proteoglycans, play a crucial role in the glioma invasion 
through promoting tumor cell migration and angiogenesis 
(Ferrer et al., 2018). The up-regulation of ECM partners, 
such as CD44, has been acknowledged as a marker for the 
“proneural–mesenchymal transition” of GBM cells (Yang 
et al., 2017). Here, we noticed that not only the hallmark of 
epithelial–mesenchymal transition but also ECM related 
biological processes and pathways were highly enriched in 
the MGMT unmethylated GBMs with the high-risk score, 
indicating that enhanced ECM activities could be involved 
in the TMZ-resistance of GBMs. This may be associated 
with the roles of ECM in regulating the extracellular 
microenvironments and intracellular signaling pathways 
(Wang et al., 2018). Chemokine (C-X-C motif) ligand 12 
(CXCL12) and its receptors CXCR4 and CXCR7, which are 
stored in or attached to the ECM, are extremely important in 
forming a more invasive and resistant phenotype of glioma 
(Gatti et al., 2013; Zhao et  al., 2018a). Recently, we also 
identified that the glycoprotein ADAMTS4, which is important 
for the upregulation of integrins, is also a novel immune-
related biomarker for the primary GBM (Zhao et al., 2019). 
Transforming growth factor-beta (TGF-β), an ECM-bound 
bioactive factor, is involved in both the activation of NF-κB 
signaling and mesenchymal transition of GBM (Song et  al., 
2018; Batlle and Massague, 2019). Both of these two processes 
have been involved in the TMZ-resistance of GBM (Ming et al., 
2017; Yang et al., 2017; Chai et al., 2019c; Chai et al., 2019d). 
All of these emphasize the value of the ECM in glioma TMZ 
sensitivity. Thus, the ECM and microenvironment should not 
be neglected in drug development, especially in developing an 
ideal in vitro drug screening model for glioma.

Chr 7 gain and Chr 10 loss is quite common in GBM (Bady 
et al., 2016; Chai et al., 2019a). Patients with high-grade gliomas 
harboring deletions of chromosomes 9p and 10q may benefit 
more from TMZ treatment (Wemmert et al., 2005), and the 
MGMT resides on chromosome 10q. Here, we also investigated 
the association between the risk signature and deletion of one 
copy of chromosome 10, and the results indicated that the 
predictive value of the risk signature was not affected by the 
status of Chr 7 gain and Chr 10 loss. This finding excludes 
the possibility that the predictive value of the risk signature 

may be caused by the unbalanced MGMT expression between 
GBM with or without Chr 7 gain and Chr 10 loss. Moreover, 
we have reported that chromosome 10/10q deletion does not 
significantly affect MGMT expression of GBM in the TCGA 
dataset (Chai et al., 2019a).

In conclusion, our findings reveal the predictive value of DNA 
methylation profiling in GBMs with an unmethylated MGMT 
promoter. The developed 31-CpG methylation signature could 
accurately predict the TMZ-sensitivity of MGMT promoter 
unmethylated GBMs. Though the risk signature still needs to be 
confirmed in future prospective studies with specific test kits, 
our current findings can promote our understanding of the roles 
of DNA methylation in GBMs with an unmethylated MGMT 
promoter and also offer a very promising TMZ-sensitivity 
predictive signature for these GBMs.
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Long non-coding RNAs (lncRNAs) are an emerging class of RNA species that may play 
a critical regulatory role in gene expression. However, the association between lncRNAs 
and atrial fibrillation (AF) is still not fully understood. In this study, we used RNA sequencing 
data to identify and quantify the both protein coding genes (PCGs) and lncRNAs. The high 
enrichment of these up-regulated genes in biological functions concerning response to 
virus and inflammatory response suggested that chronic viral infection may lead to activated 
inflammatory pathways, thereby alter the electrophysiology, structure, and autonomic 
remodeling of the atria. In contrast, the downregulated GO terms were related to the 
response to saccharides. To identify key lncRNAs involved in AF, we predicted lncRNAs 
regulating expression of the adjacent PCGs, and characterized biological function of the 
dysregulated lncRNAs. We found that two lncRNAs, ETF1P2, and AP001053.11, could 
interact with protein-coding genes (PCGs), which were implicated in AF. In conclusion, 
we identified key PCGs and lncRNAs, which may be implicated in AF, which not only 
improves our understanding of the roles of lncRNAs in AF, but also provides potentially 
functional lncRNAs for AF researchers. 

Keywords: long non-coding RNAs, atrial fibrillation, RNA-Seq, genes, protein coding genes

INTRODUCTION

Atrial fibrillation (AF), one of the most common serious arrhythmia worldwide, whose extreme 
complications such as heart failure and embolic stroke are often of high risks and associated with 
increasing morbidity and mortality (Conen et al., 2011). Atrial remodeling, both electrical and 
structural, are important characteristics in AF (Li et al., 2017; Allessie et al., 2002). AF could bring 
permanent changes such as enlarged left and right atrial size. Moreover, increasing left atrial volume 
has been stated as a risk factor of cardioembolic stroke, and it is critical to interpret the mechanism 
behind this to improve the stroke prevention strategy.

The etiology of AF has not been fully elucidated as a varying range of factors would contribute 
to AF, such as family history, unhealthy lifestyle, high blood pressure and other diseases (Shi 
et al., 2013). With the development of next-generation sequencing technologies, non-coding 
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RNAs (ncRNAs) emerged as the epicenter for researchers to 
further explore the genetic cause behind AF. ncRNAs, which 
can be subdivided into small ncRNAs (< 200 nt) and long 
ncRNAs (lncRNAs), are not translated in proteins, but some 
of them are capable of regulating various cellular processes 
such as the expression of certain genes. Evidences have verified 
that many lncRNAs, often generated from transcriptional 
units, play a critical role in several cardiovascular diseases 
(Su et al., 2018), and it is of great importance to survey how 
they function in AF and how they are connected with atrial 
remodeling. Several researches are conducted to explore how 
lncRNAs acted as regulators in atrial electrical remodeling, 
revealing that TCONS_00075467 may help decrease AF 
vulnerability through suppressing the electrical remodeling (Li 
et al., 2017). Recent reports have also unveiled that lncRNAs 
can act as modulators of miRNA levels in various cardiac 
diseases (Greco et al., 2018). Also, inflammation and AF are 
confirmed to have a close relationship. Abundant inflammatory 
markers and higher ratios of neutrophil and lymphocyte are 
often observed in patients with AF (Hu et al., 2015), and AF 
subsequently triggers more inflammatory response, which in 
turns results in worsened conditions. Exploring active lncRNAs 
in inflammation would shed light on the prevention, diagnosis, 
and therapeutic strategies of AF, and help elucidate underlying 
mechanisms.

In the present study, we identified differentially expressed 
lncRNAs and mRNAs in patients with AF and predicted 
lncRNA function in a co-expression-based manner. Prediction 
of cis-acting lncRNAs and functional annotation of dysregulated 
lncRNAs screened out some critical lncRNAs implicated in 
AF, which not only improves our understanding of the roles of 
lncRNAs in AF, but also provides potentially functional lncRNAs 
for AF researchers. In addition, as evidence proves that a variety 
of inflammation-associated cytokines and chemokines are 
involved in the pathogenesis of AF (Schnabel et al., 2009), we 
further investigate whether our findings are related to cytokines 
and chemokines in certain aspects.

MATERIALS AND METHODS

Data Collection
We collected RNA sequencing data of 6 cases with AF and 
6 controls from Sequence Read Archive (SRA, https://www.
ncbi.nlm.nih.gov/sra) database (Leinonen et al., 2011) with an 
accession number SRP093226, which was provided by previous 
study (Yu et al., 2017). We uncompressed the SRA files by fastq-
dump with the option –split-files, which generated two paired 
fastq files.

Read Mapping and Gene Expression 
Quantification
For each sample, we first mapped the RNA-seq reads to UCSC 
hg19 human reference genome (www.genome.ucsc.edu) 
using hisat2 (Kim et al., 2015), and then sorted the SAM files 
by samtools. With the gene annotation from GENCODE v19 
(Harrow et al., 2012), the gene expression was estimated by 

the StringTie (Pertea et al., 2015) and ballgown pipeline. We 
considered genes with biotypes, including ‘processed_transcript’, 
‘pseudogene’, ‘lincRNA’, ‘3prime_overlapping_ncrna’, ‘antisense’, 
‘sense_intronic’, and ‘sense_overlapping’, as lncRNAs.

Differential Expression Analysis
The FPKM-based expression was used to identify 
differentially expressed genes. The gene expression values 
were first transformed to log2 (FPKM + 1), and then tested for 
differential expression by t test. The differentially expressed 
genes were identified with the thresholds of P-value <0.05 and 
fold change >2 or <1/2.

Gene Ontology Enrichment Analysis
The Gene Ontology (GO) enrichment analysis was implemented 
in R with clusterProfiler package (Yu et al., 2012), which used 
overrepresentation enrichment analysis (ORA) to identify 
enriched GO terms. The GO terms were deemed to be 
significantly enriched if the adjusted P < 0.05 and the gene count 
in each GO term was more than 3.

Functional Annotation of lncRNAs
The biological function of lncRNAs was annotated by 
overrepresentation enrichment analysis (ORA) of co-expressed 
protein-coding genes (PCGs). The PCGs were defined as 
co-expressed genes with a given lncRNA if the P < 0.0001 for the 
correlation coefficient test.

Identification of Cis-Acting lncRNAs
As the lncRNAs may regulate the expression levels of the 
corresponding adjacent PCGs by cis-acting manner, the cis-
acting lncRNAs were identified if the lncRNA and its adjacent 
PCGs (within one million base pairs) exhibit highly correlated 
expression (Pearson correlation coefficient > 0.5 or < −0.5).

RESULTS

RNA Sequencing Method Reveals Diverse 
RNAs in Both AF and Control Groups
The analysis of sequencing data with 6 AF patients and 6 
controls allowed us to identify 15,147 genes in total (FPKM > 1 
in at least one sample), which consisted of 29 RNA categories, 
including protein-coding genes (PCGs), pseudogenes, 
antisense RNAs and etc. (Figure 1A). The PCGs, pseudogenes, 
and antisense RNAs accounted for about 90% of the total 
identified RNAs. For each RNA category, the number of genes 
in AF was not observed to be higher or lower than that in 
control (Wilcoxon rank-sum test, P < 0.05). In addition, we 
also considered genes with seven specific biotypes as lncRNAs 
(See Material and Methods). Given a threshold of FPKM >1 in 
at least 25% samples (n = 3), we identified 9,233 PCGs, 2,213 
lncRNAs, and 961 other ncRNA genes, which were then used 
for downstream analysis (Figure 1B).

193

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
www.genome.ucsc.edu


Key Biomarkers in Atrial FibrillationWu et al.

3 October 2019 | Volume 10 | Article 908Frontiers in Genetics | www.frontiersin.org

FIGURE 1 | The overview of genes identified by RNA sequencing method. (A) The number of genes identified in each sample (FPKM > 1). The Wilcoxon rank-sum 
test P-values that compare the gene counts in AF with those in normal controls are listed on the left of the heat-map. (B) The pie chart displays the number of 
genes, including PCGs, lncRNAs, and other ncRNAs. 
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Identification of Dysregulated mRNAs and 
lncRNAs in AF
Differential expression analysis was conducted to identify 
dysregulated genes in AF using the gene expression profiles. 
Specifically, a total of 946 genes, including 327 up- and 619 down-
regulated genes, were differentially expressed in AF as compared 
with the healthy controls (t-test, P < 0.05 and fold change >2 
or <1/2, Figure 2A, Supplementary Table S1). To investigate the 
distinction of the dysregulated genes between AF and healthy 
controls, we performed hierarchical clustering analysis of the 
dysregulated gene expression profiles, and found that the samples 
with AF could be clearly distinguished from the healthy controls 
(Figure 2B), indicating that gene expression profiles between 
AF and healthy controls had marked differences. Among the 
dysregulated genes, the proportion of PCGs was significantly 
higher in the up-regulated genes than in the down-regulated genes 
(Figure 2C, 249/327 vs. 156/619, proportion test, P < 0.0001). In 
contrast, the proportion of lncRNAs was observed higher in the 
down-regulated genes than in the up-regulated genes (Figure 
2C, 315/619 vs. 63/327, proportion test, P < 0.0001).

Furthermore, we selected the top-five up- and down-regulated 
genes (Figure 2D), and found that the top-five up-regulated genes 
were all PCGs, while only one down-regulated gene encoded 
protein. Notably, three of the top-five upregulated genes, GIMAP8, 
TNFAIP8L2, and RNASEL, were involved in inflammatory 
response, suggesting that the dysregulation of inflammatory 
response may be the an important indicator for AF. On the other 
hand, the PTX3 had an antiangiogenic role, and its downregulation 
may lead to enhanced angiogenesis. In addition, lncRNAs, 
HOTAIRM1, RP11-262H14.1, and RP11-84A19.4, have been 
reported to be dysregulated in AF by previous studies (Yu et al., 
2017; Qian et al., 2019). These results indicated that differential 
expression analysis could uncover some key genes in AF.

Gene Ontology-Based Enrichment 
Analysis of the Dysregulated Genes
To investigate some key biological functions involved in AF, we 
performed overrepresentation enrichment analysis (ORA) on the 
up- and down-regulated genes, respectively. We found that the 
up-regulated genes were highly enriched in biological functions 
related to response to virus, such as defense response to virus, 
response to virus, viral life cycle, regulation of viral process, 
and regulation of viral life cycle, and related to inflammatory 
response, such as positive regulation of I-kappaB kinase/
NF-kappaB signaling, and regulation of chemotaxis (Figure 3A, 
adjusted P < 0.05). These results indicated that chronic viral 
infection may lead to activated inflammatory pathways, thereby 
alter the electrophysiology, structure, and autonomic remodeling 
of the atria (Chiang et al., 2013).

Among the down-regulated GO terms, biological functions 
related to the response to saccharides (Figure 3B), such as 
response to lipopolysaccharide, response to glucose, response 
to hexose, response to monosaccharide, and response to 
carbohydrate were significantly enriched by the down-regulated 
genes. Notably, the weakened response to glucose in blood may 
reduce the insulin level, thereby lead to hyperglycemia, which 

further demonstrate the close association between hyperglycemia 
and AF (Rigalleau et al., 2002).

Prediction of lncRNAs Regulating 
Expression of the Adjacent PCGs
It has been widely recognized that lncRNAs could regulate 
the expression of the adjacent PCGs by cis-acting manner 
(Kornienko et al., 2013). To identify these cis-acting lncRNAs, 
we first searched the adjacent dysregulated PCGs within one 
million base pairs for each dysregulated lncRNA, and found 
187 lncRNA-PCG pairs. The expression levels between the 
lncRNA and its corresponding PCGs were highly correlated 
(Figure 4A). Particularly, the expression levels of about half of 
the lncRNA-PCG pairs were negatively correlated, indicating 
that the lncRNAs may suppress the expression of the adjacent 
PCGs. With a threshold at Pearson correlation coefficient > 0.5 
or < −0.5, we identified 71 lncRNA-PCG pairs, composed of 58 
PCGs and 63 lncRNAs, with potential regulatory relationship 
(Supplementary Table S2). Among the cis-acting lncRNAs, we 
found that pseudogene (46%), antisense (34%), and lincRNA 
(11%) were the major categories (Figure 4B).

To identify key lncRNAs involved in regulating gene 
expression, we selected seven lncRNAs, AL021707.2, CTD-
2622I13.3, ETF1P2, RP11-4K3__A.5, RP11-95J11.1, ZNF137P, 
and H2AFZP1, that regulated multiple PCGs. Notably, we found 
that ETF1P2, a pseudogene locating within 7q36, was negatively 
correlated with two adjacent PCGs with similar functions, 
GIMAP2 and GIMAP4 (Figure 4C), which participated in the 
regulation of T helper cell differentiation (Filen et al., 2009), 
indicating that the pseudogene ETF1P2 may be the upstream 
regulator of T helper cell differentiation.

Functional Annotation of the Dysregulated 
lncRNAs by Co-Expressed PCGs
As co-expressed genes are more likely to be co-regulated, sharing 
similar functions, or involved in similar biological processes (Stuart 
et al., 2003), we predicted the function of lncRNAs by performing 
overrepresentation enrichment analysis on the co-expressed 
PCGs to identify enriched GO terms (Supplementary Table S3). 
We found that a large number of lncRNAs (n > 20) had the 
biological functions termed transcription corepressor activity, 
proximal promoter sequence-specific DNA binding, and RNA 
polymerase II proximal promoter sequence-specific DNA 
binding (Figure 5A). Specifically, 38 lncRNAs were characterized 
with transcription corepressor activity, and highly correlated 
with five PCGs (Pearson correlation coefficient > 0.5), SF1, 
MNT, NR1D1, SKI, DNAJB1, and YY1, with the same GO term 
(Figures 5B, C). In addition, we also found that one lncRNA, 
AP001053.11, may participate in inflammatory response related 
GO terms, such as chemokine binding, chemokine receptor 
activity, cytokine binding, and cytokine receptor activity 
(Figure 5D). Notably, three chemokine receptor, CX3CR1, CCR2, 
and CCR5, were highly correlated with AP001053.11 (Pearson 
correlation coefficient > 0.9), further suggesting a critical role of 
AP001053.11 in regulation of chemokine receptor activity.
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FIGURE 2 | The differentially expressed genes in AF. (A) The volcano plot displays the up-regulated (red dots) and down-regulated (blue dots) genes. (B) The heat-
map shows the scaled gene expression of dysregulated genes. (C) The number of PCGs, lncRNAs, and other ncRNAs in up-regulated, down-regulated, and all 
dysregulated genes. (D) The expression levels of the top-five up-regulated and down-regulated genes in AF and control.
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FIGURE 3 | The GO terms enriched by dysregulated genes. The GO terms enriched by up-regulated and down-regulated genes are displayed in (A) and (B), 
respectively. The more the gene count, the larger size the circle.
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DISCUSSION

LncRNAs are an emerging class of RNA species that may play 
a critical regulatory role in gene expression. LncRNAs can 
serve as diagnostic biomarkers or therapeutic targets for many 
diseases (Ishii et al., 2006; Chen et al., 2008; Chubb et al., 2008). 
However, the association between lncRNAs and AF is still not 
fully understood.

In this study, we used RNA sequencing data to identify 
and quantify the both PCGs and lncRNAs, and conducted 
differential expression analysis to identify dysregulated genes 
in AF. Specifically, a total of 946 genes, including 327 up- and 
619 down-regulated genes, were differentially expressed in 
AF as compared with the healthy controls (t-test, P <0.05 and 
fold change >2 or <1/2, Figure 2A, Supplementary Table S1). 
The hierarchical clustering analysis of those dysregulated gene 
expression profiles showed that the samples with AF could be 
clearly distinguished from the healthy controls (Figure  2B), 
indicating that gene expression profiles between AF and 
healthy controls had marked differences. Furthermore, we 
found that three of the top-five upregulated genes, GIMAP8, 
TNFAIP8L2, and RNASEL, were involved in inflammatory 

response, which was in accordance with the conclusion that 
the infiltration of immune cells and proteins that mediate 
inflammatory response in cardiac tissue and circulatory 
processes is associated with AF by previous studies (Yamashita 
et al., 2010; Harada et al., 2015). On the other hand, the PTX3 
had an antiangiogenic role, and its downregulation may lead 
to enhanced angiogenesis, which has been reported to be 
associated with AF (Berntsson et al., 2019).

To investigate some key biological functions involved in AF, 
we performed ORA on the dysregulated genes. The significant 
enrichment of these up-regulated genes in biological functions 
related to response to virus and inflammatory response 
suggested that chronic viral infection may lead to activated 
inflammatory pathways, thereby alter the electrophysiology, 
structure, and autonomic remodeling of the atria (Chiang et al., 
2013). In contrast, the downregulated GO terms were related to 
the response to saccharides (Figure 3B), which gave us a hint 
that the weakened response to glucose in blood may reduce the 
insulin level, thereby lead to hyperglycemia as previous study 
reported (Rigalleau et al., 2002).

To identify key lncRNAs involved in AF, we predicted lncRNA-
regulated expression of the adjacent PCGs, and characterized 

FIGURE 4 | The cis-acting lncRNA candidates involved in AF. (A) The density of the correlation coefficients between lncRNAs and the corresponding adjacent 
PCGs. (B) The distribution of RNA biotypes for the cis-acting lnRNA candidates. (C) The correlation coefficients between ETF1P2 and GIMAP2, and between 
ETF1P2 and GIMAP4.
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FIGURE 5 | The functional annotation of lncRNAs by co-expressed PCGs. (A) The overview of the GO terms for the annotation of dysregulated lncRNAs 
(FDR < 0.05). (B) The PCGs and lncRNAs involved in transcription corepressor activity. (C) The correlation coefficients between PCGs and lncRNAs involved 
in transcription corepressor activity. (D) The scatter plots display the correlation between AP001053.11 and one of three chemokine receptors, including 
CX3CR1, CCR2, and CCR5.
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biological function of the dysregulated lncRNAs. We found that 
ETF1P2, a pseudogene locating within 7q36, was negatively 
correlated with two adjacent PCGs with similar functions, GIMAP2 
and GIMAP4 (Figure 4C), which participated in regulation of T 
helper cell differentiation (Filen et al., 2009), indicating that the 
pseudogene ETF1P2 may be an upstream regulator of T helper 
cell differentiation. Moreover, we also found that one lncRNA, 
AP001053.11, may participate in inflammatory-response-related 
GO terms by co-expression-based functional annotation. Notably, 
three chemokine receptor, CX3CR1, CCR2, and CCR5, were highly 
correlated with AP001053.11 (Pearson correlation coefficient > 
0.9), further suggesting that AP001053.11 may be implicated in AF 
via the regulation of chemokine receptor activity.

In addition, there are also some limitations in this study. 
Firstly, more samples were needed to support our findings 
about the key lncRNAs. We will collect more samples with AF 
and healthy donors in the near future, which can overcome 
this limitation. Secondly, some experimental validation would 
be required for future verification of the functional lncRNAs. 
We hope to conduct further research with larger sample size, 
experimental validation and improved methodology for data 
analysis in the near future.

In conclusion, we have identified key PCGs and lncRNAs, 
which may be implicated in AF, which not only improves our 
understanding of the roles of lncRNAs in AF, but also provides 
potentially functional lncRNAs for AF researchers.
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Spermiogenesis is a complex cellular differentiation process that the germ cells undergo 
a distinct morphological change, and the protamines replace the core histones to 
facilitate chromatin compaction in the sperm head. Recent studies show the essential 
roles of epigenetic events during the histone-to-protamine transition. Defects in either the 
replacement or the modification of histones might cause male infertility with azoospermia, 
oligospermia or teratozoospermia. Here, we summarize recent advances in our knowledge 
of how epigenetic regulators, such as histone variants, histone modification and their 
related chromatin remodelers, facilitate the histone-to-protamine transition during 
spermiogenesis. Understanding the molecular mechanism underlying the modification 
and replacement of histones during spermiogenesis will enable the identification of 
epigenetic biomarkers of male infertility, and shed light on potential therapies for these 
patients in the future.

Keywords: spermiogenesis, histone-to-protamine transition, histone variants, histone modification, male infertility

INTRODUCTION

Spermatogenesis is the process of male gamete production with successive cellular differentiation, 
which can be subdivided into spermatogonial mitosis, spermatocytic meiosis and spermiogenesis 
(Roosen-Runge, 1962; Hess and Renato De Franca, 2008). During spermatogenesis, SSC 
(spermatogonial stem cells) undergo self-renewal and differentiate into spermatogonia that 
perform meiosis to generate haploid germ cells and ensure the genetic diversity through meiotic 
recombination (Rathke et al., 2014; Bao and Bedford, 2016). Then, the haploid germ cells undergo 
spermiogenesis with a distinct morphological change and chromatin compaction in the sperm 
nuclei to prevent the paternal genome from mutagenesis and damage (Govin et al., 2004; Bao and 
Bedford, 2016). During the nuclear chromatin re-organization in spermiogenesis, the majority of 
the somatic histones are firstly replaced by testis-specific histone variants, and transition proteins 
(TPs) are subsequently incorporated in the nuclei of spermatids, protamines (PRMs) further 
replace TPs in the late spermatids to pack the genome into the highly condensed sperm nucleus 
(Rathke et al., 2014; Bao and Bedford, 2016). During the histone-to-protamine transition, the 
histone variants and specific histone modifications play essential roles by modulating the chromatin 
compaction and higher-order chromatin structure (Table 1) (Boskovic and Torres-Padilla, 2013; 
Bao and Bedford, 2016; Hada et al., 2017; Hao et al., 2019). Defects in either the replacement 
or the modification of histones might result in azoospermia, oligospermia or teratozoospermia, 
which leads to male infertility (Table 2). The focus of this review is on recent advances in our 
knowledge of how epigenetic regulators, such as histone variants, histone modification and their 
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TABLE 1 | The main histone variants and modifications during the histone-to-protamine transition.

Type Histone Name Period Function Reference

Histone variants H1 H1T Spermatocytes to 
elongating spermatids

Maintain open chromatin 
configuration and no detectable 
phenotype in H1t-null testis

Delucia et al., 1994; Khadake 
and Rao, 1995; Drabent et al., 
2000; Fantz et al., 2001

H1T2 Round spermatids and 
elongating spermatids

Indispensable for the replacement 
of histones with protamines and 
chromatin condensation

Martianov et al., 2005; Tanaka 
et al., 2005

HILS1 Elongating and elongated 
spermatids

Contribute to the open chromatin 
structure

Yan et al., 2003; Mishra et al., 
2018

H2A TH2A Spermatocytes to 
elongated spermatids

Contribute to the open chromatin 
structure and cooperate with TH2B 
to regulate TP2 incorporation

Padavattan et al., 2015; 
Shinagawa et al., 2015; 
Padavattan et al., 2017

H2AL2 Elongating and elongated 
spermatids

Assemble open nucleosomes and 
allow TPs incorporation

Govin et al., 2007; Barral et al., 
2017

H2A.B Spermatocytes to round 
spermatids

Destabilize chromatin and modulate 
the dynamics of H2AL2 removal and 
TP1 incorporation and

Soboleva et al., 2012; 
Soboleva et al., 2017; Anuar 
et al., 2019

H2B Th2B Spermatocytes, round 
spermatids and elongating 
spermatids

Destabilize chromatin and regulate 
the TPs and PRMs incorporation

Meistrich et al., 1985; 
Montellier et al., 2013

H3 H3.3 All types of germ cell Contribute to the open chromatin 
structure, modulate TP1 removal and 
PRM1 incorporation

Bramlage et al., 1997; 
Couldrey et al., 1999; Van Der 
Heijden et al., 2007; Thakar 
et al., 2009; Chen et al., 2013; 
Tang et al., 2015

H3T Spermatocytes, round 
spermatids and elongating 
spermatids

Contribute to the open chromatin 
and required for spermatogonial 
differentiation and ensures entry into 
meiosis

Tachiwana et al., 2010; Ueda 
et al., 2017

Histone modifications Acetylation H4K5/8/12ac Spermatogonia, 
spermatocytes and 
elongating spermatids

Essential for destabilization and 
remodeling of nucleosomes, TPs 
incorporation

Hazzouri et al., 2000;Gaucher 
et al., 2012; Qian et al., 2013; 
Bell et al., 2014; Dong et al., 
2017; Ketchum et al., 2018

H4K16ac Elongating spermatids
Ubiquitination UbH2A Spermatocytes and 

elongating spermatids
Essential for the recruitment of the 
MOF acetyltransferase complex to 
modulate H4K16ac and histone 
removal

Chen et al., 1998; Baarends 
et al., 1999; Lu et al., 2010; 
Gou et al., 2017; Meng et al., 
2019; Wang et al., 2019

UbH2B Spermatocytes and 
elongating spermatids

Methylation H3K4me3 Spermatogonia, 
spermatocytes, round 
spermatids and elongating 
spermatids

Essential for the recruitment of 
PYGO2 to recognize HAT to facilitate 
H3 acetylation; recruit PHF7 to 
catalyze H2A ubiquitination to 
facilitate the histone removal

Godmann et al., 2007; Song 
et al., 2011; Nair et al., 2008; 
Wang et al., 2019

H3K9me1/2/3 Spermatogonia, Round 
spermatids and elongating 
spermatids

Regulate the Tnps and Prms genes 
expression

Okada et al., 2007

H3K36me3 Spermatocytes and round 
spermatids

Regulate the Tnps and Prms genes 
expression

Zuo et al., 2018

H3K79me3 Elongating spermatids Correlate with histone H4 
hyperacetylation to regulate histone-
to-protamine transition

Dottermusch-Heidel et al., 
2014

Phosphorylation γH2AX Spermatocytes elongating 
spermatids

Require for the normal quantities of 
H3, H4 and PRM2 precursor and 
intermediate

Li et al., 2005; Spiridonov 
et al., 2005; Jha et al., 2017

H4S1 Spermatocyte, round 
spermatids and elongating 
spermatids

Essential for chromatin compaction 
and concomitantly histone 
accessibility

Krishnamoorthy et al., 2006; 
Zhang et al., 2016

Other Crotonylation Elongating spermatids Facilitate TP1 and PRM2 
incorporation

Liu et al., 2017b

PARsylation Elongating spermatids Require for histone removal and TP1 
incorporation

Meyer-Ficca et al., 2009; 
Meyer-Ficca et al., 2011; 
Meyer-Ficca et al., 2015
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TABLE 2 | Mouse models related with the histone-to-protamine transition.

Gene Phenotype Function Reference

H1t Fertility and no spermatogenesis abnormalities Dispensable for histone-to-protamine transition Drabent et al., 2000; Fantz 
et al., 2001

H1t2 Reduced fertility with delayed nuclear 
condensation and aberrant elongation of 
spermatids

Indispensable for the incorporation of PRMs and proper 
chromatin condensation

Martianov et al., 2005; 
Tanaka et al., 2005

Th2b Fertility with normal spermatogenesis in Th2b-
null mice

Destabilize chromatin and regulate TPs and PRMs incorporation Montellier et al., 2013

Infertility with abnormal spermatozoa in TH2B 
C-terminus modified mice

Th2a/Th2b Infertility with accumulated spermatocytes at 
interkinesis and abnormal spermatozoa

Indispensable for cohesin release and TP2 incorporation Shinagawa et al., 2015

H2al2 Infertility and the sperm chromatin show a 
compaction defects

Assemble open nucleosomes and allow TPs incorporation Barral et al., 2017

H2a.b Reduced fertility with abnormal spermatozoa Destabilize chromatin and modulate the dynamics of H2AL2 
removal and TP1 incorporation

Anuar et al., 2019

H3f3a Reduced fertility with dysmorphic 
spermatozoa

Require for normal development of some spermatids Tang et al., 2015

H3f3b Infertility with abnormal spermatozoa and 
reduced sperm count

Indispensable for spermatogenesis related genes expression, 
TP1 removal and PRM1 incorporation

Yuen et al., 2014

H3t Infertility with azoospermia Require for spermatogonial differentiation and ensures entry 
into meiosis

Ueda et al., 2017

Epc1 Infertility with abnormal round spermatids to 
elongating spermatids transition

Require for round spermatids maturation by regulating histone 
acetylation and TP2 incorporation

Dong et al., 2017

Tip60 The germ cell is arrested at the RS stage Contribute to round spermatids maturation by regulating 
histone acetylation and TP2 incorporation

Dong et al., 2017

Sirt1 Reduced fertility with abnormal spermatozoa 
and decreased sperm count

Require for acetylation of H4K5, H4K8 and H4K12 histone, and 
TP2 incorporation

Bell et al., 2014

Brdt Infertility with complete absence of post-
meiotic cells in Brdt-null mice

Control the chromatin organization and meiotic sex 
chromosome inactivation; the first bromodomain of BRDT is 
essential to link histone removal and TPs, PRMs incorporation

Shang et al., 2007; Dhar 
et al., 2012; Gaucher et al., 
2012; Manterola et al., 2018

Infertility with abnormal spermatids in 
Brdt∆BD1/∆BD1 mice

Pa200 Reduced fertility with abnormal spermatozoa 
and decreased sperm count

Recognize acetylated histones and mediate the core histones 
for acetylation dependent degradation through proteasomes

Khor et al., 2006; Qian 
et al., 2013

Rnf8 Infertility with abnormal spermatozoa and 
reduced sperm count

Require for histone ubiquitination and modulate H4K16ac to 
facilitate histone removal and TPs, PRMs incorporation

Lu et al., 2010

Miwi Infertility with abnormal spermatozoa 
and reduced sperm count in Miwi D-box 
mutations mice

Essential for nuclear translocation of RNF8 and facilitates the 
histone ubiquitination and further histone removal

Gou et al., 2017

L3mbtl2 Reduced fertility with abnormal spermatozoa 
and decreased sperm count

Require for the RNF8-UbH2A pathway and further PRM1 
incorporation

Meng et al., 2019

Phf7 Infertility with abnormal spermatozoa and 
decreased sperm count

Recognize the H3K4me3/me2 and catalyze H2A ubiquitination 
to facilitate the histone removal

Wang et al., 2019

Pygo2 Infertile with abnormal spermatozoa and 
decreased sperm count in Pygo2 reduced 
mice

Recognize H3K4me3 and recruit HAT to facilitate H3 
acetylation and expression of Prms, Tnp2, and H1fnt.

Nair et al., 2008

Jhdm2a Infertile with abnormal spermatozoa and 
decreased sperm count

Control H3K9 methylation at the promoter of Tnp1 and Prm1 
genes and regulate their expression

Okada et al., 2007

Setd2 Infertility with round spermatid arrest Catalyze H3K36me3 and facilitate the activation of Tnps and 
Prms genes

Zuo et al., 2018

Tssk6 Infertility with abnormal spermatozoa Mediate γH2AX to possess normal quantities of histone H3, H4 
and PRM2 precursor and intermediate

Spiridonov et al., 2005; Jha 
et al., 2017

Cdyl Reduced fertility with decreased sperm count 
and motility

Regulate histone crotonylation to facilitate TP1 and PRM2 
incorporation

Liu et al., 2017b

Parp11 Infertility with teratozoospermia Modulate PARsylation to facilitate chromatin condensation Meyer-Ficca et al., 2015
Parg110 Reduced fertility with poor sperm chromatin 

quality
Dispensable for histone removal and TP1 incorporation Meyer-Ficca et al., 2009; 

Meyer-Ficca et al., 2011
Tnp1 Reduced fertility with subtle abnormal 

spermatozoa and decreased spermatozoa
Dispensable for histone displacement as the compensation by 
TP2 and PRM2 precursor

Yu et al., 2000

Tnp2 Reduced fertility with abnormal spermatozoa Dispensable for histone displacement but necessary 
for maintaining the normal processing of PRM2 and the 
completion of chromatin condensation

Zhao et al., 2001

(Continued)
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related chromatin remodelers, regulate the highly orchestrated 
chromatin re-organization and facilitate the histone-to-
protamine transition during spermiogenesis.

HISTONE vARIANTS

In eukaryotes, nucleosomes are the packing units of DNA, 
which contain four types of canonical histones (H2A, H2B, 
H3, and H4) and the linker histone H1 (Talbert and Henikoff, 
2010; Kowalski and Palyga, 2012). While canonical histone 
expression is typically coupled to DNA replication, some non-
canonical histones (histone variants) that are distinct form their 
canonical paralogues in amino acid sequence, are constitutively 
expressed and have roles in a wide range of processes (Talbert 
and Henikoff, 2010). Many histones variants are expressed 
during spermiogenesis and modulate the chromatin structure 
to facilitate the histone-to-protamine replacement (Mccarrey 
et al., 2005; Govin et al., 2007). Here, we summarize the recent 
advances in our understanding of the role of histone variants 
during the histone-to-protamine transition.

H1 vARIANTS

Linker histones contribute to form and stabilize the higher-order 
chromatin structure (Bednar et al., 1998). In mammals, there are 
about 11 different subtypes of histone H1 (Happel and Doenecke, 
2009). Among these, H1T, H1T2, and HILS1 are testis-specific 
H1 variants (Figure 1) (Happel and Doenecke, 2009).

H1T is exclusively detected as early as mid- to late pachytene 
spermatocytes, and maintains high expression levels in the 
elongating spermatids (Figure 1) (Drabent et al., 1996; Drabent 
et al., 2003). Biochemical and biophysical studies found that, 
distinct from other somatic H1 variants, H1T binds less tightly to 
H1-depleted nucleosomes, suggesting it may maintain a relatively 
open chromatin configuration to facilitate histone replacement 
during spermiogenesis (Delucia et al., 1994; Khadake and Rao, 
1995). Unexpectedly, H1t-null mice are fertile and exhibit no 
spermatogenesis abnormalities, and the histone-to-protamine 
transition in H1t-deficient testis is normal (Drabent et al., 2000; 
Fantz et al., 2001). Although the expression of some canonical 
subtypes, including H1.1, H1.2, and H1.4, is enhanced in H1t-
null mice, elevated levels of H1.1 or H1.2 could not be observed 
in the H1t-deficient spermatids (Drabent et al., 2003), indicating 

some other types of H1 variants may play redundant roles in the 
histone-to-protamine transition.

H1T2 selectively localizes at the apical pole in the nucleus of 
round and elongating spermatids but not in mature spermatozoa 
(Figure 1) (Martianov et al., 2005). Distinct from H1T, H1T2 is 
critical for spermiogenesis, as homozygous H1t2-mutant males 
are infertile due to delayed nuclear condensation and aberrant 
elongation of spermatids. Further analysis shows the protamine 
levels are substantially reduced in H1t2-null spermatozoa 
(Martianov et al., 2005; Tanaka et al., 2005), indicating H1T2 
is necessary for the incorporation of protamines, and proper 
chromitin condensation during the histone-to-protamine 
transition.

HILS1 is strongly expressed in the nuclei of elongating 
and elongated spermatids (Figure 1) (Yan et al., 2003). HILS1 
is the least conserved H1 variant, and a poor condenser of 
chromatin compared with somatic H1, demonstrating the idea 
that HILS1 may have a distinct role in the histone-to-protamine 
transition (Yan et al., 2003; Mishra et al., 2018). In Drosophila, 
Mst77F encodes a linker histone-like protein that is similar with 
the mammalian HILS1 protein and expressed in elongating 
spermatids (Raja and Renkawitz-Pohl, 2005). The disruption 
of Mst77F cause male sterile as producing spermatozoa with 
malformed heads. Although the histone-to-protamine transition 
occurs independently of Mst77F, the nuclei of spermatid fail to 
properly condense after the histone-to-protamine replacement in 
Mst77F mutant male (Kimura and Loppin, 2016). However, the 
functional roles of HILS1 in mammalian spermiogenesis need 
further investigation.

H2A vARIANTS

Multiple testis-specific H2A variants have been identified in 
mammals, including TH2A, H2AL1, H2AL2, H2AL3 and H2A.B 
(Trostleweige et al., 1982; Govin et al., 2007; Soboleva et al., 2012).

TH2A is present and actively synthesized in early primary 
spermatocytes and gradually disappears during condensation of 
spermatid nuclei (Figure 1) (Shires et al., 1976; Trostleweige et al., 
1982). TH2A could contribute to the open chromatin structure, 
as crystal structures of nucleosome core particles (NCPs) with 
TH2A show the H-bonding interactions between the TH2A/
TH2A′ L1 loops are lost and the histone dimer-DNA contacts 
are dramatically decreased (Padavattan et al., 2015; Padavattan 
et al., 2017). Although a Th2a-knockout mouse model has yet 

TABLE 2 | Continued

Gene Phenotype Function Reference

Tnp1/Tnp2 Infertile with abnormal spermatozoa and 
decreased sperm count

Indispensable for PRM2 incorporation and chromatin 
condensation

Shirley et al., 2004

Prm1 Infertile with abnormal spermatozoa and 
decreased sperm count

Indispensable for spermiogenesis and chromatin condensation Cho et al., 2001

Prm2 Infertile with abnormal spermatozoa and 
decreased sperm count

Camk4 Infertile with abnormal spermatozoa and 
decreased sperm count

Mediate the phosphorylation of PRM2 and facilitate basic 
nuclear proteins removal

Wu et al., 2000
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FIGURE 1 | Summary of critical time points and epigenetic events during the histone-to-protamine transition. The haploid germ cells undergo a dramatic 
morphological change, and nuclear chromatin re-organization starts from round spermatid (Spd) to mature spermatozoa. Detailed studies of the indicated histone 
variants and histone modification might establish the precise epigenetic events of spermiogenesis.

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 962206

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Histone Replacement and Modifications in Male FertilityWang et al.

6

to be established, mice with knockouts of the testis-specific H2B 
variants Th2a and Th2b exhibit male infertility with few sperm in 
the epididymis (Shinagawa et al., 2015). In this double-knockout 
mouse, impaired chromatin incorporation of transition protein 2 
(TP2) and elevated H2B could be observed in the mutant testis, 
suggesting the TH2A and TH2B may regulate the function in 
chromatin dynamics or the total histone levels to facilitate the 
histone replacement during spermatogenesis (Shinagawa et al., 
2015). As the Th2b-null male mice show normal spermatogenesis 
and fertility (Montellier et al., 2013), the histone replacement 
defect in Th2a/Th2b double-knockout male mice is probably 
caused by the depletion of Th2a or their synergistic effect.

In late-developing post-meiotic male germ cells, H2AL2 is 
specifically expressed in condensing spermatids that correlates 
with the expression of TPs (Figure 1) (Govin et al., 2007). By 
comparing H2al2-null mice to wild-type mice, H2AL2 was 
demonstrated to be required to load TPs onto the nucleosome 
and for efficient PRMs assembly during the histone-to-protamine 
transition. Additionally, the nucleosome reconstitution assays 
revealed that the incorporation of H2A.L.2 can drastically 
modulate the nucleosome structure to facilitate TPs invading 
the nucleosomes and further transformation (Barral et al., 2017). 
Thus, H2AL2 could assemble open nucleosomes and allow TPs 
invading, which further promotes protamine processing and 
sperm genome compaction.

H2A.B is spatially and temporally regulated during 
spermatogenesis and detectable from the pachytene stage to the 
round spermatids (Figure 1) (Soboleva et al., 2012; Soboleva 
et al., 2017). In vitro studies show that H2A.B is able to destabilize 
chromatin and has unfolding properties to chromatin (Soboleva 
et al., 2012), indicating H2A.B might promote chromatin 
reorganization and further histones displacement by TPs. Male 
H2a.b-null male mice are subfertile due to the production of 
abnormal spermatozoa and clogged seminiferous tubules (Anuar 
et al., 2019). In H2a.b-null elongating spermatids, H2AL2 
could not be detected in pericentric heterochromatin, and the 
replacement of TP1 by protamines appears to be delayed (Anuar 
et al., 2019). These results indicate H2A.B might modulate the 
dynamics of H2AL2 and TP1 chromatin incorporation and 
removal to participate in the histone-to-protamine transition.

H2B vARIANTS

The testis-specific histone variant TH2B is one of the earliest 
histone variants identified in testis (Shires et al., 1975). TH2B 
massively replaces somatic H2B during meiosis and remains the 
main type of H2B in round and elongating spermatids (Meistrich 
et al., 1985; Montellier et al., 2013), suggesting TH2B might be 
indispensable for meiotic and post-meiotic germ cells. The 
crystal structure analysis shows the TH2B could not form the 
water-mediated hydrogen bonds with H4R78 (Urahama et al., 
2014), which may affect the stability of the TH2B nucleosome 
and facilitate histone replacement during spermiogenesis. In a 
Th2b mutant mouse, which contains modified C-terminus of the 
TH2B protein and causes a dominant-negative effect, males were 
infertile and severe abnormalities were seen in the elongating 

spermatids, which affected subnucleosomal transitional states 
during histone replacement (Boskovic and Torres-Padilla, 
2013; Montellier et al., 2013). In contrast, Th2b-null mice are 
fertile and show normal spermatogenesis process, indicating a 
compensatory mechanism that rescues deficiency of TH2B in 
the histone-to-protamine transition. Indeed, in Th2b-null testis, 
the expression of somatic H2B was significantly increased and 
elevated methylation of H4R35, H4R55, H4R67, and H2BR72 
could be detected in Th2b-null spermatids. As H4R35, H4R55, 
H4R67, and H2BR72 participate in the interactions of histone–
DNA and histone–histone, and their methylation may impair 
these intranucleosomal interactions (Hoghoughi et al., 2018). 
Thus, the elevated somatic H2B and histone modification in 
Th2b-null spermatids might rescue the Th2b deficiency in testis 
(Montellier et al., 2013; Bao and Bedford, 2016).

In humans, H2BFWT is a testis-specific histone, is synthesized 
and aggregated in testes, and single nucleotide polymorphisms 
(SNPs) in this gene is highly associated with male infertility 
(Churikov et al., 2004; Lee et al., 2009; Ying et al., 2012; 
Rafatmanesh et al., 2018; Teimouri et al., 2018). And spermatid-
specific H2B (ssH2B) and H2BL1 have been identified and are 
strongly enriched in round or elongating spermatids, similar to 
that of TPs and protamines (Moss and Orth, 1993; Unni et al., 
1995; Govin et al., 2007). However, the functional roles of these 
H2B variants in the histone-to-protamine transition still need to 
be further elucidated.

H3 vARIANTS

In addition to the two canonical histones H3.1 and H3.2, three 
additional H3 variants have been identified and expressed in 
mammal testes, including H3.3, H3T and H3.5 (Rathke et al., 
2014; Bao and Bedford, 2016).

H3.3 differs from canonical H3.1 with five amino acids, 
is expressed throughout mouse seminiferous tubules, and 
accumulates in the XY body of spermatocytes (Bramlage et al., 
1997; Van Der Heijden et al., 2007). Biochemical and biophysical 
studies show that H3.3 contributes to an open chromatin 
configuration and promotes transcription through disrupting 
the higher-order chromatin structure (Thakar et al., 2009; Chen 
et al., 2013). H3.3 could be encoded by two gene paralogs in 
mammal, H3f3a and H3f3b, and the depletion of either H3f3a or 
H3f3b causes male infertility. The disruption of H3f3a produces 
abnormal spermatozoa (Couldrey et al., 1999; Tang et al., 
2015), and the loss of H3f3b leads to growth defects and death 
at birth, with surviving H3f3b-null males showing complete 
infertility (Yuen et al., 2014). In H3f3b-null germ cells, the TP1 
is abnormally deposited in elongating spermatids while PRM1 
could not be observed in in elongated spermatids and mature 
spermatozoa, indicating that H3f3b is required for chromatin 
reorganization and the histone-to-protamine transition 
(Yuen et al., 2014). H3T (H3.4) is exclusively expressed in the 
spermatocyte and diminishes in the elongating spermatids (Ueda 
et al., 2017). Biochemical studies clearly indicate that, in the H3T 
nucleosome, the DNA around the entry-exit regions shows more 
flexible than that of the H3.1-containing nucleosome, and that 
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the H3T-containing polynucleosome could formed more open 
configuration than that of H3.1 (Tachiwana et al., 2010). However, 
the disruption of H3T leads to sterile males with azoospermia, as 
spermatocyte and spermatids are absent in the H3t-null testes 
(Ueda et al., 2017). Thus, the function of H3T in the later stage of 
spermatogenesis need further investigated by using spatially and 
temporally specific knockout mouse models.

H3.5 is highly expressed in human testis and specifically 
observed in spermatogonia and spermatocytes (Shiraishi et al., 
2017). In vitro studies reveal that the H3.5-specific L103 residue, 
reduces the hydrophobic interaction with histone H4 in the H3.5-
containing nucleosome, which corresponds to the H3.3 Phe104 
residue (Urahama et al., 2016). H3.5 is significantly reduced in 
non-obstructive azoospermia (NOA) patients (Shiraishi et al., 
2017), whereas the precise roles of H3.5 in spermatogenesis 
remain largely unknown.

HISTONE MODIFICATION

Covalent conjugation of different post-translational modification 
of histones has a dramatic effect on the chromatin conformation 
by affecting the stability of the nucleosome and the histone-DNA 
interaction (Bao and Bedford, 2016). Many types of histone 
modifications have been identified to facilitate the histone-to-
protamine transition, including acetylation, ubiquitination, 
methylation, and phosphorylation (Luense et al., 2016).

ACETYLATION

Hyperacetylated histones could facilitate histone eviction, and the 
acetylation of H2A, H2B, H3, H4 and histone variants have been 
detected in mammal testis (Grimes and Henderson, 1984a; Grimes 
and Henderson, 1984b; Oliva and Mezquita, 1986; Oliva et al., 1987). 
In Drosophila, inactivation of histone acetyltransferases by anacardic 
acid prevents the histones degradation and further a protamine 
incorporation during spermiogenesis (Awe and Renkawitz-Pohl, 
2010), suggesting that histone acetylation is essential for the histone-
to-protamine replacement.

H4 acetylation (H4K5ac, H4K8ac, H4K12ac, and H4K16ac) 
shows a spatial distribution pattern during spermatogenesis 
and is indispensable for the histone-to-protamine transition 
(Bao and Bedford, 2016; Ketchum et al., 2018). H4K5ac, 
H4K8ac and H4K12ac are expressed in spermatogonia and pre-
leptotene spermatocytes, disappear in leptotene to pachytene 
spermatocytes, reappeared in elongating spermatids, and finally 
disappeared in condensing spermatids (Figure 1) (Hazzouri 
et al., 2000; Ketchum et al., 2018). In contrast, H4K16ac could 
only be detected in elongating spermatids (Figure 1) (Ketchum 
et al., 2018). In vitro analysis shows that H4 acetylation is 
essential for destabilization and remodeling of nucleosomes, 
and the incorporation of H4K16ac into nucleosomes prevents 
the formation of compact chromatin fibers and influence 
chromatin forming cross-fiber interactions (Tse et al., 1998; 
Shogren-Knaak et al., 2006; Kan et al., 2009). These findings 
indicate that H4 acetylation modulates higher order chromatin 

structure to facilitate the histone-to-protamine transition. 
EPC1 (Enhancer Of Polycomb Homolog 1) and TIP60 (Tat-
interactive protein, 60 kDa), which are two components for 
the mammalian NuA4 (nucleosome acetyltransferase of H4) 
complexes (Figure 2) (Doyon et al., 2004), are co-localized to the 
nuclear periphery near the acrosomes in both round spermatids 
and elongating spermatids (Dong et al., 2017). The depletion 
of either Epc1 or Tip60 perturbs histone hyperacetylation, 
especially H4 acetylation, and affects histone replacement 
during spermiogenesis (Dong et al., 2017). Another gene that 
may play a role in acetylation is SIRT1 (Sirtuin 1), a member 
of the NAD+-dependent deacetylase. Germ cell-specific Sirt1 
knockout mice display reduced male fertility due to decreased 
spermatozoa number and increased proportion of abnormal 
spermatozoa (Bell et al., 2014; Liu et al., 2017a). In Sirt1-null 
elongating and elongated spermatids, acetylation levels of 
H4K5, H4K8 and H4K12 are decreased and TP2 could not 
co-localize in the nucleus, leading to a chromatin condensation 
defect in Sirt1-null spermatozoa (Bell et al., 2014). Thus, SIRT1 
may modulate other factors to promote H4 acetylation and the 
histone-to-protamine transition.

The histone acetylation might be recognized by some 
chromatin remodelers to confer downstream signaling, and 
the double bromodomain and extra-terminal domain (BET) 
proteins have been identified to be critical epigenetic readers 
binding to acetylated histones and modulating changes in 
chromatin structure and organization during spermiogenesis 
(Berkovits and Wolgemuth, 2013). BRDT is a testis-specific 
BET member protein, which is expressed specifically in 
spermatocytes and spermatids, and contains two bromodomains 
that specifically recognize acetylated lysine residues (Shang et al., 
2007; Dhar et al., 2012; Manterola et al., 2018). BRDT binds the 
hyperacetylated histone H4 tail and co-localizes with acetylated 
H4 in elongating spermatids (Pivot-Pajot et al., 2003; Govin 
et al., 2006). Remodeling assays have shown BRDT regulated 
the chromatin reorganization dependent acetylation in round 
spermatids (Dhar et al., 2012). In mice, the disruption of the first 
bromodomain in BRDT resulted in male sterility by producing 
the morphologically abnormal spermatids (Shang et al., 2007). 
In elongating spermatids with BRDT containing a knockout of 
bromodomain 1 (BD1), TPs and protamines remained in the 
cytoplasm and histone replacement did not occur, suggesting 
BRDT is required for the histone-to-protamine transition by 
mediating the replacement of acetylated histones (Figure 2) 
(Gaucher et al., 2012). Furthermore, BRDT was found to bind 
with the N-terminus of SMARCE1 (SWI/SNF-related matrix-
associated actin-dependent regulator of chromatin subfamily E 
member 1), a member of the SWI/SNF family of ATP-dependent 
chromatin remodeling complexes (Dhar et al., 2012), indicating 
BRDT may cooperate with SMARCE1 to facilitate the histone-
to-protamine transition during spermiogenesis (Figure 2).

Proteasomes catalyze ATP- and polyubiquitin-dependent 
protein degradation, and they are made up of a 20S catalytic core 
particle (CP) and regulatory particle (RP). The 20S CP could be 
activated by cooperation with various RPs, such as PA700/19S, 
PA28α/β, PA28γ, and PA200 (Stadtmueller and Hill, 2011). PA200 
is highly expressed in the testis, and the disruption of PA200 
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results in male infertility and severe defects in spermatogenesis 
(Ustrell et al., 2005; Khor et al., 2006). During spermiogenesis, 
PA200 regulatory could directly recognize acetylated histones 
through a bromodomain-like module and promote their 
ubiquitin-independent degradation. In Pa200-null spermatids, 
results showed that H2B, H3 and elevated H4K16ac could be 
detected at the end of the elongation stage (Qian et al., 2013). 
Thus, PA200 specifically recognizes acetylated histones and 
mediates the core histones for acetylation dependent degradation 
through proteasomes during spermatogenesis (Figure 2).

UBIQUITINATION

Ubiquitin is a 76 amino acid protein that is attached to target 
proteins to regulate several cellular processes, such as protein 
degradation, cell signaling, autophagy, DNA damage responses and 
so on (Hershko and Ciechanover, 1998; Pickart, 2001; Welchman 
et  al., 2005; Komander and Rape, 2012). Ubiquitinated H2A and 

H2B are enriched in spermatocytes and elongating spermatids 
(Chen et al., 1998; Baarends et al., 1999). RNF8 is an ubiquitin E3 
ligase that participates in DDR (DNA damage repair) by catalyzing 
the ubiquitination of H2A to promote the recruitment of some 
DNA damage response factors on the damage sites (Ma et al., 2011). 
The disruption of Rnf8 causes significant late-stage developmental 
defects in spermatids due to problematic histone-to-protamine 
replacement, with the canonical histones being detectable in Rnf8-
deficient mature spermatozoa (Lu et al., 2010). In Rnf8-null mice, 
both ubiquitinated H2A and H2B are decreased in the testes and 
H4K16ac is dramatically decreased as well (Lu et al., 2010). Further 
studies showed that ubiquitinated H2A and H2B were essential for 
the efficient recruitment of the MOF (males absent on the first) 
acetyltransferase complex, which is highly expressed in elongating 
spermatids and responsible for H4K16 acetylation in the chromatin 
(Akhtar and Becker, 2000; Lu et al., 2010). Thus, RNF8 catalyzed 
histone ubiquitination could modulate H4K16ac by regulating the 
localization of MOF on the chromatin and facilitate histone removal 
in the elongating spermatids.

FIGURE 2 | The key factors related to the histone-to-protamine transition. Global incorporation of various H2A, H2B and H3 histone variants creates highly unstable 
nucleosomes, which then undergo histone hyperacetylation by EPC1/TIP60 or some other nucleosome acetyltransferase complexes. Acetylation at critical lysines 
further destabilizes the nucleosomes, while tail acetylation generates a platform for the recruitment of BRDT. BRDT interacts with the SWI/SNF family protein then 
starts the process of histone eviction and replacement by TPs. Evicted acetylated histones would then be recognized by PA200 and degraded by proteasomes 
during spermatogenesis. RNF8 could catalyze the ubiquitination of H2A. Ubiquitinated H2A and H2B control H4K16ac by regulating the association of MOF to the 
chromatin and facilitates histone removal in elongating spermatids. MIWI binds to RNF8 in the cytoplasm of early spermatids (Spd) through a Piwi-interacting RNA 
(piRNA)-independent manner, and promotes the nuclear translocation of RNF8 in late spermatids to catalyze histone ubiquitination and trigger histone removal. 
L3MBTL2 could interact with RNF8 and facilitate RNF8-dependent histone ubiquitination-related histone removal. PHF7 could recognize the H3K4me3/me2 and 
catalyze H2A ubiquitination to facilitate histone removal in elongating spermatids.
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The RNF8-dependent histone ubiquitination during 
spermiogenesis could also be modulated by PIWI protein, which 
is specifically expressed during germline development and enlists 
piRNAs (Piwi-interacting RNAs) to repress TE (transposable 
elements) and protect the germ cell genome integrity (Juliano et al., 
2011; Siomi et al., 2011; Gou et al., 2017). In mice, Miwi, Mili, and 
Miwi2, the Piwi paralogs, have been identified in the testis and 
are required for male fertility (Deng and Lin, 2002; Kuramochi-
Miyagawa et al., 2004; Carmell et al., 2007). During spermiogenesis, 
MIWI binds to RNF8 in the cytoplasm of early spermatids through 
a piRNAs-independent manner, and APC/C mediated MIWI 
degradation in late spermatids is essential for nuclear translocation 
of RNF8, which catalyzes histone ubiquitination and further 
facilitates histone removal (Gou et al., 2017). In both humans and 
mice, mutations in the conserved destruction box (D-box) of HIWI 
and MIWI proteins, which lead to their stabilization, cause male 
infertility due to impaired histone ubiquitination and histone-to-
protamine transition (Gou et al., 2017). Except MIWI, L3MBTL2 
(Lethal 3 malignant brain tumor like 2), a member of the MBT-
domain proteins that is implicated in chromatin compaction, 
could also interact with RNF8. The depletion of L3mbtl2 in germ 
cells affected male fertility by producing abnormal spermatozoa 
and the decrease of sperm counts. L3mbtl2 deficiency also caused 
the reduction of in levels of the RNF8 and histone ubiquitination 
in elongating spermatids, which further influenced the PRM1 
deposition and chromatin condensation during spermiogenesis 
(Meng et al., 2019).

PHF7 (PHD Finger Protein 7), which contains PHD (plant 
homeodomain) and RING finger domain, has been identified 
as a novel H2A ubiquitination E3 ligase in mouse testis (Hou 
et al., 2012; Wang et al., 2019). PHF7 is specifically located in 
the elongating spermatid nuclei, and the disruption of Phf7 led 
to male mouse infertility as reduction of sperm count and the 
increased proportion of abnormal spermatozoa (Wang et  al., 
2019). PHF7 could recognize the H3K4me3/me2 through its 
PHD domain and catalyze H2A ubiquitination by its RING 
domain. In Phf7-null spermatids, the H2A ubiquitination was 
dramatically decreased that resulted in the histone retention and 
protamine replacement defect (Figure 2) (Wang et al., 2019). 
Therefore, PHF7 has dual roles during the histone-to-protamine 
transition that works as an epigenetic reader by recognizing 
H3K4me3/me2 and as an epigenetic writer through catalyzing 
H2A ubiquitination to promote histone removal.

METHYLATION

Multiple histone methylation have been identified in elongating 
spermatids, for instance H3K4me2, H3K4me3, H3K9me2, 
H3K9me3, H3K27me3, H3K79me2, and H3K79me3 (Godmann 
et al., 2007; Song et al., 2011; De Vries et al., 2012; Dottermusch-
Heidel et al., 2014). Among them, the methylation of H3K4 and 
plus acetylation might help to achieve a more-open chromatin 
configuration, whereas H3K9 and H3K27 methylation are known 
to be associated with a more-repressed chromatin configuration 
(Rathke et al., 2014), indicating a balance of “opened” and “closed” 
chromatin regions during the histone-to-protamine transition. As 

some histone methyltransferases and demethylases are detectable 
during spermiogenesis (Godmann et al., 2007; Liu et al., 2010; 
Ushijima et al., 2012), the histone methylation may be dynamically 
regulated in testis. Although few mouse models exist that allow 
precise detection of methylation activity that directly regulates 
histone replacement during spermiogenesis, some studies have 
revealed that histone methylation may modulate the histone-to-
protamine transition through some other ways. PYGO2 (Pygopus 
homolog 2) comprises a C-terminal PHD finger, which can 
recognize the H3K4me3 and is specifically located in the elongating 
spermatid nuclei. In mice, the reduction of Pygo2 influenced the 
Tnp, Prm genes expression and caused the abnormal nuclear 
condensation, which further led to male sterility (Nair et al., 2008). 
Furthermore, PYGO2 associates with a histone acetyltransferase 
(HAT) activity, and the acetylation of H3 is disrupted in Pygo2 
reduced elongating spermatids (Nair et al., 2008), indicating 
PYGO2 may recognize H3K4me3 through its PHD domain 
and could recruit HAT to facilitate H3 acetylation and further 
histone-to-protamine transitions. As described before, PHF7 could 
recognize the H3K4me3/me2 and catalyze H2A ubiquitination to 
facilitate the histone-to-protamine transitions (Wang et al., 2019). 
The predominant histone methyltransferase SETD2 (SET domain–
containing 2) catalyzes the H3K36me3, and knocking out Setd2 
in mouse germ cells causes aberrant spermiogenesis, resulting in 
complete male infertility. Moreover, the disruption of SETD2 causes 
complete loss of H3K36me3 and impaired activation of Tnp and 
Prm genes (Zuo et al., 2018), indicating H3K36me3 may regulate 
the histone-to-protamine transition by activating Tnp and Prm 
genes expression. Contrarily, JHDM2A (JmjC-domain-containing 
histone demethylase 2A) is an H3K9me2/1-specific demethylase. 
The loss of Jhdm2a in mice exhibits post-meiotic chromatin 
condensation defects and leads to male infertility. Although global 
H3K9 methylation has no effect in Jhdm2a-null testis, JHDM2A 
directly binds to and controls H3K9 methylation at the promoter of 
Tnp1 and Prm1 genes, which further regulates the sperm genome 
packaging and chromatin condensation (Okada et al., 2007).

PHOSPHORYLATION

Histone phosphorylation is involved in various cellular processes 
(Rossetto et al., 2012; Bao and Bedford, 2016), and dynamic histone 
phosphorylation have been observed during spermatogenesis 
(Govin et al., 2010; Bao and Bedford, 2016). The phosphorylation 
of histone H2AX at residue Ser139 (γH2AX) plays important roles 
in many biological processes, such as meiotic recombination and 
male sex chromosome inactivation in germ cells (Li et al., 2005). 
γH2AX is detectable in elongating spermatids, and TSSK6 has been 
identified to be responsible for the H2AX phosphorylation during 
spermiogenesis (Jha et al., 2017). In mice, targeted deletion of Tssk6 
leads to male sterility caused by the impairment in morphology and 
motility of spermatozoa (Spiridonov et al., 2005). In spermatozoa, 
the loss of TSSK6 blocks γH2AX formation, resulting in elevated 
H3, H4 and the precursor and intermediate of PRM2 (Jha et al., 
2017). These results indicate that TSSK6 may mediate γH2AX 
to participate in the histone-to-protamine transition. H4S1 
phosphorylation is highly expressed in mouse spermatocyte, 
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round and elongating spermatids (Krishnamoorthy et al., 2006; 
Zhang et al., 2016). H4S1 phosphorylation has been found to be 
essential for chromatin compaction and concomitantly histone 
accessibility (Krishnamoorthy et al., 2006; Wendt and Shilatifard, 
2006), suggesting that H4S1 phosphorylation is required for 
histone replacement during spermiogenesis. Outside the canonical 
histones, many phosphorylated residues have been identified, 
using mass spectrometry analyses, that exist on different testis-
specific histone variants, such as H1T, HILS1, TH2A, TH2B (Sarg 
et al., 2009; Pentakota et al., 2014; Mishra et al., 2015; Luense et al., 
2016; Hada et al., 2017). Although many core histones and histone 
variants phosphorylation have been identified in germ cells, their 
physiological roles need further investigation.

OTHER MODIFICATIONS

A variety of histone lysine modifications have been identified, 
including butyrylation, crotonylation, malonylation, 
propionylation, and succinylation (Tan et al., 2011; Sabari et al., 
2017). Kcr (Lysine crotonylation) is a newly identified histone 
modification and is detectable in elongating spermatids, which 
regulated testis-specific genes activation in post-meiotic germ 
cells (Tan et al., 2011). The CDYL (chromodomain Y-like) 
protein, which contains a C-terminal CoAP domain that interacts 
with CoA to achieve its crotonyltransferase activity, may suppress 
the histone Kcr by converting crotonyl-CoA to β-hydroxybutyryl-
CoA. Accordingly, Cdyl-deficient male mice show reduced fertility, 
decreased epididymal sperm count and sperm cell motility, and 
dysregulated histone Kcr (Liu et al., 2017b). In the Cdyl-deficient 
mouse testes, further analysis showed that the elevated TP1 and 
PRM2 were localized in a chromatin-free regions (Liu et al., 
2017b), suggesting that histone crotonylation is essential for the 
histone-to-protamine transition during spermiogenesis.

Poly-ADP-ribosylation (PARsylation) is a common protein 
PTM (post-translational modification) observed in higher 
eukaryotes and involved in many different fundamental 
cellular functions. All of core histones and the linker histone 
H1 can be ADP-ribosylated (Gagne et al., 2006; Messner 
and Hottiger, 2011), which could be catalyzed by poly(ADP-
ribose) polymerases, such as PARP1 and PARP2, and resolved 
by PARG (PAR glycohydrolase) (Gibson and Kraus, 2012). 
The PARP1, PARP2 and PARsylation proteins are specifically 
detected in elongating spermatids (Meyer-Ficca et al., 2005), and 
the perturbed PARsylation causes reduced male fertility with 
abnormal retention of core histones, H1T and HILS1 in mature 
spermatozoa (Meyer-Ficca et al., 2009; Meyer-Ficca et al., 2011; 
Meyer-Ficca et al., 2015). Thus, PARsylation is essential for the 
histone-to-protamine replacement, yet the precise PARsylation 
histone sites need further characterization.

TRANSITION PROTEINS

Between histone eviction and protamine incorporation in the nuclei 
of spermatids, about ninety percent of the chromatin components 
consist of TPs, which are arginine- and lysine-rich proteins encoded 

by Tnp1 and Tnp2 (Meistrich et al., 2003). However, the functional 
roles of each TP are still controversial (Rathke et al., 2014). TP1 
could reduce the melting temperature of DNA and relax the DNA 
from core particles of nucleosome, whereas TP2 tends to compact 
the nucleosomal DNA by increasing its melting temperature, 
indicating TP2 may promote DNA condensation while TP1 
facilitates the eviction of the histones (Singh and Rao, 1988; Akama 
et al., 1998; Kolthur-Seetharam et al., 2009; Rathke et al., 2014). 
However, a separate study that shown that neither TP1 nor TP2 
leads to the conformation changes in supercoiled DNA (Levesque 
et al., 1998). These differences might reveal their unique roles 
during mammal spermiogenesis, as single knockout of either Tnp1 
or Tnp2 leads to little morphological alteration of spermatozoa in 
mouse models. Elevated TP2 and TP1 proteins could be observed 
in Tnp1-null and Tnp2-null spermatids, respectively (Yu et al., 
2000; Zhao et al., 2001). Thus, TP1 and TP2 may compensate for 
each other in vivo. Indeed, Tnp1 and Tnp2 double-knockout mice 
show severe abnormal spermiogenesis with a general decrease 
in sperm motility and abnormal sperm morphology (Shirley et 
al., 2004). The chromatin condensation is perturbed in the Tnp1 
and Tnp2 double-knockout mice as severe histones retention is 
detectable, indicating TPs function redundantly yet have unique 
roles in the histone-to-protamine transition (Shirley et al., 2004; 
Zhao et al., 2004; Bao and Bedford, 2016).

PROTAMINES

Protamines are basic proteins that replace TPs in late spermatids 
(Rathke et al., 2014; Bao and Bedford, 2016). Two protamine 
genes (Prm1 and Prm2) localize on the same chromosome in both 
humans and mice (Balhorn, 2007). Protamines tightly interact with 
DNA via a central arginine-rich DNA-binding domain (Balhorn, 
2007). Unlike Tnp genes, the disruption of either Prm1 or Prm2 
leads to the male infertility (Cho et al., 2001). Protamines have 
multiple PTM sites, and a total of 11 PTMs have been identified 
on the protamines of mouse spermatozoa, including acetylation, 
phosphorylation and methylation (Brunner et al., 2014). One 
site of interest is PRM2 S55, which is a candidate phosphorylated 
substrate residue of CAMK4 (Ca2+/calmodulin-dependent protein 
kinase IV) (Wu et al., 2000). Targeted Camk4 knockout male mice 
are infertile, and the transition protein displacement by PRM2 
is perturbed as a specific loss of PRM2 and prolonged retention 
of TP2 in Camk4-null spermatids. In vitro, PRM2 could be 
phosphorylated by CAMK4, implicating CAMK4 mediated PRM2 
phosphorylation is required for the protamine incorporation 
during spermiogenesis (Wu et al., 2000). Thus, the specific post-
translational modifications on protamines may also be essential for 
the histone-to-protamine transition.

CONCLUSION AND FUTURE 
PERSPECTIvES

During the histone-to-protamine transition, many epigenetic 
regulators work together to facilitate paternal genome re-organization 
and packaging into the highly condensed nuclei of spermatozoa, 
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through histone variation, specific histone modification and their 
related chromatin remodelers. Any defects during the histone-to-
protamine transition would lead to male infertility (Bao and Bedford, 
2016). While the morphological changes during spermiogenesis are 
well characterized, the precise molecular mechanisms underlying 
the chromatin re-organization, in particular the transition from 
histones to protamines, are still unclear. It’s difficult to characterize 
the dynamic processes that occur during histone eviction, transition 
protein incorporation and protamine insertion. Moreover, 10% of 
the spermatozoa population in the epididymis has not yet completed 
the histone-to-protamine transition (Yoshida et al., 2018). These 
problems may be ascribed to a lack of experimental methods, which 
could fully recapitulate germ cell development in vitro. Further 
physiological insights may be gained by developing an in vitro germ-
cell culture system that more accurately recapitulates the in vivo 
histone-to-protamine transition.

Many histone variants modulate histone replacement by 
regulating the chromatin structure; therefore, nucleosomes 
containing these histone variants often maintain a relatively 
decondensed and open chromatin configuration, facilitating 
histone replacement during spermiogenesis. The redundant 
function of histone variants in modulating chromatin 
configuration ensures that defects in some histone variants 
have a limited effect on spermatogenesis. Indeed, some mutant 
histone variants in mouse models are dispensable for male 
fertility, and mice may show elevated levels of compensatory 
histones or histone variants. However, the redundant function of 
histone variants makes it difficult to explore the precise role of 
each histone variant in histone replacement.

Although many histone modifications have been identified 
during the histone-to-protamine transition, many studies are 
descriptive and correlative. The direct manipulation of histone 
modification sites to reveal function is still urgently needed. With 
the development of gene editing tools, for example the CRISPR/
Cas9 system, mouse models disrupting these histone modifications 
may be generated and used to elucidate function and in vivo 
relevance in the future. The following open-ended questions still 
need to be answered to provide in-depth investigation in the field.

 (1) In addition to the histone variants and modifications 
mentioned above, what other novel histone variants and 
modifications participate in the histone-to-protamine 
transition? How can we identify them?

 (2) How and where do histone variants replace canonical 
histones? What signal is needed to initiate replacement?

 (3) As histone variants and modifications are identified that 
participate in the histone-to-protamine transition, how do we 

establish an epigenetic modulating network for this process? 
Which type of histone code is the initiating code?

 (4) Histone hyperacetylation works as a determining event 
during the histone-to-protamine transition. Is this histone 
hyperacetylation an initial signal or an indirect consequence 
of prior events?

 (5) What’s the relationship between these histone variants and 
modifications? What’s the mechanism underlying the cross 
talk between them?

 (6) Chromatin assembly is modulated by histone chaperones 
or other chromatin remodelers. What’s the functional role 
of histone chaperones during the histone-to-protamine 
transition? Which histone variants or modifications send a 
signal to the chaperones?

 (7) How do the transition proteins replace the histone? How 
do protamines replace the transition proteins? What are the 
detailed functional roles of transition proteins?

 (8) Are there still post-translational modifications that need to be 
discovered in order to more accurately describe how histone 
modification plays a role in spermatozoa maturation?

These questions and their underlying ideas need further 
investigation and refining to help us more thoroughly understand 
the complex molecular relationships and exact regulating 
mechanisms of the histone-to-protamine transition.
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Cardiovascular diseases are the number one cause of death worldwide and greatly 
impact quality of life and medical costs. Enormous effort has been made in research 
to obtain new tools for efficient and quick diagnosis and predicting the prognosis of 
these diseases. Discoveries of epigenetic mechanisms have related several pathologies, 
including cardiovascular diseases, to epigenetic dysregulation. This has implications 
on disease progression and is the basis for new preventive strategies. Advances in 
methodology and big data analysis have identified novel mechanisms and targets involved 
in numerous diseases, allowing more individualized epigenetic maps for personalized 
diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, 
which predicts the drug response and develops a tailored therapy based on differences 
in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged 
as a promising instrument for the consistent diagnosis and prognosis of cardiovascular 
diseases. Their good accessibility and feasible methods of detection make them suitable 
for use in clinical practice. However, multicenter studies with a large sample population 
are required to determine with certainty which epigenetic biomarkers are reliable for 
clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic 
biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy 
in cardiovascular patients.

Keywords: epigenetics, biomarker, microRNA, cardiovascular diseases, myocardial infarction, heart failure, 
atherosclerosis, hypertension

INTRODUCTION

Cardiovascular diseases (CVDs) are one of the leading causes of mortality in developed countries. 
Cardiovascular diseases refer to disorders affecting the structures or function of the heart and 
blood vessels, including hypertension, atherosclerosis, myocardial infarction (MI), ischemia/
reperfusion injury, stroke, and heart failure (HF), among others (Wang et al., 2016a; Thomas et al., 
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2018). Mechanisms underlying the complex pathophysiology 
that leads to CVDs are of great interest but still far from clear. 
Progress in the field of epigenetics have opened a new world 
for the comprehension and management of human diseases, 
including the prevalence of CVDs, based on the role of genetics 
and its environmental interaction in pathological conditions 
(Jaenisch and Bird, 2003). Significant evidence suggests that 
the environment and lifestyle can define epigenetic patterns 
throughout life. These epigenetic patterns are a cellular memory 
of further environmental exposure. Epigenetic modifications are 
reversible, different among cell types, and can potentially lead to 
disease susceptibility by producing long-term changes in gene 
transcription (Fraga et al., 2005; Beekman et al., 2010).

Epigenetic modifications include DNA methylation and 
posttranslational modifications of histone tails. However, in 
this review, posttranscriptional regulation of gene expression 
by noncoding RNAs (ncRNAs) is also considered a part of the 
epigenetic machinery. MicroRNAs (miRNAs) are small ncRNAs 
that contribute to regulation of the expression of different 
epigenetic regulators such as DNA methyltransferases (DNMTs) 
and histone deacetylases (HDACs), among others. Similarly, 
DNA methylation and histone modifications can regulate the 
expression of some miRNAs, forming a feedback loop. Thus, 
miRNAs and epigenetic regulators cooperate to modulate the 
expression of mutual targets. Therefore, although miRNAs 

are not strictly considered epigenetic factors, they contribute 
to the modulation of gene expression through epigenetics. 
Disruption of this complex regulation may participate in the 
development of different diseases (Iorio et al., 2010; Hoareau-
Aveilla and Meggetto, 2017; Moutinho and Esteller, 2017; Wang 
et al., 2017a) (Figure 1). DNA and histone proteins comprise the 
chromatin, which can be remodeled into a tightly condensed 
state (heterochromatin) or an open conformation (euchromatin) 
that would allow access to transcription factors or DNA 
binding proteins, allowing the regulation of gene expression 
(Kouzarides, 2007). Thus, epigenetics involves changes in 
gene expression due to chromatin adjustments that change the 
accessibility of DNA without changing its sequence, leading to 
silencing or downregulation/upregulation of gene expression 
(Baccarelli et al., 2010). Chromatin modifications, such as 
DNA methylation, consist of the transfer of a methyl group to 
carbon 5 of the cytosine residues [5-methylcytosine (5mC)] 
in CpG dinucleotides sites. CpG dinucleotides are localized 
throughout the genome but are more abundant in certain 
regions, such as gene promoters, forming so-called CpG islands. 
CpG methylation causes transcriptional repression by directly 
blocking transcription factor access to the DNA or indirectly via 
chromatin-modifying proteins (methyl-binding proteins) that 
recognize the methylated regions and recruit corepressors. DNA 
methyltransferases catalyze DNA methylation by recognizing 

FIGURE 1 | Epigenetic regulatory mechanisms. Posttranslational modifications of histone tails by acetylation, deacetylation, ubiquitination, methylation, and 
phosphorylation. DNA methylation by DNA methyltransferases (DNMTs). Posttranscriptional regulation of gene expression by microRNAs. Epigenetic modifications 
involve silencing or downregulation/upregulation of gene expression. Dysregulation of the epigenetic machinery could lead to gene expression dysregulation and 
cardiovascular diseases. Ubiquitin (Ub), methionine (Me), acetyl group (Ac), phosphate (P), deubiquitinating enzyme (DUB), histone methyltransferase (HMTs), histone 
demethylase (HDMTs), histone acetyltransferase (HAT), histone deacetylase (HDAC), a cytosine followed by a guanine (CpG), microRNAs (miRNAs), and messenger 
RNA (mRNA). 

218

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Epigenetic Biomarkers in Cardiovascular DiseasesSoler-Botija et al.

3 October 2019 | Volume 10 | Article 950Frontiers in Genetics | www.frontiersin.org

and maintaining hypermethylated DNA during replication 
(DNMT1) or by de novo methylation (DNMT3a and DNMT3b). 
Moreover, gene bodies of actively transcribed genes normally 
show slightly higher DNA methylation levels as compared to gene 
bodies of nontranscribed genes. In contrast, hypomethylation is 
usually found in enhancer regions and promoters (Costantino 
et al., 2018). Posttranslational modification of histone tails is 
another epigenetic modification that regulates gene expression 
by chromatin remodeling. Histone acetylation, deacetylation, 
methylation, phosphorylation and ubiquitination change DNA 
accessibility, regulating gene transcription. The acetylation of 
histone tails is regulated by histone acetyltransferases (HATs) 
and HDACs. Histone acetyltransferase enzymes acetylate the 
lysine residues of the histones, whereas HDACs deacetylate 
them, promoting gene activation or silencing, respectively. 
Histone methylation is regulated by histone methyltransferases 
(HMTs) and histone demethylases (HDMT). Methylation occurs 
at the lysine or arginine residues and can activate or repress 
gene transcription depending on the degree of methylation and 
which residue is methylated (Li et al., 2017c; Sabia et al., 2017). 
The serine, threonine, and tyrosine residues of histone tails can 
also be phosphorylated and dephosphorylated by protein kinases 
and phosphatases, respectively. Histone tail phosphorylation 
modulates chromatin structure, taking part in transcription, 
DNA repair, and chromatin compaction in cell division and 
apoptosis (Rossetto et al., 2012). Lastly, histone tail ubiquitination 
is sequentially catalyzed by ligases enzymes, which attach 
ubiquitin to lysine residues. Ubiquitination and deubiquitination 
are involved in the activation of transcription and are usually 
associated with histone methylation. Their effect on repressing 
or activating transcription generally depends on what histone is 
modified (Cao and Yan, 2012). Finally, miRNAs regulate gene 
expression via degradation of the transcript or repression of 
translation when binding to the 3′-untranslated region of the 
target mRNA. Thus, miRNA represses mRNA translation without 
changing the DNA sequence of the gene. MicroRNA binding to 
mRNA is imperfect, so each miRNA has multiple targets. This 
allows the regulation of a great part of the human genome (Bartel, 
2009). The miRNAs are 19-25 nucleotides in length, encoded in 
the genome and transcribed into primary miRNA (pri-miRNA). 
Pri-miRNAs derive into miRNAs precursors (pre-miRNA) by 
the nuclear RNase III called Dorsha and are transferred to the 
cytoplasm and processed by the endonuclease Dicer to generate 
a double-stranded miRNA duplex. This product is incorporated 
into an RNA-induced silencer complex (RISC)–loading complex. 
Then, one strand is removed from the complex, and the other 
strand forms a mature RISC, serving as a template for target 
mRNAs (Sato et al., 2011; Nishiguchi et al., 2015).

Due to this important function in gene regulation, 
epigenetic modifications and miRNA may play a crucial role 
in the development of pathological conditions, including 
CVDs. Understanding the epigenetic machinery underlying 
cardiac disorders and how these epigenetic mechanisms can 
be introduced into diagnostics (i.e., biomarkers) and therapies 
is fundamental to improving the quality of life of patients. In 
medicine, a biomarker is defined as a measurable characteristic 
that indicates a particular physiological or pathological state or a 

response to a therapeutic treatment (Strimbu and Tavel, 2010). 
Ideally, biomarkers should have easy accessibility, predictable 
detection, and reliability (Sun et al., 2017). It is mandatory to 
present a specific measurable change that clearly associates with 
a diagnosis or a predictable outcome. Thus, biomarkers provide 
information to physicians when evaluating the probability of 
developing a disease, making a diagnosis, evaluating the severity 
of a disease and its progression; during therapeutic decision 
making; or when monitoring a patient’s response and may 
result in significant cost reduction (Baccarelli et al., 2010). Their 
classification can be based on their application (predisposition, 
diagnosis, monitoring, safety, prognostic, or predictive 
biomarkers). Predisposition biomarkers determine how likely it 
is for a patient to develop a certain disease and are usually utilized 
when there is a personal or family history that indicates a disease 
risk, and the results can help guide medical care. Diagnostic 
biomarkers are used to detect or confirm the existence of a 
health disorder and may assist its early detection. Monitoring 
biomarkers evaluate the status of a disease or determine exposure 
to an environmental agent or medical product. Safety biomarkers 
indicate the probability, presence, or extent of toxicity of a certain 
medical product or environmental agent. Prognostic biomarkers 
indicate how a disease may progress in patients who already 
have the particular disease. These biomarkers do not predict the 
treatment response but can be useful when selecting patients for 
treatment. Predictive biomarkers identify patients who are most 
likely to have a favorable or unfavorable response to a specific 
treatment. Thus, they can predict treatment success or undesired 
side effects in a particular patient. A particular disease can have 
different biological mechanisms in different patients. Predictive 
biomarkers can be associated with the specific mechanism of a 
health disorder. This facilitates a targeted therapy, which uses 
drugs specific for a particular biological mechanism associated 
with a disease, increasing its effectiveness (FDA-NIH Biomarker 
Working Group, 2016). Specifically, epigenetic biomarkers 
belonging to most of these classifications are discussed in this 
review, with a focus on CVDs. Among the epigenetic biomarkers, 
miRNAs are the most attractive, as they can be detected in small 
sample volumes, are stable, and can be obtained from plasma, 
serum, saliva, and urine. Interestingly, they are highly conserved, 
and this allows a reliable comparison between patients and 
animal models of disease (Matsumoto et al., 2013). Therefore, 
although all epigenetic mechanisms are being intensively 
investigated, miRNAs are evaluated the most for their use as 
predictive biomarkers. This review presents an overview of 
current research on epigenetic biomarkers in CVDs and how this 
knowledge can benefit the diagnosis, prognosis, and therapy for 
cardiovascular patients.

EPIGENETIC BIOMARKERS IN CVDS

Over the last few years, numerous studies have linked 
cardiovascular risk factors to epigenetic modifications in human 
patients. Modification of the epigenetic environment alters 
cardiovascular homeostasis and impacts cardiovascular disorders. 
The function of epigenetic mechanisms in the regulation of 
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gene expression is well known, although the role of epigenetic 
marks in CVDs is not clearly understood. Thus, the exploration 
of epigenetic biomarkers may lead to a deep comprehension of 
the molecular mechanisms and pathways associated with CVDs. 
In this section, we focus on major CVDs, such as hypertension, 
atherosclerosis, MI, and HF, and the epigenetic biomarkers 
associated with them.

Hypertension
Arterial hypertension is a multifactorial disease with several 
mechanisms and metabolic systems involved in its pathogenesis. 
Genetic factors and environmental background may lead to 
alterations in multiple pathways that can eventually trigger 
development of the disease (Franceschini and Le, 2014). 
Intrauterine alterations, such as malnutrition, starvation, obesity, 
alcohol, drugs, nicotine, or environmental toxins, are some 
of the environmental factors directly related to hypertension 
development in the progeny (Bogdarina et al., 2007; Nuyt and 
Alexander, 2009). In addition, individuals who have aerobic 
training present with lower blood pressure than nontrained 
individuals (Fagard, 2006). This has an important impact on 
CVD risk factor control and is a nonpharmacological way 
to treat patients. There are also epigenetic factors that can 
influence the appearance of hypertension in adults, such as 
hypermethylation of genes, including superoxide dismutase-2 
(SOD2) or Granulysin, or increased levels of histone acetylation 
at the promoter of the endothelial oxide synthetase gene (eNOS) 
(Wang et al., 2018b). Environmental factors are important to 
determining an individual’s predisposition to developing major 
cardiovascular risk factors by means of epigenetic modifications, 
and identification of the epigenetic mechanisms that participate 
in hypertension development may help generate new treatments. 
This is of great interest because hypertension is a key risk factor 
for CVDs, including MI, HF, stroke, and end-stage renal disease 
(Table 1 and Figure 2).

Essential hypertension is a multifactorial disease with no 
identifiable cause that is affected by environmental and epigenetic 
factors. Environmental stressors cause acetylation of histone 3 
in the neurons of the area postrema, leading to an increase in 
pressure that results in hypertension (Irmak and Sizlan, 2006). 
Low activity of the 11 beta-hydroxysteroid dehydrogenase 2 
(HSD11B2) induces hypertension. In a study performed in 
patients with essential hypertension or glucocorticoid-induced 
hypertension, the HSD11B2 promoter was highly methylated. 
These changes may reflect a global status, with methylation of 
gene promoter being a potentially useful molecular biomarker 
to characterize hypertensive patients (Alikhani-Koopaei 
et  al., 2004; Friso et al., 2008). Moreover, a polymorphism in 
the disruptor of telomeric silencing-1 gene (DOT1L), which 
encodes a methyltransferase that enhances methylation of 
histone 3 (H3K79) in the renal epithelial sodium channel gene 
(ENaC) promoter, is associated with blood pressure regulation 
(Duarte et al., 2012). It has also been reported that a DOT1A 
and ALL1 (fused gene from chromosome 9 [Af9]) interaction is 
associated with H3K79 hypermethylation of the ENaC promoter, 
suppressing its transcriptional activity. This interaction is 

disrupted by aldosterone and causes hypomethylation of H3K79 
at specific regions, disinhibiting the ENaC promoter and leading 
to hypertension. Thus, the Dot1a-Af9 pathway may also be 
involved in the control of genes implicated in hypertension 
(Zhang et al., 2009). Hypomethylation of the α-adducin gene 
(ADD1) promoter has been found to be connected to the risk 
of essential hypertension. However, differences between females 
and males have been found (Zhang et al., 2013a). Moreover, 
histone 3 (H3K4 or H3K9) demethylation is induced by 
lysine-specific demethylase-1 (LSD1), which modifies gene 
transcription. Hypermethylation of histone 3 has been associated 
with hypertension, increased vascular contraction, and decreased 
relaxation via the nitric oxide-cGMP (NO-cGMP) pathway in 
heterozygous LSD1 knockout mice fed a high-salt diet (Pojoga 
et al., 2011). Histone deacetylation is also important in the 
development of pulmonary arterial hypertension. HDAC1 and 
HDAC5 protein levels have been demonstrated to be elevated 
in the lungs of patients and hypoxic rats. Inhibition of these 
proteins by valproic acid and suberoylanilide hydroxamic acid 
diminished the development of hypoxia-induced pulmonary 
hypertension in rats. Thus, HDAC1 and HDAC5 levels could 
be useful predictive biomarkers for the treatment of pulmonary 
hypertension in patients (Zhao et al., 2012).

In a study evaluating alterations in the global DNA methylation 
status of patients with essential hypertension, the level of the 
epigenetic marker 5mC was lower in hypertensive patients 
than in healthy people (Smolarek et al., 2010). In an in vivo 
model of hypertension using Dahl salt-sensitive rats, the levels 
of 5mC and 5-hydroxymethylcytosine (5hmC) were evaluated 
in the outer renal medulla. In response to salt administration, 
the 5mC levels were significantly higher for genes with low 
transcription and 5hmC levels higher in genes with higher 
expression. This study revealed important features of 5mC and 
5hmC for understanding the role of epigenetic modifications in 
the regulation of hypertension (Liu et al., 2014).

Rivière et al. (2011) analyzed the regulation of somatic 
angiotensin-converting enzyme gene (sACE) expression by 
promoter methylation. sACE regulates blood pressure by 
catalyzing the conversion of angiotensin I into angiotensin II, 
a potent vasopressor. Hypermethylation of sACE promoter in 
cultures of human endothelial cells and rats was associated 
with transcriptional repression, suggesting an epigenetic 
mechanism in hypertension regulation (Rivière et al., 2011). 
More recently, Fan et al. (2017) demonstrated opposite results in 
patients with essential hypertension. The authors indicated that 
hypermethylation of the ACE2 promoter may increase essential 
hypertension risk, with variabilities in CpG islands methylation 
in males and females (Fan et al., 2017).

Moreover, a genome-wide methylation study on essential 
hypertension revealed that changes in the DNA methylation of 
leukocytes are involved in the pathogenesis of hypertension. They 
found increased methylation in the gene encoding sulfatase  1 
(SULF1), which is involved in apoptosis, and decreased 
methylation in the gene encoding prolylcarboxypeptidase (PRCP), 
a regulator of angiotensin II and III cleavage (Wang et al., 2013b). 
Another genome-wide study of blood pressure characteristics 
found new genetic variants that influence blood pressure and are 
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TABLE 1 | Epigenetic biomarkers in hypertension.

Epigenetic 
modification

Biomarker Regulation in 
hypertension

Sample source Study type References

DNA 
methylation

HSD11B2 promoter Highly methylated Rat’s urine and tissues 
and human cell lines

Experimental: in vitro 
and rat model

(Alikhani-Koopaei et al., 
2004)

SERPIN3 CpG island Hypomethylation Placental tissue Clinical (Chelbi et al., 2007)
HSD11B2 promoter Highly methylated Blood and urine Clinical (Friso et al., 2008)
5mC Lower levels Blood Clinical (Smolarek et al., 2010)
NKCC1 promoter Hypomethylation Aorta, heart and kidney Experimental: 

spontaneously 
hypertensive rodent 
model 

(Lee et al., 2010; Cho et 
al., 2011)

sACE promoter Hypermethylation Blood Clinical and 
experimental: in vitro

(Rivière et al., 2011)

ERα promoter Methylation Uterine arteries Clinical (Dasgupta et al., 2012)
SULF1, PRCP SULF1: hypermethylation; 

PRCP: hypomethylation
Blood Clinical (Wang et al., 2013b)

ADD1 promoter Hypomethylation Plasma Clinical (Zhang et al., 2013a)
5mC, 5hmC Higher levels Tissue Experimental: Dahl salt-

sensitive rats
(Liu et al., 2014)

AGT promoter Demethylation H295R cells and 
visceral adipose tissue

Experimental: in vitro 
and rat model

(Wang et al., 2014a)

DSCR3 Hypermethylation Maternal blood and 
placental tissue

Clinical (Kim et al., 2015)

miRNA-34a gene promoter Hypomethylation Placental tissue Clinical (Rezaei et al., 2018)
ACE2 promoter Hypermethylation Plasma Clinical (Fan et al., 2017)
CBS promoter Hypermethylation Maternal blood and 

placental tissue
Clinical (Kim et al., 2015)

MTHFD1 promoter Hypermethylation Plasma Clinical (Xu et al., 2019)

Histone 
modifications

H3K79 Hypermethylation NA Clinical (Rodriguez-Iturbe, 2006; 
Duarte et al., 2012)

Histone 3 Acetylation Germ cells Review (Irmak and Sizlan, 2006)
H3K79 DNA methylation Bibliography Review (Zhang et al., 2009)
HDAC8 Inhibition mDCT cells and tissues Experimental: rat 

models of salt-sensitive 
hypertension

(Mu et al., 2011)

H3K4 or H3K9 Hypermethylation Tissue, plasma, and 
urine

Experimental: LSD1 
knockout mice with a 
high-salt diet

(Pojoga et al., 2011)

HDAC1, HDAC5 High levels Lung tissue and 
adventitial fibroblasts

Clinical and 
experimental: in vitro 
and hypoxic rat

(Zhao et al., 2012)

miRNA miR-18a, miR-210, miR-
152, miR-363, miR-377, 
miR-411, miR-518b, 
miR-542-3p

miR-18a, miR-363, miR-
377, miR-411, miR-542-3p: 
underexpression; miR-210, 
miR-152, miR-518b: 
overexpression

Placental tissue Clinical (Zhu et al., 2009)

22 miRNAs 15 upregulated and 7 
downregulated 

Serum Clinical (Yang et al., 2011)

let-7b, miR-302*, miR-104, 
miR-128a, miR-182*, 
miR-133b

Overexpression Placental tissue Clinical (Noack et al., 2011)

miR-92b, miR-197, miR-
342-3p, miR-296-5p, 
miR-26b, miR-25, miR-
296-3p, miR-26a, miR-198, 
miR-202, miR-191, miR-95, 
miR-204, miR-21, miR-223

miR-92b, miR-197, miR-
342-3p, miR-296-5p, 
miR-26b, miR-25, miR-
296-3p, miR-26a, miR-198, 
miR-202, miR-191, miR-95, 
miR-204: overexpression; 
miR-21, miR-223: 
underexpression 

Placental tissue Clinical (Choi et al., 2013)

miR-9, miR-126 Lower levels Peripheral blood 
mononuclear cells

Clinical (Kontaraki et al., 2014)

miR1233 Higher levels Serum Clinical (Ura et al., 2014)

(Continued)
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strongly associated with local CpG island methylation. This study 
demonstrated the role of DNA methylation in the regulation of 
blood pressure (Kato et al., 2015).

The pathogenesis of hypertension is affected by 
alterations in ion flux mechanisms. Hypomethylation of the 
Na/K/2Cl cotransporter 1 gene (NKCC1) promoter results 
in overexpression in a rodent model with spontaneous 
hypertension (Lee et al., 2010). DNA methyltransferase activity 
maintained hypomethylation in the NKCC1 promoter, playing 
an important role in NKCC1 upregulation during the course 
of the disease. This encourages evaluation of the NKCC1 
methylation status in hypertensive patients (Cho et al., 2011). 
Furthermore, WNK4 is a serine-threonine kinase that negatively 

regulates the Na(+)-Cl(−)-cotransporter (NCC) and ENaC. This 
would affect the distal nephron, increasing the reabsorption 
of sodium. Stimulation of β(2)-adrenergic receptor (β(2)AR) 
in salt intake conditions would reduce WNK4 transcription, 
resulting in inhibition of HDAC8 activity and increased histone 
acetylation. In the rat models of salt-sensitive hypertension, 
salt diet repressed renal WNK4 expression, activating the 
NCC and inducing salt-dependent hypertension. Thus, WNK4 
transcription is epigenetically modulated in the course of salt-
sensitive hypertension, with the β(2)AR-WNK4 pathway as a 
potential therapeutic target for this disease (Mu et al., 2011).

Goyal et al. (2010) demonstrated that a low protein diet in 
pregnant mice leads to alterations in DNA methylation, miRNA, 

TABLE 1 | Continued

Epigenetic 
modification

Biomarker Regulation in 
hypertension

Sample source Study type References

miR-18a, miR-19b1, miR-
92a1, miR-210

miR-210: upregulation; 
miR-18a, miR-19b1, and 
miR-92a1: downregulation

Plasma and placental 
tissue

Clinical (Xu et al., 2014)

miR-505 Upregulation Plasma Clinical (Yang et al., 2014)
miR-106a, miR-18b, 
miR-20b, miR-19b-2, miR-
92a-2, miR-363

Dysregulation Placental tissue Clinical (Zhang et al., 2015a)

miR-515-5p, miR-518b, 
miR-518f-5p, miR-519d, 
miR-520h

Downregulation Placental tissue Clinical (Hromadnikova et al., 
2015)

miR-335, miR-584 Upregulation Placental tissue and 
HTR8/Svneo cells 

Clinical and 
experimental: in vitro

(Jiang F. et al., 2015)

miR-125b Overexpression Plasma and placental 
tissue

Clinical (Yang et al., 2016b)

miR-215, miR-155, miR-
650, miR-210, miR-21, 
miR-18a, miR-19b1

MiR-215, miR-155, miR-
650, miR-210, miR-21: 
upregulation; miR-18a, 
miR-19b1: downregulation 

Plasma Clinical (Jairajpuri et al., 2017)

miR-204-5p Higher levels Serum Clinical (Mei et al., 2017)
let-7b*, let-7f-1*, miR-1183, 
miR-23c, miR-425*

miR-1183: upregulation; 
let-7b*, miR-23c, miR-425*, 
let-7f-1*: downregulation

Plasma and placental 
tissue

Clinical (Gunel et al., 2017)

miR-145 Downregulation Placental tissue Clinical (Han et al., 2017)
miR-202-3p Upregulation Placental tissue Clinical (Singh et al., 2017)
let-7 Higher Plasma Clinical (Huang et al., 2017b)
miRNA Dysregulation Bibliography: Maternal 

serum and placental 
tissue

Bibliography review (Laganà et al., 2018)

miR-19a Upregulation Plasma and lung tissue Clinical (Chen and Li, 2017)
miR-21 Upregulation Peripheral blood 

mononuclear cells
Clinical (Parthenakis et al., 2017)

miR-21 Upregulation Bibliography review Bibliography review (Sekar et al., 2017)
miR-510 Upregulation Serum Clinical (Krishnan et al., 2017)
miR-206 Lower levels Serum Clinical (Jin et al., 2017)
miR-424(322) Upregulation Plasma Clinical (Baptista et al., 2018)
miR-199a-3p, miR-
208a-3p, miR-122-5p, 
miR-223-3p

Downregulation Serum Clinical (Zhang et al., 2018c)

miR-431-5p Upregulation Tissue Experimental: mice 
made hypertensive and 
in vitro

(Huo et al., 2019)

miR-143, NR_034083, 
NR_104181,

miR-143: upregulation; 
NR_034083: 
downregulation and 
NR_104181 and 

Peripheral blood 
leucocytes

Clinical (Chen et al., 2018b)

NA, not available.
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and gene expression in the brain renin–angiotensin system, a key 
regulator of hypertension in adults (Goyal et al., 2010). Along the 
same lines, in a study carried out in vitro and in a rat model, DNA 
demethylation of the angiotensinogen gene (AGT) promoter 
activated its expression. AGT is an important substrate of the 
renin–angiotensin–aldosterone system and an important target 
in hypertension research. Elevated concentrations of circulating 
aldosterone and high consumption of salt stimulate the AGT 
gene expression in adipose-induced hypertension (Wang 
et  al., 2014a). In addition, cystathionine β-synthase (CBS), an 
important enzyme in the metabolism of plasma homocysteine, 
is associated with hypertension and stroke. Hypermethylation 
of the CBS promoter has been demonstrated to increase the risk 
of both diseases, especially in male patients (Wang et al., 2019a). 
Similarly, hypermethylation of the methylenetetrahydrofolate 
dehydrogenase 1 gene (MTHFD1) promoter, which is also 
associated with homocysteine metabolism, was observed 
in hypertensive patients, and proposed as a potential 
diagnostic biomarker in patients with essential hypertension 
(Xu  et al., 2019).

In addition to the previous classic epigenetic modifications, 
miRNAs often regulate hypertension and are attractive 
biomarkers for the disease. The miR-9 and miR-126 expression 
levels are significantly lower in hypertensive patients than 
healthy individuals and are related to hypertension prognosis 
and organ damage. Thus, miR-9 and miR-126 may be possible 
biomarkers in essential hypertension (Kontaraki et al., 2014). 
Moreover, ncRNAs, such as miR-143, miR-145, and NR_104181, 

are significantly higher in essential hypertensive patients than 
controls, whereas NR_027032 and NR_034083 are significantly 
reduced. After evaluating cardiovascular risk factors, they 
concluded that lower expression levels of NR_034083 and higher 
expression levels of NR_104181 and miR-143 were risk factors 
for essential hypertension (Chen et al., 2018b). Another study 
evaluated the correlation between miRNA let-7 expression and 
subclinical atherosclerosis in untreated patients with newly 
diagnosed essential hypertension and found increased levels in 
hypertensive patients, suggesting that plasma let-7 could be an 
indicator for monitoring end-organ damage and a biomarker for 
atherosclerosis in these patients (Huang et al., 2017b). Similarly, 
upregulation of miR-505, miR-19a, miR-21, miR-510, or miR-
424(322) in blood from hypertensive patients suggests a possible 
use for miR-510 as a diagnostic biomarker and therapeutic 
target (Yang et al., 2014; Chen and Li, 2017; Krishnan et al., 
2017; Parthenakis et al., 2017; Sekar et al., 2017; Baptista et al., 
2018). Lower levels of the combination of miR-199a-3p, miR-
208a-3p, miR-122-5p, and miR-223-3p have also been shown to 
be suitable for diagnosis of hypertension (Zhang et al., 2018c). 
Decreased miR-206 levels might also be especially useful in the 
detection of pulmonary hypertension in patients with left heart 
disease (Jin et al., 2017). Furthermore, a study in hypertensive 
mice produced by infusion of angiotensin II concluded that miR-
431-5p knockdown delays the increase in blood pressure induced 
by angiotensin II and reduces vascular injury. This demonstrates 
its potential as a target for the treatment of hypertension and 
vascular injury (Huo et al., 2019).

FIGURE 2 | Epigenetic modifications and microRNAs biomarkers dysregulated in atherosclerosis and hypertension. Ascending arrows indicate higher levels or 
upregulation, and descending arrows denote lower levels or downregulation, both compared to control conditions. Those miRNAs presenting opposite results are 
shown in orange.
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Preeclampsia is an important pregnancy-induced syndrome 
characterized by hypertension and proteinuria. Chronic hypoxia is 
a common pregnancy stress that increases the risk of preeclampsia 
and is associated with changes in methylation of the estrogen 
receptor α gene (ERα) promoter. ERα is involved in adjustments to 
the uterine blood flow, and promoter methylation results in gene 
repression in uterine arteries, increasing blood pressure (Dasgupta 
et al., 2012). Preeclampsia also modifies the expression profile 
of several serine protease inhibitors (SERPINs) in the placenta. 
Specifically, SERPIN3 CpG islands have a significantly low level of 
methylation in preeclampsia, providing a new potential marker for 
early diagnosis (Chelbi et al., 2007). Another study demonstrated 
a positive association between placenta global DNA methylation 
and hypertension in preeclampsia (Kulkarni et al., 2011). Next-
generation sequencing technology and microarray assay analyses 
of the miRNA expression pattern in preeclamptic placentas 
versus healthy placentas have revealed that miRNAs expression is 
dysregulated in preeclampsia (Zhu et al., 2009; Noack et al., 2011; 
Yang et al., 2011; Choi et al., 2013; Xu et al., 2014; Hromadnikova 
et al., 2015; Zhang et al., 2015a; Gunel et al., 2017; Han et al., 2017). 
These results were in agreement with those found in the miRNA 
database from cell and tissue analyses. Thus, circulating miRNAs in 
the serum of pregnant women could be used as biomarkers for the 
diagnosis and prognosis of preeclampsia. To further demonstrate 
that miRNAs could be good predictors of preeclampsia, as well as 
its severity, circulating miRNA signatures were evaluated in women 
divided into groups based on preeclampsia severity. MiR-21, miR-
29a, miR-125b, miR-155, miR-202-3p, miR-204-5p, miR-210, 
miR-215, miR-335, miR-518b, miR-584, miR-650, and miR-1233 
were upregulated, whereas miR-15b, miR-18a, miR-19b1, and 
miR-144 were downregulated in women with severe preeclampsia 
compared to mild preeclampsia (Ura et al., 2014; Jiang et al., 2015; 
Yang et al., 2016b; Jairajpuri et al., 2017; Mei et al., 2017; Singh 
et al., 2017). In addition, a recent data recompilation supported 
a direct association between high or low expression of miRNAs 
in pregnancy serum and placenta in preeclamptic pregnancies 
(Laganà et al., 2018). Interestingly, an association has also been 
demonstrated between hypomethylation of the miR-34a promoter 
and preeclampsia severity (Rezaei et al., 2018). Another study 
analyzed the concentrations of Down syndrome critical region 3 
(DSCR3), Ras association domain family 1 isoform A (RASSF1A), 
and sex-determining region Y (SRY) cell-free fetal DNA in 
maternal plasma from preeclamptic pregnancies and found that 
all of the markers significantly correlated with gestational age. The 
authors demonstrated that DSCR3 is a novel epigenetic biomarker 
and an alternative to RASSF1A for the prediction of early-onset 
preeclampsia (Kim et al., 2015). However, no association was 
found between the methylation status of the cortisol-controlling 
gene (HSD11B2), tumor suppressor gene (RUNX3), or long 
interspersed nucleotide element-1 gene (LINE-1) and hypertensive 
disorders of pregnancy when placental DNA methylation was 
analyzed (Majchrzak-Celińska et al., 2017).

Atherosclerosis
Atherosclerosis is a chronic inflammatory disease characterized 
by the accumulation of cholesterol in the walls of large- and 

medium-sized arteries, the accumulation of extracellular matrix 
and lipids, and smooth muscle cell proliferation. This process 
leads to the infiltration of immune cells (mostly macrophages) 
and endothelial dysfunction, forming a plaque, and eventually 
developing into acute cardiovascular events, such as MI, 
peripheral vascular disease, aneurysms, and stroke (Wissler, 1991). 
Proatherogenic stimuli, such as low-density lipoprotein (LDL) 
cholesterol and oxidized LDL, have been suggested to stimulate 
a long-term epigenetic reprogramming of innate immune system 
cells. This induces a constant activation, even after the removal 
of atherosclerotic stimuli (Bekkering et al., 2016). Emerging 
evidence supports epigenetic modifications being involved in the 
initiation and progression of atherosclerosis, playing an important 
role in plaque development and vulnerability, and highlighting 
the importance of epigenetic biomarkers as predictors of CVDs 
(Table 2 and Figure 2) (Xu et al., 2018).

Regarding histone modifications, HDAC3 is reported to have 
a protective effect in apolipoprotein E deficient (apoE−/−) mice. 
HDAC3 maintains the endothelial integrity, and its deficiency 
results in atherosclerosis (Zampetaki et al., 2010). Similarly, 
increased histone acetylation has been proposed to play some role 
in the progression of atherogenesis by modulating the expressions 
of proatherogenic genes (Choi et al., 2005). Histone deacetylases 
are upregulated in aortic smooth muscle cells when they were 
stimulated with mitogens. In contrast, inhibition of HDACs 
reduces aortic smooth muscle cell proliferation by changing 
cell cycle genes expression. This suggests a protective effect 
against atherosclerosis (Findeisen et al., 2011). Investigations of 
the association between changes in lysine 27 trimethylation of 
histone 3 (H3K27Me3), and atherosclerotic plaque development 
revealed a reduction in global levels of H3K27Me3 modification 
in vessels with advanced atherosclerotic plaques. This does not 
correlate with a reduction in the corresponding HMT, enhancer 
of zeste homolog 2 (EZH2). There was a relationship between 
the repression of H3K27Me3 mark in the vessels with advanced 
atherosclerotic plaques and the dynamic differentiation and 
proliferation of smooth muscle cells associated with atherosclerotic 
disease (Wierda et al., 2015). Histone acetylation, methylation, 
and the expression of their corresponding transferases in the 
atherosclerotic plaques of patients with carotid artery stenosis 
have been analyzed. Greißel et al. (2016) analyzed the expression 
of HATs GCN5L, P300, MYST1, and MYST2 and HMTs MLL2/4, 
SET7/9, hSET1A, SUV39H1, SUV39H2, ESET/SETDB1, EHMT1, 
EZH2, and G9a and described an enhancement in histone 
acetylation on H3K9 and H3K27 in the smooth muscle cells from 
severe atherosclerotic lesions that correlated with plaque severity. 
In addition, H3K9 and H3K27 methylation were significantly 
lower in atherosclerotic plaques and significantly associated with 
disease severity (Greißel et al., 2016).

DNA methylation is also involved in atherosclerosis. 
To identify CpG methylation profiles in the progression of 
atherosclerosis in the human aorta, Valencia-Morales et al. 
(2015) performed DNA methylation microarray analyses. They 
detected a correlation between histological pathology and the 
differential methylation of numerous autosomal genes in vascular 
tissue, providing potential biomarkers of damage severity and 

224

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Epigenetic Biomarkers in Cardiovascular DiseasesSoler-Botija et al.

9 October 2019 | Volume 10 | Article 950Frontiers in Genetics | www.frontiersin.org

treatment targets (Valencia-Morales et al., 2015). Genes such 
as Drosophila headcase (HECA), early B-cell factor 1 (EBF1), 
and nucleotide-binding oligomerization domain containing 2 
(NOD2) are significantly hypomethylated, whereas mitogen-
activated protein kinase kinase kinase kinase 4 (MAP4K4), 
zinc finger E-box binding homeobox 1 (ZEB1), and proto-
oncogene tyrosine-protein kinase (FYN) are hypermethylated in 
atheromatous plaque lesions compared to the plaque-free intima 

(Yamada et al., 2014). Another study described differentially 
methylated regions in genes associated with atherosclerosis in 
swine aorta endothelial cells (Jiang et al., 2015). Low-density 
lipoprotein cholesterol risk factor upregulates DNMT1, which 
methylates and represses the Krüppel-like factor 2 gene (KLF2) 
promoter. KLF2 is a transcription factor essential for endothelium 
homeostasis, and its repression results in endothelial dysfunction 
(Kumar et al., 2013). Similarly, DNMT3a upregulation in human 

TABLE 2 | Epigenetic biomarkers in atherosclerosis.

Epigenetic 
modification

Biomarker Regulation in 
atherosclerosis

Sample source Study type References

DNA 
methylation

KLF2 promoter Methylation HUVEC cells Experimental: in vitro (Kumar et al., 2013)

KLF4 promoter Methylation HAEC cells Experimental: in vitro (Jiang et al., 2014)
HECA, EBF1, NOD2, 
MAP4K4, ZEB1, FYN

HECA, EBF1, NOD2: 
Hypomethylated; 
MAP4K4, ZEB1, FYN: 
Hypermethylated

Human aortic intima and 
HEK293 cells

Clinical and 
experimental: in vitro

(Yamada et al., 2014)

TIMP1, ABCA1, ACAT1 
promoters

Altered methylation status Peripheral blood Clinical (Ma et al., 2016)

SMAD7 promoter Hypermethylation Peripheral blood and 
atherosclerotic plaques 

Clinical (Wei et al., 2018)

5mC, 5-hmC Higher levels Peripheral blood Clinical (Jiang et al., 2019)

Histone 
modifications

HDAC3 Deficiency Aorta and HUVEC cells Experimental: apoE−/− 
mice and in vitro

(Zampetaki et al., 2010)

H3K27Me3 Reduction in H3K27Me3 
modification 

Perirenal aortic tissue 
patches 

Clinical (Wierda et al., 2015)

H3K9, H3K27 Higher histone acetylation 
and lower histone 
methylation

Carotid tissue Clinical (Greißel et al., 2016)

miRNA miR-130a, miR-27b, 
miR-210

Higher levels Serum and intima tissue Clinical (Li et al., 2011)

miR-17-5p Higher levels Plasma Clinical (Chen et al., 2015a)
miR-143-3p, 
miR-222-3p

Lower levels Microparticles Clinical (de Gonzalo-Calvo et al., 
2016)

miR-30 Lower levels Plasma Clinical (Huang et al., 2016b)
miR-92a Higher levels Plasma Clinical (Huang et al., 2017a)
miR-18a-5p, miR-
27a-3p, miR-199a-3p, 
miR-223-3p, 
miR-652-3p

Lower levels Plasma Clinical (Vegter et al., 2017)

miR-33a Higher levels Plasma Clinical (Kim et al., 2017)
miR-126 Lower levels Plasma Experimental: 

apoE−/− mice
(Hao and Fan, 2017)

miR-212 Overexpression Serum Clinical (Jeong et al., 2017)
miRNA let-7 Higher levels Plasma Clinical (Huang et al., 2017b)
miR-1254 Higher levels Plasma Clinical (de Gonzalo-Calvo et al., 

2018)
miR-200c Overexpression Carotid plaques and plasma Clinical (Magenta et al., 2018)
miR-29c Higher levels Plasma Clinical (Huang et al., 2018)
miR-221, miR-222 Lower expression levels Serum Clinical (Yilmaz et al., 2018)
miR-638 Lower levels Serum Clinical (Luque et al., 2018)
miR-122 Higher levels Serum Clinical (Wang and Yu, 2018)
miR-221, miR-222 Higher levels in tissue 

samples and lower levels in 
whole blood

Coronary artery 
atherosclerotic plaques, and 
internal mammary arteries 
and whole blood

Clinical (Bildirici et al., 2018)

miR-664a-3p Downregulation Serum Clinical (Li et al., 2018b)
miR-155 Higher levels Serum Clinical (Qiu and Ma, 2018)
miR-19A, miR-19B, 
miR-126, miR-155

Differential levels GEO dataset High throughput (Mao et al., 2018)

miR-126, miR-143 Higher levels Plasma Clinical (Gao et al., 2019)
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aortic endothelial cells exposed to disturbed flow induces the 
methylation and repression of the Krüppel-like factor 4 gene 
(KLF4) promoter, increasing regional atherosusceptibility 
(Jiang et al., 2014). In an attempt to determine biomarkers of 
atherosclerosis in the primary stages, the DNA methylation 
status was determined in a selection of gene promoters 
associated with the disease. They analyzed the promoter 
methylation of ATP binding cassette subfamily A member  1 
(ABCA1), TIMP metallopeptidase inhibitor 1 (TIMP1), 
and acetyl-CoA acetyltransferase 1 (ACAT1) and observed 
significant alterations in the peripheral blood of atherosclerosis 
patients (Ma et al., 2016). A recent study found that SMAD7 
expression is decreased and its promoter highly methylated in 
atherosclerotic plaques compared to normal artery walls. There 
was also increased DNA methylation of the SMAD7 promoter 
in the peripheral blood of atherosclerosis patients. Thus, the 
SMAD7 promoter is hypermethylated in atherosclerosis patients 
and their atherosclerotic plaques, with a positive association 
with homocysteine levels (Wei et al., 2018). Moreover, increased 
5mC and 5-hmC levels, which indicate DNA methylation and 
hydroxymethylation, respectively, have been demonstrated in 
peripheral blood mononuclear cells from elderly patients with 
coronary heart disease. These results positively correlate with the 
severity of coronary atherosclerosis (Jiang et al., 2019).

MicroRNAs have also been identified as attractive epigenetic 
biomarkers for atherosclerosis. Li et al. (2011) examined miRNA 
levels in serum samples and the intima of atherosclerosis 
obliterans patients and compared them to controls. They 
observed increased levels of miR-27b, miR-130a, and miR-210 
in serum and sclerotic tissue from patients, proposing these 
miRNAs as epigenetic biomarkers for early stages of the disease 
(Li et al., 2011). Later, a study with a reduced number of patients 
suggested that elevated levels of circulating miR-17-5p may be 
a useful biomarker in the diagnosis of coronary atherosclerosis 
(Chen et al., 2015a).

Microparticles secreted by human coronary artery 
smooth muscle cells are a different source of cardiovascular 
biomarkers. These extracellular vesicles can contain miRNAs, 
such as miR-21-5p, miR-143-3p, miR-145-5p, miR-221-3p, 
and miR-222-3p. Lower levels of miR-143-3p and miR-
222-3p have been found in microparticles derived from 
atherosclerotic plaque areas compared to nonatherosclerotic 
areas (de Gonzalo-Calvo et al., 2016).

Huang et al. (2016b) evaluated the expression of miR-30 
in patients with essential hypertension compared to control 
individuals. They observed a reduction in miR-30 levels in the 
hypertensive patients and in the increased carotid intima-media 
thickness group. Thus, the authors suggested that circulating 
miR-30 may be a useful noninvasive atherosclerosis biomarker for 
patients with essential hypertension (Huang et al., 2016b). Later, 
the authors also identified higher levels of miR-92a as a possible 
biomarker of atherosclerosis in the same type of patients (Huang 
et al., 2017a).With the aim of investigating correlations between 
circulating miRNAs specific for HF and atherosclerosis in HF 
patients, Vegter et al. (2017) assessed miRNAs levels and related 
them to biomarkers associated with atherosclerotic disease and 
rehospitalizations of cardiovascular patients. They demonstrated 

a consistent trend between a high number of atherosclerosis 
manifestations and lower levels of miR-18a-5p, miR-27a-3p, 
miR-199a-3p, miR-223-3p, and miR-652-3p. Thus, lower levels 
of circulating miRNAs in HF patients with atherosclerotic 
disease and an elevated probability of cardiovascular-related 
rehospitalization were described (Vegter et al., 2017). High 
levels of miR-33a have also been demonstrated to be a potential 
cause of cholesterol accumulation and to exacerbate vessel walls 
inflammation in atherosclerotic disease. Thus, plasma miR-33a 
has been proposed as a suitable biomarker in atherosclerosis 
(Kim et al., 2017).

In an attempt to identify more atherosclerosis biomarkers, 
Hao and Fan (2017) performed microarray analysis using the 
plasma from apoE−/− mice and discovered that a reduction 
in miR-126 levels is a good indicator of atherosclerotic disease. 
They also determined that miR-126 is involved in the mitogen-
associated protein kinase (MAPK) signaling pathway, reducing 
cytokine release and progressing atherosclerotic pathogenesis 
(Hao and Fan, 2017). In contrast, Gao et al. (2019) determined 
that higher expression levels of miR-126 and miR-143 correlate 
with the presence and severity of cerebral atherosclerosis (Gao 
et al., 2019). In another study, the authors evaluated the synergy of 
circulating miRNAs with cardiovascular risk factors to estimate 
the presence of atherosclerosis in ischemic stroke patients. 
They identified miR-212 as a novel marker that enhances the 
estimation of atherosclerosis presence in combination with 
hemoglobin A1c, high-density lipoprotein cholesterol, and 
lipoprotein(a) (Jeong et al., 2017). Another candidate biomarker 
for atherosclerosis is miR-200c. The authors analyzed plaque 
instability in the carotid arteries of patients undergoing carotid 
endarterectomy by examining the expression of miR-200c. Higher 
expression of miR-200c positively correlated with instability 
biomarkers, such as monocyte chemoattractant protein-1, 
cyclooxygenase-2, interleukin 6 (IL-6), metalloproteinases, and 
miR-33a/b, and negatively correlated with stability biomarkers, 
such as ZEB1, endothelial nitric oxide synthase, forkhead 
boxO1, and Sirtuin1. Thus, miR-200c could be a biomarker 
of atherosclerotic plaque progression and clinically useful for 
identifying patients at high embolic risk (Magenta et al., 2018). 
Along the same lines, lower serum levels of miR-638 may be a 
suitable biomarker of plaque vulnerability and ischemic stroke 
in individuals with high cardiovascular risk (Luque et al., 2018). 
With the intention to explore the role of miRNAs associated 
with carotid atherosclerosis, Mao et al. (2018) analyzed the 
genes differentially expressed between primary and advanced 
atherosclerotic plaques using two public datasets from the Gene 
Expression Omnibus (GEO) databases. The authors found a total 
of 23 miRNAs and focused on miR-19A, miR-19B, miR-126, 
and miR-155, which may be considered biomarkers of carotid 
atherosclerosis (Mao et al., 2018). In addition, Li et al. (2018b) 
identified downregulation of specific circulating miR-664a-3p as 
a biomarker of atherosclerosis in patients with obstructive sleep 
apnea and enlarged maximum carotid intima-media thickness 
(Li et al., 2018b).

Circulating miR-221 and miR-222 could also be suitable 
biomarkers for the diagnosis of atherosclerosis, as lower levels 
of these miRNAs correlate with the disease (Bildirici et al., 2018; 
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Yilmaz et al., 2018). However, higher levels have been found 
in samples from coronary atherosclerotic plaques and internal 
mammary arteries (Bildirici et al., 2018). On the other hand, 
higher circulating levels of miR-29c, miR-122, and miR-155 
in coronary atherosclerosis patients might allow noninvasive 
detection of the disease and its severity (Huang et al., 2018; 
Qiu and Ma, 2018; Wang and Yu, 2018). In another interesting 
study that assessed whether atherosclerosis of different arterial 
territories, not including the coronary artery, is associated with 
specific circulating miRNAs, the investigators were able to identify 
specific miRNA profiles for each territory with atherosclerotic 
disease. These findings may provide a pathophysiological 
understanding and be useful for selecting potential biomarkers 
for clinical practice (Pereira-da-Silva et al., 2018).

Myocardial Infarction
Acute MI (AMI) is a threatening disease worldwide. Early and 
accurate differential diagnosis is critical for immediate medical 
intervention and improved prognosis (Reed et al., 2017). In 
particular, it is important to notice that patients with ST-segment 
elevation MI (STEMI) have different requirements than patients 
with non-STEMI (NSTEMI). For the first group, reperfusion 
therapy should be administered quickly to reduce infarct size 
and mortality (Authors/Task Force members et al., 2014). 
However, in NSTEMI patients, revascularization strategies are 
recommended based on individual clinical characteristics (Reed 
et al., 2017). Therefore, biomarkers with the capacity to diagnose 
and personalize a therapeutic schedule in AMI would be of great 
interest. Currently, the favored diagnostic biomarkers of AMI 
are cardiac troponin I (cTnI) and T (cTnT), both of which are 
released from necrotic cardiomyocytes within 2 to 4 h post-MI 
(Babuin and Jaffe, 2005), with maximum levels at 24 to 48 h and 
lasting for more than 1 week (Jaffe et al., 2006). For this reason, 
small repeat infarctions after the main infarction are difficult 
to detect. Thus, it is fundamental to identify biomarkers for 
very early diagnosis of STEMI and for monitoring the entire 
pathological process of AMI (Table 3 and Figure 3).

Regarding methylation as an indicator of MI, Talens et al. (2012) 
investigated the association between MI and DNA methylation at 
six loci described to be sensitive to prenatal nutrition. As a result, 
the researchers demonstrated that the risk of MI in women is 
associated with DNA hypermethylation at INS and GNASAS-
specific loci (Talens et al., 2012). Moreover, microarray analyses 
investigating whole-genome DNA methylation using cases from 
the EPICOR study and EPIC-NL cohort (Fiorito et al., 2014) 
identified a hypomethylated region in the zinc finger and BTB 
domain-containing protein 12 (ZBTB12) and LINE-1, concluding 
that it is possible to detect specific methylation profiles in 
white blood cells a few years before MI occurs. This provides a 
promising early biomarker of MI (Guarrera et al., 2015). Another 
example is the hypermethylation of the aldehyde dehydrogenase 
2 gene (ALDH2) promoter, which is associated with myocardial 
injury after MI in rats. The hypermethylation downregulates 
ALDH2, inhibiting its cardioprotective role (Wang et al., 
2015). Rask-Andersen et al. (2016) performed an epigenome-
wide association study to identify disease-specific alterations 

in DNA methylation. The authors observed differential DNA 
methylation at 211 CpG sites in individuals with MI, and some 
of these sites represented genes related to cardiac function, CVD, 
cardiogenesis, and recovery after ischemic injury. Their results 
highlight genes that might be important in the pathogenesis of MI 
or in recovery (Rask-Andersen et al., 2016). Along the same lines, 
a genome-wide DNA methylation and gene ontology analysis of 
white blood cells from a population-based study identified four 
differentially methylated sites in individuals who had a previous 
MI. Interestingly, they found a correlation between differences 
in DNA methylation in blood cells and the levels of growth 
differentiation factor 15 (GDF-15), which was overexpressed in 
the myocardium of MI patients (Ek et al., 2016). Later, a genome-
wide DNA methylation study of whole blood samples from MI 
patients and controls identified two methylated regions in zinc 
finger homeobox 3 (ZFHX3) and SWI/SNF-related, matrix-
associated, actin-dependent regulator of chromatin, subfamily a, 
member 4 (SMARCA4) that were independently related to MI 
(Nakatochi et al., 2017).

