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Activation of the immune system increases systemic adrenal-derived glucocorticoid

(GC) levels which downregulate the immune response as part of a negative feedback

loop. While CD4+ T cells are essential target cells affected by GC, it is not known

whether these hormones exert their major effects on CD4+ helper T cells, CD4+Foxp3+

regulatory T cells (Treg cells), or both. Here, we generated mice with a specific deletion

of the glucocorticoid receptor (GR) in Foxp3+ Treg cells. Remarkably, while basal

Treg cell characteristics and in vitro suppression capacity were unchanged, Treg cells

lacking the GR did not prevent the induction of inflammatory bowel disease in an

in vivo mouse model. Under inflammatory conditions, GR-deficient Treg cells acquired

Th1-like characteristics and expressed IFN-gamma, but not IL-17, and failed to inhibit

pro-inflammatory CD4+ T cell expansion in situ. These findings reveal that the GR

is critical for Foxp3+ Treg cell function and suggest that endogenous GC prevent

Treg cell plasticity toward a Th1-like Treg cell phenotype in experimental colitis. When

equally active in humans, a rationale is provided to develop GC-mimicking therapeutic

strategies which specifically target Foxp3+ Treg cells for the treatment of inflammatory

bowel disease.

Keywords: glucocorticoid, glucocorticoid receptor, Foxp3, regulatory T cell, transfer colitis, suppression

INTRODUCTION

Regulatory T cells (Treg cells) expressing the transcription factor Foxp3 maintain immune
homeostasis by limiting antigen-specific immune responses and sustaining tolerance to
self-antigens (1). Most Treg cells are generated in the thymus (tTreg cells) as a separate lineage
at the CD4+ single-positive stage of thymocyte development. Peripheral Treg cells (pTreg cells) are
induced from peripheral CD4+Foxp3− T cells in the presence of TGF-beta, however, the pool size
and function of these pTreg cells is not fully characterized, mainly due to the lack of useful markers
to discriminate tTreg from pTreg cells (2).
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Treg cell function is not mediated by one single common
pathway, as many different mechanisms have been described
including downregulation of costimulatory molecules
(CD80/CD86) on dendritic cells, secretion of inhibitory
cytokines or metabolic disruption of target cells. Beyond that,
Treg cells seem to have the capacity to adjust their suppressive
mechanism(s) to a particular immune or inflammatory context,
although the signals driving in vivo Treg cell adaptation are not
well-understood (3).

The original view that tTreg cells are terminally differentiated
and phenotypically stable has been recently questioned.
Some Treg cells may lose Foxp3 expression in autoimmune
disease (“ex-Foxp3” cells), others, while maintaining Foxp3
expression, acquire a certain degree of plasticity which
is illustrated by secretion of pro-inflammatory cytokines
and reduced suppressive function (4). The molecular
mechanisms that drive Treg cell plasticity as well as the
functional consequences for autoimmune diseases are
largely unknown.

Glucocorticoids (GC) are best-known for their successful
clinical usage as anti-inflammatory and immunosuppressive
agents, despite their high potential for serious side effects. While
the potency of (synthetic) GC as negative regulators of immune
and inflammatory effector molecules at higher doses is well-
documented, the effects of endogenous GC on the immune
response and T cells in particular are much less clear. GC
suppress T cell activation, both indirectly by inhibiting dendritic
cell function and directly by inhibiting TCR signaling (5). T cell-
specific deletion of the glucocorticoid receptor (GR) revealed T
cells as critical targets for endogenous GC to both limit clinical
disease in an animal model for multiple sclerosis (6) and prevent
lethal immunopathology in an animal model for toxoplasma
infection (7). As both studies utilized the lck promoter to
drive expression of Cre recombinase for conditional deletion
of the GR, CD8+ cytotoxic T cells, CD4+ T helper cells, and
Foxp3+ Treg cells were GR-deficient. Treg cell development,
steady-state homeostasis and function may be affected by GC,
although reports are controversial. Administration of GC has
been shown to increase both the proportion and number of
murine CD4+CD25+Foxp3+ Treg cells in peripheral lymphoid
organs (8). In line with this observation is the finding that
Treg cells are relatively resistant to GC-induced apoptosis
in vitro (9). In contrast, GC dose-dependently reduced both the
proportion and total number of splenic Treg cells after repeated
GC administration (10, 11). Likewise, therapeutic treatment of
MOG-induced EAE with GC slightly reduced splenic Treg cell
number and reduced Foxp3 expression levels (6). Human Treg
cells accumulate relative to conventional T cells (Tcon) upon
treatment of several autoimmune diseases with GC as reported
formultiple sclerosis (12), systemic lupus erythematosus (13) and
rheumatoid arthritis (14).

While effects of exogenous GC on Treg cells are obvious but
controversial, it is not known whether endogenous GC regulate
Treg cell homeostasis, both under steady state and inflammatory
conditions. Lck-Cre GRfl/fl mice that lack the GR in all T
cells, reportedly have reduced numbers of Treg cells in the
thymus and periphery, but Treg cell function was not tested (15).

Moreover, Treg cell homeostasis may be affected by GR-deficient
conventional T cells that can give rise to pTreg cells.

We therefore generated mice with a specific deletion of the
GR in Foxp3+ Treg cells by crossing GRfl/fl (16) with Foxp3-
Cre mice (17). Remarkably, while Treg cell number, expression of
Treg cell signature molecules, and in vitro suppression capacity
of GR-deficient Treg cells was unchanged, GR-deficient Treg
cells appeared defective in suppressing T cell-driven colitis
in an in vivo mouse model for inflammatory bowel disease
(IBD). This phenotype was associated with the acquisition of
Th1 cell-like features in GR-deficient Treg cells. These data
suggest that endogenous GC stabilize Treg cell fate and function
under inflammatory conditions and provide a rationale for the
development of GC therapy for IBD that specifically targets
Treg cells and expectedly reduces the strong side-effects of
these hormones.

RESULTS

Verification of Specific GR Deletion in
Foxp3+ Treg Cells
Mice carrying a specific deletion for the GR in Foxp3+ Treg
cells (Foxp3-YFP-iCre x GRfl/fl mice; dubbed here: Foxp3-Cre
GRfl/fl mice) developed normal and did not show any signs
of disease. Lack of GR in Foxp3+ Treg cells was confirmed
at the protein level both in spleen (Figure 1A) and thymus
(Figure S1A). Ectopic recombination by Cre-YFP expressed
under the control of the FoxP3 promoter of some conditional
alleles (Cd28), but not others (R26-RFP), has been reported (18).
However, quantification of the GR in conventional CD4+CD25−

Foxp3− T cells, CD8+ T cells and B cells revealed no differences
between wild type (WT), Foxp3-Cre and Foxp3-Cre GRfl/fl mice
(Figure S1B), ruling out promiscuous Foxp3-Cre expression in
these lymphocyte subsets. Since endogenous GC have been
shown to regulate T cell numbers (19, 20), we determined
peripheral blood levels of corticosterone in our mouse strains
to check for potential differences. However, this appeared not
to be the case as no differences in corticosterone levels were
found (Figure 1B). Expression levels of Nr3c1 (encoding the
GR) by CD4+CD25− Tcon cells and CD4+Foxp3+ Treg cells
were quantified by qPCR. Splenic Treg cells from heterozygous
Foxp3-Cre GRwt/fl mice expressed Nr3c1 at approximately half
of control Treg cells from Foxp3-Cre mice (Figure 1C). Finally,
Treg cells derived from Foxp3-Cre GRfl/fl mice were resistant
to in vitro corticosterone-induced cell death, confirming the
absence of the GR at the functional level (Figure S1C). Thus,
Foxp3-Cre GRfl/fl mice lack the GR specifically in Foxp3+ Treg
cells with no signs of significant recombination in CD4+ Tcon
cells or other lymphocyte subsets.

Basic Immune Characteristics of Mice
Lacking the GR in Treg Cells
Foxp3-Cre GRfl/fl mice showed normal CD4+Foxp3+ Treg
(Figure 2A, left panel) and CD4+ Tcon (Figure 2A, right panel)
cell numbers in the thymus and spleen. Next, we examined steady
state expression of Treg cell signature molecules such as Foxp3,
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FIGURE 1 | Physical characterization of GR deletion in Foxp3+ Treg cells.

(A) Immunoblotting shows GR protein expression in purified CD8+,

CD4+CD25− Tcon, and CD4+Foxp3+ Treg cells from Foxp3-Cre GRfl/fl

splenocytes. (B) Serum samples from Foxp3-Cre and Foxp3-Cre GRfl/fl mice

were analyzed for corticosterone content by ELISA. (C) Real time qPCR

analysis of Nr3c1 (GR) mRNA expression in CD4+CD25− Tcon and

CD4+Foxp3+ Treg cells from Foxp3-Cre, Foxp3-Cre GRwt/fl and Foxp3-Cre

GRfl/fl mice. Nr3c1 mRNA expression levels are referred to mRNA levels of

CD4+ Tcon cells from Foxp3-Cre mice according to the 11Ct relative

quantification method. Data are shown as mean ± SEM (n ≥ 3).

CD25, GITR, and CTLA-4 by Treg cells of Foxp3-Cre and Foxp3-
Cre GRfl/fl mice. In both thymus and spleen, expression levels
of these markers were comparable between GR-expressing and
GR-deficient Treg cells, except for thymic GITR that showed
significantly higher expression in Treg cells from Foxp3-Cre
GRfl/fl mice (Figure 2B, left panel). Since GITR expression levels
are critical for Treg cell maturation (21), we further analyzed
CD4+Foxp3+ thymocytes for GITRint and GITRhigh expressing
subsets. A moderately enhanced frequency of Foxp3+GITRhigh

and a reduction of Foxp3+GITRlow cells in Foxp3-Cre GRfl/fl
mice was observed, as compared to control Foxp3-Cre mice
(Figure 2C). The functional relevance of this observation is
presently unclear, yet this suggests that basal GITR expression in
splenic Treg cells is not dependent on a functional GR. Treg cells
consist of both naïve CD44lowCD62Lhigh and CD44highCD62Llow

“effector-like” subpopulations, the latter exerting suppressor
activity (22).We therefore analyzed the fractions of both Treg cell
subsets in the context of GR-deficiency and found equal amounts
in both Foxp3-Cre and Foxp3-Cre GRfl/fl mice (Figure 2D).
The transcription factor Helios has been proposed as a marker

to discriminate tTreg from pTreg cells (3). Examination of
both fractions and Helios expression levels, however, revealed
no changes between Treg cells from Foxp3-Cre and Foxp3-Cre
GRfl/fl mice (Figure S2A). Finally, activation of CD4+ Tcon and
CD8+ T cells by anti-CD3/anti-CD28 antibodies was comparable
in Foxp3-Cre and Foxp3-Cre GRfl/fl mice regarding induction of
CD44 and production of IFN-gamma (Figure S2B). In summary,
deletion of the GR in Treg cells does not modify their basal cell
number, phenotype or activation competence.

In vivo Survival of Treg Cells Does Not
Depend on GR Expression
To directly assess the impact of GR deletion in Treg cells on
their survival in a competitive setting, we generated heterozygous
female Foxp3-Cre/wt GRfl/fl mice. As Foxp3 is located on the
X chromosome, random inactivation of one allele in these
mice is predicted to produce 50% of Treg cells that use the
WT allele (i.e., GR-sufficient) and 50% of Treg cells that use
the Foxp3-Cre allele (i.e., GR-deficient). In spleen, but not in
thymus, we observed a moderate competitive disadvantage of
Treg cells expressing the Foxp3-Cre allele (Figure 3A), a finding
previously reported by others (23). However, in both thymus
and spleen, equal proportions of WT and GR-deficient Treg cells
were generated and/or survived, suggesting that the GR does
not influence survival of Treg cells in a physiologically normal
setting (Figure 3A). The observation that the Foxp3-Cre allele
may affect peripheral Treg cell survival, together with the finding
that the Foxp3-Cre allele is mildly hypomorph as reported by
others (18), prompted us to determine Foxp3 expression levels
in WT and Foxp3-Cre-expressing mouse strains. In agreement
with Franckaert et al. (18) we found a ∼30% reduction of
Foxp3 protein expression in mice expressing the Foxp3-Cre allele
as compared to WT mice (Figure 3B, left panel), whereas all
mouse strains expressing the Foxp3-Cre allele displayed equal
amounts of Foxp3 (Figure 3B, right panel). Since we did not
find deviations produced by the Foxp3-Cre allele other than
those shown in Figure 3, mice expressing this allele were used
as controls in our experiments (Foxp3-Cre mice). Finally, to
test for potential epigenetic changes in critical regions of the
Foxp3 locus we analyzed the methylation status as described
previously (24). However, the degree of methylation of CpG
islands within the Foxp3 locus appeared comparable in WT,
Foxp3-Cre, and Foxp3-Cre GRfl/fl mice (Figure S3), supporting
the finding that Foxp3 expression is unchanged in the absence
of the GR (Figure 3B). Hence, in vivo survival of Treg cells and
expression of their lineage specification factor Foxp3 is, at least
under basal conditions, not dependent on expression of the GR
by these cells.

Antinuclear Antibody Prevalence Is
Increased in Foxp3-Cre GRfl/fl Mice
Since both Treg cell number and function change with age,
we analyzed 13 months old Foxp3-Cre and Foxp3-Cre GRfl/fl
mice for splenic Treg cell number and found no major changes
between these genotypes (Figure 4A; Figure S4). Scurfy mice,
who are deficient for regulatory T cells, develop antinuclear
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FIGURE 2 | Immune characteristics of Foxp3-Cre GRfl/fl mice. (A) Thymi and spleens from Foxp3-Cre and Foxp3-Cre GRfl/fl mice were analyzed for cellularity of

CD4+Foxp3+ Treg (left panel) and CD4+CD25− Tcon cells (right panel). (B) Treg cell signature marker expression by thymic (left panel) and splenic (right panel)

CD4+Foxp3+ Treg cells. Data shown are median immunofluorescence intensity values from individual Foxp3-Cre or Foxp3-Cre GRfl/fl mice. (C) Thymic Treg cells were

divided into subsets according to their GITR expression levels (GITRint or GITRhigh; left panel: gating; middle panel: frequency; right panel: MFI). (D) CD44 expression

level of thymic (left panel) or splenic (right panel) CD4+Foxp3+ Treg cells from Foxp3-Cre and Foxp3-Cre GRfl/fl mice. Data are shown as mean ± SEM (n = 4).
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FIGURE 3 | Treg cell survival does not depend on GR expression. (A) CD4+Foxp3+ Treg cells from heterozygous female Foxp3-Cre/wt and Foxp3-Cre/wt GRfl/fl

mice were divided into YFP+ (Cre+) and YFP− (Cre−) cells according to the gating strategy shown in the upper panels. Lower panels show YFP+ vs. YFP− fractions

in the thymus (left panel) or spleen (right panel). CD4+Foxp3+YFP+ Treg cells from heterozygous female Foxp3-Cre/wt GRfl/fl mice are GR-deficient whereas

CD4+Foxp3+YFP− Treg cells are GR-sufficient. (B) Foxp3 expression levels of Treg cells from WT (Foxp3-GFP reporter) and Foxp3-YFP-Cre mice (left panel). Data

are shown as mean ± SEM (n = 3). The right panel shows Foxp3 expression in Treg cells from Foxp3-Cre, Foxp3-Cre GRwt/fl and Foxp3-Cre GRfl/fl mice. Data are

shown as mean ± SEM (n = 5).

antibodies (ANA) and lupus-like disease (25, 26). When sera of
GR-deficient Treg cell mice were investigated for the presence of
ANA, it appeared that higher fractions were positive as compared
to Foxp3-Cre mice (Figures 4B,C). This observation appeared to
be sex independent. Accordingly, Treg cell-intrinsic expression
of the GR seems to prevent loss of tolerance to these autoantigens
with age.

Defective Function of GR-Deficient Treg
Cells in vivo but not in vitro
The increased presence of ANA in our GR-deficient Treg cell
mice prompted us to study the suppressive capacity of their
Treg cells, first tested in an in vitro assay. Naïve CD4+ Tcon
cells from Foxp3-Cre control mice were stimulated with anti-
CD3 mAb in the presence of irradiated antigen presenting
cells (APCs) and co-cultured with different Treg cell numbers
derived from Foxp3-Cre or Foxp3-Cre GRfl/flmice. Proliferation
of Tcon cells, assessed after 3 days, was potently suppressed

by Treg cells, however, Foxp3-Cre and Foxp3-Cre GRfl/fl
Treg cells exhibited an equal inhibitory capacity (Figure 5A).
Similar results were obtained when Treg cells from Foxp3-
Cre or Foxp3-Cre GRfl/fl mice were compared for their
ability to inhibit proliferation of CD4+CD44+CD62L− memory
T cells (Figure S5A).

Since many autoimmune-prone mouse strains carrying Treg
cell specific mutations have normal Treg cell suppressor
function in vitro (3), we set out for in vivo functional
testing of GR-deficient Treg cells in a mouse model for
inflammatory bowel disease, i.e., T cell transfer colitis
in RAG1−/− mice (27). These mice produce no mature
T cells or B cells and develop colitis upon transfer
of Treg cell-depleted CD4+Foxp3−CD25−CD45RBhigh

Tcon cells (WT-Tcon only; Figure 5B). Co-transfer of
CD4+Foxp3+CD25+CD45RBlow Treg cells from Foxp3-
Cre mice (WT-Tcon + Foxp3-Cre Treg) prevented, as expected,
the development of disease. Strikingly, Treg cells derived
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FIGURE 4 | Increased frequency of antinuclear antibodies (ANA) in Foxp3-Cre

GRfl/fl mice. (A) Flow cytometry analysis of splenic total CD4+ and

CD4+Foxp3+ Treg cells (expressed as a percentage of total CD4+ cells) from

Foxp3-Cre and Foxp3-Cre GRfl/fl mice. (B) Example of ANA determination by

immunofluorescence. Mouse sera were incubated with HEp-2 cells and the

presence of ANA was determined by indirect immunofluorescence

microscopy. The sample on the left is ANA negative, while the sample on the

right is considered ANA positive. (C) Presence of ANA in sera from 8 to 13

months old Foxp3-Cre and Foxp3-Cre GRfl/fl mice. Data are shown as mean

± SEM (n ≥ 7).

from Foxp3-Cre GRfl/fl mice were largely ineffective under
these experimental conditions (WT-Tcon + Foxp3-Cre GRfl/fl
Treg; Figure 5B).

The failure of GR-deficient Treg cells to protect against
colitis was also evident from histological assessment of
intestinal inflammation (Figure S5B). Blinded grading of colonic
inflammation revealed complete protection in mice treated
with control Treg cells whereas suppression of intestinal
inflammation in mice treated with GR-deficient Treg cells
was incomplete.

Analysis of the Tcon:Treg cell ratio in spleens of RAG1−/−

mice sacrificed after 4 weeks revealed a striking 8-fold
higher ratio in mice receiving Treg cells from Foxp3-
Cre GRfl/fl, as compared to Foxp3-Cre mice (Figure 5C,
left panel), indicating strong relative expansion of Tcon
cells in the presence of GR-deficient Treg cells (Figure 5C,
right panel).

Since expansion of Tcon cells is consistent with a pro-
inflammatory phenotype, we next studied pro-inflammatory
cytokine expression by splenic Tcon and Treg cells. The fraction
of Tcon cells producing IFN-gamma after 4 weeks was highest
in mice with the strongest disease symptoms, i.e., those receiving
either Tcon cells (WT-Tcon only) or those co-injected with Tcon
cells plus Treg cells from GR-deficient Treg cell mice (WT-Tcon
+ Foxp3-Cre GRfl/fl Treg; Figure 5D). Remarkably, significantly
more Treg cells producing IFN-gamma (Figure 5D), but not IL-
17 (Figure 5E), were present in mice that were treated with GR-
deficient Treg cells than in mice receiving control Treg cells.
Treg cell signature marker expression levels were similar between
control and GR-deficient Treg cells (Foxp3, GITR and CD25),
with the exception of CTLA-4 which was significantly elevated
on GR-deficient Treg cells (Figure 5F and Figure S5C). Analysis
of IFN-gamma producing Treg cells for Foxp3 expression levels
revealed no significant differences between GR-deficient and
GR-proficient Treg cells (Figure S5D).

Further in depth analysis of Treg cell markers and subsets
was performed on splenic Treg cells that were used in the
transfer colitis experiments, i.e., CD4+Foxp3+CD45RBlow cells
(for gating, see Figure S6A) derived from Foxp3-Cre and
Foxp3-Cre GRfl/fl mice, revealing no differences regarding
expression levels of Foxp3, CD25, Latency Associated Peptide
(LAP), Lymphocyte-activation gene 3 (LAG-3), PD-1 and GITR
(Figure S6A, right panel). Fractions of CD4+Foxp3+CD45RBlow

cells expressing these markers were also similar in both mouse
strains with the exception of a reduction in PD-1 expressing
cells (Figure S6A, middle panel). We next analyzed the presence
of two recently described Treg cell subsets, i.e., GITRhighPD-
1highCD25high (Triplehigh) Treg cells, which reportedly control
in vivo lymphocyte proliferation, and GITRlowPD-1lowCD25low

(Triplelow) Treg cells, which have been shown to limit colitis
(28). Interestingly, while the fraction of Triplehigh Treg cells
appeared reduced in Foxp3-Cre GRfl/fl mice, Triplelow Treg cells
were not significantly changed as compared to Foxp3-Cre mice
(Figure S6B, lower left panel). In addition, mean expression
levels of GITR, PD-1, and CD25 were similar between both
mouse strains (Figure S6B, lower right panel).

A different Treg cell subset which may suppress colitis has
the phenotype Foxp3lowCD25−GITR+, designated GITR single-
positive cells (29). A comparison of this subset in spleens from
Foxp3-Cre and Foxp3-Cre GRfl/fl mice revealed, however, no
significant differences (Figure S6C).

Taken together, our findings during experimental intestinal
inflammation indicate that GR-deficient Treg cells, while
retaining expression of Treg cell markers, acquired an increased
plasticity toward a Th1-like Treg cell phenotype that was
accompanied by a reduction in the suppressive capacity of
these cells.
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FIGURE 5 | Suppression capacity of GR-deficient Treg cells is defective in vivo but not in vitro. (A) in vitro T cell suppression assay: WT

CD4+Foxp3−CD25−CD45RBhigh Tcon cells were cultured either alone or co-cultured at different ratios with CD4+Foxp3+CD25+CD45RBlow Treg cells derived

from Foxp3-Cre or Foxp3-Cre GRfl/fl mice. Data are shown as mean ± SEM (n = 5). (B) T cell transfer model of colitis in RAG1−/− mice. WT

CD4+Foxp3−CD25−CD45RBhigh Tcon cells were either transferred alone (WT-Tcon only) or co-transferred with CD4+Foxp3+CD25+CD45RBlow Treg cells from

Foxp3-Cre or Foxp3-Cre GRfl/fl mice. Body weight was assessed over time and animals were sacrificed either when weight loss exceeded 15% or 4 weeks after cell

transfer (day 29) (C) Splenic CD4+CD25− Tcon and CD4+Foxp3+ Treg cells were enumerated (right panel) and the ratio between these subsets calculated (left

panel). In vitro cytokine production of IFN-gamma (D) and IL-17 (E) by either splenic CD4+CD25− Tcon or CD4+Foxp3+ Treg cells obtained from RAG1−/− mice

treated and sacrificed as described in (B). Representative gating strategy for IFN-gamma [(D), upper panels] and IL-17 [(E), upper panels] shows unstained samples

(upper left panels) and cytokine-stained samples (upper right panels), derived from a mouse receiving WT-Tcon + GR-deficient Treg cells. (F) Treg cell signature

marker expression by splenic Treg cells taken from mice described in (B). Data are shown as mean ± SEM (n ≥ 7).
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DISCUSSION

Here, we show that GR-deficient Treg cells, while displaying no
changes in function under basal conditions, are defective under
inflammatory conditions and gain the ability to produce effector
cytokines that are characteristic for Th1-like Treg cells. In line
with their general inhibitory properties during inflammation,
endogenous GC are apparently required to prevent Treg cell
plasticity that is associated with reduced suppressive function.

The finding that GR-deficient Treg cell mice have normal
numbers of Treg cells in both thymus and spleen differs from
a report by Mittelstadt et al. (15) showing reduced Treg cell
numbers in both organs in mice deficient for the GR in all T cells
(Lck-Cre GRfl/fl mice). However, the lack of the GR in non-Treg
T cells in Lck-Cre GRfl/fl mice may account for this difference.
Supporting the view that GC, at least under basal conditions,
do not influence Treg cell homeostasis are the results of the
competitive experiments in heterozygous female Foxp3-Cre/wt
GRfl/fl mice, clearly showing that in a physiologically normal
environment no differences were observed in development
and/or survival between WT and GR-deficient Treg cells.

GCmay regulate T cell number in both thymus and peripheral
lymphoid organs but data from previous studies are conflicting
and Foxp3+Treg cells were not specifically analyzed. Thymocyte
number and subset distribution in different mouse strains
targeting exon 2 has been shown to be unchanged (30, 31).
Studies conditionally targeting exon 3 of the GR revealed either
no changes in thymocyte numbers (32) or a clear reduction (15)
without a change in major subset composition. Similar results
were found for peripheral T cell numbers in both mouse strains.
It is currently unclear why both mouse models targeting exon 3
display substantial differences with respect to the size of their T
cell pools. Conversely, transgenic mice overexpressing the GR 2-
fold selectively in T cells showed a reduction in both thymocyte
and peripheral T cell numbers (19). Moreover, transfer of bone
marrow cells from mice expressing a gain of function GR
knock-in into irradiated WT mice revealed a strong reduction
of T-cell numbers analyzed ten weeks later, as compared to
irradiated mice that received bone marrow from WT mice
(33). Collectively, these findings suggest that endogenous GC
regulate T cell homeostasis to some extent and such control
may be more pronounced once peripheral GC concentrations are
elevated which reportedly occurs upon activation of the immune
system (34).

Expression of Treg cell signature molecules by Treg cells
were similar between Foxp3-cre and Foxp3-Cre GRfl/fl mice,
with the exception of a small, but significant increase in
frequency of GR-deficient thymic Foxp3+ cells expressing the
TNF receptor superfamily member GITR at high levels. Since
on the one hand GITR regulates Treg cell development and
correlates with TCR signal strength (21, 35) and, on the other
hand, GC reportedly induce GITR in T cell hybridoma cells
(36), this observation seems counterintuitive at first sight.
However, GC were shown to induce very limited upregulation
of GITR in primary CD4+ T cells, whereas TCR signaling
appears to be a much stronger inducer of GITR than GC
(37). Moreover, TCR signaling in the presence of GC seems

to reduce GITR expression in these cells as compared to TCR
signaling alone (37). Our observation that GITR expression is
increased in GR-deficient Treg cells suggests that endogenous
GC may inhibit TCR-induced GITR in Foxp3+ Treg cells as
well. According to the “mutual antagonism” hypothesis, crosstalk
between GR signaling and TCR signaling leads to survival of
conventional T cells bearing TCRs that build up a repertoire
that is required for a robust adaptive immune response (15,
38). Whether GC also change the TCR repertoire of Treg
cells and, by this means, affect their functional competence,
remains to be established. Our finding that splenic GITRhighPD-
1highCD25highFoxp3+CD45RBlow Treg cells were reduced in
Foxp3cre GR/fl/fl mice does not point to an increased TCR
affinity for self-antigens of these GR-deficient Treg cells, at least
in the periphery.

While Treg cell signature molecule expression and the
suppressive capacity of GR-deficient Treg cells on in vitro Tcon
cell proliferation appeared unaffected, the increased presence
of ANA in Foxp3-Cre GRfl/fl mice at older age provided the
first indication for a potentiating role of the GR in Treg cell
function. Since we did not observe significant changes in both
the percentage and the absolute Treg cell number in our mouse
strains, we assume that the functional competence of Treg cells
decreases with age in the absence of cell-intrinsic GR expression.
Alternatively, in the GR-deficient Treg cell population, we
detected a reduced fraction of GITRhighPD-1highCD25high Treg
cells, which reportedly inhibit in vivo lymphocyte proliferation
(28). However, whether this observation contributes to the
increased presence of ANA in Foxp3-Cre GRfl/fl mice at older
age is currently not known. The second observation that the GR is
required for full Treg cell function wasmade in the transfer colitis
model. Our findings suggest that under inflammatory conditions
Treg cells that lack the GR may become unstable regarding their
suppressive regulatory T cell function. Moreover, it seems that
GR-deficient Treg cells gained the ability to produce effector
cytokines that are characteristic for Th1 cells. Such Th1-like Treg
cells producing IFN-gamma (but maintaining Foxp3 expression)
have been reported to be present at an increased frequency in
both mouse models (39) and patients with autoimmune diseases
such as type 1 diabetes (40) or multiple sclerosis (41). The
physiological relevance of the plasticity and instability of helper
T cell-like Treg cells (Th1-, Th2-, and Th17-like Tregs) and
their role in the development of autoimmune diseases has yet
to be clarified. Moreover, the molecular mechanisms and the
environmental signals that trigger the development of helper T
cell-like Treg cells in general and Th1-like Treg cells in particular
are largely unknown (4). Our data suggest that endogenous GC
act as an environmental signal to prevent Treg cell differentiation
into Th1-like Treg cells andmaintain Treg cell function in a T cell
transfer model of colitis. The failure of GR-deficient Treg cells
to respond to GC that are produced at increased levels during
immune system activation (34), notably not only by the adrenals
but also locally by the intestine itself (42), most likely leads to
dysfunctional Treg cells in this disease model. Indeed, in another
model of experimental colitis, dextran sodium sulfate (DSS)-
induced colitis, endogenous circulating corticosterone levels were
increased (43).
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The proportion of functionally impaired GR-deficient Treg
cells producing IFN-gamma more than doubled compared
to control Treg cells but retained Foxp3, GITR and CD25
expression, whereas CTLA-4 was higher. IFN-gamma was shown
by others to be involved in a functional defect of IFN-
gamma+Foxp3+ Treg cells lacking Foxo1 (44). Foxo1-deficient
Treg cells, which display a Th1-like phenotype, did not prevent
disease in the T cell transfer colitis model. However, these Treg
cells were partially protective when Ifng was deleted in addition
to Foxo1. Phenotypically, Foxo1-deficient Treg cells expressed
similar Foxp3, increased CD25 and marginally reduced CTLA-
4 levels, compared to WT control Treg cells (44). In contrast,
antigen (flagellin)-specific IFN-gamma+Foxp3+ Treg cells tested
for suppression capacity in the samemodel of chronic colitis were
found to maintain their regulatory function without reporting
on Treg cell marker expression (45). Hence, it remains to be
clarified on the one hand whether IFN-gamma+Foxp3+ Treg
cells in general play a pathogenic or protective role in this
setting and on the other hand which environmental signals and
signaling pathways are responsible for driving the induction of
IFN-gamma+Foxp3+ Treg cells. With respect to GR-deficient
Treg cells, the generation of an animal model where IFN-gamma
would be deleted together with the GR in Foxp3+ Treg cells
(double-deficient Treg cells) would clarify whether Treg cell-
derived IFN-gamma is causal for the dysfunction of GR-deficient
Treg cells in experimental colitis.

The molecular mechanisms of how GR signaling prevents
Treg cell plasticity and functional instability in transfer colitis
are presently unknown. GC have been shown to upregulate
Foxp3 mRNA in CD4+ T cells of asthmatic patients (46) and in
murine splenic CD4+CD25high cells (11). Furthermore, the GR
has been shown to interact with Foxp3 at the protein level as part
of large multiprotein complexes (47). Conversely, Foxp3 binds
the Nr3c1 locus (47) and increases Nr3c1 mRNA expression in
thymic Treg cells (48), suggesting that both Foxp3 and GR are
able to mutually regulate each other’s expression levels and likely
also their downstream targets. Supporting the view that the GR
enhances Treg cell function is the observation that GC treatment
of patients suffering from myasthenia gravis or multiple sclerosis
not only improved clinical disease symptoms but also enhanced
Treg cell function (12, 49) and inhibitory cytokine production
(12), as compared to untreated patients.

Despite being defective under inflammatory conditions
in vivo, the inhibitory potency of GR-deficient Treg cells in
the in vitro suppression assays was not affected, irrespective of
whether naïve Tcon or Tmem cells were used as target cells.
The apparently contrasting results between in vitro and in vivo
Treg cell functional assays have been previously reported in
several other mouse models carrying a Treg cell specific deletion
or mutation of a given gene (3). To explain this discrepancy,
the current view is that Treg cells do not use one particular
mechanism by which they exert their suppressor function, but
rather use several pathways simultaneously, especially in vivo (3).

Collectively, our findings demonstrate that the GR is
critical for Treg cell function under inflammatory conditions.
Endogenous GC levels are typically increased in the course of
immune and inflammatory responses and may, by GR signaling,

counterregulate the acquisition of Th1 cell-like characteristics
by Treg cells, such as the production of IFN-gamma, that
would reduce their potency to suppress inflammation. Future
studies will determine whether the loss of GR in Treg cells also
accounts for increased Treg cell plasticity in other inflammatory
and autoimmune disease models. If that would be the case, it
may be justified to develop GC therapies for autoimmune and
inflammatory disorders that specifically target Treg cells in order
to reduce the strong side-effects of these hormones.

MATERIALS AND METHODS

Mice
GRfl/fl mice (16) were bred on a C57BL/6 background to
mice expressing Foxp3-YFP/Cre as a knocked-in YFP/iCre-
recombinase fusion protein from the Foxp3 locus (17) to generate
mice with GR-deficient Treg cells (Foxp3-YFP-Cre GRfl/fl
mice). Foxp3-YFP-Cre mice were used as littermate controls
for Foxp3-YFP-Cre GRfl/fl mice. Animals were housed in the
Central Laboratory Animal Facilities of the Medical University
of Innsbruck under standard light cycles and temperatures,
and food and tap water were available ad libitum. C57BL/6
Foxp3-GFP reporter mice (50) were purchased from Jackson
Labs (Bar Harbor, ME, USA) and served as CD4+ Tcon cell
donors for the T cell transfer colitis experiments. RAG1−/−

mice were a kind gift from A. Moschen, Department of
Internal Medicine II, Medical University Innsbruck. All animal
experiments were performed in accordance with the Austrian
“Tierversuchsgesetz” (BGBl. Nr. 501/1988 i.d.F. 162/2005) and
have been granted by the Bundesministerium für Bildung,
Wissenschaft und Kultur (bm:bwk).

Flow Cytometry
Cell suspensions were prepared in KDS-BSS buffer containing
10% FCS. Cells were stained with combinations of the following
antibodies for 20min at 4◦C: anti-CD4-PerCP/Cy5.5 (clone
RM4-5) and anti-PD-1-PE (anti-CD279, clone J43) (both from
eBiosciences, CA, USA); anti-CD8-PECy7 or anti-CD8-AF647
(clone 53-6.7), anti-B220-APC/Cy7 (clone RA3-6B2), anti-
CD25-PE (clone 3C7) or CD25-BV421 (clone PC61), GITR-
PE/Cy7 (clone YGITR765), CD45Rb-AF647 (clone C363-16A),
LAP-PE (clone TW7-16B4), and CD223(LAG-3)-BV421 (clone
C9B7W) (all from Biolegend, CA, USA); CD62L-PE (cloneMEL-
14) and CD44-BV510 (clone IM-7) (both from BD Biosciences;
San Jose, CA). DAPI and Annexin-V (eBiosciences, CA, USA)
were used to quantify or gate out apoptotic or dead cells.

For Foxp3 intracellular staining Foxp3/Transcription Factor
Buffer set and anti-Foxp3-eF660 (clone FJK-16s) (both from
eBiosciences) were used according to the manufacturer’s
instructions. For GR intracellular staining we used BD Cytofix
and BD Cytoperm reagents (BD Pharmingen, CA, USA)
and stained with anti-GR (clone D6H2L) (Cell Signaling,
MA, USA), followed by a secondary antibody (goat anti-
rabbit IgG AF647 (Invitrogen, OR, USA)). The same buffer
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set was used for cytokine staining using anti-IFN-gamma-
PE (clone XMG1.2), IL-17-AF647 (clone TC11-18H10.1), anti-
CTLA-4-PE (clone UC10-4B9; all from BioLegend), anti-IL-10-
PE (clone JESS-16E3) and anti-Helios-APC (clone 22F6; both
from eBiosciences).

Cell Sorting
To obtain naïve conventional T cells (Tcon),
CD4+Foxp3−(GFP−)CD25−CD45RBhigh cells were
sorted from spleen and/or mesenteric lymph nodes
from Foxp3-GFP reporter mice. Memory T (Tmem)
cells (CD4+Foxp3−(YFP−)CD44+CD62L−CD45RBhigh)
were sorted from splenocytes from Foxp3-YFP-Cre mice.
CD4+Foxp3+(YFP+)CD25+CD45RBlow Treg cells were isolated
from Foxp3-YFP-Cre and Foxp3-YFP-Cre GRfl/fl mice. Cell
sorting was performed using a FACSAria III cell sorter (Becton
Dickinson) and purity of isolated cell populations was routinely
at least 98%.

Cell Culture
For the GC sensitivity test, single cell suspension of splenocytes
(1 × 106cells/mL) was incubated in flat bottom 96-well plates
with corticosterone (Sigma, MO, USA) at 125 or 625 nM for
48 h and then analyzed for cell death as decribed (51). For
TCR activation experiments, T cells (enriched by MACS) were
seeded in anti-CD3 coated (5µg/mL) 96-well round bottom
plates and treated with soluble anti-CD28 (1µg/mL; both
antibodies from Biolegend) in the presence of 100 U/ml IL-2
(PreproTech, USA) in RPMI medium (supplemented with 50
uM beta-Mercaptoethanol, 100 U/mL Penicillin/Streptomycin,
2mML-Glutamine, 1mMNa-Pyruvate, and non-essential amino
acids), cultured for 48 h and then analyzed for activation status
and cytokine production. For the in vitro T cell suppression
assay, single cell suspensions were prepared from spleens and
mesenteric lymph nodes from Foxp3-YFP-Cre and Foxp3-YFP-
Cre GRfl/fl mice. 2 × 105/mL Tcon cells or Tmem were
stained with a cell proliferation dye (CPD-eF450) (eBioscience)
and cultured together with irradiated (30Gy) splenocytes (8
× 105 cells/mL) in RPMI complete medium in 96-well round
bottom plates. To induce cell proliferation, anti-CD3 (Biolegend,
CA, USA) 0.5µg/mL was added to the medium. In the
indicated cases, different Treg cell concentrations were added
to obtain Treg:Tcon ratios of 1:1, 1:2, 1:5, and 1:10. Cells were
incubated for 72 h at 37◦C and 5% CO2 and then analyzed
for cell proliferation by Flow cytometry. For cytokine staining
experiments, splenocytes were stimulated with 50 ng/mL PMA
(Fluka Biochemika) and 1 mg/mL Ionomycin (Sigma) for
4 h. During the last 3 h of cell culture Monensin (Biolegend)
was added.

RNA Isolation and Quantitative
RT-PCR (qPCR)
Total RNA was isolated from 1 × 105 sorted cells using Quick-
RNA MicroPrep kit (Zymo Research, CA, USA) and cDNA
was synthesized using iScript cDNA Synthesis Kit (BioRad,
CA, USA), according to the manufacturer’s instructions. Real
time PCR was performed using the following TaqMan Gene

Expression Assays: GR (Nr3c1; Mm00433833_mH) and Actin-
beta (Actb;Mm00607939_s1) and Luminaris Color Probe Master
Mix (all from Thermo Fischer Scientific, MA, USA). Quantitative
RT-PCR was analyzed using the StepOnePlus system (Applied
Biosystems, Thermo Fischer Scientific, MA, USA) according to
the manufacturer’s instructions. The results were normalized
to Actb expression and evaluated using the 11Ct relative
quantification method.

Antinuclear Antibodies (ANA) Detection
For detection of ANA we used Kallestad HEp-2 cell line 12-well
slides from Bio-Rad (Hercules, California). Serum samples were
diluted 1:50 and 1:100 and incubated on the slides according to
the manufacturer’s instructions. Fluorescence-labeled antibody
AF488 donkey anti-mouse (Jackson ImmunoResearch Inc.,
West Baltimore Pike, West Grove, PA, USA) was used as a
secondary antibody and slides were analyzed using a fluorescence
microscope. Serum samples from MRL/lpr mice were used as
positive controls for ANA detection.

T Cell Transfer Model of Colitis
CD4+Foxp3−CD25−CD45RBhigh Tcon cells were sorted from
congenic C57BL/6 Foxp3-GFP mice and injected i.p. into 6 to
15-weeks-old C57BL/6 RAG1−/− immunodeficient recipients (3
× 105 cells/mouse). 1.5 × 105 Foxp3-YFP-Cre or Foxp3-YFP-
Cre GRfl/fl Treg cells (CD4+Foxp3+CD25+ CD45RBlow) were
co-injected i.p. where indicated. Mice were monitored every
second day for wasting disease. Mice were sacrificed either when
having lost >15% of their initial body weight or 4 weeks after
cell transfer.

Histology of Intestinal Inflammation
Samples of mid-colon were fixed in buffered 4% formalin
solution. Three millimeter paraffin-embedded sections were cut
and stained with hematoxylin and eosin. Tissues were evaluated
semi-quantitatively and assigned a grade of 0 to 4 in a blinded
fashion. Grade 0: no changes observed, grade 1: discrete increased
inflammatory cells in the lamina propria with granulocytes in the
lamina epithelialis, grade 2: as grade 1 with scattered erosions of
the mucosa, grade 3: increased inflammatory cells in the lamina
propria and scattered crypt abscesses, grade 4: all signs of grade 3
plus more than 3 crypt abscesses per colon circumference in the
scanning magnification.

Western Blot
Cellular subsets (3.5 × 105 cells/subset) were resuspended in
Laemmli sample buffer and heated in boiling water for 5min.
Total proteins were loaded on 10% Bis-Tris acryl-amide gels
and blotted on AmershamTM HybondTM-ECL nitrocellulose
membranes (GE Healthcare, Little Chalfont, UK). Rabbit anti-
mouse GR (clone D6H2L) (Cell Signaling, MA, USA) and rabbit
anti-mouse AKT (Cell signaling Technology, Danvers, MA)
were used for protein detection. All primary antibodies were
diluted in 5% BSA in PBST and blots were incubated overnight
at 4◦C.
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ELISA for Serum Corticosterone
Serum samples from Foxp3-YFP-Cre and Foxp3-YFP-Cre GRfl/fl
mice were collected between 9 and 10 a.m. and analyzed for
corticosterone content by ELISA (Enzo Life Sciences, CH)
according to the manufacturer’s instructions.

DNA Methylation Analysis
Genomic DNA was isolated from sorted
CD4+CD25−CD45RBhigh conventional T cells as well as
CD4+Foxp3+CD25+ Treg cells sorted from WT Foxp3-GFP
reporter, Foxp3-YFP-Cre mice and Foxp3-YFP-Cre GRfl/fl
mice using the DNeasy blood and tissue kit (Qiagen, Hilden,
Germany). Bisulfite modification was performed using the EZ
DNA Methylation-Gold Kit (ZymoResearch). MethyLight PCR
analysis and the calculation of the percentage of methylated
reference (PMR) were done as described previously (52, 53).
Two Foxp3 assays (one reaction for DNA methylation analysis
and one for internal reference, with a mean distance of −2.226
base pairs, or −3.866 base pairs respectively, to the transcription
start site) were determined with the assistance of the computer
program Primer Express version 2.0.0 (Applied Biosystems,
Foster City, CA, USA). Primers used have been described
previously (53).

