About this Research Topic
Over the last decade scientists and engineers have applied a plethora of omics techniques and physiological studies to analyze the microbial composition and functional profile of different shale formations, hydraulic fracturing flowback water, and potential runoff into nearby ground and surface aquifers. While there is still a debate whether the shales have a native microbial community or if microbes are being introduced during the hydraulic fracturing process, the consensus has been that the microbial communities of hydraulic fracturing flowback converge to fermentative halotolerant populations. Applying UOG microbial ecology knowledge into applied biotechnology applications could provide low-cost and effective solutions to many potential environmental problems associated with UOG. Some strides have been done to use in situ microbial community to degrade common O&G chemicals, but much work is needed to understand the role of natural attenuation and applied bioremediation in the fate of O&G chemicals in the environment.
We propose this Research Topic “Applied Environmental Microbiology of UOG Lifecycle” with the aim to expand the current understanding of the UOG microbial ecology and further elucidate the role of native microorganisms in mitigating environmental impacts from UOG production. The questions we seek to address include, but are not restricted to, harnessing the native microbial community to minimize potential environmental impacts, such as biodegradation of O&G chemicals and their transformation products (in both environmental and laboratory-optimized conditions), microbial source tracking of spills, waste water treatment, microbial control to prevent equipment failure and gas souring, among others Original Research, Review, and Mini-Review articles are encouraged. Perspective/Opinion articles discussing the future of the UOG microbial ecology field and where applied research should focus on to streamline bioremediation studies benefiting from are also of interest.
The authors would like to acknowledge Dr. Maria Fernanda Campa for being instrumental in identifying knowledge gaps in current understanding and determining how they can be addressed in this Research Topic.
Keywords: Hydraulic fracturing, carbon capture, methane cycling, bioremediation
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.