Histone modifications are also involved in the pathological 
process of MI. To investigate the role of the HAT p300 in 
adverse left ventricular (LV) remodeling, Miyamoto et al. (2006) 
generated transgenic mice overexpressing wild-type p300 or 
its mutant in the heart. They subjected these mice to surgical 
MI and demonstrated that cardiac overexpression of p300 
stimulated adverse LV remodeling. They concluded that the HAT 
activity of p300 is fundamental for the pathological course of 
MI (Miyamoto et al., 2006). Moreover, the class III deacetylase 
sirtuin 1 (SIRT1) is well known to confer a cardioprotective 
effect and is downregulated after cardiac injury. To understand 
the underlying mechanism, primary rat neonatal ventricular 
myocytes were exposed to ischemic or oxidative stress, leading 
to upregulation of the histone H3K9 methyltransferase SUV39H 
and downregulation of SIRT1. In addition, inhibition of 
SUV39H activity by chaetocin in wild-type mice and SUV39H-
knockout mice protected against induced MI. SUV39H and 
heterochromatin protein 1 gamma cooperate to methylate the 
SIRT1 promoter and repress its transcription. Thus, the authors 
described a role for SUV39H linking SIRT1 repression to MI (Yang 
et al., 2017a). To examine the role of HDAC4 in the modulation 
of cardiac function after an MI, Zhang et al. (2018b) generated 
a myocyte-specific activated HDAC4-transgenic mouse. They 
found that HDAC4 overexpression increases myocardial fibrosis 
and hypertrophy, leading to cardiac dysfunction. Furthermore, 
the overexpression of activated HDAC4 aggravated cardiac 
dysfunction and increased adverse remodeling and apoptosis in 
the infarcted myocardium. Thus, HDAC4 is an indicator of heart 
injury (Zhang et al., 2018b). More recently, the role of HDAC6 in 
the development of HF following MI was investigated using a rat 
model. The authors found that the deacetylase activity of HDAC6 
is increased after MI (Nagata et al., 2019).

Abundant research has focused on miRNAs as novel 
biomarkers for MI. MiR-1 levels have been analyzed in plasma 
from patients with AMI and found to be significantly elevated, 
but decreased to normal levels with medication (Ai et al., 2010; 
Long et al., 2012a). MiR-1, miR-126, and cTnI expression levels 
exhibited a similar tendency. Thus, circulating miR-1 and 
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TABLE 3 | Epigenetic biomarkers in myocardial infarction.

Epigenetic 
modification

Biomarker Regulation in myocardial 
infarction

Sample source Study type References

DNA 
methylation

INS, GNASAS Hypermethylation Leukocytes Clinical (Talens et al., 2012)

LINE-1, ZBTB12 Hypomethylation White blood cells Clinical (Guarrera et al., 2015)
ALDH2 promoter Hypermethylation Experimental: rat model 

of MI
Experimental: rat model 
of MI

(Wang et al., 2015)

ZFHX3, SMARCA4 Methylation Whole blood Clinical (Nakatochi et al., 2017)

Histone 
modifications

p300 Overexpression Myocardium Experimental: mouse 
model of MI in HATmut 
p300-Tg mice

(Miyamoto et al., 2006)

SUV39H, SIRT1 SUV39H upregulation 
and SIRT1 downregulation

H9C2 cells primary rat 
neonatal ventricular 
myocytes

Experimental: mouse 
model of MI in 
SUV39H−/− mice

(Yang et al., 2017a)

HDAC4 Overexpression Myocardium Experimental: mouse 
model of MI in MHC-
HDAC4-Tg mice

(Zhang et al., 2018b)

HDAC6 Higher levels Myocardium Experimental: rat model 
of MI

(Nagata et al., 2019)

miRNA miR-1 Higher levels Plasma Clinical (Ai et al., 2010)
miR-31, miR-126, miR-214, 
miR-499-5p

miR-31, miR-214: 
upregulation; miR-
126, miR-499-5p: 
downregulation

Myocardium Experimental: rat model 
of MI

(Shi et al., 2010)

miR-499 Higher levels Tissues and plasma Clinical (Adachi et al., 2010)
miR-1, miR-133a, miR-
133b, miR-499-5p, miR-
122, miR-375

miR-1, miR-133a, 
miR-133b, miR-
499-5p: upregulation; 
miR-122, miR-375: 
downregulation

Plasma Clinical and 
experimental: mouse 
model of MI

(D’Alessandra et al., 
2010)

miR-1, miR-126 miR-1: increased; miR-126: 
decreased 

Plasma Clinical (Long et al., 2012a)

miR-133a Higher levels Plasma Clinical (Eitel et al., 2012)
miR-30a, miR-195, let-7b miR-30a, miR-

195: increased; let-7: 
decreased

Plasma Clinical (Long et al., 2012b)

miR-499-5p Higher levels Plasma Clinical (Olivieri et al., 2013)
miR-1, miR-133a, miR-
208b, miR-499

Higher levels Plasma Clinical (Li et al., 2013)

miR-150 Downregulation plasma Clinical (Devaux et al., 2013)
miR-133a Higher levels Plasma Clinical (Wang et al., 2013a)
miR-21-5p, miR-361-5p, 
miR-519e-5p

miR-21-5p, miR-361-5p: 
increased; miR-519e-5p: 
reduced

Plasma Clinical (Wang et al., 2014b)

miR-208a, miR-499 Higher levels in serum; 
miR-499: lower levels 
in scar, miR-208a: 
unchanged in scar

Serum and heart 
tissues 

Experimental: mouse 
model of MI

(Xiao et al., 2014)

miR-208b, miR-34a Higher levels Plasma Clinical (Lv et al., 2014)
miR-328, miR-134 Higher levels Plasma Clinical (He et al., 2014)
miR-133, miR-1291, 
miR-663b

Higher levels Plasma Clinical (Peng et al., 2014)

miR-497 Upregulation Plasma Clinical (Li et al., 2014b)
miR-1 Higher levels Plasma Clinical (Li et al., 2014a)
miR-19a Higher levels Plasma Clinical (Zhong et al., 2014)
miR-486-3p, miR-150-3p, 
miR-126-3p, miR-26a-5p, 
and miR-191-5p

miR-486-3p, miR-
150-3p: upregulation; 
miR-126-3p, miR-
26a-5p, miR-191-5p: 
downregulation 

Serum Clinical (Hsu et al., 2014)

miR-145 Higher levels Serum Clinical (Dong et al., 2015)

(Continued)
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TABLE 3 | Continued

Epigenetic 
modification

Biomarker Regulation in myocardial 
infarction

Sample source Study type References

hsa-miR-493-5p, hsa-miR-
369-3p, hsa-miR-495, 
hsa-miR-3615, hsa-
miR-433, hsa-miR-877-3p, 
hsa-miR-1306-3p, hsv1-
miR-H2, hsa-miR-3130-5p, 
hcmv-miR-UL22A

hsa-miR-493-5p, hsa-miR-
369-3p, hsa-miR-495, hsa-
miR-3615, hsa-miR-433: 
upregulation, hsa-miR-
877-3p, hsa-miR-1306-3p, 
hsv1-miR-H2, hsa-miR-
3130-5p, hcmv-miR-
UL22A: downregulation

Plasma Clinical (Liang et al., 2015)

miR-499 Higher levels Plasma Clinical (Zhang et al., 2015b)
miR-486, miR-150 Higher levels Plasma Clinical (Zhang et al., 2015c)
miR-499 Higher levels Plasma Clinical (Chen et al., 2015b)
miR-146a, miR-21 Higher levels Plasma Clinical (Liu et al., 2015a)
miR-1, miR-208, miR-499 Higher levels Plasma Clinical (Liu et al., 2015b)
miR-208a Higher levels Plasma Clinical (Białek et al., 2015)
miR-208 Overexpression Plasma Clinical (Han et al., 2015)
miR-122-5p Higher levels Plasma Clinical (Yao et al., 2015)
miR-21 Higher levels Plasma Clinical (Zhang et al., 2016)
miR-99a Downregulation Plasma Clinical (Yang et al., 2016a)
miR-19b-3p, miR-134-5p 
and miR-186-5p

Higher levels Plasma Clinical (Wang et al., 2016b)

miR-106a-5p, miR-424-5p, 
let-7g-5p, miR-144-3p, 
miR-660-5p

Higher levels Blood Clinical (Bye et al., 2016)

miR-19b-3p, miR-134-5p 
and miR-186-5p

Overexpression Plasma Clinical (Wang et al., 2016b)

miR-125b-5p, miR-30d-5p Overexpression Plasma Clinical (Jia et al., 2016)
miR-423-5p, miR-30d Overexpression Plasma Clinical (Eryılmaz et al., 2016)
miR-221-3p Overexpression Plasma Clinical (Coskunpinar et al., 2016)
miR-208a Overexpression in 

myocardium and high levels 
in serum

Myocardium and serum Experimental: rat model 
of MI

(Feng et al., 2016)

miR-133b, miR-22-5p Upregulation Serum/plasma Clinical (Maciejak et al., 2016)
miR-103a Higher levels in plasma Plasma and peripheral 

blood mononuclear 
cells

Clinical and 
experimental: in vitro

(Huang et al., 2016a)

miR-122-5p/133b High ratio Serum Clinical (Cortez-Dias et al., 2016)
miR499a-5p Higher levels Plasma Clinical (O’Sullivan et al., 2016)
miR-181a Higher levels Plasma Clinical (Zhu et al., 2016)
miR-145 Decreased Plasma Clinical (Zhang et al., 2017b)
miR-133a Higher levels Plasma Clinical (Yuan et al., 2016)
miR-208b Higher levels Plasma Clinical (Liu et al., 2017)
miR-1, miR-92a, miR-99a, 
miR-143, miR-223

miR-143: increased; miR-1, 
miR-92a, miR-99a, miR-
223: decreased 

Monocytes Clinical (Parahuleva et al., 2017)

miR-92a Higher levels Plasma Clinical (Zhang et al., 2017c)
miR-208b Overexpression Plasma Clinical (Zhang and Xie, 2017)
miR-124 Higher levels Peripheral blood Clinical (Guo et al., 2017)
miR-1, miR-21, miR-29b 
and miR-92a

miR-1, miR-21, miR-29b: 
increased

Plasma Clinical (Grabmaier et al., 2017)

miR-874-3p Downregulation Plasma Clinical (Yan et al., 2017)
pmiR-126 Lower levels Platelet Clinical (Li et al., 2017b)
miR-133a Lower levels Serum/Plasma Clinical (Zhu et al., 2018)
miR-21 Upregulation Serum Clinical (Wang et al., 2017b)
miR-4478 Higher levels Serum Clinical (Gholikhani-Darbroud 

et al., 2017)
miR-23b Higher levels Plasma Clinical (Zhang et al., 2018a)
MiR-27a, miR-31, miR-
1291, miR-139-5p, miR-
204, miR-375

Higher levels GEO database High throughput (Wu et al., 2018a)

miR-1, miR-133a, miR-34a Lower levels Myocardium Experimental: mouse 
model of MI

(Qipshidze Kelm et al., 
2018)

(Continued)
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miR-126 may be useful indicators of AMI (Long et al., 2012a). 
However, when miR-1 was compared to cTnT, the authors found 
that cTnT was more specific and sensitive than miR-1 (Li et al., 
2014a). Experiments performed in a rat model of MI revealed 
dysregulation of several miRNAs in the myocardium. Specifically, 
miR-31, miR-208, and miR-214 were upregulated, and miR-126 
and miR-499-5p were downregulated in infarcted rats compared 
to sham-operated animals (Ji et al., 2009; Shi et al., 2010). MiR-
499 has been widely analyzed as a possible biomarker of MI. 
MiR-499 has been reported to be produced almost exclusively in 
the heart and plasma and is significantly increased in individuals 
with AMI (Adachi et al., 2010; Devaux et al., 2012). MiR-499 
positively correlates with serum creatine kinase-MB (CK-MB) 
and cTnI increasing their diagnostic accuracy (Chen et al., 
2015b; Zhang et al., 2015b). Thus, miR-499 might be a suitable 

biomarker for MI and a predictor of myocardial ischemia risk 
(Adachi et al., 2010; Chen et al., 2015b; Zhang et al., 2015b). These 
results were confirmed in the mouse model of MI, with elevated 
serum miR-208a levels. However, the expression of miR-499 
was significantly reduced in the MI region, whereas miR-208a 
remained unchanged in the same area. One explanation is that the 
damaged heart might release miR-499 into the circulation (Xiao 
et al., 2014). Other authors observed a high correlation between 
circulating miRNA-208a in STEMI patients and the levels of cTnI 
and CK-MB mass liberated from the infarcted zone (Białek et al., 
2015). Thus, cardiac miR-208 and miR-499 seemed to be better 
biomarkers for predicting AMI than miR-1 (Liu et al., 2015b; Liu 
et al., 2018a). Another study analyzed the expression of miR-
208a in the myocardium and serum of infarcted rats compared 
to control groups, as well as the expression of cAMP-PKA to 

TABLE 3 | Continued

Epigenetic 
modification

Biomarker Regulation in myocardial 
infarction

Sample source Study type References

miR-19b, miR-223, 
miR-483-5p

Higher levels Plasma Clinical (Li et al., 2019)

miR-17-5p, miR-126-5p, 
miR-145-3p 

Higher levels Plasma Clinical (Xue et al., 2019)

miR-150 Lower levels Serum Clinical (Lin et al., 2019)
miR-208b, miR-499 Higher levels Plasma Clinical (Devaux et al., 2012)

FIGURE 3 | Epigenetic modifications and microRNAs biomarkers dysregulated in myocardial infarction and heart failure. Ascending arrows indicate higher levels or 
upregulation, and descending arrows denote lower levels or downregulation, both compared to control conditions. Those miRNAs presenting opposite results are 
shown in orange.
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evaluate the effect of this signaling pathway in the primary stages 
of MI; they found increased expression of miR-208a and cAMP-
PKA. Moreover, the transfection of human myocardial cells 
with the miR-208a analog significantly increased the amount 
of cAMP-PKA protein. Thus, higher expression of miR-208a in 
the infarcted myocardium and serum may play a role in MI by 
affecting the cAMP-PKA signaling pathway (Feng et al., 2016).

D’Alessandra et al. (2010) investigated plasma levels of miRNAs 
in acute STEMI patients and infarcted mice and found higher 
levels of miR-1, miR-133a, miR-133b, and miR-499-5p compared 
to controls, whereas miR-122 and miR-375 levels were lower 
only in STEMI patients. Peak miR-1, miR-133a, and miR-133b 
expression correlated with cTnI levels in time, whereas the time 
course of miR-499-5p was slower (D’Alessandra et al., 2010). This 
was later confirmed in an exhaustive meta-analysis of relevant 
publications (Cheng et al., 2014). Similarly, geriatric patients 
with acute NSTEMI had greater miR-499-5p levels, exhibiting 
greater precision in diagnosis than cTnT in patients with mild 
ST elevation (Olivieri et al., 2013). On the other hand, increased 
levels of miR-1, miR-133a, miR-208b, and miR-499 in patients 
with AMI have been demonstrated to not be superior to cTnT (Li 
et al., 2013). The use of miR-133a as a biomarker in reperfused 
STEMI has been evaluated and compared to cardiovascular 
magnetic resonance imaging; high levels of miR-133a correlated 
with an increased infarct scar size, worse myocardial recovery, 
and prominent reperfusion injury. Nevertheless, miR-133a 
did not add further predictive information to cardiovascular 
magnetic resonance and conventional markers used in clinical 
practice in high-risk STEMI patients (Eitel et al., 2012). Moreover, 
the circulating levels of miR-133a were significantly enhanced in 
AMI patients compared to coronary heart disease and myocardial 
ischemia patients, presenting a similar trend as plasma cTnI 
concentration. Remarkably, we found a positive correlation 
between circulating miR-133a levels and the severity of coronary 
artery stenosis. Thus, circulating miR-133a may be a suitable tool 
for AMI diagnosis and predicting the presence and severity of 
coronary damage in coronary heart disease patients (Wang et al., 
2013a). These results were later confirmed (Yuan et al., 2016; Zhu 
et al., 2018). Nevertheless, in another study analyzing miR-133a 
and miR-423-5p and their relationship with cardiac biomarkers, 
such as B-type natriuretic peptide (BNP), C-reactive protein, 
and cTnI in MI patients, an increase in circulating levels of both 
miRNAs was observed, but these changes were not associated 
with LV remodeling or BNP. The authors claimed that miR-133a 
and miR-423-5p are not useful biomarkers of LV remodeling 
after MI (Bauters et al., 2013). Another controversial pair of 
biomarkers is miR-423-5p and miR-30d, which were found to be 
higher in STEMI patients without a significant correlation with 
cTnI (Eryılmaz et al., 2016). In addition, the analysis of circulating 
miR-124a and miR-133 in STEMI and cardiogenic shock patients 
revealed a significant upregulation of both molecules. A negative 
correlation was found between miR-133 and MMP-9 levels, 
and a relationship between miR-124 and soluble ST2 levels, a 
marker associated with cardiac damage. Surprisingly, this study 
did not connect any of the miRNAs to the extent of the injury, 
disease progression, or the prognosis of patient outcomes. In this 
case, miRNAs would not bring any benefit compared to current 

markers (Goldbergova et al., 2018). Moreover, elevated circulating 
miR-1254 was described as predicting adverse LV remodeling in 
STEMI patients when compared to magnetic resonance imaging. 
However, the diagnosis and prognosis values of miR-1254 
require further research (de Gonzalo-Calvo et al., 2018). Other 
investigations have described miR-150-3p and miR-486-3p as 
being upregulated, whereas miR-26a-5p, miR-126-3p, and miR-
191-5p were significantly downregulated in STEMI patients (Hsu 
et al., 2014). In the same manner, circulating miR-19b-3p, miR-
134-5p, and miR-186-5p have been reported to be significantly 
elevated in the initial stages of AMI. The expression of miR-
19b-3p and miR-134-5p in the plasma reached a maximum 
earlier than miR-186-5p. However, all three positively correlated 
with cTnI and achieved peak expression before cTnI, which was 8 
h after admission. Interestingly, the expression of these circulating 
miRNAs was not altered by heparin and medications for AMI, and 
the combination of all three miRNAs increased their diagnostic 
efficacy (Wang et al., 2016b). Moreover, a higher miR-122-5p/133b 
ratio was found in serum from STEMI patients (Cortez-Dias et 
al., 2016). The NSTEMI patients presented higher serum levels of 
miR-4478, soluble leptin receptor, cTnI, CKMB, urea, creatinine, 
glucose, cholesterol, TG, and ALP but lower levels of ALT 
compared to healthy individuals (Gholikhani-Darbroud et  al., 
2017). Moreover, there was an increase in miR-143 expression 
in monocytes from STEMI patients, whereas miR-1, miR-92a, 
miR-99a, and miR-223 expression was significantly reduced. 
Also, monocytic expression of miR-143 positively correlated with 
high-sensitivity C-reactive protein (hs-CRP), but not cTnT. These 
findings demonstrated that circulating monocytes could also be 
suitable biomarkers (Parahuleva et al., 2017).

Interestingly, cell-specific miRNA patterns are able to 
distinguish STEMI and NSTEMI patients. A correlation was 
found between miRNA 30d-5p and plasma, platelets, and 
leukocytes in patients with STEMI and NSTEMI. Furthermore, 
miR-221-3p and miR-483-5p were associated with plasma and 
platelets, but only in NSTEMI patients (Ward et al., 2013).

High levels of plasma miR-134 and miR-328 are described as 
being possible AMI biomarkers, as they correlate with a superior 
risk of developing HF and mortality. However, the miRNA 
levels were not superior to high-sensitivity cTnT (hs-cTnT) 
concentrations (He et al., 2014). In addition, elevated levels of 
miR-19a, miR-22-5p, miR-27a, miR-30a, miR-30a-5p, miR-
30d-5p, miR-31, miR-34a, miR-122-5p, miR-125b-5p, miR-133, 
miR-133b, miR-139-5p, miR-150, miR-181a, miR-195, miR-204, 
miR-208, miR-208b, miR-221-3p, miR-375, miR-486, miR-497, 
miR-499a-5p, miR-663b, miR-1291, and let-7b can be potential 
biomarkers for AMI, increased risk of mortality, or HF (Devaux 
et al., 2012; Long et al., 2012b; Devaux et al., 2013; Li et al., 
2014b; Lv et al., 2014; Peng et al., 2014; Zhong et al., 2014; Han 
et al., 2015; Yao et al., 2015; Zhang et al., 2015c; Coskunpinar 
et al., 2016; Jia et al., 2016; Maciejak et al., 2016; O’Sullivan et al., 
2016; Zhu et al., 2016; Liu et al., 2017; Zhang and Xie, 2017; 
Alavi-Moghaddam et al., 2018; Maciejak et al., 2018; Wu et al., 
2018a; Wang et al., 2019b). Other potential biomarkers for AMI 
are downregulated in patients’ plasma, such as miR-99a, miR-
122-5p, and miR-874-3p (Yang et al., 2016a; Yan et al., 2017; 
Wang et al., 2019b). Interestingly, high levels of the combination 
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of miR-21-5p, miR-361-5p, and miR-519e-5p or the reduction 
of miR-519e-5p correlates with cTnI concentrations, significantly 
increasing the diagnostic accuracy in AMI patients (Wang et al., 
2014b; Liu et al., 2015a ). Similarly, miR-21 and miR-124 have 
similar diagnostic ability compared to CK, CK-MB, and cTnI 
(Zhang et al., 2016; Guo et al., 2017).

In an attempt to predict HF and cardiovascular death after 
AMI, circulating miR-145, the N-terminal fragment of the 
precursor BNP, myocardial-band CK, and cTnI concentrations 
were analyzed for short- and long-term clinical outcomes. As 
a result, the authors concluded that miR-145 was a significant 
independent predictor of cardiac events, predicting long-term 
outcomes after AMI (Dong et al., 2015). Later, another group 
found that miR-145 levels were significantly lower in AMI 
patients and correlate with increased serum BNP and cTnT and 
decreased LV ejection fraction (Zhang et al., 2017b).

An miRNA array revealed differences in the miRNA 
expression patterns in patients with different phases of HF after 
MI. Specifically, human miR-369-3p, miR-433, miR-493-5p, 
miR-495, and miR-3615 were overexpressed, whereas miR-
877-3p, miR-1306-3p, hsv1-miR-H2, miR-3130-5p, and hcmv-
miR-UL22A were underexpressed in these patients. Thus, these 
circulating miRNAs are novel candidates as biomarkers of MI 
and HF (Liang et al., 2015).

An important aspect of circulating miRNAs as biomarkers 
is their temporal release, source, and transportation. Using 
the ischemia–reperfusion injury model, Deddens et al. (2016) 
showed that the ischemic myocardium releases extracellular 
vesicles. They also demonstrated that these extracellular vesicles 
transported specific miRNAs from the heart and muscle and 
were quickly detected in plasma. Interestingly, these vesicles 
had a high miRNAs content and rapid detection compared to 
traditional injury markers. This makes them a promising tool for 
the early detection of MI (Deddens et al., 2016). Along the same 
lines, microparticles and the expression levels of miR-92a were 
investigated in AMI and stable coronary artery disease patients 
and compared to cTnI. The number of microparticles and 
expression levels of miR-92a were higher in AMI patients than 
in the stable coronary artery disease patients and control groups, 
with a positive correlation between the levels of microparticles 
and cTnI. Thus, microparticles containing miR-92a may be 
suitable for MI diagnosis and possibly regulate dysfunctional 
endothelial tissue in AMI patients (Zhang et al., 2017c). However, 
according to Grabmaier et al. (2017), miR-92a seems to not be a 
good biomarker of adverse ventricular remodeling in post-AMI 
patients. The authors evaluated circulating miR-1, miR-21, miR-
29b, and miR-92a from the SITAGRAMI trial population and 
found that miR-1, miR-21, and miR-29b expression was higher in 
AMI patients. The levels of miR-1 and miR-29b in plasma post-
AMI correlated with variations in infarct volume, and the levels 
of miR-29b and changes in LV ejection fraction over time were 
also associated (Grabmaier et al., 2017).

Investigation of the expression of miR-103a in AMI patients 
with and without high blood pressure and the effect on 
endothelial cell function revealed increased levels of miR-103a 
in all patients but no changes in peripheral blood mononuclear 
cells. Moreover, miR-103a suppressed the expression of Piezo1 

protein, which diminished the capacity to produce capillary 
tubes and the viability of human umbilical vein endothelial cells 
(HUVECs). Thus, miR-103a may take part in the development of 
high blood pressure and the initiation of AMI via regulation of 
Piezo1 expression (Huang et al., 2016a).

In a study based on samples from the HUNT study biobank, 
Bye et al. (2016) analyzed the utility of circulating miRNAs to 
predict future fatal AMI in healthy participants. MiR-424-5p and 
miR-26a-5p were associated exclusively with risk in men and 
women, respectively, suggesting a gender-specific association. They 
discovered that the best model for predicting future AMI consisted 
of miR-106a-5p, miR-424-5p, let-7g-5p, miR-144-3p, and miR-
660-5p, and these miRNAs were proposed as a panel to enhance 
the prediction of AMI risk in healthy individuals (Bye et al., 2016).

Platelet activation is critical for AMI pathogenesis, but the role 
of platelet miRNAs (pmiRNAs) as biomarkers in AMI and their 
correlation with indices of platelet activity are unclear. Assessment 
of pmiR-126 expression in STEMI patients revealed reduced 
levels and a correlation with plasma cTnI. However, pmiR-126 
expression did not correlate well with platelet activity indices, and 
its potential diagnostic utility is limited (Li et al., 2017b).

MiR-1, miR-133a, and miR-34a induce adverse structural 
remodeling to impair cardiac contractile function. Increased levels 
of all three miRNAs have been shown in the hearts of old MI mice 
compared to young MI mice, and the miR-1 increase was more 
prolonged and corresponded to LV wall thinning. This suggests 
that significantly increased levels of miR-1 in the aged post-MI 
heart could be a biomarker for high-risk prediction (Qipshidze 
Kelm et al., 2018). In addition, miRNA-21 has been reported to 
be overexpressed in the serum of ancient patients with AMI and 
to positively correlate with serum levels of CK-MB and cTnI. In 
vitro experiments with human cardiomyocytes transfected with 
the miR-21 mimic short hairpin RNA have shown that, following 
tumor necrosis factor α (TNF-α) induction, apoptosis rates are 
downregulated. The upregulation of miR-21 expression in the serum 
of elderly patients with AMI inhibited apoptosis induced by TNF-α 
in human cardiomyocytes via activation of the JNK/p38/caspase-3 
signaling pathway (Wang et al., 2017b). Along the same lines, 
cardiomyocyte apoptosis and hypoxic reduction of cell growth can 
be promoted by miR-23b overexpression, suggesting that it could be 
a potential biomarker for STEMI (Zhang et al., 2018a).

A recent study explored the diagnostic use of circulating 
miRNAs in patients with acute chest pain in the emergency 
department. They found that higher circulating miR-19b, miR-
223, and miR-483-5p levels may be clinically useful for AMI 
diagnosis in early phases (Li et al., 2019). Similarly, circulating 
miR-17-5p, miR-126-5p, and miR-145-3p levels are elevated 
in plasma from AMI patients. Combining these three miRNAs 
achieves a more precise AMI diagnosis (Xue et al., 2019). 
Interestingly, next-generation miRNA sequencing from whole 
blood samples has been useful for identifying new biomarkers of 
MI (Kanuri et al., 2018).

Heart Failure
Heart failure is a chronic and progressive condition that hampers 
the ability of the heart to pump enough blood to the body and 
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fulfill its needs. Heart failure is caused by multiple disorders, such 
as hypertension, cardiomyopathy, MI, arrhythmias, or valvular 
diseases, among others (Khatibzadeh et al., 2013). Numerous 
scientific reports connect HF and epigenetic modifications 
(Table 4 and Figure 3). High-density epigenome-wide mapping 
of DNA methylation in the myocardium and blood from 
dilated cardiomyopathy patients and healthy individuals has 
been analyzed. This technology has been used to find regions 
of epigenetic susceptibility and new biomarkers related to HF 
and heart dysfunction; they recognized different patterns of 
epigenetic methylation that were preserved through tissues—the 
CpGs regions identified as novel biomarkers of HF (Meder et al., 
2017; Rau and Vondriska, 2017). Differentially methylated DNA 
regions were also identified in blood leukocytes from HF patients 
(Li et al., 2017a). Dilated cardiomyopathy is an important cause of 
HF. Genome-wide cardiac DNA methylation in idiopathic dilated 
cardiomyopathy patients revealed abnormal DNA methylation, 
which was related to important variations in the expression of 
lymphocyte antigen 75 (LY75) and adenosine receptor A2A 
(ADORA2A) mRNA (Haas et al., 2013). Similarly, genome-wide 
maps of DNA methylation and enrichment of histone 3 lysine-36 
trimethylation (H3K36me3) in pathological and healthy hearts 
were analyzed. Differences in DNA methylation were found 
in promoter CpG islands, genes, intragenic CpG islands, and 
H3K36me3-rich regions of the genome. The promoters of 
upregulated genes had altered DNA methylation, but not the 
promoters of downregulated genes. In particular, an abundance 
of DUX4 transcripts was associated with differences in DNA 
methylation and H3K36me3 enrichment. Although further 
studies need to be carried out, there is evidence that the expression 
of genes critical for the development of cardiomyopathies 
may be controlled by the epigenome (Movassagh et al., 2011). 
Moreover, in patients with dilated cardiomyopathy, there is an 
altered methylation pattern in the regulatory regions of cardiac 
development genes, such as T-box protein 5 (TBX5), heart 
and neural crest derivatives expressed 1 (HAND1), and NK2 
homeobox 5 (NKX2.5) (Jo et al., 2016). Koczor et al. (2013) also 
studied the differential methylation patterns in patients with 
dilated cardiomyopathy, which is characterized by congestive HF. 
Computational analysis detected few differentially methylated 
gene promoters (AURKB, BTNL9, CLDN5, and TK1). This 
study provides relevant information on DNA methylation and 
altered expression in dilated cardiomyopathy that would help in 
treatment (Koczor et al., 2013).

Furthermore, epigenetic modifications have been proposed to 
play an important role in HF progression in the murine model 
of pressure overload. The researchers observed a reduction 
in sarcoplasmic reticulum Ca2+ATPase (Atp2a2) levels and a 
significant induction of β-myosin-heavy chain (Myh7) mRNA 
levels. They also detected H3K4me2, H3K9me2, H3K27me3, and 
H3K36me2 and a reduction in the lysine-specific demethylase 
KDM2A after 8 weeks of transverse aortic constriction 
(Angrisano et al., 2014). Atp2a2 is a determinant of cardiac 
function, and its reduced activity is a clear feature of HF. Gorski 
et al. (2019) investigated the role of lysine acetylation in Atp2a2 
function in HF patients and found that acetylation at lysine 492 
is regulated by SIRT1 and HAT p300 and significantly reduced 

the gene activity (Gorski et al., 2019). All of this knowledge 
would be fundamental to identifying potential biomarkers and 
new epigenetic drugs in HF therapy. Interestingly, an association 
has been reported between epigenetic remodeling in the atrial 
natriuretic peptide (ANP) and BNP promoters and reactivation 
of the fetal gene program in HF. Their reported upregulation in 
HF patients did not respond to an increase in histone acetylation 
but HDAC4, which is exported from the nucleus. In contrast, 
demethylation of H3K9 and dissociation of heterochromatin 
protein 1 from gene promoters were regulated by HDAC4. 
Thus, HDAC4 is fundamental to histone methylation in HF 
caused by increased cardiac load and a potential target for 
treatment (Hohl et al., 2013). More recently, Glezeva et al. 
(2019) performed targeted DNA methylation sequencing to 
detect DNA methylation alterations in coding and ncRNA in 
cardiac interventricular septal tissue from HF patients. They 
found hypermethylation in HEY2, MSR1, MYOM3, COX17, 
and miR-24-1 and hypomethylation in CTGF, MMP2, and miR-
155. Therefore, they defended a unique cohort of loci useful as 
diagnostic and therapeutic targets in HF (Glezeva et al., 2019).

More than 10 years ago, few reports suggested that specific 
miRNAs are differentially regulated in the failing heart 
(Divakaran and Mann, 2008; Small and Olson, 2011). Since 
then, an extensive evidence base has been published in the 
literature regarding the use of miRNAs as possible biomarkers 
for HF diagnosis and prognosis. In evaluating whether miRNAs 
can differentiate clinical HF from healthy individuals and from 
non-HF dyspnea, miRNA arrays have revealed miR423-5p 
enrichment in the blood of HF patients (Tijsen et al., 2010). 
However, criticisms have been raised in this study regarding age 
differences between groups, reduced sample size, and statistics 
(Kumarswamy et al., 2010). Moreover, patients with HF of 
different etiologies presented with different expression levels of 
circulating miRNAs. Ischemic HF patients were found to have 
a positive transcoronary gradient for miR-423-5p, miR-423, 
and miR-34a, but the nonischemic HF group was positive only 
for miR-21-3p and miR-30a. The transcoronary concentration 
gradient suggests that the failing heart may selectively release the 
miRNAs into the coronary circulation. These miRNAs could be 
useful for discriminating different etiologies of HF (Goldraich 
et al., 2014; De Rosa et al., 2018).

Circulating miRNAs have been screened in an attempt to 
identify any that could be used for the prognosis of ischemic HF 
in post-AMI patients. Knowing that p53 has been involved in HF 
development in mice (Sano et al., 2007), the authors took great 
interest in p53-responsive miRNAs. The serum levels of miR-
34a, miR-192, and miR-194 were significantly and coordinately 
upregulated in AMI patients with ischemic HF progression, 
and all three were p53-responsive. Interestingly, these miRNAs 
were contained in extracellular vesicles, suggesting that they are 
circulating regulators of HF. Furthermore, there was a significant 
correlation between the LV end-diastolic dimension 1 year after 
AMI and the miR-194 and miR-34a expression levels. Thus, 
although further investigations are needed, these results suggest 
the usefulness of miR-34a, miR-192, and miR-194 in predicting 
the risk of HF progression after AMI (Evans and Mann, 2013; 
Matsumoto et al., 2013; Klenke et al., 2018).
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TABLE 4 | Epigenetic biomarkers in heart failure.

Epigenetic 
modification

Biomarker Regulation in heart 
failure

Sample source Study type References

DNA 
methylation

LY75 and ADORA2A Aberrant DNA methylation Left ventricle 
myocardium and 
zebrafish

Clinical and 
experimental: zebrafish

(Haas et al., 2013)

TBX5, HAND1, and NKX2.5 Altered DNA methylation Myocardium Clinical (Jo et al., 2016)
HEY2, MSR1, MYOM3, 
COX17, miR-24-1, CTGF, 
MMP2, miR-155

HEY2, MSR1, MYOM3, 
COX17, and miR-24-1: 
hypermethylation; CTGF, 
MMP2, and miR-155: 
hypomethylation

Myocardium Clinical (Glezeva et al., 2019)

Histone 
modifications

H3K36me3 H3K36me3 enhancement Myocardium Clinical (Movassagh et al., 2011)

HDAC4 HDAC4 activation Myocardium Clinical and 
experimental: mouse 
model of pressure 
overload

(Hohl et al., 2013)

H3K4me2, H3K9me2, 
H3K27me3, H3K36me2, 
KDM2A

H3K4me2, H3K9me2, 
H3K27me3, and 
H3K36me2 methylation 
and KDM2A reduction

Myocardium Experimental: mouse 
model of pressure 
overload

(Angrisano et al., 2014)

Atp2a2 Atp2a2 acetylation Ventricular myocytes 
and myocardium

Clinical and 
experimental: mouse 
model of pressure 
overload in MHC-
SIRT1−/− Tg mice and 
swine model of MI

(Gorski et al., 2019)

miRNA miR423-5p Higher levels Plasma Clinical (Tijsen et al., 2010)
miR-192 Upregulation Serum Clinical (Matsumoto et al., 2013)
miR-122*, miR-200b, 
miR-520d-5p, miR-622, 
miR-1228*, miR-558

miR-122*, miR-200b, 
miR-520d-5p, miR-622, 
miR-1228*: upregulation; 
miR-558: downregulation

Whole peripheral blood Clinical (Vogel et al., 2013)

miR-103, miR-142-3p, 
miR-30b, miR-342-3p

Differentially expressed Plasma Clinical (Ellis et al., 2013)

miR-210, miR-30a Upregulation Serum Clinical (Zhao et al., 2013)
miR-210 Higher levels Plasma, mononuclear 

cells, and skeletal 
muscles

Clinical and 
experimental: Dahl salt-
sensitive rats 

(Endo et al., 2013)

miR-1 Higher levels Plasma Clinical (Zhang et al., 2013b)
miR-423-5p Positive transcoronary 

gradients
Transcoronary gradients Clinical (Goldraich et al., 2014)

miR-423-5p Lower levels Plasma Clinical (Seronde et al., 2015)
MiR-30c, miR-146a, miR-
221, miR-328, miR-375

Downregulation Serum Clinical (Watson et al., 2015)

miR-21, miR-650, miR-744, 
miR-516-5p, miR-1292, 
miR-182, miR-1228, miR-
595, miR-663b, miR-1296, 
miR-1825, miR-299-3p, 
miR-662 miR-122, 
miR-3148, miR-518e, miR-
129-3p, miR-3155, miR-
3175, miR-583, miR-568, 
miR-30d, miR-200a-star, 
miR-1979, miR-371-3p, 
miR-155-star, miR-502-5p

miR-21, miR-650, miR-744, 
miR-516-5p, miR-1292, 
miR-182, miR-1228, miR-
595, miR-663b, miR-1296, 
miR-1825, miR-299-3p, 
miR-662 miR-122, 
miR-3148, miR-518e: 
increased; miR-129-3p, 
miR-3155, miR-3175, miR-
583, miR-568, miR-30d, 
miR-200a-star, miR-1979, 
miR-371-3p, miR-155-star, 
miR-502-5p: decreased

Serum Clinical (Cakmak et al., 2015)

miR-1233, miR-671-5p, 
miR-183-3p, miR-190a, 
miR-193b-3p, miR-
193b-5p, miR-211-5p, 
miR-494

miR-1233, miR-671-5p: 
Upregulation; miR-183-3p, 
miR-190a, miR-193b-3p, 
miR-193b-5p, miR-211-5p, 
miR-494: downregulation

Whole blood and 
plasma

Clinical (Wong et al., 2015)

(Continued)
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TABLE 4 | Continued

Epigenetic 
modification

Biomarker Regulation in heart 
failure

Sample source Study type References

miR-1, miR-21 miR-1: downregulation; 
miR-21: upregulation

Serum Clinical (Sygitowicz et al., 2015)

miR-126 Downregulation Serum Clinical (Wei et al., 2015)
miR-1, miR-21, miR-23, 
miR-29, miR-130, miR-195, 
miR-199

Upregulation Myocardial biopsy Clinical (Lai et al., 2015)

miR-106a-5p, miR-223-3p, 
miR-652-3p, miR-199a-3p, 
miR-18a-5p

Downregulation Plasma Clinical (Vegter et al., 2016)

miR-148b-3p, miR-409-3p Downregulation Serum and left atrial 
tissue 

Clinical (Chen et al., 2016)

miR-122-5p, miR-184 Upregulation H9C2 cells and blood 
and myocardium

Experimental: in vitro 
and rat model of 
post-MI HF

(Liu et al., 2016)

miR-660-3p, miR-665, 
miR-1285-3p, miR-4491

Upregulation Plasma and heart Clinical (Li et al., 2016)

miR-18a-5p, miR-26b-5p, 
miR-27a-3p, miR-30e-5p, 
miR-106a-5p, miR-
199a-3p, miR-652-3p

Lower levels Plasma Clinical (Ovchinnikova et al., 
2016)

miR-19b Lower levels Serum and myocardial Clinical and 
experimental: in vitro

(Beaumont et al., 2017)

miR-30d Lower levels Serum Clinical (Xiao et al., 2017)
miR-195-3p Higher levels Plasma Clinical (He et al., 2017)
miR-22-3p Higher levels Blood Clinical (van Boven et al., 2017)
miR-150-5p Downregulation Blood Clinical (Scrutinio et al., 2017)
miR-133b-3p, miR-
208b-3p, miR-125a-5p, 
miR-125b-5p, miR-126-3p, 
miR-21-5p, miR-210-3p, 
miR-29a-3p, miR-320a, 
miR-494-3p

Upregulation Blood Experimental: sheep 
model of HF

(Wong et al., 2017)

miR-146a Upregulation Exosomal and total 
plasma 

Clinical and 
experimental: in vitro

(Beg et al., 2017)

miR-9, miR-495, miR-599, 
miR-181c

ex-miR-9, ex-miR-181c, 
ex-miR-495: increased; 
ex-miR-599: decreased

Exosomal and total 
plasma 

Experimental: dogs 
with myxomatous mitral 
valve disease, mitral 
valve prolapse

(Yang et al., 2017b)

miR-21-5p, miR-23a-3p, 
miR-222-3p

Higher levels Plasma Clinical and 
experimental: rat model 
of post-MI HF

(Dubois-Deruy et al., 
2017)

miRNA-21 Higher levels Serum Clinical (Zhang et al., 2017a)
miR-132 Higher levels Plasma Clinical (Masson et al., 2018)
miR-1254, miR-1306-5p Higher levels Blood Clinical (Bayés-Genis et al., 2018)
miR-423, miR-34a, miR-
21-3p, miR-30a

miR-21-3p, miR-30a: 
Positive transcoronary 
gradient in non-ischemic 
HF; miR-423, miR-34a: 
Negative transcoronary 
gradient in ischemic HF

Transcoronary gradients Clinical (De Rosa et al., 2018)

miR-3135b, miR-3908, 
miR-5571-5p

Upregulation Plasma Clinical (Chen et al., 2018a)

miR-302b-3p Higher levels Plasma Clinical (Li et al., 2018a)
exo-miR-92b-5p increased Serum Clinical (Wu et al., 2018c)
miR-26b, miR-208b, 
miR-499

Higher levels Peripheral blood 
mononuclear cells

Clinical (Marketou et al., 2018)

miR-423-5p, miR-221-5p, 
miR-212-5p, miR-193b-5p, 
miR-15a-5p, miR-208a-3p

Upregulation Plasma, mouse 
myocardium and 
NRVMs cells

Clinical and 
experimental: in vitro, 
and murine model of 
hypertrophy and HF 

(Shah et al., 2018b)

miR-192 Upregulation Serum Clinical (Klenke et al., 2018)

(Continued)
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Vogel et al. (2013) assessed the genome-wide miRNA 
expression profiles in HF patients with reduced ejection 
fraction (HFrEF). They demonstrated that dysregulated levels 
of miRNAs, such as miR-122*, miR-200b, miR-520d-5p, miR-
622, miR-1228* (upregulated), or miR-558 (downregulated) 
significantly correlate with disease severity, as indicated by 
LV ejection fraction (Vogel et al., 2013). Moreover, Ellis et al. 
(2013) tried to find differences between HF patients and non–
HF-related breathlessness, and between HFrEF and HF with 
preserved ejection fraction (HFpEF); although they found a 
differential expression of miR-103, miR-142-3p, miR-30b, and 
miR-342-3p in HF and breathless patients, individually, classical 
biomarkers such as NT-proBNP and hs-cTnT exhibited greater 
sensitivity and specificity. However, the combination of miRNAs 
with NT-proBNP significantly improved prediction performance 
(Ellis et al., 2013). Similarly, elevated plasma levels of miR-210 
were reported in congestive HF patients, although no significant 
correlation was observed with BNP. However, patients with 
an improved BNP profile presented with low plasma miR-
210 levels. MiR-210 might reflect a mismatch between heart 
contraction and oxygen demand in the peripheral tissues (Endo 
et al., 2013). Interestingly, miR-210 and miR-30a expression is 
upregulated in HF patients, with a tendency toward fetal values 
(Zhao et al., 2013). Moreover, changes in myocardial miRNA 
in patients with stable and end-stage HF partially resemble the 
fetal myocardium. Target mRNA levels negatively correlate with 
changes in highly expressed miRNAs in HF and fetal hearts. The 
circulation is dominated by miRNAs, fragments of tRNAs, and 
small cytoplasmic RNAs. Heart- and muscle-specific circulating 
miRNAs (myomirs) are also increased in advanced HF, correlating 
with cTnI levels. These findings support miRNA-based therapies 
and the use of circulating miRNAs as biomarkers for heart injury 
(Akat et al., 2014). Cardiac fibroblast–derived miRNAs, such as 
miR-660-3p, miR-665, miR-1285-3p, and miR-4491, have also 
been found to be significantly upregulated in heart and plasma 
during HF, discriminating patients from controls (Li et al., 
2016). However, miRNAs in the pericardial fluid are not related 
to cardiovascular pathologies or clinically assessed stages of HF. 
MicroRNAs may be paracrine signaling factors that intervene in 
cardiac cells crosstalk (Kuosmanen et al., 2015).

In another study performed in patients with chronic 
congestive HF, microarray profiling demonstrated increased 
expression of miR-21, miR-122, miR-182, miR-299-3p, miR-
516-5p, miR-518e, miR-595, miR-650, miR-662, miR-663b, 

miR-744, miR-1228, miR-1292, miR-1296, miR-1825, and miR-
3148 and decreased expression of miR-30d, miR-129-3p, and 
miR-502-5p, miR-155-star miR-200a-star, miR-371-3p, miR-583, 
miR-568, miR-1979, miR-3155, and miR-3175. Among these 
miRNAs, miR-182 seemed to have a better prognostic value than 
hs-CRP (Cakmak et al., 2015). Furthermore, miR-30c, miR-146a, 
miR-221, miR-328, and miR-375 had different expression levels 
in HFrEF and HFpEF. The combination of two or more miRNAs 
with BNP could significantly improve the discrimination of these 
pathological conditions compared to BNP alone (Watson et al., 
2015). Additional miRNAs have been identified as promising 
biomarkers to discriminate HF from healthy individuals 
and to differentiate HFrEF from HFpEF: miR-125a-5p, miR-
183-3p, miR-190a, miR-193b-3p, miR-193b-5p, miR-211-5p, 
miR-494, miR-545-5p, miR-550a-5p, miR-638, miR-671-5p, 
miR-1233, miR-3135b, miR-3908, and miR-5571-5p. The use 
of a combination of miRNAs and NT-proBNP increases its 
discernment capacity (Schulte et al., 2015; Wong et al., 2015; Chen 
et al., 2018a). Similarly, increased levels of miR-133a and miR-
221 can be used as suitable HF diagnostic biomarkers in elderly 
HF patients, and the combination of NT-proBNP and miR-133a 
can improve the diagnostic accuracy (Guo et al., 2018). Serum 
levels of miR-1, miR-21, and miR-208a have also been analyzed 
in symptomatic HF patients. Expression of miR-1 is reduced 
in symptomatic HF patients, with decreasing levels correlating 
with increasing severity. In contrast, miR-21 has been shown to 
be overexpressed with no relation to HF severity. No circulating 
miR-208a has been observed in symptomatic HF patients. A 
negative correlation between miR-1 expression and NT-proBNP 
has been reported in HF patients, whereas miR-21 and galectin-3 
have been positively correlated. Therefore, dysregulated levels 
of miR-1 and miR-21 may be fundamental for HF progression 
(Sygitowicz et al., 2015). An inverse correlation between miR-1 
levels and ejection fraction has also been reported. Thus, elevated 
levels of miR-1 may inhibit cardiac function and be a predictor of 
the onset of HF secondary to AMI (Zhang et al., 2013b).

MiR-126 has also been studied in atrial fibrillation and/or HF 
patients, with downregulated expression in patients and positive 
correlation with LV ejection fraction but a negative association 
with the cardiothoracic ratio and NT-proBNP. Thus, the reduction 
in miR-126 expression is a potential indicator of severity in atrial 
fibrillation and HF (Wei et al., 2015). A significant negative 
correlation has also been found between several miRNAs 
and classical clinical biomarkers indicative of a worse clinical 

TABLE 4 | Continued

Epigenetic 
modification

Biomarker Regulation in heart 
failure

Sample source Study type References

miR-34a, miR-208b, miR-
126, miR-24, miR-29a

miR-34a, miR-208b, miR-
126: upregulation; miR-24, 
miR-29a: downregulation

Serum Clinical (Lakhani et al., 2018)

miR-17, miR-20a, 
miR-106b

Lower levels Plasma Clinical (Shah et al., 2018a)

miR-197-5p Upregulation Plasma Clinical (Liu et al., 2018b)
miR-133a, miR-221 Higher levels Plasma Clinical (Guo et al., 2018)
exo-miR-92b-5p Higher levels Serum Clinical (Wu et al., 2018b; Wu 

et al., 2018c)
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outcome in HF patients. MiR-16-5p has been correlated to CRP, 
miR-106a-5p to creatinine, miR-223-3p to growth differentiation 
factor 15, miR-652-3p to soluble ST-2, miR-199a-3p to 
procalcitonin and galectin-3, and miR-18a-5p to procalcitonin 
(Vegter et al., 2016). Furthermore, an analysis of myocyte and 
fibroblast-related miRNAs and mRNAs in myocardium samples 
from HF patients and control individuals revealed that miR-1, 
miR-21, miR-23, miR-29, miR-130, miR-195, and miR-199 are 
significantly upregulated in HF patients, whereas miR-30, miR-
133, miR-208, and miR-320 do not significantly change. Related 
mRNAs, such as caspase 3, collagenase I, collagenase III, and 
transforming growth factor (TGF), are also upregulated in HF 
patients. MicroRNAs involved in apoptosis, hypertrophy, and 
fibrosis are upregulated in the myocardium of HF patients and 
may be suitable biomarkers in the early stages of chronic HF and 
future therapeutic targets (Lai et al., 2015).

Evaluation of miR-148b-3p and miR-409-3p in mitral 
regurgitation patients, asymptomatic mitral regurgitation 
patients, and controls revealed that circulating and tissue 
miR-148b-3p and circulating miR-409-3p are significantly 
downregulated in mitral regurgitation patients with HF, and 
miR-148b-3p is significantly downregulated only in the mitral 
regurgitation patients without HF. Notably, the mRNAs of target 
genes of both miRNAs have been shown to be upregulated in 
HF patients with mitral regurgitation. Thus, circulating miR-
148b-3p may be used as a biomarker of HF and miR-409-3p for 
incident HF in mitral regurgitation patients (Chen et al., 2016).

Specific overexpression of miR-221 in the hearts of transgenic 
mice has been shown to induce cardiac dysfunction and HF by 
impairing autophagy. In addition, in vitro miR-221 upregulation 
inhibits autophagic vesicle formation. Thus, autophagy balance 
and cardiac remodeling are regulated by miR-221 levels through 
modulation of the p27/CDK2/mTOR axis, and miR-221 might 
be a therapeutic target in HF (Su et al., 2015). Furthermore, 
high-throughput sequencing has been used to determine the 
differential miRNA pattern in a rat model of post-MI HF. 
Upregulation of miR-122-5p and miR-184 was found in HF rats, 
describing a proapoptotic role of both miRNAs (Liu et al., 2016). 
In another study using the same model, the authors identified a 
significant increase in miR-21-5p, miR-23a-3p, and miR-222-3p 
and their target SOD2 in the plasma and myocardium of HF 
rats. They showed a direct interaction between miR-222-3p and 
SOD2. An inhibition or increase in SOD2 expression was found 
when human cardiomyocytes were transfected with miR-222-3p 
mimic or inhibitor, respectively (Dubois-Deruy et al., 2017).

Myocardial fibrosis–related miRNAs, such as miR-19b, are 
reduced in the myocardium and serum of HF patients with aortic 
stenosis. Inhibition of miR-19b in cultured human fibroblasts 
increases the expression of connective tissue growth factor 
protein and the enzyme lysyl oxidase (LOX). This could lead to 
excessive collagen fibril cross-linking and a subsequent increase 
in LV stiffness in aortic stenosis patients, particularly those with 
HF. Thus, miR-19b could be a biomarker of alterations in the 
myocardial collagen network (Beaumont et al., 2017).

Numerous studies have been performed to find miRNAs with 
a predictive value in HF patients. Increased levels of miR-1, miR-
21, miR-21-5p, miR-22-3p, miR-29a-3p, miR30d, miR-125a-5p, 

miR-125b-5p, miR-126-3p, miR-133b-3p, miR-195-3p, miR-
197-5P, miR-208b-3p, miR-210-3p, miR-302b-3p, miR-320a, 
and miR-494-3p (Zhang et al., 2013b; He et al., 2017; van Boven 
et  al., 2017; Wong et al., 2017; Xiao et al., 2017; Zhang et al., 
2017a; Li et al., 2018a; Liu et al., 2018b;) or decreased levels of 
miR-17, miR-18a-5p, miR-20a, miR-150, miR-26b-5p, miR-
27a-3p, miR-30e-5p, miR-106a-5p, miR-106b, miR-150-5p, miR-
199a-3p, miR-423-5p, and miR-652-3p (Seronde et al., 2015; 
Ovchinnikova et al., 2016; Scrutinio et al., 2017; Shah et al., 2018a; 
Lin et al., 2019) have been described as potential biomarkers in 
HF patients. These discoveries may serve to develop miRNA-
based therapies and to identify new pharmacological targets.

Beg et al. (2017) measured exosomal and total plasma 
miRNAs separately in HF patients to distinguish between the 
transfer of biological materials for signaling alteration in distant 
organs (exosomal) and the level of tissue damage (plasma). They 
found that the circulating exosomal miR-146a/miR-16 ratio was 
higher in HF patients, with miR-146a induced in response to 
inflammation. These results suggest circulating exosomal miR-
146a as a biomarker of HF (Beg et al., 2017). Moreover, elevation 
of exosomal miRNA exo-miR-92b-5p has been suggested as a 
potential biomarker for the diagnosis of HF (Wu et al., 2018b; 
Wu et al., 2018c). In a preclinical study in dogs with myxomatous 
mitral valve disease, dysregulation of exosomal miR-9, miR-
495, and miR-599 was observed as the dogs aged. In addition, 
levels of miR-9, miR-599, miR-181c, and miR-495 changed in 
myxomatous mitral valve disease. Thus, the exosomal miRNA 
expression level appears to be more specific to disease states 
than total plasma miRNA (Yang et al., 2017b). Furthermore, the 
downregulation of miR-425 and miR-744 in the plasma exosomes 
has been shown to induce cardiac fibrosis by suppressing TGFβ1 
expression (Wang et al., 2018a).

Circulating miR-132 levels increased in chronic HF with 
disease severity, and lower levels improve risk prediction for HF 
readmission beyond traditional risk factors, but not for mortality. 
MiR-132 may be useful for finding strategies that would reduce 
rehospitalization in HF patients (Masson et al., 2018; Panico and 
Condorelli, 2018). Moreover, in an exhaustive analysis of two 
independent cohorts using a strict quality evaluation for miRNA 
testing, an association was found between high levels of miR-
1254 and miR-1306-5p and mortality and HF hospitalization in 
HF patients. However, these two circulating miRNAs were not 
shown to improve standard predictors of prognostication, such 
as age, sex, hemoglobin, renal function, and NT-proBNP (Bayés-
Genis et al., 2018).

MiR-26b, miR-208b, and miR-499 expression levels have been 
assessed in peripheral blood mononuclear cells from hypertensive 
HFpEF patients to evaluate their association with their exercise 
capacity. All three miRNAs were expressed at higher levels in the 
patients group, but miR-208b showed the strongest correlations 
with cardiopulmonary exercise test parameters, including oxygen 
uptake, exercise duration, and the minute ventilation–carbon 
dioxide production relationship (Marketou et al., 2018). In a 
study performed in patients and a mice model of hypertrophy 
and HF, miRNAs dysregulation was shown to occur during HF 
development in animals, with downregulation of target genes. 
These miRNAs were associated with adverse LV remodeling in 
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humans, suggesting coordinated regulation of miRNA-mRNA. 
They also revealed target clusters of genes, such as autophagy, 
metabolism, and inflammation, implicated in HF mechanisms, 
(Shah et al., 2018b).

With the intention to establish a biomarkers panel useful for 
early detection of HF resulting from MI, Lakhani et al. (2018) 
found significant upregulation of miR-34a, miR-208b, miR-
126, TGFβ-1, TNF-α, IL-6, and MMP-9 and reduced miR-24 
and miR-29a levels. A positive association between IL-10 and 
ejection fraction in MI patients also suggested an important role 
of IL-10 in predicting HF (Lakhani et al., 2018).

Systems biology analyses of LV remodeling after MI allow 
molecular comprehensions; for example, miRNA modulation 
may be used as a marker of HF evolution. Two systems biology 
strategies were used to define an miRNA mark of LV remodeling 
in MI. They integrated either multiomics data (proteins and 
ncRNAs) produced from post-MI plasma or proteomic data 
generated from a rat model of MI. As a result, several miRNAs 
were associated with LV remodeling: miR-21-5p, miR-23a-3p, 
miR-222-3p, miR-17-5p, miR-21-5p, miR-26b-5p, miR-222-3p, 
miR-335-5p, and miR-375. These outcomes support the use of 
integrative systems biology analyses for the definition of miRNA 
marks of HF evolution (Charrier et al., 2019).

LIMITATIONS AND PERSPECTIVES OF 
THE EPIGENETIC BIOMARKERS

Limitations of the current field include the lack of large 
multicenter studies to provide convincing evidence for clinical 
applicability. Rather than a single ncRNA, it is likely that there 
will be patterns of different ncRNAs and other biomarkers (e.g., 
protein-based) that, together with machine-learning algorithms, 
will provide more sensitive and specific diagnostic and prognostic 
approaches to CVDs. Also, several technical challenges must be 
overcome before CE-marked ncRNA biomarkers will enter the 
clinical realm. DNA methylation and histone modifications are 
epigenetic mechanisms that have been reported to be sources of 
potential biomarkers useful in clinical practice. However, each 
CVD is regulated by multiple epigenetic pathways, and different 
CVDs are regulated by the same epigenetic mechanism, most of 
which are still under study. For example, hypermethylation of 
H3K79 (Rodriguez-Iturbe, 2006; Duarte et al., 2012) and ACE2 
promoter (Fan et al., 2017) in hypertensive patients has been 
described. Moreover, H3K4 and H3K9 were also hypermethylated 
in both mouse models of hypertension (Pojoga et al., 2011) and 
HF (Angrisano et al., 2014). This makes it difficult to select and 
implement a set of biomarkers for a particular CVD. Another 
potential problem is the quality of the samples, especially those 
obtained from collections in the pathology department. These 
samples are usually preserved in formaldehyde and paraffin, 
which highly degrades DNA. The stability, size, and integrity 
of a sample depend on the duration of fixation and storage 
(Kristensen et al., 2009). Thus, assessment of the quality of 
DNA is fundamental. However, the DNA methylation analysis 
can be performed successfully using polymerase chain reaction 
(PCR) methods with small amplicons in old samples (Tournier 

et al., 2012; Wong et al., 2014). In other cases, it is important to 
carefully adjust the protocol. It is also important to consider that 
frozen and paraffin-preserved samples may have different results, 
and they should not be compared without appropriate correction 
(García-Giménez et al., 2017).

Among the epigenetic biomarkers, miRNAs are the most 
promising, and numerous studies have been carried out in the 
last few years. The relatively easy detection and accessibility to 
samples in fluids, such as blood, urine, or saliva, make them very 
attractive. However, a few issues should be solved before their 
implementation in the clinical practice. The main problem is that 
miRNAs usually target multiple mRNAs from different genes, 
and one gene can be targeted by several miRNAs. This complex 
network should be deeply investigated before determining the 
use of a specific miRNA as a biomarker for the diagnosis or 
treatment of a particular disease (Akhtar et al., 2016). Regarding 
sample preparation, it is highly recommended to use plasma 
instead of whole blood, because if it is hemolyzed, the circulating 
miRNA content can be altered. Increasing the centrifugation 
time is also important in order to reduce platelet contamination 
(de Gonzalo-Calvo et al., 2017; García-Giménez et al., 2017).

Recently, great advances have been made to implement the 
new technology in the detection of new epigenetic biomarkers. 
However, a few concerns should be alleviated before their clinical 
implementation. Studies with big cohorts in different independent 
laboratories, using the same experimental design, sample 
preparation, methodology, and disease specifications, are necessary. 
Small patient cohorts should be considered as pilot studies before 
the validation of results in bigger sample analysis. The method 
of detection should be standardized for clinical application, 
and the clinical trials have to be randomized and prospective. 
It is also important to compare the new biomarkers with the 
classical biomarkers in order to validate them and determine their 
usefulness. The sensitivity and specificity for a certain disease also 
have to be determined for each biomarker (Engelhardt, 2012; 
García-Giménez et al., 2017). Regarding the method of DNA 
methylation detection, the luminometric methylation assay and the 
methylation analysis of CpG islands in repeatable elements (LINE-1) 
are widely used. Although there is a certain correlation with the 
measurements obtained with both methods, the comparison is not 
recommended, since a consistent bias between the results has been 
described (Knothe et al., 2016). Interestingly, a large multicenter 
study comparing DNA methylation assays compatible with routine 
clinical use has been performed. According to the authors, good 
agreement was observed between DNA methylation assays, which 
can be implemented in large-scale validation studies, development 
of new biomarkers, and clinical diagnostics (BLUEPRINT 
Consortium, 2016). The most used system to detect miRNAs is 
quantitative PCR, being the normalization protocol critical. Most 
laboratories use housekeeping genes or miRNAs as normalizers, 
changing their expression levels within serums. Another approach 
employs identical volumes of serum for all samples, generating 
different amounts of total RNA (Chen et al., 2008; Wang et al., 
2009; Rockenbach et al., 2012). Both approaches include spike-in 
normalization, which consists of adding RNA of known sequence 
and quantity to calibrate measurements. However, spike-in 
normalization does not consider internal variation in circulating 
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miRNA between different individuals. Thus, a combination of 
both methods should always be performed to guarantee results 
reliability (van Empel et al., 2012). Polymerase chain reaction 
technology has to be performed with rigorous controls to avoid 
artifacts in the amplification step. To overcome this problem, 
digital PCR based on the amplification of one single molecule 
per reaction constitutes a valuable option (Hindson et al., 2013). 
Another attractive alternative for accurate measuring RNAs is the 
direct nucleic acid sequencing, although it is still expensive when 
considering large screening analysis (Kozomara and Griffiths-
Jones, 2011). Finally, it is also important to understand the 
processes controlling miRNAs release and stability. The correlation 
between circulating and tissue miRNAs is not clear, and several 
studies indicate that miRNA levels in blood are not a reflection of 
changes in the tissue of origin. The reason is that miRNAs can also 
be produced by immune cells (Zheng et al., 2018).

CONCLUDING REMARKS

Over the past few years, a great amount of research has focused on 
epigenetics and its dynamic cross-talk with genetics. Unveiling a 
personalized epigenetic pattern can provide a large amount of 
information on epigenetic machinery that could be employed 
to tailor diagnosis and therapeutic strategies in CVDs. Recent 
advances in technology and data analysis have made it possible 
to create detailed epigenetic maps, which may represent a new 
tool in the clinical practice to discern cardiovascular risk beyond 
traditional risk determinants. Epigenetic information can also 
help in predicting individual drug responses. Importantly, 
epigenetic biomarkers are gaining ground in the scientific 
community as tools for the diagnosis and prognosis of CVDs. 
However, discrepancies in specific diagnostic biomarkers make 
replication of the current results in independent laboratories, 

with multiple research centers and a big sample size, mandatory. 
All of this will lead to a standardized clinical application in the 
near future.
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Identification of Biomarkers in 
Neuropsychiatric Disorders Based on 
Systems Biology and Epigenetics
Jacob Peedicayil *

Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India

Clinically useful biomarkers are available for some neuropsychiatric disorders like fragile X 
syndrome, Rett syndrome, and Huntington’s disease. Despite many decades of research 
on the pathogenesis of neuropsychiatric disorders like schizophrenia (SZ), bipolar disorder 
(BD), and major depressive disorder (MDD), the exact pathogenesis of these disorders 
remains unclear, and there are no clinically useful biomarkers for these disorders. However, 
there is increasing evidence that abnormal epigenetic mechanisms of gene expression 
contribute to the pathogenesis of SZ, BD, and MDD. Both systems (or network) biology 
and epigenetics (a component of systems biology) attempt to make sense of biological 
systems that are highly dynamic and multi-compartmental. This article suggests that 
systems biology, emphasizing the epigenetic component of systems biology, could help 
identify clinically useful biomarkers in neuropsychiatric disorders like SZ, BD, and MDD.

Keywords: biomarkers, epigenetic, network biology, neuropsychiatric disorders, systems biology

INTRODUCTION

A biomarker, a short form for biological marker, has been defined as a feature that is objectively 
quantified and evaluated as an indicator of normal biological processes, pathological processes, or a 
pharmacological response to a therapeutic intervention (Biomarkers Definitions Working Group, 
2001). In addition, there is another type of biomarker termed physiological biomarkers, which are 
indicators of the body’s physiological functioning, such as heart rate, breathing rate, and the rate and 
pitch of speech (Adams et al., 2017). Biomarkers have many uses such as in the evaluation of drug 
effects in preclinical and clinical drug trials, in the diagnosis of patients with a disease, for staging 
diseases, as indicators of disease prognosis, and for predicting and monitoring clinical response to 
an intervention (Biomarkers Definitions Working Group, 2001).

Although clinically useful biomarkers are available for several medical disorders, as well as 
neuropsychiatric disorders like fragile X syndrome (FXS), Huntington’s disease (HD), and 
Rett syndrome (RTT), there are at present none available for neuropsychiatric disorders like 
schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD) (Davis et al., 
2015; Kruse et al., 2017). The current article discusses the possible use of systems biology in 
the identification of biomarkers for neuropsychiatric disorders like SZ, BD, and MDD. Since 
epigenetics, like systems biology, attempts to make sense of biological systems that are highly 
dynamic and multi-compartmental (Housely et al., 2015), among the different components of 
systems biology, this article gives emphasis to the epigenetic component of systems biology. 
Another reason for the emphasis on the epigenetic component of systems biology is that there 
is increasing evidence that abnormal epigenetic mechanisms of gene expression play a crucial 
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role in the pathogenesis of neuropsychiatric disorders like SZ, 
BD, and MDD (Peedicayil and Grayson, 2018a; Peedicayil and 
Grayson, 2018b).

Types of Neuropsychiatric Disorders
Neuropsychiatric disorders comprise a wide range of disorders. 
They include neurological/neurosurgical disorders and psychiatric 
disorders. Although neurological and psychiatric disorders differ 
from each other in many ways, they are also similar to each other, 
and in some ways are like two sides of the same coin (Peedicayil 
et al., 2016a). It has been suggested that neurology and psychiatry 
are two sub-specialties of neuropsychiatry, which is part of the 
broader specialty of neurosciences (Peedicayil et al., 2016a).

Reductionism in Neuropsychiatric 
Disorders
Neuropsychiatric disorders are complex, heterogeneous disorders 
resulting from the interaction of various factors including 
genetic, epigenetic, neurobiological, and environmental factors 
(Lin and Huang, 2016). Can complex biological phenomena 
like neuropsychiatric symptoms like hallucinations, delusions, 
disorganized thinking, and mood swings be reduced to specific 
genes? Noted biologists like Lewontin (1991) and Rose (1995) 
suggest that psychiatric disorders cannot be reduced to specific 
genes. Strohman (1997) suggests that epigenetic defects underlying 
common disorders cannot be identified. He suggests that in future, 
genetic testing will be restricted to the rare disorders that show 
Mendelian inheritance. More recently, Drayna (2006) suggests 
that although simple human behaviors instinctive and crucial 
to survival and reproduction may be reducible to a set of genes, 
more generally, human behavior cannot be viewed as a product 
of a set of genes. Gold (2009) opines that research on the biology 
of psychiatric disorders is a gamble, like all scientific research. His 
answer to the question whether reduction is possible in psychiatry 
is that we will only know after the science has been done.

These workers’ ideas appear to contradict those of Francis 
Crick (1966) who in Of Molecules and Men suggests that the 
ultimate aim of the modern movement of biology is to explain all 
biology in terms of physics and chemistry. Even Crick’s colleague 
James Watson (2003) felt that the secret of life lies in the sequence 
of bases in DNA. Watson felt that there is no need to invoke 
vitalism (the theory that the origin and phenomena of life are 
determined by a force or principle distinct from purely physical or 
chemical forces) to explain life, and, instead, life can be explained 
by physicochemical processes. However, both Watson and Crick 
have been criticized by others (Lewontin, 1991; Strohman, 1997) 
for their extreme reductionist views.

It is significant that despite a lot of research spread across 
about a century, there is no conclusive and unambiguous 
evidence of consistent changes in biochemical (Kruse et al., 
2017), neuropathological (Gandal et al., 2018), and neuroimaging 
studies (Brugger and Howes, 2017) of neuropsychiatric disorders 
like SZ, BD, and MDD. Presently, the best way to diagnose 
whether someone has such a disorder or not is to take a good 
history and conduct a good mental status, neurological, and 
physical examination (Kruse et al., 2017).

The Role of Epigenetics in 
Neuropsychiatric Disorders
A large amount of research on the epigenetics of neuropsychiatric 
disorders has been conducted over the past few decades. The 
data gathered so far have shown some interesting disparities 
(Peedicayil et al., 2016b): the role of epigenetics in the 
development of neuropsychiatric disorders with a major 
neurological component like FXS, HD, and RTT has been well 
characterized. However, in neuropsychiatric disorders with 
a major psychiatric component like SZ, BD, and MDD, the 
elucidation of the role of epigenetics in the development of disease 
is proving to be arduous. The reasons suggested for this disparity 
could be the following (Peedicayil et al., 2016b): the investigation 
of the role of epigenetics in neuropsychiatric disorders with a 
major neurological component started earlier; neuropsychiatric 
disorders with a greater neurological component are biologically 
less complex; there is a greater role played by environmental 
factors in the development of neuropsychiatric disorders with a 
greater psychiatric component. These three explanations could 
be related to each other (Peedicayil et al., 2016b).

Difficulties in Identifying Biomarkers in 
Neuropsychiatric Disorders
There are several difficulties in finding clinically useful biomarkers 
for many neuropsychiatric disorders. Liu (2016) has elegantly 
discussed these problems: First, for many neuropsychiatric 
disorders, we have a limited knowledge of the pathogenesis of 
the disorder, and the pathogenesis involves genetic, epigenetic, 
and environmental factors. Second, many neuropsychiatric 
disorders have subtypes. Hence, it is difficult to obtain specific, 
stable, and consistent biomarkers for clinical use. The variation 
in gene expression between cells, tissues, and patient populations 
makes identification of biomarkers difficult. Third, the use 
of the techniques, instruments, and machines for measuring 
disease parameters are complicated. Additionally, brain tissues 
are difficult to access, and peripheral tissues have to be used as 
proxies for brain tissues (Lin and Huang, 2016). Moreover, for 
many disorders like SZ, BD, and MDD, there are no suitable 
animal models (Lin and Huang, 2016).

There already are molecular tests for diagnosing some 
neuropsychiatric disorders. Such neuropsychiatric disorders 
have a greater neurological than a psychiatric component. 
They include RTT (Eyal et al., 2019), HD (Nance, 2017), and 
FXS (Wattendorf and Muenke, 2005). It must be noted that the 
molecular tests for these disorders involve genetic rather than 
epigenetic testing.

For the past several decades, a lot of research has been 
conducted to determine the genetic basis of neuropsychiatric 
disorders like SZ, BD, and MDD. Such research has the potential 
to throw light on the pathogenesis of these disorders and also 
identify genetic biomarkers for the disorders. Such research 
includes genetic linkage studies, genetic association studies, and 
genome-wide association studies (GWAS). So far, no genetic 
mutation or polymorphism predisposing to such disorders 
has been conclusively identified (Ebstein, 2018; Peedicayil and 
Grayson, 2018a; Peedicayil and Grayson, 2018b). In GWAS, 
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several associations have been identified (Ebstein, 2018; 
Peedicayil and Grayson, 2018a; Peedicayil and Grayson, 2018b). 
However, association does not imply causation (Altman and 
Krzywinski, 2015). Research on the epigenetic mechanisms 
underlying neuropsychiatric disorders like SZ, BD, and MDD 
has led to several findings (Guidotti et al., 2014; lkegame et al., 
2013; Kang et al., 2019; Liu et al., 2018; Mor et al., 2013; Tseng 
et al., 2014; Ziegler et al., 2016) (Table 1). However, these need 
confirmation and validation. In this context, it has been suggested 
that it would be a good idea to combine genetic and epigenetic 
data, as well as other “omic” data in order to distinguish signals 
from background noise and get a clearer picture about the 
pathogenesis of these disorders (Califano et al.2012; Feinberg, 
2018; Wang et al., 2018).

Systems (Network) Biology and 
Neuropsychiatric Disorders
It is becoming increasingly clear that a clear biological function 
usually cannot be attributed to a single molecule. Instead, most 
biological traits arise from complex interactions between a 
cell’s many constituents like DNA, RNA, and small molecules 
(Barabasi and Oltvai, 2004). A key challenge for biology in 
this century is to determine the structure and dynamics of the 
complex intercellular web of interactions contributing to the 
structure and functioning of a cell. Many types of interaction 
webs or networks emerge from a sum of these interactions. None 
of these networks are independent. Instead, they form a “network 
of networks” that is responsible for the behavior of a cell. A 
major challenge of contemporary biology is to theoretically and 
experimentally map out, understand, and model, in quantifiable 
terms, the topological (structural) and dynamic properties of the 
various networks that control the behavior of a cell (Barabasi and 
Oltvai, 2004).

The new area of systems or network biology could provide 
a solution for this challenge. Systems biology was pioneered 
by the noted scientist Leroy Hood using the galactose gene 
regulatory circuit in the budding yeast Saccharomyces cerevisiae 
(Ideker and Hood, 2019). Systems biology regards biology as 

an information science, and investigates biological systems 
as a whole, including their interactions with the environment 
(Wang et al., 2010). It evolved from the field of systems 
engineering in which a linked collection of component parts 
constitute a network whose output the engineer wishes to 
predict. It refers to a comprehensive quantitative analysis of the 
manner in which all components of a biological system interact 
functionally over time (Aderem, 2005). Major developments 
in technology have taken place since the 1980s. They include 
automated DNA sequencing, microarray analysis, advances 
in mass spectrometry, next-generation sequencing, and the 
internet. The knowledge of the complete sequences of genomes, 
along with technology allowing the monitoring of the flow of 
information resulting in specific cell functions, enabled systems 
biology to develop (Aderem, 2005), a discipline that may change 
the intellectual and experimental landscape on which we stand 
(Hiesinger and Hassan, 2005).

All systems can be analyzed by defining their static topology 
(architecture) and their dynamic (time-dependent) response 
to perturbation (Loscalzo, 2018). Any system of interacting 
elements can be schematically represented as a network 
comprising individual elements (nodes) connected by edges. 
The nature of the edges reflects the degree of complexity of the 
system. In simple systems, the nodes are linked linearly with a 
few feedback or feed-forward loops modulating the system in 
predictable ways. In complex systems, the nodes are linked in 
complicated non-linear networks. An important property of 
complex systems is that simplifying their structures by identifying 
and characterizing their individual nodes or edges or simple 
sub-structures need not yield a predictable understanding of a 
system’s behavior. Hence, the system is greater than, or different 
from, the sum of its individual parts (Loscalzo, 2018).

Systems biology will help us attain a more holistic picture of 
disease states and could vindicate the reductionist approach to 
biology (Hiesinger and Hassan, 2005). It will not only facilitate 
basic biological research but also provide new ways to understand 
human diseases, identify biomarkers, and develop treatments for 
diseases (Wang et al., 2015). Moreover, systems biology may help 
answer questions related to complex organs like the brain, questions 
which cannot be answered with only the currently available tools of 
molecular biology and genomics (Villoslada et al., 2009).

Systems Biology and Biomarkers in 
Neuropsychiatric Disorders
Systems biology could help identify biomarkers for neuropsychiatric 
disorders (Figure 1). As discussed by Lausted et al. (2014), the 
challenge in identifying biomarkers for complex disorders is to 
distinguish a small signal from a large amount of noise. The usual 
approach to blood-based biomarker discovery is to compare 
molecular profiles of blood samples from normal individuals with 
those from patients. Inevitably, large numbers of differences are 
found. However, a lot of these biomarkers is noise (Köhler and 
Seitz, 2012). A systems approach to biomarkers provides powerful 
tools for distinguishing signals from noise (Ideker et al., 2011; 
Lausted et al., 2014). This is because networks provide a distinct 
and rational framework for describing interactions between genes, 

TABLE 1 | A partial list of epigenetic changes in some neuropsychiatric 
disorders.

Sl. No. Epigenetic Change Disorder Tissue

1. Hypermethylated GAD1, RELN 
genes

SZ, BD Peripheral blood 
cells

2. Hypermethylated BDNF gene SZ, BD, MDD Peripheral blood
3. Elevated miR-382-5p SZ Olfactory epithelium
4. Several miRNAs SZ PBMC
5. FKBP5 hypermethylation PTSD Peripheral blood
6. Hypomethylated MAOA gene PD Peripheral blood
7. Decreased 5-hmC MDD Leukocytes

BDNF, Brain-derived neurotrophic factor; BD, Bipolar disorder; GAD1, Glutamic acid 
decarboxylase1; hmC, Hydroxymethylcytosine; MDD, Major depressive disorder; 
miRNA, microRNA; PBMC, Peripheral blood mononuclear cells; PD, Panic disorder; 
PTSD, Post-traumatic stress disorder; SZ, Schizophrenia. References: 1. Guidotti et al. 
(2014); 2. Ikegame et al. (2013); 3. Mor et al. (2013); 4. Liu et al. (2018); 5. Kang et al. 
(2019); 6. Ziegler et al. (2016); 7. Tseng et al. (2014).
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RNA, proteins, and metabolites, and organizing the available data 
simultaneously (Liu, 2016). Molecules interact as a network in 
performing their functions. The nodes represent these molecules and 
the edges represent their physical and functional relationships. The 
network provides a topological representation of a complex system 
and the data characterize its specific condition by quantitatively 
measured values of a large number of molecules. Systems biology 
uses sophisticated computer software “omics”-based discovery 
tools and advanced computational techniques to understand 
the behavior of biological systems and identify diagnostic and 
prognostic biomarkers for complex disorders (Alawieh et al., 2012). 
A systems biology biomarker differs from traditional individual 
biomarkers in that a systems biology biomarker is a sub-network 
comprising two or more differentially expressed components in 
control samples versus disease samples (Wang et al., 2015).

Lausted et al. (2014) suggests that a systems biology approach for 
the discovery of biomarkers needs to use the following principles: 
1) Blood is the ideal tissue/fluid for assessing biomarkers since it 
bathes all organs and contains secreted or released proteins from all 
these organs (however, it must be noted that for neuropsychiatric 
disorders there is a caveat regarding this principle in that the blood–
brain barrier does not permit many molecules from crossing). 2) The 
diagnostic analyses should be conducted in a longitudinal manner so 

that changes in disease states can be followed. 3) The analyses should 
be quantitative. 4) Each patient should be his or her own control. 5) 
Multiple biomarkers should be measured since testing the status of 
multiple networks within the organ of interest is advantageous and 
probably needed. 6) Biomarkers may be of different informational 
types, like mRNAs, miRNAs, proteins, metabolites, and lipids.

In order to overcome the current limitations of systems biology 
and boost the efficiency of the systems biology approach for 
identifying biomarkers in neuropsychiatric disorders, researchers 
are coming up with innovative ideas and solutions like using 
neuroimaging techniques to study structural brain changes in 
patients (Frank et al., 2018), using induced pluripotent stem cell 
technology to model brain disorders (Schadt et al., 2014), and using 
endophenotyes (measurable components unseen by the unaided eye 
along the pathway between disease and distal genotype) of diseases 
(Gottesman and Hanson, 2005).

There is currently a new initiative called “The Psychiatric Cell Map 
Initiative” which aims to identify the physical and genetic interaction 
networks of neuropsychiatric disorders, and then using these data 
to connect genomic data to neuroscience and finally the clinic 
(Willsey et al., 2018). The initiative will include geneticists, structural 
biologists, neurobiologists, systems biologists, and clinicians; use 
many experimental approaches; and create a collaborative team for 

FIGURE 1 | Diagrammatic and simplified representation of the use of systems biology to identify biomarkers for neuropsychiatric disorders. 1) Collection of 
multiple types of data from patients, thereby providing the resources for the discovery of biomarkers. 2) The data gathered about molecules like DNA, RNA, 
proteins, and metabolites are organized by a network model. Components of networks like nodes and edges provide the materials for identifying disease 
biomarkers. 3) Computerized selection is done of specific features and abilities in network components for classifying various phenotypic states. 4) The data 
obtained are evaluated and validated in order to distinguish signal from noise. 5) Systems biology-based biomarkers are used to distinguish phenotypic 
states like normal and disease states.
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long-term investigation. Its goal is to determine novel molecular 
and functional interaction data and pathway-level insights with 
regard to risk genes. The results of this initiative could have several 
applications, including identification of clinically useful biomarkers 
(Willsey et al., 2018).

Concluding Remarks
Neuropsychiatric disorders appear to be entirely biological: 
based on the activities of genetic and epigenetic mechanisms of 
expression of genes in neurons and other types of cells in different 
parts of the brain. As James Watson (1963) remarked in his 1962 
Nobel banquet speech, the day he and Francis Crick discovered 
the structure of DNA, “they knew a new world had been opened 
and that an old world that seemed rather mystical was gone.” There 
is unlikely to be a need to invoke mysticism or vitalism to explain 
partly or entirely our thoughts and feelings, normal or abnormal. 
However, due to the inordinate complexity of the brain, it remains 
to be seen whether neuropsychiatric disorders like SZ, BD, and 
MDD can be reduced to proteins, amines, or nucleic acids. For 
several decades, researchers have tried to find proteins and amines 
as biomarkers for these disorders, with no avail (Kruse et al., 2017). 
If these disorders could not be reduced to these molecules despite 
voluminous research, they may not also be reducible to nucleic 

acids like DNA. Regarding the human brain and mind, “the whole 
may be greater than the sum of its parts,” a phrase attributed to 
Aristotle in its original form. Peter Medawar (1984) in The Limits 
of Science states that science can solve questions that come under 
the realm of science, but may not be able to solve questions that 
come under the realms of religion and philosophy. I feel that the 
development of neuropsychiatric disorders like SZ, BD, and MDD 
comes under the realm of science, and not religion and philosophy, 
and should be solvable by the methods of science. The methods 
and techniques of systems biology, incorporating epigenetic and 
other data, may help identify clinically useful biomarkers for 
neuropsychiatric disorders.
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In the last 10 years, major advances have been made in the diagnosis and development 
of selective therapies for several blood cancers, including B-cell non-Hodgkin lymphoma 
(B-NHL), a heterogeneous group of malignancies arising from the mature B lymphocyte 
compartment. However, most of these entities remain incurable and current treatments 
are associated with variable efficacy, several adverse events, and frequent relapses. 
Thus, new diagnostic paradigms and novel therapeutic options are required to improve 
the prognosis of patients with B-NHL. With the recent deciphering of the mutational 
landscapes of B-cell disorders by high-throughput sequencing, it came out that different 
epigenetic deregulations might drive and/or promote B lymphomagenesis. Consistently, 
over the last decade, numerous epigenetic drugs (or epidrugs) have emerged in the 
clinical management of B-NHL patients. In this review, we will present an overview of the 
most relevant epidrugs tested and/or used so far for the treatment of different subtypes 
of B-NHL, from first-generation epigenetic therapies like histone acetyl transferases 
(HDACs) or DNA-methyl transferases (DNMTs) inhibitors to new agents showing selectivity 
for proteins that are mutated, translocated, and/or overexpressed in these diseases, 
including EZH2, BET, and PRMT. We will dissect the mechanisms of action of these 
epigenetic inhibitors, as well as the molecular processes underlying their lack of efficacy 
in refractory patients. This review will also provide a summary of the latest strategies being 
employed in preclinical and clinical settings, and will point out the most promising lines of 
investigation in the field.

Keywords: B-cell lymphoma, DNMT, EZH2, HDAC, PRMT inhibitor, BET bromodomain inhibitor (BETi),  
combination therapy

INTRODUCTION

Characteristics of B-Cell Non-Hodgkin Lymphoma (B-NHL)
At the origin of 4% of all cancers and more than 90% of the cases of lymphoma, B-NHLs comprise 
a heterogeneous group of lymphoid neoplasms. According to the last World Health Organization 
hematopoietic and lymphoid tumor classification, more than 40 distinct entities are categorized, 
according to a combination of morphological, immunophenotypic, genetic, and clinical 
features, having each entity its own clinical course and requiring specific treatments (Table 1)  
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(Campo  et  al., 2011; Scott and Gascoyne, 2014; Swerdlow 
et al., 2016). Originated from either mature or immature 
B cells, B-NHLs are characterized by the proliferation of 
lymphocytes, mainly in lymphoid organs and in extranodal 
tissues. Their diversity can often be traced to a particular stage 
of differentiation, from the bone marrow where the normal 
precursor B cell is originated to secondary lymphoid tissues 
where B cells undergo multiple rounds of selection before their 
differentiation into plasma cells or memory B cells. During 

these processes, the VDJ heavy chain is formed, followed by 
VJ light-chain gene rearrangement, which allows the pre-B 
cells to express intracytoplasmic μ-heavy chains. Subsequently, 
immature immunoglobulin (Ig)-positive B cells are formed. 
Within the lymph node, and in contact with a determined 
antigen, naïve B cells can mature into IgM-secreting plasma 
cells or may proliferate into primary follicles to form germinal 
center (GC) centroblasts. Upon maturation, they further 
differentiate into centrocytes, which give place to memory B 

TABLE 1 | Classification of B-cell non-Hodgkin lymphoma.

Name Cell of origin Genetic aberration Involved genes Frequency (%) References

B-ALL Hematopoietic stem cell or  
B-cell progenitor

Hyperdiploidy 
t(12;21)(p13.2;q22.1) 
t(1;19)(q23;p13.3) 
t(9;22)(q34.1;q11.2)

– 
ETV6/RUNX1 
TCF3/PBX1 
BCR/ABL1

31* 
28* 
9* 
5*

(Yeoh et al., 2002)

CLL/SLL Naïve (unmutated IGHV  
subset) or memory (mutated  
IGHV subset) B cell

del(13q14.3) 
– 
Trisomy of 12 
del(11q)

–
SF3B1 
–
ATM

54 
21 
14 
12

(Haferlach et al., 2007)
(Landau et al., 2015)

LPL Post-follicular B cell – 
del(6q) 
–

MYD88 
– 
CXCR4 
ARID1A

90 
43 
27 
17

(Hunter et al., 2014)

NMZL Post-germinal center  
marginal zone B cell

Gains of 3p 
Gains of 18q 
del(6q23)

– 
– 
TNFAIP3

24 
24 
16

(Rinaldi et al., 2011)

EMZL-MALT Post-germinal center marginal  
zone B cell

Trisomy of 3 
del(6q23) 
t(11;18)(q21;q21) 
Trisomy of 18

– 
TNFAIP3 
BIRC3/MALT1 
–

31 
30 
13 
11

(Streubel et al., 2004)
(Rinaldi et al., 2011)

SMZL Marginal zone B cell with or  
without antigen exposure

del(7q) 
Gains of 3q 
del(17p13) or mutation
–

–
– 
TP53 
KLF2

26 
20 
16 
12

(Rinaldi et al., 2011)
(Parry et al., 2015)

HCL Late activated memory B cell –
–

BRAF 
MAP2K1

100 
48

(Tiacci et al., 2011)
(Waterfall et al., 2013)

FL Germinal center B cell t(14;18)(q32;q21)
–
– 
–

IGH/BCL2 
KMT2D 
CREBBP 
TNFRSF14

89 
82 
64 
35

(Horsman et al., 1995)
(Okosun et al., 2014)

MCL Peripheral B cell of the inner  
mantle zone

t(11;14)(q13;q32) 
Gain of 3q26 
del(11q) or mutation 
del(17p13) or mutation

IGH/CCND1 
– 
ATM 
CCND1 
TP53

57 
49 
41 
34 
27

(Beà et al., 1999) 
(Beà et al., 2013)

DLBCL-GCB Peripheral mature B cell of  
germinal center origin

– 
del(1p36) or mutation 
Gains of 2p16 
t(18q21)

KMT2D 
TNFRSF14 
REL 
BCL2

46 
38 
30 
28

(Dubois et al., 2016)
(Scholtysik et al., 
2015)(Roulland et al., 
2018)

DLBCL-ABC Peripheral mature B cell of  
germinal center exit or post- 
germinal center

del(9p21) 
del(6q21) or mutation 
–
–

CDKN2A 
PRDM1 
KMT2D 
MYD88

47 
41 
41 
28

(Scholtysik et al., 
2015)(Dubois et al., 
2016)

BL Germinal center B cell t(8;14)(q24;q32) 
–Other t(8q24)

MYC/IGH 
ID3 
TCF3 
MYC

77 
58 
29 

8–15

(Toujani et al., 2009)
(Schmitz et al., 2012)

*Frequency in pediatric cases. B-ALL, B-cell acute lymphocytic leukemia; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma;  
LPL, lymphoplasmacytic lymphoma; NMZL, nodal marginal zone lymphoma; EMZL-MALT, extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue; 
SMZL, splenic marginal zone lymphoma; HCL, hairy cell leukemia; FL, follicular lymphoma; MCL, mantle cell lymphoma; DLBCL-GCB, diffuse large B-cell lymphoma of 
germinal center B-cell subtype; DLBCL-ABC, diffuse large B-cell lymphoma of activated B-cell subtype; BL, Burkitt lymphoma.

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 986255

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Epigenetic Drugs in B-NHLRibeiro et al.

3

cells or plasma cells. Within the GC, somatic hypermutation in 
the Ig heavy or light chain variable region (IGHV or IGHL) genes 
leads to increased antigen affinity.

Although tightly regulated, the B-cell differentiation 
process and especially the antibody diversification phase 
can be accompanied by inherited events that may favor 
lymphomagenesis, such as chromosomal translocations, 
oncogene activation, and/or inactivating mutations in tumor 
suppressor genes. Infection by determined viruses, such as the 
Epstein–Barr virus, has also been involved in lymphomagenesis. 
The malignant counterparts of the early B-cell differentiation 
steps account for B lymphoblastic lymphomas, which harbor 
high similarity with B progenitor cells. On the other hand, 
mantle cell lymphomas (MCLs) and a subset of chronic 
lymphocytic leukemia (CLL) with unmutated IGHV are 
thought to derive from naive B cells and pre-GC mature B 
cells expressing the CD5 surface marker. Other GC-originated 
lymphomas, including follicular lymphoma (FL), Burkitt’s 
lymphoma (BL), a subset of diffuse large B-cell lymphoma 
(DLBCL), and Hodgkin’s lymphoma (HL), present mutations 
in IGHV gene. Additional entities, including marginal zone 
lymphoma (MZL), lymphoplasmacytic lymphoma, CLL with 
somatic IGHV mutation, another subset of DLBCL, and 
multiple myeloma (MM) correspond to post-GC cells. Each 
lymphoma subtype retains key features of their cell of origin 
as judged by the similarity of immunophenotype, histological 
appearance, and gene expression profiles (Seifert et al., 2013) 
(Table 1). The putative normal B-cell counterpart of each 
B-cell lymphoma is summarized in Figure 1.

In the last decade, loads of evidences have suggested an 
association between the frequent alterations in chromatin state 
and epigenetic regulators observed in B-NHL patients, and 
disease formation and progression.

Altered Chromatin-Modifying Enzymes  
in B-NHL
Contrary to the general belief that only accumulations of 
DNA mutations might lead directly to the development of 
tumorigenic processes, it has been progressively reported 
a growing subset of epigenetic alterations lying at the basis 
of many malignancies, including those occurring in lymph 
nodes. Interestingly, in B-cell lymphomas, certain somatic 
mutations in chromatin-modifying enzymes account for 
several epigenetic alterations, suggesting that an aberrant 
epigenetic landscape in B-NHL may be a consequence of 
genetic alterations associated with a particular lymphoma 
subtype. For instance, deleterious and/or loss of function 
mutations in the histone acetyltransferase CREB binding 
protein (CREBBP) or the E1A binding protein 300 (EP330) 
have been reported in about 40% of DLBCL and FL patients 
as well as in other lymphoma subtypes (Morin et al., 2011; 
Pasqualucci et al., 2011b). Recurrent point mutations in the 
histone acetyl transferase (HAT) recruiting gene myocyte 
enhancer binding factor 2B (MEF2B) have been also described 
in 15% of FL and 13% of DLBCL patients with germinal center 
B cell (DLBCL-GCB) subtype (Morin et al., 2011). Although 
no mutations have been reported in the genes coding for 
histone deacetylases (HDACs), several members of this 
family like HDAC1, 2, and 6 can be overexpressed in DLBCL, 
in association with a decrease in the DNA accessibility to the 
transcription machinery (Marquard et al., 2009).

In addition to mutations in chromatin‐regulatory proteins, 
epigenetic modifications at chromatin level are also commonly 
observed in B-NHL as a result of profound changes in DNA 
methylation patterns. Indeed, while hypo- and hyper-DNA 
methylation status have been linked to the pathogenesis of 
several cancer subtypes, somatic mutations in epigenetic 
genes codifying for DNA methylation regulators have been 
particularly well associated to a repressed chromatin state and 
to malignant processes in B-NHL (Esteller et al., 2001; Hassler 
et al., 2013). Among the main reported alterations, activating 
mutations in enhancer of zeste homolog 2 (EZH2), a histone 
methyltransferase (HMT) gene, were found in 22% of DLBCL-
GCB patients and 7% of FL patients (Morin et al., 2010). Further 
loss‐of‐function mutations were observed in the histone-Lysine 
N-Methyltransferase 2D (MLL2/KMT2D) gene in about 90% of 
FL and 30% of DLBCL patients (Morin et al., 2011; Pasqualucci 
et al., 2011b; Lohr et al., 2012). Concretely, MLL2 presents a 
defective SET domain when mutated by either truncation or 
frameshift mutations, leading to a reduced H3K4 methylation 
activity (Shilatifard, 2008; Morin et al., 2011; Pasqualucci et al., 
2011b; Lohr et al., 2012).

Hence, B-NHL occurrence as a result of disruption in 
epigenetic mechanisms has generated a strong rationale to 
target epigenetic and chromatin regulators for drug discovery 
attempts. To address these alterations, several Food and Drug 
Administration (FDA)–approved epigenetic-modulating 
agents, whose clinical use has been mainly restrained so far 
to other hematological malignancies (Popovic et al., 2013), 
are now being made available for their evaluation in B-NHL. 

FIGURE 1 | Major B-cell non-Hodgkin lymphoma subtypes arise from 
different cell of origin within the lymph node. Mantle cell lymphomas 
(MCL) arise from naive B cells or germinal center (GC) B cells found within 
the mantle zone. Marginal zone lymphomas initiate from naive B cells or 
GCB that have entered the marginal zone. GCB are the origin of follicular 
lymphomas (FL), Burkitt lymphoma (BL), and diffuse large B-cell lymphomas 
(DLBCL) when still in the germinal center. This last DLBCL appears to also 
form GCB within the marginal zone or from fully developed memory B cells.
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These agents include the HDAC inhibitors romidepsin (FK228, 
depsipeptide), vorinostat (suberanilohydroxamic acid, SAHA), 
panobinostat (LBH589), and belinostat (PXD101); the DNA 
methyltransferase (DNMT) inhibitors (hypomethylating 
agents, HMAs) azacitidine (5-azacytidine) and decitabine 
(5-aza-2′-deoxycytidine); and the isocitrate dehydrogenase 
(IDH) inhibitors enasidenib (AG-221) and ivosidenib (AG-
120) (Table 2).

TARGETING wRITER EPIGENETIC 
ENZYMES

DNMT Inhibitors
DNA methylation is responsible for the control of gene expression 
and for maintaining genomic stability during embryogenesis and 
tissue differentiation (Meissner, 2010). This process is clonally 
inherited and preserved in daughter cells, and occurs through 
the inclusion of a methyl group at cytosine residues in CpG 
dinucleotides (Figure 2). It is carried out by the DNMTs, namely 
DNMT1 which primarily mediates maintenance methylation 
during cell division, and DNMT3A and 3B that regulate de novo 
DNA methylation (Belinsky et al., 2003; Hermann et al., 2004). 
DNA methylation is thought to have a significant role in the 
regulation of lymphoid compartment, as it has been demonstrated 
that differential recruitment of DNMT1, DNMT3A, and 
DNMT3B and consequent specific DNA methylation patterns 
are determined at early stages during lymphopoiesis and B-cell 
activation (Shaknovich et al., 2011; Lai et al., 2013).

While on the one hand, DNA methylation is essential for 
cell homeostasis, on the other hand, disturbance in methylation 
pattern have been widely described in cancer. Changes in CpG 
methylation are indeed commonly associated with malignant 
transformation and tumor progression (Berdasco and Esteller, 
2010). In addition, accumulating evidences suggest that 
aberrant epigenetic regulation, including DNA methylation, 
exerts an important role in regulating each cancer’s hallmarks 
(Flavahan et al., 2017). Illustrating this relationship in B-NHL, 

Shaknovich and collaborators demonstrated the relevance of 
DNA methylation in defining the molecular DLBCL subtypes 
(Shaknovich et al., 2010). It was further proposed that DNMT1 
and DNMT 3B overexpression may play a role in malignant 
progression of these tumors (Amara et al., 2010) and also in BL 
neoplasm (Robaina et al., 2015). In line with this, the disruption 
of DNA methylation pattern is correlated with disease severity 
and patient survival in DLBCL and FL (De et al., 2013).

Considering that the majority of cancers, including B-NHL, 
harbor an altered DNA methylation pattern, and also taking 
into account the reversibility of this alteration, the idea to 
modulate the methylation machinery to restore a “normal” 
DNA methylation state has attracted great attention in cancer 
treatment (Azad et al., 2013). The first two DNA methylation 
epigenetic compounds (DNMTi) ratified by the FDA and the 
European Medicines Agency for cancer treatment, azacitidine 
and decitabine (Jones et al., 2016), were initially described as 
promising chemotherapeutic agents against myelodysplastic 
syndrome (MDS) and acute myeloid leukemia (AML), although 
with moderate efficacy and high toxicity (Li et al., 1970; Vogler 
et al., 1976). In further trials, low-dose decitabine and azacitidine 
demonstrated to be effective in these patients, improving both 
the response and the overall survival (OS), leading to their 
further approval (Table 2 and Figure 3) (Silverman et al., 2002; 
Fenaux et al., 2009; Lübbert et al., 2016). In B-NHL patients, 
two phase I studies using decitabine have been completed so far, 
but the response to therapy and the effect on DNA methylation 
were moderate (Stewart et al., 2009; Blum et al., 2010). Currently, 
azacitidine and decitabine are being evaluated alone or in 
combination in approximately 10 active clinical trials involving 
relapsed/refractory R/R B-NHL patients (Table 3). Considering 
the preliminary data of these trials, it seems premature to 
conclude that DNMTis can be used as monotherapy in B-NHL.

Although the mechanism of action of DNMTi is not well 
understood, the activity of decitabine and azacitidine is known 
to involve their incorporation into the DNA of proliferating cells, 
followed by irreversible inhibition of DNMT1 enzymatic activity 
and the addressing of this latest to proteasomal degradation 

TABLE 2 | FDA-approved epigenetic drugs for hematological malignancies.

Agent Target Indication Year of approval Current development

Azacitidine DNMT MDS 
CMML 
AML

2004

Decitabine DNMT MDS 
AML

2006 Atherosclerosis

Vorinostat HDAC CTCL 2006
Romidepsin HDAC CTCL 

PTCL
2009 
2011

HIVAutism

Belinostat HDAC PTCL 2014 Ovarian cancer
CTCL

Panobinostat HDAC MM 2015 CML 
MDS 

Breast cancer 
Prostate cancer

DNMT, DNA methyltransferase; HDAC, histone deacetylase; MDS, myelodysplastic syndrome; CMML, chronic myelomonocytic leukemia; AML, acute myeloid 
leukemia; CTCL, cutaneous T-cell lymphoma; PTCL, peripheral T-cell lymphoma; MM, multiple myeloma.
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(Ghoshal et al., 2005; Juttermann et al., 2006). Accordingly, 
two main molecular effects have been described for DNMTi 
inhibitors: (1) a global demethylation of gene promoters (mainly 
tumor suppressor genes) and (2) the activation of immune 
system and the triggering of an anti-tumor immune response 
(Groudine et al., 1981; Almstedt et al., 2010; Goodyear et al., 2010; 
Chiappinelli et al., 2015;). As an illustration, in DLBCL it has 
been described that decitabine can reverse DNA methylation and 
restore expression of important cancer-related pathways in vitro 

and in vivo (Li et al., 2002; Clozel et al., 2013), although in other 
studies a less drastic and transient effect was observed (Karpf, 
2004; McGarvey et al., 2006; Egger et al., 2007). Furthermore, 
DNMT inhibition is also linked to the demethylation of gene 
bodies, leading to oncogene downregulation (Wong et al., 2013; 
Yang et al., 2014).

Several new DNMTis have been developed in the last decade 
with potential activity in hematological malignancies. Among 
them, thioguanine (2-amino-1,7-dihydro-6H-purine-6-thione 
(6-tG)) has been approved by FDA to treat AML patients (Munshi 
et al., 2014). Its mechanism of action involves its incorporation 
into DNA, decrease in DNMT activity and DNA methylation, 
blockade of DNA and RNA synthesis, and ultimately cell death 
(Hogarth et al., 2008; Yuan et al., 2011; Flesner et al., 2014). 
Recently described as an experimental DNMTi, 5-fluoro-2′-
deoxycytidine (FdCyd) is currently undergoing a phase I/II 
clinical trial in combination with other drugs (Kinders et al., 
2011; Newman et al., 2015). Its mechanism of action involves the 
ability to block DNMT-dependent DNA methylation (Jones and 
Taylor, 1980; Beumer et al., 2008). 5,6-Dihydro-5-azacytidine is 
a reduced, hydrolytically stable form of 5-azacytidine nucleoside 
(Beisler et al., 1979). The mechanism of action is very similar 
to that described for azacytidine, with the advantage of a lower 
toxicity (Avramis et al., 1989). However, its evaluation in clinical 
settings revealed a reduced response rate and the rise of significant 
adverse effects (Samuels et al., 1998). Zebularine is another 
DNMTi, which has been previously described as tumor-selective 

FIGURE 2 | Mechanisms of action of common epigenetic enzymes. Histone methylation is regulated by histone methyltransferases (HMTs), such as the EZH2 
subunit of polycomb repressive complex 2 (PRC2), and histone demethylases (HDMTs). DNA methylation is established by DNA methyltransferases (DNMTs) and 
reversed by several enzymes like TET hydroxymethylases. Demethylation of both histones and DNA is inhibited by 2-hydroxyglutarate (2-HG), produced from 
α-ketoglutarate (α-KG) by mutant forms of IDH1/2 enzymes (mIDH). Histone acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases 
(HDACs). Bromodomain-containing proteins, such as CREB-binding protein (CBP), BET, or the BRD9 subunit of the SWI/SNF complex, bind to acetylated residues 
of histones.

FIGURE 3 | Timeline of FDA approvals of epigenetic-modulating therapies in 
hematological cancers. Source: https://www.accessdata.fda.gov/scripts/cder/daf/
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inhibitor of DNMTs (Cheng et al., 2004). Although there are a lot 
of evidences, both in vitro and in vivo, indicating the potential of 
zebularine as a demethylating agent in a wide range of tumors 
(Agrawal et al., 2018), its poor bioavailability has prevented its 
introduction into clinical trials (Ben-Kasus et al., 2005). More 
recently, 4′-thio-2′-deoxycytidine (TdCyd) and its 5-aza analog, 
5-aza-TdCyd, have been reported to downregulate DNMT1 and 
to exhibit anti-tumor activity in vitro and in human leukemia 
and lung cancer xenografts (Thottassery et al., 2014). Among 
these last molecules, TdCyd has already entered into phase I 
clinical evaluation (NCT02423057 and NCT03366116). Further 
molecules were developed with superior anti-tumoral efficacy 
and included guadecitabine (SGI-110), a second-generation 
DNMTi that harbors an improved DNA methylation inhibition 
in solid tumors both in vitro and in vivo (Chuang et al., 2010; 
Srivastava et al., 2015). A phase I clinical trial has provided 
promising results in patients with MDS and AML (Issa et al., 
2015). Fluorocyclopentenylcytosine (RX-3117) is a cytidine 
analog that presents an anti-tumor activity in a large set of tumor 
cells and in vivo. Its mechanism of action is associated with an 
inhibition of DNMT1 (Choi et al., 2012). This agent is being 
evaluated in a phase II study with R/R pancreatic or advanced 
bladder cancer (NCT02030067).

EZH2 Inhibitors
EZH2 constitutes the catalytic subunit of the polycomb 
repressive complex 2 (PRC2). Its structure is composed by a 
SET domain, typical in chromatin-associated regulators of gene 
expression (Xiao et al., 2003). It catalyzes histone H3 lysine 27 
tri-methylation (H3K27me3) and the subsequent formation 

of heterochromatic regions and downregulation of the nearby 
genes (Bracken and Helin, 2009; Ferrari et al., 2014) (Figure 2). 
In B lymphocytes, EZH2 becomes expressed and inhibited in a 
cyclic manner. First, in pre-B lymphocytes, induction of EZH2 
expression is required for an optimal V(D)J recombination. Later 
on, during the migration to lymphoid tissues, it is downregulated 
until the GC reaction occurs, after which it becomes re-expressed 
to allow the silencing of the anti-proliferative genes cyclin-
dependent kinase inhibitor 2A (CDKN2A) and cyclin-dependent 
kinase inhibitor 1A (CDKN1A1) and the pro-differentiation genes 
interferon regulatory factor 4 (IRF4) and PR domain zinc finger 
protein 1 (PRDM1/BLIMP1) during the somatic hypermutation 
and isotype switch processes. Finally, EZH2 becomes repressed 
when mature B cells leave the GC (Velichutina et al., 2010; 
Béguelin et al., 2013). Gain-of-function mutations in EZH2 
have been reported in several solid tumors and hematological 
cancers. The consequence of those mutations in GC lymphocytes 
is the irreversible silencing of certain cell cycle checkpoint and 
plasma cell differentiation genes (Béguelin et al., 2013). The main 
gain-of-function mutation identified in DLBCL and FL patients 
includes a tyrosine deletion (Y641) at the EZH2 SET domain that 
increases the levels of H3K27me3, promoting a repressed state of 
cell differentiation and the repression of tumor suppressor genes 
(Morin et al., 2010; McCabe et al., 2012a). Similar effects have 
been described as a consequence of the A677G mutation in EZH2, 
which has been characterized in multiple human lymphoma 
cell lines. A change in the substrate preferences accounts for 
the aberrant H3K27me3 levels observed in cells bearing EZH2 
mutant forms. Indeed, wt EZH2 displays preference for less 
methylated substrates whereas Y641 and A667G mutants prefer 
either substrates with higher methylation levels or show equal 

TABLE 3 | Selected examples of epigenetic drugs under clinical evaluation in B-NHL patients as single agents.

Epigenetic drug class Drug Diseases Sponsor Trial identifier

HDAC inhibitor Vorinostat FL, indolent B-NHL, MCL Merck Sharp & Dohme Corp. NCT00875056
Chidamide (Epidaza) R/R B-NHL Sun Yat-sen University NCT03245905
Abexinostat R/R FL Xynomic Pharmaceuticals, Inc. NCT03934567
Mocetinostat (MGCD0103) DLBCL, FL Memorial Sloan Kettering Cancer Center and 

MethylGene Inc.
NCT02282358

Ricolinostat(ACY-1215) R/R NHL Acetylon Pharmaceuticals Inc. and Columbia 
University

NCT02091063

Panobinostat CLL Peter MacCallum Cancer Centre, Australia NCT01658241
CDX101 Advanced lymphomas Cancer Research UK and Oxford  

University Hospitals
NCT01977638

IDH1 inhibitor Ivosidenib(AG-120) Advanced hematologic malignancies 
with an IDH1 mutation

Agios Pharmaceuticals, Inc. NCT02074839

BET bromodomaininhibitor CPI-0610 Progressive lymphomas Constellation Pharmaceuticals NCT01949883
BMS-986158 Lymphomas Dana-Farber Cancer Institute NCT03936465
Molibresib (GSK525762) NHL GlaxoSmithKline NCT01943851

EZH1/2 inhibitor DS-3201b R/R B-NHL Daiichi Sankyo Co., Ltd. NCT02732275
CPI-1205 Progressive B-cell lymphomas Constellation Pharmaceuticals NCT02395601
Tazemetostat R/R B-NHL Eisai Co., Ltd. NCT03009344
Tazemetostat R/R NHL with EZH2 gene mutations National Cancer Institute (NCI) NCT03213665

PRMT inhibitor JNJ-64619178 R/R B-NHL Janssen Research & Development, LLC NCT03573310
GSK3326595 MDS, AML GlaxoSmithKline NCT03614728
GSK3368715 DLBCL GlaxoSmithKline NCT03666988

DNMT inhibitor Decitabine R/R DLBCL Mingzhi Zhang, Zhengzhou University NCT03579082
EED inhibitor MAK683 Advanced DLBCL Novartis Pharmaceuticals NCT02900651

EED, embryonic ectoderm development. Source: https://clinicaltrials.gov/.

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 986259

https://clinicaltrials.gov/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Epigenetic Drugs in B-NHLRibeiro et al.

7

affinity for all three substrates (H3K73me0, me1, and me2) 
(McCabe et  al., 2012a). Interestingly, these gain-of-function 
EZH2 variants expressed in GC B-cell lymphomas seem to 
synergize with BCL2 deregulation, favoring the progression of 
these malignancies (Béguelin et al., 2013). On the other hand, 
overexpression of wt EZH2 has been also reported in B-NHL 
(Van Kemenade et al., 2001; Visser and Gunster, 2001), with a 
positive correlation being observed between EZH2 transcript 
levels, tumor aggressiveness, and disease prognosis (Abd Al 
Kader et al., 2013). Taking into account these considerations, it 
looks reasonable that inhibiting EZH2 activity could result in a 
potential therapeutic strategy to treat B-NHL.

In this context, many efforts directed to develop highly 
selective EZH2 inhibitors have been made in the last decade. 
EZH2 activity was initially targeted by means of the carbocyclic 
adenosine analog 3-deazaneplanocin A (DZNep), an inhibitor of 
S-adenosylhomocysteine hydrolase. DZNep promotes a global 
increase in the levels of 5-adensylhomocystein and a further 
inhibition in the activity of many methyltransferases, including 
EZH2. Nevertheless, due to its mechanism of action, it resulted to 
be too unspecific as many other methyltransferases were similarly 
affected. In 2012, a small chemical compound named El1 with a 
good capacity to inhibit the Y641 mutant and wt EZH2 form 
was evaluated for the treatment of DLBCL. This compound was 
designed as a competitive inhibitor of the EZH2 methyl group 
donor S-adenosyl--methionine (SAM). Unlike DZNep, El1 showed 
a 10,000-fold selectivity for EZH2 over other HMTs and a 90-fold 
selectivity over EZH1 methyltransferase. This compound promoted 
a global decrease in methyl donor availability, leading to a lower 
global levels of H3K27me3 (Qi et al., 2012). Other subsequent 
compounds directed specifically against EZH2 are the dual 
EZH2/1 inhibitors UNC1999, with a potent capacity to suppress 
H3K27me3 and H3K27me2 levels and to inhibit proliferation of 
mixed lineage leukemia (MLL)-rearranged cells, and the OR-S1 
and OR-S2 inhibitors, which were assessed for the treatment of 
DLBCL, AML, and MM (Konze et al., 2013; Honma et al., 2017). 
Later on, EPZ0005687 and GSK126, two selective and SAM-
competitive EZH2 inhibitors with a higher inhibitory capacity 
for the mutant EZH2 form, were developed and tested in DLBCL 
and FL (McCabe et al., 2012b; Knutson et al., 2014). In 2014, 
GSK126 entered into phase I clinical trials with B-NHL and MM 
patients (NCT02082977) (Zeng et al., 2016; Yap et al., 2018), but 
unfortunately that study had to be discontinued as a consequence 
of insufficient therapeutic activity, evidencing the need to keep 
working in the improvement of those inhibitors. Also in 2014, CPI-
360 and its more potent and stable analog, CPI-169, were reported 
to be effective EZH2 inhibitors for the treatment of several B-NHL 
subtypes (Vaswani et al., 2016). An improved version of these latest, 
CPI-1205, showed a higher oral bioavailability and was first tested 
in preclinical studies with xenograft mouse models generated from 
human B-NHL cell lines and further challenged in phase I trials for 
the treatment of DLBCL (NCT02395601).

Valemetostat (DS-3201) is another potent wild-type (wt) 
and mutant EZH1/2 inhibitor that demonstrated a strong anti-
proliferative effect against NHL, DLBCL, and T-cell lymphoma 
(Maruyama et al., 2017). Currently, tazemetostat (EPZ‐6438), 
another SAM competitive inhibitor with a high affinity for the wt 

and the mutant EZH2 forms, is being evaluated in clinical studies 
to treat R/R B-NHL and MM patients (NCT03456726) (Knutson 
et al., 2014; Gulati et al., 2018), reaching an overall response rate 
of 38% in a phase I clinical trial (Italiano et al., 2018).

Despite first promising results, single-agent treatment with 
EZH2 inhibitors is in general slightly effective in aggressive 
lymphomas. Among the possible mechanism(s) of resistance, 
overactivation of the phosphatidylinositol 3-kinase (PI3K) and 
mitogen-activated protein kinase (MAPK) pathways has been 
identified in GSK126-resistant DLBCL cells (Bisserier and 
Wajapeyee, 2018). Thus, it looks reasonable to prioritize the 
discovery of new drug combination associating EZH2 inhibitors 
with other compounds targeting key signaling pathways in order 
to prevent and/or overcome the occurrence of EZH2i resistance 
in lymphoid neoplasm with mutated EZH2.

PRMT Inhibitors
A conserved biological mechanism within all eukaryotic 
organisms, from yeast to higher mammals, is arginine 
methylation (Migliori et al., 2010). This post-translational 
modification is mediated by N-arginine methyltransferases 
(PRMTs), which catalyze the transfer of a methyl group, from 
SAM to the omega nitrogens found in terminus guanidine 
group of an arginine residue of the side chain. This transfer 
may occur in one or both nitrogens (Bedford and Clarke, 
2009). Among the nine different members of the PRMT family 
(Schubert et al., 2003), PRMT1 is the major enzyme responsible 
for arginine methylation followed by PRMT5, according to 
the observation that PRMT1 and PRMT5 knockout mice die 
at an early stage during development whereas mice lacking 
any of the other seven PRMTs are fully viable (Hadjikyriacou 
et al., 2015). Protein modifications performed by PRMTs 
are traditionally related to important genetic processes such 
as DNA repair and gene transcription, among others. More 
recently, PRMT functions have been linked to carcinogenesis 
and metastasis, giving to these enzymes the status of potent 
therapeutic targets in a variety of cancers where they are 
overexpressed, including colon, breast, prostate, and lung 
cancers, neuroblastomas, leukemias, and B-cell lymphoma 
(Yoshimatsu et al., 2011).

Within this family, upregulation of PMRT1 and PRMT5 
has been widely associated with hematological malignancies 
(Greenblatt et al., 2016; Smith et al., 2018). In particular, the 
expression and function of PMRT5 have been extensively 
examined during lymphomagenesis, as this enzyme is highly 
expressed in primary samples and cell lines from different 
leukemia and lymphoma subtypes, where it promotes the 
repression of tumor suppressors such as the retinoblastoma 
proteins. In these models, experimental studies have 
suggested that PRMT5 upregulation may be caused by 
overexpression of MYC and NOTCH oncogenes (Wang et al., 
2008). In transformed DLBCL, the S-methyl-5’-thioadenosine 
phosphorylase (MTAP) gene encoding for a critical methionine 
metabolism enzyme is deleted due to its proximity to the tumor 
suppressor gene CDKN2A (Dreyling et al., 1998), and this 
phenomenon sensitizes cancer cells to PRMT5 inactivation 
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(Marjon et al., 2016). A remarkable interplay has also been 
described between PRMT5 and the B cell lymphoma 6 (BCL6) 
oncogene during the lymphomagenesis in the GC (Lu et al., 
2018), suggesting that pharmacological inhibition of arginine 
methylation could be of special interest in BCL6-driven 
lymphoma. Regarding PRMT1, an interesting interaction 
exists between this enzyme and EZH2 in DLBCL-GCB 
tumors. Indeed, recent works have reported an increase in 
PRMT1-related histone arginine methylation in DLBCL-GCB 
cells resistant to EZH2 inhibition, in association with BCL-2 
overexpression and modulation of the B-cell receptor (BCR) 
downstream signaling, supporting the rational association 
of EZH2 and PRMT1 inhibitors in DLBCL patient samples 
(Goverdhan et al., 2017).

Among the multiple functional inhibitors that have been 
developed to target the different members of the family, 
PRMT1 and PRMT5 small molecule inhibitors have already 
shown great potential against B-NHL, either alone or upon 
their combination with other agents. As an illustration, 
promising results have been obtained with the specific 
PRMT5 inhibitor EPZ015666 (GSK3235025) when used as 
single agent in in vitro and in vivo models of MCL (Chan-
Penebre et al., 2015).

TARGETING ERASER EPIGENETIC 
ENZYMES: HDAC INHIBITORS

By favoring an open chromatin state, histone acetylation allows 
numerous transcription factors to bind DNA and to activate 
gene expression. At the same time, acetylated histones increase 
DNA accessibility to transcriptional activators and counteract 
the function of transcriptional repressors (McClure et al., 2018). 
Acetylation of histones and non-histone proteins is regulated 
through a correct balance between HAT and HDAC activities. 
Among these enzymes, the most advanced subfamily is human 
HDACs, which have been classified into four classes according to 
their sequence homology, activity, and subcellular localization. 
HDACs 1, 2, 3, and 8 constitute class I. HDAC 4, 5, 6, 7, 9, and 
10 belong to class II. Class III includes sirtuin 1 (SIRT1) and 
sirtuin 7 (SIRT7), two NAD-dependent structurally unrelated 
protein deacetylases (Minucci and Pelicci, 2006). Finally, class 
IV is represented by HDAC11. In contrast to class II HDACs 
which show a heterogeneous expression pattern, class I HDACs 
are found at particularly high levels in lymphoid cell lines and 
primary tumors, suggesting a predominant role of these latest in 
lymphomagenesis. Accordingly, the design of HDAC inhibitors 
(HDACis) in lymphoid malignancies has been mainly centered 
on this latest group of enzymes (Gloghini et al., 2009).

Several structurally distinct classes of HDACis have been 
developed. These molecules can be divided into five chemical 
groups: hydroxamic acids, cyclic peptides, electrophilic ketones, 
short-chain fatty acids, and benzamides. Pan-HDACis have 
the capacity to inhibit almost all HDACs with the exception of 
class III HDACs and include the hydroxamic acid derivatives 
vorinostat, givinostat (ITF2357), abexinostat, panobinostat, 
belinostat, and trichostatin A, the carboxylate sodium butyrate, 

and the cyclic peptide trapoxin (Bradner et al., 2010; Di Costanzo 
et al., 2014). Taking into account that HDACs can also modulate 
the function of several non-histone proteins regulating a number 
of physiological processes (Lane and Chabner, 2009), and that 
HDACs can simultaneously exert pro- and anti-leukemic 
activities (Heideman et al., 2013; Santoro et al., 2013), blocking 
individual HDACs with isotype-selective inhibitors specific 
for one or two classes of HDACs might represent a strategy of 
choice for the treatment of lymphoid tumors. In line with this, 
the isotype-selective HDACis include the benzamides entinostat 
(MS-275, SNDX-275) and mocetinostat (MGCD0103) (Fournel 
et al., 2008; Vannini et al., 2004), the hydroxamic acid derivative 
rocilinostat (ACY-1215) (Santo et al., 2012), and the cyclic 
peptide romidepsin, which show preference for HDAC1-6-8, 
HDAC6, and HDAC1-2, respectively (Lemoine and Younes, 
2010). Several HDACis like vorinostat, mocetinostat, and 
entinostat can be administered orally; conversely, other agents 
like romidepsin are given intravenously (Batlevi et al., 2016; 
Mann et al., 2007; Younes et al., 2011; Holkova et al., 2017). By 
inhibiting the catalytic activity of their target HDAC(s), these 
compounds impair the formation of HDAC–substrate complexes, 
thus altering the transcriptomic pattern of the malignant cells as 
well as the activity of non‐histone proteins, ultimately leading to 
growth arrest, differentiation, and induction of apoptosis (Qiu 
et al., 2000). Of importance, when compared to their malignant 
counterparts, healthy tissues are generally unaffected by HDACis 
(Mai et al., 2005).

A number of preclinical studies have highlighted a role 
for HDACi therapy in a range of B-cell lymphoma, including 
DLBCL, HL, and BL, either alone or in combination with 
other epidrugs such as HMAs, with small molecule agents or 
with standard chemotherapeutics (Buglio et al., 2008; Kretzner 
et al., 2011; Kewitz et al., 2012; Ageberg et al., 2013; Klein et al., 
2013; Rozati et al., 2016; Garrido Castro et al., 2018). Among 
these studies, the weak HDACi valproic acid was shown to 
overcome DLBCL cell resistance to the standard R-CHOP 
(rituximab, cyclophosphamide, doxorubicin, vincristine, 
prednisone) chemotherapeutic regimen (Ageberg et al., 2013). In 
preclinical models of DLBCL and MCL, panobinostat, belinostat, 
depsipeptide, and vorinostat were shown to evoke tumor growth 
arrest, differentiation, and/or apoptosis in vitro and/or in vivo, 
mediated by the accumulation of DNA damage upon PARP 
trapping (Valdez et al., 2018), G1 cell cycle arrest consequent 
to an increase in the expression of the cyclin-dependent kinase 
inhibitor p21, acetylation of histone H3 (Xue et al., 2016), or 
transcriptional activation of the BCL-2 family proapoptotic 
members BIM, BMF, and NOXA (Kalac et al., 2011; Xargay-
Torrent et al., 2011).

Based on these preclinical studies, several HDACis have 
entered clinical trials under different modalities (monotherapies 
or in combination). Many of these trials have been conducted 
in DLBCLs, FLs, and HLs using HDACis, either alone or in 
combinatorial therapies (Watanabe et al., 2010; Stathis et al., 
2011; Younes et al., 2012; Oki et al., 2013; Ogura et al., 2014; 
Chen et al., 2015; Morschhauser et al., 2015) (Table 2 and 
Figure 3). As monotherapy, HDACis have shown a wide range 
of response in lymphoma patients, varying from complete 
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remissions (CRs) to no response. In the absence of biomarkers 
for prediction of clinical outcome, the molecular mechanisms of 
resistance are poorly understood. Vorinostat was the first proved 
in relapsed B-NHL patients, including FL, MZL, and MCL. In 
a phase II study including relapsed FL, non-FL indolent NHL 
and MCL patients, oral vorinostat showed low levels as a single 
agent, with the exception of FL, in which an overall response rate 
(ORR) of 47–49% (referring to the proportion of patients with 
tumor size reduction of a predefined amount and for a minimum 
time period) and a CR rate of 23% was observed (Kirschbaum 
et al., 2011; Ogura et al., 2014). This agent was also tolerated, but 
displayed limited activity in another phase II trial against R/R 
DLBCL, with only 1/18 patients presenting complete response 
(Crump et al., 2008).

With the pan-HDACis abexinostat and quisinostat, or the 
class-specific mocetinostat and entinostat, the response rates 
were quite variable (from 12% to 56%), and mostly dependent 
on the drug and on the lymphoma subtype. The most robust 
responses were obtained with abexinostat in FL patients (56% 
ORR). This latest drug showed a unique pharmacokinetic profile 
and an optimized oral dosing schedule that allowed for a superior 
anti-tumoral activity. In a recent phase II study with patients 
with R/R B-NHL or CLL, among the evaluable patients the ORR 
was 28%, with highest responses observed in FL patients (ORR 
56%) and DLBCL (ORR 31%) (Ribrag et al., 2017). A phase II 
clinical trial with mocetinostat in patients with R/R DLBCL and 
FL showed promising results (Batlevi et al., 2017), whereas for 
entinostat only one B-NHL patient has been included in phase II 
trial; therefore, no conclusion can be made on its efficacy in this 
subgroup of patients (Kummar et al., 2007).