Statistics
Estimation of statistical differences between groups was carried
out using the unpaired Student’s t-test or two-way ANOVA
test, where appropriate. A chi-square test was used to
test for differences between groups regarding prevalence of
ANA. P ≤ 0.05 were considered to indicate statistically
significant differences. nsp ≥ 0.05; ∗p < 0.05; ∗∗p ≤ 0.01;
∗∗∗p < 0.001; and ∗∗∗∗p < 0.0001.
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Dynamics of the Type I Interferon
Response During
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Rheumatoid Arthritis
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Ronald F. van Vollenhoven and Willem F. Lems

Amsterdam UMC, Vrije Universiteit Amsterdam, Rheumatology, Amsterdam Rheumatology and Immunology Center,

Amsterdam, Netherlands

Objective: The type I interferon (IFN) response in rheumatoid arthritis (RA) has

been extensively studied in relation to therapy with biological DMARDs (bDMARDs).

However, the effect of conventional synthetic (cs)DMARDs and glucocorticoids (GCs)

on IFN response gene (IRG) expression remains largely unknown, even though

csDMARDS are used throughout all disease phases, including simultaneously with

biologic therapy. This study was aimed to determine the dynamics of IFN response upon

immunosuppressive treatment.

Methods: Whole blood was collected in PAXgene tubes from 35 RA patients who

received either COBRA therapy (combination of prednisone, initially 60mg, methotrexate

and sulfasalazine) (n = 14) or COBRA-light therapy (prednisone, initially 30mg, and

methotrexate) (n = 21). Expression of 10 IRGs was determined by real-time PCR at

baseline (T0), after 4 weeks (T4), and 13 weeks (T13) of treatment. IRG selection was

based on the differential presence of transcription factor binding sites (TFBS), in order to

study the therapy effect on different pathway components involved in IFN signaling.

Results: Seven of the 10 IRGs displayed significant changes during treatment (p ≤

0.016). These 7 IRGs all displayed a particularly pronounced decrease between T0 and

T4 (≥1.6-fold, p ≤ 0.0059). The differences between IRG sensitivity to the treatment

appeared related to the presence of TFBS for STAT1 and IRF proteins within the genes.

The extent of the decreases between T0 and T4 was similar for the COBRA- and

COBRA-light-treated group, despite the differences in drug combination and doses in

those groups. Between T4 and T13, however, IRG expression in the COBRA-light-treated

group displayed a significant increase, whereas it remained stable or decreased even

further in most COBRA-treated patients (comparison of mean fold changes, p = 0.011).

A significant association between IRG dynamics and clinical response to therapy was

not detected.

Conclusions: Immunosuppressive treatment with csDMARDs, in this case

a combination of prednisolone, methotrexate and sulfasalazine, substantially
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downregulates the IFN response in RA patients. The dynamics of this downregulation

were partly dependent on the presence of TFBS within the IRGs and the combination

and dosages of agents, but they were irrespective of the clinical response to therapy.

Keywords: rheumatoid arthritis, interferon, interferon response, biomarker, immunosuppression

INTRODUCTION

Early treatment of rheumatoid arthritis (RA) has proven effective
in decreasing disease activity and limiting joint damage (1, 2).
One treatment strategy which has shown effectiveness in early
RA is COBRA (Dutch acronym for COmbinatietherapy Bij
Reumatoïde Arthritis), which is a step-down strategy consisting
of initial high dose prednisolone (60mg per day), methotrexate
(MTX) and sulfasalazine (SSZ). Due to rheumatologists’ concerns
with respect to the high initial prednisolone dose and the
complexity of the drug schedule, COBRA-light strategy was
introduced, which consists of a lower initial prednisolone dose
(30 mg/day), combined with increasing doses of MTX (10–25mg
in 9 weeks) and no SSZ. The two strategies have shown to be
similarly effective (3–5).

The use of glucocorticoids (GCs) such as prednisolone and
conventional synthetic disease-modifying anti-rheumatic drugs
(csDMARDs) such as MTX and SSZ is not restricted to early
disease. In fact, these therapies are used throughout all phases of
the disease, either as monotherapy or in combination, including
simultaneously with biologic therapy (6).

With regard to biologic therapy, we have previously
demonstrated that the predictive performance of the type I
interferon (IFN) response gene set for non-response to rituximab
was impaired when patients were using prednisolone at the
moment of blood collection (7). Besides rituximab, IFN response
gene (IRG) expression has also been described as a predictor for
other bDMARDS such as anti-TNF agents and tocilizumab, and
RA onset (8–11).

However, studies on the potential influence of csDMARD and
GC (co-)medication yet remain scarce. Insight into the effect
of these therapies on the IFN response, as well as the potential
relation between IRG expression and the clinical response to
csDMARD and GC therapy, are highly relevant in order to
further understand the role of the IFN response in RA.

In vitro studies have shown that GC signaling could inhibit
type I IFN signaling by competition for the same intracellular
signaling components, i.e., the IFN regulatory factors (IRFs)
(12, 13) and by inhibition of the transcription factor STAT1 (14).
Accordingly, we have observed that RA patients who were treated
with the GC prednisolone indeed displayed lower IRG expression
compared to patients who had not received this treatment (7, 15).
Although this decrease was not observed with methotrexate
(MTX) use and appeared dependent on prednisolone dose, a
causal relation could not be established due to the cross-sectional
nature of the study. Moreover, since the study was performed in
patients who were about to start on biologic therapy, hence who
no longer benefitted from the csDMARD and GC therapies, an
analysis in relation to clinical response to these therapies could
not be made. The present study was focused on exploration of

the IFN response during COBRA and COBRA-LIGHT therapy
in RA. The sample collection within the COBRA and COBRA-
light cohorts enabled us to investigate this in a longitudinal
manner and additionally examine the potential relation with
clinical response.

METHODS

Patients and Treatment
All patients in the current study participated in the COBRA-
light study, a randomized, open, multicenter trial comparing
two treatment schedules for the treatment of early RA (http://
www.controlled-trials.com; ISRCTN55552928). Details of that
study have been reported previously (3). In short, DMARD-
naïve Dutch patients with recent-onset RA according to the
1987 revised American College of Rheumatology criteria (16)
were included and randomized to the COBRA-light or COBRA
strategy. Whereas, COBRA therapy consists of initially high-dose
prednisolone (60 mg/day) combined with sulfasalazine (SSZ)
and low-dose methotrexate (MTX) (7.5 mg/week), COBRA-
light consists of a lower initial prednisolone dose (30 mg/day)
but a higher starting dose of MTX (10 mg/week) and
no SSZ.

For this study, 36 patients were selected based on availability of
PAXgene tubes at baseline (T0), after 4 weeks (T4) and 13 weeks
(T13) at the AmsterdamRheumatology and Immunology Center,
location Reade, Amsterdam, The Netherlands. Fifteen patients
received COBRA therapy and 21 patients received COBRA-light
therapy. Therapy response was defined as a Disease Activity Score
in 44 joints (DAS)≤ 2.4 after 26 weeks of treatment. Additionally,
the change in DAS (1DAS) after 13 weeks and 26 weeks was
also assessed.

This study was approved by the medical ethics committee
of VU University Medical Center and Reade, Amsterdam,
The Netherlands, and informed consent was obtained from
all donors.

RNA Isolation and cDNA Synthesis
From each donor, blood was collected into a PAXgene tube
(PreAnalytiX GmbH) at baseline and after 4 weeks and 13
weeks of treatment. The PAXgene tubes were stored at −20◦C
until further processing. After overnight thawing at room
temperature, total RNA was isolated using the PAXgene Blood
RNA kit (PreAnalytiX GmbH) according to the manufacturer’s
instructions. Total RNA concentration was measured using the
Nanodrop spectrophotometer (ThermoFisher Scientific Inc.).
From each sample, 250 ng RNA was reverse-transcribed
into cDNA using a Revertaid H-minus cDNA synthesis kit
(ThermoFisher Scientific Inc.).
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TABLE 1 | IFN response gene selection.

Genes Transcription factor binding sites Reason for

selection
IRF proteins STAT1 STAT3 NFκB

INITIAL GENE SELECTION

IFI44L IRF7, IRF8 X X – Technical control

IFI6 IRF7, IRF8, ISRE – – – IRF-specific

IFITM1 – – – X NFκB-specific

IL1RN – – X – STAT-specific

MX1 IRF7, ISRE X X – Technical control

RSAD2 IRF7 – X – Technical control

ADDITIONAL SELECTION

HERC5 IRF7, ISRE – – – IRF-specific

IFITM2 – – X X IRF- and

STAT1-lacking

LY6E – X X X IRF-lacking

SERPING1 – X X X IRF-lacking

IRGs that contained a binding site for only one type of transcription factor were selected.

Additionally, three other genes were included as technical controls.

“X” indicates that the gene contains a binding site for that transcription factor, whereas

“–” indicates absence of the TFBS in that gene. ISRE; IFN stimulated response element,

binding site of the ISGF3 complex which consists of STAT1, STAT2, and IRF9. Binding is

IRF9-dependent, hence this is considered an IRF-specific binding site.

Interferon Response Gene Selection and
Real-Time PCR
Because GCs have been demonstrated to inhibit the IFN response
in vitro via interaction with specific signaling components such
as IFN regulatory factors (IRFs) (12, 13) and STAT1 protein (14),
three IFN response genes (IRGs) were selected for the presence
of specific transcription factor binding sites (TFBS). Thereto, all
45 IRGs that were previously described to be part of the IFN
signature in RA (17), were submitted to the Transfac algorithm
available from Interferome (http://interferome.its.monash.edu.
au), an online database of IRGs (18). As shown in Table 1, IL1RN
only contained a binding site for the transcription factors STAT3,
IFITM1 only for NFκB and IFI6 only for IRF-proteins, such as
IRF7, IRF8, and IRF9, which binds the IFN responsive element
(ISRE). In addition,RSAD2,MX1, and IFI44Lwere taken along as
positive controls because of their knownwell-detectability (9, 15).
To confirm our initial observations, four additional genes were
included based on the presence of certain TFBS (see Table 1).
Real-time PCR was performed using Taqman gene expression
assays and ABI Prism 7500 HT Sequence Detection System
(Thermo Fisher Scientific Inc.), according to the manufacturer’s
protocols. Gene expression values were calculated relative to a
standard curve and normalized to the average expression of two
housekeeping genes: 18S rRNA and HPRT.

Statistical Analysis
One patient was not included in the analyses as the RNA yield
of its T4 sample was not sufficient for further measurements.
Statistical analyses were performed using IBM SPSS Statistics
22. Data normality was checked according to Shapiro-Wilk test,
with a normal distribution if p > 0.05. Because most data

TABLE 2 | Cohort characteristics of the COBRA and COBRA-light groups.

All patients COBRA group COBRA-light

group

N 35 14 21

Age, years, median (IQR) 54 (45–60) 56 (44–61) 54 (45–59)

Female gender, n (%) 25 (71) 9 (64) 16 (76)

DAS at baseline, median (IQR) 4.0 (3.3–4.6) 4.0 (3.7–4.6) 4.0 (3.3–4.5)

DAS at T26, median (IQR) 1.7 (0.8–2.1) 1.2 (0.4–2.0) 1.8 (1.0–2.4)

DAS at T26 ≤ 2.4, n (%) 28 (80) 12 (86) 16 (76)

IQR, interquartile range.

were not normally distributed, non-parametric tests were used
for most comparisons. Longitudinal changes in IRG expression
during treatment were tested using Friedman tests, followed by
Wilcoxon signed ranks test. The comparisons of COBRA and
COBRA-light therapy and responders and non-responders were
performed using Mann-Whitney U test. Correlations between
IRG expression and 1DAS were assessed using Spearman
correlation and correlations between IRG expression and 2log-
transformed CRP and ESR ratios were assessed using Pearson
correlation. P < 0.05 were considered statistically significant.

RESULTS

Patient Characteristics
Demographic and clinical data are shown in Table 2. No
significant differences were observed in clinical characteristics
between the COBRA and the COBRA-light group. After 26
weeks, the COBRA-light group displayed a higher DAS value
and a lower percentage of patients with DAS values below 2.4.
However, these differences did not reach significance, neither at
later time points (data not shown, p≥ 0.45), which is in line with
previously demonstrated non-inferiority of COBRA-light versus
COBRA therapy (3–5).

Dynamics of the IFN Response During
Immunosuppressive Therapy
In order to gain insight into the dynamics of the IFN response
during COBRA and COBRA-light therapy, we first analyzed the
expression of 6 IRGs at baseline (T0) and after 4 weeks (T4) and
13 weeks (T13) of treatment in the complete group of COBRA
and COBRA-light combined.

As shown Figure 1 and Supplementary Table 1, expression
of all measured IRGs except IFITM1 and IL1RN displayed
significant changes over all time points (Friedman test, p ≤

0.016, vs. p ≥ 0.057 for IFITM1 and IL1RN). These changes were
most pronounced at T4, with median fold changes ranging from
only 1.1-fold and 1.3-fold for IFITM1 and IL1RN, respectively,
up to 2.5-fold for RSAD2 (Supplementary Figure 1A). In the
significant genes, i.e., IFI6, IFI44L, MX1, and RSAD2, 69–77% of
patients displayed a more than 1.2-fold decrease, whereas only 46
and 57% of the patients showed a more than 1.2-fold decrease
in IFITM1 and IL1RN, respectively (Supplementary Table 1).
As displayed in Supplementary Figure 2, the extent of the fold
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FIGURE 1 | Expression dynamics of individual IRGs during COBRA and

COBRA-light therapy. Both cohorts were merged for initial analysis.

change of T4 and T0 was partly dependent on the gene expression
levels at baseline, i.e., higher baseline expression generally led
to higher fold decreases. However, several patients displayed
relatively low baseline expression and relatively high fold changes
and vice versa, indicating that the extent of the fold change could
not be fully explained by the baseline expression values.

Between T4 and T13, changes in IRG expression were
either non-significant or displayed a moderate increase at
the group level (1.0 to 1.4–fold increase, p = 0.012–
0.29), indicating stabilization or even reversal of the IRG
decrease that occurred after 4 weeks of treatment. Of note,
overall dynamics were largely variable between patients (see
Supplementary Figure 1B). Individual dynamics over time are
displayed in Supplementary Figure 3.

Relation Between Transcription Factor
Binding Sites and Sensitivity to
Immunosuppressive Downregulation
Remarkably, the two genes that appeared least affected by the
COBRA and COBRA-light therapy, IFITM1 and IL1RN, both
lacked binding sites for IRF-transcription factors and STAT1 (see
Table 1). This implies that the therapy-related IRG reduction
might be IRF-dependent and/or STAT1-dependent. In order to
test this hypothesis, an additional selection of IRGs was made,
based on the presence of binding sites for either IRF or STAT1
(see Table 1). As shown in Figure 2 and Supplementary Table 2,
the additional IRG that lacked a TFBS for IRF proteins or STAT1,
i.e., IFITM2 displayed only moderate changes upon treatment,
similar to IL1RN and IFITM1 (p = 0.49). Accordingly, the
additional genes with a TFBS for IRF proteins and/or STAT1
showed a considerable downregulation at the group level (p
≤ 0.012). This further suggests that the therapy-related IRG
reduction is largely IRF- and STAT1-dependent.

Differences in Dynamics of IFN Response
Between COBRA and COBRA-Light
Therapy
Since the main difference between COBRA and COBRA-light
therapy is the dose of prednisolone and the use of SSZ, and
previous studies have shown a potential suppressing effect of
those two agents on IRG expression (7, 13, 15), we next analyzed
the two therapy groups separately. The 7 IRGs with most distinct
dynamics over time (HERC5, IFI6, IFI44L, LY6E, MX1, RSAD2,
and SERPING1) were highly correlating (Spearman r ≥ 0.53, p <

0.001), hence expression levels of these genes were averaged into
a 7-IRG score for visualization purposes.

As shown in Figure 3, both the COBRA and the COBRA-light
group displayed a similar median decrease in IRG expression
between T0 and T4, despite the difference in prednisolone
dose and SSZ use (Comparison of fold changes, p ≥ 0.19).
However, IRG dynamics between T4 and T13 appeared strikingly
different; whereas in the COBRA-treated group IRG expression
displayed only minor changes (median 1.1-fold, maximum 1.6-
fold increase), the majority of the patients in the COBRA-light-
treated group displayed an increase in expression (median 1.8-
fold, up to maximum 9.9-fold.Comparison of fold changes in
7-IRG score p= 0.029). Significantly more COBRA-light-treated
patients displayed an increase of at least 1.2-fold (chi-square p
= 0.019). Similar results were found for the individual IRGs
(Supplementary Figure 4). There was no significant correlation
between T13/T4 ratio and baseline IRG expression in these
groups (p≥ 0.12, data not shown), indicating that these dynamics
are dependent on the treatment rather than on the baseline
expression levels.

Dynamics of IFN Response in Relation to
Clinical Response to Therapy
Despite the significant changes in the IFN response observed at
the group level, we also observed substantial variation in IRG
expression between individuals. For example, some patients did
not display downregulation in any of the IRGs between T0 and
T4, or only in a part of them (data not shown). Therefore, we
also investigated whether these inter-individual variations could
be related to the clinical response to COBRA and COBRA-
light therapy.

Non-response was defined as DAS > 2.4 at T26. As
such, the merged cohort consisted of 7 non-responders and
28 responders. Due to low numbers, the two cohorts could
not be analyzed separately. In line with previous reports,
no correlation was observed between baseline DAS and IRG
expression (15, 17) (data not shown). As shown in Table 3 and
Supplementary Table 3, no significant differences in the 7-IRG
score or any of the treatment-sensitive IRGs were observed
between responders and non-responders, at baseline nor in the
expression and dynamics after 4 and 13 weeks (p ≥ 0.059).
Furthermore, no significant correlation was observed between
IRG expression and dynamics and the change in DAS after 13
and 26 weeks (unadjusted p-values ≥ 0.045).

At T4, where the maximum IRG decline was observed, DAS
was not determined. Instead, we investigated CRP and ESR at T4
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FIGURE 2 | Expression dynamics of individual IRGs during COBRA and COBRA-light therapy. IRGs were categorized based on the presence or absence of

transcription factor binding sites (TFBS) for IRF proteins and/or STAT1. FC, fold change expressed in 2 log values. P-values are indicated for longitudinal analysis by

Friedman test.

FIGURE 3 | Comparison of longitudinal changes in 7-IRG score between

COBRA (C) and COBRA-light(CL)-treated RA patients. *p < 0.05.

and later time points as indicators of inflammation. Interestingly,
a significant positive correlation was observed between the
change in IRG expression and change in both CRP and ESR
between T0 and T4 (p≤ 0.051, Pearson r ≥ 0.42 for 7-IRG score,
see Table 3 and see Supplementary Tables 4, 5 for the individual
IRGs). However, this correlation was diminished at later time
points, suggesting that there is no relation with the eventual

TABLE 3 | Assessment of 7-IRG score values and dynamics in relation to clinical

response to COBRA and COBRA-light therapy.

7-IRG score at

time point

2log-ratios in 7-IRG

score

T0 T4 T13 T4/T0 T13/T4

R vs. NR

(DAS ≤2.4 or >2.4 at T26)

0.17 0.23 0.56 0.86 0.53

1DAS at T13 (correlation) 0.18 0.21 0.72 0.43 0.29

1DAS at T26 (correlation) 0.70 0.32 0.56 0.58 0.93

2Log-ratio CRP (T4/T0) 0.31 0.34 0.81 0.010(+) 0.22

2Log-ratio CRP (T13/T0) 0.087 0.68 0.54 0.066 0.25

2Log-ratio CRP (T26/T0) 0.12 0.17 0.30 0.61 0.90

2Log-ratio ESR (T4/T0) 0.23 0.49 0.68 0.013(+) 0.84

2Log-ratio ESR (T13/T0) 0.083 0.85 0.55 0.038(+) 0.36

2Log-ratio ESR (T26/T0) 0.063 0.36 0.63 0.16 0.75

Table indicates p values. Details of the statistical analyses are described in the methods

section. The direction of the significant correlations is indicated between brackets.

clinical response to COBRA and COBRA-light therapy. Separate
analysis of the COBRA and COBRA-light group revealed similar
results (data not shown).

DISCUSSION

In previous studies using cross-sectional data from RA patients,
we observed lower IRG expression in patients using GCs, SSZ
and hydroxychloroquine, but not in patients using MTX (7,
15). The unique and virtually complete longitudinal collection
of PAXgene blood enabled us to investigate the influence
of immunosuppressive therapy on the IFN response in a
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longitudinal setting. To our knowledge, the present study is the
first to do so.

Using blood collected at baseline and after 4 and 13 weeks of
COBRA or COBRA-light treatment, we observed a substantial
downregulation of the IFN response within 4 weeks of therapy.
This reduction was irrespective of the therapy group, but was not
equally strong for each IRG. Between 4 and 13 weeks, however,
IRG expression changes were highly variable between patients,
which appeared partly dependent on the treatment.

The extent of the downregulation after 4 weeks of treatment
was similar between COBRA and COBRA-light-treated patients.
Most probably, this decline is due to the prednisolone treatment,
as its dose is relatively high in both groups, and it acts more
rapidly than MTX and SSZ. The absence of differences between
COBRA and COBRA-light treatment at this time point suggests
that prednisolone dose of 30 mg/day prednisolone already causes
maximum downregulation. The expression dynamics seemed to
be restricted to IRGs that contained one or more binding sites
for IRF transcription factors and/or STAT1. Conversely, three
genes that lacked such binding sites, displayed considerably less
downregulation during treatment. Previous in vitro studies have
shown that the GC signaling pathway, which is activated by
prednisolone, is able to compete with the IFN signaling pathway
for certain IRF proteins (12, 13) and to inhibit STAT1 activation
(14), which could explain our observations.

Between T4 and T13, the IRG dynamics were more
variable and differed between the two patient groups. Whereas
normalization of IRG expression toward baseline levels was
observed in the COBRA-light-treated group, IRG expression
remained rather stable in the COBRA-treated group. This
is particularly remarkable, as the prednisolone dose is equal
between both groups at after 12 weeks (7.5 mg/day), and the
only difference is the MTX dose (7.5 mg/week in COBRA
and 25 mg/week in COBRA-light) and the addition of 2 g
SSZ in the COBRA-treated groups. The total received dose
of prednisolone, however, is 1.5-fold higher in the COBRA-
treated group at this point. Possibly, the combination of SSZ
and higher total prednisolone dose causes a more prolonged
downregulation of the IFN response in the COBRA group.
However, due to the combination of agents, it is not possible
to strongly conclude which agent is responsible for the observed
differences in dynamics.

Unfortunately, no untreated control-group with longitudinal
follow-up was available, hence it cannot be fully excluded
that the IRG dynamics we observed were a consequence
of natural fluctuation. However, the correspondence with
previously published in vitro data (12, 13) as well as our previous
in vivo data (7, 15) and the observed differences between COBRA
and COBRA-light strongly suggest that the observed changes
in IRG expression are not spontaneous but truly mediated by
the treatment.

The observation that not all IRGs appeared equally sensitive
to the immunosuppressive agents of COBRA and COBRA-light
therapies, and the putative influence of total prednisolone dose,
could particularly be important when using the IFN response
as a biomarker, which has been described for several biologics,
including TNF inhibitors, rituximab, and tocilizumab (8, 10, 11,

19, 20). For example, we have demonstrated that the predictive
performance of the 8-IRG geneset for non-response to rituximab
is reduced when patients use prednisolone at the moment
of blood collection, presumably because of a prednisolone-
mediated reduction in IRG expression (7). Correspondingly,
for 5 of the 8 genes in this geneset we have now shown
that they indeed are sensitive to immunosuppressive treatment,
including prednisolone.

Remarkably, the observation that the IRG downregulation
attenuated in COBRA-light-treated patients implies that the IFN
response could normalize upon reduction of the prednisolone
dose. Hence, the 8-IRG geneset might still be applicable
as a predictor for rituximab in patients who are tapering
their prednisolone.

Moreover, it would be particularly interesting to investigate
whether the IRGs that were less affected by COBRA and COBRA-
light treatment could serve as alternative predictors for the
response to biologics, since they do reflect IFN activity in RA
(17), hence they might still play a role in the response to
biologics. Interestingly, the gene IFITM1, which appeared less
sensitive to prednisolone interference, has already been described
as a predictor of rituximab nonresponse in a transcriptomics
study (21). Alternatively, one study demonstrated an association
between IFN-related gene variants and the response to rituximab
(22). Although the predictive value was rather low, the concept of
using IFN-related gene variants, which are naturally insensitive
to therapy interference, would be interesting to study in further
detail and with more IFN-related SNPs (23).

Besides the differential sensitivities of individual IRGs to the
treatments, we also observed high heterogeneity in the IRG
dynamics between patients. As described before, IRG expression
in RA patients is generally highly heterogeneous, which we
observed both at baseline and upon therapy. Although we
observed a linear relation between baseline IRG expression and
the extent of the downregulation after 4 weeks, the variation
in IRG dynamics could not be fully explained by the baseline
variation in IRG expression. This indicates that besides the type
of treatment and the administered doses of treatment, there
are also other factors that could influence the IFN response
in RA. It has been well-discussed that the IRG response in
RA patients is the result of several factors combined, such as
extracellular stimuli (24), receptor expression (25) and genetic
variation in signaling proteins (22, 23, 26). Considering the
putative mechanism of IRG downregulation by prednisolone as
described above, particularly the variation in signaling proteins
could also contribute to a patient’s sensitivity to the observed IRG
downregulation. In addition, many other factors, independent
of baseline IRG expression, such as therapy adherence and the
patient’s sensitivity to glucocorticoids (27) could hypothetically
affect the extent of the IRG downregulation.

Despite this heterogeneity in the IFN response between
patients, we did not observe an association between the IRG
expression or dynamics and the response to COBRA and
COBRA-light therapy. Considering the differences in IRG
dynamics between COBRA and COBRA-light, the potential
relation between IRG expression and clinical response should
ideally be analyzed for both treatment groups separately.
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Since methotrexate has no proven interference with IRG
expression, while prednisolone and sulfasalazine have, the use
of IRG-interfering agents is considerably higher with COBRA-
treatment compared to COBRA-light treatment. Moreover, as
all agents have different modes of action (28–30), hence clinical
response for each agent is probably achieved via different
mechanisms. Consequently, it is possible that the relation
between IRG expression and clinical response is different
between COBRA and COBRA-light. Unfortunately, the current
cohorts were too small to study this in detail.

Since DAS information was not available at T4, a direct
comparison of DAS dynamics and IRG dynamics could not
be made. Instead, we additionally investigated CRP and ESR
as indicators of changes in inflammation in relation to IRG
dynamics. Interestingly, a significant correlation was observed
between IRG decline and CRP and ESR decline at T4, but not
at later time points. At this early time point, clinical effects are
mostly attributed to the prednisolone treatment, whereas at later
time points more influence is anticipated fromMTX and SSZ. As
a consequence, the IRG dynamics at T4 could reflect the initial
clinical response to prednisolone, but it does not predict the
eventual clinical response as this is the result of the combination
of agents. It would be interesting to study the potential relation
between IRG dynamics and clinical response in patients using
prednisone as monotherapy compared to patients using MTX
and/or SSZ monotherapy.

In summary, we have demonstrated that both COBRA
and COBRA-light therapy are able to downregulate the IFN
response in RA. The dynamics of this downregulation were partly
dependent on the presence of TFBS within the IRGs and the
combination and dosages of agents, but they were irrespective of
the clinical response to therapy. Altogether, these results shed a
new light on the behavior of the IFN response in RA.
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Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system

(CNS), characterized by the infiltration of mononuclear cells into the CNS and a

subsequent inflammation of the brain. Monocytes are implicated in disease pathogenesis

not only in their function as potential antigen-presenting cells involved in the local

reactivation of encephalitogenic T cells but also by independent effector functions

contributing to structural damage and disease progression. However, monocytes also

have beneficial effects as they can exert anti-inflammatory activity and promote tissue

repair. Glucocorticoids (GCs) are widely used to treat acute relapses in MS patients.

They act on a variety of cell types but their exact mechanisms of action including their

modulation of monocyte function are not fully understood. Here we investigated effects

of the therapeutically relevant GC methylprednisolone (MP) on monocytes from healthy

individuals and MS patients in vitro and in vivo. The monocyte composition in the blood

was different in MS patients compared to healthy individuals, but it was only marginally

affected by MP treatment. In contrast, application of MP caused amarked shift toward an

anti-inflammatory monocyte phenotype in vitro and in vivo as revealed by an altered gene

expression profile. Chemotaxis of monocytes toward CCL2, CCL5, and CX3CL1 was

increased in MS patients compared to healthy individuals and further enhanced by MP

pulse therapy. Both of these migration-promoting effects were more pronounced in MS

patients with an acute relapse than in those with a progressive disease. Interestingly, the

pro-migratory GC effect was independent of chemokine receptor levels as exemplified by

results obtained for CCR2. Collectively, our findings suggest that GCs polarizemonocytes

toward an anti-inflammatory phenotype and enhance their migration into the inflamed

CNS, endowing them with the capacity to suppress the pathogenic immune response.

Keywords: multiple sclerosis, methylprednisolone therapy, monocytes, M2 polarization, chemokines
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INTRODUCTION

Multiple Sclerosis (MS) is an inflammatory autoimmune
disease of the central nervous system (CNS) involving different
types of immune cells including T cells, B cells, and monocytes.
The most common disease course is characterized by acute
relapses with complete or incomplete remission. This relapsing-
remitting phenotype (RRMS) is observed in the majority of
the MS patients, with young adults being most affected. RRMS
can convert into a secondary-progressive form (SPMS) later
in life, which is characterized by progressive worsening of the
disease with or without additional relapses. The hallmark of
the third form of MS, termed primary-progressive (PPMS), is
a continuous worsening of the symptoms without intermittent
improvements (1). Although numerous new drugs have been
developed within the last decade, the most widely used treatment
of acute relapses is still high-dose methylprednisolone (MP)
pulse therapy to which most patients respond well, resulting in
an amelioration of symptoms within a few days (2). Patients
suffering from SPMS and PPMS are also treated with MP pulse
therapy in the case that the disease is not stable. Mechanistically,
various activities of glucocorticoids (GCs) affecting immune
cells but also non-hematopoietic cell types are discussed (3,
4). Furthermore, the GC response was recently reported to be
highly cell type-specific, both in magnitude and even direction
of transcriptional regulation (5). In the context of MS therapy
it is believed that patients profit most from direct or indirect
dampening effects on T cells. It has been reported that GCs
down-regulate expression levels of pro-inflammatory cytokines
and adhesion molecules required to pass the blood-brain barrier
(BBB). They also promote apoptosis induction in immune cells,
inhibit T cell activation, and additionally exert inhibitory effects
on inflammatory mediators such as nitric oxide (NO) (6). Our
own preclinical studies using the animal model experimental
autoimmune encephalomyelitis (EAE) further revealed that T
cells are the major target cells of free administered GCs (7, 8).
However, effects on myeloid cells were also shown to be crucial if
GC were encapsulated in liposomes (9) or nanoparticles (10). In
addition, we found that altered T cell migration along chemokine
gradients was a mechanism accounting for the therapeutic
activity of GCs in the treatment of neuroinflammation, whereas
apoptosis induction in T cells unexpectedly turned out to be of
minor importance (11).

T cells are the target of most current immunotherapies for
MS patients, highlighting the importance of this cell population
for the pathogenesis of MS. Nevertheless, myeloid cells including
monocytes play important roles for innate immune responses
and indirectly also influence adaptive immune responses by
serving as antigen-presenting cells, and with both functions
they also play a crucial role in MS and EAE (12). They are
found in CNS lesions in EAE and MS and often outnumber
infiltrating T cells. In animal models it has been shown that
monocytic infiltration contributes to disease progression (13),
and monocyte-derived macrophages are key players in the
reactivation of infiltrating T cells (14). Consequently, elimination
of macrophages (15–17) or selective depletion of CCR2+ Ly-6Chi

monocytes (18) reduced CNS inflammation. Alterations in the

composition of monocyte subpopulations in the peripheral blood
and cerebrospinal fluid (CSF) of MS patients have been reported
as well, thus further highlighting their substantial role in human
neuroinflammation (19).

In humans, monocytes are a heterogeneous cell population,
constituting ∼10% of total leukocytes in the blood. They have
a short life span and evolve in three different subsets: the most
prevalent being CD14++CD16− classical (or inflammatory)
monocytes, CD14++CD16+ intermediate state monocytes, and
CD14+CD16++ non-classical monocytes (20). They can give
rise to macrophages that encompass a dynamic spectrum
of phenotypes with classical or M1 macrophages (producing
IL-12, IL-1β, NO and reactive oxygen species, and acting
in a pro-inflammatory fashion) and alternatively activated
or M2 macrophages (expressing CD163, CD206, Arg1, and
acting in an anti-inflammatory fashion) being the extreme
ends of this spectrum (21). M2 myeloid cells were found to
contribute to an improvement of autoimmune diseases such
as MS and EAE (22–25). Similarly, skewed proportions of
the different monocyte subsets have been reported for many
human inflammatory and autoimmune diseases. For instance,
in rheumatoid arthritis, systemic lupus erythematodes, sepsis,
uveitis and sarcoidosis, intermediate-state monocytes were
expanded (26–31). In contrast, data for MS patients concerning
monocyte subsets are less consistent (19, 32, 33). Classical
pro-inflammatory CD14++CD16− monocytes are recruited to
the CNS in response to CCL2. Non-classical CD14+CD16++

monocytes, however, are not necessarily beneficial in the
context of MS. Namely, it has been shown that the latter
cells can adhere to the endothelium and help T cells
to extravasate at the site of inflammation and thereby
contribute to MS pathology. Accordingly, they are found in
active and demyelinating lesions and the CSF (33). Beyond
their disease-promoting activity, however, monocytes are also
able to dampen inflammation depending on their subtype
and status.

The influence of different drugs used in the long-term
treatment of MS such as glatiramer acetate (23), dimethyl
fumarate (34), or fingolimod (35) on myeloid cell function
has been intensively investigated. In contrast, effects
of GCs on myeloid cells in the context of MS are less
clear. Treatment of monocytes with GCs in vitro induces
a stable anti-inflammatory gene expression profile (36).
Consequently, such monocytes interfere with T-cell-mediated
inflammation in vivo, where they were shown to directly
suppress the secretion of IL-17 and IFNγ without inducing
a direct Th2 shift. Additionally, treatment with GCs enables
monocytes to induce regulatory T cells (Treg) at the site of
inflammation (37, 38).

Here we investigate the influence of MP—it being the most
widely applied GC in MS therapy—on human monocytes from
healthy individuals and MS patients in vitro and ex vivo.
We found evidence that monocyte polarization becomes
skewed toward the M2 phenotype by MP treatment and
that the migration of monocytes along chemokine gradients
is increased without any significant changes in the level of
their respective receptors. These findings suggest that GCs
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also exert their beneficial effects on MS bouts by tuning
monocyte function and not necessarily solely by suppressing
T cells.

MATERIALS AND METHODS

Patients
Thirty patients with established diagnosis of MS according to
the McDonald Criteria revised in 2017 were included in the
current study (14 RRMS, 8 SPMS, 8 PPMS). All patients received
high-dose MP (1,000mg) intravenously on three consecutive
days according to medical indication (due either to MS relapse
or progressive worsening of neurologic symptoms in patients
with progressive MS). Peripheral blood was drawn in Li-Heparin
monovettes (Sarstedt, Nürnbrecht, Germany) before and 24 h
after the first injection of MP. Due to the small volume of
blood that could be obtained from each patient and due to the
sometimes limited recovery of blood after MP therapy, not all
types of analyses were performed for every patient. The number
of patients included in each experiment is therefore indicated in
the figure legends.

Information about MS patients included in this study
(disease subtype, age, gender, severity of clinical symptoms
as assessed by the Expanded Disability Score Scale (EDSS),
acute relapse, disease duration, treatment) are summarized in
Table 1. SPMS patients that were treated with MP due to
an acute relapse (Table 1) were combined with the RRMS
group and collectively referred to as “MS patients with acute
relapse.” In contrast, SPMS patients without an acute relapse
(Table 1) were combined with the PPMS group and referred

TABLE 1 | Summary of the characteristics of patients and healthy individuals

included in the study.

Healthy

individuals

RRMS SPMS PPMS

Number 24 14 8 8

Age (years ± SD) 29.4 (8.8) 39.4 (8.9) 53.1 (7.5) 57.1 (10.2)

Females, number (%) 11 (45.8) 7 (50) 5 (62.5) 6 (75)

Mean EDSS score

(±SD)

n.a. 2.54 (1.05) 6.12 (1.21) 5.5 (1.23)

Disease duration

(Mean ± SD)

n.a. 4.79 (4.92) 22.63 (13.57) 12.5 (3.2)

Acute relapse,

number (%)

n.a. 13 (92.8) 4 (50) –

Disease modifying

therapy, number (%)

n.a. –

Fingolimod 4 (28.6) – –

IFNβ 4 (28.6) – –

Glatirameracetate 2 (14.3) 2 (25) –

Dimethylfumarate 1 (7.1) – –

Teriflunomide 1 (7.1) – –

GC – 2 (25) 5 (62.5)

Rituximab – 1 (12.5) –

None 2 (14.3) 3 (37.5) 3 (37.5)

Age, EDSS, and disease duration are presented as mean ± SD. n.a., not applicable.

to as “MS patients with progressive disease.” In addition, 24
healthy donors (age and gender summarized in Table 1) were
included. The investigations were conducted according to the
Declaration of Helsinki and national and international guidelines.
The study was approved by the local ethics committee of
the University Medical Center Göttingen. Informed written
consent was obtained from each subject prior to the collection
of blood.

Purification and Short-Term Culture of
Human Monocytes
Peripheral blood lymphocytes were enriched using a
lymphoprep gradient (Axis Shield, Oslo, Norway) as described
(11), and monocytes were purified with magnetic beads
(Stemcell Technologies, Köln, Germany). Purity was assessed
on the basis of CD14/CD16 staining by flow cytometry
using a FACSCanto II device (BD Biosciences, Heidelberg,
Germany), and routinely >95% (Figure 1). Monocytes were
analyzed directly or cultured for 3 h in RPMI 1640 medium
supplemented with 0.5% fatty acid-free BSA under serum-
starved conditions in the presence or absence of 10−6 M MP.
One portion of the cells was used for RNA isolation and surface
marker analyses and the other portion served to assess the
migratory capacity.

Flow Cytometry
Flow cytometric analysis of monocytes was performed as
previously described (11). To this end, cells were stained with
the following monoclonal antibodies (BioLegend, Uithoorn,
The Netherlands) in PBS supplemented with 0.1% BSA and
0.01% NaN3: anti-human CD14-PE/Cy7 (clone: HCD14), anti-
human CD16-APC/Cy7 (clone: 3G8), anti-human CD163-
PE (clone GHI/61), anti-human CD192 (CCR2)-PerCP/Cy5.5
(clone: K036C2), and anti-human CX3CR1-FITC (clone: 2A9-1).
Data were acquired on a FACS Canto II device (BD Bioscience)
and analyzed using FlowJo R© software (Tree Star, Ashland, OR).

Boyden Camber Assay
After 3 h in vitro cultivation with or without MP (see above), 5
× 105 monocytes per well were subjected to a transwell assay
using a pore size of 5µm (Corning Life Sciences, NY, USA) as
previously described (11). Cells were allowed to migrate along a
gradient of 10 ng/ml CCL2, 10 ng/ml CCL5, or 1 ng/ml CX3CL1
(ImmunoTools, Friesoythe, Germany) for 1 h. The medium
in the lower chamber was harvested and the transmigrated
monocytes attached to the plate were incubated with 2mMEDTA
in PBS for 20min at 37◦C. Detached cells were scratched off the
well bottom and pooled with the harvested medium for analysis.
Finally, cells were quantified by flow cytometric analysis using
Calibrite Beads (BD Bioscience).

Quantitative RT-PCR
Quantitative RT-PCR was performed as previously described
(11). To this end, total RNA was isolated using the Quick-
RNA MiniPrep Kit (Zymo, Irvine, CA) and cDNA was
prepared with the iScript Kit (Bio-Rad, Munich, Germany).
Quantitative RT-PCR was performed on an ABI 7500
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instrument (Applied Biosystems, Darmstadt, Germany)
using the SYBRmastermix from the same company. Results were
normalized to the mRNA expression of HPRT and evaluated
using the 11Ct method. Primer sequences are depicted
in Table 2.

Statistical Analysis
Data sets were initially subjected to the Shapiro-Wilk normality
test to analyze Gaussian distribution. Depending on the results,
either a parametric or a non-parametric test was employed,
and in the case of matched data, a paired test was used.
Accordingly, the experimental groups were compared with a
t-test, Mann Whitney test, Wilcox matched-pairs signed rank
test, or a One-way ANOVA followed by Newman-Keuls Multiple
Comparison test as outlined in the figure legends. Analyses were
performed with GraphPad Prism software (San Diego, CA). Data
are depicted as box-and-whiskers plots showing the minimum,
maximum and median, or as the mean ± SEM in all other types
of graphs. Levels of significance are as follows: n.s. p ≥ 0.05;
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

RESULTS

The Abundance of Classical CD14++CD16−

Monocytes Is Increased in MS Patients
Independently of Disease Activity
Monocytes were purified from the peripheral blood of healthy
individuals and MS patients and analyzed for the distribution
of cellular subsets by flow cytometry (Figure 1). Classical
CD14++CD16− monocytes were significantly more abundant
in MS patients than in healthy control subjects whereas
non-classical CD14+CD16++ monocytes were less frequent
in MS patients (Figure 2). In contrast, the percentage of
intermediate state CD14++CD16+ monocytes was unaltered.
Noteworthy, these findings are in line with previous reports (19).

Furthermore, we did not observe any differences concerning
the abundance of monocyte subtypes between MS patients
with progressive disease and those undergoing an acute
relapse (Figure 2).

GCs Have Only a Minor Impact on
Monocyte Subset Distribution
Monocytes were isolated from MS patients with progressive
disease or an acute relapse before they received a bolus
injection of MP. To study short term effects of GCs, the
ex vivo retrieved cells were incubated for 3 h in vitro in the
absence (control) or presence of 10−6 M MP. In addition,
monocytes were isolated from the same MS patients again
24 h after MP pulse therapy to determine long term effects of
GC treatment in vivo. In the case of patients with an acute
relapse, monocyte subset distribution remained unaltered by
MP treatment with regard to both short and long term effects
(Figure 3). In contrast, we observed an increased frequency of
classical CD14++CD16− monocytes in patients with progressive
disease after long term MP pulse therapy, and a concomitant
but non-significant reduction of non-classical CD14+CD16++

monocytes (Figure 3).

TABLE 2 | Primer sequences used for quantitative RT-PCR analysis.

Gene

name

Forward primer Reverse primer

NR3C1 AAG AGC AGT GGA AGG ACA GC CCA GGT TCA TTC CAG CCT GA

IL1B AAC AGG CTG CTC TGG GAT TC AGT CAT CCT CAT TGC CAC TGT

CD163 GGC TTG CAG TTT CCT CAA GA AGC TGA CTC ATG GGA ATT TTC TG

CD206 CGA TCC GAC CCT TCC TTG ACT AGT ATG TCT CCG CTT CAT GCC

IL10 AAG ACC CAG ACA TCA AGG CG AAT CGA TGA CAG CGC CGT AG

ARG1 GGA GTC ATC TGG GTG GAT GC GGC ACA TCG GGA ATC TTT CCT

HPRT CCT GGC GTC GTG ATT AGT GA CGA GCA AGA CGT TCA GTC CT

FIGURE 1 | Representative FACS analysis illustrating the applied gating strategy. Monocytes were isolated from an MS patient and stained for CD14 and CD16

surface expression using fluorochrome-conjugated monoclonal antibodies. The left plot depicts the gating for living cells based on forward scatter (FSC) and side

scatter (SSC). The right plot shows gating for classical CD14++CD16− monocytes, intermediate state CD14++CD16+ monocytes, and non-classical

CD14+CD16++ monocytes. The borders of the gates and the percentages of cells therein are indicated in each plot.
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FIGURE 2 | Distribution of monocyte subsets in the peripheral blood of

healthy subjects and MS patients with progressive disease or an acute

relapse. Monocytes were isolated from the peripheral blood and the

percentages of CD14++CD16− inflammatory monocytes (A),

CD14++CD16+ intermediate state monocytes (B), and CD14+CD16++

non-classical monocytes (C) were determined by flow cytometry. MS patients

were divided into two groups according to their disease activity (progressive,

relapse). Data are presented as box-and-whiskers plots showing the

minimum, maximum and median; n = 20 (healthy subjects), n = 8 (MS

progressive), n = 12 (MS relapse). Statistical analysis was performed using a

One-way ANOVA and Newman-Keuls Multiple Comparison test. Levels of

significance: n.s. p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.