Similar to DNMTis, the effectiveness of the first-generation 
HDACis carries significant toxicity and is limited to 
hematopoietic malignancies, which makes them challenging 
to combine (Suraweera et al., 2018). It is believed that part of 
this toxicity may be related to the capacity of HDACis to alter 
directly the function of many non-histone proteins. Toxicity 
may also be due to widespread activity across HDAC isoforms; 
therefore, the focus of second-generation HDACi discovery 
was to enhance the discrimination over HDAC family members 
(Galli et al., 2010; Knipstein and Gore, 2011; Younes et al., 
2011; Santo et al., 2012; Evens et al., 2016). In this context, 
targeting HDAC6 was associated to the upregulation of CD20 
and consequent enhanced efficacy of anti-CD20 monoclonal 
antibody therapy (Bobrowicz et al., 2017). Also, tucidinostat 
(CS055/chidamide), the first oral subtype-selective HDACi, was 
approved for the treatment of refractory/relapsed PTCL by the 
China Food and Drug Administration. This compound inhibits 
HDAC1, HDAC2, HDAC3, and HDAC10, and has entered a 
phase II clinical trial as single-agent treatment for patients with 
R/R B-NHL (NCT03245905) based on preliminary evidences of 
clinical activity in DLBCL (Yang et al., 2018).

Another approach to maximize efficacy with manageable 
toxicity consists in developing dual inhibitors. In this field, 
CUDC-907, a novel first-in-class oral small molecule inhibitor 
of both HDAC (class I and II) and PI3K (class Iα, β, and δ), 
has demonstrated excellent levels of activity (55% ORR) and 
tolerability in DLBCL patients in a phase IA clinical trial (Younes 

et al., 2016). In a second phase IB trial, the drug has been tested 
in patients with R/R DLBCL and showed a response rate of 
37%, with a higher effect in MYC-altered versus MYC-unaltered 
patients (Oki et al., 2017). As a result of these encouraging 
initial data, this agent is currently being evaluated in a phase 
II study including DLBCL patients, and also in a phase I trial 
involving pediatric patients with lymphomas (NCT02674750 
and NCT02909777).

TARGETING READER EPIGENETIC 
ENZYMES

BET Inhibitors
Among the post-translational modifiers with ability to orchestrate 
chromatin organization, bromodomain (BD)-containing proteins 
are readers of Ac-K residues at the N-terminal histone tails. They 
act as scaffolds that enable histone attachment to the chromatin 
and form active multi-protein transcription complexes, thereby 
modulating chromatin dynamics and ultimately diversifying 
gene expression (Filippakopoulos et al., 2012; Chaidos et al., 
2015; Smith and Zhou, 2016). This family of proteins contains 46 
members, comprising nuclear proteins with HAT or HMT activity, 
chromatin remodelers, helicases, transcription co-activators, and 
mediators or scaffold proteins. They are subdivided into eight 
subfamilies (I to VIII), based on their structure and sequence 
similarities. Subfamily II is the most studied one and includes 
the bromodomain-containing proteins mBRDT, BRD2, BRD3, 
and BRD4 (Padmanabhan et al., 2016). Besides the presence 
of two bromodomains (BD1 and BD2) that allow acetylated 
chromatin recognition, these proteins harbor an extra-terminal 
domain, which is responsible for protein–protein interactions. 
This bromodomain and extra-terminal (BET) subfamily has thus 
the capacity to act as protein adaptors facilitating the recruitment 
of chromatin remodelers and transcription factors for further 
initiation and elongation of transcription (Delmore et al., 2011; 
Chaidos et al., 2015; Padmanabhan et al., 2016). Several reports 
have highlighted the importance of the BET proteins action 
over DNA enhancers for the regulation of certain oncogenes 
expression (Lovén et al., 2013). Altogether, these studies make 
BET proteins attractive therapeutic targets in cancer.

As interfering with this family of proteins may serve as a 
strategy to address transcription irrespective of the presence 
of epigenetic mutations, BET proteins inhibitors have been a 
significant area of focus in the last decade, in cancer but also in 
inflammation, fibrosis, and heart diseases (Vakoc, 2015). Drug 
developmental studies have paid special attention to the Ac-K 
binding sites in the bromodomains, as these deep hydrophobic 
pockets with conserved asparagine and/or aspartate residues 
make BET proteins highly druggable (Cox et al., 2016). Indeed, 
the most common drug targeting approach in this family has 
been the development of small molecules that could block the 
lysine-binding pocket and disrupt the interactions between BDs 
and the Ac-K on chromatins (Smith and Zhou, 2016).

In 2005, a first bromodomain inhibitor developed by the Zhou 
laboratory, namely NP1, has the ability to target the BD of the 
P300/CBP-associated factor transcriptional coactivator (Zeng 

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 986262

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Epigenetic Drugs in B-NHLRibeiro et al.

10

et al., 2005). This step was followed by the discovery in 2006 of 
MS7972, a weakly binding fragment specific for CREBBP-BD, 
hindering its binding to acetylated p53 (Sachchidanand et al., 
2006). Among BET proteins, the first target considered to be 
druggable was BRD4, as a pioneering RNAi base unveiled its 
critical role in the maintenance of AML. In this study, authors 
found that BRD4-dependent transcriptional activity could be 
efficiently targeted by the pan-BET thieno-triazolo-1,4-diazepine 
(+)-JQ1 (Filippakopoulos et al., 2010; Zuber et al., 2011). This 
class of diazepine-based small molecule inhibitors, which also 
includes the benzodiazepine I-BET151 (GSK1210151A) (Dawson 
et al., 2011) and I-BET762 (GSK525762) (Mirguet et al., 2013) 
(NCT01943851), utilizes the methyltriazolo-diazepine ring 
system as the acetyl-mimetic. Further studies demonstrated that 
inhibition of BRD4 by (+)-JQ1 unveiled the MYC downregulation 
and, consequently, a genome-wide inhibition of its target genes 
(Filippakopoulos et al., 2010; Delmore et al., 2011). These results 
underlined significant preclinical activity of this inhibitor in 
MYC-driven B-NHL, including the aggressive, so-called “double 
hit” lymphoma (DHL), characterized by simultaneous oncogenic 
activation of MYC and/or BCL2/BCL6 (Johnson-Farley et al., 
2015). Accordingly, (+)-JQ1 could increase survival of mice 
xenografted with MYC-driven lymphoma, including those 
ones bearing either TP53 deletions or intrinsic resistant to the 
topoisomerase II inhibitor etoposide (Hogg et al., 2016).

These promising results from (+)-JQ1 encouraged the 
development of BET inhibitors with similar chemical structure, 
including the BRD4 inhibitor CPI203 characterized by a 
higher bioavailability profile in mice (Normant et al., 2012; 
King et al., 2013). This agent displayed remarkable efficacy in 
different preclinical models of B-NHL, either as single agent 
or in combination with the BCL-2 antagonist venetoclax in 
DHLs (Esteve-Arenys et al., 2018), in DLBCL-ABC (Ceribelli 
et al., 2014) and in both ABC and GCB subtypes of DLBCL in 
combination with blockade of the CXCR4 chemokine receptor 
(Recasens-zorzo et al., 2018). In these studies, BRD4i activity 
was mainly related to the blockade of MYC transcriptional 
program. This is of special interest, as despite its central role 
in multiple hematological malignancies, including various 
subtypes of B-NHL, direct targeting of MYC was considered 
impossible until the demonstration that BET inhibition 
could regulate MYC activity in varied contexts, thanks to 
alleviation of BRD4 occupancy on MYC super-enhancers. 
Importantly, beside MYC, different anti-apoptotic proteins like 
BCL-2 and MCL-1 are also downregulated, either by direct 
transcription repression or as a downstream consequence of 
BRD4 antagonism (Vakoc, 2015). Unlike the expected general 
effects of BET inhibition in the elongation of transcription of 
several genes, changes in the expression of only a small subset 
of genes was observed in cultures and/or animals receiving 
this therapy, suggesting that bromodomain inhibitors might 
be suitable modulators of certain disease-associated genes. As 
an illustration, high levels of BRD4 co-localize in CLL cells 
with super-enhancer sites of genes and microRNAs belonging 
to the BCR-mediated signaling pathway with possible tumor-
initiating activity, including miR-21, miR-15, TCL1, IL21R, 

and IL4R. Accordingly, in a mouse model of CLL, exposure 
to the BET inhibitor PLX51107 promoted an expression 
downmodulation of several tumor-associated genes, followed 
by consistent reduction in tumor burden (Ozer et al., 2018).

According to these promising results, in the last years 
a number of clinical leads have entered into trials for the 
treatment of hematological patients. Nevertheless, several side 
effects have been reported including some bone marrow and 
gastrointestinal toxicity that has forced to dose discontinuation 
or reduction. Nowadays, 18 BET inhibitors are being assessed 
in clinical trials either as single agents or in combination with 
other compounds (Table 4). While the data from various solid 
tumor trials look mitigated, several BETis including birabresib 
(OTX015, MK-8628), molibresib (GSK525762), RO6870810/
TEN-010, and mivebresib (ABBV-075) have demonstrated 
remarkable clinical efficacy in myeloproliferative disorders, 
while other small molecule inhibitors such as PFI-1, BI-894999, 
FT-1101, INCB-54329, and CPI0610, a pharmacological 
derivative of CPI203, are currently undergoing human clinical 
trials in these patients (Table 3). Among these different 
molecules, molibresib has demonstrated an 18.5% ORR in 
various subtypes of NHLs including a CR in a DLBCL case 
(Dickinson et al., 2018). CPI0610 has also been evaluated in 
a phase I clinical trial (NCT01949883) in 64 R/R FL, DLBCL, 
or HL patients, showing leading to a complete remission in 
one FL case and in four DLBCL patients (Blum et al., 2018). In 
addition, the compound INCB057643 is currently being tested 
in a third phase I trial involving lymphoma patients, including 
some FL and DLBCL cases. In this evaluation trial, a CR has 
been achieved in one FL case whereas in two other patients, 
the disease has been stabilized (Forero-Torres et al., 2017). In 
the dose-escalation, open-label, phase I study with OTX015, 

TABLE 4 | Drug combinations with non-approved epigenetic agents in B-NHL.

Epigenetic drug 
class

Drug Agent used in 
combination

Trial identifier

HDAC inhibitor CUDC-907 Rituximab, venetoclax, 
and bendamustine

NCT01742988

Entinostat Isotretinoin NCT00098891
Molibresib NCT03925428

Mocetinostat Azacitidine NCT00543582
EZH2 inhibitor Tazemetostat Fluconazole, 

omeprazole, and 
repaglinide

NCT03028103

Atezolizumab and 
obinutuzumab

NCT02220842

Prednisolone NCT01897571
PF 06821497 SOC NCT03460977

BET inhibitor Molibresib Entinostat NCT03925428
RO6870810 Venetoclax and 

rituximab
NCT03255096

INCB057643 Gemcitabine, 
paclitaxel, rucaparib, 
abiraterone, ruxolitinib, 
and azacitidine

NCT02711137

FT-1101 Azacitidine NCT02543879

Source: https://clinicaltrials.gov/.
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a 47% complete remission was reported in 17 DLBCL cases; 
however, objective responses were seen in only three DLBCL 
patients and clinical activity in other six B-NHL patients 
(NCT01713582) (Amorim et al., 2016). More recently, the BETis 
molibresib, CC-90010, and INCB054329 are being challenged 
in clinical trials including various hematological malignancies 
(NCT02431260, NCT01943851, and NCT03220347), but no 
data have been released so far.

Although at the moment most of the tested compounds aimed 
at inhibiting BET bromodomains are pan-BET inhibitors, many 
efforts are being focused in targeting BET proteins in a more 
specific and novel way. These new approaches include ABBV-744 

(which targets bromodomain-containing protein II) (Sheppard 
et al., 2018), the bivalent BET inhibitors AZD5153 and MT1 (a 
JQ1-derived BETi) (Rhyasen et al., 2016; Tanaka et al., 2016), 
and the so-called BET-PROTACs (QCA570, dBET6, BETd-260, 
and ARV-771) that drive BET proteins to their degradation by 
proteolysis-targeted chimera (Raina et al., 2016; Winter et al., 
2017; Qin et al., 2018 ). These molecules have shown both to 
promote apoptosis in MCL-derived cells resistant to the first-
in-class Bruton’s kinase (BTK) inhibitor ibrutinib as well as to 
increase survival compared to OTX015-treated MCL xenografts 
(Sun et al., 2018). Although promising results have been reported 
for this new generation of BET-targeting agents in preclinical 

FIGURE 4 | Epigenetic-targeted effects on immuno-oncology mechanisms. In lymphoma B cells, DNMT, HDAC, and BET inhibitors (DNMTi, HDACi, BETi) regulate 
the expression of MHC class I and PD-1 ligands (PD-L1 and PD-L2). In effector T cells, DNMTi also upregulates the expression of PD-1 and CTLA-4, which leads to 
T-cell exhaustion. The effects of HDACi on FoxP3 decrease the infiltration of regulatory T cells into the tumor. Lastly, EZH2i decreases the regulatory and increases 
effector T-cell population in the microenvironment.
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FIGURE 5 | Different strategies for combining drugs targeting epigenetic regulators in B-cell lymphoma. (A) Epigenetic drugs can be used to overcome (left axis) or 
to circumvent (right axis) malignant B-cell resistance to targeted agents or to standard chemotherapeutic regimens. (B) Pre-exposure of tumor cells to epigenetic 
drugs induces profound modifications of cell transcriptional profile, thus priming them to the cytotoxic effect of chemotherapeutic and targeted agents.
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studies, their therapeutic window when moving to clinical trials 
has still to be evaluated.

Non-BET Bromodomain-Containing 
Proteins: the Histone Acetyltransferase 
CREB-Binding Protein (CBP)
As previously mentioned, chromatin modifications can regulate 
several important features of cell function. Among these 
modifications, histone lysine acetylation is generally associated 
with activation of gene expression (Shahbazian and Grunstein, 
2007). HAT enzymes can deposit acetyl marks on histones and 
modify chromatin structure. Such marks are also recognized by 
bromodomains, thus adding a second level of regulation of the 
transcription process (Kouzarides, 2007). The transcriptional 
co-activators CBP/p300 are highly homologous, multifunctional 
proteins that encode a single bromodomain each and possess 
HAT activity (Chen and Li, 2011; Delvecchio et al., 2013). CBP/
p300 act as transcriptional co-factors, involved in the regulation 
of several biological processes (Dancy and Cole, 2015). Animal 
studies have shown that CBP and p300 are required for the 
generation and activity of normal hematopoietic stem cells 
as well as for adult hematopoietic stem cell maintenance and 
function (Chan et al., 2011; Rebel et al., 2002). Consequently, 
CBP ablation has a direct impact on the quiescence, apoptosis, 
and self-renewal of adult hematopoietic stem cells (Chan et al., 
2011) and CBP/p300 have a tumor suppressor role in mice 
models (Kung et al., 2000; Kang-Decker et al., 2004; Chan et al., 
2011). This role of CBP and p300 as tumor suppressors has 
been also observed in B-NHL, where its inactivating mutation 
is a common event in FL and DLBCL, providing a rationale for 
employing drugs with the capacity to modulate acetylation and 
deacetylation processes in these tumors (Cerchietti et al., 2010; 
Mullighan et al., 2011; Pasqualucci et al., 2011a).

CHROMATIN REMODELERS: SwI/SNF 
AND BRG1 AND ARID1

The SWItch/Sucrose Non-Fermentable (SWI/SNF) complex was 
initially discovered in yeast. It is composed by polypeptides associated 
with a subset of proteins codified by the SWI1, SWI2, SNF2, 
SWI3, SWI5, and SWI6 genes (Pazin and Kadonaga, 1997). This 
complex regulates gene transcription by altering DNA–nucleosome 
interactions at expenses of ATP consumption, thus facilitating or 
impeding the accession of the transcription machinery at concrete 
genomic regions (Workman and Kingston, 2002). Several studies 
have reported its capacity to repair nucleotide excisions and DNA 
double-strand breaks by homologous recombination (Chai et al., 
2005). The mammalian analog of the SWI/SNF complex (mSWI/
SNF) is the BRG1-Associated Factors (BAF) complex. It comprised 
approximately 11 subunits encoded by 19 distinct genes assembled 
in different combinations according to its specific molecular 
mechanism of action, and in a concrete genomic region. Two of the 
BAF components are the human Brahma (hBRM, also SMARCA2) 
and the Brahma-related gene 1 (BRG1, also SMARCA4). These 
proteins are ATPase subunits (Khavari et al., 1993) and either one 

or the other constitute the core component of the BAF complex. 
They contain BDs within their structure that recognize and contact 
acetyl groups present in histone proteins (Wang et al., 1996). 
Although they share similarities in their domain composition, 
they interact with different families of transcription factors what 
confers to them specific functions in the BAF complex (Kadam and 
Emerson, 2003).

BRG1 has been reported to be the most frequently mutated protein 
of the BAF complex in cancer. Classically, it has been described as a 
tumor suppressor gene as inactivating mutations of its protein have 
been found in numerous solid tumors like breast, lung, gastric, 
bladder, colon, ovarian cancers, and melanomas (Atlas et al., 2012; 
Hodis et al., 2012; Jelinic et al., 2014), but also in determined B-NHL 
subtype like DLBCL and MCL (Cuadros et al., 2017). Concretely, 
these loss-of-function mutations lead to the upregulation of the 
pro-survival gene BCL2L1 in MCL, conferring to this malignancy 
primary resistance to treatment or eventually relapse after dual 
exposure to ibutrinib and venetoclax (Agarwal et al., 2019). Other 
studies described BRG1 as a potent oncogene, since its function was 
required for AML progression in mice, through its binding to MYC 
enhancer region and consequent aberrant expression of this second 
oncogene (Shi et al., 2013; Buscarlet et al., 2014).

Beside BRG1, several BRG-/BRM-associated factors (BAF 
subunits) participate in tumoral progression. Two of these subunits, 
namely the AT-Rich Interaction Domain 1A (ARID1A/BAF250A) 
and its homologous ARID1B/BAF250B, contain domains capable 
of recognizing and binding to AT-enriched genomic regions and 
C terminus region, stimulating the activation of transcription in a 
glucocorticoid receptor-dependent manner. The presence of each 
of them in the complex is mutually exclusive, suggesting specific 
roles at concrete genomic regions (Wang et al., 2004).

Mutations that truncate the ARID1A sequence and promote 
its degradation have been widely characterized in endometrial 
carcinoma (Kandoth et al., 2013), colon cancer (Atlas et al., 
2012), stomach cancer (Wang et al., 2011), bladder cancer (Gui 
et al., 2011), neuroblastoma (Sausen et al., 2013), and pancreatic 
or hepatocellular carcinoma (Biankin et al., 2012; Fujimoto 
et al., 2012), evidencing the role of this protein in preventing 
tumoral progression. Similar to the mutations reported for 
ARID1A, truncating mutations have also been identified for 
ARID1B although in a lesser frequency and most of them 
associated with neurodevelopmental disorders (Santen et al., 2012) 
or neuroblastomas (Lee et al., 2017). ARID1B knockdown has 
been reported to destabilize the SWI/SNF complex and inhibit 
cell proliferation in both ARID1A-mutant cancer cell lines and 
primary tumor cells, suggesting that this protein could constitute 
an interesting therapeutic target for the treatment of ARID1A-
mutant tumors (Helming et al., 2014).

INDIRECT INHIBITION OF EPIGENETIC 
DYSREGULATION BY IDH INHIBITORS

The enzyme isocitrate dehydrogenase (IDH) catalyzes the 
conversion of isocitrate into α-ketoglutarate (α-KG) by oxidative 
decarboxylation using NADP+ as a cofactor. The IDH1 isomer 
is located in the cytosol and the peroxisomes, whereas IDH2 is 

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 986266

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Epigenetic Drugs in B-NHLRibeiro et al.

14

found in the mitochondria. IDH enzymes play an important role 
in the tricarboxylic (TCA) or Krebs’ cycle, but are also related with 
other cellular functions such as the regulation of redox balance 
(Dang et al., 2016; Dang and Su, 2017). Mutations in IDH genes are 
most commonly found in the R132 codon of IDH1 and the R172 
and R140 codons of IDH2, which correspond to evolutionarily 
conserved residues in the enzyme active site which is critical 
for substrate binding. Mutant forms of IDH have much lower 
catalytic activity and are associated with metabolic alterations. 
More importantly, mutant IDH enzymes gain neomorphic 
activity as they convert α-KG into 2-hydroxyglutarate (2-HG). 
Under homeostatic conditions, 2-HG is only produced by errors 
in catalysis and it is maintained at low levels due to the action of 
2-HG-hydroxigenases (2-HGHD). Unlike in bacteria and plants, 
2-HG has no known physiological function in mammals (Dang 
and Su, 2017). 2-HG is structurally similar to α-KG and acts as a 
competitive inhibitor, blocking the activity of α-KG-dependent 
dioxygenases. This group of enzymes includes the TET family 
of hydroxylases, which participate in DNA demethylation, and 
the JMJ domain-containing histone demethylases (Dang and Su, 
2017). The consequent aberrant hypermethylation of both DNA 
and histones has been associated to a blockade in differentiation 
in hematopoietic cells (Figueroa et al., 2010; Losman et al., 
2013), hepatocytes (Saha et al., 2014), and mesenchymal stem 
cells (Jin et al., 2015), among other cell types.

Homozygous missense mutations in both IDH1 or IDH2 
have been described in several cancer types, including glioma, 
cholangiocarcinoma, and hematological tumors, such as 
AML and MDS (Dang et al., 2016). Although infrequent, 
mutations have also been found in lymphoid malignancies like 
angioimmunoblastic T-cell lymphomas (Cairns et al., 2012) 
and acute lymphocytic leukemia, both in pediatric (Andersson 
et  al., 2011; Tang et al., 2012) and adult cases (Kang et al., 
2009; Abbas et al., 2010; Zhang et al., 2012). Dysregulation of 
the IDH pathway has also been reported in CLL, as leukemic 
B cells from these patients show overexpression of IDH1 and 
lower levels of IDH2 when compared to healthy B cells (Van 
Damme et al., 2016).

Two IDH inhibitors have been recently approved by the 
FDA for the treatment of R/R AML in adults. Enasidenib (AG-
221) targets IDH2 with R172S, R172K, and R140Q mutations, 
whereas ivosidenib (AG-120) targets IDH1 with susceptible 
mutations, such as R132H and R132C (Han et al., 2019). Other 
non-approved IDH inhibitors are currently in clinical trials 
involving patients with advanced hematological cancers. Among 
these molecules, AG-881 is a pan-inhibitor of both IDH1 and 
IDH2 that can penetrate the blood–brain barrier, while IDH305, 
FT-2102, and BAY-1436032 are IDH1-specific inhibitors (Dang 
et al., 2016; Montalban-Bravo and DiNardo, 2018). At the 
preclinical level, the pharmacological IDH2 inhibitor AGI-
6780 displayed synergistic cytotoxicity in MCL and BL cell 
lines in combination with the proteasome inhibitor carfilzomib, 
mediated by the blockade of tricarboxylic acid cycle and the 
decrease in ATP levels, as a consequence of enhanced IDH2 
enzymatic inhibition (Bergaggio et al., 2019). Thus, although 
activating mutations of IDH genes are rare in B-NHL, there may 

be some room to evaluate, alone or in combination with standard 
chemotherapy, some of the molecules exhibiting clinical activity 
in non-lymphoid patients.

COMBINATION INvOLvING EPIGENETIC-
TARGETING APPROACHES

Concomitant Targeting of Different 
Epigenetic Modulators
In recent years, thanks to the many works directed to characterize 
and get a better understanding of the human epigenome, it 
came out that more than 50% of the human cancers account for 
aberrant changes in chromatin organization at certain genomic 
regions, as a consequence of mutations in enzymes involved in 
the regulation of chromatin structure (You and Jones, 2012; The 
Cancer Genome Atlas Research Network, 2013). Changes in the 
activity of these chromatin modifiers can lead not only to the 
initiation of a tumor formation process but also to its progression, 
metastasis, development of drug resistances, and further relapse 
and/or escape from immune surveillance (Jones et al., 2016). 
Therapeutic modulation of such alterations can be achieved with 
chemical compounds that broadly affect the structure of the 
DNA such as DNMTis, histone HDACis, or BETis (Figure  4). 
While single-agent clinical trials with these compounds have 
been conducted with some success in MDS or R/R AML 
patients receiving azacitidine (Scott, 2016; Schuh et al., 2017) 
or in R/R FL, MZL, and MCL patients treated with vorinostat 
(Kirschbaum et al., 2011; Ogura et al., 2014), the association of 
these agents with other compounds has also been tested. As an 
example, the combinatorial treatment with vorinostat and the 
sirtuin inhibitor niacinamide was evaluated in R/R NHL and HL 
cases (NCT00691210) (Amengual et al., 2013), but it achieved a 
modest efficiency with an ORR below 50% (Olsen et al., 2007). 
Other examples include the combination of panobinostat with 
decitabine which displayed synergistic caspase-dependent cell 
death in DLBCL cells (Kalac et al., 2011) or the combination of 
romidepsin with the antimetabolite pralatrexate for the treatment 
of relapsed PTCL (Amengual et al., 2018).

A different therapeutic approach consists in targeting 
specifically certain chromatin regulatory proteins to achieve a 
more restricted effect in the transcription of a concrete subset of 
genes. Promising examples are the inhibition of the DOT1-like 
(DOT1L) histone H3K79 methyltransferase with pinometostat 
(EPZ-5676) in adults with MLL/KMT2A-driven leukemia 
(NCT02141828) (Stein et al., 2018) or inhibition of histone 
H3K4 and K9 demethylation by the lysine-specific demethylase 1 
(LSD1) inhibitor seclidemstat, currently being assessed in clinical 
trials to treat refractory Ewing sarcomas (NCT03600649).

Combinations with chemical compounds that broadly 
affect an epigenetic mark and a specific inhibitor of a 
chromatin-modifying enzyme, such as the EZH2 inhibitor 
GSK126 and romidepsin, have also been assessed in 
preclinical studies with DLBCL-GCB cell lines, leading 
to synergistic tumor growth inhibition effects in mice 
(Lue et al., 2019). Another example of the strategies currently 
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evaluated in clinical studies is the concomitant treatment 
of drug-resistant MM with panobinostat and bortezomib 
(NCT01083602) (Richardson et al., 2016).

Finally, and in concordance with the concept that acquired 
resistance to chemotherapy is tightly linked to changes in 
chromatin structure, many efforts have been made in identifying 
combinational strategies associating different types of cytotoxic 
drugs to small molecule regulators of chromatin modifiers. As an 
example, the dinitroazetidine derivative RRx-001 administered in 
combination with radiation, chemotherapy, or immunotherapies 
promotes the generation of reactive oxygen and nitrogen species, 
leading to the oxidation of the cysteines present at the catalytic 
sites of DNMTs and HDACs. This phenomenon entrains 
the inhibition in DNMT and HDAC enzymatic activities, 
with subsequent alterations in the chromatin structure. The 
therapeutic benefits of this compound have been assessed in 
phase II clinical trials both as a radio- and chemo-sensitizer, as 
well as a way to prone tumor response to conventional therapies 
(NCT02215512, NCT02452970, NCT02096341, NCT02871843) 
(Oronsky et al., 2017; Zhao et al., 2017).

Combination of Epigenetic Drugs with 
Other Classes of Anti-Tumoral Drugs
The use of epigenetic agents combined with other anti-tumoral 
drugs may represent the future of epigenetic-targeted therapies 
(Figure 5). The rationale of such combinations would be, on the 
one hand, to benefit from the transcriptional effects of targeting 
epigenome. Indeed, growing evidences are showing that 
epigenetic therapy, using DNMTi or HDACi, in combination 
with conventional therapy or immunotherapy, might be an 
up-and-coming step toward the development of new and efficient 
cancer treatment strategies (Brahmer et al., 2012; Sharma and 
Allison 2015; Topalian et al., 2015; Issa et al., 2017). Accordingly, 
the acquired capacity of tumors to resist chemotherapy is related 
with changes in the cancer cell’s epigenome, which might affect 
directly the cell cycle and/or some key apoptosis regulators 
(Fodale et al., 2011).

In a phase I study, Clozel and collaborators proposed a new 
approach to beaten chemotherapy resistance in DLBCL patients. 
The authors demonstrated a high rate of complete remission 
when a 5-day exposure to azacitidine followed by treatment with 
R-CHOP was employed. Mechanistically, the treatment leads 
to the demethylation of the chemoresistance-associated gene 
SMAD1 and subsequent chemosensitization (Clozel et al., 2013). 
Based on these results, an ongoing phase I study using azacitidine 
combined with R-CHOP in therapy-naive DLBCL, grade 3B FL, 
or transformed FL patients is showing promising preliminary 
results (NCT02343536). Finally, the safety and tolerability of 
adding oral azacitidine to R-ICE therapy is being evaluated in 
R/R DLBCL patients (NCT03450343).

Regarding HDACi, in vitro studies have demonstrated that 
this class of agents can synergize with chemotherapy. Globally, 
these trials have had mixed heterogeneous results. Among the 
potently successful studies, in indolent B-NHL the vorinostat/
rituximab combination exhibited a nice activity with an 
acceptable safety profile and durable responses (Chen  et al., 

2015). Ageberg and collaborators also showed that valproic 
acid sensitizes to CHOP and enhances the CHOP ability to 
induce apoptosis in DLBCL cell lines (Ageberg et al., 2013). 
Subsequently, it has been shown in a small set of DLBCL 
patients that the administration of valproate before R-CHOP 
treatment upregulated the CD20 levels and increased the 
efficacy of anti-CD20-based therapy (Damm et al., 2015). 
Recently, the VALFRID phase I trial (NCT01622439) showed 
that valproate when added to standard R-CHOP therapy 
is secure, tolerable, and increases OS in DLBCL patients 
(Drott et al., 2018). The efficacy of vorinostat combined with 
cyclophosphamide, etoposide, and prednisone (R-CVEP) was 
evaluated in aged patients with R/R DLBCL (NCT00667615); 
however, the R-CVEP association did not reach the criteria 
for cohort expansion (Straus et al., 2015). Similarly, the 
combination of vorinostat with R-CHOP was evaluated in the 
SWOG S0806 phase I/II trial (NCT00972478) without success 
in DLBCL patients (Persky et al., 2018). Panobinostat was 
tested in combination with conventional therapy and although 
the data from the clinical trial NCT01238692 suggested that as 
a single agent this drug induces a durable response in a subset 
of R/R DLBCL patients, its combination with rituximab did not 
improve the response rate (Assouline et al., 2016). Similarly, 
Barnes and collaborators observed that this combination was 
effective in a minority of DLBCL patients heavily pretreated 
(NTC01282476) (Barnes et al., 2018). The combination with 
immunomodulatory drug (IMiD) lenalidomide was assessed in 
a phase I/II clinical trial in patients with R/R HL (NCT01460940); 
however, the combination was not advantageous over single-
agent treatment and raised relevant concerns regarding the 
toxicity (Maly et al., 2017). Finally, preclinical data have shown 
that belinostat exhibits synergistic cytotoxic activity in DLBCL 
cell lines when associated to the microtubule-interfering drug 
vincristine, mediated by the prevention of cell polyploidy 
(Havas et al., 2016).

Regarding EZH2 inhibitors, combinatorial treatments with 
tazemetostat and the anti-programmed death-ligand 1 (PDL1) 
antibody atezolizumab (NCT02220842), prednisone alone, or 
combined with other components of CHOP regimen are currently 
being evaluated in patients with refractory DLBCL (NCT02889523) 
(Gulati et al., 2018). Moreover, combinations with EZH2 inhibitors 
and inhibitors of the BCR signaling cascade such as ibrutinib, the 
spleen tyrosine kinase (SYK) inhibitor tamatinib, the mammalian 
target of rapamycin (mTOR) inhibitor everolimus, or MAPK 
inhibitor have also been challenged in pre-clinical models of 
DLBCL (Brach et al., 2017; Lue et al., 2017). Other therapeutic 
strategies currently assessed in pre-clinical studies for the 
treatment of MM consist in combining the inhibitor tazemetostat 
with IMiDs such as lenalidomide or pomalidomide (Dang et al., 
2016), glucocorticoid receptor agonists (dexamethasone or 
prednisolone), proteasome inhibitors (bortezomib or ixazomib) 
(Drew et al., 2017), or HDACis (Issa et al., 2017).

Finally, in combination with the CDK4/6 inhibitor palbocilib, 
the BETi JQ1 has shown synergistic activity in MCL in vitro and in 
vivo (Sun et al., 2015). Another member of the CDK family, CDK9, 
is a core component of the assembly of the positive transcription 
elongation factor complex (P-TEFb), which is recruiting by BRD4. 
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In relation with this, the BETi BI-894999 shows profound synergy 
with CDK9 inhibitors alvocidib and LDC000067 in both in vitro 
and in vivo models of hematological malignancies (Doroshow et al., 
2017). Among other promising combinations, CPI203 combined 
with the proteasome inhibitor bortezomib or with lenalidomide 
was particularly efficient in aggressive bortezomib-resistant MCL 
tumors (Moros et al., 2014), and GS-5829 synergistically interacted 
with venetoclax or with BCR-interfering agents in preclinical models 
of DLBCL, MCL, and/or CLL (Bates et al., 2016; Kim et al., 2017).

CONCLUSIONS

Besides the well-known genomic changes, several epigenetic 
modifications that result in an altered chromatin state and 
alterations in the DNA methylation status have been described in 
lymphoma cells. In general, these alterations favor the malignant 
transformation and/or tumor progression. Among the mechanisms 
that may apply to several lymphoma entities, epigenetic activation 
of suppressors of lineage fidelity leads to downregulation of lineage-
specific genes, while additional silencing of essential transcription 
factors through H3K27 trimethylation avoids the restoration of 
the cell type characteristic expression program. Therefore, there is 
undoubtedly an important clinical role for epigenetic drugs across 
the spectrum of lymphoid malignancies, including B-NHL.

In the last decade, the progresses in the awareness of epigenetic 
changes in lymphoma cells have paved the way for targeted therapy 
alternatives employing epigenetic drugs. Treatment approaches such 
as HDAC inhibition or DNMT blockade have shown remarkable 
activity in specific subsets of lymphoma patients who remained 
unresponsive to or relapsed after standard therapy. These drugs have 
already been added into routine use for patients with a particular 
lymphoma/leukemia subtype and are the most broadly studied now. 
However, the identification of biomarkers of clinical sensitivity/
resistance to these agents is still needed in order to better identify 
those lymphoma patients suitable for treatment with these drugs, 
and for the design of rationally based targeted combination therapies. 
Although several epigenetic drugs can be successfully combined 

with standard chemotherapy, allowing to decrease the chemotherapy 
doses and to limit toxicities and adverse effects, co-administration of 
two epigenetic modulators like DNA hypomethylating agents and 
HDAC inhibitors, for example, can also show synergistic molecular 
effects, resulting in increased antitumor activity.

In the light of the large number of drugs currently in clinical 
development in B-NHL patients, selection of the most relevant 
targeted therapies will be extremely important to move the field 
ahead. Epigenetic drugs with more specific targets, such as EZH2 
inhibitors or BRD4 inhibitors, but also the newer epigenetic 
agents like PRMT5 and IDH inhibitors, are also of great interest, 
as demonstrated by a particularly rapid translation from bench to 
bedside within the past 5 years.

Despite these considerable advances in epigenetic drug therapy 
in B-cell lymphoma, there is still some way to go before reaching 
a complete overview of the complex landscape of the epigenetic 
modifications occurring during the lymphomagenesis, and much 
work is still to be done to improve the rationale use of epigenetic 
drugs in lymphoma patients. According to the promising reports 
from several trials involving the newest agents and the most 
innovative drug combinations in B-NHL patients with relapse 
disease, it seems that we are entering a very exciting era for the 
field of epigenetics in lymphoma.
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Association of Sperm Methylation at 
LINE-1, Four Candidate Genes, and 
Nicotine/Alcohol Exposure With the 
Risk of Infertility
Wenjing Zhang 1,2†, Min Li 1†, Feng Sun 3†, Xuting Xu 4, Zhaofeng Zhang 1, Junwei Liu 1, 
Xiaowei Sun 1, Aiping Zhang 5, Yupei Shen 1, Jianhua Xu 1, Maohua Miao 1, Bin Wu 1, 
Yao Yuan 1, Xianliang Huang 6*, Huijuan Shi 1* and Jing Du 1*

1 NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, 
Shanghai, China, 2 Reproductive Medical Center, Changhai Hospital of Shanghai, Shanghai, China, 3 Department of Obstetrics 
and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China, 
4 Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Zhejiang, China, 5 Bio-X Institutes, Key Laboratory 
for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 
Shanghai, China, 6 Shanghai Institute of Planned Parenthood Research Hospital, Shanghai, China

In this study, we examined whether smoking and drinking affect sperm quality and 
the DNA methylation of the repetitive element LINE-1, MEST, P16, H19, and GNAS in 
sperm. Semen samples were obtained from 143 male residents in a minority-inhabited 
district of Guizhou province in southwest China. Quantitative DNA methylation analysis 
of the samples was performed using MassARRAY EpiTYPER assays. Sperm motility 
was significantly lower in both the nicotine-exposed (P = 0.0064) and the nicotine- and 
alcohol-exposed (P = 0.0008) groups. Follicle-stimulating hormone (FSH) levels were 
higher in the nicotine-exposed group (P = 0.0026). The repetitive element LINE-1 was 
hypermethylated in the three exposed groups, while P16 was hypomethylated in the 
alcohol and both the alcohol and nicotine exposure groups. Our results also show that 
alcohol and nicotine exposure altered sperm cell quality, which may be related to the 
methylation levels of MEST and GNAS. In addition, MEST, GNAS, and the repetitive 
element LINE1 methylation was significantly associated with the concentration of sperm 
as well as FSH and luteinizing hormone levels.

Keywords: DNA methylation, nicotine/alcohol exposure, male infertility, imprint gene, sperm

INTRODUCTION

Infertility is a major public health concern that affects 10%–20% of married couples attempting to 
conceive, and male infertility is the only or a common factor (Sharlip et al., 2002; Dada et al., 2008). 
Recent epidemiological studies have provided plenty of pieces of evidence that environmental 
exposure, lifestyle, and DNA methylation are closely related to male infertility (Kobayashi et al., 
2017; Laqqan et al., 2017; Nasri et al., 2017; Santi et al., 2017; Donkin and Barres, 2018; Siddeek et 
al., 2018). Our studies before had shown associations of aberrant DNA methylation of several genes 
in spermatozoa with male infertility, but the study before chose only an asthenozoospermia patient, 
and other environmental elements such as smoking and drinking were not examined (Xu et al., 
2016). It has been shown that long-term alcohol consumption and tobacco use have adverse effects 
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on fertility (Besingi and Johansson, 2014; Hamad et al., 2018). 
Tobacco exposure is associated with impaired fecundability 
(Chavarro et al., 2009), slightly lower sperm viability, and reduced 
ejaculate volume, and spermatocyte apoptosis and disruption 
of the seminiferous tubules were observed (Kunzle et al., 2003; 
Gunes et al., 2018). Although cigarette smoking and alcohol 
consumption have been shown to affect DNA methylation 
patterns of human sperm, be related to semen quality, and have 
effects on endocrine control of reproductive and sexual functions, 
their effects on semen parameters is controversial (Gaur et al., 
2010; Hansen et al., 2012; Povey et al., 2012; Chang et al., 2017; 
Laqqan et al., 2017; Alkhaled et al., 2018; Al Khaled et al., 2018).

Several studies have shown that smoking and drinking have 
similar effects on oxidative stress and DNA methylation in males 
of reproductive age and animal models, as has been observed 
for other chemicals, such as cadmium and bisphenol A (BPA) 
(Besingi and Johansson, 2014; Miao et al., 2014; Pierron et al., 
2014; Jenkins et al., 2017; McCarthy et al., 2018). In imprinted 
genes, the methylation level present at pro-meiosis should be 
maintained throughout the male gamete development (Yaman 
and Grandjean, 2006; Marques et al., 2011). Nicotine exposure 
may alter the methylation of imprinted and non-imprinted 
genes in sperm that are associated with oligozoospermia and 
asthenozoospermia (Dai et al., 2017; Dong et al., 2017; Laqqan 
et  al., 2017). Studies have also shown that chronic paternal 
alcohol exposure induced behavioral abnormalities in offspring 
due to alterations in the methylation of imprinted genes in sperm 
(Kim et al., 2014; Liang et al., 2014; Chastain and Sarkar, 2017).

Mesoderm-specific transcript (MEST) and GNAS are 
two maternally imprinted genes that are expressed from 
the paternal allele. The germ-line differentially methylated 
regions (DMRs) in MEST and GNAS exhibit differences 
in methylation levels between sperm and egg. During 
spermatogenesis, sperm genomic imprinting (especially in 
germ-line DMRs) is vulnerable to environmental factors 
(Marques et al., 2008). In addition, alcohol exposure could 
cause hypomethylation of H19 in the sperm of offspring 
and reduce the mean sperm concentration (Marques et al., 
2011), and the methylation levels of H19 are related to sperm 
parameters, sperm chromatin, and DNA integrity (Montjean 
et al., 2015; Darbandi et al., 2018).

The promoter of long interspersed nucleotide element 
(LINE-1), which is used as a surrogate for global methylation, 
is enriched with methylated CpG dinucleotides and is usually 
silenced in normal tissues (Rangwala et al., 2009). However, 
the methylation levels of the LINE-1 DMRs were lower in BPA-
exposed spermatozoa and asthenozoospermia (Miao et al., 2014; 

Xu et al., 2016). In addition, the P16 protein may inhibit mitosis 
in spermatogonia and is related to a loss of testicular function 
(Xin-Chang et al., 2002; Jeong et al., 2017), and we showed that 
increased methylation defects in the P16 DMR may be associated 
with low sperm motility (Xu et al., 2016). The imprint and non-
imprint methylation marks at these DMRs are established during 
gametogenesis and affected by environmental exposures (Li 
et al., 2016). P16 methylation is strongly associated with smoking 
in different pathological conditions, including lung cancer and 
cervical cancer (Han et al., 2016; Han et al., 2017; Wang et al., 
2017). However, the relationship between these genes, tobacco/
alcohol exposure, and male infertility has not yet been elucidated.

To investigate the methylation modifications that occur under 
exposure to alcohol and nicotine, we performed a cohort study of 
the methylation at the repetitive element LINE-1 and four genes 
(MEST, P16, H19, and GNAS) in 143 subjects. The aim of this 
study was to assess whether the DNA methylation of these five 
genes is associated with the risk of male infertility under tobacco/
alcohol exposure.

METHODS

Subjects and Clinical Data
This study included 143 male residents from a minority-
inhabited district in Sandu county of Guizhou province. All 
participants were interviewed by trained Chinese-speaking 
researchers and were asked about their demography, disease 
history, and lifestyle factors, including tobacco use and alcohol 
consumption. The standards for smokers and drinkers were 
as we described before (Liang et al., 2017; Yang et al., 2017). 
We defined smoking as consuming at least one cigarette per 
day for more than 6 months and drinking as consuming an 
alcohol beverage (beer, wine, and liquor) at least once a week 
for more than 6 months (Witkiewitz et al., 2017; Pang et al., 
2018). As per the standards of the World Health Organization, 
semen samples were collected after 2 days of abstinence. 
Sperm counts and motility were assessed by a computer-
aided sperm analysis system (Cyto-S; Alpha Innotech Corp., 
San Leandro, CA, USA) at 37°C. The remainder of the semen 
sample was stored at −80°C until further examination and 
DNA extraction. Our study was approved by the Ethics 
Committee of Shanghai Institute of Planned Parenthood 
Research, and the local approval of Guizhou province was not 
required. The individuals included in this study gave written 
informed consent before participating. All procedures were 
carried out in accordance with the approved guidelines and 
local regulations.

TABLE 1 | Primer sequence of five genes.

Target gene F R CpG Position

MEST GGGTTTAGAGGTATAAGAAAGAGGG TTTCTAAAAACAACCAAACCCCTAC 1–17 chr7:130130648–130131063
P16 GTGGGTTTTAGTTTGTAGTTAAGGG ATTATCTCCTCCTCCTCCTAACCTAA 1–35 chr9:21994026–21994435
H16 GAGATTTGAGGTGAATTTTAGGGA CAAAACAAAATCCCCACAACC 1–20 chr11:2019635–2019930
LINE1 GGTGATTTTTGTATTTTTATTTGAGGT CAAAAACAAACAAACCTCCTTAAACT 1–28 chr16:33760542–33761007
GNAS GTTTTAGAGTTTTAGGGAAGGGGAG ATCCCAAACTAACCAACTAAACCTC 1–19 chr20:57415713–57416072
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DNA Methylation Assay
DNA was extracted from the semen samples by using the 
QIAamp DNA Mini Kit (Qiagen, Valencia, CA, USA) stored 
at −80°C. Bisulfite conversion of DNA was carried out using 
the Epitect Bisulfite Kit (Qiagen). Quantitative analysis 
of DNA methylation was performed using MassARRAY 
EpiTYPER assays (Sequenom, San Diego, CA, USA) according 
to a published protocol (He et al., 2013). Primers used in this 
study were designed using Methprimer (http://epidesigner.
com; Table  1). CpG units that yielded data in >90% of 
the samples passed the initial quality control assessment. 
Epigenetic changes at DMRs are important in controlling the 
levels of gene expression. Thus methylation was measured at 
76 CpG dinucleotides in the DMRs at the repetitive element 
LINE-1 and four genes (LINE-1: 20 CpG sites; MEST: 7q32, 
130486175–130506297, 12 CpG sites; P16: 9p21, 21967752–
21995043, 18 CpG sites; H19: 11p15.5, 142575532–142578146, 
14 CpG sites; and GNAS: 20q13.3, 58839740–58911195, 12 
CpG sites; Table 1).

Statistical Analysis
All data were analyzed with peak picking spectra interpretation 
tools to generate the ratios of methyl CpG/total CpG. EpiTyper 
software (Sequenom, San Diego, CA, USA) was used to quantify 
the methylated fraction of all CpG units. Statistics 18.0 software 
(SPSS, Inc., Somers, NY, USA) was used to perform all the 
statistical analyses in this study. Pearson’s correlation coefficient 
test and analysis of variance followed by Dunnett’s post hoc t test 
were used to compare the categorical variables and the differences 
in the mean values of continuous variables between the two 
groups. All tests were two-tailed. Principal component analysis 
(PCA) was performed to identify underlying factors. Kaiser–
Meyer–Olkin (KMO) value and Bartlett’s test of sphericity were 
checked to confirm that the data were suitable for factor analysis. 
The criterion of eigenvalue >1.0 was applied to determine the 
number of factors retained. Items were included in the factor on 
which they loaded highest (minimum accepted 0.4).

RESULTS

The results of the sperm motility assessment and the levels of 
follicle-stimulating hormone (FSH), luteinizing hormone (LH), 
and testosterone (T) are shown in Table 2. Sperm motility was 
significantly lower in the nicotine-exposed (P = 0.0064) and the 
nicotine- and alcohol-exposed (P = 0.0008) groups than in the 
control group. FSH levels were higher in the nicotine-exposed 
group (P = 0.0026). Methylation of each CpG site and adjusted 
linear regression of alcohol and nicotine exposure are shown in 
Suppl 1 and Suppl 2.

As shown in Figure 1, the average methylation levels of the 
repetitive element LINE-1 and four assessed genes in sperm 
from 143 minority male residents were compared. In general, the 
methylation levels in the repetitive element LINE-1 were higher 
in the three exposed groups (P < 0.001, P = 0.017, and P < 0.001, 
respectively) than in the control group, whereas methylation 
levels were lower in P16 in the nicotine-exposed group and in the 
nicotine- and alcohol-exposed group after correction of multiple 
testing (P < 0.001, Figure 1). Individual CpG sites within the 
same gene showed similar trends in methylation level. Compared 
to the controls, the methylation levels of nine CpG sites in the 
repetitive element LINE-1 (sites 2, 4.5.6, 7, 9, 14, 19, 20, 23, 25.26, 
and 27) were higher in the alcohol-exposed group, while the 
methylation levels of three CpG sites in the repetitive element 
LINE-1 (sites 7, 8, and 9) were higher in the nicotine-exposed 
group, and the levels of 14 CpG sites were significantly higher in 
the nicotine- and alcohol-exposed group (Figure 2).

Among the imprinted genes, we found that the methylation 
levels of two CpG sites in the GNAS DMR (sites 1 and 3) were 
significantly lower in the alcohol-exposed and the nicotine- 
and alcohol-exposed groups, and only one site (site 11) in the 
MEST was lower in the nicotine-exposed group. However, the 
methylation levels of most CpGs in H19 did not show obvious 
differences among the three groups (Figure 2).

Our results showed that the methylation levels of eight 
CpGs in P16 in the nicotine-exposed and nicotine- and 

TABLE 2 | Characteristics of all subjects.

Items mean (SD) Neither nicotine 
nor alcohol 

exposed

Alcohol 
exposed only

Nicotine 
exposed only

Both nicotine and 
alcohol exposed

P1 P2 P3

N 48 16 16 63
Age, years 30.13 (5.52) 36.56 (7.29) 39.60 (4.53) 38.68 (6.31) 0.0004  <0.001  <0.001
Marriage age, years, 24.35 (4.11) 21.07 (2.99) 27.92 (5.71) 24.69 (5.69) 0.0064 0.0242 0.7351
Body mass index 23.10 (4.02) 22.01 (2.05) 22.48 (2.71) 22.52 (2.42) 0.3186 0.6952 0.3651
Sexual absence, days 7.02 (5.70) 4.56 (4.29) 7.00 (7.48) 5.56 (8.47) 0.1196 0.9909 0.3039
Semen volume, ml, 2.96 (1.21) 2.50 (1.64) 2.90 (1.57) 2.52(1.39) 0.2366 0.8802 0.0869
Sperm concentration, 
×106/ml

65.47 (45.30) 65.40 (55.79) 55.31 (42.42) 58.23(47.94) 0.9958 0.4445 0.4213

Motility (moving forward), % 49.13 (12.20) 42.64 (17.97) 37.03 (20.34) 37.86(19.86) 0.1091 0.0064 0.0008
Vitality, % 68.50 (15.39) 63.00 (15.09) 62.38 (18.06) 67.30(16.20) 0.3733 0.3408 0.7583
LH, IU/L 5.32 (2.36) 4.25 (2.28) 6.02 (3.05) 4.94(3.97) 0.1181 0.3552 0.5603
T, IU/L 5.34 (1.96) 4.51 (2.47) 5.75 (1.81) 5.00(2.60) 0.1744 0.4735 0.4574
FSH, IU/L 5.05 (2.39) 4.16 (2.36) 7.87 (4.50) 5.69(5.74) 0.2003 0.0026 0.4734

P1: neither nicotine nor alcohol exposed vs alcohol exposed only; P2: neither nicotine- nor alcohol exposed vs nicotine exposed only; P3: neither nicotine nor alcohol exposed vs 
both nicotine and alcohol exposed. The bold represent p <0.05.
BMI, body mass index; FSH, Follicle-stimulating hormone, LH, luteinizing hormone; T, testosterone.
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alcohol-exposed groups were lower than in the controls. In 
contrast, there were only one CpG sites with lower methylation 
levels in the alcohol-exposed group when compared to the 
control group (Figure 2).

The data were checked for normal distributions using the 
Shapiro–Wilk test. The correlations in methylation between loci 
were analyzed using the Pearson’s test. The methylation between 
MEST and P16, and MEST and GNAS were positively correlated, 
respectively (Suppl 3). The correlations between the average 
methylation levels and seminological parameters or hormones 
were analyzed using the Pearson’s (normal distributions) or 
Spearman’s correlation (abnormal distributions), respectively. 

Correlation tests for gene modulation levels and phenotypic 
indices showed that the average methylation levels of MEST 
and GNAS were inversely correlated with sperm concentration 
[r = −0.522 (P = 0.038) and r = −0.557 (P = 0.025), respectively; 
Figure 3A] in the alcohol-exposed group. The average 
methylation levels of MEST and GNAS were positively correlated 
with LH levels [r = 0.344 (P = 0.012) and r = 0.365 (P = 0.006), 
respectively], and the methylation of the repetitive element 
LINE1 was positively correlated with FSH level (r = 0.436, P = 
0.001; Figure 3B) in the nicotine- and alcohol-exposed group. 
However, no association between gene methylation and the 
phenotypic indices was observed in the nicotine-exposed group 
(P > 0.05, Table 3).The multivariate correlation pattern between 
the variables was investigated using PCA. The KMO measure 
was 0.669, indicating that sufficient correlation existed between 
these variables to proceed with factor analysis. Five components 
were extracted by factor analysis using PCA (Suppl 4). Variables 
located near each other such as MEST, GNAS, FSH, and LH were 
strongly correlated (Figure 4).

DISCUSSION

In this study, we observed that alcohol and nicotine exposure 
altered sperm cell quality, which may be related to the methylation 
levels of MEST and GNAS. The methylation levels of MEST, 
GNAS, and the repetitive element LINE1 were significantly 
associated with sperm concentration and FSH and LH levels.

Recent studies have shown that tobacco use and alcohol 
consumption may increase the risk of global aberrant DNA 
methylation (Hamid et al., 2009; Semmler et al., 2015). 
Aberrant methylation of LINE-1 has been reported in 
many recent studies on aging (Cho et al., 2015) and cancer 

FIGURE 1 | Average methylation level of the five genes in all the subjects. 
The comparison of average methylation levels at MEST, P16, H19, LINE1, 
and GNAS in human sperms of 143 minority male residents, respectively. 
Data are means ± SD. Statistically significant differences are represented with 
asterisks: **P < 0.01, ***P < 0.001. Not significant, P > 0.05.

FIGURE 2 | Methylation level of the five genes in all the subjects. The comparison of site-specific methylation levels at MEST, P16, H19, LINE1, and GNAS DMR 
of the neither nicotine- nor alcohol-exposed controls (N = 48) with alcohol-exposed only cases (N = 16), nicotine-exposed only cases (N = 16), both nicotine- and 
alcohol-exposed cases (N = 63), respectively. The data are the geometric mean ratios of methylation levels at each CpG site. *P < 0.05, **P < 0.01, ***P < 0.001. 
Not significant, P > 0.05
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(Pattamadilok et al., 2008; Suzuki et al., 2013; Suter et al., 
2004), and LINE-1 methylation status could reflect the 
influence of environmental conditions or lifestyle habits on 
the genome (Schernhammer et  al., 2010). High tobacco use 
might lead to a high risk of LINE-1 hypermethylation-related 
cancers in men (Andreotti et al., 2014; Karami et al., 2015). 
To the best of our knowledge, our study showed, for the first 
time, that hypermethylation of the LINE-1 gene in sperm was 
associated with alcohol and nicotine exposure. However, the 
association between LINE-1 methylation level and alcohol 
and tobacco exposure in sperm needs to be further explored 
in future studies.

In our study, compared to the control group, 
hypomethylation of P16 was observed in the tobacco-exposed 
group. In addition, we found that GNAS methylation was 
decreased in the alcohol-exposed group, and P16 methylation 
was decreased in the nicotine- and alcohol-exposed group. 
Previous studies have suggested that chronic paternal alcohol 
exposure might contribute to mental deficits in offspring 
via abnormal methylation of imprinted genes (such as H19 
and Peg3) in sperm (Liang et al., 2014) and that methylation 
levels could be easily modified by air pollution, heavy metals, 
and other environmental factors, both in vivo and in vitro 
(Baccarelli and Bollati, 2009; Haggarty, 2013). An association 
between nicotine/alcohol exposure and methylation 
has been demonstrated in pregnant women (Barua and 
Junaid, 2015; Lee et al., 2015). In this study, we studied the 
influence of nicotine/alcohol exposure in male residents 
from Guizhou province, a population with a low fertility 

rate. The relationship between nicotine/alcohol exposure 
and the methylation of these five genes in male residents 
of Guizhou has not been previously reported. Abnormal 
DNA methylation in spermatozoa seems to be involved in 
environmental factor-induced transgenerational disruptive 
spermatogenesis (Anway et al., 2005; Anway et al., 2006). The 
impact of environmental factors on the epigenetic phenotype 
might affect offspring through abnormal spermatozoa 
methylation (Anway and Skinner, 2006). Some evidence has 
suggested that abnormal DNA methylation of imprinted genes 
may be associated with spermatogenesis failure (Boissonnas 
et al., 2010), and an observable decrease in the concentration 
of sperm was reported in patients with H19 hypomethylation 
(Stouder et al., 2011). In addition, aberrant MEST DNA 
methylation has been shown to be significantly associated 
with increased FSH levels (Klaver et al., 2013). However, we 
found that alcohol exposure altered sperm cell quality and was 
related to the hypomethylation of MEST and GNAS. MEST and 
GNAS methylation levels were significantly associated with 
increased LH levels, and LINE1 methylation was significantly 
associated with increased FSH levels. However, further 
studies are needed to explore the mechanisms underlying the 
association between chronic nicotine and alcohol exposure 
and aberration methylation of MEST, GNAS, and LINE1 with 
sperm quality and abnormal FSH and LH levels.

Our study has several limitations. First, our study had a small 
sample size, which restricts the generalizability of our results. 
Therefore, our results must be verified in larger cohorts using 
different techniques. In addition, further studies are needed 

FIGURE 3 | Comparison of the gene methylation levels and semen quality/hormone level. (A) The significant correlations between the average methylation levels, 
seminological parameters and hormones in the alcohol exposed only group. (B) The significant correlations between the average methylation levels, seminological 
parameters and hormones in the both nicotine and alcohol exposed group. The dots are the intersection points between the average methylation levels, 
seminological parameters and hormones. 
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TABLE 3 | Comparison of 5 gene methylation levels and semen quality/hormone level in all subjects.

Sperm motility  
(% moving forward)

Concentration
 (106 spermatozoa/ml)

Sperm vitality  
(% alive)

FSH LH T

r P r P r P r P r P r P

Neither nicotine nor 
alcohol Exposed
MEST −0.033 0.828 0.317 0.030 0.121 0.525 0.022 0.886 0.051 0.735 0.025 0.867 
P16 −0.024 0.872 0.020 0.894 −0.119 0.524 0.211 0.154 −0.181 0.223 −0.006 0.970 
H19 −0.276 0.061 −0.147 0.323 −0.373 0.039 0.263 0.078 0.177 0.240 0.027 0.857 
LINE1 −0.101 0.496 −0.224 0.125 −0.171 0.357 0.071 0.635 −0.059 0.695 −0.040 0.789 
GNAS −0.171 0.246 −0.248 0.090 −0.199 0.283 0.081 0.586 0.120 0.420 0.072 0.628 

Alcohol exposed only
MEST 0.082 0.763 −0.522 0.038 0.024 0.955 −0.143 0.626 0.262 0.366 −0.389 0.169 
P16 −0.114 0.674 −0.291 0.274 0.582 0.130 0.026 0.930 0.333 0.245 0.019 0.949 
H19 −0.284 0.286 −0.350 0.184 0.306 0.461 −0.266 0.359 0.207 0.478 −0.089 0.761 
LINE1 0.169 0.531 0.016 0.953 0.518 0.188 −0.082 0.780 0.113 0.701 −0.448 0.108 
GNAS −0.054 0.843 −0.557 0.025 −0.005 0.986 −0.207 0.478 0.176 0.547 0.044 0.881 

Nicotine exposed only
MEST 0.041 0.884 −0.474 0.075 −0.333 0.347 0.088 0.745 −0.044 0.871 −0.362 0.169 
P16 −0.354 0.196 −0.104 0.712 0.034 0.925 −0.108 0.692 −0.327 0.216 0.219 0.415 
H19 −0.134 0.633 −0.427 0.113 0.604 0.064 −0.076 0.778 −0.071 0.795 −0.062 0.820 
LINE1 0.056 0.849 0.041 0.890 −0.240 0.534 0.046 0.869 0.175 0.532 −0.122 0.664 
GNAS 0.382 0.160 0.062 0.825 −0.544 0.104 0.209 0.438 0.482 0.058 −0.358 0.173 

Both nicotine and 
alcohol exposed
MEST −0.062 0.648 −0.196 0.144 −0.023 0.889 0.241 0.082 0.344 0.012 0.016 0.910
P16 0.064 0.631 0.072 0.589 −0.050 0.761 0.097 0.481 0.019 0.892 −0.074 0.593
H19 −0.140 0.295 −0.103 0.441 −0.065 0.685 −0.059 0.673 0.024 0.864 0.184 0.186
LINE1 −0.037 0.780 −0.077 0.561 −0.067 0.676 0.436 0.001 0.173 0.206 0.168 0.221
GNAS −0.187 0.159 −0.218 0.101 −0.087 0.593 0.194 0.156 0.365 0.006 0.066 0.630

The bold represent p<0.05.

FIGURE 4 | Multivariate correlation patterns. The Kaiser–Meyer–Olkin measure was 0.669, indicating that sufficient correlation existed between these variables to 
proceed with factor analysis. Three components were extracted by factor analysis using principal component analysis. Factor 1 labeled as “PC1” contains nicotine 
exposed, alcohol exposed, age, LINE1, P16, and sperm motility and had loadings of 0.852, 0.829, 0.678, 0.578, −0.516, and −0.403, respectively. This factor 
explained 20.0% of the total variance. Factor 2 labeled as “PC2” contains MEST, GNAS, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) and had 
loadings of 0.672, 0.629, 0.775, and 0.789, respectively, explaining 17.5% of the total variance. Factor 3 labeled as “PC3” contains sperm vitality, H19, and sperm 
concentration and had loadings of 0.746, and 0.632, and −0.516, respectively, explaining 9.3% of the total variance.
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to explore how changes in methylation due to smoking and 
drinking affect fertility.

In conclusion, our results show that the different methylation 
levels of four genes, MEST, P16, LINE-1, and GNAS, alter the 
sperm cells of patients who consume alcohol and use nicotine. 
Both smoking and drinking impair sperm/semen quality 
and hormone levels. Thus, methylation of MEST, GNAS, and 
LINE1 may be associated with sperm concentration and FSH 
and LH levels.
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Aging is associated with an increased incidence of age-related bone diseases. Current 
diagnostics (e.g., conventional radiology, biochemical markers), because limited in 
specificity and sensitivity, can distinguish between healthy or osteoporotic subjects but 
they are unable to discriminate among different underlying causes that lead to the same 
bone pathological condition (e.g., bone fracture risk). Among recent, more sensitive 
biomarkers, miRNAs — the non-coding RNAs involved in the epigenetic regulation of 
gene expression, have emerged as fundamental post-transcriptional modulators of 
bone development and homeostasis. Each identified miRNA carries out a specific role in 
osteoblast and osteoclast differentiation and functional pathways (osteomiRs). miRNAs 
bound to proteins or encapsulated in exosomes and/or microvesicles are released into 
the bloodstream and biological fluids where they can be detected and measured by highly 
sensitive and specific methods (e.g., quantitative PCR, next-generation sequencing). As 
such, miRNAs provide a prompt and easily accessible tool to determine the subject-
specific epigenetic environment of a specific condition. Their use as biomarkers opens 
new frontiers in personalized medicine. While miRNAs circulating levels are lower than 
those found in the tissue/cell source, their quantification in biological fluids may be strategic 
in the diagnosis of diseases that affect tissues, such as bone, in which biopsy may be 
especially challenging. For a biomarker to be valuable in clinical practice and support 
medical decisions, it must be (easily) measurable, validated by independent studies, and 
strongly and significantly associated with a disease outcome. Currently, miRNAs analysis 
does not completely satisfy these criteria, however. Starting from in vitro and in vivo 
observations describing their biological role in bone cell development and metabolism, this 
review describes the potential use of bone-associated circulating miRNAs as biomarkers 
for determining predisposition, onset, and development of osteoporosis and bone 
fracture risk. Moreover, the review focuses on their clinical relevance and discusses the 
pre-analytical, analytical, and post-analytical issues in their measurement, which still limits 
their routine application. Taken together, research and clinical findings may be helpful for 
creating miRNA-based diagnostic tools in the diagnosis and treatment of bone diseases.

Keywords: biomarkers, circulating miRNAs, miRNA signature, extra-analytical variability, sensitivity and 
specificity, osteopenia/osteoporosis, fracture risk
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iNTRODUCTiON

Biogenesis of miRNAs and Their 
Biological Role
MicroRNAs (miRNAs) are short, single-stranded non-coding 
RNAs (18–22 nucleotides in length) that inhibit gene expression. 
Lee et al. (1993) discovered in Caenorhabditis elegans — a short, 
single-stranded non-coding RNA (lin-4) that downregulated lin-14 
gene expression through a direct antisense RNA–RNA interaction. 
Since then, miRNAs have been discovered in all living kingdoms 
(Lagos-Quintana et al., 2001; Reinhart et al., 2002; Cerutti and 
Casas-Mollano, 2006; Dang et al., 2011; Bloch et al., 2017) and 
in viruses, as well (Grundhoff and Sullivan, 2011). Among the 
databases that record the ever growing number of miRNAs being 
discovered, miRBase (www.mirbase.org) is a comprehensive and 
constantly updated miRNAs database that provides universal 
nomenclature, information about sequence, predicted target genes, 
and additional annotations (Griffiths-Jones et al., 2006). Currently, 
it contains 38,589 entries, more than 1,900 of which are human.

Though widely discussed, miRNAs biogenesis is not yet fully 
understood. Briefly, miRNAs are transcribed by RNA polymerase 
II (Pol II) from encoding sequences (miRNA genes) located 
within non-coding DNA sequences, introns or untranslated 
regions (UTR) of protein-coding genes (Ha and Kim, 2014; 
Hammond, 2015). miRNA genes can be found in clusters within 
a chromosomal locus; they are transcribed as polycistronic 
primary transcripts and subsequently processed as single miRNA 
precursors. miRNAs within the same cluster are thought to target 
related mRNAs (Lee et al., 2002; Wang et al., 2016). Furthermore, 
the same miRNA encoding genes can be duplicated in different 
loci: the derived mature miRNAs (grouped within a miRNA 
family) have an identical seed region and share the same mRNA 
targets (Bartel, 2009). A long primary transcript (pri-miRNA) 
is processed in the nucleus by the RNase III DROSHA-DGCR8 
cofactor complex that removes the stem loop-flanking structure 
generating the ~60 nt hairpin pre-miRNA.

After its exportation into the cytosol in a process mediated 
by exportin 5 (EXP5), RNase III DICER cleaves the loop to 
generate a double stranded (ds) miRNA. One miRNA strand, 
the passenger strand, is incorporated into the RNA-induced 
silencing complex (RISC) as a mature miRNA, while the other, 
the star strand, is degraded. Both strands in some miRNAs 
are bioactive and each strand is loaded into a RISC. The RISC 
protein argonaute-2 (AGO-2) is responsible for targeting a 
specific mRNA based on the complementarity of a 7-nt miRNA 
sequence (“seed region,” position 2-to-7). The ds miRNA–mRNA 
complex induces degradation of the target mRNA, inhibition of 
its translation, and consequent modulation of the downstream 
cellular processes. Other DICER- or DROSHA-independent 
non-canonical miRNA biogenesis pathways exist (Ha and Kim, 
2014; Hammond, 2015). Finally, miRNAs expression undergoes 
multilevel regulation: epigenetically in DNA methylation and 
histone modifications (e.g., histone acetylation) (Saito et al., 
2006; Scott et al., 2006; Lujambio et al., 2008; Lujambio and 
Esteller, 2009) and through the regulation of proteins involved 
in miRNAs maturation (Davis-Dusenbery and Hata, 2010). 

Beside their more known inhibitory function, there are evidence 
suggesting that at least some miRNAs can induce gene expression 
under specific conditions. In this process, miRNA-associated 
ribonucleoproteins (miRNPs) play a key role as reviewed in 
(Valinezhad Orang et al., 2014).

One of the first demonstrations of the key role of miRNAs was 
the embryonic lethality of the DICER-1- and DGCR8-double 
knockout (KO) in mice (Bernstein et al., 2003; Wang et al., 2007). 
Conditional inactivation of DICER in mice embryonic stem (ES) 
impaired proliferation and differentiation and compromised 
miRNA biogenesis (Suh et al., 2004; Murchison et al., 2005). 
Several miRNAs display a cell- or tissue-specific expression 
profile, while others are more widely expressed (Ludwig et al., 
2016). Since they are also present in human biological fluids 
(Weber et al., 2010), their abundance and stability in human 
serum and plasma prompted the idea for their potential use as 
biomarkers (Chen et al., 2008).

Figure 1 illustrates the canonical miRNA biogenetic pathway 
and notions about their nomenclature.

Aim
Based on the potentialities of miRNAs as biomarkers, research 
efforts have been spent in studying and defining the relationships 
between their altered expression and human disease, particularly 
bone diseases (Bellavia et al., 2019; Hadjiargyrou and Komatsu, 
2019; Van Meurs et al., 2019). The search term “miRNA” on 
PubMed retrieves 83,067 records, 53,240 (64%) of which were 
published in the last 5 years.

Different from previous reviews, the aim of this paper is to 
comprehensively review the available data about the potential next 
use, or even the actual use, of circulating miRNAs as biological 
indexes for osteoporosis and bone fracture risk. We gleaned 
information from each article that claimed miRNAs diagnostic, 
prognostic, and/or predictive properties, including information 
about the pre-analytical phase, quantification platforms, and 
normalization methods used. Several articles also reported the 
sensitivity and specificity parameters in evaluating the clinical 
potential of a specific miRNA as a biomarker to assess the presence 
of disease and, at the same time, the absence of the disease in 
healthy individuals. Since sensitivity and specificity are inversely 
correlated, they can be plotted on a receiver operating characteristic 
(ROC) curve as 1-specificity vs. sensitivity (Hajian-Tilaki, 2013).

miRNA can be found in human biofluids and in blood as free 
(mainly protein-associated) and exosome-/microvesicle-/LDL-
associated miRNAs. These two distinct subsets are believed to exert 
different functions: the free fraction is somehow passively released 
from cells during normal recycling of the subcellular components, 
whereas the encapsulated fraction is actively released and finely 
packaged together with other components with specific functions 
addressed to other target tissues. In these terms, free-miRNAs can 
be considered classical biomarkers, while encapsulated miRNAs 
more likely act as endocrine-like factors (Bayraktar et al., 2017). 
This review will discuss bone tissue and bone-associated free-
circulating miRNAs in relation to osteoporosis and the related 
risk of bone fracture. In addition, the review will systematically 
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describe the in vivo–in vitro evidence for the role, the pathways, 
and the putative target genes of these miRNAs.

MiRNAS AS BiOMARKERS

Borrowing from Morrow and de Lemos (2007), the three 
essential features of a novel cardiovascular biomarker for clinical 

use are: measurability in a certain clinical setting; validation by 
multiple studies; and direct impact on medical decision making 
and patient management.

The measurability criterion requires an accurate and reproducible 
analytical method that can provide reliable measures rapidly and 
at reasonable cost. Furthermore, pre-analytical issues (conditions 
of measurement and sample handling, type, and stability) must be 
known and solved beforehand in order to control for variables in 

FiGURE 1 | miRNA biogenesis and nomenclature. The figure illustrates the key steps in miRNAs biogenetic canonical pathways. The light orange boxes indicate 
the step, the green boxes the key enzyme/enzyme complexes involved in the process, and the light blue boxes the miRNAs and miRNAs precursor nomenclature 
and specifications (according to Griffiths-Jones et al., 2006). RNA Pol II, RNA polymerase II; EXP5, exportin 5; RISC, RNA-induced silencing complex; AGO-2, 
argonaute-2 protein.
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the biomarker’s measurability/detectability. The validation criterion 
requires a strong and consistent association between the outcome/
disease of interest and the biomarker level based on evidence from 
multiple clinical studies. Moreover, in order to directly impact 
medical decision making, a novel biomarker must perform better 
than existing tests and the associated risk might be modified by 
a specific therapy (Morrow and de Lemos, 2007). These criteria 
are still burdened by several issues regarding the pre-analytical, 
analytical, and post-analytical phases in miRNAs.

miRNAs as Biomarkers: Strengths
These limitations notwithstanding, the use of circulating (or also 
tissue) miRNAs as biomarkers is nearly ready for implementation 
in clinical practice. Interest in these molecules arises from the 
fact that, as epigenetic regulators of gene expression, they act as 
modulators rather than effectors of a specific biological function. 
As such, they provide a prompt and easily accessible tool to 
determine the epigenetic environment of a specific condition. And 
as subject-specific epigenetic determinants of a condition, they can 
be considered a personalized signature for tailor-made diagnosis 
and/or treatment. Circulating miRNAs are easily detectable in 
biofluids such as (but not only) plasma, serum, and urine, which 
are minimal/non-invasive sources of biomarkers with broad 
applicability in clinical research and repositories (Weber et al., 2010; 
Hackl et al., 2016). Although circulating miRNAs levels are lower 
than those found in tissues and cells (Jarry et al., 2014), this feature is 
advantageous, especially in diseases affecting tissues such as bone in 
which biopsy may be problematic (Hackl et al., 2016). Furthermore, 
circulating miRNAs can be detected with reliable methods based on 
polymerase chain reaction (PCR); reverse transcription quantitative 
PCR (RT-qPCR) is the most widely used owing to its high sensitivity, 
specificity, and reproducibility (Bustin and Nolan, 2004). Another 
important advantage of miRNAs as biomarkers is their stability 
in biofluids due to their encapsulation in extracellular vesicles 
(ectosomes or exosomes) and in high-density lipoproteins (HDL) 
and their association with proteins (Argonaute2 or nucleophosmin); 
miRNAs packaging is correlated with the way they are taken up by 
target cells (Arroyo et al., 2011; Chen et al., 2012; Li et al., 2012). 
miRNAs concentration in plasma, as evaluated by qPCR, is highly 
variable. El-Hefnawy et al. (2004) detected miRNAs concentration in 
the range of 1–10 µg/L, while Weber et al. (2010) reported a median 
concentration of 308 µg/L. Differences among healthy humans are 
physiological and any variation in blood processing conditions can 
affect circulating miRNA levels (Mitchell et al., 2008; Kroh et al., 
2010; Cheng et al., 2013a).

miRNAs as Biomarkers: weaknesses
Pre-Analytical Issues in miRNA Evaluation
In the pre-analytical phase, two sets of variables can affect 
miRNAs evaluation: patient-related and sampling-related factors.

Patient-related factors: lifestyle habits and diseases
Among patient-related factors, lifestyle habits and diseases 
affect circulating miRNA levels. Studies have shown that 
cigarette smoking (Takahashi et al., 2013), physical activity 

(Baggish et al., 2011; Faraldi et al., 2019), diet (Witwer, 2012), 
vitamin D levels (Bellavia et al., 2016; Bellavia et al., 2019), and 
head-down tilt (HDT) bed rest (Ling et al., 2017) can modify 
the level of a specific miRNA in circulation, whereas gender 
does not seem to significantly contribute to total variability 
(Chen et al., 2008). Also, miRNA levels are affected by circadian 
rhythm (Shende et al., 2011).

The total amount of circulating miRNAs is reduced in 
chronic kidney disease patients (Neal et al., 2011), while its 
correlation with liver disease is unknown (Hackl et al., 2016). 
As a consequence, any clinical study validating a panel of 
circulating miRNAs as biomarkers must follow pre-analytical 
protocols with strict criteria for sample collection (preferentially 
in the morning) and for patient inclusion and exclusion (type of 
diet, glomerular filtration rate, and fasting time before sample 
collection) to minimize the effect of variables on the validation 
process (Hackl et al., 2016).

Sampling-related factors: source/matrix, sample collection, 
and handling
A key step in the validation of a novel biomarker is selection of 
the correct matrix (Livesey et al., 2008; Kavsak and Hammett-
Stabler, 2014). Serum and plasma miRNAs evaluated in the 
same blood sample are stable, and measurements in healthy 
individuals are reproducible, consistent, and linkable 
(Chen et al., 2008; Mitchell et al., 2008). In blood sample 
collection and handling, phlebotomy is the chief source of 
variability and contamination with non-circulating miRNAs 
(Kroh et al., 2010; Cheng et al., 2013a). In detail, miRNA 
quantification can be affected by the type of collection tube 
and anticoagulant coating, in addition to blood cell count, 
needle gauge (Kroh et al., 2010), and hemolysis (Kirschner 
et al., 2011). Since the total amount of miRNAs contained in 
cells is considerably higher than in circulation, quantification 
of circulating miRNAs can be affected by the signal coming 
from non-circulating miRNA contamination (e.g., the skin 
contaminant within the needle). In addition, miRNAs can be 
released by activated platelets or by hemolytic erythrocytes 
(Kirschner et al., 2011; Willeit et al., 2013). Another often 
unconsidered source of variability is tourniquet application, 
together with clenching the fist and maintaining it closed, 
that can alter blood levels of electrolytes, muscle enzymes, 
free hemoglobin, water, and low-molecular-weight molecules. 
Also at the needle insert site the concentration of some blood 
analytes may be increased (Lima-Oliveira et al., 2013; Lima-
Oliveira et al., 2016). For the collection of plasma samples, 
it is important to use the right anticoagulant: heparin, 
potassium ethylendiaminotetraacetate (K2/K3 EDTA), 
sodium fluoride/potassium oxalate (NaF/KOx), or sodium 
citrate. Heparin (Garcia et al., 2002; Boeckel et al., 2013) and 
sodium citrate are not recommended for RT-qPCR-based 
miRNA quantification because they alter the activity of 
the enzymes used in PCR-based assays (Hackl et al., 2016). 
Conversely, EDTA is considered the right choice for PCR-
based miRNA evaluation because it is easily removed from the 
PCR mastermix (Zampetaki and Mayr, 2012). Alternatively, 
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NaF/KOx may be used when EDTA is not available, although 
it can increase the miRNA detection rate (Kim et al., 2012). 
Centrifugation speed and length to separate plasma can 
affect miRNAs detection in EDTA-plasma possibly due to 
platelet-derived miRNAs (Cheng et al., 2013a), while miRNAs 
evaluation in serum samples is less sensitive to this process 
(Hackl et al., 2016). miRNAs in blood samples are stable up 
to 24 h at room temperature (Mitchell et al., 2008) due to 
their association with proteins or extracellular vesicles. This 
is important in clinical routine, especially when unexpected 
delays prolong turnaround time. Interestingly, miRNAs are 
reported to be stable also in extreme conditions (e.g., low and 
high pH) or after repeated freezing/thawing cycles (Chen et 
al., 2008). The ongoing discovery of novel miRNAs, together 
with the limited number of stability tests, calls for the need of 
standardized protocols in sample collection and handling in 
order to minimize pre-analytical sources of error (Cheng et al., 
2013a). Samples can be stored for decades at low temperatures 
(i.e., < −70°C), which facilitates the retrieval of reliable data in 
retrospective studies (Zampetaki and Mayr, 2012).

Analytical and Post-Analytical Issues in 
miRNA Evaluation
In their study comparing 12 commercially available platforms for 
evaluating miRNA expression levels (7 PCR-based, 3 microarrays, 
and 2 next generation sequencing [NGS] technologies), Mestdagh 
et al. (2014) observed marked differences between the platforms. 
Because different technologies are often used during the validation 
process, platform choice will affect a method’s reproducibility and 
specificity. For any platform combination, the average validation 
rate for deregulated miRNA expression is 54.6%, indicating that 
screening studies and validation studies on different platforms 
and/or technologies must be performed. Sensitivity is more 
technology-correlated, with qPCR platforms showing the best 
score and, as a consequence, higher accuracy and more reliable 
results. These observations suggest that analytical protocols and 
platforms must be the same for the discovery and the validation 
of a biomarker and that further efforts are required to aid in the 
migration to a final commercial platform (Hackl et al., 2016).

The major post-analytical issues in miRNAs evaluation are data 
normalization and choice of the right reference gene. Presently, 
there is no consensus on either issue. The amount of miRNAs 
in a biofluid is expressed in relative rather than absolute terms 
by volume unit. This makes it hard to compare results across 
different labs or across different studies performed in the same 
lab (Nelson et al., 2008; Hackl et al., 2016). The most common 
normalization methods for miRNAs expression of RT-qPCR data 
(reviewed in Faraldi et al., 2018) are based on: exogenous synthetic 
oligonucleotides; endogenous reference genes; and the average 
of all the miRNA expressed. The right choice of normalization 
strategy is crucial to reduce analytical variability and to obtain 
reliable and reproducible results. Exogenous reference genes 
are non-human synthetic oligonucleotides usually added to the 
analyzed biological sample to monitor the efficiency and quality 
of RNA processing.

In miRNAs quantification, the normalization strategies 
adopted for RT-qPCR data calculation are based on the use 

of a single reference gene (i.e., cel-miR-238, cel-miR-39, cel-
miR-54) (Ho et al., 2010; Wang et al., 2015; Yang et al., 2017) or 
on the average of multiple reference exogenous oligonucleotides 
(Mitchell et al., 2008; Sourvinou et al., 2013). These 
normalization methods have an important limitation, however: 
unlike endogenous miRNAs, exogenous oligonucleotides are 
not affected by pre-analytical variables, consequently, they 
reduce the analytical but not the pre-analytical variability. 
The use of one or more endogenous reference genes satisfies 
this criterion because the genes are affected by the same 
pre-analytical variables as the same analytical procedures 
of the target miRNA(s); therefore, this is the most suitable 
normalization strategy for miRNAs data from RT-qPCR-based 
quantification techniques (Faraldi et al., 2018).

In human samples, the most commonly used endogenous 
reference gene is has-miR-16 (Faraldi et al., 2018), but several 
studies have shown very variable expression between cases and 
controls and the effect of hemolysis on its levels in blood samples 
(Hu et al., 2012; Liu et al., 2012; Kirschner et al., 2013). Also for 
endogenous sequences, the normalization method based on 
the use of multiple reference genes, identified with the aid of 
informatics tools, is thought to reduce post-analytical variability 
(Vandesompele et al., 2002; Andersen et al., 2004). With this 
procedure, however, the miRNAs set as reference cannot be used 
later in the analysis as targets (Faraldi et al., 2018). Finally, for large 
amounts of data or in the absence of an a priori reference gene, a 
commonly applied strategy is to calculate the average expression 
of all the evaluated endogenous miRNA (Mestdagh et  al., 
2009). Based on these considerations, it is of key importance to 
standardize the normalization method by determining the most 
stable reference gene(s) in each experimental setting (Faraldi 
et al., 2018). Recently, we demonstrated large differences in 
results obtained by applying different normalization strategies to 
RT-qPCR data from a panel of 179 circulating miRNAs. Based on 
analysis of the between-assay coefficients of variation (CV) and 
of the CV distribution frequencies, we defined the normalization 
of a specific miRNA (hsa-miR-320d) as the best strategy in that 
specific setting (Faraldi et al., 2019).

Specific guidelines to standardize pre-analytical, analytical, 
and post-analytical variables are desirable in order to obtain 
reliable and comparable miRNA expression data and to accelerate 
the definitive clinical implementation of miRNAs-based tests.

MiRNAS AS BiOMARKERS FOR BONE 
DiSEASES

While the multiple roles exerted by tissue and exome/
microvesicle-associated miRNAs in bone pathophysiology 
have been identified and validated, the clinical usefulness of 
circulating miRNAs in skeletal and muscle-skeletal diseases 
has not yet been established. This is because studies so far have 
been designed with a mechanistic purpose in mind and not 
for identifying circulating miRNAs with diagnostic/prognostic 
abilities for bone fracture risk or treatment response (Hackl et al., 
2016). The potential role of circulating miRNAs as biomarkers 
for the early identification of altered bone metabolism ranks 
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high on the clinical research agenda, given the aging population 
and the growing incidence of age-associated diseases (e.g., 
metabolic bone diseases and osteoporosis) and the related risk of 
bone fracture. Reliable diagnostic tools that can prognosticate a 
subject-specific risk of disease onset or, if already overt, a subject-
specific risk of progression and response to therapy are currently 
lacking. Furthermore, the natural history of age-associated bone 
diseases is, as never before, tied to a plethora of subject-specific 
variables. miRNAs and their circulating fraction hold promise: 
as epigenetic modifiers of gene expression they act much more 
upstream of the expression process than classical protein 
markers. This means that changes in their expression, which are 
likely to be mirrored by changes in their circulating levels, are 
effective far before their translation into metabolic and structural 
changes (Materozzi et al., 2018).

Circulating miRNAs and Postmenopausal 
Osteoporosis
Osteoporosis (OP), one of the most prevalent bone diseases, 
is characterized by impaired bone strength and quality that 
increase the risk of bone fracture (NIH, 2001). Currently, dual 
energy X-ray absorptiometry (DXA) is the diagnostic gold 
standard, while bone turnover markers are useful in framing 
the metabolic activity of bone cells [e.g., C-terminal cross-
link (CTx), N-terminal pro-peptide of type I collagen (PINP), 
parathyroid hormone (PTH), bone alkaline phosphatase 
(BAP), osteocalcin, and tartrate-resistant acid phosphatase 5b 
(TRAP5b), pyridonline/deoxypyridinoline] and in evaluating 
the effectiveness of anti-resorptive therapies (Lombardi et al., 
2012; Vasikaran and Chubb, 2016). Although valuable, these 
diagnostic tools have several practical flaws that partially limit 
their utility: on the one hand, radiological methods can reveal 
only already established bony architectural modifications, which 
take several weeks or months to become detectable, and on the 
other, bone turnover markers are not fully specific for either bone 
or the metabolic process they are associated with (i.e., formation 
or resorption) (Lombardi et al., 2012).

Despite limitations in pre-analytical, analytical, and post-
analytical standardization, miRNAs still have enormous potential 
in this setting. Indeed, based on their role as highly sensitive 
fine-tuners of biological processes, when assayed in combination 
with conventional diagnostics, they may give a more detailed 
clinical framing and a prompt measure of response to therapy 
(Faraldi et al., 2018; Sansoni et al., 2018). This is particularly 
desirable in complex syndromic conditions, such as OP, in which 
the prognosis (i.e., bone fracture) depends not only upon the 
bony metabolic status but also on the whole-body metabolism. 
Circulating miRNAs can much better describe such a complex 
network. The still limited information about the role of miRNAs 
in OP is derived from different types of human samples [serum, 
circulating monocytes or bone marrow-derived mesenchymal 
stem cells (BM-MSCs), and bone tissue] obtained from patients 
of different ethnic groups with low bone mineral density 
(BMD) or bone fractures and compared with healthy controls 
or osteoarthritis (OA) patients. Furthermore, differences in 

quantification platforms and normalization processes make it 
very hard to compare the study data.

Early evidence that OP correlates with altered expression 
of circulating miRNAs stems from a microarray analysis of 
365 miRNAs in human circulating monocytes collected from 
postmenopausal Caucasian women with either low or high BMD. 
Of the 365 miRNAs screened by RT-qPCR analysis, only miR-
133a was found significantly upregulated in the low-BMD subjects 
compared with their normal BMD counterparts (Wang et al., 
2012). Using the same experimental protocol, the same authors 
found another marginally expressed miRNA associated with low 
BMD: miR-422a (Cao et al., 2014). Supporting the hypothesis 
for their tissue-specificity, subsequent analysis of miR-133a and 
miR-422a expression in isolated circulating B cells derived from 
the same subjects disclosed no difference between the two groups 
(Wang et al., 2012; Cao et al., 2014). Based on these results, the 
authors speculated that these two miRNAs might be monocyte-
specific biomarkers for postmenopausal OP. Mature miR-133a is 
transcribed from two different loci (18q11.2 and 20q13.33). It was 
previously described as an inhibitor of osteoblast differentiation 
by directly targeting RUNX2 in murine pre-myogenic C2C12 
and pre-osteoblastic MC3T3-E1 cells (Li et al., 2008; Zhang et al., 
2011b). The miR-422a expression level in osteoblast-like cells 
was described to be decreased after treatment with peptide-15, 
a factor that increases bone development (Palmieri et al., 2008). 
Since monocytes are osteoclast precursors, a bioinformatics 
analysis has highlighted three osteoclast-related potential target 
genes for miR-133a (CXCL11, CXCR3, and SLC39A1) and five 
for miR-422a (CBL, CD226, IGF1, PAG1, TOB2) (Wang et al., 
2012; Cao et al., 2014). The latter studies, however, suffered from 
several limitations: limited sample size (10 subjects per group); 
no evidence of a correlation between miR-133a or miR-422a and 
target gene expression; and no information about the stem-loop 
arm of origin of these miRNAs.

In another study, Chen et al. (2014a) evaluated the expression 
profile of 721 human miRNAs in CD14+ mononuclear cells 
from peripheral blood (PBMCs) collected from postmenopausal 
OP women. They found seven differentially expressed miRNAs 
compared with the non-OP group: four (miR-218, miR-503, 
miR-305, and miR-618) were downregulated and three (miR-
107, miR-133a, and miR-411) were upregulated. Also, miR-133a 
was confirmed as upregulated in circulating monocytes from 
postmenopausal OP women (Wang et al., 2012); however, only 
miR-503, the most deregulated one, was validated by RT-qPCR, 
and its anti-osteoclastogenic effects were investigated in vivo 
and in vitro. Overexpression of miR-503, after pre-miR-503 
transfection in OP-derived CD14+, drastically inhibited M‐CSF/
RANKL-induced osteoclastogenesis, while its suppression by 
antagomiR-503 promoted osteoclast differentiation. The authors 
identified and validated RANK mRNA as a target for miR-503. 
Furthermore, in ovariectomized (OVX) mice, antagomiR-503 
increased RANK protein expression, and promoted bone loss 
and resorption, whereas agomiR-503 prevented bone loss and 
resorption (Chen et al., 2014a). Because miR-503 downregulation 
has a key role in postmenopausal OP onset, it may be a target for 
new therapeutic strategies for OP.
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Using a different approach, a study evaluated the miRNA 
profile differences in human bone marrow-derived mesenchymal 
stromal cells (BM-MCSs) from OP patients and non-OP 
controls. In this case, 1,040 miRNAs were screened using a 
microarray in BM-MCSs collected from healthy premenopausal 
women (control group, n = 5) and postmenopausal OP women 
(n = 5) (Yang et al., 2013). Following RT-qPCR validation, miR-
21 was found downregulated in the OP women, as confirmed in 
the MSCs from OVX mice. Further experiments revealed that 
Spry1 negatively regulates fibroblast growth factor (FGF) and 
extracellular signal-regulated kinase–mitogen-activated protein 
kinase (ERK-MAPK) signaling pathways and that it is directly 
targeted by miR-21. As a consequence, the TNFα-mediated 
inhibition of miR-21 may impair bone formation, as observed 
in OP induced by estrogen deficiency. This mRNA seems to be 
a main regulator of osteoblastic differentiation of MSCs and 
in postmenopausal OP onset (Yang et al., 2013). Moreover, 
osteoclast precursors express miR-21, which is upregulated 
during TNF-α/RANKL-induced osteoclastogenesis (Sugatani 
et al., 2011; Kagiya and Nakamura, 2013). miR-21 expression is 
upregulated by the osteoclastogenesis transcription factor c-Fos 
that binds the miR-21 promoter (Kagiya and Nakamura, 2013) 
which, in turn, downregulates c-Fos inhibitor-programmed cell 
death 4 (PDCD4). This positive c-Fos/miR-21/PDCD4 feedback 
loop regulates and promotes RANKL-induced osteoclastogenesis 
(Sugatani et al., 2011). In addition, miR-21 is involved in 
estrogen-induced osteoclasts apoptosis: estrogens inhibit miR-
21 expression by inducing Fas-ligand (FasL), another miR-21 
target, which in turn inhibits osteoclastogenesis and promotes 
osteoclast apoptosis (Garcia Palacios et al., 2005; Sugatani and 
Hruska, 2013).

More recent studies have been focused on whole blood, 
serum or plasma miRNA profiling in patients with or without 
OP. Circulating levels of miR-133a, miR-146a, and miR-21 
have been assayed by RT-qPCR in plasma samples of Chinese 
postmenopausal women, grouped as normal, osteopenic or OP. 
miR-21 was downregulated while miR133a was upregulated 
in the OP and osteopenic women compared with the controls 
and both correlated with BMD; miR-146a was unchanged 
(Li et  al., 2014). miR-21 was found downregulated in the 
BM-MCSs of postmenopausal OP women (Yang et al., 2013), 
while the monocyte expression of miR-133a was associated 
with low BMD values (Wang et al., 2012). A study investigated 
the discriminatory potential between OP and osteopenia of six 
miRNAs (miR-130b-3p, miR-151a-3p, miR-151b, miR-194-5p, 
and miR-590-5p) which were found upregulated in OP. Of these 
six, miR-194-5p was the most upregulated and its expression 
negatively correlated with BMD. The association between miR-
194-5p circulating levels and BMD was later confirmed in a 
wider cohort of Chinese postmenopausal women with normal, 
osteopenia, and OP ranges of BMD. The study also reported 
that miR-194-5p may influence the TGF-β and Wnt signaling 
pathways, thus acting as a critical factor in the pathophysiology 
of postmenopausal OP (Meng et al., 2015).

The overexpression of miR-194-5p in mice BM-MSCs 
was correlated with osteogenesis by targeting both COUP-
TFII (chicken ovalbumin upstream promoter-transcription 

factor II) (Jeong et al., 2014) and STAT1 (signal transducer 
and activator of transcription 1) (Li et al., 2015b). In parallel, 
among other 851 miRNAs, miR-27a was validated as the 
most downregulated one in the serum of postmenopausal OP 
women compared with their healthy counterparts (You et al., 
2016). The MSCs collected from these OP patients displayed 
an increased adipogenic potential at the expense of osteoblast 
formation. During osteogenesis, miR-27a is upregulated in 
MSCs, whereas the opposite occurs during adipogenesis; and 
indeed, miR-27a silencing in mice impairs bone formation. 
Myocyte enhancer factor 2c (Mef2c), a transcription factor 
involved in developmental processes, has been identified and 
validated as a miR-27a target gene (You et al., 2016). Consistent 
with previous observations (Lin et al., 2009; Wang and Xu, 2010; 
Pan et al., 2014), miR-27a expression, is essential for osteoblastic 
differentiation of MSCs and its downregulation in vivo has been 
associated with bone loss. Bedene et al. (2016) identified, among 
other nine miRNAs, miR-148a-3p as a potential biomarker for 
postmenopausal OP based on its significantly higher levels in the 
plasma samples from OP subjects compared with controls. In 
CD14+ PBMCs, the RANKL-induced osteoclast differentiation 
promotes miR-148a expression dependent on the repression of 
V-maf musculoaponeurotic fibrosarcoma oncogene homolog 
B (MAFB), a transcription factor whose expression inhibits 
osteoclastogenesis (Cheng et al., 2013b). miR-148-3p has been 
found upregulated also in CD14+ PBMCs of patients with 
systemic lupus erythematous (SLE) in which it was correlated 
with reduced BMD. Furthermore, treatment of OVX mice with 
antagomiR-148a slowed bone resorption and increased bone 
mass (Cheng et al., 2013b). The expression levels of the nine 
miRNAs assayed by Bedene et al. (2016) revealed that plasma 
miR-126-3p is also positively associated with BMD at the distal 
forearm and that miR-423-5p plasma levels are negatively 
correlated with the 10-year probability of bone fracture in OP.

Using a different approach, Chen et al. (2016) screened a 
wide range of miRNAs in serum samples from OP mice in 
order to identify the most stable reference gene (miR-25-3p) for 
use in data normalization in humans. Fifteen of the screened 
miRNAs found differentially expressed in the OP mice were then 
investigated in serum samples from postmenopausal women 
(7 osteopenic, 10 OP, and 19 healthy women). miR-30b-5p was 
significantly lower in both the osteopenia and OP samples, while 
miR-103-3p, miR-142-3p, and miR-328-3p were significantly 
lower in the OP group only compared with the healthy subjects. 
The role of miR-103-3p and miR-30b-5p in bone physiology has 
been validated in in vitro studies of osteogenesis: miR-30b-5p 
expression, whose target is Runx2, decreases during late-stage 
osteoblast differentiation (Eguchi et al., 2013), while miR-103-3p 
inhibits osteoblasts differentiation and proliferation by directly 
targeting Runx2 (Zuo et al., 2015) and Cav1.2 (Sun et al., 2015), 
respectively. Despite the limited sample size, the serum levels of 
these four miRNAs in OP patients were positively correlated with 
BMD. The ROC analysis revealed their diagnostic potential for 
OP based on the following AUC–sensitivity–specificity values: 
0.800–80%–72.2% (miR-103-3p), 0.789–70%–79.0% (miR-
142-3p), 0.793–70.6%–79.0% (miR-30b-5p), and 0.874–80%–
100% (miR-328-3p) (Chen et al., 2016).
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In a study series, circulating monocytes from 12 
postmenopausal Mexican-Mestizo women, divided in normal 
(control group) and OP groups were assayed using a microarray 
platform for the expression profile of 2,578 miRNAs. The 
results showed that the three most upregulated miRNAs in the 
OP group were miR-1270, miR-548x-3p, and miR-8084, while 
the three most downregulated were miR-6124, miR-6165, and 
miR-6824-5p. Among the upregulated miRNAs, only miR-1270 
was further validated. Based on bioinformatics analysis, nine 
genes have been identified as possible targets of miR-1270, and 
RT-qPCR finally validated the interferon regulatory factor-8 
(IRF8) gene, an inhibitor of osteoclastogenesis (Zhao et al., 
2009; Jimenez-Ortega et al., 2017; Saito et al., 2017), which was 
significantly downregulated in the OP group. The same research 
team discovered another monocytic miRNA, miR-708-5p, as a 
potential biomarker for postmenopausal OP. Next generation 
sequencing (NGS) of the 46 miRNAs found differentially regulated 
in the two groups revealed that miR-708-5p and miR-3161 were 
the two most upregulated in the OP group, whereas miR-4422 
and miR-939-3p were the two most downregulated. These four 
miRNAs were then assayed using RT-qPCR, but only miR-
708-5p was validated as it was found significantly upregulated 
in OP patients compared with controls. Bioinformatics analysis 
of miR-708-5p disclosed ten potential targets involved in 
osteoclastogenesis, only five of which (AKT1, AKT2, PARP1, 
FKBP5, and MP2K3) were effectively downregulated in the OP 
subjects compared with controls (De-La-Cruz-Montoya et al., 
2018). The major limitations besides the small sample size in these 
two studies were the use of different quantification platforms 
(microarray and NGS) in preliminary screening of differential 
miRNA expression and the use of two different normalization 
strategies for RT-qPCR data analysis. These limitations make it 
difficult to correlate the data. In any case, miRNA-708-5p and 
miR-1270 may be suitable biomarkers for postmenopausal OP 
but require an independent validation study with a larger sample 
using the same protocol for data quantification and analysis.

The last paper published by this research group is the most 
complete work to date. The potential of miRNAs as biomarkers 
for OP was evaluated in serum samples (Ramirez-Salazar 
et al., 2018). The study was divided in two experimental parts: 
in the discovery stage, 40 postmenopausal Mexican-Mestizo 
women (grouped into OP subjects and healthy controls) were 
recruited, while the validation stage comprised Mexican-Mestizo 
women with OP, osteopenia, and bone fractures, plus healthy 
postmenopausal Mexican-Mestizo women. In the discovery 
stage, microarray analysis of 754 serum miRNAs identified 
seven miRNAs (miR-1227-3p, miR-139-5p, miR-140-3p, miR-
17-5p, miR-197-3p, miR-23b-3p, and miR-885-5p) in which the 
levels were significantly higher in the OP than in the healthy 
subjects. Only the three most upregulated (miR-140-3p, miR-
23b-3p, and miR-885-5p) were used in the validation stage. The 
study confirmed by RT-qPCR the higher serum levels of miR-
140-3p and miR-23b-3p in the groups with osteopenia, OP or 
bone fracture, and higher levels of miR-885-5p in the osteopenia 
group than in healthy subjects. ROC analysis for miR-140-3p and 
miR-23b-3p, in which their ability to discriminate between OP 
and healthy women was evaluated, demonstrated that the two 

miRNAs might be good candidates as biomarkers for BMD loss: 
AUC of 0.84, 0.96, and 0.92 for miR-140-3p in the osteopenia, 
OP, and bone fracture group, respectively, compared with the 
healthy controls, and AUC of 0.73, 0.69, and 0.88, respectively, 
for miR-23b-3p. Furthermore, miR-140-3p and miR-23b-3p 
were significantly correlated with BMD in each cohort. Target 
genes databases predicted AKT1, AKT2, AKT3, BMP2, FOXO3, 
GSK3B, IL6R, PRKACB, RUNX2, and WNT5B as bone-related 
genes potentially targeted by miR-140-3p and miR-23b-3p. Other 
potential osteogenic related target genes have been validated in 
vitro and in vivo: SMAD3 (Liu et al., 2016) and RUNX2 (Deng 
et al., 2017) for miR-23b-3p, and BMP2 (Hwang et al., 2014) for 
miR-140-5p. The study underlined the importance of miR-140-3p 
and miR-23b-3p as biomarkers of bone loss and risk of fracture, 
despite the small sample size especially of the control group.

Table 1 presents information about circulating miRNAs 
associated with OP.

miRNAs, Bone Fragility, and Bone Fracture 
Risk in Postmenopausal women
Bone fragility and fractures are the clinically relevant consequences 
of OP and have a negative impact on quality of life. Considering 
the objective limit of bone biopsy in healthy individuals, studies 
have compared the miRNA expression profile of OP bone with 
osteoarthritis (OA) samples as control. Thirteen of 760 miRNAs 
assayed by microarray cards were found differentially expressed 
in bone specimens from the femur heads of eight women with 
OP hip fracture compared to the femur heads from eight women 
with severe hip OA but without OP hip fracture, in seven of 
which the miRNAs were overexpressed in OP bones. In the 
following replication stage, the results showed that miR-518f was 
overexpressed and miR-187 downregulated in OP compared with 
OA bone (Garmilla-Ezquerra et al., 2015). Finally, the expression 
profile of 1,932 miRNAs was compared between fresh femoral 
neck trabecular bone from postmenopausal women with OP hip 
fracture and from postmenopausal women with OA non-OP hip 
fracture (control group). Following validation, only two (miR-
320a and miR-483-5p) of the 82 miRNAs differently expressed 
between the two groups were significantly overexpressed in 
the OP vs. the OA samples (De-Ugarte et al., 2015). miRNA-
320a targets RUNX2 and β-catenin (Yu et al., 2011; Sun et al., 
2012), while miRNA-483-5p downregulates IGF2 expression in 
OP-derived human osteoblast cultures (De-Ugarte et al., 2015).

To identify circulating miRNAs as biomarkers for OP fracture, 
Seeliger et al. (2014) assayed a panel of 83 serum miRNAs in OP 
and non-OP patients with either femoral neck or pertrochanteric 
fracture. Eleven miRNAs (miR-100-5p, miR-122a-5p, miR-
124-3p, miR-125b-5p, miR-148a-3p, miR-21-5p, miR-223-3p, 
miR-23-3p, miR-24-3p, miR-25-3p, and miR-27a-3p) were found 
at significantly higher levels in the OP sera. Together with miR-
93 and miR-637, these miRNAs were subsequently validated 
in another set of serum samples: nine miRNAs (miR-100, miR-
122a, miR-124a, miR-125b, miR-148a, miR-21, miR-23a, miR-24, 
and miR-93) were significantly higher in the OP sera than in the 
controls and they were proposed as markers to differentiate OP 
from non-OP bone fracture. Interestingly, miR-21 was previously 
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TABLE 1 | miRNAs related to postmenopausal OP.

Study Study design Biomarker 
source

Sample handling Quantification 
platform

Evaluated miRNA Normalization strategy validated miRNA 
biomarker

Potential target 
gene

AUC-
Sensitivity(%)-
Specificity(%)

Limits

(Wang et al., 
2012)

20 PM Caucasian 
women (age 57-68 
years): 10 with low 
BMD (hip/spine 
Z-score < -0.84); 
10 with high BMD 
(hip/spine Z-score 
> 0.84)

Circulating 
monocytes

Monocytes 
separated by 
density gradients 
in UNI-SEP 
tubes (sodium 
metrizoate 9.6% 
and polysucrose 
5.6% with 1.077 
g/ml density), and 
isolated using a 
negative isolation kit

Screening: TaqMan 
Human MicroRNA 
Array v1.0
Validation: TaqMan 
RT-qPCR

Screening: 365 
miRNAs tested
Validation: miR-133a 
and miR-382

RNU48 ↑miR-133a in low 
vs. high BMD 
group

CXCR3, CXCL11, 
and SLC39A1 
(identified for miR-
133a using miRDB 
and TargetScan 
database but not 
validated)

/ Small sample 
size; no significant 
correlation between 
the expression 
level of miR-133a 
and the potential 
target genes; no 
information about 
the stem-loop arm 
of miRNA origin; no 
ROC analysis

(Cao et al., 
2014)

21 PM Caucasian 
women (age 57-68 
years): 10 with low 
BMD (hip/spine 
Z-score < -0.84); 
10 with high BMD 
(hip/spine Z-score 
> 0.84)

Circulating 
monocytes

Monocytes 
separated by 
density gradients 
in UNI-SEP 
tubes (sodium 
metrizoate 9.6% 
and polysucrose 
5.6% with 1.077 
g/ml density), and 
isolated using a 
negative isolation kit

Screening: TaqMan 
Human MicroRNA 
Array v1.0
Validation: TaqMan 
RT-qPCR

Screening: 365 
miRNAs tested
Validation: miR-27b, 
miR-422a, miR-151, 
and miR-152

RNU48 ↑miR-422a in low 
vs. high BMD 
group

CD226, CBL, 
IGF1, TOB2, and 
PAG1 (identified 
for miR-422a 
using TargetScan 
database but not 
validated)

/ Small sample 
size; no significant 
correlation between 
miR-422a and 
the evaluated 
target genes; no 
information about 
the stem-loop arm 
of miRNA origin; no 
ROC analysis

(Chen et al., 
2014a)

31 Chinese PM 
women with OP 
and 30 healthy 
women (age 50-59 
years).

PBMCs CD14+ Ficoll-Paque 
separation step and 
CD14 antibody-
coated magnetic cell 
sorting MicroBeads 
used for buffy 
coat PBMCs 
isolation and 
CD14+ purification, 
respectively

Screening: MicroRNA 
microarray by LC 
Sciences
Validation: SYBR Green 
RT-qPCR

Screening: 721 
miRNAs tested
Validation: miR-503

snRNU6 ↓miR-503 in OP 
group vs. non-OP 
group

RANK (validated 
as miR-503 target 
gene)

/ Small sample size; 
no information about 
the stem-loop arm 
of miRNA origin; no 
ROC analysis

(Yang et al., 
2013)

5 OP PM women 
(age 53-63 
years) and 5 
premenopausal 
women (age 39-45 
years)

BM-MCSs Percoll density 
gradient 
centrifugation 
methodology 
obtaining 
BM-MCSs from 
the BM

Screening: LC 
Sciences microarray 
platform
Validation: RT-qPCR

Screening: 1040 
miRNAs tested
Validation: miR-21

snRNU6 ↓miR-21 in PM OP 
group vs. non-OP 
group

SPRY1 (identified 
for miR-21 using 
Target Scan 
6.0 and Pic Tar 
databases and 
validated by in vitro 
experiments)

/ Small sample size; 
no information about 
the stem-loop arm 
of miRNA origin; no 
ROC analysis

(Li et al., 2014) 40 PM Chinese 
women with 
normal, 40 with 
OP, and 40 with 
osteopenia range 
BMD (age 46-69 
years)

Cell-free plasma Plasma obtained 
from fasting blood 
samples and stored 
in liquid nitrogen

miRCURY LNA 
RT-qPCR

miR-21, miR-133a, 
and miR-146a

miR-16 ↓ miR-21 and ↑ 
miR-133a in OP 
and osteopenia 
groups vs. control

/ / Small sample size; 
no information 
about the used 
anticoagulant; 
small sample size; 
arbitrary decision of 
the reference gene; 
no evaluation of the 
target genes; no 
information about 
the stem-loop arm 
of miRNA origin; no 
ROC analysis

(Continued)
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TABLE 1 | Continued

Study Study design Biomarker 
source

Sample handling Quantification 
platform

Evaluated miRNA Normalization strategy validated miRNA 
biomarker

Potential target 
gene

AUC-
Sensitivity(%)-
Specificity(%)

Limits

(Meng et al., 
2015)

Discovery cohort: 
25 PM women with 
OP and 23 PM 
Chinese women 
with osteopenia 
(age 59-70 years)
Validation cohort: 
24 PM Chinese 
women with 
normal, 32 with 
OP and 30 with 
osteopenia range 
BMD (age 59-70 
years)

Whole blood Blood samples 
lysed using RBC 
lysis solution and 
centrifuged for 10 
min at 450g

Discovery: Agilent 
Human miRNA 
microarray followed by 
SYBR Green RT-qPCR
Validation: SYBR Green 
RT-qPCR

Discovery cohort: 
comprehensive 
miRNA expression 
analysis (Microarray); 
miR-130b-3p, miR-
151a-3p, miR-151b, 
miR-194-5p, miR-
590-5p, and miR-
660-5p (RT-qPCR)
Validation cohort: 
miR-194-5p

snRNU6 ↑ miR-130b-3p, 
miR-151a-3p, miR-
151b, miR-194-5p, 
and miR-590-5p in 
OP vs. osteopenia 
(Discovery cohort)↑ 
miR-194-5p in OP 
and osteopenia vs. 
control (Validation 
cohort)

/ / Small sample size; 
no evaluation of the 
target genes; no 
ROC analysis

(You et al., 
2016)

155 PM Chinese 
women with PM 
OP (n = 81, age 
51-62 years) or 
healthy (n = 74, 
age 40-46 years)

Cell-free serum 
and BM-MSCs

/ Screening: Agilent 
Human miRNA 
Microarray
Validation: TaqMan 
RT-qPCR

Screening: 851 
miRNAs
Validation: miR-27a

snRNU6 ↓ miR-27a in OP 
vs. control

Mef2c (predicted 
for miR-27a using 
TargetScan and 
PicTar database 
and validated by in 
vitro studies)

/ The mean age of OP 
and healthy women 
is significantly 
different; no 
information about 
the stem-loop arm 
of miRNA origin; no 
ROC analysis

(Bedene et al., 
2016)

74 PM women (age 
55-65 years): 57 
controls and 17 OP 
based on femoral 
neck/lumbar spine/
total hip T-score 
≤–2.5 SD

Cell-free plasma Blood samples 
collected in EDTA 
tubes, centrifuged 
at 2800 rpm 
and 4°C for 10 
min, then further 
centrifuged at 
9600g and 4°C for 
15 min. Plasma 
samples stored at 
-80°C

SYBR Green RT-qPCR miR-7d-5p, miR-
7e-5p, miR-30 
d-5p, miR-30e-5p, 
miR-126-3p, 
miR-148a-3p, 
miR-199a-3p, 
miR-423-5p, and 
miR-574-5p

Combination of let-7a-5p 
and miR-16-5p as 
identified by Normfinder

↑ miR-148a-3p in 
OP vs. control

/ / Small sample size 
of the control group; 
no evaluation of the 
target genes; no 
ROC analysis

(Chen et al., 
2016)

36 PM women: 19 
HC, 7 osteopenic, 
10 OP

Cell-free serum Serum obtained by 
centrifuging blood 
samples in two 
steps: for 10 min 
at 2000g and 4°C 
and for 20 min at 
12000g and 4°C. 
Serum stored at 
-80°C

SYBR RT-qPCR miR-30a-5p, miR-
30e-5p, miR-425-5p, 
miR-142-3p, 
miR-191a-3p, miR-
215, miR-29b-3p, 
miR-30b-5p, miR-
26a-5p, miR-345-5p, 
miR-361-5p, 
miR-185-5p, and 
miR-103-3p

NormFinder and 
GeNorm identified miR-
25-3p as the most stable 
reference gene in mice 
models of OP

↓ miR-30b-5p in 
both osteopenic 
and OP vs. HC↓ 
miR-103-3p, 
miR-328-3p, and 
miR-142-3p OP 
vs. HC

/ 0.793 (miR-
30b-5p) for 
both OP and 
osteopenia vs. 
HC0.793-
70.6-79.0 
(miR-30b-5p), 
0.800-80-72.2 
(miR-103-3p), 
0.789-70-79.0 
(miR-142-3p) 
and 0.874-
80-100 (miR-
328-3p) for OP 
vs. HC

Different number of 
subjects recruited 
in the 3 groups; 
the reference 
gene for humans 
was identified in 
mice models; no 
evaluation of the 
target genes

(Continued)
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TABLE 1 | Continued

Study Study design Biomarker 
source

Sample handling Quantification 
platform

Evaluated miRNA Normalization strategy validated miRNA 
biomarker

Potential target 
gene

AUC-
Sensitivity(%)-
Specificity(%)

Limits

(Jimenez-
Ortega et al., 
2017)

PM Mexican-
Mestizo women: 6 
with normal (control 
group) and 6 with 
OP hip BMD (age 
63-85 years)

PBMCs Histopaque-1077 
kit used for 
obtaining PCMCs 
by density 
gradients. CD14+ 
obtained by 
density gradient 
centrifugation for 
30 min at 400g and 
RT and magnetic 
bead isolation. 
negative isolation 
kit EasySep 
Human Monocyte 
Enrichment used 
for naive monocyte 
isolation

Screening: Affymetrix 
GeneChip Human 
U133 Plus 2.0 Array
Validation: TaqMan 
RT-qPCR

Screening: 2.578 
miRNAs tested
Validation: miR-
1270, miR-548x-3p, 
and miR-8084

Screening: quantile 
normalization
Validation: RNU44

↑miR-1270 in OP 
group vs. control 
group

IRF8 (identified 
for miR-1270 
using PITA v5.0, 
microRNA.org, 
miRWalk v2.0, 
miRDB, and 
TargetScan Human 
v7.0 database and 
validated in study)

/ Small sample size; 
no ROC analysis

(De-La-Cruz-
Montoya et al., 
2018)

PM Mexican-
Mestizo women: 7 
with normal (control 
group) and 7 with 
OP hip BMD (age 
63-85 years)

Human PBMCs Blood collected 
in CPT tubes 
and PBMCs 
obtained. CD14+ 
cells enriched by 
negative selection 
(EasySep kit)

Screening: Illumia 
NextSeq 500
Validation: TaqMan 
RT-qPCR

Validation: miR-
708-5p, miR-3161, 
miR-939-3p, and 
miR-4422

Validation: RNU44 and 
RNU48

↑miR-708-5p in 
osteoporosis group 
vs. control group

AKT1, AKT2, 
FKBP5, PARP1, 
and MP2K3 
(identified for 
miR-708-5p 
using miRTarBase 
and MiRNet and 
validated in study)

/ Small sample size; 
no ROC analysis

(Ramirez-
Salazar et al., 
2018)

Discovery cohort: 
40 PM Mexican-
Mestizo women: 
20 with normal 
(controls) and 20 
with OP hip BMD 
(age 63-85 years)
Validation cohort: 
22 normal, 26 OP, 
28 osteopenia, 21 
with hip fracture 
BMD

Cell-free serum Serum obtained 
within 1h of 
collection and 
stored at -80°C

Discovery stage: 
TaqMan Array Human 
MicroRNA A+B Cards 
Set v3.0
Validation stage: 
TaqMan RT-qPCR

Screening: 754 
miRNAs tested
Validation: miR-
23b-3p miR-140-3p, 
and miR-885-5p

snRNU6 ↑ miR-23b-3p 
and miR-140-3p 
in OP, osteopenia 
and bone fracture 
group vs. control↑ 
miR-885-5p in 
osteopenia vs. 
control

AKT1, AKT2, 
AKT3, IL6R, 
BMP2, GSK3B, 
FOXO3, PRKACB, 
WNT5B, and 
RUNX2 (identified 
for miR-23b-3p 
and miR-140-3p 
using miRWalk v3 
database)

0.84 (miR-
140-3p) for 
osteopenia, 
0.96 (miR-
140-3p) for 
OP, and 0.92 
(miR-140-3p) 
for fracture 
vs. HC0.73 
(miR-23b-3p) 
for osteopenia, 
0.69 (miR-
23b-3p) for 
OP, and 0.88 
(miR-23b-3p) 
for fracture 
vs. HC0.69 
(miR-885-5p) 
for osteopenia 
vs. HC

No validation of 
the identified target 
genes

AKT1, AKT serine/threonine kinase 1; AKT2, AKT serine/threonine kinase 2; AKT3, AKT serine/threonine kinase 3; BMD, bone mineral density; BM-MCSs, bone marrow mesenchymal stem cells; BMP2, bone morphogenic protein 2; CBL, casitas B-lineage lymphoma proto 
oncogene; CD226, cluster of differentiation 226; CXCL11, chemokine (C-X-C motif) ligand 11; CXCR3, chemokine (C-X-C motif) receptor 3; FKBP5, FK506 binding protein 5; FOXO3, forkhead box O3; FZD3, frizzled-3; GSK3B, glycogen synthase kinase 3 beta; HC, healthy 
controls; IGF1, insulin-like growth factor 1; IL6R, interleukin 6 receptor; IRF8, interferon regulatory factor-8; Mef2c, myocyte enhancer factor 2 c; MP2K3, mitogen-activated protein kinase kinase 3; OP, osteoporosis; OSX, osterix; PAG1, phosphoprotein associated with 
glycosphingolipid microdomains 1; PARP1, poly(ADP-ribose) polymerase 1; PBMCs, peripheral blood mononuclear cells; PM, postmenopausal; PRKACB, protein kinase cAMP-activated catalytic subunit beta; RANK, receptor activator of nuclear factor κ B; RANKL, receptor 
activator of nuclear factor k B ligand; RT, room temperature; RT-qPCR, real-time quantitative polymerase chain reaction; RUNX2, runt-related transcription factor 2; SLC39A1, solute carrier family (zinc transporter), member 1; SPRY1, protein sprouty homolog 1; TOB2, 
transducer of ERBB2, 2; WNT5B, Wnt family member 5B.
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found downregulated in both the BM-MCSs and the plasma 
of OP patients (Yang et al., 2013; Li et al., 2014); these opposite 
results could be ascribed to the different experimental protocols 
used, which identified miRNAs that regulate osteoclast/osteoblast 
differentiation and activity, as previously demonstrated. miR-21 is 
highly expressed in osteoclast precursors and it is upregulated in the 
course of TNF-α/RANKL-induced osteoclastogenesis (Fujita et al., 
2008; Kagiya and Nakamura, 2013); it stimulates osteoclastogenesis 
by overcoming PDCD4-mediated c-Fos inhibition (Fujita et 
al., 2008; Sugatani et al., 2011), while its expression is inhibited 
by estrogens (Garcia Palacios et al., 2005; Sugatani and Hruska, 
2013). miR-23 and miR-24 belong to the miR-23a~27a~24-2 
cluster and act as negative regulators of osteoblast differentiation 
by targeting SATB2 that cooperates with RUNX2 to induce 
osteogenesis, while miR-23a also inhibits RUNX2 (Hassan et al., 
2010). miR-93 inhibits osteoblast mineralization by targeting OSX 
(Yang et al., 2012). miR-100 negatively regulates BMPR2, a key 
osteogenic factor for MSCs (Zeng et al., 2012). The overexpression 
of miR-125b is associated with impaired osteoblast differentiation 
and proliferation through the modulation of OSX expression 
(Mizuno et al., 2008; Chen et al., 2014b). miR-124 is progressively 
downregulated during RANKL-induced osteoclastogenesis and its 
overexpression affects the maturation of osteoclast precursors via 
suppression of the key osteoclastogenic factor NFATc1, and their 
migration via inhibition of RhoA/Rac1 (Lee et al., 2013).

Following the identification of nine miRNAs whose 
circulating levels were higher in OP patients than in controls, 
Seelinger et al. evaluated their expression in the bone tissues: 
miR-100, miR-125b, miR-21, miR-23a, miR-24, and miR-25 
were upregulated also in the OP bone samples. They defined 
the potential diagnostic value of these miRNAs by means of 
ROC curve analysis. All the identified serum miRNAs showed 
significant AUC, sensitivity and specificity in discriminating 
OP from non-OP subjects: 0.69–62.9%–61.7% (miR‐100), 
0.77–74.1%–72.1% (miR‐122a), 0.69–61.4%–61.0% (miR‐124a), 
0.76–76.4%–75.0% (miR‐125b), 0.61–62.5%–62.3% (miR‐148a), 
0.63–61.3%–61.7% (miR‐21), 0.63–57.4%–56.7% (miR‐23a), 
0.63–60.3%–60.4% (miR‐24), and 0.68–69.0%–68.3% (miR‐93). 
Consequently, the five miRNAs identified in both tissue and 
serum samples can be used as biomarkers for OP and related hip 
fractures (Seeliger et al., 2014).

Another study attempted to search for potential miRNAs 
marking for OP bone fractures. In the discovery stage, Caucasian 
women with either OP sub-capital hip fracture (n = 8) or severe 
hip OA (control group, n = 5), which required arthroplasty, 
were recruited (Panach et al., 2015). The serum levels of 179 
miRNAs were analyzed by RT-qPCR. Among the 42 differently 
regulated miRNAs, six (miR-122-5p, miR-125b-5p, miR-143-3p, 
miR-21-5p, miR-210, and miR-34a-5p) were selected for the 
replication stage. miR-122-5p, miR-125b-5p, and miR-21-5p 
were significantly higher in the OP bone fracture group than 
the controls. miR-125b-5p and miR-21-5p have been correlated 
with bone metabolic indexes (Fujita et al., 2008; Mizuno et al., 
2008; Sugatani and Hruska, 2013), and the upregulation of 
miR-21 was consistent with previous observations (Seeliger 
et al., 2014). ROC analysis of the diagnostic value of the 
serum miRNAs revealed that miR-122-5p, miR-125b-5p, and 

miR-21-5p consistently discriminated between the OP patients 
with fractures (n = 15) and the controls (n = 12) (AUC 0.87 
for miR-122-5p, 0.76 for miR-125-5p, and 0.87 for miR-21-5p) 
(Panach et al., 2015). Using a similar protocol, Weilner et al. 
(2015) found three other miRNAs potentially correlated with 
OP fractures in postmenopausal women (n = 7 in the discovery 
stage, n = 12 in the validation stage) (miR-22-3p, miR-
328-3p, and let-7g-5p) and that the levels were significantly 
lower in the serum of the cases (n = 7 in the discovery stage, 
n = 11 in the validation stage). Previous in vitro experiments 
demonstrated that let-7 promotes osteoblastogenesis in MSCs 
in vitro, while it induces bone formation in vivo. These effects 
are mediated by the repression of high-mobility group AT-hook 
2 (HMGA2) (Wei et al., 2014). In vitro experiments on human 
unrestricted somatic stem cells (USSC) showed that miR-
22-3p is upregulated during osteogenic differentiation and that 
its potential target is CDK6 (Trompeter et al., 2013). Finally, 
CD44 is a potential target of miRNA-328-3p in macrophages 
and it is also expressed in osteocytes (Ishimoto et al., 2014). 
In vitro experiments on MSCs collected from two OP patients 
with bone fracture confirmed the let-7g-5p-mediated effect 
and miR-22-3p downregulation, and correlated miR-328-3p 
repression with reduced ALP activity during osteogenic 
formation (Weilner et al., 2015).

Recent studies have investigated whether single or combined 
miRNAs discriminate bone fractures in conditions associated 
with bone fragility. Kocijan et al. (2016) performed a case-
control study to identify serum miRNAs correlated with trauma 
fractures in postmenopausal OP. Three (miR-152-3p, miR-320a, 
and miR-335-5p) of the 187 tested miRNAs selected based on 
previously published studies were significantly higher, whereas 
sixteen (let-7b-5p, miR-140-5p, miR-16-5p, miR-186-5p, miR-
19a-3p, miR-19b-3p, miR-215-5p, miR-29b-3p, miR-30e-5p, 
miR-324-3p, miR-365a-3p, miR-378a-5p, miR-532-5p, miR-
550a-3p, miR-7-5p, and miR-93-5p) were significantly lower in 
postmenopausal women with bone fracture (n = 10) than in the 
controls without bone fracture (n = 11). ROC analysis showed 
that miR-140-5p, miR-152-3p, miR-19a-3p, miR-19b-3p, miR-
30e-5p, miR-324-3p, miR-335-5p, and miR-550a-3p had a higher 
discriminating power between individuals with bone fracture 
and healthy individuals (AUC> 0.9) than BMD or bone turnover 
markers. miR-335-3p has been reported to promote osteogenic 
differentiation by binding and downregulating dickkopf-related 
protein 1 (DKK1), a soluble antagonist of the Wnt signaling 
pathway (Zhang et al., 2011a). miR-30e has been reported to 
be downregulated during osteoblastic differentiation of MSC, 
and its target has been identified in low-density lipoprotein 
receptor-related protein 6 (LRP6), a known critical factor in Wnt 
signaling (Wang et al., 2013b). miR-140-5p inhibits osteoblastic 
differentiation of hMSCs by repressing bone morphogenic 
protein 2 (BMP2) (Hwang et al., 2014). miR-29 family members 
(miR-29a-3p, miR-29b-3p, and miR-29c-3p) are upregulated 
during osteoclastogenesis, while their KO results in altered 
recruitment and migration of osteoclast precursors without 
any effect on osteoclast activity (Franceschetti et al., 2013). In 
addition, six targets (Cdc42, srGAP2, GPR85, NFIA, CD93, 
and CTR) of the miR-29 family are involved in cytoskeletal 
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organization, recruitment of osteoclast precursors, and osteoclast 
function (Franceschetti et al., 2013). However, results for miR-
29 family roles are conflicting. The administration of pre-miR-
29a in rats limited the bone loss induced by glucocorticoids, 
while miR-29b expression was downregulated during the 
differentiation of CD14+ PBMCs into osteoclasts (Rossi et al., 
2013; Wang et al., 2013a). These effects are probably associated 
with the miR-29 family action on Wnt signaling and on 
osteoblast activity promotion (Wang et al., 2013a). In another 
study, miR-29b resulted upregulated in RAW264.7 cells treated 
with TNF-α and RANKL to induce osteoclastogenesis (Kagiya 
and Nakamura, 2013). Furthermore, miR-29b has been found 
to promote osteogenesis and to regulate extracellular matrix 
proteins expression by targeting the expression of HDAC4, 
TGF3, ACVR2A, CTNNBIP1, DUSP2 and COL1A1, COL5A3, 
COL4A2, respectively (Li et al., 2009).

Recent studies have discovered other circulating miRNAs 
associated with OP and OP bone fracture. Chen et al. (2017) tried 
to find other potential serum and tissue miRNAs in Chinese OP 
women with hip fractures. Five of the 95 detected miRNAs were 
significantly upregulated in the OP patients (n = 30) compared 
with the healthy non-OP controls (n = 30): miR-125b, miR-30, 
miR-4665-3p, miR-5914, and miR-96. Only miR-125b, miR-
30, and miR-5914 were subsequently validated by RT-qPCR. 
These three miRNAs were also found upregulated in OP bone 
samples compared with controls. In both cases, miR-125b was 
the most upregulated, and ROC analysis confirmed its diagnostic 
potential in postmenopausal OP (AUC 0.898) in accordance with 
three previous studies (Seeliger et al., 2014; Panach et al., 2015; 
Kelch et al., 2017).

Yavropoulou et al. (2017) investigated the expression level 
of fourteen serum miRNAs, previously associated with OP and 
OP bone fractures in the sera from postmenopausal women 
with low bone mass and either with (n = 35) or without (n = 
35) vertebral fractures. Compared with the controls, miR-124-3p 
and miR-2861 were higher, whereas miR-21-5p, miR-23a-3p, 
and miR-29a-3p were lower in the two OP groups compared 
with the non-OP controls. Furthermore, in the patients with low 
bone mass, the levels of miR-21-5p were lowest in the patients 
with vertebral fractures. Together with their above- described 
role, miR-124-3p, miR-21-5p, miR-23a-3p, miR-2861, and miR-
29a-3p are known to positively regulate osteoblast differentiation 
by targeting HDAC5, a transcriptional factor that affects bone 
formation mediated by Runx2 (Hu et al., 2011). ROC analysis 
showed that the associated AUC of miR-21-5p was 0.66, with 66% 
sensitivity and 71% specificity (Yavropoulou et al., 2017). These 
results contrasted with those from previous studies that found 
an association between miR-21-5p and miR-23-3p upregulation 
with bone fractures in OP (Seeliger et al., 2014; Panach et al., 
2015; Kelch et al., 2017). Wang et al. (2018) identified eight out 
of ten miRNAs in sera and bone tissue samples from OP patients 
with bone fracture. miR-100, miR-122a, miR-125b, miR-24-3p, 
and miR-27a-3p levels were higher in serum and upregulated in 
the bone samples of OP patients (n = 45) than in the non-OP 
subjects (n = 15), while miR-128 was upregulated only in the OP 
bone samples. Conversely, miR-145 expression was increased 
only in the OP serum compared with non-OP, while miR-144-3p 

was downregulated in the OP serum and the bone samples. Since 
miR-144-3p has not been associated with OP, the authors further 
investigated its role in osteoclastogenesis. miR-144 was found 
to affect osteoclast differentiation by targeting RANK, as well as 
proliferation and apoptosis.

Recently, Li et al. (2018) conducted a study to validate serum 
miR-133a as a biomarker for postmenopausal OP with bone 
fracture. miR-133a upregulation in circulating monocytes and in 
serum has been associated with postmenopausal OP (Wang et al., 
2012; Li et al., 2014). The study reported that serum miR-133a 
was significantly higher in the postmenopausal OP women with 
hip fracture than in the healthy controls, and that it negatively 
correlated with BMD at the lumbar spine. In vitro, miR-133a 
expression was significantly upregulated during RANKL/M-
CSF-induced osteoclastogenesis in RAW264.7 and THP-1 cells 
and its overexpression upregulated NFATc1, c-Fos, and TRAP 
protein expression (Li et al., 2018). Previous studies have also 
demonstrated that miR-133a overexpression in the osteoblast cell 
line MC3T3 suppressed osteoclastogenesis by directly targeting 
RUNX2 (Zhang et al., 2011b). In vivo, miR-133a KO in OVX 
rats altered the circulating levels of osteoclastogenesis-related 
factors and prevented bone loss (Li et al., 2018). Taken together, 
these findings support the diagnostic potential for miR-133a 
in postmenopausal OP and related bone fracture and highlight 
the potential of miR-133a as a clinical therapeutic target for 
postmenopausal OP.

Table 2 summarizes information about circulating miRNAs 
associated with bone fracture risk in OP.

miRNAs, Fracture Risk, and Physical Activity
Physical activity (PA) is a therapeutic strategy to reduce bone fracture 
risk, improve bone metabolic status and, eventually, to increase bone 
mass during childhood, adolescence, and early adulthood or to limit 
the age-associated decrease in peak bone mass in older age (Xu et 
al., 2016). PA affects miRNAs expression in tissues and organs, the 
circulating miRNAs profile reflects this situation as a consequence 
(Lombardi et al., 2016a). The literature on PA-dependent 
modifications of osteoporosis- or fracture risk-associated miRNAs 
is scarce (Lombardi et al., 2016a). The suboptimal understanding 
of these mechanisms stems from failure to appreciate the complex 
network of interactions accompanying the metabolic response of 
bone to PA. This multilevel relationship contemplates: direct effects 
of PA on bone; whole-body metabolic effects of PA on bone; specific 
effects of PA on tissues (e.g., skeletal muscle, adipose tissue, immune 
system, nervous system) besides the release of mediators from bone 
(e.g., myokines, adipokines, cytokines, and neurotransmitters) that 
affect bone both directly and indirectly; and PA-dependent release 
of mediators by bone (osteokines) that affect the expression of bone-
acting mediators released by other tissues (Lombardi et al., 2016b; 
Lombardi, 2019). Recently, we demonstrated that seven from a panel 
of ten fracture risk-associated miRNAs (miR-100, miR-122-5p, 
miR-125-5p, miR148a-3p, miR-23a-3p, miR-24-3p, and miR-93-5p) 
responded to a protocol of PA (8-week repeated sprint training in 
young healthy males) in a more sensitive way than standard bone 
metabolism markers, metabolic hormones, and cytokines (Sansoni 
et al., 2018).
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TABLE 2 | miRNAs related to bone fracture risk in postmenopausal OP.

Study Study design Biomarker source Sample handling Quantification 
platform

Evaluated miRNA Normalization 
strategy

Reported miRNA 
biomarker

Potential target 
gene

AUC-Sensitivity 
(%)-Specificity 
(%)

Limits

(Garmilla-
Ezquerra et al., 
2015)

Discovery cohort: 8 
women with OP hip 
fracture, 8 women 
with severe hip OA 
without OP fractures 
(control group)
Replication cohort: 
19 women with 
OP hip fracture, 19 
women with severe 
hip OA without OP 
fractures (control 
group)

Bone specimens Trabecular bone 
cylinders obtained 
from central part 
of femoral head 
using a trephine. 
Fragments cut 
into small pieces, 
washed with PBS, 
snap-frozen in liquid 
nitrogen, and stored 
at -70°C

Discovery stage: 
TaqMan array 
human miRNA A + B 
cards v3
Replication stage: 
TaqMan RT-qPCR

Discovery stage: 
760 miRNAs tested
Replication stage: 
miR-187, miR-
193a-3p, miR-214, 
miR-518f, miR-636, 
and miR-210

NormFinder and 
GeNorm programs 
identified miR-
222 and let-7b 
as most stable 
normalizators.

↑ miR-518f in OP 
fractures group vs. 
control group↑ miR-
187 in control group 
vs. OP fractures 
group

IGFBP1, DKK1, 
WISP1, CTNNBIP1 
(identified for 
miR-518f using 
microRNA.org, 
mirbase.org, 
and targetscan.
org prediction 
algorithms but not 
validated by in vitro 
experiments)

/ Small sample size; 
OA patients as 
control group; no 
validation of the 
identified target 
genes; no information 
about the stem-loop 
arm of miRNA origin; 
no ROC analysis.

(De-Ugarte 
et al., 2015)

Discovery cohort: 6 
PM OP women and 
6 PM OA women 
(control group) both 
with femoral neck 
fracture
Replication cohort: 7 
PM OP women and 
6 PM OA women 
(control group) both 
with femoral neck 
fracture

Fresh bone 
specimens

Bone fragments 
from femoral neck 
transcervical region 
reduced to small 
pieces, washed 
three times with 
PBS, and stored at 
-80°C

Discovery stage: 
miRCURY LNA™ 
microRNA Array 
performed by Exiqon 
Services
Replication stage: 
RT-qPCR performed 
by Exiqon Services

Discovery stage: 
1932 miRNAs 
tested
Replication stage: 
miR-675-5p, 
miR-30c-1-3p, 
miR-483-5p, 
miR-542-5p, 
miR-142-3p, miR-
223-3p, miR-32-3p, 
and miR-320a

Discovery stage: 
Lowess (Locally 
Weighted 
Scatterplot 
Smoothing) 
global regression 
algorithm.
Replication stage: 
average of miR-let-
7e-5p expression in 
each sample

↑ miR-320a and 
miR-483-5p in OP 
fractures vs. control 
group

ARPP-19, BMP3 and 
6, BMPR1A, CAMTA1, 
DNER, ESRRG, 
IGF1, IGF1R, IL6R, 
JAK2, PPARGC1A, 
LEPR, MAPK1, 
MCL, NR3C1, 
PDGFD, PTGER3, 
RARG, RXRA, SGK, 
SP1, SRF, TFR1 
(identified for miR-
320a using PicTar, 
TargetScan Human, 
miRDB, MiRanda, 
DIANA-TarBase, 
and miRTarBase 
database)SRF and 
MAPK3 (identified for 
miR-483-5p using 
mirTArBase)

/ Small sample size; 
OA patients as 
control group; no 
validation of the 
identified target 
genes; no ROC 
analysis

(Seeliger et al., 
2014)

Discovery cohort: 
10 OP (7 women 
and 3 men) and 
10 non-OP (10 
women) as control 
group, both with 
femoral neck or 
pertrochanteric 
fracture
Replication cohort: 
30 OP women and 
30 non-OP women 
(control group), both 
with femoral neck 
or pertrochanteric 
fracture

Discovery stage: 
cell-free serum
Replication stage: 
cell-free serum and 
bone tissue

/ Screening: human 
Serum & Plasma 
miRNA PCR Array 
MIHS-106Z
Validation: SYBR 
RT-qPCR

Screening: 83 
miRNAs tested
Validation: miR-
21-5p, miR-23-3p, 
miR-24-3p, 
miR-25-3p, miR-
27a-3p, miR-93, 
miR-100-5p, 
miR-122a-5p, 
miR-124-3p, 
miR-125b-5p, 
miR-148a-3p, 
miR-223-3p, and 
miR-637

Average of 
SNORD96a and 
snRNU6

↑ miR-21, miR-23a, 
miR-24, miR-93, 
miR-100, miR-
122a, miR-124a, 
miR-125b, and 
miR-148a in OP 
fracture serum vs. 
controls↑ miR-21, 
miR-23a, miR-24, 
miR-25, miR-100, 
and miR-125b in 
bone tissue from OP 
fracture patients vs. 
control

PDCD4, cFos 
(miR-21); RUNX2 
(miR-23a/miR-24-2/
miR-27a complex); 
OSX (miR-93); 
BMPR2 (miR-100); 
VCAN (miR-124a); 
RANKL (miR-148a)
(identified from 
previous papers but 
not validated in this 
paper)

0.63-61.3-
61.7 (miR-21), 
0.63-57.4-56.7 
(miR-23a), 
0.63-60.3-60.4 
(miR-24), 0.68-
69.0-68.3 (miR-93), 
0.69-62.9-61.7 
(miR-100), 
0.77-74.1-72.1 
(miR-122a), 
0.69-61.4-61.0 
(miR-124a), 0.76-
76.4-75.0 
(miR-125b), 0.61-
62.5-62.3 
(miR-148a) for OP 
fracture vs. non-OP

Small sample size; 
no validation of the 
target genes.

(Continued)
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TABLE 2 | Continued

Study Study design Biomarker source Sample handling Quantification 
platform

Evaluated miRNA Normalization 
strategy

Reported miRNA 
biomarker

Potential target 
gene

AUC-Sensitivity 
(%)-Specificity 
(%)

Limits

(Panach et al., 
2015)

Discovery stage: 8 
Caucasian women 
with OP subcapital 
hip fracture and 5 
with severe OA of 
hip requiring surgery 
(control group)
Replication stage: 15 
Caucasian women 
with OP subcapital 
hip fracture and 12 
with severe OA of 
hip requiring surgery 
(control group)

Cell-free serum Serum samples 
obtained from 
fasting blood stored 
at -80°C

Discovery stage: 
miRCURY LNA 
Universal RT 
microRNA PCR, 
Serum/Plasma 
Focus microRNA 
PCR Panel
Replication stage: 
Exiqon LNA 
RT-qPCR

Screening: 179 
miRNAs tested
Validation: 
miR-143-3p, 
miR-122-5p, miR-
125b-5p, miR-210, 
miR-21-5p, and 
miR-34a-5p

GeNorm identified 
miR-93-5p

↑ miR-122-5p, 
miR-125b-5p, and 
miR-21-5p in OP 
fracture vs. control 
group

/ 0.87 (miR-
122-5p), 0.76 
(miR-125-5p), and 
0.87 (miR-21-5p) 
for OP fracture vs. 
control group

Small sample size, 
OA patients as 
control group; no 
evaluation of the 
target genes

(Weilner et al., 
2015)

Discovery stage: 
7 PM Caucasian 
women with femoral 
neck OP fracture 
and 7 PM women 
without femoral 
fracture (control group)
Replication stage: 
12 PM Caucasian 
women with femoral 
neck OP fracture 
and 11 PM women 
without femoral 
fracture (control group)

Cell-free serum Serum obtained 
from blood samples 
centrifugied at RT 
and 2000g for 15 
min, after incubation 
at RT for 30 min, 
and stored at -80°C

Screening: Exiqon 
serum/plasma focus 
panels
Validation: RT-qPCR

Screening: 175 
miRNAs tested
Validation: 
miR-10a-5p, 
miR-10b-5p, miR-
22-3p, miR 133b, 
miR-328-3p, and 
let-7g-5p

Normalization of 
Cp-values based on 
average Cp of the 
detected miRNAs

↓ miR-22-3p, 
miR-328-3p, and 
let-7g-5p in OP 
fracture serum vs. 
control group

/ / Small sample size; 
no evaluation of 
the target genes; 
the mean age of 
patients recruited for 
the discovery and 
validation study was 
significantly different 
(71 years and 80 
years, respectively); 
no ROC analysis

(Kocijan et al., 
2016)

10 women with 
PM OP low trauma 
fracture and 11 
healthy PM women 
without low-trauma 
fracture

Cell-free serum Fasting blood 
samples 
immediately 
centrifuged and 
serum stored a 
-80°C

SYBR Green 
RT-qPCR

187 miRNAs tested Global mean ↑ miR-152-3p, miR-
335-5p, miR-320a 
and↓ let-7b-5p, 
miR-7-5p, miR-
16-5p, miR-19a-3p, 
miR-19b-3p, 
miR-29b-3p, 
miR-30e-5p, miR-
93-5p, miR-140-5p, 
miR-215-5p, 
miR-186-5p, 
miR-324-3p, 
miR-365a-3p, 
miR-378a-5p, 
miR-532-5p, and 
miR-550a-3p in 
fractured group vs. 
control group

/ 0.962 (miR-152-3p), 
0.959 (miR-30e-5p), 
0.950 (miR-324-3p), 
0.947(miR-140-5p), 
0.944 (miR-19b-3p), 
0.939 (miR-335-5p), 
0.929 (miR-19a-3p), 
0.909 (miR-
550a-3p), 0.898 
(miR-186-5p), 0.898 
(miR-532-5p), 0.872 
(miR-378a-5p), 
0.870 (miR-320a), 
0.879 (miR-93-5p), 
0.857 (miR-16-5p), 
0.853 (miR-215-5p), 
0.852 (let-7b-5p), 
0.824 (miR-7-5p), 
0.838 (miR-29b-3p), 
and 0.809 (miR-
365a-3p) for fracture 
group vs. control 
group

Small sample size; 
no evaluation of 
the target genes; 
arbitrary choice of the 
screened miRNAs
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TABLE 2 | Continued

Study Study design Biomarker source Sample handling Quantification 
platform

Evaluated miRNA Normalization 
strategy

Reported miRNA 
biomarker

Potential target 
gene

AUC-Sensitivity 
(%)-Specificity 
(%)

Limits

(Chen et al., 
2017)

30 PM Chinese 
women with OP 
and 30 PM Chinese 
women without OP 
(control group) both 
with hip fracture

Cell-free serum and 
bone tissues

Blood samples 
allowed to clot, 
centrifuged at 
1500g, then serum 
isolated and stored.

Screening: 
Microarray
Validation: TaqMan 
RT-qPCR

Validation: miR-30, 
miR- 96, miR-125b, 
miR-4665-3p, and 
miR-5914

snRNU6 ↑ miR-125b, miR-30 
and miR-5914 in 
serum and bone 
tissues from OP 
fracture vs. control 
group

/ 0.699 (miR-5914), 
0.757 (miR-30), 
and 0.898 
(miR-125b) for 
OP fracture vs. 
controls

Small sample size; 
no target genes 
evaluation; no 
information about 
the stem-loop arm of 
miRNA origin

(Yavropoulou et 
al., 2017)

35 PM women with 
low bone mass 
without vertebral 
fractures, 35 with 
low bone mass and 
vertebral fractures, 
30 HC

Cell-free serum Blood samples 
collected in clot 
activator tubes, 
placed at RT 
for 10-60 min, 
centrifuged for 
10 min at 1900g 
and 4°C. Serum 
samples centrifuged 
again for 10 min at 
16000g and 4°C 
and frozen at -80°C

SYBR Green 
RT-qPCR

14 miRNAs selected 
based on the 
existing literature: 
miR-21-5p, 
miR-23a-3p, 
miR-24-2-5p, miR-
26a-5p, miR-29a, 
miR-33a-5p, miR-
124-3p, miR-133a, 
miR-135b-5p, 
miR-214-3p, 
miR-218-5p, miR-
335-3p, miR-422, 
and miR-2861

Panel of SNORD95, 
SNORD96A, and 
snRNU6-2

↑ miR-124-3p, miR-
2861, and ↓ miR-
21-5p, miR-23a-3p, 
miR-29a-3p in OP 
vs. controls↓miR-
21-5p in OP with 
vertebral fracture vs. 
OP without vertebral 
fracture

SPRY1, BMP3, 
DKK2, and SMAD7 
(miR-21-5p); SATB2 
and RUNX2 (miR-
23a-3p); SATB2 and 
CALB1 (miR-24-2-5p); 
EPHA5, COL10A1, 
and COL19A1 (miR-
26a-5p); DUSP2, 
COL3A1, COL5A3, 
and PTHLH (miR-29a); 
DKK2, WIF1, and 
OSTF1 (miR-33a-5p); 
HDAC5, NFATC1, 
and NFATC2, (miR-
124-3p); ACVR1B, 
FOXO1, SIRT1, 
and SMAD5 (miR-
135b-5p); ATP2A3, 
CTNNB1, and 
VDR (miR-214-3p); 
COL1A1, SFRP2, 
SOST, and EPHA5 
(miR-218-5p); DKK1 
and SPARC (miR-
335-3p); HDAC5 
(miR-2861)(Identified 
using miRBase, 
DIANA TOOLS, 
PicTar, miRDB, 
TargetScanHuman, 
miRGator, and 
microRNA database)

0.66-66-71 (miR-
21-5p) for OP with 
vertebral fracture 
vs. OP without 
vertebral fracture

Small sample size; 
no validation of the 
identified target genes

(Wang et al., 
2018)

45 OP patients, 15 
non-OP (control 
group) both with 
femoral fracture

Cell-free serum and 
bone tissues

/ RT-qPCR miR-7-5p, miR-
24-3p, miR-27a-3p, 
miR-100, miR-
125b, miR-128, 
miR-145-5p, 
miR-211-5p, 
miR-144-3p, and 
miR-122a

snRNU6 ↑ miR-24-3p, 27a-3p, 
miR-100, miR-125b, 
miR-122a, miR-145, 
and ↓ miR-144-3p 
in serum from OP 
fracture vs. non-OP 
fracture↑ miR-24-3p, 
27a-3p, miR-100, 
miR-125b, miR-128, 
miR-122a, and ↓ miR-
144-3p in bone tissues 
form OP fracture vs. 
non-OP fracture

RANK (identified 
for miR-144-3p 
using TargetScan 
online software and 
validated by in vitro 
study)

/ Small sample size of 
the non-OP group; no 
ROC analysis

(Continued)
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miRNAs in Other Types of OP and Related 
Fracture Risk
Considering senile OP, a study investigated the role of a specific 
miRNA (miR-125b) in osteoblast differentiation (Chen et al., 
2014b). miR-125b was selected due to its crucial involvement 
in the epigenetic regulation of proliferation/differentiation 
of cell lineages (Liu et al., 2011). miR-125b expression levels 
in BM-MSCs was found upregulated in small mixed gender 
populations of senile Chinese OP patients (n = 4, 3 women and 
1 man) compared with subjects with normal BMD (control 
group, n = 5, 2 women and 3 men). miR-125b upregulation was 
associated with impaired BM-MSCs proliferation and osteogenic 
differentiation and, consistent with these observations, the 
antagonism of miR-125b in non-OP BM-MSCs promoted 
proliferation, osteoblast differentiation, and mineralization. 
In these cells, miR-125b also targeted Osterix (OSX), a key 
transcription factor for osteogenic differentiation (Chen et al., 
2014b). Weilner et al. (2016) found that the presence of miR-31 in 
circulating microvesicles derived from senescent endothelial cells 
negatively impacted on the osteogenic differentiation capacity of 
adipose tissue-derived MSCs. Circulating miR-31 levels were 
higher in the plasma samples from elderly healthy donors than 
in young healthy controls, as well as in the plasma from OP 
patients compared with healthy age-matched controls. miR-31 
directly inhibits osteoblast formation by targeting Frizzled-3 
(FZD3). Also SATB2, Osx, and RUNX2 have been validated 
as targets of miR-31 (Baglio et al., 2013; Deng et al., 2014; Xie 
et al., 2014). This miRNA is involved in osteoclastogenesis: its 
expression has been found strongly upregulated during RANKL-
induced osteoclast differentiation and its inhibition by specific 
antagomirs results in impaired osteoclast differentiation, actin 
ring formation, and bone resorption (Mizoguchi et al., 2013). 
These alterations depend upon the overexpression of the miR-
31 target gene RhoA, a GTPase involved in the transduction of 
extracellular signals to the cytoskeleton (Mizoguchi et al., 2013). 
This study showed, for the first time, that the miRNA content 
from senescent cells-derived microvesicles might correlate with 
the impairment of bone formation and that miR-31 can be used 
as a biomarker for age-associated diseases such as OP (Weilner 
et al., 2016). Nonetheless, a larger cohort is needed to confirm 
these data.

Studies have attempted to correlate circulating and tissue-
altered miRNAs expression with the risk of bone fracture 
in senile OP patients. In bone tissue samples from elderly 
Chinese patients with bone fracture, miRNA quantification 
by RT-PCR revealed that miR-214 expression correlated 
positively with age and negatively with bone formation marker 
levels (osteocalcin and alkaline phosphatases) (Wang et al., 
2013c). The major limitations of the study were: small sample 
size, unclear comparison between aged and control groups, 
and missing information about the screened miRNAs and data 
normalization. In murine pre-osteoblast MC3T3-E1 cells, 
miR-214 negatively affected osteoblast activity and matrix 
mineralization by targeting activating transcription factor 4 
(ATF4); these features were restored by antagomiR-214 and 
further accentuated by agomiR-214. Furthermore, miR-214 

TA
B

LE
 2

 | 
C

on
tin

ue
d

S
tu

d
y

S
tu

d
y 

d
es

ig
n

B
io

m
ar

ke
r 

so
ur

ce
S

am
p

le
 h

an
d

lin
g

Q
ua

nt
ifi

ca
ti

o
n 

p
la

tf
o

rm
E

va
lu

at
ed

 m
iR

N
A

N
o

rm
al

iz
at

io
n 

st
ra

te
g

y
R

ep
o

rt
ed

 m
iR

N
A

 
b

io
m

ar
ke

r
P

o
te

nt
ia

l t
ar

g
et

 
g

en
e

A
U

C
-S

en
si

ti
vi

ty
 

(%
)-

S
p

ec
ifi

ci
ty

 
(%

)

Li
m

it
s

(L
i e

t a
l.,

 2
01

8)
10

 P
M

 C
hi

ne
se

 O
P

 
w

om
en

 w
ith

 h
ip

 
fra

ct
ur

e 
an

d 
10

 H
C

C
el

l-f
re

e 
se

ru
m

B
lo

od
 s

am
pl

es
 

al
lo

w
ed

 to
 c

lo
t 

th
en

 c
en

tr
ifu

ge
d 

at
 1

50
0g

 to
 o

bt
ai

n 
se

ru
m

Ta
qM

an
 R

T-
qP

C
R

m
iR

-1
33

a
sn

R
N

U
6

↑m
iR

-1
33

a 
in

 O
P

 
w

ith
 fr

ac
tu

re
s 

vs
. H

C

c-
Fo

s,
 N

FA
Tc

1,
 a

nd
 

TR
A

P
 fo

r 
m

iR
-1

33
a 

id
en

tifi
ed

 b
y 

in
 v

itr
o 

ex
pe

rim
en

ts

/
S

m
al

l s
am

pl
e 

si
ze

; n
o 

R
O

C
 a

na
ly

si
s

A
C

V
R

1B
, a

ct
iv

in
 A

 r
ec

ep
to

r 
ty

pe
 1

B
; A

LP
L,

 a
lk

al
in

e 
ph

os
ph

at
as

e;
 A

N
K

H
, A

N
K

H
 in

or
ga

ni
c 

py
ro

ph
os

ph
at

e 
tr

an
sp

or
t r

eg
ul

at
or

; A
R

, a
nd

ro
ge

n 
re

ce
pt

or
; A

R
P

P
-1

9,
 c

A
M

P
-r

eg
ul

at
ed

 p
ho

sp
ho

pr
ot

ei
n 

19
; A

TF
4,

 a
ct

iv
at

in
g 

tr
an

sc
rip

tio
n 

fa
ct

or
 4

; A
TP

2A
3,

 s
ar

co
pl

as
m

ic
/e

nd
op

la
sm

ic
 

re
tic

ul
um

 c
al

ci
um

 A
TP

as
e 

3;
 B

M
P

2K
, B

M
P

2 
in

du
ci

bl
e 

ki
na

se
; B

M
P

3,
 b

on
e 

m
or

ph
og

en
et

ic
 p

ro
te

in
 3

; B
M

P
6,

 b
on

e 
m

or
ph

og
en

et
ic

 p
ro

te
in

 6
; B

M
P

R
1A

, b
on

e 
m

or
ph

og
en

et
ic

 p
ro

te
in

 r
ec

ep
to

r 
1A

; B
M

P
R

2,
 b

on
e 

m
or

ph
og

en
et

ic
 p

ro
te

in
 r

ec
ep

to
r 

ty
pe

 2
; C

A
LB

1,
 c

al
bi

nd
in

 1
; 

C
A

M
TA

1,
 c

al
m

od
ul

in
 b

in
di

ng
 tr

an
sc

rip
tio

n 
ac

tiv
at

or
 1

; C
N

R
1,

 c
an

na
bi

no
id

 r
ec

ep
to

r 
1;

 C
N

R
2,

 c
an

na
bi

no
id

 r
ec

ep
to

r 
2;

 C
O

L1
0A

1,
 c

ol
la

ge
n 

ty
pe

 X
 a

lp
ha

 1
 c

ha
in

; C
O

L1
9A

1,
 c

ol
la

ge
n 

ty
pe

 X
IX

 a
lp

ha
 1

 c
ha

in
; C

O
L1

A
1,

 c
ol

la
ge

n 
ty

pe
 I 

al
ph

a 
1 

ch
ai

n;
 C

O
L3

A
1,

 c
ol

la
ge

n 
ty

pe
 II

I 
al

ph
a 

1 
ch

ai
n;

 C
O

L5
A

3,
 c

ol
la

ge
n 

ty
pe

 V
 a

lp
ha

 3
 c

ha
in

; C
TN

N
B

1,
 c

at
en

in
 b

et
a 

1,
 C

TN
N

B
IP

1,
 c

at
en

in
-in

te
ra

ct
in

g 
pr

ot
ei

n 
1;

 D
K

K
1,

 D
ic

kk
op

f W
N

T 
si

gn
al

in
g 

pa
th

w
ay

 in
hi

bi
to

r 
1;

 D
K

K
2,

 D
ic

kk
op

f W
N

T 
si

gn
al

in
g 

pa
th

w
ay

 in
hi

bi
to

r 
2;

 D
N

ER
, d

el
ta

 a
nd

 n
ot

ch
-li

ke
 e

pi
de

rm
al

 g
ro

w
th

 
fa

ct
or

-r
el

at
ed

 r
ec

ep
to

r;
 D

U
S

P
2,

 d
ua

l s
pe

ci
fic

ity
 p

ho
sp

ha
ta

se
 2

; E
P

H
A

5,
 E

P
H

 r
ec

ep
to

r 
A

5;
 E

S
R

1,
 e

st
ro

ge
n 

re
ce

pt
or

 1
; E

S
R

R
G

, e
st

ro
ge

n 
re

la
te

d 
re

ce
pt

or
 g

am
m

a;
 F

O
XO

1,
 F

or
kh

ea
d 

bo
x 

O
1,

 F
S

H
B

, f
ol

lic
le

 s
tim

ul
at

in
g 

ho
rm

on
e 

su
bu

ni
t b

et
a;

 H
C

, h
ea

lth
y 

co
nt

ro
ls

; H
D

A
C

5,
 

hi
st

on
e 

de
ac

et
yl

as
e 

5;
 IG

F1
, i

ns
ul

in
-li

ke
 g

ro
w

th
 fa

ct
or

; I
G

F1
R

, i
ns

ul
in

-li
ke

 g
ro

w
th

 fa
ct

or
 1

 r
ec

ep
to

r;
 IG

FB
P

1,
 in

su
lin

-li
ke

 g
ro

w
th

 fa
ct

or
 b

in
di

ng
 p

ro
te

in
 1

; I
L6

R
, i

nt
er

le
uk

in
 6

 r
ec

ep
to

r, 
JA

K
2,

Ja
nu

s 
ki

na
se

 2
; L

EP
R

, l
ep

tin
 r

ec
ep

to
r;

 L
R

P
6,

 L
D

L 
re

ce
pt

or
 r

el
at

ed
 p

ro
te

in
 6

; M
A

P
K

1,
 

m
ito

ge
n-

ac
tiv

at
ed

 p
ro

te
in

 k
in

as
e 

1;
 M

A
P

K
3,

 m
ito

ge
n-

ac
tiv

at
ed

 p
ro

te
in

 k
in

as
e 

3;
 M

C
L,

 m
ye

lo
id

 c
el

l l
eu

ke
m

ia
; M

S
C

s,
 m

es
en

ch
ym

al
 s

te
m

 c
el

ls
; N

FA
TC

1,
 n

uc
le

ar
 fa

ct
or

 o
f a

ct
iv

at
ed

 T
 c

el
ls

 1
; N

FA
TC

2,
 n

uc
le

ar
 fa

ct
or

 o
f a

ct
iv

at
ed

 T
 c

el
ls

 2
; N

R
3C

1,
 n

uc
le

ar
 r

ec
ep

to
r 

su
bf

am
ily

 
3 

gr
ou

p 
C

 m
em

be
r 

1;
 O

A
, o

st
eo

ar
th

rit
is

; O
P,

 o
st

eo
po

ro
si

s;
 O

S
TF

1,
 o

st
eo

cl
as

t s
tim

ul
at

in
g 

fa
ct

or
 1

; O
S

X,
 o

st
er

ix
; P

D
C

D
4,

 p
ro

gr
am

m
ed

 c
el

l d
ea

th
 4

; P
D

G
FD

, p
la

te
le

t-
de

riv
ed

 g
ro

w
th

 fa
ct

or
 D

; P
M

, p
os

tm
en

op
au

sa
l; 

P
PA

R
G

C
1A

, p
er

ox
is

om
e 

pr
ol

ife
ra

to
r-

ac
tiv

at
ed

 r
ec

ep
to

r 
ga

m
m

a 
co

ac
tiv

at
or

 1
-a

lp
ha

; P
TG

ER
3,

 p
ro

st
ag

la
nd

in
 E

 r
ec

ep
to

r 
3;

 P
TH

LH
, p

ar
at

hy
ro

id
 h

or
m

on
e 

lik
e 

ho
rm

on
e;

 R
A

N
K

L,
 r

ec
ep

to
r 

ac
tiv

at
or

 o
f n

uc
le

ar
 fa

ct
or

 k
 B

 li
ga

nd
; R

A
R

G
, r

et
in

oi
c 

ac
id

 r
ec

ep
to

r 
ga

m
m

a;
 R

T,
 r

oo
m

 te
m

pe
ra

tu
re

; R
T-

qP
C

R
, r

ea
l-t

im
e 

qu
an

tit
at

iv
e 

po
ly

m
er

as
e 

ch
ai

n 
re

ac
tio

n;
 R

U
N

X2
, r

un
t-

re
la

te
d 

tr
an

sc
rip

tio
n 

fa
ct

or
 2

; R
XR

A
, r

et
in

oi
d 

X 
re

ce
pt

or
 a

lp
ha

; S
AT

B
2,

 S
AT

B
 h

om
eo

bo
x 

2;
 S

FR
P

2,
 s

ec
re

te
d 

fri
zz

le
d 

re
la

te
d 

pr
ot

ei
n 

2;
 S

G
K

, s
er

in
e/

th
re

on
in

e 
pr

ot
ei

n-
ki

na
se

; S
IR

T1
, s

irt
ui

n 
1;

 S
M

A
D

5,
 S

M
A

D
 fa

m
ily

 m
em

be
r 

5;
 S

M
A

D
7,

 S
M

A
D

 fa
m

ily
 

m
em

be
r 

7;
 S

O
S

T,
 s

cl
er

os
tin

; S
PA

R
C

, s
ec

re
te

d 
pr

ot
ei

n 
ac

id
ic

 a
nd

 c
ys

te
in

e 
ric

h;
 S

P
R

Y1
, p

ro
te

in
 s

pr
ou

ty
 h

om
ol

og
 1

; S
R

F,
 s

er
um

 r
es

po
ns

e 
fa

ct
or

; T
2D

M
, T

yp
e 

2 
di

ab
et

es
 m

el
lit

us
; T

FR
1,

 tr
an

sf
er

rin
 r

ec
ep

to
r 

pr
ot

ei
n 

1;
 T

R
A

P,
 tr

iio
do

th
yr

on
in

e 
re

ce
pt

or
 a

ux
ilia

ry
 p

ro
te

in
; T

S
C

22
D

3,
 

TS
C

22
 d

om
ai

n 
fa

m
ily

 m
em

be
r 

3;
 V

C
A

N
, v

er
si

ca
n;

 V
D

R
, v

ita
m

in
 D

 r
ec

ep
to

r;
 W

IF
1,

 W
N

T 
in

hi
bi

to
ry

 fa
ct

or
 1

;W
IS

P
1,

 W
N

T1
-in

du
ci

bl
e-

si
gn

al
in

g 
pa

th
w

ay
 p

ro
te

in
 1

.

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 1044303

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


miRNAs-Based Diagnosis in Osteoporosis and Bone FractureBottani et al.

18

inhibition improved the bone phenotype in OVX and hind 
limb-unloaded mice, whereas osteoblast activity was limited 
and bone mass reduced in miR-214 transgenic mice (Wang et 
al., 2013c). In 2017, the nine serum miRNAs associated with 
OP found by Seeliger et al. (2014) were validated also in serum, 
bone specimens, and cultured osteoblasts and osteoclasts 
from another cohort of OP (n = 14, 7 women and 7 men) and 
OA patients (n = 14, 7 women and 7 men) with hip fractures 
(Kelch et al., 2017). The expression levels of miR-100-5p, 
miR-122-5p, miR-124-3p, miR-125b-5p, and miR-148a-3p, 
miR-21-5p, miR-23a-3p, miR-24-3p, and miR-93-5p were 
assayed by RT-qPCR. The results showed that circulating miR-
100-5p, miR-122-5p, miR-124-3p, miR-148a-3p, miR-21-5p, 
miR-23a-3p, miR-24-3p, and miR-93-5p were significantly 
upregulated in the OP women and men compared with the 
controls, but miR-93-5p failed to discriminate between 
OP and non-OP male patients. Furthermore, miR-125b-5p 
expression was gender-related. In the OP bone samples, miR-
100-5p, miR-125b-5p, miR-21-5p, miR-24-3p, and miR-93-5p 
were significantly upregulated in the OP patients compared 
with the controls and correlated with BMD. In particular, 
miR-21-5p expression values discriminated between 
osteopenia and OP. miR-100-5p, miR-125b-5p, miR-21-5p, 
miR-23a-3p, miR-24-3p, and miR-93-5p were upregulated in 
OP osteoblasts, while miR-100-5p, miR-122-5p, miR-124-3p, 
miR-125b-5p, miR-148a-3p, miR-21-5p, and miR-93-5p were 
upregulated in OP osteoclasts. Among these miRNAs, miR-
122-5p was previously identified as being upregulated in 
serum samples from OP patients with bone fracture (Panach 
et al., 2015). The role of the other miRNAs and their potential 
target genes have been described above. These results identify 
miRNAs with high potential as biomarkers for OP, as well 
as targets for OP therapeutic treatment (Kelch et al., 2017). 
Recent studies have investigated whether single or combined 
miRNAs discriminate bone fractures in conditions associated 
with bone fragility. Interestingly, the nineteen serum miRNAs 
found altered in postmenopausal women by Kocijan et al. 
(2016), as previously described, were found altered also 
in serum samples from trauma fractures in idiopathic OP 
(premenopausal women, n = 10, and men, n = 16) compared 
to their controls (n = 28, 12 premenopausal women and 16 
men) without bone fracture. Also in these cases, ROC analysis 
revealed that miR-140-5p, miR-152-3p, miR-19a-3p, miR-
19b-3p, miR-30e-5p, miR-324-3p, miR-335-5p, and miR-
550a-3p had a higher discriminating power between bone 
fracture and controls (AUC> 0.9) than BMD or bone turnover 
markers. Mandourah et al. (2018) recruited 139 subjects and 
divided them into 5 groups: healthy controls, osteopenic 
subjects with or without bone fractures, and OP patients 
with or without bone fractures. Fifteen of the 370 miRNAs 
screened in the pooled sera were differently regulated in the 
females with OP and the healthy females, and twenty-five 
were up or downregulated in the OP females compared with 
the osteopenic females. Following RT-qPCR validation, miR-
122-5p and miR-4516 levels differed between the healthy 
subjects and the osteopenic/OP patients. Moreover, serum 
miR-122-5p and miR-4516 levels were lower in the OP patients 

than the healthy controls and osteopenic patients. miR-4516 
was also found to be downregulated in the OP patients with 
bone fracture and associated with BMD. ROC analysis revealed 
that only miR-4516 had an acceptable diagnostic value for OP: 
AUC 0.727, 71% sensitivity, and 62% specificity. Furthermore, 
the diagnostic value of these two miRNAs increased when 
combined (AUC 0.752). Overall, these findings indicate that 
miR-122-5p and miR-4516 downregulation in patient samples 
may be associated with OP progression. However, miR-122-5p 
has been found upregulated in the sera of OP patients with hip 
fracture (Panach et al., 2015).

In order to discriminate between type 2 diabetes (T2DM)- and 
OP-associated bone fracture, serum levels of 375 miRNAs were 
evaluated using a low-density qPCR array. Forty-eight miRNAs 
were differentially expressed between T2DM patients with bone 
fracture and healthy controls, and 23 miRNAs differentially 
expressed between OP with bone fracture and healthy controls. 
Eighteen of these showed the same regulation pattern in the T2DM 
and the OP patients. Considering the top ten ranking miRNAs (i.e., 
four-miRNA model signatures with AUC values >0.9 for identifying 
the T2DM or OP fragility fracture groups), the most abundant 
miRNAs were miR-382-3p, miR-550a-5p, and miR-96-5p for the 
T2DM group and miR-188-3p, miR-382-3p, miR-942 for the OP 
group. miR-382-3p was downregulated in both groups with bone 
fracture compared with the controls; miR-550a-5p and miR-96-5p 
were significantly upregulated in the T2DM patients with bone 
fractures, while miR-188-3p and miR-942 were downregulated, 
although without reaching statistical significance, in OP bone 
fractures compared with the controls: these last two miRNAs are 
associated with bone metabolism (Heilmeier et al., 2016). miR-188 
is recognized as a main modulator of the BM-MSCs age-associated 
osteogenesis-to-adipogenesis shift by targeting histone deacetylase 
9 (HDAC9) and the RPTOR-independent companion of mTOR 
complex 2 (RICTOR). In particular, miR-188 suppression 
induces osteoblast differentiation and bone formation (Li et al., 
2015a). By targeting the heparin-binding EGF-like growth factor 
(HB-EGF), miR-96 is able to promote osteoblast differentiation 
(Yang et al., 2014). Analyzing the in vitro effects of miR-188-3p, 
miR-382-3p, and miR-550a-5p on cell proliferation, osteogenesis, 
and adipogenesis, the authors demonstrated that miR-382-3p 
and miR-550a-5p enhance and inhibit, respectively, osteogenic 
differentiation and both affect adipogenesis, whereas miR-188-3p 
does not impair it. Thus, miR-382-3p and miR-550a-5p have been 
identified as potential circulating biomarkers for T2DM-associated 
bone disease, and miR-188-3p and miR-382-2p for bone fractures 
in OP (Heilmeier et al., 2016).

Table 3 presents information about circulating miRNAs 
associated with other types of OP and related fracture risk.

Conclusions
The growing body of evidence for the fundamental modulatory role 
exerted by miRNAs in biological functions, along with aberrant 
expression in disease onset, underline their potential as biomarkers 
for the onset and progression of disease. Based on current evidence, 
age-related bone diseases, especially in OP and OP fractures, may 
be correlated with altered levels of circulating and tissue miRNA. In 
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TABLE 3 | miRNAs associated with other types of OP and related fracture risk.

Study Study design Biomarker source Sample handling Quantification 
platform

Evaluated 
miRNA

Normalization 
strategy

validated miRNA 
biomarker

Potential target 
gene

AUC-
Sensitivity(%)-
Specificity(%)

Limits

(Chen et al., 
2014b)

4 Chinese OP patients 
(3 women and 1 man, 
age 76-88 years) and 
5 Chinese subjects 
with normal BMD (2 
women and 3 men, 
age 19-44 years)

BM-MCSs Bone marrow aspirated 
from iliac crest and 
used for BM-MCSs 
isolation

SYBR Green 
RT-qPCR

miR-125b snRNU6 ↑miR-125b in OP 
group vs. non-OP 
group

OSX (Identified using 
TargetScan and 
PicTar database, 
and validated by in 
vitro experiments) 
and RUNX2 for 
miR-125b

/ Small sample size; 
no information about 
the stem-loop arm 
of miRNA origin; no 
ROC analysis

(Weilner et al., 
2016)

14 men (mean 
age ~53 years) 
with idiopathic 
osteoporosis and 
11 age-matched 
HC

Cell-free plasma 
and plasma 
microvesicles

Filtration and differential 
centrifugation 
methodologies 
for microvescicle 
purification

TaqMan RT-qPCR miR-31 snRNU6 ↑miR-31 in OP 
group vs. HC

FZD3 (validated by 
in vitro experiments 
for miR-31)

/ Small sample size; 
no information about 
the stem-loop arm of 
miRNA origin; study 
mainly focused on 
miRNA evaluation by 
in vitro studies; no 
ROC analysis

(Wang et al., 
2013c)

40 Chinese patients 
with fracture (age 
60-90 years) and 9 
Chinese HC (control 
group)

Bone specimens Femurs collected 
during surgery

RT-PCR Not specified Not specified in this 
paper

↑miR-214a in older 
individuals

ATF4 (identified 
for miR-214a 
using miRBase 
and validated by 
in vitro-in vivo 
experiments)

/ Small sample 
size of the HC 
group; confusing 
information about 
the comparisons 
done among groups; 
evaluated miRNAs 
and data normalization 
not explained in this 
paper; no information 
about the stem-loop 
arm of miRNA origin; 
no ROC analysis

(Kelch et al., 
2017)

28 patients with 
hip fracture: 7 men 
+ 7 women with 
OP and 7 men + 
7 women with AO 
(control group)

Cell-free serum and 
bone tissue

Blood collected 2 h 
post-fracture (OP) or 
pre-operation (non-OP) 
into S-Monovette 
polypropylene tubes, 
placed for 30 min at RT 
upright, centrifuged for 
10 min at 1900g, serum 
stored at -80°CFemoral 
head samples collected 
during surgery (within 
8 h after fracture in OP 
group). Cylindrical bone 
samples obtained from 
middle of each femoral 
head, cut into small pieces 
with Luer forceps, rinsed 
with D-PBS, collected in 
TRI-Reagent, snap frozen 
in liquid nitrogen, and 
mechanically ground. The 
bone powder collected 
with TRI-Reagent and 
stored at -80°C

miScript SYBR 
Green RT-qPCR

miR-21-5p, 
miR-23a-3p, 
miR-24-3p, 
miR-93-5p, 
miR-100-5p, 
miR-122-5p, 
miR-124-3p, miR-
125b-5p, and 
miR-148a-3p

SNORD96a ↑ miR-21-5p, miR-
23a-3p, miR-24-3p, 
miR-93-5p, miR-
100-5p, miR-122-5p, 
miR-124-3p, and 
miR-148a-3p in OP 
serum vs. control↑ 
miR-21-5p, miR-
24-3p, miR-93-5p, 
miR-100-5p and miR-
125b-5p in OP tissues 
vs. control↑ miR-
21-5p, miR-23a-3p, 
miR-24-3p, miR-
93-5p, miR-100-5p, 
and miR-125b-5p in 
OP osteoblasts vs. 
control↑ miR-21-5p, 
miR-93-5p, miR-
100-5p, miR-122-5p, 
miR-124-3p, 
miR-125b-5p, and 
miR-148a-3p in OP 
osteoclasts vs. control

/ / no evaluation of the 
target genes; no 
ROC analysis

(Continued)
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TABLE 3 | Continued

Study Study design Biomarker source Sample handling Quantification 
platform

Evaluated 
miRNA

Normalization 
strategy

validated miRNA 
biomarker

Potential target 
gene

AUC-
Sensitivity(%)-
Specificity(%)

Limits

(Kocijan et al., 
2016)

Patients with 
idiopathic (16 
men and 10 
premenopausal 
women); HC 
without low-
trauma fracture 
(16 men and 12 
premenopausal 
women).

Cell-free serum Fasting blood 
samples immediately 
centrifuged and serum 
stored a -80°C

SYBR Green 
RT-qPCR

187 miRNAs 
tested

Global mean ↑ miR-152-3p, miR-
335-5p, miR-320a 
and↓ let-7b-5p, 
miR-7-5p, miR-
16-5p, miR-19a-3p, 
miR-19b-3p, 
miR-29b-3p, miR-
30e-5p, miR-93-5p, 
miR-140-5p, 
miR-215-5p, 
miR-186-5p, 
miR-324-3p, 
miR-365a-3p, 
miR-378a-5p, 
miR-532-5p, and 
miR-550a-3p in 
fractured groups vs. 
their control groups

/ 0.962 (miR-152-3p), 
0.959 (miR-30e-5p), 
0.950 (miR-324-3p), 
0.947(miR-140-5p), 
0.944 (miR-19b-3p), 
0.939 (miR-335-5p), 
0.929 (miR-19a-3p), 
0.909 (miR-550a-3p), 
0.898 (miR-186-5p), 
0.898 (miR-532-5p), 
0.872 (miR-378a-5p), 
0.870 (miR-320a), 
0.879 (miR-93-5p), 
0.857 (miR-16-5p), 
0.853 (miR-215-5p), 
0.852 (let-7b-5p), 
0.824 (miR-7-5p), 
0.838 (miR-29b-3p), 
and 0.809 (miR-
365a-3p) for fracture 
groups vs. control 
groups

No evaluation of 
the target genes; 
arbitrary choice of the 
screened miRNAs

(Mandourah 
et al., 2018)

12 (1 male/11 females) 
non-OP controls, 
61 (9 males/52 
females) osteopenia 
without fracture, 
15 (2 males/13 
females) osteopenia 
with fracture, 33 (6 
males/27 females) 
OP without fracture, 
and 18 (2 males/16 
females) OP with 
fracture

Cell-free serum and 
plasma

Serum/plasma 
samples obtained by 
centrifuging at 2500g 
and RT for 30 min. 
Supernatants further 
centrifuged at 14000g 
and 4°C for 30 min. 
Samples stored at 
-80°C

Screening: Human 
Serum and Plasma 
miRNA PCR arrays
Validation: miScript 
SYBR Green 
RT-qPCR

Screening: 370 
miRNAs tested
Validation: 40 
miRNAs tested

SNORD96A and 
RNU6-6P

↓ miR-122-5p and 
miR-4516 in OP 
vs. non-OP and 
osteopenia patients

BMP2K, FSHB, 
IGF1R, VDR, SPARC, 
TSC22D3 and 
RUNX2 (miR-122-5p 
and miR-4516); 
ANKH, ALPL, CNR2, 
CD44, LRP6, and 
ESR1 (miR-122-5p); 
AR and CNR1 (miR-
4516) (identified using 
miRWalk2.0 database 
but not validated in 
the study)

0.727-71-62 
(miR-4516) and 
0.752 (miR-122-
5p+miR-4516) 
for OP

Small sample 
size; confusing 
information about 
the comparisons 
done among groups; 
no validation of the 
identified target 
genes

(Heilmeier et al., 
2016)

80 PM women; two 
study arms with two 
groups each:T2DM 
arm composed of 
T2DM women with (n 
= 20) and without (n 
= 20) fragility fractures 
since T2DM onsetOP 
arm composed of 
healthy non-T2DM 
PM women with OP 
fragility fracture (n 
= 20), and control 
group of fracture-free 
PM women (n = 20).

Cell-free serum Fasting blood placed 
for 40 min upright and 
centrifuged for 15 min 
at 2000g.

SYBR Green 
Low-density qPCR 
platform

375 miRNAs 
tested

Cq values 
computed using 
second derivative 
maximum method 
provided with 
LC480 II software.

Most abundant 
miRNAs among the 
top 10 four-miRNAs 
models:↓ miR-382-3p 
in T2DM and OP with 
fragility fracture vs. 
respective controls↑ 
miR-550a-5p and 
miR-96-5p in T2DM 
fragility fracture group 
vs. controls↓ miR-
188-3p and miR-942 
in OP fracture group 
vs. controls

/ 10 candidate 
four-miRNA models 
displayed AUC 
values (0.922 
-0.965) for identifying 
fracture status in 
T2DM.10 candidate 
four-miRNA models 
displayed AUC 
values (0.972 -0.991) 
for identifying fracture 
status in OP group.

No evaluation of 
the target genes; 
arbitrary choice of the 
screened miRNAs

ALPL, alkaline phosphatase; ANKH, ANKH inorganic pyrophosphate transport regulator; AR, androgen receptor; ATF4, activating transcription factor 4; BMD, bone mineral density; BM-MCSs, bone marrow mesenchymal stem cells; BMP2K, BMP2 inducible kinase; CNR2, 
cannabinoid receptor 2; ESR1, estrogen receptor 1; FSHB, follicle stimulating hormone subunit beta;FZD3, frizzled-3; HC, healthy controls; IGF1R, insulin-like growth factor 1 receptor;OA, osteoarthritis; OP, osteoporosis; OSX, osterix; RT-qPCR, real-time quantitative 
polymerase chain reaction; RUNX2, runt-related transcription factor 2; RUNX2, runt-related transcription factor 2; SPARC, secreted protein acidic and cysteine rich; T2DM, type 2 diabetes mellitus; TSC22D3, TSC22 domain family member 3; VDR, vitamin D receptor; WIF1, 
WNT inhibitory factor 1; WISP1, WNT1-inducible-signaling pathway protein 1.
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addition, the essential regulatory role exerted by miRNAs in bone 
homeostasis, as revealed by in vitro and in vivo studies, underscores 
their huge potential as biomarkers for diagnosis, prognosis, and 
personalized treatment of age-associated bone-related disease. 
Unfortunately, clinical studies for identifying circulating miRNAs 
as markers for bone diseases have employed various different 
experimental protocols, making it difficult to compare the results 
obtained from different labs and even from the same lab in some 
cases. Furthermore, the great majority of the published studies, 
here reviewed, are featured by limited (and sometimes statistically 
unjustifiably too limited) sample sizes. For these reasons, more 
effort must be spent in standardizing the pre-analytical, analytical, 
and post-analytical stage of miRNAs discovery and validation to 
obtain valuable biomarkers for clinical practice and to improve the 

significance by validating, at least the most promising biomarkers, 
on wide and real life-adherent populations.
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Inflammatory bowel disease (IBD) is a destructive, recurrent, and heterogeneous disease. 
Its detailed pathogenesis is still unclear, although available evidence supports that IBD is 
caused by a complex interplay between genetic predispositions, environmental factors, 
and aberrant immune responses. Recent breakthroughs with regard to its genetics have 
offered valuable insights into the sophisticated genetic basis, but the identified genetic 
factors only explain a small part of overall disease variance. It is becoming increasingly 
apparent that epigenetic factors can mediate the interaction between genetics and 
environment, and play a fundamental role in the pathogenesis of IBD. This review outlines 
recent genetic and epigenetic discoveries in IBD, with a focus on the roles of epigenetics 
in disease susceptibility, activity, behavior and colorectal cancer (CRC), and their potential 
translational applications.

Keywords: epigenetic modifications, inflammatory bowel disease, disease susceptibility, disease activity, 
disease behaviour, colorectal cancer, therapeutic translation

INTRODUCTION

It is widely acknowledged that IBD is an extremely complicated disease with an unclear 
pathogenesis. Crohn’s disease (CD) and ulcerative colitis (UC) are the most common subtypes 
of IBD. It predominantly affects the gastrointestinal tract (GI), and results in repeated abdominal 
pain, diarrhea, bloody purulent stool, and weight loss, which substantially reduces the quality 
of life and increases the economic burden of IBD patients (Kaser et al., 2010). Characterized by 
chronic inflammation and inappropriate immune responses, IBD may develop into stenosis disease, 
fistula phenotypes or even CRC, posing a serious management challenge. Despite many years of 
research, the exact pathogenesis has not been completely elucidated. Current data indicate that 
IBD could be accounted as the result of the complex interplay between genetic predispositions, 
environmental factors, and aberrant immune responses (Kaser et al., 2010; Zhang et al., 2018). 
Although recent technological advances have enormously facilitated the genetic research in IBD, 
the identified genetic factors can only explain a small proportion of overall disease variance 
(Ventham et al., 2013). Moreover, the great differences in disease manifestations between young and 
old patients cannot be explained merely by different genotypes; environmental factors should also 
be given due importance due to the finding that environmental changes could shape pathological 
gene expression through epigenetic mechanisms (Aleksandrova et al., 2017). Besides, the rapidly 
growing incidence and steadily increasing prevalence of IBD further impelled us to uncover the 
role of the genome-environment interaction in the occurrence and development of IBD (Kaplan 
and Ng, 2017). Epigenetic mechanisms such as DNA methylation, non-coding RNAs, histone 
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modification, and the positioning of nucleosomes significantly 
contribute to the interplay between genome and environment 
(Ventham et al., 2013; Karatzas et al., 2014). Available evidence 
also supports the critical roles of epigenetic modifications in 
the disease susceptibility, activity, behavior, and CRC of IBD, 
which has provided valuable insights into the molecular basis of 
IBD. Moreover, it is well known that the diagnosis, differential 
diagnosis, disease surveillance, and treatment of IBD are difficult, 
and until now, there wasn’t a single solution to offer an accurate 
diagnosis and monitoring of IBD, and completely cure IBD on its 
own merits (Zhang et al., 2018). In the era of precision medicine, 
precision diagnosis and treatment have become an increasingly 
important issue in clinical practice (Li, 2018; Weissman, 2018). 
So, defining roles of epigenetics in IBD provides new avenues for 
the development of disease prediction, therapy, and monitoring. 
In this review, we introduce the recent genetic and epigenetic 
discoveries in IBD, primarily focusing on the roles of epigenetics 
in disease susceptibility, activity, behavior, CRC, and the potential 
translational applications.

ACHIEvEMENTS OF GENETIC RESEARCH 
IN IBD

Early family and twin studies have demonstrated that genetic 
factors play a fundamental role in disease susceptibility of IBD. 
The prevalence of disease (CD or UC) among relatives of IBD 
patients was significantly higher than that in controls. It should be 
emphasized that consistent trends were noticeable. The relatives 
of CD patients were at higher risk of developing CD, and those 
of UC patients were more likely to be subjected to UC than CD 
(Satsangi et al., 1994). Twin studies not only suggested that the 
twin concordance rates were much higher in CD than in UC, but 
also claimed that twins with IBD represented great consistency 
in clinical characteristics (Satsangi et al., 1994; Halfvarson et 
al., 2003). Later linkage analyses and association studies further 
identified many susceptibility loci (IBD1-9) of IBD. Nucleotide 
binding oligomerization domain containing 2 (NOD2, also 
known as CARD15) gene located in the IBD1 locus was firstly 
demonstrated to be a risk allele of CD, and three rare SNPs 
(R702W, G908R and 1007fs) were the most studied (Ahmad et 
al., 2001; Zhang et al., 2018). It is noteworthy that, Helbig et al. 
(2012) found cigarette smoking to be a possible modulator 
of the NOD2 mRNA expression and function, and therefore 
NOD2-smoking interaction (gene–environment interaction) 
might confer an increased risk to CD. Technological innovations 
such as Genome-wide association study (GWAS), whole 
exome sequencing (WES), and fine-mapping have dramatically 
facilitated genetic research in IBD, identifying more than 240 
susceptibility loci of IBD, including TNF superfamily member 15 
(TNFSF15), interleukin 23 receptor (IL23R), autophagy related 
16 like 1 (ATG16L1), immunity related GTPase M (IRGM), 
PR/SET domain 1 (PRDM1), and nuclear dot protein 52 kDa 
(NDP52, also known as CALCOCO2) (Ellinghaus et al., 2013; Liu 
et al., 2015; de Lange et al., 2017). Among these risk loci, some 
are shared by both CD and UC, while others are specific to one 
subtype (CD or UC). These data indicate that genetics plays a 

role in the pathogenesis of both CD and UC. However, it was 
quite disappointing to discover that the heritability conferred by 
genetic predisposition is smaller than expected (also known as 
missing heritability). Available data indicate that the portion of 
heritability explained by genetic variants was only 13.1% in CD, 
and 8.2% in UC (Liu et al., 2015). Therefore, understanding the 
role of other factors such as epigenetic modifications is a vital 
step in uncovering the sophisticated pathogenesis of IBD.

EPIGENETIC MODIFICATIONS IN IBD

Epigenetic modifications are defined as changes to gene structure 
and heritable phenotype that cannot be explained by altered 
DNA sequences. The classic epigenetic mechanisms include 
DNA methylation, histone modification, non-coding RNAs, and 
nucleosome positioning. In contrast, some new modifications 
such as RNA methylation are on the horizon (Ventham et al., 2013; 
Huang et al., 2019). Among these modifications, DNA methylation 
and non-coding RNAs are most extensively studied in IBD research.

DNA methylation is one of the chemical modifications of DNA. 
It is referred to the covalent addition of a methyl group to cytosines, 
which mostly occurs at cytosine phosphate guanine (CpG) 
dinucleotides, resulting in 5-methylcytosine formation (Jeltsch et al., 
2018; Li et al., 2019). CpG dinucleotides occur in human genome with 
a low frequency of 1%, and present with nonrandom distribution 
(Portela and Esteller, 2010). Regions relatively clustered with CpG 
dinucleotides are named as CpG islands (CGIs) that range from 
200bp to 5kb in length, preserve in 1–2% of the genome, and show 
a decreased transcriptional activity (Tang and Ho, 2007). Several 
studies have demonstrated aberrant changes of DNA methylation 
in IBD patients (Tahara et al., 2009a; Cooke et al., 2012; Kang et al., 
2016; McDermott et al., 2016). Alterations in the methylation status 
of IBD-associated genes considerably change the transcriptional 
activity and expression levels of genes, thereby shaping the disease 
risk and progression. It is noteworthy that some DNA profiles 
are claimed to be common to both CD and UC, while others are 
demonstrated to be specific for CD or UC, which create novel 
and powerful motivations for disease classification and therapy. In 
addition, some aberrant methylated genes were initially found to be 
involved in IBD, and were not identified as IBD risk genes before. In 
this regard, it would cast new insights into the intricate pathogenesis 
of IBD. Non-coding RNAs are a group of RNA molecules that 
are not translated into proteins, including small interfering RNA 
(siRNA), microRNA (miRNA), PIWI-interacting RNA (piRNA), 
long non-coding RNA (lncRNA) and others (Gutschner and 
Diederichs, 2012). Numerous cellular processes such as translation, 
RNA splicing, gene and chromosome structure modulation, as well 
as DNA replication and genome defense are correlated with these 
non-coding RNAs (Winter et al., 2009; Gutschner and Diederichs, 
2012; Dong et al., 2018). Current data indicate that non-coding 
RNAs, especially miRNAs, generally act in 3′ untranslated regions 
(3′ UTRs) and 5′ UTRs of genes, regulating gene expression at both 
transcriptional and post-transcriptional levels, and modifying the 
IBD-correlated mechanisms such as T-cell differentiation, IL23/
Th17 signaling pathways, and autophagy; as a result, affecting the 
disease onset and progression (Wilusz et al., 2009; Winter et al., 2009; 
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Gutschner and Diederichs, 2012; Kalla et al., 2015; Dong et al., 
2018). In accordance with findings of DNA methylation, some 
non-coding RNAs are also differentially expressed between CD and 
UC. In this respect, miRNAs can serve as potential biomarkers to 
provide supplementary information for more precise diagnosis and 
management of IBD. Collectively, it is an important emerging area as 
epigenetic modifications play a key regulatory role in gene replication, 
gene expression, and chromatin remodeling. However, despite rapid 
progresses being made in the field, other epigenetic patterns such as 
histone modification and nucleosome positioning are less studied in 
IBD. Moreover, the functions and precise mechanisms for most of 
epigenetic modifications are not completely understood. Therefore, 
it is definitely a pressing need to devote more efforts to annotate the 
functions and mechanisms of epigenetic changes in IBD. Applying 
basic research results into reliable biomarkers and therapeutic 
strategies is also becoming increasingly necessary.

ROLES OF EPIGENETICS IN IBD

Epigenetic modifications are involved in numerous diseases including 
cancers, neurodevelopmental disorders, cardiovascular diseases, and 
autoimmune diseases (rheumatoid arthritis, psoriasis, and IBD). 
Established roles of epigenetic modifications in the pathogenesis of 
these diseases suggest novel targets for disease therapy. Furthermore, 
significant associations between epigenetic modifications and disease 
susceptibility, activity and behavior indicate a potential ability to 
diagnose and manage disease. In this paper, we introduce the roles of 
epigenetic modifications in IBD, with a focus on DNA methylation 
and miRNA profiles (Tables 1 and 2).

Estimation of Disease Susceptibility
It is well established that traditional diagnosis and differential 
diagnosis of IBD are based on comprehensive analysis of clinical 
characteristics, laboratory parameters, endoscopy, imaging 
features, and histologic examinations. Other emerging surrogates 
such as genetic, serological, histologic, and fecal markers have 
also showed an important potential in disease diagnosis and 
classification. Although with these methods, some patients 
are still diagnosed with “IBD-unclassified” or “indeterminate 
colitis” (Satsangi et al., 2006). Therefore, identification of 
more diagnostic markers for IBD is of paramount importance. 
Epigenetic modifications such as DNA methylation and miRNAs 
are attractive biomarkers for diagnosis at a molecular level. 
A large number of studies have demonstrated the strength of 
sensitivity, specificity, and accuracy in the diagnosis of IBD.

Cooke et al. (2012) convincingly claimed that IBD cases displayed 
different mucosal methylation changes (THRAP2, FANCC, GBGT1, 
DOK2 and TNFSF4) in comparison to healthy controls. Besides, 
they also found a significant difference in methylation landscape 
between CD and UC patients. For example, CD patients showed 
hypermethylated GBGT1, IGFBP4, FAM10A4 and hypomethylated 
IFITM1 when compared with UC patients, which provides a 
possibility for discriminating IBD from controls, and CD from 
UC. Subsequently, Adams et al. (2014) suggested that CD patients 
displayed different circulating leukocyte methylation profiles in 

comparison to healthy controls. They identified 65 probes and 19 
differentially methylated regions (DMRs) in pediatric patients 
with CD, and developed models for each possible combination of 
two probes to discriminate CD and healthy controls with AUCs 

TABLE 1 | Roles of DNA methylation in IBD.

Methylated markers Methylation 
status (↑/↓)

Roles

Estimation of disease 
susceptibility
THRAP2, FANCC, 
GBGT1, WDR8 and 
ITGB2

↑ CD vs. healthy controls

DOK2, TNFSF4 and VMP1 ↓ CD vs. healthy controls
THRAP2, FANCC, 
GBGT1, WDR8, CARD9 
and CDH1

↑ UC vs. healthy controls

ICAM3, DOK2, TNFSF4 
and VMP1

↓ UC vs. healthy controls

GBGT1, IGFBP4 and 
FAM10A4

↑ CD vs. UC

IFITM1 ↓ CD vs. UC

Assessment of disease 
activity
CDH1, GDNF, SLIT2, 
MDR1, FMR1, GXYLT2 
and RARB

↑ Active UC vs. quiescent 
UC

FOXA2, ROR1, NOTCH3, 
CDH17, PAD14, TNFSF8, 
EPHX1, HOXV2 and FRK

↓ Active UC vs. quiescent 
UC

SLIT2 ↑ Active CD vs. quiescent 
CD, correlates with 
endoscopic and 
histological activity

Evaluation of disease 
behavior
PAR2 ↑ Total colitis phenotypes, 

steroid-dependent and 
refractory phenotypes 
of UC, and stricturing 
phenotypes

MDR1 ↑ Total colitis phenotypes, 
younger onset of disease, 
and chronic continuous 
type of UC

CDH1, CDH13 and GDNF ↑ Long-standing disease 
course of UC

miR-1247 and CDX1 ↑ Refractory UC and severe 
Mayo endoscopic score

RPS6KA2 ↑ Stricturing/penetrating 
phenotypes of CD, and 
extensive disease of UC

Cancer surveillance
RUNX3, MINT1, TGFB2, 
SLIT2, HS3ST2, TMEFF2, 
ITGA4, TFPI2, FOXE1, 
SYNE1 APC, CDH13, 
MGMT and MLH1

↑ Discriminate UC–CRC 
from controls

COX-2 ↓ Discriminates UC–CRC 
from controls

miR-137 ↑ Discriminates dysplasia 
and UC-CRC from 
controls

BMP3, vimentin, EYA4 
and NDRG4

↑ Discriminate neoplasia 
and CRC from controls
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ranging from 0.79 to 0.98 (mean value of 0.93). However, no direct 
comparison between CD and UC has been made in their study. 
It is worth noting that most methylation changes occurred in 
proximity to GWAS risk loci. These results accord with a similar 
finding by Cooke et al. (Cooke et al., 2012). They demonstrated 
that many identified GWAS risk genes (CARD9, CDH1, ICAM3 
etc.) presented different methylation status between IBD patients 
(CD and UC) and healthy controls, suggesting a possibility of 
mechanistic interactions between the epigenetic and genetic signals. 
Existing data exhibited that referred SNPs could be located in CGIs, 
disrupt CpG sites, and therefore interfere CGI methylation states 
(Cooke et al., 2012). Meanwhile, methylation alterations in or in 
proximity to the transcription start site and the promoter region of 
susceptibility genes also exert great influence on gene transcription 
(Adams et al., 2014). This indicated that genetic risk loci might 
mediate effects on disease susceptibility through DNA methylation. 
In 2016, an epigenome-wide association study (EWAS) of 240 
newly-diagnosed adult patients with IBD (CD and UC) and 190 
controls successfully identified four DMRs (VMP1, ITGB2, WDR8 
and CDC42BPB) in CD versus controls, and two DMRs (VMP1 and 
WDR8) in UC in comparison with controls, which paralleled the 
genomic findings that CD and UC not only have their own specific 
susceptibility loci, but also share overlapping risk loci to some extent. 
Furthermore, Ventham et al. (2016) also created a diagnostic model 
of 19 methylation probes that could distinguish CD from UC with a 
favorable sensitivity of 1 and acceptable accuracy of 0.719. Another 
30-probe panel could differentiate IBD patients from controls with 
a sensitivity, a specificity, and an AUC of 0.812, 0.847, and 0.898, 
respectively (Ventham et al., 2016). Recently, a British research team 
has revealed distinct gut segment-specific DNA methylation patterns 
of intestinal epithelial cells (IECs) between pediatric IBD patients 
and healthy controls. Their data indicated that disease-specific DNA 
methylation profiles of IECs (ascending colon) could accurately 
separate IBD patients from healthy controls with a sensitivity of 
75% and a specificity of 100%. Moreover, another ileal methylation 
signatures were capable of distinguishing CD from UC with a 
precision of 77% and an AUC of 0.92 (sensitivity of 57%, specificity 
of 100%) (Howell et al., 2018). Such a high degree of diagnostic 
value suggests its potential utility in clinical settings. Successful 
application of DNA methylation markers in cancer detection and 
surveillance has paved new ways for IBD research. Compared to 
genetic biomarkers, DNA methylation incorporates cumulative 
or specific environmental experience (such as smoking and diet) 
and the influence of age. Besides, current methylation detection 
encompasses panels of multiple methylation markers rather than a 
single marker, showing its superiority in sensitivity and specificity 
(Laird, 2003). Furthermore, DNA methylation biomarkers are stable 
in the bloodstream, tissues and even in stool, making it convenient 
to be preserved and detected (Johnson et al., 2016). Moreover, 
methylation assays for individual DNA methylation surrogate tend 
to be universal, which is similar to genetic markers (Laird, 2003). 
However, there are still some factors limiting the routine clinical 
application. Firstly, as is well known, DNA methylation signatures 
are cell-specific. Different sampling sites may exhibit a marked 

TABLE 2 | Roles of miRNAs in IBD.

miRNAs Expression levels 
(↑/↓)

Roles

Estimation of disease 
susceptibility
miRs-3180-3p, 
miRplus-E1035 and 
miRplus-F1159

↑ Active UC vs. active CD 
and healthy controls

miR-20b, miR-98, miR-
125b-1* and let-7e*

↑ Active UC vs. inactive 
UC, active CD, inactive 
CD, and healthy controls

miRs-103-2*, miR-
362-3p, miR-532-3p, 
miR-20b, miR-98, miR-
125b-1* and let-7e*

↑ UC vs. healthy controls

miR-340* and miR-484 ↑ CD vs. healthy controls

Assessment of 
disease activity
miR-16, miR-21, miR-
24, miR-126, miR-203, 
miR-28-5p, miR-151-5p, 
miR-199a-5p, miR-340*, 
miRplus-E1271 and 
miR-595

↑ Active UC vs. quiescent 
UC

miR-200b and miR-124 ↓ Active UC vs. quiescent 
UC

miR-199a-5p, miR-
362-3p, miR-532-3p, 
miRplus-E1271, miR-
877 and miR-595

↑ Active CD vs. quiescent 
CD

miRplus-F1065 ↓ Active CD vs. quiescent 
CD

Evaluation of disease 
behavior
miR-23b, miR-106 and 
miR-191

↑ Colonic CD

miR-19b and miR-629 ↓ Colonic CD
miR-16, miR-21, miR-
223 and miR-594

↑ Ileal CD

miR-29a, miR-29b, miR-
29c, miR-19a-3p and 
miR-19b-3p

↓ Stricturing phenotypes 
of CD

miR-31-5p ↑ Stricturing and/or 
penetrating phenotypes

miR-196b-5p and 
miR-149-5p

↓ Stricturing and/or 
penetrating phenotypes

Cancer surveillance
miR-31 and miR-224 ↑ Discriminate dysplasia 

and CRC from controls, 
as well as IBD-
associated CRC from 
sporadic CRC

miR-143 and miR-145 ↓ Correlate with neoplastic 
progression of IBD

miR-21 ↑ Discriminates dysplasia 
and CRC from controls

miR-155 ↑ Correlates with 
neoplastic progression 
of IBD

miR-26b ↑ Discriminates UC–CRC 
from controls

miR-15b, miR-17, miR-
26b and miR-145

↑ Discriminate CRC from 
controls
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difference in DNA methylation profiles due to different types of cells 
located in these sites (Cooke et al., 2012). Secondly, substantial (45%) 
overlap of differentially methylated positions (DMPs) between UC 
and CD might bring additional hurdles with regard to discriminating 
between them (McDermott et al., 2016). Thirdly, limitations of 
technologies applied in DNA methylation analyses significantly 
restrict clinical translation. The bisulphite-based approaches are 
still the leading methods used in this field. High quality samples 
and DNA sequence bias are important and serious challenges for 
a long time. Although whole genome bisulfite sequencing (WGBS) 
has displayed advantages in sample requirement, high coverage, 
and less DNA sequence bias, additional efforts are still in pressing 
need in order to resolve difficulties in PCR polymerase and bisulfite 
conversion (Raine et al., 2017). Fourthly, expensive testing costs 
need to be taken into consideration, which can add to the financial 
burden and thus, decrease patient acceptance. DNA methylation 
markers are indeed a powerful and promising tool to make a 
diagnosis of IBD. However, more studies are warranted prior to their 
clinical application.

MicroRNAs (miRNAs) are a group of non-coding RNAs with a 
length of about 22 nucleotides, mediating RNA silencing and gene 
expression regulation at a post-transcriptional level (Fisher, 2015). 
Accumulated evidence has showed its critical contribution to 
disease onset and progression of IBD, which supports possibilities 
of exploring roles of miRNA markers in diagnosis and differential 
diagnosis. miRNA expression patterns significantly differ between 
IBD patients and healthy controls, CD patients and UC patients, as 
well as between patients in remission and those in active states. Wu 
et al. (Wu et al., 2011) identified a panel of three peripheral blood 
miRNAs (miRs-3180-3p, miRplus-E1035 and miRplus-F1159) 
that were differentially expressed in active UC patients and healthy 
controls, and they also could distinguish active CD patients 
from UC patients. In the same study, specific miRNA expression 
panels of CD and UC have also been reported. Patients with UC 
displayed higher levels of miRs-103-2*, miR-362-3p, and miR-
532-3p compared with healthy controls, irrespective of whether 
they were in remission or in active status. However, CD patients 
always displayed increased levels of miR-340* in peripheral blood. 
A further study has identified four specific miRNA surrogates 
(miR-20b, miR-98, miR-125b-1*, and let-7e*) in colonic mucosa of 
UC patients and claimed that they were differentially up-regulated 
by more than 5-fold in active UC in comparison to inactive UC, 
active CD, inactive CD, and healthy controls, driving its continuous 
development in IBD discrimination (Coskun et al., 2013). Zahm 
et al. (2011) tested the diagnostic ability of 11 serum miRNA 
markers in pediatric patients with CD, and found that these 
miRNA surrogates could accurately differentiate CD patients from 
controls with sensitivities higher than 80%. Among these identified 
miRNAs, miR-484 outstripped other miRNAs and promising 
markers, including C-reactive protein (CRP), anti-Saccharomyces 
cerevisiae antibody (ASCA) IgG, erythrocyte sedimentation rate 
(ESR) and albumin, with an AUC of 0.917, a sensitivity of 82.61%, 
and a specificity of 84.38%, respectively. However, the discriminative 
power of these CD-associated miRNAs in distinguishing CD from 
UC, CD from irritable bowel syndrome (IBS), and CD from celiac 
disease is unknown. More studies are warranted to elucidate the 
discriminative capacity with regard to these differential diagnoses. 

Even though peripheral blood and colon mucosa miRNA markers 
play a pivotal role in disease diagnosis, limitations including 
invasiveness, inflexibility, and time consumption make them 
unacceptable for patients. Saliva miRNA markers might overcome 
these shortcomings and provide additional diagnostic information. 
Different saliva miRNA expression signatures between IBD cases 
and healthy controls may help physicians in disease diagnosis and 
classification (Schaefer et al., 2015). In order to improve diagnostic 
accuracy, extended panels may be more helpful. A study of 76 IBD 
(CD and UC) patients and 38 healthy controls has established 
classification models comprising of various miRNAs (miR-34b-3p, 
miR-377-3p, miR-484, miR-574-5p etc.), which could discriminate 
IBD from healthy controls, and CD from UC, with increased AUCs 
of 0.89 to 0.98, and low classification error rates of 3.3% and 3.1%, 
respectively (Chamaillard et al., 2015). More importantly, some 
studies have observed a considerable overlap of miRNA signatures 
between IBD and other immune diseases (systemic lupus 
erythematosus, rheumatoid arthritis, asthma etc.), paralleling the 
genetic overlap between IBD and other immune diseases, which 
suggested some shared pathways among them; thereby offering 
a possibility of knowledge innovation in diagnosis and targeted 
treatment of IBD (Lees et al., 2011; Wu et al., 2011; Clark et al., 2012). 
In addition, it is important to note that clear differences of miRNA 
expression signatures have also been observed in different studies, 
that is to say, increased levels of miRNAs that were identified in one 
study otherwise showed a decreased expression in another study, or 
altered miRNAs couldn’t be validated in other studies, which made 
it somewhat difficult for physicians to make an accurate diagnosis. 
In addition to different miRNA microarray platforms and sample 
sizes, other influencing factors such as different sample resources 
(colon tissues, peripheral blood, stool, saliva etc.) and inconsistent 
fold change criteria, as well as different therapeutic regimens, disease 
states (active or quiescent), and disease duration may also account 
for it (Coskun et al., 2013; Kalla et al., 2015; Schaefer et al., 2015). 
Thus, these reported miRNA markers are needed to be validated in 
large-scale, independent, clinically well-matched cohorts.

As for histone modifications and nucleosome positioning, 
definite evidence is still lacking for the contributions in 
diagnosis and differential diagnosis of IBD. Available evidence 
demonstrated complex networks between DNA methylation, 
miRNAs, histone modifications and nucleosome positioning. 
(Wang et  al., 2013). So, determined DNA methylation or 
miRNA markers may affect disease susceptibility through 
histone modifications or nucleosome positioning at some levels. 
Therefore, further studies are warranted to clarify the detailed 
interactions, functional pathways and transcription regulation 
amongst these epigenetic modifications.

Diagnosis and differential diagnosis of IBD are definitely a 
major clinical challenge. Collection of additional evidence might 
help achieve a higher diagnostic accuracy of IBD. Emerging 
molecular markers such as DNA methylation and miRNA 
markers, along with other surrogates such as NOD2, ASCA, 
antineutrophil cytoplasmic antibody (ANCA), fecal calprotectin 
(FC) and fecal lactoferrin (FL), have exhibited certain advantages 
over other classic surrogates with regard to the sensitivity, 
specificity and accuracy (Zhang et al., 2018). A pooled analysis 
of different-class markers ensures a more precise diagnosis, 
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but cost–effectiveness ratio should also be taken into account. 
Although most of these emerging molecular markers have 
not been recommended in any guidelines, and are not usually 
generalized in routine diagnosis, they indeed provide some 
useful diagnostic information for doctors. Considering that 
some results were obtained in small sample studies, verification 
in larger, well-designed, and prospective studies has become 
increasingly important.

Assessment of Disease Activity
The natural course of IBD is characterized by relapse-remission. 
A population-based study from Copenhagen has delineated 
that approximately 18% patients could experience an indolent 
course, with 57% undergoing moderate activity (no less than 
two relapses within the first five years, but less than every year), 
and 25% having aggressive disease (disease relapses every year) 
during the first 5 years after diagnosis of CD (Jess et al., 2007). 
The corresponding percentages of UC of indolent, moderate, and 
aggressive disease course were 13%, 74% and 13%, respectively 
(Jess et al., 2007). IBD patients with earlier recurrence are at 
higher risk of relapsing during following years than those with 
later relapse (Magro et al., 2017). In routine clinical work, 
patients with relapse are recommended to get microbiological 
examination of stool, serological tests such as ESR and CRP, and 
even sigmoidoscopy or colonoscopy, aiming to exclude specific 
infections and assess disease activity. However, classic markers 
are not always parallel to disease activity. Some patients with 
mild or moderate disease activity may display normal serological 
parameters (Magro et al., 2017). Additionally, other diseases such 
as infectious enteritis and intestinal tuberculosis can also result 
in abnormal levels of ESR and CRP, making them unspecific for 
IBD (Zhang et al., 2018). Even though endoscopy together with 
histological analysis is recognized as the gold standard for the 
assessment of disease activity, it is unreasonable to prescribe 
endoscopy for patients once the disease flares. In recent years, 
novel epigenetic markers are claimed to be independently 
correlated with disease activity, and be of practical significance 
in the assessment of disease activity.

Saito et al. (2011) analyzed colonic methylation levels of UC 
patients and found that inflamed mucosa exhibited markedly 
higher methylation status of cadherin 1 (CDH1) and glial 
cell derived neurotrophic factor (GDNF) loci compared with 
quiescent mucosa. Recently, Barnicle et al. (2017). compared 
the DNA methylation patterns in inflamed and non-inflamed 
tissues of UC patients, and successfully found four differentially 
methylated and expressed genes (ROR1, GXYLT2, RARB, and 
FOXA2) that were involved in the regulation of Wnt signaling 
and cell development. A further study of 38 IBD patients (29 UC 
and 9 CD) revealed a significant correlation between slit guidance 
ligand 2 (SLIT2) methylation and endoscopic and histological 
activity (Lobatón, 2014). It should be pointed out that altered 
methylation status was also correlated with changed endoscopic 
activity in the longitudinal study. SLIT2 methylation status tended 
to be elevated in patients who shifted from remission to active 
states. In addition, a large-scale systematic review of 16 studies 
further identified 25 differentially methylated inflammatory genes 

between UC patients and controls (Gould et al., 2016). Among 
these genes, methylation status of multidrug resistance 1 (MDR1), 
fragile X mental retardation 1 (FMR1), CDH1 and GDNF gene was 
elevated, while methylation status of NOTCH3, CDH17, PAD14, 
TNFSF8, EPHX1, HOXV2, FRK etc. was decreased in inflamed 
mucosa in comparison with quiescent mucosa, indicating that 
histologic methylation profiles can serve as valuable surrogates 
to evaluate the disease activity of IBD. Associations between 
serum methylation signatures and disease activity have also 
been corroborated by several other studies (Gould et al., 2016). 
However, a recent genome-wide DNA methylation study 
has drawn a contrary conclusion that peripheral blood DNA 
methylation was not significantly different between active and 
inactive disease states (McDermott et al., 2016). Considering 
great heterogeneity of disease locations, disease duration, disease 
behaviors, degrees of disease activity, and drug use might affect the 
epigenetic changes, large scale, well-matched, prospective studies 
are needed to further verify the relationships between them. It 
must be stressed that most methylated loci have been confirmed 
to be IBD susceptibility loci by GWAS, while some methylated 
loci were firstly identified in these epigenetic studies, and were 
demonstrated to be involved previously unknown signaling 
pathways. In this sense, this offered a possibility of unveiling new 
pathogenic mechanisms of IBD and developing new targets for 
treatment (Saito et al., 2011; Lin et al., 2012; McDermott et al., 
2016). Given that blood collection is more accessible and less 
invasive than biopsy, some studies compared the DNA methylation 
changes between peripheral blood and intestinal tissues, and 
suggested that methylation profiles in peripheral blood could 
reflect DNA methylation patterns in intestinal tissues (Gould 
et al., 2016; McDermott et al., 2016). Thus, identification of serum 
methylation signatures may be more acceptable in the assessment 
of disease activity. However, there is still a lack of studies directly 
comparing the diagnostic accuracy of methylation markers with 
other classic and emerging markers, additional efforts should be 
made to fill this gap.

miRNAs were firstly reported to be of value in the evaluation of 
disease activity of IBD in 2008 (Wu et al., 2008). Expression levels 
of miR-16, miR-21, miR-24, miR-126 and miR-203 were increased 
in active UC tissues in comparison with quiescent UC tissues. In 
contrast, miR-200b displayed a lower expression concentration 
in active UC tissues than in inactive ones (Wu et  al., 2008). 
Among these differentially expressed miRNAs, miR-21 showed 
the highest fold change of 3.7 between active and inactive disease 
states. It should be emphasized that no difference has been found 
in the expression levels of the active UC-associated miRNAs 
between CD patients and controls. A later study also confirmed 
that peripheral blood miRNAs could distinguish active IBD from 
quiescent IBD (Wu et al., 2011). Their data demonstrated that 
active CD patients displayed an increased expression level of 
miR-199a-5p, miR-362-3p, miR-532-3p and miRplus-E1271 as 
well as a decreased level of miRplus-F1065, compared with CD 
patients in remission. Similarly, as for UC patients, miR-28-5p, 
miR-151-5p, miR-199a-5p, miR-340* and miRplus-E1271 were 
elevated in active ones but not in inactive ones. Moreover, miRs-
3180-3p, miRplus-E1035 and miRplus-F1159 were demonstrated 
to be differentially expressed in the active UC patients vs active CD 
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patients, which supported the hypothesis that the two subtypes 
of IBD were implicated in different pathogenic mechanisms. 
Additional serum or tissue miRNA markers such as miR-124, 
miR-877, miR-595 etc. are also claimed to be instrumental in 
discriminating active IBD from inactive IBD (Iborra et al., 2013; 
Koukos et al., 2013; Krissansen et al., 2015). In 2016, a spearman 
correlation analysis indicated that circulating miR-223 was not 
only correlated with ESR and hs-CRP, but also correlated with 
clinical activity index including Crohn’s Disease Activity Index 
(CDAI), Simplified Endoscopic Score for Crohn’s Disease 
(SES-CD), Mayo score, and Ulcerative Colitis Endoscopic Index 
of Severity (UCEIS) (Wang et al., 2016). However, little is known 
about the definite predictive values (sensitivity, specificity and 
AUC) of these miRNAs in detection of disease activity in IBD. 
Moreover, there is still a lack of evidence about comparative 
advantages of miRNA markers when compared with other 
accurate markers such as serum calprotectin (SC), FC and FL. 
Another important issue that should be stressed is that whether 
serum expression profiles of IBD-associated miRNAs can reflect 
miRNA expression patterns in intestinal tissues. Contrary results 
have been found in some studies (Archanioti et al., 2011; Iborra 
et al., 2013; Zhang et al., 2018). So, larger comparison studies of 
paired serum and mucosal tissues are warranted. This further 
merits additional investigation to see if the combined analysis of 
serum and histologic miRNA profiles will ensure a more accurate 
assessment of disease activity.

Evaluation of Disease Behavior
IBD is a heterogeneous entity with distinct disease locations, age of 
onset, phenotypes, and severity. A majority of patients experience 
great changes of disease behaviors throughout the disease course. 
For example, some CD patients with inflammatory phenotypes 
may convert into stricturing or penetrating phenotypes, and UC 
patients manifesting proctitis will develop into extensive colitis 
as the disease progresses. Some convincing evidence suggests 
that early age onset, extensive disease, the presence of perianal 
disease, and stricturing or penetrating subtypes are risk factors 
of progressive course and poor prognosis (Gomollon et al., 2017; 
Magro et al., 2017). Screening patients with a less favorable 
course in the early stage of disease is highly recommended. So, 
it is of paramount importance to identify markers that can help 
physicians evaluate disease behavior in clinical practice.

Tahara et al. (2009b) firstly demonstrated that protease-
activated receptor 2 (PAR2) methylation status was independently 
associated with various clinical disease behaviors in a study of 84 
UC patients. Their data indicated that methylation levels of PAR2 
tended to be higher in patients with total colitis in comparison 
to those with rectal colitis, and increased methylation levels were 
also correlated with steroid-dependent and steroid-refractory 
phenotypes. In the same year, Christerson et al. (2009) suggested 
that PAR2 activation could potentiate intestinal myofibroblast 
proliferation and stricture formation in patients with CD. 
Considering that PAR2 is widely implicated in the regulation 
of inflammatory responses, cell growth, and stricture formation 
in IBD, PAR2 methylation markers may serve as a valuable 
tool in the assessment of disease behavior (Christerson et al., 

2009; Tahara et al., 2009b). In the same year, Tahara’s research 
team further identified the putative roles of MDR1 methylation 
signatures in UC patients. They suggested that increased 
methylation levels of MDR1 gene were not only associated with 
total colitis phenotypes, but also correlated with younger onset of 
disease (≤20 years) and chronic continuous types (Tahara et al., 
2009a). Available evidence has demonstrated a close association 
between MDR1 dysfunction and impaired intestinal epithelial 
barrier in UC. Moreover, those patients who had progressive 
disease course were more likely to present severely damaged 
intestinal epithelial barrier (Schwab et al., 2003; Tahara et al., 
2009a). From this point, MDR1 methylation surrogates may 
be of important value and significance in evaluation of disease 
course. Further evidence has indicated that CDH1, CDH13 and 
GDNF methylation occurred more frequently in UC patients 
with long-standing disease course, and higher methylation status 
of miR-1247 and caudal type homeobox 1 (CDX1) could serve 
as a predictor of refractory UC and severe Mayo endoscopic 
score (Saito et al., 2011; Schneider-Stock et al., 2014; Gould et al., 
2016). In addition, hypomethylation of ribosomal protein S6 
kinase A2 (RPS6KA2) has also been identified as a diagnostic aid 
in the prediction of complicated disease behavior (stricturing/
penetrating disease) of CD and extensive disease of UC (Ventham 
et al., 2016). RPS6KA2 is a ribosomal kinase that is responsible 
for the modulation of cell growth, motility and proliferation, as 
well as the regulation of PI3K/Akt/mTor pathway and autophagy. 
The latter has been proven to be one of the most important 
pathogenesis of CD in recent years. Previous studies have declared 
that gene expression is characterized by region-specificity in 
intestine (Bates et al., 2002). Given that DNA methylation 
can regulate gene expression at a post-transcriptional level, a 
significant difference of DNA methylation status in different 
segments of intestine may help explain the underlying molecular 
basis. Moreover, close associations between methylation status 
and certain disease behaviors highlight the exciting potential of 
using methylation markers in the assessment and prediction of 
disease behaviors. However, comparative studies are still in need 
to assess the exact predictive value in IBD, and extended panels 
of different molecular markers are also required to improve the 
accuracy of prediction.

The fact that the expression of miRNAs in intestine is region-
specific, provides a basis for studying the specific miRNA 
expression patterns in IBD patients with different disease 
locations. Wu et al. (2010) have successfully identified three 
specifically upregulated miRNAs (miR-23b, miR-106 and miR-
191) and two down-regulated miRNAs (miR-19b and miR-629) 
in tissues from colonic CD, and four miRNAs (miR-16, miR-21, 
miR-223, and miR-594) with increased expression in tissues from 
ileal CD, offering a possibility of using miRNA biomarkers to 
discriminate different subtypes of CD. Moreover, a British study 
highly suggested that the expression levels of miR-29 family 
were in correlation with stricturing phenotypes in CD patients 
(Nijhuis et al., 2014). They conducted a comparative study of 
mucosa overlying a stricture and paired non-stricturing samples 
in CD patients, and claimed that expression levels of miR-29a, 
miR-29b and miR-29c were significantly down-regulated in 
mucosa overlying a stricture compared with the other. Similarly, 
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in the serum, there is also a great reduction of expression levels of 
miR-29a in patients with stricturing phenotypes in comparison 
to those manifesting inflammatory phenotypes. This data was 
in accordance with previous findings that a decreased level of 
miR-29 family is a hallmark of cardiac, hepatic, pulmonary, and 
renal fibrosis, suggesting its significant contribution in tissue 
fibrosis (Nijhuis et al., 2014; Lewis et al., 2015b). A later study 
of 106 patients with CD further suggested that reduced serum 
expression levels of miR-19-3p (miR-19a-3p and miR-19b-3p) 
were independently associated with stricturing phenotypes (Lewis 
et al., 2015a). More importantly, further evidence showed that 
decreased serum miR-19-3p levels antedated the development of 
stricture, and remained low in patients with resected strictures. 
In addition, Lewis et al. (2015a) compared the predictive value of 
miR-19-3p, disease duration and ileal disease in discriminating 
stricturing from non-stricturing subtypes, and found that disease 
duration outperformed the other indicators with an AUC of 0.76, 
followed by miR-19-3p (AUC = 0.67) and ileal disease (AUC = 
0.58). Combined analysis of the three predictors would make the 
classification efficiency increase markedly, with an AUC of 0.81. 
Additionally, some other miRNA markers such as miR-31-5p, 
miR-196b-5p, miR-149-5p etc. have also been confirmed in 
association with stricturing and/or penetrating phenotypes (Peck 
et al., 2015). Distinct expression patterns of miRNAs are of high 
value as a diagnostic and predictive tool in classifying different 
disease behaviors of IBD patients. Current diagnostic modalities 
displayed a limited value in discriminating inflammatory stricture 
from fibrotic stricture, while miR-29 family showed a great 
potential in identifying stricturing subtypes secondary to fibrosis 
(Nijhuis et al., 2014). Exploration of additional miRNA markers 
capable of classifying inflammatory and fibrotic stricture is in 
an unmet need, as this could guide clinicians in implementing 
individualized treatment (drug therapy, endoscopic balloon 
dilation or surgical intervention). In addition, establishing 
a standardized miRNA processing protocol is in dire need, 
considering that different RNA isolation methods and miRNA 
microarray platforms greatly influence the experimental results 
(Lewis et al., 2015a; Lewis et al., 2015b). Furthermore, functional 
significance and targeted sites of miRNA markers also deserve 
in-depth investigation in order to unveil the comprehensive 
molecular basis of IBD and develop miRNA-based therapeutics.

In the era of precision medicine, physicians are advised 
to perform risk stratification firstly according to the clinical 
characteristics, endoscopic findings, and imaging features, as well 
as molecular markers, and then select the most suitable treatment 
for individual patient based on risk stratification. Epigenetic 
patterns indeed provide some important clues for disease risk. 
Based on the risk analysis, patients can be divided into two groups 
including high risk group and low risk group, and the two different 
groups are supposed to receive different treatment regimens. The 
European Crohn’s and Colitis Organization (ECCO) consensus 
recommends that patients with poor prognosis and progressive 
disease course better receive early and progressive therapy 
(immunomodulator or biological agents) and if possible, a 
combined treatment of immunosuppressant and biological agents. 
For patients with mild course, an accelerated step-up approach 
is recommended, which markedly decreases the unnecessary 

expenses and the risk of severe adverse events (Gomollon et al., 
2017; Harbord et  al., 2017). However, epigenetic markers have 
not been included in any guidelines for IBD treatment, suggesting 
many areas need to be improved. In addition, even we can choose 
de-escalation or escalation therapy according to risk stratification. 
The challenge remains to select the most suitable drugs for 
each individual amongst a variety of drugs, given that different 
patients show significantly different drug metabolism rates and 
response rates to therapy. Genetic markers such as thiopurine 
S-methyltransferase (TPMT), nucleoside diphosphate-linked 
moiety X-type motif 15 (NUDT15), and inosine triphosphate 
pyrophosphatase (ITPA) variant loci that implicate drug 
metabolism have been shown to be of great value in predicting 
therapeutic efficacy and adverse drug reactions of thiopurines 
(Lucafo et al., 2018b). With the wide use of biologics (infliximab, 
adalimumab, vedolizumab and ustekinumab) in clinic, emerging 
genetic markers (IL23R, TNFAIP3 and TNFRSF1A) and 
other serologic, histologic, and fecal surrogates (CRP, ANCA, 
membrane-bound TNF, TNF-α, FC etc.) represent as exciting 
indicators for the prediction of response rates to biologics (Zhang 
et al., 2018). As for epigenetic profiles, available data has shown 
that miR-499 was associated with steroid dependence, and a high 
level of lncRNA growth arrest-specific 5 (GAS5) was claimed 
to be correlated with poor steroid response (Okubo et al., 2011; 
Lucafo et al., 2018a). Serum let-7d and let-7e have been found to 
be candidate biomarkers for the prediction of treatment response 
to infliximab in CD patients (Fujioka et al., 2014). Moreover, 
DNA methylation patterns in IECs of pediatric IBD patients 
were also linked with the requirement of biologics and time to 
third treatment escalation (Howell et al., 2018). However, definite 
predictive values of these epigenetic markers are still absent, 
which limits the clinical application to some extent. Exploring 
the sensitivity, specificity, predictive accuracy in other prospective 
and independent cohorts is of utmost importance. Considering 
that there are still only a limited number of studies demonstrating 
the roles of epigenetics in the assessment and prediction of 
therapeutic response, and the selection of therapeutic methods, 
especially in the field of the immunosuppressant and biologics, 
additional studies are needed to replicate these findings and find 
more accurate epigenetic biomarkers.

Cancer Surveillance
IBD is a kind of long-lasting inflammatory disease with an 
increased risk of developing CRC, especially for patients with 
UC. Recent studies have shown that the cumulative risk of 
CRC is approximately 1.6% during fourteen-year follow-up, 
and UC increases the risk of CRC 2.4-fold in comparison with 
the normal population (Jess et al., 2012). Additionally, CRC 
risk increases over time as it is 8% at 20 years and 18% at 30 
years after UC diagnosis (Eaden et al., 2001). Even though 
CRC in IBD merely accounts for a small portion (1–2%) of 
CRC cases in the general population, it contributes to 15% of 
all-causes mortality of IBD patients (Breynaert et al., 2008). 
Therefore, early detection and close surveillance of CRC in 
IBD patients are of paramount importance. Previous studies 
have demonstrated positive correlations between CRC and 
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young age at diagnosis, long disease duration, extensive colitis, 
male, primary sclerosing cholangitis and a family history of 
CRC (Jess et al., 2012; Azuara et al., 2013; Luo and Zhang, 
2017; Zhen et al., 2018). Serum carcinoembryonic antigen 
(CEA) testing and fecal occult blood testing (FOB) are the 
most frequently used noninvasive means of detecting CRC 
(Ma et al., 2019). However, these detecting means have been 
claimed to be less efficient with unfavorable sensitivity and 
specificity. Exploring robust biomarkers has become an urgent 
need. Emerging biomarkers such as DNA methylation and 
miRNAs have showed their great potential in detection and 
surveillance of CRC.

It is well known that DNA methylation modifications occur 
early in neoplasia and can work as promising early-detection 
indicators of carcinogenesis. In 2010, Garrity-Park et al. (2010) 
assessed the methylation status of ten potential genes in intestinal 
biopsies, and revealed significant associations between runt 
related transcription factor 3 (RUNX3), MINT1 (also known as 
APBA1) and COX-2 methylation and UC–CRC (OR=12.6, 9.0 and 
0.2, respectively). It is noteworthy that the concurrent presence 
of RUNX3/MINT1 methylation and COX-2 unmethylation could 
substantially increase the possibility of UC-CRC (OR = 61.2 and 
17.6, respectively). Two years later, Azuara et al. (2013) reported 
that the methylation status of transforming growth factor beta 2 
(TGFB2), SLIT2, heparan sulfate-glucosamine 3-sulfotransferase 
2 (HS3ST2), and transmembrane protein with EGF like and two 
follistatin like domains 2 (TMEFF2) in colorectal biopsies could be 
potential surrogates for an early diagnosis of colorectal dysplasia 
or CRC in high-risk patients with IBD. Methylation markers 
of ITGA4, TFPI2, FOXE1, SYNE1, APC, CDH13, MGMT and 
MLH1 have also proven to be high-performance screening tools 
for estimating individual risk for CRC or colorectal neoplasia in 
IBD patients (Papadia et al., 2014; Gerecke et al., 2015; Scarpa et 
al., 2016). A recent study by Scarpa et al. (2016) clearly identified 
that any two or more methylated genes (APC, CDH13, MGMT, 
MLH1 and RUNX3) in the non-neoplastic mucosa could predict 
CRC with a sensitivity of 57.1% and a specificity of 93.1%. Such 
a high specificity made these methylation markers to be an ideal 
rule-in test to detect CRC. In addition to DNA methylation 
markers, miRNA methylation patterns are also helpful in 
detection of CRC. A large study of 238 UC patients showed that 
methylation of miR-137 could distinguish UC patients with 
dysplasia or cancer from those without neoplasia with an AUC of 
0.77, and miR-1, miR-9, miR-124, miR-137 and miR-34B/C work 
together could accurately quantify the risk for CRC, dysplasia and 
neoplasia with good AUC (Toiyama et al., 2017). Considering 
that low-grade dysplasia (LGD) is more closely associated with 
UC than with CRC, and LGD does not always progress to CRC, 
Garrity-Park et al. (2016) extended the scope of research to UC 
patients with LGD, and demonstrated critical roles of MINT1 and 
RUNX3 in the progression from LGD to CRC. In the same study, 
researchers also established a predictive model that comprised 
demographic, clinical, genetic, and epigenetic indicators for 
detection of synchronous neoplasm, which performed better 
than any other traditional and experimental model with an 
AUC of 0.92, a sensitivity of 82.8%, a specificity of 91.2%, a 
PPV of 95.1% and a NPV of 72.1% (Garrity-Park et al., 2016). 

In addition to histological methylation markers, methylation 
modifications in stool are also receiving attention. Kisiel et al. 
(2013) tested the exfoliated DNA markers in 50 IBD patients. 
Fecal BMP3, vimentin, EYA4, and NDRG4 methylation markers 
could accurately compartmentalize CRC from controls with an 
AUC of 0.97, 0.97, 0.95 and 0.85, respectively. At 89% specificity, 
methylation BMP3 in combination with methylation NDRG4 
could diagnose 100% (9/9) of CRC and 80% (8/10) of dysplasia. A 
later study further confirmed the predictive ability of methylated 
BMP3 to detect colorectal neoplasia even in small IBD lesions 
(Johnson et al., 2016). All the above data clearly highlight the 
exciting potential of methylation markers in CRC detection 
and surveillance. Although colonoscopy with biopsy has been 
proven to be the gold standard for diagnosis and monitoring 
of CRC or colorectal neoplasia, it is a costly, time-consuming 
and invasive method. Moreover, its interpretation is subject to 
high interobserver variability. Methylation markers do provide 
adjuvant and valuable messages for adjustment of surveillance 
interval, and formulation of an individualized treatment plan 
in IBD patients at different risk. Stool and saliva DNA testing, 
as appealing non-invasive tests, improve the patient compliance 
in disease monitoring. However, sample size in some studies 
was quite small, which limited its argumentative strength 
and diagnostic efficacy. Moreover, some studies neglected the 
influence of intestinal inflammation and neoplasia on the levels 
of DNA, which consequently affected the levels of methylation 
DNA (Johnson et al., 2016). Additionally, the morbidity of CRC 
exhibited great ethnic differences. Larger studies of different races 
are also required. It is important to stress that IBD-associated 
and sporadic CRC patients showed a great difference in clinical 
features, histopathologic characteristics, and epigenetic changes 
(Garrity-Park et al., 2016). Many methylation markers including 
SEPT9, TWIST1, TAC1, IGFBP3, EYA4 and SST have been 
claimed to be useful in the diagnosis and surveillance of sporadic 
CRC, while little is known about their roles in carcinogenesis of 
IBD (Kisiel et al., 2013; Ma et al., 2019). Therefore, prospective 
studies are desperately warranted to corroborate effects of those 
markers in IBD-associated CRC.

Insights from miRNA research have led to salient changes in 
our knowledge of biological processes of CRC in IBD patients. 
Aberrant expression profiles of miRNAs have been claimed to 
be associated with IBD-associated CRC. In 2011, a preliminary 
study identified significant differences of miRNA expression 
patterns between IBD-dysplasia tissues and inflamed colonic 
tissues, with 22 miRNAs increased and 10 miRNAs decreased 
in dysplastic tissues (Olaru et al., 2011). They surprisingly found 
miR-31 represented a stepwise increase in the progression from 
normal to chronic inflammation to neoplasia, with the highest 
levels in CRC, which indicated its potential for an early detection 
of dysplasia or CRC. In addition, a marked difference of miR-
31 between IBD-associated CRC and sporadic CRC made it a 
favorable biomarker in discriminating between them. A later 
study also demonstrated the successive increase of miR-224 levels 
at each stage of IBD progression, and its excellent performance 
in distinguishing IBD-cancers from non-cancers (Olaru et al., 
2013). Subsequent lines of evidence indicated that miR-143, 
miR-145, miR-21 and miR-155 were ancillary biomarkers in 
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the diagnosis and surveillance of IBD-associated carcinogenesis 
(Pekow et al., 2012; Ludwig et al., 2013; Wan et al., 2016). Relying 
on a single marker to detect CRC is not appropriate, establishing 
panels embodying different-class markers may further improve 
diagnostic accuracy. Benderska et al. (2015) have proven that a 
combined evaluation of ki-67 and miR-26b expression profiles 
could accurately detect 93% UC-associated colonic carcinoma. 
Its application in classifying different stages of CRC has also been 
confirmed. Recently, a Chinese research team developed a blood-
based diagnostic model comprising of five circulating miRNA 
markers (miR-15b, miR-17, miR-21, miR-26b, and miR-145) 
and CEA, which could correctly diagnose CRC with an AUC of 
0.85, followed by CEA of 0.793, and five-miRNA panel of 0.681 
(Pan et al., 2017). However, due to the small sample size of this 
study, the feasibility of this diagnostic model has to be extensively 
studied in a larger cohort. miRNA surrogates are detectable, 
stable and quantifiable, with a high diagnostic and surveillance 
performance in discriminating CRC from controls. In this regard, 
miRNA biomarkers are of high clinical significance. However, 
many miRNA markers are not specific to CRC. Aberrant 
expression patterns identified in CRC are also present in other 
diseases. Additionally, different miRNA microarray platforms 
and cell types are also needed to be considered. Although the 
development of CRC diagnosis and monitoring is progressing 
at a fast pace, detection and surveillance of CRC remains 
challenging. Identifying more reliable markers, and establishing 
more robust diagnostic and surveillance models are becoming 
increasingly necessary. Elaborating on the roles of miRNAs in the 
pathogenesis and prognosis of CRC could further enhance our 
understanding of CRC, ultimately improve the survival quality 
and prognosis of patients.

FUNCTIONAL STUDY AND THERAPEUTIC 
TRANSLATION

IBD is a multifactorial disease derived from dysregulated immune 
responses in genetically susceptible individuals. Aberrant 
immunoregulation, impaired intestinal epithelial barrier, and 
abnormal autophagy significantly contribute to the complicated 
pathogenesis of IBD. Substantial evidence has demonstrated the 
widespread impacts of epigenetic patterns on IBD-associated 
signal pathways and functional changes, which facilitates a 
better understanding of the interactions between genetic and 
environmental factors, and provides an impetus for translational 
research on epigenetics-based therapeutics for patients with IBD. 
In this part, the functional impacts of epigenetic changes in the 
most extensively investigated pathways of IBD, and the roles of 
epigenetics in therapeutic translation will be discussed (Table 3).

T-cell differentiation and activation, antigen processing 
(recognition, presentation and binding), and cytokine production 
are the most studied fields of immunoregulation in IBD (CD and 
UC). PAR2 activation displayed pro-inflammatory and anti-
inflammatory effects on colon, by promoting the production of 
T-helper cell type 1 (Th1) cytokines (TNF-α, IL-1 and IFN-γ), 
and the release of calcitonin gene related peptide (CGRP) 
respectively (Fiorucci et al., 2001; Cenac et al., 2002). Higher 

methylation levels of PAR2 are associated with severe phenotypes 
of UC (Tahara et al., 2009b), implying that accumulated 
inflammation and immune dysfunction derived from PAR2 
methylation might result in severe disease behaviors of UC. 
Besides, PAR2 is also up-regulated by TNF-α (one of the most 
important mediator in CD and UC), and implicated in the 
activation of cytosolic phospholipase A2 (cPLA2) and 
proliferation of intestinal myofibroblast in CD patients, thereby 
playing a vital role in stricture formation of CD (Christerson 
et al., 2009). RUNX3 is a tumor-suppressor gene that is implicated 

TABLE 3 | Functional study of epigenetic modifications in IBD.

Epigenetic modifications Functions

Immunoregulation
PAR2 Regulates the production of 

inflammatory cytokines, and the 
proliferation of intestinal myofibroblast

RUNX3 Regulates T-cell development and 
TNF-β signaling pathways

TRAF6, IL12B, HLA-DOB, IL16, 
IGHG1 and THY1

Implicate in lymphocyte development, 
antigen processing, and cytokine 
responses

miR-155 Regulates the differentiation of T 
helper cells and the expression of 
proinflammatory cytokine, inhibits the 
expression FOXO3a and the NF-κB 
signaling pathway

miR-21 Mediates Th2 cell differentiation, 
modulates T-cell-mediated immune 
responses, involves in PTEN/PI3K/
Akt signaling pathways, and disrupt 
intestinal epithelial barrier

miR-301a, miR-20b, miR-10a, miR-
18a, miR-210, miR-223, miR-155, 
miR-26a and miR-21

Implicate IL23/Th17 pathways

miR-146a Modulates Treg cells, dendritic cells 
and NK cells, and signaling pathways 
related to NOD2 and TLRs

miR-192, miR-20, miR‐143, miR‐150, 
miR-122, miR-29, miR‐132, miR‐495, 
miR‐512 and miR‐671

Implicate NOD2 signaling pathways

miR-146a, miR‐144, miR-155, 
miR‐132 and let-7

Implicate TLR signaling pathways

miR-124, let-7, miR-125, miR-26 and 
miR-101

Implicates STAT3 signaling pathway

Intestinal epithelial barrier
CDH1 Encodes e-cadherin and mediates 

adherens junctions
MDR1 Involves in transmembrane transport 

and functional maintenance of 
intestinal epithelium

miR-21 Damages tight junctions and 
increases the permeability

miR-200b Prevents intestinal inflammation, and 
protects tight junction and paracellular 
permeability

miR-122a Increases the levels of zonulin and 
weakens the intestinal barrier

Autophagy
miR‐142‐3P, miR‐106b and miR‐93 Decrease the ATG16L1-mediated 

autophagic activity
miR-196 Decreases the IRGM-mediated 

autophagic activity
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in the pathophysiology of IBD and CRC. One of the IBD (CD 
and UC) susceptibility loci is located in the chromosomal region 
1p36 where RUNX3 resides (Brenner et al., 2004). RUNX3 plays 
a certain role in T-cell development and TNF-β signaling 
pathways that are associated with the pathogenesis of both CD 
and UC. Studies have showed that RUNX3 knockout mice 
presented over-responsiveness to antigens, over stimulation of 
T-cells, and spontaneous IBD (Brenner et al., 2004; Garrity-Park 
et al., 2010). Thus, it seems likely that RUNX3 methylation may 
contribute to the excessive inflammatory responses in both CD 
and UC. Moreover, UC–CRC cases presented much higher 
methylation levels of RUNX3 than UC controls, indicating that 
RUNX3 agonists might play an anti-inflammatory and anti-
cancer role in clinical settings (Garrity-Park et al., 2010). 
Methylation modifications in other genes (TRAF6, IL12B, HLA-
DOB, IL16, IGHG1 and THY1) were also claimed to be either 
involved in T-cell or B-cell development, or implicated in antigen 
processing and cytokine responses, which provided a basis for 
drug discovery in the future (Gould et al., 2016). In addition to 
DNA methylation, miRNAs are also implicated in several 
immunoregulation processes related to IBD. Overexpression of 
miR-155 mediates a bias towards Th1 differentiation, while loss 
of miR-155 is prone to Th2 differentiation (Kalla et al., 2015). 
Previous evidence has suggested that CD was associated with 
Th1 and Th17 cytokine patterns, whereas UC was thought to be 
correlated with Th2-mediated inflammation (Brand, 2009). 
Up-regulated miR-155 exerts a pro-inflammatory effect by 
inhibiting the expression of Forkhead box O3 (FOXO3a) and 
therefore promotes the expression of inflammatory cytokines, 
and IBD-associated NF-κB signaling pathway. However, a 
deficiency in miR-155 shows a protective effect on experimental 
colitis by diminishing the expression of proinflammatory 
cytokine (TNF-α, IL-6, IL-12, IL-17, and IFN-γ), weakening the 
activation of T-cells, and repressing the Th1-mediated immune 
responses (Wan et al., 2016). miR-21 is overexpressed in patients 
with IBD. It mainly mediates UC-associated pathophysiological 
processes, including Th2 cell differentiation, T-cell-mediated 
immune responses, PTEN/PI3K/Akt signaling pathway, and the 
disruption of intestinal epithelial barrier (Kalla et al., 2015; 
Moein et al., 2019). miR-21 knockout mice with experimental 
dextran sulfate sodium (DSS) colitis showed an improved 
survival rate and less inflammation and injury in tissues when 
compared with wild type mice (Shi et al., 2013). Taking this into 
consideration, miR-21 inhibition may be a promising therapeutic 
target for UC patients. In addition, miR-21 also plays a central 
role in IL23/Th17 axis. IL23/Th17 signaling pathway has been 
reported to contribute greatly to the pathogenesis of CD. GWAS 
have identified several susceptibility genes of CD (IL23R, IL12B, 
JAK2, STAT3, CCR6 and TNFSF15) that were involved in IL23/
Th17 signaling pathway. Th17 is a novel kind of proinflammatory 
cell, and is implicated in the intestinal inflammation of CD by 
promoting the production of proinflammatory cytokines (IL17A, 
IL17F, IL21, IL22 and IL26) and chemokines (CCL20) (Brand, 
2009). Other miRNAs implicated in IL23/Th17 pathways include 
miR-301a, miR‐20b, miR‐10a, miR‐18a, miR‐210, miR‐223, 
miR‐155, miR‐26a and miR‐21 (He et al., 2016; Moein et al., 
2019). Recent studies have identified a direct and positive 

regulatory effect of miR-301a on the differentiation of Th17 cells 
and the production of proinflammatory cytokines through down 
regulation of Smad Nuclear Interacting Protein 1 (SNIP1) (He 
et  al., 2016). In this respect, blockers of miR-301a may be a 
promising therapeutic intervention for CD patients. miR-146a 
involves the modulation of Treg cells, dendritic cells and NK 
cells, and signaling pathways related to NOD2 and Toll-like 
receptors (TLRs) (Kalla et al., 2015; Moein et al., 2019). NOD2 
and TLRs are most integral parts in the pathogenesis of IBD, 
especially for CD. NOD2 can recognize the bacteria-derived 
muramyl dipeptide (MDP), and activate the NF-κB and caspase3 
signaling pathways, and then, produces proinflammatory 
cytokines and regulates the innate and adaptive immunity of 
intestine (Kullberg et al., 2008). Moreover, it is also involved in 
the maintenance of the mucosal antibacterial barrier by regulating 
the expression of alpha-defensin and beta-defensin (Wehkamp 
et al., 2004; Voss et al., 2006). Thus, NOD2 variant/deficiency is a 
certain contributor to the development of CD. Existing data 
revealed that miR-192 and miR-20 showed inhibitory effects on 
the expression of NOD2, while miR‐143 and miR‐150 influenced 
the NOD2 by targeting the important mediators of NOD2 
signaling pathway. miR-122, miR-29, miR‐132, miR‐495, 
miR‐512 and miR‐671 are other miRNAs associated with the 
NOD2 signal and IBD pathogenesis. It’s noteworthy that miR-122 
designed for Hepatitis C infections is the first miRNA-based 
therapies in human clinical trials, which hold a great promise for 
future clinical research in other diseases such as IBD (Janssen 
et  al., 2013). Additionally, an agent targeting miR-29 was also 
undergoing phase II clinical trials, with the aim of preventing 
tissue fibrosis. With regard to TLRs, TLR4 is largely activated by 
the lipopolysaccharide (LPS)-LPS-binding protein (LBP)-CD14 
complex, and then triggers the NF-κB signaling pathway and 
promotes the production of proinflammatory cytokines (Chow 
et al., 1999). Besides, it is also proposed that TLR4-mediated 
signals can be modulated by NOD2, and NOD2 mutations can 
damage the cross-tolerance between NOD2 and TLR4, thus 
increasing the risk of CD (Kullberg et al., 2008). Available 
evidence indicated that miR-146a targets TLR4 signaling 
pathways and plays an anti-inflammatory role in CD, while 
miR‐144 targets TLR2 and serves as a pro-inflammatory marker 
(Kalla et al., 2015; Moein et al., 2019). Other miRNAs associated 
with TLR signaling pathways include miR-155, miR‐132 and 
let-7 (Koukos et al., 2013; Moein et al., 2019). Signal transducer 
and activator of transcription 3 (STAT3) signaling pathway is 
another vital transduction pathway, which is responsible for 
prolonging the survival of pathogenic T cells, and exacerbating 
inflammatory responses, therefore contributing to the 
pathogenesis of both CD and UC (Sugimoto, 2008). Koukos et al. 
(2013) have indicated that miR-124, let-7, miR-125, miR-26, and 
miR-101 could decrease STAT3 phosphorylation, and thereby 
suppress the inflammatory responses in UC patients. Amongst 
these miRNAs, miR-124 outperformed others, and showed a 
decreased level in active states in comparison to quiescent states 
of UC patients. Collectively, epigenetic patterns show a 
widespread influence on immunological functions associated 
with IBD, which provides some new druggable receptors for 
novel therapeutics. Some miRNA agonists and antagonists have 
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been developed and successfully applied in mouse models of 
colitis. For example, treatment with miR-155 antagonists 
alleviates the inflammatory responses in DSS-induced colitis 
mouse model (Lu et al., 2017). He et al. (2016) devised miR-301a 
antisense oligonucleotide and administrated it in trinitrobenzene 
sulphonic acid (TNBS)-induced mouse colitis model. As a result, 
a notable decrease in IL-17A cells and pro-inflammatory 
cytokines has been noticed in the inflamed tissues. Remarkable 
results gained in animal studies provide a strong driving force for 
translational studies and for developing novel epigenetics-based 
therapeutics for patients with IBD.

The impairment of intestinal epithelial barrier is one of the 
most critical pathogenic factors for IBD, especially for UC. 
Accumulated evidence has revealed that intestinal epithelial 
barrier has an established effect on defending against pathogenic 
microorganism invasion and colonization, preventing toxin 
translocation, and maintaining immune balance (Latiano et al., 
2008; Consortium et al., 2009). IBD patients and even individuals 
at high risk of developing IBD could present impaired cell-cell 
junction and increased intestinal permeability (Wolters et al., 
2011). Several genes including CDH1, LAMB1, HNF4A and 
MYO9B that are involved in the maintenance of epithelial barrier 
function have been claimed to be risk genes of UC (Latiano et al., 
2008; Wolters et al., 2011). CDH1 gene is located within the IBD1 
locus, and encodes e-cadherin and mediates adherens junctions 
of colonic epithelia. Its decreased expression level and increased 
methylation status have been found in active UC and CRC tissues, 
suggesting a possibility of using CDH1 methylation marker 
to classify active disease from inactive disease, and CRC from 
healthy controls (Saito et al., 2011; Cooke et al., 2012). Similar 
to CDH1, MDR1 gene also encompasses susceptibility loci of 
UC. It is involved in transmembrane transport and functional 
maintenance of intestinal epithelium (Tahara et al., 2009a). 
Mice lacking MDR1a gene spontaneously suffered from UC-like 
intestinal inflammation (Panwala et al., 1998; Ho et al., 2005). 
And the expression levels of MDR1 in DSS-induced colitis mouse 
model and UC patients were reduced in comparison to healthy 
controls (Ho et al., 2005). Higher methylation levels of MDR1 
in inflammatory tissues relative to normal tissues of UC patients 
further supported the protective effects of MDR1 in intestinal 
epithelium (Tahara et al., 2009a). In addition to methylation 
profiles, different kinds of miRNAs also showed their protective 
or destructive function in intestinal barrier. miR-21 damages 
tight junctions and increases the permeability of intestine 
through targeting RhoB and PTEN/PI3K/Akt pathways (Yang 
et al., 2013; Moein et al., 2019). It also regulates the malignant 
phenotypes of CRC by reducing the phosphatase and tensin 
homolog (PTEN), indicating a possibility of evaluating the CRC 
transformation and progression by it. Whereas, miR-200b exerts 
a protective effect on intestinal inflammation, tight junction, and 
paracellular permeability by down regulating the expression of 
IL-8 secondary to the activation of TNF-α, and inhibiting the 
destabilization of claudin 1 and zonula occludens-1 (ZO-1) 
(Shen et al., 2017). miR-122a weakens the intestinal barrier by 
targeting the EGFR pathways and increases the levels of zonulin, 
thereby increasing intestinal permeability, promoting pathogen 
invasion, and aggravating intestinal inflammation. Additionally, 

miR‐191a, miR‐93, miR‐150, miR‐675 and miR‐874 also can 
affect functions of intestinal epithelial barrier (Moein et al., 2019). 
Altogether, diverse epigenetic modifications exert facilitating or 
damaging effects on intestinal epithelial barrier, which proves 
a novel avenue for IBD treatment. Producing antagomirs or 
miRNA mimics that are involved in regulation of intestinal 
epithelial barrier may be fruitful in future. Unfortunately, there 
is still no ongoing trial targeting these miRNAs for IBD. Instead, 
a trail targeting miR-122, miR-196 and miR-34 for glioblastoma 
multiforme and metastatic breast cancer is in the preclinical 
phase. Thus, continuous efforts are required to achieve 
translational research.

Successfully unveiling the contribution of autophagy to the 
pathogenesis of IBD has been a milestone achievement in the field 
of IBD research. Autophagy is dynamic cellular recycling process 
that is responsible for the degradation of abnormal cytoplasmic 
component (Kim and Lee, 2014). Recent studies have claimed that 
autophagy greatly affected the pathogenesis of IBD (especially 
of CD) by modulating the process of pathogen clearance, 
antimicrobial peptide secretion, inflammatory response, 
antigen presentation, and the endoplasmic reticulum (ER) stress 
response (Hooper et al., 2017; Iida et al., 2017). ATG16L1, NOD2 
and IRGM are the most investigated autophagy-related genes in 
CD. The interplay between autophagy-related genes and different 
miRNA offers deep insights into pathophysiological mechanisms 
of CD. miR‐142‐3P, miR‐106b and miR‐93 are claimed to 
target ATG16L1, while miR-196 is involved in IRGM-mediated 
autophagy. miR-142-3p directly reduces the mRNA and protein 
levels of ATG16L1, thereby decreasing starvation-induced 
and L18-MDP-induced autophagic activity (Zhai et al., 2014). 
A hallmark study revealed that miR-106b was increased while 
ATG16L1 was decreased in intestinal tissues of active CD patients 
in comparison to controls. miR-106b and miR-93 were claimed 
to target ATG16L1 mRNA, thereby inhibiting the expression 
levels of ATG16L1 and damaging autophagy-mediated bacteria 
eradication. Antagonists for miR-106b and miR-93 facilitated 
the formation of autophagosomes, thus, alleviating intestinal 
inflammation (Lu et al., 2014). As for miR-196, several studies 
have seen an increase of it in patients with CD (Zhang et al., 2018). 
Overexpressed miR-196 can down regulate the protective variant 
(c.313C) in IRGM, thereby causing a disturbance in the regulation 
of IRGM. As a result, the expression levels of IGRM and efficacy 
of autophagy are diminished, and the growth of CD-associated 
intracellular bacteria (Adherent Invasive Escherichia coli, AIEC) 
is out of control, leading to an increased risk of developing CD 
(Brest et al., 2011). On the basis of this, miRNA-based regulation 
in IRGM-dependent autophagy may play a certain role in CD. 
On the other hand, it may open up a new research direction 
in autophagy and drug development of CD. Many approved 
drugs including corticosteroids, aminosalicylates, thiopurines, 
cyclosporin, tacrolimus and anti-TNF biologics exert their 
therapeutic effects by modulating signaling pathways that 
are often directly or indirectly associated with autophagy, but 
drugs targeting miRNA are still lacking (Hooper et al., 2017). 
Developing miRNA-based pharmacotherapy that specifically 
targets autophagy represents a promising therapeutic option for 
CD patients. However, the cell-type-specific feature of autophagy 
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makes it difficult to do autophagy-targeted drug discovery 
(Hooper et al., 2017). Further research is needed to resolve this 
difficulty.