GCs Induce Monocyte Polarization Toward
an Anti-inflammatory M2 Phenotype
In addition to the classification of monocytes on the basis
of cell surface receptors, their phenotype can be characterized
by determining their gene expression profile. To this end, we
performed an mRNA expression analysis of genes that have
been linked to either an M1 or M2 polarization. Monocytes
were isolated from healthy subjects and MS patients, incubated
with or without 10−6 M MP in vitro for 3 h and analyzed
by quantitative RT-qPCR. In addition, long term GC effects
were investigated 24 h after MP pulse therapy in vivo (only
patients). Initially, we analyzed mRNA levels of NR3C1, the

FIGURE 3 | Impact of GC treatment on monocyte subset distribution in MS

patients with progressive disease or an acute relapse. Monocytes were

isolated from MS patients before MP pulse therapy and incubated for 3 h

without (control) or with 10−6 M MP in vitro. A second blood sample was

obtained from the same MS patients 24 h after MP pulse therapy in vivo. The

percentages of CD14++CD16− inflammatory monocytes (A),

CD14++CD16+ intermediate state monocytes (B), and CD14+CD16++

non-classical monocytes (C) were determined by flow cytometry. MS patients

were divided into two groups according to their disease activity (progressive,

relapse). Data are presented as the mean ± SEM; n = 8 (MS progressive),

n = 12 (MS relapse). Statistical analysis was performed using a One-way

ANOVA and Newman-Keuls Multiple Comparison test. Levels of significance:

n.s. p ≥ 0.05; **p < 0.01 (control vs. 24 h); #p < 0.05 (3 vs. 24 h).

gene encoding the GC receptor (GR). NR3C1 expression did
not significantly differ between healthy subjects and MS patients
and was reduced by MP treatment as expected (39, 40).
However, the latter effect reached statistical significance only in
the case of the in vivo therapy (Figure 4A). Expression analysis
further revealed that mRNA levels of IL1B, a pro-inflammatory
cytokine that is typical for an M1 polarization of monocytes,
were reduced by MP treatment in healthy subjects and MS
patients both in vitro and in vivo (Figure 4B). Concomitantly,
the M2 marker genes ARG1, CD163, and CD206 as well as
the gene encoding the anti-inflammatory cytokine IL10 were
all increased in monocytes of healthy subjects and MS patients
followingMP treatment, although the differences were not always
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FIGURE 4 | Modulation of the phenotype of monocytes from healthy subjects and MS patients by GCs. Monocytes were isolated from the peripheral blood and

cultured without (control) or with 10−6 M MP for 3 h in vitro. A second blood sample was obtained from the same MS patients 24 h after MP pulse therapy in vivo.

Thereafter, RNA was prepared and analyzed by quantitative RT-PCR for mRNA levels of NR3C1 (A), IL1B (B), CD163 (C), CD206 (D), IL10 (E), and ARG1 (F). Gene

expression was evaluated using the 11Ct method and normalized to HPRT. Data are presented as the mean ± SEM; n = 6 (healthy individuals), n = 9 (MS patients).

Statistical analysis was performed using a paired t-test (IL1B, CD206) or a Wilcox matched-pairs signed rank test (NR3C1, CD163, IL10, ARG1). Levels of

significance: n.s. p ≥ 0.05; *p < 0.05; **p < 0.01.

statistically significant (Figures 4C–F). It is noteworthy that in
general, GC effects were more pronounced after high-dose MP
pulse therapy than following in vitro culture (Figure 4). Gene
expression levels for CD163 and IL10 were found to be elevated
in MS patients compared to healthy individuals in the steady
state (Figure 4). To confirm our results at the protein level, we
analyzed surface expression of CD163 as an example by flow
cytometry. There were no differences in CD163 levels after short
term MP treatment in vitro, either for healthy subjects or MS
patients (Figure 5A and data not shown). However, 24 h afterMP
pulse therapy in vivo, CD163 surface levels were strongly elevated
in a subgroup of MS patients (Figure 5). Interestingly, 6 out of 7
patients in whom CD163 surface expression on monocytes was
upregulated were suffering from an acute relapse. Collectively,

MP induces a shift toward the anti-inflammatory M2 monocyte
phenotype, which is most evident in MS patients receiving high-
dose MP pulse therapy.

GCs Enhance the Migratory Capacity of
Monocytes Along Chemokine Gradients
Transmigration of monocytes across the BBB and infiltration
into the meninges and parenchyma is a hallmark of MS and
guided by a set of pro-inflammatory chemokines (41). It is
against this background that we determined the migratory
capacity of monocytes from healthy subjects and MS patients
after GC treatment in vitro and in vivo. The spontaneous basal
migration rate of monocytes in the absence of a chemokine
gradient was low and independent of disease status and MP
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FIGURE 5 | Analysis of monocyte CD163 surface levels in MS patients.

Monocytes were isolated from MS patients before MP pulse therapy and

cultured without (control) or with 10−6 M MP for 3 h in vitro. A second blood

sample was obtained from the same MS patients 24 h after MP pulse therapy

in vivo. CD163 surface expression was analyzed by flow cytometry on all cells

independently of the CD14/CD16 status. (A) Representative stacked

histograms are depicted for an MS patient in which CD163 surface levels were

upregulated after MP pulse therapy. (B) Percentages of CD163+ monocytes

before (control) and 24 h after MP pulse therapy in vivo. The corresponding

values for each patient are connected by a line. n = 15. Statistical analysis

was performed using a Mann Whitney test. Levels of significance: *p < 0.05.

treatment (Figure 6A). Expectedly, monocytes migrated toward
the chemokines CCL2, CCL5, and CX3CL1, with a higher
migratory activity observed for monocytes from MS patients
compared to healthy individuals (Figures 6B–D). Short term
in vitro culture slightly increased the migratory capacity of
monocytes retrieved from healthy subjects and MS patients,
although significance was missed in most cases (Figures 6B–D).
In contrast, in vivo MP pulse therapy of MS patients strongly
and significantly enhanced the migratory capacity of monocytes
in response to all three chemokines (Figures 6B–D). In addition,
we further dissected the migratory capacity of monocytes toward
CCL2, the chemokine that caused the largest effects, for MS
patients according to their individual disease activity. It turned
out that the basal migration was the same in both groups, whereas
MS patients with progressive disease had a lower CCL2-directed
migration than MS patients with an acute relapse (Figure 7).
Importantly, the results for monocyte migration toward CCL2
were comparable for both groups with regard to short and long
term MP effects (Figure 7B). Furthermore, the same tendency
was observed for patients from different MS subtypes (RRMS,
SPMS, PPMS), although statistical significance was not reached

here due to limited numbers of patients (data not shown). In
summary, our data indicate that high-dose MP pulse therapy of
MS patients enhances monocyte chemotaxis.

The Frequency of CCR2+ Monocytes and
Their CCR2 Surface Expression Levels Are
Unaffected by GC Treatment
Monocyte migration along chemokine gradients depends on
the surface expression of the respective receptors as well as
intracellular signaling pathways and cytoskeletal rearrangements.
To distinguish between these mechanisms, we tested alterations
in chemokine receptor expression levels exemplified for CCR2,
the receptor of CCL2 which is the chemokine that induced
the most robust migration and alteration by GC treatment
(Figures 6, 7). The percentage of CCR2+ monocytes in MS
patients was significantly higher than in healthy subjects
(Figure 8A), which is in agreement with their higher percentage
of classical inflammatory CD14++CD16− monocytes (Figure 2).
In contrast, the surface density of this receptor was not
significantly changed (Figure 8B). Importantly, MP pulse
therapy of MS patients neither altered the abundance of CCR2+

monocytes nor the surface expression levels of the receptor
(Figures 8A,B), indicating that the increased migration of
monocytes toward CCL2 after MP treatment was unrelated to
GC effects on the chemokine receptor itself. Notably, CX3CR1+

monocytes in MS patients were less abundant than in healthy
subjects and unaffected by MP pulse therapy (data not shown),
which is also in line with the lower abundance of non-classical
CD14+CD16++ monocytes in MS patients regardless of their
treatment (Figure 2).

DISCUSSION

MS is a complex disease involving multiple interactions between
different immune cell populations. Although T cells undoubtedly
play a very important role in the pathogenesis of MS, monocytes
are implicated in disease pathogenesis too and therefore
represent potential therapeutic targets. They can contribute to
inflammatory processes by influencing Th17 cell differentiation
(30) and impact T-cell activation and differentiation, e.g., by
down-regulation of cytokine production or induction of Treg
cells at the site of inflammation (37). Although progress has
been made in the understanding of these processes (42, 43),
the role of different monocyte subsets in autoimmune diseases
such as MS remains incompletely understood. Monocytes
are rapidly mobilized in large numbers to inflamed sites
and also possess T cell-independent effector functions such
as phagocytic activity and the secretion of pro-inflammatory
cytokines and chemokines. Interestingly, these cells can even be
found in the healthy human brain. Especially intermediate state
CD14++CD16+ monocytes are present in the CSF of healthy
subjects, where they account for >50% of all monocytes (19),
which highlights their importance for the immune surveillance
of the CNS. In pathological conditions such as MS, monocytes
are found in active and early demyelinating lesions and thus
may contribute to the breakdown of the BBB. Nevertheless,
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FIGURE 6 | Monocyte migration along chemokine gradients in healthy subjects and MS patients under the influence of GCs. Monocytes were isolated from healthy

subjects and MS patients before and after (24 h in vivo) MP pulse therapy. Cells were cultured in the absence (control) or presence of 10−6 M MP for 3 h in vitro and

then transferred into the upper part of a Boyden chamber. Basal monocyte migration without a chemokine gradient (A) and migration toward a gradient of CCL2 (B),

CCL5 (C), or CX3CL1 (D) into the lower part of the Boyden chamber were analyzed by flow cytometry and results are depicted as the percentage of transmigrated

cells (mean ± SEM). n = 19/19/11/9 (healthy subjects), n = 13/15/12/17 (MS patients). For statistical analysis, untreated samples were compared to each other using

a t-test, comparison of untreated vs. MP-treated samples from healthy subjects was performed using a paired t-test, and comparison of samples from MS patients to

each other was performed using a One-way ANOVA and Newman-Keuls Multiple Comparison test. Levels of significance: n.s. p ≥ 0.05; *p < 0.05; **p < 0.01;

***p < 0.001.

FIGURE 7 | Monocyte migration along a CCL2-gradient in MS patients with progressive disease or an acute relapse under the influence of GCs. The data are the

same as in the experiment presented in Figure 4, but the MS patients are now divided into two groups according to their disease activity. Basal monocyte migration

without a chemokine gradient (A) and migration toward a gradient of CCL2 (B) into the lower part of the Boyden chamber were analyzed by flow cytometry and are

depicted as the percentage of transmigrated cells (mean ± SEM); n = 4/6 (progressive), n = 9/9 (relapse). For statistical analysis, untreated samples were compared

using a t-test and comparison of samples from MS patients to each other was performed using a One-way ANOVA and Newman-Keuls Multiple Comparison test.

Levels of significance: n.s. p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.

depletion of this cell type is not advisable as they can also have
beneficial effects in the resolution phase of inflammation and
repair processes. For instance, when myeloid cells transduced
with the innate immune receptor TREM2 were applied in
EAE mice, they created an anti-inflammatory milieu in the
CNS resulting in the amelioration of clinical symptoms and

reduced structural damage (44). It is further noteworthy that
a removal of monocytes would be difficult to achieve because
they only have a short half-life of a few days. Selectively
employing the anti-inflammatory capacity of monocytes while
avoiding a general immune suppression might, however, be
favorable for the treatment of autoimmune diseases like MS.
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FIGURE 8 | Analysis of CCR2 surface expression levels in monocytes from

healthy subjects and MS patients before and after GC treatment in vivo.

Monocytes were isolated from healthy subjects as well as MS patients before

and 24 h after MP pulse therapy in vivo. CCR2 surface expression was

analyzed by flow cytometry and subsequently the percentage of CCR2+

monocytes (A) and the surface level of CCR2 based on the mean fluorescence

intensity (MFI) were determined (B). Data are presented as box-and-whiskers

plots showing the minimum, maximum and median; n = 13/22/17. Statistical

analysis was performed using a One-way ANOVA and Newman-Keuls Multiple

Comparison test. Levels of significance: n.s. p ≥ 0.05; ***p < 0.001.

In this respect it is relevant that GCs induce a stable anti-
inflammatory phenotype in mouse monocytes following their
treatment in vitro (36). After transfer into recipient mice, such
monocytes were found to maintain their polarization and were
able to repress T-cell-mediated inflammation even when it was
already established (37). Astonishingly, relatively little is known
about the mechanisms by which GCs impact this immune
cell population during MS pulse therapy, albeit myeloid cells
are known to contribute to the pathogenesis of MS and EAE.
Expression of the GC receptor in myeloid cells was found to be
dispensable for the treatment of EAE with free dexamethasone
(7). However, when the GCs were targeted to myeloid cells by

encapsulation into liposomes (9) or nanoparticles (10), their
effects on monocytes/macrophages turned out to be crucial for
their therapeutic efficacy in the same EAE model. In this case,
GC treatment resulted in a strong M2 polarization of myeloid
cells, which was essential for an amelioration of the disease
symptoms (9, 10).

In this study, we report that GCs also have pronounced
effects on human monocytes, especially those from MS patients.
In vitro culture of monocytes fromMS patients with MP resulted
in an increased gene expression of the M2 markers ARG1,
CD163, and CD206 and the anti-inflammatory cytokine IL10,
and the concomitant down-regulation of the mRNA level of
the pro-inflammatory cytokine IL1B. This effect was even more
pronounced after MS patients were subjected to 24 h of MP
pulse therapy. Hence, GCs induce an anti-inflammatory M2
monocyte phenotype in MS patients. Surprisingly, we found that
the migration of monocytes toward several pro-inflammatory
chemokines was enhanced after the exposure to MP in vitro
and in vivo. Presumably, this effect is mostly independent of a
modulation of the expression levels of the respective chemokine
receptors. Neither the frequency of CCR2+ monocytes nor the
surface level of this receptor were significantly increased after MS
patients underwent MP pulse therapy. Hence it is likely that GCs
influence processes other than chemokine receptor levels leading
to an enhanced chemotaxis of monocytes. It is noteworthy that
we previously described a similar phenomenon for the impact
of GCs on the migratory behavior of T cells toward CCL19 and
CXCL12, which turned out to be independent of the levels of the
respective chemokine receptor as well (11). Therefore, it appears
likely that downstream signaling pathways are responsible for the
altered migration of monocytes after GC treatment. It has been
reported that phospholipase C and phosphokinase C are involved
in CCR2 signaling (45), leading to an activation of focal adhesion
kinase (FAK) (46). The observation that FAK is phosphorylated
in response to GCs in T cells (11) provides a possible explanation
for synergistic effects of GCs and CCL2 on monocyte migration.
Further support for this notion comes from a report that paxillin,
a downstream signaling molecule of FAK, is induced by GCs
in human mesenchymal stem cells and thereby enhances their
migration (47), and that GCs influence the cytoskeleton of T cells
via phospholipase C (48), an effect which could also impact the
migratory behavior of monocytes.

Interestingly, frequencies of inflammatory and non-classical
monocytes were not substantially influenced by MP treatment
although our gene expression analysis revealed a shift toward
an anti-inflammatory phenotype under these conditions.
Apparently, the cell populations defined by either surface
expression of CD14 and CD16 or gene expression of anti-
inflammatory molecules are different. It has been shown
that human M2 polarized macrophages display a more motile
phenotype andmigrated more directed and over longer distances
toward CCL2 as compared to M1 or M0 macrophages (49).
Additionally, it has been hypothesized that the inflammatory
chemokine CCL2 might have a beneficial role in MS because its
levels are higher in the remission phase than during relapses,
although no clear explanation for this phenomenon could be
provided (50). This suggests that in phases of disease remission
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M2 polarized macrophages and monocytes are recruited to
the site of inflammation by CCL2, where they promote repair
and remyelination. We postulate that the application of GCs
enhances this natural repair mechanism by affecting two
different aspects of this process. First, GC application promotes
M2 polarization of monocytes and second, it enhances the
migration of these M2 polarized monocytes toward different
chemokines. It is tempting to speculate that under these
circumstances anti-inflammatory monocytes already reach the
CNS at time points when natural repair mechanisms have not
yet been initiated, thereby accelerating and optimizing the repair
process and facilitating the remission of the disease.

Although T cells are still widely considered to be the
major target cells of MP pulse therapy, resulting in changes in
cytokine expression, adhesion molecule expression, migration
and apoptosis (51), some effects of GCs on myeloid cells have
already been described in the past. For instance, the phagocytic
potential of human monocytes was enhanced by the incubation
with dexamethasone in vitro (52). Interestingly, enhanced
phagocytosis of macrophages in vitro is associated with an M2
polarization (53, 54). Furthermore, high-dose MP pulse therapy
resulted in a decreased frequency of monocytes producing IL-
8, which is typical for the inflammatory CD14++CD16− subset
(55). While we did not observe a change in the frequency of
inflammatory or non-classical monocytes 24 h after MP pulse
therapy, it is noteworthy that the aforementioned decrease of
IL-8-producing monocytes was described 5 days after treatment,
suggesting that such a changemight be evident only at a later time
point. In addition, GC treatment of EAE in mice resulted in a
reduced expression of beta-arrestin-1 and enhancedmRNA levels
of A1AR (56), which is thought to regulate cytokine expression
and release and NO production in myeloid cells (57). In fact,
mRNA levels of cytokine genes were at least partially affected
by GCs in our study: we observed a reduced expression of the
pro-inflammatory cytokine IL1B and an increased expression
of the anti-inflammatory cytokine IL10. Interestingly, previous
reports indicated that IL-6 levels were not changed by GCs in
humanmonocytes (36), which is in contrast to mouse monocytes
(58). The reason for this species difference, however, is unclear.
Furthermore, analysis of human monocyte-derived dendritic
cells showed that GCs induced IL-10 secretion in vitro (59),
and analysis of human monocyte-derived macrophages revealed
that GCs repressed IL-6 and TNFα responses induced by LPS
stimulation in vitro (60). Collectively, these findings are in
line with our finding that GC treatment modulates cytokine
expression by human monocytes.

Our data suggest that CCL2 is the chemokine that controls
monocyte migration into the CNS to a higher degree compared
to the other chemokines tested in this study. The migration rate
of untreated monocytes from healthy subjects and MS patients
toward CCL2 was higher compared to CCL5 and CX3CL1,
which confirms previous data also showing higher migration
rates of human monocytes toward CCL2 in comparison to
CX3CL1 (19). Hence, it does not come as a surprise that

CCL2-directed migration is also the predominant target of GCs
in the context of chemotaxis. Still, it is somewhat contradictory
at first sight that chemotaxis toward an inflammatory chemokine
is increased by GCs rather than decreased. We believe that
this observation needs to be interpreted in the light of the
concurrent phenotypic changes that lead to an anti-inflammatory
polarization of monocytes. It appears that GCs promote the
infiltration of those monocytes into the CNS that are able
to terminate inflammation and initiate repair processes, thus
contributing to an amelioration of disease symptoms after MP
pulse therapy of MS patients. Of note, the occurrence of anti-
inflammatory activity of myeloid cells in inflammatory CNS
diseases has been reported previously (61, 62) but the exact
mechanisms remained incompletely understood.

In summary, GCs exert marked effects on monocytes from
MS patients, which could in part explain the therapeutic efficacy
of MP pulse therapy. Apparently, these effects are achieved by a
combination of M2 polarization and enhanced chemotaxis and
certainly play an important role in addition to the well-described
impact of GCs on T-cell function. Therefore, GCs should not
only be considered as T-cell suppressors but also as modulators
of myeloid cells in MS therapy.
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Glucocorticoids (GCs) are steroid hormones predominantly produced in the adrenal

glands in response to physiological cues and stress. Adrenal GCs mediate potent

anti-inflammatory and immunosuppressive functions. Accumulating evidence in the past

two decades has demonstrated other extra-adrenal organs and tissues capable of

synthesizing GCs. This review discusses the role and regulation of GC synthesis in

the intestinal epithelium in the regulation of normal immune homeostasis, inflammatory

diseases of the intestinal mucosa, and the development of intestinal tumors.

Keywords: glucocorticoids, intestinal mucosa, intestinal immune homeostasis, inflammatory bowel disease,

colorectal cancer, liver receptor homolog-1, tumor necrosis factor

GENERAL ASPECTS OF GLUCOCORTICOIDS

Glucocorticoids
Glucocorticoids (GCs) are immunoregulatory hormones synthesized in the adrenal cortex and
secreted into the blood in a circadian mode under physiological and stress conditions (1). GCs
regulate fundamental body functions in mammals including control of cell growth, development,
metabolic homeostasis, cognition, mental health, immune homeostasis, and apoptosis (2–5).
In the 1940s GCs were discovered as extracts of the adrenal cortex. This was followed by
the isolation of adrenocorticotropic hormone (ACTH) from pituitary gland extracts. In 1950,
Kendall, Reichstein, and Hench were awarded the Nobel Prize in Physiology and Medicine
for their pioneering work in describing that GCs had a powerful anti-inflammatory effect
in the treatment of rheumatoid arthritis (6, 7). Since the 1950s, and owing to their strong
anti-inflammatory and immunosuppressive activities, GCs have been widely used for the treatment
of inflammatory disorders and autoimmune diseases, such as asthma, rheumatoid arthritis,
dermatitis, inflammatory bowel disease (IBD), sepsis, lupus erythematosus, and multiple sclerosis
(7–11). GCs are also used as immunosuppressive drugs following organ transplantation and in the
treatment of leukemia (11, 12).

Immunological, environmental, and emotional stress induces the release of GCs to mediate
immunoregulatory activities, mostly immunosuppressive, on distant tissues and cells, in particular
in immune cells (4). For example, GCs have an immunosuppressive activity on T cell-mediated
immune responses (13) and this is why they are frequently used for the treatments of
T cell-mediated immunopathologies.
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The synthesis of adrenal GCs is regulated by the
hypothalamic-pituitary-adrenal (HPA) axis (Figure 1), and
controlled by the main circadian oscillator located in the
suprachiasmatic nucleus (SCN) of the hypothalamus (1). Basal
and stress-inputs to the hypothalamus promote the release of
corticotropin-releasing hormone (CRH) from neurosecretory
cells of the paraventricular nucleus (PVN), which stimulates
the synthesis and secretion of ACTH (corticotropin) from the
anterior pituitary gland. ACTH in turn promotes the production
and secretion of GCs (cortisol in humans and corticosterone in
rodents) from the adrenal cortex (14) (Figure 1). Afterwards,
GCs target the hypothalamus and the anterior pituitary to
inhibit the release of CRH and ACTH in a negative feedback
loop (Figure 1). GCs act on almost all types of cells in the
body to maintain homeostasis both, in response to normal
diurnal changes in metabolism and in response to stress (2, 3).
Noteworthy, inflammatory cytokines including interleukin-1
beta (IL-1β), IL-6, and tumor necrosis factor alpha (TNF) were
also reported to stimulate the release of ACTH and CRH further
indicating the bidirectional communication between immune
and neuroendocrine systems (15).

Adrenal GC Synthesis
Adrenal GCs are synthesized and released by the zona fasciculata
of the adrenal cortex in a circadian manner, as well as in
response to environmental and immunological stress (16).
GCs are synthesized from the precursor cholesterol and the
synthesis is regulated by the transcriptional control of the
steroidogenic enzymes that involve cytochrome P450 (CYP)
oxidative enzymes and hydroxysteroid dehydrogenase (HSD)
enzymes (1) (Figure 1). The first step in steroidogenesis takes
place within mitochondria, where cholesterol is transported
from the outer to the inner mitochondrial membrane by the
steroidogenic acute regulatory protein (StAR) (17). The first
and rate-limiting step in steroid synthesis is the conversion of
cholesterol to pregnenolone by the action of side-chain cleavage
enzyme, P450scc, encoded by the CYP11A1 gene (Figure 1).

Abbreviations: ACTH, Adrenocorticotropic hormone; AF-1, activation function

1; AP-1, activator protein 1; APC, Adenomatous polyposis coli; cAMP, cyclic

adenosine monophosphate; CD, Crohn’s disease; CREB, cAMP response element

binding protein; CRH, corticotropin-releasing hormone; CTL, cytotoxic T

lymphocyte; CTLA-4, CTL-antigen 4; CYP, cytochrome P450; DBD, DNA-

binding domain; DC, dendritic cell; DLPC, dilauroyl phosphatidylcholine; DSS,

dextran sulfate sodium; GC, Glucocorticoids; GILZ, glucocorticoid-induced

leucine zipper; GR, glucocorticoid receptor; GRE, GC response element; HPA,

Hypothalamus-pituitary-adrenal (gland); HSD, hydroxysteroid dehydrogenase;

IBD, Inflammatory Bowel Disease; IEC, intestinal epithelial cell; IEL, intraepithelial

lymphocyte; IFN-γ, interferon gamma; ISC, intestinal stem cell; LCMV,

lymphocytic choriomeningitis virus; LBD, ligand-binding domain; LPL, lamina

propria lymphocyte; LRH-1, liver receptor homolog-1; MAPK, mitogen activated

protein kinase; MC, mineralocorticoid; NF-κB, nuclear factor “kappa-light-chain-

enhancer” of activated B cells; NR, nuclear receptor; NR5A1, nuclear receptor

subfamily 5 group A member 1; PD-1, programmed death-1; PMA, phorbol

myristate acetate; PPARγ, peroxisome proliferator-activated-receptor gamma;

PVN, paraventricular neuron; SCN, suprachiasmatic nucleus, SF-1, steroidogenic

factor 1; SHP, small heterodimer partner; StAR, steroidogenic acute regulatory

protein; STAT, signal transducer and activator of transcription; TCR, T cell

receptor; TEC, thymic epithelial cell; TF, transcription factor; TGF, transforming

growth factor; TJ, Tight junction; TNBS, 2,4,6-trinitrobenenesulphonic acid; TNF,

tumor necrosis factor; TNFR, TNF-receptor; UC, ulcerative colitis.

Thus, it is the expression of P450scc that renders a cell
steroidogenic, i.e., able to synthesize steroids de novo. Supporting
this notion, mice with a deletion of the Cyp11a1 gene suffer
from steroid deficiency (17–19). In humans, once pregnenolone
is produced from cholesterol, it undergoes 17α-hydroxylation
by P450c17 (CYP17) to yield 17α-hydroxypregnenolone. Next,
pregnenolone is converted to progesterone by 3β-HSD (20).
Afterwards, 21-hydroxylase (CYP21) converts progesterone into
11-deoxycortisol (humans) or 11-deoxycorticosterone (rodents),
then 11β-hydroxylase encoded by the CYP11B1 gene catalyzes
the last hydroxylation step in the GC synthesis. The last
step comprises the conversion of 11-deoxycortisol to cortisol
in humans, and 11-deoxycorticosterone to corticosterone in
rodents, since the rodent adrenals lack CYP17 enzyme (20,
21) (Figure 1).

Several factors have been shown to contribute to and modify
the cellular and organismal responses to GCs. Notably, most of
the secreted cortisol in the blood (∼90%) is bound to proteins
(corticosteroid-binding globulins and albumin). This binding
regulates the general availability of GCs to tissues and/or direct
the delivery of hormones to specific sites (22–24).

It is known that the presence of an 11β-hydroxyl group
is essential for the anti-inflammatory and immunosuppressive
effects of GCs and for the sodium-retaining effects of the
mineralocorticoids (MCs). Therefore, it has been shown that the
isoenzymes of 11β-hydroxysteroid dehydrogenase (11β-HSD)
critically regulate the conversion between the active and the
inactive form of a steroid in target cells. 11β-HSD2 catalyzes the
conversion of cortisol, the biologically active form, to the inactive
cortisone, whereas 11β-HSD1 converts cortisone to cortisol.
Thus, 11β-HSD1, which is expressed in a wide range of tissues
and predominantly in the liver, facilitates GC hormone actions
whereas the major role of 11β-HSD2 is to prevent cortisol from
gaining access to high-affinity MC receptors. Therefore, 11β-
HSD2 is predominantly expressed in the MC responsive cells of
the kidney and other MC target tissues such as the colon (11).

Adrenal GC synthesis is regulated by the orphan nuclear
receptor (NR) steroidogenic factor 1 (SF-1), encoded by the
NR5A1 (nuclear receptor subfamily 5, group A, member 1)
gene. SF-1 plays a key role in the development and function
of steroidogenic tissues, and has emerged as a key regulator of
endocrine function within the hypothalamic-pituitary-gonadal
axis and adrenal cortex, and as an essential factor in sex
differentiation. SF-1 was first identified as an essential regulator
of endocrine development and function, including steroid
hormone biosynthesis, via induction of the expression of
steroidogenic enzymes, including CYP11A1, CYP17, CYP21,
CYP11B1, and 3β-HSD. Similarly, SF-1 has been reported
to regulate the expression of StAR as well as the ACTH
receptor (25, 26).

Glucocorticoid Receptor Activation
GCs act via genomic (transcriptional) and non-genomic
(transcription-independent) mechanisms (27). Most cellular
actions of GCs are primarily mediated via binding to their
cognate intracellular receptor, the classic glucocorticoid receptor
(GR) protein, GRα. GR is a ligand-regulated transcription factor
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FIGURE 1 | The HPA-axis and adrenal glucocorticoid synthesis. The Hypothalamus-pituitary-adrenal-axis (also known as “stress axis”) represents the sequence of

endocrine events between the hypothalamus (green), the anterior pituitary gland (blue), and the cortex of the adrenal gland (red). Corticotropin-releasing

hormone (CRH) secreted from the paraventricular neurons (PVNs) of the hypothalamus stimulates adrenocorticotropic hormone (ACTH, corticotropin) release from the

anterior pituitary, which consequently stimulates the production of glucocorticoids in the steroidogenic cells of the zona fasciculata in the adrenal cortex. Blue lines

indicate negative feedback. The right-hand panel shows the biochemical reactions leading to glucocorticoid-synthesis in humans and in rodents. The synthesizing

enzymes are shown in yellow (and light-red for the human CYP17). The (so far known) subcellular localization of the steroidogenic enzymes in the mitochondria or the

ER is highlighted by dotted-line boxes.

(TF) that belongs to the NR subclass 3C and is therefore known
as NR3C1 (nuclear receptor subfamily 3, group C, member 1).
In line with the pleiotropic actions of GCs, GR is expressed in
nearly every cell of the body and is essential for life after birth.
Alternative mRNA splicing results in a second GR isoform, GRβ.
GRβ does not bind to GC agonists, resides constitutively in the
nucleus, and is inactive by itself. However, when co-expressed
with GRα, GRβ functions as a dominant negative inhibitor of
GRα (2, 28–31).

The GRα shares common structural and functional domains
with other NRs. These domains include an N-terminal ligand-
independent transactivation domain, also called activation
function 1 (AF-1), which is responsible for the transcription
activation, a highly conserved DNA-binding domain (DBD)
that is important for GR homodimerization and DNA-binding
specificity, a C-terminal ligand-binding domain (LBD) that
contains the ligand-binding site and a second ligand-dependent
transactivation domain (AF-2), and a flexible hinge region
separating the DBD and the LBD (32–34). In addition to the

known dimerization function of the DBD, in vivo evidence
has shown that LBD mutation severely compromised GR
dimerization, whereas no correlation between oligomerization
state, DNA binding, and transcriptional activity could be
established (35). These data clearly indicate that multiple
domains are involved in GR dimerization.

In the absence of ligand, the GRα is sequestered
predominantly in the cytoplasm as an inactive multi-protein
complex formed by chaperonic molecules, including heat shock
proteins Hsp90, Hsp70, Hsp23, and immunophillins p59 and
calreticulin (28, 29, 36). These proteins maintain the receptor in
a conformation that is transcriptionally inactive, but favors high
affinity ligand binding (2). Binding of endogenous or synthetic
GCs to the LBD of GRα induces receptor conformational change
leading to the dissociation of the multi-protein complex and
allows the translocation of the GC/GR complex to the nucleus
where it regulates gene transcription (21). Upon translocation
to the nucleus, the GRα binds DNA sequences, known as GC
response elements (GREs), to positively or negatively regulate
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gene transcription by direct DNA-binding or by interaction with
other proteins (3, 37).

In addition to the transcription activation, the GR represses
a wide variety of genes. This repression function is mediated by
negative GREs (nGRE) in the promoter regions of target genes.
nGREs contribute to the negative feedback of HPA axis, bone,
and skin function, inflammation, angiogenesis, and lactation.
Moreover, GR inhibits glycoprotein hormone promoter, which
is positively regulated by the cyclic adenosine monophosphate
(cAMP) response element binding protein (CREB) and contains
binding sites for CREB and GR. Upon DNA binding, GR inhibits
transcription activation directly by preventing CREB binding
(28, 38, 39).

Accumulating evidence suggests that GCs can act via non-
genomic mechanisms to elicit more rapid cellular responses
(within seconds to minutes) that do not require nuclear
GR-mediated changes in gene expression. The non-genomic
effects of GCs are considered to be mediated through binding
to membrane-bound GR, binding to cytosolic GR, or by
interactions with cellular membranes (30, 40, 41). Bartholome
et al. showed that membrane GRs are expressed in human
monocytes and B cells (42). Additionally, they monitored a
strong positive correlation between the frequency of membrane
GR-positive monocytes and various parameters of disease
activity in patients with rheumatoid arthritis. This observation
prompted the authors to suggest that immunostimulation
induces the expression of membrane GR in immune cells such
as monocytes that in turn triggers rapid signal cascades leading
to a significantly higher percentage of cells to undergo GC-
induced apoptosis to limit excessive immune reaction (42).
GCs can also bind to their cytosolic GR to induce rapid non-
genomic effects resulting in interactions with signaling pathways.
For example, GCs were shown to activate endothelial nitric
oxide synthase in a non-genomic manner and mediated by
stimulated phosphatidylinositol 3-kinase and protein kinase Akt
phosphorylation (41, 43). High concentrations of GCs have been
shown to induce quantitative increase in the intercalation of GC
molecules in the membrane, influencing the membrane fluidity,
membrane associated proteins and cation uptake, as measured by
the reduction of cation transport ATPase activity (44, 45).

Glucocorticoid Functions
Anti-inflammatory Functions of GCs
Upon tissue injury, irritants or pathogen invasion, immune
cells of the innate, and adaptive immune systems are activated
and recruited to the site of inflammation (12, 46). Immune
cells activation and recruitment is mediated by cytokines and
chemokines, which are regulated by inflammatory TFs, including
the nuclear factor ’kappa-light-chain-enhancer’ of activated B-
cells (NF-κB), signal transducer and activator of transcription
proteins (STATs) and activator protein 1 (AP-1) (46). These TFs
are crucial regulators of a variety of cellular functions, including
cell survival, proliferation, differentiation, and apoptosis (47–50).
In the presence of pro-inflammatory stimuli, these TFs trigger
activation of pro-inflammatory cytokines, such as TNF, IL-1β,
and IL-6 among others, to induce inflammation and promote cell
survival (51). GR induces anti-inflammatory activities by direct

interaction with other TFs, including NF-κB (51), STAT3 (52),
STAT5, and AP-1, leading to their inhibition, thus repressing the
expression of pro-inflammatory genes and thereby promoting the
resolution of inflammation (29) (Figure 2). Since this interaction
does not require DNA binding, the term tethering GRE is often
used to describe these elements. Interestingly, tethering GREs
do not contain DNA binding sites for GRs, but instead contain
binding sites for other DNA-bound regulators, including NF-κB
and AP-1, that recruit GRs (28, 53).

GCs also induce proteins with anti-inflammatory activities,
including glucocorticoid-induced leucine zipper (GILZ),
resulting in the inhibition of the mitogen-activated protein
kinase (MAPK) pathway (27). MAPK activation is associated
with cell proliferation, differentiation, migration, senescence and
apoptosis [reviewed in (54)]. Another mechanism, by which
GILZ dictates its anti-inflammatory function, is via inhibition of
NF-κB and AP-1 activities (27, 55).

Immunosuppressive and Metabolic Functions of GCs
GCs have powerful immunosuppressive activities mediated by
acting on almost all types of cells, in particular on immune cells
(33). GCs induce apoptosis in a variety of immune cells, including
developing thymocytes as well as circulating and tissue-resident
T cells, mediated by the pro-apoptotic proteins Puma and Bim
(56–58). GCs also promote dendritic cell (DC) apoptosis (29).
Additionally, GCs favor the expansion of immunosuppressive
regulatory T cells (Tregs) by upregulating the expression of
FoxP3, the master regulator of Tregs (59, 60). Moreover, GCs
promote the shift from T helper 1 (Th1) to Th2 immune
responses by differentially regulating apoptosis of Th1 and Th2
cells (13, 61–63).

GCs also control the function of innate immune cells,
including monocytes and macrophages, in order to regulate
tissue homeostasis. GCs have been shown to induce the
differentiation and promote the survival of anti-inflammatory
(M2) macrophages, evident by the induced expression of the
immunomodulatory cytokine IL-10. This effect is mediated
by prolonged activation of the MAPK pathway resulting in
inhibition of caspase activities, and expression of anti-apoptotic
genes. On the other hand, GCs efficiently suppress classical pro-
inflammatory macrophage (M1) activation, as evidenced by the
inhibition of the pro-inflammatory cytokines TNF, interferon
gamma (IFNγ) and IL-1β (64–67) (Figure 2). These cytokines
are highly upregulated inmany inflammatory disorders, and their
crucial role in the pathogenesis of IBD is well-established (68, 69).
GCs potently inhibit the differentiation of DCs and their capacity
to stimulate T cells (70, 71).

The resulting immune reaction in pathophysiological
conditions depends on the balance between effector cells
promoting inflammation and its modulation by regulatory
mechanisms (72). In this context, the discussed anti-
inflammatory and immunosuppressive properties of GCs
are necessary to restore homeostasis following successful
elimination of the injurious agent, ultimately leading to the
resolution of inflammation and tissue repair after tissue damage
caused by excessive inflammation (12).
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FIGURE 2 | TNF and intestinal GC synthesis. Intestinal epithelial barrier disruption leads to permeability defects and the subsequent interaction of intestinal immune

cells with the luminal contents. Activated immune cells release pro-inflammatory cytokines, such as TNF. In turn, TNF results in tight junction (TJ) disruption and

intestinal epithelial cell (IEC) apoptosis and thereby exacerbates local inflammation. TNF also directly stimulates IECs to synthesize and release immunoregulatory

glucocorticoids (GCs) to counter-balance excessive tissue damage. GCs act via the glucocorticoid receptor (GR) to inhibit TNF-mediated tissue damage in a negative

feedback loop. The GR also inhibits pro-inflammatory transcription factors, including NF-κB, AP-1, and STATs leading to the resolution of the inflammation.

Another main biological function of adrenal GCs includes
the control of energy metabolism and glucose homeostasis. GCs
promote gluconeogenesis in the liver and decrease glucose uptake
by antagonizing the response to insulin. Whereas, physiological
levels of GCs are required for proper metabolic control, excessive
GC action has been linked to a variety of metabolic diseases, such
as type II diabetes and obesity (73, 74).

EXTRA-ADRENAL GC SYNTHESIS

Overview of Extra-Adrenal GC Synthesis
The substantial capacity of the adrenal glands to produce
enormous amounts of GCs and to release them into the systemic
circulation in response to stress hampered the discovery of
other GC-producing organs. In fact, strong systemic immune cell
activation upon removal of the adrenal glands in mice results

in rapid death due to shock (75). Therefore, for long time GC
synthesis and secretion was thought to be exclusively confined
to the adrenal glands. However, increasing evidence has shown
that other extra-adrenal organs are also capable of producing GCs
[reviewed in (76)]. Evidence for local GC synthesis comprises
the detection of steroidogenic enzymes and high levels of local
GCs in different tissues, even upon adrenalectomy. Moreover,
the physiological relevance of local GC synthesis has been shown
by the major impact of the inhibition of local GCs synthesis
even in adrenal-intact scenarios (76–79). Thus, whereas systemic
adrenal-derived GCs coordinate multiple organ functions and
whole body metabolism, locally synthesized GCs play a highly
specific role in regulating local homeostasis, cell development
and immune cell activation (31, 80).

In the past two decades the thymus (81–83), the skin
(84, 85), the brain (78), the vasculature (86), the lung
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(79), and the intestine (77, 87–90) have been shown to
produce substantial amounts of GCs, and thereby regulate local
immunological responses.

Pioneering work by the group of Ashwell in the thymus
provided the first proof for extra-adrenal GC production and
opened an exciting field of research for the identification of other
GC-producing organs (83). They showed that bioactive GCs
are de novo synthesized by thymic epithelial cells (TECs), and
that they play an important role in antigen-specific thymocyte
development by opposing cell death induction from too strong
TCR signaling during negative selection, thereby allowing
positively selected T cells to survive. This is supported by
the finding that inhibition of thymic corticosterone production
increased TCR activation-induced cell death and enhanced
negative selection of thymocytes (13, 58, 83). Of note, thymocytes
(91) and mature T cells (92, 93) were also reported to synthesize
GCs, yet it is presently unclear whether this reflects de novo
synthesis or conversion of serum-derived inactive derivatives.

Interestingly, the skin locally produces CRH, ACTH and
expresses the steroidogenic enzymes. Therefore, the skin is
considered to have its own local HPA axis. De novo synthesis
of GCs in the skin is thought to play an important role in local
homeostasis as indicated by the deficiency of the steroidogenic
enzymes in skin biopsies from patients with inflammatory skin
diseases (94). Other organs that express the GC-synthesizing
machinery and therefore are capable to de novo synthesize
bioactive GCs from cholesterol include the brain, the vasculature
and the intestine (95). Interestingly, although the lung expresses
all the steroidogenic enzymes required for de novo synthesis,
analysis of lung GC synthesis revealed that the predominant
pathway by which corticosterone is produced is by reactivation
from inactive serum-derived dehydrocorticosterone via 11β-
HSD1 enzyme (79).

Differential Modes of Synthesis of
Extra-Adrenal GCs
Most of extra-adrenal GC-synthesizing organs express both
the enzymes required for de novo GC synthesis as well as the
reactivating enzymes from inactive metabolites. However,
interestingly different extra-adrenal organs synthesize
bioactive GCs via different mechanisms, possibly reflecting
local environmental needs. For example, TECs have been
shown to have the mRNA, protein, and activities of enzymes
required for de novo GC synthesis, including StAR, CYP11A1,
3β-HSD, CYP17, and CYP11B1. Furthermore, fetal thymic
organ culture demonstrated the conversion of a cholesterol
analog to pregnenolone and 11-deoxycorticosterone. Similar
to adrenal GCs, TEC-derived GC synthesis was stimulated by
ACTH (76, 83). In contrast, ACTH inhibited GC synthesis in
thymocytes by downregulation of Cyp11b1 mRNA expression.
This opposite effect of ACTH in thymocytes is not yet fully
understood but could possibly represent a function to limit
damage to the gland by down-regulating GC synthesis during a
strong activation of the HPA axis (91).

Like the thymus, the skin mainly synthesizes GCs de novo
under the control of the local HPA axis, and the synthesis is

regulated by several factors including ACTH, CRH and IL-1β
(85). Noteworthy, the skin neuroendocrine system is able to
crosstalk with the systemic HPA axis and thus with the adrenal
GC synthesis. Interestingly, although the skin also expresses the
reactivating enzyme 11β-HSD1, GC reactivation by keratinocytes
seems to play a minor role in immune cell activation and contact
hypersensitivity compared to the essential role of the de novo
synthesized GCs. The reason for this could be due to its large
dependence on the availability of the GC metabolite from the
circulation (94).

As mentioned before, the lung largely depends on the
reactivation pathway for generating bioactive GCs. Our
group reported that upon immune cell activation by
lipopolysaccharide (LPS) or anti-CD3 antibody increased
production of corticosterone in ex vivo lung cultures was
observed (79). Interestingly, only Cyp11a1 has been shown
to be upregulated whereas other steroidogenic enzymes
expression remained unchanged. Strikingly, whereas Hsd11b1
gene was strongly upregulated, Cyp11b1 was barely detectable
indicating that reactivation of serum-derived inactive metabolite
(dehydrocorticosterone) is a more prominent pathway of local
GC synthesis in the lung. In line with this, adrenalectomized
mice failed to produce local GCs in the lung upon immune cell
activation. This finding further supports the dependence of lung
GC synthesis on adrenal GCs (79).

Our group also described and characterized the de novo
synthesis of intestinal GCs for the first time. In the intestinal
mucosa, GC-synthesizing enzymes were detected at low levels,
however, they were strongly upregulated in response to
immunological stress resulting in the detection of corticosterone
in the supernatant of ex vivo cultured intestinal tissue (77).
Recently, we also demonstrated a relevance for the GC
reactivation impairment in the pathogenesis of IBD (96). In this
review, we will discuss the synthesis of GCs in the intestine in
more detail.

Taken together, it seems that various extra-adrenal organs
synthesize GCs differently in order to cope with local
immunological stress and to regulate local immune homeostasis.

INTESTINAL EPITHELIAL STRUCTURE
AND HOMEOSTASIS

The intestinal epithelium represents the largest mucosal surface
in the human body covering an area of almost 200 m2 (21).
This surface represents the physical barrier that separates the
epithelium not only from potential pathogens and food antigens
but also from harmless commensal bacteria termed microbiota
(97, 98). The gut is anatomically divided into the small intestine
and the colon. The small intestine can be subdivided into the
duodenum, the jejunum, and the ileum. The architecture of the
intestine is organized into crypts of Lieberkühn and epithelial
protrusions, called villi, in the small intestine, whereas the colon
consists mainly of crypts and has no villi, but a flat surface
instead (99, 100). The main function of the epithelium is water
and nutrient absorption and the maintenance of effective barrier
function in order to maintain tissue homeostasis (101, 102). The
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intestinal epithelium promotes these functions by a single layer of
intestinal epithelial cells (IECs) organized along the crypt-villus
axis (99, 103). IECs are constantly regenerated from intestinal
stem cells (ISCs) at the bottom of the crypt columnar cells. The
intestinal epithelium has a higher self-renewal rate than any other
mammalian tissue, with a fast turnover of <5 days (104–106).
ISCs give rise to transient amplifying daughter cells that migrate
upward while differentiating into one of the specialized epithelial
lineages (100). This fast proliferation of IECs is eventually
balanced by cell death resulting from loss of attachment at the
tip of the villus followed by subsequent shedding of apoptotic
cells into the lumen, a process known as anoikis (106). The
differentiated epithelial cell types include absorptive enterocytes,
secretory cells (Paneth cells, goblet cells, enteroendocrine cells,
and tuft cells), and the M cells of Peyer’s patches (105). Paneth
cells escape the upwardmigration andmigrate downward instead
to constitute the niche for ISCs (107). These cells secrete anti-
microbial peptides to prevent bacterial infection (103), whereas
tuft cells act as sensors for luminal contents (108). Additionally,
enteroendocrine cells secrete various hormones to coordinate
digestion and metabolism (108).

Contributing to the effective physical and biochemical barrier
function is the mucus secreted by goblet cells, anti-microbial
proteins that eliminate bacteria penetrating the mucous and
IgA secreted by lamina propria plasma cells, in addition to
the tight junctions (TJ) proteins. These TJ are junctional
complexes that connect epithelial cells to each other and thereby
forming tight intracellular seals (109, 110). The intestinal mucosa
also produces high levels of the immunosuppressive cytokines
transforming growth factor beta (TGFβ) and IL-10 to maintain
local homeostasis. In fact, TGFβ- and IL-10-deficient mice
develop spontaneous inflammation (111, 112).

IECs separate the intestinal lumen containing 1014 gut
microbiota cells from the underlying lamina propria and the
rest of the body (113, 114). In addition to the microbiota,
the gut epithelium hosts the largest number of immune cells
in the body (115). These immune cells include the so-called
intraepithelial lymphocytes (IELs) (116), resident macrophages,
DCs, plasma cells, lamina propria lymphocytes (LPLs), and
neutrophils (115, 117, 118). This direct contact of immune cells
with the microbiota, that has great potential to provoke immune
cell stimulation, requires fine-tuning to find the appropriate
balance between protective immune responses and tolerance
toward the microbiota. Disruption of the intestinal epithelial
barrier leads to permeability defects, and subsequent interaction
between luminal microorganisms and cells of the immune system
(Figure 2). The barrier breakdown exacerbates inflammation
leading to severe tissue damage, as in the case of IBD (98).

IBD comprises a group of intestinal inflammatory disorders,
namely ulcerative colitis (UC) and Crohn’s disease (CD).
Although the etiology is currently not fully understood, it has
been associated with a complex interaction between the host
genetics, environmental or microbial factors and the immune
system (119–121). These interactions result in chronic relapsing
inflammation of the intestine as a consequence of inappropriate
immune cell activation (117). UC causes inflammation of
the mucosa of the colon and rectum, whereas CD causes

inflammation of the full thickness of the bowel wall and may
involve any part of the digestive tract from the mouth to the
anus (122).

Chronic inflammation has emerged as one of the hallmarks
of cancer. Many cancers arise following prolonged inflammation
or display inflammatory characteristics throughout progression
(123, 124). For example, the relative risk of colorectal cancer in
patients with IBD has been estimated to increase by up to 20-fold
(125, 126). Notably, the risk correlates directly with the duration
and extent of inflammation (127, 128).

Increasing lines of evidence have shown that the synthesis
of GCs by IECs plays an important role in the regulation
of intestinal immune homeostasis under pathophysiological
conditions (21, 77, 129, 130). Supporting this notion, defective
local intestinal GC synthesis or metabolism has been shown
to be involved in the pathogenesis of intestinal inflammation
(90, 96, 131, 132).

EXTRA-ADRENAL GLUCOCORTICOIDS IN
THE INTESTINE

First evidence for the steroidogenic potential of the gut was
suggested in 1995 following the detection ofCyp11a1 andHsd3b1
mRNA in the gut of mouse embryos by in situ hybridization
(133). Further evidence originated from our own work while
studying IEL apoptosis. It was observed that IELs rapidly
undergo apoptosis when cultured ex vivo, an effect that was
accelerated following GC treatment in mice. Interestingly, while
adrenalectomy significantly reduced IEL ex vivo apoptosis, a
stronger effect was observed upon in vivo administration of the
GR inhibitor RU-486. This observation prompted us to speculate
that another source of GCs, likely in the intestinal mucosa,
primed the IELs already in vivo to undergo ex vivo cell death (56).

Subsequent studies characterized the de novo GC synthesis
in the murine intestinal mucosa in response to immunological
stress following anti-CD3 injection or viral-activated T cells
(77). It was shown that the intestinal mucosa constitutively
expressed many of the steroidogenic enzymes required for the
de novo synthesis of corticosterone from cholesterol and for
the reactivation of corticosterone from dehydrocorticosterone.
Moreover, expression of the steroidogenic enzymes including
Cyp11a1, Cyp11b1, and Hsd11b1 was strongly induced upon
immunological stress. The source of the aforementioned three
enzymes and therefore intestinal GCs was shown to be the crypt
region of the IECs (77). This was demonstrated by a further study
that linked the expression of Cyp11a1 and Cyp11b1 to the cell
cycle, thus restricting the production of GCs to the proliferating
cells of the intestinal crypts (134).

The basal expression of steroidogenic enzymes might suggest
that GC production, though at very low levels, is possibly
fulfilling an important function in the regulation of local immune
homeostasis and epithelial barrier integrity (75). In line with this,
in vitro data revealed the importance of GCs in the maturation
and differentiation of the IECs (135). Additionally, GCs have
been shown to play a role in the expression of TJ proteins and
the maintenance of the intestinal epithelial barrier integrity, in
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particular antagonizing the TJ-destructing effect of TNF during
inflammation (109) (Figure 2).

Cima et al. used adrenalectomized mice to exclude
the contribution of systemic GCs, and measured by
radioimmunoassay the corticosterone release into the
supernatant of ex vivo cultured intestinal tissue from anti-
CD3-injected mice (77). The in situ corticosterone synthesis
was confirmed since metyrapone, a potent inhibitor of 11β-
hydroxylase and 11β-HSD1 (136, 137), blocked corticosterone
release (77). Similarly, stimulation of the innate immune system
with LPS induces GC synthesis in a macrophage-dependent
manner, since it also occurred in RAG−/− mice lacking T
and B lymphocytes (89). Furthermore, administration of TNF,
infection of mice with viruses, or chemically induced intestinal
inflammation promote the expression of Cyp11a1 and Cyp11b1,
and strongly induces the synthesis of intestinal GCs (95).
Although most of the studies of GC synthesis were conducted
in mice, subsequent research showed that the human intestinal
tissue also expresses the steroidogenic enzymes and is capable of
synthesizing GCs (96, 138–140).

Intestinal GC Triggers and the Role of TNF
TNF is a pro-inflammatory cytokine with a wide range of
pleiotropic functions. TNF interacts with two different receptors,
designated TNF receptor (TNFR) 1 and TNFR2, which are
differentially expressed on cells and tissues, and initiate both
distinct and overlapping signal transduction pathways. These
diverse signaling cascades lead to a range of cellular responses,
which include cell death, inflammation, survival, differentiation,
proliferation, and migration (141, 142). In the intestinal
epithelium, TNF demonstrates variable and very complex
functions in physiological as well as pathological conditions
(143). TNF has been shown to drastically promote epithelial
cell death (144) and increase the epithelial barrier permeability
via a direct effect on the expression and organization of TJ
proteins, thereby leading to intestinal inflammation (Figure 2).
In fact, TNF is considered as one of the most important effector
molecules in the pathogenesis of IBD (145). Moreover, TNF
signaling has been shown to drive colonic tumor formation after
sustained chronic colitis. Consequently, TNFR deficiency or the
treatment of wild type mice with the specific pharmacological
inhibitor of TNF, etanercept, markedly reduces colitis-associated
colon cancer (146).

Although the main cellular source for TNF is immune cells,
fibroblasts and epithelial cells have also been shown to produce
TNF (147). Macrophage and T cell activation results in massive
release of TNF, which contributes to the damage of the epithelial
layer (148). Therefore, TNF-neutralizing antibodies have been
efficiently used for the treatment of IBD (142, 149). This is
mainly due to inhibition of IEC cell death, but also due to
the downregulation of pro-inflammatory processes that might
contribute to local tissue damage (101) (Figure 2).

Despite the well-characterized pro-inflammatory properties
of TNF, accumulating evidence for anti-inflammatory roles of
TNF is increasingly appreciated. For example, Naito et al.
demonstrated that the absence or neutralization of TNF in
a mouse model of dextran sulfate sodium (DSS)-induced

colitis exacerbated intestinal inflammation (150). Further studies
revealed that TNF induces intestinal GC synthesis by direct
activation of IECs, thus contributing to intestinal immune
homeostasis. In this regard, TNF plays an anti-inflammatory role
(90) that could be in part through sensitizing activated T cells
to undergo apoptosis, thus resulting in accelerated resolution
of the inflammation (151). Interestingly, TNF seems to be the
master regulator of intestinal GC synthesis irrespective of the
trigger (Figure 2). Noti et al. investigated the intestinal GC
synthesis following macrophage and T cell activation in TNFR-
deficient and wild type mice. They showed that, while immune
cell activation resulted in robust induction of intestinal GCs
in wild type mice, it was significantly decreased in TNFR-
deficient mice (89). Similarly, intestinal GC synthesis was
lacking in mice with TNF deficiency or in TNFR-deficient
mice treated with the inflammatory agent DSS or the hapten
2,4,6-trinitrobenzenesulphonic acid (TNBS). In marked contrast,
oxazolone, a hapten that promotes a Th2 cytokine-mediated
intestinal inflammation that does not involve TNF, fails to
promote intestinal GC synthesis (90). These observations clearly
indicate that inflammation per se is not sufficient to promote
intestinal steroidogenesis, but rather the type of inflammation
appears to be critical. It also points out the dependence of
intestinal GC synthesis on TNF (90, 95).

Taking into consideration the mutual antagonistic action of
TNF and GCs, this GC-regulatory function of TNF might appear
confusing at a first glance. Nevertheless, local intestinal GC
synthesis may counterbalance the deleterious effects of TNF in
two ways: (1) an increase in barrier resistance by promoting the
expression of TJ proteins and (2) by dampening overwhelming
immune responses and the associated immune cell activation that
are triggered by epithelial barrier disruption. Hence, although
TNF is involved in the disruption of the epithelial barrier
integrity, it is also involved in restoring intestinal epithelial
barrier function by the induction of GC synthesis as a negative
feedback loop (Figure 1). Moreover, since TNF is not only
produced by immune cells but also by IECs, it is feasible to
believe that this regulatory systemmay even work in an epithelial
layer-autonomous manner (75, 89).

Taken together, TNF seems to function as a sensor of
intestinal immune responses and a master regulator of intestinal
GC synthesis in response to activation of the innate and
adaptive immune system. Furthermore, TNF mediates a novel
anti-inflammatory function via the induction of intestinal GC
synthesis (89) (Figure 2).

Intestinal GCs Functions
Under steady-state conditions, GCs have been implicated in
the maturation and the maintenance of the intestinal epithelial
barrier integrity. For instance, results from in vitro experiments
revealed that synthetic GCs had a protective effect against the
TNF-dependent increase of intestinal permeability. Microarray
data analysis demonstrated that GCs differentially regulate the
expression of enterocyte markers that are involved in the
polarization and TJ formation (152).

Given the potent immunoregulatory activities of GCs, extra-
adrenal GC synthesis in the intestine is assumed to play an

Frontiers in Immunology | www.frontiersin.org 8 June 2019 | Volume 10 | Article 143844

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ahmed et al. GCs and Intestinal Immune Homeostasis

important role in the regulation of local immune homeostasis.
Indeed, in the intestinal mucosa GCs are synthesized in response
to immunological stress. Local GCs then inhibit the activation
of immune cells in a negative feedback leading to the resolution
of inflammation and associated tissue damage (77, 89, 90).
Following anti-CD3 antibody injection, in situ produced GCs
exhibited a regulatory activity on intestinal T cells that are in
close contact with the GC-producing IECs, i.e., IELs and Peyer’s
patches lymphocytes (PPLs) (77). Likewise, infection of mice
with the lymphocytic choriomeningitis virus (LCMV) results
in the activation and expansion of virus-specific intestinal T
cells and the subsequent release of GCs. GCs in turn suppress
anti-viral immune responses. In fact, inhibition of intestinal GC
synthesis accelerated the expansion of antigen-specific cytotoxic
T cells, further confirming the immunoregulatory role of locally
produced GCs (77, 130).

In another study, experimental colitis induction via DSS
or TNBS resulted in epithelial erosion, loss of goblet cells,
and strong immune cell infiltration into the intestinal
mucosa. Simultaneously, it promoted the upregulation of
pro-inflammatory mediators such as TNF, steroidogenic
enzymes and the synthesis of intestinal GCs. Notably and in line
with the discussed role of TNF in the induction of intestinal GC
synthesis, the injection of TNF triggered intestinal GC synthesis
and resulted in the amelioration of oxazolone-induced colitis
in mice. Interestingly, inhibition of intestinal GC synthesis by
metyrapone abrogated the observed anti-inflammatory effect of
TNF (89).

More recently, in a mouse model of DSS-induced colitis, mice
with IEC-specific deletion of the microsomal P450 reductase
enzyme (null mice) exhibited a significant decrease of colonic
GC synthesis compared to wild type mice. This was associated
with an exacerbated colonic inflammation, as evidenced by
the presence of higher levels of pro-inflammatory cytokines,
increased weight loss, colon shortening and colonic tissue
damage in the null mice. Remarkably, restoration of colonic GC
synthesis resulted in amelioration of the colitis (153). This clearly
indicates that intestinal GCs are synthesized as a mechanism to
counterbalance local inflammation. Supporting this notion, the
expression of CYP11A1 and CYP11B1 were robustly reduced in
the inflamed colon biopsies of patients with IBD compared to
healthy controls (138).

Furthermore, intestinal GCs critically regulate the expression
of colonic peroxisome proliferator-activated-receptor-gamma
(PPARγ). PPARγ is a critical regulator of the inflammatory
responses by transrepressing TFs, such as NF-κB and AP-1.
Consequently, disruption of PPARγ expression in mouse colonic
epithelial cells increases susceptibility to DSS-induced colitis.
In line with the anti-inflammatory role of PPARγ, reduced
expression was observed in IBD patients. That also correlated
with a significant reduction in colonic GC synthesis and the
expression of steroidogenic enzymes (140).

We recently demonstrated a significant downregulation of
HSD11B1 gene expression, with a simultaneous upregulation of
HSD11B2, in colons from pediatric IBD patients compared to
healthy controls (96). This opposite transcriptional regulation of
11β-HSD isoenzymes could indicate a possible role of defective

local GC reactivation in the pathogenesis of IBD by limiting
the local levels of the active immunomodulatory GCs, thus
hindering the resolution of inflammation. However, in a murine
model of acute colitis we observed the opposite, where we found
a significant upregulation of Hsd11b1 and a downregulation
of Hsd11b2 upon colitis induction (96). Interestingly, these
correlations were also reported when comparing inflamed tissue
to non-inflamed colonic tissue in IBD patients, suggesting that
dysregulation of the 11β-HSD enzyme system could play a role
in the pathogenesis of IBD (132, 154). Taken together, in view
of the discussed immunoregulatory roles of intestinal GCs, it
is conceivable to believe that defective intestinal GC synthesis
represents a potential key mechanism in the pathogenesis of IBD.

Intestinal GC Synthesis Regulation
Transcriptional Regulation
Whereas, the regulation of adrenal GC synthesis has been
extensively studied and most of the pathways are well-defined,
the molecular pathways for the regulation of extra-adrenal
GC synthesis await further investigation (21). Mueller et al.
investigated the molecular basis of steroidogenesis in the
intestine and found substantial differences in the mode of
regulation of intestinal GC synthesis as compared to the adrenals.
This distinct regulation of intestinal GC synthesis could possibly
reflect an adaptation to the local environment (88). For example,
in marked contrast to the well-known regulatory role of SF-1
in adrenal GC synthesis [reviewed in (26)], SF-1 expression was
found to be absent in the intestine. Interestingly, SF-1 activity was
replaced by its close homolog, the NR liver receptor homolog-1
(LRH-1, NR5A2) (87, 88).

LRH-1 is expressed in tissues derived from endoderm,
including intestine, liver, exocrine pancreas, and the ovary (155).
Moreover, LRH-1 is expressed in macrophages (156) and T cells
(157). LRH-1 plays vital roles in early embryonic development
as evidenced by the embryonically lethal phenotype of the
LRH-1-null mice (158). Other functions of LRH-1 comprise
cholesterol and bile acid homeostasis, glucose metabolism
and steroidogenesis in adulthood (159, 160). In the intestinal
epithelium, LRH-1 contributes to crypt cell proliferation and
epithelial cell renewal through the induction of cell cycle genes,
namely cyclin D1 and cyclin E1 (161). Therefore, LRH-1 has been
suggested as an oncogene and implicated in the development of
colon cancer (162).

LRH-1 is constitutively active, though its function is
regulated by several mechanisms. These include ligand binding,
interactions with co-activators and co-repressors, as well as
posttranslational modifications, such as phosphorylation and
SUMOylation (160, 163, 164). Although LRH-1 is considered
as an orphan NR since no endogenous ligands are identified
yet, phospholipids such as dilauroyl phosphatidylcholine (DLPC)
have been shown to activate LRH-1. Thus, it is very likely that
endogenous ligands exist (165, 166). Among the most studied
co-repressors of LRH-1 is the NR small heterodimer partner
(SHP) (167), which is also a transcriptional target of LRH-1 (168).
Structural studies have shown that SHP preferentially inhibits
LRH-1 over other NRs, including the LRH-1 close homolog SF-1
(169, 170).
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Differences in Regulation of Intestinal vs. Adrenal GC

Synthesis
The differential regulation of intestinal vs. adrenal GC synthesis,
i.e., LRH-1 vs. SF-1, is likely reflecting different needs for the
systemic vs. intestinal GC synthesis (21). In this regard, another
major difference is the differential response of adrenal and
intestinal epithelial cells to cAMP and phorbol myristate acetate
(PMA). In the adrenals, it is well-established that the activation of
ACTH receptors leads to the activation of adenylate cyclase and
the formation of cAMP. In turn, cAMP activates protein kinase
A leading to the induction of steroidogenic enzyme expression.
Surprisingly, cAMP mediated the opposite effect in intestinal
epithelial cells by causing a profound inhibition of both basal and
LRH-1-driven steroidogenesis. Remarkably, a reciprocal effect
was shown upon treatment with PMA that activates protein
kinase C. PMA has been shown to substantially promote both
basal and LRH-1-induced steroidogenic enzymes expression and
GC synthesis in intestinal epithelial cells (88). As PMA is a potent
activator of the MAPK pathway, it is likely that PMA affects
LRH-1 activity by inducing its phosphorylation (21, 171).

LRH-1 Function in Intestinal Homeostasis
In the murine intestinal epithelial cell line mICcl2, that
displays a crypt cell-like phenotype, overexpression of LRH-1
induced the expression of Cyp11a1 and Cyp11b1 in a dose-
dependent manner. This was accompanied by robust induction
of GC synthesis (87). Since LRH-1 is critical for embryonic
development, Mueller et al. used LRH-1 haplodeficient mice
to investigate the role of LRH-1 in the regulation of intestinal
GCs in vivo. They showed that although anti-CD3 injection
strongly induced the expression of Cyp11a1 and Cyp11b1, and
the synthesis of intestinal GCs in wild type mice, it was blunted
in LRH-1 haplodeficient mice. These findings confirm the critical
role of LRH-1 in the regulation of intestinal GC synthesis (87).

In humans, LRH-1 transcriptionally regulates the expression
of the steroidogenic enzymes CYP11A1, CYP17, HSD3B2,
and CYP11B1 as well as StAR (172). The importance of
LRH-1 in the regulation of intestinal GC synthesis and
intestinal immune homeostasis has been demonstrated by
the fact that LRH-1 haplodeficient mice and mice with
intestine-specific deletion of LRH-1 exhibited strongly reduced
GC synthesis, and consequently suffered from exacerbated
colitis (87, 96, 138) (Figure 3). Furthermore, colon biopsies
from patients with IBD show reduced expression of LRH-
1 and steroidogenic enzymes. That was inversely correlated
with the expression of pro-inflammatory cytokines (138).
Additionally, it has been shown that cortisol production and
the expression of LRH-1 and 3β-HSD1 were significantly
decreased in colonic epithelial cells from patients with UC
(140). Recently, we demonstrated a strong correlation between
the expression of LRH-1 and steroidogenic enzymes in
pediatric IBD patients (96). Importantly, we monitored a
significantly reduced expression of HSD11B1 in colons from
IBD patients compared to healthy controls suggesting that
defective reactivation of GCs could represent an underlying
mechanism in intestinal inflammation. Additionally, in a
murine model of colitis we confirmed that colitis-induced

expression of the steroidogenic enzymes Cyp11a1, Cyp11b1,
and Cyp21 is LRH-1-dependent since their induction was
significantly reduced in LRH-1 intestine-specific knockout mice
(96). These data suggest that the presence of LRH-1 protects
the intestinal epithelium against inflammation and underscores
a possible role for defective local GC synthesis in the etiology
of IBD.

Interestingly, SHP inhibits LRH-1-induced Cyp11a1 and
Cyp11b1 expression and GC synthesis in mICcl2 cells (88).
This indicates a potential role of SHP in the regulation of
intestinal immune homeostasis by regulating LRH-1-induced
GC synthesis. Recently, Huang et al. investigated the role of
the NRs SHP and LRH-1 in the regulation of intestinal GC
synthesis and its relevance in intestinal immune homeostasis
in the context of viral infection (130). They showed that
systemic deficiency of SHP results in increased intestinal GC
synthesis during viral infection that suppressed the expansion
and activation of virus-specific T cells. In contrast, intestine-
specific deletion of LRH-1 strongly reduced intestinal GC
synthesis and accelerated the expansion of cytotoxic T cells
upon viral infection (130). Noteworthy, Bayrer et al. recently
showed that intestinal organoids lacking LRH-1 exhibit reduced
expression of the LRH-1 target genes Shp,Cyp11a1, andCyp11b1,
as well as increased crypt cell death and epithelial permeability
(173). They also showed that overexpression of LRH-1 mitigated
inflammation-induced damage of murine and human intestinal
organoids, including those from IBD patients, and decreased the
disease severity in a T cell transfer model of colitis (173).

Of note, the expression of steroidogenic enzymes is linked
to the cell cycle, thus implicating a restriction of the intestinal
GC synthesis to the proliferating cells at the bottom of the
crypts (134, 152). Similar to steroidogenic enzymes, LRH-1
expression is confined to the proliferating cells of the crypts,
suggesting a cell cycle-dependent regulation of intestinal GC
synthesis (87, 134, 161).

LRH-1 seems to contribute to intestinal epithelium
homeostasis via two mechanisms: (1) by stimulating the
synthesis of anti-inflammatory GCs and thereby resolution of
inflammation and associated tissue damage, (2) by enhancing
crypt cell proliferation and hence the regeneration of the
damaged epithelium (Figure 4).

Interestingly, LPS-induced GC synthesis seems not to be
regulated by LRH-1, since it was not affected by LRH-1
deficiency. Surprisingly, LRH-1 haplodeficient mice expressed
even higher levels of Cyp11b1 and showed a tendency toward
increased GC synthesis in response to LPS exposure compared
to wild type mice (89). This clearly indicates that other signals
and TFs are regulating GC synthesis in response to innate
immune system stimulation. Furthermore, TNF has been shown
to suppress LRH-1 and thereby reduce local GC synthesis in
sustained chronic colitis (174).

Of interest is the finding that under basal conditions the
microbiota also contribute to the regulation of intestinal GC
synthesis. Furthermore, intestinal GC synthesis has been shown
to regulate systemic metabolism, indicating a so far unrecognized
role for intestinal GC synthesis in not only regulating local but
also systemic homeostasis (114).
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FIGURE 3 | LRH-1 is critical for intestinal immune homeostasis. Colitis was induced in female 8–9 weeks-old wild type (LRH-1fl/fl) mice and intestine epithelial

cell-specific knockout mice (LRH-1IEC KO ) by administration of 2.2% (w/v) DSS in the drinking water for 5 days followed by normal drinking water for 2 days.

Representative H&E staining of Swiss-rolled colon sections of mice treated with DSS at day 7 showing the exacerbated colitis in LRH-1IEC KO mice compared to

LRH-1fl/fl mice. Scale bars: 300µm overview, 150µm inlay.

In summary, despite the well-established roles of TNF and
LRH-1 in the regulation of intestinal GC synthesis, their
interaction in this process is still unclear. It could be possible
that multiple pathways and interaction partners are involved in
LRH-1-regulated intestinal GC synthesis. Moreover, we cannot
exclude that TNF and LRH-1 are acting via independent
mechanisms to stimulate intestinal GC synthesis. Nonetheless,
our understanding of these interactions is far from being
established and other regulatory mechanisms for intestinal GC
synthesis are yet to be defined. It would also be relevant to
investigate the possible crosstalk between local intestinal GCs and
systemic GCs, and how this is regulated.

LRH-1 IN INTESTINAL TUMORS

In the intestinal epithelium, LRH-1 regulates not only
steroidogenesis (87, 89), but also crypt cell proliferation (161).
Thus, LRH-1 has been shown to contribute to intestinal tumor
formation (162) (Figure 4). LRH-1 induces cell proliferation
through the concomitant induction of the cell cycle-regulating

gene products cyclin D1 and E1, and c-Myc, which is further
potentiated by its interaction with β-catenin. Whereas, β-catenin
co-activates LRH-1 after direct binding of LRH-1 to the cyclin
E1 promoter, LRH-1 acts as a co-activator for β-catenin/TCF4 (T
cell factor 4) on the cyclin D1 promoter (161, 162). Due to its role
in proliferation and the maintenance of pluripotency, LRH-1
has emerged as an oncogene implicated in the development
of a variety of cancers, including pancreatic (175), prostate
(176), breast (177, 178), gastric (179), and colorectal cancer
(CRC) (162, 180). LRH-1 exhibited an increased expression
pattern in high-grade prostate cancer, and has been reported
to promote prostate cancer growth by inducing intra-tumoral
steroidogenesis (176). LRH-1 also contributed to metastasis
development in pancreatic cancer (175).

LRH-1 has been shown to drive colon cancer cell growth
by repressing the expression of the cell cycle inhibitor p21
in a p53-dependent manner (180). Consistent with the role
of LRH-1 in CRC development, it has been shown that
LRH-1 heterozygous mice developed significantly less tumors
compared to wild type in two independent models of CRC,
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FIGURE 4 | Role of LRH-1 in healthy colon vs. colon cancer. Left panel: In healthy colon, LRH-1 is expressed in the nucleus of cells at the bottom of the intestinal

crypts, where it regulates intestinal immune homeostasis by the regulation of cell proliferation through cyclins on the one hand, and the synthesis of immunoregulatory

glucocorticoids (GCs) on the other hand. Right panel: In colon cancer, LRH-1 exhibits a nuclear as well as cytoplasmic expression pattern. LRH-1 induces colon

tumor cell proliferation by upregulating expression of cyclins. LRH-1 is proposed to play a role in tumor immune evasion by the synthesis of immunosuppressive GCs

that leads to the inhibition of anti-tumor immune responses. While in healthy tissue SHP imposes a negative feedback loop to LRH-1 signaling, the role of SHP in the

molecular events during colon cancer development remains to be elucidated. SHP, Small heterodimer partner; TILs, tumor infiltrating lymphocytes; Treg, regulatory T

cells; T effector, effector T cells; M1, pro-inflammatory macrophages (anti-tumor); M2, anti-inflammatory (tumor promoting) macrophages.

the azoxymethane-induced and APCmin/+ mice model (162).
Unlike the nuclear expression of LRH-1 at the bottom of the
normal colonic crypts, immunostaining of neoplastic colon from
patients with high-degree dysplasia showed significantly higher
cytoplasmic levels. Additionally, in neoplastic lesions, staining of
LRH-1 was no longer limited to the cells lining the crypts but also
present in the surface epithelial cells (Figure 4). These alterations
in LRH-1 expression and subcellular localization further indicate
the important role of LRH-1 in CRC development (162).
Moreover, if and how the LRH-1-induced SHP, which in healthy
colon tissue counterbalances LRH-1 function, contributes to the
molecular events during colon cancer development, remains
unknown (Figure 4).

In contrast to the known role of LRH-1 in intestinal
tumorigenesis, LRH-1 expression has been shown to be
significantly downregulated in murine adenoma tissue compared
to adjacent normal mucosa. The expression of LRH-1 gene

was reduced in tumors that express elevated levels of the
pro-inflammatory cytokine TNF. Reciprocally, decreased LRH-
1 expression in heterozygous mice attenuates TNF expression
(162). However, the relevance of this inverse correlation is so far
unknown and again points out the complex interaction between
TNF-induced signaling pathways and LRH-1.

Recently, a large CRC patient cohort revealed that
immunohistochemical detection of LRH-1 expression was
drastically enhanced in colon cancer tissue compared to adjacent
non-cancerous tissue from the same patient, and this correlated
with a more advanced disease stage. In fact, patients with positive
LRH-1 expression displayed significantly lower overall survival
rate. Consequently, the authors proposed LRH-1 as a possible
prognostic marker and a novel therapeutic target in CRC (181).
These observations were confirmed in another recent study
that revealed marked overexpression of LRH-1 in CRC tissue
compared to paired non-cancerous tissue (182). Taken together,
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LRH-1 represents a novel and promising therapeutic target for
the treatment of cancer.

INTESTINAL GC SYNTHESIS AS A TUMOR
IMMUNE ESCAPE MECHANISM

The notion that the immune system can recognize and destroy
transformed cells is known as cancer immune surveillance.
However, since the role of the immune system in controlling
cancer growth and recurrence remains highly controversial,
this term has been replaced by “cancer immunoediting” to
describe the dual roles of the immune system in promoting
host defense and facilitating tumor growth and immune escape
(183, 184). Several mechanisms by which cancer cells evade the
immune system have been described. These include: (1) immune
suppression at the tumor microenvironment mediated by Tregs
or other types of suppressive cells (the major mechanism of
tumor immune escape), (2) induction of apoptosis in tumor-
specific cytotoxic T lymphocytes (CTLs) by the expression of
pro-apoptotic ligands e.g., Fas ligand and TRAIL, (3) defective
antigen presentation, (4) release of immunosuppressive cytokines
such as IL-10 and TGFβ, and (5) inducing tolerance and immune
deviation by mechanisms including, among others, shifting the
balance of Th1 immune responses to Th2, and expression
of immune inhibitory molecules such as PD-1 (programmed
death-1) and CTLA-4 (CTL antigen-4) (95, 185).

Colorectal tumors are highly immunogenic. Therefore, anti-
tumor immune responses may significantly limit tumor growth.
In fact, a strong correlation between anti-tumor immune
responses and CRC patient survival has been demonstrated (186–
188). On the other hand, immune escape mechanisms have
been recognized as one of the hallmarks of cancer (123, 189).
Pagés et al. studied the correlation between pathological signs
of early metastatic invasion and the local immune response
within the tumor in a cohort of 959 resected colorectal tumors
using flow cytometry, gene expression profiling and in situ
immunohistochemistry (186). In this study, the authors reported
up to 15 years clinical follow-up of the patients for the presence
or absence of early signs of metastasis. Remarkably, they showed
that tumors without such signs had increased infiltrates of CD8+
T cell numbers and increased gene expression for CD8, T-
box transcription factor 21, interferon regulatory factor 1, IFN-
γ, granulysin, and granzyme B, that correlated with increased
survival. Likewise, the presence of high levels of infiltrating
memory T cells, as measured by immunohistochemistry,
correlated with increased survival (186). The same group
confirmed these results in two other independent cohorts of CRC
patients (187). Furthermore, in 566 CRC patients a significant
positive correlation between markers of innate immune system
and early activated T cells has been linked to protection from
relapse. Additionally increased densities of CTLs and effector
memory T cells within the primary tumor significantly protected
CRC patients from tumor recurrence (188). In another study,
CRC patients with high expression of Th17 markers had a
poor prognosis, whereas patients with high expression of the
Th1 markers had prolonged disease-free survival (190). These
data provide compelling evidence for the role of the immune

system in limiting CRC development and clearly suggest that
immune evasion could represent an important mechanism by
which colorectal tumor cells prevent their destruction by the
immune system.

Supporting this hypothesis, Sidler et al. described the first
evidence for a novel LRH-1-dependent GC synthesis in CRC
cell lines as well as primary tumors, that exerted inhibitory
effects on activated T cells (139). They showed that colon cancer
cell lines express the enzymes required for de novo synthesis
of bioactive GCs, including CYP11A1, CYP11B1, and CYP17.
Consequently, cortisol production as measured by thin layer
chromatography, radioimmunoassay, and bioassay was detected
in culture supernatants (139).

The expression of steroidogenic enzymes in CRC cells
is dependent on endogenous LRH-1, as evidenced by the
diminished expression of these enzymes upon LRH-1
downregulation. Similar to intestinal GC synthesis, tumor-
cell derived GC synthesis was also regulated by LRH-1 since
overexpression of LRH-1 boosted cortisol production in a
dose-dependent manner, whereas it was significantly inhibited
following LRH-1 knockdown. Primary tumors from CRC
patients also expressed high levels of LRH-1, CYP11A1,
CYP11B1, and StAR, and readily synthesized cortisol following
ex vivo culture. Interestingly, unlike the basal inducible GC
production in the normal intestine, LRH-1-mediated GC
synthesis in colonic tumors is constitutive since it was not
further enhanced by PMA (139). This observation suggests
that LRH-1 is constitutively active, or the presence of LRH-1
activators in the tumor microenvironment. Of interest, enhanced
EGF signaling as demonstrated by EGFR overexpression has
been shown in 60–80% of CRC patients, that was associated
with poor prognosis (191). Since EGF has been shown to exert a
mitogenic signal by the MAPK pathway (192), it is tempting to
speculate that EGF-induced signaling pathways activate LRH-1
in CRC tumors via a MAPK-induced phosphorylation. However,
this hypothesis needs to be further investigated.

Noteworthy, tumor-derived GCs suppressed T cell activation,
as shown by the substantial inhibition of CD69 expression
(an early activation marker of T cells) in activated CD4+ and
CD8+ murine splenic T cells. This inhibitory effect was GC-
specific since it was reversed by blocking the GR (139). Hence,
besides its role in inducing tumor cell proliferation, LRH-1
could contribute to CRC tumor development via the synthesis
of immunosuppressive GCs (Figure 4). Taken together, LRH-
1-mediated synthesis of immunoregulatory GCs in CRC could
represent a novel immune escapemechanism by inhibiting T cell-
mediated anti-tumor immune responses and thereby favoring the
tumor growth.

THERAPEUTIC POTENTIAL AND FUTURE
PERSPECTIVE OF INTESTINAL GC
SYNTHESIS

Targeting GCs in Intestinal Inflammation
Thus far, the importance of locally synthesized GCs has been
reflected by the impairment of cortisol production as well as
decreased LRH-1 expression in colonic epithelial cells from UC
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patients (138, 140). Despite the advances in introducing novel
therapies for the treatment of IBD, GCs remain the first-line
treatment for inducing rapid remission in moderate to severe
IBDwith high efficacy. Nevertheless, emergence of resistance and
the side-effects of systemic GCs represent a major therapeutic
challenge (131, 193). Along these lines, restoring local GC
synthesis in the intestine could represent an attractive approach
to ameliorate the symptoms of IBD and to avoid the systemic GC
side-effects. This could be achieved by enhancing LRH-1 activity
in the intestine since LRH-1 controls both local GC synthesis
and epithelial regeneration (87, 89, 90, 138). In fact, a recent
study underlined the therapeutic potential of targeting LRH-1
by showing that restoration of LRH-1 reestablished epithelial
integrity in mouse and human organoids treated with TNF or
5-fluorouracil, a chemotherapeutic agent with intestinal toxicity.
Moreover, overexpression of LRH-1 protected mice from T
cell-induced colitis (173). As mentioned earlier, structure-based
studies identified DLPC as a potential ligand that was able
to enhance LRH-1 transcriptional activity (166). Interestingly,
DLPC has been shown to exert anti-diabetic effects by activating
LRH-1 in the liver when used in a therapeutic setting (194, 195).
Thus, it is tempting to speculate that administration of LRH-1
ligands could also ameliorate intestinal inflammation. However,
this attractive idea remains to be tested.

Targeting GCs in Colorectal Cancer
In CRC, LRH-1 regulates proliferation as well as GC synthesis
that could possibly represents an immune escape mechanism
(139) (Figure 4). In line with this, LRH-1 has also been described
to promote prostate cancer growth by inducing intra-tumoral
steroidogenesis (176).

Consistent with the critical role of LRH-1 in tumor
development, LRH-1 is overexpressed in many tumors, as
discussed above. For instance, a remarkable upregulation of
LRH-1 was reported in CRC tissue compared to paired non-
cancerous tissue from two independent CRC patient cohorts
(181, 182). Hence, suppression of LRH-1 activity in tumors is
postulated to exert anti-proliferative effect that could potentially
lead to tumor regression. Supporting this notion, LRH-1
knockdown resulted in impaired in vitro proliferation of
pancreatic and CRC cell lines (175, 196). Recently, Qu et al.
showed that targeting LRH-1 via microRNA inhibited in vitro

proliferation and invasion of CRC cell lines (182). These data
provide compelling evidence for the therapeutic potential of
targeting LRH-1 in cancer. Advances in structure-based studies
identified small molecule inhibitors of LRH-1 including 3d2
(197) and SR1848 (198). The inhibitory effect of 3d2 and SR1848
on LRH-1 was confirmed in vitro and in vivo and reported to
induce anti-proliferative effects on a variety of cancer cell lines
(157, 197, 198).

In conclusion, inhibition of LRH-1 activity in colon tumors
with high LRH-1 expression represents an interesting therapeutic
approach to be followed upon, aiming at inhibition of both
LRH-1-induced proliferation as well as GC synthesis. This is of
particular interest since in CRC a strong correlation between
the degree of immune cell infiltrates and patient survival
has been demonstrated (186, 187). Of note, ex vivo culture
of primary colonic tumors from patients showed increased
GC synthesis compared to adjacent non-tumor tissue (139).
These observations further underscore that immune evasion,
e.g., via the synthesis of immunoregulatory GCs, might be
an important mechanism by which intestinal tumors shape
the tumor microenvironment resulting on one hand in tumor
support by stromal cells, on the other hand in the escape of CRC
from the destruction by the immune system.
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Glucocorticoids (GCs) potently inhibit pro-inflammatory responses and are widely used

for the treatment of inflammatory diseases, such as allergies, autoimmune disorders,

and asthma. Dual-specificity phosphatase 1 (DUSP1), also known as mitogen-activated

protein kinase (MAPK) phosphatase-1 (MKP-1), exerts its effects by dephosphorylation

of MAPKs, i.e., extracellular-signal-regulated kinase (ERK), p38, and c-Jun N-terminal

kinase (JNK). Endogenous DUSP1 expression is tightly regulated at multiple levels,

involving both transcriptional and post-transcriptional mechanisms. DUSP1 has emerged

as a central mediator in the resolution of inflammation, and upregulation of DUSP1 by

GCs has been suggested to be a keymechanism of GC actions. In this review, we discuss

the impact of DUSP1 on the efficacy of GC-mediated suppression of inflammation and

address the underlying mechanisms.

Keywords: sepsis, infection, arthritis, bone disease, asthma, COPD, atherosclerosis

INTRODUCTION

Glucocorticoids (GCs) are steroid hormones with immunosuppressive activity that are used to treat
a wide variety of inflammatory conditions, including rheumatoid arthritis, pulmonary diseases, and
acute inflammation caused by microbial infection.

Anti-inflammatory properties of GCs are partially dependent on their ability to suppress
mitogen-activated protein kinases (MAPKs) (1, 2). MAPKs are a family of protein kinases that
respond to a wide variety of extracellular stimuli. They are activated by phosphorylation of tyrosine
and threonine residues within their active domains and are inactivated by dephosphorylation of
either residue (2–4). MAPK cascades are evolutionary conserved and control a large number of
cellular processes, including proliferation, differentiation, apoptosis, motility, and stress responses.
The three major signaling cascades either involve extracellular signal-regulated kinase 1/2
(ERK1/2), c-Jun N-terminal kinase (JNK), or p38 MAPK (2–4). Dysregulation of MAPK activity
has been suggested to contribute to the onset of many pathologies, including neurodegenerative
diseases, diabetes, cancer, and inflammation (4–7).