Although histone alterations have been less studied in IBD, 
some studies still suggest its potential roles in disease. Acetylation 
of H4 was upregulated in inflamed tissues and Peyer’s patches 
of CD patients and DSS-induced colitis models, highlighting 
its pro-inflammatory effects in colon (Tsaprouni et  al., 2011). 
Treated with histone deacetylase (HDAC) inhibitors, mice 
consequently showed an apparent attenuation in intestinal 
inflammation. It’s important to note that HDAC inhibitors have 
multiple targets including some other non-histone targets (TLR4, 
β-defensin 2, STAT3, P53 etc.), and are involved in a variety of 
IBD-associated signaling pathways such as NF-κB and Foxp3 
transduction pathways (Tsaprouni et al., 2011; Ventham et al., 
2013). In addition, tight links between lncRNA signatures and 
IBD-related inflammatory responses have also been described in 
several studies (Padua et al., 2016). Indeed, histone alterations 
and lncRNAs are important contributors for IBD activity, but 
associations with disease susceptibility, behaviors and prognosis 
are yet to be elucidated in the near future. Although some drugs 
targeting HDAC are used in clinical trials, most are designed 
for hematological malignancies and solid tumors. Therefore, 
annotation of the therapeutic utility of histone alterations and 
lncRNAs in IBD is also in dire need.

Dramatic success in development and application of biologics 
to IBD has brought IBD therapy into a new horizon. However, 
primary non-responders and secondary non-responders to 
biologics have still remained. Adverse reactions and high 
economic burden of existing biologic agents are real challenges 
in IBD treatment, highlighting the need of exploring new 
therapeutic strategies with good efficacy and less side effects 
for IBD patients. In-depth understanding of roles of epigenetic 
alterations in IBD susceptibility, activity, behaviors, and 
CRC provides a powerful driving force for the development 
of epigenetics-based therapeutics. Whereas, the process of 
therapeutic translation is in slow progress. Drug development 
as a whole is also being faced with numerous challenges. 
Firstly, currently used DNA methylating/demethylating agents 
show poor efficiency as a therapeutic modality due to the poor 
chemical stability, low specificity, and strong secondary effects 
(Gros et al. 2012). Azacitidine and decitabine are the two drugs 
approved by the US Food and Drug Administration (FDA) for 
myelodysplastic syndrome and acute myeloid leukemia, with 
common side effects such as hepatotoxicity and nephrotoxicity 
(Issa and Kantarjian, 2009). Constructing highly efficient and 
selective DNA methylation-based therapeutics is required. 
Secondly, since gut microbiota can regulate histone acetylation 
and methylation patterns of intestine, and epigenetic changes 
are cell/tissue-specific and time-dependent, identifying the 
biological impacts of gut microbiota on epigenetic patterns, 
and the etiological contributions of epigenetic modifications to 
gastrointestinal disorders remain difficult (Aleksandrova et al., 
2017). Thirdly, delivery technologies for miRNA modulators to 
specific cell types and tissues, and off-target effects of miRNA-
based therapeutics pose a major challenge for researchers. 
Fourthly, definite miRNA targets, exact mechanisms of action, 

and functional impacts of miRNAs should also be taken into 
account. In addition, more efforts are needed to annotate the 
long-term effects and pharmacokinetics, pharmacodynamics 
and pharmacogenetics of miRNA mimics or antagomirs in vivo 
(van Rooij and Kauppinen, 2014). Overcoming these difficulties 
at the earliest is of paramount importance.

CONCLUSIONS

IBD is an extremely complicated disease and poses a big 
challenge for physicians with regard to diagnosis and 
management of patients. In the era of precision medicine, we 
advocate that diagnosis, treatment and surveillance of diseases 
must be based on individual genetic markers, phenotypic 
characteristics, and psychosocial features (Chow et al., 2018). 
Substantial progress has been made in the genetic study of IBD, 
with numerous IBD-associated susceptibility loci identified. 
However, the identified genetic factors can explain only a 
small portion of overall disease variance, highlighting the 
need of uncovering the role of other factors such as epigenetic 
modifications in the occurrence and development of IBD. 
Epigenetic changes can mediate the interaction between 
genetics and environment, providing some critical information 
related to IBD pathogenesis. Recent years have seen a 
substantial advancement in epigenetics of IBD, particularly 
with relation to DNA methylation and miRNAs. Significant 
associations between epigenetic modifications and disease 
susceptibility, activity, behavior, and IBD-associated CRC have 
been shown in numerous studies, providing in-depth insights 
into the molecular basis of IBD, and additional diagnostic and 
monitoring tools for IBD patients. Several DNA methylation/
miRNA-based panels for diagnosis and differential diagnosis, 
disease activity assessment, disease behavior evaluation, and 
CRC detection and surveillance have been developed, with 
good sensitivity, specificity and accuracy. Epigenetic markers 
are also candidate indicators for the selection of therapeutic 
methods and the prediction of therapeutic response. 
Functional studies have showed the significant impacts of 
epigenetic changes on the IBD-related immunoregulation, 
maintenance of intestinal epithelial barrier, and modulation of 
autophagy, notably in the most extensively investigated filed 
such as T-cell differentiation, IL23/Th17 and STAT3 signaling 
pathways, and intestinal permeability, which further enhance 
our knowledge of the biological processes of IBD. Based on 
the crucial contributions to IBD, pharmacological modulation 
of epigenetic patterns provides possibilities of therapeutic 
translation for the future clinical applications. However, 
current clinical trials or preclinical trials are focused on 
cancer treatment and obtain some preliminary achievements, 
providing a glimpse of translational potential of IBD-associated 
epigenetic modifications. Epigenetic research of IBD is in 
its infancy, and there are still some challenges to address. 
More endeavors are needed to compare the performance of 
epigenetic surrogates with classical and emerging markers, 
and to establish more robust diagnostic and monitoring 
panels comprising of different-class of markers. Continuous 
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efforts should also be made to construct highly efficient 
and selective therapeutics, identify targets and functional 
impacts of epigenetic modifications, improve delivery 
technologies for miRNAs, and elucidate biological effects of 
gut microbiota on epigenetic patterns. Moreover, considering 
that histone modifications and nucleosome positioning and 
other non-coding RNAs such as siRNA, piRNA and lncRNA 
are less studied in the field of IBD, further efforts should 
be made to identify the roles of these epigenetic changes in 
the pathogenesis of IBD. Therefore, it can be concluded that 
epigenetics plays a critical role in the pathogenesis of IBD, and 
holds a promise for disease diagnosis and surveillance, as well 
as for risk prediction and therapeutic innovation.
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Endometrial cancer (EC) is one of the most common gynecologic malignancies. Emerging 
studies had demonstrated the mutations in genes could serve as diagnostic or prognostic 
markers for human cancers. In this study, we screened mutated genes in EC and found 
that the mutations in KIAA1109, CACNA1C, BSN, AKAP13, CELSR2, and HELZ2 were 
correlated to the overall survival time in patients with EC. Bioinformatics analysis showed 
KIAA1109 was involved in regulating NIK/NF-kappaB signaling, CACNA1C was found 
to regulate cell migration and proliferation, BSN was found to regulate Wnt signaling 
pathway, CELSR2 was involved in regulating cell–cell adhesion, nuclear import, and protein 
folding, HELZ2 was found to regulate multiple immune related biological processes, and 
AKAP13 was involved in regulating translation, mRNA nonsense-mediated decay, rRNA 
processing, translational initiation, and mRNA splicing via spliceosome. The findings 
provided a novel therapeutic strategy in patients with EC.

Keywords: endometrial cancer, bioinformatics analyses, mutation, overall survival time, biomarkers

INTRODUCTION
Endometrial cancer (EC) is one of the most common gynecologic malignancies (Attarha et al., 2011). 
Despite the prognosis of the early stage EC is good with a 5-year survival rate of 69–88% (Gottwald 
et al., 2010). However, the prognosis of metastatic EC remained very poor, with a median survival 
of 7–12 months. Therefore, there is an urgent need to identify novel biomarkers for the prognosis of 
EC. Moreover, the mechanisms underlying the progression of EC remained largely unclear.

With the development of next-generation sequencing, multiple EC related mutations were 
identified. Emerging studies had demonstrated the mutations in genes could serve as diagnostic 
or prognostic markers for human cancers. For example, McConechy et al. identified a series 
of mutations in PTEN, CTNNB1, PIK3CA, ARID1A, ARID5B, and KRAS were associated with 
EC (Mcconechy et al., 2012). The mutations in FGFR2 were associated with poor outcomes in 
endometrioid endometrial cancer (Jeske et al., 2017). The genetic alterations in CTCF could promote 
EC cell survival and alter cell polarity (Marshall et al., 2017). Jing et al. found that MUC16 mutations 
could improve patients’ prognosis by enhancing the infiltration of cytotoxic T lymphocytes in the 
EC microenvironment (Jing and Jing, 2014).

The present study identified prognosis related gene mutations in EC by analyzing TCGA 
databases (Collins, 2007). The mutations in 6 genes were correlated to the overall survival time 
in patients with EC. Bioinformatics analysis was used to predict the potential functions of these 
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genes. The purpose of this study was to evaluate the impact of 
somatic tumor mutation on recurrence-free survival in this 
patient population.

MATERIALS AND METHODS

Data Mining With cBioPortal and TCGA 
Database
In this study, we identified the gene mutations in EC using 
TCGA database (https://portal.gdc.cancer.gov/). All searches 
were performed according to cBioPortal’s online instructions 
(http://www.cbioportal.org/index.do) (Jianjiong et al., 2013). The 
survival analysis related to gene mutations was performed on the 
TCGA database (https://portal.gdc.cancer.gov/).

Co-Expression Network Analysis
In this study, the Pearson correlation coefficient was calculated 
according to the expression value between lncRNA–mRNA pair 
using cBioPortal’s online instructions (http://www.cbioportal.
org/index.do). The top 500 co-expressing genes were selected as 
potential targets of mutated genes in EC.

Bioinformatics Analysis
GO and KEGG pathway enrichment analysis were performed 
to determine the biological significance of DEGs, using 
the Database for Annotation, Visualization, and Integrated 
Discovery (Dennis et al., 2003) (DAVID; version 6.8; http://
david.ncifcrf.gov/).

Patients’ Prognostic Analyses
Survival curves were depicted using the Kaplan-Meier method 
and compared with log-rank test. Cox proportional hazards 
regression analysis was used for univariate and multivariate 
analyses to explore the association of clinical features, gene 
mutational status, and patients’ prognosis. All the prognostic 
analyses were conducted by survival R package.

Statistical Analysis
The two groups were compared using Student’s t‐test. Overall 
survival time analyses were estimated using the Kaplan-Meier 
product-limit estimator, and then a log-rank test was conducted 
to compare wildtype and mutation status. Overall survival was 
measured from the date of surgery to the date of last contact or 
death. Patients alive were censored at the date of last contact or 
clinic visit. Stata v14.2 (College Station, TX) was used to conduct 
statistical analysis.

RESULTS

Screening of Mutated Genes in 
Endometrial Cancer
The present study analyzed TCGA database to identify mutated 
genes in EC. As shown in Figure 1, the top 50 mutated genes in 
EC included TTN, MUC4, MUC16, PIK3CA, KMT2C, KMT2D, 
SYNE1, FLG, SYNE2, EP300, OBSCN, ADGRV1, RYR2, LRP1B, 

USH2A, MUC17, NEB, MDN1, MUC5B, CSMD1, PCLO, 
HUWE1, FBXW7, DMD, NSD1, NAV3, DNAH8, DST, PLEC, 
AHNAK2, LRP2, MKI67, DNAH2, TENM1, DNAH10, PRKDC, 
FAT1, TP53, HMCN1, ZFHX4, DNAH6, UBR4, NOTCH1, 
CREBBP, NIPBL, EYS, AHNAK, CSMD3, XIRP2, and MACF1. 
Among these genes, TTN, MUC4, and PIK3CA are the most 
frequently mutated genes. The mutation rates in TTN, MUC4, 
and PIK3CA from the TCGA provisional data sets were 43.25% 
(125/289), 31.83% (92/289), and 29.41% (85/289), respectively.

The Somatic Mutations of KIAA1109, 
CACNA1C, BSN, AKAP13, CELSR2, and 
HELZ2 Were Correlated to Overall Survival 
Time in Patients With EC
Next, we screened somatic mutations associated with overall 
survival time in patients with EC. As shown in Figure 2, Log-
rank test showed that mutations in KIAA1109, CACNA1C, BSN, 
AKAP13, and HELZ2 were significantly associated with the 
longer overall survival time in EC patients, however, mutations 
in CELSR2 were significantly associated with the shorter overall 
survival time in EC patients.

Mutation Profiles in KIAA1109, CACNA1C, 
BSN, AKAP13, CELSR2, and HELZ2 in EC
The mutation rates in KIAA1109, CACNA1C, BSN, AKAP13, 
CELSR2, and HELZ2 from the TCGA provisional data sets 
were 6.92% (20/289), 7.27% (21/289), 7.96% (23/289), 7.61% 
(22/289), 6.92% (20/289), and 7.27% (21/289), respectively in 
Figure 3. A, majority of mutations identified were missense and 
nonsense resulting in amino acid, changes and a truncation of 
these proteins. However, there was no evidence of a mutational 
hotspot in KIAA1109, CACNA1C, BSN, AKAP13, CELSR2, and 
HELZ2 in EC patients (Figure 4).

The Effect of Mutations on mRNA 
Expressions of KIAA1109, CACNA1C, 
BSN, AKAP13, CELSR2, and HELZ2 in 
EC Patients
Furthermore, we detected the effect of mutations in KIAA1109, 
CACNA1C, BSN, AKAP13, CELSR2, and HELZ2 on mRNA 
expression based on the RNA-Seq data. As shown in Figure 5, we 
found the mutations in CACNA1C, BSN, CELSR2, and HELZ2 
did not result in a significant alteration of their mRNA levels. 
However, we found that the mRNA levels in KIAA1109 and 
AKAP13 mutated EC samples were lower than that in KIAA1109 
and AKAP13 wild type EC samples.

Bioinformatics Analysis of KIAA1109, 
CACNA1C, BSN, AKAP13, CELSR2, and 
HELZ2 in EC Patients
Furthermore, we performed bioinformatics analysis to reveal 
the potential functions of KIAA1109, CACNA1C, BSN, AKAP13, 
CELSR2, and HELZ2 using their co-expressing mRNAs in 
EC patients. The present study selected the top 500 correlated 
genes as the potential targets of KIAA1109, CACNA1C, BSN, 
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AKAP13, CELSR2, and HELZ2. Bioinformatics analysis 
showed KIAA1109 was involved in regulating rRNA processing, 
translation, transcription, NIK/NF-kappaB signaling, and histone 
acetylation. The results were shown in Figure 6. CACNA1C was 
involved in regulating collagen fibril organization, cell-matrix 
adhesion, cellular response to amino acid stimulus, cell adhesion, 
and negative regulation of cell proliferation. BSN was involved 
in regulating epidermis development, cilium movement, 
smoothened signaling pathway, Wnt signaling pathway, planar 
cell polarity pathway, and cilium morphogenesis. AKAP13 was 
involved in regulating translation, mRNA nonsense-mediated 
decay, rRNA processing, translational initiation, and mRNA 
splicing via spliceosome. CELSR2 was involved in regulating 
cell–cell adhesion, keratinocyte differentiation, spliceosomal 
snRNP assembly, nuclear import, and protein folding. HELZ2 
was involved in regulating type I interferon signaling pathway, 
innate immune response, immune response, inflammatory 
response, and T cell activation.

DISCUSSION
Endometrial cancer (EC) is one of the most common gynecologic 
malignancies. However, the mechanisms underlying EC 
progression remained unclear. Previous studies had showed the 
mutations in several genes were related to EC. For example, 
MUC16 mutations improve EC prognosis through enhancing 

the infiltration of cytotoxic T lymphocytes. PTEN and PIK3CA 
mutations played crucial roles in grade 3 EC (Jing and Jing, 
2014). The present study screened mutated genes in EC. Our 
results showed TTN, MUC4, and PIK3CA were the most 
frequently mutated genes in the EC, which was consistent with 
previous studies. Moreover, we identified the mutations in 6 
genes were associated with the prognosis of EC. The results 
showed that mutations in KIAA1109, CACNA1C, BSN, AKAP13, 
and HELZ2 were significantly associated with the longer overall 
survival time in EC patients. However, mutations in CELSR2 
were significantly associated with the shorter overall survival 
time in EC patients. These results suggested the important roles 
of these genes in the progression and prognosis of EC.

KIAA1109, located on the chromosome 4, was reported to be 
associated with susceptibility to celiac disease. Of note, 2 recent 
studies indicated KIAA1109 was associated with the prognosis 
of human cancers. For example, Qing et al. reported mutations in 
KIAA1109, DNAH5 and KCNH7 were associated with poor survival 
of Chinese esophageal squamous cell carcinoma patients (Tao et al., 
2017). Tindall et al. found genetic variation of KIAA1109 might be 
associated with prostate cancer susceptibility in men with a family 
history of the disease (Tindall et al., 2010). CACNA1C gene encodes 
an alpha-1 subunit of a voltage-dependent calcium channel (Fayi et 
al., 2016). The mutations in CACNA1C were observed in various types 
of human diseases, such as ventricular fibrillation, and schizophrenia 
(Charles et al.,  2007). Previous studies showed CACNA1C was 

FIGURE 1 | Identification of mutated genes in EC using TCGA database.
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down-regulated in multiple human cancers (Fastje et al., 2009), 
including brain tumors, kidney cancers and lung cancers, suggested 
its regulatory roles in cancer progression. BSN encoded a scaffolding 
protein involved in organizing the presynaptic cytoskeleton. BSN 
has been demonstrated to have chemo-preventive, antiproliferative, 
antifungal, and anti-carcinogenic activities. In addition, BSN has 
been reported to induce G1 phase arrest through increase of p21 and 
p27. In PCa, BSN was involved in regulating cell apoptosis in cancer 
cells (Xu et al., 2016). The dysregulation and mutation of AKAP13 
were found to be associated with the progression of colorectal 
cancer and breast cancer. Bentin et al. showed AKAP13 is essential 
for the phosphorylation of ERαS305 (Toaldo et al., 2015), which 
leads to tamoxifen resistance in breast cancer. HELZ2 encoded b 
a nuclear transcriptional co-activator for peroxisome proliferator 
activated receptor alpha (Jakobsson et al., 2010). However, its roles 
in human cancers remained largely unclear. CELSR2 was found to 
be dysregulated in breast cancer (Jiang et al., 2018). However, the 
potential functions of CELSR2 in EC remained  unknown.

FIGURE 2 | The somatic mutations of KIAA1109, CACNA1C, BSN, AKAP13, CELSR2, and HELZ2 were correlated to overall survival time in patients with EC. 
(A–F) Log-rank test showed that mutations in KIAA1109 (A), CACNA1C (B), BSN (C), AKAP13 (D), CELSR2 (E) and HELZ2 (F) were associated with the overall 
survival time in EC patients.

FIGURE 3 | Mutation profiles of KIAA1109, CACNA1C, BSN, AKAP13, 
CELSR2 and HELZ2 found in EC.

332

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Gene Mutation in Endometrial CancerQiao et al.

5 November 2019 | Volume 10 | Article 909Frontiers in Genetics | www.frontiersin.org

In the present study, we performed co-expression analysis 
to reveal the potential roles of these mutated genes in EC. The 
results showed KIAA1109 was involved in regulating NIK/
NF-kappaB signaling. Of note, NF-kappaB signaling had been 

demonstrated to be a key regulator in cancers. Suppressing of 
NF-kappaB signaling could inhibit cell growth and invasion in 
multiple cancers. For example, NF-κB suppresses apoptosis and 
promotes the proliferation of bladder cancer cells. A recent study 

FIGURE 4 | Detailed mutation maps of KIAA1109 (A), CACNA1C (B), BSN (C), AKAP13 (D), CELSR2 (E) and HELZ2 (F) found in patients with EC. Each dot above 
the protein molecule represents a mutation, which spreads across the entire encoded protein of these genes.
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showed liposomal curcumin targeting EC through the NF-κB 
Pathway. Bioinformatics analysis revealed CACNA1C played 
important roles in regulation of EC metastasis and proliferation. 
BSN was found to regulate Wnt signaling pathway. Mounting 
evidence has confirmed the activation of Wnt/β-catenin 
signaling was associated with multiple cancers, including EC. 
AKAP13 was predicted as a RNA processing regulator. CELSR2 
was involved in regulating cell–cell adhesion, keratinocyte 
differentiation, spliceosomal snRNP assembly, nuclear import, 
and protein folding. HELZ2 was involved in regulating type I 
interferon signaling pathway, innate immune response, immune 

response, inflammatory response, and T cell activation. These 
results suggested these mutated genes played important roles in 
EC tumorigenesis and progression.

Despite that bioinformatics analyses were conducted to 
predict the potential functions of these mutated genes in EC, 
several limitations still existed in this study. First, the mutated 
sites of these genes should be further validated in EC clinical 
samples using Sanger sequencing. Second, the molecular 
function of these key mutated genes in EC remained unclear. 
Therefore, gain or loss of function assays should be further 
conducted to investigate their important roles in EC.

FIGURE 5 | Association between mutations in KIAA1109 (A), CACNA1C (B), BSN (C), AKAP13 (D), CELSR2 (E) and HELZ2 (F) and mRNA levels in EC samples. * means 
p value < 0.05 between the two groups.
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In conclusion, we screened mutated genes in EC and found that 
the mutations in KIAA1109, CACNA1C, BSN, AKAP13, CELSR2, 
and HELZ2 correlated with the overall survival time in patients 
with EC. Bioinformatics analysis showed KIAA1109 was involved 
in regulating NIK/NF-kappaB signaling, CACNA1C was found to 
regulate cell migration and proliferation, BSN was found to regulate 
Wnt signaling pathway, CELSR2 was involved in regulating cell-
cell adhesion, nuclear import, and protein folding, and HELZ2 was 
found to regulate multiple immune related biological processes. The 
findings provided a novel therapeutic strategy in patients with EC.
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Chronic kidney disease (CKD) affects more than 10% of the population worldwide 
and burdens citizens with heavy medical expenses in many countries. Because a 
vital erythroid growth factor, erythropoietin (EPO), is secreted from renal interstitial 
fibroblasts [renal EPO-producing (REP) cells], anemia arises as a major complication 
of CKD. We determined that hypoxia-inducible factor 2α (HIF2α), which is inactivated 
by HIF-prolyl hydroxylase domain-containing proteins (PHDs) in an oxygen-dependent 
manner, tightly regulates EPO production in REP cells at the gene transcription level 
to maintain oxygen homeostasis. HIF2α-mediated disassembly of the nucleosome in 
the EPO gene is also involved in hypoxia-inducible EPO production. In renal anemia 
patients, anemic and pathological hypoxia is ineffective toward EPO induction due to 
the inappropriate over-activation of PHDs in REP cells transformed into myofibroblasts 
(MF-REP cells) due to kidney damage. Accordingly, PHD inhibitory compounds 
are being developed for the treatment of renal anemia. However, our studies have 
demonstrated that the promoter regions of the genes encoding EPO and HIF2α are 
highly methylated in MF-REP cells, and the expression of these genes is epigenetically 
silenced with CKD progression. This finding notably indicates that the efficacy of 
PHD inhibitors depends on the CKD stage of each patient. In addition, a strategy for 
harvesting renal cells, including REP cells from the urine of patients, is proposed to 
identify plausible biomarkers for CKD and to develop personalized precision medicine 
against CKD by a non-invasive strategy.

Keywords: chronic kidney disease, DNA methylation, fibrosis, hypoxia, renal anemia, urine exfoliated cells
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RENAL ANEMiA
Currently, over 10% of the population worldwide suffers from 
chronic kidney disease (CKD), which is characterized by kidney 
dysfunction and/or proteinuria that persists for more than 3 
months (Levery et al., 2005). A gradual decline in kidney function 
results in sclerotic lesions, cardiovascular disease, and mortality 
(Imai et al., 2009; Hill et al., 2016). While the etiologies of CKD 
are diverse, ranging from lifestyle-related diseases to autoimmune 
disorders, CKD progression is commonly accompanied by kidney 
fibrosis, in which myofibroblasts emerge and proliferate in the 
renal tubular interstitium (Quaggin and Kapus, 2011). Because 
kidneys are the major organs producing erythroid growth factor 
erythropoietin (EPO) in adult mammals (Suzuki, 2015; Hirano and 
Suzuki, 2019), erythropoiesis is often impaired in CKD patients 
(Nangaku and Eckardt, 2006). The liver supportively produces 
EPO under anemic conditions, but hepatic EPO production 
cannot adequately compensate for renal EPO production in renal 
anemia patients. In fact, mice lacking renal EPO gene expression 
exhibit severe anemia, although EPO-gene expression is induced 
in their hepatocytes (Yamazaki et al., 2013; Hirano et al., 2017).

Because EPO is required for erythropoiesis, gene-modified 
mouse lines lacking EPO production exhibit embryonic lethality 
due to severe anemia (Wu et al., 1995; Yamazaki et al., 2013). 
Since red blood cells are essential for oxygen delivery to every 
organ, renal anemia severely decreases the quality of life (QOL) of 
CKD patients. To maintain oxygen homeostasis, EPO production 
in the kidney is dramatically enhanced under hypoxic/anemic 
conditions (Suzuki and Yamamoto, 2016). As CKD progresses, 
renal EPO production becomes impaired, and renal anemia 
then develops (Nangaku and Eckardt, 2006; Souma et al., 2015). 
Intriguingly, recent studies have shown that proper treatment of 
renal anemia is associated with the prognosis of CKD patients and 
that the plasma EPO concentration tightly correlates with kidney 
function and fibrosis (Inomata et al., 1997; Singh et al., 2006; 
Pfeffer et al., 2009). Thus, plasma EPO is expected to be a plausible 
biomarker to estimate the CKD grade (Tsubakihara et al., 2015).

For treatment of renal anemia, recombinant human EPO 
reagents have been used as erythropoiesis-stimulating agents 
(ESAs) for more than 30 years, and these reagents have dramatically 
improved the QOL of CKD patients (Jones et al., 2004). However, 
the invasiveness of subcutaneous ESA injections and the 
formulation costs of ESAs are problems that need to be solved 
(Schiller et al., 2008). Additionally, ESAs are frequently ineffective 
for patients suffering from chronic inflammation because EPO-
dependent erythropoiesis is strongly suppressed by high serum 
concentrations of inflammatory cytokines and hepcidin, which 
negatively regulates iron usage for hemoglobin (Ganz, 2003; 
Smrzova et al., 2005; Suzuki et al., 2016; Petrulienė et al., 2017).

RENAL ERYTHROPOiETiN-PRODUCiNG 
CELLS
Using genetically modified mouse lines, we and others 
demonstrated that the ability to produce EPO is present in 
most fibroblasts that are positive for CD73 and platelet-derived 

growth factor receptor β (PDGFRβ) in the interstitium 
spreading from the cortico-medullary boundary to the 
renal cortex (Figures 1A, B; Maxwell et al., 1993; Pan et al., 
2011; Yamazaki et al., 2013). The cells that produce EPO in 
response to a hypoxic microenvironment are known as REP 
(renal EPO-producing) cells (Suzuki et al., 2007; Obara et al., 
2008). REP cells are fundamentally quiescent in terms of the 
cell cycle, and EPO production in the majority of REP cells is 
absent in healthy mice (Souma et al., 2013; Yamazaki et al., 
2013). Under hypoxic/anemic conditions, the percentage of 
“ON-REP cells,” in which EPO production is ongoing, in the 
total REP cell population is increased. However, only up to 
10% of REP cells are ON-REP cells, even under very severe 
chronic anemia conditions, suggesting that most REP cells 
are reservoirs (referred to as OFF-REP cells) in preparation 
for much more severe conditions that require high amounts 
of EPO (Figures 1C, D; Yamazaki et al., 2013; Souma et  al., 
2015). Thus, the total amount of EPO secretion from a 
kidney is correlated with the ratio of ON-REP cells to total 
REP cells, rather than the extent of EPO-production levels 
in each cell (Eckardt et al., 1993; Obara et  al., 2008; Suzuki, 
2015). Additionally, these data indicate that small numbers of 
ON-REP cells are sufficient for recovery from anemia because 
EPO-production levels in each ON-REP cell are very high.

Whereas the origins of myofibroblasts coming into existence 
in the fibrotic kidneys of CKD patients are controversial 
and considered various (LeBleu et al., 2013), we and others 
have demonstrated that resident interstitial fibroblasts, 
including REP cells in healthy kidneys, are transformed into 
myofibroblasts under pathological conditions (Figures 1C, D; 
Humphreys et al., 2010; Asada et al., 2011; Souma et al., 2013). 
Importantly, REP cells gain proliferative activity and lose 
EPO-production ability after transformation (Souma et  al., 
2013). Thus, REP cells are closely related to the two major 
pathologies of CKD: renal anemia and fibrosis. Therefore, 
investigations of REP cells and myofibroblast-transformed 
REP (MF-REP) cells hold the key to elucidating the molecular 
pathology of CKD.

Various studies have proposed that the transformation 
of REP cells into MF-REP cells is promoted by the SMAD 
and NFκB transcription factors, which are activated by 
transforming growth factor beta (TGFβ) and tumor necrosis 
factor alpha, respectively (Wynn and Ramalingam, 2012; 
Souma et al., 2015). Additionally, DNA methylation in the 
EPO-gene promoter is thought to be involved in the loss 
of EPO-production ability in MF-REP cells (Chang et al., 
2016). To further elucidate the molecular pathology of CKD 
by characterizing MF-REP cells, we recently established 
a myofibroblast cell line derived from mouse REP cells, 
and the cell line was referred to as Replic (REP cell-lineage 
immortalized and cultivable) cells (Sato et al., 2019). The 
genomic region of the EPO-gene promoter is highly methylated 
in Replic cells, and cell-autonomous TGFβ signaling supports 
their myofibroblast properties, which include the expression 
of genes for α smooth muscle actin, fibronectin, and collagens, 
among others.
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FiGURE 1 | Mechanisms of hypoxia-inducible erythropoietin (EPO) production in renal EPO-producing (REP) cells and failure of EPO production in fibrotic kidney. 
(A) A schema of REP cell localization in the interstitia between renal tubules. REP cells directly associate with capillaries (Souma et al., 2016). (B) REP cells (red) 
distributed to the outer medulla (m) and cortex (c) of a normal healthy kidney (left) are expanded in a fibrotic kidney (right) of a genetically modified mouse line 
specifically expressing tdTomato fluorescence in REP cells (Yamazaki et al., 2013). (C) Distributions of ON-REP (green), OFF-REP (white), early myofibroblast (eMF)-
REP (yellow), and progressive MF (pMF)-REP (gray) in normal kidneys and fibrotic kidneys. Note that a small fraction of REP cells produce EPO even under hypoxic 
conditions (left). (D) EPO-gene regulation by the PHD2-HIF2α pathway in REP cells and MF-REP cells. In eMF-REP cells (reversibly transformed REP cells), PHD2 
over-activation results in inactivation of EPO-gene transcription. Therefore, PHD inhibitors may induce EPO production. Because the genes for EPO and HIF2α are 
epigenetically inactivated due to DNA methylation (Me) in pMF-REP cells (irreversibly transformed REP cells), PHD inhibitors are ineffective. (E) Molecular mechanism 
of hypoxia-inducible transcriptional regulation. HIFα proteins are always synthesized and degraded by the ubiquitin (Ub)-proteasome pathway via PHD-mediated 
hydroxylation (OH) in oxygen-replete cells. In hypoxic cells, PHD is inactivated, and HIFα proteins are stabilized. In some HIF-target gene promoters, HIFα/β 
complexes mediate the disassembly of nucleosome structures to form nucleosome-free regions under hypoxic conditions.
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EPO-GENE REGULATiON iN REP CELLS
EPO production in REP cells is strictly regulated at the gene 
transcription level, and transcription is likely regulated by an 
ON/OFF mechanism in each cell (Obara et al., 2008). Gene 
expression data of separately isolated ON- and OFF-REP cells 
indicated that hypoxia-inducible genes are highly expressed in 
ON-REP cells compared to OFF-REP cells, suggesting that there 
is a hypoxic threshold to activate EPO-gene expression in REP 
cells and that the oxygen levels of the microenvironments around 
ON-REP cells are below the threshold (Yamazaki et al., 2013). The 
expression levels of almost all hypoxia-inducible genes, including 
genes related to angiogenesis, glycolysis, and cell survival, are 
commonly regulated by hypoxia-inducible transcription factors 
(HIFs) (Figure 1E; Wang and Semenza, 1993; Lendahl et al., 
2009; Suzuki et al., 2017).

HIFs consist of two subunits, namely, HIFα and HIFβ (also 
known as ARNT), and they bind to specific DNA sequences (A/
GCGTG) in the regulatory regions of their target genes (Semenza 
et al., 1991; Lendahl et al., 2009; Haase, 2013). Under normal 
air conditions (normoxia), specific prolyl residues of HIFα are 
hydroxylated with HIF-specific prolyl hydroxylase domain proteins 
(PHDs) by means of intracellular oxygen, and hydroxylated 
HIFα proteins are degraded by the ubiquitin-proteasome system 
(Figure 1E; Lendahl et al., 2009). In cells with insufficient oxygen 
for PHD-mediated HIFα hydroxylation, HIFα proteins avoid 
degradation and activate transcription of their target genes. There 
are three isoforms encoded by the different genes for the PHD 
and HIFα proteins, respectively. Among the isoforms, PHD2 
and HIF2α primarily control EPO-gene expression in a hypoxia-
inducible manner in REP cells (Figure 1D; Castrop and Kurtz, 
2010; Souma et al., 2016). Therefore, dysfunction of the PHD2-
HIF2α-EPO axis in REP cells is considered the molecular cause of 
renal anemia. Notably, polycythaemia-related polymorphisms are 
found in the genes for PHD2 and HIF2α but not in those for the 
other isoforms, and these polymorphisms are predicted to lead 
to HIF2α stabilization followed by EPO-gene induction without 
hypoxic stimuli (Bento et al., 2014).

Due to the difficulty of isolating sufficient levels of REP cells 
for molecular biology analyses, hepatocytes and genetically 
modified mice have been used for studies on EPO-gene 
regulation. With transgenic mouse strategies, the murine 
Epo-gene regulatory region for REP-cell-specific and hypoxia-
inducible expression was determined to be approximately 10 
kb upstream from the transcription start site of the Epo gene 
(Hirano et al., 2017). We also discovered that histones located 
in the EPO-gene promoter are always acetylated regardless 
of hypoxic EPO induction and that histones are dissociated 
from the nucleosome structure in the EPO-gene promoter 
of hepatocytes under hypoxic conditions through HIF2α 
activation (Suzuki et al., 2011; Tojo et al., 2015). Nucleosome 
disassembly results in the formation of a nucleosome-free 
region (NFR) that has an open chromatin structure for the 
direct association between transcription factors and promoters 
and allows the induction of EPO-gene transcription (Figure 1E; 
Suzuki et al., 2017; Suzuki et al., 2018a).

STEPwiSE MECHANiSMS OF EPO-GENE 
SiLENCiNG iN MF-REP CELLS
Since mice lacking PHD2 expression in REP cells are resistant 
to renal EPO deficiency caused by kidney injury, inappropriate 
over-activation of PHD2 is considered responsible for EPO-gene 
inactivation in MF-REP cells (Figure 1D; Souma et al., 2016). 
Although the oxygen affinities of PHDs are ordinarily very 
low compared to those of other oxygen-dependent enzymes, 
including collagen hydroxylases and epigenetic regulators (see 
below; Hancock et al., 2017; Chakraborty et al., 2019), unknown 
mechanisms are speculated to allow PHDs to use oxygen in 
MF-REP cells even under pathological hypoxic conditions. 
Indeed, PHD inhibitory compounds are being developed as 
medicines for renal anemia treatment, and clinical trials of these 
compounds are showing anticipated effects (Figure 1D; Akizawa 
et al., 2019).

In addition to PHD over-activation, DNA methylation in the 
EPO promoter is involved in EPO-gene silencing in MF-REP 
cells (Chang et al., 2016; Sato et al., 2019). Because hyper-
methylation of gene promoter regions blunts gene transcription 
by tightly compacting the chromatin structure and blocking 
associations with transcription factor complexes (Jones, 2012; 
Schübeler, 2015), PHD inhibitors are predicted to be ineffective 
in cells in which the EPO promoter is highly methylated (Figure 
1D). Consistent with this hypothesis, in Replic cells, neither 
PHD inhibitors nor HIF2α overexpression activated the Epo 
gene, which is highly methylated (Sato et al., 2019). Thus, the 
transformation of REP cells into myofibroblasts is divided into 
at least two consecutive stages: the early MF-REP (eMF-REP) 
cell stage with over-activation of PHD and the progressive 
MF-REP (pMF-REP) cell stage with hyper-methylation of the 
EPO promoter. PHD inhibitors are theoretically effective at 
inducing EPO production in the former cell type but ineffective 
in the latter cell type, which likely corresponds to Replic cells. 
Intriguingly, transformation of REP cells is reversible in the early 
stages of kidney injury (Figure 1D; Souma et al., 2013).

We recently discovered that the gene promoter for HIF2α is 
also highly methylated and that both the mRNA and protein of 
HIF2α are undetectable in pMF-REP cells, even under hypoxic 
conditions (Sato et al., 2019). This finding indicates that DNA 
methylation in specific gene promoters is one of the causes of 
EPO deficiency in CKD. DNA methylation is mediated by 3 
DNA methyltransferases (DNMTs): DNMT1, DNMT3A, and 
DNMT3B. DNMT1 is essential for the maintenance of DNA 
methylation patterns beyond mitosis to inherit epigenetic 
memory (Jeltsch, 2006), while de novo DNA methylation is 
mediated by DNMT3A and DNMT3B (Hsieh, 1999). This 
transformation enhances the expression of mRNAs for DNMT1 
and DNMT3B by TGFβ signaling (Souma et al., 2013), suggesting 
that these DNMTs are involved in the loss of EPO-production 
ability in MF-REP cells. In fact, 5-aza-2’-deoxycytidine (5-aza), 
an inhibitor of DNMT1, restores EPO production in primary-
cultured mouse MF-REP cells by reducing DNA methylation in 
the Epo-gene promoter (Chang et al., 2016). In contrast, DNA 
methylation in the gene promoters for EPO and HIF2α in Replic 
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cells was resistant to 5-aza treatment, whereas the other genomic 
regions tested were sensitive (Sato et al., 2019). This discrepancy 
in 5-aza efficacy between the primary-cultured MF-REP cells 
and Replic cells, which may represent eMF-REP and pMF-REP 
cells, respectively, is explained by differences in the activity of de 
novo DNA methylation because expression of de novo DNMTs 
(DNMT3A and DNMT3B) is induced by TGFβ signaling 
(Cardenas et al., 2014), which is autonomously promoted in 
Replic cells.

EFFiCACY OF PHD iNHiBiTORS iN 
EPO-iNDUCTiON iS RELATED TO 
THE TRANSFORMATiON STAGE OF 
MYOFiBROBLAST-TRANSFORMED 
REP CELLS
As an alternative to ESAs, PHD inhibitors are a promising group 
of next-generation medicines for renal anemia treatment because 
they are orally administrable small compounds (Martin et al., 
2017). The first PHD inhibitor, roxadustat, was launched in 2018 
in China, where there are more than 100 million CKD patients 
(Zhang et al., 2012). However, it is concerned that PHD inhibitors 
cause unexpected side effects through their widespread activation 
of HIF-target genes in addition to EPO, and these genes include 
genes that are related to energy metabolism, angiogenesis, and 
cell survival (Wang and Semenza, 1993). Although obvious 
adverse events, such as tumor malignancy, have not been 
observed in clinical trials thus far (Akizawa et al., 2019), further 
long-term observation is necessary to confirm both the beneficial 
and unfavorable side effects of PHD inhibitors.

PHDs catalyze oxygenation reactions of the specific prolyl 
residues of HIFαs to produce hydroxylated HIFαs using oxygen, 
iron, ascorbate, and α-ketoglutarate. These substrates are also 
used by a variety of α-ketoglutarate-dependent dioxygenases, 
including important epigenetic regulators, TET (ten-eleven 
translocation) family DNA demethylases and KDM (histone 
lysine demethylase) family histone demethylases (Itoh et al., 
2013; Kohli and Zhang, 2013). Since PHDs show the lowest 
affinity for oxygen among these dioxygenases, PHDs are the first 
dioxygenases inactivated by hypoxia and can thus sensitively 
detect hypoxia in cells. On the other hand, the other dioxygenases 
are less susceptible to hypoxia than PHDs. Notably, very recent 
studies have shown that some KDMs are as sensitive to hypoxia 
as PHDs, and further studies are expected to unveil mechanisms 
involving direct sensing of hypoxia by epigenetic regulators in 
addition to PHDs (Batie et al., 2019; Chakraborty et al., 2019). 
Since the current PHD inhibitors commonly block the specific 
association of α-ketoglutarate with PHDs, other α-ketoglutarate-
dependent dioxygenases are unresponsive to these compounds.

In summary, PHD inhibitors are considered to be effective 
in eMF-REP cells but not in pMF-REP cells with methylation-
based silencing of the genes for HIF2α and EPO (Figure 
1D). Our preliminary experiments using mouse models have 
shown that EPO production is induced by PHD inhibitors in 
undamaged or slightly damaged REP Cells of fibrotic kidneys 

through HIF2α accumulation but not in severely damaged 
areas. In contrast, PHD inhibitors activate EPO production 
in almost all the REP cells of healthy kidneys within 6 H 
after peritoneal injection of the drug (Suzuki et al., 2018b). 
Clinical trials have demonstrated that PHD inhibitors induce 
erythropoiesis in nephric patients suffering from any CKD 
stage and end-stage renal disease, but anephric patients barely 
respond to PHD inhibitors with regard to EPO induction 
(Bernhardt et al., 2010). Taken together, these results suggest 
that EPO produced by a small number of REP cells in the 
kidney is sufficient to induce erythropoiesis in renal anemia 
patients. Indeed, as mentioned above, ON-REP cells constitute 
less than 10% of the REP cells in mouse models of severe 
chronic anemia (Figure 1C; Yamazaki et al., 2013). These 
observations also suggest that the efficacy of PHD inhibitors 
differs among renal anemia patients and that the population 
of eMF-REP and healthy REP Cells in each patient defines 
their responsiveness to PHD inhibitors.

PERSPECTivES: NON-iNvASivE 
STRATEGiES FOR PERSONALiZED 
PRECiSiON MEDiCiNE FOR CHRONiC 
KiDNEY DiSEASE
Here, we summarize the epigenetic and molecular mechanisms 
of EPO-gene silencing in CKD patients and propose the stepwise 
transformation of REP cells into eMF-REP and pMF-REP cells 
in injured kidneys (Figures 1C, D). We also suggest that PHD-
inhibitor responsiveness varies in patients and is dependent on 
the degree of REP cell transformation, which fundamentally 
correlates with the degree of kidney fibrosis in CKD. Thus, 
diagnosing the degree of kidney fibrosis is expected to inform us 
not only about CKD conditions/prognoses but also about PHD-
inhibitor responsiveness of CKD patients. Currently, an invasive 
biopsy is widely adopted for the diagnosis of the complicated 
pathology of CKD (Mise et al., 2014). However, non-invasive 
biomarkers for the progression of CKD are being explored. For 
example, urine concentrations of N-acetyl-β-D-glucosaminidase 
(Bazzi et al., 2002) can be used. However, the quantitative 
relationship of the biomarkers to the degree of kidney fibrosis 
should be investigated in detail.

We propose that urine exfoliated cells can be used for the 
diagnosis and prediction of CKD. Urine contains several 
types of kidney cells, including tubular epithelial cells and 
podocytes, which are living and proliferative in ex vivo culture 
(Dörrenhaus et al., 2000; Kumagai et al., 2000; Vogelmann et 
al., 2003; Oliveira Arcolino et al., 2015). Therefore, these cells 
have been utilized as the experimental source of human renal 
epithelial cells and investigated as biomarkers for the early 
detection of bladder cancer (Rahmoune et al., 2005; Shimizu 
et al., 2013). Additionally, urine from CKD patients contains 
more cultivable exfoliated cells than urine from healthy 
individuals, which is advantageous for diagnosis (Detrisac et 
al., 1983). Importantly, our preliminary RT-PCR experiments 
detected the expression of mRNAs for EPO, HIF2α, and CD73 
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in cultured cells from the urine of patients with kidney disease, 
indicating that the exfoliated cell cultures contain REP cells 
and/or MF-REP cells. In addition, REP cells and MF-REP 
cells can be purified from the mixtures of exfoliated cells with 
cell surface expression of CD73 or PDGFRβ using cell sorters 
(Armulik et al., 2011; Pan et al., 2011).

With small numbers of urine exfoliated cells, high-
sensitivity PCR-based techniques are expected to detect 
HIF2α mRNA expression and EPO-gene methylation. NFRs 
are also detectable with PCR, as we have identified NFRs 
in hypoxia-inducible gene promoters (Tojo et al., 2015; 
Suzuki et al., 2018a). Taking advantage of living cells, drug 
sensitivity may be directly investigated in urine exfoliated 
cells. Although further studies are needed, exfoliated cells in 
urine would provide novel diagnostic strategies to distinguish 
pMF-REP and eMF-REP for the prediction of PHD-inhibitor 
responsiveness, as well as plausible biomarkers for kidney 
fibrosis and CKD prognosis.
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Carcinogenesis is accompanied by widespread DNA methylation changes within the 
cell. These changes are characterized by a globally hypomethylated genome with focal 
hypermethylation of numerous 5’-cytosine-phosphate-guanine-3’ (CpG) islands, often 
spanning gene promoters and first exons. Many of these epigenetic changes occur early in 
tumorigenesis and are highly pervasive across a tumor type. This allows DNA methylation 
cancer biomarkers to be suitable for early detection and also to have utility across a 
range of areas relevant to cancer detection and treatment. Such tests are also simple 
in construction, as only one or a few loci need to be targeted for good test coverage. 
These properties make cancer-associated DNA methylation changes very attractive for 
development of cancer biomarker tests with substantive clinical utility. Across the patient 
journey from initial detection, to treatment and then monitoring, there are several points 
where DNA methylation assays can inform clinical practice. Assays on surgically removed 
tumor tissue are useful to determine indicators of treatment resistance, prognostication 
of outcome, or to molecularly characterize, classify, and determine the tissue of origin 
of a tumor. Cancer-associated DNA methylation changes can also be detected with 
accuracy in the cell-free DNA present in blood, stool, urine, and other biosamples. Such 
tests hold great promise for the development of simple, economical, and highly specific 
cancer detection tests suitable for population-wide screening, with several successfully 
translated examples already. The ability of circulating tumor DNA liquid biopsy assays to 
monitor cancer in situ also allows for the ability to monitor response to therapy, to detect 
minimal residual disease and as an early biomarker for cancer recurrence. This review 
will summarize existing DNA methylation cancer biomarkers used in clinical practice 
across the application domains above, discuss what makes a suitable DNA methylation 
cancer biomarker, and identify barriers to translation. We discuss technical factors such 
as the analytical performance and product-market fit, factors that contribute to successful 
downstream investment, including geography, and how this impacts intellectual property, 
regulatory hurdles, and the future of the marketplace and healthcare system.
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iNTRODUCTiON
Cancer is defined by extensive genetic changes and associated 
dysregulation in gene function and activity (Nakagawa and Fujita, 
2018). However, cancer is not an exclusively genetic disease and 
its progression is dependent on a host of additional biological 
processes such as immune activity, the tissue microenvironment, 
and epigenetics (Hanahan and Weinberg, 2011). Epigenetics is 
a second layer of information encoded onto the genome that 
guides genomic function and activity. Epigenetics acts through 
two mechanisms: (1) modifications to chromosomal proteins 
that alter the 3D conformation of the genome and/or protein-
DNA interactions and (2) chemical modification of the DNA 
strand itself (Kondo, 2009). Change in the 3D structure of 
DNA is enacted via post-translational modifications of the 
histone proteins at the center of the simplest DNA structure, 
the nucleosome. Histone modifications can lead to either tightly 
packed and inactive conformations or open and accessible 
DNA (termed heterochromatin and euchromatin respectively). 
The best characterized chemical modification of DNA is the 
methylation of cytosine to 5-methylcytosine (5mC) that occurs 
almost exclusively in the context of a cytosine base linked by 
the DNA phosphate-backbone to guanosine, termed a CpG site. 
DNA methylation is considered a “soft” and potentially reversible 
change to the genome that can define or adapt to tumor biology 
and is functionally equivalent to genetic changes like mutation or 
deletion (Kulis and Esteller, 2010).

Epigenetic changes are considered to be among the earliest 
and most comprehensive genomic aberrations occurring during 
carcinogenesis (Alvarez et al., 2011) and reviewed in (Feinberg 
et al., 2006). These changes can be broadly characterized as 
focal hypermethylation and global hypomethylation (Ross et al., 
2010). Each mechanism has their own role to play in defining 
carcinogenesis. Hypomethylation occurs predominantly at 
repetitive regions and has been demonstrated to be a carcinogenic 
process in its own right (Gaudet et al., 2003). Hypomethylation 
also promotes genomic instability, causing missegregation 
of chromosomes during cell division (Prada et al., 2012) and 
the unwanted activation of transposable elements within the 
genome, leading to further genetic damage (Daskalos et al., 
2009). Hypermethylation can drive the silencing of key tumor 
suppressors (Belinsky et al., 1998) or regulatory regions within 
the genome leading to dysregulation of cell growth or altered 
response to cancer therapies (Stone et al., 2015). Such epigenetic 
mechanisms can synergize with known driver mutations to 
facilitate cancer development or evolution (Tao et al., 2019). 
Despite the varied and complex nature of changes to the epigenetic 
landscape, many cancers exhibit a high degree of concordance 
across tissues, or within the tissue of origin (Zhang and Huang, 
2017; Yang et al., 2017b; Hoadley et al., 2018). The robust and 
common nature of DNA methylation aberrations in cancer 
and the stability of cell-free DNA in body fluids are attractive 
properties for diagnostic development. The widespread nature of 
epigenetic change across the genome can also facilitate increases 
in sensitivity and specificity by utilizing multiple target loci in 
a single assay. When combined with the informative nature of 
these changes regarding cancer biology, DNA methylation-based 

biomarkers have great potential to transform the treatment and 
observation of cancer and other diseases.

The value of epigenetic changes as candidate biomarkers is 
reflected in the scientific literature with thousands of studies 
published to date that associate DNA methylation with clinical 
parameters. However, there is a paucity of markers that have 
been successfully translated into clinical practice (Figure 1). 
Historically, this has in part been due to limitations of technology 
to assess epigenetic information at a large scale or in a cost-
effective manner. Recent improvements in DNA sequencing 
and other molecular technologies have helped overcome these 
initial barriers. However, translation is still a slow and costly 
process. In this review, we will discuss the current state of the 
DNA methylation biomarker landscape, the current barriers to 
translation (be they scientific or regulatory), and what the future 
may look like for this emerging field of diagnostics.

DeSiGNiNG AN eFFeCTive ASSAY

Clinical Utility
Traditional diagnostic approaches based on clinical pathology 
utilize patient biopsied cancerous tissue. Histological analysis 
of tumor specimens has long been the gold standard for tumor 
subtyping and diagnosis. Modern epigenetic methods may 
also make use of such samples, allowing for novel molecular 
diagnostics to be run in parallel to traditional techniques. DNA 
methylation analysis does not require any special handling of 
tumor specimens and can also be applied with similar efficiency 
to fresh frozen and formalin fixed paraffin embedded tissue. 
Indeed, early market offerings in the DNA methylation oncology 
diagnostic space were based upon detecting hypermethylated 
DNA using fresh tumor biopsies or fixed tissue blocks in 
glioblastoma, prostate, and colorectal cancer (CRC) (e.g. MGMT, 
GSTP1, and MLH1 based assays) (Esteller et al., 1998; Herman 
et al., 1998; Esteller et al., 2000).

DNA methylation analysis is not limited to tissue specimens 
and can be readily extended to almost any bodily fluid (typically 
termed a “liquid biopsy”). Various bodily fluids contain a host of 
informative molecules linked to tumorigenesis, growth, immune/
cancer interactions, and cell death, circulating tumor cells (CTC) 
and microvesicles such as exosomes (Wang et al., 2017). These 
molecules are easily assayed using non- or minimally-invasive 
techniques and are of extremely high value where tumor tissue, 
from surgery or biopsy, is not available. Circulating tumor DNA 
(ctDNA), which is the cancer-originating component of cell free 
DNA (cfDNA), can provide a window into a tumors mutational 
and epigenetic profile and has a range of benefits over a traditional 
tissue biopsy approach (Gai and Sun, 2019).

Simple tissue biopsies only sample a subpopulation of all 
cell types and with intra-tumoral heterogeneity/clonality could 
provide a misleading image of the true cellular makeup of the 
tumor. Recent studies indicate that ctDNA may better capture 
this natural variation by facilitating sampling of a broader 
proportion of tumor cells (Dagogo-Jack and Shaw, 2018). This is 
due to unbiased nature of ctDNA, in that all cell types are likely 
to make some contribution to the total DNA population. While 
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many registered translated tests [i.e. those with Food and Drug 
Administration (FDA) pre-market approval (PMA), a European 
CE mark (CE-IVD) or registered as a lab-developed test (LDT) 
through the Centers for Medicare and Medicaid Services [CMS]] 
utilize ctDNA as their target (Table 1), ctDNA is not a cure-
all for current diagnostic shortfalls. Circulating DNA from 
rare tumor sub-populations may only be present in ctDNA at 
vanishingly small levels, making it difficult to detect by even the 
most sensitive methods. Such limitations should be considered 
when designing new assays or assessing diagnostic results from 
liquid biopsy. Despite this, with the right biomarker it is possible 
to design a simple liquid biopsy that can detect cancer or tumor 
characteristics with excellent sensitivity. Additionally, such 
an assay may be run serially with minimal impact on patients, 
even where biopsy is impossible or impractical, such as during 
advanced metastatic disease. Overall, from an efficacy and 
translation standpoint, liquid biopsy is an extremely attractive 
strategy with the capacity to greatly transform disease diagnosis 
and management in the near future.

There are at least six broad diagnostic areas in which a DNA 
methylation cancer liquid biopsy test may be combined with 
traditional screening and medical imaging for better patient 
outcomes:

1. Primary diagnosis: determine individuals potentially 
presenting with cancer and who should be followed up by 
traditional screening exams.

2. Triage: after indeterminate results from imaging or biopsy, a 
further test to decide invasive and/or non-invasive follow-up.

3. Choice of therapy: diagnostics which influence the choice of 
treatment. This can include prognostic markers, which grade 
tumors as likely to be treatable with first-line therapy, or 
companion diagnostics, in which a test result is linked with 
efficacy of a particular treatment (may also be based on direct 
tumor biopsy).

4. Response to therapy and treatment failure: the measurement 
of ctDNA tumor load in the blood to monitor the initial 
response to therapy and to detect a later rise in ctDNA load 
consistent with subsequent resistance to therapy. Testing can 
be serial to detect trend.

5. Residual disease monitoring: for determining minimal 
residual disease after surgery, adjuvant chemotherapy or 
radiotherapy and identify patients at increased risk of disease 
recurrence.

6. Recurrence: early detection of recurrence to give more 
opportunity for treatment with curative intent.

Most existing tests for cancer screening, diagnosis, or 
monitoring are protein immunoassays or imaging. For example, 
many countries have adopted the prostate specific antigen (PSA) 
test as a population screen for prostate cancer; and the fecal occult 
blood test (FOBT) or improved fecal immunochemical test 
(FIT) for population screening of CRC. Although inexpensive 
and widely used, none of the screening or recurrence tests 
have the ideal performance characteristics for their respective 
cancer type, providing opportunity for development of alternate 
tests, such as DNA methylation tests, to better inform clinical 
management.

FiGURe 1 | Cancer epigenetic biomarker publications per annum versus cumulative registered DNA-methylated based IVDs. The figure demonstrates the number 
of cancer epigenetic biomarker academic publications per annum over the last 20 years (left axis) in comparison with the cumulative number of registered cancer 
epigenetic diagnostic tests available on the market (right axis). A PubMed search utilizing the term ‘epigenetic biomarkers cancer’ was used to determine the 
number of publications per year and the number of registered tests is referenced in Table 1.
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TABLe 1 | Current registered liquid biopsy tests in the marketplace.

Test name Tissue Biomarker(s) Biosample Population intended clinical use Manufacturer/
Distributor

Approval

AssureMDx™ Bladder TWIST1, 
ONECUT2, 
OTX1 (+ 
FGFR3, 
TERT, HRAS 
mutations)

Voided urine Patients diagnosed with 
hematuria

Detection of bladder 
cancer to avoid 
cystoscopy

MdxHealth 2017*

Bladder 
CARE™

Bladder SOX1, IRAK3 
and methylated 
LINE1

Voided urine Patients with a history of 
bladder cancer, smokers, 
and specific occupations, 
not currently included in a 
bladder cancer screening 
program

Detection of bladder 
cancer

Pangea 2019*

Bladder 
EpiCheck®

Bladder Score over 15 
methylation 
markers

Voided urine Monitoring for tumor 
recurrence in patients 
previously diagnosed with 
bladder cancer

Surveillance of non-
muscle-invasive bladder 
cancer (NMIBC)

Nucleix 2017†

therascreen® 
PITX2 RGQ

Breast PITX2 Formalin 
fixed paraffin-
embedded 
(FFPE) tumor 
tissue taken 
from primary 
lesions

Lymph node-positive, 
ER+, HER2− high-risk 
breast cancer patients 
treated with anthracycline 
chemotherapy

Predict response to 
anthracycline-based 
chemotherapy

Qiagen 2018†

IvyGene® Breast, 
colon, liver, 
lung

Score Blood, 40 ml Direct to consumer Detection of cancer Laboratory 
for Advanced 
Medicine

2018*

GynTect® Cervical ASTN1, DLX1, 
ITGA4, RXFP3, 
SOX17, 
ZNF671

Cervical smear 
in STM medium

Women who are HPV-
positive with abnormal 
cytology findings (Pap III, 
Pap IIID)

Triage of unclear cervical 
cancer screening tests

Oncgnostics 2019†

QIAsure Cervical FAM19A4, 
hsa-mir124-2

Cervical scrape, 
vaginal sample

Women who are high-risk 
HPV positive or have 
ASC-US cytology

Triage of unclear cervical 
cancer screening tests

Qiagen 2016†

Cologuard® Colorectal NDRG4, BMP3 
(+ KRAS 
mutation, 
occult 
hemoglobin)

Stool Patients, 50 years and 
older, at average risk who 
are typical candidates for 
CRC screening

Detection of colorectal 
cancer (CRC)

Exact Sciences 2014‡

ColoSure™ Colorectal VIM Stool Patients unwilling or 
unable to undergo a more 
invasive exam

Detection of CRC LabCorp 2008*

COLVERA™ Colorectal IKZF1, BCAT1 Plasma, 3.9 ml Detect both residual 
disease and recurrent 
disease in CRC patients

Detection of residual 
disease post-surgical 
resection, for surveillance 
of recurrent CRC after 
primary treatment

Clinical 
Genomics

2016*

Epi proColon® Colorectal SEPT9 Plasma, 3.5 ml Patients, 50 years or 
older, with average risk 
for CRC, who decline 
other CRC screening

Detection of CRC Epigenomics 2016†,‡

Human 
MGMT Gene 
Methylation 
Detection

Glioblastoma MGMT Tumor biopsy Glioblastoma patients Predict response 
to alkylating agent 
chemotherapy such as 
Temozolomide

Xiamen 
SpacegenCo

2016†

PredictMDx™ Glioblastoma MGMT Tumor biopsy Glioblastoma patients Predict response 
to alkylating agent 
chemotherapy such as 
Temozolomide

LabCorp 2012*

therascreen® 
MGMT Pyro®

Glioblastoma MGMT Blood ctDNA 
or FFPE Tumor 
biopsy

Glioblastoma patients Predict response 
to alkylating agent 
chemotherapy such as 
Temozolomide

Qiagen 2015†

(Continued)
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Performance Characteristics
The six diagnostic areas above are best addressed with a blend 
of liquid biopsy technologies. For population screening (primary 
diagnosis and triage) the diagnostic must be inexpensive, non-
invasive, reliable, and have high specificity to reduce false positive 
results and unnecessary follow-up procedures. With residual 
disease monitoring and recurrence, the diagnostic test should 
exhibit high sensitivity. Ideally, response to therapy and treatment 
failure diagnostic tests should be rapid and inexpensive. The 
response area is well suited for point-of-care devices which allow 
immediate decision-making about treatment efficacy and allow 
inexpensive serial testing to quickly flag the onset of resistance 
to current therapy. Choice of therapy diagnostics are tailored to 
fit clinical decision-making around treatment and can also be 
designed as companion diagnostics developed in conjunction 
with a partnered therapeutic intervention.

Going forward, the general nature of DNA methylation 
ctDNA diagnostics and their economic and high-throughput 
nature suggests these markers will continue to have a growing 
role in the six broad areas outlined above. While somatic 
mutation screening surveys of ctDNA using next-generation 
sequencing (NGS) and the examination of CTCs are more 
expensive, they offer unique insight around treatment options 
and the development of resistance as these approaches can reveal 
“druggable mutations”. The economics of the therapy response 
market support these expensive tests; often this precision 
oncology information informs whether the prescription of 
expensive chemotherapy drugs will be efficacious.

Combining with Other Modes of Detection
The performance of liquid biopsy ctDNA somatic mutation 
tests is reduced in earlier stage tumors, likely due to far lower 
levels of ctDNA in the blood (Bettegowda et al., 2014). Reduced 
sensitivity for earlier stage tumors is also observed with DNA 
methylation-based liquid biopsy tests of ctDNA, even though the 
methylation changes are apparent in early stage tumor sections 

(Church et al., 2014; Pedersen et al., 2015a). For example, BCAT1 
and IKZF1 are hypermethylated in 97.8% and 86.8% of CRC 
tumor biopsies, respectively; yet, the ability to detect ctDNA 
using the same assay vary by staging, tumor size, location, and 
lymphatic invasion (Pedersen et al., 2015a; Symonds et al., 2016; 
Jedi et al., 2018; Symonds et al., 2018). Early stage tumors are 
not highly vascularized and have little central necrosis, which 
may explain the low ctDNA concentration in the blood. To 
raise the likelihood of detecting these rare ctDNA fragments, 
many biomarkers can be screened at the same time (Elazezy 
and Joosse, 2018), however this raises the test complexity and 
price. The diagnostic power to detect tumors can be increased 
by combining multi-analyte modes of detection into a single test, 
such as the CancerSEEK test which combines sequencing ctDNA 
with detection of serum protein biomarkers (Cohen et al., 2017; 
Cohen et al., 2018). Another option is to examine ctDNA in 
alternate clinical specimens, e.g. in urine to diagnose bladder or 
prostate cancer, sputum for lung cancer, cerebrospinal fluid for 
glioma, and stool for CRC.

In the instance of CRC, an early stage tumor that sheds little 
ctDNA into the bloodstream may cause bleeding into the bowel 
and the FOBT or FIT will detect the hemoglobin resulting from 
this bleeding (Symonds et al., 2016). Conversely, late stage cancers 
might be more readily detected via the blood than stool (Ahlquist 
et al., 2012) and there is some evidence that people perceive 
a DNA-based stool test as preferable over FOBT (Schroy and 
Heeren, 2005) and a blood-based ctDNA test over a stool based 
test (Osborne et al., 2012; Adler et al., 2014). A comparison of 
the sensitivity of FIT and DNA-based tests to detect advanced 
precancerous lesions, early- and late-stage cancer is presented 
on Table 2. For CRC, a three-protein ELISA panel has been 
developed that has higher sensitivity and specificity for early stage 
I-II disease than the FOBT (Fung et al., 2015). This work has been 
translated into a company (https://www.rhythmbio.com/).

Liquid biopsy tests and traditional medical imaging can 
also be combined as they offer complementary means to detect 

TABLe 1 | Continued

Test name Tissue Biomarker(s) Biosample Population intended clinical use Manufacturer/
Distributor

Approval

HCCBloodTest Liver SEPT9 Plasma, 3.5 ml Patients with cirrhosis Detection of 
hepatocellular carcinoma

Epigenomics 2019†

Epi proLung® Lung SHOX2, 
PTGER4

Plasma, 3.5 ml Increased risk patients 
defined by life history, 
presentation with 
symptoms, radiological 
findings in the lung

Detection of lung cancer 
in patients at increased 
risk for the disease

Epigenomics 2017†

ConfirmMDx Prostate GSTP1, APC, 
RASSF1

Prostate biopsy Men with established risk 
factors

Detection of occult 
prostate cancer on 
previously biopsied, 
histopathologically 
negative tissue

MdxHealth 2012*

EPICUP™ Unknown 
Origin

Human 
Methylation450 
BeadChip

Fresh frozen 
or FFPE tumor 
biopsy

Patients with cancer of 
unknown primary (CUP) 
origin

Predict cancer tissue of 
origin to enable direction 
of tumor type-specific 
therapy

Ferrer 2015†

*CLIA LDT, †CE-IVD, ‡FDA PMA
HPV, human papillomavirus; ASC-US, atypical squamous cells of undetermined significance.
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and monitor cancer. While ctDNA tests are less expensive than 
imaging, and can characterize a tumor and potentially earlier 
detection of recurrence (Ulrich and Paweletz, 2018), these tests 
do not routinely identify the location of the tumor. The ability for 
medical imaging to identify the location of tumor(s) is particularly 
important pre-surgery and in metastatic disease. In the context 
of lung cancer screening, liquid biopsy tests have the advantage 
that they do not present high-risk populations (typically older 
smokers) with a lung radiation dose. In the primary diagnosis 
setting, ctDNA tests can be used as triage diagnostics after a scan, 
when a low-dose CT scan or mammography, for example, reveals 
an indeterminate mass. With sufficient specificity and sensitivity, 
ctDNA tests may replace riskier biopsy procedures.

Product-Market Fit
With the increasing rise in chronic illness, aging populations, 
and climbing national healthcare expenditure, governments 
are increasingly looking at costs per relevant clinical outcome 
(Anderson and Frogner, 2008; Anderson et al., 2014). Fee-for-
service payment models which reward volume will be replaced 
by quality metrics which value health outcomes achieved per 
dollar spent (Conway, 2009). Furthermore, the rise in precision 
therapies in oncology is creating the opportunity for more 
tailored treatments. As such, global healthcare in the 21st 
century is characterized by evidence-based medicine, patient-
centered care, and cost effectiveness (Bae, 2015). In determining 
the market value of an in vitro diagnostic (IVD), technology 
investors and healthcare payers need to be provided with the 
appropriate evidence. It follows that the perceived value of an 
IVD is proportional to the quality of the evidence.

A well-tested case around product-market fit is useful for 
defining the clinical gap, who might be willing to order the IVD, 
who are the payers and if the proposed technological solution is 
a match for the identified marketplace. Factors to consider are 
price, assay time and performance metrics like sensitivity and 
specificity as well as logistics and the potential to meet market 
demand and expectations. For example, in a centralized lab 
model, one needs to consider how the analyte(s) are transported 

and the sample conditions required, and for assays with large 
potential markets, such as the primary diagnosis of common 
cancers, how the IVD be simplified, sequenced, and automated 
to scale to potentially huge volumes of tests per year. The 2010 
review on the development of Epi proColon (Payne, 2010) 
provides an informative narrative on the development and 
translation of epigenetic diagnostics. From experience, Payne 
emphasizes that the platform and degree of test automation must 
be considered early in development and that the test should be 
robust to detect very low numbers of target molecules in a high 
background of non-target DNA.

Diagnostics should not just have technical or classification 
merit but must directly inform clinical decision making in a 
timely manner. Assays which define prognostic risk or estimate 
survival can assist in clinical decision-making regarding 
prescription of a more aggressive protocol or second-line therapy 
in poor prognosis cases, or in cases of likely predicted recurrence 
of metastatic disease, an increase in patient surveillance. While 
the latest molecular technologies can offer benefits to IVD 
performance metrics, IVDs depending on new technologies 
can be expensive to implement, automate, and regulate. More 
expensive IVDs are potentially a better fit for clinical decisions 
with large financial costs or health risks, such as a decision to 
administer a second-line therapy or to undertake a significant 
surgical procedure.

The utility of a primary diagnosis IVD should not just be 
considered in terms of the number of additional cancers detected 
over standard care, but also the costs and risks, both for the 
patient and to the healthcare system, for reporting false positive 
results. The costs and risks for each tumor type are contextualized 
by the incidence rate and available follow-up procedures. The 
true positive rate, known as positive predictive value (PPV), can 
be increased by targeting the clinical translation to higher risk 
sub-populations, such as smokers for lung cancer and BRCA 
mutation carriers for ovarian cancer, but even then, issues remain 
(Pearce et al., 2015). The problem of unnecessary procedures and 
patient psychological harm is very real in screening programs. 
For example, using low-dose CT for lung cancer screening, 
results from The National Lung Screening Trial revealed that 

TABLe 2 | Comparison of commercially available assays for CRC.

OC-SeNSOR® ColoGuard® epi proColon® epi proColon® iKZF1/BCAT1

Assay Fecal immunochemical 
test (FIT); 100 μg Hb/g

KRAS mutations, 
methylated NDRG4, 
BMP3 and hemoglobin

Methylated SEPT9 Methylated SEPT9 Methylated BCAT1 and/
or IKZF1

Biosample Stool Stool Blood Blood Blood
Study cohort size 9989 (65 tumors) 9989 (65 tumors) 1544 (44 tumors)# 1510 (53 tumors)# 2101 (85 tumors)
Specificity 94.9% 86.6% 80.0% 91.5% 93.8%
Sensitivity 73.8% 92.3% 68.2% 48.2% 65.9%
Advanced precancerous 
lesions*

23.8% 42.4% 21.6% 11.2% 6.2%

Stage I 65.5% 89.7% 41.1% 35.0% 37.9%
Stage II 76.2% 100.0% 83.3% 63.0% 69.0%
Stage III 90.0% 90.0% 80.0% 46.0% 72.5%
Stage IV 75.0% 75.0% 100.0% 77.4% 93.8%
Data reference (Imperiale et al., 2014) (Imperiale et al., 2014) (Potter et al., 2014) (Church et al., 2014) (Pedersen et al., 2015b)

*Defined as advanced adenomas and sessile serrated polyps measuring 1 cm or more
#Standardized estimates
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80.5% of cancer-free participants experienced unnecessary 
follow-up imaging studies, with 2.2% of participants having an 
invasive bronchoscopy procedure and 1.3% unnecessary surgery. 
Another screening study using cancer antigen 125 (CA-125) 
found that for each ovarian and peritoneal cancer detected by 
screening, an additional two women had false-positive surgery 
with a surgical complication rate of 3.1% (Jacobs et al., 2016).

Product-market fit needs to be considered early in the 
diagnostic development process. The identification of the 
prospective markets, clinically relevant patient group(s) and 
what clinical decisions happen after a positive test result should 
inform considerations around price, required turnaround time 
and minimal sensitivity and specificity metrics. The market 
size informs scale considerations and the biosample collection 
procedure, the need for ambient or cold chain transport logistics. 
All these parameters collectively inform the design of the 
diagnostic assay.

Pre-Analytic Conditions
Before the collection of clinical samples, the pre-analytic 
conditions for how tumor biopsies, blood, or other biosamples 
will be prepared and stored for later analysis require 
consideration, including quality control for sample integrity 
(e.g. cell lysis or nucleic acid degradation). It is commonplace 
for tumor tissue sections to be stored in a fixative. By necessity, 
diagnostic tests utilizing tissue sections need to be robust to 
analyze potentially heavily degraded DNA in formalin fixed 
paraffin-embedded (FFPE) samples. As the liquid biopsy 
diagnostics area matures toward increased clinical translation, 
there is a strong focus on controlling for pre-analytical variables. 
Guidelines are now coalescing around the optimal preanalytical 
conditions for analyzing cfDNA (Meddeb et al., 2019) and two 
large consortia have formed to standardize pre-analytical steps 
and downstream protocols. The CANCER-ID European Public-
Private-Partnership (www.cancer-id.eu) commenced at the 
start of 2015 and has 36 partners from 13 countries with aims 
to establish standard protocols for clinical validation of blood-
based biomarkers. The USA-based Blood Profiling Atlas in 
Cancer (BloodPAC; www.bloodpac.org) consortium formed in 
2016 is aggregating, harmonizing, and making freely available 
data from CTC, ctDNA, protein and exosome assays, and the 
associated clinical data and biosample collection protocols.

Suitable Tissue and Analytes
The stability of epigenetic marks on DNA means there a few 
limitations on possible analytes with almost all tissues useful for 
designing DNA methylation-based diagnostics.

Blood
Blood represents a rich source of information on tumor biology 
and is usually the tissue of choice for ctDNA studies. DNA 
methylation can be assayed easily using existing methods. There 
is potential for other epigenetic data to be determined from 
ctDNA, such as nucleosome positioning and gene activity. Using 
sequencing approaches, ctDNA fragment ends can be used to 
estimate genomic activity (Snyder et al., 2016) and predict gene 

expression (Ulz et al., 2016) without biopsying the tumor itself. 
While this is a very early area of research these findings open 
the window to detailed assessments of intra-tumoral biology 
without access to tumor tissue and without dependence on just 
one epigenetic mark (i.e. DNA methylation).

The use of ctDNA in clinical settings does have a set of 
known caveats, in particular, low yields of DNA and the level of 
contaminating DNA from other cells. The bulk of cfDNA found 
in blood derives from nucleated blood cells, with a proportion 
from vascular endothelial cells and liver (Moss et al., 2018). 
Special consideration must be taken in handling blood samples 
in the clinical setting, as white blood cell lysis can produce large 
quantities of fragmented DNA. Typically, ctDNA represents only 
a very small fraction of total cfDNA, so inappropriate handling 
of blood samples may result in near complete loss of measurable 
signal. This risk can be abrogated through the use of careful blood 
processing techniques or specialized cfDNA collection tubes 
which stabilize white blood cells (Meddeb et al., 2019). Examples 
include PAXgene® Blood ccfDNA Tube (Qiagen), Cell-Free DNA 
Collection Tube (Roche), cf-DNA/cf-RNA Preservative Tube 
(Norgen Biotek), and Cell-Free DNA BCT® (Streck).

Urine
Sources of cfDNA in urine can be categorized into three sources: 
pre-renal that can be mostly attributed to blood cells (from the 
systemic circulation), renal, and post-renal from the bladder 
urothelium. The median relative contributions of these three 
tissues are around 52%, 32%, and 5%, respectively. These values 
do vary largely across patient urine samples, but the ranked order 
is consistent (Cheng et al., 2017). Compared to blood cfDNA 
testing, urine cfDNA has two advantages; firstly, it is far easier and 
cheaper to obtain urine than blood, making urine an ideal biofluid 
in resource-limited settings (Lawn et al., 2012). Secondly, urine is 
thought to be a more sensitive alternative for early detection or 
monitoring recurrence of cancers in the genitourinary tract (Lin 
et al., 2017). Presently, none of the registered cancer IVDs are 
based purely on urinary cfDNA. One major reason is because the 
workflow in preserving urine cfDNA has yet to be standardized. 
The activity of DNase I in urine, relative to serum, is around 
100-fold higher (Bryzgunova and Laktionov, 2015); as such, the 
half-life of urine cfDNA at body temperature is around 2.6–5.1 h 
(Cheng et al., 2017).

For clinical purposes, methods that stabilize urine cfDNA 
and prevent the lysis of nucleated cells are imperative to ease 
end-user collection. Some products addressing this unmet need 
have entered the market. These preservatives tend to be colored 
liquids (to provide visual indication for their addition), or as a 
dried coating lining the collection container. Examples include 
Urine Preservation (Norgen Biotek), Cell-Free DNA Urine 
Preserve (Streck), Quick-DNA Urine Kit (Zymo Research), and 
NextCollect™ (Novogene). For research purposes, there are 
kits designed specifically for urine cfDNA, but across the kits, 
the extracted DNA displays significantly different yields and size 
profiles (Diefenbach et al., 2018; Streleckiene et al., 2018).

As isolating urine cfDNA remains a technically challenging 
problem, current biomarker discovery efforts are mostly based 
on the cellular fraction of the collected urine. Compared to 
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blood, practical use of urine markers in detecting or monitoring 
cancer is limited. One contributing factor is that cut-offs or 
thresholds derived from clinical studies tend to be specific 
to the study despite a focus on the same marker; the lack of 
standardized methodology also leads to different definitions of 
optimality. Binary thresholds resulting from differing definitions 
are problematic, more so for patients close to the cut-off point 
(Lotan et al., 2010). Currently marketed tests address this 
limitation by relying on a panel of biomarkers (Gallioli et al., 
2019), or constrain themselves to recurrence monitoring.

Stool
Analysis of fecal material is useful for a range of bowel 
conditions, e.g. efficiency of digestion, leaky gut syndrome, 
inflammatory bowel disease, dysbiosis, acute infections, and 
CRC (Siddiqui et al., 2017). Stool testing for CRC is widely used 
and robust collection regimes are well established with home-
based collection kits routinely used. Test kits have a stabilization 
agent as this is critical for maximizing the performance of fecal 
DNA-based tests (Olson et al., 2005; Nechvatal et al., 2008) and 
stool contains polymerase chain reaction (PCR) inhibitors, 
which need to be removed (Flekna et al., 2007). The fraction 
of human epithelial cell origin DNA in stool is small compared 
to total bacterial DNA, so a PCR diagnostic assay must also be 
robust to this background (Nechvatal et al., 2008).

Airway
Studies have demonstrated that methylated DNA can be detected 
within respiratory derived biological samples, specifically 
sputum (Hulbert et al., 2017), bronchoalveolar lavage (Um et al., 
2017), nasal washing/brushing (Yang et al., 2017a; Nino et al., 
2018), and exhaled breath condensate (EBC) (Xiao et al., 2014). 
Not surprisingly, the majority of the literature has focused on the 
role of this methylated DNA in lung associated pathologies such 
as asthma, cystic fibrosis, and lung cancer (Konstantinidi et al., 
2015).

After a radiological procedure highlights an indeterminate 
lung mass, a reasonable first step in the investigation is the 
cytological analysis of sputum to detect lung cancer associated 
cells. This has a clinical sensitivity of 66%. Further follow-up 
tests with higher sensitivity are likely required, such as the 
biopsy of suspected lung nodules (90% sensitivity), but this 
is a highly invasive and risky procedure, with a 15% chance of 
collapsing a lung (pneumothorax) (Rivera et al., 2013). Detection 
of methylated ctDNA is presenting as a viable alternative to 
cytology of sputum. In a large cohort of lung cancer patients, 
it was demonstrated that measuring the methylation pattern of 
eight genes had a lung cancer prediction accuracy of 82%-86%, 
and a negative predictive value (NPV) from 88% to 94% to rule 
out cancer (Leng et al., 2017). Another study demonstrated 
that using the methylation status of genes TAC1, HOXA17, and 
SOX17 in sputum had a sensitivity of 93% to detect lung cancer 
(Hulbert et al., 2017). These studies show that DNA methylation 
detection in sputum has greater sensitivity than sputum cytology. 
However, a major problem is that there is no standardization 
of sputum acquisition and handling so pre-analytical variables 
remain a major challenge to translation (Rivera et al., 2013).

Bronchoalveolar lavage is a process where bronchoscopy is 
used to locate the lung lesion, which is subsequently washed 
(lavage) with 10–20 ml of isotonic saline and collected for 
analysis. For easily visible and accessible central lesions, forcep 
biopsies of the lesions are performed (74% sensitivity) followed 
by bronchoalveolar lavage (48% sensitivity). However, the 
sensitivity is lower for peripheral lung lesions as they are difficult 
to locate and visualize, with a sensitivity of 57% and 43% for 
transbronchial biopsies and bronchoalveolar lavage, respectively 
(Rivera et al., 2013). While cytology analysis is typically performed 
on bronchoalveolar lavage (Carvalho et al., 2017) there is also 
opportunity to use the lavage fluid for liquid biopsy. Methylated 
SHOX2 and RASSF1A gene promoters were detected in lavage 
fluid from 322 patients with a sensitivity of 81% for lung cancer 
detection (Zhang et al., 2017). Other studies have also revealed 
high sensitivity for lung cancer detection using bronchoalveolar 
lavage fluid, with 75% and 78% for PCDHGA12 (Jeong et al., 
2018) and SHOX2 (Dietrich et al., 2012) methylated DNA, 
respectively. However, these studies use different methodologies 
to process the lavage samples, so cannot be directly compared.

The collection of EBC is a novel non-invasive measurement 
method for lung cancer detection. A portable FDA approved 
device exists for EBC (RTubeTM by Respiratory Research, Inc.), 
however, there are several caveats with using EBC collection for 
diagnostic purposes. These include the dilution of analytes in 
the breath condensate and the contamination with DNA from 
ambient air, saliva, and the nasal epithelium (Horvath et al., 2017; 
Koc et al., 2019). Furthermore, normalizing for varying levels 
of condensation arising from different collection methods is a 
well-known issue (Horvath et al., 2017). While there are several 
challenges to overcome in developing an IVD, the non-invasive 
nature of EBC compared to bronchoalveolar lavage makes EBC 
an attractive biological sample.

Technology
Overview
Bisulfite treatment is the gold standard method for mapping 
methylated cytosines in DNA and was developed by Australian 
scientists from the CSIRO and Kanematsu Laboratories in 
Sydney (Frommer et al., 1992; Clark et al., 1994). With this 
method, sodium bisulfite is used to convert cytosine residues 
to uracil residues in single-stranded DNA, under conditions 
whereby 5-methylcytosine (5mC) remains non-reactive. The 
5-hydroxymethylcytosine (5-hmC) epigenetic mark, which is 
mostly confined to embryonic stem cells and to an extent brain 
and liver, is indistinguishable from 5mC using bisulfite conversion 
(Huang et al., 2010). Alternatives to bisulfite treatment are to 
use enzymes sensitive (or specific) to DNA methylation within 
their cleavage site or affinity capture using a binding protein or 
antibody. Bisulfite-treatment can be coupled with multiplexed 
probe-based detection. Methods which selectively determine 
the presence of methylated DNA are a good fit for liquid biopsy 
applications, whereas methods estimating the fraction of DNA 
methylated at a CpG site (often called the beta-value), are better 
suited for examining tissue. A brief description and classification 
of commonly used methods is presented on Table 3.
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TABLe 3 | Summarised methods for the detection of DNA methylation in liquid biopsy.

Method name Class* Sub-class Bisulfite-
based

Description Citation

Whole Genome 
Bisulfite Sequencing 
(WGBS)

GW High-throughput 
sequencing

Y Various approaches for the tagging and sequencing of bisulfite 
converted DNA. Adapter tagging can be done before or after 
conversion. Different approaches may introduce biases.

(Lister et al., 2009)

Bisulfite Sanger 
Sequencing (Bis-Seq)

TGT Bisulfite conversion 
specific amplification

Y Bisulfite-treated genomic DNA subjected to amplification with 
conversion-specific PCR primers. Primers are unbiased and 
contain no CpGs

(Frommer et al., 1992)

Nested PCR TGT Bisulfite conversion 
specific amplification

Y Bisulfite-treated genomic DNA subjected to amplification with 
conversion-specific PCR primers, followed by secondary PCR 
with primers targets within the first PCR fragment to enhance 
specificity or sensitivity.

(Herman et al., 1996)

Methylation-specific 
PCR

TGT Bisulfite conversion 
specific amplification

Y Bisulfite-treated DNA subjected to amplification. PCR primers 
intentionally biased by including multiple CpGs in binding 
sites.

(Herman et al., 1996)

MethylLight TGT Fluorescence probe 
PCR

Y Conversion or Methylation specific PCR with the addition of a 
TaqMan probe. Methylation specificity obtained by including 
CpGs in the primers, probe or both.

(Eads et al., 2000)

Quantitative Allele-
specific Real-time 
Target and Signal 
amplification (QuARTS)

TGT Fluorescence probe 
PCR

Y Bisulfite-treated genomic DNA subjected to PCR with probes 
targeting alternate methylation states. Probe fluorescence 
activated by an additional oligo binding immediately upstream.

(Zou et al., 2012)

HeavyMethyl TGT PCR with blocker Y Competitive inhibition of PCR using primers combined with a 
blocker oligo that target alternate methylation states.

(Cottrell et al., 2004)

Cold-PCR TGT Preferential 
denaturation 
temperature PCR

N The first few cycles are conventional PCR. Subsequent cycles 
use a lower denaturation temperature to enrich for DNA 
molecules that contain mismatches, which occur if there are 
mutant DNA sequences in the sample.

(Milbury et al., 2011; 
Castellanos-Rizaldos 
et al., 2014)

Ice-COLD-PCR TGT Preferential 
denaturation 
temperature PCR

N The same as cold-PCR but with the addition of a further 
blocker oligonucleotide to inhibit amplification of unwanted 
targets.

(Milbury et al., 2011; 
Mauger et al., 2018)

High-resolution melt 
(HRM) curve analysis

TGT Melt-curve analysis Y Following traditional PCR with an intercalating dye (e.g. SYBR 
green), the PCR product is gradually warmed until the DNA 
strands denature (melt) apart. DNA melting is detectable by 
shifts in the level of fluorescent signal over time.

(Wittwer, 2003; 
Wojdacz and 
Dobrovic, 2007)

Bis-seq 
(pyrosequencing)

TGT Bisulfite conversion 
specific amplification

Y “Sequencing by synthesis” method. Sequence readout is 
obtained by detecting pyrophosphate released during base 
incorporation during synthesis of the complementary DNA to 
the target fragment.

(Ronaghi, 1998; Fraga 
and Esteller, 2002)

EpiTYPER TGT Mass-spectrometry Y Utilizes mass spectrometry to accurately measure the 
methylation of PCR-derived amplicons. DNA is converted 
and amplified by PCR. Incorporation of C/G or T/A bases 
(methylated or unmethylated) during amplification leads to 
measurable shifts in molecular weight.

(Ehrich et al., 2005)

Reduced 
representation bisulfite 
sequencing (RRBS)

RGW Enzymatic digest Y Genomic DNA digested with methylation-insensitive restriction 
enzyme (with CpG in the recognition site), followed by size 
selection prior to bisulfite conversion.

(Meissner et al., 2005)

Combined Bisulfite 
Restriction Analysis 
(COBRA)

RGW Enzymatic digest Y Bisulfite-treated genomic DNA is subjected to methylation-
insensitive restriction enzyme digest targeting the unconverted 
amplicon (i.e. originally methylated). Ratio of digested 
fragments to total fragments correlates with methylation level.

(Xiong and Laird, 
1997)

Digital Restriction 
Enzyme Analysis of 
Methylation (DREAM)

RGW Enzymatic digest N Methylation specific restriction enzyme (MRSE) variant. DNA 
digested with two enzymes, one methylation sensitive and 
one not. Methylation readout based on ratio of cutting.

(Jelinek and Madzo, 
2016)

Methylation-sensitive 
restriction enzyme 
(MSRE) + qPCR

TGT Enzymatic digest N Unconverted DNA is digested with MRSE. Quantitative PCR 
is used to establish the efficiency of digestion, which indicates 
the level of methylation at the target site.

(Hashimoto et al., 
2007)

Helper-dependent 
chain reaction (HDCR)

TGT Enzymatic digest N Genomic DNA digested with methylation dependent 
restriction enzyme such as GlaI. Gene-specific sequence 
fragments are tagged with “helper” oligos, while “driver” oligos 
maintains preferential amplification of tagged fragments.

(Rand et al., 2013)

(Continued)
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Bisulfite-Treatment
Bisulfite treatment of DNA for diagnostic purposes is not without 
issues. Foremost, is the significant loss of material due to the 
harsh chemical and temperature conditions involved (Grunau 
et al., 2001). This loss reduces sensitivity to detect cancers, 
especially those releasing low levels of ctDNA. In addition, there 
is a loss in genome complexity due to the large reduction in the 
prevalence of cytosine bases in converted DNA, resulting in a 
largely pseudo-three base genome. Careful PCR primer design 
is required to specifically amplify rare target molecules in an 
overwhelming off-target background, such as with a typical 
methylation-based ctDNA assay.

Bisulfite-treated DNA is typically amplified using conversion-
specific PCR (CSP) or methylation-specific PCR (MSP) primers. 
With CSP, primers are designed to amplify bisulfite-converted 
DNA regardless of methylation state; while with MSP the 
primers target unconverted cytosines, such that only methylated 
DNA is amplified (Herman et al., 1996). To achieve amplification 
specificity with bisulfite-treated template DNA, nested PCR is 
sometimes used. However, this is not an optimal fit with an IVD 
due to exposure of amplified DNA from the first round of PCR 
into the clinical lab environment. Bisulfite treatment of DNA can 
be combined with NGS. The entire methylome can be sequenced 
via whole genome bisulfite sequencing (WGBS), or regions 
targeted by sequencing CSP amplicons. Genome regions can also 
be targeted using a technique like reduced representation bisulfite 
sequencing (RRBS), where DNA is digested with a methylation-
insensitive restriction enzyme (with CpG in the recognition site), 
followed by size selection prior to bisulfite conversion (Meissner 
et al., 2005).

MSP is used to amplify cancer DNA from hypermethylated 
promoters. With ctDNA assays, the cancer-originating DNA 
is rare compared to background off-target DNA, so additional 
measures are often needed such that the PCR assay remains 
specific even after the large number of amplification cycles needed 
to observe rare ctDNA. The MethyLight assay is a quantitative 
MSP with the addition of a TaqMan-based fluorescent probe. It 
is sensitive for methylation levels as low as 0.01% and has good 
reproducibility (Eads et al., 2000). The Quantitative Allele-
Specific Real-time Target and Signal amplification (QuARTS) 
method also employs a probe but in addition incorporates a 5´ 
DNA flap, a flap endonuclease and fluorescence resonance energy 
transfer (FRET) chemistry for detection of the cleaved products 
(Zou et al., 2012). The HeavyMethyl method is a quantitative 
CSP amplification which adds a blocker oligonucleotide that 
competes for binding across the primer sites to unmethylated 
DNA, thus preventing efficient amplification of unmethylated 
DNA (Cottrell et al., 2004).

Other properties of bisulfite-treated DNA can be used to 
selectively amplify the target molecule, such as preferential 
amplification using denaturation temperature. This family 
of methods includes co-amplification at lower denaturation 
temperature PCR (COLD-PCR) (Milbury et al., 2011; 
Castellanos-Rizaldos et al., 2014) and bisulfite differential 
denaturation PCR (Rand et al., 2006), where the basic principle is 
to select a critical temperature in the PCR to selectively denature 
unmethylated genomic regions in the presence of an excess of 
methylated DNA molecules. The methylation-sensitive high-
resolution melting (MS-HRM) method uses the difference in 
melting temperature between methylated versus unmethylated 

TABLe 3 | Continued

Method name Class* Sub-class Bisulfite-
based

Description Citation

End-specific PCR 
(ES-PCR)

TGT Enzymatic digest N MRSE variant for detecting unmethylated sequences. DNA is 
digested with a methylation sensitive enzyme, then specialized 
oligos are used to add priming sites to the target sequence. 
Highly useful method for targeting repetitive sequences that 
are difficult to assay by other methods.

(Rand and Molloy, 
2010)

MeDIP RGW Affinity capture N DNA capture using antibody specific to methylated cytosine. 
Captured DNA suitable of PCR, array and sequencing based 
methods.

(Weber et al., 2005)

Various methyl-CpG 
binding domain 
(MDB)-based assays

RGW Affinity capture N DNA capture using methylated DNA binding protein 
(MBD2). Use of salts during elution from MBD can facilitate 
fractionation on methylation level. Captured DNA suitable of 
PCR, array and sequencing based methods.

(De Meyer et al., 
2013; Aberg et al., 
2015)

SuBLiME RGW Affinity capture Y Biotinylated bases are incorporated into DNA fragments 
using a PCR-like approach following bisulfite conversion. 
Biotinylated fragments are captured to enrich for methylated 
targets. Can be performed in a targeted or genome-wide 
method.

(Ross et al., 2013)

Bisulfite Specific 
Padlock Probes 
(BSPP)

RGW Molecular inversion 
probes

Y BSPP utilizes bisulfite converted DNA and specialized DNA 
probes. Probes bind two sites in target sequences to form 
circular DNA structures that can be amplified and sequenced.

(Diep et al., 2012)

Infinium 
HumanMethylation

RGW Infinium assay Y Bisulfite treated DNA is hybridized to the BeadArray chip, 
detection using single-base extension and fluorescence ratio 
between converted and unconverted probes.

(Bibikova et al., 2011)

*GW, genome-wide; RGW, representative genome-wide; TGT, targeted.
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product after a CSP reaction to quantify methylation (Wojdacz 
and Dobrovic, 2007). Methylation may also be quantified using 
a PyroMark pyrosequencer (Qiagen) or the EpiTYPER® mass 
spectrophotometry instruments (Agena Biosciences). Both 
approaches can detect small changes in methylation.

Enzyme Cutting
Enzyme-based methods offer an alternative to bisulfite-
treatment and are not subject to the same losses of material. The 
disadvantages are that assayed regions must overlap loci of interest 
and that incomplete digestion can confound interpretation of 
the results. Methylation-sensitive restriction enzyme (MSRE) 
cutting can be coupled with quantitative PCR to estimate 
DNA methylation, with more product proportional to more 
methylation at the cut site(s) within the amplicon (Hashimoto 
et al., 2007). Conversely, a methylation-dependent enzyme such 
as GlaI can be used to selectively cut only methylated DNA. The 
selective amplification of DNA with ends cut by GlaI is used in 
the end-specific PCR (ES-PCR) and helper-dependent chain 
reaction (HDCR) techniques (Rand and Molloy, 2010; Rand et 
al., 2013). The Combined Bisulfite Restriction Analysis (COBRA) 
method is a hybrid which involves cutting DNA that has been 
first bisulfite-treated and PCR amplified (Xiong and Laird, 1997).

The Digital Restriction Enzyme Analysis of Methylation 
(DREAM) is a method for mapping DNA methylation levels at a 
specific set of CpG sites that are contained within the recognition 
sequence, 5’-CCCGGG-3’ for two restriction enzymes, SmaI and 
XmaI (Jelinek et al., 2012). It relies on the differential sensitivity 
of the two enzymes to methylation at the central CpG site and 
their different modes of cutting. Cutting by SmaI is blocked by 
methylation of the central CpG site, while XmaI cuts whether the 
CpG site is methylated or not. Thus, methylated sites are scored 
indirectly as those 5’-CCCGGG sites that are not cut by SmaI.

Affinity Capture
Affinity capture techniques are used to enrich methylated DNA 
from the overall DNA population. This is usually accomplished 
by antibody immunoprecipitation methods or with methyl-CpG 
binding domain (MDB) proteins and there are modifications 
to the protocol that also enable hydroxymethylation capture 
(Thomson et al., 2013). Input genomic DNA can be sonicated 
or enzymatically digested prior to capture and purification, often 
via magnetic beads. Eluted DNA is usually then used as input for 
the generation of NGS libraries, but also suitable for analysis with 
microarrays or PCR-based methods. The different variants of 
this methodological principle result in widely different patterns 
of the distribution of DNA methylation enrichment (De Meyer 
et al., 2013; Aberg et al., 2015). An alternative affinity capture 
technique utilizes the incorporation of biotinylated cytosines 
during amplification of bisulfite-treated sheared or digested 
genomic DNA fragments followed by affinity capture using 
streptavidin-coupled magnetic beads (Ross et al., 2013).

Multiplexed Probe-Based Detection
The Infinium Methylation Assay detects cytosine methylation at 
CpG dinucleotides using single-base extension of two site-specific 
probes, one each for the methylated and unmethylated locus in a 

highly multiplexed reaction on bisulfite-converted genomic DNA. 
The level of methylation for the interrogated locus can be determined 
by calculating the ratio of the fluorescent signals from the methylated 
vs. unmethylated sites. This is by far the most widely used “genome-
wide” DNA methylation analysis platform with significant amounts 
of public data available. The bioinformatics analysis pipelines for this 
platform are also mature. The currently available third iteration of 
this platform is the Infinium MethylationEPIC BeadChip, which 
interrogates 863,904 CpG sites.

Padlock probes are single stranded DNA molecules with 
two segments complementary to the target DNA connected by 
a linker sequence, which are hybridized to the DNA target to 
become circularized (Nilsson et al., 1994). Molecular Inversion 
Probes (MIP) are derivatives of padlock probes, although they 
contain a gap in the target sequence, which provides for greater 
flexibility. These probes can be used for various forms of genomic 
partitioning, single nucleotide polymorphism (SNP) genotyping, 
or copy-number variation detection. Bisulfite padlock probes 
(BSPP) are an adaptation for the analysis of DNA methylation 
(Ball et al., 2009; Deng et al., 2009; Diep et al., 2012), where 
padlock probes are hybridized to bisulfite-treated DNA and 
subsequently interrogated using NGS.

eXiSTiNG ReGiSTeReD ASSAYS
The existing DNA methylation-based ctDNA IVDs with FDA 
Premarket Approval (PMA) or offered as LDT or European union 
CE-IVDs are summarized in Table 1. A description of these 
registered tests and upcoming tests on the path to registration 
follows.

Bladder Cancer
Approximately 70% of bladder cancer cases are non-muscle-
invasive (NMIBC). Lifelong post-operative surveillance is 
essential due to high recurrence rates (50%-70% patients 
experience recurrence within 5 years), and a moderate chance 
of disease progression to muscle invasion (10%-15%) (Tilki 
et al., 2011). The gold standard for diagnosis is cystoscopy and 
cytology; urinary tests have yet to achieve comparable specificity 
or sensitivity. However, monitoring for recurrence could be safer 
and cost effective if the non-invasive test had a high NPV (Witjes 
et al., 2018).

Bladder EpiCheck® (Nucleix) is a urine assay for NMIBC based 
on 15 proprietary methylation biomarkers. DNA is extracted 
from centrifuged cell pellets from 10+ ml of patients’ urine, and 
subjected to methylation-sensitive restriction enzyme digestion 
before quantitative PCR (qPCR) amplification. The quantitative 
results are summarized as an EpiScore ranging from 0 to 100 
(where scores ≥ 60 are considered positive for recurrence). This 
test has a reported NPV of 95%-97% and is currently available as 
a CE-IVD in the EU (Wasserstrom et al., 2016; Witjes et al., 2018; 
D’Andrea et al., 2019).

Similarly, Bladder CARETM (Pangea Laboratory) is a urine 
assay for NMIBC recurrence based on the hypermethylation 
of a proprietary three-gene panel, likely SOX1, IRAK3, and 
methylated LINE1 (Su et al., 2014). According to unpublished 
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material released by the company, the urine sample (~5 ml) is first 
mixed in a 1:3 ratio with a stabilization buffer prior to shipment 
to their clinical lab where DNA is harvested from centrifuged cell 
pellets, digested with methylation-sensitive restriction enzymes, 
then amplified with qPCR. Results are summarized as three calls: 
negative, high-risk, or positive. This LDT currently targets the 
bladder cancer recurrence market, but promotional materials 
raise the possibility of early detection due to the high reported 
PPV and NPV of the test (89% and 92%, respectively).

Hematuria (blood in urine) can be an early sign of bladder 
cancer, where 3%-28% of patients with hematuria are diagnosed 
with bladder cancer. AssureMDxTM for Bladder Cancer 
(MDxHealth) is a urine assay that excludes bladder cancer 
diagnosis based on a negative result (99% NPV), leading to 77% 
reduction in diagnostic cystoscopies, resulting in lower diagnostic 
costs and reduced patient burden (van Kessel et al., 2017). DNA 
from cells in the urine samples are subjected to a methylation 
specific PCR targeting three genes (OTX1, ONECUT2, and 
TWIST1). In addition, the mutation status of three other genes 
(FGFR3, TERT, and HRAS) provided additional support for the 
predictive model (Su et al., 2014; van Kessel et al., 2016; van 
Kessel et al., 2017). This product is currently available as an LDT 
in the USA.

A promising candidate test for patients presenting with 
hematuria is UroMark (University College, London), currently 
in validation studies in the UK. The initial study demonstrated 
high PPV and NPV (100% and 97%, respectively) (Feber et al., 
2017). This test detects the methylation status of 150 loci across 
the genome, which is obtained from subjecting cell pellets from 
urine samples to a microdroplet-based PCR amplification of 
bisulfite-converted DNA.

Breast Cancer
Breast cancer is a highly heterogeneous disease and molecular 
subtyping has proven effective in reducing mortality. Breast 
cancer subtypes and treatments are traditionally determined 
using histopathology for key hormone receptors that are also 
the targets of most common frontline therapies. Recent IVDs 
utilizing gene expression and mutational profiles aim to stratify 
patients into risk/treatment groups (e.g. PAM50/Prosigna, 
OncotypeDX, and Endopredict). These methods use traditional 
tissue biopsies and do not make use of DNA methylation. Despite 
the success of molecular testing in breast tumors, current DNA 
methylation-based assays and liquid biopsy offerings in breast 
cancer are sparse and no methylation-based ctDNA assays are 
available. Current DNA methylation-based offerings are limited 
to the therascreen® PITX2 RQG test developed by Qiagen/
Therawis which is available as a prognostic/predictive CE-IVD 
in the EU.

Qiagen’s therascreen® PITX2 RGQ PCR Kit is a qPCR-based 
assay that determines the ratio of methylated to unmethylated 
DNA content in tumor histology sections, where percent 
methylation ratio (PMR) is indicative of overall survival and 
patient outcome when anthracyclines are combined with standard 
therapy (Maier et al., 2007). Anthracyclines carry serious side 
that may limit treatment (Volkova and Russell, 2012) and patients 

with less aggressive tumors subtypes or other contraindications 
may be adequately treated with standard approaches (Turner et 
al., 2015). By using the therascreen® PITX2 assay, the risk of over-
treatment can be minimized without risk to patient outcomes. 
However, the therascreen® test is limited to estrogen receptor-
positive, node-negative tumors only. The more aggressive and/
or difficult to treat HER2-positive and triple-negative subtypes 
or tumors with lymph node involvement do not benefit from this 
assay.

Cervical Cancer
The screening and detection of cervical cancer has been transformed 
by the relatively recent discovery of the role of Human Papilloma 
Virus (HPV) in the initiation and progression of this disease. 
Traditional cytological screening has now been displaced by modern 
molecular methods that target HPV. These new approaches are 
both cheaper and more effective at identifying at risk women, even 
when screening intervals are increased (Brotherton et al., 2016). The 
development of the highly successful vaccine against HPV will have 
a continuing disruptive impact on cervical cancer screening with 
HPV incidence in young women trending toward zero in nations 
with effective vaccination programs (Read et al., 2011; Ali et al., 
2013; Brotherton et al., 2016).

Unsurprisingly, epigenetic diagnostics available in the market 
have positioned themselves as triage tests following positive 
HPV findings. Three competing tests exist in the marketplace, 
QIAsure (Qiagen), GynTect® (Oncgnostics GmbH), and the 
CONFIDENCE assay (Neumann Diagnostics). However, 
the DNA methylation component of the Neumann assay is 
currently awaiting full certification. All three tests utilize liquid 
samples from cervical scrapings/smears with minor differences 
in methodology. GynTect offers a slightly more streamlined 
protocol when compared to QIAsure, with no dedicated DNA 
extraction step. QIAsure offers an alternative convenience for 
patients, in the fact that it offers a process for both physician 
and self-collected cervical samples without loss of sensitivity 
(De Strooper et al., 2016) whereas GynTect and CONFIDENCE 
are limited to physician collected samples only. Target genes 
are also another source of difference, with QIAsure targeting 
the promoters of tumor suppressor genes FAM19A4 and hsa-
mir124-2 and another non-specific positive control. GynTect 
targets a larger number of genes including ASTN1, DLX1, ITGA4, 
RXFP3, SOX17, and ZNF671 plus two quality control regions. 
The CONFIDENCE assay targets the fewest sites, measuring 
methylation at the POU4F3 gene and one other control region 
(COL2A1) (Kocsis et al., 2017).

The utility of these assays in triaging patients exists in 
the epigenetic biology of HPV-driven carcinogenesis. HPV 
detection on its own is not necessarily indicative of the likely 
presence of cancer, most infections will be benign, and those 
patients will require no further treatment. Malignant infections 
will trigger the expression of pro-oncogenic viral genes leading 
to the formation of the precursor lesion transforming cervical 
intraepithelial neoplasia (CIN). As CIN progresses from low 
to high grade (CIN1–3) there is a sequential build-up of DNA 
methylation aberrations across the genome. By targeting genes 
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associated with high grade/risk CIN these tests can provide as 
surrogate for CIN grade that can be used to stratify patients into 
high/low risk groups. In terms of assay performance, QIAsure’s 
sensitivity of 70.5% for CIN3+ samples exceed GynTect’s 61.2%. 
However, GynTect does have a substantially improved specificity 
over QIAsure (94.6% and 67.8% for GynTect and QIAsure 
respectively (De Strooper et al., 2014; Schmitz et al., 2018). The 
predictive values of both tests are comparable, with NPV for both 
tests ~90% although QIAsure’s reduced specificity does result in 
better PPV for GynTect. Ultimately, published data shows the 
two tests to be comparable in performance although ongoing 
trials may distinguish the two sometime in the future.

Colorectal Cancer
For primary diagnosis of CRC two tests have progressed 
through to FDA PMA approval, the blood-based Epi proColon® 
(Epigenomics) and the stool-based Cologuard® (Exact Sciences). 
Both tests are approved for patients ≥ 50 years of age and require 
follow colonoscopy for a definitive diagnosis. ColoSure™, a stool-
based LDT for primary diagnosis test which detects methylated 
VIM (Ned et al., 2011) has been withdrawn from sale. More 
recently, COLVERATM, a blood-based test for the detection of 
CRC recurrence, has been distributed in the USA as an LDT 
since 2016.

Cologuard® is a stool-based DNA test which consists of a 
regular FIT together with amplification of methylated BMP3 
and NDRG4, β-actin methylation control, and mutant KRAS. 
Cologuard® has been tested in a large asymptomatic screening 
population consisting of 9,989 patients (Imperiale et al., 2014) 
and found to have sensitivity for CRC detection similar to that of 
colonoscopy, and superior sensitivity for advanced precancerous 
lesions and early stage cancer when compared to FIT (Table 2). 
However, the specificity is lower with Cologuard® in comparison 
to FIT (Table 2). Cologuard® was approved as a screening test for 
CRC by the FDA in 2014. Cologuard’s estimated market share 
after Q1 2019 is 4.6% and approximately a million tests were 
ordered in 2018. Exact Sciences is also submitting an application 
to expand Cologuard’s label to include the 45–49 age group 
in accordance with updated screening guidelines in the USA 
(American Cancer Society, 2019) to increase the test’s market 
opportunity. Together with researchers at the Mayo Clinic, Exact 
Sciences is also currently developing an updated version of the 
test with additional biomarkers.

Epi proColon® has had less market traction than Cologuard®. 
Epi proColon® detects the presence of methylated SEPT9 in 
plasma; it has higher specificity than Cologuard®, but less than FIT 
and is less sensitive than both. Epi proColon® is not recommended 
for routine screening of CRC, but is an alternative to patients, 50 
years or older, with average risk for CRC, who decline other CRC 
screening such as FIT or screening colonoscopy.

After surgical resection and subsequent chemotherapy 
treatment for CRC, there is a 30%-50% chance that the disease 
will recur within 5 years. This is typically observed as distant 
metastases of the liver, lung, or locoregional areas (Duffy et al., 
2003). Carcinoembryonic antigen (CEA) has historically been 
the only non-invasive biomarker in routine clinical practice 

for surveillance of disease recurrence. However, CEA has poor 
sensitivity (35% with 95% specificity) and blood CEA levels are 
not elevated in 58% of CRC patients (Goldstein and Mitchell, 
2005). Although serial measurements of CEA are widely used in 
surveillance, there is variable agreement about what constitutes a 
clinically significant increase. The European Group on Tumour 
Markers (EGTM) guidelines guardedly define this as at least 30% 
over the previous value with increase to be followed by a second 
sample taken within 1 month and a confirmed trend investigated 
to detect or exclude malignancy (Duffy et al., 2003).

CSIRO co-developed the methylated two-gene (IKZF1 and 
BCAT1) panel COLVERATM liquid biopsy test with Clinical 
Genomics and the Flinders Centre for Innovation in Cancer 
(Mitchell et al., 2014; Mitchell et al., 2016). COLVERA™ has been 
available since 2016 in the USA as an LDT to detect residual 
disease post-surgical resection and for surveillance of recurrent 
CRC after primary treatment. COLVERATM is informative with 
respect to completeness of surgical resection, risk of residual 
disease, and recurrence-free survival (Murray et al., 2018). It has 
double the sensitivity of CEA and should allow more judicious 
use of PET-CT (Young et al., 2016). The IKZF1, BCAT1 marker 
pair also shows potential for primary diagnosis of CRC and has 
demonstrated better performance than the Epi proColon® SEPT9 
test (Table 2).

Glioblastoma
MGMT (O6-methylguanine DNA methyltransferase) promoter 
methylation is inversely correlated with MGMT expression and 
patients’ response to the alkylating agent temozolomide (Esteller 
et al., 2000) with approximately 50% of grade IV glioma (usually 
glioblastoma, GBM) exhibiting MGMT promoter methylation 
(Wick et al., 2014). Multiple large-scale clinical studies have 
identified that patients having hypermethylation of the MGMT 
promoter region experience significant outcome benefit with 
temozolomide treatment (Hegi et al., 2005; Stupp et al., 2005). 
As such, testing for hypermethylated MGMT has entered 
standard care and management for patients with glioma and is 
a key factor for treatment strategy selection for GBM patients 
(Louis et al., 2016). To date, there is no consensus on the optimal 
method for detection of MGMT promoter methylation. MSP and 
pyrosequencing of bisulfite-treated DNA are the most common 
assay methods, with pyrosequencing likely displaying better 
performance compared to MSP (Havik et al., 2012). Some studies 
suggest PCR with HRM has better performance than MSP 
and pyrosequencing with regards to diagnostic accuracy and 
efficiency but further large-scale trials are needed to be validated 
(Switzeny et al., 2016).

There are several methylated MGMT IVDs on the market. 
The pyrosequencing-based therascreen® MGMT Pyro® (Qiagen) 
is a registered CE-IVD and can quantify four CpG sites in the 
first exon of MGMT. The Human MGMT Gene Methylation 
Detection Kit (Xiamen SpacegenCo) is also a CE-IVD and 
is based on Xiamen SpacegenCo’s proprietary PAP-ARMS® 
technology which combines the pre-existing Amplification 
Refractory Mutation System (ARMS) approach with 
pyrophosphorolysis-activated polymerization (PAP), increasing 
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specificity by preventing mismatched primer extension. LabCorp 
also offer PredictMDxTM, an MSP-based test for detecting MGMT 
methylation in FFPE biopsies and licensed from MDxHealth.

Researchers in Heidelberg, Germany have developed an 
innovative methylation profiling tool for classification of central 
nervous system tumors based on the Illumina Human Methylation 
BeadChip data of 2,801 reference samples across adult and 
pediatric tumors (Capper et al., 2018). Classification by the tool 
resulted in the revision of the initial histopathological diagnosis in 
12% of cases. The pathological reinvestigation was ~93% in favor 
of the machine learning prediction, demonstrating the power of 
this approach for correct diagnosis. This methylation profiling 
classification tool, while for research use and not yet clinically 
validated, is aimed at generating molecular classification results 
for treating physicians. The authors developed an interactive 
website (https://www.molecularneuropathology.org/mnp) 
that allows researchers to upload their own Illumina Human 
Methylation BeadChip results and have the sample(s) classified 
against the references and DNA methylation classification, 
MGMT methylation status, and copy number variation (CNV) 
returned. Since release, this neuropathology classifier web service 
has already classified more than 16,000 samples (source from 
website). To register the classifier as an IVD would be arduous, 
but clearly this approach has clinical utility and is being adopted 
by the neuro-oncology community.

Liver Cancer
The HCCBloodTest developed by Epigenomics is a diagnostic 
blood test for the detection of hepatocellular carcinoma in cirrhotic 
patients. This duplex real-time PCR based CE-IVD qualitatively 
detects methylated SEPT9 DNA, where hypermethylation is 
indicative of liver carcinogenesis. The gene β-actin is measured 
in parallel and used as an internal control to determine whether 
there was sufficient DNA input. The sensitivity of this assay to 
detect hepatocellular carcinoma is 91% with 87% specificity, 
based on an initial and replication study (Oussalah et al., 2018) 
which collectively had 289 patients with cirrhosis and 98 of them 
having HCC. The test now forms the basis of an ongoing clinical 
trial on an estimated 220 patients with either clinically-diagnosed 
cirrhosis without HCC (confirmed by medical imaging) or 
cirrhosis patients with early-stage HCC.

Lung Cancer
Epi proLung®, a CE-IVD DNA methylation test developed by 
Epigenomics for the detection of lung cancer, has been tested 
in a validation study of 360 clinical specimens from the US and 
Europe (Weiss et al., 2017). Of these specimens, 152 patients 
were diagnosed with lung cancer (pathologically confirmed), 
while the remainder were not diagnosed with lung cancer either 
after a CT scan or radiological examination and follow-up of the 
pulmonary nodule. The Epi proLung® IVD is a triplex PCR assay 
that detects methylated PTGER4 and SHOX2, while β-actin is 
measured as an internal control for sufficient DNA input (Weiss 
et al., 2017). The procedure to use the Epi proLung kit is the same 
as the HCCBloodTest by Epigenomics (see Liver cancer). To 
classify the presence of lung cancer requires the calculation of an 

Epi proLung test score (EPLT-Score) which aggregates real-time 
PCR cycle threshold (Ct) values for triplicate assays of SHOX2 
and PTGER4 into a compound formula. Different EPLT score 
thresholds result in different performance characteristics, where 
an EPLT score of −0.43 has a sensitivity of 59% and specificity of 
95%, while an EPLT score of −1.85 has a sensitivity of 85% and 
specificity of 50%.

Prostate Cancer
Population screening using blood levels of PSA has long been 
used for the early detection and treatment prostate cancer. 
Although originally used as a marker for recurrent prostate 
cancer, PSA was eventually adopted by the medical community as 
a standalone screening test. PSA has a reported specificity of 91% 
and sensitivity of 21% for primary diagnosis of prostate cancer 
(with cut-off value of 4 ng/ml) (Brawer et al., 1992; Catalona, 
1993). While the use of PSA for screening has led to a decrease 
in mortality rates, this has come at the expense of tremendous 
over-diagnosis and subsequent over-treatment of the at-risk 
population. New data shows that prostate cancer treatment 
may be unnecessary in anywhere from 2% to 67% of cases with 
PSA detecting a large number of tumors that are unlikely ever 
to impact the patient. Given the risk of invasive procedures and 
serious impact on quality of life reported by patients following 
prostate cancer treatment (radical prostatectomy) there is an 
urgent need for better biomarkers in the prostate cancer space. 
Active surveillance of at-risk patients with repeat PSA measures 
(quarterly), annual examinations by a physician and regular (3 
yearly) scans and biopsies has become the method for treating 
men with an evidently low-grade tumor. Active surveillance 
minimizes the risk of over-treatment but depends on the rapid 
detection of changes in tumor grade or growth. At early stages, 
the probability of a biopsy collecting a tumor sample may be low 
as any cancer will be just a small percentage of the total prostate 
mass. This could lead to missed tumor development at biopsy 
resulting in delayed time to treatment and potentially decreasing 
rates of survival. As such, the only widely available epigenetic 
test in prostate cancer has positioned itself to improve cancer 
detection at biopsy.

The ConfirmMDx test offered as an LDT by MDxHealth 
targets regions of DNA associated with the genes GSTP1, RASSF1, 
and APC that exhibit increased methylation in cancer. However, 
ConfirmMDx does not require a cancer positive biopsy. The target 
genes all have reported field effects, that is DNA methylation is 
altered in normal tissue adjacent to the tumor site. By making use 
of this biology, ConfirmMDx can be used to verify that a tumor 
negative biopsy is associated with negative risk. MDxHealth 
report that this results in greater confidence and reduced need 
for frequent biopsy. ConfirmMDx has an NPV of >90% for high-
grade cancers, in Caucasian and African American cohorts (Van 
Neste et al., 2016; Waterhouse et al., 2019)

Multiple Cancers
IvyGene (Laboratory for Advanced Medicine) is a test that 
quantifies the presence of four ubiquitous cancers (breast, colon, 
liver and lung) by assaying the methylation status of cfDNA from 
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patients’ blood samples across a panel of 46 markers (Hao et al., 
2017). This test is marketed as an adjunct clinical test, ordered 
by physicians to bolster patient observations and available in the 
USA as an LDT.

Cancer of unknown primary (CUP) origin is a highly 
heterogenous cancer classification and a particularly frustrating 
diagnosis for oncologists (Fizazi et al., 2015). Historically, CUP 
has accounted for anywhere from 3%-9% of all cancer diagnoses 
(Pavlidis and Pentheroudakis, 2012; Varadhachary and Raber, 
2014; Fizazi et al., 2015). However, recent years have seen an 
apparent decrease in CUP rates to <2% (Urban et al., 2013; 
Rassy et  al., 2019). Despite the rapidly decreasing diagnosis, 
CUP remains difficult to treat with often poor prognostic 
outcome (Urban et al., 2013; Fizazi et al., 2015). This is largely 
due to the fact that CUP is diagnosed only after metastasis and 
without knowledge of the underlying primary tissue biology. 
The EPICUP™ assay (Moran et al., 2016) as offered by Ferrer has 
been developed with the intent of offering these patients more 
specific diagnoses. EPICUP™ received CE marking in 2015 can be 
performed using either fresh frozen or FFPE biopsy tissue which 
is assayed using the Illumina HumanMethylation450 BeadChip. 
The methylome signature from the BeadChip is used to predict 
the original tissue of origin and other biological features and to 
facilitate better treatment decisions. In a multicenter retrospective 
analysis, this tumor type classifier could predict primary cancer 
of origin in 87% of patients with a CUP diagnosis (Moran et al., 
2016). It should be noted that the underlying platform of this assay 
(HumanMethylation450 BeadChip) has since been superseded by 
the more comprehensive Infinium MethylationEPIC BeadChip 
(Pidsley et al., 2016) and that at the time of writing, Ferrer does 
not seem to offer an updated product. Still, this assay underlines 
the unique power of methylome analysis to classify tumors.

GRAIL is a company to watch in the multiple cancer DNA 
methylation-based IVD space. While only formed in January 
2016, they are very well resourced, and their research and clinical 
program is expansive. At the 2018 American Society of Clinical 
Oncology (ASCO) annual meeting, GRAIL presented data from 
their Circulating Cell-free Genome Atlas (CCGA) study showing 
that WGBS outperformed whole-genome sequencing (WGS) in 
identifying cancer in a large population of 1627 prospectively 
collected blood cfDNA samples (Klein et al., 2018). The data were 
from 749 controls and 878 participants with newly diagnosed 
untreated cancer across 20 tumor types and all stages. For eight 
tumor types, the reported sensitivity across stage I-III cancers 
was 66% colorectal (n = 28), 63% esophageal (n = 19), 56% head 
and neck (n = 5), 80% hepatobiliary (n = 5), 59% lung (n = 73), 
77% lymphoma (n = 17), 73% multiple myeloma (n = 11), 90% 
ovarian (n = 10), and 80% for pancreatic (n = 10) tumors. In each 
instance, specificity was held at 95%.

TRANSLATiON
The path to clinical translation is long and expensive. The steps 
involved after development typically include initial testing in 
cohorts, then clinical evaluation in clinical trials, followed by 
manufacture of the test and development of processes for its 

use and finally review by regulatory authorities. The proposed 
IVD must offer a multitude of benefits over current practice 
to attract the significant investment required to translate. In 
addition to product-market fit, the strength of intellectual 
property, the robustness, and quality of the clinical evidence to 
present to payers and the nature of the regulatory landscape in 
the proposed marketplace are all crucial factors in attracting 
investment. Medical professionals must also be willing to adopt 
the test, so the utility and clinical evidence needs to be published 
in peer reviewed scientific and medical publications and 
presented at conferences and seminars. This section discusses 
the establishment of strong IP, and how to produce high quality 
clinical evidence for regulators, payers, and medical professionals.

intellectual Property
Patenting in the epigenetics space has sharply risen since around 
2000, driven mostly by the patenting of novel diagnostics and 
epigenetic techniques (Noonan et al., 2013). Patenting provides 
20-year exclusivity for companies to exploit ownership of 
biomarkers and represents a key strategy for biotech and 
pharma companies to recover costs associated with developing 
IVDs for clinical utility, for example through licensing fees that 
would enable labs to implement their test. While important for 
commercial translation, patent protection can also discourage 
innovation as it prevents the clinical research community from 
improving processes to make testing of a biomarker more efficient, 
for example, quicker testing times, improvements in sensitivity or 
test accuracy. In some instances, patent protection can generate 
a monopoly on testing services encouraging excessively high 
prices out of reach of the general population, e.g. BRCA testing 
by Myriad. The social and economic implications of biomarker 
patenting have long been the subject of philosophical debate 
(Sawyers, 2008; Hopkins and Hogarth, 2012). The patenting of 
diagnostics has now become far more difficult in the USA after 
the Association for Molecular Pathology v. Myriad Genetics, Inc 
court decision in 2013 and the Mayo Collaborative Services v. 
Prometheus Labs, Inc court decision in 2012 (Dreyfuss et al., 
2018). The ruling finds that diagnostics methods based upon 
biological correlations are not novel but “laws of nature.”

In reaction to the court rulings, the biopharma industry 
has sought new strategies to describe the uniqueness and 
inventiveness of their intellectual property. If it is easier to 
demonstrate novelty and human reasoning in new detection 
method development, then USA-based diagnostics companies 
can be expected to formulate strategies coupling promising new 
biomarkers with a novel (and patentable) detection method. 
Companies outside of the USA may seek to establish IP in 
the European and/or Asia-Pacific markets where these court 
decisions do not apply. For smaller companies seeking capital, 
uncertainty over the validity of Patent Cooperation Treaty (PCT) 
claims may make it harder to fundraise in the USA until the key 
patent claims have been interpreted by the United States Patent 
and Trademark Office once the PCT reaches national phase. 
Certainty around the worth of an IP portfolio would come only 
after commentary is received from the patent examiner and this 
can be a number of years after initial filing. Some legislators are 
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now seeking to reduce the influence of the earlier court rulings 
and favor the patentability of biomarkers with the announcement 
in May 2019 of a bipartisan, bicameral draft bill intending to 
reform Section 101 of the Patent Act (US Senate, 2019).

Regulation
While groups such as the International Medical Device 
Regulators Forum (IMDRF; http://www.imdrf.org) with 10 
members jurisdictions are working toward global harmonization 
of regulation around IVDs, in the foreseeable future large 
regulatory differences will remain, adding significantly to the 
complexity of translating a diagnostic assay. The prioritization 
of geographies is important to consider early in the translation 
process as the appropriate dossiers of evidence need to be 
tailored for the regulator. An in-depth analysis of the regulatory 
systems is beyond the scope of this review, but a brief summary 
and considerations relating to the USA and European markets 
will follow. Resources are available elsewhere which consider 
regulation from an international perspective (Theisz, 2015).