MAPKs can be dephosphorylated by tyrosine-specific phosphatases, serine-threonine
phosphatases, or dual-specificity (Thr/Tyr) phosphatases (DUSPs) (8, 9). GC treatment primarily
attenuates MAPK signaling via DUSP1, also known as mitogen-activated protein kinase
phosphatase-1 (MKP-1) (10–12). In this review, we discuss the influence of DUSP1 on GC-
mediated effects (Figure 1).
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FIGURE 1 | Regulation and effects of GC-induced DUSP1 expression (simplified). Red: positive regulation, blue: negative regulation. See text for details. Templates

from Servier Medical Art (http://www.servier.com) were used to generate the figure.

DUAL-SPECIFICITY PHOSPHATASE 1
(DUSP1)

Although DUSP1 was initially identified as an ERK-specific
phosphatase, p38 MAPK and JNK are its preferred substrates in
several cell types, including myeloid cells (13–16). Thus, DUSP1
activity limits p38 and JNK-dependent pro-inflammatory gene
transcription (17–20).

However, DUSP1 is also involved in the regulation of anti-
inflammatory genes. Over-production of IL-10 inDusp1−/− mice
was observed in peritonitis models after lipopolysaccharide (LPS)
challenge or infection with Escherichia coli or Staphylococcus
aureus, and LPS-treated Dusp1−/− macrophages. This can be
explained by the interaction of DUSP1 with the RNA-binding
protein tristetraprolin (TTP, gene name Zfp36): increased p38-
mediated phosphorylation of TTP results in its inactivation,
followed by accumulation of the inactive, but stable, form
of TTP and enhanced stability of TTP target mRNAs.
These target mRNAs comprise pro-inflammatory chemokines
and cytokines, e.g., Tnf, Cxcl1, and Cxcl2, but also the
anti-inflammatory Il10. Approximately 50% of the genes

Abbreviations: AP-1, activator protein-1; CASP, colon ascendens stent peritonitis;

CCL, CC-chemokine ligand; CLP, caecal ligation and puncture; COPD,

chronic obstructive pulmonary disease; CREB, cAMP response element-binding

protein; CXCL, C–X–C motif ligand; DUSP1, dual-specificity phosphatase; ERK,

extracellular-signal-regulated kinase; EC, endothelial cell; GC, glucocorticoid;

GR, GC receptor; GRE, GR responsive element; ICAM1, intercellular adhesion

molecule 1; ICS, inhaled corticosteroid; IL, interleukin; INF, interferon;

IRFs, interferon regulatory factors; JNK, c-Jun N-terminal kinase; LPS,

lipopolysaccharide; NF-κB, nuclear factor-κB; MAPK, mitogen-activated protein

kinase;MKP-1, mitogen-activated protein kinase phosphatase-1; RANKL, receptor

activator of NF-κB ligand; TNF, tumor necrosis factor; TLR, toll-like receptor; TTP,

tristetraprolin; VCAM-1, vascular cell adhesion molecule 1.

dysregulated in Dusp1−/− macrophages are affected by TTP
inactivation (21).

The promoter region of the Dusp1 gene contains binding

sites for several transcription factors, including activator protein

1 (AP-1), nuclear factor-κB (NF-κB), cAMP response element-
binding protein (CREB), and the glucocorticoid receptor
(GR) (22–25). Hence, DUSP1 can be induced under various
conditions, ranging from inflammatory activation to altered
cellular metabolism and GC excess during stress responses.
GCs may further enhance DUSP1 expression by inhibiting its
proteasomal degradation (12).

DUSP1 has been shown in a few studies to be regulated
via the stability of its mRNA. Several mRNA binding proteins
can influence Dusp1 mRNA stability. TTP-mediated Dusp1
mRNA decay has been suggested to be a feedback mechanism
in inflammatory responses by which TTP limits its own
activity: reduced DUSP1 expression enhances p38 MAPK
phosphorylation, thereby promoting TTP inactivation
(26). Besides, several miRNAs, such as miR-101, have been
shown to modulate DUSP1 expression (27). Posttranslational
DUSP1 modifications include phosphorylation, acetylation,
and oxidation. ERK-mediated phosphorylation of DUSP1
can either lead to increased or decreased DUSP1 protein
stability, depending on the phosphorylation site (28, 29).
Acetylation of Lys57 results in increased phosphatase activity
and more effective suppression of the MAPK signaling
cascades (30, 31). In contrast, oxidation of Cys258 within
the active site inactivates DUSP1 and leads to its rapid
degradation by the proteasome. In this manner, DUSP1
oxidation prolongs MAPK activation, ultimately resulting in
enhanced inflammatory responses (32–34). S-glutathionylation
of Cys258 has similar effects, indicating that DUSP1 activity is
redox-sensitive (35).
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ROLE OF DUSP1 IN INFLAMMATORY
DISEASES AND ITS INFLUENCE ON GC
TREATMENT EFFICACY

Infectious Diseases and Sepsis
In the context of infectious diseases and sepsis, research on
the role of DUSP1 focused mainly on macrophage responses.
Macrophages are a subtype of innate immune cells with high
plasticity that play a crucial role in acute inflammation. They
recognize pathogen- or danger-associated molecular patterns
via pattern recognition receptors, such as toll-like receptors
(TLRs). Stimulation of macrophages initially leads to excessive
inflammation, followed by a phenotypic switch toward an anti-
inflammatory and wound-healing phenotype that promotes the
resolution of inflammation (36, 37).

Early studies on the role of DUSP1 in the response
of macrophages to bacterial LPS suggested that DUSP1 is
required to balance inflammatory responses in sepsis and
infectious diseases. The ectopic expression of DUSP1 in LPS-
stimulated macrophages accelerated JNK and p38 inactivation
and substantially inhibited the production of TNF-α and IL-
6 (38). Moreover, increased cytokine production and elevated
expression of the differentiation markers CD86 and CD40 were
observed in macrophages from Dusp1−/− mice when activated
by TLR ligands. Dusp1−/− macrophages also showed enhanced
constitutive and TLR-induced activation of p38 MAPK (39).
Moreover, LPS-induced IFN-β production was increased in
Dusp1−/− macrophages, both due to elevated JNK-mediated
activation of cJun and Ifnb mRNA stabilization by TTP
inactivation (20). DUSP1 induction has also been shown to
be involved in endogenous feedback loops initiated by either
adenosine or prostaglandin E2 signaling that skew macrophages
toward an anti-inflammatory phenotype (40, 41).

Several studies confirmed the relevance of these in vitro
findings for the in vivo situation. In LPS-treated mice, DUSP1
is upregulated in various tissues and cell types and limits p38
MAPK activation. In accordance, depletion of DUSP1 led to
the excessive release of inflammatory cytokines, such as TNF-α,
IL-6, CCL3, and CCL4, and increased LPS-induced mortality
(14, 15, 39, 42). Likewise, Dusp1−/− mice showed amplified
inflammatory responses and lethality after infection with either
S. aureus (43) or E. coli (44).

The phenotype ofDusp1−/− mice in two sophisticatedmodels
of sepsis, i.e., caecal ligation and puncture (CLP) and colon
ascendens stent peritonitis (CASP), strongly resembled those
observed after LPS shock, with highly increased levels of IL-6,
CCL3, and CCL4 and excess lethality (45).

Glucocorticoids induce DUSP1 in mouse macrophages, and
DUSP1 is required for the inhibition of JNK and p38 MAPK
by dexamethasone in these cells (10, 38). Consequently, the
GC-mediated shift toward an anti-inflammatory macrophage
phenotype was attenuated in cells from Dusp1−/− mice (10,
46). In a cutaneous air pouch model, the zymosan-induced
production of pro-inflammatory mediators and the infiltration
of leukocytes into a pre-formed dorsal cavity were inhibited
by oral dexamethasone administration in wild-type, but not
in Dusp1−/−, mice, suggesting that DUSP1 is indeed required

to unfold the full anti-inflammatory potential of GCs (10).
In another study, the reduction of TNF-α-induced mortality
caused by pretreatment with dexamethasone was dependent on
the presence of DUSP1: whereas wildtype mice were entirely
protected by dexamethasone administration, Dusp1−/− animals
did not benefit from the GC treatment (1).

In conclusion, both in vitro and in vivo evidence suggests
that DUSP1 critically contributes to the resolution of acute
inflammatory responses and mediates protective GC effects in
this context.

Inflammatory Bone Disorders
The bone mass is subject to constant remodeling orchestrated by
osteoblasts and osteoclasts. In inflammatory bone disorders, e.g.,
autoimmune-driven rheumatoid arthritis or pathogen-induced
periodontitis, the balance of osteoblast and osteoclast activity is
compromised, resulting in bone loss (47).

DUSP1 was strongly downregulated in synovial biopsies
from patients with rheumatoid arthritis and osteoarthritis (GEO
datasets GDS5401 and GDS5403; Figure 2A), suggesting that
DUSP1 deficiency may contribute to disease progression.

DUSP1 indeed effectively reduced osteolysis in studies
utilizing mouse models of LPS-induced inflammatory bone loss
and collagen-induced arthritis (CIA) (48, 49). Dusp1−/− mice
showed excessive bone loss, more inflammatory infiltrates, and
an increase in osteoclastogenesis at the site of LPS-injection in
a model of experimental periodontitis (49). In line with these
findings, adenovirus-mediated overexpression of DUSP1 was
shown to protect against bone loss in a similar experimental
model of periodontal disease (50). Furthermore, Dusp1−/− mice
exhibited higher penetrance, earlier onset, and increased severity
of experimental arthritis, accompanied by higher numbers of
osteoclasts in inflamed joints and more extensive loss of bone
mass. Complementary in vitro experiments showed that DUSP1
acts as a negative regulator of osteoclast formation and activation
via suppression of p38MAPK (48, 51). A recently published study
showed that the presence of calcium crystals, which are critical
factors in the pathogenesis of osteoarthritis, stimulate receptor
activator of NF-κB ligand (RANKL) secretion by osteoblasts via
DUSP1 downregulation, thereby promoting osteoclastogenesis
(52). RANKL induction was also observed in synovial biopsies
from arthritis patients in the GEO datasets mentioned above
(Figure 2B). Moreover, overexpression of DUSP1 in fibroblast-
like synoviocytes from osteoarthritis patients inhibited the
expression of osteoarthritis-associated mediators (53).

However, DUSP1 depletion did not affect age-related
spontaneously occurring osteoarthritis, since knockout
mice showed a similar disease progression compared to
controls at 21 months of age (54). Thus, the modulatory
function of DUSP1 in the context of bone homeostasis
seems to be most evident in the presence of a potent
inflammatory trigger.

Due to their high anti-inflammatory capacity and their ability
to decrease radiologic disease progression, GCs are frequently
used for the treatment of rheumatoid arthritis. Paradoxically,
one common side effect of GC use, primarily when used at
high dosages or over prolonged periods, is a loss of bone mass,
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FIGURE 2 | DUSP1 (A) and TNFSF11 (RANKL, B) expression in synovial

tissues from healthy controls, patients with rheumatoid arthritis, or

osteoarthritis. Data obtained from GEO Datasets GDS5401 (Berlin dataset)

and GDS5403 (Jena dataset) were normalized against their respective healthy

control values before compilation. Data are shown as individual values per

sample, and boxplots show the 25–75th percentiles (box), mean (square),

median (line), and standard deviation (whiskers). P-values were generated by

one-way ANOVA and Bonferroni’s post-hoc test (A, normal distribution) or

Mann–Whitney U-test (B, not normally distributed).

also known as GC-induced osteoporosis. This adverse effect is
associated with increased osteoclastogenesis and depletion of
osteoblasts (55, 56).

DUSP1 has been suggested to contribute to GC-induced bone
loss since GC-inducible attenuation of osteoblast proliferation
involves inhibition of theMAPK/ERK signaling pathway and can
be reversed by the protein tyrosine phosphatase (PTP) inhibitor
vanadate in vitro and in vivo (57–59). The assumption that the
PTP in question might be DUSP1 was, however, not supported
by studies with Dusp1−/− mice, which demonstrated that GC-
induced bone loss was not prevented upon DUSP1 depletion:
after treatment with the GC methylprednisolone for 28 days,
both wildtype and Dusp1−/− mice showed a similar reduction
of osteoid surfaces, volumes, and osteoblast numbers (60).

In summary, loss of DUSP1 favors bone loss, especially under
highly inflammatory conditions. Further studies are required to
clarify whether DUSP1 contributes to the beneficial or adverse
effects of GCs in the therapy of bone-related diseases.

Pulmonary Diseases
GCs are first line anti-inflammatory medicines in chronic
respiratory diseases, including asthma and chronic obstructive
pulmonary disease (COPD), and are commonly used
therapeutically as inhaled corticosteroids (ICS). ICS effectively
control inflammation in asthma but are less effective in COPD.
This is thought to be due to corticosteroid insensitivity, where
the molecular pathways responsible for the effect of GCs have
been modified by oxidative stress or infections (61). Moreover, a
subset of asthmatics (∼10%) are refractory to ICS and classified
as having severe asthma. DUSP1 has been shown to contribute
to the effects of GCs in several in vitro, ex vivo, and in vivo
studies with relevance to respiratory disease (61–63) and in some
key studies, an impact on DUSP1 function has been shown to
be responsible for corticosteroid insensitivity/resistance. For
instance, an ex vivo study examined the repressive effect of GCs
on stimulated production of inflammatory cytokines by alveolar
macrophages from patients with severe asthma to those with
non-severe asthma. GCs were less effective in macrophages from
severe asthma patients, and this GC insensitivity was linked with
increased p38 MAPK activation and impaired inducibility of
DUSP1 (64).

The first to demonstrate that GCs upregulated DUSP1 in
primary airway smooth muscle cells were Issa et al. (65). This
was confirmed in a publication by the Ammit group that showed
that GC-induced DUSP1 controlled cytokine mRNA stability
in a p38 MAPK-mediated manner (66). Notably, knockdown
of DUSP1 with siRNA showed that GC-induced DUSP1 was a
significant contributor to anti-inflammatory effects at the post-
transcriptional level.

Several ex vivo and in vivo studies utilizing Dusp1−/−

mice highlighted the contribution of DUSP1 to GC effects in
respiratory disease. For example, GC-mediated repression of the
contractile response in bronchial rings from mice was abrogated
by Dusp1 depletion (67). Interestingly, the anti-inflammatory
impact of DUSP1 was lost in ozone-exposed mice in a model
that may recapitulate corticosteroid resistance in severe asthma
(68). A plausible explanation is that GC-induced DUSP1 in
the wild-type mice was oxidized by ozone and rendered non-
functional. Oxidization of DUSP1 may prove to be a roadblock
to further development of DUSP1 as a therapeutic target in
respiratory disease as oxidative stress is a well-appreciated
feature of COPD and other conditions where smoking is a risk
factor (69, 70).

Finally, there are publications that note that GC-mediated
effects in respiratory disease are DUSP1-independent. These
include a study that detected gene expression of known GC
targets in biopsies from allergen-challenged asthmatic subjects
(71). Evidence from studies utilizing Dusp1−/− mice in models
with relevance to asthma is somewhat equivocal and does not
fully support the assertion that DUSP1 is a significant contributor
to the effect of GCs in vivo (72).

Atherosclerosis
GCs are not a therapeutic option for the treatment of
atherosclerosis, since side effects of long-term GC treatment
include hyperglycemia, hypertension, dyslipidemia, and obesity
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and may, therefore, promote adverse cardiovascular events
(73, 74). However, as inflammation plays a significant role
in the pathogenesis in atherosclerosis, GCs may exert some
anti-atherosclerotic effects. Early studies demonstrated that
dexamethasone reduced the severity of atherosclerosis in
experimental rabbit models (75–77). Moreover, vein graft
thickening was prevented by short-term dexamethasone
treatment in hypercholesterolemic mice (78). The development
of a drug-eluting bioadhesive gel that allowed to dissociate
the systemic adverse and local anti-inflammatory effects of
GC treatment. In atherosclerotic mice, inflamed plaques
treated with GC-eluting adhesive gels showed reduced
macrophage numbers and developed protective fibrous
caps covering the plaque core. This was paralleled by lowered
plasma cytokine levels and biomarkers of inflammation in the
plaque (79).

The onset of atherosclerosis is triggered by proinflammatory
mediators, which induce adhesion molecules in endothelial
cells (ECs) by activating MAPKs, particularly p38 MAPK.
Dexamethasone-induced DUSP1 upregulation caused
inactivation of p38 MAPK in TNF-α-treated ECs and mediated
inhibition of E-selectin expression, as shown in murine
Dusp1−/− ECs and human ECs upon DUSP1 silencing (80).

The assumption that DUSP1 is atheroprotective via inhibition
of EC activation was further supported by studies investigating
the influence of shear stress. ECs respond to shear stress via
mechanoreceptors that translate mechanical distortions into
various molecular signals, including GR translocation (81, 82).
Regions of the arterial tree exposed to high shear stress
are protected from endothelial activation, inflammation, and
atherosclerosis, whereas regions exposed to low or oscillatory
shear stress, are susceptible (83, 84). The expression of DUSP1
in cultured ECs was elevated by shear stress, whereas vascular
cell adhesion protein (VCAM)-1 levels were reduced; silencing
of DUSP1 restored VCAM-1 expression. In vivo, DUSP1 was
preferentially expressed by ECs in a high-shear, protected region
of the mouse aorta and was necessary for the suppression of EC
activation (84).

Apart from its effect on the endothelium, DUSP1
also determines the monocyte/macrophage phenotype in
atherosclerosis (35, 85, 86).

Metabolic stress was shown to induce the S-glutathionylation,
inactivation, and subsequent degradation of DUSP1 in
monocytes. As a result, increased p38 MAPK and ERK
activity primed monocytes for chemokine-induced recruitment,
thereby promoting monocyte adhesion and migration. In
vivo, transplantation of DUSP1-deficient bone marrow into
atherosclerosis-prone mice exacerbated atherosclerotic lesion
formation by sensitizing monocytes to chemoattractants and
polarizing macrophages toward an inflammatory phenotype
(35, 86). Thus, monocyte and macrophage dysregulation by
metabolic stress may drive the progression of atherosclerosis due
to DUSP1 inactivation.

Interestingly, the administration of inhaled GCs has been
suggested to be atheroprotective in asthma patients, although
plasma levels of the drug were presumed to be very low and
were not sufficient to provoke cardiovascular GC side effects

(87). Whether this observation might be due to elevated DUSP1
expression or activity in ECs or the monocyte/macrophage
compartment presently remains elusive.

DUSP1: A THERAPEUTIC TARGET?

As underscored by this review, there are several clinical areas
where targeting DUSP1 (i.e., increasing its amount and/or
activity) would be clinically beneficial. These may also comprise
psoriasis or colitis, as a number of studies suggested an
involvement of DUSP1 downregulation in the pathogenesis of
these diseases (88–91).

Novel ligands to upregulate DUSP1 levels might represent
an attractive anti-inflammatory strategy—particularly in
atherosclerosis, where GCs cannot be used due to their
cardiovascular side effects. Corticosteroid-sparing strategies
to reduce the GC dose while achieving effective disease
control have always been of clinical importance, and this is
also a potential area of focus for DUSP1 upregulators. The
failure of p38 MAPK clinical trials, including those recently
published in COPD (92) could also bolster the search for
DUSP1 modulators. The failure of targeting p38 MAPK is
because while pro-inflammatory cytokines are repressed, so are
the p38 MAPK-driven anti-inflammatory proteins, including
DUSP1 (63, 93, 94).

However, there are challenges to overcome in the drive to
develop DUSP as a therapeutic target. First and foremost, it
is essential to consider that the overall impact of the MAPK-
deactivator DUSP1 within the clinical context will depend on the
role played by the MAPK involved. If the rationale is that MAPK
needs to be inhibited, then there is a need to upregulate DUSP1
(e.g., in respiratory inflammation). Conversely, in some clinical
situations, DUSP1 inhibitors may prove beneficial. For example,
in some cancers, DUSP1 is overexpressed and is considered
responsible for the failure of JNK-driven apoptotic pathways
induced by chemotherapeutics; i.e., adjunct therapeutics with
a DUSP1 inhibitor would have merit (95). The challenge
in drug discovery would, therefore, be developing targeted
therapies that could be delivered to the site of disease without
collateral damage. Secondly, DUSP1 is sensitive to oxidative
stress, and the phosphatase activity can be reduced. Notably,
oxidative stress can be cause or consequence of the disease,
and GCs themselves can contribute to the production of
oxidative stress (96). Thus, although we may find techniques to
increase DUSP1 abundance, it may be non-functional due to
oxidation. Reactivation of oxidized DUSP1 function is worthy
of further investigation. Thirdly, and perhaps most importantly,
we need to get the timing right and ensure that that the
temporal kinetics of the impact on DUSP1 on inflammatory
pathways are considered. Taken together, the future utility of
DUSP1 as a therapeutic strategy depends on it being active
(not oxidized) and present at the right place at the right
time. Treatment with exogenous DUSP1 upregulators would be
akin to the usage of p38 MAPK inhibitors and as they have
failed in clinical trials, restoring physiological DUSP1 activity
in a manner that fully exploits dynamic regulation exerted
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by the p38 MAPK/DUSP1/TTP network might even be the
better option.
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Glucocorticoids (GCs) are steroid hormones widely used for the treatment of

inflammation, autoimmune diseases, and cancer. To exert their broad physiological and

therapeutic effects, GCs bind to the GC receptor (GR) which belongs to the nuclear

receptor superfamily of transcription factors. Despite their success, GCs are hindered

by the occurrence of side effects and glucocorticoid resistance (GCR). Increased

knowledge on GC and GR biology together with a better understanding of the molecular

mechanisms underlying the GC side effects and GCR are necessary for improved GC

therapy development. We here provide a general overview on the current insights in

GC biology with a focus on GC synthesis, regulation and physiology, role in inflammation

inhibition, and on GR function and plasticity. Furthermore, novel and selective therapeutic

strategies are proposed based on recently recognized distinct molecular mechanisms of

the GR. We will explain the SEDIGRAM concept, which was launched based on our

research results.

Keywords: glucocorticoids, glucocorticoid receptor, inflammation, molecular biology, SEDIGRAM

DISCOVERY OF GLUCOCORTICOIDS AND THE
GLUCOCORTICOID RECEPTOR

The first steps leading to the discovery of glucocorticoids (GCs) took place in the 19th century when
the physician Thomas Addison described that patients suffering from (chronic) fatigue, muscular
degeneration, weight loss, and a strange darkening of the skin could obtain beneficial effects from
adrenal extracts (1). This disease is now known as Addison’s disease, which is a form of adrenal
insufficiency. In 1946, Edward Calvin Kendall isolated four steroidal compounds from adrenal
extracts, which he named compounds A, B, E, and F (2). Compound E, would become known as
cortisol and was synthesized later that year by Sarett (3). The therapeutic potential was discovered
by rheumatologist Philip Hench in a patient suffering from rheumatoid arthritis (4). Hench and
Kendall were awarded the Nobel prize for Medicine and Physiology in 1950 together with Tadeus
Reichstein who succeeded in isolating several steroid hormones from the adrenals, eventually
leading to the discovery of cortisol. Since the discovery of their anti-inflammatory potential GCs
were hailed as wonder drugs to treat various inflammatory diseases and became part of the group
of most used and cost-effective anti-inflammatory drugs.

GCs bind the GC receptor (GR), a member of the nuclear receptor (NR) family of intracellular
receptors, which also contains the estrogen receptor (ER), progesterone receptor (PR), androgen
receptor (AR), and mineralocorticoid receptor (MR) as well as several orphan receptors (with no
known ligand) (5, 6). In 1966, the GR was identified as the principal receptor responsible for the
physiological and pharmacological effects of GCs (7). It would take almost two more decades for
the human GR-coding gene, NR3C1 to be cloned (8, 9). The GR is very closely related to the MR
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and these receptors exhibit some cross-reactivity, more
specifically the MR is activated both by its own ligands,
mineralocorticoids (MCs) and by GCs, but GR is activated only
by GCs (10). NRs are involved in many aspects of mammalian
biology, including various metabolic functions, cardiac function,
reproduction and (embryonic) development, and the immune
system (11).

GLUCOCORTICOID SYNTHESIS,
REGULATION AND BIOLOGICAL
AVAILABILITY

GCs are steroid hormones that are essential for the daily
functioning of mammals. They are involved in several
physiological processes, namely in metabolism (12), water and
electrolyte balance (13), the immune response (14, 15), growth
(16), cardiovascular function (17, 18), mood and cognitive
functions (19–21), reproduction (22), and development (23).
GCs are mainly synthesized in the cortex of the adrenal gland
together with aldosterone (a MC) and dehydro-epi-androsterone
(DHEA). The latter is the precursor of testosterone and estrogen.
Aldosterone, GCs, and DHEA are synthesized by different
steroidogenic enzymes in the mitochondria of, respectively, the
zona glomerulosa, the zona fasciculate, and the zona reticularis
of the adrenal cortex. They are however all synthesized from
the same precursor, namely cholesterol (24). Extra-adrenal GC
production in the thymus, vasculature, brain, and epithelial
barriers has also been observed (25–30). These locally produced
GCs are thought to predominantly exert local effects and
contribute only minimally to the systemically circulating pool
of GCs allowing a high spatial specificity of steroid actions,
which are also independent of the circadian and stress induced
regulation of endogenous GCs.

Adrenal GC production is regulated by the hypothalamic-
pituitary-adrenal (HPA) axis (Figure 1). Under basal, unstressed
conditions GCs are released from the adrenal glands in the
bloodstream in a circadian and ultradian rhythm characterized
by peak levels during the active phase which is in the
morning in humans and in the beginning of nighttime in
nocturnal animals such as mice. The activity of the HPA
axis is further increased upon physiological (e.g., activated
immune response) and emotional stress. When the HPA-
axis is stimulated, corticotropin-releasing hormone (CRH), and
arginine vasopressin (AVP) are released from the hypothalamic
paraventricular nucleus (PVN). Subsequently, CRH and AVP
bind their receptor CRH-R1 and V1B in the anterior pituitary
inducing the release of adrenocorticotrophic hormone (ACTH)
in the circulation. ACTH will in turn stimulate the adrenal
gland to synthetize and secrete GC hormones (cortisol) in the
circulation (31).

The HPA axis is subject to a negative feedback inhibition
by GCs, both in a genomic and a non-genomic way. The
genomic feedback regulation is mediated through binding of
GCs to the GR both at the level of the PVN and the pituitary
gland, thereby repressing the CRH, CRH-R1, and the POMC
gene (Figure 1). POMC codes for the proopiomelanocortin

prohormone which is the precursor of ACTH. CRH, CRH-R1,
and POMC gene expression are repressed by the binding of GR
to negative glucocorticoid responsive elements (nGREs) (32–
34). Next to this, GR is also able to physically interact with the
Nur77 protein which also binds in the POMC promoter, thereby
preventing it from performing its transcription function (35,
36). Non-genomically, GCs regulate the HPA axis for example
via the release of endocannabinoid from CRH neurons thereby
suppressing the release of glutamate from presynaptic excitatory
synapses (37), or via γ-aminobutyric acid (GABA) release at the
inhibitory synapses of CRH neurons (38).

Once secreted in the bloodstream GCs are bound to and
transported by plasma proteins which keep the GCs inactive.
Corticosteroid-binding globulin (CBG) is the main GC-binding
protein in the plasma, with about 80–90% of the GCs bound to
it (39). Several proteases target CBG, such as neutrophil elastase
at sites of infection (40), causing the release of bound GCs.
Approximately 10% of the GCs are bound to albumin that binds
GCs with less affinity than CBG (39).

Due to their lipophilic nature, free GCs diffuse through the
cell membrane to exert their function. However, the actual
bioavailability of GCs in the cytoplasm is regulated by the balance
between active and inactive forms of GCs. Two enzymes are
responsible for the conversion between inactive cortisone (or 11-
dehydrocorticosterone in mice) on the one hand and the active
cortisol (or corticosterone, in mice) on the other hand. While
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the
conversion of cortisone to cortisol, 11β-HSD2 carries out the
opposite reaction (Figure 2). 11β-HSD2 is highly expressed in
tissues with high MR expression, such as the kidneys, to prevent
GC-induced MR activation which is known to cause salt and
water dyshomeostasis (41, 42). Biologically active GCs will bind
their receptor in the cytoplasm which exerts their physiological
effects. This mechanism also confers a tight spatial regulation of
GC actions, as the levels of these enzymes may be tissue or even
cell specifically regulated and will directly determine the balance
between the inactive and active form of GCs and thus the strength
of the effect.

Under physiological conditions the role of endogenous GCs is
not simply anti-inflammatory or immunosuppressive and shows
more immunomodulation. It has been shown that GCs can also
work pro-inflammatory (14). This occurs mainly in conditions
of acute stress and is related to the concentration of GCs present
(14, 43). Such pro-inflammatory actions were shown to include:
elevation of pro-inflammatory cytokine levels (IL-1β) (44) or an
exacerbation of the peripheral immune response in delayed type
hypersensitivity (45).

Next to the endogenous GCs, various synthetic GCs (e.g.,
Prednisolone, Methylprednisolone, Fluticasone, Budesonide, and
Dexamethasone) have been developed by the pharmaceutical
industry that serve as treatments for various diseases. All
these synthetic GCs were developed based on the structure
of endogenous GCs (cortisol/hydrocortisone) (46). Experiments
with structural modifications, mainly replacing side chains,
resulted in synthetic GCs with optimized characteristics for
medical use (pharmacokinetics, bioavailability, cross-reactivity
with the MR). The most obvious differences between synthetic
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FIGURE 1 | Hypothalamic-pituitary-adrenal axis. The hypothalamic-pituitary-adrenal (HPA) axis activity is controlled by the circadian rhythm and can be induced by

physiological and emotional stress. When activated, corticotrophin-releasing hormone (CRH), and arginine vasopressin (AVP) are released from the hypothalamic

paraventricular nucleus (PVN). This induces the release of adrenocorticotrophic hormone (ACTH) from the pituitary gland into the systemic circulation. ACTH will

activate cortisol synthesis in the cortex of the adrenal gland. Cortisol negatively regulates the HPA-axis activity, e.g., by repressing the transcription of CRH and POMC

by binding to negative glucocorticoid responsive elements (nGRE) or by binding to the transcription factor Nur77 involved in the POMC expression.

FIGURE 2 | Conversion of inactive GCs to active GCs. Inactive Cortisone (human) and 11-dehydrocorticosterone (mouse) are activated to active cortisol and

corticosterone by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), and inactivated again by 11β-HSD2.

and endogenous GCs are (i) potency, as the synthetic variants
are usually much better activators of the receptor than cortisol
(4x−80x more) (47). (ii) Specificity, since endogenous GCs
activate both GR and MR, but many synthetic GCs (e.g.,
dexamethasone, methylprednisolone) act (almost) exclusively
on the GR. And (iii) synthetic GCs may (prednisolone) or

may not (dexamethasone) be subject to processing by 11β-
HSD1/2 which has a major impact on their bioavailability, as
some synthetic GCs may (not) need to be activated by these
enzymes or cannot be changed into an inactive form by them.
Also, most synthetic GCs also do not bind the carrier proteins
such as CBG (48–50). These facts are important to keep in
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mind when giving GC treatment or performing research using
synthetic GCs.

THE GLUCOCORTICOID RECEPTOR

The GR mediates the actions of GCs in cells. It belongs to
the nuclear receptor superfamily of transcription factors (TFs)
and is a 97 kDa protein that is constitutively and ubiquitously
expressed throughout the body (51). Nevertheless, GCs exert
cellular and tissue-specific effects due to the existence of different
GR isoforms on the one hand and cell- and context-specific
allosteric signals influencing GR function on the other hand
(52–54). The GR functions by regulating the expression of GC
responsive genes in a positive or negative manner. It is estimated
that there are between 1,000 and 2,000 genes that are subject to
GRmediated regulation, with some studies stating that up to 20%
of all genes are responsive to the GR in some way (55).

GR Gene and Protein
The human gene encoding the GR is the “nuclear receptor
subfamily 3 group c member 1” (NR3C1) gene localized on
chromosome 5 (5q31.3). The mouse Nr3c1 gene is localized on
chromosome 18. The hGR gene consists of 9 exons of which exon
1 forms the 5′ untranslated region (UTR) and exons 2–9 encode
the GR protein (52).

The 5′ UTR of the hGR is GC-rich, but does not contain TATA
or CAT boxes (56). Thus, far 13 hGR exon 1 variants differing in
upstream promoter regions have been identified (A1–3, B, C1–3,
D–F, H–J) (Figure 3). Differential use of these promoters, located
about 5 kb upstream of the transcription start site, causes varying
expression levels of GR protein isoforms between cells and tissues
(57–60). These promoters contain multiple binding sites for
several TFs such as AP-1 (61) and Interferon Regulatory Factor
(IRF) (62), but also for GR itself, thereby enabling the regulation
of its own expression (63). Furthermore, these exon-1 variants are
subject to epigenetic regulation. Several epigenetic modifications,
such as DNA methylation and histone acetylation/methylation
are known to occur in this region (or in other regions). The
presence or absence of such modifications has been related to
GR gene expression levels, GC resistance in certain cancers,
promotion of cancer development, and mental health (64–69).

The hGR protein (Figure 3) is a modular protein that, like
other NR family proteins, is built up out of an amino-terminal
domain (NTD), a DNA-binding domain (DBD), a hinge region,
and a C-terminal ligand-binding domain (LBD) (52). The NTD
is encoded by exon 2 and is the least conserved region of the
NR family. It is inherently unstructured, vulnerable to proteases
and only becomes structured when the protein binds DNA and
forms dimers (70). In the NTD the ligand independent activation
function 1 (AF1) is located. This AF1 binds cofactors, chromatin
modulators, and the transcription machinery (71–73). The GR
DBD is encoded by exons 3 and 4 and is important for DNA
binding and GR dimerization. It is characterized by two highly
conserved subdomains each containing a Cys4-type zinc finger.
In the first subdomain the GR’s proximal box (P box) is contained
which is important for site specific GR DNA binding. The second
subdomain contains the distal box (D box) which is important for

GR dimerization (74). Exons 5–9 of the NR3C1 gene encode the
GR’s hinge region and LBD. The former provides both flexibility
between the DBD and LBD as well as a regulatory interface.
The hinge region can be acetylated (lysine residues) and is a
target of CLOCK/BMAL acetylation and the presence of acetyl
moieties in this area reduces GR activity. Research has also shown
that the interaction between the GR and CLOCK/BMAL can be
uncoupled, such as by chronic stress or night shift work, which
may cause hypercortisolism related pathologies (75, 76). The
latter contains a ligand binding pocket, which is formed by 12
α-helices and 4 β-sheets, and the ligand-dependent AF-2 domain.
The LBD has also been found important in GR dimerization (77).
Further, nuclear localization (NLS), nuclear export (NES), and
nuclear retention signals (NRS) have been identified in the GR
protein and these are important for the subcellular distribution of
the GR. Two NLS have been identified, one in the DBD and one
in the LBD (78). A NES is located between the 2 zinc fingers (79)
and a NRS delaying GR nuclear export overlaps with NLS1 (80).

Not a single, but multiple GR protein isoforms are identified.
This is the result from alternative splicing and the use of 8
different translation initiation start sites (81). Alternative splicing
at exon 9 results in two different GR splice variants, namely
the classical 777 AA-long GRα or the 742 AA-containing GRβ

(8). Both isoforms are identical up to AA 727, but contain non-
homologous AA thereafter. Hence, GRβ has a shortened LBD
lacking helix 12 and therefore it cannot bind GCs (82). Despite
this, GRβ is constitutively found in the nucleus where performs
several functions. It was believed and later also shown to be
an antagonist to the GRα isoform. Several mechanisms have
been proposed for the dominant negative action of GRβ, such
as competing with GRα for GR-binding sites and co-regulators
and the formation of inactive GRα/β heterodimers (82–84).
The role of the GRβ is more extensive than being a simple
antagonist. Other studies have shown that the GRβ regulates
gene transcription of non-GRα target genes in an GRα and
GC independent manner (85). Furthermore, while GRβ cannot
bind endogenous GCs, it was show to bind the GR antagonist
RU-468, and is modulated by it (86). Perhaps some synthetic
GR agonists could also bind to this isoform. The GRβ isoform
plays a role in GC resistance (insensitivity to GC treatment) in
patients for several diseases. This resistance can be caused by
its GRα antagonism as well as by the transcriptome changes
its presence causes. A recent study showed that overexpression
of GRβ in colonocytes causes dysregulation of many genes
also found back in IBD patients (87). Next to GRα and GRβ,
GRγ, GR-A, and GR-B splice variants have also been identified
(illustrated in Figure 3). All splice-isoforms show diminished
activity compared to GRα (88–90). Besides splicing, GR mRNA
is further regulated post-transcriptionally via adenine uridylate-
rich elements (ARE) in the 3′ UTR of the GR mRNA which
mediate GR destabilization (91). Next to this, GRmRNA stability
is also regulated by microRNAs (for example: miR-124) which
bind to their binding motifs, mostly in the 3′ UTR (92, 93).

Eight GRα translation initiation variants have been identified
(GRα-A, -B, -C1, -C2, -C3, -D1, D2, and D3) which is the
result from the existence of 8 highly conserved AUG start
codons in exon 2 (Figure 3) (94). The AUG start codons
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FIGURE 3 | Glucocorticoid receptor gene and protein. (A) Genomic structure of the glucocorticoid receptor (GR) gene. (B) Alternative splice and translation-initiation

variants of the GR protein. (C) Structure of the GR protein consisting of an N-terminal domain (NTD), DNA-binding domain (DBD), a hinge region (H), and a

ligand-binding domain (LBD), with a focus on the two zinc-fingers of the DBD and the GRDim mutation (A458T in human, A465T in mouse). Identified

post-translational modifications of the GR are indicated in the black circles. Regions important in GR function are indicated below the protein. AF, Activation function;

NES, Nuclear Export Signal; NLS, Nuclear Localization Signal; NRS, Nuclear Retention Signal; P, phosphorylation; S, sumoylation; U, ubiquitination; N, nitrosylation;

O, oxidation; A, acetylation.

are differently selected due to ribosomal leaky scanning and
ribosomal shunting mechanisms (94). Because the same AUG
start sites are also present in the GR splice-variants, all the
translation-initiation isoforms are expected to occur in each of

the splice-variants (95). The GR translation variants all have
a similar GC and glucocorticoid responsive element (GRE)-
binding affinity, but they differ in the length of their N-termini
and their transcriptional activity. They show different subcellular

Frontiers in Immunology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 154568

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Timmermans et al. A General Introduction to Glucocorticoid Biology

FIGURE 4 | Glucocorticoid receptor chaperone complex and maturation. (A) After glucocorticoid receptor (GR) translation an Hsp70-Hsp40-GR complex is formed in

the cytoplasm. (B) A subsequent ADP-dependent Hsp70 change induces the binding of Hop. (C) Hop induces the binding of Hsp90. (D) After Hsp90 binding to Hop,

Hsp70, and Hsp40 are released from the chaperone complex and replaced by p23 and FKPB51. The GR has now matured into a high affinity complex. (E) After

binding of glucocorticoids FKBP51 is replaced by FKBP52, which is necessary for the transport of the GR to the nucleus.

localization, regulate distinct sets of genes and their relative levels
vary between and within cells (94). The mechanism of regulation
of alternative translation start sites and alternative splicing in
response to physiological, pathological, and cell-specific signals
is still poorly understood. In vitro work proved that these
isoforms do have the capability to regulate distinct transcriptional
programs (96). A later study showed that the different isoforms
can regulate apoptosis with the GRα-C3 being pro-apoptotic and
the GRα-D3 anti-apoptotic (97).

GR Activation and Nuclear Translocation
In the absence of intracellular bioactive GCs, the GR finds
itself as a monomer in the cytoplasm where it resides in a
multiprotein complex. This chaperone complex is important for
GRmaturation, ligand binding, nuclear transport, and activation.
The composition of the chaperone complex changes during the
different GR maturation/activation states (Figure 4) (98). After
GR translation the GR is bound by Hsp70, an interaction that is
accelerated by the Hsp40 co-chaperone. Once the folding process
is complete GR is transferred from Hsp40/Hsp70 to Hsp90,
a transfer that is mediated by Hop (99–101). Recruitment of
p23 (102) and FKBP51 to the multiprotein complex leads to
maturation of GR-chaperone complex into a conformation that
has very high affinity for GR ligands. After GC-binding the GR-
chaperone complex again reorganizes (FKBP51 is replaced by
FKBP52) and a GR conformational change is induced, leading
to the exposure of the GR’s 2 nuclear localization signals (103).
These are subsequently bound by nucleoporin and importins
that carry the GR through the nuclear pore complex into
the nucleus (104, 105). Initially it was believed that the GR
disassociates from the cytoplasmic chaperone complex upon
ligand binding. However, recent research has shown that the
chaperone complex is required for efficient nuclear translocation
of the receptor (106).

Once inside the nucleus, the activated GR can go on to exert
its function or it can be transported back to the cytoplasm,
inhibiting the GR’s transcriptional activity. Nuclear export of GR
is regulated by exportins and calreticulin (CRT) which binds to
the GR NES, thereby disrupting the GR-DNA binding (107, 108).

The balance between nuclear import and export determines
the proportion of GR protein in the nucleus and has a direct
influence on the strength of GR’s transcriptional activities. In
the nucleus, the GR acts as a TF that can activate (trans-
activation) or inhibit (trans-repression) genes as well as modulate
the function of other TFs (tethering). Most of the GR functions
are restricted to the nucleus, but some non-nuclear actions of GR
are also known.

GR Function
In the nucleus, the GR is able to transcriptionally activate
(transactivate (TA)) or transcriptionally repress (transrepress
(TR)) gene-expression, both as a monomer and as a dimer,
and usually via direct contact with DNA. Recently it was
discovered that the GR can also bind to the DNA as a tetramer
(Figure 5) (109, 110). The importance of this GR tetramer
in transcriptional regulation is not well-understood and needs
further investigation.

The GR associates with specific genomic loci and orchestrates
the assembly of TF regulatory complexes containing the GR,
other TFs and co-regulators that modulate the activity of the
RNA polymerase II (RNApolII). Different modes of genomic GR
transcriptional regulation are described (Figure 5).

The simplest form of GR-DNA interaction is the binding of
GR to genomic glucocorticoid binding sites (GBS) containing a
GRE. Classically, the GR exerts its transactivation function by
binding to GREs, which are 15 bp long sequence motifs of 2
imperfect inverted palindromic repeats of 6 bp separated by a
3 bp spacer. The generally accepted GRE consensus sequence is
AGAACAnnnTGTTCT. However, this may be better represented
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FIGURE 5 | Glucocorticoid receptor activation and function. Lipophilic glucocorticoids (GCs) diffuse through the cell membrane and bind the glucocorticoid receptor

(GR) in the cytoplasm. This induces a change in the chaperone complex bound to GR, after which it translocates to the nucleus to transactivate (+) or transrepress (-)

gene transcription as a monomer or a dimer. The GR can transactivate genes by binding to glucocorticoid responsive elements (GRE) as a dimer, but also as a

monomer by binding to other transcription factors (TF) through tethering or by binding to composite-elements. The GR can further transrepress gene-expression by

binding to inverted repeat GR-binding sequences (IR-GBS), by tethering, by composite-elements, by competing for DNA binding-sites (BS), by sequestrating TFs and

by competing for cofactors with other TFs. GR might also function as a tetramer, but its function is not known.

as a sequence logo (Figure 6), which illustrates that some
positions are much more variable than others. The GR binds
to the GRE as a homodimer and each GR DBD makes contact
with about 3 nucleotides in each of the half site hexamers. The
two GR molecules bind the GRE in a head-to-tail fashion and
5 AA within the D box of the second GR zinc finger provide
critical protein-protein contacts between the two GR partners
important for stabilization of the GR DBD on the DNA. In
this D box a hydrogen bond is formed between Ala458 of one
dimer partner and Ile483 of the other partner (74, 111). A second

interface important for dimerization (Ile628) has been identified
in the LBD (77, 112). Recent research proposes that the LBD
may have other dimerization interfaces related to another dimer
structure (113).

GREs contain relatively few highly conserved residues and
because GREs are rather short, they are abundantly present in
the genome. ChIP-seq experiments with antibodies against GR
showed however that only a small fraction of GRE sites are in fact
occupied by the GR (114). Why this is the case is still a topic of
research, but it has been shown that the chromatin structure plays
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FIGURE 6 | Sequence logo of the human glucocorticoid responsive element to which the GR binds to. See text for more details.

a big role in determining which sites are accessible to GR under
certain conditions (115, 116). It has also been shown that many
GR binding sites can be found very far from a (known) gene or
transcriptionally active sites, indicating that GR often occupies
enhancer regions and/or chromatin looping is involved in GR
transcriptional regulation (114).

Evidence has been found for a 2nd mode of GR-DNA
interaction where GR, as a monomer, binds to half sites with
an AGAACA (or the reverse complement TGTTCT) consensus
sequence (117). If a binding site for another TF is nearby the
GRE-half site, both elements may act as a composite site where
there is an interaction (positive or negative) between the GR
(monomer) and the other TF (118) (Figure 5). An analysis in
mouse liver showed that under endogenous corticosterone levels
(i.e., low concentrations) GR binding to half sites as a monomer
is more prevalent than binding of full GRE sites by homodimers.
In response to exogenous GCs (i.e., high concentration) the GR
dimers assemble on full length GRE near known induced genes
and this happens in concert with monomer removal of sites near
repressed genes (119).

A third class of GR-DNA interactions involves inverted-
repeat GBS (Figure 5). Binding to such an element leads to
inhibition of gene expression. These IR-nGREs have a consensus
CTCC(N)0−2GGAGA sequence and structural analysis showed
that at these sites 2 GR monomers bind on the opposite sides
of the DNA, in a head-to-tail orientation and with negative
co-operativity with each other (120, 121).

Lastly, there are the indirect binding, or tethering, sites
where GR is recruited to a TF complex through protein-protein
interactions with heterologous DNA-bound TFs (Figure 5).
These GBSs lack a GRE, IR-nGRE, or a GRE half site. Several
TFs are known to recruit ligand boundGR via tethering including
members from the AP1, STAT, and NF-κB families of TFs. These
interactions directly alter the capacity of the directly DNA-bound
TF to bind DNA, recruit cofactors, and activate/repress gene
transcription (122, 123).

The GR can also TR gene-expression by competing with
other TFs for binding to overlapping DNA-binding sequences.

Indeed, recently GR half-sites were even found embedded in
AP-1 response elements (124). Finally, the GR can TR gene-
expression by competing with other TFs for the binding of
cofactors (125–127) or by sequestrating TFs, thereby obstructing
them to bind to the DNA (128) (Figure 5).

GR Plasticity
The GR operates in a cell- and context-specific manner. This is
not only due to a different expression of GR protein isoforms
but is also the cause of different signals that modulate the GR’s
activity at specific GBSs. Four signals are described to influence
the GR’s function.

A first signal that modulates GR activity is the DNA, which
acts as an allosteric regulator of the GR. GRE sequences differing
by only one single base pair were namely shown to affect GR
conformation and regulatory activity (129). Moreover, allosteric
changes provoked by one half site can be transduced via the
GR lever arm (located between the P and D box, see Figure 3)
and the receptor’s D box to the dimer partner, affecting the GR’s
transcriptional activity (130, 131).

A second signal influencing the GR transcriptional output
obviously comes from the ligand that binds to the LBD. After
ligand-binding helix 12 is exposed and cofactors are recruited
to the AF2 in the LBD. Depending on the ligand, the LBD will
adopt another conformation and attract other cofactors thereby
influencing the GR’s transcriptional outcome (132, 133). The
latter forms the basis of the research for “Selective GR Agonists
and Modulators” (SEGRAM).

Third, the GR is heavily modified by potential post-
translational modifications (PTMs). Several phosphorylation
(134–140), ubiquitination (141), sumoylation (142), acetylation
(76), and nitrosylation sites (143) as depicted in Figure 3

have been identified influencing GR-localization, stability, DNA
binding, ligand response, and regulatory activity.

Last, the GR’s transcriptional output is influenced by
its interaction partners. These include other TFs that bind
direct or indirect to GR and cofactors which are recruited
to GR and are involved in functions such as chromatin
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regulation and regulation of the transcriptional machinery
function (53, 144). The composition of the cofactor complex
recruited to the GR depends on the cell specific expression of
cofactors, the cell context and the integration of the previous
described signals (DNA, ligand, and PTMs) that influence the
GR’s conformation (145). This cofactor complex eventually
determines the transcriptional output of the GR.

Non-genomic GC and GR Actions
The GR is not only able to function by genomic actions, but
also through non-genomic actions. Non-genomic GC/GR actions
are fast and do not require transcription or protein synthesis.
Limited knowledge is however available on non-genomic GC/GR
actions. These include GC-mediated effects on membrane
lipids, changing their physicochemical properties (146). Further,
GCs have also been seen to act on a membrane-bound GR
which is related to the classical GR and probably the result
from differential splicing, alternative transcription initiation and
PTMs (146, 147). Another membrane receptor, unrelated to
the classical GR, probably also binds GCs. This protein is
probably a G-coupled receptor that signals through cAMP and
that binds endogenous GCs with high affinity. However, it does
not bind most GC analogs such as dexamethasone (148). Other
non-genomic actions, e.g., modulation of the MAPK signaling
cascade, might result from components that are released from the
GR chaperone complex upon the binding of GCs to the GR or
from membrane bound GR (149, 150).

A final type of non-genomic action of the GR is its effect
on mitochondrial function. It was show that the GR can
translocate to and reside in mitochondria (151, 152). This
mitochondrial GR is capable of regulating gene transcription
from the mitochondrial chromosome by binding to GRE like
elements alone or in complex with other factors. This was
demonstrated in vitro, using a hepatoma cell line and in brain
cell of mice and rats (153–155). A recent study showed that a
GR isoform, GR?, is located in the mitochondria and plays a
role in regulating cell energy metabolism in a ligand independent
manner (156).

GC THERAPY: DRAWBACKS AND
OPTIMIZATION

GCs are therapeutically mainly used for their anti-inflammatory
and immunosuppressive effects. These are a.o. the result of the
transcriptional induction of several anti-inflammatory protein-
coding genes such as TSC22D3 (coding for glucocorticoid-
induced leucine zipper, GILZ) and DUSP1 (coding for Map
Kinase Phosphatase 1, MKP1) and from the repression of pro-
inflammatory TFs such as NF-κB and AP-1. GCs are used to
treat inflammatory disorders such as asthma (157), skin rashes
(158), rheumatoid arthritis (RA) (159), multiple sclerosis (160),
and systemic lupus erythematosus (SLE) (161). In most cases,
synthetic glucocorticoids are used but hydrocortisone is also a
popular option.

Despite its strong anti-inflammatory capacity, GC therapy is
limited by two major drawbacks. First, GCs are well-known to
be associated with adverse effects, particularly when given in

high doses for long time periods. Figure 7 graphically presents
GC-associated side effects, with osteoporosis, hyperglycemia,
cardiovascular diseases, and infections as the four most
worrisome adverse effects for clinicians (162). These side effect
may be severe enough to affect the therapy or cause an increased
risk to other negative effects. A recent study in RA patients
showed a clearly increased risk of bone fractures correlated with
the administration of GCs (osteoporosis) (163). Second, some
patients are refractory to the therapy and are GC resistant (GCR).
GCR can either be inherited, mostly via mutations in the NR3C1
gene (52, 164), or acquired (165). The latter can be caused by
ligand induced homologous downregulation of the GR, caused
chronical GC treatment (166, 167), or by pathophysiological
processes accompanying the inflammatory disease states [e.g.,
chronic obstructive pulmonary disease (COPD) (168), SLE
(169)]. The pathophysiological processes provoking GCR are
very heterogeneous, e.g., oxidative stress and inflammatory
cytokines are known triggers of GCR and have multiple effects
on GR biology (170–176). GCR occurs in 4–10% of the asthma
patients, 30% of the RA patients and in almost all of the sepsis
and COPD patients (177–179).

To achieve a positive benefit-to-risk ratio when using GCs,
guideline recommendations regarding optimal dosing must be
followed and potential adverse effects must be monitored,
prevented and managed (180–183). Next to this, much research
effort is put in developing innovative GCs or GR ligands that
improve the therapeutic balance (184–186).

Currently available GCs in the clinic activate all GR activities.
During the past 20 years intensive research for SEGRAMs, which
promote a GR conformation favoring TR over TA, has been
performed. This search for SEGRAMs is based on the central
dogma in GR biology which states that GR monomer-mediated
TR is sufficient to counteract inflammation, while GR dimer-
mediated TA is responsible for most of the adverse effects of GCs,
e.g., by the induction of genes encoding glucose-6-phosphatase
(G6P) and phosphoenolpyruvate carboxykinase (PCK1). This
long accepted dogma in GR biology originates from initial work
with the GRDim mutant (187). This GRDim mutant carries a
A465T mutation in the D-loop of the second zinc finger of
the GR-DBD.

This D-loop is one of the primary dimerization interfaces,
consequently this mutant shows impaired homodimerization
and reduced functionality. Initial observation on the GRDim

mutant showed a strongly impaired transactivation and retained
capability to transcriptionally repress genes, particularly as a
monomer (111). Follow-up work on the GRDim found that there
was still transactivation of certain genes possible by these mutant
receptors (129, 131). This raised the question again if the GRDim

was still capable of some dimerization and or DNA binding. An
in vivo imaging study with labeled GR showed that the GRDim is
still capable of dimerization with endogenous and synthetic GCs,
but with a lower efficiency than WT for endogenous GCs (188).
The ability of the GRDim mutant to bind to the DNA has been
a point of controversy since there is evidence against (111, 189)
and pro DNA binding (131, 190, 191). Current evidence seems
to suggest that the DNA binding capacity of the mutant is at
least partially preserved. A second GR mutant was generated
with an additional point mutation in the LBD of the receptor.
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FIGURE 7 | Overview of glucocorticoid-associated side effects.

This mutation is believed to disrupt a secondary dimerization
interface present in the LBD, leading to even poorer dimerization
and function than the GRDim mutant (188). In addition, under
normal physiological conditions, GRDim mice are healthy and
show no obvious phenotypes, except that they express interferon
genes in their intestinal epithelium (192), It has been shown
that under physiological conditions, GR binds to the DNA as a
monomer, exerting transcriptional functions related to cell-type-
specific functions, and that only after acute stress or injection
of GCs, GR dimers are formed leading to binding to full GRE
elements (119). Also, elegant, NMR-based work by Watson et al.
has shown that, depending on the DNA sequence where GR
dimers bind, an intramolecular signal, via a lever arm, provides
a dimer- and DNA-binding-stabilizing interaction between two
DBD domains, precisely via the amino acid that was mutated
in the GRDim version. The absence of this amino acid “weak
binding” in the GRDim version was enough to cause less robust
dimers and DNA binding (131).

It has been stated that the picture about the mechanisms of
glucocorticoid actions (transactivation/transrepression) is still far
from complete, especially for known GR mutants. In addition,
the aforementioned functional PPI interfaces, recent structural
biology work shows that the knowledge on GR dimerization
and structural conformation may be incomplete based on
structural homology and residue conservation between the NR
transcription factor family, and new dimer interfaces that remain
unexplored so far. In one study researchers have postulated that
the conformation of the GR that is generally accepted as the
dimeric conformation might not be correct and they propose
different configurations (113). The fact most of the structural
work so far was done on subdomains of the GR, as the whole
protein is very hard to crystalize, may contribute to this limited
knowledge of GR structure.

Many studies have investigated steroidal and non-steroidal
SEGRAM in the hope to be able to dissociate the GC-induced
anti-inflammatory effects from the GC-induced side effects (193–
197). Several interesting SEGRAM have been characterized [e.g.,
Al-438, LGD-5552, ZK216348, Mapracorat and Compound A
(CpdA)] and were shown to have dissociative profiles in vivo
(198–206). Despite the intensive research, none of the SEGRAM
have reached the market today. So far, only Fosdagrocorat (for
RA) (207–209) andMapracorat (for ocular inflammatory diseases
and skin inflammation) have reached clinical trials.

To prevent GC-induced side effects, strategies other than
shifting the balance between the monomeric and the dimeric GR
are also followed (184–186). Some aim at cell-specific targeting
of GCs via antibody- or peptide-GC conjugates (210) or via
liposomes (211), thereby preventing systemic GC-effects. Other
studies investigate the therapeutic use of GC-induced proteins
(e.g., GILZ, the protein coded by the TSC22D3 gene) without
administrating GCs themselves. By this, steps are undertaken
to develop therapies that stimulate only the wanted anti-
inflammatory GC-functions without inducing the broad and also
the unwanted GC-effects (212). Further, studies also invest in
the therapeutic potential of combination therapies, such as the
combination of GR and PPAR agonists (213, 214).

GC THERAPY IN ACUTE VS. CHRONIC
INFLAMMATION: SIRS AND THE
SEDIGRAM CONCEPT

During the recent years, it has become clear that the old
idea in GC-research, that claims that GC anti-inflammatory
effects can be separated from GC-induced side effects by simply
dissociating GR TR from GR TA, because the former would

Frontiers in Immunology | www.frontiersin.org 10 July 2019 | Volume 10 | Article 154573

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Timmermans et al. A General Introduction to Glucocorticoid Biology

be mainly monomeric-driven GR functions and the latter GR
homodimeric-driven functions. To date it is known that this
separation cannot be made that strictly. In addition, GRDim

mice studies showed that not all GC-induced side effects are GR
dimer-driven and that thus also monomeric GR is involved in
at least some side effects. Indeed, GRDim mice were observed
to develop osteoporosis and muscle atrophy, despite their lack
of GR dimer-dependent effects (215, 216). Next to this, the
GR dimer was found to be indispensable for the GC-mediated
protection in models of acute inflammation. GRDim mice are
strongly sensitized in models of TNF- and LPS-induced Systemic
Inflammatory Response Syndrome (SIRS) (217, 218) and these
mice could furthermore no longer be protected by a prophylactic
Dexamethasone administration (192). Additionally, GR dimer-
induced GRE genes were found to be important in the protection
against SIRS: this was shown for DUSP1 (217) (encoding MKP-
1) and TSC22D3 (212) (encoding GILZ). Finally, skewing the
GR toward the monomer by using CpdA sensitized mice for
TNF-induced SIRS, suggesting that GR monomers are unable
to protect in this model of acute inflammation and that GR
monomers should rather be avoided in SIRS (219). Altogether
these data illustrate the importance of the GR dimer in the
protection against acute-inflammation.

As a consequence of the former observations in GRDim mice,
the SEGRAM concept needed to be revised. Therefore, recently,
it was proposed that chronic inflammatory diseases which
require a long-term GC therapy would benefit from “Selective
Monomer GR Agonists and Modulators” (SEMOGRAMs), since
these SEMOGRAMs would avoid important side effects such as
hyperglycemia that are detrimental for the patients. Recently, it
was also observed that ligand-induced GR turnover leading to
GCR is GR dimer dependent (220). The latter observation thus
further supports the need for SEMOGRAMs for the treatment of
chronic inflammation. On the other hand, in acute-inflammatory
settings such as SIRS, where GR dimers are indispensable,
the administration of GCs that increase the GR dimerizing
potential, termed “Selective Dimer GRAgonists andModulators”
(SEDIGRAMs), would be the preferred strategy to follow (221).

There has been some doubt about the value of the GRDim

mouse tool and its inability to form homodimers and bind DNA.
Although in vitro experiments (making use of high GC-doses)
showed very little effect of the Dim-mutation onGR dimerization
and DNA binding (188, 191), in vivo research confirmed

that GC-induced transcription is very broadly hampered in
GRDim vs. GRWT mice (192, 222). Moreover, the remaining
GRDim transcription was observed to be especially the result
of GR monomer functioning at half-sites (119). Although we
are aware that a second interface in the GR LBD is also of
relevance for dimerization and that remaining dimerization in
the GRDim mutant is probably provided through this protein-
protein contact, the latter studies confirm the value of the
GRDim mouse-tool.

FUTURE PERSPECTIVES

Certain challenges and (new) questions remain to be answered or
further investigated. GCR in patients is still largely an unresolved
issue, especially in complex diseases such as sepsis but also
in severe asthma. Understanding GC resistance, preventing or
reverting it could mean a real breakthrough in current medical
practice. Another avenue of research, aside from more selective
dimer/monomer ligands, is GR structure and DNA binding
conformation as some more recent research suggested that the
GR can bind to DNA is a tetramer conformation instead of a
dimer. Also, the non-genomic effects of GCs and GR are far
from understood and need more research. Finally, a wealth of
information has been published using a variety of GR ligands,
some being endogenous ligands, others synthetic ligands, all of
which may have very different effects on the canonical GR and
non-canonical ones (splice variants, shorter proteins) and even
different effects in different mammalian species or cell types. It
is a big challenge for the community to try to streamline this
information in a comprehensive way.
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Inflammation is a complex process which is highly conserved among species.

Inflammation occurs in response to injury, infection, and cancer, as an allostatic

mechanism to return the tissue and to return the organism back to health and

homeostasis. Excessive, or chronic inflammation is associated with numerous diseases,

and thus strategies to combat run-away inflammation is required. Anti-inflammatory

drugs were therefore developed to switch inflammation off. However, the inflammatory

response may be beneficial for the organism, in particular in the case of sterile tissue

injury. The inflammatory response can be divided into several parts. The first step

is the mounting of the inflammatory reaction itself, characterized by the presence

of pro-inflammatory cytokines, and the infiltration of immune cells into the injured

area. The second step is the resolution phase, where immune cells move toward an

anti-inflammatory phenotype and decrease the secretion of pro-inflammatory cytokines.

The last stage of inflammation is the regeneration process, where the tissue is

rebuilt. Innate immune cells are major actors in the inflammatory response, of which,

macrophages play an important role. Macrophages are highly sensitive to a large number

of environmental stimuli, and can adapt their phenotype and function on demand. This

change in phenotype in response to the environment allow macrophages to be involved

in all steps of inflammation, from the first mounting of the pro-inflammatory response to

the post-damage tissue repair.

Keywords: glucocorticoids, macrophages, inflammation, tissue repair, phagocytosis glucocorticoid receptor

Macrophages therefore, appear to be an ideal target of anti-inflammatory drugs due to their central
role in inflammation. Glucocorticoids (GCs) are highly potent anti-inflammatory drugs, commonly
used around the world. GCs have been used for decades to treat a variety of inflammatory diseases
such as rheumatoid arthritis, contact allergy, or pulmonary diseases. Since the first GC therapies
during the 1950s, various synthetic GCs have been developed to optimize their action, and new
molecules are still under development to modulate therapeutic effects vs. the adverse effects of these
drugs. Surprisingly, given the importance of macrophages in the inflammatory response, the direct
effects of GCs on macrophages are less well-documented. The present review aims at summarizing
the knowledge on macrophage functions during the post-injury inflammatory response, with a
focus on sterile inflammation and tissue repair, discussing how GC signaling pathways operate in
macrophages, and finally on the specific action of GCs on macrophages.
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MACROPHAGES AND TISSUE
REPAIR—EXAMPLE OF SKELETAL
MUSCLE REGENERATION

Similar Macrophage Subtypes Are Found
in Various Tissues During Repair
Macrophages belong to the innate immune system, however
their role is far more than protecting against pathogens. In
the late nineteenth century, Metchnikoff originally described
and named these cells as “macro” (big) “phage” (eaters) due
to their phagocytotic activity. In the following 100 years,
scientists discovered that macrophages are not only phagocytic
cells. Different macrophage subtypes were described, first in in
vitro experiments, based on the main cytokinic activation of
lymphocytes, allowing macrophages to be divided into different
categories. “Classically activated” macrophages are induced by
stimulation with the Th1 cytokine IFNγ and “alternatively
activated” macrophages, involved in anti-inflammatory processes
were observed when using the Th2 cytokine IL-4 (1). These
two activation states were also called M1 (or pro-inflammatory
macrophages) and M2 (or anti-inflammatory macrophages),
respectively. However, this simplistic view of two potential
statuses was quickly expanded on. Macrophages can adopt a
very large panel of phenotypes depending on the inflammatory
cues they encounter, even in vitro (2–4). In vivo, the situation is
more complex. The terms M1 and M2, although widely used, are
not appropriate to describe specific and dynamic inflammatory
status that occurs in the inflammatory milieu of a living organism
(5, 6). The Ly6C (Lymphocyte antigen 6 complex, a membrane
protein expressed bymonocytes, andmacrophages) and CX3CR1
(chemokine (C-X3-C motif) receptor 1, another transmembrane
protein involved in the adhesion and migration of leukocytes)
antigens have been widely used to classify pro-inflammatory
and anti-inflammatory macrophages in the context of post-
injury inflammatory response (7). During sterile inflammation,
pro-inflammatory Ly6CposCX3CR1neg(CCR2posF4/80low) cells
infiltrate the injured tissue. After a rather undefined set
of signaling events, a phenotypic switch occurs whereby
macrophages lose Ly6C and CCR2 and gain CX3CR1 and
F4/80 (forming Ly6CnegCX3CR1posCCR2low/negF4/80high cells)
corresponding to their anti-inflammatory status (8). This
sequence of events from the infiltration of pro-inflammatory
macrophages to the phenotypic switch toward anti-inflammatory
activity appears to be universal. These events have been described
after injury in heart (9), central nervous system (10, 11), liver
(12), kidney (13, 14), and skeletal muscle (15–18).

Skeletal Muscle Regeneration
The core cell type within skeletal muscle is the myofiber—a
multinucleated cell formed by fusion of precursor cells (19).
Skeletal muscle has a high regenerative capacity, after injury,
muscle regenerates ad integrum, where the old damaged cells
are replaced by proliferation and differentiation of satellite cells,
which are the muscle resident stem cells (MuSCs). Skeletal
muscle regeneration, therefore, is an ideal paradigm to study the
biological events involved in tissue repair/regeneration, helped

by highly reproducible experimental models in mouse (20).
Satellite cells are localized under the basal lamina surrounding
each myofiber, in a quiescent state. After an injury, damaged
myofibers undergo necrosis which triggers alteration of the
satellite cell niche, in turn leading to their activation (19).
ActivatedMuSCs proliferate, in order to produce a critical pool of
cells necessary to repair muscle, after which MuSCs differentiate
into myocytes, that eventually fuse to form new myofibers.
While myogenesis takes place, multiple other biological processes
occur simultaneously during muscle regeneration. Angiogenesis
is required for efficient muscle regeneration. Endothelial cells
and MuSCs communicate through secreted factors to mutually
promote myogenesis and angiogenesis (21). Fibro-Adipogenic
Precursors (FAPs) control the extracellular matrix remodeling
during muscle regeneration, depending on the number and
differentiation status of the FAPs (22). Thus, muscle regeneration
is a complex process where multiple cell types interact and
coordinate to reconstruct the tissue (Figure 1).

Each step of muscle regeneration is linked to the inflammatory
response, which is mainly mediated by macrophages.
Macrophages modulate myogenesis through MuSCs (17),
as well as angiogenesis (21), and matrix remodeling (22) that
occur concomitantly. Macrophages represent more than 75%
of the leukocytes present in a regenerating muscle; however
other immune cells are present in lower numbers (16) and are
more prominent during the early steps of muscle regeneration.
Neutrophils are transiently present during the very first days after
injury, but their contribution to muscle regeneration has not
been deciphered yet and may depend on the extent of the injury
(23). Eosinophils participate in muscle regeneration through
the secretion of IL-4 that activates FAP proliferation (24). Tregs
secrete the growth factor amphiregulin that stimulates MuSC
expansion and differentiation (25). Therefore, macrophages are
major actors in the regulation of skeletal muscle regeneration
through the establishment of various interactions with several
cell types. While the above-mentioned studies clearly show how
macrophagic populations impact on other cell types, the effect of
those cells on macrophage phenotype and function has not been
evidenced yet.

The Inflammatory Phase During
Muscle Regeneration
Tissue injury triggers the release of chemoattractants into
the bloodstream that recruit circulating leukocytes. Monocyte
entry into the injured muscle is regulated through the
CCL2 (MCP1)/CCR2 axis. In mouse models of CCR2 or
CCL2 depletion, muscle regeneration is severely hindered (26,
27). Indeed, only circulating Ly6CposCCR2pos monocytes are
recruited into the injured muscle (6, 15, 18). In the nur77KO
mouse model where CCR2negLy6Cneg monocytes are absent
from the circulation, muscle regeneration occurs normally,
indicating that circulating CCR2negLy6Cneg monocytes are not
recruited into the injured muscle (15, 18). Once in the tissue,
macrophages clear debris from apoptotic and necrotic cells
through efferocytosis. They also potentiate the survival and
growth of MuSCs by establishing direct cell-cell contacts (28, 29).
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FIGURE 1 | Phenotype switch of macrophages regulates skeletal muscle regeneration. After an injury, monocytes are recruited from the bloodstream, and infiltrate the

damaged area. In the tissue, monocytes acquire a damaged associated pro-inflammatory phenotype. They secrete inflammatory cytokines such as IL-1β and IL-6 and

exert specific functions: they stimulate the proliferation of the myogenic precursors (myoblasts) and trigger fibroblast apoptosis to avoid excessive matrix deposition.

Upon phagocytosis of cell debris that triggers the activation of AMPK, CEBPβ-CREB axis and P38/MKP1 pathways, pro-inflammatory macrophages switch their

phenotype toward an anti-inflammatory restorative phenotype. Through the secretion of a variety of factors, among which anti-inflammatory cytokines IL-10 and

TGFβ, anti-inflammatory macrophages are involved in tissue repair and regeneration through the stimulation of myoblast differentiation and fusion, of FAP/fibroblasts

for matrix remodeling and of angiogenesis.

Moreover, pro-inflammatorymacrophages secrete factors such as
IL-6, IL-1β, or VEGF that stimulate MuSC proliferation (15, 17).
Finally, pro-inflammatory macrophages control FAP apoptosis,
preventing excess matrix deposition by fibroblastic cells (22, 30).

Macrophage Phagocytosis and the
Resolution of Inflammation
At the time of resolution of inflammation, pro-inflammatory
macrophages shift toward an anti-inflammatory phenotype
(Figure 1). Signaling pathways involved in this switch are
beginning to be documented in the literature. Currently,
3 main intracellular pathways have been described: AMPK,
p38/MKP1, CREB-C/EBPβ (see below section “Time and
space orchestration of the inflammatory response”). While the
activation of these pathways is required, the activating upstream
cues are still unknown. However, one likely candidate is the
phagocytotic pathway that has been shown to be essential for
the acquisition of an anti-inflammatory phenotype. Efferocytosis,
that is the ingestion of apoptotic cells by macrophages, results
in a reduction of pro-inflammatory markers, and an increase
in the expression of anti-inflammatory markers, suggesting
that the death signals of apoptotic cells may contribute to
the generation of an anti-inflammatory phenotype (31–33).
Anti-inflammatory macrophages act on several cell types in
regenerating skeletal muscle, inducing both differentiation,
and fusion of MuSCs as well as growth of the newly

regenerated myofibers (15–17). Anti-inflammatory macrophages
promote extracellular matrix remodeling by inducing fibroblast
survival and collagen production through the secretion of
TGF-β (30). In vitro experimentation has shown that anti-
inflammatory macrophages stimulate endothelial cell sprouting
and differentiation, inducing vessel formation concomitantly to
myogenesis, through the secretion of specific effectors, such as
the cytokine Oncostatin M (21). Accordingly, CCR2 KO mice
exhibit defect of vascularization in the regenerating muscle, as
macrophages are not efficiently recruited to the site of injury
(34). Thus, anti-inflammatory macrophages are a key component
of the regeneration phase. They act on multiple cell types
within the muscle, promoting growth of newly formed muscle
cells, remodeling of extracellular matrix and revascularization
all simultaneously, allowing the full, and importantly functional,
recovery of the muscle tissue.

Time and Space Orchestration of the
Inflammatory Response
The inflammatory response needs to be tightly orchestrated
to be efficient, and the regulation of macrophage activity
is no exception. Resolution of inflammation is a key
step in skeletal muscle regeneration, that must occur
timely. Indeed, when the pro-inflammatory phase is
blunted by the inhibition of the expression of the pro-
inflammatory cytokine IFNγ (35) or reduced by the
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early administration of anti-inflammatory cytokine IL-
10 (36), muscle regeneration is impaired, resulting in the
formation of smaller myofibers. Similarly, blunting the
inflammatory phase by administrating anti-inflammatory
drugs or icing the early injured muscle to prevent the entry of
monocytes is detrimental for muscle regeneration [reviewed
in (37)].

AMP-activated protein kinase (AMPK), a key metabolic
regulator is also important for the generation of anti-
inflammatory macrophages (16). Similarly, the p38/MKP1
pathway (MAP kinase pathway) modulates the phenotype
of macrophages. Inhibition of the phosphatase MKP1
allows for an early activation of AKT, leading to a too early
acquisition of the anti-inflammatory status in macrophages,
resulting in to an impairment of muscle regeneration (36).
Finally, blocking the CREB-C/EBPβ cascade prevents
the acquisition of the anti-inflammatory phenotype of
macrophages, that also impairs muscle regeneration (38).
Given the importance of the process of the resolution of
inflammation for tissue homeostasis, it is likely that other
pathways are also involved in the switch of the inflammatory
status of macrophages.

GLUCOCORTICOIDS: A GENERAL
OVERVIEW

Origins of GCs
The hypothalamic-pituitary-adrenal axis is critical for the
regulation of a variety of biological processes: stress, feeding,
circadian rhythm, growth, and reproduction. GC production
is regulated, via multiple hormonal inputs at all levels of
the axis [reviewed in (39, 40)]. The hypothalamus secretes
corticotropin releasing hormone (CRH), the first step in the
regulation of GC secretion. CRH is controlled through input
of the nervous system, such as exposure to stress, circulating
hormones like progesterone and adrenaline, but also by GCs.
CRH acts on the pituitary gland to induce the secretion of the
Adreno Cortico Tropic Hormone (ACTH) into the bloodstream.
ACTH binds to its receptor on cells of the adrenal cortex to
regulate the secretion of a variety of hormones, especially the
GC cortisol (in humans), and corticosterone (in mouse). The
HPA axis, and therefore GC production is also under control
of the inflammatory response. Using computational modeling
and comparison to clinical data, it was demonstrated that
after an inflammatory trigger, ACTH and cortisol rise within
minutes to hours, slightly after cytokine release. However, this
is not maintained for long, and returns to baseline after 10 h
(41). The homeostatic release of GCs after an inflammatory
challenge plays an important protective role, which without
(e.g., through a disrupted HPA axis) results in relatively mild
inflammation becoming deadly [reviewed in (42)]. Investigation
into the potential medical use of GCs started in the 1930s,
where Philip Hench, Edward Kendall, and Tadeusz Reichstein
showed the incredible therapeutic potential of these molecules
as anti-inflammatory drugs, and later received the Nobel
prize for their work in 1950. From that point, GC therapies

spread all around the world and are still used today to
counter inflammation.

The GC Receptor
GCs act through the Glucocorticoid Receptor (GR), a member
of the nuclear receptor superfamily, and first cloned in 1985
(43). The gene encoding GR is located on the locus 5q31.3 in
the human genome comprised of 9 exons (43). GR expression
gives rise to the expression of 2 major isoforms: GRα (777
amino acids) and GRβ (742 amino acids), along with other
less well-expressed (and less well-studied) isoforms (43). GRα

is the active isoform that binds GCs and that regulates target
gene expression. GRβ isoform is a regulator of the α isoform,
acting as a dominant negative (44, 45). A third isoform of
the receptor, GRγ has also been characterized. This isoform
only differs from GRα by one arginine in the DNA Binding
Domain (DBD) that alters the capacity for the isoform to regulate
gene expression, giving GRγ its own transcriptomic profile (46).
This altered profile may play a role in GC resistant leukemia
(47), however its action during inflammation has not yet been
extensively studied.

The 3D structure of GR is comprised of several domains:
the N-terminal domain, the DBD, the hinge region, the Ligand
Binding Domain (LBD) and the C-terminal domain (48–50).

GR, like other nuclear receptors is a ligand regulated
transcription factor, which regulates gene expression by binding
either directly, or indirectly to the genome [review in (51)]:

- Activation: after ligand binding in the cytoplasm, GR
translocates to the nucleus, and directly binds specific
palindromic regions on DNA called Glucocorticoid Response
Elements (GREs). GREs are present in the regulatory regions,
such as the promoters, enhancers, and even within the exons
or introns of target genes (such asGilz andDusp1) and binding
of GR dimers induces the transcription of these genes (positive
GRE) (51). Transactivation can also occur by a tethering
mechanism, whereby GR associates with other transcription
factors that positively drive gene expression. Transcription
can also be induced by monomeric GR that binds DNA to a
half-site motif (52).

- Repression: as with activation, nuclear GR can bind DNA and
represses the transcription of genes. GR can directly act as a
monomer in association with other transcription factors such
as NFκB (53) or AP-1 (54) to transrepress gene expression
by a tethering mechanism (51). GR monomer sequestrates
transcription factors to prevent their binding to promoters and
so to prevent transcription. Moreover, GR cis-repress genes by
directly binding so called negative GREs or by directly binding
the NFκB or AP-1 response elements (55). More mechanisms
are currently emerging driven by genome wide studies that
are reviewed in detail elsewhere in this Research Topic
(Escoter-Torres et al., Submitted).

Thus, GR is a transcription factor that regulates gene expression
through several pathways [reviewed in (45, 49, 56, 57)] and in a
tissue dependent manner (58). Non-genomic effects of GCs, that
is GC regulated actions that are independent from the regulation
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of gene expression, have been described in several tissues and that
were very recently reviewed in Panettieri et al. (59).

Adverse Effects of GCs
During the 1960s, it became clear that clinical use of GCs causes
severe metabolic side effects. In 1970, David and colleagues
reviewed 20 years of GC utilization (60). They discussed side
effects that were observed in almost all tissues of the body.
In 1970, it was already known that long exposure to GCs
was responsible for several metabolic disturbances, but more
recent studies have expanded on this, dramatically enhancing
our knowledge about GC effects on metabolic organs. Chronic
GC use results in the development of type 2 diabetes (due
to increased gluconeogenesis, hepatosteatosis, decreased insulin
sensitivity, and decreased glucose consumption) (61–63), skin
(64, 65), and muscle atrophy (66), and bone mass reduction
(both due to induction of catabolism and/or reduction of
anabolism) (67). Moreover, free fatty acids are increased in the
bloodstream and in clinical cases of GC excess—for example
Cushing’s Disease, this results in increased adipose tissue mass,
but usually localized to the face and truck, resulting in a
“Moon-Face” and “Buffalo Hump” (68, 69). Although literature
documenting GC side effects is very abundant, the molecular
mechanisms involved have not been completely elucidated,
in part due to the complexity of the tissue specific effects
of GCs.

Anti-inflammatory effects of GCs were historically associated
with the monomeric form of GR, mainly due to the evidence
that GR can bind and inhibit, and thus transrepresses
the inflammatory transcription factor NFκB, downregulating
the expression of pro-inflammatory cytokines (39, 70). The
metabolic actions of GR were ascribed to the dimer, suggesting
that drugs specific to monomeric, over dimeric GR would
exhibit all beneficial anti-inflammatory effects without having
negative side effects. A mouse model, in which GR dimerization
is impaired (GRdim), has allowed several laboratories to show
that GR dimerization is also required for the anti-inflammatory
properties of GCs in several contexts, such as rheumatoid
arthritis (71, 72), septic shock (73, 74), or inflammatory bowel
disease (75). Interestingly however, the metabolic side effects of
GCs are enhanced in the GRdim mice. The loss of dimerization
can drive increased insulin resistance and obesity, suggesting
that the classical view of monomeric GR only being associated
with the anti-inflammatory actions is not entirely correct (76).
Therefore, both inflammatory and metabolic regulation by GCs
may be driven by both the dimer and the monomer, depending
on the cell type, the tissue, and the pathology considered.

GLUCOCORTICOIDS, MACROPHAGES,
AND TISSUE REPAIR

First investigations into the action of GCs on macrophages
during tissue repair started a few decades ago. One of the
side-effects of chronic GC exposure is the loss of bone mass
(osteopenia/osteoporosis). Bone resorption, that is, the digestion
of existing bone, is more efficient when highly specialized

macrophages involved in bone remodeling, osteoclasts, are in
direct contact with the bone. Resident tissue osteoclasts are
derived from myeloid progenitor cells during development,
however they are maintained throughout life by circulating
blood monocytes fusing to existing osteoclasts in the bone (77).
Osteoclasts treated with cortisol are more adherent to bone, more
sensitive to RANKL, and release more calcium useable for bone
resorption, enhancing the bone resorption process (78–80). GCs
also increase osteoclastogenesis by driving the production of
RANKL, the necessary factor for osteoclast differentiation, and
downregulating osteoprotegerin, the decoy receptor for RANKL
(81, 82). It was possible to prevent GC-induced osteoporosis
by treating mice with a RANKL neutralizing antibody, further
demonstrating that the effects of GCs on osteoclasts contribute to
the bone loss that occurs during GC treatment (83). GCs can also
have direct effects on osteoclasts. Using either mice deficient for
GR in osteoclasts or 11BHSD2 overexpressing mice (where the
GC inactivating enzyme is over-expressed in osteoclasts), it was
confirmed that GCs act directly on osteoclasts to modulate bone
density, in part by increasing the life span of osteoclasts (84, 85).
Interestingly, chronic treatment with GCs decreases osteoclast
life-span, suggesting a temporal effect (67, 86).

A mouse model based on the cre/loxP system was designed
to specifically deplete GR in the myeloid lineage where the
cre recombinase gene is located at the Lysozyme M locus.
These so-called LysMcre;GRfl/fl mice, delete GR in monocytes,
macrophages and neutrophils. In a mouse model of contact
hypersensitivity, the anti-inflammatory effects of GCs were
shown to be mediated through GR in macrophages, rather
than other tissues. Treatment of LysMcre;GRfl/fl mice with
GCs failed to repress the cytokines IL1-β, MCP1, MIP2,
and IP10. In addition, GRdim mice are also insensitive to
GCs, indicating that GR dimerization, likely in macrophages,
is required in this context (87). In a model of myocardial
infarction, LysMcre;GRfl/fl mice die earlier after infarction than
wild-type animals with full expression of macrophage GR,
probably due to the persistence of Ly6Cpos macrophages into
the infarcted area, leading to a dysregulation of the resolution
of inflammation and a defects in wound healing. This results
in alteration of angiogenesis, abnormal production of TGFβ,
decreased production of IL-1α and finally deregulation of
myofibroblast differentiation leading to scar formation (88).
Moreover, in a mouse model of inflammatory bowel disease,
macrophages from LysMcre;GRfl/fl animals show a defect in
the acquisition of the anti-inflammatory status. After 10 days,
IL-1β, and IL-6 expression is not repressed and expression
of anti-inflammatory genes (CD163, CD206, and IL-10) is
not induced, leading to a defect in tissue repair (89). Local
availability of GCs also plays an important role in inflammation.
The enzyme 11-β-hydroxysteroid dehydrogenase (type-1)
(11bHSD1) catalyzes the conversion of the inactive cortisone to
cortisol, enabling binding to GR and signaling. Myeloid specific
knockouts of 11bHSD1, preventing endogenous GC signaling in
macrophages and neutrophils, result in a more severe arthritis
phenotype (90). This is however not limited to macrophages,
inhibition of 11bHSD1 increases neutrophil recruitment during
peritonitis (91).
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Expansion of GC research into zebrafish models is still
in the early stages, and so appears somewhat contradictory.
No effect of the GC beclomethasone has been observed on
the migratory capacity of macrophages toward the wounding
area in an amputation model in zebrafish (92). However in a
separate model of wounding, prednisolone reduced macrophage
accumulation in both larvae and adults (93). This may be due
to the different ligands used, as different ligands have previously
been shown to have different transcriptional effects (51). Thus, in
most tissue injuries, GC-GR axis appears to be a central pathway
in macrophages to regulate the resolution of inflammation and to
proceed to tissue repair after injury.

GLUCOCORTICOIDS AND
MACROPHAGES—CELLULAR ASPECTS

GCs Regulate Survival, Migration, and
Proliferation of Macrophages
Maintenance of living immune cells in appropriate numbers
is essential to modulate the inflammatory response, and GCs
appear to play several roles in the regulation of macrophage
life-span. GCs exert anti-apoptotic effects on macrophages:
macrophages treated with dexamethasone are more resistant to
lipopolysaccharide (LPS)-induced apoptosis (94). Similar results
were obtained with other apoptotic stimuli (staurosporine,
actinomycin D, or cyclohexine) where GC effects are mediated
through ERK1/2 phosphorylation in an adenosine receptor A3-
dependent-manner (95, 96).Moreover, macrophages treated with
dexamethasone are smaller with less cytoplasmic extensions
(97), which could be related to altered migratory capacity. The
capacity of macrophages to move toward the injured area also
shapes the inflammatory response. Macrophages treated with
hydrocortisone (cortisol) show a decreased capacity to migrate
in vitro (98, 99). In vivo, a similar effect was observed in a
model of lung injury induced by bleomycin, where GCs inhibited
macrophage infiltration into the lung (100). Studies using
myeloid like cells and whole bone marrow preparations showed
that GCs decrease proliferation of cells (including macrophages)
in vitro (101, 102), but GC impact on proliferation has never
been investigated onmacrophage cultures. GR activation also has
potent effects on nitric oxide (NO) production by macrophages.
Initial studies in the J774a.1 macrophage cell line demonstrated
that GCs suppress the induction of the NO-generating enzyme,
nitric oxide synthase, thus controlling the level of NO produced
by the cells in response to an inflammatory stimulus (103).
Later studies however, showed that GCs are protective in a
mouse model of stroke through increasing NO production in a
non-genomic manner. By activating PI3K, GCs rapidly induce
NO dependent vasodilation (104). The effects of GCs on NO
production were further demonstrated to be dose dependent,
with lower doses eliciting an increase in NO, while higher doses
reducing the production of NO (105).

Thus, GCs promote macrophage survival in order to switch
off inflammation and to sustain late phase of healing. In the
following decades, studies have focused on the understanding of
the molecular aspects of GC signaling pathways.

GCs and Phagocytosis
During inflammation, damaged tissue produces cell debris,
and releases cytoplasmic proteins into the environment due
to cell lysis (106). Before tissue repair can start, debris must
be cleared up (106). The clearing process is mainly performed
by neutrophils, then macrophages, through phagocytosis of
tissue debris, i.e., efferocytosis (106). Since phagocytosis is a
major function of macrophages and is an essential trigger
of their inflammatory switch (see above section “Macrophage
phagocytosis and the resolution of inflammation”), the action of
anti-inflammatory treatments on this process is of importance.
GCs were detected very early to have an impact on phagocytic
activity of macrophages (107). Later on, studies showed in in
vitromodels using a variety of particles (zymosan, heat-kill yeast,
apoptotic neutrophils, latex beads, bacteria) that dexamethasone
increases the phagocytic activity of monocytes/macrophages
(95, 102, 108–115). Some of these studies have also shown,
using a GR antagonist (RU486), that GC-dependent phagocytosis
is also GR dependent (109, 110). The increased macrophage
phagocytic activity by dexamethasone is annexin 1-FRP1
dependent (116). Annexin 1 belongs to the superfamily of
annexin protein, which bind acidic phospholipids in the presence
of Ca2+ (116). Annexin A1 is described to be a pro-resolving
molecule during inflammation (117). Indeed, when the annexin
receptor FRP1 is antagonized by the Boc1 compound or in
annexin 1-null macrophages, dexamethasone loses its effect on
phagocytosis (118).