In the United States three different regulatory paths exist for 
obtaining FDA approval of an IVD. The 510(k) regulatory path is 
for new tests substantially equivalent to an existing predicate test, 
while tests with no predicate on the market are subject to de novo 
classification for lower risk tests, or premarket approval (PMA) if 
they are high risk, such as cancer diagnostics. If the test is done 
“in-house” in a designated laboratory for patient samples ordered 
by a physician, then the test can be potentially marketed under 
“home brew” guidelines, known within the USA as LDTs. Clinical 
laboratories which run LDTs are regulated by CMS through the 
Clinical Laboratory Improvement Amendments of 1988 (CLIA) 
Act. CMS can also approve other methods of certification such 
as from the state licensing schemes or other organizations such 
as the College of American Pathologists (CAP). The CLIA 
regulation concerns the standards of the laboratory and the 
analytical validity (accuracy and precision) of the test via a 
biennial survey and a laboratory may start distributing test results 
before evaluation. The CMS’ CLIA program does not address the 
clinical validity of any test; which is the accuracy of the test to 
identify, measure, or predict the presence or absence of a clinical 
condition or predisposition in a patient. The FDA has signaled 
it intends to increasingly regulate LDTs due to their increasing 
complexity (Food and Drug Administration, 2014). The FDA 
guidance shows an intention to introduce to LDT regulation 
earlier, more robust verification of analytical validity and a 
requirement for clinical validity. The FDA is also introducing 
the concept of high-, medium-, and low-risk LDTs and does not 
intend to regulate low-risk LDTs, nor tests for unmet needs or 
rare diseases. Cancer diagnostic tests will be classified as high-
risk LDTs, so diagnostics under development now should prepare 
to demonstrate both analytical and clinical validity, regardless of 
the choice of the PMA or LDT pathway.

In Europe, the In Vitro Medical Devices Directive (IVDD) 
98/79/EC was established in 1998 to harmonize standards of 
conformity and assessment procedures and to help create a 
unified pan-European market for IVDs. CE Marking is required 
for all IVDs sold in Europe. CE Marking indicates that an IVD 

device complies with the IVDD. Under this legislation, an IVD 
manufacturer only has to self-declare that the product complies 
with the essential requirements of relevant European laws. With 
continued evolution in the IVD marketplace, the European 
Commission recognized amendments were necessary. Starting 
from public consultations from 2008 onwards, the new In Vitro 
Diagnostic Medical Devices Regulation (IVDR) (EU) 2017/746 
emerged and the legislation entered into force on 26 May 2017, 
with a 5-year transition period to full implementation on 26 May 
2022 (European Parliament, 2017). There is no grandfathering 
on presently regulated IVDs, so all existing regulated IVDs need 
to be CE Marked again.

The IVDR has more alignment with International Organization 
for Standardization (ISO) guidelines and introduces a risk-
based classification system with increased oversight by Notified 
Bodies. The classes are based on the Global Harmonization 
Task Force classification scheme (predecessor to the IMDRF) 
and identifies four risk classes A-D, with Class D the highest 
risk. IVDs for screening, diagnostics, and staging of cancer 
are classified as Class C and require a full quality management 
system. “In-house” tests made and used within a single health 
institution do not have to comply with the IVDR but they require 
laboratory compliance with EN ISO 15189 (Medical laboratories, 
Requirements for quality and competence) and the health 
institution must justify the use of such a test by demonstrating 
that no commercially available alternative exists. The IVDR also 
requires compliance with General Data Protection Regulation 
(GDPR) for use of samples for regulatory purposes (European 
Union, 2018). Compliance with this regulation also needs to be 
considered early in the planning of clinical trials. Compared to 
the IVDD, the IVDR also has stronger analytical performance 
requirements for diagnostic tests, including the requirement for 
reference materials and methods.

Quality Management Systems
Any IVD seeking registration needs to provision a Quality 
Management System (QMS) and comply with Good 
Manufacturing Practice (GMP) requirements. This provides 
the framework for conformity assessment and ongoing post-
market responsibilities such as quality control, external quality 
assurance, and adverse event reporting. Each jurisdiction 
has different conformity assessment procedures. With global 
harmonization in mind, the IMDRF began the Medical Device 
Single Audit Program (MDSAP) initiative in 2012. Regulatory 
authorities within the working group have implemented a 
program where auditing organizations can conduct a single 
audit of a medical device manufacturer that would be accepted 
by multiple regulators to address QMS and GMP requirements.

For PMA submissions in the USA, the FDA needs to be 
satisfied that the appropriate design and manufacturing controls 
are present and has the power to undertake a pre-approval 
inspection and will schedule a post-approval inspection with 
8–12 months of approval. LDTs do not have to comply with FDA 
quality system regulation, nor be subject to FDA inspection. 
LDTs (also known as “in-house” IVDs in other jurisdictions) 
are regulated around the compliance of the laboratory network. 
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Many countries have made ISO 15189 part of their mandatory 
medical laboratory accreditation requirements, however in the 
USA, accreditation to the ISO 15189 standard does not meet CLIA 
requirements and cannot replace a CLIA-based accreditation 
(Schneider et al., 2017). Similar to the regulation pathway, 
priority of jurisdictions for translation should inform the design 
of the QMS. The existing standards also change over time and 
new standards are introduced. Relevant to cancer diagnostics, 
a new ISO standard on the “Requirements for evaluating the 
performance of quantification methods for nucleic acid target 
sequences — qPCR and dPCR” (ISO/FDIS 20395) is now under 
development (International Organization for Standardization, 
2019).

When planning translation of a diagnostic test, it is critical 
to understand what is the appropriate design and evidence for 
regulatory bodies that adequately supports analytical and clinical 
validity. The regulators must also be satisfied that this evidence 
is gathered from the intended target population of the IVD. For 
guidance on constructing the appropriate dossier of evidence, 
the Clinical and Laboratory Standards Institute (CLSI), a non-
profit organization, produces a set of guidelines relevant to the 
diagnostics industry. Their “Evaluation of Detection Capability 
for Clinical Laboratory Measurement Procedures” guideline 
document is intended for use by IVD manufacturers, regulators, 
and clinical laboratories to provide guidance for the evaluation 
and documentation of the detection limits of clinical laboratory 
measurement procedures (Clinical and Laboratory Standards 
Institute, 2012).

FUTURe
Presently, there is a flurry of activity in developing DNA 
methylation-based IVDs. The attention to this sector will only 
increase with recent announcements by companies such as 
GRAIL, who found that methylome sequencing of cfDNA 
outperformed somatic mutation sequencing for primary 
diagnosis of cancer. An emerging trend is the incorporation 
of larger panels of methylated biomarkers for multi-cancer 
detection and determining the tissue of origin. There are 
now several studies showing that the methylation state of 
circulating DNA can be used to predict tissue of origin (Kang 
et al., 2017; Moss et al., 2018), with spin out companies such 
as EarlyDiagnostics translating these findings. A large plasma 
cfDNA panel of 9223 CpG sites designed using The Cancer 
Genome Atlas (TCGA) data has been shown to detect common 
advanced cancers and underlying cancer type with high accuracy 
(Liu et al., 2018). Researchers in partner with AnchorDx Medical 
(Guangzhou, China) have recently shown that a panel of nine 
bisulfite sequencing amplicons can detect in plasma early stage 
lung cancer with high sensitivity (Liang et al., 2019).

Another emerging trend in the cancer IVD sector is the 
development of multi-analyte tests, such as the CancerSEEK test, 
which combines somatic mutation detection and immunoassays 
(Cohen et al., 2018). Recently, Guardant Health acquired Bellwether 
Bio which will allow them to include nucleosome positioning and 
fragmentomics information with their NGS ctDNA analysis (Snyder 

et al., 2016). This study of cfDNA fragment length, an indirect 
measure of nucleosome positioning, has recently been shown to 
have good clinical utility (Cristiano et al., 2019).

With the continued reduction in the cost of NGS, the use of 
whole methylomes for biomarker discovery is becoming more 
commonplace. With sufficient subjects and sequencing depth, all 
high utility biomarkers will be identified in a screen. Some tests 
under development, such as the UroMark 150 biomarker assay for 
bladder cancer detection, are basing the IVD readout on NGS.

There are many new innovations in determining the methylation 
state of DNA. Two new enzyme-based DNA conversion methods, 
Enzymatic Methyl-seq (New England Biolabs, 2019) and TET-
assisted pyridine borane sequencing (TAPS) (Liu et al., 2019) 
make use of enzymes to convert the DNA and with these gentler 
conditions, may offer more recovery of amplifiable DNA than 
bisulfite-treatment and the resultant DNA is suitable as input 
for targeted as well as NGS-based approaches. The continued 
development of third generation sequencing technology such as 
that from Pacific Biosciences or Oxford Nanopore Technologies 
offers new opportunities for direct epigenetic detection. To this end, 
three groups have trained and tested machine-learning approaches 
to detect methylated DNA on Oxford Nanopore Technologies 
MinION devices with reasonable classification success (Rand et 
al., 2017; Simpson et al., 2017; Ni et al., 2019). However, low-input, 
short cfDNA fragments are not an optimal fit for these long-read 
platforms. Methylscape, a new method to directly detect and 
partition methylated DNA using physicochemical properties is also 
an exciting innovation and offers the potential for an inexpensive 
pan-cancer test (Sina et al., 2018).

The continued technological development and increasing 
commercialization activity in the DNA-methylation IVD 
sector are leading to a fast-paced, innovative, and competitive 
environment that will result in significant benefits to patients for 
the early detection and management of cancer.
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Bladder cancer (BC) is the most common neoplasia of the urothelial tract. Due to its 
high incidence, prevalence, recurrence and mortality, it remains an unsolved clinical and 
social problem. The treatment of BC is challenging and, although immunotherapies have 
revealed potential benefit in a percentage of patients, it remains mostly an incurable 
disease at its advanced state. Epigenetic alterations, including aberrant DNA methylation, 
altered chromatin remodeling and deregulated expression of non-coding RNAs are 
common events in BC and can be driver events in BC pathogenesis. Accordingly, these 
epigenetic alterations are now being used as potential biomarkers for these disorders and 
are being envisioned as potential therapeutic targets for the future management of BC. In 
this review, we summarize the recent findings in these emerging and exciting new aspects 
paving the way for future clinical treatment of this disease.

Keywords: Epigenetic, chromatin remodelling, bladder cancer, biomarkers, therapeutic target

INTRODUCTION
BC is a common urogenital cancer which represents a current clinical and social problem. At 
diagnosis, two thirds of patients present a non-muscle invasive bladder cancer (NMIBC), a relatively 
limited aggressive disease confined to the bladder and without signs of invasion of the underlying 
muscle layer. The remaining patients display muscle-invasive bladder cancer (MIBC) (Knowles and 
Hurst, 2015). This pathological classification also defines clinical management. NMIBC is treated by 
transurethral resection, which can be followed by intravesical instillation with Bacillus Calmette–
Guérin (BCG) or mitomycin (Babjuk et al., 2017). However, a large proportion (60–75%) of NMIBC 
patients relapse and, in some cases (15–25%), the recurrent tumor shows signs of MIBC indicating 
tumor progression (van Rhijn et al., 2009). The current therapeutic options for MIBC include 
radical cystectomy and platin-based chemotherapy in adjuvant or neoadjuvant settings (Stenzl et al., 
2011). However, in a high proportion of cases, the disease progresses showing metastatic spread, 
which is associated with extremely low survival rates (Stenzl et al., 2011; Pal et al., 2013; Witjes 
et al., 2014a). No major improvement in MIBC management occurred during the last decades, 
until recent years, in which immunotherapy has been shown to increase survival with responses 
in 20–30% of the patients presenting advanced and metastatic BC (Powles et al., 2014; Rosenberg 
et al., 2016; Balar et al., 2017; Bellmunt et al., 2017; Plimack et al., 2017). As in other cancers, 
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immunotherapy in BC is mainly based on the use of antibodies 
that prevent PD-1/PD-L1 interaction, the so called immune 
checkpoint, leading to immune killing of tumor cells (Pardoll, 
2012). The limited activity of immune checkpoint inhibitors in 
the clinics has led to the consideration of possible combinations 
of different immune and non-immune therapies (Gotwals et al., 
2017). Moreover, in the case of BC patients, it is unclear which 
patients are more likely to benefit from this treatment (Powles 
et al., 2014; Rosenberg et al., 2016; Balar et al., 2017; Bellmunt 
et al., 2017; Plimack et al., 2017). Thus, there is a need not only 
for more effective therapies in patients with advanced BC, but 
also for new biomarkers that will help to define which patients 
may benefit from immunotherapy (Havel et al., 2019).

Epigenetics are heritable but reversible modifications that 
alter gene expression without changing primary DNA sequences. 
Epigenome functions are fundamental for the normal status 
of gene expression and their alterations affect basic cellular 
processes such as proliferation, differentiation and apoptosis, 
which may lead to important diseases including cancer (Liep 
et al., 2012; Baylin and Jones, 2016). Therefore, epigenetic-
based cancer biomarkers are promising tools for detection, 
diagnosis, assessment of prognosis, and prediction of response 
to therapy (Esteller, 2008; Jerónimo and Henrique, 2014). An 
extraordinary number of alterations in epigenetic machinery 
have been observed in BC, affecting DNA methylation 
(Marques-Magalhaes et al., 2018), chromatin organization, 
histone modifications (Weinstein et al., 2014; Robertson et al., 
2018) and non-coding RNAs expression (Pop-Bica et al., 2017; 
Taheri et al., 2018). This has produced a large body of evidence 
indicating that epigenetic machinery could represent a putative 
target for BC management, a source of valuable biomarkers for 
diagnostic, prognostic and response prediction, and also a novel 
research field with amazing new insights into the molecular 
mechanisms of cancer biology governing cell autonomous 
cancer processes as well as the intricate cross talk between 
cancer cells and their niche.

CHROMATIN REMODELERS IN BC
The epigenome is defined by changes that do not involve 
alterations in the DNA nucleotide sequence. These changes are 
broadly divided into DNA methylation and modifications of the 
histone tails that allow the opening or closing of the chromatin. 
The functions of the epigenome are fundamental for normal 
gene expression, and its alterations affect basic cellular processes 
(Tsai and Baylin, 2011;Liep et al., 2012). The aberrant epigenetic 
landscape is a hallmark of human cancer (Han et al., 2012; Mio 
et  al., 2019; Zhao et al., 2019) and, in particular, characterizes 
BC as an epigenome disease, as studies of complete exome 
sequencing have shown that it presents frequent alterations in 
the genes that govern the organization of chromatin and histone 
modifications, either by mutation or by its expression/altered 
function (Gui et al., 2011; Weinstein et al., 2014).

Nevertheless, the mechanisms for epigenetic regulation of 
gene expression are not limited to chromatin modifiers or DNA 
methylation changes, as non-coding RNAs are also involved 

(Fabbri and Calin, 2010; Gupta et al., 2010; Kogo et al., 2011) 
(Figure 1).

DNA Methylation in BC
Methylation of DNA is the process by which a methyl group 
is added by a covalent bound to the 5’ position of a cytosine 
ring of the DNA molecule. The methylation event is a frequent 
epigenetic episode and usually occurs on a cytosine followed by 
a guanine (CpG dinucleotide). There are regions of the genome, 
termed CpG islands, which contain a higher density of the CpG 
dinucleotide than the rest of the genome (Li et al., 2016a). These 
CpG islands are located in sites that normally overlap with gene 
regulatory regions (Baylln et al., 1997). Thereupon, there are 
CpG islands at promoter/5’ regions of 50% of all known genes 
and they are normally unmethylated (Reinert, 2012) which 
is associated with (potentially) active transcription (Jones 
and Liang, 2009). CpG islands are also found in gene bodies 
and their methylation status positively correlates with gene 
expression (Yang et al., 2014). DNA methylation is a key process 
in mammalian development, and its alterations are hallmarks of 
diseases, including cancer. Changes in normal DNA methylation 
status exist in approximately 50–90% of BCs, including DNA 
hypermethylation of promoter sites of A3BP1, NPTX2, ZIC4, 
PAX5A, MGMT, IGSF4, GDF15, SOX11, HOXA9, MEIS1, VIM, 
STK11, MSH6, BRCA1, TBX2, TBX3, TERT, GATA2, DAPK1, 
CDH4, CCND2, GSTP1, CDKN2A, CDKN2B, WIF1, RASSF1A, 
among others (Porten, 2018). These genes are mainly tumor 
suppressors that belong to biological pathways such as DNA 
repair, cell cycle control, cell invasion and apoptosis (Reinert 
et  al., 2011; Sánchez-Carbayo, 2012). DNA methylation of 
promoter regions typically negatively affects gene expression, 
which can promote the development (Costa et al., 2010; Chung 
et al., 2011) and progression of BC (Yates et al., 2007; Kandimalla 
et al., 2012; Casadevall et al., 2017), and can predict therapy 
outcomes (Agundez et al., 2011; Xylinas et al., 2016).

First studies of DNA methylation in BC focused on potential 
genes which methylated status might correlate with stage, grade 
and recurrence. More recently, the development of modern 
whole-genome DNA methylation assays has allowed to analyze 
in depth the BC methylome. Wolff et al. stablished that most 
DNA methylation changes happen in early BC and are conserved 
in carcinoma in situ, non-invasive as well as invasive tumors, 
and are located in CpG islands (Wolff et al., 2010). Furthermore, 
the degree and extent of hypermethylation correlates with grade 
and stage since low-grade tumors have less altered methylation 
loci compared to high-grade and invasive tumors (Catto et al., 
2005; Yates et al., 2007; Wolff et al., 2010). DNA methylation also 
separates mutation status of FGFR3. NMIBC FGFR3 wild-type 
tumors, which have a poorer prognosis compared to FGFR3 
mutant NMIBC (Van Rhijn et al., 2012), were more methylated 
than FGFR3-mutant tumors (Serizawa et al., 2011; Kandimalla 
et al., 2012). Besides, in low-grade non-invasive tumors, DNA 
hypomethylation was more frequent than in invasive tumors 
(Wolff et al., 2010). Hypermethylation of ZO2, MYOD and 
CDH13 was also detected in normal-appearing urothelium 
from bladder with cancer compared to urothelium from healthy 
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bladder, indicating an epigenetic ‘field defect’ and a possible 
contribution to a loss of epithelial integrity, likely generating a 
permissive environment for tumor recurrences (Wolff et al., 
2010; Majewski et al., 2019).

Since several genes were identified as frequently 
hypermethylated in primary BC, diagnosis could be performed 
based on the methylated status of a gene set. For instance, 
methylation of IPF1, GALR1, TAL1, PENK and TJP2 was found 
to be higher in MIBC tumors than in NMIBC (Wolff et al., 
2010). Sacristan et al. indicated that methylation of RARB, CD44, 
GSTP1, IGSF4, CHFR, PYCARD, TP53, STK11 and GATA5 
distinguished low-grade versus high-grade tumors, whereas 
Olkhov-Mitsel et al. stablished that the inclusion of GP5 and 
ZSCAN12 in a methylation panel could feasibly distinguish high-
grade and low-grade BC (Olkhov-Mitsel et al., 2017). Unluckily, 
the overlap between genes found in different studies is limited.

Since 20% of BC patients recur, finding epigenetic markers 
of progression would be useful to predict recurrence. A wide 
study reviewed 87 articles reporting the association of epigenetic 
markers with prognostic outcomes (Casadevall et al., 2017). 
However, the prognostic influence of epigenetic alterations in BC 
remains unclear. CACNA1G (García-Baquero et al., 2014) and 
TBX3 (Kandimalla et al., 2012) were associated with progression 
and SFRP5 correlated with recurrence (García-Baquero 
et  al., 2014). CDNK2A is methylated in 64% of BCs, however, 
inconsistent results were found in prognosis (Casadevall et al., 
2017). Based on TCGA data, methylation and expression levels 
of SOWAHC were found to be correlated with prognosis (Yang 
et al., 2019). HOX genes appear hypermethylated in almost all 
aggressive tumors (Reinert et al., 2011; Kandimalla et al., 2012), 
and HOXA9 promoter methylation correlated with higher 
recurrence, progression, and death by cancer in NMIBC and 

FIGURE 1 | Epigenetic regulation in cancer cells. General scheme of the dynamic interaction of DNA methylation, histone modifications, positioning of nucleosomes, 
among other factors, that participate in the mechanisms of the epigenome to regulate gene expression. Thus, the tumor cell acquires a particular identity. DNA 
methylation is present throughout the genome, however we can find aberrant DNA methylations or alterations in the DNMTs enzymes (methyltranferases of DNA 
nucleotides) in the tumor. The methylation mark H3K27 is the main brand that controls the gene repression in euchromatin. The remodeling enzymes called writers 
(HMT, histone methyltransferase, HAT, histone acetyltransferase), erasers (HDM, histone demethylase; HDAC, histone deacetylase) and readers (specialized 
interaction motif containing proteins that recognize post-translational modifications, mostly acetylation and methylation) of the main histone modifications work in 
a coordinated manner for the regulation of gene transcription. Depending on the genes they regulate, they are recruited to the same place to function together. 
Therefore, all these molecules are subject of study as possible therapeutic targets.
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MIBC (Kitchen et al., 2015) and was associated with cisplatin 
resistance in BC cell lines (Xylinas et al., 2016). High-risk NMIBC 
manifest higher rates of progression to invasive tumors than low- 
and intermediate-risk bladder tumors, which in many cases do 
not recur or progress. Recently, some investigations proposed 
multiple CpG sites differentially methylated between high-risk 
recurrence/progression tumors and less aggressive low-risk 
no-recurrence tumors (Kitchen et al., 2018; Peng et al., 2018).

A three-gene methylation panel which differentiates between 
patients with metastatic and free of cancer lymph nodes might 
also be predictive of metastasis development, and enable 
the selection of patients that would benefit from lymph node 
resection and neoadjuvant chemotherapy (Stubendorff et al., 
2019). In patients undergoing BCG treatment, methylation 
status of MSH6 and THBS1 may help to distinguish responders 
to therapy, and methylation of GATA5 associated with survival 
(Agundez et al., 2011), allowing the possible identification 
of patients requiring a more aggressive therapy. After 
chemotherapeutic treatment, the MDR1 gene was found to 
be overexpressed in BC compared with untreated tumors, 
and in tumors from patients that eventually recurred. This 
overexpression correlated negatively with methylation of CpG 
sites in the promoter region (Tada et al., 2000). An interesting 
study tested gene methylation in second recurrences in bladder 
of primary upper-tract urothelial carcinomas, and stablished 
that the methylation rate in certain genes tend to increase with 
the number of recurrences, which may be a predictive factor for 
recurrences after surgery (Guan et al., 2018). Nevertheless, the 
existence of inconsistent results and lack of validation studies 
hampers at present relevance of these findings (Casadevall et al., 
2017; Porten, 2018).

Less data is reported about hypomethylation status in BC. 
In 1983, a pioneer study reported that hypomethylation could 
distinguish genes of cancer cells compared with their normal 
counterparts (Feinberg and Vogelstein, 1983). In normal cells, 
certain CpG rich satellite repeats are strongly methylated, such as 
LINE-1 (Schulz, 2006). Interestingly, these regions are strongly 
hypomethylated in all types of BC (Kreimer et al., 2013) and 
could translate in genomic instability (Wolff et al., 2010). Besides, 
as a tissue-fingerprint, the hypomethylation pattern of LINE-1 
seems to be specific for each tumor type and tissue (Sharma et al., 
2019). Furthermore, a different type of study analyzed global 
methylation in DNA from blood cells and found that leukocyte 
DNA hypomethylation is a risk factor for BC (Moore et al., 2008).

DNA methylation is catalyzed by three DNA methyltransferases 
(DNMT): DNMT1, DNMT3A and DNMT3B. DNMT1 is the 
keeper of the regular methylation status of the genome after 
cell replication (Goll and Bestor, 2005), whereas DNMT3a and 
DNMT3b are de novo methyltransferases (Okano et al., 1999). 
Mutations in chromatin regulatory genes are present in around 
76% of BC (Robertson et al., 2018) and are more frequently 
found in BC than in any other solid tumor (Weinstein et al., 
2014). However, the alterations regarding DNMTs in BC are 
mainly found to be an increase in their expression (Li et al., 
2016a). Several genes that are methylated in BC are repressed by 
polycomb complexes (Wolff et al., 2010; Kandimalla et al., 2012). 
These complexes composed of EZH2 recruit DNMTs required for 

DNA methylation (Viré et al., 2006), which suggests an upstream 
regulation of methylation in BC.

Chromatin Remodeling and Histone 
Modification in BC
Mutations in chromatin remodeling genes are very frequent in 
BC (Robertson et al., 2018), affecting 89% of histone remodelers 
and 64% of nucleosome positioning genes in MIBC (Weinstein 
et al., 2014; Robertson et al., 2018). The post-translational 
modifications of histones, such as acetylation, methylation, 
phosphorylation or ubiquination in specific residues of 
lysines, arginines and serines (Allis et al., 2007; Rothbart and 
Strahl, 2014), modulate the dynamic and reversible changes in 
chromatin structural changes. This “histone code” can be written, 
erased and read by different molecules modulating transcription 
(Gillette and Hill, 2015). Therefore, chromatin remodelers can 
be classified as writers (methyltransferases (HMTs) or acetylases 
(HATs)), erasers (demethylases (HDMs) and deacetylases 
(HDACs)) and readers, which are further divided in proteins or 
effector complexes that interact with specific domains (Gillette 
and Hill, 2015; Hyun et al., 2017), and nucleosome remodeling 
multiprotein complexes that are able to alter DNA-histone 
contacts. The main marks of gene transcription are acetylation 
of histone 3 and histone 4 (H3Kac, H4Kac) and methylation of 
histone 3 on lysine 4, 36 and 79 (H3K4me, H3K36me, H3K79me), 
while methylation of histone 3 on lysine 9 and 27 and histone 4 on 
lysine 20 (H3K9me, H3K27me, H4K20me) represent important 
marks for gene repression (Bernstein et al., 2007) (Figure 1).

Writers
Histone methyltransferase EZH2 catalyzes H3K27me2 and 
H3K27me3 marks to regulate the repression of gene expression 
(Deb et al., 2014), and compacts chromatin with other molecules 
like BMI-1 (Cao et al., 2005) (Figure 1). Its involvement in 
tumor development and progression is a common characteristic 
of several human tumors, including BC (Yamaguchi and 
Hung, 2014). It has been demonstrated that the existence of 
the oncogenic axis Rb-E2F-EZH2 predicts recurrence and 
progression in NMIBC (Santos et al., 2014) and promotes global 
changes in gene expression, including the aberrant expression of 
lncRNAs such as HOTAIR (Martínez-Fernández et al., 2015b), 
and the silencing of several microRNAs, such as mir-200 family 
(Martínez-Fernández et al., 2015a). Several studies have shown 
that EZH2 also interacts with other modifiers such as DNMTs, 
HDAC or G9a, that could explain some oncological properties 
of EZH2. The importance of these non-canonical functions of 
EZH2 in BC is still not well understood, although it could favor 
intratumoral heterogeneity (Gupta et al., 2011).

Histone methyltransferase G9a (EHMT2) is considered 
an oncogenic epigenetic factor (Lee et al., 2015), which can 
be involved in urothelial tumors (Shankar et al., 2013; Cho 
et al., 2015). This enzyme binds GLP (EHMT1) and catalyzes 
H3K9me2 leading to gene silencing through physical interaction 
with cofactors (Bian et al., 2015; Maier et al., 2015; Simon et al., 
2015; Hu et al., 2018) and/or non-coding RNAs (Nagano et al., 
2008). Additionally, G9a may interact with EZH2 allowing the 
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silencing of specific loci in a cooperative way (Mozzetta et  al., 
2014; Mozzetta et al., 2015) becoming a possible target for 
advanced metastatic BC (Segovia et al., 2019).

Methyltransferase KMT2D (MLL2), which catalyzes 
H3K4me1 and H3K4me2 (Lee et al., 2013), displays the highest 
mutation rate among all HMTs in BC (Weinstein et al., 2014) 
in close association with tumor development, recurrence (Wu 
et al., 2016a) and resistance to therapy (Lu et al., 2017). KMT2C 
(MLL3) is also commonly mutated in high grade NMIBC 
(Weinstein et al., 2014; Hurst et al., 2017) and in luminal papillary 
and basal squamous MIBC subtypes (Robertson et al., 2018), 
and its silencing affects DNA damage response genes (Rampias 
et al., 2019). Additionally, somatic mutations of 13 HMT genes, 
including NSD1 and NSD3, are present in a high proportion of 
BC tumors (Ding et al., 2019). Moreover, the genes encoding 
acetyltransferases EP300 and CREBBP are among the genes most 
frequently inactivated by mutation in human BC (Gui et al., 
2011; Duex et al., 2018b).

Erasers
The gene encoding histone demethylase KDM6A (UTX), located 
on the X chromosome, is one of the genes most frequently 
mutated in BC (Gui et al., 2011; Nickerson et al., 2014). This 
demethylase can specifically erase the marks written by EZH2 
(Agger et al., 2007; Lee et al., 2007). Mutations in KDM6A are 
more common in NIMBC and in women (Hurst et al., 2017), and 
tend to be mutually exclusive with MLL2 alterations (Kim et al., 
2015a) suggesting a predominant silenced chromatin during 
bladder carcinogenesis (Casadevall et al., 2017). In some cases, it 
has been associated with RB1 mutation in high grade urothelial 
tumors (Balbás-Martínez et al., 2013; Ross et al., 2014).

Acetylation of lysine residues in histone tails results in a more 
open state of the chromatin (Roger et al., 2011) and histone 
acetylation levels decrease during progression towards MIBC 
(Ellinger et al., 2016). Furthermore, the deregulated expression 
of various HDACs, like HDAC1, 2, 3 and 6, has been described 
in urothelial tumors in close association with malignancy (Chen 
et al., 2011; Li et al., 2016b; Niegisch et al., 2013; Poyet et al., 2014; 
Lee and Song, 2017).

Readers
The effects of epigenetic marks are mediated through effector 
complexes which “read” marks and facilitate the DNA–histone 
and protein–protein interactions. This provides recruitment 
platforms for other epigenetic regulators to specific DNA loci 
(Dawson and Kouzarides, 2012) (Figure 1). The methylation and 
acetylation writers usually have reader domains (predominantly 
bromodomain (BRD) and plant homeodomain (PHD) finger) 
that allow recognition of the histone methylation/acetylation 
status (Dawson and Kouzarides, 2012; Biswas and Rao, 2018).

Methyl CpG sites are recognized by proteins that contain 
conserved binding domains such as methyl CpG binding domain 
(MBD), SRA domain and zinc finger (ZnF). These proteins work 
together with other factors to alter the transcriptional status of 
DNA (Biswas and Rao, 2018). The histone methylated residues 
are recognized by conserved binding domains such as PHD 
finger, Tudor domain, PWWP (Pro-Trp-Trp-Pro) domain, 

chromodomain, malignant brain tumor domain (MBT), ankyrin 
repeats (present in G9a and GLP1), ZnFs and WD40 domain, 
among others. Furthermore, BRDs, double PHD finger and 
Yeats domains bind specifically to acetylated residues of histones 
(Dhalluin et al., 1999; Fischle, 2003; Kouzarides, 2007; Taverna et al., 
2007; Dawson and Kouzarides, 2012; Biswas and Rao, 2018). BRDs 
are present in the acetylation writers CBP and p300 along with 
several protein interaction motifs, both closely related proteins 
have been deeply investigated since they are able to acetylate 
the four histones (Dawson and Kouzarides, 2012). Additionally, 
BRDs of chromatin remodeling enzymes BRM (SMARCA2) and 
BRG1 (SMARCA4) recognize multiple acetylation sites at H3 and 
H4. In BC, the BRD4 histone acetylation reader is overexpressed 
and can upregulate C-MYC, which controls the expression of 
cell cycle progression genes, enhancing the recruitment of this 
factor to the EZH2 promoter and subsequently upregulating 
EZH2 expression, which has a significant relevance on tumor 
growth (Wu et al., 2016b). Consequently, EZH2 promotes 
growth of BC by chromatin modification (Wu et al., 2016b), 
especially in tumors with loss of KDM6A (Ler et al., 2017). 
Some susceptibilities to EZH2 inhibitors have been found in 
relation to mutations in components of SWI/SNF complexes 
such as ARID1B (12%), SMARCA4 (15%) SMARCA2 (16%) 
(Helming et al., 2014; Bitler et al., 2015; Kim et al., 2015b). This is 
relevant in the context of BC, since components of the SWI/SNF 
complexes are also frequently altered in BC patients (Knowles 
and Hurst, 2015; Robertson et al., 2018). Other remodelers such 
as the SWI/SNF nucleosomal complex component, ARID1A, 
often show inactivating mutations or deep eliminations in both 
MIBC (Weinstein et al., 2014; Robertson et al., 2018) and NIMBC 
(Hurst et al., 2017).

An additional complexity of chromatin remodeling lies in 
the fact that many chromatin regulators have more than one 
type of reader domain, and their binding to chromatin can be 
further influenced by histone modifications (Ruthenburg et al., 
2007). The understanding of the dynamic plasticity of DNA and 
histone modifications will allow us to open new venues to the 
management and treatment of BC.

Non-Coding RNAs in BC Etiology 
and Progression
Non-coding RNAs (ncRNA) represent an important role in the 
epigenetic changes leading to BC development and progression. 
Additional to transfer RNA and ribosomal RNA molecules, 
which represent the most abundant ncRNAs (3–10 × 107 and 
3–10 × 106 molecules per cell, respectively), several ncRNA 
classes can be distinguished, including long non-coding RNA 
(lncRNA), transcribed ultraconserved region (T-UCR), circular 
RNA (circRNA), small interfering RNA (siRNA), Y RNA (Y 
RNA), micro-RNA (miRNA; miR), piwi-interacting RNA 
(piRNA), small nucleolar RNAs and small nuclear ribonucleic 
acid (Palazzo and Lee, 2015; Anastasiadou et al., 2017; Gulìa 
et al., 2017)

NcRNA molecules are specific RNAs which are not translated 
into proteins, and represent essential regulatory roles in 
practically every aspect of cellular function. They have been 
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suggested to exert an essential function in the maintenance of 
genomic stability, mainly through adjusting DNA expression 
and complex formation with other ncRNA molecules as well as 
proteins. Consequently, the description of ncRNA function in 
isolation is very complicated. Several ncRNAs (like miRNAs) are 
able to target the messenger RNAs (mRNAs) of multiple other 
genes, whereas the mRNA of one gene can also be targeted by 
numerous miRNAs. Furthermore, miRNAs can interact with 
other ncRNA molecules, like lncRNAs and circRNAs, in order 
to control their stability, while lncRNAs and circRNAs are able 
to regulate the abundance of miRNAs. Besides, ncRNAs can 
interact with individual proteins and protein complexes which 
might facilitate specific protein targeting or the assembly of 
protein complexes by providing a scaffold (Anastasiadou et al., 
2017; Gulìa et al., 2017).

LncRNAs and miRNAs represent the two main classes of 
ncRNA involved in BC epigenetic etiology as well as progression, 
and will be discussed in detail below. Additionally, some 
other ncRNA molecules associated to this pathology will be 
briefly described.

Long Non-Coding RNAs
LncRNAs consist of more than 200 nucleotides, and are involved 
in several essential biochemical processes (Wang and Chang, 
2011). Clark et al. examined about 7,200 lncRNA molecules and 
described a wide variation in stability, ranging from half-lives of 
less than 30 min for unstable molecules to half-lives of more than 
48 h for extremely stable lncRNAs, with a median lncRNA half-
life of 3.5 h (Clark et al., 2012). Besides, these lncRNA molecules 
have been found to be significantly less abundant than, for 
example, total mRNA (3–50 × 103 versus 3–10 × 105 molecules 
per cell, respectively) (Palazzo and Lee, 2015). Many lncRNAs 
were found to be differentially expressed in a wide range of 
tumor tissues compared to corresponding healthy control 
tissues, suggesting an important role in carcinogenesis (Martens-
Uzunova et al., 2014; Bhan et al., 2017). In BC, deregulation 
of lncRNAs has been found to contribute to carcinogenesis in 
several ways including sustained proliferative signaling and 
induction of invasion as well as metastasis (Bhan et al., 2017).

LncRNA expression in BC has been extensively reviewed 
(Gulìa et al., 2017; Taheri et al., 2018). Based on their expression 
patterns and functions in BC tissue compared to healthy control 
tissue, lncRNA molecules can be classified in two groups, either 
showing increased (oncogenic lncRNAs) or decreased (tumor 
suppressor lncRNAs) expression in tumor tissue. For example, 
oncogenic lncRNA-UCA1 has been reported to induce epithelial-
mesenchymal transition (EMT) and promote BC cell migration 
and invasion through the miR-145–ZEB1/2–FSCN1 pathway, as 
well as by targeting miR-582-5p or modulation of the miR-143/
HMGBG1 signaling pathway (Xue et al., 2016; Luo et al., 2017; 
Wu et al., 2019a). Overexpression of UCA1 has been associated 
with high risk of poor outcome in BC. Accordingly, the use of 
UCA1 as potential biomarker is subject of ongoing research 
(Wang et al., 2006; Cui et al., 2017). LncRNA-H19 has been 
found to be abundantly expressed in BC leading to increased 
miR-675 expression, thus inhibiting TP53 activation (Ariel et al., 
2000; Liu et al., 2016). LncRNA-H19 has further been described 

to promote metastasis and EMT through E-cadherin inhibition 
as well as by targeting miR-29b-3p (Lv et al., 2017; Zhu et al., 
2018). Other well-described oncogenic lncRNAs involved in 
BC include MALAT1, HOTAIR, TUG1, ANRIL and PVT1, 
whereas well-known lncRNAs-MEG3 and GAS5 represent tumor 
suppressor lncRNA molecules (Sun et al., 2015; Gulìa et al., 2017; 
Guo et al., 2018; Liu et al., 2017b; Xie et al., 2017a; Yang et al., 
2017; Yu et  al., 2019; Jiao et al., 2018; Liu et al., 2018a; Wang 
et al., 2018b; Huang et al., 2019a; Tian et al., 2019). Even though 
many other oncogenic and tumor suppressor lncRNAs have 
recently been identified in BC, they need further investigation 
to validate their relevance in this disease. Additionally, the use of 
specific lncRNA as biomarkers or therapeutic targets is subject of 
ongoing research and will be further discussed below.

Micro-RNAs
As abovementioned, lncRNAs extensively interact with miRNA 
in the regulation of oncogenic pathways. MiRNAs consist of 
21–24 nucleotides and play important roles in the regulation 
of gene expression (Sohel, 2016). Mature miRNAs have shown 
high stability reflecting half-lives of approximately 8 hours in the 
cell, which is reflected in a relatively high abundance of miRNA 
molecules (1–3 × 105 molecules per cell) (Palazzo and Lee, 2015).

Aberrantly expressed miRNAs have been found in BC tissues 
causing an altered expression of target genes, resulting in BC 
development and progression (Zhu et al., 2011). As for lncRNAs, 
miRNA expression in BC has been extensively reviewed (Enokida 
et al., 2016; Gulìa et al., 2017). The aberrant expression of several 
miRNAs has been found to alter two main genetic pathways 
predisposing to BC. Some miRNAs target the FGFR3 pathway 
(including miR-99a, miR-100, miR-101, and miR-145), while 
other miRNA molecules modify the TP53 pathway (such as miR-
21 and miR-373) (Homami and Ghazi, 2016). Like lncRNAs, 
miRNA molecules can be divided in oncogenic miRNAs or tumor 
suppressor miRNAs. For example, the decreased expression 
of miR-34a in BC has an anti-metastatic function through the 
CD44/EMT signaling pathway (Yu et al., 2014) and through 
targeting NOTCH1 and HNF4G also negatively modulates BC 
cell proliferation and invasion (Zhang et al., 2012; Sun et al., 
2015). Accordingly, low expression of miR-34 has been found 
to be correlated with unfavorable prognosis (Xie et al., 2017b). 
Besides, downregulation of the tumor suppressor miR-200 family 
has been proposed to be associated with poor prognosis in BC, 
and the use of this family as prognostic marker has been indicated 
(Wiklund et al., 2011; Martínez-Fernández et al., 2015a). The 
miR-200 family consists of five different members, namely miR-
200a, miR-200b, miR-200c, miR-429 and miR-141, and has been 
suggested to play an essential role in the inhibition of the EMT 
process by regulation of ZEB1 and ZEB2 transcription factors 
(Korpal et al., 2008; Park et al., 2008).

Many other tumor suppressor and oncogenic miRNAs have 
been extensively described or recently discovered as particular 
players in BC (Enokida et al., 2016; Gulìa et al., 2017). For 
example, low expression of miR-100, miR-101 and miR-214, as 
well as high expression of miR-452, miR-21, miR-222, miR-182, 
miR-133b, miR-155, miR-145, and miR-152 has been correlated 
with unfavorable prognosis(Xie et al., 2017b).
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Given their deregulated expression, the miRNAs have been 
widely studied as therapeutic target and biomarkers in different 
pathologies, including several types of cancers (Romero-Cordoba 
et al., 2014; Shah and Calin, 2014; Chan et al., 2015). Accordingly, 
the study of miRNAs in liquid biopsy offers great perspective for 
diagnostic and prognostic purposes. These objectives will be 
further discussed below.

Other ncRNA
CircRNA molecules represent a type of ncRNA that are 
covalently closed in a loop at the 3′ and 5′ ends. The lack of 
free 3´ or 5´ ends provides increased resistance of circRNAs to 
exoribonuclease-dependent RNA degradation, which results in a 
prolonged half-life of over 48 h (Jeck and Sharpless, 2014). Even 
though their cellular functions are still largely unknown, various 
circRNAs have shown relevance in multiple cancer types (Zhang 
et al., 2017; Kristensen et al., 2018). Although circRNA research 
in BC is still scarce, several circRNAs have been shown to be 
highly expressed in human BC. These endogenous circRNAs 
competitively target specific miRNAs, thereby suppressing 
miRNA activity by acting as a miRNA sponge. For example, 
circTCF25 has been demonstrated to promote cell proliferation 
and metastasis by acting as a RNA sponge for miR-103a-3p and 
miR-107, resulting in increased CDK6 levels (Zhong et al., 2016). 
Besides, circRNA-MYLK and circRNA-CTDP1 competitively 
bind miR-29a-3p leading to enhanced expression of its target 
genes DNMT3B, VEGFA, HAS3 and ITGB1, resulting in 
angiogenesis, EMT and metastasis (Huang et al., 2016; Zhong et al., 
2017). Recently, additional circRNA molecules representing 
an oncogenic role in BC tumorigenesis and progression have 
been discovered, including circCEP128, circRNA-VANGL1, 
circPRMT5 and circRNA-cTFRC (Chen et al., 2018; Wu et al., 
2018; Zeng et al., 2019; Su et al., 2019).

Contrarily to the oncogenic role of several circRNAs, some 
circRNAs act as tumor suppressors and have been shown to be 
downregulated in human BC. For example, circRNA-ITCH has 
been shown to suppress the aggressive biological behavior of BC 
through increased expression of p21 and PTEN by sponging miR-
17 and miR-224, whereas circRNA-BCRC-3 has been found to 
act as a sponge of miR-182-5p resulting in enhanced expression 
of p27 (Xie et al., 2018; Yang et al., 2018a). Other circRNA 
molecules which have recently been discovered to mediate anti-
oncogenic functions include circRNA-BCRC4, circRNA-Cdr1as 
and circMTO1 (Li et al., 2017; Li et al., 2018a; Liu et al., 2018b).

Their extensive abundance, stability and tissue-specific 
expression make circRNAs attractive molecules for clinical 
research (Barrett and Salzman, 2016). Further research into 
their regulatory mechanisms on miRNA expression will help 
us to improve our knowledge regarding their function in 
carcinogenesis and may provide insights in the use of circRNA 
molecules as predictive and diagnostic biomarkers as well as 
novel therapeutic targets (Kulcheski et al., 2016; Han et al., 2017).

Y RNA molecules are small ncRNAs (21–24 nucleotides) 
necessary for DNA replication through interactions with 
chromatin and initiation proteins. Four Y RNAs have been 
identified and found to be highly evolutionary conserved, 
namely Y1, Y3, Y4 and Y5 (Christov et al., 2006). These ncRNAs 

are protected from degradation by its interaction with Ro, 
a ribonucleoprotein particle that provides stability to these 
molecules, and their abundance has been found to be relatively 
high (about 1 × 105 molecules per cell) (Christov et al., 2006; 
Chen et al., 2007). Even though a role for Y RNAs in BC has 
been indicated by various studies, contradicting observations 
have been published (Christov et al., 2008; Tolkach et al., 2017). 
Christov et al. described the significant overexpression of two Y 
RNAs, Y1 and Y3, whereas Tolkach et al. published the significant 
downregulation of all four Y RNAs in BC tissue compared to 
tissue of healthy controls. Accordingly, this emphasizes the need 
for further studies to clarify the possible role of Y RNA in BC 
etiology and progression.

PiRNA molecules are short single strands non-coding 
RNAs (26–31 nucleotides) mediating epigenetic and post-
transcriptional gene silencing through interactions with PIWI 
proteins (Siomi et al., 2011). Their small size suggests particular 
resistance to degradation, which can result in the presence of 
relatively high levels of piRNA molecules (Palazzo and Lee, 2015; 
Pardini and Naccarati, 2017). Deregulated expression of some 
piRNAs has been found in different cancer types (Chalbatani 
et  al., 2019). In BC, Martinez et al. described the association 
of high levels of piRNA FR004819 with poorer survival, 
whereas Taubert et al. defined a significant association between 
diminished PIWIL2 expression and poor prognosis (Martinez 
et al., 2015; Taubert et al., 2015). Additionally, piRABC has 
been observed to be downregulated in BC tissue and has been 
identified as an important piRNA in the development and 
progression of this pathology. Besides, it has been proposed that 
piRABC may promote cell apoptosis in BC by upregulation of the 
TNFSF4 protein (Chu et al., 2015; Chalbatani et al., 2019).

EPIGENETIC REGULATION OF THE BC 
MICROENvIRONMENT

Immune Cell Compartment
Cancer initiation and tumor progression are often associated 
with the inhibition of anticancer immune response and 
dysregulation of inflammatory activity (Berraondo et al., 2016; 
Sukari et al., 2016). Different solid tumors are characterized by 
the presence of immune cells, such as T and B lymphocytes, 
natural killer (NK) cells, macrophages, and antigen-presenting 
cells in the tissue microenvironment (TME). These immune 
cells exhibit different behaviors and morphologies as a result of 
aberrant differentiation (Olivieri et al., 2016), sometimes driven 
by epigenetically regulated lineage-specific changes influencing 
the expression of genes crucial for the identity of immune cells 
and promoting cellular responses to stimuli (Herold et al., 2012; 
Smith and Meissner, 2013; Luperchio et al., 2014) (Figure 2).

Recently, some studies have shown that post-translational 
modification of histones may regulate the behavior of cells 
involved in the immune response, including tumor associated 
macrophages (TAMs), regulatory T cells (Tregs), dendritic 
cells (DCs), NK cells, myeloid-derived suppressor cells 
(MDSCs), effector T cells (Teffs), and others (Liu et al., 2017a). 
Based on whole-genome bisulfite sequencing datasets from 
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the BLUEPRINT Epigenome Project (http://www.blueprint-
epigenome.eu), Schuyler et al. identified inverse methylation 
patterns in the myeloid and lymphoid lineages in cancer tissues, 
where lymphoid-derived neoplasms lose CpG methylation 
patterns whereas myeloid malignancies significantly increase 
levels of DNA methylation (Schuyler et al., 2016). These 
observations have been reproduced by other authors showing 
that different methylation patterns contribute to the activation 
of myeloid and lymphoid cancer cells (Bröske et al., 2009; Bock 
et al., 2012).

The main component of the immune infiltrates present 
in solid tumors are TAMs, which have been frequently 
associated with worse prognosis. Compared to the binary M1/
M2 classification, TAMs include multiple populations sharing 
features of both M1 and M2 phenotypes that in many cases do 
not fit the M1/M2 classification. Nonetheless, it offers a useful 
working frame for the study of TAMs, in which the overall 
consensus is that M1 macrophages are anti-tumorigenic, while 
M2 macrophages can promote tumor growth. M2-macrophage 

marker genes are epigenetically regulated by reciprocal changes 
in histone H3 lysine-4 (H3K4) and histone H3 lysine-27 
(H3K27) methylation. After IL-4 stimulation, a decrease of 
H3K27 dimethylation and trimethylation (H3K27me2/3) marks 
occur as well as the transcriptional activation of specific M2 
marker genes. Additionally to methylation, during monocyte to 
macrophage differentiation, there is a massive reconfiguration 
of lysine acetylation patterns at gene regulatory elements with 
a positive correlation between transcriptionally permissive 
H3 histone acetylation and the activity of regulatory elements 
(Bistoni et al., 1986).

When analyzing the activation/polarization status of tumor 
infiltrating lymphocytes (TILs), TAMs and DCs, several studies 
have shown that the methylation status of immune genes in 
these cells influences the tumor immune response in the TME, 
and correlates with the density of TILs and tumor progression. 
For example, in naïve CD4+ T cells the interferon-γ (IFN-γ) 
gene promoter and upstream enhancer is methylated. However, 
in Th1 lymphocytes, where the expression of IFN-γ is induced, 

FIGURE 2 | Epigenetic landscape of the tumor microenvironment. Tumor cells can influence the stroma through different factors, being soluble factors the 
most characterized. Tumor-derived VEGFA induces EZH2 in TEC, which drives hypermethylation of anti-angiogenic Vash1. Also induced by tumor cells, CAF 
differentiation is associated with several epigenetic features and can be blocked by a number of chromatin remodelers inhibitors. In turn, CAFs promote tumor 
growth and metastasis via secretion of soluble factors and matrix remodeling. On the immune side, cytotoxic T cells and natural killer cells are the main effectors of 
the anti-cancer immune response. Balance between activating and inhibiting signals coming from tumor targeted cells determines cytotoxic activity of these cells. 
Other immune cells such as regulatory T cells and macrophages are key in the anti-cancer immune response. Of note, myeloid and lymphoid lineages present 
inverse methylation patterns in cancer tissues, contributing to aberrant functionality. Inhibition of epigenetic writers can block regulatory T cell differentiation and 
function, while promoting anti-tumor activity in effector cells. Reverting tumor-driven epigenetic modifications imprinted in the TME may condition the tumor stroma 
for effective elimination of malignant cells in combination with existing treatments such as immunotherapy. TEC, tumor endothelial cells; CAF, cancer-associated 
fibroblasts; EMT, epithelial–mesechymal transition; TAM, tumor-associated macrophage.
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the IFN-γ gene promoter and enhancer are demethylated, 
suggesting an important role in Th1/Th2 differentiation (Janson 
et al., 2008). The histone methyl transferase EZH2 has also been 
shown to play an important role in shaping the function of T 
cells. Wang et al. demonstrated that accumulation of H3K4me3 
in the promoter of FOXP3 results in the generation of Tregs, and 
pharmacological or genetic suppression of the activity of EZH2 
on tumor-infiltrating Tregs (TI-Tregs) results in the acquisition 
of pro-inflammatory functions (Wang et al., 2018a) (Figure 
2). In addition, suppression of EZH2 modulates the TME and 
enhances the infiltration of CD8+ and CD4+ effector T cells, 
which can favor tumor eradication (Wang et al., 2018a). Besides 
H3K27 methylation, G9a-dependent H3K9me2 is an important 
regulator of inflammatory gene expression and has also been 
implicated in several aspects of T cell biology. Although genome-
wide studies mapping the binding of G9a (or the H3K9me2 
mark) in immune cells has not been carried out, a descriptive 
genome-wide analysis of H3K9me2 marks in resting human 
lymphocytes using ChIP-on-chip methods demonstrated that 
this epigenetic mark is enriched on genes that are associated with 
several specific pathways including T cell receptor signaling, IL-4 
signaling, and GATA3 transcription (Zhang et al., 2018a).

In addition to T and B lymphocytes, NK cells are effector 
lymphocytes of the innate immune system that have been 
shown to control tumor growth (Vivier et al., 2008). Although 
studies investigating the role of epigenetic modulation on NK 
cell activation and cytotoxicity are still scarce, some reports 
indicate that histone acetylation is involved in the regulation of 
NK cell activation and effector functions (Schenk et al., 2016; 
Raulet et al., 2017). Particularly in cancer, HDAC inhibitors 
have been shown to modulate the expression of NK ligands on 
the surface of neuroblastoma, melanoma, osteosarcoma, colon 
and Merkel cell (Zhu et al., 2015; Kiany et al., 2017) (Figure 2). 
Besides, Hicks et al. shows that HDAC inhibitors, in addition to 
significantly enhancing the expression of multiple NK ligands 
and death receptors resulting in enhanced NK cell-mediated 
lysis, also increases tumor cell PD-L1 expression both in vitro 
and in carcinoma xenografts (Hicks et al., 2018). This data offers 
a rationale for combining HDAC inhibitors with inhibitors of the 
PD-1/PD-L1 axis, including for patients who are refractory or 
expected not to respond to these therapies alone due to absent or 
low PD-L1 tumor expression.

Cancer-Associated Fibroblasts
The tumor stroma is defined as the non-malignant cells 
and extracellular components that surround tumors, with a 
fundamental role in growth and progression. Fibroblasts in the 
tumor microenvironment differentiate into cancer-associated 
fibroblasts (CAFs), being one of the main components in the 
tumor stroma (Figure 2). CAFs play key roles in all cancerous 
stages, the vast majority of the studies demonstrating pro-
tumoral functions that include extracellular matrix remodeling, 
angiogenesis, immune suppression and drug resistance (Kalluri, 
2016; Tao et al., 2017; Ziani et al., 2018).

The current knowledge on CAF biology in BC is scarce and 
mostly coming from in vitro experiments. Nonetheless, it has been 

shown that there is a positive correlation between the presence of 
active CAFs and expression of EMT markers and worse prognosis 
in BC patients (Schulte et al., 2012; Wu et al., 2017). In vitro, BC 
cells can induce differentiation of healthy fibroblast into CAFs via 
exosomes (Ringuette Goulet et al., 2018; De Palma et al., 2019; 
Goulet et al., 2019) and other not fully characterized secreted 
factors (Wang et al., 2007; Grimm et al., 2015; Shi et al., 2015; 
Yeh et al., 2015). As a result, differentiated CAFs induce motility 
and migration in cancer cells via induction of EMT through 
secretion of a number of soluble factors which include TGF-β1 
(Zhuang et al., 2015; Wu et al., 2017), IL-6 (Yeh et al., 2015; Goulet 
et al., 2019), and hepatocyte growth factor (HGF) (Wang et al., 
2007; Grimm et al., 2015), and/or by direct chemokine attraction 
through CXCL1 (Shi et al., 2015) and CCL1 (Yeh et al., 2015).

Studies using global methylation analysis have shown that 
epigenetic modification plays a fundamental role in fibroblast 
activation and CAF differentiation (Hu et al., 2005; Jiang et 
al., 2008; Bechtel et al., 2010; Lamprecht et al., 2018). Indeed, 
an overall hypomethylated status was found in human CAFs 
(Jiang et al., 2008; Eckert et al., 2019) (Figure 2), as well as in 
functionally related fibrotic fibroblasts (Komatsu et al., 2012). 
Nevertheless, certain key genes appear hypermethylated in 
CAFs such as Tgfbr2 (Banerjee et al., 2014), RASAL1 and others 
(Bechtel et al., 2010; Zeisberg and Zeisberg, 2013; Mishra et al., 
2018). Seminal work by Cedric Gaggioli’s group demonstrated 
that tumor-derived LIF induces activation of DNMT3b and 
p300-HAT in CAFs, which sustain JAK1/STAT3 signaling, 
necessary to maintain a pro-invasive activity (Albrengues et al., 
2015). More recently, the nicotinamide N-methyltransferase has 
been shown as fundamental for CAF´s protumoral behavior in 
vitro and in vivo, directly affecting DNA and histone methylation 
(Eckert et  al., 2019). CAF differentiation and activity in vivo 
can be blocked by treating with the DNMT inhibitor 5′-Aza-2′-
deoxycytidine (Albrengues et al., 2015; Eckert et al., 2019), acting 
specifically in pancreatic CAFs compared to normal fibroblasts 
(Yu et al., 2012). Relevant results when DNMT inhibitors are 
considered for therapy, which will be further discussed below.

Interestingly, the RasGTP RASAL3, negative regulator of 
the Ras signaling pathway, was also found hypermethylated in 
prostate cancer (PCa) CAFs (Mishra et al., 2018), increasing 
Ras signaling in these cells, which drives support of tumor 
growth and neuroendocrine differentiation. Noteworthy, switch 
in CAFs towards a Warburg metabolism has been implicated 
in tumor immune evasion in PCa (Comito et al., 2019), which 
adds further clinical relevance of epigenetic-mediated changes in 
CAFs metabolism. Indeed, an in vitro 3D-microfluidoc system 
has shown that CAFs provide metabolic support to proliferation 
and invasion of BC cells (Shi et al., 2015). The role of epigenetic 
modifications in this phenomenon and its relevance in vivo will 
require further investigation.

Besides DNA methylation, other epigenetic modifications 
have been observed in the tumor stroma (Li et al., 2015; Du and 
Che, 2017; Schoepp et al., 2017; Vafaee et al., 2017; Zhao et al., 
2017; Kim et al., 2018). In a proof-of-concept study, Zong et al. 
showed that overexpression of the non-histone chromosomal 
high-mobility group protein family member Hmga2 in urogenital 
sinus mesenchymal cells drives tumorigenesis in a model for 
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prostatic intraepithelial neoplasia (Zong et al., 2012). In models 
for pancreatic cancer and in situ skin squamous cell carcinomas, 
an inhibitor of the BRD and extraterminal domain (BET) family 
proteins decreases tumor growth affecting specifically CAF´s 
secretome (Yamamoto et al., 2016; Kim et al., 2017). Since 
targeting histone acetylation has been proposed for combined 
therapy in BC (Yoon et al., 2011), it would be necessary to 
characterize the histone acetylation status of stromal cells in 
BC patients.

Many studies show that miRNAs play fundamental roles 
in CAF differentiation and function, a subject that has been 
extensively reviewed (Chou et al., 2013; Kohlhapp et al., 2015; 
Kuninty et al., 2016; Marks et al., 2016). MiRNAs can be 
expressed by CAFs or incorporated from other sources, mainly 
cancer cells via exosomes (Pang et al., 2015). The opposite is also 
possible, when CAFs modulate cancer cell behavior via transfer 
of miRNAs (Josson et al., 2015; Shah et al., 2015). In BC, a study 
compared miRNA expression between fibroblasts from healthy 
and tumoral human bladder, finding higher expression of miR-
16 and miR-320 (Enkelmann et al., 2011). Which functions are 
these miRNAs regulating in CAFs and whether they can be 
used as surrogate markers for stroma abundance would require 
further investigations.

Tumor Endothelial Cells
In solid cancers, increased de novo formation of blood vasculature, 
known as angiogenesis, is normally observed and provides 
adequate nourishment for the growing tumor (Figure  2). The 
link between vasculature density and worse prognosis in BC 
is well documented (Bochner et al., 1995). Indeed, targeting 
angiogenesis via disruption of vascular endothelial growth 
factor (VEGF) signaling is being considered for treating BC 
in combination with existing therapies (Petrylak et al., 2016; 
Sonpavde and Bellmunt, 2016).

Tumor endothelial cells (TECs) display a number of 
characteristics compared to normal endothelium (Hashizume 
et al., 2000; Hida et al., 2004). In BC, exacerbated proliferation and 
sprouting of TECs has been linked to staging and lower survival in 
patients (Roudnicky et al., 2013; Roudnicky et al., 2017). Invasive 
BC cell lines show increased adhesion to endothelial cells via 
MUC1 and CD43 binding to ICAM-1, which could be linked 
to metastatic potential (Laurent et al., 2014; Sundar Rajan et al., 
2017). Besides, an in vitro study shows that TECs may promote 
BC cell growth through a paracrine loop involving secretion of 
epidermal growth factor by TECs in response to tumor-derived 
VEGFs (Huang et al., 2019b). Finally, TECs have been found 
in MIBC with aberrant expression of a non-anti-angiogenic 
thrombospondin-2 variant, also responsible for uncontrolled 
angiogenesis in these tumors (Roudnicky et al., 2018).

It is well known that epigenetic modifications play a role 
in endothelial cell (ECs) proliferation, differentiation and 
pathogenesis (Hulshoff et al., 2018; Nagai et al., 2018; Schlereth 
et  al., 2018; Stone et al., 2018; Nicorescu et al., 2019). In fact, 
recent work by Wang S. and colleagues shows that response 
to VEGFA, a master regulator of EC biology, strongly relies 
on epigenetic mechanisms (Wang et al., 2019). Although less 

explored, several studies have addressed the role of epigenetic 
modifications in TECs (Marks et al., 2016). Chromatin 
remodeling inhibitors reduce tumor growth and angiogenesis by 
acting on both tumor cells (Kim et al., 2001) and ECs (Deroanne 
et al., 2002; Hellebrekers et al., 2006). More specifically, high 
expression of EZH2 in ECs is associated with high-stage and 
grade, and decreased overall survival in epithelial ovarian 
cancers (Lu et al., 2010). The authors showed that tumor-derived 
VEGFs induce expression of EZH2 in ECs, which in turn drives 
hypermethylation of the anti-angiogenic gene, Vash1 (Lu et al., 
2010) (Figure 2). Of note, EZH2 expression in ECs is also under 
control of the vascular endothelial cadherin, which appears 
reduced in ovarian TECs (Morini et al., 2018). As new anti-
cancer therapies targeting both DNMTs and methylation readers 
evolve, it is necessary to evaluate their effect in TECs.

Importantly, CAF and TEC biology has a meeting point 
in what is known as endothelial-to-mesenchymal transition 
(EndMT) in cancer (Zeisberg et al., 2007). By ChIP-seq, Nagai N. 
and collaborators found that the transcription factor ERG/FLI1 
associates with H3K27ac marks at enhancer/promoter regions 
of various EC-specific genes, inducing expression of miR-126, 
which represses EndMT genes. Using available data, the authors 
also found that lower expression of ERG was significantly related 
to poor prognosis (Nagai et al., 2018).

NEW THERAPIES IN EPIGENETICS
Epigenetic changes have been suggested as essential for tumor 
development (Biswas and Rao, 2017). As discussed before, 
aberrant DNA methylation, histone modifications and chromatin 
states, as well as aberrant expression of ncRNAs can be used as 
potential targets by specific drugs and combined with existing 
therapies. Several molecules targeting epigenetic alterations have 
been developed and used in different cancers. In the following 
section, we describe the most recent cancer drugs targeting some 
epigenetic enzymes. Although in most cases their applications in 
BC are still in its very early days, we will focus on how they are 
currently studied in this context.

Drugs Targeting Writers
DNA Methyltransferase Inhibitors
DNMTs inhibitors (DNTMi) are classified in two major 
subtypes: nucleoside and non-nucleoside inhibitors. Decitabine 
(5-aza-2’-deoxycytidine) and Azacytidine (5-azacytidine) are 
cytosine analogues and the best known nucleoside DNMTi. 
Decitabine and Azacytidine are currently approved by FDA for 
the treatment of specific forms of myelodysplastic syndromes, 
chronic myelomonocytic leukemia and acute myeloid leukemia 
(Lu et al., 2011; Giagounidis et al., 2014). Regarding BC, in vitro 
experiments have demonstrated that Decitabine enhances cisplatin 
susceptibility, suggesting that combination of both drugs could 
improve clinical responses (Shang et al., 2008; Wu et al., 2019b). 
Moreover, Decitabine has completed phase II trials for treatment 
of BC and phase I trials in combination with tetrahydrouridine 
(Shang et al., 2008; Bertino and Otterson, 2011).
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Second generation nucleoside DNMTi, such as Guadecitabine 
(SGI-110) or 4’-thio-2’- deoxycytidine, have been developed in 
order to reduce high toxicity without reducing the therapeutic 
dose needed. Clinical trials for 4’-thio-2’- deoxycytidine are 
currently recruiting patients for the treatment of advanced 
solid tumors (NCT03366116). On the other hand, SGI-110 is in 
clinical stage for various cancers such as acute myeloid leukemia 
and myeloidDdysplastic syndrome (NCT03603964), and for 
different solid tumors like advanced hepatocellular carcinomas 
(NCT01752933). Also, it has been tested in combination with 
other therapies such as Ipilimumab in metastatic melanoma 
(NCT02608437) or with carboplatin in ovarian cancer 
(NCT01696032), among others. As immune checkpoint 
inhibitors are currently used in BC, their combination with 
these second generation DNMTi could represent an attractive 
scenario to improve the therapeutic response or to expand the 
number of patients that benfit from immunotherapy. Some 
others like SGI-1027, a quinoline derivative, and Nanaomycin 
A, a quinone antibiotic, which are reported to inhibit all three 
DNMTs or only DNMT3a, respectively, are in preclinical stages 
for colorectal cancer (Datta et al., 2009; Kuck et al., 2010) 
(Figure 3 and Table 1).

Apart from these inhibitors, various non-nucleoside DNMTi 
have been developed and suggested to minimize the direct effect 

on DNA (Villar-garea et al., 2003). Non-nucleoside analogues, 
such as Procainamide and MG98, inhibit methylation by binding 
to the CpG regions of DNA and blocking the activity of DNMTs. 
MG98, for example, was tested against metastatic renal cell 
carcinoma but the clinical trial was stopped due to its toxicity 
(Winquist et al., 2006). However, it has also been evaluated in 
combination with interferon and results are promising at a 
specific dose (Amato et al., 2012). Moreover, MG98 was tested 
in BC patients but the researchers did not find response to the 
treatment (Plummer et al., 2009).

Histone Lysine Methyltransferase Inhibitors
As it was previously described in this review, HMTs such as 
G9a and EZH2 are considered oncogenic epigenetic factors 
in BC (Cho et al., 2015). One of the first histone lysine 
methyltransferase inhibitors (HKMTi), specific against G9a 
(EHMT2), was BIX-01294 (Kubicek et al., 2007), which has been 
shown to inhibit cell proliferation in BC cell lines and induce 
apoptosis in neuroblastoma cells (Cui et al., 2015). Since then, 
numerous and improved inhibitors related to G9a blocking 
have been developed. Various studies have been carried out 
in molecules like A-366, BRD4770 or UNC0638, in different 
types of cancer such as neuroblastoma, breast or leukemias 
(Vedadi et al., 2012; Yuan  et  al.,  2012; Pappano  et  al.,  2015). 

FIGURE 3 | Most representative epigenetic inhibitors targeting writers, readers and erasers. Epigenetic alterations are considered to be reversible and, therefore, all 
these molecules are subject of study as promising therapeutic targets for cancer treatment. Three main groups of epigenetic drugs can be distinguished according 
to their targets. The group of compounds targeting epigenetic writers consists mainly of DNMT, HKMT and HAT inhibitors. The second group is directed against 
epigenetic erasers, which includes HDAC and HKDM inhibitors. Finally, inhibitors of methyl CpG binding proteins, histone methylation and acetylation proteins 
form the third group targeting epigenetic readers. DNMTi, methyltranferases of DNA inhibitor; HKMTi, histone lysine methyltransferase inhibitor; HATi, histone 
acetyltransferase inhibitor; HDACi, histone deacetylase inhibitor; HKDMi, histone lysine demethylase inhibitor.
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Recently, CM272 was described as a novel G9a/DNMT1 dual 
inhibitor with remarkable antitumor effect in BC in vitro and 
in vivo (José-Enériz et al., 2017; Segovia et al., 2019). On the 
same line, the catalytic subunits of PRC2, EZH1 and EZH2, 
which catalyze the methylation of H3K27, have been well 
described in cancer. Some inhibitors of this complex have been 
studied and they are classified into three groups: (i) pyridone-
indazole scaffold like UNC1999 or GSK343 (Konze et al., 
2014; Yu et al., 2017) which has been demonstrated to inhibit 
BC cell lines growth and metastasis (Chen et al., 2019), (ii) 
pyridone-indole scaffold such as GSK126 (NCT02082977) and 
(iii) pyridone-phenyl scaffold including EPZ6438 (Brach et al., 
2017), known also as Tazemetostat, which has achieved phase I/
II trial (NCT03854474) for the treatment of patients with locally 
advanced or metastatic urothelial carcinoma in combination 
with pembrolizumab. The potential use of EZH2 in the BC 
context has been recently reviewed and discussed (Martínez-
Fernández et al., 2015c; Segovia and Paramio, 2017).

Histone Acetyltransferase Inhibitors
HATs are typically grouped into three broad families, namely the 
p300/CBP, the Gcn5 related N-acetyl-transferase and the MYST 
family. Among them, p300/CBP seems to be frequently mutated 
in BC (Duex et al., 2018a) and was reported to be associated 
with doxorubicin resistance (Takeuchi et al., 2012), so it could 
be a promising molecular therapeutic target for this disease. 
Accordingly, C646 and PU141 have been demonstrated to be 
promising in gastric cancer and neuroblastoma, respectively 
(Gajer et al., 2015; Wang et al., 2017). However, there is very little 
evidence for useful histone acetyltransferase inhibitors (HATi) 
being developed and tested (Baell and Miao, 2016), even though 
the search for new small-molecule HATi has been intense in the 
last decades (Figure 3). Although, to our knowledge no HATi 
are being tested in BC, it is important to consider that HAT 
gene deficiencies may confer susceptibilities to other inhibitors, 
opening new possible therapeutic approaches for various tumors, 
including BC (Ogiwara et al., 2016).

TABLE 1 | A representation of experimental epigenetic drugs targeting writers, readers and erasers. 

Drugs Targeting Epigenetic Writers

Category Compound Name Development Stage Cancer Type References

DNA Methyltransferase inhibitors (DNMTi)
Nucleoside analogue Decitabine Approved MDS Giagounidis et al., 2014; Lu 

et al., 2011
Azacytidine Approved MDS Giagounidis et al., 2014; Lu 

et al., 2011
Guadecitabine Clinical MDS, AML NCT03603964

Non-nucleoside analogue MG98 Clinical MRCC Winquist et al., 2006
SGI-1027 Preclinical Colorectal Datta et al., 2009
Nanaomycin A Preclinical Colorectal Kuck et al., 2010

Histone Lysine Methyltransferase inhibitors (HKMTi)
G9a A-366 Preclinical Neuroblastoma Pappano et al., 2015

BRD4770 Preclinical Breast Vedadi et al., 2012
UNC0638 Preclinical Leukemia Yuan et al., 2012

EZH2 UNC1999 Preclinical Large B-cell lymphoma Konze et al., 2014
GSK343 Preclinical Glioblastoma Yu et al., 2017
GSK126 Clinical Large B-cell lymphomas NCT02082977
EPZ6438 Clinical B-cell Lymphomas NCT03010982

Histone Acetyltransferase inhibitors (HATi)
p300 C646 Preclinical Gastric Gajer et al., 2015

PU141 Preclinical Neuroblastoma Wang et al., 2017
Drugs Targeting Epigenetic Readers
Histone Methylation Proteins
PHD Finger Domain (JARID1A) Amiodarone Preclinical AML Wagner et al., 2012
MBT Domain UNC926 Preclinical Target domain inhibition Herold et al., 2012
Chromodomain (CBX7) MS37452 Preclinical Target domain inhibition Ren et al., 2015
Histone Acetylation Proteins
Bet Bromodomain (+) - JQ1 Preclinical Colorectal Zhang et al., 2018b

OTX015 Clinical Advanced Solid tumors NCT02698176
Drugs Targeting Epigenetic Erasers
Histone Lysine demethylase inhibitors (HKDMi)
LSD1 Inhibitors Pargyline Preclinical Target domain inhibition Yang et al., 2018b

HCI-2509 Preclinical Neuroblastoma Gupta et al., 2018
JmjC Domain inhibitors IOX1 Preclinical Target domain inhibition Hopkinson et al., 2013
Histone Deacetylase inhibitors (HDACi)
Hydroxamic Acid Derivates Vorinostat Approved CTCL Mann et al., 2007

Panobinostat Approved Blood neoplasias Eckschlager et al., 2017
Reminostat Clinical Hodgkin’s lymphoma NCT01037478
Quisinostat Clinical Ovarian cancer NCT02948075

MDS, Myelodysplastic syndromes; MRCC, Metastasic renal cell carcinoma; AML, Acute Myeloid Leukaemia; CTCL, Cutaneous T cell-lymphoma.
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Drugs Targeting Readers
Methyl CpG Binding Proteins
Sites of DNA methylation recruit two important protein families: 
MBD and ZnF proteins. The MBD protein family uses its DNA 
binding domains and other protein-protein domains to alter the 
transcriptional state of the DNA (Ginder and Williams, 2018). 
However, the MBD family is not the only protein family that 
allows the recognition of methylated DNA; for example, the 
Kaiso protein family (Kaiso/ZBTB33, ZBTB4 and ZBTB38) uses 
a three-finger zinc motif to bind methylated CGCG (Hendrich 
and Bird, 2015). Additionally, it has been demonstrated that 
ZBTB38 promotes cell migration, invasive growth and EMT in 
BC cell lines (Jing et al., 2018), whereas high MBD2 expression 
was significantly associated with reduced bladder carcinoma 
risk (Zhu et al., 2004). Even though different experimental 
approaches have identified these proteins as good therapeutic 
targets, inhibitors have not yet been developed to slow down 
their action (Figure 3).

Histone Methylation Proteins
The histone methyl protein family is a large family of proteins 
that binds differently to methylated lysine and arginine residues 
and can be divided into several subfamilies: Tudor domain, 
PHD finger, MBT, chromodomain and BRD. The most studied 
family among them is the PHD family, which comprises a group 
of versatile readers of the epigenome that can recognize both 
methylation and acetylation marks and has been involved in 
cancer progression (Hayami et al., 2010). Recently, Wagner et 
al. discovered various compounds that inhibit the PHD of this 
protein (Wagner et al., 2012). Among them, Amiodarone is able 
to induce apoptosis in the T24 BC cell line (Bognar et al., 2017). 
Upregulated UHRF1 (E3 ubiquitin-protein ligase 1), which 
contains PHDs, has also been shown to promote BC cell invasion 
in vitro and in vivo by epigenetic silencing of KiSS1 (Zhang 
et al., 2014).

Histone Acetylation Proteins
In general, histone acetylation is related to transcriptional 
activation. Different protein domains that bind specifically to 
acetylated histones have been identified so far, including the BRD, 
double PHD finger and Yeats domains. The BRD family identifies 
acetylated lysine residues, such as those on the N-terminal tails 
of histones, and has been proposed as an attractive therapeutic 
target due to its involvement in various cancer types. The BET 
family has been thoroughly investigated (Biswas and Rao, 2018). 
The first inhibitors of the BET family, I-BET762 (GSK525762) 
and (+)-JQ1, were reported in 2010 (Filippakopoulos et al., 
2010). The inhibitor I-BET762 has recently been studied 
for dose escalation clinical studies to investigate the safety, 
pharmacokinetics, pharmacodynamics, and clinical activity 
in various tumors (NCT01587703), but BC patients were not 
included in this study. (+)-JQ1 interferes with BRD4 function, 
blocking the formation of the NUT-BRD4 oncoprotein, and 
various studies have shown its efficacy in hematological and solid 
malignancies (Abedin et al., 2016; Ocaña et al., 2017; Gao et al., 
2018; Sakaguchi et al., 2018; Tan et al., 2018; Zhang et al., 2018b). 

Regarding BC, the (+)-JQ1 inhibitor induces autophagy through 
activation of the LKB1/AMPK pathway, contributing to the 
inhibition of proliferation of BC cell lines in vitro (Li et al., 
2019). In combination with Mitomicyn C, (+)-JQ1 enhances 
cell death, which offers the possibility of a dose reduction of 
the chemotherapeutic agent (Simm et al., 2018). Hölscher et al. 
had also shown significant synergistic effects on the induction 
of apoptosis in urothelial cancer cells by treatment with (+)-JQ1 
and Romidepsin, an HDAC inhibitor (HDACi), thus suggesting 
a promising new combination therapy approach for urothelial 
cancer (Hölscher et al., 2018).

Even though BRD3 inhibitors have not been studied as much 
as those of the BRD2/4, it has been observed that I-BET151, a 
pan-BET inhibitor that targets BRD3 (Picaud et al., 2013), halts 
the progression of the cell cycle and decreases cell proliferation 
in vitro and in vivo by targeting lncRNA HOTAIR in glioblastoma 
(Pastori et al., 2014). Remarkably, HOTAIR increased expression 
is also associated with poor clinical outcome in BC (Martínez-
Fernández et al., 2015b), thereby indicating the possible relevance 
of studying I-BET151 inhibitor in this type of cancer.

Drugs Targeting Erasers
Epigenetic marks can be ‘erased’, depending on the requirement 
of the cell, by a group of enzymes that oppose to the writers. Since 
they also modulate gene expression affecting tumor suppressor 
genes or oncogenes, they can be considered potential targets.

Histone Lysine Demethylase Inhibitors
Researchers have been exploring inhibitory molecules for the 
HKDMs KDM1 (LSD1) and KDM2-8 for years (Højfeldt et al., 
2013). Early compounds were developed based on the structural 
characteristics of LSD1 (Yang et al., 2018b). Treatment with 
LSD1 inhibitor supressed BC cell proliferation and androgen-
induced transcription, supporting a novel role for the androgen 
receptor-KDM (lysine demethylases) complex in BC initiation 
and progression (Kauffman et al., 2012). Even though numerous 
LSD1 inhibitors have been reported in the literature, they are in 
the initial phase of development and there are still many problems 
that have to be overcome before histone lysine demethylase 
inhibitors (HKDMi) can reach the clinic (Figure 3).

Histone Deacetylase Inhibitors
Various reports have shown that HDACs could be involved in 
regulating protein function and tumorigenesis. In this line, the 
use of HDACi has been clinically validated in cancer treatment 
and, so far, four drugs have been approved by the FDA: Vorinostat, 
Romidepsin, Panobinostat and Belinostat (Figure 3). Vorinostat 
was the first pan-HDACi approved by the FDA for the treatment 
of advanced primary cutaneous T-cell lymphoma (Mann et al., 
2007). Next, various pharmaceutical companies developed other 
molecules such as Panobinostat or Belinostat (Eckschlager et al., 
2017), all of them intended initially for blood neoplasias.

Moreover, HDACi are being studied for BC therapy (Kaletsch 
et al., 2018). Romidepsin and Vorinostat have been tested in a 
phase II trial as monotherapy, and Vorinostat has also completed 
phase I trials as a combination therapy with docetaxel, but it 
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was surprisingly toxic and had limited efficacy (Cheung et al., 
2008). Additionally, Belinostat has obtained positive responses 
in BC cells through decreasing cell proliferation in vitro and in 
vivo (Buckley et al., 2007) and is being tested in clinical trials 
against various solid tumors including BC (NCT00413322, 
NCT00413075).

Apart from the hydroxamic acid derivates, which are approved 
for the clinic, other molecules are in different phases of study. 
Some of them are Reminostat (4SC-201) evaluated for Hodgkin’s 
lymphoma (NCT01037478), Quisinostat (JNJ-26481585) for the 
treatment of ovarian cancer (NCT02948075), or Abexinostat 
(PCI-24781) which is being evaluated for sarcoma in combination 
with Doxorubicin (NCT01027910). Table 1 summarizes HDACi 
approved and some experimental HDACi in different stages of 
clinical development.

Epigenetic drugs, as seen previously, have been approved as 
monotherapy for the treatment of different types of cancer. In 
addition, the combination of epigenetic drugs with standard 
chemotherapy or immunotherapy has been explored in recent 
years with promising results. The basis for this approach comes 
from results showing that epigenetic drugs reduce the apoptotic 
threshold, reverse drug resistance and/or induce immune 
response. Regarding BC, a large proportion of patients are not 
candidates to chemotherapy due to comorbidities. The use of 
epigenetic drugs could bring the possibility of a dose reduction, 
which makes these compounds attractive candidates for 
combination therapy for these BC patients (Witjes et al., 2014b; 
Fardi et al., 2018).

Drugs Targeting ncRNAs
LncRNAs
Even though no lncRNA-based targeted BC treatment has been 
developed so far, modulation of lncRNA expression as a therapy 
seems promising and has already been described for other cancer 
types (Bhan et al., 2017). Methods described for the modulation 
of lncRNA expression include the use of antisense oligonucleotide 
(ASO) or lncRNA-specific siRNAs for transcript destabilization 
or degradation, as well as transcript alteration by modulation 
of lncRNA-encoded promotor activity. Additionally, functional 
disruption of lncRNAs through aptamers antagonizing the 
interaction with their binding partners, or the production of 
synthetic molecules interfering with the association between 
lncRNAs and regulatory factors, are possible mechanisms 
to modulate lncRNA expression (Bhan et al., 2017). Finally, 
these ncRNAs might be valuable in combination therapy and 
augmentation of therapeutic efficacy since modulation of their 
expression can enhance the therapeutic sensitivity of tumors 
(Bhan et al., 2017).

MiRNAs
There are many approaches that have been employed to silence 
miRNAs in cancer. These include anti-miRNA oligonucleotides 
(AMOs), miRNA-masking antisense oligonucleotides, peptide 
nucleic acids and miRNA sponges (Garzon et al., 2010). AMOs 
mechanism relies on the complementary base pairing of the 
oligonucleotide sequence to its target miRNA. Therefore, 

these molecules can repress cellular mRNAs involved in 
tumor progression and proliferation, and they can also act as 
competitive inhibitors of miRNAs and impair their interaction 
with other molecules (Lima et al., 2018b). Joana Filipa and 
colleagues showed that, using AMOs, they were able to silence 
the expression of upregulated miR-9 in a cancer cell model of 
gastric cancer (Lima et al., 2018a).

For BC treatment, there are some indirect therapeutic 
approaches that affect miRNA expression. For instance, some 
EZH2 inhibitors act in BC cells modulating the expression of miR-
101 (Wang et al., 2014) or miR-143 (Zhang et al., 2015). However, 
some of these miRNAs are also induced by specific oncogenic 
insults in BC, indicating the potential problems of considering 
them as possible targets for treatment (Segovia et al., 2017).

Remarkably, a miRNA-based drug mimicking miR-34a 
has reached a phase I clinical trial (NCT01829971). MiRNA-
34a significance in various human cancers, including BC, is 
increasingly recognized nowadays (Bader, 2012; Misso et al., 
2014), hence the expectation in this new approach.

Other nCRNAs
CircRNAs and piRNAs have been described as a promising 
therapeutic target in multiple cancer types, including BC (see 
corresponding section). Potential strategies for the modulation of 
circRNA expression include the use of ASOs or siRNAs in order 
to antagonize these ncRNAs, as well as the application of the 
CRISPR/Cas system to partially or completely remove oncogenic 
circRNAs (Zhang and Xin, 2018). Regarding the modulation 
of piRNA expression, possible strategies include the use of 
synthetic piRNAs at the transcriptional and posttranscriptional 
level, while antibodies against PIWI proteins might be effective 
as a posttranscriptional approach (Assumpção et al., 2015). 
Nonetheless, none of these approaches are being tested in BC 
therapy so far.

EPIGENETIC ALTERATIONS AS 
BIOMARKERS IN BC: THE POTENTIAL 
USE OF LIQUID BIOPSY
Regarding diagnosis and surveillance of BC, a combination of 
cystoscopy and urine cytology is the most widely used methodology 
nowadays. Currently, cystoscopy is the gold standard method in 
clinical practice for detection and follow-up of this disease, with 
a sensitivity of 85–90% to detect exophytic tumors. However, this 
technique is highly invasive, showing a big inter-observer and 
intra-observer variation. On the other hand, BC urinary cytology 
shows a specificity of approximately 98% but a low sensitivity of 
38%. The high rates of recurrence and progression of BC require 
continuous follow-up of patients by cystoscopy (every 3–6 months 
during the next 5 years) and urine cytology, making BC one of 
the most costly malignancies for the National Health systems of 
developed countries (Lodewijk et al., 2018).

For these reasons, there is a clear need to improve the current 
systems of diagnosis, prognosis and surveillance of BC patients. 
Based on the important role of epigenetic modifications in 
this disease, status evaluation of the involved molecules could 
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contribute to improve these available systems. In this context, 
liquid biopsy has emerged as a non-invasive way to determine 
the genomic landscape of cancer patients, as well as to monitor 
treatment response, quantify minimal residual disease, and 
assess therapy resistance (Bardelli and Pantel, 2017; Di Meo et al., 
2017; Heitzer et al., 2017; Khetrapal et al., 2018). Liquid biopsy 
makes reference to the sampling and assessment of biological 
fluids. In genitourinary cancer, due to the proximity of tumors, 
urine has been considered a bona fide liquid biopsy sample, 
being one of the most interesting samples for its easy access and 
collection. However, in MIBC patients after cystectomy, serum 
and plasma could be the most appropriate liquid biopsy samples 
given its invasive and metastatic character (Lodewijk et al., 2018). 
Currently, there are several systems to detect and follow-up BC 
using liquid biopsy biomarkers (including sediment cells in urine 
samples, CTCs in blood samples as well as RNAs and proteins 
in both cases), which present sensitivity and specificity values 
within a range of 38–98% and 65–98%, respectively (Lodewijk 
et al., 2018). The determination of epigenetic alterations in 
liquid biopsy samples, such as variation in expression levels of 
ncRNAs or changes in DNA methylation profiles, could improve 
the predictive values of the current systems of BC diagnosis, 
prognosis and monitoring. Next, some of the most relevant 
studies of epigenetic biomarkers in urine and serum/plasma 
samples are discussed.

Non-Coding RNAs as Epigenetic 
Biomarkers in Liquid Biopsy of 
BC Patients
Among the different ncRNAs previously described, miRNAs 
have been the most widely studied molecules in liquid biopsies 
so far. MiRNA molecules have several characteristics which 
make them potential candidates as good biomarkers in liquid 
biopsy samples: i) they show very homogeneous expression 
levels among individuals and specific expression profiles in 
different types of tissue (Liang et al., 2007); ii) they are included 
in a protein complex and, usually, in exosomes, which confers 
them high stability, preserving their integrity and preventing 
their degradation (Weber et al., 2010; Ge et al., 2014; Martínez-
Fernández et al., 2016); iii) there are several systems designed 
to determinate ncRNA expression using RT-qPCR, which allow 
evaluating a large number of miRNAs from very small amounts 
of total RNA and at a low cost.

Given the potential of miRNAs, many studies have evaluated 
their predictive properties, individually or in combination, in the 
urine of BC patients. In this context, high expression levels of 
miR-146a-5p and miR-106b have been related with invasion and 
high grade and stage BC (Zhou et al., 2014; Sasaki et al., 2016). 
NMIBC patients present high levels of miR-214 in urine samples 
and, curiously, expression of this miRNA was inversely correlated 
with risk of recurrence of BC patients (Kim et al., 2013). Besides, 
some miRNAs such as miR-92a-3p and miR-140-5p have been 
associated with progression after recurrence (Ingelmo-Torres 
et al., 2017). Yun and collaborators have demonstrated that urine 
miR-145 expression levels decrease in BC patients with respect to 
healthy controls, both in non-invasive and invasive tumors (77.8% 

and 84.1% sensitivity, respectively, and 61.1% specificity in both 
cases). They observed an association between downregulation of 
miR-200a and high risk of recurrence in patients with invasive 
tumors (Yun et al., 2012). Besides, miR-155 has proved to be a 
good biomarker in urine samples, distinguishing non-invasive 
tumors, inflammation and healthy controls with a sensitivity of 
80.2% and a specificity of 84.6% (Zhang et al., 2016).

As previously mentioned, detection of miRNA deregulation 
in serum or plasma may have special relevance in invasive and 
metastatic tumors. Yang and colleagues observed miR-210 
increased expression levels in serum samples of BC patients, 
being associated with tumor stage, grade, and useful to predict 
tumor progression (AUC = 0.898) (Yang et al., 2015). Moreover, 
some studies using plasma have found a positive correlation 
between upregulation of miR-19a and miR-200b with tumor 
grade and stage respectively, whereas miR-92 and miR-33 
presented inverse association with tumor stage (Adam et al., 
2013; Feng et al., 2014).

In recent years, several panels of miRNAs (encompassing 
profiles from 6 to 25 miRNAs) have been developed in both 
urine and serum for BC diagnosis, prognosis and monitoring 
of recurrence. In this context, we have recently gathered some 
of the main miRNA profiles in BC liquid biopsies which can be 
consulted in Table 2 at Lodewijk et al. (2018).

Although variation in lncRNA expression levels has not been 
studied as widely as miRNAs in liquid biopsy samples, altered 
levels of expression of these molecules have been found in urine 
and blood samples of BC patients. Increased expression levels of 
UCA1 in urine samples has been associated with the presence of 
high-grade NMIBC, and an integrative meta-analysis including 
more than 500 BC patients and healthy donors determined 
that its upregulation may predict BC (81% sensitivity and 86% 
specificity, AUC = 0.88) (Wang et al., 2006; Cui et al., 2017). In 
addition, other lncRNAs such as HOTAIR, MALAT1, HOX-AS-2, 
OTX2-AS1, HYMAI, LINC00477 and LOC100506688, have 
shown upregulation in urine exosomes of MIBC patients 
(Berrondo et  al., 2016). In addition, H19 gene expression is 
significantly higher in BC patients, and its presence has been 
detected in the urine of 90.5% of patients versus 25.9% of healthy 
controls (AUC = 0.933) (Gielchinsky et al., 2017).

Additionally, other ncRNAs such as piRNAs and circRNA 
have been evaluated in biofluids. Both molecules have shown a 
particular resistance to degradation by exoribonuclease, making 
them ideal candidates for biomarker development (Pardini and 
Naccarati, 2017; Vo et al., 2019). Several studies have reported 
that piRNAs are widely detected in liquid biopsy samples, being 
especially abundant in urine samples and, therefore, good 
candidates as new biomarkers for BC. Although no deregulated 
piRNAs have been found in urine or blood of BC patients so 
far, expression level alterations of some of these molecules 
have been shown in liquid biopsy samples of other tumor types 
(Freedman et al., 2016; Iliev et al., 2016; Yuan et al., 2016; Pardini 
and Naccarati, 2017). Regarding circRNA, Vo and collaborators 
have recently developed MiOncoCirc, a technology based on 
exome capture RNA-seq, which stands as the first cancer-focused 
circRNA resource to facilitate the study of circRNAs as new 
biological markers of cancer (Vo et al., 2019). They were able to 
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identify candidate circRNAs which could serve as biomarkers for 
prostate cancer, detecting circRNAs in urine (Vo et al., 2019). This 
technology could open new possibilities to find new biomarkers 
with predictive values in liquid biopsy samples of BC patients. 
Nevertheless, even though circRNAs show great potential as 
valuable biomarker in urine, these RNAs seem to be highly 
susceptible to circulating RNA endonucleases showing a half-life 
of only 15 seconds in human serum, which limits their use as a 
biomarker in this biological fluid (Jeck and Sharpless, 2014).

DNA Methylation Profiles as Epigenetic 
Biomarkers in Liquid Biopsy of BC 
Patients.
As mentioned above, changes in methylation are chemically 
stable and have been broadly reported in BC. Therefore, they 
are an interesting source of candidate biomarkers to be detected 
in biofluids including both blood and urine. Currently, there 
are multiple methods for detecting changes in methylation 
comprising global genome methylation and specific genes of 
interest assays. The majority of methods to evaluate specific 
genes are based on bisulfite conversion followed by PCR and 
sequencing, pyrosequencing or methylation-specific PCR, 
among others, which generally show a high sensitivity and 
specificity and low assay-to-assay variability (Kurdyukov and 
Bullock, 2016). Already in 2002, Valenzuela and collaborators 
found that methylation in p16(lNK4a) promoter in serum could 
be useful as diagnostic biomarker with 22% of sensitivity, 95% 
of specificity and a positive predictive value of 0.98 (Valenzuela 
et al., 2002). Also in serum, both the methylation in promoters of 
protocadherin 17 (PCDH17) and protocadherin-10 (PCDH10) 
showed an association with BC poor prognosis (Lin et al., 2012; 
Luo et al., 2014). A slight association between hypermethylation 
in p16(lNK4a) and DAPK promoter regions and NMIBC has 
been also described (Jabłonowski et al., 2011). Finally, the 
presence of hypermethylated DNA in APC, GSTP1 or TIG1 in 
the serum of BC patients was associated with a worse outcome 
showing 80% sensitivity and 93% specificity for BC detection 
(Ellinger et al., 2015).

Important for BC, alterations in DNA methylation can be also 
assessed both in circulating cell-free DNA and in cells shed into 
urine. In general, it seems that a prevalence of hypermethylated 
genes is found in urine from BC patients. For instance, the 
evaluation of methylation in TWIST1 and NID2 in urine sediment 
has shown 90% sensitivity and 93% specificity (Renard et al., 
2010; Fantony et al., 2017; van der Heijden et al., 2018). Other 
studies showed promising results using methylation of CFTR, 
SALL3 and TWIST1 genes in urine cell pellets in combination 
with cytology (van der Heijden et al., 2018). Interestingly, SOX-1, 
IRAK3, and Li-MET genes methylation status has showed better 
recurrence predictivity than urine cytology and cystoscopy 
(80 vs. 35 vs. 15%) (Su et al., 2014). Also in urine sediments, 
methylation in p14ARF, p16INK4A, RASSF1A, DAPK, and APC 
showed a correlation with BC grade and stage (Pietrusiński et al., 
2017). Guo et al. used the methylation status for VIM, RASSF1A, 
GDF15, and TMEFF2 to identify BC with 82% sensitivity and 
53% specificity (Li et al., 2018b). RBBP8 has been identified as 

almost exclusively hypermethylated in BC (Mijnes et al., 2018), 
while Chen et al. showed CDH13 methylation as a biomarker 
with prognostic value for BC screening in urine samples (Ren 
et al., 2016). Using quantitative methylation-specific PCR, a novel 
two-gene panel with high accuracy in an urine-based test has 
just been described (Bosschieter et al., 2019). When stratifying in 
low- or high-risk NMIBC patients, 97.6% sensitivity and 84.8% 
specificity were obtained using promoter hypermethylation of 
HS3ST2, SEPTIN9 and SLIT2 genes in combination with FGFR3 
mutation (Roperch et al., 2016). Interestingly, Patchsung et al. 
obtained a sensitivity and specificity of 96% for BC screening 
using a combination of the urinary hypomethylated LINE-1 loci 
and the plasma protein carbonyl content (Patchsung et al., 2012). 
But methylation value has not only been studied in genes and 
their promoters: for example, last year Shindo et al. reported a 
study using the methylation of four miRNAs (miR-9-3, miR-124-
2, miR-124-3, and miR-137) in voided urine samples, finding an 
association with recurrence and radical cystectomy (Kitajima 
et al., 2017).

As a consequence of these new results, there are currently 
several clinical trials using promising urine-based tests. Among 
them, Bladder EpiCheck™ (based on the use of methylation-
sensitive restriction enzymes followed by RT-PCR) includes a 
panel of 15 DNA methylation patterns for the identification of 
recurrent BC from urine samples. First validation results with 
data from 357 patients showed 88% specificity and a negative 
predictive value (NPV) of 94.4% for the detection of any cancer, 
and a NPV of 99.3% for the detection of high-grade cancer 
(D’Andrea et al., 2019). Another test is AssureMDx, which uses 
methylation of OTX1, ONECUT2 and TWIST1 in addition 
to mutational load of FGFR3, TERT and HRAS in cell pellets 
from urine samples, showing a sensitivity of 93–97% and a 
specificity around 81.7–86% (van Kessel et al., 2017). Finally, 
Uromark was described 2 years ago as a targeted bisulfite next-
generation sequencing assay based on 150 CpG loci to diagnose 
BC from urine with a sensitivity of 98%, specificity of 97% 
and NPV of 97% for the detection of primary BC (Feber et al., 
2017). Following these results, DETECT I and DETECT II are 
two multi-centre prospective observational studies designed 
to conduct a robust validation of the UroMark assay. DETECT 
I will recruit patients having diagnostic investigations for 
haematuria, while DETECT II will recruit patients with new 
or recurrent BC to determine respectively the NPV and the 
sensitivity of UroMark.

As a conclusion, although validation studies are still ongoing, 
the recent and promising results prompt us to be optimistic and 
have confidence in a near clinical implementation of a urine 
methylation test for BC diagnosis and prognosis.

FUTURE PROSPECTS
It is clear that epigenetics has reshaped most of our concepts of 
biology and, undoubtedly, molecular biology understanding of 
human pathologies. From the point of view of those researchers 
interested in BC, or even in cancer in general, it is almost 
impossible to predict what the future will bring us in this field, 
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but there are two clear emerging facets at our hands. On the one 
hand, the use of compounds interfering with many epigenetic 
processes combined with other therapies currently in the clinics 
and, on the other hand, the use of these therapies directed not 
only towards the tumor cells, but also the tumor niche. Obviously, 
from our current knowledge of immunotherapies, there is a faint 
border between these two concepts.

Epigenetic drugs, as seen in the previous sections, have been 
approved as monotherapy for the treatment of different types of 
cancer. Additionally, they have been shown to synergize with 
other epigenetic substances or anticancer therapies. The first 
preclinical investigations focused on the combination of DNMTi 
and HDACi (Cameron et al., 1999). After a while and due to the 
development of new epigenetic agents directed to other targets 
such as HMTs, HDMs or BRDs, new synergistic combinations 
with DNMTi and/or HDACi are being explored. In addition, 
due to the importance of immunotherapy in cancer, the 
combination of epigenetic drugs with standard chemotherapy 
or immunotherapy has also increased in recent years (Dunn 
and Rao, 2017). This is based on the theory of using epigenetic 
drugs to reduce the apoptotic threshold, reverse drug resistance 
or induce immune responses for further treatment such as 
chemotherapy or immunotherapy. The concept of partnering 
epigenetic therapy with reshaping stromal component 
strategies has generated a wave of translational research that 
highlights the potential for this approach in many different 
cancer types. Epigenetic drugs such as DMNTi and HDACi can 
reverse immune suppression, and modulate stromal cells and 
extracellular matrix via several mechanisms such as enhancing 
expression of tumor-associated antigens, components of the 

antigen processing and presenting machinery pathways, immune 
checkpoint inhibitors, chemokines, and other immune-related 
genes, as well as changing the CAFs secretomes that will favor or 
impede the tumor growth. But deep studies of each component 
interaction are still in their early days. The discoveries in these 
areas have established a highly promising basis for studies using 
combined epigenetic and immunotherapeutic agents as anti-
cancer therapies with expected long lasting antitumor responses.

Finally, new areas of research such as the use of new gene 
targeting strategies as therapeutic tools or the potential role of 
epigenetic mechanisms leading to altered glycosylation, which 
may clearly impact the liquid biopsy and immunotherapy fields 
(Dall’Olio and Trinchera, 2017), may represent new horizons in 
BC management and detection.
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Colorectal cancer (CRC) is one of the most common types of human cancers. However, 
the mechanisms underlying CRC progression remained elusive. This study identified 
differently expressed messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and 
small nucleolar RNAs (snoRNAs) between pre-therapeutic biopsies and post-therapeutic 
resections of locally advanced CRC by analyzing a public dataset, GSE94104. We identified 
427 dysregulated mRNAs, 4 dysregulated lncRNAs, and 19 dysregulated snoRNAs 
between pre- and post-therapeutic locally advanced CRC samples. By constructing a 
protein–protein interaction network and co-expressing networks, we identified 10 key 
mRNAs, 4 key lncRNAs, and 7 key snoRNAs. Bioinformatics analysis showed therapy-
related mRNAs were associated with nucleosome assembly, chromatin silencing at 
recombinant DNA, negative regulation of gene expression, and DNA replication. Therapy-
related lncRNAs were associated with cell adhesion, extracellular matrix organization, 
angiogenesis, and sister chromatid cohesion. In addition, therapy-related snoRNAs were 
associated with DNA replication, nucleosome assembly, and telomere organization. We 
thought this study provided useful information for identifying novel biomarkers for CRC.

Keywords: long noncoding RNA, snoRNAs, prognostic markers, expression profiling, protein–protein interaction 
analysis, co-expression analysis, colorectal cancer

INTRODUCTION
Colorectal cancer (CRC) is one of the most common types of human cancers (Ma et al., 2014). The 
morbidity and mortality of CRC have increased rapidly in recent years (Budai et al., 2004). In 2016, a 
total of 134,490 new cases of CRC and 49,190 deaths caused by CRC were reported worldwide. In the 
past decades, the diagnostic technologies and therapeutic strategies of CRC have made significant 
progress (Ress et al., 2015). However, the prognosis of CRC remained poor with 5-year survival rates 
being only 10–15%, and the recurrent disease rates of CRC remained high. Therefore, there was 
still an urgent need to understand the mechanisms underlying CRC progression and identify novel 
potential biomarkers for the prognosis of CRC.
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Emerging studies had demonstrated that noncoding RNAs 
played crucial roles in the progression of CRC (Rezanejad Bardaji 
et al., 2018), including microRNAs, long noncoding RNAs 
(lncRNAs), and small nucleolar RNA (snoRNAs). The important 
roles of microRNAs in CRC had been studied clearly (Zhang 
et al., 2012a). lncRNAs are a large class of transcripts longer than 
200 bases, with no protein-coding potential. Previous studies 
had showed that lncRNAs were associated with CRC progression 
and prognosis. For example, overexpression of lncRNA TUSC7 
reduces cell migration and invasion in CRC (Xu J. et al., 2017). 
lncRNA KCNQ1OT1 enhanced the methotrexate resistance of 
CRC cells by regulating miR-760/PPP1R1B (Sunamura et al., 
2011). LINC01354 interacting with hnRNP-D contributes to the 
proliferation and metastasis in CRC through activating Wnt/β-
catenin signalling (Zhang et al., 2016). Recent studies have also 
indicated that snoRNAs were also associated with the progression 
of CRC, for example, Yoshida et al. (2017).

In the present study, we re-annotated a Gene Expression 
Omnibus (GEO) dataset GSE94104 to identify CRC-related 
mRNAs and lncRNAs. Bioinformatics analysis was also 
performed to understand the potential roles of these lncRNAs 
in CRC. This study could provide novel clues to prove that CRC-
related lncRNAs could serve as biomarkers for CRC.

MATERIALS AND METHODS

lncRNA Classification Pipeline
We used a pipeline described by Zhang et al. to re-annotate 
microarray data using the following criteria (Zhang et al., 2012b). 
Briefly, first, GPL570 platform of Affymetrix Human Genome U133 
Plus 2.0 Array (Affymetrix Inc., Santa Clara, California, USA) probe 
set ID was mapped to the NetAffx Annotation Files (HG-U133 Plus 
2.0 Annotations, CSV format, release 31, 08/23/10). The annotations 
included the probe set ID, gene symbol, and Refseq transcript ID. 
Second, the probe sets that were assigned with a Refseq transcript 
ID in the NetAffx annotations were extracted. In this study, we only 
retained those labeled as “NR_” (NR indicates noncoding RNA in 
the Refseq database). Finally, 2,448 annotated lncRNA transcripts 
with corresponding Affymetrix probe IDs were generated.

Microarray Data and Data Preprocessing
By screening colon cancer-related public datasets in GEO 
database, we selected GSE94104 dataset for further study, which 
contained the largest number of therapy-related colon cancer 
samples. In the present study, we downloaded GSE94104 datasets 
(Tsukamoto et al., 2011) from GEO database to identify differently 
expressed mRNAs and lncRNAs. A total of 40 matched formalin-
fixed paraffin-embedded pre-therapeutic locally advanced rectal 
cancer biopsy and post-therapeutic locally advanced rectal cancer 
biopsy samples were included in this study. All samples were 
provided by the Northern Ireland Biobank and arrayed using 
the Illumina HumanHT-12 WG-DASL V4 expression beadchip. 
The raw data were normalized using robust multi-array average 
method under R 3.4.2 statistical software with affy package from 
BioConductor. Normalization was separately performed for LCM 
dataset and homogenized tissue dataset. The normalized gene 

expression levels were presented as log2-transformed values by 
robust multi-array average. lncRNAs with fold changes ≥2 and P 
values <0.05 were considered as differentially expressed lncRNAs.

Co-Expression Network Construction  
and Analysis
In this study, the Pearson correlation coefficient of different 
expressed gene–lncRNA pairs was calculated according to 
the expression value of them. The co-expressed differentially 
expressed gene–lncRNA pairs with the absolute value of Pearson 
correlation coefficient ≥0.6 were selected, and the co-expression 
network was established by using cytoscape software.

Functional Group Analysis
The DAVID system (http://david.ncifcrf.gov/) was used to 
perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses. GO analyses 
included biological process, cellular component, and molecular 
function. GO terms and KEGG pathways with a P value of <0.05 
were considered as significantly enriched function annotations.

Protein–Protein Interaction Network and 
Module Analysis
STRING online software was used to construct a protein–protein 
interaction (PPI) network (Liu et al., 2009) (https://string-db.org/cgi/
input.pl?sessionId = AUH42ZEZwajP&input_page_show_search = 
on). PPI with the combined score >0.4 was considered as significant. 
Cytoscape software was used to visualize the PPI network.

RESULTS

Transcriptional Analysis of Therapy-Related 
Messenger RNAs in Pre-Therapeutic 
Biopsies and Post-Therapeutic  
Resections of Locally Advanced  
Colorectal Cancer
The present study aimed to identify therapy-related mRNAs in 
advanced CRC using a public dataset, GSE94104. A total of 40 
pre-therapeutic advanced CRC samples and 40 post-therapeutic 
advanced CRC samples were included in this dataset. We identified 
427 dysregulated mRNAs between pre- and post-therapeutic locally 
advanced CRC (LACC) samples, including 235 upregulated mRNAs 
and 192 downregulated mRNAs after therapy in LACC. Hierarchical 
clustering was used to show differentially expressed mRNAs in post-
therapeutic LACC (Figure 1A).

Transcriptional Analysis of Therapy-Related 
Noncoding RNAs in Pre-Therapeutic 
Biopsies and Post-Therapeutic Resections 
of Locally Advanced Colorectal Cancer
Next, we focused on identifying noncoding RNAs between pre- 
and post-therapeutic LACC samples. A total of 19 snoRNAs and 
4 lncRNAs were found to be differently expressed (Figure 1B). 
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Among these lncRNAs, we found SERTAD4-AS1 and MIR100HG 
were upregulated, whereas PCAT18 and KRTAP5-AS1 were 
downregulated in post-therapeutic LACC samples compared with 
those in pre-therapeutic LACC samples. Interestingly, we found 
most of these affected snoRNAs (18/19) were upregulated in post-
therapeutic LACC samples compared with those in pre-therapeutic 
LACC samples, including SNORD116-4, SNORD116-2, SNORD 
107, SNORD61, SNORD112, SNORD109A, SNORD113-5, SNOR 
D113-8, SNORD113-7, SNORD114-1, SNORD114-11, SNORD 
113-6, SNORD114-17, SNORD113-9, SNORD113-3, SNORD114-
3, SNORD113-2, and SNORD114-13.

Protein–Protein Interaction Network 
Analysis of Therapy-Related Messenger 
RNAs in Locally Advanced  
Colorectal Cancer
In order to reveal the relationships among therapy-related mRNAs 
in LACC, we constructed PPI networks using STRING database. 

The combined score >0.4 was used as the cutoff criterion. As shown 
in Figure 2, a total of 348 nodes and 1,047 edges were included in 
this PPI network. The nodes that had higher degrees were identified 
as hub genes, including FN1, CDC20, SPP1, HIST1H3B, ZWINT, 
CENPF, HIST1H3C, CXCR4, HIST1H3G, and RFC3.

Construction of Therapy-Related Long 
Noncoding RNAs and Small Nucleolar 
RNAs Regulating Co-Expression Network 
in Locally Advanced Colorectal Cancer
In order to reveal the potential functions of therapy-related 
lncRNAs and snoRNAs in LACC, we first performed Pearson 
correlation calculation between lncRNAs or snoRNAs and 
mRNAs in LACC. Based on the correlation analysis results, we 
constructed mRNA–lncRNA/snoRNAs co-expression networks 
(p-value < 0.05 and absolute value of correlation coefficient >0.7).

As shown in Figure 3, the mRNAs–lncRNAs co-expression 
network included 4 lncRNAs (MIR100HG, SERTAD4-AS1, 
KRTAP5-AS1, and PCAT18) and 226 mRNAs. MIR100HG was 

FIGURE 1 | Identification of therapy-related mRNAs and ncRNAs in CRC. (A) Hierarchical clustering analysis showed differential mRNAs expression in the CRC by 
using GSE94104. (B) Hierarchical clustering analysis showed differential ncRNAs expression in the CRC by using GSE94104.
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the key lncRNA in this network by co-expressing with more than 
200 mRNAs, including FZD1, FGFR1, FN1, and KLF9. The top 10 
most co-expressing genes of SERTAD4-AS1 included COL16A1, 
ISLR, ZNF626, COL6A2, SOX15, FRMD6, PCDHGA9, CDC6, 
TPM2, and C1R. The top 10 most co-expressing genes of 
KRTAP5-AS1 included DPYD, GAL3ST2, CSTL1, HSD11B2, 
LRCH2, DIAPH3, FERMT1, MRPL4, NEGR1, and LAMA2. The 
top 10 most co-expressing genes of PCAT18 included ZNF626, 
OR2AE1, WIPF1, CTGF, IL17F, L3HYPDH, COL16A1, KCNIP3, 
PCDHGA9, and COL6A2.

As shown in Figure 4, the mRNAs–snoRNAs co-expression 
network included 19 snoRNAs and 360 mRNAs. Several 
snoRNAs were identified as key regulators by co-expressing 
with more than 150 mRNAs, including SNORD114-3, 

SNORD114-1, SNORD113-5, SNORD88B, SNORD113-8, 
SNORD114-11, and SNORD113-2.

Bioinformatics Analysis of Therapy-
Related Messenger RNAs in Locally 
Advanced Colorectal Cancer
Furthermore, we performed GO and KEGG analysis for therapy-
related mRNAs in LACC (Figures 5 A, B). Bioinformatics analysis 
showed that the therapy-related mRNAs were mainly involved 
in regulating nucleosome assembly, chromatin silencing at 
recombinant DNA (rDNA), negative regulation of gene expression, 
DNA replication-dependent nucleosome assembly, extracellular 
matrix organization, cellular protein metabolic process, telomere 

FIGURE 2 | Construction of therapy-related PPI networks in CRC. We constructed therapy-related PPI networks in CRC, including a total of 348 nodes and 
1,047 edges.
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organization, regulation of gene silencing, positive regulation of 
gene expression, and muscle organ development. KEGG pathway 
analysis revealed that therapy-related mRNAs were mainly involved 
in regulating systemic lupus erythematosus, drug metabolism—
other enzymes, alcoholism, transcriptional misregulation in cancer, 
and extracellular matrix (ECM)–receptor interaction.

Bioinformatics Analysis for Related  
Long Noncoding RNAs and Small 
Nucleolar RNAs in Locally Advanced 
Colorectal Cancer
Then, bioinformatics analysis for related lncRNAs and 
snoRNAs in LACC was performed using their regulating 

targets in LACC (Figures 5 C–F). GO analysis showed that 
differentially expressed lncRNAs were associated with cell 
adhesion, extracellular matrix organization, angiogenesis, 
sister chromatid cohesion, positive regulation of transcription, 
apoptotic process, chromatin silencing at rDNA, epithelial cell 
differentiation, cell division, and cellular protein metabolic 
process. KEGG pathway analysis indicated therapy-related 
lncRNAs were associated with ECM–receptor interaction, 
transcriptional misregulation in cancer, focal adhesion, 
pathways in cancer, and PI3K-Akt signaling pathway.

GO analysis showed that differentially expressed snoRNAs 
were associated with chromatin silencing at rDNA, DNA 
replication, nucleosome assembly, telomere organization, 
regulation of gene silencing, muscle organ development, cellular 

FIGURE 3 | Construction of therapy-related lncRNA regulating co-expression networks in CRC. We constructed therapy-related lncRNA regulating co-expression 
networks in CRC, including a total of 4 lncRNAs and 226 mRNAs. Red node, lncRNAs; blue nodes, mRNAs.
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protein metabolic process, protein heterotetramerization, 
extracellular matrix organization, and cell division. KEGG 
pathway analysis indicated that therapy-related snoRNAs were 
associated with systemic lupus erythematosus, alcoholism, drug 
metabolism, ECM–receptor interaction, and transcriptional 
misregulation in cancer.

Expression of Key lncRNAs Were 
Dysregulated in Colorectal  
Cancer Samples
In order to investigate the prognostic value of key lncRNAs in 
CRC, we analyzed an independent public dataset, the Gene 
Expression Profiling Interactive Analysis (GEPIA) database. By 
analyzing the GEPIA database, we found that the expression levels 

of MIR100HG, SERTAD4-AS1, and PCAT18 were significantly 
downregulated; however, KRTAP5-AS1 was upregulated in both 
colon adenocarcinoma (COAD) and rectum adenocarcinoma 
(READ) samples compared with that in normal tissues (Figure 6).

DISCUSSION
CRC is one of the most common types of human cancer, which is 
caused by multiple genetic and epigenetic aberrations. However, 
the mechanisms underlying CRC remained largely unclear. This 
study identified differently expressed mRNAs, lncRNAs, and 
snoRNAs between pre-therapeutic biopsies and post-therapeutic 
resections of locally advanced CRC by analyzing a public dataset, 
GSE94104. Then, we constructed a PPI network to identify 

FIGURE 4 | Construction of therapy-related snoRNAs regulating co-expression networks in CRC. We constructed therapy-related snoRNAs regulating 
co-expression networks in CRC, including a total of 19 snoRNAs and 360 mRNAs. Red node, snoRNAs; blue nodes, mRNAs.
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key therapy-related proteins in LACC. Next, we constructed 
snoRNAs and lncRNAs regulating co-expression networks to 
identify key therapy-related snoRNAs and lncRNAs in LACC. 
Finally, GO and KEGG pathway analyses were conducted to 
predict their potential functions in LACC.

The present study identified a total of 235 upregulated 
mRNAs and 192 downregulated mRNAs after therapy in 
LACC. Bioinformatics analysis showed that these mRNAs were 
associated with nucleosome assembly, chromatin silencing 
at rDNA, negative regulation of gene expression, and DNA 
replication. Furthermore, a PPI network including 348 proteins 
and 1,037 edges were constructed to reveal the relationship 
among therapy-related proteins. Ten proteins were identified as 
key regulators in this network, including FN1, CDC20, SPP1, 
HIST1H3B, ZWINT, CENPF, HIST1H3C, CXCR4, HIST1H3G, 
and RFC3. FN1  is a novel protein involved in regulating 

cancer progression (Ifon et al., 2005). FN1  was found to be 
dysregulated in multiple human cancers, including colon cancer 
(Cai et al., 2018). In CRC, a single nucleotide polymorphism 
in FN1 was found to be associated with tumor shape. FN1 was 
transcriptionally activated by HMGA2, and the suppression 
of FN1 inhibited CRC growth and metastasis. CDC20 is a key 
E3 ligase that binds to APC and recognizes D-box or KEN box 
substrates to promote proteasomal degradation (Paul et  al., 
2017). CDC20 was frequently overexpressed in malignant 
tumors, such as prostate cancer, hepatocellular carcinoma, 
and ovarian cancer. SPP1 was reported to be overexpressed 
in numerous tumors, such as lung cancer, colon cancer, 
breast cancer, and prostate cancer (Xu C. et al., 2017). SPP1 
was associated with tumor metastasis in gastric cancer and 
esophageal adenocarcinoma. Zwint is an important regulatory 
protein for chromosome movement and mitotic checkpoints 

FIGURE 5 | Bioinformatics analysis for therapy-related mRNAs, lncRNAs, and snoRNAs in CRC. (A) GO analysis showed therapy-related mRNA-associated 
biological processes. (B) KEGG pathway analysis showed therapy-related mRNA-associated pathways. (C) GO analysis showed therapy-related lncRNA-associated 
biological processes. (D) KEGG pathway analysis showed therapy-related lncRNA-associated pathways. (E) GO analysis showed therapy-related snoRNA-
associated biological processes. (F) KEGG pathway analysis showed therapy-related snoRNA-associated pathways.
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(Kasuboski et al., 2011). Previous studies have identified Zwint 
overexpression in breast and ovarian cancers. CENPF is a part 
of the centromere–kinetochore complex and is a component 
of the nuclear matrix during G2 of interphase (Sugimoto et al., 
1999). Recent studies showed that CENPF played crucial roles 
in the progression of human cancers. For example, the altered 
phosphorylation of CENPF affected glutamine uptake in colon 
cancers (Michalak et al., 2019). CXCR4 is a transmembrane 
G-protein-couple receptor and played a central role in the 
neurotropism of cells (Xu et al., 2015). RFC3 was a member 
of RFC family, which played a key role in DNA replication, 
DNA damage repair, and checkpoint control. Multiple studies 
indicated RFC3 was overexpressed and correlated to the 
progression of human cancers (Shen et al., 2014). These reports 
together with our findings suggested that these key regulators 
may play key roles in regulating the therapy-related biological 
processes in LACC.

Recent studies showed ncRNAs were involved in 
regulating multiple cancer-related biological processes, such 

as cell proliferation, apoptosis, and invasion. For example, 
HAND2-AS1 was observed to suppress CRC proliferation 
though sponging miR-1275 (Zhou et al., 2018). SNORA21 
played as an oncogenic snoRNA in CRC with a prognostic 
biomarker potential. However, the ncRNAs involved in CRC 
therapy remained largely unclear. The present study identified 
4 lncRNAs and 19 snoRNAs as therapy-related ncRNAs 
in LACC. Next, lncRNA–mRNA and snoRNAs–mRNA 
co-expression networks were constructed. Four lncRNAs, 
including MIR100HG, SERTAD4-AS1, KRTAP5-AS1, and 
PCAT18, were found to play crucial roles in this progression. 
KRTAP5-AS1 was reported as a potential biomarker for 
papillary thyroid carcinoma. PCAT18  was found to be 
associated with the progression of gastric cancer (Foroughi 
et al., 2018) and prostate cancer. For example, PCAT18 silencing 
inhibited prostate cancer proliferation, migration, and 
invasion (Zhan et al., 2018). MIR100HG was identified 
as a key regulator in LACC (Li et al., 2019). A recent study 
showed that MIR100HG regulates cell cycle by modulating 

FIGURE 6 | The expression of key lncRNAs were dysregulated in CRC samples. (A–D) The expression levels of MIR100HG (A), SERTAD4-AS1 (B), and PCAT18 
(C) were significantly downregulated; however, KRTAP5-AS1 (D) was upregulated in both COAD and READ samples compared with that in normal tissues.
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the interaction between HuR and its target mRNAs (Sun et al., 
2018). The present study showed that MIR100HG regulated 
more than 200 mRNAs, including FZD1, FGFR1, FN1, and 
KLF9. These genes had been demonstrated to be related to 
CRC progression. For example, KLF9 prevents CRC through 
inhibition of interferon-related signaling. Downregulation of 
FN1 suppressed CRC proliferation, migration, and invasion. 
FZD1 was a key regulator of wnt signaling and involved in 
regulating CRC metastasis. SERTAD4-AS1 was involved 
in regulating COL16A1, ISLR, ZNF626, COL6A2, SOX15, 
FRMD6, PCDHGA9, CDC6, TPM2, and C1R. Among these 
genes, TPM2 knockdown had been reported to promote 
CRC progression upon RhoA activation. We also found 
KRTAP5-AS1 might regulate DPYD, GAL3ST2, CSTL1, 
HSD11B2, LRCH2, DIAPH3, FERMT1, MRPL4, NEGR1, 
and LAMA2 in CRC. Among these mRNAs, DPYD variants 
was reported to be a predictor of 5-fluorouracil toxicity in 
adjuvant colon cancer treatment. FERMT1 promoted colon 
cancer metastasis and epithelial–mesenchymal transition 
progression via modulation of β-catenin transcriptional 
activity. By analyzing the GEPIA database, we found that the 
expression levels of MIR100HG, SERTAD4-AS1, and PCAT18 
were significantly downregulated; however, KRTAP5-AS1 was 
upregulated in both COAD and READ samples compared 
with that in normal tissues. Furthermore, we conducted 
bioinformatics analysis for these therapy-related lncRNAs 
and snoRNAs. Our results showed therapy-related lncRNAs 
were associated with cell adhesion, extracellular matrix 
organization, angiogenesis, and sister chromatid cohesion. In 
addition, therapy-related snoRNAs were associated with DNA 
replication, nucleosome assembly, and telomere organization.

Of note, several limitations should be noted in this study. 
First, the number of samples used in present study were 
limited. In the further study, more samples should be included 
to identify therapy-related lncRNAs, snoRNAs, and mRNAs. 

Second, the detail molecular functions and mechanisms of 
these key lncRNAs and snoRNAs were unclear. The further 
validation of these genes should be further investigated. 
Finally, with the development of next-generation sequence 
methods, RNA-seq would be a more powerful method to 
identify novel therapy-related lncRNAs, snoRNAs, and 
mRNAs in LACC.

In conclusion, we identified 427 dysregulated mRNAs, 4 
dysregulated lncRNAs, and 19 dysregulated snoRNAs between 
pre- and post-therapeutic LACC samples. By constructing a 
PPI network and co-expressing networks, we identified 10 key 
mRNAs, 4 key lncRNAs, and 7 key snoRNAs. Bioinformatics 
analysis showed that therapy-related mRNAs were associated 
with nucleosome assembly, chromatin silencing at rDNA, 
negative regulation of gene expression, and DNA replication. 
Therapy-related lncRNAs were associated with cell adhesion, 
extracellular matrix organization, angiogenesis, and sister 
chromatid cohesion. Furthermore, therapy-related snoRNAs 
were associated with DNA replication, nucleosome assembly, 
and telomere organization. We think this study provided 
useful information for identifying novel biomarkers for CRC.
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Mediation analysis has been a powerful tool to identify factors mediating the association 
between exposure variables and outcomes. It has been applied to various genomic 
applications with the hope to gain novel insights into the underlying mechanism of various 
diseases. Given the high-dimensional nature of epigenetic data, recent effort on epigenetic 
mediation analysis is to first reduce the data dimension by applying high-dimensional 
variable selection techniques, then conducting testing in a low dimensional setup. In 
this paper, we propose to assess the mediation effect by adopting a high-dimensional 
testing procedure which can produce unbiased estimates of the regression coefficients 
and can properly handle correlations between variables. When the data dimension is 
ultra-high, we first reduce the data dimension from ultra-high to high by adopting a sure 
independence screening (SIS) method. We apply the method to two high-dimensional 
epigenetic studies: one is to assess how DNA methylations mediate the association 
between alcohol consumption and epithelial ovarian cancer (EOC) status; the other one 
is to assess how methylation signatures mediate the association between childhood 
maltreatment and post-traumatic stress disorder (PTSD) in adulthood. We compare the 
performance of the method with its counterpart via simulation studies. Our method can be 
applied to other high-dimensional mediation studies where high-dimensional mediation 
variables are collected.

Keywords: de-sparsify, DNA methylation, high-dimensional testing, high-dimensional mediation, mediation analysis

INTRODUCTION 
Introduced by Baron and Kenny in 1986 (Baron and Kenny, 1986), mediation analysis has been 
broadly applied in many scientific disciplines, such as sociology, psychology, behavioral science, 
economics, epidemiology, public health science, and genetics (e.g., E.Shrout and Bolger, 2002; 
Preacher and Hayes, 2008; Hafeman and Schwartz, 2009; Pfeffer and Devoe, 2009; Imai et al., 2010; 
Rocca et al., 2010; Pearl, 2012; Pierce et al., 2014). Through solving a chain of relations between an 
exposure variable and an outcome, it helps to understand how the effect of one variable is transmitted 
to another variable. Thus, mediation analysis offers researchers a unique statistical tool to reveal 
the underlying mechanism or process of various scientific questions, especially when designing 
an intervention strategy. It has been further extended and developed via taking nonlinearity, 
interactions, various types of mediating and outcome variables, as well as missing data into account 
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in recent developments (e.g., Imai et al., 2010; Vanderweele and 
Vansteelandt, 2010; Pearl, 2012; Zhang and Wang, 2013).

Recently, mediation analysis has been applied to genetic association 
studies in which one can evaluate how genetic variants (e.g., single 
nucleotide polymorphisms (SNPs)) pass effects to mediators such 
as gene expression or DNA methylation (DNAm) to affect a disease 
risk (e.g., Liu et al., 2013; Huang et al., 2014; Huang et al., 2015). The  
genome-wide mediation analysis provides additional insight into 
the causal mechanisms of complex diseases. DNAm is an epigenetic 
phenomenon. Its status change reflects environmental exposures 
on the genome. DNAm can regulate gene expressions and can 
be potential biomarkers for the early prevention of stress-related 
disorders (Klengel et al., 2014). Properly maintained DNAms are 
necessary for regulating chromosomal stability and gene expressions. 
However, they can change the DNA activity when things go wrong, 
and lead to unexpected consequences. A growing body of literature  
shows that different environmental factors can alter the level 
of DNAm among individuals (e.g., Guida et al., 2015; Dongen 
et  al., 2016). Abdolmaleky et al. (2004) showed that DNAm may 
modulate gene-environment interactions on psychiatry disorder. Li 
et al. (2003) reported that exposure to xenobiotics in early life can 
persistently change the pattern of DNAm, resulting in potentially 
adverse biological effects which may explain the increased risk in 
adulthood of some chronic diseases. All evidences demonstrate the 
important role of DNAm in mediating the effect of environmental 
exposures on disease outcomes. Successful identification of causal 
DNAm as potential biomarkers can offer novel insights into the 
early prevention of some diseases such as stress-related disorders.