On closer examination of the phagocytic process, it became
clear that GCs induce the up-regulation of several membrane
receptors, such as the scavenger receptor CD163, required
to detect and bind haptoglobin, a product from hemoglobin
degradation (111, 113, 114, 119). The mannose receptor CD206,
required for the detection of specific oligosaccharides on the
bacterial wall, is also upregulated in macrophages treated by
GCs (120). Moreover, GCs upregulate the membrane receptor
Mer tyrosine kinase (MerTK) (121), in a C/EBPβ dependent-
manner (122). When mertk is silenced, dexamethasone-induced
phagocytosis is reduced (121). MerTK belongs to the Tyro3,
Axl, MerTK (TAM) family of tyrosine kinase receptor. It
binds to phosphatidyl serine exposed on the surface of
apoptotic cells (121, 122). MerTK is also responsible for
the phagocytosis of protein S-opsonized apoptotic neutrophils
by GC-treated macrophages (123). The other members of
the TAM family do not seem to be necessary for GC-
induced phagocytosis, as Tyro3 deficient, or Axl deficient
mice are able to successfully clear apoptotic cells in response
to GCs (124). Interestingly, in a model of serum-transfer
induced arthritis, Axl, MerTK, and CD163 upregulation in
macrophages requires GR function on synovial fibroblasts,
indicating their regulation through cross-talk between local cells
(72). Finally, GCs regulate the C/EBPβ-dependent expression of
nuclear receptors (liver X receptor [LXR], retinoid X receptor
α [RXRα] and peroxisome proliferator-activated receptor δ

[PPARδ]), which are required for prolonged phagocytosis
of macrophages (122). Thus, GCs act on several steps of
phagocytosis and their effects are mediated through various
signaling pathways.
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GLUCOCORTICOIDS AND GENE
EXPRESSION IN
MACROPHAGES—MOLECULAR ASPECTS

Although the first effects of GCs on macrophages were reported
in 1950, the literature about their specific effects on this
cell type is not abundant (see section GCs on macrophages:
expression of anti-inflammatory effectors). In 1950, Dougherty
and colleagues showed in a model of local inflammation in mice
that cortisone treatment reduces the number of macrophages in
the inflamed area (125). In another model of skin inflammation
induced by injection of turpentine, Spain et al. showed that
cortisone inhibits the formation of granulation in the inflamed
area (granulations corresponding to macrophages according to
the authors) and a decrease of carbon particle phagocytosis
when administrated early during the inflammatory response
(107). However, the experiments done by Gell and Hinde on
intraperitoneal macrophages exposed to bacteria showed that
cortisone does not alter either the number of macrophages or
their phagocytic capacity (126).

GCs on Macrophages: Expression of
Anti-inflammatory Effectors
It is well-known thatmacrophages can exert pleiotropic functions
through the secretion of a variety of factors. Macrophages
are highly versatile, and may secrete pro-inflammatory, anti-
inflammatory, or other factors necessary at each step of the
inflammatory response. GCs decrease the secretion of the
pro-inflammatory cytokines TNFα (94, 127), IL-1, IL-6 in
macrophages exposed to IFNγ (100, 113). Monocytes treated
with GCs increase their secretion of IL-10 and TGFβ (128, 129)
and express high levels of the anti-inflammatory membrane
markers CD206 (120), CD163 (95, 111, 113, 114, 119, 130)
and CD169 (95, 131). GC anti-inflammatory effects are partly
mediated by Mitogen-activated protein kinase phosphatase-1
(MKP-1) in macrophages, as it was GC-driven inhibition of IL-6
expression was abrogated inMKP-1 deficient macrophages (132).

Furthermore, macrophages exposed to GCs secrete molecules
which have direct functions on the extracellular matrix
and therefore participate to matrix remodeling during the
late phase of the inflammatory response. The production
of elastase, collagenase and plasminogen activator (whose
secretion is elevated in pro-inflammatory macrophages and
which are required to degrade extracellular matrix) is reduced
in macrophages treated with GCs (133, 134). On the contrary,
macrophages exhibiting an alternatively activated status (i.e.,
IL-4 driven) secrete more fibronectin when treated with GCs,
participating in matrix remodeling at the time of tissue
repair (114, 135, 136).

GC Action on Macrophages: Regulation of
Gene Expression
GCs act through either the GR dimer or GR monomer, entirely
depending on the gene regulated. For example, in dermatitis,
GR dimerization is required to shut down the expression of

the pro-inflammatory cytokines IL-1β and MCP-1 whereas
TNFα downregulation induced by GCs does not require GR
dimerization (87). GCs also modulate chromatin architecture,
mainly closing down access to genes involved in inflammation,
preventing access to other transcription factors (137, 138).

Importantly, the gene regulatory actions of GCs depend on
the activation state of macrophages. Indeed, more than 10,000
genomic GR binding sites are induced by dexamethasone in
resting macrophages with more than 5,400 known GR target
genes, while in macrophages pre-treated with GCs, then LPS,
there is a rewiring of GR binding, with 13,000 binding sites and
more than 6,400 GR target genes identified (139). Furthermore,
GCs regulate a different set of genes in macrophages activated
with LPS or IFNγ indicating that genes are regulated by GCs
are also dependent on the inflammatory stimulus (130). LPS
stimulation also increases the ability of GR to bind DNA
indicating that pro-inflammatory stimulation potentiates GR
DNA binding, likely through the generation of more potential
binding loci (138, 139). Oh et al. also demonstrated that pre-
treatment compared to post-treatment of GCs with LPS results in
a differential effect on gene regulation. The number and location
of GR binding sites and p65 binding sites were different between
the GC pre-treated cells and the cells treated with LPS first, then
GCs (138). Furthermore, another GR partner, the Glucocorticoid
Receptor-Interacting Protein (GRIP) 1, also known as nuclear
receptor co-activator 2 (NCOA2) is required for the acquisition
of the anti-inflammatory phenotype of macrophages (140).
GRIP1 can be phosphorylated by Cyclin-Dependent Kinase 9
(CDK9) in a GR dependent-manner. Phosphorylated GRIP1, in
association with GR, binds GREs to induce the expression of
anti-inflammatory genes. However, phosphorylated GRIP1 is not
observed in GR repressed sites such as of IL1a or IL1b, indicating
that phosphorylated GRIP1 only acts on positive transcription of
anti-inflammatory genes, and it is likely that the phosphorylation
status of GRIP1 can modulate GR transcriptional activity (141).
Our understanding of the role of GR as an anti-inflammatory
transcription factor is still evolving, and with new technologies,
the actions of GR will become clearer with time.

The GC Effector GILZ in Macrophages
GC-mediated anti-inflammatory effects are known to be partly
mediated through the regulation of the expression of specific
proteins that in turn modulate inflammatory signaling. A
very well-studied example is Glucocorticoid-Induced Leucine
Zipper (GILZ). Originally found expressed in lymphoid tissues
(thymocyte, spleen, lymph nodes) treated by dexamethasone
(142), GILZ is a major regulator of GC effects in a variety of
cells. GILZ was also found to be expressed by macrophages in
liver and lung treated by dexamethasone (143). In the THP-
1 macrophage cell line, dexamethasone induces Gilz mRNA
expression after only 30min of treatment (143). GILZ acts by
binding the p65 subunit of the NFκB complex to shut down
its activity (143). GILZ also inhibits the expression of the Toll
like receptor 2 (TLR2), thus limiting the recognition of bacterial
components and the associated inflammatory signaling (143).
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GCs however also enhance the expression of TLR2 in a cell-
type specific manner (144, 145), suggesting that GILZ may
act as a homeostatic brake on GC enhanced TLR2 signaling.
Furthermore, GC-induced GILZ expression is strongly reduced
in annexin A1 deficient macrophages, therefore preventing the
downregulation of the pro-inflammatory cytokines IL-1, IL-6,
and TNFα (146, 147). This regulation is not dependent of the
annexin receptor FRP (146), thus, the exact mechanism by which
annexin regulates Gilz expression remains to be elucidated.

CONCLUSION

The effects of GCs on macrophages, especially in the broader
context of resolution of inflammation during tissue repair, are
not as well-understood as one would assume. GCs play key
roles in the regulation of macrophage homeostatic functions, as
well as the macrophage function as innate immunity cells. GR
however, does not act alone. In association with several partners
including other transcription factors (C/EBPβ, PPARs, NFκB)
or proteins that modulate its activity (GRIP1), GR controls the
functional properties of macrophages to resolve inflammation
and tissue damage. Finally, GCs regulate the expression of a

huge number of genes that are essential to relay their anti-
inflammatory properties such as Gilz and Annexin a1. Despite
60 years of work on GCs, we are still discovering further
molecular mechanisms that govern their actions. The role of
the inflammatory context (138, 139) and species differences
in GC mediated gene regulation (148) highlight that further
investigation is necessary to decipher, for each situation, how
GCs operate to regulate gene expression, and therefore control
macrophage function.
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The suppression of activated pro-inflammatory macrophages during immune response

has a major impact on the outcome of many inflammatory diseases including sepsis

and rheumatoid arthritis. The pro- and anti-inflammatory functions of macrophages have

been widely studied, whereas their regulation under immunosuppressive treatments such

as glucocorticoid (GC) therapy is less well-understood. GC-mediated glucocorticoid

receptor (GR) activation is crucial to mediate anti-inflammatory effects. In addition,

the anti-cancer drug roscovitine, that is currently being tested in clinical trials, was

recently described to regulate inflammatory processes by inhibiting different Cdks such

as cyclin-dependent kinase 5 (Cdk5). Cdk5was identified as a modulator of inflammatory

processes in different immune cells and furthermore described to influence GR gene

expression in the brain. Whether roscovitine can enhance the immunosuppressive

effects of GCs and if the inhibition of Cdk5 affects GR gene regulatory function in

innate immune cells, such as macrophages, has not yet been investigated. Here,

we report that roscovitine enhances the immunosuppressive Dexamethasone (Dex)

effect on the inducible nitric oxide synthase (iNos) expression, which is essential for

immune regulation. Cdk5 deletion in macrophages prevented iNos protein and nitric

oxide (NO) generation after a combinatory treatment with inflammatory stimuli and Dex.

Cdk5 deletion in macrophages attenuated the GR phosphorylation on serine 211 after

Dex treatment alone and in combination with inflammatory stimuli, but interestingly

increased the GR-dependent anti-inflammatory target gene dual-specificity phosphatase

1 (Dusp1, Mkp1). Mkp1 phosphatase activity decreases the activation of its direct target

p38Mapk, reduced iNos expression and NO production upon inflammatory stimuli and

Dex treatment in the absence of Cdk5. Taken together, we identified Cdk5 as a potential

novel regulator of NO generation in inflammatory macrophages under GC treatment. Our

data suggest that GC treatment in combination with specific Cdk5 inhibtior(s) provides

a stronger suppression of inflammation and could thus replace high-dose GC therapy

which has severe side effects in the treatment of inflammatory diseases.
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INTRODUCTION

Acute and chronic inflammatory diseases characterized by
excessive cytokine and nitric oxide (NO) generation are
frequently treated with glucocorticoids (GCs) despite their
negative effects including osteoporosis, insulin resistance, muscle
atrophy, and depression (1). Adrenalectomized mice failed
to survive endotoxic shock without the supplementation of
exogenous GCs (2, 3). GCs act through the glucocorticoid
receptor (GR or NR3C1), a ligand activated transcription
factor, that translocates upon dissociation of accessory proteins

(heat shock proteins and immunophilins) into the nucleus and
acts either as a monomer or a homodimer to transrepress
or transactivate target genes (4, 5). Both mechanisms are
crucial to reduce the inflammatory processes either by the
GR monomer interacting with pro-inflammatory transcription
factors such as nuclear factor kappa B (NF-κB), activator
protein 1 (AP-1) or interferon regulatory factor 3 (IRF3) or
by the GR homodimer to induce genes that mediate anti-
inflammatory effects like GC-induced leucine zipper (Gilz) or
dual-specificity phosphatase 1 (Dusp1, also known as Map kinase

phosphatase1, Mkp1). GC-induced Mkp1 inhibits inflammatory
signaling pathways by dephosphorylation of p38Mapk or c-
Jun N-terminal kinase (Jnk) (6, 7). Furthermore, Gilz, which is
another GR target gene, inhibits NF-κB function in macrophages

and T-cells (8–10). Macrophages are one of the first innate
immune response cells, and are therefore important targets for
the immunosuppressive effect of GC-mediated GR activation.
Mice lacking the GR in macrophages show decreased survival
during lipopolysaccharide (LPS)-induced endotoxic shock (11).
Furthermore, the activation of the GR in macrophages is
essential to limit pro-inflammatory cytokine production via
Mkp1-mediated p38Mapk inhibition (7). In addition, GCs have
been shown to mediate their anti-inflammatory effects during

contact hypersensitivity and inflammatory lung injury through
the GR in macrophages (12, 13).

Recently, inhibition of cyclin-dependent kinases (Cdks) was
found to regulate inflammatory processes by inducing apoptosis
in polymorphonuclear leukocytes (PMNs) (14). Roscovitine
(Seliciclib, CYC202) is a potent Cdk inhibitor for Cdc2, Cdk2,
Cdk5, Cdk7, and Cdk9 (15, 16). Inhibition with this small
molecule inhibitor is known to promote apoptosis in cancer cell
lines (17). In vivo, roscovitine has a potent anti-inflammatory
effects during lung inflammation caused by either lipoteichoic
acid (LTA) or Streptococcus pneumoniae and reduce PMN
numbers in bronchoalveolar lavage fluid (18). In inflammatory
models, such as bleomycin-induced lung injury and serum
transfer-induced arthritis, roscovitine enhances the resolution
of the inflammation by either decreasing the anti-apoptotic
protein Mcl-1, promoting neutrophil apoptosis or reducing
macrophages/monocyte numbers (19, 20). Moreover, the anti-
inflammatory role of roscovitine was substantiated by studies
with high doses in the RAW264.7 macrophage cell line, which
identified a suppression of LPS-induced inducible nitric oxide
synthase (iNos) expression and nitrite (NO−

2 ) production,
as well as Interleukin-1β (Il-1β), Interleukin-6 (Il-6), and
Tumor necrosis factor-α (Tnf-α) mRNA levels (21, 22). Beyond
roscovitine, GC-mediated GR activation in LPS-stimulated

macrophages is known to reduce Il-1β , Il-6, Tnf -α, iNos mRNA
levels, and nitrite (7, 11). Whether the inhibition of Cdks by
roscovitine synergistically enhances the anti-inflammatory effects
of GC-mediated GR activation in macrophages has not been
investigated to date and could be a new therapeutic approach in
the treatment of inflammatory diseases.

Roscovitine is likely to act predominantly immunosuppressive
through inhibition of cyclin-dependent kinase 5 (Cdk5) as it has
the highest affinity for this Cdk (23). Cdk5 is a unique member
of the Cdk family that was first described to play a pivotal role
in the central nervous system (CNS), where it is involved in the
regulation of brain development (24, 25), actin dynamics (26),
microtubule stability (27, 28), axon guidance (29), andmembrane
transport (30–32). Beside its expression and function in the brain,
Cdk5 is expressed in immune cells such as neutrophils and T-cells
and was shown to be involved in the regulation of neutrophil
degranulation and T-cell activation (33, 34). Furthermore, the
role of Cdk5 and its activator p35 (Cdk5r1) was investigated
in toll-like receptor (TLR)-stimulated primary macrophages.
Either Cdk5 knockdown or p35 knockout led to an increase of
Interleukin-10 (Il-10) production by macrophages and resulted
in immunosuppression (35). Furthermore, in a model of dextran
sulfate sodium (DSS)-induced colitis and sepsis, p35-deficient
mice were associated with an enhanced generation of Il-10
(35). The authors report that pro-inflammatory macrophages
potentiate inflammation through p35 and Cdk5 activation,
suggesting that Cdk5 inhibition inmacrophages could lower their
inflammatory potential (35).

Previous studies have shown that roscovitine also inhibits
other Cdks, therefore we were interested in understanding
whether the anti-inflammatory effect is mediated by specific
inhibition of Cdk5. A link between Cdk5 and GR was reported by
two studies in rat neuronal cells as well as in the prefrontal cortex
and hippocampus of stress exposed mice showing that Cdk5
phosphorylates the GR at different serine residues and therefore
modulates the GR transcriptional activity in the brain (36, 37).
However, the role of Cdk5 in combination with GCs mediated-
GR activation in macrophages under inflammatory conditions
has not been investigated to date.

Here, we report that roscovitine, a pan-Cdk inhibitor, as
well as specific Cdk5 deletion in macrophages enhance the anti-
inflammatory effect of GCs. The treatment with Dexamethasone
(Dex), a synthetic GC, in combination with roscovitine
synergistically suppresses iNos mRNA and protein expression
after LPS induction in bone marrow derived macrophages
(BMDMs). Cdk5 deletion confirmed a synergistic Dex-mediated
suppression of iNos mRNA and protein as well as NO generation
in inflammatory macrophages. However, roscovitine showed also
in the absence of Cdk5 a synergistic effect with Dex to a certain
degree mediated by the inhibition of other Cdks than Cdk5. This
indicates that roscovitine enhances the anti-inflammatory Dex
effect on iNos by inhibiting Cdk5 and other Cdks. However,
Dex-mediated suppression of pro-inflammatory cytokines such
as Il-1β and Il-6 was not enhanced by roscovitine treatment or
Cdk5 deletion. In addition, the effect on iNos and NO production
was associated with decreased phosphorylation of GR (Ser211),
but interestingly induced expression of GR target gene Mkp1
and reduced p38Mapk activation in Cdk5 deficient macrophages.
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The reduction of p38Mapk activity further enhanced the Dex
effect on iNos repression. These results show that inhibition
of Cdk5, in combination with Dex treatment improves the
suppression of iNos and NO in macrophages. Inhibiting Cdks
by roscovitine and/or specific impairing Cdk5 activity could
serve as a new treatment strategy in high-dose GC therapy of
inflammatory diseases.

MATERIALS AND METHODS

Mice
Cdk5tm1Bibb (C57BL/6) mice (hereafter named as Cdk5flox) were
kindly provided by Prof. Dr Johanna Pachmayr (Paracelsus
Medical Private University, Austria) (38). Cdk5flox mice
were crossed with transgenic Lyz2tm1(cre)lfo/J (C57BL/6) mice
(hereafter named as LysMCre) to generate Cdk5LysMCre mice.
Male and female Cdk5LysMCre mice and littermate controls
(Cdk5flox) at the age of 8–13 weeks were used for experiments.
The mice were genotyped by PCR using genomic DNA
isolated from the tails. All animals were housed under specific
pathogen-free conditions at the Centre of Biomedical Research
(ZBMF) at Ulm University. This study was carried out in
accordance with the recommendations of Tierschutzgesetz
and Tierschutz-Versuchstierordnung (Mitteilung nach §
4), Regierungspräsidium Tübingen, Baden-Württemberg.
The protocol was approved by the Regierungspräsidium
Tübingen, Baden-Württemberg.

Cell Culture
The primary BMDMs were isolated from humerus, femur and
tibia of 8–13 weeks old mice as described previously (11).
Briefly, cells were cultured until day 7 in DMEM (D5671, sigma)
supplemented with 10% fetal bovine serum (FBS, F7524, sigma),
20% L929-cell conditioned medium, 1% Penicillin/Streptomycin
(P0781, sigma), 1% L-Glutamine (G7513, sigma), 1% Sodium
Pyruvate (S8636, sigma) at 37◦C, and 5% CO2. For roscovitine
experiments, BMDMs from wildtype mice (C57BL/6) or from
Cdk5flox and Cdk5LysMCre were pre-treated for 30min with
DMSO (as vehicle) or 10µM roscovitine (Seliciclib, CYC202)
(Selleckchem). For p38Mapk inhibition, BMDMs from wildtype
mice (C57BL/6) were pre-treated for 1 h with DMSO or
5µM SB203580 (sigma). BMDMs were isolated from littermate
wildtype (Cdk5flox) and Cdk5LysMCre mice. All BMDMs were
treated with PBS as control, LPS (100 ng/ml, L6529, sigma),
Dex (10−6 M, D2915, sigma), or LPS + Dex (100 ng/ml LPS
and 10−6 M Dex) for the indicated durations. For alternative
macrophage (M2-like) polarization as well as for TAM and
phagocytic receptor expression analysis, cells were treated 24 h
as indicated with PBS as control, Il-4 (20 ng/ml, Immunotools),
Il-13 (20 ng/ml, Immunotools), Il-4 + Il-13 (20 ng/ml Il-4 and
20 ng/ml Il-13), Il-10 (20 ng/ml, Immunotools), Il-10 + Dex
(20 ng/ml Il-10 and 10−7 M Dex), Dex (10−7 M), or LPS + Dex
(100 ng/ml LPS and 10−7 MDex).

NO Measurement
Bone marrow derived macrophages were isolated from Cdk5flox

and Cdk5LysMCre mice and grown until day 6. Afterwards,
cells were seeded in a 96-well plate (150’000 cells/well) with

DMEM media without phenolred (D1145, sigma) supplemented
with 10% fetal bovine serum (FBS, F7524, sigma), 20 ng/ml
M-CSF (R&D system), 1% Penicillin/Streptomycin (P0781,
sigma), 1% L-Glutamine (G7513, sigma), 1% Sodium Pyruvate
(S8636, sigma), and incubated at 37◦C and 5% CO2. At
day 7, BMDMs were treated for the indicated time points.
Supernatant was collected after 48 h, centrifuged (13’000 rpm,
5min) and nitrite was measured as a stable metabolite of NO
with Griess reagent (Molecular Probes; G7921) according to the
manufacturer’s protocol.

ELISA
For the determination of Il-6 secretion, the medium of BMDMs
from littermate wildtype (Cdk5flox) and Cdk5LysMCre mice after
4 h treatment with PBS as control, LPS (100 ng/ml), Dex (10−6

M) or LPS+Dex (100 ng/ml LPS and 10−6 MDex) was collected,
sterile filtered (0.2µm) and stored at −80◦C until measurement
was performed. The Il-6 ELISA was performed with the Mouse
Il-6 ELISA set (BD OptEIATM) according to the manufacturer’s
protocol. The absorption was measured using the Dynex Opsys
MR 96-Well Microplate Reader at 405 nm with a correction
wavelength of 650 nm.

RNA Isolation and Quantitative RT-PCR
Primary macrophages were washed with 1x PBS and then
scraped in RLT (Qiagen) + 10 µl β-mercaptoethanol/ml buffer.
RNA was isolated using the RNeasy R© Mini Kit (Qiagen)
according to the manufacturer’s protocol. Next, 1,000 ng RNA
was reversed transcribed to cDNA by using Superscript II R©

(Superscript R© Reverse Transcriptase, Invitrogen). Quantitative
RT-PCR (qRT-PCR) was performed with the ViiATM 7 Realtime
PCR System (Life technologies) using Platinum SYBR Green
(Invitrogen). For analysis the QuantStudio Realtime-PCR
software and the 11CT method was used. β-Actin and
Ribosomal protein L (Rpl) served as housekeeping genes. The
specific primers were obtained from Sigma with the sequences
as listed below:

Primer Sequences

Gene Forward Primer (5′
→ 3′) Reverse Primer (3′

→ 5′)

β-Actin GCACCAGGGTGTGATGGTG CCAGATCTTCTCCATGTCGTCC

Anxa1 AAGGTGTGGATGAAGCAACC AGGGCTTTCCATTCTCCTGT

Axl AGCCTTCCTGTGCCCCTA GAGGTGGGGGTTCACTCA

Cd36 TGGCAAAGAACAGCAGCAAA CACAGTGTGGTCCTCGGG

Cd163 GGCTAGACGAAGTCATCTGCAC CTTCGTTGGTCAGCCTCAGAGA

Cd206 CCACAGCATTGAGGAGTTTG ACAGCTCATCATTTGGCTCA

Cdk5 TGGACCCTGAGATTGTGAAGT GACAGAATCCCAGGCCTTTC

Gilz ACCAGACCATGCTCTCCATT GGCCTGCTCAATCTTGTTGT

Il-1β GGCTGTGGAGAAGCTGTGGCA GGGTCCGACAGCACGAGGCT

Il-6 AAACCGCTATGAAGTTCCTCTCTGC AGCCTCCGACTTGTGAAGTGGT

Il-10 CAGAGCCACATGCTCCTAGA TGTCCAGCTGGTCCTTTGTT

iNos CTGCTTTGTGCGAAGTGTCAGT GGCACCCAAACACCAAGCTC

Mertk GCTGGCATTTCATGGTGGAA CATTGTCTGAGCGCTGCAC

Mkp1 GTGCCTGACAGTGCAGAATC CACTGCCAGGTACAGGAAG

Rpl CCTGCTGCTCTCAAGGTT TGGCTGTCACTGCCTGGTACTT

Tyro3 TGGAGCCATCCTAGAGTTCC GAGGGGCCTGACTTCCTG

Ym1 CTGGGTCTCGAGGAAGCC AGTGAGTAGCAGCCTTGGAA
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Western Blot Analysis
Bone marrow derived macrophages were washed with 1x PBS
and lysed directly on the dishes with ice-cold 1x Lysis Buffer
(Cell Signaling) or 1x RIPA buffer. PhosphoStop (Roche) and
protease inhibitor cocktail (Roche) were added to both buffers.
The lysates were centrifuged at 14’000 rpm at 4◦C for 10min.
The protein concentration was determined using the Pierce R©

BCA Protein Assay Kit (Thermo Scientific) according to the
manufacturer’s instructions. For Western blot analysis, protein
samples were adjusted to 15–35 µg protein with Lysis or RIPA
buffer and boiled in 5x Laemmli buffer (with 10 µl/ml β-
mercaptoethanol) at 95◦C for 5min. Equal protein amounts
were separated on 7.5–10 % SDS—PAGE gels and subsequently
electrotransferred onto nitrocellulose membranes (Biorad) using
the Tank Blot System (Biorad). The membranes were blocked
with 5% skim milk powder (Fluka Analytical) or BSA (Sigma)
in Tris-buffered saline with Tween20 (TBS-T) for 1 h at RT
and probed over night at 4◦C with primary antibodies against
β-Actin (Sigma Aldrich), Cdk5 (Cell Signaling #2506), GR
(Cell Signaling #12041), phospho-GR Ser211 (Cell Signaling
#4161), iNos (Santa Cruz Biotechnology sc-650 or Cell Signaling
#13120), p38Mapk (Cell Signaling #9218), phospho-p38Mapk
Thr180/Tyr182 (Cell Signaling #4511), Mkp1 (Santa Cruz
Biotechnology sc-871684). After washing with TBS-T for 30min,
membranes were incubated with horseradish peroxidase-coupled
goat anti-mouse (Dako) or goat anti-rabbit (Life technologies)
antibodies for 1 h at RT. For visualization the LuminataTM
Forte Western HRP Substrate (Milipore) and the ChemiDocTM
MP Imaging System (Biorad) was used. If membranes were
stripped, blots were incubated with stripping buffer (with 0.5
µl β-mercaptoethanol/ml) at 60◦C for 30min. Phospho-proteins
were always first detected and total protein after stripping.
Quantification was performed with Photoshop software. Cdk5,
iNos, and Mkp1 were normalized to β-Actin as loading controls.
Phospho-p38Mapk was normalized to p38Mapk as loading
control. pGRwas normalized to β-Actin on the same gel and total
GR was normalized to β-Actin on the same gel and afterwards
p-GR/GR ratio was calculated.

Multiplex-Assay
Phospho-Erk1/2 (Thr202/Tyr204) protein was detected with the
Bio-Plex ProTM cell signaling MAPK-Panel (#LQ00000S6KL81S,
Biorad). The Bio-Plex Assay was conducted according to the
manufacturer’s protocol. The median fluorescence intensity
(MFI) was detected with the Bio-Plex 200 machine (Biorad) and
analyzed with the Bio-Plex ManagerTM 6.1 software (Biorad).

Statistical Analysis
Statistical analysis was carried out with GraphPad Prism 7
software. All data are shown as mean ± SEM. Outlying sample
exclusion criteria were done with GraphPad Prism Outlier
Calculator. All data were tested using the Wilcoxon-Mann-
Whitney test (two-tailed). In comparison, mean values which
show significance are indicated as follows: ∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001; ∗∗∗∗p < 0.001; ns: not significant.

RESULTS

Roscovitine Enhances the Dex-Mediated
Suppression of iNos in
Inflammatory Macrophages
To examine whether roscovitine enhances the
immunosuppressive effects of GCs we first determined the
expression levels of pro-inflammatory cytokines in BMDMs
isolated from wildtype mice. Since iNos expression and
ultimately NO production in macrophages are essential
for immune regulation during inflammation, we further
examined iNos expression. As expected from previous studies
(7, 11), 4 h LPS stimulation upregulated the expression of
Il-1β , Il-6, and iNos mRNA and iNos protein, whereas Dex
treatment during LPS stimulation significantly reduced their
expression, and Il-6 protein showed a trend in reduction
(Figures 1A–E). Moreover, as previously shown (19), the
LPS-mediated induction of inflammatory mediators Il-
1β , Il-6, and iNos was significantly decreased upon solely
roscovitine treatment both on the mRNA and protein
levels (Figures 1A–E). Interestingly, the combinatorial
treatment of Dex with roscovitine during LPS stimulation
further reduced the Il-1β , Il-6, and iNos mRNA and Il-
6 and iNos protein levels (Figures 1A–E). To investigate
whether the strong reduction in inflammatory mediator
expression is mediated by either additive or synergistic
anti-inflammatory effects of roscovitine and Dex, we
calculated the degree of the suppressive Dex effect with
and without roscovitine by setting LPS treatment to 100%.
We found that the Dex-mediated suppression of the pro-
inflammatory cytokines Il-1β and Il-6 was not enhanced
by roscovitine treatment in inflammatory macrophages,
suggesting that the immunosuppressive roscovitine effect
is mediated by independent pathways (Figures 1A,B and
Supplementary Figures 1A,B). However, roscovitine increased
the anti-inflammatory potential of Dex on LPS-induced iNos
expression (Figures 1C,E and Supplementary Figure 1C). These
results suggest that roscovitine has a strong immunosuppressive
effect that is enhanced when given in combination with
Dex, further reducing inflammatory mediator expression in
macrophages. Interestingly, in the case of iNos expression,
roscovitine enhances the anti-inflammatory potential of Dex in
a synergistic manner.

Specific Cdk5 Deletion Enhances the
Suppressive Dex-Effect on iNos in
Inflammatory Macrophages
Roscovitine shows highest affinity for Cdk5 (15, 16) therefore we
assumed that the immunosuppressive effects of roscovitine are
mainly due to the inhibition of Cdk5. Cdk5 has primarily been
implicated in brain development and is particularly important
in neuronal maturation and migration (24–31). It also has been
reported to be expressed in immune cells like macrophages
with a functional relevance in vitro and in vivo (33–35).
Since we observed a difference on the anti-inflammatory Dex
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FIGURE 1 | The combination of roscovitine and Dex shows additive and synergistic anti-inflammatory effects in inflammatory macrophages. (A–E) BMDMs derived

from wildtype mice were stimulated 4 h with PBS (Co), LPS (100 ng/ml), Dex (10−6 M), or a combination of LPS + Dex (L + D) with 30min pre-treatment of either

DMSO or 10µM roscovitine. (A) Relative Il-1β mRNA expression, (B) relative Il-6 mRNA expression, and (C) relative iNos mRNA expression were analyzed by

qRT-PCR after 4 h. (D) Il-6 protein concentration was determined in the BMDM supernatant by ELISA after 4 h. (E) BMDMs derived from wildtype mice were

stimulated 4 h with LPS (100 ng/ml), Dex (10−6 M), or a combination of LPS + Dex (L + D) with 30min pre-treatment of either DMSO or 10µM roscovitine and iNos

protein (130 kDa) was detected by western blot after 4 h and quantified. β-Actin (43 kDa) served as loading control. Data shown in (A): n = 5–6; (B): n = 11–12; (C): n

= 9–11; (D): n = 5–6; and (E): n = 3. Results are depicted as mean ± SEM. Statistical analysis was performed by Wilcoxon-Mann-Whitney test (two-tailed)

*p < 0.05; **p < 0.01; ****p < 0.0001.

effect upon combinatorial treatment with roscovitine in LPS-
stimulated BMDMs, we further investigated under the same
conditions the impact of Cdk5 deficiency on inflammatory
processes in macrophages. Thus, we used the Cre/loxP-system
and crossed Cdk5flox mice with myeloid specific lysozyme MCre
mice (Lyz2tm1(cre)Ifo, hereafter named as LysMCre) (39). The
BMDMs isolated from the mutant mice (Cdk5LysMCre) showed
a significant decrease in Cdk5 at the mRNA and protein
levels (Supplementary Figures 2A,B). Thus, Cdk5LysMCre mice
serve as a suitable model to study specific Cdk5 effects
in macrophages.

As expected, the mRNA expression of Il-1β , Il-6 and iNos
as well as Il-6 and iNos protein expression were increased
after 4 h of LPS stimulation and significantly reduced by Dex
after LPS induction in Cdk5flox BMDMs (Figures 2A–E).

However, Cdk5 deletion did not reduce Il-1β , Il-6, and
iNos mRNA as well as Il-6 and iNos protein expression
after single LPS stimulation (Figures 2A–E). This is in
contrast to our observation upon roscovitine treatment
(Figures 1A–E), suggesting that the strong immunosuppressive
effect of roscovitine on inflammatory mediators is not solely
mediated by the inhibition of Cdk5 but by the inhibition of
several Cdks. To determine whether the observed synergistic
effect of roscovitine and Dex on iNos suppression, but not
on Il-1β and Il-6, is mediated by inhibition of Cdk5 we
investigated the Il-1β , Il-6, and iNos expression in BMDMs
isolated from wildtype (Cdk5flox) and Cdk5LysMCre mice.
The Cdk5 deletion had no effect on the anti-inflammatory
potential of Dex on Il-1β an Il-6 expression (Figures 2A,B
and Supplementary Figures 1D,E). However, Cdk5 deletion
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enhanced significantly the Dex-mediated downregulation of
iNos expression after 4 h of LPS induction in comparison to
wildtype BMDMs (Figure 2C and Supplementary Figure 1F).
Furthermore, we found that Cdk5 deletion significantly
enhanced the suppressive Dex effect also on the iNos protein
level after 4 h of LPS + Dex stimulation (Figure 2E), followed
by a stronger reduction of NO production in the supernatant
of Cdk5LysMCre BMDMs (Figure 2F). This suggests that the
enhanced Dex effect in the presence of roscovitine may be
mediated by the inhibition of Cdk5. To further confirm the
enhanced anti-inflammatory Dex effect by roscovitine and
Cdk5 deletion, we investigated the effect of roscovitine in
Cdk5LysMCre macrophages. Roscovitine reduced Il-1β , Il-6, and
iNos expression in LPS treated macrophages in the absence
of Cdk5 (Supplementary Figures 3A–C), showing that the
anti-inflammatory potential of roscovitine is mediated mainly
by the inhibition of other kinases than Cdk5. Moreover, we
observed that roscovitine treatment of LPS + Dex treated
Cdk5LysMCre macrophages reduced the expression of Il-1β
and Il-6, suggesting that these effects are mediated by Cdk5-
independent pathways (Supplementary Figures 3A,B,D,E).
Interestingly, iNos expression was also reduced in LPS + Dex
treated Cdk5LysMCre macrophages when roscovitine was present
(Supplementary Figures 3C,F). This suggests that roscovitine
enhances the anti-inflammatory Dex effect on iNos mainly by a
Cdk5-independent mechanism.

However, deletion of Cdk5 is sufficient to increase the Dex
effect on iNos, indicating Cdk5 as an important target to increase
anti-inflammatory efficacy of GCs.

Specific Cdk5 Deletion Has no Effect on
Anti-inflammatory Markers
in Macrophages
GCs mediate their anti-inflammatory effects not only
by suppressing pro-inflammatory mediators in M1-like
macrophages, but also by promoting alternative anti-
inflammatory M2-like macrophage polarization. Since we
observed a synergistic anti-inflammatory effect on the
M1 marker iNos upon Cdk5 deletion and Dex treatment,
we next examined if a combination of Cdk5 deletion
and Dex treatment has an effect on M2 macrophage
polarization in vitro. Therefore, BMDMs from Cdk5flox and
Cdk5LysMCre were stimulated for 24 h with the M2 stimuli
Il-4, Il-10, Il-13, Dex, Il-4 + Il-13, and Il-10 + Dex. We
found that Cdk5 deletion alone had no impact on known
typical M2-like markers (Cd163, Cd206, Ym1, and Il-10)
(Supplementary Figure 4). When Cdk5 deleted BMDMs were
treated with Il-10, a trend toward a reduction in expression of
Cd163 was observed (Supplementary Figure 4A). Similarly, no
significant changes were observed in the expression of Cd206
(Supplementary Figure 4B), Ym1 (Supplementary Figure 4C),
and Il-10 (Supplementary Figure 4D). Furthermore, no Cdk5
specific effects on M2 marker expression were determined
in combination with Dex (Supplementary Figures 4A–D).
However, the combination of Cdk5 deletion and Dex
treatment led to an enhanced induction of Mertk expression

(Supplementary Figure 4E). Mertk is a member of the
TAM receptor family, which includes Tyro3, Axl, and Mer.
These receptors are important for macrophage phagocytic
function (40). Therefore, we examined whether Cdk5
deletion regulates TAM and phagocytic receptor expression
in inflammatory macrophages treated with Dex. Our
findings revealed that the expression of other phagocytic
receptors such as Tyro3 (Supplementary Figure 4F), Axl
(Supplementary Figure 4G),Cd36 (Supplementary Figure 4H),
and Anxa1 (Supplementary Figure 4I) were not altered upon
Cdk5 deletion. Therefore, we concluded that Cdk5 alone as
well as in combination with Dex does not play a major role
in regulating M2-like markers and TAM receptor expression
in macrophages in vitro. We interpret these results to mean
that Cdk5 deletion potentiates the suppressive Dex effect on
the pro-inflammatory marker iNos and NO production in LPS
stimulated BMDMs (Figures 2C,E,F).

Cdk5 Deletion Is Associated With a
Reduced GR Phosphorylation at Ser211,
but Interestingly Increased Induction of the
GR Target Gene Mkp1
The Cdk5-regulated pathways beyond the brain have not
been well studied; therefore, we further examined how
Cdk5 deletion enhances the Dex effect on iNos and NO.
There are reports showing that Cdk5 can directly interact
with the GR by changing the phosphorylation status and
thereby influencing GR transcriptional activity (36, 41). It
was reported that GR phosphorylation by Cdk5, in particular
at serine 211 (Ser211), reduces GR transcriptional activity in
the context of neurons (41). We therefore investigated the
GR phosphorylation at Ser211 in Cdk5flox and Cdk5LysMCre

BMDMs. Our results demonstrated that Dex and LPS + Dex
treatment increased GR phosphorylation at Ser211 in Cdk5flox

BMDMs after 4 h, whereas deletion of Cdk5 led to a significant
decrease in GR phosphorylation after Dex and LPS + Dex
treatment (Figure 3A and Supplementary Figure 5A). In
line with this, roscovitine treatment of wildtype macrophages
also confirmed a tendency toward a reduced GR Ser211
phosphorylation after Dex and LPS + Dex treatment
(Supplementary Figure 5B). Thus, our findings show for the
first time that deletion of Cdk5 diminishes GR phosphorylation
at Ser211 in macrophages.

Since GR phosphorylation at Ser211 has been described as
an activating phosphorylation site (42), but is known to act also
as a suppressive phosphorylation site in neurons (36), thus, we
further analyzed GR transcriptional activity upon Cdk5 deletion.
To this end, we tested the expression of the anti-inflammatory
target Gilz and we did not observe differences irrespective of
genotype upon 4 h of Dex stimulation (Figure 3B). Gilz is a
negative regulator of Raf-Mek1/2-Erk1/2 activation (43) and
in line, we observed no changes in Erk1/2 phosphorylation in
Cdk5flox and Cdk5LysMCre BMDMs (Supplementary Figure 5C).
Moreover, we detected strikingly reduced GR phosphorylation at
Ser211 after 4 h of Dex and LPS+ Dex treatment in Cdk5LysMCre

BMDMs (Figure 3A and Supplementary Figure 5A). However,
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FIGURE 2 | Cdk5 deletion has no impact on inflammatory mediators but potentiates the Dex effect on iNos and NO production in macrophages. (A–E) BMDMs from

Cdk5flox and Cdk5LysMCre mice were stimulated with PBS (Co), LPS (100 ng/ml), Dex (10−6 M), or a combination of LPS + Dex (L + D) for 4 h. (A) Relative Il-1β

mRNA expression, (B) relative Il-6 mRNA expression, and (C) relative iNos mRNA expression were analyzed by qRT-PCR after 4 h. (D) Il-6 protein concentration was

determined by ELISA in the supernatant of Cdk5flox and Cdk5LysMCre BMDMs after 4 h. (E) BMDMs from Cdk5flox and Cdk5LysMCre mice were stimulated with LPS

(100 ng/ml), Dex (10−6 M) or a combination of LPS + Dex (L+D) for 4 h and iNos protein (130 kDa) was detected by western blot after 4 h and quantified. β-Actin (43

kDa) served as loading control. (F) BMDMs were treated as described in A and nitrite (a stable NO metabolite) was measured in the supernatant of Cdk5flox and

Cdk5LysMCre BMDMs after 48 h. Data shown in (A): n = 4; (B): n = 7; (C): n = 4; (D): n = 3; (E): n = 5–8; (F): n = 6–7. Results are depicted as mean ± SEM.

Statistical analysis was performed by Wilcoxon-Mann-Whitney test (two-tailed) *p < 0.05; **p < 0.01; ***p < 0.001; n.s. not significant.

the anti-inflammatory GR targetMkp1 was significantly induced
in Cdk5-deficient BMDMs after 4 h of Dex and LPS +

Dex stimulation (Figure 3C). In addition, Mkp1 protein was
increased in Cdk5 deleted BMDMs upon 4 h Dex and LPS+ Dex

stimulation (Figure 3D and Supplementary Figure 5D). This
suggests that also for certain GR target genes in macrophages
the phosphorylation at Ser211 is associated with diminished GR
transcriptional activity.
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FIGURE 3 | Cdk5 deletion diminish GR phosphorylation, but increases the GR target gene Mkp1. (A) BMDMs derived from Cdk5flox and Cdk5LysMCre mice were

stimulated with LPS (100 ng/ml), Dex (10−6 M) or a combination of LPS + Dex (L + D) for 4 h and phosphorylated GR (Ser211) protein (95 kDa) and total GR protein

(94 kDa) was detected by western blot on two separate gels and quantified. β-Actin (43 kDa) served as loading control on the individual gels. (B,C) BMDMs from

Cdk5flox and Cdk5LysMCre mice were stimulated with PBS (Co), LPS (100 ng/ml), Dex (10−6 M), or a combination of LPS + Dex for 4 h and (B) relative Gilz mRNA

expression and (C) relative Mkp1 mRNA expression were measured with qRT-PCR after 4 h. (D) BMDMs were treated as described in (A) Mkp1 protein (40 kDa) was

detected by western blot after 4 h. β-Actin (43 kDa) served as loading control. Data shown in (A): n = 3–4; (B): n = 10–12; n = 14–15; and (D): n = 5. Results are

depicted as mean ± SEM. Statistical analysis was performed by Wilcoxon-Mann-Whitney test (two-tailed) *p < 0.05; **p < 0.01; ****p < 0.0001; n.s. not significant.