In a typical DNAm study, the number of DNAm can be 
much larger than the number of sample size. Mediation analysis 
focusing on one mediator at a time is not efficient enough to 
handle thousands of mediators (e.g., CpG sites). Methods for 
multiple mediators have been proposed assuming different data 
distributions with different methods. Focusing on continuous 
mediators, Huang and Pan (2016) developed a testing procedure 
using Monte-Carlo resampling method to evaluate the statistical 
significance. However, it is time consuming when the computing 
resource is limited.

Let X be an exposure variable; Mj, j=1,…,k be the jth mediator; 
and Y be an outcome variable. Figure 1 illustrates the mediation 
model with a single mediator (a) and multiple mediators (b). 
In an epigenetic study, multiple mediators could be potentially 
correlated. For example, methylation signals in a given gene or 
region are typically correlated. Such correlation, if not properly 

handled, can lead to potential false positives or false negatives in 
traditional mediation analysis.

The high-dimensional and correlation nature of DNAm 
signatures (Figure 1B) motivates us to consider a high-
dimensional mediation model, which is not a trivial extension of 
a low dimensional multiple mediator model studied in literature. 
Methodology development for mediation analysis with high-
dimensional mediators is still in its infancy. Zhang et al. (2016) 
proposed a high-dimensional mediation analysis method. They 
first applied a sure independence screening (SIS) method to 
reduce the data dimension from ultra-high to high, then adopted 
a penalized regression to shrinkage coefficients of irrelevant 
variables to zero. After the shrinkage, those mediators with 
non-zero coefficients were refit in a low-dimensional regression 
model for further hypothesis testing. Such penalized regression 
methods typically produce biased estimators, especially when 
correlations between predictors exist. This method thus could 
face potential issues with either false positives or false negatives. 
Huang and Pan (2016) proposed to transform the correlated 
mediators into independent ones, then performed the mediation 
analysis on the transformed variables. Such a method solves the 
correlation issue but faces the difficulty of interpretation, since 
the transformed variable is a linear combination of the original 
mediators and does not have a direct interpretation.

High-dimensional data analysis is typically formulated with 
high-dimensional penalized regression models, with the purpose 
to select important features that can minimize the prediction 
error. Popular methods include LASSO (Tibshiranit, 1996), 
adaptive LASSO (Zou, 2006), and elastic net (Zou and Hastie, 
2005). Although these methods can do variable estimation and 
selection simultaneously, they cannot quantify the estimation 
uncertainty. There has been a flourish of recent literature on 
testing low-dimensional coefficients in high-dimensional sparse 
regression models (e.g., Zhang and Zhang, 2014; Dezeure et al., 
2015; Zhang and Cheng, 2017; Wang and Samworth, 2018). These 
methods essentially implement a debias technique, then perform 
hypothesis testing using the debiased estimators (Zhang and 
Zhang, 2014). Following the asymptotic normality, one can obtain 
a p-value or construct a confidence interval for each coefficient 
(Van de Geer et al., 2014). Taking the high dimensionality and 
correlation issue into account, in this article, we adopt a high-
dimensional testing framework and conduct simultaneous 
inference under a high-dimensional sparse mediation model 
based on the recent de-sparsifying LASSO estimators (Zhang 

FIGURE 1 | Mediation model: (A) single mediator model; (B) multiple mediator model with correlated mediators.
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and Zhang, 2014). High-dimensional testing is embedded in 
the mediation model to handle the high dimensionality and 
correlation issues between mediators. We conduct extensive 
simulations to evaluate the performance of the methods and 
compare it with its counterpart. Application to two real data sets 
is given. Our method can be extended to other mediation analysis 
where high-dimensional mediators are observed.

STATISTICAL METHOD
Figure 1A demonstrates a single mediation model. There are 
two types of effect from X to Y: (1) the direct effect from X to 
Y, denoted as ′c ; and (2) the indirect effect from X to Y via the 
intermediate mediation variable M. The indirect effect measures 
the amount of mediation which comes from two sources: i) the 
effect from X to M, denoted as a; and ii) the effect from M to 
Y, denoted as b. The product of a and b defines the indirect 
effect. The total effect c from X to Y contains two parts, i.e., 
c c ab= +′ . By fitting three different regression models, one can 
use the Sobel’s method (Sobel, 1982) to estimate the standard 
error of ˆˆab from which the significance of mediation effect can 
be assessed.

The single mediator model shown in Figure 1A can be 
extended to a multiple mediator model by fitting a multiple 
regression model involving both the exposure and the mediator 
variables. The multiple mediator model is given as follows,

 

Y cX e
M a X j k

Y c X b M

j j j j

j j

= + +
= ′ + + =

= + ′ +

θ
θ

θ

1 1

2

1ε , , ..., ,

jj

k
e

=∑ +
1

2 ,  (1)

where Mj, j=1,..,k is the jth mediator variable; c represents the total 
effect from the independent variable X to the dependent variable Y; 

′c  represents the direct effect from X to Y adjusting for the effects of 
multiple mediators; the indirect effect from X to Y mediated by Mj is 

denoted by ajbj. The total mediation effect can be obtained as c c− ′ or 

a bj j
j

k

=∑ 1
. When the response variable Y is a categorical variable, 

method to estimate the total mediation effect based on the product 
measure, ajbj, is less susceptible to the scaling problem since only the 
bj coefficient is from a categorical regression analysis (MacKinnon, 
2008). Model (1) is for continuous Y variable. For a categorical 
response, Model (1) becomes,

 

E Y cX
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E Y c X

j j j j

( ) ,
, , ..., ,

( )

= +
= ′ + + =
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As we mentioned in the Introduction section, a genomic 
mediation study often involves high-dimensional mediators. In 
many cases, the number of mediators is far beyond the sample 

size (k>>n). For example, the number of DNAm loci can be nearly 
half million, far more than the sample size. Another phenomenon 
for genomic mediators is that they are often correlated. Both the 
curse of dimensionality and correlation between mediators cause 
estimation problems in Model (1) and (2). Classical regression 
analysis cannot be directly adopted to deal with the estimation 
and testing problem appeared in the third equation in Model (1) 
and (2). To solve both the high dimensionality and correlation 
problem, we propose to adopt a high-dimensional testing 
framework which is focused on de-sparsified LASSO estimators 
(Zhang and Zhang, 2014). The detailed estimation and testing 
procedure for the proposed high-dimensional mediation testing 
framework is given as follows:

Step 1: First apply an SIS procedure to reduce the methylation 
dimension from ultra-high to high dimension (Fan and Lv, 
2008). According to the SIS algorithm, the top d=n/log(n) 
methylation variables with the largest effects were remained in 
the model when the response Y is a continuous variable. For 
a binary response, the top d=n/log(n) variables can be kept in 
the model. SIS theoretically guarantees that no true signals are 
removed from the model. The SIS step can be based on the third 
or the second regression equation in Model (2). For a binary 
response Y, Zhang et al. (2016) suggested that SIS can be done 
based on the second equation in Model (2). For a continuous 
response variable, the SIS step can be done based on the third 
regression equation in (2). After SIS, the number of methylation 
loci is reduced from k to d. We then focused our analysis to these 
d methylation variables to test mediation effects. Denote the 
remaining methylation loci after the SIS step as Mj,j=1,…,d.

Step 2: In the second step, we fit the following model,

 E Y c X b Mj j
j

d( ) = + +′
=∑θ2

1  (3)

Other covariates can also be fitted to this model. Since 
the dimension d can still be relatively large after the SIS step, 
regular least squares estimation will not work well. For high-
dimensional data, penalized regressions are commonly applied 
for simultaneous variable selection and estimation. However, 
penalized estimators are biased and cannot be directly used 
for testing or confidence interval construction. Zhang and 
Zhang (2014) first time proposed a de-biased estimator for 
high-dimensional data. Let b̂lasso be the LASSO estimators. For 
a continuous response variable Y, A de-biased estimator, also 
called a de-sparsified estimator, is a bias-corrected estimator 
which can be given as,

 
ˆ ˆ

,b
Z Y

Z M
j l

Z M
Z M

bj
j
T

j
T

j

j
T

l

j
T

j
lasso l= − ≠∑  (4)

where b̂j  is the bias-corrected coefficient of the jth methylation 
Mj; ˆ

,blasso l  is the coefficient of the lth Ml estimated by fitting a 
LASSO regression; Zj is the regularized residuals obtained by 
Z M Mj j j lasso= − − γ̂ , where γ̂ lasso is the regression coefficients 
obtained based on a LASSO regression by regressing Mj on all 
other M except the jth Mj denoted as M j− . Van de Geer et al. 
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(2014) proved the asymptotic normality of the de-sparsified 
estimate, i.e.,
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where γ j
0  represents the true regression coefficient; σ  can be 

calculated by using the scaled LASSO algorithm (Sun and Zhang, 
2012), and Ωjj can be calculated by,
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Under the null that H j0
0 0: γ = , we can get p-values for all the 

d methylation loci based on the asymptotic normality (Van De 
Geer et al., 2014).

For a binary response, Van de Geer et al. (2014) also proved 
the asymptotic normality for the de-sparsified estimates. Let 
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ββ .≔ The LASSO estimator for the 

mediation coefficients β is given as ˆ arg min ,
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β
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where λ is a tuning parameter. Define ˆ
ˆ

Σ:=ϕ
L
..

ββ

 and construct 
ˆ ˆΘ Θ= LASSO by doing a nodewise LASSO with Σ̂  as input. Then 

the de-sparsified LASSO estimator is given as  



ββ ββ::==   ˆ
ˆ− Θϕ

βL . van 
de Geer et al. (2014) provided a detailed algorithm for computing 
the de-sparsified LASSO estimators in a generalized linear model 
framework. They also proved the asymptotic normality of the 
de-sparsified estimate, i.e.,
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  . Similarly, we can get a p-value for 

each mediator based on the asymptotic normality property.
Let the p-values for all the d methylation loci denoted 

as Pb=(P1,b,P2,b,…,Pd,b) where Pj,b can be calculated as 
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 for a discrete Y.

Step 3: Let S={t:Pt,b < 0.05}, which is based on the high-
dimensional inference in the second step. For testing H0:at = 0, 
we denote the testing p-value as Pt,a
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where t S∈ , ât  is the ordinary least squares estimator for at 
and σ̂ t  is the corresponding estimated standard error, by fitting 
the 2nd regression equation in Model (2).

Step 4: We reject the null hypothesis of no mediation effect for 
Mt only if both at and bt are significant. The p-value for the joint 
significance test is defined as,

 
P P Pt t a t b

*
, ,max ,= ( )  

A methylation locus has a significant mediation effect if 
Pt

* .< 0 05 . This is also a so called intersection-union test (Berger 
and Hsu, 1996).

Remark 1: To make the paper self-contained, here we briefly 
introduce the High-dimensional mediation analysis (HIMA) 
method proposed by Zhang et al. (2016). The HIMA method 
involves three major steps:

Step 1: (Screening) Use the SIS (Fan and Lv, 2008) to identify 
a subset of top mediators.

Step 2. (MCP-penalized estimate). Apply the MCP-based 
penalized regression to do simultaneous variable selection and 
estimation based on the variables from step 1.

Step 3. (Joint significance test). For those mediators with 
non-zero coefficients from step 2, fit a regression model again 
and get a p-value for testing each coefficient, then, taking 
the maximum of this p-value and the p-value for testing the 
α effect as the final p-value to assess the significance of the 
mediation effect.

Remark 2: Our method has two advantages: 1) It fits 
multiple mediators in one regression model and do the testing, 
rather than fitting and testing mediation effect one at a time. 
Statistically speaking, this yields more robust and efficient 
estimation and testing results; and 2) Different from Zhang 
et al. (2016), our method is a simultaneous inference in a 
high-dimensional sparse regression model implemented with 
a de-biasing technique. The de-sparsifying strategy can well 
handle correlations between methylation loci, as demonstrated 
in the simulation study.

SIMULATION STUDIES
We conduct extensive simulations to evaluate the performance 
of the proposed method and compare it with the HIMA method 
proposed by Zhang et al. (2016). In the follows, we denote our 
method as HDMA (high dimensional mediation analysis) and 
the method by Zhang et al. (2016) as HIMA. Data are generated 
following Model (2), where the exposure variable X is generated 
from a binomial distribution, i.e., B(n,0.74) in which the 
probability 0.74 is determined based on the proportion of drinking 
in the first real set (see the real data analysis section for details). 
To have a fair comparison, we follow the simulation setup for the 
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regression coefficients as given in Zhang et al. (2016). The first 8 
elements of b(bj,j = 1,…,8) are given as (0.8,0.7,0.6,0.5,0,0,0.5,0.5)T,  
and the first 8 elements of a(aj,j = 1,…,8)are given as (0.35,0.25, 
0.35,0.55,0.55,0.55,0,0)T. The rest of as and ′b s  are all set to zero. 
Under this setting, the first four methylation loci have significant 
mediation effects while the rest have no effect.

For the intercept terms, we set θ2 = – 4.5 and θ j
' = 1 . We also 

consider different correlations among the mediators, i.e., ρ = 0, 
and 0.8. When the direct effect ′ =c 0 , the model is a complete 
mediation model in which exposures affect outcome only through 

mediators. In this case, the total effect c c a bj j
j

k
= + =′

=∑ 0 94
1

. .  
When the direct effect ′ >c 0 , the model is a partial mediation 
model. For the partial mediation model, we set ′ =c 0 5.  and the 

total effect c c a bj j
j

k
= + =′

=∑ 1 44
1

. .

We simulate k methylation loci which follow a  
multivariate normal distribution, i.e., M MVN a Xi i i~ ,1+( )Σ ,  

where ai
k

=
−

0 35 0 25 0 35 0 55 0 55 0 55 0 0. , . , . , . , . , . , ,...,         
66












T

 and 

Σ st
s t= −ρ . Then we sample the response Yi∼Ber(1,pi), where 

pi i i= + ( )( )exp exp( )/η η1  and ηi i j ij
j

k
c X b M= − + +′

=∑4 5
1

. .

We evaluate the performance of our method (HDMA) in terms 
of false positive rate and power and compare with HIMA. We report 
the power (M1∼M4) and the type I error (M5∼M8) for each locus. 
For the rest of the k-8 loci, we report the averaged type I error rate. 
All simulations are based on 1000 replications under different sample 
sizes, i.e., n = 300 and 600 and different correlations, i.e., ρ = 0 and 0.8.

Table 1 lists the results for binary responses assuming 
a complete mediation effect, i.e., ′ =c 0. There are several 
observations: (i) HIMA and HDMA have very similar power 
and size when there are no correlations between M (ρ = 0) under 
different scenarios. However, HDMA has substantially higher 
power than HIMA does when ρ = 0.8; (ii) The testing power 
decreases as the data dimension increases for both methods. 
For example, the power of testing M1 is 0.754 for HDMA with 
k = 100, but decreases to 0.721 with k = 5000, when fixing n =  
300 and ρ = 0; (iii) The power increases as the sample size 
increases. For example, when fixing ρ = 0.8 and k = 1000, the 
power increases from 0.598 to 0.951 for testing M1 when the 
sample size increases from 300 to 600, a 59% increase; and 
(iv) HDMA is not sensitive to the correlation structures while 
HIMA suffers significantly from power loss when there are high 
correlations between the M variables. The difference is even 
more striking when the sample size increases from 300 to 600. 
For example, the power difference for testing M1 is 0.014 for 
HDMA compared to 0.238 for HIMA when ρ is increased from 
0 to 0.8, when fixing n = 600 and k = 1000. Similar patterns were 
observed for the other three M variables.

Figure 2 summarizes the results with partial mediation, i.e., 
′ =c 0 5. . We consider N = 300 and 600, p = 100, 1000 and 5000, 

and ρ = 0 and 0.8. Corresponding to each mediator, there are four 
power bars. The left two correspond to the case with correlation ρ = 
0, while the right two correspond to the case with ρ = 0.8. For a fixed 
sample size, the power typically decreases as the data dimension (p) 
increases. This is because of the increase of the noise features. When 
ρ = 0 (the independent case), HIMA and HDMA perform very 
similarly under different scenarios. However, when the correlation 
increases to ρ = 0.8, we observe a power gain by HDMA compared 

TABLE 1 | List of the power and type I error rate under different sample sizes and correlations with data analyzed with HDMA and HIMA.

n k Method M1 M2 M3 M4 M5 M6 M7 M8 Mother

300 100 0 HIMA 0.754 0.467 0.723 0.849 0.025 0.022 0.034 0.047 0.001
HDMA 0.754 0.460 0.713 0.825 0.021 0.017 0.034 0.046 0.001

0.8 HIMA 0.502 0.241 0.362 0.377 0.075 0.070 0.028 0.019 0.001
HDMA 0.649 0.348 0.445 0.422 0.062 0.062 0.023 0.012 0.000

1000 0 HIMA 0.763 0.478 0.653 0.702 0.008 0.008 0.049 0.029 0.001
HDMA 0.763 0.476 0.660 0.697 0.008 0.006 0.044 0.032 0.000

0.8 HIMA 0.513 0.194 0.370 0.386 0.078 0.072 0.013 0.023 0.000
HDMA 0.598 0.297 0.399 0.417 0.060 0.055 0.012 0.019 0.000

5000 0 HIMA 0.714 0.437 0.590 0.528 0.003 0.002 0.024 0.029 0.000
HDMA 0.721 0.440 0.589 0.549 0.002 0.002 0.027 0.027 0.000

0.8 HIMA 0.545 0.182 0.374 0.386 0.081 0.076 0.024 0.017 0.000
HDMA 0.577 0.267 0.413 0.388 0.047 0.045 0.017 0.013 0.000

600 100 0 HIMA 0.957 0.769 0.969 0.990 0.008 0.010 0.046 0.051 0.001
HDMA 0.957 0.769 0.969 0.996 0.019 0.015 0.046 0.052 0.001

0.8 HIMA 0.776 0.352 0.505 0.476 0.044 0.047 0.027 0.018 0.001
HDMA 0.950 0.686 0.781 0.602 0.069 0.059 0.022 0.021 0.001

1000 0 HIMA 0.965 0.770 0.967 0.979 0.004 0.004 0.039 0.043 0.000
HDMA 0.965 0.770 0.966 0.977 0.013 0.008 0.040 0.043 0.001

0.8 HIMA 0.727 0.366 0.494 0.443 0.052 0.046 0.037 0.015 0.000
HDMA 0.951 0.685 0.790 0.632 0.060 0.071 0.026 0.021 0.000

5000 0 HIMA 0.962 0.760 0.959 0.945 0.005 0.007 0.057 0.054 0.000
HDMA 0.963 0.761 0.960 0.941 0.005 0.007 0.054 0.054 0.000

0.8 HIMA 0.733 0.391 0.503 0.472 0.068 0.058 0.041 0.025 0.000
HDMA 0.924 0.666 0.759 0.604 0.070 0.067 0.039 0.024 0.000
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to HIMA under a sample size of 300. As the sample size increases 
from 300 to 600, we observe substantial power gain for HDMA. 
This shows the advantage of HDMA which can take care of the high 
correlation structure among the mediators.

Figure 3 displays the type I error rate of the two methods. 
Mother represents all p-8 zero effect mediators. The type I error for 
Mother is calculated as the average type I error of the p-8 mediators. 
Again, each mediator has four bars. The left two correspond to 
ρ=0 while the right two correspond to ρ=0.8. Overall, the type I 
errors for the two methods are reasonably controlled, especially 
under a large sample size (N = 600). When the correlation is 
high, i.e., ρ=0.8, for some mediators such as M5 and M6, HIMA 
has a higher false positive rate than HDMA does. This indicates 

the advantage of HDMA in false positive control when there are 
high correlations among mediators.

In summary, HDMA shows relative advantages over HIMA 
under different scenarios, especially when there are high 
correlations among mediators. As correlations are highly 
expected in real methylation data, HDMA can be an alternative 
strategy to HIMA and is generally safe to apply.

REAL DATA ANALYSIS
We apply the HDMA method to two real data sets with 
methylation loci as the mediators. DNAms play key roles in 

FIGURE 2 | The power of HIMA (light gray) and HDMA (black) under different sample sizes, data dimensions, and correlations. M1∼M4 refer to the first four significant 
mediators. There are four power bars corresponding to each mediator. The left and right two bars correspond to the case with correlation ρ=0 and 0.8 respectively.

FIGURE 3 | The type I error of HIMA (light gray) and HDMA (black) under different sample sizes, data dimensions, and correlations. M1 and M4 refer to the 
first four significant mediators. There are four power bars corresponding to each mediator. The left and right two bars correspond to the case with correlation 
ρ=0 and 0.8 respectively.
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regulating many cellular processes and are associated with human 
diseases (Robertson 2005). The first data set involves DNAm 
mediating the effect of alcohol consumption on epithelial ovarian 
cancer (EOC) status. Alcohol may induce DNAm alterations, 
which could trigger alcohol-induced carcinogenesis (Varela-
Rey et al., 2013). In the second data set, we evaluate the effect 
of childhood maltreatment on post-traumatic stress disorder 
(PTSD) in adulthood, mediated by DNAms. It is hypothesized 
that childhood maltreatment affects biological processes via 
DNAm, which can have negative consequences late in life (e.g., 
Mehta et al., 2013; Klengel et al., 2016).

Case Study 1: Mediation Analysis of 
Alcohol Consumption, DNam, and 
EOC Status
The participants with age ranging from 27 to 91 were recruited 
between the year 1999 and year 2007 in the Mayo Clinic Ovarian 
Cancer. They were women of European ancestry who were 
invasive EOC cases and controls one-to-one matched on the 
basis of age (within 1-year). After eliminating missing values 
and other quality control, 196 cases and 202 controls were 
retained for further analysis. The exposure variable is alcohol 
consumption. Information on alcohol use was obtained via a 
written questionnaire asking “Do you currently drink alcoholic 
beverages?”. DNAms are the mediators and EOC status is the 
outcome. We would like to identify the mediators and further 
quantify the mediation effect. Readers are referred to Koestler 
et al. (2014) and Wu et al. (2018) for more details about the data.

Table 2 summarizes the lifestyle and demographic 
characteristics of the study population. The Student t-test 
or Chi-square test is used for comparisons between groups 
for continuous or categorical variables, respectively. As can 
be seen in the table, alcohol consumption is significantly 
lower in cases compared to controls. Enrollment year shows 
a significant difference in proportions between cases and 
controls. Thus, we include the enrollment year as a covariate 
in further mediation analysis.

Leukocyte-derived DNA was assayed with the Illumina 
Infinium HumanMethylation27 Beadchip platform and underwent 
quality control procedures at the Mayo Clinic Molecular Genome 
Facility (Koestler et al., 2014). The methylation beta values (β) of 
each CpG locus was logit-transformed (log(β/(1-β))) to get the 
M-value for further analysis. A total of 25,926 CpG sites were 
remained for analysis after normalization and adjusting for any 
batch or plate effects. Study shows that heterogeneity in white 
blood cells has the potential to confound DNAm measurements 
and statistical treatment is needed to correct for this confounding 
effect (Adalsteinsson et al., 2012). Similarly, variation in cell-
type proportions across samples has the potential to confound 
the mediation effect of DNAm on the association of alcohol 
consumption and EOC status (Titus et al., 2017). We thus include 
the predicted proportions of the leukocyte sub-types for each of 
the study samples as covariates in the analysis, following a mixture 
deconvolution method by Houseman et al. (2012).

Since the response is a binary variable, we apply a logistic 
regression for the first and third regression equation in Model 
(2), while including enrollment year as a covariate. Note that the 
cell type data should be included whenever methylation signals 
are included in the model. Including the enrollment year (Enroll) 
and the proportion of cell type (CellType), Model (2) becomes,
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(P c

a
Alcohol

T

j j

θ λ
θ

1 1+

= ′ + jj
T T j j kAlcohol+ Enroll+ CellType+

logi

λ δ ε2 1 1. , , ,= 

tt( )= Alcohol EnrollP c b CpGAlcohol j j
j

k
Tθ λ2

1
3+ ′ + +

=∑ ++ δ 2
T CellType

 

The coefficient estimates for the total effect is given as 
ĉAlcohol=-1.310 (p-value < 0.001), indicating a significant 
protective effect of alcohol consumption on EOC status.

We apply the SIS algorithm to reduce the methylation 
dimension to 34 (n/2log(n)), then apply the HDMA and HIMA 
methods for further inference. Table 3 lists the findings by the 
two methods. Our method identified four CpGs with important 

TABLE 2 | Partial list of covariates and their association with case/control status.

Case (N = 196) Control (N = 202) Total (N = 398) p value

Age at diagnosis/interview
 Mean(SD) 62.31 (12.36) 62.37 (12.69) 62.34 (12.51) 0.965
Enrollment year
 1999–2002 year 76 (38.78%) 91 (45.05%) 167 (41.96%) <0.001
 2003 year 17 (8.67%) 27 (13.37%) 44 (11.06%)
 2004 year 25 (12.76%) 42 (20.79%) 67 (16.83%)
 2005 year 30 (15.31%) 17 (8.42%) 47 (11.81%)
 2006–2007 year 48 (24.49%) 25 (12.38%) 73 (18.34%)
Alcohol use at study enrollment
 Yes 123 (62.76%) 172 (85.15%) 295 (74.1%) <0.001
 No 73 (37.24%) 30 (14.85%) 103 (25.9%)
Minnesota (MN) state
 Other 93 (47.45%) 82 (40.59%) 175 (43.97%) 0.202
 MN 103 (52.55%) 120 (59.41%) 223 (56.03%)
Smoking at study enrollment
 No 178 (90.82%) 192 (95.05%) 370 (92.96%) 0.145
 Yes 18 (9.18%) 10 (4.95%) 28 (7.04%)
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mediation effects while HIMA identified two CpGs. Two CpGs, 
namely cg12278770 and cg03012280, overlap in two methods. A 
heatmap in Figure 4 shows that there are moderate correlations 
among the 34 CpG sites. Thus, it is not surprising to see that 
HDMA identifies more CpG mediators than HIMA does.

CpG site cg18394848 resides in gene K-RAS. Nakayama et al. 
(2008) examined the K-RAS mutations in relation to extracellular 
signal-regulated protein kinase (ERK) activation in 58 ovarian 
carcinomas. Auner et al. (2009) drew a conclusion that K-RAS 
mutation is a common event in ovarian cancer primarily in 
carcinomas of lower grade, lower FIGO stage, and mucinous 
histotype. KEGG pathway shows that this gene is involved in 
the pathogenesis of ovarian cancer (Figure 5). This evidence 
indicates that cg18394848 could be an important epigenetic 
marker which mediates the effect of alcohol consumption on 
EOC pathogenesis.

Elgaaen et al. (2010) found that gene KSP37 correlates strongly 
with histology, stage, and outcome in ovarian carcinomas. 
Thus, cg08132711 (in gene KSP37) can also be a potential 
epigenetic marker associated with the EOC status. Although 
we do not find direct literature support about the two genes 
FAM167B and ZFYVE19 where cg12278770 and cg03012280 
are respectively located in, a two samples t-test results show 
that there are significant differences on methylation signals 

of cg12278770 and cg03012280 between cases and controls. 
The t-test statistics (p-value) are tcg12278770=4.881(P<0.001) and 
tcg0301220=5.415(P<0.001). It suggests that these two CpG sites may 
act as important players to mediate the effect of alcohol intake on 
EOC status (Figure 6).

Case Study 2: Mediation Analysis of 
Childhood Maltreatment, Dnam, and PTSD
The data came from the Grady Trauma Project study recruiting 
Afro-American participants from Atlanta inner-city residents, 
approved by the Institutional Review Board of Emory University 
School of Medicine and Grady Memorial Hospital (Wingo et al., 
2018). A growing body of literature indicates that DNAm plays 
pivotal roles in the disease process of PTSD and in vulnerability 
and resilience to PTSD (Uddin et al., 2011; Lutz and Turecki, 
2014). Studies also show that childhood maltreatment is 
associated with DNAm changes of multiple loci in adulthood 
(Mehta et al., 2013). We apply the proposed method to establish 
the link between childhood maltreatment and PTSD and 
further evaluate the mediating role of DNAm. The data set 
contains baseline information, cell composition, and DNAm. We 
adopt the modified PTSD Symptom Scale (PSS) and the Beck 
Depression Inventory (BDI) to classify cases and controls. Cases 
with current symptoms of comorbid PTSD and depression are 

FIGURE 4 | The correlation structure among the 34 CpG sites.

TABLE 3 | List of significant CpGs identified by HDMA and HIMA.

Method CpG Chr Gene name ˆ̂aa ˆ̂bb ˆ̂ ˆ̂aabb % of total effect p-value

HDMA cg18394848 12 K-RAS −0.076 1.772 −0.136 10.343 0.008
cg08132711 4 KSP37 −0.080 1.207 −0.096 7.313 0.033
cg12278770 1 FAM167B −0.071 −2.045 0.144 11.012 0.005
cg03012280 15 ZFYVE19 −0.175 −0.878 0.153 11.709 0.002

HIMA cg12278770 1 FAM167B −0.071 −0.828 0.058 4.461 0.002
cg03012280 15 ZFYVE19 −0.175 −0.525 0.092 7.010 0.004
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defined as having a PSS score ≥14 and a BDI score ≥14. Controls 
are defined as having neither PTSD nor depressive symptoms, 
as mirrored by a PSS score ≤7 and BDI score ≤7, despite being 
exposed to trauma (Beck et al., 1961; Foa et al., 2000; Wingo 
et  al., 2018). We eliminate observations with missing values 
and exclude those with PTSD treated since the treatment might 
affect DNAm changes which can complicate the mediation effect. 
Finally, 54 controls and 74 cases are retained for further analysis.

Table 4 summarizes the demographic characteristics of the study 
population. Ranges of age in case and control are (27.97, 57.97) 
and (30.69, 56.79), respectively. There is no statistical significance 
among the selected variables such as age, sex, and body mass index 
(BMI), but childhood sexual/physical abuse moderate to extreme 
is significantly higher for cases compared to controls. The same 
analysis plan as detailed in Case Study 1 is applied here. Since no 
clinical factors show statistical significance, we do not include 
any covariates in our mediation model. Next, we apply HDMA 
and HIMA to test which DNAm plays a mediating role between 
childhood maltreatment and PTSD.

The raw methylation beta values from the HumanMethylation 
450k BeadChip (Illumina) are obtained via the Illumina 
Beadstudio program. Samples with probe detection call rates 
<90% and those with an average intensity value of either <50% of 
the experiment-wide sample mean or <2,000 arbitrary units (AU) 
are excluded from further analysis. The beta values are further 
converted to M-values and a total of 335,669 CpG sites are used 
for subsequent analysis. For the details of the data, readers are 
referred to the website http://gradytraumaproject.com/. The data 
set can be downloaded at https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE72680.

Lutz and Turecki (2014) reviewed human studies indicating 
that early-life experiences (e.g., childhood maltreatment) regulate 
life-long stress activities (e.g. psychopathological disorders) 
through epigenetic regulations (e.g., DNAms). Klengel et al. (2014) 
found that exposure to stress can induce long-lasting changes in 
DNAs, which may relate to the pathophysiology of depression and 
PTSD. This evidence suggests that a mediation model can help 
to understand how childhood maltreatment can alter long lasting 
DNAm changes which further affect phycological disorders such 
as PTSD. We fit the following mediation model while adjusting 
for the cell type effect whenever CpG sites are involved, i.e., 

 

logit )= Maltreatment,

CpG

(P cMaktreatment

j j

θ
θ

1 +

= ′ + aa j j kj
T TMaltreatment+ + CellType+

logi

λ δ ε2 1 1. , , ,= 

tt( )= MaltreatmentP c b CpGMaltreatment j j
j

k
θ2

1
+ ′ +

=∑ ++ λ2
T CellType.

Based on the first regression model, we identify an existing 
relationship between childhood maltreatment and PTSD with 
ˆ .cMaltreament = 1 866 (95% CI: [1.091, 2.698]) by fitting a logistic 
regression model. When doing the SIS step to screen CpG sites, 

TABLE 4 | Partial list of covariates and their association with PTSD case/control status.

Variables Case (N = 74) Control (N = 54) Total (N = 128) p-value

Age
Mean (SD) 40.97 (13.00) 43.74 (13.05) 42.141 (13.04) 0.238
Sex
Male 52 (70.27%) 36 (66.67%) 88 (68.75) 0.771
Female 22 (29.73%) 18 (33.33%) 40 (31.25)
BMI
Mean (SD) 31.433 (7.82) 31.614 (8.10) 31.510 (7.91) 0.899
Childhood sexual/physical 
abuse moderate to extreme
No 26 (35.14%) 42 (77.78) 68 (53.13%) <0.001
Yes 48 (64.87%) 12 (22.22) 60 (46.88%)

FIGURE 5 | Partial EOC pathway extracted from the KEGG database 
(https://www.kegg.jp/kegg-bin/show_pathway?hsa05206).
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we keep n/log(n) mediators rather than n/2log(n) to avoid 
missing important loci, due to the small sample size. After the 
SIS step, 27 DNAm sites are left in the model for further analysis. 
Table 5 summarizes the results. HDMA identifies two significant 
CpG sites (cg06998765 and cg16928335) which reside in gene 
RPS6KL1 on chromosome 12 and gene SH2D1A on chromosome 
X, respectively. The two CpG sites, cg06998765 and cg16928335, 
respectively explain 22.73% and 19.95% of the total mediation 
effect. HIMA identifies one CpG site which is a subset of what 
HDMA detected. A heatmap of the 27 methylation signals 
after SIS is shown in Figure 7. It is clear that there are strong 
correlations between some CpG sites and it is not surprising 
that HDMA identified one more CpG site since it can handle 
correlation well. We further test the methylation signal difference 
between cases and controls for the two CpG sites and the results 
show significant differences for cg06998765 (t = 4.109, P<0.001) 
and cg16928335 (t = 2.242, P = 0.027).

Figure 8 plots the methylation signals between cases and 
controls for the two CpG sites. Ward et al. (2017) applied a 
genome-wide analysis method to analyze UK Biobank data 
and identified four loci associated with mood instability. Gene 
RPS6KL1 is located nearby one of these regions, suggesting 
a potential role of this DNAm on PTSD. Although we cannot 
find evidence to support the association between PTSD and 
gene SH2D1A where cg06998765 is located, a two samples t-test 

shows that there is a significant difference on methylation signal 
of cg06998765 between cases and controls. The upshot suggests 
that this CpG site may have an important role to mediate the 
effect of childhood maltreatment on PTSD (Figure 8).

DISCUSSION
A large body of literature has suggested that environmental 
exposures can leave epigenetic tags such as DNAm changes 
which further affect disease risks. Such a causal relationship 
can be better understood with a causal mediation model, with 
the hope to identify important epigenetic players (e.g., DNAm) 
that mediate the relationship between an exposure and a disease 
outcome. As biotechnology getting cheaper and cheaper, the pace 
of generating epigenetic data becomes faster and faster. In many 
applications, the number of epigenetic features can be much 
larger than the sample size, resulting in the so-called (ultra-) 
high dimensional data. These high-dimensional data provide 
unprecedented opportunity to reveal the molecular mechanism 
of many diseases. In the meantime, they also challenge the 
traditional mediation analysis methods which are developed for 
low-dimensional data.

In this work, we propose a high-dimensional mediation model 
to tackle issues due to high dimensionality and high correlation. 
Different from the HIMA approach developed by Zhang et al. 

FIGURE 6 | The DNAm status (β value) of cg18394848, cg08132711, cg12278770, and cg03012280 between EOC cases and controls.

TABLE 5 | List of significant CpGs identified by HDMA and HIMA.

Method CpG Chr Gene name ˆ̂a ˆ̂b ˆ̂ ˆ̂ab % of total effect p-value

HDMA cg06998765 12 RPS6KL1 0.266 1.594 0.424 22.748 0.020
cg16928335 X SH2D1A −0.222 −1.674 0.372 19.933 0.046

HIMA cg06998765 12 RPS6KL1 0.266 0.535 0.142 7.635 0.030
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(2016), our method is built under a high-dimensional inference 
framework where we can simultaneously estimate and test the 
effect of regression coefficients in a regression model. The high-
dimensional testing method implements a debias approach and 
the de-sparsified estimates can well take care of correlations 
between mediators (Zhang and Zhang, 2014). Such correlations 
are naturally arising due to the nature of the epigenetic data. 
We illustrate the performance of the proposed method via 
simulations and case studies and compare with the HIMA 
method (Zhang et al, 2016). The simulation studies show that 
our method (HDMA) outperforms the HIMA method when 
there are high correlations between mediators. Thus, HDMA 
can be safely used in a high-dimensional mediation analysis 
from population studies.

In the first real data analysis, four CpG sites are identified 
to mediate the effects between alcohol consumption and EOC 
status. HDMA identifies two more CpG sites than HIMA does. 
In the second real data analysis, of the two CpG sites identified 
by HDMA, one overlaps with HIMA. These CpG sites may 

mediate the effect of childhood maltreatment to PTSD risk in 
adulthood. In both real data analysis, HDMA identifies more 
CpG sites than HIMA does, demonstrating the superior power 
of HDMA over HIMA. However, further biological verification 
is needed to validate the results, since statistical significance does 
not guarantee a biological significance.

Philibert et al. (2012) found that alcohol intake is linked to 
widespread changes in DNAm in women. Cvetkovic (2003) 
showed that DNAm alterations are an early step in carcinogenesis 
and could represent a mechanism of disease. Many such pieces 
of evidence point to the proper linkage of DNAm mediating 
the relationship between alcohol consumption and EOC 
status. Similar evidence also supports the linkage between 
childhood maltreatment and PTSD mediated by DNAm. 
Mehta et al. (2013) provided epigenetic support that childhood 
maltreatment is likely to carve long-lasting epigenetic marks, 
leading to adverse health outcomes such as PTSD in adulthood. 
Childhood abuse can increase the risk of neuropsychiatric 
and cardiometabolic disease via changes in epigenetic marks 

FIGURE 7 | Heatmap of 27 methylation signals after screening with the SIS procedure.

FIGURE 8 | The DNAm status (β value) of cg06998765 and cg16928335 between PTSD cases and controls.
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(Szyf,  2012; Yang  et  al.,  2013). These studies support the 
mediation role of DNAm between childhood maltreatment and 
the risk of developing PTSD in adulthood.

The mediation effect in this study is based on a linear 
effect assumption, while effects such as interactions including 
magnitude epistasis and sign epistasis are not considered. 
Such kinds of complex interactive mechanisms can complicate 
the model, especially under a high-dimensional setup. For 
example, if there are antagonistic epistatic interactions 
among mediators, the mediation effects between exposure 
and the outcome can be weakened, leading to the failure to 
detect the mediation effects. If there are synergistic epistatic 
interactions among mediators, the existence of mediators can 
produce a synergistic effect to enhance their mediation effect. 
In the event of multiple exposures, models can be even more 
complicated. Under these situations, it is not clear on how to 
model and assess the mediation effect in a high-dimensional 
setup. These issues imply the simplicity of the current method 
and also raise modeling challenges for further methodological 
development. We will take these into consideration in our 

future studies. The R code that implements the method 
can be found in github with weblink: https://github.com/
YuzhaoGao/High-dimensional-mediation-analysis-R/blob/
master/HDMA.R.
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Jos Kleinjans 2, Gunter Kenis 1, Daniel van den Hove 1, Myeong Ok Kim 5, Marco P. M. Boks 6, 
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and Laurence de Nijs 1†*
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Leiden University Medical Center, Leiden, Netherlands, 11 Military Mental Healthcare, Netherlands Ministry of Defense, Utrecht, 
Netherlands, 12 Department of Psychiatry, New York University School of Medicine, New York, United States

Posttraumatic stress disorder (PTSD) is a psychiatric disorder that can develop upon 
exposure to a traumatic event. While most people are able to recover promptly, others 
are at increased risk of developing PTSD. However, the exact underlying biological 
mechanisms of differential susceptibility are unknown. Identifying biomarkers of PTSD 
could assist in its diagnosis and facilitate treatment planning. Here, we identified serum 
microRNAs (miRNAs) of subjects that underwent a traumatic event and aimed to assess 
their potential to serve as diagnostic biomarkers of PTSD. Next-generation sequencing 
was performed to examine circulating miRNA profiles of 24 members belonging to 
the Dutch military cohort Prospective Research in Stress-Related Military Operations 
(PRISMO). Three groups were selected: “susceptible” subjects who developed PTSD after 
combat exposure, “resilient” subjects without PTSD, and nonexposed control subjects  
(N = 8 per group). Differential expression analysis revealed 22 differentially expressed miRNAs 
in PTSD subjects compared to controls and 1 in PTSD subjects compared to resilient 
individuals (after multiple testing correction and a log2 fold-change cutoff of ≥|1|). Weighted 
Gene Coexpression Network Analysis (WGCNA) identified a module of coexpressed 
miRNAs which could distinguish between the three groups. In addition, receiver operating 
characteristic curve analyses suggest that the miRNAs with the highest module memberships 
could have a strong diagnostic accuracy as reflected by high areas under the curves. Overall, 
the results of our pilot study suggest that serum miRNAs could potentially serve as diagnostic 
biomarkers of PTSD, both individually or grouped within a cluster of coexpressed miRNAs. 
Larger studies are now needed to validate and build upon these preliminary findings.
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BACKgROUND
Posttraumatic stress disorder (PTSD) is a psychiatric 
disorder that can develop upon exposure to a life-threatening 
traumatic event, i.e., an event capable of producing intense 
feelings of fear, helplessness, and horror (Association, 2013). 
Symptoms associated with PTSD include re-experiencing 
of the traumatic event, avoidance behavior, overall negative 
mood, and hyperarousal (Association, 2013). The economic 
burden associated with PTSD is substantial, and patients 
with PTSD are at increased risk of committing suicide and 
having familial issues such as marital problems (Fontana and 
Rosenheck, 1994; Tarrier and Gregg, 2004; Nock and Kessler, 
2006; Ferry et al., 2015). Although ~60% of individuals within 
Western Europe will one day be exposed to a traumatic event, 
only ~6% of these individuals develop PTSD while others 
show a positive psychological adaptation process denoted as 
resilience (Kalisch et al., 2017; Koenen et al., 2017). However, 
some populations such as military soldiers are at elevated 
risk for trauma exposure, making PTSD a relatively common 
chronic disorder in the combat Veteran population (Thomas 
et al., 2017). Currently, a variety of treatment options exist 
for PTSD, without one being clearly superior to another 
(Yehuda et al., 2014). Moreover, pharmacological treatment 
options for PTSD are at best moderately effective and only 
work for a subset of patients (Richter-Levin et al., 2018). 
Therefore, increasing efforts are being made to unravel the 
biological underpinnings of PTSD in order to develop more 
efficient therapeutic strategies. It is now becoming clear that 
epigenetic mechanisms are involved in the lasting behavioral 
and molecular effects of trauma exposure (Schmidt et al., 
2011; Snijders et al., 2018a).

Epigenetics refers to a variety of processes that are triggered 
by environmental factors and cause lasting but reversible 
alterations in gene expression (Goldberg et al., 2007). Among 
epigenetic mechanisms, noncoding RNA molecules such as 
microRNAs (miRNAs) are involved in the posttranscriptional 
regulation of gene expression by binding to specific messenger 
RNAs (Peschansky and Wahlestedt, 2014). Several miRNAs have 
been found implicated in PTSD, shedding much needed light 
on the underlying pathophysiological underpinnings of this 
disorder (Wingo et al., 2015; Bam et al., 2016a, Bam et al., 2016b; 
Martin et al., 2017). Such findings emphasize the notion that 
expression profiles of miRNAs could one day serve as relatively 
easily accessible biomarkers or be embedded within a network 
of several relevant biological processes that together could more 
accurately reflect the complexity of PTSD. For those individuals 
who have difficulties recognizing or properly describing their 
symptoms, identifying such markers could be of use in clinical 
contexts in order to objectively confirm the presence of the 
disorder and establish appropriate treatment plans when needed 
(Lehrner and Yehuda, 2014). Using these markers could be 
equally relevant during postdeployment medical screenings 
since military service members may have secondary reasons to 
not fully disclose their symptoms (Yehuda et al., 2013).

Here, we aimed to identify serum miRNAs that could one 
day serve as diagnostic biomarkers of PTSD. We further aimed 

to gain insights in the coexpression patterns of these miRNAs, 
their predicted gene targets and underlying biological pathways, 
along with their diagnostic accuracy. We hypothesized that 
specific miRNAs are differentially expressed between subjects 
with PTSD, trauma-exposed healthy individuals (referred to 
as “resilient” subjects in this paper), and nonexposed healthy 
controls. For this, we performed next-generation sequencing 
(NGS) on serum samples of 24 military members belonging 
to a Dutch military cohort, and we compared miRNA profiles 
between the three groups. Our findings suggest that miRNAs 
could potentially serve as biomarkers of PTSD, both individually 
or grouped within a cluster of coexpressed miRNAs. Larger 
studies are now needed in order to further validate and build 
upon these preliminary findings.

MATeRiAlS AND MeThODS

Participants
A subset of military personnel (24 males) was selected from 
the larger Prospective Research in Stress-Related Military 
Operations (PRISMO) study, a prospective cohort of Dutch 
military members deployed to Afghanistan for 4 months 
(Reijnen et al., 2015; Eekhout et al., 2016). Based on the level 
of combat exposure during deployment and the severity of 
postdeployment PTSD symptoms, three subgroups were 
identified: 1) susceptible individuals, i.e., trauma-exposed 
subjects with deployment-related PTSD symptoms at 
6  months follow-up; 2) resilient individuals, i.e., trauma-
exposed soldiers with no PTSD diagnosis at follow-up; and 3) 
controls, i.e., deployed, but nonexposed and mentally healthy 
military members. Blood samples were collected at the Utrecht 
University Medical Center at 6 months postdeployment. 
Trauma exposure was assessed using a 19-item deployment 
experiences checklist (van Zuiden et al., 2011). The severity of 
PTSD symptoms was established using the 22-item Self-Rating 
Inventory for PTSD (SRIP) (Hovens et al., 2002). Information 
on smoking and alcohol was collected using self-report 
measures. This study was approved by the ethical committee of 
University Medical Center Utrecht (01-333/0) and conducted 
in accordance with the Declaration of Helsinki. All participants 
gave written informed consent.

RNA isolation
Total RNA was isolated from 300μl human serum using the 
mirVana PARIS kit (Ambion) according to the manufacturer’s 
instructions. Briefly, the samples were incubated with an 
equal volume of denaturing solution, acid-phenol/chloroform 
was added, and the samples spun for 5min at 10,000×g. The 
aqueous phase was recovered and passed through a filter 
which was washed three times with the provided wash 
solutions. Final RNA was eluted in 100µl nuclease-free 
water. The concentrations and quality of the recovered RNA 
were measured using the Agilent Bioanalyzer 2100 (Agilent 
Technologies, Inc., CA, USA). All eluates were stored at −80°C 
until further use.
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Small RNA library Preparation and Next-
generation Sequencing
Barcoded libraries (N = 24, 8 per group) were prepared with an 
input of 25ng total RNA using the Illumina Small RNA TruSeq kit 
(Illumina, CA, USA). Briefly, 3′ and 5′ RNA adapters were added, 
the samples were reverse transcribed and amplified using 11 
PCR cycles. All samples were processed in parallel and received 
a unique barcode. The complementary DNA constructs were gel 
purified and concentrated by ethanol precipitation. The quality 
control was performed using Agilent's 2100 Bioanalyzer with a 
High-Sensitivity DNA Chip. The 24 samples were pooled (N = 8 
per group) and sequenced in duplicate using the Illumina HiSeq 
2000 DNA sequence platform according to the manufacturer’s 
protocol (GEO accession: GSE137624).

Small RNA Sequencing Data Analysis
Quality control of the raw sequences was done using FastQC (v. 
0.11.3), and reads were preprocessed and mapped to the latest 
release of miRBase (v. 21) (Baras et al., 2015) utilizing miRge 
with default settings (Kozomara and Griffiths-Jones, 2014). In 
order to compensate for bias introduced by very low abundant 
sequences, only those miRNAs with an average of 50 counts (or 
more) across samples were considered for further analyses.

Differential expression Analysis
Data normalization and differential expression analysis was 
conducted with the DESeq2 package in R (v. 3.5.2) (Love et al., 
2014) thereby correcting for age, alcohol use, and smoking status. 
Resulting p-values were controlled by the false discovery rate 
(FDR) at 5% (Benjamini and Hochberg, 1995).

Weighted gene Coexpression Network 
Construction and Module Detection
The identified miRNAs were used to construct coexpression 
networks using the Weighted Gene Coexpression Network 
Analysis (WGCNA) R package (Langfelder and Horvath, 2008). 
Normalized miRNA data was used as input. An adjacency matrix 
was generated by calculating Pearson’s correlations between 
all miRNAs. Next, topological overlap between miRNAs was 
calculated using a power of 9. We performed 200 rounds of 
bootstrapping in order to construct a network that is robust to 
outliers. The cutreeDynamic function in the dynamicTreeCut 
R package was then used to identify coexpression modules of 
positively correlated miRNAs with high topological overlap. 
Modules with at least 30 miRNAs were assigned a color. 
Modules with highly correlated eigengenes were merged using 
the mergeCloseModules function in R. Pearson correlations 
between module eigengenes, age, smoking status, and alcohol 
were calculated. Welch’s t-tests were performed in order to detect 
differences between module eigengenes of the control subjects 
and the trauma-exposed individuals. One-way ANOVAs were 
performed to detect differences between the three groups. When 
significant, the post-hoc Tukey HSD test was used to detect 
pairwise group differences.

Target gene Pathway and enrichment 
Analyses
The experimentally validated miRNA–target interactions 
database miRTarBase 6.0 (Chou et al., 2018) was used to identify 
gene targets of miRNAs. In order to narrow down the amount 
of target genes for further analyses, one-sided Fisher tests 
(with FDR multiple correction) were performed to evaluate 
whether the amount of miRNAs targeting a specific gene was 
significantly higher than expected by chance. Those genes were 
then analyzed for enriched Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways and Gene Ontology terms (GO 
terms) using the online Database for Annotation, Visualization 
and Integrated Discovery (DAVID) v6.8 (Huang da et al., 2009; 
Huang da et al., 2009).

Statistical Analyses
To detect differences in age, number of previous deployments, 
cigarette smoking, alcohol use, trauma exposure scores, and SRIP 
scores between the groups, the Welch ANOVA with Games–
Howell post-hoc test was applied. Since data on alcohol use at the 
6 months follow-up time point was not available for all subjects, 
predeployment values were used instead. For each individual, 
smoking status was estimated based on their unique methylation 
patterns in 183CpGs, as previously described (Zeilinger et al., 
2013). Finally, the classification accuracy of specific miRNAs was 
determined by calculating the area under the receiver operating 
characteristic (ROC) curve (AUC) in R.

ReSUlTS

Demographic Characteristics
A total of 24 subjects were included in the present study, of which 
8 developed PTSD following deployment, 8 were resilient, and 
8 were nonexposed controls (Supplementary Table 1). Based 
on the sequencing results, four subjects were excluded due 
to having a distinctively lower amount of reads causing great 
variation in expression data between samples. The three groups 
did not differ in terms of age, number of previous deployments, 
smoking status, and alcohol use (Table 1). On average, subjects 
with PTSD and resilient individuals were exposed to a similar 
amount of traumatic events, which was significantly more than 
the nonexposed controls [F(2, 8.8) = 54.67, p < 0.001. Games–
Howell post-hoc showed p < 0.001 for PTSD versus control, and 
resilient versus control]. Finally, resilient and control subjects 
had similar postdeployment PTSD scores as measured by the 
SRIP, which were significantly lower than the average score of 
the PTSD group [F(2, 11.15) = 25.23, p < 0.001. Games–Howell 
post-hoc showed p < 0.001 for PTSD versus resilient, and PTSD 
versus control].

miRNAs Sequencing and Differential 
expression Analysis
Small RNA sequencing yielded an average of 9.5 million unfiltered 
sequencing reads across all samples. After adaptor trimming and 
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size selection, 1.9 million high-quality reads remained, which 
were aligned to miRNA sequences from miRBase (release 21). 
As mentioned earlier, principal component analysis revealed 
the presence of four outliers, which were excluded from further 
analysis. The count data were then filtered for miRNAs that 
showed an average of 50 reads or more across all samples. 
This resulted in the identification of 306 different miRNAs. 
Differential expression analysis in DESeq2 revealed that a total 
of 123 miRNAs showed differential expression between PTSD 
cases and nonexposed controls, while 4 were downregulated in 
PTSD cases compared to resilient individuals (Supplementary 
Table 2). Selecting those miRNAs with a log2 fold-change (FC) 
value≥|1.0| and FDR adjusted p < 0.05 revealed that one miRNA, 
miR-1246, was downregulated in PTSD subjects compared to 
resilient subjects and 22 were differentially expressed between 
PTSD subjects and nonexposed controls (Table 2, Figure 1). Of 
these, 4 were downregulated and 18 were upregulated. We used 
the Venn tool to identify those differentially expressed miRNAs 

that are specific for PTSD only (Figure 2). Two miRNAs were 
identified at the intersection of the blue and yellow circles, i.e., 
miR-4454 and miR-210-3p. Both miRNAs were significantly 
downregulated in PTSD subjects compared to resilient subjects 
and controls and not differentially expressed between resilient 
subjects and controls, suggesting that these could be more 
specific to PTSD (Supplementary Table 2). However, both 
miRNAs had log2 FC values of −0.61 and −0.54, which does not 
pass our threshold of ≥|1.0|.

Weighted gene Coexpression Network 
Analysis
WGCNA was applied using the 306 identified miRNAs in order 
to detect clusters of coexpressed miRNAs. Based on the sample 
dendrogram, one outlier was removed from further analyses 
(Supplementary Figure 1). We identified three miRNA modules 
(Figure 3). The turquoise, blue, and brown modules each had 

TABle 1 | Demographic characteristics of the 20 subjects remaining after outlier exclusion.

Susceptible (N = 8) Resilient (N = 6) Control (N = 6) p-value

Age when deployed 22.13 (0.61) 34.17 (4.88) 27.50 (3.62) 0.083
Number of previous deployments 0.29 (0.18) 0.83 (0.48) 0.17 (0.17) 0.465
Cigarette smoking 2.79 (1.65) −1.43 (1.30) −0.15 (1.89) 0.194
Alcohol use 2.86 (0.67) 1.17 (0.40) 1.83 (0.60) 0.155
Trauma exposure score 7.75 (0.98) 7.17 (0.75) 0.5 (0.22) <0.001
SRIP PTSD score 55.25 (4.01) 25.50 (1.63) 24.50 (1.46) <0.001

Data are presented as mean (SE). SRIP, self-rating inventory for posttraumatic stress disorder.

TABle 2 | Differentially expressed microRNAs (miRNAs) between posttraumatic stress disorder (PTSD) cases versus controls and PTSD cases versus resilient 
individuals with a log2 fold-change value≥|1.0| and FDR adjusted p < 0.05.

Nr PTSD vs. control PTSD vs. resilient

miRNA Log2 FC p-value FDR adj 
p-value

miRNA Log2 FC p-value FDR adj
p-value

1 hsa-miR-218-2-3p 3.22 1.65E−02 4.20E−02 hsa-miR-1246 −1.06 3.54E−04 3.05E−02
2 hsa-miR-3609 3.05 8.22E−06 6.62E−05
3 hsa-miR-432-5p 2.37 8.44E−04 3.31E−03
4 hsa-miR-138-5p 2.29 2.18E−16 9.54E−15
5 hsa-miR-221-5p 2.06 6.11E−13 1.34E−11
6 hsa-miR-4485-3p 1.98 3.45E−15 9.59E−14
7 hsa-miR-31-5p 1.92 2.16E−15 7.35E−14
8 hsa-miR-146b-5p 1.67 1.86E−25 2.85E−23
9 hsa-miR-5096 1.62 1.81E−06 1.84E−05
10 hsa-miR-222-3p 1.56 2.81E−15 8.61E−14
11 hsa-miR-1273g-3p 1.55 7.23E−05 3.75E−04
12 hsa-miR-302a-5p 1.49 6.61E−09 1.06E−07
13 hsa-miR-221-3p 1.45 1.03E−14 2.62E−13
14 hsa-miR-619-5p 1.40 1.74E−04 8.31E−04
15 hsa-miR-335-5p 1.28 7.18E−28 2.20E−25
16 hsa-miR-146b-3p 1.25 6.30E−11 1.13E−09
17 hsa-miR-3175 1.17 1.95E−04 9.20E−04
18 hsa-miR-3656 1.00 1.07E−02 2.86E−02
19 hsa-miR-184 −1.20 1.58E−05 1.01E−04
20 hsa-let-7d-5p −1.27 1.22E−18 9.33E−17
21 hsa-miR-98-5p −1.33 1.57E−22 1.60E−20
22 hsa-miR-146a-5p −2.04 1.52E−08 2.22E−07

The table is organized based on decreasing log2 fold-change values. miRNA, microRNA; log2 FC, log2 fold-change.
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84, 79, and 65 miRNAs, respectively. None of the modules were 
associated with the potential covariates age, smoking status, or 
alcohol use (Supplementary Figure 2). Within each module, the 
module eigengenes were significantly different between trauma-
exposed individuals and nonexposed controls for the turquoise 
and blue modules (p = 2.67×10−04, p = 2.51×10−06, respectively) 

but not for the brown module (p = 0.196; Figure 3A). When 
stratifying the trauma-exposed individuals into PTSD subjects 
and resilient subjects, the individual eigengenes of the blue module 
were significantly different between PTSD subjects and resilient 
individuals (p = 1.46×10−03; Figure 3B), which was not the case for 
the other modules. We therefore focused on the blue module for 
further analyses.

Out of the 79 miRNAs belonging to this module, 67 were 
differentially expressed between PTSD subjects and controls 
(Table 1), including miR-138-5p, the hub miRNA (Table 3). 
In order to evaluate the diagnostic accuracy of some of these 
miRNAs, we performed ROC analysis for those miRNAs with 
the highest absolute module memberships. The five most 
contributing miRNAs, i.e., miR-221-3p, miR-335-5p, miR-
138-5p, miR-222-3p, and miR-146-5p (Table 3), could perfectly 
distinguish PTSD subjects and controls (AUC of 1 for all 
miRNAs; Supplementary Figure 3 A.1 and A.2 for miR-221-3p). 
These miRNAs could equally well differentiate PTSD subjects 
from resilient subjects, except for miR-221-3p and miR-222-3p 
(AUC of 0.95 and 0.98, respectively). When obtaining ROC 
curves using miRNA expression levels adjusted for confounders 
(i.e., age, smoking, and alcohol use), all miRNAs could still 
distinguish PTSD subjects from controls (Supplementary 
Figure 3 B.1 and B.2 for miR-221-3p). However, differentiating 
PTSD from resilience was less accurate as reflected by AUCs 
of 0.625, 0.775, 0.725, 0.675, and 0.775 for miR-221-3p, miR-
335-5p, miR-138-5p, miR-222-3p, and miR-146-5p, respectively 
(Supplementary Figure 3 B.1 and B.2 for miR-221-3p).

Target gene Pathway and gO enrichment 
Analyses
Validated gene targets of the 79 miRNAs comprised within the 
blue module were obtained from the online database miRTarBase 

FigURe 1 | Volcano plots of differentially expressed microRNAs (miRNAs) between posttraumatic stress disorder (PTSD) cases and controls (A) and PTSD cases 
and resilient subjects (B). Black dots represent nonsignificantly differentially expressed miRNAs, red dots represent significant miRNAs with a log2 FC<|1|, orange 
dots represent nonsignificant miRNAs with a log2 FC≥|1|, and green dots represent significantly differentially expressed miRNAs with a log2 FC≥|1|. Significance is 
declared when adjusted p<0.05. 

FigURe 2 | Venn diagram showing overlapping microRNAs (miRNAs). Of 
particular interest here are the two miRNAs at the intersection of the blue and 
yellow circle (but not the green), i.e., miR-4454 and miR-210-3p. Obtained 
using https://bioinfogp.cnb.csic.es/tools/venny/index.html
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(Chou et al., 2018). In order to narrow down this extensive 
set of target genes (N = 9270), Fisher tests were performed to 
select only those genes that were targeted by significantly more 
miRNAs than expected by chance. This revealed a set of 146 
genes, which were considered for pathway and enrichment 
analyses (Supplementary Table 3). After FDR adjustment, 15 
significantly enriched KEGG pathways were identified of which 
most were cancer-related (Table 4). GO enrichment analyses of 
these target genes further identified eight significant biological 
processes, five molecular functions, and six cellular components 
(Table 5). The most enriched GO terms were related to apoptotic 
processes, protein binding, and intracellular compartments, 
respectively (Table 5).

DiSCUSSiON
In this study, we aimed to identify the diagnostic biomarker 
potential of circulating miRNAs for PTSD using serum samples 
from Dutch military subjects. We further aimed to gain 

insights in the coexpression patterns of these miRNAs, their 
predicted gene targets, and underlying biological pathways. 
Our preliminary findings suggest that 1) certain miRNAs could 
potentially serve as individual biomarkers of susceptibility, and 
2) the coexpression of a specific set of miRNAs could accurately 
distinguish between subjects with PTSD, resilient individuals, 
and nonexposed controls. Such markers could be useful in 
clinical settings for accurate diagnosis and treatment planning, 
which is especially relevant for individuals who have that have 
difficulties associating their symptoms to a traumatic event, are 
unable to describe their symptoms, or are unwilling to fully 
disclose them (Yehuda et al., 2013).

Differential expression analysis identified 1 differentially 
expressed miRNA between subjects with PTSD and resilient 
individuals and 22 between subjects with PTSD and nonexposed 
controls (after multiple testing correction and a log2 FC cutoff 
of ≥|1|). Of these, miR-138-5p was significantly overexpressed 
in subjects with PTSD as compared to controls, and WGCNA 
revealed that this was the hub miRNA of the blue module. Serum 
levels of this miRNA were previously found altered in a rat model 

FigURe 3 | Significant modules of coexpressed miRNAs. The y-axis displays the module eigengene values. Groups are stratified by trauma exposure (A), and 
trauma exposure and PTSD status (B). Significances were detected using Welch tests (A) or one-way ANOVAs (B) *p < 0.05, ***p < 0.001. 
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of restraint stress (Balakathiresan et al., 2014), while hippocampal 
miR-138-5p levels were associated with the formation of fear 
memories in mice (Li et al., 2018). Another miRNA, miR-
1246, was the only significant miRNA that was downregulated 
in PTSD cases compared to resilient subjects and had a log2 
FC>|1|. This miRNA was previously found downregulated in 
peripheral blood mononuclear cells of war veterans suffering 
from PTSD as compared to healthy nontrauma-exposed controls 
(Bam et al., 2016b). Such findings suggest that these miRNAs 
could be implicated in PTSD and potentially aid in diagnosing 
this disorder.

The three modules of coexpressed miRNAs identified by 
WGCNA revealed that most of the detected miRNAs could be 
clustered based on similarities in their expression patterns. The 
blue module contained 79 miRNAs which could significantly 

differentiate between trauma-exposed individuals and 
nonexposed controls. Interestingly, within the trauma-exposed 
individuals, the expression profiles of these miRNAs were 
significantly different between individuals with and without 
PTSD. This highlights the importance of including and studying 
not only non-trauma exposed controls but also trauma-exposed 
healthy individuals in order to disentangle PTSD effects from 
trauma-related effects. Moreover, 67 of the miRNAs of the blue 
module, including its hub miRNA, were significantly differentially 
expressed between PTSD cases and controls, which enhances the 
notion that these miRNAs could be relevant for PTSD.

Of the five miRNAs with the highest module membership, we 
calculated the AUCs to assess their diagnostic accuracy (Grund 
and Sabin, 2010). In order to determine the biomarker potential 
of these miRNAs, i.e., their potential to reflect PTSD regardless of 
any other confounding condition, we used uncorrected miRNA 
expression values. Interestingly, the results suggest that these 
miRNAs could almost perfectly distinguish PTSD subjects from 
resilient individuals and controls. However, these results were 
not reflected by the DESeq2 analyses in which the expression 
levels of these miRNAs were not different between PTSD cases 
and resilient individuals. Part of this discrepancy can most likely 
be attributed to confounding effects, as DESeq2 analyses were 
corrected for age, alcohol, and smoking status. When obtaining 
the ROC curves using confounder-adjusted miRNA expression 
values, the AUCs more accurately corresponded to the DESeq2 
results. Although these results suggest that the expression of 
our selected miRNAs fluctuates with confounders, they mostly 
strengthen the need of replication in larger cohorts. This will 
further be valuable in determining whether these miRNAs could 
be specific for PTSD only as opposed to trauma more broadly.

Enrichment of GO terms indicated that target genes of the 
coexpressed miRNAs in the blue module are enriched in several 
KEGG pathways of which most were cancer-related. This suggests 
that these miRNAs could be implicated in cancer pathways that 
are also involved in signaling cascades possibly related to PTSD. 

TABle 3 | MicroRNAs (miRNAs) belonging to the Weighted Gene 
Coexpression Network Analysis (WGCNA) blue module.

Nr miRNA Nr miRNA

1 hsa-miR-221-3p 41 hsa-miR-641
2 hsa-miR-335-5p 42 hsa-miR-208a-3p
3 hsa-miR-138-5p 43 hsa-miR-18a-3p
4 hsa-miR-222-3p 44 hsa-miR-193a-5p
5 hsa-miR-146b-5p 45 hsa-miR-411-5p*
6 hsa-miR-31-5p 46 hsa-miR-148a-5p
7 hsa-miR-340-5p 47 hsa-miR-505-3p
8 hsa-miR-210-3p 48 hsa-miR-214-3p
9 hsa-miR-208b-3p 49 hsa-miR-335-3p
10 hsa-miR-302a-5p 50 hsa-miR-4485-3p
11 hsa-let-7i-5p 51 hsa-miR-10a-5p
12 hsa-miR-4454 52 hsa-miR-212-3p
13 hsa-miR-146b-3p 53 hsa-miR-331-3p
14 hsa-miR-99b-3p 54 hsa-miR-490-3p*
15 hsa-let-7a-3p 55 hsa-miR-20a-5p
16 hsa-miR-221-5p 56 hsa-miR-455-5p
17 hsa-miR-27a-3p/27b-3p 57 hsa-miR-874-5p
18 hsa-miR-127-3p 58 hsa-miR-675-5p
19 hsa-miR-3200-3p 59 hsa-miR-504-5p
20 hsa-miR-128-3p 60 hsa-miR-654-3p*
21 hsa-miR-20b-5p 61 hsa-miR-30a-3p*
22 hsa-miR-199a-3p 62 hsa-miR-425-3p
23 hsa-miR-181c-5p 63 hsa-miR-183-5p
24 hsa-miR-652-3p 64 hsa-miR-532-3p*
25 hsa-miR-4662a-5p 65 hsa-miR-193b-3p*
26 hsa-miR-17-5p/106a-5p 66 hsa-miR-130a-3p
27 hsa-miR-146a-5p 67 hsa-miR-7151-5p*
28 hsa-miR-148a-3p 68 hsa-miR-23a-3p
29 hsa-miR-708-5p 69 hsa-miR-877-3p*
30 hsa-miR-34a-5p 70 hsa-miR-424-3p
31 hsa-miR-574-3p 71 hsa-miR-151a-3p
32 hsa-miR-145-3p 72 hsa-miR-3175
33 hsa-miR-490-5p 73 hsa-miR-361-3p
34 hsa-miR-148b-5p 74 hsa-miR-92b-5p
35 hsa-miR-143-3p 75 hsa-miR-181a-3p
36 hsa-miR-184 76 hsa-miR-328-3p*
37 hsa-miR-199b-3p 77 hsa-miR-423-3p*
38 hsa-miR-628-5p 78 hsa-miR-139-5p*
39 hsa-miR-132-3p 79 hsa-miR-339-3p*
40 hsa-miR-181c-3p

miRNAs with a star were not differentially expressed in PTSD cases versus 
controls or versus resilient subjects. The miRNAs are ranked based on their 
absolute module membership (highest to lowest).

TABle 4 | Significant Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways.

Nr Term p value FDR adj 
p value

1 Pathways in cancer 2.94E−10 3.66E−07
2 Pancreatic cancer 6.27E−09 7.79E−06
3 HTLV-I infection 1.26E−08 1.56E−05
4 Small cell lung cancer 8.93E−08 1.11E−04
5 Melanoma 2.14E−07 2.65E−04
6 Hepatitis B 2.23E−07 2.77E−04
7 FoxO signaling pathway 8.06E−07 1.00E−03
8 Colorectal cancer 9.16E−07 1.14E−03
9 Prostate cancer 1.38E−06 1.71E−03
10 MicroRNAs in cancer 2.34E−06 2.91E−03
11 Chronic myeloid leukemia 2.93E−06 3.63E−03
12 Apoptosis 1.14E−05 1.41E−02
13 Central carbon metabolism in cancer 1.41E−05 1.75E−02
14 MAPK signaling pathway 1.49E−05 1.85E−02
15 Glioma 1.56E−05 1.94E−02

These pathways were identified using the online Database for Annotation, 
Visualization and Integrated Discovery (DAVID) v6.8.
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The target genes were also involved in several biological processes 
of which most were involved in apoptotic processes. Previous 
studies found reduced level of apoptotic markers in the serum 
of subjects with PTSD (Mkrtchian et al., 2013) and abnormal 
apoptosis in specific brain regions of animals undergoing single 
prolonged stress as a model for PTSD (Han et al., 2013; Li et al., 
2013; Jia et al., 2018). These findings indicate a potential apoptosis 
dysfunction that could contribute to the inflammation pattern 
frequently observed within PTSD (Mkrtchian et al., 2013). 
Furthermore, the involvement of the identified genes in cellular 
responses after mechanical stimuli could indicate the need to 
correct for traumatic brain injuries, which are not uncommon 
among military members. Unfortunately, this information was 
not available for the present study. Finally, enriched molecular 
function GO terms suggest their involvement in the binding of 
proteins and RNA, while the significant cellular component GO 
terms show involvement of intracellular compartments such as 
the cytosol and the nucleoplasm.

Of note, the present paper refers to trauma-exposed healthy 
individuals as being “resilient” in order to create a clear 
differentiation between trauma-exposed healthy subjects and 
nonexposed control subjects. However, we do acknowledge 
and emphasize that resilience is more than just the reverse 
side of PTSD or the absence of symptomatology (Kalisch et al., 
2017; Snijders et al., 2018b). Instead, resilience is an active 
and dynamic process that needs to remain separated from the 
multifaceted and complex nature of PTSD. This complexity 
further suggests that identifying one true and valid biomarker 
of susceptibility is likely not realistic. We therefore urge future 

studies to combine findings such as the ones presented in this 
paper with several other biological networks and phenotypic 
profiles in order to develop a cross-dimensional, global 
understanding of PTSD.

The main strength of this study lies in the inclusion of three 
different groups, i.e., PTSD subjects, resilient subjects, and 
nonexposed healthy controls, which allows us to disentangle 
PTSD- from trauma-related effects. However, the study is mainly 
limited by its relatively small sample size consisting of male 
subjects only. Given the existence of female- and male-biased 
miRNAs as recently reported by Cui, Yang et al. (2018) (Cui 
et al., 2018), these findings may not be applicable to the female 
population. This study population may also differ from other 
cohorts such as civilians in terms of demographics, psychological 
characteristics, and type of experienced trauma, which limits the 
extrapolation potential. Next, one could question the validity of 
self-report PTSD measures and whether the observed markers 
are specific to PTSD since certain comorbidities such as (history 
of) traumatic brain injuries were not available and thus not 
accounted for.

In conclusion, this paper presents preliminary evidence for 
using specific miRNAs as diagnostic biomarkers of PTSD, either 
individually or grouped within coexpressed clusters. Identifying 
reliable biomarkers of PTSD is essential for accurate diagnosis 
and treatment planning. We therefore encourage future studies 
to build upon these findings by aiming to replicate these in 
larger cohorts and thus pave the way for functional studies to 
gain insights into the precise roles of these miRNAs in stress 
susceptibility.

TABle 5 | Significant gene ontology (GO) terms enriched for a subset of target genes (N = 218) of the coexpressed microRNAs (miRNAs) from the blue module (N = 70).

Nr gO iD gO term p-value FDR adj p-value

Biological process
1 GO:0008630 Intrinsic apoptotic signaling pathway in response to 

DNA damage
5.11E−09 8.60E−06

2 GO:0071456 Cellular response to hypoxia 1.19E−07 2.00E−04
3 GO:0071260 Cellular response to mechanical stimulus 1.46E−07 2.45E−04
4 GO:0006919 Activation of cysteine-type endopeptidase activity 

involved in apoptotic process
4.96E−07 8.35E−04

5 GO:0043066 Negative regulation of apoptotic process 1.54E−06 2.59E−03
6 GO:0045944 Positive regulation of transcription from RNA 

polymerase II promoter
2.35E−06 3.95E−03

7 GO:0030308 Negative regulation of cell growth 8.64E−06 1.45E−02
8 GO:0097192 Extrinsic apoptotic signaling pathway in absence of 

ligand
9.20E−06 1.55E−02

Molecular function
1 GO:0005515 Protein binding 8.15E−13 1.13E−09
2 GO:0044822 Poly(A) RNA binding 3.81E−07 5.29E−04
3 GO:0008134 Transcription factor binding 3.77E−06 5.23E−03
4 GO:0042802 Identical protein binding 1.11E−05 1.54E−02
5 GO:0031625 Ubiquitin protein ligase binding 2.41E−05 3.34E−02

Cellular component
1 GO:0005829 Cytosol 6.27E−12 8.32E−09
2 GO:0005654 Nucleoplasm 8.76E−08 1.16E−04
3 GO:0005741 Mitochondrial outer membrane 2.53E−06 3.36E−03
4 GO:0005634 Nucleus 1.73E−05 2.29E−02
5 GO:0016020 Membrane 2.49E−05 3.31E−02
6 GO:0005739 Mitochondrion 3.34E−05 4.43E−02

Identified using the online Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.8.
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E-cadherin is a transmembrane glycoprotein responsible for cell-to-cell adhesion, 
and its loss has been associated with metastasis development. Although E-cadherin 
downregulation was previously reported in canine prostate cancer (PC), the mechanism 
involved in this process is unclear. It is well established that dogs, besides humans, 
spontaneously develop PC with high frequency; therefore, canine PC is an interesting 
model to study human PC. In human PC, CDH1 methylation has been associated with 
E-cadherin downregulation. However, no previous studies have described the methylation 
pattern of CDH1 promoter in canine PC. Herein, we evaluated the E-cadherin protein and 
gene expression in canine PC compared to normal tissues. DNA methylation pattern 
was investigated as a regulatory mechanism of CDH1 silencing. Our cohort is composed 
of 20 normal prostates, 20 proliferative inflammatory atrophy (PIA) lesions, 20 PC, and 
11 metastases from 60 dogs. The E-cadherin protein expression was assessed by 
immunohistochemistry and western blotting and gene expression by qPCR. Bisulfite- 
pyrosequencing assay was performed to investigate the CDH1 promoter methylation 
pattern. Membranous E-cadherin expression was observed in all prostatic tissues. 
A higher number of E-cadherin negative cells was detected more frequently in PC 
compared to normal and PIA samples. High-grade PC showed a diffuse membranous 
positive immunostaining. Furthermore, PC patients with a higher number of E-cadherin 
negative cells presented shorter survival time and higher Gleason scores. Western 
blotting and qPCR assays confirmed the immunohistochemical results, showing lower 
E-cadherin protein and gene expression levels in PC compared to normal samples. We 
identified CDH1 promoter hypermethylation in PIA and PC samples. An in vitro assay with 
two canine prostate cancer cells (PC1 and PC2 cell lines) was performed to confirm the 
methylation as a regulatory mechanism of E-cadherin expression. PC1 cell line presented 
CDH1 hypermethylation and after 5-Aza-dC treatment, a decreased CDH1 methylation 
and increased gene expression levels were observed. Positive E-cadherin cells were 
massively found in metastases (mean of 90.6%). In conclusion, low levels of E-cadherin 
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inTrODUCTiOn
Human prostate cancer (PC), the second cause of male cancer-
related death in North America, has a variable behavior (Siegel 
et al., 2019). The mortality rate is associated with metastasis 
(Huynh et al., 2016), which more commonly affects bone, lymph 
node, and lung (Siegel et al., 2019). Canine PC is a very aggressive 
disease associated with high metastatic rate at the diagnosis 
(more than 85%) being bones, lungs, and iliac lymph nodes, the 
most common metastatic sites disease-associated (Cornell et al., 
2000; Fonseca-Alves et al., 2015a).

Dogs have been reported as a model for human PC and 
the knowledge regarding molecular aspects of canine PC has 
increased in recent years (Fonseca-Alves et al., 2018a; Costa 
et al., 2019; Laufer-Amorim et al., 2019; Rivera-Calderón et al., 
2019). These recent studies bring new evidence that canine PC 
can represent a model to human castration-resistant prostate 
cancer (CRPC) (Laufer-Amorim et al., 2019). Usually, canine 
PC lacks NKX3.1, PTEN (Fonseca-Alves et al., 2013; Fonseca-
Alves et al., 2018a; Fonseca-Alves et al., 2018b), and androgen 
receptor expression (Laufer-Amorim et al., 2019) resembling 
human CRPC. Besides that, canine PC shows alterations in 
TP53, C-MYC, and MDM2 protein expression (Fonseca-
Alves et al., 2013; Fonseca-Alves et al., 2018b). These findings 
pointed out that the clinical behavior and molecular alterations 
are similar in both species, making dogs an exciting model in 
comparative initiatives.

The carcinogenic process, from normal to pre-neoplastic and 
invasive carcinoma, involves the ability of epithelial cells to detach 
one another, survive and invade the surrounding tissues (Friedl 
and Wolf, 2003). Metastasis of PC is a complex process associated 
with loss of epithelial markers, acquirement of a mesenchymal 
phenotype, and ability of cells to spread through the lymphatic 
system or bloodstream (Staník et al., 2014). E-cadherin is a 
transmembrane protein that has a crucial role in cell adhesion 
and migration (Debelec-Butuner et al., 2014). E-cadherin also 
is involved in the β catenin/APC pathway, which is related to 
cell proliferation and epithelial-mesenchymal transition (EMT) 
(Tsui et al., 2016). Loss of E-cadherin is associated with poor 
prognosis in patients with high-grade prostate tumors in both 
humans (Umbas et al., 1992; Umbas et al., 1994; Abdelrahman 
et al., 2017; Dhar et al., 2017; Wang et al., 2017; Li et al., 2019) and 
canine (Fonseca-Alves et al., 2013; Fonseca-Alves et al., 2015a; 
Kobayashi et al., 2018).

Different mechanisms have been implicated with E-cadherin 
downregulation in human medicine, including copy number loss 
(Saramaki and Visakorpi, 2007), somatic mutations (Busch et al., 
2017), methylation (Graff et al., 1995; Yoshiura et al., 1995; Li et al., 
2001; Mostafavi-Pour et al., 2015), and suppression mediated by 

ZEB1 and SRC family kinases (Mostafavi-Pour et al., 2015). CDH1 
gene repression promoted by its promoter hypermethylation, 
plays a crucial role in tumor invasion and spread (Graff et al., 
1995; Yoshiura et al., 1995; Li et al., 2001; Mostafavi-Pour et al., 
2015). CDH1 hypermethylation and E-cadherin downregulation 
have been reported in more than 75% of patients with metastatic 
PC (Maruyama et al., 2002; Singal et al., 2004; Hoque et al., 
2005). Also, CDH1 promoter methylation is widely studied as a 
cause of E-cadherin down-regulation in human PC (Graff et al., 
1995; Yoshiura et al., 1995; Li et al., 2001; Mostafavi-Pour et al., 
2015). However, conflicting results have been reported due to 
the difficulties in studying methylation (Zhang et al., 2016b). 
Disparities among methodologies, sample quality, regions of 
prostatic biopsy, and promoter region evaluated make difficult 
comparisons among the published studies (Zhang et al., 2016b). 
Besides that, neoplastic cells can induce hypomethylation and 
re-express the transcript and its respective protein (Chao et al., 
2010), which is compatible with the reversibility phenomenon 
described in the methylation process.

Transcriptional E-cadherin downregulation mediated by its 
promoter methylation is widely investigated in human PC (Graff 
et al., 1995; Yoshiura et al., 1995; Li et al., 2001; Mostafavi-Pour 
et al., 2015), and E-cadherin plasticity has been proposed during 
the metastatic progression in human PC (Bae et al., 2011). In 
high-grade human PC, E-cadherin loss leads to the invasion of 
metastatic cells to lymph nodes and bones (Putzke et al., 2011). 
Interestingly, bone metastasis seems to express more E-cadherin 
than soft tissue metastasis (Putzke et al., 2011). However, few 
studies evaluating the molecular mechanisms related to CDH1 
silencing have been reported in dogs. Loss of E-cadherin 
during the lymphatic invasion by neoplastic epithelial cells and 
E-cadherin re-expression in metastatic foci were previously 
reported in canine PC (Fonseca-Alves et al., 2015a).

Herein, we investigated E-cadherin gene and protein 
expression in canine proliferative inflammatory atrophy 
(PIA), PC and its metastasis as well the methylation status of 
CDH1 as a silencing mechanism responsible for the dynamic 
E-cadherin expression.

MaTErials anD METhODs

Tissue selection and histopathological 
Evaluation
This cohort is composed of 60 dogs of different breeds, varying 
from 8 to 14 years old. We selected 20 normal canine prostates, 20 
PIA lesions, and 9 PC formalin-fixed embedded-paraffin (FFPE) 
from the archives from the Department Veterinary Pathology, 
Sao Paulo State University- UNESP, Brazil. In addition, 11FFPE 

protein, gene downregulation and CDH1 hypermethylation was detected in canine PC. 
However, in metastatic foci occur E-cadherin re-expression confirming its relevance in 
these processes.

Keywords: dog, CDH1, prostate, hypermethylation, surface protein
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prostate cancer matched with 11 metastases from the same 
subjects were selected. All metastases were morphologically 
analyzed and presented PSA protein expression, as previously 
described (Fonseca-Alves et al., 2018b). The correspondent fresh 
frozen tissues from 20 normal canine prostates, 20 PIA lesions, 
20 PC samples were used for pyrosequencing and Western blot. 
All FFPE samples were evaluated by protein and gene expression 
using immunohistochemistry and qPCR, respectively.

PC samples were collected during surgical or biopsy 
procedures from animals showing clinical signs. The metastases 
were identified by imaging tests (X-ray or computed tomography) 
followed by a biopsy. Normal and PIA samples were collected 
during necropsies from animals without clinical signs of prostatic 
disease, with an interval between death and necropsy less than 
6 h. All prostate samples were from intact dogs.

The histopathological classification was performed according 
to the human WHO classification of Tumors of the Urinary 
System and Male Genital Organs (Humphrey et al., 2016). The 
Gleason-like system was applied according to Palmieri and 
Grieco (Palmieri and Grieco, 2015). Briefly, the architectural 
patterns are evaluated, and the sum of the primary and secondary 
grades is determined to result in a final Gleason score.

The study was approved by the Animal Ethics Committee 
according to the national and international guidelines for 
using animals in research. All animal owners gave written 
informed consent for the dog’s material, clinical information and 
examination results to be used for research and academic matters 
under protocol #107/2015.

E-cadherin Expression analysis by 
immunohistochemistry
Five-micron thick sections were obtained from FFPE blocks, 
dewaxed in xylol and rehydrated in graded ethanol. For antigen 
retrieval, the slides containing the samples were incubated with 
citrate buffer (pH 6.0) in a pressure cooker (Pascal®; Dako, 
Carpinteria, CA, USA). The samples were then treated with 
freshly prepared 3% hydrogen peroxide in methanol for 20 
min and further washed in Tris-buffered saline. The slides were 
incubated overnight at 4°C with 0.01µg/µL monoclonal mouse 
Anti-Human E-cadherin antibody (catalog number GA059, 
Dako, Carpinteria, CA, USA). A polymer system (catalog 
number K406511-2, Envision, Dako, Carpinteria, CA, USA) was 
applied as a secondary antibody conjugated to peroxidase. DAB 
(3′-diaminobenzidine tetrahydrochloride, Dako, Carpinteria, 
CA, USA) was used as the chromogen, for 5 min, followed by 
Harris hematoxylin counterstain. Negative control using mouse 
universal negative control (Dako, Carpinteria, CA, USA) was 
included according to the manufacturer’s recommendation. 
Positive E-cadherin cells in adjacent epithelial cells were 
considered positive internal controls.

E-cadherin immunoexpression was evaluated according to 
the number of negative cells. Slides were analyzed under a light 
microscope (Leica Microsystems, Germany) and 10 images were 
taken for each slide (Leica QWin V3 software; Leica Microsystems, 
Germany) at high-power (40X objective) field. Representative 
areas were qualitatively selected for immunostaining analysis. 

We choose areas with minimal inflammatory cells, necrosis or 
connective tissue and with lower E-cadherin staining. Samples 
were scored based on an assessment of the number of negative 
cells per the total of cells in 10 high power fields (HPF), according 
to Hong et al. (2011). These results were expressed in a percentage 
of negative cells.

E-cadherin/Ki67 Double immunostaining
E-cadherin and Ki67 double immunoexpression were performed 
to exclude cell proliferation as a mechanism associated with 
E-cadherin focal loss. The procedures were performed as 
previously reported (Fonseca-Alves et al., 2015b). Briefly, the 
paraffin sections were deparaffinated in xylol for 15 min and 
antigen retravel was performed using citrate buffer pH 6.0 
solution in a pressure cooker (Pascal, Dako, Carpinteria, CA, 
USA). Then, endogenous peroxidase was blocked using 8% of 
hydrogen peroxidase (Dinamica, São Paulo, SP, Brazil), diluted 
in methanol (Dinamica, São Paulo, SP, Brazil). We used 0.02µg/
µL of mouse monoclonal anti-Ki67 antibody (catalog number 
GA62661-2, Dako, Carpinteria, CA, USA) overnight at 4°C. 
The polymer system was applied as a secondary antibody for 1 
h (catalog number K406511-2, Envision, Dako, Carpinteria, CA, 
USA) and 3′-diaminobenzidine tetrahydrochloride (DAB, Dako, 
Carpinteria, CA, USA) was used as the chromogen, for 5 min. 
The tissue sections were washed with immunohistochemistry 
buffer (Dako, Carpinteria, CA, USA) and 0.01µg/µL of mouse 
monoclonal anti-E-cadherin antibody (catalog number GA059, 
Dako, Carpinteria, CA, USA) was applied overnight at 4°C. After, 
the HRP magenta chromogen (catalog number GV925, Dako, 
Carpinteria, CA, USA) was used for 5 min and counterstained 
with Harris hematoxylin. The positive and negative controls were 
performed, as described above.

immunoblotting
Western blotting was performed to quantify E-cadherin protein 
expression in seven normal prostates, seven PIA lesions, and 
seven PC. The frozen prostate samples were sectioned in a 
cryostat and re-analyzed to confirm the previous diagnosis. 
The samples were mechanically homogenized, prepared 
and transferred to nitrocellulose membranes, as previously 
described (Rivera-Calderón et al., 2016). The blots were blocked 
with 6% skimmed milk in TBS-T (BioRad, Hercules, CA, USA) 
for 2 h. Next, the Mouse monoclonal anti-human E-cadherin 
(0.002µg/µL; catalog number GA059, Dako, Carpinteria, CA, 
USA) antibody was applied and the slides were incubated at 
4°C for 18 h. Goat polyclonal anti-β-actin antibody (0.001µg/
µL, catalog number sc-1615, Santa Cruz Biotechnology, 
Santa Cruz, CA, USA) was used as a loading control. After 
incubation with the corresponding horseradish peroxidase-
conjugated sheep anti-mouse (catalog number NA931, GE 
Healthcare, Chicago, IL, USA) and donkey anti-goat (catalog 
number NA9340, GE Healthcare, Chicago, IL, USA) secondary 
antibodies (0.001µg/µL), the blots were detected by means of 
chemiluminescence (Amersham ECL Select Western Blotting 
Detection Reagent, GE Healthcare). Protein bands were 
quantified by densitometry analysis (Imagequant LAS 500, 
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GE Healthcare, Chicago, IL, USA) and expressed as integrated 
optical density (IOD). E-cadherin protein expression was 
normalized using the β-actin values. Normalized data were 
expressed in means and standard deviations (SD).

Tumor-Derived Cell Cultures
Two cell lines (PC1 and PC2) were established in our previous 
study (Zhang et al., 2016). The PC1 cell line was from a 10-years-
old, intact, mixed breed dog with non-metastatic PC (cribriform 
pattern and Gleason score 10). PC2 cell line was from an 11-year-
old, intact, poodle dog with metastatic PC (tumor showed 
cribriform pattern and Gleason score 10). Both cell lines were 
cultured (the passage 30) in DMEM medium (Lonza, Basel, 
Switzerland) containing 10% fetal bovine serum (FBS) (LGC Bio, 
Cotia, SP, Brazil), 1% of penicillin-streptomycin (Thermo Fischer 
Scientific, Waltham, MA, USA) and amphotericin B (Thermo 
Fischer Scientific, Waltham, MA, USA) at 37°C in a humidified 
atmosphere containing 5% CO2. After reaching a minimum of 
80% of confluence, both cell lines were processed to obtain DNA. 
DNA extraction were also performed in their respective primary 
tumors (fresh frozen samples) followed by pyrosequencing to 
evaluate the CDH1 methylation status.

Methyl Thiazolyl Tetrazolium (MTT) assay
The 5-Aza 2′deoxycytidine (5-Aza-dC) toxicity was investigated 
in canine prostatic cells based on the MTT assay. The IC50 values 
were calculated from the dose-response curves to establish 
the in vitro dosage that will induce demethylation instead of 
cell death. We used 96-well plates to grow the cancer cells at a 
density of 2,500 cells per well. The medium was changed every 
48 h, and 5-Aza-dC (Sigma-Aldrich, Saint Louis, MO, USA) was 
added every 24 h. MTT analysis was performed on day 7. The 
medium was removed, the cells were washed with 3X PBS, and 
fresh medium was added in each well followed by incubation at 
37°C for 4 h. The medium was removed and 200μL of dimethyl 
sulfoxide (DMSO) (Sigma-Aldrich, Saint Louis, MO, USA) was 
added in each well and formazan (Sigma-Aldrich, Saint Louis, 
MO, USA) was solubilized. The optical density (OD) level was 
measured at 570 wavelengths. Each treatment was performed 
in triplicate and the experiment in duplicate. Cell viability was 
calculated into a percentage.

CDH1gene Expression
Gene expression analysis was performed in our set of samples 
and both cell lines prior and after 5-Aza-dC treatment. 
Macrodissection was performed in normal, PIA, PC, and 
metastatic samples (FFEP) using 16-gauge needles, as previously 
described (Hoque et al., 2005). mRNA was extracted using 
RecoverAll™ Total Nucleic Acid Kit (Ambion, Life Technologies, 
MA, USA) according to the manufacturer's instructions. cDNA 
synthesis was performed using total RNA (Applied Biosystems, 
Foster City, CA, USA), according to the manufacturer's 
recommendations. The primers set for CDH1 (Gene ID: 
442858) (Forward: 5′-CAGCATGGACTCAGAAGACAGAAG-3′ 
and Reverse: 5′-TTCCGGGCAGCTGATAGG-3′) and  ACTB 

(Gene ID: 403580) used as endogenous (ACTB, Forward: 
5′-GGCATCCTGACCCTCAAGTA-3′ and Reverse: 5′-CTTCT 
CCATGTCGTCCCAGT-3′) genes were used for RT-qPCR 
assays. The reaction was conducted in a total volume of 10 
μL containing Power SYBR Green PCR Master Mix (Applied 
Biosystems; Foster City, CA, USA), 1 μL of cDNA (1:10) and 
0.3  μM of each primer pair in triplicate using QuantStudio 
12K Flex Thermal Cycler equipment (Applied Biosystems; 
Foster City, CA, USA). A dissociation curve was included in all 
experiments to determine the PCR product specificity. Relative 
gene expression was quantified using the 2-ΔΔCT method (Livak 
and Schmittgen, 2001).

5-aza-2′-Deoxycytidine Treatment
To investigate if hypermethylation is associated with CDH1 
silencing, we treated the PC cell lines with 5-Aza-dC and 
compared with untreated cells. As previously established by 
MTT assay, we added 1μg of 5-Aza-dC to the culture medium 
every 24 h (due to 5-Aza-dC stability) and for seven days. 
Treated cells were washed with PBS three times. All procedures 
were performed in duplicate, according to da Costa Prando 
et al. 2011). Subsequently, mRNA and DNA were extracted to 
perform RT-qPCR and pyrosequencing analysis, respectively.

Quantitative Bisulfite Pyrosequencing
The pyrosequencing analysis was performed to evaluate the 
frequency of CDH1 gene promoter methylation in all frozen 
tissue samples (20 normal prostates, 20 PIA samples, and 
20 PC) and cell lines (prior and after 5-Aza-dC treatment). 
Prostate samples were sectioned in a cryostat to confirm 
the diagnosis. The bisulfite conversion of the genomic DNA 
was performed using EZ DNA Methylation-Gold Kit (Zymo 
Research Corporation, Irvine, CA, USA). The forward (5′ 
TTTGGGAAGAGGAGGGGG 3′) and reverse primer (5′ 
CCCTTCCCCTCTCTCTCTC - BIOTIN 3′) of CDH1 CpG 
island (Gene ID: 442858) were amplified by PCR (HotStarTaq 
Master Mix kit - Qiagen). The pyrosequencing was performed 
using a sequencing primer (5′ TTTGGGAAGAGGAGGGGG 
3′) following the manufacturer's instructions (PyroMark ID 
Q96, Qiagen and Biotage, Uppsala, Sweden).

statistical analysis
Statistical analysis was performed using GraphPad Prism v.8.1.0 
(GraphPad Software Inc., La Jolla, CA, USA). The column 
test was performed to evaluate data normality. For statistical 
purposes, the mean of E-cadherin negative cells was used as a 
threshold to compare the overall survival between patients with 
over and lower protein expression. Variance analysis (ANOVA) 
was applied to compare CDH1 transcript levels among normal, 
PIA and PC samples. Mann-Whitney test was used to evaluate the 
association of E-cadherin protein and gene expression between 
two categorical variables. Correlation among the IHC score and 
clinical parameters, protein expression and transcript levels were 
also investigated. Mann-Whitney test was applied to evaluate 
the differences in the methylation levels among the groups. The 
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samples were grouped according to the Gleason score in “low 
Gleason score” (Gleason score 6 and 8) and “high Gleason score” 
(Gleason score 10).

rEsUlTs

Clinical Features
The clinical features of the 20 PC-affected dogs are described 
in Table 1. Survival information was not available in two of 
20 PC patients. The 20 canine PC preseted Gleason scores 6 
(30% of cases), 8 (15%) and 10 (55%). Eleven of 20 dogs with 
PC had metastasis (55%); eight of them (8/11) presented bone 
and lung metastasis while pelvic bones, intestine and liver were 
observed in one patient each. From the patients with multiple 
metastatic sites (bone and lung), only the bone biopsy was 
evaluated. Seventy-three percent (8/11) of PC patients showing 
Gleason score 10 had metastasis. Dogs with PC Gleason 8 had 
no metastasis (n = 3), while 50% (3/6) of cases with Gleason 6 
showed metastasis at diagnosis. Patients with lower Gleason 

score (6 and 8) experienced a higher survival time (P = 0.003) 
than those with Gleason score 10 (Figure 1A).

E-cadherin immunoexpression
We found positive epithelial cells with membranous staining in 
normal, PIA, PC (Figure 2), and metastasis. Cases with less than 
10% of negative cells showed a higher survival time (P = 0.004) 
(Figure 1B). A higher number of negative cells was observed in 
PC (Figure 1C) compared to normal and PIA samples. Normal 
samples showed 100% E-cadherin positive cells; while a mean 
of 2.1% and 10.5% of negative cells was detected in PIA and PC 
samples, respectively. Metastases had a mean of 9.5% of negative 
cells. Tumors showing Gleason score 10 had a higher percentage 
of negative E-cadherin neoplastic cells compared to PC Gleason 
scores 6 and 8 and normal samples (P = 0.0003). Metastases had 
a higher number of negative cells in comparison with normal 
samples (P = 0.0003) and no statistical difference was observed 
between all PC samples and metastases (P > 0.05). E-cadherin 
pattern in each histological subtype is detailed in Table 1. The 

TaBlE 1 | Clinical information of 20 canine prostate cancer-affected patients evaluated in this study.

Case Breed age 
(years)

histological 
Pattern

gleason-
like 

score*

Treatment Metastasis** E-cadherin 
negative 
Cells (%)

E-cadherin 
Positive 
Cells (%)

Methylation 
(%)

Follow-up 
(days)

1 Boxer 14 Cribriform 10 Piroxicam Lung, Bone 
and Liver

30 70 94 90

2 Boxer 12 Cribriform 10 LDMT Bone, Lung 15 85 94 278
3 German 

Shepherd
8 Small acinar 6 RP No 2 98 95 453

4 American 
Cocker 
Spaniel

9 Small acinar 6 LDMT No 1 99 95 523

5 Poodle 13 Small acinar 6 N/T Bone, Lung 10 90 95 321
6 Poodle 14 Small acinar 6 LDMT No 20 80 94 674
7 Boxer 11 Small acinar 6 Piroxicam Bone 1 99 92 52
8 MBD 14 Small acinar 6 LDMT Lung, 

Intestine
0 100 93 132

9 Poodle 13 Papillary 8 Piroxicam No 10 90 95 463
10 MBD 12 Papillary 8 Carboplatin + 

Piroxicam
No 0 100 92 567

11 MBD 11 Papillary 8 LDMT No 8 92 93 368
12 American 

Cocker 
Spaniel

10 Small acinar 10 RP No 2 98 98 32

13 Poodle 10 Solid 10 RP No 17 83 100 213
14 MBD 10 Solid 10 Piroxicam Lung, Liver 0 100 95 55
15 MBD 15 Cribriform with 

comedonecrosis
10 Doxorrubicin 

+ Piroxicam
Bone, Lung 10 90 94 75

16 American 
Cocker 
Spaniel

10 Solid 10 Doxorrubicin Bone, Lung 22 78 100 78

17 MBD 9 Cribriform 10 LDMT Bone, Lung 15 85 98 375
18 MBD 7 Cribriform with 

comedonecrosis
10 N/A Bone, Lung 25 75 96 N/A

19 MBD 13 Cribriform with 
comedonecrosis

10 RP Bone, Lung 5 95 97 45

20 Teckel 11 Cribriform 10 N/A No 9 91 95 N/A

PC, prostate cancer; MBD, Mixed Breed dog; N/A, Not Available; N/T, No Treatment; RP, Radical Prostatectomy; LDMT, Low-dose metronomic therapy. * Gleason like 
score was evaluated according to Palmieri and Grieco (2015). ** Metastasis identified at the diagnosis or during the follow-up.
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comparison between E-cadherin expression clinical-pathological 
data is summarized in Table 2.

Comparing the E-cadherin immunoexpression between the 
primary tumors and its paired metastasis, no statistical difference 
was found (P > 0.05). The mean of E-cadherin negative cells was 
similar in primary PC and its paired metastasis (15 ± 7.09 and 
16.8 ± 5.25, respectively). No correlation was found between the 
number of E-cadherin negative cells in the primary PC samples 
(N = 11) and its respective metastasis (N = 11) (r = 0.076, P = 
0.8223). In addition, this comparison was no significant by 
regression analysis [F (1, 9) = 0.01838, P = 0.08951, R2 = 0.7071]. 
Although in a limited number of cases, a significant difference 
was observed comparing E-cadherin negative cells in bone 
metastasis (N = 9; 14.77 ± 4.02) with those in soft tissues (N = 
2; 26 ± 5.0) A positive correlation between E-cadherin negative 
cells (r = 0.8565, P = 0.0052) was found comparing only primary 
tumors with the respective paired bone metastasis. We also found 
a significant regression equation (F (1, 7) = 25.08, P = 0.0016, 
R2 = 0.7818), comparing primary tumors with their respective 
metastasis. We observed a positive correlation between the 
Gleason score and the number of negative E-cadherin neoplastic 

cells (R = 0.8505 and P < 0.0001) and a significant regression 
equation [F (1, 18) = 36.18, P < 0.0001), R2 = 0.6678]. Overall, 
prostate cancer with a high Gleason score showed a higher 
number of negative E-cadherin cells in comparison with those 
with lower Gleason scores. The linear regression graphics are 
shown in Supplementary Figure 1.

We also investigated the proliferative index in E-cadherin 
negative areas using E-cadherin/Ki67 double immunoexpression. 
All normal samples (N = 20) showed only membranous 
E-cadherin with no nuclear Ki67 expression. On the other 
hand, it was identified a higher number of double-stained 
epithelial cells in PIA samples (N = 20). In PC samples, areas 
with E-cadherin downregulation showed only scattered Ki67 
expression, indicating a low proliferative index (Supplementary 
Figure 2).

Western Blotting
A strong 120 KDa band was identified in normal prostate tissues 
(Figures 1D, G). No statistical difference was observed comparing 
the E-cadherin expression in normal prostates with PIA samples. 

FigUrE 1 | (a) survival analysis according to the percentage of E-cadherin negative cells. Patients with over than 10% o E-cadherin negative cells experienced 
a shorter survival time. (B) survival analysis of the canine prostate cancer affected patients according to the Gleason score. Patients with Gleason score 10 
experienced a shorter survival time. (C) E-cadherin immunohistochemistry showing positive membranous staining (arrows) in neoplastic epithelial cells. Cells 
were considered E-cadherin negative when partial or total (arrowhead) lack of expression. (D) Western blotting showing E-cadherin expression in normal, 
proliferative inflammatory atrophy and prostate cancer (PC) samples. It is possible to observe E-cadherin down expression in PC samples. (E) ANOVA analysis 
of CDH1 transcripts in the different canine samples. The prostate cancer (PC) samples showed a lower CDH1 transcript levels among normal, proliferative 
inflammatory atrophy (PIA) and metastasis. (F) Graphic representation of the percentage of methylation in normal, PIA and PC samples. PIA and PC samples were 
hypermethylated compared to normal samples. (g) graphic representation of E-cadherin protein expression by Western blotting after normalization with β-actin. It is 
possible to observe lack in both PIA and PC compared to normal samples. *Statistical difference between two variable comparisons.
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However, a lower E-cadherin expression was detected in PC 
compared to normal prostate (P = 0.0003) and PIA samples 
(P = 0.0001). Supplementary Figure 3 is representative of the 
Western blotting assays performed in normal prostate, PIA, and 
PC samples.

CDH1gene Expression
PC samples showed lower CDH1 transcript levels in comparison 
with PIA (P = 0.0038) and normal samples (P = 0.0427) (Figure 
1E). No statistical difference was observed between the transcript 
levels in PIA and normal samples. Unfortunately, only five 
metastatic samples (5/11) were evaluated by RT-qPCR, mainly 
due to poor mRNA quality. The median of CDH1 relative 
quantification (RQ) was 0.7 (0.2–9.5), 0.9 (0.2–5.6), 0.5 (0.02–1.7), 
and 3.45 (0.6–2.4) in normal, PIA, PC and metastases samples, 
respectively. In prostate cancer, a strong positive correlation was 
observed between high levels of E-cadherin protein expression 
and CDH1 transcript levels (Spearman R = 0.9429; P = 0.0167) 
(Significant regression equation: F (1, 4) = 9.654, P= 0.036, R2 = 
0.7071). CDH1 gene expression between the primary tumors 
(N = 5) and its paired metastasis (N = 5) showed no correlation 
(r = 0.2000, P = 0.7833) and no significant regression equation [F 
(1, 2) = 0.06048, P = 0.8216, R2 = 0.01976]. A higher methylation 
pattern was detected in samples with lower levels of CDH1 
transcripts and a higher number of E-cadherin negative cells, 
which revealed a direct association of the methylation pattern 
with gene and protein down expression.

Quantitative Bisulfite Pyrosequencing
CDH1 promoter hypermethylation was identified in PIA and 
PC compared to normal samples (P < 0.0001). The median of 
methylation was 20.5% (7–55%), 98% (94–100%) and 95% (94–
100%) in normal, PIA and PC samples, respectively (Figure 1F) 
(Supplementary Figure 4).

InVitro assays
CDH1 was hypermethylated and presented lower transcript levels 
(0.86±0.04) in the PC1 cell line. After the 5-Aza-dC treatment, 
this cell line presented an inverted methylation pattern and 
increased gene expression level (1.7 ±0.2).

DisCUssiOn
In this study, E-cadherin gene and protein expression findings 
were associated with CDH1 methylation in canine PC, which 
gives evidence of the regulatory mechanism of CDH1 in canine 

FigUrE 2 | Histological and immunohistochemical E-cadherin evaluation in 
canine prostate cancer (PC). (a) canine PC presenting a papillary pattern. It 
is possible to observe multifocal areas of E-cadherin loss (B) (arrows) in this 
pattern. (C) Canine PC with cribriform patter. Note E-cadherin membranous 
diffuse expression (D) in neoplastic cells and areas of E-cadherin loss (arrows). 
(E) Canine PC with solid pattern. (F) area of E-cadherin loss in canine PC with 
solid pattern. There are only few remaining positive cells (arrows). (g) Canine 
PC showing cribriform with central comedonecrosis pattern. (h) is possible 
to observe membranous E-cadherin expression in neoplastic cells with only 
few cells showing no E-cadherin expression. (i) Canine PC with signet ring 
pattern. (J) It is possible to observe multifocal areas with E-cadherin loss.

TaBlE 2 | Mean percentage of E-cadherin negative and positive cells according to the diagnosis and Gleason score.

ihC results normal Pia PC Metastasis gleason 6 gleason 8 gleason 10

Positive cells (%) 100±0 97.9 89.5±4.7 90.5±4.2 98.6±7.3 91%±6.9 82.6±7.1
Negative cells (%) 0±0 2.1 10.5±4.6 9.5±4.2 1.4±7.2 9±6.5 17.4±7.4

IHC' protein expression by immunohistochemistry; PIA, Proliferative inflammatory atrophy; PC, Prostate cancer.
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PC. E-cadherin is a cell-to-cell adhesion molecule and its loss 
correlates with epithelial-mesenchymal transition, metastasis 
and poor prognosis (Putzke et al., 2011; Fonseca-Alves et al., 
2015a). Considering the high variation among the different 
semi-quantitative scores for immunohistochemical evaluation, 
we counted the number of negative cells and provided a score. 
We found a higher number of negative E-cadherin cells in PC 
compared to PIA and normal prostate. Also, a lower number of 
positive cells was correlated with survival.

Similarly to our findings, Fonseca et al. (2013) and Tsui 
et al. (2016) reported that PIA presented a lack of E-cadherin 
expression compared with normal samples. Using Western 
blot, we confirmed these previous data. Moreover, no statistical 
difference was observed in PIA compared to PC in cases with 
a higher E-cadherin expression, which could be explained 
by the lack of metastatic potential and malignancy of these 
preneoplastic lesions. Furthermore, during cell proliferation, 
it is expected the presence of E-cadherin loss by epithelia 
cells related to cell division instead of a migration (Tsui et al., 
2016). For this reason, we performed E-cadherin/Ki67 double 
staining and confirmed that tumor areas presented E-cadherin 
losses with no proliferative activity. This result strongly 
suggests that E-cadherin downregulation is more related to 
cell migration instead of proliferation. In human PC, CDH1 
hypermethylation and E-cadherin loss is more frequent in 
metastatic tumors with higher Gleason score (Maruyama et al., 
2002). Similar results were observed in our canine PC samples. 
Although the Gleason score is relatively new  in veterinary 
practice, our study is the first to associate Gleason score with 
overall survival and E-cadherin downregulation.

In human PC, E-cadherin downregulation is frequent in later 
stages of the disease and poorly differentiated tumors (Ipekci 
et al., 2015; Zhang et al., 2016a). Considering the dynamic 
process of E -cadherin expression, a group of cases with 
negative cells could also be associated with worse prognosis 
in canine PC. We showed an association between a higher 
number of E-cadherin negative cells with shorter survival 
time, suggesting that the number of E-cadherin negative 
cells could be used as a prognostic factor. To our knowledge, 
no previous studies presented the percentage of E-cadherin 
negative cells and their association with the prognosis in 
human PC (Graff et al., 1995; Yoshiura et al., 1995; Li et al., 
2001; Mostafavi-Pour et al., 2015). On the other hand, in 
human pancreatic adenocarcinomas, Hong et al. (Hong et al., 
2011) described the lowest survival time in patients with total a 
loss of E-cadherin compared with those with partial loss of the 
protein expression. The authors suggested that partial and total 
loss of E-cadherin are an independent negative prognostic 
factor. In human breast cancer, different authors associated 
E-cadherin decreased expression with worse prognosis, such 
as lower overall survival, disease-free interval, positive lymph 
node (Tang et al., 2012; Ricciardi et al., 2015; Wang et al., 2018), 
and higher proliferative rate evaluated by Ki-67 (Kashiwagi 
et al., 2011). In 103 prostate carcinomas, Ipekci et al. (Ipekci 
et al., 2015) showed E-cadherin decreased expression, but no 
correlation was found with disease-free survival. The authors 
suggested that epithelial-mesenchymal transition evaluated 

by E-cadherin, β-catenin, vimentin and Wnt is a late event in 
tumor progression. These proteins could not be detected in the 
primary tumor and, therefore, would not be good predictors of 
metastasis (Ipekci et al., 2015).

We found a strong positive correlation (r = 0.9424) between 
E-cadherin protein and gene expression in PC samples. 
Interestingly, we also found an association between the CHD1 
hypermethylation pattern with gene downregulation. The 
PC1 cell line was densely hypermethylated and associated 
with low transcript levels. After 5-Aza-dC treatment, CDH1 
hypomethylation and restoration of gene expression were 
detected. These results indicated an epigenetic regulation of 
CDH1 in canine PC. Similar results were previously described 
in two prostatic cell lines, DuPro and TSUPr1 (Graff et al., 
1995). Considering that DNA methylation is a reversible 
process, the 5-Aza-dC treatment was efficient in inducing gene 
demethylation, which suggested that hypermethylated tumors 
could be sensitive to epigenetic drugs. The hypomethylating 
agents have been used to treat acute myeloid leukemia (AML) 
with promising results (Cruijsen et al., 2014). Although 
our findings are preliminary, dogs could be a preclinical 
model in precision medicine for testing epigenetic agents in  
PC patients.

Although cells lacking E-cadherin expression acquire 
motility and show an invasive and migratory phenotype, 
only a few cells with no E-cadherin expression are required 
to develop micrometastasis (Umbas et al., 1994; Canel et al., 
2013). Thus, the evaluation of this cell group is relevant for 
a better understanding of the metastatic process. E-cadherin 
downregulation occurs in most cases by posttranscriptional 
mechanisms (Canel et al., 2013). CDH1 promoter 
hypermethylation is widely studied in many human cancers, 
including prostate cancer (Graff et al., 1995; Yoshiura et al., 
1995; Li et al., 2001; Mostafavi-Pour et al., 2015). Interestingly, 
a mean of 90.5% of E-cadherin positive cells was detected 
in the metastasis. Our data reinforce that the modulation of 
the metastatic foci and adhesion molecules re-expression 
are pivotal for the metastasis development (Welch, 2007). A 
higher number of metastatic cases was observed (N = 3) in 
patients showing Gleason 10 (N = 8). These samples presented 
a mean of 17.4% of negative cells. Overall, these results suggest 
that a group of cells showing lack of E-cadherin expression 
in primary tumors would have the potential to invade and 
re-express E-cadherin in metastatic foci.

There is limited information regarding E-cadherin expression 
in human PC and its paired metastasis (Bae et al., 2011). During 
the invasion of an artificial basal cell membrane, prostatic cells 
presented loss of E-cadherin expression and re-expressed after 
overtaking the membrane (Bae et al., 2011). In dogs, the lack of 
E-cadherin expression was previously demonstrated in PCs and a 
complete E-cadherin loss was observed in the neoplastic emboli 
(Fonseca-Alves et al., 2015a). Interestingly, the paired metastasis 
showed E-cadherin re-expression. Thus, a dynamic E-cadherin 
expression occurs during the tumor progression to metastasis. 
Further studies to evaluate the CDH1 methylation analysis in 
circulating prostate cancer cells and its prognostic value could be 
relevant for clinical purposes.
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COnClUsiOn
Our results suggested an epigenetic regulation of the E-cadherin 
promoter leading to E-cadherin downregulation in canine 
PC. The number of negative E-cadherin cells investigated by 
immunohistochemistry demonstrated the importance of these 
cells to PC prognosis. Overall, our results indicate that dogs 
could be a preclinical model for testing hypomethylating agents 
in precision medicine.
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In-stent restenosis corresponds to the diameter reduction of coronary vessels following
percutaneous coronary intervention (PCI), an invasive procedure in which a stent is deployed
into the coronary arteries, producing profuse neointimal hyperplasia. The reasons for this
process tooccurstill lackaclear answer,which ispartlywhy it remainsasaclinically significant
problem. As a consequence, there is a vigorous need to identify useful non-invasive
biomarkers to differentiate and follow-up subjects at risk of developing restenosis, and due
to their extraordinary stability in several bodily fluids, microRNA research has received
extensive attention to accomplish this task. This review depicts the current understanding,
diagnostic potential and clinical challenges of microRNAmolecules as possible blood-based
restenosis biomarkers.

Keywords: epigenetics, microRNAs, in-stent restenosis, biomarkers, personalized and precision medicine
INTRODUCTION

Cardiovascular disease (CVD) refers to a group of pathologies initiated by an underlying process
known as atherosclerosis and ultimately affecting the heart and blood vessels. Atherosclerosis
plaques build-up inside the coronary arteries, consequently limiting the blood flow and resulting in
coronary artery disease (CAD). Atherosclerosis is an inflammatory disease (Ross, 1999) able to
produce two morphologically opposite lesions within the coronary arteries, stenotic and non-
stenotic. The last may be asymptomatic for years and clinical management is generally supported on
lifestyle modifications and, eventually, pharmacological interventions in high-risk individuals. In
contrast, stenotic lesions have clinical manifestations like angina pectoris, and common medical
management includes revascularization procedures such as coronary artery bypass grafting (CABG)
and percutaneous transluminal coronary angioplasty (PTCA), a widely performed techniques since
the late 1970s to correct serious coronary atherosclerotic lesions (Gruntzig et al., 1979), restoring
myocardial blood flow and reducing angina symptoms. Despite its massive use, however, elevated
restenosis rates affected almost half of the patients treated (Fischman et al., 1994) and established
one of the main problems of current cardiology. Restenosis is arbitrarily defined as a narrowing of
vessel diameter greater than 50% to that of the reference vessel (Marx et al., 2011), and results from
excessive proliferation andmigration of vascular smoothmuscle cells (VSMC) to the intima, eventually
leading to re-narrowing of the arterial lumen (Chaabane et al., 2013). Since this problemwas identified,
interventional cardiology has moved from PTCA to percutaneous coronary intervention (PCI), a
technique involving the placement of a stent. This procedure is themostwidely performed treatment for
January 2020 | Volume 10 | Article 12471437
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symptomatic coronary disease patients (Serruys et al., 1994). The
use of bare metal stents (BMS) has made it possible to eliminate
factors that favor restenosis, such as elastic recoil and negative
remodeling (Lowe et al., 2002), reducing the prevalence of
restenosis from 50% to 20-30% (Kastrati et al., 1997). As the
main cause of restenosis was attributed to the excessive
proliferation of VSMC, the development of new technologies
determined the arrival of drug-eluting stents (DES), reducing the
restenosis rate below 10% (Morice et al., 2002). Despite the
implementation of new stenting technologies, along with novel
pharmacological or mechanical approaches to reduce restenosis
incidence, this problem is still considered an important drawback,
especially in high-risk patients, limiting the overall success of DES.
PATHOPHYSIOLOGY OF RESTENOSIS IN
STENTED ARTERIES

Stent placement produces a mechanical vascular lesion that can
be briefly divided into 3 phases:

a) Early phase: the stent produces an injury to the
endothelium, damaging or totally destroying the endothelial
cells (EC) that line the intimal arterial tunic, resulting in
consecutive endothelial stripping, re-endothelization and
subsequent generation of neo-endothelium (Grewe et al., 2000).
The above is followed by an inflammatory response, including
platelet activation and recruitment of circulating leukocytes,
releasing cytokines and growth factors (Mitra andAgrawal, 2006).

b) Intermediate phase: characterized by the migration and
proliferation of VSMC.

c) Late phase or tissue remodeling: VSMCs change from a
contractile and quiescent non-proliferative G0 phase phenotype
towards a highly active synthetic phenotype, with extracellular
matrix (ECM) deposition in the arterial intima. Various growth
factors, such as fibroblast growth factor (FGF-2), epidermal growth
factor (EGF), platelet-derived growth factor (PDGF), and insulin-
like growth factor (IGF) initiate VSMCs proliferation through the
Abbreviations: AUC, area under the curve; AGO2, argonaute protein family 2;
BMS, bare metal stent; CABG, coronary artery bypass grafting; CHD, coronary
heart disease; CVD, cardiovascular disease; DES, drug-eluting stent; DGCR8,
DiGeorge syndrome critical region 8; EC, endothelial cells; ECM, extracellular
matrix; EDTA, ethylene diamine tetra-acetic acid; EGF, epidermal growth factor;
FGF-2, fibroblast growth factor 2; IGF, insulin-like growth factor; ISR, in-stent
restenosis; LEAOD, lower extremity arterial occlusive disease; LDL-C, low-density
lipoprotein cholesterol; miRNA, micro ribonucleic acid; MAPK, mitogen-acti-
vated protein kinase; MIQE, minimum information for publication of quantitative
real-time PCR experiments; mRNA, messenger ribonucleic acid; ncRNAs, non-
coding RNAs; NGS, next-generation sequencing; PAD, peripheral artery disease;
PCI, percutaneous coronary intervention; pre-miRNA, precursor micro ribonu-
cleic acid; pri-miRNA, primary micro ribonucleic acid; PTCA, percutaneous
transluminal coronary angioplasty; qPCR, quantitative polymerase chain reaction;
RASP, rapid angiographic stenotic progression; RISC, RNA-induced silencing
complex; ROC, receiver operating characteristic; Rnases, ribonucleases; snRNA,
small nuclear RNAs; snoRNAs, small nucleolar RNAs; TLR, target lesion reste-
nosis; TVR, target vessel revascularization; VSMC, vascular smooth muscle cells;
XPO5, exportin 5; 3′-UTR, three prime untranslated region; 5′-UTR, five prime
untranslated region.
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tyrosine kinase receptor, activating the Mitogen-activated protein
kinases (MAPK) pathway.While the ECM allows the inflammatory
infiltrate to adhere, the VSMC secrete hyaluronic acid and
proteoglycans that interact and stabilize the fibrin-enriched ECM
(Grewe et al., 2000; Mitra and Agrawal, 2006). These vascular
responses, characterized by neointima proliferation and vascular
remodeling, are responsible for the elevated frequency of post-
PTCA restenosis. Anatomopathological studies in post-PCI
restenosis demonstrated the same proliferative response of the
neointima (Farb et al., 2002; Farb et al., 2004). In addition to
VSMC proliferation and ECM synthesis, there is also neointima
colonization by extravascular cells, e.g., endothelial progenitors or
dendritic cells, together with compensatory mechanisms of
apoptosis (Tuleta et al., 2008; Tuleta et al., 2010).
TYPES OF STENT: BARE METAL STENT
AND DRUG-ELUTING STENT

Since the introduction of BMS in 1987 (Sigwart et al., 1987),
important PTCA limitations such as restenosis and sudden
narrowing of diseased arteries after angioplasty were reduced.
Serruys et al. demonstrated that stent implantation reduces the
need for a second coronary angioplasty compared with standard
balloon angioplasty (RR 0.58, CI 0.40–0.85) mainly due to a low
restenosis rate, going from 32% to 22% (Serruys et al., 1994).
However, the benefit was accompanied by an increased risk of
cardiovascular complications and longerhospitalization time. Stent-
induced injury causes greater damage than damaged produced by
standard balloon angioplasty, delineating processes of thrombosis,
inflammation and proliferation (Edelman and Rogers, 1998)
followed by the deposition of platelet-rich thrombi, which occur
from the first days (Farb et al., 1999) until 1 month post-PCI
(Komatsu et al., 1998), with additional accumulation of acute
inflammatory cells such as neutrophils during the first 30 days,
together with chronic inflammatory cells e.g., lymphocytes and
macrophages (Farb et al., 1999). There is a correlation between the
type of inflammatory reaction and the degree of injury (Rogers and
Edelman, 1995), indicating that the surface of the material together
with the geometric configuration of the stent contributes to
neointimal hyperplasia and thrombosis. Other factors that
favor restenosis development are tunica media damage, and
the penetration of the stent edges into the lipid core of the
atherosclerotic plaque. Both factors increase the inflammatory
process within the artery and, therefore, increase intima
proliferation (Farb et al., 2002). Since the introduction of
combination therapy with P2Y platelet receptor antagonists
(ticlopidine, clopidogrel) and acetylsalicylic acid, the incidence of
post-stent thrombosis has been significantly reduced (Bertrand
et al., 2000), and themajority of thrombotic events occurred within
the first 10 days post-PCI. Additionally, post-stent thrombosis with
BMS after the first month is considered rare (Farb et al., 2003). DES
development is based on a coating containing an antiproliferative
drug, so both post-PCI proliferation of the tunica intima and
subsequent restenosis can be reduced (Garg and Serruys, 2010).
In this way,first-generationDES devices were developed, which are
January 2020 | Volume 10 | Article 1247
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coated with a drug-containing polymer designed to interrupt cell
replication and reduce neointimal hyperplasia, markedly
decreasing the occurrence of post-PCI restenosis (Herdeg et al.,
2000; Curfman, 2002). However, after DES implantation,
intervention centers have identified an increase in thrombosis
associated with the stent placement process for up to 3 years after
stent implantation, an additional complication rarely caused by the
use of BMS (Luscher et al., 2007). Several reports show the
occurrence of acute (<24 hours), sub-acute (<30 days), late (>30
days), and very late (>12 months) thrombosis after DES
placement (McFadden et al., 2004; Pfisterer et al., 2006; Brodie
et al., 2012). A large observational study revealed that from a
total of 2229 consecutive patients receiving a total of 4495 DES,
29 had stent- associated thrombosis, occurring more than 30
days after stent placement, also revealing a 45% mortality rate
(Iakovou et al., 2005).
MICRORNAS

In 1993, a key report involving the study of the Caenorhabditis
elegans roundworm and showing downregulation of the LIN-14
protein by a small transcript namely lin-4 through antisense
interaction between RNAs due to sequence complementarity
between lin-4 and the 3'-untranslated region (3'-UTR) of the lin-
14 mRNA (Lee et al., 1993) suggested a novel gene silencing
mechanism affecting protein levels. Afterward, a second 21
nucleotides (nt) small RNA identified as let-7 was also implicated
in the regulation of heterochronic genes related to C. elegans
development (Reinhart et al., 2000). Moreover, the small let-7
RNA was shown to be highly conserved, indicating that its
sequence is critical for functional purposes (Pasquinelli et al.,
2000). These small RNAs were the 2 first of a family currently
known as microRNAs (miRNAs) and further characterized as
endogenous non-coding RNAs (ncRNAs) evolutionarily
conserved between species with a size comprised between 20 and
23 nt, existing in both plants and animals. Their main function is
to control gene expression by cleaving messenger RNA (mRNA)
or through translational repression, preventing mRNA translation
to its correspondingprotein (Bartel, 2004).This controlmechanism
fine-tunes gene expression through the complementary matching
of a segment comprised between nucleotides 2 to 7 of the miRNA
i.e., seed region, with both the 3′- and 5′-UTR regions of target
mRNAs (Lytle et al., 2007). It is estimated that miRNAs control
more than 30% of the human genome (Lewis et al., 2005), through
an interaction that can be reversible (Wu and Belasco, 2008). The
canonical pathway of miRNA biogenesis begins with transcription
from miRNA genes by RNA polymerase II, producing primary
miRNAs (pri-miRNA) that undergo subsequent processing by the
Drosha-DGCR8 (DiGeorge syndrome critical region 8)
microprocessor complex, producing a miRNA precursor (pre-
miRNA) of approximately 70 nt transported to the cytoplasm via
exportin 5 (XPO5).Once in the cytoplasm, pre-miRNAs are further
processed by RNase III (Dicer) into a double-stranded 21-23 nt
miRNA. One strand of the miRNA is charged into the RNA-
induced silencing complex (RISC) in conjunction withmembers of
the Argonaute protein family (AGO2), a nuclear protein essential
Frontiers in Genetics | www.frontiersin.org 3439
for miRNA maturation and functionality (Bushati and Cohen,
2007; Winter et al., 2009).

Different studies show that miRNAs orchestrate a wide
network of cellular activities and are deeply involved in almost
every biological pathway, regulating processes such as cell
division and apoptosis (Ng et al., 2012), metabolism (Wilfred
et al., 2007), intracellular signaling (Zhang et al., 2012), immune
response (Taganov et al., 2006) and cell movement (Png et al.,
2011). Similarly, miRNAs have been associated with restenosis-
related processes, such as VSMC proliferation, migration and
neointima formation (Chen et al., 2012; Yamakuchi, 2012; Gareri
et al., 2016), revealing the great potential for diagnostic,
prognostic, therapeutics or additional clinical manipulation. In
fact, by examining the hypothesis that miRNAs produced by the
placenta can be released into circulation, a set of placental
miRNAs was successfully identified in maternal plasma (Chim
et al., 2008), shedding light into another possible role as blood-
based biomarkers, a crucial finding confirmed during the same
year by a meticulous characterization of a large number of
exceptionally stable miRNAs in both serum and plasma (Chen
et al., 2008b). Since then, numerous reports have shown that
miRNAs can be detectable in multiple fluids including urine,
saliva, and cerebrospinal fluid, and even though the extracellular
environment is rich in ribonucleases (RNases), miRNAs can be
especially stable in serum and plasma as well, representing an
enormous potential as non-invasive biomarkers for several
pathologies (Gilad et al., 2008; Mitchell et al., 2008; Gupta et al.,
2010). The mechanisms by which miRNAs remain particularly
unaffected in circulation are due to their association with different
carrier particles that confer protection against the potent blood
RNases (Figure 1). It was first proposed that miRNAs circulate in
the bloodstream by a cellular discharge mechanism through
membrane-bound vesicles such as exosomes (Valadi et al., 2007;
Kosaka et al., 2010), which are 50 to 100 nm vesicles released by
exocytosis (Fevrier and Raposo, 2004). However, reports indicated
that the abundant majority of miRNAs are exosome free and
associated with Ago2 (Arroyo et al., 2011; Turchinovich et al.,
2011). Importantly, as the RISC constitutes the effector component
of the gene-silencing mechanism portrayed by miRNAs, it has
been suggested that the miRNA-Ago2 complex is functional in
circulation. Moreover, in 2011, Vickers et al. showed that miRNAs
are associated with HDL in plasma not only for transport but these
complexes maintain also the functional gene repression role of
miRNAs directed to their cell target throughdelivery by a scavenger
receptor BI (SR-BI)-dependent mechanism (Vickers et al., 2011).
Considering that miRNAs are associated with dissimilar transport
molecules, further classification of extracellular miRNAs according
to their transportingmolecules has beenprovided elsewhere (Russo
et al., 2012).
BIOMARKER DISCOVERY

In general, biomarkers are classified as: (1) Diagnostic
biomarkers for a specific pathology, disease or syndrome; (2)
predictive biomarkers for the response to a given medication or
treatment; (3) biomarkers of predictions about the probable
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course of a disease; and (4) biomarkers of predisposition or
susceptibility to a disease (Simon, 2011). According to the World
Health Organization, a biomarker is "any substance, structure,
process or products that can be measured in the body and
influence or predict the outcome or incidence of the disease".
Different study models have used cell lines, animals, patient
cohorts, biopsies, biobank samples, or prospective studies as the
starting point for biomarker development (Vargas and Harris,
2016). On the other hand, "omics" technologies are a particularly
suitable tool for biomarkers discovery as they take advantage of
the potential of the transcriptome, proteome and metabolome
readings, facilitating detailed molecular characterization in a
particular biological sample. Examples of these technologies are
microarrays and next-generation sequencing (NGS) used for
genomic and transcriptomic studies. In this sense, the usual
strategy has been to describe large amounts of data from a
specific molecule (e.g., miRNAs), in samples such as cell lines,
animals and most importantly patients with a specific condition
(McShane and Polley, 2013; Ghai and Wang, 2016) in order to
generate hypotheses based on the large data available following
bioinformatic analysis (Simon, 2010). Thus, new proposed
biomarkers are capable, for example, of facilitating diagnosis of
a certain disease or predicting the response of therapeutic
interventions, such as post-stenting restenosis. Currently, a
number of reasons have proposed circulating miRNAs as one
of the most attractive candidates molecules to be explored as
diagnosis, prognosis, and treatment biomarkers for various
pathologies, mainly their extraordinary stability in blood
circulation, the relative ease of extraction from the most common
non-invasivematrices, and their susceptibility to sensitive detection
through quantitative polymerase chain reaction (qPCR) (Gilad
Frontiers in Genetics | www.frontiersin.org 4440
et al., 2008; Moldovan et al., 2014; Ghai and Wang, 2016) and
rapid multiplexing platforms (Jiang et al., 2014).
CIRCULATING MIRNAS AS RESTENOSIS
BIOMARKERS

Few investigations have examined the utility of cell-free miRNAs
as potential in-stent restenosis (ISR) biomarkers. One of the
pioneer reports was a case-control study revealing a series of 4
miRNAs ‑miRNA-21, miRNA-100, miRNA-143 and miRNA-
145 ‑ as candidate ISR markers, with the two latter showing the
highest sensitivity and specificity according to receiver operating
characteristic (ROC) curves (He et al., 2014) (Table 1).
Consistent with their newfound role, these 4 miRNAs have
been previously related to the pathogenesis of vascular diseases
such as neointimal lesion formation (Ji et al., 2007), and VSMC
proliferation, migration, and differentiation (Davis et al., 2008;
Cordes et al., 2009; Grundmann et al., 2011; O'Sullivan et al.,
2011). Interestingly, miRNA-21, miRNA-100, miRNA-143 and
miRNA-145 were also able to significantly discriminate between
diffuse vs. focal ISR, yet, this last finding should be interpreted
with attention as it originated from additional analyses performed
on a fraction of the total sample, probably introducing bias such
as loss of randomization i.e. cases and controls are no longer
balanced groups or lesser power related to the smaller sample.
Another recent report showed that miRNA-93-5p was
differentially expressed between ISR and non-ISR patients,
proposing miRNA-93-5p as a robust independent ISR
predictor (O'Sullivan et al., 2019). Additionally, they found
FIGURE 1 | Extracellular miRNAs are associated with different transport molecules in the bloodstream. Cell-free miRNAs are transported in the blood mainly
associated with Ago2 (green) and HDL particles (yellow). To a lesser extent, miRNAs are transported via exosomes (light blue). Created with BioRender.
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TABLE 1 | Studies reporting extracellular miRNAs as restenosis biomarkers.

llow-up
(years)

ISR Sample Ethnicity Ref

0.5 - 1 Coronary Plasma Chinese He et al.,
2014

4.9 Coronary Plasma Caucasian O'Sullivan
et al., 2019

1 Coronary Plasma Chinese Dai et al.,
2019

1 Coronary Plasma Chinese Zhang et al.,
2019

1 and 2 PAD Serum Caucasian Stojkovic
et al., 2018

t shown LEAOD Serum?
Plasma?

Chinese Yu et al.,
2017

0.5 LEAOD Plasma Chinese Zhang et al.,
2017

t shown LEAOD Plasma Chinese Yuan et al.,
2019

, Framingham heart study risk factors; HR, hazard ratio; ISR, in-stent
ength; SD, stent diameter; TLR, target lesion restenosis; TVR, target
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miRNA Performance 95% CI P Sens.
(%)

Spec.
(%)

Expression in reste-
nosis patients

Groups Grouping Stent
type

F

miRNA-21 AUC: 0.568 0.372-
0.757

<0.05 50.1 68.6 UR 51 ISR;
130 NISR;
52 Controls

Randomization DES

miRNA-100 AUC: 0.608 0.372-
0.757

<0.05 60.2 68.9 DR

miRNA-143 AUC: 0.818 0.755-
0.963

<0.001 82.1 80.1 DR

miRNA-145 AUC: 0.880 0.791-
0.987

<0.001 88.7 83.1 DR

miRNA-93-5p C: 0.734 not
shown

0.0001 not
shown

not
shown

UR 39 ISR;
39 NISR

Consecutive, matched for
age and diabetes

DES/
BMS

miRNA-93 +
FHSRF + SL
and SD

C: 0.769 0.00001

miRNA‐19a,
miRNA‐126,
miRNA‐210
miRNA‐378

AUC: 0.776 0.722-
0.831

not
shown

not
shown

not
shown

DR 222 NISR;
64 ISR

Consecutive DES

miRNA-146a AUC: 0674 0.567-
0.781

not
shown

not
shown

not
shown

UR 232 NISR;
23 ISR

Consecutive DES

miRNA-146b AUC: 0.801 0.729-
0.875

miRNA-92a
(TLR)

HR: 0.55 0.34-
0.88

0.013 not
shown

not
shown

DR 26 primary
endpoint;

21 secondary
endpoint;
36 controls

Consecutive not
shown

miRNA-195
(TLR)

HR: 0.40 0.23-
0.68

0.001

miRNA-195
(TVR)

HR: 0.40 0.22-
0.75

0.005

miRNA-92a +
CF (TLR)

C: 0.70 0.60-
0.80

0.130

miRNA-195 +
CF (TLR)

C: 0.75 0.66-
0.85

0.030

miRNA-143 AUC: 0.866 not
shown

not
shown

83.7 82.6 DR 74 ISR;
91 NISR

Consecutive BMS??? n

miRNA-21 AUC: 0.938 0.898-
0.977

not
shown

83.5 98.2 DR 79 ISR;
327 NISR

Consecutive, randomly
chosen

BMS

miRNA-320a AUC: 0.766 not
shown

not
shown

82.1 63.8 UR 78 ISR;
68 NISR;
62 controls

Consecutive Not
shown

n

miRNA-572 AUC: 0.690 69.2 68.9

AUC, area under the curve; BMS, bare metal stent; C, C-statistic (a comparable measure to AUC); CF, clinical factors; DR, down-regulated; DES, drug eluting stent; FHSRF
restenosis; LEAOD, lower extremity arterial occlusive disease; NISR, non in-stent restenosis; PAD, peripheral artery disease; Sens., sensibility; Spec., specificity; SL, stent
vessel revascularization; UR, up-regulated.
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that the predictive performance of a model including main risk
factors for ISR e.g., diabetes, stent length and diameter, together
with common risk factors for CAD development such as age, sex,
active smoking, diabetes, hypertension, and hyperlipidemia was
further improved by adding miRNA-93-5p levels. Even though
the results shown are encouraging, an important weakness of the
study lies in the lack of additional validation in an independent
cohort, restricting the extent of the results. Very recently, Dai
et al. selected 14 angiogenesis-related candidate miRNAs (Dai
et al., 2019) and reported 4 as independently associated with
decreased restenosis risk (miRNA‐19a, miRNA‐126, miRNA‐
210, and miRNA‐378). ROC curves showed that this subgroup
of miRNAs had better predictive values for restenosis occurrence
in Chinese population than each on its own (AUC: 0.776; 95%
CI: 0.722‐0.831). Moreover, they found that 2 additional miRNAs
(let‐7f and miR‐296) correlated with a lower risk of rapid
angiographic stenotic progression (RASP), and together with the
previous miRNAs, the model exhibited greater performance for
RASP prediction (AUC: 0.879; 95% CI: 0.841‐0.917). Another
similar study also performed in Chinese population recently
reported that miRNA-146a and miRNA-146b were overexpressed
in restenosis vs non-restenosis patients (P = 0.006), both holding
prognostic value for restenosis risk in subjects with coronary heart
disease (CHD) (Zhang et al., 2019). Analogously to the previous
work, Zhang and colleagues also found that these miRNAs were
up-regulated in RASP patients, and were both individually able
to predict RASP occurrence in CHD subjects.

In the case of peripheral artery disease (PAD) ISR, the role of
11 restenosis-related circulating miRNAs (miRNA-17, miRNA-
21, miRNA-92a, miRNA-126, miRNA-143, miRNA-145, miRNA-
195, miRNA-221,miRNA-222, miRNA-223, andmiRNA-424) was
examined in a primary endpoint constituted by target lesion
restenosis (TLR) and atherothrombotic events, and a secondary
endpoint represented by target vessel revascularization (TVR)
(Stojkovic et al., 2018). Findings showed that miRNA-92a and
miRNA-195 were independent predictors of the primary
endpoint, but only miRNA-195 was able to independently predict
TVR. Interestingly, miRNA-143 and miRNA-145 were detected at
very low expression levels and were excluded from additional
analyses even though they were previously suggested as ISR
markers (He et al., 2014). Nonetheless, and similarly to the report
from O'Sullivan and colleagues, adding miRNA-195 to clinical
factors not only improved the ability to distinguish TLR from
non-TLR subjects against a model considering miRNA-92a (P =
0.012), but also proved superior to a model integrating clinical risk
factors plus both miRNA-92a and miRNA-195 (Stojkovic et al.,
2018) (Table 1).

A series of studies exploring the utility of predictive miRNAs
for lower extremity arterial occlusive disease (LEAOD) restenosis
have been performed. One of them identified low levels of
circulating miRNA-143 in restenosis vs. non-restenosis patients,
correlating this measure with smoking status, history of diabetes,
glucose, and low-density lipoprotein cholesterol (LDL-C) (Yu et al.,
2017). Even though a low expression of the restenosis-related
miRNA-143 is consistent with the findings from He and
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colleagues, it is unknown if the expression pattern remains the
same for the rest of the previously reported restenosis-associated
miRNAs, as Yu et al. evaluatedmiRNA-143 only. Additionally, it is
also uncertain if the analysis was performed either in serum or
plasma due to authors referred to both biological fluids as
interchangeable concepts, an unfortunate but substantial
ambiguity hampering a clear interpretation of the results and that
will be later described. Another study showed overexpression of the
coronary ISR-associated miRNA-21 in LEAOD restenosis patients
(Zhang et al., 2017), constituting an excellent predictor of vascular
restenosis according to ROC curve analysis, with an AUC of 0.938.
Moreover, miRNA-21 was correlated with age, diabetes, and
hypertension, and together with diabetes, miRNA-21 represented
the main risk factors for LEAOD restenosis occurrence. Lastly, a
very recent report found that circulating levels ofmiRNA-320a and
miRNA-572 were significantly overexpressed in restenosis-
developing LEAOD patients (Yuan et al., 2019). ROC curves also
showed that these miRNAs were capable of discerning between
patients developing ISR versus patients that not, with AUC
values of 0.766 and 0.690, respectively. Although the results
provided are auspicious, the sample size enrolled was relatively
small. Additionally, the study fails to report minimal but very
relevant clinical data like the stent types used, follow-up time,
and important statistical estimates (Table 1), however, one of the
strengths lies in the inclusion of a second control group made up
by healthy volunteers besides the classical non-ISR group, a
similar methodological approach than the study of He et al.,
allowing to better discriminate miRNA behavior between these 2
conditions. In this sense, it is noteworthy that the relative
expression among miRNAs evaluated by Yuan et al. was very
similar between the non-ISR group and healthy volunteers.
Furthermore, 2 miRNAs showed comparable levels between ISR,
non-ISR and healthy volunteers, which is also consistent with
previous studies, and represents an interesting outcome if we
consider that current extracellular miRNA normalization is
commonly based on the addition of exogenous spike-in miRNAs,
a technical issue that could be more suitably replaced by analyzing
endogenous miRNAs stable enough for the discovery of restenosis
biomarkers. Still, additional experimentation is needed to clarify
this observation.
Technical Challenges
Besides requiring a feasible and reliable analyte associated with a
particular condition, miRNA routine sample analysis needs to
cautiously overcome a significant amount of potentially
detrimental obstacles that, if not properly managed, will not only
affect miRNA analyses but most importantly, can compromise the
patient's diagnosis and clinical management by inaccurate lab
determinations. Consequently, before implementing miRNA
measurement into day-to-day laboratory testing, a large number
of technical issuesmust be correctly addressed. One of the very first
concerns related to miRNA analysis comes from the collecting
tubes employed for blood withdrawal. For instance, EDTA-
collecting tubes can alter circulating miRNA detection, especially
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if samples are not immediately processed. Moreover, the longer it
takes for sample processing, the stronger the effect on extracellular
miRNA patterns (Leidinger et al., 2015). Studies show that proper
attention must be paid when selecting the type of biological matrix
for further miRNA analysis. For instance, serum samples were
reported to contain a higher number of miRNAs than their
corresponding plasma counterparts, even if analyzing the same
individual, an outcome highly dependent on the measurement
platforms used (Wang et al., 2012). However, various reports argue
in favor of the opposing scenario, where not only plasma was
reported to contain higher miRNA concentrations (McDonald
et al., 2011), but miRNAs diversity was far more restricted in
serum samples (Foye et al., 2017). Findings have also shown that
serum- and plasma-abundant miRNAs such as miRNA-451a,
miRNA-16-5p, miRNA-223-3p, and miRNA-25-3p are
differentially expressed between these 2 biological fluids (Foye
et al., 2017), reinforcing the idea that both fluids cannot be
assumed to be interchangeable concepts regarding miRNA
concentrations. Also, hemolysis affects directly the concentration
of a small number of miRNAs (Kirschner et al., 2011; McDonald
et al., 2011) which is consistent with reports showing particular and
specific erythrocytes-derived miRNAs (Chen et al., 2008a; Kannan
and Atreya, 2010). Deepening in this area, hemolysis was
demonstrated to affect a far greater number of miRNAs than
previously reported, compromising miRNAs previously
recognized as important biomarkers for various diseases
(Kirschner et al., 2013). Interestingly, the use of a ratio between
the hemolysis-dependent and -independent miRNA-451 and
miRNA-23a, respectively, has been proposed to better assess the
degree of erythrocyte lysis and therefore, diminish the effect of
hemolysis on blood-based miRNA determinations (Blondal
et al., 2013).

On the other hand, important variations for biomarker
discovery can be introduced at the analytical stage, which is
highly dependent on the measurement platform selected. In the
case of miRNAs, the most common and widely used technique
corresponds to qPCR largely due to its robustness, relative ease,
elevated specificity and sensitivity, broad dynamic range and high
resolution, among others. However, each step required for qPCR
assays can introduce a different cause of variation that canmask the
biological differences we are looking to determine, and to date,
several unsolved questions can affect circulating miRNA analysis
when using this system. For example, to date, there is no
predetermined or consensus set of extracellular miRNAs that can
be used for normalization (Roberts et al., 2014), whichwould be the
ideal scenario to allow proper comparisons between a target
miRNA against a normalizer miRNA to obtain reliable miRNA
expression levels. In contrast, nowadaysnormalization is frequently
achievedbyusing synthetic alternatives such as exogenousmiRNAs
that are spiked in during RNA isolation in an attempt to avoid
technical differences regarding the extraction procedure. Another
different normalization strategy is the use of ncRNAs such as small
nuclear RNAs (snRNA) or small nucleolar RNAs (snoRNAs),
however, to select the proper normalizer, a set of these ncRNAs
must be previously analyzed in each lab for validation purposes to
Frontiers in Genetics | www.frontiersin.org 7443
obtain accurate results. Importantly, RNA quality is one the most
fundamental determinants of reproducibility for qPCR results, and
improper sample handling regarding the collection, transport or
storage can affect RNA integrity and unambiguously lead to
irreproducible experiments. Therefore, every RNA preparation
must be meticulously assessed to ensure that nucleic acids present
have not been degraded. In general, a standardized qPCR protocol
should be closely followed to ensure consistency between diverse
laboratories, as suggested in the MIQE guidelines (minimum
information for publication of quantitative real-time PCR
experiments) (Bustin et al., 2009).
Future Perspectives
miRNA research as ISR biomarkers is still at an early stage. The
scarce findings reported so far include conventional flaws in study
designs such as small samples, lack of proper control groups or
validation cohorts, and the absence of clinical, technical and
statistical data that may be crucial for a correct interpretation and
reproducibility. The tolerant operative consensus at the time of
reporting putative restenosis biomarkers leads to inconsistent or
unreliable candidate miRNAs, and to advance the field,
investigations must meet minimal and uniform conditions.
Clinical outcomes should be very well defined to turn them into
quantifiable events, or at least easily measurable. In this sense, large
randomized, multicenter, prospective trials capable of establishing
whether miRNAs can effectively predict clinical features are
greatly needed.

A persistent but reasonable shortcoming regarding miRNA
research as biomarkers for restenosis is representedby the candidate
approach, i.e., handpicking specific RNA molecules exclusively
based on previous reports. Although most of these investigations
have solid grounds since they are based on the choice of miRNAs
previously associated with restenosis-related mechanisms, the
success rates contrast with what one might expect, since they are
not even close to 100%, as the case of different studies mentioned
above (Stojkovic et al., 2018; Dai et al., 2019). The candidate
approach is predominantly used because is significantly less
expensive than other wide-ranging strategies, such as microarray
or NGS, but the loss of information can be excessive. On the
contrary, using, for example, NGS allows having the clearest
depiction of the total amount of miRNAs that may be relevant or
even participate in the endpoint and that we could bemissing when
executing the candidate methodology, which ultimately points to
the cost-benefit relation.

Even though important technical difficulties can further delay
the arrival of miRNAs into the clinic, ongoing research in the
matter has allowed the most common problems to be properly
identified and therefore, prone to correction with an adequate and
strictly controlled standardizationof laboratory practices, including
pre-analytical, analytical and post-analytical procedures,
eliminating as many possible variables affecting routine miRNA
determinations. But even if we carefully consider the
aforementioned arguments, the complete potential of miRNAs as
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clinically applicable biomarkers is rather far from becoming an
imminent reality, as some additional and significant questions
remain poorly explored, for example, the existence of circadian
oscillations of human miRNAs. A recent and very stimulating line
of research has demonstrated important diurnal variations in
miRNA levels (Rekker et al., 2015; Heegaard et al., 2016; Hicks
et al., 2018), with important and detrimental implications for an
exceedingly trivial preanalytical issue such as establishing the
proper moment to collect blood samples.
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Recent research efforts provided compelling evidence of genome-wide DNA methylation
alterations in aging and age-related disease. It is currently well established that DNA
methylation biomarkers can determine biological age of any tissue across the entire
human lifespan, even during development. There is growing evidence suggesting
epigenetic age acceleration to be strongly linked to common diseases or occurring in
response to various environmental factors. DNA methylation based clocks are proposed
as biomarkers of early disease risk as well as predictors of life expectancy and mortality.
In this review, we will summarize key advances in epigenetic clocks and their potential
application in precision health. We will also provide an overview of progresses in
epigenetic biomarker discovery in Alzheimer’s, type 2 diabetes, and cardiovascular
disease. Furthermore, we will highlight the importance of prospective study designs
to identify and confirm epigenetic biomarkers of disease.

Keywords: aging, DNA methylation, epigenetic clocks, biomarkers, Alzheimer’s disease, diabetes, cardiovascular
diseases

INTRODUCTION

Aging is a complex and time-dependent deterioration of physiological process occurring in the
majority of living organisms (Galloway, 1993). In humans, life expectancy has increased rapidly in
the last few centuries due to a significant improvement in medical care and public health awareness
(Crimmins, 2015). Consequently, increased life expectancy caused higher morbidity rates since
advanced age is a predominant risk factor for several diseases including cancer, dementia, diabetes,
and cardiovascular disease (CVD) (Jaul and Barron, 2017; Franceschi et al., 2018). Currently, there
is an urgent need to improve health and longevity to increase not just the life span but also the
health span of the elderly population. In recent years, several molecular and cellular processes
have been reported to be linked to aging and contribute to its phenotype. Scientists proposed nine
hallmarks of aging that can be classified into three categories: primary, antagonistic, or integrative
(López-Otín et al., 2013). The primary hallmarks are defined as key factors causing cellular damage
including genomic instability, telomere attrition, loss of proteostasis, and epigenetic alterations
(López-Otín et al., 2013). During aging, there is a continuous accumulation of epigenetic changes,
which might give rise to multiple age-related pathologies. A number of epidemiological studies
revealed that monozygotic twins exhibit an increased rate of phenotypic discordance particularly
for age-related diseases among older siblings (Frederiksen et al., 2002; Reynolds et al., 2005;
Zwijnenburg et al., 2010; Greenwood et al., 2011; Castillo-Fernandez et al., 2014). This may
be due to a gradual decrease in methylation conservation rates with successive cell divisions,
a phenomenon referred to as “Epigenetic Drift” (Poulsen et al., 2007; Issa, 2014). This notion
proposes an increased rate of stochastic methylation errors across the entire genome during aging.
Indeed, several reports provided compelling evidence that older monozygotic twins exhibit global
differences in DNA methylation (DNAm) patterns when compared to their younger counterparts
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(Fraga et al., 2005; Lévesque et al., 2014; Tan et al., 2016;
Wang et al., 2018). Similarly, a centenarian’s methylome displays
reduced DNA methylation levels as well as a decreased pair-wise
correlation in the methylation status of neighboring CpG sites
relative to the methylome of a newborn (Heyn et al., 2012).

In 1973, Vanyushin et al. (1973) were the first to describe
global 5-methylcytosine (5mC) variations during aging in
rats. Now, vast literature have revealed genome-wide DNA
methylation changes that occur in response to aging across
multiple species. These age-related epigenetic alterations either
arise systemically or are restricted to a specific tissue/cell type.
Age-related DNA methylation changes also take place in germ
cells and might be possibly transmitted to the offspring (Atsem
et al., 2016; Potabattula et al., 2018). Since the sequencing of
the human genome the scientific community has been trying
to elucidate how the genetic code controls the spatial and
temporal expression of genes. The essence of DNA lies within
the dynamic interaction between the genetic sequence (i.e.
genome) and the epigenome. In many ways, environmental
influences alter gene expression through various mechanisms
such as DNA methylation, hydroxymethylation, histone
modifications, alternative splicing, etc. (Edwards and Myers,
2007). Recent advances in “omics” technologies availed new
avenues toward implementing precision medicine based on the
genetic, environmental, and lifestyle factors of each individual.
Similarly, treatments of complex diseases is demanding better
diagnostic and screening tools for early detection particularly
in the initial phase of the disease. DNA methylation (5-
methylcytosine) is a covalent epigenetic modification to the
DNA by addition of a methyl group to the C-5 position of the
cytosine ring by DNA methyltransferases (Dnmts). Whereas,
DNA hydroxymethylation (5-hydroxymethylcytosine) is a
more recently discovered modification involving the addition
of a hydroxymethyl group to the 5′ position of cytosine.DNA
hydroxymethylation has been reported to be enriched in the
brain especially in the proximity of synaptic genes (Kriaucionis
and Heintz, 2009; Khare et al., 2012). The role 5-hmC plays
in various biological processes remains elusive, nevertheless
scientists are starting to appreciate its importance in gene
expression regulation. Methylation and demethylation processes
are not only important for transcription regulation but also
play a crucial role during development and cell differentiation
(Moore et al., 2013). Recently, DNA methylation measurements
were shown to be valuable age prediction tools, even surpassing
in accuracy the age prediction models based on telomere length
(Horvath et al., 2016a). DNA methylation-based age prediction
models are not only accurate in predicting chronological age
but can also estimate biological aging rates (Chen et al., 2016;
Christiansen et al., 2016).

EPIGENETIC-BASED AGING CLOCKS

It is only 6 years since Steve Horvath inaugurated a new era in
epigenetics and aging research. In a landmark study, he developed
a multivariate age predictor based on DNA methylation values
of 353 individual CpG sites (Horvath, 2013). One of the main

advantages of the Horvath clock is its ability to predict age
systemically in all human cell types and tissues, excluding sperm.
This is in contrast to other clocks that can be only applied to
a single tissue (Hannum et al., 2013; Figure 1). Interestingly,
the clock starts ticking early during development where fetal
tissues as well as embryonic and induced pluripotent stem
cells reveal a DNA methylation age (DNAm age) between −1
and 0 years (Horvath, 2013; Spiers et al., 2015). Till now, the
biological mechanisms underlying changes measured by the
epigenetic age clock have not been clearly identified. Therefore,
recognizing genes that influence the rate of epigenetic aging
might help determine such biological processes. Recent genome-
wide association studies revealed tissue-specific association of
variants in metabolism, immune system, aging, and autophagy
-related genes with epigenetic age acceleration (Kananen et al.,
2016; Lu et al., 2016, 2017, 2018). Epigenetic clocks have
been also proposed to measure molecular processes involved in
development and tissue homeostasis particularly those affecting
stem cell differentiation as well as replenishment of committed
cells (Horvath and Raj, 2018).

By regressing DNAm age on chronological age, epigenetic
clocks can determine whether biological age acceleration occurs
in certain diseases or in response to environmental factors
(Horvath and Raj, 2018). Using this approach, age acceleration
measurements in blood were associated with body mass index
(BMI), obesity, physical fitness, Huntington’s disease, Parkinson’s
disease, sleep, and smoking (Horvath et al., 2014; Horvath and
Ritz, 2015; Horvath et al., 2016b; Carroll et al., 2017; Quach
et al., 2017; Levine et al., 2018). Epigenetic clocks are highly
valuable age prediction tools nevertheless their true value as
diagnostic biomarkers requires further confirmation (Figure 2).
Such biomarkers are epigenetic modifications/marks used as
a risk assessment and diagnostic tool to uncover sequence of
events preceding the manifestation of disease. Biomarkers can
be measured within tissue or body fluid, in the context of
disease vs health state, for the purpose of disease detection,
disease prognosis, response to therapy, and therapy monitoring
(García-Giménez et al., 2016).

Evidently, epigenetic clocks were employed to study epigenetic
age acceleration in age-related disorders. For e.g. several reports
showed DNAm age acceleration associated with incidence, future
onset, and mortality across several types of cancer (Levine
et al., 2015a; Zheng et al., 2016; Ambatipudi et al., 2017).
Similarly, DNAm age was reported to be a useful biomarker
for predicting physical and mental fitness in elderly individuals
(Marioni et al., 2015) and was shown to be associated with
cholesterol (High Density Lipoprotein: HDL), insulin, glucose,
and triglycerides levels (Quach et al., 2017; Levine et al., 2018).
The adult progeroid disease, Werner syndrome, which mimics
aging at a faster rate, also revealed DNAm age acceleration
of >6 years (Maierhofer et al., 2017). Recently, the Horvath
lab developed the DNAm PhenoAge clock by training their
predictor on phenotypic age rather than chronological age
(Levine et al., 2018). The DNAm PhenoAge is a powerful
biomarker for measuring health- and life- span that relies on
measurements from 513 CpG sites (Levine et al., 2018). This
clock could conclusively predict CVD incidence using whole
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FIGURE 1 | The growing number of epigenetic age clocks developed for both humans and mice, including the number of CpG sites comprising the age-prediction
model, as well as the tissues in which age can be estimated.

blood DNA methylation values. In 2019, the DNAm GrimAge
clock was released where it was reported to predict mortality,
cancer, and coronary heart disease (CHD) to a high level of
accuracy (Lu et al., 2019). Epigenetic clocks that can estimate
gestational age of neonates are also available (Knight et al.,
2016). Using these clocks, we have demonstrated that DNAm
age of children born via intracytoplasmic sperm injection (ICSI)
lags half a week behind their naturally conceived counterparts
(El Hajj et al., 2017).

In mice, epigenetic aging clocks were recently developed by
relying on reduced representation bisulfite sequencing (RRBS)
or whole genome bisulfite sequencing (WGBS) data (BI Ageing
Clock Team et al., 2017; Petkovich et al., 2017; Wang et al.,
2017; Meer et al., 2018; Thompson et al., 2018). These clocks
provide useful biomarkers for measuring whether experimental
interventions are able to slow the aging process in mice. Current
research is focused on identifying evolutionary conserved pan-
mammalian clocks that can calculate age across multiple species
with varying lifespans. In addition, efforts are being invested
in identifying clocks based on a handful of CpG sites since
methylation arrays, RRBS, or WGBS remain relatively expensive
compared to bisulfite pyrosequencing. In this aspect, Wolfgang
Wagner’s group has shown that measurements from just three
CpG sites can accurately readout lifespan in both humans and

mice (Weidner et al., 2014; Han et al., 2018). More recently,
an epigenetic clock based on ribosomal DNA methylation was
reported to be evolutionary conserved across several species
(Wang and Lemos, 2019).

EPIGENETIC DYSREGULATION IN
TYPE 2 DIABETES, ALZHEIMER’S
DISEASE, AND CARDIOVASCULAR
DISEASE

The dynamic change between methylation and demethylation
states introduces flexibility to the rigidly stable DNA code,
allowing controlled changes in gene expression in response
to external and internal environmental cues. These moldable,
yet generally stable processes are becoming valuable tools
for distinguishing healthy versus diseased states. In cancer,
despite the genome-wide hypomethylation, CpG islands are
hypermethylated and can serve as a biomarker for early cancer
detection (Anglim et al., 2008). Recent studies have shown that
changes in global content of 5mC and 5hmC are not only useful as
early detection tools but also a valuable source for understanding
the underlying mechanisms of cancer development and patient
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FIGURE 2 | Diseases and conditions associated with DNAm age acceleration in blood DNA where epigenetic clocks can be used as biomarkers of disease. We only
display diseases/conditions where epigenetic age acceleration is observed in blood or other non-invasive tissues. We do not show correlations with glucose, insulin,
HDL, and triglyceride levels as well as with blood pressure since these factors are biomarkers on their own.

prognosis (Liu et al., 2019). There are several published reviews
discussing epigenetic biomarkers in cancer, however, this review’s
main focus will be on DNA methylation biomarkers in type 2
diabetes (T2D), Alzheimer’s disease (AD), and cardiovascular
disease (CVD) (Supplementary Table S1). Here, it is important
to mention that these biomarkers are independent of the
epigenetic clock described in the previous section.

Type 2 Diabetes
According to the World Health Organization (WHO), >420
million adults suffer from diabetes where 1.6 million deaths per
year are directly attributed to the disease (Chan, 2014). The
increased lifespan in humans is one of the main contributors
to the rising prevalence of diabetes in the older population.
Currently, more than third the United States population above
the age of 65 are diabetics with numbers projected to increase in
the next decade. Type 2 Diabetes (T2D) is a metabolic disorder
characterized by abnormally elevated blood glucose levels due
to β-cells dysfunction and insulin resistance (Chatterjee et al.,
2017). T2D is a complex multifactorial disease where a variety
of genetic, epigenetic, and environmental factors contribute to its
etiology (McCarthy, 2010). Common complications of diabetes
include cardiovascular problems, neuropathy, nephropathy,
and retinopathy due to high blood glucose levels (Jacobs
et al., 2017). Therefore, prevention or early treatment are
very important to prevent damage to several of the body’s
systems. Despite the availability of well-established measures
for diagnosing diabetes such as hemoglobin A1c (HbA1c) and
fasting glucose, additional DNA-methylation based biomarkers

can help complement current tests for screening and diagnosis.
Identifying an individual during the pre-diabetic stage is very
important for the management of the disease since ∼70%
of persons with intermediate hyperglycaemia tend to develop
T2D later in life.

Recently, efforts have focused on defining epigenetic risk
factors associated with T2D as well as its major risk factors.
Published reports have identified DNAm alterations in various
tissues of T2D patients including blood, liver, pancreas, skeletal
muscle, and adipose tissue (Ling and Rönn, 2019). These studies
employed different approaches to quantify methylation changes
including candidate gene analysis, global 5mC measurements,
DNA methylation arrays, as well as WGBS (Volkov et al., 2017;
Ling and Rönn, 2019). Evidently, the first reports describing
epigenetic dyrsegulation in skeletal muscle and pancreatic islets
of T2D patients applied a candidate gene approach. These
studies identified increased DNA methylation and reduced gene
expression in T2D-related genes such as INS, PDX1, PPARGC1A,
and GLP1R (Ling et al., 2008; Barrès et al., 2009; Yang et al.,
2012; Hall et al., 2013). Similarly, bisulfite pyrosequencing and
methylation-specific PCR were employed to study methylation
of key T2D genes in blood DNA. Investigated genes included
KCNJ11, PPARgamma, PDK4, KCNQ1, PDX1, FTO, PEG3,
TCF7L2, GCK, PRKCZ, BCL11A,GIPR, SLC30A8, IGFBP-7,
PTPPN1, CAMK1D, CRY2, CALM2, TLR2, TLR4, and FFAR3
[reviewed in Willmer et al. (2018)]. Most of those studies
suffered from low sample size apart of a report by Seman
et al. (2015), which quantified methylation in the solute carrier
family 30 member 8 (SLC30A8). Here, the authors detected
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hypermethylation at several CpG sites in SLC30A8 in 516
T2D subjects vs 476 individuals with normal glucose tolerance
(Seman et al., 2015). Global changes in DNAm levels were also
investigated using bisulfite pyrosequencing of ALU and LINE-
1 elements, liquid chromatography mass spectrometry, Imprint
Methylated DNA Quantification kit (Sigma-Aldrich), and High
Performance Liquid Chromatography (HPLC). Conflicting
results were reported which might be inherently related to low
sample size and lack of replication in independent cohorts
[reviewed in Willmer et al. (2018)].

The development of Infinium Methylation arrays and
NGS-based methylation sequencing allowed simultaneous
quantification of methylation at thousands of CpG sites.
Several case-control array studies compared DNA methylation
abnormalities in pancreatic islets, liver, and subcutaneous
adipose tissue of T2D patients. The focus of this review is
on methylation-based biomarkers therefore we will mainly
describe changes reported in blood or other accessible tissues.
One impressive example of such alterations is the occurrence
of dynamic DNA methylation changes in Peripheral Blood
Mononuclear Cells (PBMCs) ∼80–90 days prior to elevated
glucose levels. This was observed by Chen et al. (2018) after
longitudinally following a healthy individual over the course of
3 years while measuring DNA methylation levels using WGBS
at 28 selected time-points. Another study by Toperoff et al.
(2012) used a pooling-based methylation screen followed by
individual-level replication in a prospective cohort to identify
CpGs that can predict future T2D risk. The authors reported a
single CpG site in the first intron of the fat mass and obesity-
associated (FTO) gene to be hypomethylated prior to the
appearance of T2D (Toperoff et al., 2012). DNA methylation
alterations were also measured in concordant and discordant
monozygotic twins for T2D using genome-wide methylated
DNA immunoprecipitation sequencing (MeDIP-seq). This
elegantly designed study uncovered differentially methylated
regions (DMRs) located in the promoters of MALT1 and GPR61
(Yuan et al., 2014).

In addition to age, BMI is a major risk factor contributing
to T2D and has been the focus of multiple epigenome-wide
association studies (EWAS) studies. A large study on >10,000
samples identified DNA methylation changes across 187 loci
correlating with high BMI levels. Out of the 187 “sentinel
obesity biomarkers,” 62 loci were associated with T2D incidence
including a probe in ABCG1 with the strongest significance.
A methylation risk score based on the sum of these markers
exhibited a higher predictive power of future T2D onset when
compared to traditional risk factors such as obesity, fasting
glucose, and hyperinsulinemia (Wahl et al., 2017). Similarly, a
longitudinal follow-up study on Indian Asians and Europeans
discovered five T2D methylation markers in whole blood DNA
collected at baseline prior to diabetes onset. These markers
located in ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP
were associated with metabolic measures of insulin resistance
including glucose concentration, BMI, waist-to-hip ratio, and
homeostatic model assessment for insulin resistance (HOMA-
IR) (Chambers et al., 2015). A conceptually related study tried
to replicate the association between T2D and the five previously

mentioned genes in subjects from the Botnia prospective cohort.
Nonetheless, they could only confirm ABCG1 and PHOSPHO1
methylation as predictors of future T2D risk (Dayeh et al., 2016).
This association was also observed in healthy individuals where
ABCG1 methylation was reported to correlate with fasting insulin
and HOMA-IR (Hidalgo et al., 2014).

Further EWAS studies could confirm methylation aberrations
in some of the previously mentioned genes. A large EWAS
analysis in Mexican-American individuals unraveled five CpG
sites linked to T2D-related traits out of which 3 were located
in TXNIP (cg19693031), ABCG1, and SAMD12 (Kulkarni et al.,
2015). Two separate studies from Spain and Germany confirmed
the association between decreasing methylation levels at TXNIP
(cg19693031) and T2D, as well as with fasting glucose and HbA1c
concentrations (Florath et al., 2016; Soriano-Tárraga et al., 2016).
To end with EWAS, it is important to mention a meta-analysis
by Walaszczyk et al. (2018) that took the initiative to confirm
potential glycemic trait and T2D biomarkers. In this replication
analyses, the authors concluded that a significant association
between T2D and methylation sites in ABCG1, TXNIP, and
SREBF1 exists, which makes them promising biomarkers for
early T2D detection. As a final point, we have to emphasize the
significance of non-genetic elements including blood sugar levels,
patient age, BMI, and gender in predicting future diabetes risk.
Thus, such factors should be integrated into a T2D predictive
model that includes genetic and epigenetic biomarkers to
improve early T2D detection and allow better disease prognosis.

Alzheimer’s Disease
Accumulation of errors in the epigenetic machinery during
aging progression increases the risk for onset of age-related
pathologies, such of those involving brain deterioration and
neurodegeneration. The most common brain disorders affecting
elderly individuals are those causing dementia through loss of
synaptic plasticity, leading to memory impairment and defective
learning capabilities. Alzheimer’s disease (AD) affects 45–60%
of the population with dementia and its burden is expected to
double by the year 2060 (Finder, 2010; Duong et al., 2017). AD is
a polygenic, complex and age-related neurodegenerative disease
clinically characterized by progressive memory loss and cognitive
impairment. Its pathological features include accumulation of
β-amyloid (Aβ) in senile plaques, the formation of neurofibrillary
tangles (NFTs) composed of hyperphosphorylated protein tau,
and massive neuronal loss mainly in the hippocampus as well
as associated regions of the neocortex (Hardy, 2006). Several
clinical and epidemiological aspects of AD indicate a role for
epigenetic factors in its etiology. This is evident in monozygotic
twins discordant for the disease where prognosis and age-of onset
could vary by >10 years. Indeed, a broad spectrum of epigenetic
pathways such as DNA methylation, histone modification, and
non-coding RNAs (ncRNAs) appear to be aberrant. For e.g.
Wang et al. (2008) reported that Alzheimer’s susceptibility loci
have an age-specific epigenetic drift in brain and blood of
individuals with late-onset AD. Several studies were conducted to
identify epigenetic aberrations, as well as to differentiate specific
methylation changes occurring in AD vs non-AD dementias
[reviewed in: Lardenoije et al. (2015)]. Using southern blot
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analysis, West et al. (1995) first showed loss of methylation
at a single site in the amyloid precursor protein (APP) gene
in postmortem human brain of a single individual with AD.
This was confirmed by Tohgi et al. (1999) who reported that
hypomethylation of cytosine residues within the APP promoter
with age results in Aβ deposition in the cerebral cortex of human
autopsy brain samples. Nevertheless, new studies using bisulfite
sequencing failed to replicate these findings (Brohede et al.,
2010). Recently, neuronal fractions from postmortem brains of
Alzheimer’s patients were reported to display significantly up-
regulated expression of BRCA1, consistent with hypomethylation
of a CpG island (CGI) in its promoter region. BRCA1 protein
levels were also increased in response to Aβ deposition and
became mislocalized to the cytoplasm, in both in vitro cellular
and in vivo mouse models (Mano et al., 2017).

After the introduction of methylation arrays, a large study
on >700 autopsied brain samples revealed methylation and
expression changes in ANK1, CDH23, DIP2A, RHBDF2, RPL13,
SERPINF1, and SERPINF2 (De Jager et al., 2014). Similarly,
Lunnon and collaborators performed a large EWAS analysis
on four brain regions where they reported a significant
hypermethylation of ANK1 in the entorhinal cortex, superior
temporal gyrus, and prefrontal cortex of AD individuals. The
authors went on to measure methylation in pre-mortem blood
DNA where they identified distinct differentially methylated
probes (DMPs) to those in AD brains (Lunnon et al., 2014). The
top ranked AD-associated blood DMPs were located in DAPK1,
GAS1, and NDUFS5. Furthermore, epigenetic age acceleration
was shown to be associated with AD neuropathological markers
such as neuritic plaques, diffuse plaques, and amyloid load in
the dorsolateral prefrontal cortex (Levine et al., 2015b). Down’s
syndrome patients, predisposed to early onset AD, also display
DNAm age acceleration in blood and brain tissue starting early
during in utero development (Horvath et al., 2015; El Hajj et al.,
2016) in addition to epigenetic dysregulation at the clustered
protocadherin locus (Almenar-Queralt et al., 2019).

Presently, a definitive AD diagnosis is only possible through
neuropathological examination of brain tissue after death.
Therefore, it is important to identify clinical biomarkers that
can help in early disease detection. In addition, the effectiveness
of available FDA-approved treatments for AD increases when
administered during early stages of the disease. Currently,
ongoing research efforts are mainly focused on delineating AD-
related epigenetic changes that occur in various brain regions.
So far, only a limited number of studies have assessed DNA
methylation changes in blood cells. These articles will be the
subject of the next section, where we will first summarize
findings observed using a candidate gene approach. In one
of these studies, blood DNA methylation of the Brain-derived
neurotrophic factor gene (BDNF) promoter and a tag SNP
(rs6265) were shown to have a significant role in the progression
of the amnestic mild cognitive impairment (aMCI) to AD. Here,
the interaction between DNA methylation of CpG5 and AA
genotype of rs6265 had a role in the progression of aMCI to
AD (p = 0.003, OR = 1.399, 95% CI: 1.198–1.477) (Xie et al.,
2017a). A 5-year longitudinal study also revealed BDNF promoter
methylation as a significant independent predictor of aMCI to

AD transformation (Xie et al., 2017b). Similarly, Nagata et al.
(2015) reported higher DNA methylation affecting a single CpG
site in the BDNF promoter of patients with AD. Nevertheless, it
is important to note that Carboni et al. (2015) could not confirm
methylation alterations in the BDNF promoter in peripheral
blood of Alzheimer’s disease patients. Therefore, doubts remain
as to whether BDNF promoter methylation changes occur in
AD patients. Besides, DNA methylation levels were demonstrated
to be significantly elevated in Coenzyme A Synthase (COASY)
and Serine Peptidase Inhibitor (SPINT1) gene promoter regions
in AD and aMCI (Kobayashi et al., 2016). DNA methylation
at the NCAPH2/LMF2 promoter region was also found to be a
useful biomarker for the diagnosis of AD and aMCI where it
was shown to be associated with hippocampal atrophy through
apoptosis (Shinagawa et al., 2016). Furthermore, Ozaki et al.
(2017) could show that a decline in DNA methylation in intron
1 of Triggering receptor expressed on myeloid cells 2 gene
(TREM2) causes higher mRNA expression in the leukocytes
of AD subjects versus controls. Phosphatidylinositol Binding
Clathrin Assembly Protein (PICALM) was another candidate
gene whose methylation associated with cognitive decline in
blood cells of AD patients (Mercorio et al., 2018). Higher global
DNA methylation levels were also observed in the peripheral
blood mononuclear cells of late onset Alzheimer disease (LOAD)
patients. This hypermethylation was associated with APOEε4
allele (p = 0.0043) and APOEε3 carriers (p = 0.05) (Di Francesco
et al., 2015). In the same way, Bollati et al. (2011) observed
a hypermethylation of LINE-1 elements in AD patients after
measuring DNA methylation at ALU, LINE-1, and alpha satellite
repetitive elements.

In AD, epigenome-wide association studies (EWAS) on
prospective cohorts are still lacking. To address this limitation,
the German Study on Aging, Cognition and Dementia in Primary
Care Patients (AgeCoDe) recruited >3300 healthy individuals at
baseline to investigate markers for early detection of dementia
and cognitive impairment. From this cohort, Lardenoije et al.
(2019) identified 55 converters healthy at baseline that developed
AD dementia at follow-up. Using DNA methylation arrays,
several differentially methylated regions were spotted in blood
of AD converters at baseline. By focusing on those regions, we
could discern epigenetic dysregulation at six DMPs in blood DNA
of Down’s syndrome patients who are at high risk of developing
early onset AD. One of the DMPs mapped to ADAM10, a major
alpha-secretase, responsible for APP cleavage in neurons (Haertle
et al., 2019). It is still challenging to find a non-invasive biomarker
that reflects AD pathogenesis in the brain. Nonetheless, the
previously described epigenetic alterations might be considered
potential biomarkers that require further research to assess
their efficacy.

Cardiovascular Disease
Cardiovascular disease (CVD) is an umbrella term for a range
of conditions that affect the heart or blood vessels. The main
determinants of a person’s cardiovascular health is age, as well
as several risk factors including diabetes, smoking, obesity,
and high blood pressure. Epigenetic aging biomarkers based
on “The Horvath Clock,” “DNAm PhenoAge,” and “DNAm
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GrimAge” were recently reported to be associated with CVD risk
(Levine et al., 2018; Lind et al., 2018; Lu et al., 2019). Even
though not much research is published on the epigenetics of
CVD, however, the impact of epigenetics has been extensively
studied in the aforementioned risk factors. The complex interplay
of genetics, epigenetics, and environment have an important role
in the pathogenesis and progress of these conditions. For e.g. a
trans-ancestry genome wide association study (GWAS) identified
12 genetic variants associated with methylation levels, which
influences susceptibility for hypertension (Kato et al., 2015).
Similarly, elevated global DNA methylation levels were reported
to be positively associated with CVD and its predisposing
risk factors (Sharma et al., 2008; Kim et al., 2010). Another
example by Infante et al. (2019) investigated DNA methylation
and expression changes in coronary heart disease patients
undergoing Cardiac Computed Tomography (CCT). They could
show that genes involved in cholesterol bioactivity such as LDLR
promoter have higher methylation in PBMNCs of CHD patients
compared to healthy controls. LDLR promoter methylation
was also associated with calcified plaque volume and total
plague burden measured via CCT. A case-control study using
Human CpG 12K Array (HCGI12K) revealed 72 DMRs hyper-
methylated in patients with coronary artery disease (CAD)
(Sharma et al., 2014). More recently, an EWAS analyses using
the HumanMethylation450 BeadChips reported 211 CpG sites
located on 196 genes to be differentially methylated in patients
with a history of myocardial infarction (MI) (Rask-Andersen
et al., 2016). A similar EWAS study on acute coronary syndrome
revealed associations with blood methylation levels of 47 CpG
sites located in genes involved in atherogenic signaling and
immune response (Li et al., 2017). Nakatochi et al. (2017)
also performed an EWAS analyses on blood DNA of patients
suffering from MI which revealed three differentially methylated
CpG sites in SGK1, SMARC4, and ZFHX3. A large EWAS
study on the Women’s Health Initiative (discovery set) and
Framingham Heart Study (FHS) – (replication set) identified
three DMRs in SLC9A1, SLC1A5, and TNRC6C linked to CVD
incidence (Westerman et al., 2018). The authors also performed a
module based epigenetic analysis, which revealed three modules
associated with CVD and its risk factors out of which two had
strong concordance in both cohorts (Westerman et al., 2018).

A growing number of studies reported a possible role for
DNA methylation in atherosclerosis pathogenesis (Newman,
1999; Napoli et al., 2012; Aavik et al., 2015; Liu et al.,
2018). Atherosclerotic lesions are known to harbor differentially
methylated CpGs in genes involved in endothelial and smooth
muscle functions (Zaina et al., 2014). Circulating concentrations
of tumor necrosis factor α, a pro-inflammatory cytokine
linked to atherosclerosis, were recently shown to be associated
with methylation changes in the immune response-related
genes DTX3L-PARP9 and NLRC5. DNA methylation levels
of those genes were also shown to negatively correlate with
CHD incidence (Aslibekyan et al., 2018). Similarly, a large
EWAS meta-analysis on serum C-reactive protein (CRP), an
inflammation biomarker predicting heart failure, identified 58
CpG sites related to CRP levels. Several of those CpGs (51
sites) were associated with cardio-metabolic traits including

CHD prevalence and incidence (Ligthart et al., 2016). More
recently, focus shifted toward understanding the role of 5-
Hydroxymethylcytosine in CVD, where reports have shown
that global DNA hydroxymethylation levels could be better
predictors of MI and CHD when compared to 5-mC. In elderly
individuals, the incidence and degree of coronary atherosclerosis
(CA) were linked to increased DNA hydroxymethylation levels
in PBMCs (Jiang et al., 2019a). This lead the authors to propose
a novel CA biomarker based on integrating carotid plaques
scores, as well as DNA methylation and hydroxymethylation data
(Jiang et al., 2019b).

From a precision health perspective, a machine learning
based framework focused on the FHS cohort could detect CHD
presence and foresee its incidence by implementing genetic,
epigenetic and phenotypic data (Dogan et al., 2018a,b). Similarly,
DNA methylation levels in the TRAF3 gene were reported
to predict recurrence of ischemic events in patients treated
with Clopidogrel (Gallego-Fabrega et al., 2016b). A conceptually
related study from the same group identified PPM1A methylation
to be associated with vascular recurrence after stroke in aspirin
treated patients (Gallego-Fabrega et al., 2016a). Nonetheless,
there must be a more concerted effort to establish whether the
reported epigenetic alterations can be reliable CVD biomarkers.

CONCLUSION AND FUTURE
PERSPECTIVES

Despite the extensive plethora of epigenetic modifications,
measuring DNA methylation of specific CpG sites remains
the most promising epigenetic biomarker. DNA methylation
modifications are highly stable compared to RNA- or protein-
based biomarkers, relatively easy to measure using non-invasive
biospecimen, and are quantifiable marks on the DNA that
can track the influences of various environmental and lifestyle
factors (Berdasco and Esteller, 2019). Nevertheless, epigenetic
biomarkers are still in the nascent stage and more research is
warranted to move toward applications in healthcare. Still, efforts
invested in developing biomarkers based on the epigenetic clocks
has accelerated discoveries in the field. Furthermore, GRAIL a
multi-billion dollar investment has chosen DNA methylation
as its preferred approach for a non-invasive test for early
cancer detection.

A key factor in the development of epigenetic clocks
was the advent of Infinium Methylation arrays that enabled
simultaneous quantification of DNA methylation starting from
∼27,000 individual CpG sites (Infinium HumanMethylation27
BeadChip) up to 850,000 sites via EPIC arrays. These
methylation arrays provide a cost-effective approach for
large-scale epigenetic epidemiology studies. Nevertheless, the
human genome is comprised of 28 million CpG sites out
of which 3% are measured using Epic Arrays. Even though,
a few reports have mentioned that whole genome bisulfite
sequencing (WGBS) is potentially inefficient due to non-
dynamic methylation across a large fraction of CpG cites as
well as the majority of WGBS reads being non-informative
(Ziller et al., 2013). Nevertheless, sequencing costs are
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decreasing dramatically and more comprehensive DNA
methylation datasets would become publicly available once
whole-genome bisulfite and oxidative bisulfite sequencing
becomes mainstream. Development of more accurate epigenetic
biomarkers by relying on whole genome sequencing data will
be a hot topic in the next years. Future work based on these
data should be even more exciting and would have important
implications for human health.
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Rheumatoid arthritis (RA) is a common autoimmune disorder influenced by both genetic
and environmental factors. To investigate possible contributions of DNA methylation to
the etiology of RA with minimum confounding genetic heterogeneity, we investigated
genome-wide DNA methylation in disease-discordant monozygotic twin pairs. This
study hypothesized that methylomic biomarkers might facilitate accurate RA detection.
A comprehensive series of biomarker detection algorithms were utilized to find the
best methylomic biomarkers for detecting RA patients using the methylomic data of
the peripheral blood samples. The best model achieved 100.00% in accuracy (Acc)
with 81 methylomic biomarkers and a 10-fold cross-validation (10FCV) strategy. Some
of the methylomic biomarkers were experimentally confirmed to be associated with
the onset or development of RA. It is also interesting to observe that many of the
detected biomarkers were from chromosome Y, supporting the knowledge that RA has
a significant gender discrepancy.

Keywords: feature selection, rheumatoid arthritis, methylation biomarker, methylome, chromosome Y

INTRODUCTION

The chronic autoimmune disease rheumatoid arthritis (RA) demonstrates significant changes to
joints, with major symptoms like joint pain and swollenness (Triantafyllias et al., 2016). RA is
strongly associated with the inflammation around major organs like lungs (Chatzidionisyou and
Catrina, 2016; Farquhar et al., 2019) and heart (Crowson et al., 2013; Lazzerini et al., 2017). RA
may be developed in about 1% of the population in the developed countries (Smolen et al., 2016).
Moreover, females have a 2.5 times high risk than males to develop RA (Alam et al., 2011).

The cause of RA remained unclear and was hypothesized to be under the orchestrated regulation
of both genetic and epigenetic factors (Villanueva-Romero et al., 2018; Khan et al., 2019). Various
genetic biomarkers were detected through genome-wide association studies (Massey et al., 2018;
Shadrina et al., 2018; Lopez-Mejias et al., 2019). Multiple genetic mutations were detected to be
statistically associated with the susceptibility for RA, including the SNPs in the genes interferon
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regulatory factor 4 (IRF-4) (Lopez-Isac et al., 2016) and
Solute Carrier family 8 (SLC8A3) (Julia et al., 2016). Genetic
factors were also observed to be associated with the treatment
responses of the tumor necrosis factor alpha inhibitors (TNFi)
(Massey et al., 2018) and the methotrexate (MTX) monotherapy
(Taylor et al., 2018).

Recent studies also demonstrated that the differential status of
the epigenomic loci was also statistically significantly associated
with RA even in a small population (Julia et al., 2017; Carnero-
Montoro and Alarcon-Riquelme, 2018). The RA pathogenesis
was observed to be actively regulated by the epigenetic
modifications of the immune machineries in the joint tissues
(Ibanez-Cabellos et al., 2019). Various environmental factors like
cigarette smoking and certain oral pathogens may induce RA
through epigenetic modifications (Brandt et al., 2019). Novel
treatment plans were proposed to use epigenetic modulators
to reverse the differentially methylated regions (Petralia et al.,
2019). So the detection of RA methylation biomarkers may both
facilitate the understanding of RA pathogenesis and propose
more epigenetic drug targets.

There were two main types of computer algorithms to detect
biomarkers, i.e., filters and wrappers (Xie et al., 2013; Singh
et al., 2018; Verde and De Pietro, 2019). A filter tries to rank
the features by each feature’s statistical association significance
with the phenotype, assuming the features are independent of
each other (Lyu et al., 2017). The filter algorithm has a linear
time complexity and runs fast enough for many large datasets (Xu
et al., 2018). A wrapper utilizes a few heuristic rules to generate a
feature subset with a performance evaluation iteratively, and the
final feature subset is output if the stop criterion is met (Tekin
Erguzel et al., 2015). The strategies of both filters and wrappers
may be integrated to generate a hybrid feature selection algorithm
(Kumar and Nirmalkumar, 2019; Wu et al., 2019).

This study hypothesized that methylomic features might
reflect both the genetic and epigenetic status of RA. So a
comprehensive biomarker detection procedure was carried out to
find a biomarker set with the satisfying RA prediction accuracy
(Acc). The best RA prediction model was also compared with
the two sets of methylomic biomarkers from the previous
studies. Our model demonstrated a better RA prediction Acc and
interesting biological observations.

MATERIALS AND METHODS

Summary of the Dataset
This study screened 485,577 methylomic features detected from
79 RA children and their 79 healthy monozygotic twin siblings
(Webster et al., 2018). The twin pairs were identified from the
TwinsUK register (Moayyeri et al., 2013) and the RA status was
detected in a questionnaire between 1997 and 2002. The twin
volunteers were recruited after an advertisement in the National
RA Society newsletter in 2013. The RA status was clinical
confirmed after these twins were recruited, and only those twins
with one healthy and the other RA status were kept for this study.
The blood samples were stored at−80◦C for DNA extraction.

The methylome was generated by the Illumina
HumanMethylation450 BeadChip 15017482 v1.1. The raw
data were available at the ArrayExpress database (Athar
et al., 2019) with the accession number E-MTAB-6988. This
methylomic dataset was formulated as a binary classification
problem between the pediatric RA patients and the controls.

The data were provided in the raw format of IDAT, and the
methylation level was calculated using the function getBeta() of
the R package minfi version 1.28.3 (Aryee et al., 2014).

Pre-screening the Methylomic Features
Many feature selection algorithms run slow on a large dataset,
and each methylome has almost half a million features. The
downstream feature selection algorithms may crash if they were
used directly on the methylomic datasets. So we carried out
a pre-screening step to reduce the number of features to be
within the capacity of the feature selection algorithms. So the
classifier LinearSVC was used to select features for further
feature screening. The Python package sklearn has a module
SelectFromModel() for this purpose. The model can select
features based on the indicators given by the LinearSVC trained
on the dataset and the user may determine the number of features
screened for further analysis.

Filter Algorithms
Four widely used filter algorithms were used to rank the features,
assuming the features were independent of each other. T-test
(Ttest) assumed that the data followed a normal distribution and
were widely used in bioOMIC data. Ttest evaluated the statistical
significance of a feature’s differential values between two groups
of samples (Kim, 2015; Gharbali et al., 2018; Jankowski et al.,
2018). This study focused on the differential methylated residues
between the RA patients and the siblings and assumed the
independences between the two groups of samples (Lotsch et al.,
2013; Kahl et al., 2018).

Chi-squared test (Chi2) can be used to select features
with the highest values of the chi-squared statistics from a
vector × relative to the classes. The chi-square test measures
dependence between stochastic variables. It also checked whether
a feature was statistically significantly associated with the
class label under the assumption of a chi-squared distribution
(Bangdiwala, 2016; Fernandez Rojas et al., 2019).

Mutual information (MI) measured the mutual dependency
between a feature and the class label (Wei and Stocker, 2016;
Meng et al., 2019). MI is equal to zero if and only if two random
variables are independent, and a higher value means a higher
dependency between the two random variables. The function
relies on non-parametric methods based on entropy estimation
from k-nearest-neighbor (KNN) distances.

Pearson correlation coefficient (PCC) evaluated the linear
correlation between a feature and the class label with the
assumption of sample independence (Liu et al., 2017). The PCC
measures the linear relationship between two variables. PCC
assumed that each variable be normally distributed, and do
not necessarily have a zero-mean. Like the other correlation
coefficients, PCC varies between −1 and +1 with 0 implying
no correlation between the two variables. Correlations of −1
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or +1 imply an exact negative or positive linear relationship.
Positive correlations imply that as x increases, so does y. Negative
correlations imply that as x increases, y decreases. The p-value
roughly indicates the probability of an uncorrelated system
producing variables that have a Pearson correlation at least as
extreme as the one computed from these variables.

Recursive Feature Elimination Strategy
Recursive feature elimination (RFE) was a strategy to iteratively
remove a feature with the least weight from the training of
a classification model. The following four classification models
were used to build the RFE feature selection procedure. Logistic
regression (LR) (rfeLR) was a popular binary classifier and may
be embedded in the RFE strategy (Pandey et al., 2018). LR is also
known in the literature as logit regression, maximum-entropy
classification (MaxEnt), or the log-linear classifier. In this model,
the probabilities describing the possible outcomes of a single trial
are modeled using a logistic function.

Lasso was a regression model and may be used to assign
weights to features after a model training (rfeLasso) (Wang
et al., 2019). The Lasso is a linear model that estimates sparse
coefficients. It is useful in some contexts due to its tendency to
prefer solutions with fewer non-zero coefficients, so Lasso can
effectively reduce the number of features upon which the given
solution is dependent. For this reason, Lasso and its variants
are fundamental to the field of compressed sensing (Angelosante
et al., 2009). Mathematically, it consists of a linear model with an
added regularization term. The objective function to minimize is:

min
w

1
2nsamples

||Xw−y||
2
2 + α||w||1.

The lasso estimate thus solves the minimization of the least-
squares penalty with αw1 added, where α is a constant and w1
is the l1-norm of the coefficient vector.

The Naïve Bayes method calculated the association probability
of each feature with the class label under the assumption of
inter-feature independence (rfeNBayes) (Youn and Jeong, 2009).
Naive Bayes methods are a set of supervised learning algorithms
based on applying Bayes’ theorem with the “naive” assumption
of conditional independence between every pair of features given
the value of the class variable. Naive Bayes learners and classifiers
can be extremely fast compared to more sophisticated methods.
The decoupling of the class conditional feature distributions
means that each distribution can be independently estimated as
a one-dimensional distribution. This in turn helps to alleviate
problems stemming from the curse of dimensionality.

The ridge regressor (rfeRidge) tried to assign minimized
weights to non-associated features to a model (Barker and Brown,
2001; Rottmann and Berbeco, 2014). Ridge regression addresses
some of the problems of ordinary least squares by imposing
a penalty on the size of the coefficients. The ridge coefficients
minimize a penalized residual sum of squares:

min
w
||Xw−y||

2
2 + α||w||22.

The complexity parameter α ≥ 0 controls the amount of
shrinkage: the larger the value of α, the greater the amount

of shrinkage and thus the coefficients become more robust
to collinearity.

Heuristic Feature Selection Strategies
Three heuristic feature selection strategies were used to generate
a feature subset. The ascending feature screening (AFS) strategy
started with an empty feature subset and selected the next feature
with the best rank or largest weight after a model training. Then
this chosen feature was removed from the remaining feature list.
While the descending feature screening (DFS) strategy started
with all the features and removed the next feature with the lowest
rank or the least weight after a model training. Cawley and Talbot
(2010) suggested that a classification model may be over-fitted if
the number of training samples was smaller than that of features.
We proposed a feature removal procedure BackFS to carry out an
iterative removal of a feature that contributed the least prediction
performance improvement. The feature subset with the best
prediction performance was kept for further analysis.

All the computational experiments were conducted in the
Python programming language version 3.6.5. Chi2 and MI
were provided in the python sklearn version 0.19.1. PCC
and Ttest were provided in the python scipy version 1.1.0.
The four RFE procedures were programmed using the python
sklearn version 0.19.1.

Classification Algorithms
Five widely used classifiers were utilized to measure the
prediction performance of a feature subset. The discriminative
power of a feature subset may be evaluated by a multivariate
LR (Inzaule et al., 2018). The support vector machine (SVM)
with the linear kernel function was another binary classifier that
had been widely used for biomedical datasets (Citak-Er et al.,
2018). SVMs are a set of supervised learning methods used for
classification, regression, and outlier detection which can analyze
data in classification and regression analysis. Given a set of
training instances, each training instance is marked as belonging
to one of the two categories, and the SVM training algorithm
creates a model that assigns new instances to one of the two
categories, making it a non-probability two Meta linear classifier.
The SVM model represents instances as points in space, so that
the mapping allows the instances of the individual categories to
be separated by as wide an apparent interval as possible. Then,
map new instances to the same space and predict which category
they belong to based on which side of the interval they fall on.
SVM may also be used to select biomarkers. After an SVM model
was trained on a dataset, each input feature was assigned with a
weight and the features with the default weight threshold 1e−5
may be chosen for further analysis.

The simple classifier KNN had demonstrated very good
prediction accuracies in some cases (Nejadgholi and Bolic, 2015;
Yang et al., 2017). Neighbors-based classification is a type of
instance-based learning or non-generalizing learning. It does not
attempt to construct a general internal model, but simply stores
instances of the training data. Classification is computed from
a simple majority vote of the nearest neighbors of each point:
a query point is assigned the data class which has the most
representatives within the nearest neighbors of the point.
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The ensembled classifier Random Forest (RF) integrated
the final decision based on the prediction results of multiple
random trees (Lu et al., 2017; Olsen et al., 2018; Rahman et al.,
2018). The RandomForest algorithm is perturb-and-combine
techniques specifically designed for trees. This means a diverse set
of classifiers is created by introducing randomness in the classifier
construction. The prediction of the ensemble is given as the
averaged prediction of the individual classifiers. In RFs, each tree
in the ensemble is built from a sample drawn with replacement
(i.e., a bootstrap sample) from the training set. The Gaussian
naïve Bayes classifier was used in this study as an evaluator of
a feature subset (Cao et al., 2017). GaussianNB implements the
Gaussian Naive Bayes algorithm for classification. The likelihood
of the features is assumed to be Gaussian:

P(xi|y) =
1√

2π σ2
y

exp

(
−

(xi − µy)
2

2σ2
y

)
.

The parameters σy and µy are estimated using
maximum likelihood.

The python sklearn version 0.19.1 provided the code of these
five classifiers.

Performance Measurements
Three classification performance measurements, i.e., accuracy
(Acc), sensitivity (Sn), and specificity (Sp), were used to evaluate
how well a feature subset performed (Ye et al., 2017; Xu et al.,
2018; Yokoi et al., 2018; Zhao et al., 2018). The RA children were
regarded as the positive samples (P) while the matched controls
were the negative samples (N). P and N were also denoted as
the numbers of positive and negative samples. Sensitivity (Sn)
was defined as the correctly predicted ratio of positive samples,
i.e., Sn = TP/(TP + FN) = TP/P, where TP and FN were the
numbers of correctly and incorrectly predicted positive samples,
respectively. Specificity (Sp) was the correct prediction ratio of
negative samples, i.e., Sp = TN/(TN + FP) = TN/N, where TN
and FP were the numbers of negative samples with correct and
incorrect predictions, respectively. The overall prediction Acc
was defined as Acc = (TP+ TN)/(P+ N).

These measurements were used in various prediction models
like the DNA and RNA functional elements (He et al., 2018;
Feng et al., 2019). And they were calculated using the 10-fold
cross-validation (10FCV) strategy as similar in Ye et al. (2017)
and Zhao et al. (2018).

Experimental Design
The experiments were carried out in three major steps, as
illustrated in Figure 1. The first step was to find 20,000 features
with the largest variations. A methylation residue with a large
variation was easier to be detected while a residue with a
stable methylation level required a high-resolution technology to
measure. And the downstream feature selection algorithms may
crash on a dataset with a large number of features. So we have
to reduce the feature dimensions to be within the capacity of
the eight feature selection algorithms. So LinearSVC was used to
select 147 features for further feature screening.

Then the two steps of feature selection and classification were
carried out iteratively to find the best classification model using
the selected features, as shown in Figure 1.

RESULTS AND DISCUSSION

Data Preprocessing
The raw data of this methylomic dataset was provided in the
format IDAT, and was processed using the function getBeta() of
the R package minfi version 1.28.3 (Aryee et al., 2014). There
were 485,577 methylation features for each sample, among which
65 probes designed to interrogate SNPs within the samples and
was ignored in the R package minfi. Some methylation residues
had many missing values, e.g., the feature cg01550828 has no
values in all the 158 samples. The feature cg01550828 was a
cysteine in the N termini of the gene Ring Finger Protein 168
(RNF168), which encoded an E3 ubiquitin ligase protein. After
the preprocessing, 485,511 methylomic features were detected for
the following analysis.

We hypothesized that methylated residues with larger beta-
value fluctuations may be easier to detect in the clinical practice.
Therefore, we calculated the standard deviation of the beta-
values of each methylated residue, and sorted the features in the
descendental order. The top-ranked 20,000 features of the 158
samples were kept for further analysis.

Limitations the Variation Threshold
20,000
We performed the 10FCV of the classifier LinearSVC on the
features with different variation thresholds, as shown in Figure 2.
Due to that the number of features were much larger than the
number of samples, only the features with the LinearSVC model
weight larger than the default weight threshold 1e−5 were kept
for model performance evaluation. Figure 2 demonstrated the
running time and 10FCV classification Acc of different numbers
of features, i.e., 1000, 2000, 3000, . . ., 22,000. As shown in the
figure, the variance threshold 20,000 achieved 0.9873 in Acc
while costed a very relatively small running time 17.6620 s. But
the procedure of feature selection and classification was not
optimized for the final classification Acc. So the other choice of
variance threshold may achieve a better final classification Acc.

The evaluation procedure was carried out in a computer with
the Windows 7 operating system and Python 3.7 programming
language. The computer had a 3.30GHz CPU, 32 Gb memory,
and 1Tb hard disk.

Optimizing LinearSVC to Select Features
Firstly, the feature selection procedure SelectFromModel() was
used to find the initial feature subset with a reasonable prediction
accuracy, as shown in Figure 3. The screening procedure was
provided by the Python package scikit-learn version 0.21.2 and
Python version 3.6. The penalization was carried out by the
L1 penalty. In the Python package sklearn.svm.LinearSVC, the
parameter C was a float with default = 1.0. It was a regularization
parameter. The strength of the regularization was inversely

Frontiers in Genetics | www.frontiersin.org 4 March 2020 | Volume 11 | Article 238461

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00238 March 27, 2020 Time: 11:19 # 5

Feng et al. Methylomic Biomarkers of Rheumatoid Arthritis

79 rheumatoid 
arthritis 

children(P)

79 their normal
monozygotic 

twin siblings(N)

Binary Classification
Classification

Best 
Model

Feature Selection

LinearSVC
147

Ttest rfeLR

Chi2 rfeLasso

MI

PCC

rfeNBayes

rfeRidge
Variation

20000

Data Preprocess

LR

SVM

KNN

NBayes

RFC

FIGURE 1 | Experiment flowchart of this study. Three major steps were carried out to find the best classification model. The first step was to find the 20,000 features
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subset. The prediction performance was evaluated using five popular binary classifiers.
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FIGURE 2 | Classification accuracy and time cost of the classifier LinearSVC with different variance thresholds. The horizontal axis was the “variance threshold.” The
left and right vertical axises were the computational time cost (seconds) and the classification accuracy, respectively.

proportional to C and this parameter must be strictly positive.
The parameter C was screened by the values between [0.10, 5.00]
with the step size 0.10, as shown in Figure 3.

Figure 3 demonstrated that after C reached the value
1.8, the prediction accuracy remained stable. The classifier
LinearSVC achieved Acc = 0.9873 with C = 1.8 and 140
features. The best prediction accuracy 0.9937 was achieved
by C = 2.4, 3.2, 3.4, 3.5, 4.3, 4.4, 4.6, and 4.7. The data
demonstrated that the best Acc = 0.9937 was achieved by
many choices of the parameter C, but no better performance
was achieved. A smaller number of features suggested a
simpler model. So C = 2.4 may be the best choice based
on Figure 3. Its also interesting to observe that at least
155 features were chosen when C = 3.2, 3.4 and 3.5. So
the following sections tried to find a smaller feature subset

from this list of 147 features, which were listed in the
Supplementary Table S1.

Selecting Features by Filters
A filter algorithm assumed the inter-feature independence and
evaluated each feature separately for its association with the
phenotype. So the AFS strategy selected the k-feature subset
as the top-ranked k features. While the DFS strategy removed
the least-ranked feature from a (k + 1)-feature subset based
on the filter-calculated single-feature association with the class
label. That is to say, the k-feature subset generated by the DFS
strategy was also the top-ranked k features. The ascending and
DFS strategies of a filter algorithm selected the same features for
a given number of features. So this section only investigated the
AFS() strategy of the four filter algorithms. The details of the
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between [0.10, 5.00] with the step size 0.10. The vertical axis was for the classification accuracy and the horizontal axis was for the values of the parameter C. The
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AFS strategy were described in the section “Heuristic Feature
Selection Strategies.”

Our data suggested that all the five classifiers performed
similarly well on a feature subset with a size <50, as shown
in Figure 4. However, the two classifiers LR and SVM kept
improving the classification accuracies by adding more features.
And SVM achieved the best classification accuracies on features
selected by all the four filter algorithms. The best model with
Acc = 1.0000 was achieved by the classifier SVM with 144 Chi2-
selected methylomic features. The other three classifiers (KNN,
RFC and NBayes) reached the plateau of about 0.7000 in Acc after
the number of features reached 50.

Selecting Features by the RFE Strategies
We firstly evaluated the two feature selection procedures
AFS(rfeLR) and DFS(rfeLR), as shown in Supplementary Figure
S1. Filter algorithms had the assumption of the inter-feature
independence. Although filters usually ran faster than the other
algorithms like wrappers and RFE strategies, filters usually
selected more features to achieve similar classification accuracies
as the other feature selection algorithms (Srivastava et al., 2014;
Suto et al., 2016).

When almost all the 147 features were kept, AFS(rfeLR)
and DFS(rfeLR) performed similarly well for each of the five
classifiers. The same pattern as in the previous section was
observed that the two classifiers LR and SVM outperformed
the other three with significantly improved accuracies, and the
classifier SVM performed the best. Supplementary Figure S1
illustrated a novel pattern that the descendent feature removal
strategy (DFS) performed much better than the ascendant feature
addition strategy (AFS). AFS(rfeLR) required at least 116 features
to achieve Acc > 0.9000. While DFS(rfeLR) only needed 41
features to achieve Acc = 0.9114.

DFS(rfeRidge) performed even better than AFS(rfeRidge), as
shown in Figure 5 and Supplementary Figure S4. AFS(rfeRidge)

selected 97 features to train an SVM model with Acc = 0.9051.
But only 37 methylomic features were selected by DFS(rfeRidge)
to train an SVM model with Acc = 0.9114. And the SVM
model performed very stably with more features selected by
DFS(rfeRidge), as shown in Figure 5. The strategy BackFS
required many more features to achieve a similar prediction
accuracy, as in Figure 5C. The classifier NBayes assumed
the inter-feature independence, which may not be the case in
the dataset used in this study. This might be the reason that the
classifier NBayes didn’t perform very well in this study, as shown
in Figure 5.

Also, DFS(rfeLasso) performed better than AFS(rfeLasso), as
shown in Supplementary Figure S2. AFS(rfeLasso) selected 144
features to train an SVM model with Acc = 0.9684. But 144
methylomic features were selected by DFS(rfeLasso) to train an
SVM model with Acc = 0.9810. And the SVM model performed
very stably with more features selected by DFS(rfeLasso).

DFS(rfeNBayes) performed similarly well for each of the
five classifiers as AFS(rfeNBayes), as shown in Supplementary
Figure S3. Both AFS(rfeNBayes) and DFS(rfeNBayes) achieved
Acc = 0.9177 when selecting 101 features to train an SVM
model. And the SVM model performed very stably with more
features selected.

Overall, the best model achieved in this study was the SVM
model (Acc = 1.0000) using the 81 features selected by the strategy
DFS(rfeRidge), as shown in Figure 5.

Another evaluation procedure was carried out for the above-
selected features. The stratified splitting strategy was used to split
the samples into one-third training, one-third validation, and
one-third test datasets. The SVM parameter C was evaluated for
its different values from 0.1 to 3.0 with the step size 0.1, as shown
in Figure 6. After the 81 methylomic features were selected by
the strategy DFS(rfeRidge), the binary classification SVM models
with different C values were trained on the training dataset
and evaluated for the classification accuracies on the validation
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FIGURE 4 | Ascending feature screening (AFS) of four filter algorithms. The classification performance of each filter algorithm was evaluated by five classifiers. The
four filter algorithms were (A) Ttest, (B) Chi2, (C) MI, and (D) PCC, and the five classifiers were LR, SVM, KNN, RFC, and NBayes.

dataset, as shown in Figure 6. When the parameter was 0.5,
the validation accuracy reached the best value 0.8868. A similar
classification accuracy 0.8679 was achieved on the test dataset.
This suggested the model stability for the classification algorithm.

Refining the 147 Features With Two
Other Regression Algorithms
This study evaluated how the regression-based feature selection
algorithms might be improved by two other regression
algorithms, i.e., sliced inverse regression (SIR) (Cook and
Weisberg, 1991; Li, 1991) and group lasso (GroupLasso) (Yuan
and Lin, 2006; Yuan et al., 2011). Figure 1 demonstrated
that the LinearSVC model selected 147 features and then the
filters and regression-based RFE algorithms were applied. So
SIR and GroupLasso were utilized to further refine the subset
of 147 features.

Sliced inverse regression doesn’t need to optimize the
parametric or non-parametric model training process and
demonstrates a significant capability to reduce the feature
dimensions (Cook and Weisberg, 1991; Li, 1991). This study
utilized the SIR in the Python package sliced version 0.1 (Li,
1991). Its interesting to observe that the classifier SVM from
the best model achieved again Acc = 1.0000 using only the first
feature engineered by SIR. Our experimental data demonstrated
that SIR and the proposed feature selection procedure achieved

the same classification performances on the investigated problem
in this study. But the best model used only 81 original methylated
residues while SIR used the one feature engineered from
the 147 features.

GroupLasso is another widely used feature selection algorithm
that assigns non-zero weights to groups of features instead
of the individual ones like the regular lasso (Yuan and Lin,
2006; Yuan et al., 2011). This study utilized GroupLasso in
the Python package group-lasso version 1.1.1 (Yuan and Lin,
2006; Yuan et al., 2011). Unfortunately no features were selected
by GroupLasso.

Refining Differentially Methylated and
Variable Biomarkers
Twenty differentially methylated residues were detected in the
previous study, but all of them were not statistically significantly
associated with RA by the adjusted p-values (Webster et al., 2018).
This study further refined this subset of 20 methylation residues
with the classification accuracy as the optimization goal.

The AFS strategy of the four filter algorithms was applied
to the 20 differentially methylated residues, as shown in
Supplementary Figure S5. The classifier NBayes achieved the
best Acc = 0.7532 on the original subset of 20 features. This
model may be further improved to Acc = 0.7658 using only
10 features, which was selected by the algorithm AFS(MI).
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Each model was trained on the training dataset and evaluated on the validation dataset.

Another algorithm AFS(Ttest) achieved the same prediction
Acc = 0.7532 using only 4 and 10 features for the classifiers KNN
and NBayes, respectively.

An even better improvement may be achieved by both
AFS(rfeLasso) and DFS(rfeLasso), as shown in Supplementary
Figure S6. Firstly, the original list of 20 differentially methylated
residues may be reduced to 11 features to achieve Acc = 0.7658.

Secondly, the best model achieved Acc = 0.8038 using
only 18 features.

Webster et al. (2018) also evaluated a list of two differentially
variable residues, which were refined in the same way in this
study, as shown in Supplementary Figures S7, S8. The similar
patterns were observed, and the best improved SVM model
achieved Acc = 0.7722 with 12 features selected by AFS(Chi2).
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Refining the Previous Biomarkers by
BackFS
The two lists of RA biomarkers were further refined by a simple
iterative feature elimination procedure BackFS, as shown in
Figure 7. BackFS exhaustively removed the redundant features,
so only the subset of features achieving the best prediction
accuracy was kept for further analysis. The original list of 20
differentially methylated features may be further selected to
achieve a better prediction Acc = 0.7658 using only 18 features
for the classifier NBayes, as shown in Figure 7A. While the list
of 20 differentially variable features may be reduced to 15 with a
better prediction Acc = 0.7595 for the same classifier NBayes, as
shown in Figure 7B.

Independent Effectiveness Evaluation of
the Proposed Biomarker Detection
Procedure
We further evaluated the effectiveness of the proposed biomarker
detection procedure on an independent dataset. There is no
simulation tool for the array-based methylomes. So another
independent dataset TCGA-BRCA (Berger et al., 2018) was
chosen to evaluate our biomarker detection procedure, as shown
in Figure 8. There were 982 samples and each sample had 485,577
methylated residues. Multiple samples were extracted from some
patients and only sample was randomly chosen to represent
this patient. 763 samples were collected to have the clinical
annotation “tumor_stage” (I/II/III/IV). The binary classification
problem was formulated between the class Positive (555 samples
from the stages I and II) and Negative (208 samples from the
stages III and IV).

The same biomarker detection procedure was carried out on
the methylomic dataset TCGA-BRCA, as shown in Figure 6.
The initial 20,000 top-ranked features with the largest standard-
deviations were screened to find the best value of the parameter
C, as shown in Figure 6. The binary classification problem
for the dataset TCGA-BRCA seemed to reach the classification
accuracy 1.0000 with the parameter C = 0.3. There were 499
features selected in this step. Then the four filter algorithms were
evaluated using the AFS strategy and the four RFE algorithms
were evaluated by both AFS and DFS strategies, in the same
procedure as the above. The features screened by DFS(rfeLR)
achieved the best classification accuracy 1.0000 using only
240 features. Among the five classifiers, SVM achieved the
best performance, as the same in the RA biomarker detection
problem. The best feature selection algorithm DFS(rfeRidge)
for the RA biomarker detection problem achieved a similar
classification accuracy (0.9882) for the dataset TCGA-BRCA.

So overall the biomarker detection procedure in this study
effectively detected methylated residues for the methylome-based
classification problems.

Biological Observations of Methylomic
Biomarkers
This study selected 81 methylated residues as biomarkers to
separate the RA patients from their controls, as shown in
Supplementary Table S1. Its interesting to observe that 38 of

these 81 methylated residues were from the chromosome Y
and many of them were within the transcriptional start sites
(TSS) of non-coding RNA gene family Testis-Specific Transcript,
Y-Linked (TTTY). This supported the observations in the
literature about the gender discrepancy on autoimmune diseases
like RA (Jansson and Holmdahl, 1994). Many of these methylated
residues were in the TSS regions of these non-coding RNAs,
suggesting that methylation may have played a regulatory role in
the onset and development of RA (Relle et al., 2015; Houtman
et al., 2018). Such reversible epigenetic modifications may serve
as therapeutic candidates (Cribbs et al., 2015; Doody et al., 2017).

Another RA-associated gene HLA-DRB1 (Major
Histocompatibility Complex, Class II, DR Beta 1) was also
a methylation biomarker (cg27107292) detected in this study
(Conigliaro et al., 2019; Okada et al., 2019). HLA-DRB1 was one
of the first few RA biomarkers discovered four decades ago and
harbored more than 100 RA-associated loci (Okada et al., 2019).
Recently, HLA-DRB1 was also observed to be differentially
methylated in RA (Liu et al., 2013) and had significant
associations with the mortality and prognosis of RA (Ruyssen-
Witrand et al., 2012; Viatte et al., 2015) and other autoimmune
diseases (Bettencourt et al., 2012; Okayama et al., 2018).
Furthermore, the pathway analysis through the KEGG Database
(Kanehisa et al., 2017) demonstrated that various immune
pathways were associated with HLA-DRB1 such as hsa04612
(Antigen processing and presentation pathway), hsa04659 (Th17
cell differentiation pathway), and hsa05323 (RA pathway). This
suggested that the detected biomarker HLA-DRB1 was strongly
connected to the autoimmune disease RA.

Furthermore, C5orf30 (a methylation biomarker cg17605604)
was reported as a damaging regulator of tissue in RA, which
is highly expressed in RA synovial fibroblast (RASF) involving
joint destruction (Muthana et al., 2015). The clinical data
analysis also demonstrated that the variant rs26232 in C5orf30
locus was testified to be associated with RA susceptibility
and radiologic damage severity. These observations from the
literature supported that C5orf30 may play a significant role in
the progression of arthrosis damage (Teare et al., 2013).

Two gender-specific methylation biomarker genes DDX3Y
and UTY which have been reported as sex-affected differentially
expressed genes for inflammatory arthritis through the Wnt
signaling (Kudryavtseva et al., 2012). This situation exactly
matched to the gender-biased disease condition for RA. Besides
DDX3Y was suggested to be differentially expressed in cartilage
tissues of RA patients versus control groups with potential
association with miRNA (Toraih et al., 2016). Many other genes
like RPS4Y2, KDM5D, EIF1AY, and CYorf15A have also been
shown as important biomarker genes in RA via the Monte Carlo
cross-validation (Song et al., 2017).

Supplementary Table S1 also illustrated that the methylated
biomarkers were from various genic sites, i.e., TSS, 5′-
untranslated region (UTR), 3′-UTR, first exon, and genic
body. This suggested that these RA methylation biomarkers
contributed their regulatory roles through different biological
mechanisms. Those frequently appeared genes, and non-coding
RNA genes may need further wet-lab investigations of their
potential biological mechanisms.
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FIGURE 7 | Refine the two lists of previous methylation biomarkers of RA. The classification performance was evaluated by five classifiers. The five classifiers were
LR, SVM, KNN, RFC, and NBayes. Refining procedures of (A) the 20 differentially methylated positions (DMP) and (B) the 20 differentially variable positions (DVP).

FIGURE 8 | Evaluating the proposed biomarker detection procedure with a new dataset TCGA-BRCA. The classification performance was evaluated by five
classifiers. The five classifiers were LR, SVM, KNN, RFC, and NBayes. (A) The classification accuracies (vertical axis) of the classifier LinearSVC with different values
of the parameter C between [0.10, 4.00] with the step size 0.10. (B) The classification accuracy plots of the feature selection strategy DFS(rfeLR) using the five
classifiers, i.e., LR, SVM, KNN, RFC, and NBayes.

CONCLUSION

This study comprehensively utilized the widely used modeling
algorithms to find the set of methylomic features with
the best RA prediction accuracy. The best model used
the features selected by the DFS(rfeRidge) strategy and the
classifier SVM. The best accuracy 100.00% was achieved with
the 81 detected methylomic biomarkers using the 10FCV
strategy. The 81 methylomic biomarkers may accurately
separate the RA patients from their matched controls. These
biomarkers also demonstrated that chromosome Y contributed
38 methylated residues to the final model, supporting the
literature about the gender-specific discrepancy. These 81
methylated biomarkers came from both regulatory regions
and the gene body. So the biological mechanisms of how
these 81 methylated residues were involved in RA’s onset and
development may vary from the transcriptional regulation to the
epigenetic modifications.

The number of biomarker features was still too large for
the clinical practice. Clinical data other than the methylomic
features may be integrated to improve the proposed RA detection

model. A weakened model may also be considered using fewer
features. For example, if only 37 methylomic features selected by
DFS(rfeRidge) were used to train the SVM model, the detection
accuracy reached Acc = 0.9114, an acceptable accuracy in some
cases. RA was a complex human disease and the subtypes may
be described by fewer biomarkers. So the detection models for
the RA subtypes may also use fewer biomarkers to achieve
satisfying accuracies.

The samples were 70 pairs of monozygotic twins. Each
twin shared the same genetic background that might reduce
the noise information induced by the methylation status of
genetic variations. This sample setting suggested that the detected
methylomic biomarkers mainly reflected the epigenetic status
of RA. Independent validation datasets might also further
improve our models.
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New Analysis Framework
Incorporating Mixed Mutual
Information and Scalable Bayesian
Networks for Multimodal High
Dimensional Genomic and
Epigenomic Cancer Data
Xichun Wang, Sergio Branciamore, Grigoriy Gogoshin, Shuyu Ding and Andrei S. Rodin*

Department of Computational and Quantitative Medicine, Beckman Research Institute and Diabetes and Metabolism
Research Institute of the City of Hope, Duarte, CA, United States

We propose a novel two-stage analysis strategy to discover candidate genes associated
with the particular cancer outcomes in large multimodal genomic cancers databases,
such as The Cancer Genome Atlas (TCGA). During the first stage, we use mixed mutual
information to perform variable selection; during the second stage, we use scalable
Bayesian network (BN) modeling to identify candidate genes and their interactions.
Two crucial features of the proposed approach are (i) the ability to handle mixed data
types (continuous and discrete, genomic, epigenomic, etc.) and (ii) a flexible boundary
between the variable selection and network modeling stages — the boundary that can
be adjusted in accordance with the investigators’ BN software scalability and hardware
implementation. These two aspects result in high generalizability of the proposed
analytical framework. We apply the above strategy to three different TCGA datasets
(LGG, Brain Lower Grade Glioma; HNSC, Head and Neck Squamous Cell Carcinoma;
STES, Stomach and Esophageal Carcinoma), linking multimodal molecular information
(SNPs, mRNA expression, DNA methylation) to two clinical outcome variables (tumor
status and patient survival). We identify 11 candidate genes, of which 6 have already
been directly implicated in the cancer literature. One novel LGG prognostic factor
suggested by our analysis, methylation of TMPRSS11F type II transmembrane serine
protease, presents intriguing direction for the follow-up studies.

Keywords: The Cancer Genome Atlas, Bayesian networks, multimodal big data, variable selection, mixed mutual
information, methylation, genomic and epigenomic molecular data

INTRODUCTION

The Cancer Genome Atlas (TCGA) resource contains genomic data compiled for more
than 30 different types/subtypes of cancer (Tomczak et al., 2015). For each type, clinical
outcome/progression data (e.g., tumor status and patient survival) for a considerable number
of patients is matched to the large-scale molecular data. The latter is multimodal, ranging from
genetic (e.g., somatic mutations) to expression (e.g., RNA-seq gene expression) to epigenetic
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(e.g., promoter methylation) data. Not surprisingly, there is
substantial enthusiasm for causally linking the latter to the
former using various modeling and secondary data analysis
techniques (Jeong et al., 2015; Phan et al., 2016; Hou et al.,
2018; Tian et al., 2018; Xu et al., 2018). The ultimate
goals of these analyses are (i) to gain better mechanistic
understanding of the underlying molecular biology of cancer,
primarily by identifying important genes and their interactions;
(ii) to construct compact and efficient clinical predictors (e.g.,
prognostic scores, indices and signatures); (iii) to associate
the latter with the particular patient groups and subgroups,
in the context of personalized/precision medicine. One of the
more attractive and popular methods for such multivariate
analysis is Bayesian networks (BNs) (Heckerman, 1995), a well-
established fixture in computational systems biology (Friedman
et al., 2000). Among the BN advantages are their probabilistic
nature, model flexibility, ability to handle non-additive, higher-
order, interactions, and ease of the result interpretation. However,
applications of BNs to the TCGA (and TCGA-like) data (Gevaert
et al., 2006; Xu et al., 2012, 2014; Wang et al., 2013; Huang
et al., 2015; Zhu et al., 2015; Kaiser et al., 2016; Wu et al.,
2017) face two principal difficulties: combining mixed data
types in a single analysis framework, and achieving sufficient
(for genomic data) scalability, simultaneously. (These, of course,
are the two fundamental, and interconnected, BN modeling
challenges in general, not just in the TCGA application).
The latest developments in addressing these two challenges
encompass more efficient computational approaches (Gogoshin
et al., 2017; Ramsey et al., 2017), and mathematically rigorous
and robust methods for handling mixed data, such as mixed local
probability models and/or adaptive discretization (Gogoshin
et al., 2017; Andrews et al., 2018; Sedgewick et al., 2018).
Nevertheless, resolving both difficulties simultaneously in a
generalizable toolkit (seamlessly applicable, for example, across
the individual TCGA datasets) remains elusive. A promising
approach to devising such a toolkit would be to precede
the comparatively exhaustive NP-hard BN modeling with a
variable selection procedure [for example (Zhang et al., 2014)],
where the full dataset is pared down to a subset of variables
most relevant to a particular clinical outcome or phenotype.
While alleviating the scalability issue, this, however, could
potentially “throw away the wheat with the chaff,” especially
if the variable selection process (Blum and Langley, 1997;
Guyon and Elisseeff, 2003) is of a simplistic and overly too
restrictive kind (e.g., a statistically conservative univariate filter).
There are three possible ways to address this, namely: (i)
increase the scalability of the BN modeling to genomic data
levels (possible, but impractical for frequent/serial analyses), (ii)
incorporate higher-order interactions into the variable selection
step (thus “upgrading” it from the simple filter to the wrapper
[Kohavi and John, 1997; Guyon and Elisseeff, 2003; Leng et al.,
2010) — this is the solution implemented in Zhang et al.
(2014)], or (iii) adjust the transition boundary between the
variable selection step and the BN modeling step, depending
on the investigators’ computational resources and the nature
(dimensionality, sparseness, heterogeneity) of the actual data. It
is the third analytical strategy that we propose in this study,

with the goal to achieve the optimal compromise between the
computational practicality and modeling exhaustiveness.

In our analysis pipeline, we start with the variable selection
procedure based on the mixed-type Mixed Mutual Information
(MMI) forward selection filter. We compute the MMI values
for all available gene-outcome (specifically, tumor status and
patient survival) pairs, and use the MMI frequency distribution
to select top variables/genes (or, alternatively, to remove
bottom variables/genes) before moving on to the BN modeling.
This mixed-type measure-based approach to gene selection
is the principal innovation of this paper. We then use the
maximum entropy (ME) – based discretization to construct
the mixed-type BNs using our previously reported scalable
BN modeling algorithm and software (Gogoshin et al., 2017).
Subsequently, we concentrate on the sub-networks centered
around the clinical outcome variables of interest, and identify
the molecular gene components belonging to these sub-
networks.

The proposed analysis strategy has been applied by us to
12 different TCGA cancer datasets. This allowed us to check
for robustness, scalability and generalizability. Here, we present
the results for the Brain Lower Grade Glioma (LGG), Head
and Neck Squamous Cell Carcinoma (HNSC) and Stomach
and Esophageal Carcinoma (STES) datasets (all three datasets
being reasonably well-populated and proportionally balanced
across the different outcomes and molecular data types). For the
purposes of this particular analysis, we decided to concentrate
on three types of molecular data, one discrete (somatic
mutations) and two – continuous (RNA-seq gene expression,
and promoter methylation). This selection is reflective of
the recent trends in multimodal cancer data analyses (Zhang
et al., 2014; Yoo et al., 2017), makes sense in the broad
cancer genetics context (Phipps et al., 2016; Fang et al.,
2017; Liang et al., 2017; Rajesh et al., 2017; Zhang C. et al.,
2017; Koch et al., 2018), and underscores the comparative
importance of the methylation molecular data (Koch et al.,
2018). While focusing solely on the gene-centric modalities
is inherently limiting (many disease-linked SNPs are localized
in the non-coding regions), one of the primary purposes of
this study was to showcase the MMI approach (enjoining
three different modalities in a single measure/score), which
necessitated the gene-centric analysis. In future, we plan
to generalize our analytical framework to other, non-gene-
centric, data.

We conclude by identifying a compact list of genes
potentially associated with cancer-related clinical phenotypes
(tumor status and patient survival), scrutinizing these genes in
light of the current literature, and discussing the generalizability
of our approach to the different datasets, diseases and
molecular data types.

MATERIALS AND METHODS

Data Preprocessing
The Cancer Genome Atlas, LGG, HNSC, and STES datasets
were downloaded for the clinical data [“Clinical_Pick_Tier1
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(MD5)”], SNP data [“Mutation_Packager_Calls (MD5)”],
expression data [“mRNAseq_Preprocess (MD5)”] and promoter-
centric methylation data [“Methylation_Preprocess (MD5)”].
Patients were further subdivided into (i) two disease progression
categories (according to the “tumor status” variable), and (ii)
two patient survival categories (high death risk, with survival
less than 2 years, and low death risk, with survival more than
2 years, which is a common cutoff point in recent cancer
literature). We further excluded patients with ambiguous
or missing outcome variable values (e.g., no survival status,
survival status as “living” with survival time less than 2 years,
tumor status neither “tumor-free” nor “with tumor,” etc.).
These clinical variables (“tumor status” and “2-year survival”)
were subsequently used for the variable selection purposes,
and, eventually, to extract “tumor status” and “survival” –
centered sub-networks from the full BNs. Expression data and
methylation data (designated by “E” and “M” below, for brevity)
were not discretized at this stage, as both variable selection and
BN construction tools in our computational pipeline can, by
design, accept mixed (continuous and discreet) variable types.
SNP (somatic mutation) data (designated by “S” below) were
compressed into a binary variable (presence or absence of at least
one non-synonymous mutation in at least one sample of the
particular gene).

After filtering out patient records with incomplete, partially
missing, or ambiguously labeled data, the final datasets consisted
of 4782 genes (LGG), 12516 genes (HNSC) and 16164 genes
(STES). 273 patient records were available for LGG/tumor status
analysis (140 patients with tumor, 133 without); 213 patients – for
LGG/survival (120 patients with survival less than 2 years, 93 with
long-term survival). Similarly, 260 patient records were available
for HNSC/tumor status analysis (94 patients with tumor, 166
without); 139 patients – for HNSC/survival (40 patients with
survival less than 2 years, 99 with long-term survival). Finally,
403 patient records were available for STES/tumor status analysis
(147 patients with tumor, 256 without); 258 patients – for
STES/survival (191 patients with survival less than 2 years, 67
with long-term survival).

Here we would like to re-emphasize that it is possible
to include other different molecular data types and outcome
variables, both continuous and discrete, into the proposed
framework without substantial alterations to the analysis
pipeline, except for some rudimentary data preprocessing.

Variable Selection
There are very few BN algorithms/software solutions that scale
up to (epi)genomic levels (tens to hundreds of thousands of
variables) (Gogoshin et al., 2017; Ramsey et al., 2017). Even
with these, exhaustive analyses require dedicated hardware
and weeks of processing time. This might be acceptable for
a one-off, “final” analysis, but is clearly impractical for the
exploratory research. This is why it is a common practice to
carry out variable selection (or feature selection, or feature
set reduction) in order to generate a comparatively compact
subset of variables to be subsequently fed into the network
modeling algorithm/software (Guyon and Elisseeff, 2003).
Variable selection approaches range from the very simple

(univariate filters) to increasingly more sophisticated; at some
point, the latter become essentially indistinguishable from the
multivariate modeling methods per se. Depending on the dataset
to be analyzed, different “couplings” of variable selection and
multivariate modeling methods might prove to be more or less
effective, and it is difficult to devise a priori the objectively
optimal combination for each new dataset. For a principally
network-centric data analysis approach (innate to the systems
biology), it would make sense to feed as many variables into
the network-building module as possible, thus “delegating” the
resolution of the higher-order / non-additive interactions and
conditional independence relationships to the BN algorithm
itself. Therefore, for the exploratory research, we suggest that the
investigators first define the upper BN scalability limit that they
are comfortable with (given the available software/hardware),
and then adjust the variable selection cutoff point accordingly.
For more “finalized” analysis, that limit should be raised higher
(and the variable selection process, consequently, be made
less restrictive).

In TCGA dataset (and other similar (epi)genomic resources),
there are tens of thousands of potentially predictive/relevant
variables (roughly proportional to the number of genes in the
human genome). The “hand off” point between the variable
selection and BN analysis steps should therefore vary between
100s of variables (for the exploratory and preliminary analyses)
and 1,000s of variables (for the final analyses). The actual number
might also depend on the shape of the variable selection curve, or
on the statistical significance criteria–we stop adding increasingly
less significant variables during the forward variable selection
process (or stop removing increasingly more significant variables
during the backward variable elimination process) when a certain
statistical significance cutoff point is reached (Rodin et al., 2009).
The above considerations were taken into account in the course
of this study, as detailed in the section “Results” below.

It is difficult to integrate the multimodal, mixed-type, data
into the variable selection process (filter or wrapper) as, until
recently, there has been a paucity of the usable mixed-type
metrics. In this study, a recently developed measure, Mixed
Mutual Information (MMI) (Gao et al., 2018), was used to
link the gene information (a mixed-type vector consisting of
the S, E, and M molecular data components for each gene)
to the clinical variable (tumor status or 2-year survival) in a
“forward-selection-filter” variable selection procedure. MMI is a
non-parametric and distribution-free measure [which makes it
more attractive than the alternatives, such as linear correlation –
especially in the biological networks context (Margolin et al.,
2006; Asur et al., 2007)] that is based on the entropy estimates
from k-nearest neighbor (k-NN) distances (Kraskov et al., 2004).
It is, therefore, sensitive to the choice of the k parameter. Lower
values of k (1–4) tend to lead to higher dispersion, while much
higher values (>20) are associated with unnecessarily increased
computational complexity and possible overfitting [, personal
communication from Gao et al. (2018)]. We have evaluated
different values of k on the actual TCGA datasets by measuring
the Jaccard index for the pairs of consecutive (in k) post-
selection variable sets as a function of k. The index appeared
to stabilize in the 8–20 range in 12 different TCGA datasets

Frontiers in Genetics | www.frontiersin.org 3 June 2020 | Volume 11 | Article 648473

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00648 June 16, 2020 Time: 19:15 # 4

Wang et al. New Multimodal Analysis Framework

analyzed (see section “Results” below); therefore, k was set at 15
throughout this study.

Bayesian Networks Modeling
Bayesian networks modeling, in its basic form, reconstructs a
sparse graphical representation of a joint multivariate probability
distribution of random variables from a “flat” dataset. Nodes in
the network represent random variables, edges – dependencies.
Absence of an edge between the two nodes indicates conditional
independence between them. Recent work in BN methodology
refinement led to significant progress in scalability – our latest
BN modeling software implementation (Gogoshin et al., 2017)
easily processes datasets up to ∼ 1 mln variables × 1 mln
datapoints. Handling mixed variable types (both continuous and
discrete, in a typical application) is still not entirely seamless;
it was recently suggested (Gogoshin et al., 2017; Andrews
et al., 2018) that adaptive discretization (of continuous variables)
might be preferable to forcing mixed local probability models.
Consequently, we were using maximum entropy – based three-
bin discretization throughout this study – expression data
(“E” molecular data component) and methylation data (“M”
molecular data component) were discretized into three bins –
which has attractive mathematical properties, and has been
shown by us earlier to maintain near-optimal over/under-fitting
balance (Gogoshin et al., 2017).

Detailed description of the BN methodology in general
and of our implementation (including applications to other
types of high-dimensional biological data) in particular can
be found in Gogoshin et al. (2017), Zhang X. et al. (2017);
here we will only note that (1) our BN implementation uses
a hybrid “sparse candidates” + “search-and-score” graduate
descent algorithm coupled with various model scoring metrics
and maximum entropy-based adaptive discretization; (2)
in the resulting BN visualizations, numbers next to the
edges and edge “thickness” indicate relative edge strengths
(the numbers are the model scores’ ratios for the models
with/without corresponding edges, which are proportional
to the marginal likelihood ratios); (3) directionality in the
network (arrow points attached to the edges, when present)
does not necessarily imply the causality flow, and is used
predominantly for the mathematical convenience (to avoid cyclic
dependencies); (4) when deciphering conditional dependence
and independence patterns, it is useful to concentrate on the
immediate Markov neighborhood (MN) of a particular variable
of interest (such as a clinical outcome). This neighborhood
can be roughly defined as all the nodes that are in immediate
contact with (“one degree of separation” from) the node
representing the aforementioned variable of interest. Under
certain conditions, given its MN, the variable of interest is
conditionally independent of the remaining variables (rest
of the network). Therefore, deriving a MN for a variable
of interest is analogous to the variable selection activity,
specifically of the embedded variety (Guyon and Elisseeff,
2003). The central step in our computational analysis pipeline
is using full BN reconstruction to generate the MN for the
clinical outcome variable, and then ascertaining the interplay
of the (small number of) gene-related variables (S, E and M

molecular data components) within that MN. (It should be noted
that MN is a simplification of the more rigorous concept of
Markov Blanket – meaning, for our purposes, that sometimes
“two degrees of separation” are needed for encapsulating a
variable/node of interest).

RESULTS

Figure 1 depicts the variable selection process for six possible
combinations of two clinical variables (“tumor status” and
“survival”) and three TCGA cancer datasets (LGG, HNSC,
and STES). MMI (mixed mutual information) between (S, E,
M) and tumor status/survival was computed for 4782 genes
(LGG), 12516 genes (HNSC), and 16164 genes (STES). (All
six gene lists, with corresponding MMI values, are available in
Supplementary Tables S1–S6). The histogram representation of
the MMI distribution, as shown in Figure 1, is convenient, as it
allows to evaluate (both visually and quantitatively) the relative
predictive values of the top-ranking genes with respect to the
outcome variable classification. For the purposes of this study,
and to make the resulting full BNs “observable,” we have chosen
the “top genes” cutoff value of 99.5% MMI CDF (cumulative
distribution function), which leads to the selection of 24 genes
(72 future BN nodes/variables in total, comprising 24 S, 24 E,
and 24 M components) out of 4728 for two LGG networks, 63
genes (189 nodes/variables) out of 12516 for two HNSC networks,
and 81 genes (243 nodes/variables) out of 16164 for two STES
networks. Note that the S, E, and M components of each gene
vector were considered as the separate nodes/variables in the
subsequent BN construction, as at this time we do not have a
BN scoring function that can incorporate mixed multivariate
distance measures. It should also be noted that although MMI,
intuitively, should not be negative, due to the way it is computed
it can get into the negative range when (i) continuous variables
are involved, and (ii) the number of dimensions is more than
two (four, in our case). This said, all the negative MMI values
in Figure 1 reside well within the allowed algorithmic negative
deviation range, and should not influence the variable rankings
[personal communication from Gao et al. (2018)].

Interestingly, every histogram in Figure 1 has a heavy right
tail, which sometimes appears to follow a clear “knee point” – for
example, at MMI ∼ = 0.08 in Figures 1A–C. This suggests that
MMI >0.08 could also be used as a “natural” cutoff value, at least
in these three datasets.

The variable selection distributions shown in Figure 1 were
derived with the MMI parameter k set at 15. Figure 2 illustrates
the motivation behind that choice, using the LGG/survival
dataset example. Shown is the plot of the Jaccard index (JI, a.k.a.
set “Intersection over Union,” which is a common measure of
sample set similarity) comparing the gene/variable sets resulting
from the above variable selection procedure, with cutoff set at
99.5% MMI CDF, where JI(k) compares the sets obtained with k
and k+1. It is clear that as k reaches ∼15, the set composition
somewhat stabilizes; further increase in k does not seem to
offer any advantages. (JI plots for the other datasets exhibit a
similar pattern).
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FIGURE 1 | Variable selection process for six combinations of two clinical outcome variables (“tumor status” and “survival”) and three TCGA cancer datasets (LGG,
HNSC, STES). MMI between the (S, E, M) molecular data vector and tumor status/survival was computed for 4782 genes (LGG), 12516 genes (HNSC) and 16164
genes (STES). The histogram representation of the MMI distribution is shown with the selection of “top” (i.e., with the MMI CDF >99.5%) genes superimposed on the
right tail of the MMI frequency distribution. (A) LGG/tumor status; (B) LGG/survival; (C) HNSC/tumor status; (D) HNSC/survival; (E) STES/tumor status;
(F) STES/survival.
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Figures 3, 4 depict the full BNs obtained from the LGG/tumor
status and LGG/survival datasets. Supplementary Data Sheets
S1–S6 depict, in PDF format, the full BNs obtained from
the LGG/tumor status, LGG/survival, HNSC/tumor status,
HNSC/survival, STES/tumor status, and STES/survival datasets,
respectively. Six corresponding DOT (standard network /
causal graphical models format) files can be found in the
Supplementary Tables S7–S12.

While the resulting full BNs, in PDF format, are zoom-
able and searchable, and the DOT files can be exported into
the specialized network-oriented software, the full BNs tend to
be visually overwhelming for the number of variables/nodes
>100. Consequently, Figures 5–10 depict the immediate
MNs of the clinical variables/nodes in the corresponding six
BNs: LGG/tumor status (Figure 5), LGG/survival (Figure 6),
HNSC/tumor status (Figure 7), HNSC/survival (Figure 8),
STES/tumor status (Figure 9) and STES/survival (Figure 10).

It is noticeable in Figures 5–10 that all three molecular data
components (S, E, and M) are represented in the MNs. This
testifies to the efficacy and proportionality of both the MMI
measure (during the variable selection stage) and the maximum
entropy - based discretization (during the BN construction stage).
Also of note, for some genes, more than one component is
present (HTR4 E and S for STES/tumor status, CHIA E and
S for LGG/tumor status, AFP E and S for LGG/tumor status).
Conversely, some genes are associated with both tumor status
and survival (MUC4 for HNSC, TMPRSS11F, SLC6A18, and
DEFB119 for LGG).

The performance of our BN reconstruction algorithm or
software is discussed in general terms in Gogoshin et al.
(2017); here, we will evaluate the statistical significance of
the resulting MNs. While the edge strength estimates in
Figures 5–10 are useful in the relative sense, they do
not immediately translate into the statistical significance
measurements (such as p-values). Therefore, we have augmented
the edge strengths with the p-values obtained via two-sample
Kolmogorov–Smirnov (KS) probability distribution equality test
(for continuous E and M molecular component variables)
and two-sided Fisher’s exact test (for discrete S molecular
component variable). To illustrate the KS test application,
Figure 11 shows CDFs, separately for two “tumor status”
groups, for seven continuous variables present in the MN
depicted in Figure 5 (LGG/tumor status), in order of decreasing
edge strength (Figure 11A, MMP1_M; Figure 11B, DDX4_E;
Figure 11C, AFP_E; Figure 11D, CHIA_E; Figure 11E,
TMPRSS11F_M; Figure 11F, KERA_E; Figure 11G, MUC16_E).
Only MMP1_M and DDX4_E appear to be statistically
highly significant, with TMPRSS11F_M being arguably a
borderline case.

Table 1 lists the p-values for all 55 potentially predictive
molecular gene components present in six MNs depicted in
Figures 5–10, in order of decreasing edge strength for each
network / MN. 12 gene components were found to be statistically
significant (marked with an asterisk in Table 1), however, we
decide to exclude LCT_S (marked with ∗∗ in Table 1) from
further scrutiny because of the very low mutation counts in both
survival groups.

FIGURE 2 | Jaccard index (JI) (“Intersection over Union”) comparing the
gene/variable sets resulting from the LGG/survival dataset variable selection
with the cutoff set at 99.5% MMI CDF. JI(k) compares the sets obtained with k
and k+1.

Subsequently, we performed manual literature / database
search to ascertain if any of the remaining 11 genes were
previously reported in the cancer context. The following
resources were used: GeneCards (Stelzer et al., 2016) and
DisGeNET (Pinero et al., 2017) databases, PubMed, and Google
Scholar. Six genes were found to be implicated in cancer etiology
/ progression / clinical outcomes with high degree of certainty:
MMP1, DDX4, TRPM3, DPP6, KCNA1, and MUC17 (Senapati
et al., 2010; Saied et al., 2012; Lallet-Daher et al., 2013; Kawal
et al., 2016; Park et al., 2016; Schudrowitz et al., 2017). Four genes
(SLC7A14, LRRIQ, SLCO1B3, and SLC9A4) were supported by
weaker, circumstantial evidence (Chan-On et al., 2013; Matullo
et al., 2013; Fridley et al., 2016; Tanaka et al., 2017). One
gene, TMPRSS11F, has not been discussed in the cancer context
before, to the best of our knowledge [see also (Kataoka et al.,
2018)]. However, increased expression levels of a similar type II
transmembrane serine protease, TMPRSS11D, were found to be
a significant non-small cell lung cancer survival predictor (Cao
et al., 2017). Therefore, we suggest that TMPRSS11F should be
further investigated as a strong predictive factor playing a role
in LGG patients’ clinical characteristics – survival, especially.
Lower TMPRSS11F methylation values correspond to a poorer
long-term (2-year) survival. One possible mechanism is via the
proteolysis of extracellular matrix which, in turn, is linked to the
metastatic processes (Cao et al., 2017).

In summary, our analysis framework confirmed six well-
known cancer-related genes, supplied additional evidence
to support four other suspected cancer-related genes, and
identified one novel potentially strongly predictive factor,
methylation of TMPRSS11F.

DISCUSSION

Systems biology approach to the complex genetic and epigenetic
cancer data analysis is arguably superior to the simpler single-
gene (or even single-data type) alternatives. However, it is
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FIGURE 3 | Full BN derived from the LGG/tumor status data. “Tumor_Status” node in the BN is self-explanatory. Other nodes in the networks correspond to the
genes/molecular components (gene name_S/E/M). Edges in the network correspond to the dependencies between the nodes. Directionality of the edge (arrow) is
for mathematical convenience only and does not imply causation. “Boldness” of the edge is proportional to the dependency strength, also indicated by the number
shown next to the edge. Note that the BN pdf image files are searchable (using gene manes), and that all the BN pdf and source files (in DOT format) are included as
part of the Supplementary Material.

intrinsically linked to the fundamental, interrelated, challenges –
scalability, “curse of dimensionality,” accounting for non-
additive, higher-order interactions, and visualization of the
results (i.e., translation of the massive network graphs into
concrete biomedical insights). In this study we propose a
flexible and generalizable approach to the BN-based systems
biology analysis of the multi-modal cancer data, using the
TCGA database as an example. It consists of the variable
selection step (which is not computationally demanding) and the
BN reconstruction step (which is substantially computationally
demanding). Ideally, the investigators would simply feed the
complete dataset (all variables) into the BN software, obtain

the full graphical model (no matter how large and complex),
and then “zoom in” on the MN of the variable(s) of
interest, such as a clinical outcome or a cancer phenotype.
However, this is impractical for most real datasets and available
hardware configurations.

Consequently, we propose starting with the variable selection
step to select a (relatively) small subset of genes that are
associated with the variable(s) of interest (tumor status and 2-
year survival in the present study). The principal novelty of our
approach lies in using the MMI measure for the variable/gene
selection, in which all possible types of molecular information
(discrete and continuous, genetic and epigenetic) are considered
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FIGURE 4 | Full BN derived from the LGG/survival data. “Survival” node in the BN is self-explanatory. Other designations are as in Figure 3.

FIGURE 5 | MN of the “Tumor_Status” node in the LGG/tumor status BN.

FIGURE 6 | MN of the “Survival” node in the LGG/survival BN.
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FIGURE 7 | MN of the “Tumor_Status” node in the HNSC/tumor status BN.

FIGURE 8 | MN of the “Survival” node in the HNSC/survival BN.

FIGURE 9 | MN of the “Tumor_Status” node in the STES/tumor status BN.

FIGURE 10 | MN of the “Survival” node in the STES/survival BN.

simultaneously. The other innovative aspect of our approach
lies in the adjustability of the “hand-off” point between the
variable selection and BN modeling steps. This hand-off point
can depend on the investigators’ computational resources, the
shape of the variable selection curves, or the predefined statistical
cutoff points. For example, ∼20 K genes can be reduced to
100–200 genes for the subsequent BNs construction, in which
case the complete analysis takes less than an hour on a mid-
level PC. When feeding the complete datasets (10,000–15,000
genes, in case of TCGA and similar genomic resources) into our
BN software (Gogoshin et al., 2017), without the preliminary
variable selection step, it takes about 3 days to build a full
BN on a dedicated multi-core workstation. Therefore, the
investigators can choose the appropriate balance depending on
whether they are interested in a quick, exploratory analysis or a
finalized, exhaustive one.

In our analyses, the final predictive gene sets (such as
shown in Table 1) were different from the sets (of comparable
sizes) of “top” genes obtained in the variable selection step
alone (otherwise there would be no need to invoke the
computationally expensive BN modeling step). This was to be

expected, because BN modeling is a multivariate modeling tool
(which aims to reconstruct the most fitting pattern of conditional
independencies in the MN of a clinical variable), while MMI
ranking is a univariate variable selection “filter” that does not
account for the dependencies between the (top) genes. Another
reason that the two corresponding gene sets tend to be different
has to do with the fact that the first analysis stage is gene-
centric, whereas the second analysis stage separates the three
molecular modalities. Limiting our analysis pipeline to just
the first stage (MMI filter/ranking) would therefore miss the
strong one-modality (but week multiple-modalities) predictors.
In future, we plan to study the extent of intersection of such
two sets as a function of the “hand-off” point (between MMI
pre-ranking and full BN analysis) parameter.

Our computational pipeline is inherently generalizable, as it
can be directly applied to any large multimodal genetic/epigenetic
dataset with minimal preprocessing. The only two changeable
parameters are the aforementioned variable selection / BN
modeling hand-off point, and the BN discretization mechanism.
The latter is currently set as the 3-bin maximum entropy-based
discretization coupled with the multinomial local probability
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FIGURE 11 | CDFs, shown separately for two “tumor status” groups, for seven continuous variables present in the MN depicted in Figure 5 (LGG/tumor status), in
order of decreasing edge strength. (A) MMP1_M; (B) DDX4_E; (C) AFP_E; (D) CHIA_E; (E) TMPRSS11F_M; (F) KERA_E; (G) MUC16_E. P-values for the
two-sample Kolmogorov-Smirnov test are shown in each chart.

model (Gogoshin et al., 2017). This is not the most elegant, or
universally applicable, solution. In future, we plan to develop a
novel BN model scoring function derived from a mixed distance
measure (such as the MMI), or a similar metric that expresses
divergence between the current network model and the data via

mixed-type distances. The resulting two-stage analytical strategy
will thus fully automatically deal with the mixed variables, in
both of its stages. This has not been done before, so we plan
to implement and test the MMI-based BN algorithm alongside
the more established mixed-type BN solutions (hybrid local
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TABLE 1 | P-values for 55 potentially predictive molecular gene components
present in six MNs depicted in Figures 5–10, subdivided by six datasets, in order
of decreasing edge strength for each dataset/MN.

(A)

Gene_component BN edge strength p-value

LGG/tumor status

MMP1_M 14.13 0.0001*

DDX4_E 12.19 0.0003*

AFP_E 4.41 0.8208

CHIA_E 4.09 0.9813

TMPRSS11F_M 2.76 0.1330

KERA_E 2.23 0.8928

MUC16_E 0.66 0.7521

AFP_S 0.61 0.4985

SLC6A18_S 0.51 ∼1.0

VIL1_S 0.45 0.2364

DEFB119_S 0.44 0.4872

C16orf11_S 0.41 ∼1.0

CHIA_S 0.41 ∼1.0

(B)

LGG/survival

TMPRSS11F_M 6.92 0.0003*

PKHD1L1_S 1.83 0.5818

FCRL5_S 1.55 0.1895

DEFB119_S 0.28 ∼1.0

SLCO6A1_S 0.28 ∼1.0

ABCG8_S 0.24 0.4366

TRPM1_S 0.02 0.1895

(C)

HNSC/tumor status

SLC7A14_E 14.48 2.1230e-05*

MUC7_M 13.98 0.3432

ASB4_M 10.05 0.2832

CSMD1_S 5.07 ∼1.0

CNTNAP5_M 2.73 0.5261

MUC4_S 1.85 0.1496

CDH10_S 0.52 ∼1.0

WDR49_S 0.44 ∼1.0

(D)

HNSC/survival

FLG_M 6.07 0.2427

MUC4_S 5.42 0.4103

LCT_S 2.84 0.0226**

PCDH10_S 1.82 0.3544

KRT24_S 1.3 0.4942

ERN2_M 0.99 0.4832

CDH19_S 0.53 0.5787

(E)

STES/tumor status

LRRIQ_E 20.15 0.0004*

HTR4_E 7.18 0.2960

(Continued)

TABLE 1 | Continued

Gene_component BN edge strength p-value

DSG1_M 6.73 0.1204

TRPM3_S 3.80 0.0245*

APOB_S 3.50 0.2723

CNTNAP4_S 2.76 0.7784

KPRP_S 2.69 ∼1.0

DUSP27_S 1.72 0.5480

PCDHA1_S 1.72 0.8074

SBSN_S 1.54 0.6248

PNLDC1_S 1.43 ∼1.0

LOC100190940_S 0.83 ∼1.0

KCNV1_S 0.45 ∼1.0

HTR4_S 0.19 0.3594

CHRNA4_S 0.16 0.3968

ZNF716_S 0.10 ∼1.0

(F)

STES/survival

SLITRK1_M 7.12 0.1082

DPP6_S 4.37 0.0280*

SLCO1B3_S 2.95 0.0059*

PCLO_S 2.28 0.7238

LPA_S 2.25 0.0549

SLC9A4_S 1.96 0.0059*

KCNA1_S 1.93 0.0108*

COL11A1_E 1.83 0.2016

PGLYRP3_S 1.83 0.1119

PGC_S 1.43 0.4527

C20orf114_S 1.32 ∼1.0

MUC17_S 1.13 0.0008*

FAM83C_S 1.10 0.6515

DCDC1_S 0.87 0.2051

KRT6B_S 0.64 ∼1.0

Twelve gene components were found to be statistically significant (marked with *);
LCT_S (marked with **) was excluded from further analysis because of the very
low mutation counts (zero mutations in >2-year survival group, three mutations in
<2-year survival group).

probability models, adaptive discretization), and use both real
and simulated data to investigate which method is preferable.

Another limitation of the present study has to do with its
primary focus on the clinical outcomes / phenotypes; at this time,
we decided to largely concentrate on the MNs of the clinical
variables/nodes. In future, we intend to analyze the resulting
full BNs more “holistically,” paying attention to the general
network topological properties, gene clusters, hub and bottleneck
genes, etc. Consequently, one useful extension of our analytical
framework would be to incorporate multiple clinical outcomes /
phenotypes into the network analyses, to see if the inter-outcome
dependencies are reflected in the resulting networks, and if they
are mediated by other nodes/variables.

Application of our pipeline to TCGA data resulted in the
identification of a number of candidate genes for the different
clinical cancer characteristics, via varied molecular components.
It is well known that epigenetic processes / DNA methylation play
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an important role in many cancers’ diagnosis, progression, and
outcome; our results support that notion, as many of the most
statistically significant predictors generated in the present study
were in fact the methylation molecular components (Table 1).
Notably, the one novel candidate gene pinpointed in this study,
TMPRSS11F, likely would not have been identified via any other
(non-epigenetic) modality. Our results, therefore, underscore the
essentiality of the simultaneous analysis of different molecular
modalities, including the epigenetic ones, for the precision or
personalized medicine to be effective in cancer treatment.
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datasets in this study. (1) LGG/tumor status, (2) LGG/survival, (3) HNSC/tumor
status, (4) HNSC/survival, (5) STES/tumor status, (6) STES/survival.

DATA SHEETS S1–S6 | Full Bayesian networks, in PDF format, for the six
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