Cdk5 Deletion Reduces Phospho-p38Mapk
and Hence iNos and NO Production During
LPS Stimulation and Dex Exposure
Our experimental data revealed thatCdk5 deletion synergistically
reduces LPS-induced iNos expression and NO production in
combination with Dex treatment (Figures 2C,E,F). Previous
studies have shown that iNos expression is also regulated
by Mapk pathways, such as p38Mapk (44), whose activating
phosphorylation levels are reduced by an increased Mkp1
expression in response to LPS induction (45). Therefore, we
further investigated p38Mapk as a potential link between Cdk5
regulating iNos and NO production via Mkp1. We demonstrated
that 4 h of LPS stimulation increased p38Mapk phosphorylation,

whereas Dex treatment attenuated its phosphorylation after
LPS stimulation in Cdk5flox BMDMs (Figure 4A), as expected
(7). Interestingly, Cdk5 deletion in combination with Dex
treatment during inflammatory stimuli attenuated p38Mapk
phosphorylation to a greater extent compared to Cdk5flox

macrophages (Figure 4A). However, similar a previous

publication (21), roscovitine treatment of inflammatory

wildtype macrophages show unchanged levels of p38Mapk
phosphorylation (Supplementary Figure 5E).

To prove whether Cdk5 deletion enhances the Dex effect
on NO production after inflammatory stimuli via the GR-

Mkp1-p38Mapk axis, we examined the NO production in
the supernatants of Cdk5flox and Cdk5LysMCre BMDMs after
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FIGURE 4 | Cdk5 deletion reduces phospho-p38Mapk leading to decreased NO production. (A) BMDMs derived from Cdk5flox and Cdk5LysMCre mice were

stimulated with PBS (Co), LPS (100 ng/ml), Dex (10−6 M), or a combination of LPS + Dex (L + D) and phospho-p38Mapk (43 kDa) and p38Mapk (40 kDa) protein

were detected by western blot after 4 h and quantified. (B) BMDMs were treated as described in (A) with 1 h pre-treatment of either DMSO or 5µM SB203580

(p38Mapk inhibitor = p38i) and nitrite (a stable NO metabolite) was measured in the supernatant after 48 h. (C) Scheme showing NO regulation in the absence of

Cdk5 via the GR-Mkp1-p38Mapk axis in macrophages under inflammatory (LPS) conditions and GC (Dex) treatment. Possible reduction of GR (Ser211)

phosphorylation by p38Mapk is shown with a dotted arrow. Data shown in (A): n = 5–6 and (B): n = 4. Results are depicted as mean ± SEM. Statistical analysis was

performed by Wilcoxon-Mann-Whitney test (two-tailed) *p < 0.05; n.s. not significant.

inhibition of p38Mapk. Indeed, we observed a trend toward
a potentiated repressive Dex effect on NO production after
48 h of p38Mapk inhibition in LPS + Dex treated Cdk5LysMCre

BMDMs (Figure 4B). This suggests that a lack of Cdk5 enhances
the suppressive Dex effect through a reduced GR Ser211
phosphorylation and increased Mkp1 expression that in turn
attenuates p38Mapk activation and thus iNos andNOproduction
in inflammatory macrophages (Figure 4C).

DISCUSSION

In this study we showed that roscovitine exert its function,
in contrast to the general view, rather independent of Cdk5.
Moreover we presented for the first time that roscovitine as well
as Cdk5 deletion potentiated the anti-inflammatory effect of Dex
on iNos and NO production in LPS-stimulated macrophages by
mainly two independent mechanisms. We further demonstrated
that under inflammatory conditions and Dex treatment GR
Ser211 phosphorylation is stronger reduced upon Cdk5 deletion,
whereas the GR transcriptional target gene Mkp1 was induced.
An increased expression ofMkp1 phosphatase led to an increased
dephosphorylation of p38Mapk, which in turn resulted in a
decreased iNos and NO production. Collectively, our findings
showed for the first time that macrophage specific Cdk5 deletion

in combination with Dex potentiates the anti-inflammatory effect
of GCs on iNos.

Roscovitine Enhances the
Immunosuppressive Dex Effect on iNos
Independent of Cdk5
Roscovitine is a small molecule inhibitor that is currently in phase
II clinical trials for cancer treatments like Cushing syndrome
and non-small cell lung cancer (Clinical trials NCT03774446,
NCT00372073). Furthermore, roscovitine treatment reduced
lung inflammation and enhanced the resolution of inflammation
during arthritis by enhancing apoptosis of neutrophils and
favoring phagocytosis by macrophages (18, 20). However, in
macrophages, only limited in vitro studies have been performed
using cell lines (RAW264.7), showing that high concentrations
(20µM) of roscovitine inhibit cell viability after 24 h of treatment
(22). In the current study 10µM roscovitine (for a duration of
4 h) had no phenotypic effect on proliferation and apoptosis in
primary macrophages.

We analyzed the inflammatory response of primary
macrophages after roscovitine treatment. In line with Du
et al. and Jhou et al. roscovitine treatment led to a significant
reduction of Il-1β , Il-6, and iNos mRNA expression as well as
Il-6 and iNos protein expression after LPS stimulation (21, 22).
Cdk5 is a high affinity roscovitine target, and so has been the
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focus of studies investigating inflammatory diseases such as DSS-
induced colitis, LPS-induced endotoxic shock and experimental
autoimmune encephalomyelitis (34, 35). However, macrophage
specific Cdk5 deletion did not reduce Il-1β, Il-6, iNos mRNA,
and Il-6 and iNos protein expression after LPS induction,
showing that the anti-inflammatory effect of roscovitine is not
mediated by Cdk5 inhibition. At high concentrations (10µM)
roscovitine also inhibits other kinases including Cdk1 (IC50 =

0.65µM), Cdk2 (IC50 = 0.7µM), Cdk7 (IC50 = 0.46µM), Cdk9
(IC50 = 0.6µM), and Erk (IC50 = 14–34µM). Therefore, it is
likely that the observed effect is mediated by the inhibition of
several Cdks (15, 16). A previous study demonstrated that the
anti-inflammatory effect of roscovitine on Il-1β , Il-6, TNFα,
and iNos was observed only at high concentrations, between
10 and 25µM, but not at 1µM in RAW264.7 macrophages
(21). This suggests that the inhibition of Erk, a kinase known
to be involved in the regulation of cytokine expression (46, 47),
could mediate this effect. In addition, inhibition of Cdk7 by a
specific inhibitor (BS-181) and siRNA-Cdk7 knockdown has
already been demonstrated to reduce IL-1β, IL-6, IL-8 transcript
levels, and IL-1β/IL-6 secretion in LPS-induced MH7A cells (48),
suggesting that the inhibition of Cdk7 may also be involved.

Since GCs are one of the most potent immunosuppressants
and roscovitine was shown to be a potent anti-inflammatory
drug, we further investigated whether a combination of
roscovitine and Dex enhances the immunosuppressive effects
on inflammatory mediator production in macrophages. Indeed,
roscovitine in combination with Dex lead to stronger reduction
of Il-6, Il-1β and iNos mRNA, and Il-6 and iNos protein
expression after LPS induction. This finding suggests that
a combinatorial treatment of roscovitine and Dex may be
most beneficial for the treatment of inflammatory diseases.
Furthermore, we demonstrate that the effect on inflammatory
cytokines (Il-6, Il-1β) is additive and Cdk5 independent,
suggesting that the immunosuppressive effect is mediated by
independent pathways. Interestingly, for the iNos suppression
roscovitine increased the anti-inflammatory potential of Dex
after LPS induction. In addition, we showed that Cdk5 deletion
also led to a stronger reduction of iNos expression and NO
production after LPS+Dex treatment.We still observed an albeit
reduced roscovitine effect on iNos expression in Cdk5 deficient
LPS + Dex treated macrophages, suggesting an inhibition of
additional kinases mediating the roscovitine effect. This suggests
that roscovitine enhances the anti-inflammatory Dex effect on
iNos mainly by Cdk5- independent mechanisms, which is in
contrast to the general view where Cdk5 was shown to be a high-
affinity target of roscovitine. Taken together, our results showed
that the loss of Cdk5 potentiates the anti-inflammatory Dex effect
on iNos and NO generation in inflammatory macrophages, a
finding that has been not described so far.

Specific Cdk5 Deletion Has no Effect on
Anti-inflammatory Markers
in Macrophages
We also found, that Cdk5 deletion had no major impact on
the polarization of alternative (M2-like) macrophages as shown

for example for Il-10 expression after 24 h of stimulation. Seok
et al. examined in detail the knockdown and knockout of p35
(the Cdk5 activator) and knockdown of Cdk5 in LPS stimulated
macrophages and showed that this enhances Il-10 mRNA and
Il-10 protein expression after 24 h (35). Moreover, we did not
observe differences in the Dex-mediated induction of the M2
markers (Cd163, Cd206, Ym1, Il-10) upon Cdk5 deletion, except
for Mertk, a phagocytosis marker, that was upregulated by Dex
in the absence of Cdk5. Expression of other TAM receptors, such
as Tyro3, Axl, and other phagocytosis receptors (Cd36, Anxa1)
(49, 50) were not affected after Cdk5 deletion in macrophages.
Whether the deletion of Cdk5 in macrophages increases the Dex-
induced phagocytic capacity due to Mertk upregulation remains
to be elucidated.

Cdk5 Regulates the Dex Effect on NO
Production Through GR Phosphorylation,
Mkp1, and p38Mapk During Inflammation
It is known that LPS increased iNos through p38Mapk in
macrophages (44) and Dex reduced iNos expression and NO
through destabilization of mRNA and increased iNos protein
degradation by calpain (51–55). We therefore investigated
the mechanism by which Cdk5 deletion enhances the anti-
inflammatory potential of Dex and suppresses iNos and NO
production in pro-inflammatory macrophages.

The phosphorylation of GR at Ser211 was reduced in
macrophages upon Cdk5 deletion. In vitro kinase assays showed
that Cdk5 phosphorylates the human GR at multiple serine
residues (Ser203, Ser211, and Ser226) (41). In addition, Cdk5
phosphorylates GR at Ser211 and Ser203 in HCT116, Cos7, and
rat cortical neuronal cells (41). This is in line with our observation
showing reduced GR phosphorylation (Ser211) in macrophages
lackingCdk5. More recent in vivo studies suggested that Cdk5 is a
crucial component of GR-dependent stress response in the brain
by regulating GR phosphorylation (36, 56). To our knowledge,
our data is showing for the first time that Cdk5-mediated GR
phosphorylation (Ser211) is not restricted to the nervous system,
but might also play an important role in innate immune cells like
macrophages. Furthermore, the Cdk5-GR interaction seems to
reduce GR activity especially for the target gene Mkp1.

Kino et al. reported an enhancement of mRNA expression
for protein phosphatase 1 regulatory subunit 10 (Ppp1r10), the
neuropeptide Y receptor (Npy1r), and serum and glucocorticoid-
induced kinase (Sgk) in rat cortical neuronal cells, regardless
of reduced GR phosphorylation upon Cdk5 inhibition (41).
This is consistent with our results, which showed an induced
Mkp1 expression but reduced GR Ser211 phosphorylation in
the absence of Cdk5 during Dex and LPS + Dex stimulation.
Cdk5 was reported to contribute to an impaired GC-induced
recruitment of the coactivators p300/CBP and SNF2 to the GRE-
containing MMTV and endogenous Sgk promotors resulting in
a reduced transcriptional activity (41). In addition, p300 was
shown to act as an activator for Mkp1 expression (57). However,
if coactivator recruitment is increased upon Cdk5 deletion in
macrophages remains to be addressed.

Frontiers in Immunology | www.frontiersin.org 10 July 2019 | Volume 10 | Article 1554102

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pfänder et al. Cdk5 Deletion Enhances GR Effect

Mkp1 was shown to control Erk activation (58) and increased
Mkp1 protein levels correlate with reduced Erk phosphorylation
after 16 h of Dex treatment in mast cells (58). However, we
did not observe genotype differences in Erk activation, but we
did observe increased Mkp1 expression upon Cdk5 deletion in
macrophages after 4 h Dex treatment.

Mkp1 has also been reported to dephosphorylate p38Mapk
and therefore contribute to the reduction of pro-inflammatory
mediators (6, 58–63). In macrophage cell lines Mkp1 has already
been described to negatively regulate iNos and NO production
by inhibiting p38Mapk activity (45). Since we observed an
upregulation of Mkp1 upon Cdk5 deletion this could explain
the lower levels of phosphorylated p38Mapk observed in LPS
+ Dex treated Cdk5LysMCre macrophages. In line with this,
Cdk5LysMCre macrophages showed a stronger reduction in iNos
and NO production during LPS + Dex treatment compared
to Cdk5flox macrophages. Furthermore, inhibition of p38Mapk
confirmed a trend toward a potentiated repressive Dex effect
on NO production after 48 h LPS + Dex treated Cdk5LysMCre

BMDMs. Thus, we conclude that upon Cdk5 deletion the
induction of Mkp1 leads to a stronger dephosphorylation of
p38Mapk resulting in the reduced iNos and NO production in
inflammatory macrophages. Our findings are further supported
by the fact, that Mkp1−/− mice are more sensitive to models
of inflammatory diseases, such as sepsis and endotoxemia
(6, 64), furthermore higher iNos expression was observed in
the liver of Mkp1−/− mice during sepsis (65). It should be
mentioned, that roscovitine treatment did not reduce p38Mapk
phosphorylation in wildtype macrophages during LPS treatment
regardless of inflammatory cytokine inhibition. This is in line
with previous work by Du et al. which showed enhanced
p38Mapk phosphorylation upon roscovitine and LPS stimulation
but reduced cytokine expression (21). Beyond this, p38Mapk
was shown to phosphorylate GR at Ser211 (42, 51, 52, 66),
therefore the reduced levels of phosphorylated p38Mapk upon
Cdk5 deletion could be involved in the reduction of GR
phosphorylation. Whether Cdk5 also influences metabolic GR
target genes and therefore reduce or enhance severe side effects
has not been investigated.

Here we report that roscovitine, a Cdk inhibitor, is a
potent anti-inflammatory drug and combinatorial treatment
with Dex leads to an additive suppression of pro-inflammatory
mediator expression such as IL-1β and Il-6. However, we have
shown, that roscovitine synergistically with Dex suppresses
iNos induction in inflammatory macrophages. Furthermore, we
have demonstrated by generating Cdk5 conditional knockout
mice that Cdk5 deletion is sufficient to enhance the anti-
inflammatory effect of Dex on iNos. Since roscovitine also exerts
its immunosupressive effect in Cdk5 deficient macrophages albeit
to a lesser degree, the effects of roscovitine inhibition is mainly
mediated by the inhibition of other Cdks than Cdk5. Macrophage
specific Cdk5 deletion reduced Dex-dependent GR Ser211
phosphorylation, but induced Mkp1 expression and reduced
p38Mapk phosphorylation hence resulting in a decrease of iNos

and NO production. Here we have shown a novel mechanism
of Cdk5 involved in the anti-inflammatory effects of GCs. In
summary, this study supports the use of combinatorial treatment
of inflammatory diseases with specific Cdk5 inhibitor(s) and
GCs to potentiate the anti-inflammatory effect on iNos and
NO. Furthermore, combinatorial treatment may be a possible
therapeutic objective to lower GC doses and therefore avoid
negative side effects.
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GR Dimerization and the Impact of
GR Dimerization on GR Protein
Stability and Half-Life
Ann Louw*

Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa

Pharmacologically, glucocorticoids, which mediate their effects via the glucocorticoid

receptor (GR), are a most effective therapy for inflammatory diseases despite the fact

that chronic use causes side-effects and acquired GC resistance. The design of drugs

with fewer side-effects and less potential for the development of resistance is therefore

considered crucial for improved therapy. Dimerization of the GR is an integral step

in glucocorticoid signaling and has been identified as a possible molecular site to

target for drug development of anti-inflammatory drugs with an improved therapeutic

index. Most of the current understanding regarding the role of GR dimerization in GC

signaling derives for dimerization deficient mutants, although the role of ligands biased

toward monomerization has also been described. Even though designing for loss of

dimerization hasmostly been applied for reduction of side-effect profile, designing for loss

of dimerization may also be a fruitful strategy for the development of GC drugs with less

potential to develop GC resistance. GC-induced resistance affects up to 30% of users

and is due to a reduction in the GR functional pool. Several molecular mechanisms of

GC-mediated reductions in GR pool have been described, one of which is the autologous

down-regulation of GR density by the ubiquitin-proteasome-system (UPS). Loss of GR

dimerization prevents autologous down-regulation of the receptor through modulation of

interactions with components of the UPS and post-translational modifications (PTMs),

such as phosphorylation, which prime the GR for degradation. Rational design of

conformationally biased ligands that select for a monomeric GR conformation, which

increases GC sensitivity through improving GR protein stability and increasing half-life,

may be a productive avenue to explore. However, potential drawbacks to this approach

should be considered as well as the advantages and disadvantages in chronic vs. acute

treatment regimes.

Keywords: glucocorticoid receptor dimerization, acquired glucocorticoid resistance, Compound A, GRdim mutant,

GRmon mutant, ubiquitin proteasomal system, biased ligands, half-life

INTRODUCTION

Pharmacologically, glucocorticoids are a cost-effective effective therapy for inflammatory
and autoimmune diseases and are widely prescribed (1–3). Despite the effectiveness of
glucocorticoids in treating inflammation chronic use causes side-effects (4) and acquired
glucocorticoid resistance (5, 6). The design of drugs with fewer side-effects and less potential for
the development of resistance is therefore considered crucial for improved therapy (7).
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Glucocorticoids mediate their effects via the glucocorticoid
receptor (GR) a ligand activated transcription factor. The GR
has a domain structure that consists of an N-terminal domain
(NTD), a DNA-binding domain (DBD) separated from the
ligand binding domain (LBD) by a hinge region (Figure 1A)
(10). The DBD contains two zinc fingers both of which are
involved in DNA-binding, while the second zinc finger is also
involved in dimerization. Binding of ligand to the LBD induces
the cytoplasmic GR to dimerize and translocate to the nucleus
where it can enhance transcription by binding cooperatively as
a homodimer to glucocorticoid response elements (GREs), a
consensus DNA sequence consisting of two hexameric half-sites
separated by a 3-bp spacer. The monomeric GR can also repress
transcription by binding directly to negative glucocorticoid
response elements (nGREs) or GRE half-sites or by tethering to
DNA-bound transcription factors such as NFκB or AP-1 (11–15).

The ability of the GR monomer to repress pro-inflammatory
genes activated by NFκB or AP-1, while activating genes
that result in the metabolic side-effects of glucocorticoids via
the dimer binding to GREs suggested that separation of the
transrepression and transactivation functions of the GR could
give rise to safer drugs and resulted in the development of
selective GR agonists (SEGRAs) or modulators (SEGRMs),
collectively referred to as SEGRAMS (16–21). Despite the fact
that the usefulness of this paradigm has been challenged as being
outdated and oversimplifying the complexity of GR-signaling by
negating the role of GR dimers in curbing inflammation and the
role of GR monomers in eliciting side-effects (19, 22), it may still
hold promise for drugs tailored to specific diseases phenotypes
(18, 23, 24).

Although dimerization of the GR is an integral step in
glucocorticoid signaling and fundamental to the concept of
SEGRAMs it has only relatively recently been explicitly identified
as a possible molecular site to target for drug development of
anti-inflammatory drugs with an improved therapeutic index
(23). In this review we thus discuss the identification of the GR
dimerization interfaces, the use of GR dimerization mutants and
conformationally biased ligands to further our understanding of
the role of GR dimerization in GC signaling and the implications
of loss of GR dimerization for reduction of side-effects, while
highlighting the recent finding that loss of dimerization may
also be a fruitful strategy for the development of drugs with less
potential to develop glucocorticoid resistance.

GR DIMERIZATION

Although the ability of GR to form dimers in solution has
been debated (8, 25–31) several studies have shown that the
GR, liganded or unliganded, can dimerize in solution (32–
36) and that dimerization may already be present in the
cytoplasm (35, 37–39).

X-Ray Crystallography of GR Domains
Identifies Amino Acids Involved in
Dimerization
Two interfaces in the GR have been identified that mediate
receptor dimerization, the DBD and the LBD dimerization

interfaces. Although no crystal structure of the full-length GR has
been reported to date, separate crystal structures of the DBD and
LBD have been reported, which identified specific amino acids
involved in the dimerization interfaces and for the orientation of
binding to DNA.

The first crystal structure of the rat GR DBD (amino acid
residues 440–525) complexed to a canonical GR-binding element
(GRE) identified a dimerization interface (Figure 1A) in the
second zinc finger of the GR consisting of 7 amino acids (rat
residues L475, A477, R479, D481, I483, I487, N491, which
corresponds to the human residues L456, A458, R460, D481,
I483, I487, N491) with three of the inter-subunit contacts in
a region referred to as the D-box (C476–C482) (8). The two
molecules of the DBD bind cooperatively to one face of the
DNA (Figure 1B) when the two hexameric sites are separated
by a 3-base pair spacer in a head-to-head fashion so that their
dimerization loops (D-box) are aligned and contacting each
other (8, 25). Furthermore, crystal structures of the DBD bound
to different GREs were virtually super-imposable except for
the lever arm, a loop region in the DBD between the DNA
recognition helix (first zinc finger) and the dimerization loop,
where different GREs dictate discrete alternate conformations
(40). In addition, human residue H472 in the lever arm adopts
one of two conformations: packed in the first monomer, which
binds to the initial conserved half-site, and flipped in the second
monomer, which binds to the second variable site in the GRE.

In contrast to the head-to-head binding of the DBD to
GREs, crystal structures indicate that at a nGRE (Figure 1B),
in the TSLP gene, which is like the canonical IR-GBS sequence:
CTCC(n)0−2GGAGA (41), GR binds as two monomers
orientated tail-to-tail in an everted repeat orientation on
opposite sides of the DNA (42). This prevents DNA-mediated
dimerization as the D-loops are directed away from each other
and results in binding that is characterized by strong negative
cooperativity, where binding of the first GRmonomer to the high
affinity site hampers binding of the second monomer to the low
affinity site. The two-site binding event (Table 1) characterized
by two non-identical, monomeric binding events has a lower
binding affinity (363 nM and 63µM) than positive cooperative
binding to a GRE site (73 nM) (42). This suggests that the nGRE
sequence not only preferentially binds GR monomers but that
it contributes to a repressive conformation, which may involve
a distinct lever arm conformation where H472 (rat residue)
is flipped in both monomers (42). Crystal structures of GR
DBD bound to AP-1 response elements (TREs: TGA(G/C)TC)
(46) (Figure 1B) suggest a similar binding orientation and
comparable binding affinities (Table 1). In contrast, crystal
structures of GR DBD bound to NF-κB response (κBRE)
elements (45) (Figure 1B) indicate that binding is head-to-head
as for binding to the GREs but resembles those of the nGRE in
that it presents with a two site-binding curve which, like for the
nGRE (44), is abolished by the S425G human mutant. Although
only one monomer binds to the conserved AATTY sequence (Y
represents a pyrimidine base), it binds as a “D-loop” engaged
dimer with high and low binding affinities in the same range
as binding of the DBD to nGREs (Table 1). Collectively, the
negative cooperativity of DNA binding as well as results with
GR dimerization deficient mutants suggest that monomeric GR
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FIGURE 1 | (A) Domain structure of the human GR. Above the figure is indicated the position of the post-translational modifications required for proteasomal

degradation. Below the figure the DBD and LBD residues involved in the dimer interface are expanded. For the DBD, the underlined residues indicate the D-box, while

red residues are those identified as important for the dimerization interface by Luisi et al. (8). In addition, in green is H472 in the lever arm that adopts one of two

conformations: packed or flipped depending on whether binding to GREs or nGREs occur. For the LBD black residues are those involved in hydrogen bonds, while

the green residues form hydrophobic interactions to stabilize the dimer interface as identified by Bledsoe et al. (9). (B) DNA-binding motifs determine orientation and

GR monomer vs. dimer binding. Faded monomer indicates binding to low affinity site.

is likely sufficient at repressive GR binding elements (nGRE,
TRE, and κBRE) in vivo. Occupancy of GR monomers at GRE
half-sites has also been confirmed in vivo (14).

Comparison of initial structural studies of the free GR DBD
solved by NMR (48–51) with that of the crystal structure of
DNA bound GR DBD (8) suggested that the largest difference
occurred in the D-box and led to the assumption that DNA
binding was required for dimerization. However, comparison of a
recent crystal structure of the free humanGRDBD (residues 418–
517) (52) with that of previously determined crystal structures
of the GR DBD bound to a GRE or a nGRE reveal a very
similar core structure with a similar D-loop conformation and
indicates that the largest difference is located in the lever arm.
Molecular dynamic simulations of the lever arm suggest that it is
most mobile in the free state sampling the most diverse number
conformations, while in the nGRE-bound state an intermediate
number of conformations are present, which is further reduced
in the GRE-bound state. Thus, binding to DNA constrains the
number of conformations that the lever arm can sample, which

is further reduced upon dimerization, however, the D-loop is
accessible in solution for dimerization via the DBD.

The crystal structure of the GR LBD lagged behind because of
solubility problems, however introduction of a single mutation
(human residue F602S) significantly improved solubility without
affecting function and allowed for crystallization of the
LBD (human residues 521–777) in the presence of ligand
dexamethasone (DEX) and TIF2, a coactivator peptide (9). This
led to the identification of a dimerization interface (Figure 1A)
stabilized by hydrophobic interactions, specifically reciprocal
interactions between P625 and I628 in the H5–H6 loop, and
hydrogen bonds, from particularly residues between 547 and 551
(extended strand between helices 1 and 3) and Q615 (last residue
in helix 5) from each LBD, that allows formation of four hydrogen
bonds (9). Subsequent GR LBD crystal structures (53–58) in
the presence of agonist or antagonist, focused mainly on the
ligand-binding pocket rather than on the dimerization interface
and generally conform to the crystal structure of the Bledsoe
group (9), besides identifying differences in the ligand-binding
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TABLE 1 | DNA-binding affinity (Kad) of domains and full-length wild-type and

GRdim dimerization deficient mutant (Hill-slope added in brackets).

GRwt DBD mutant: bGRdim

DBD GRE • 73 nM (42)

• 1.6 – 5.7 nM

(1.8 – 2.1) (43)

• 80–890 nM (40)

• 73 nM (44)

• 5.7 nM (25)

• 7.14 –

25.7 nM (37)

• 370 nM (42)

• 16 – 28 nM (1.3 –

1.4) (43)

nGRE • 360 nM and

63µM (42)

• 363 nM and

63.2µM (44)

• 1.1µM (42)

κBRE • 215 – 239 nM

and 17 –

>50µM (45)

TRE • 12 – 402 nM

and 1 – 12µM

(46)

Full-

length

GRE • 50 nM (36)

• 0.5 nM (25)

• 1.2 – 2.56 nM

(37)

• 34 nM (46)

• 35 nM (45)

• 32 – 490 nM

(47)

• 140 nM

(2.5) (30)

• 300 nM (36)

κBRE • 51 nM (45)

TRE • 42 nM (46)

GRE ½

sites

• 1,210 nM (36)

• 185 nM

(1.08) (14)

• 1,260 nM (36)

a(Kapp ), determined using the Langmuir binding model, is given as only some investigators

(30, 47) determined Ktot, the total affinity for assembling two GR monomers at the

palindromic GRE.
bGRdim = human GRA458T , mouse GRA465T , and rat GRA477T .

pocket and helix 12. Recently Bianchetti et al. (59) evaluated the
physiological relevance of the GR LBD dimerization interface by
analyzing 20 published GR LBD crystal structures using estimates
of dimer stability (surface area in Å2 buried upon dimerization
and estimated free energy variation (1iG) upon formation of
the interface) coupled to evolutionary sequence conservation
analysis of the interface. One GRα LBD homodimer structure,
the apH9 dimer, consistently stood out as being more stable, by
having the largest contact surface area (850Å2) and the lowest
binding free energy variation upon formation of the interface
(1iG: −42.9 kcal/mol), and as having highly (82%) conserved
residues at the interface (27 of the 33 residues that contributed
to binding were conserved), however, this structure was formed
by only one of the crystal structures investigated (PDB ID:4P6W)
(53). In contrast, the other dimerization structures observed
in GR LBD crystals were less stable and not significantly
conserved, with the bat-like structure for the GR LBD, suggested
by Bledsoe et al. (9), which was observed in 6 PDB entries

(28%) (9, 53–55, 57, 58), being amongst the least stable (surface
area buried is 288Å2 and 1iG: −20 kcal/ mol) and conserved
(7/16 = 44%), while the most frequent H1 structure, observed
in 9 entries (43%) (9, 53–58), had a slightly higher stability
(332Å2 and 1iG−30 kcal/ mol) and lower number of conserved
residues (2/5) (59). In summary, this suggests that the GR
LBD dimers are generally weaker and less conserved than the
nuclear receptor LBD dimer through H9-H10-H11 (also called
the butter-fly like structure with 1494Å2 and 1iG: −77.5 kcal/
mol and 73% of conserved residues at the interface), which
is found in the ER LBD, a sentiment supported by Billas and
Moras (60). Despite the fact that the bat-like dimer structure was
found to be physiologically the least stable by Bianchetti et al.,
of the residues suggested to be important for stabilization of the
dimer interface, three residues involved in the hGR hydrophobic
interface core (Y545 in H1-loop-H3, P625 in S1-turn-S2 and
I628 in S2) and one (Gln 630 in H5) identified as part of the
hydrogen-bond network, were previously identified by Bledsoe
et al. (9). Interestingly, the surface area buried originally reported
for the bat-like structure (1623Å2) by Bledsoe et al. (9) is much
higher than that reported by Bianchetti et al. (59) (288Å2)
for this structure.

GR Dimerization Mutants Confirm Role of
GR Dimerization Interfaces
Genetic strategies have also been used to verify the GR interfaces
involved in dimerization and the relevance of specific amino
acids identified from crystal structures. Although, these GR
dimerization deficient mutants have been studied extensively for
their role in the regulation of gene expression (12, 61–63), here
mainly effects on dimerization will be discussed.

Mutants That Target the DBD

Most of the GR dimerization mutation studies focused of the
DBD dimerization interface (64), specifically the three amino
acids in the D-loop (Figure 1A), with the GRdim mutant (human
GRA458T, mouse GRA465T, and rat GRA477T) the most widely
characterized and extensively studied (64–66). A backbone
hydrogen bond is formed between the carbonyl of A777 and
the amide of I483 on the associated dimer partner (8) and
mutation of the Ala to Thr has been shown disrupt this
interaction (43, 65, 66).

Effects on dimerization
There has been much controversy surrounding the dimerization
potential of the GRdim mutant with several publications
suggesting that dimerization equal to that of GRwt occurs. Most
of the studies showing similar dimerization as the GRwt were
semiquantitative: co-immunoprecipitation (62) and Numbers &
Brightness (N&B) assay (31).

However, quantitative studies at the single-cell level, using
fluorescence correlation spectroscopy (FCS) combined with a
microwell system, have shown that GRdim has a dissociation
constant (Kd) of dimerization (Table 2) in the presence of DEX
that is only slightly lower than that of the GRwt in the absence of
ligand [370 nM for GRdim(+DEX) vs. 410 nM GRwt(−DEX) in vitro
(36) and 6.11µM for GRdim(+DEX) vs. 7.4µM for GRwt(−DEX)
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TABLE 2 | Dimerization dissociation constants (Kd) of domains and full-length

wild-type and select mutant GRs (aMethod used and DEX concentration in

brackets).

GRwt DBD mutant: LBD mutant:

bGRdim cGRI628A

DBD • 13 – 21 nM (EMSA) (37)

LBD Liganded:

• 1.5µM (AU; 10µM) (9)

Liganded:

• 15µM (AU;

10µM) (9)

Full-length Unliganded:

• 410 nM (FCS) (36)

• 3.9 nM (EMSA) (37)

• 100µM (AU) (30)

• 416 nM (FCS) (35)

• 7.4µM (FCS*) (35)

Unliganded:

• 390 nM (FCS) (36)

Liganded:

• 140 nM (FCS; 500 nM) (36)

• 139 nM (FCS; 100 nM) (35)

• 3µM (FCS*; 100 nM) (35)

• 107 nM (FCS; 500 nM) (67)

Liganded:

• 370 nM (FCS;

500 nM) (36)

• 379 nM (FCS;

100 nM) (35)

• 6.11µM (FCS*;

100 nM) (35)

aMethods to determine dimerization:

• EMSA, electrophoretic mobility shift assay

• AU, analytic ultracentrifugation

• FCS, fluorescence correlation spectroscopy (only method also done in intact live cells

and indicated as FCS*).
bGRdim = human GRA458T , mouse GRA465T , and rat GRA477T .
chuman GRI628A, mouse GRI634A, and rat GRI646A.

in vivo (35)], but significantly higher than that of GRwt in
the presence of DEX [370 nM for GRdim(+DEX) vs. 140 nM
GRwt(+DEX) in vitro (36) and 6.11µM for GRdim(+DEX) vs. 3µM
for GRwt(+DEX) in vivo (35)]. This indicates that the dimerization
potential of the mutant GRdim is substantially lower than that of
the GRwt in the presence of DEX and closer to the dimerization
potential of GRwt in the absence of ligand. Although it is evident
that the GRdim can form dimers, it is also clear that themonomer-
dimer equilibrium of the mutant is shifted in the direction of
monomers and it is clearly deficient in dimerization potential
when compared to GRwt.

The dimerization equilibrium may also be influenced by
receptor concentration. At low concentrations of GR (335
fmol/mg protein or 26200 GR/cell) the extent of DEX-induced
dimerization of GRdim (37%) is much less than that of the
GRwt (100%), but similar to that of uninduced GRwt (43%),
while at about a 4-fold higher receptor concentration (1,420
fmol/mg protein or 111,000 GR/cell), the extent of DEX-induced
dimerization of GRdim (90%) approaches that of the induced
GRwt (100%) and uninduced GRwt (102%) (38).

Effects on DNA binding
Binding to diverse GR binding motifs could also support dimer
vs. monomer GR conformations especially if the Hill-slope1

is reported as a measure of cooperativity (Table 1). Positive

1If the Hill slope is = 1, binding is additive, if >1, binding displays positive

cooperativity, while if >1, binding displays negative cooperativity.

cooperative DNA-binding requires binding of a GR dimer, where
binding of the first monomer facilitates binding of the second
monomer, and exhibits an increased binding affinity with a Hill-
slope larger than 1. Although it was initially reported that the
GRdim could not bind to DNA (65, 66) it is now clear that
maximal DNA-binding of the GRdim mutant, both as DBD and
as full-length receptor, to a GRE is not affected (43). However,
the mutant binds with a lower affinity (Table 1) (36, 42, 43).
Furthermore, the A477T mutant dissociates faster that the wild
type receptor (5–12x faster in vitro for DBD with a dissociation
half-life (t½) of 23–55 s for GRwt vs. 4.7–4.8 s for the GRdim

(43) and 10x faster in vivo for the full-length receptor with a
residence time for GRwt that is 1.45 s vs. 0.15 s for GRdim (68) due
to a reduction, but not abrogation, in positive cooperative DNA
binding (Hill-slope for GRwt 1.8–2.1 and for GRdim 1.3–1.4) (43).
Interestingly, in addition to GRdim, other salt bridge mutations
(rat GRR479D or GRD481R) disrupting the DBD dimer interface
also result in lower binding to a single GRE but higher binding
to paired GREs and thus enhanced transcriptional synergy at
reiterated GREs (69–71).

Comparison of binding affinities of the GRwt to that of GRdim

to other GR DNA-binding motifs (Table 1) is also informative in
terms of probing a more monomeric binding configuration for
GRdim. Thus, although GRdim substantially decreases the overall
affinity of the DBD for a GRE, for a nGRE, it binds with a similar
affinity as the GRwt binding to a nGRE (42). Furthermore, the
full-length receptor GRdim mutant binds to a GRE half-site with
an equivalent affinity as that of the GRwt (36). Additionally, ChIP-
exo in liver and in primary bone marrow–derived macrophages
(15) or human U2OS osteosarcoma cell lines (14, 72) indicates
that GRwt, but not GRdim, binds to GRE sequences as a dimer,
while both receptors bind to tethered and half-site motifs
as monomers.

Mutants That Target the LBD

There is a paucity of GR dimerization mutation studies focusing
on the LBD dimerization interface, most probably as this
dimerization interface was characterized (9) almost 10-years later
than that of the DBD interface (8). Although the dimerization
affinity of the liganded human GR LBD (1.5µM) is already
low in comparison to that of the DBD or the full-length
receptor (Table 2), it was reduced 10-fold by the LBD mutant,
hGRI628A, which displays a phenotype very similar to that
of the GRdim mutant (9). However, in contrast, using the
N&B assay it was shown that the mouse GRI634A mutant
displayed reduced dimerization relative to GRwt and GRdim at
equivalent DEX concentrations, suggesting that the LBD plays
a potentially larger role than the DBD in GR dimerization (31).
Furthermore, a combination mutant involving both the DBD
and LBD domains (mGRA465T/I634A called GRmon) has recently
been described and comparison of the dimerization potential
with that of liganded GRwt and single mutants using N&B
assays indicate that the order of DEX dimerization efficiency is
GRwt = GRdim > GRI634A > GRmon, however, at higher DEX
concentration (1µM) significant dimerization of the GRmon is
still seen (31).
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FIGURE 2 | Schematic representation of the monomer-dimer equilibrium for GRwt, the DBD-dimerization deficient mutant, GRdim, and the LBD-dimerization deficient

mutant, GRI628A, bound to either, DEX, 21OH-6,19OP, or CpdA. In the equilibrium, green arrows represents quantitative data, while orange arrows represents

semiquantitative or qualitative data (see Table 2). Dotted orange arrows represents hypothesized equilibria not yet determined.

Small Molecules Displaying Loss of GR
Dimerization (Conformationally Biased
Ligands)
Despite the fact that one would assume that the search
for SEGRAMs would have yielded several small molecule
ligands that perturb the GR monomer-dimer equilibrium
as the concept is underpinned by the idea that targeting
for loss of GR dimerization would reduce the side-effect
profile (23), it appears that the guiding principle in this
search has rather been to assay for a preference to induce
transrepression rather than transactivation and that very few
SEGRAMs have been evaluated for their effects on GR
dimerization (18, 73–77). Two conformationally biased ligands
that perturb the GR monomer-dimer equilibrium have, however,
been identified: CpdA (Compound A: 2-(4acetoxyphenyl)-
2- chloro-N-methylethylammonium chloride), an analog of a
naturally occurring compound found in the Namibian shrub
Salsola tuberculatiformis Botsch (78), and 21-hydroxy-6,19-
epoxyprogesterone (21OH-6,19OP), a progesterone derivative
(79, 80).

CpdA not only prevents dimerization of the full-length GRwt

receptor in vitro and in vivo (Figure 2), but abrogates basal
(uninduced) GR dimerization (31, 38, 81, 82). In contrast, 21OH-
6,19OP does not prevent dimerization of the full-length GR
or the LBD dimerization mutant, GRI634A (Figure 2), but does
prevent dimerization of the DBD GRdim mutant, suggesting that
it prevents dimerization via the LBD (31), which is supported by
molecular dynamics simulations that suggests this ligand triggers
a conformational change in the H1–H3 loop dimerization
interface that differs substantially from that induced by DEX (83).

Despite the fact that it is clear that the GR monomer-dimer
equilibriummay be modulated by changes in receptor and ligand
concentrations (31, 38), by dimerization deficient mutants (31,
66) and by conformationally biased ligands (80, 81), there is
still a controversy regarding the relative contributions of the
DBD (60, 84) and LBD (31) to dimerization of the full-length
receptor and whether other regions, such as the hinge region
(39) and the N-terminal-domain (37), play a substantial role in
dimerization. In addition, it seems unlikely that a single point
mutation in either the DBD or the LBD would fully abrogate
the ability of the GR to dimerize. Quantitative analysis in live
cells (29) comparing the dimerization affinity of different GR
dimerization mutants, such as done for GRdim (35, 36), could,
however, help to resolve the relative contributions of point
mutations to the dimerization potential of the GR. Dimerization
assays in intact live cells clearly deliver dimerization affinity
constants that differ significantly from those obtained in cell
lysates as seen in the study of Tiwari et al. (35), where for example,
the Kd of dimerization of the liganded GRwt is significantly
lower in vitro (139 nM) than in vivo (3µM) (Table 2). The most
parsimonious explanation for this phenomenon entails that an
increase in free GR monomer concentration or a decrease in free
dimer concentration occurs in vivo after ligand-binding, which
would be sufficient to favor a higher Kd

2. In support of this, it
has recently been suggested that in mouse livers the GR binds
predominantly as a monomer under physiological conditions
but that after addition of exogenous glucocorticoid there is a
ligand-dependent redistribution of GR from monomer to dimer

2(Kd =
[GR monomer]x[GR monomer]

[GR dimer]
).
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at GR binding sites (15), thus effectively decreasing free dimer
and increasing free monomer concentrations in the nucleus.
Furthermore, the implications of higher order GR tetramers
bound to DNA, that are produced from GR dimers preformed
in the nucleoplasm, recently described (29, 85), in terms of the
GR monomer-dimer equilibrium still remains to be elucidated as
do the individual amino acids involved in this interaction.

IMPACT OF GR DIMERIZATION ON THE
THERAPEUTIC INDEX OF
GLUCOCORTICOIDS

Despite their wide-spread use the therapeutic index (TI3) of
glucocorticoids remains low (86), especially in the chronic long-
term (>6 months), high-dose (>2.5–10 mg/day) scenario (87,
88), with side-effects (4, 89, 90) and loss of glucocorticoid
sensitivity or glucocorticoid resistance (5, 91), respectively,
affecting the numerator and denominator of the TI.

The discussion in this section will focus on in vivo studies
of loss of GR dimerization achieved using either the GRdim

mutation or CpdA. 21OH-6,19OP, which affects dimerization
of only the LBD and as such does not affect dimerization
of the full-length GRwt receptor (31), was originally described
as a specific passive antiglucocorticoid (92, 93) but displays
dissociated activity in vivo (94), However, as very few in vivo
studies (79, 80) have been conducted this molecule will not be
discussed further.

Glucocorticoid-Induced Side-Effects
Evaluation of the impact of GR dimerization on glucocorticoid
signaling has focused mainly on the modulation of the side-effect
profile elicited by glucocorticoids (23, 95).

Generally, loss of GR dimerization, whether through the use
of the GRdim mutant and/or the GRdim/dim mouse model (66), or
the monomeric favoring ligand, CpdA, has resulted in effective
inflammatory control with a reduction in side-effects (96–98).
For example, in a recent systemic review comparing the efficacy
and safety of SGRMs to that of glucocorticoids in arthritis it was
found that CpdA generally displays an improved TI with a similar
efficacy but a better safety profile than glucocorticoids (17).

To illustrate, the effect of loss of GR dimerization on two side-
effects of systemic use of glucocorticoids for severe asthma in
the UK with an increased hazard ratio (HR), namely diabetes
(HR:1.20) and osteoporosis (HR: 1.64) (99), will be discussed.
Diabetogenic effects, which include increased blood glucose
levels, gluconeogenesis, glycogen storage, insulin secretion
and/or liver metabolic enzyme transcription are mediated by GR
transactivation and requires GR dimerization, were not observed
with GRdim (63, 100, 101) or with CpdA (82, 97, 102–104).While,
osteoporosis, mediated by both transrepression (osteocalcin
transcription) and transactivation (osteoblast differentiation)
and thus requiring both GR monomers and dimers (95), was
not induced by CpdA, either in vitro or in vivo (105–109), while
the GRdim mice still developed osteoporosis concomitant with a

3TI =
TD50 (dose of drug that causes severe side effects in 50% of subjects)

EC50 (dose of drug that has desired pharmacologivcal effect in 50% of subjects)

potent suppression of osteoblast differentiation both in vitro and
in vivo (110–112).

Interestingly, loss of GR dimerization through use of GRdim

mice also appears to limit gastrointestinal side-effects of DEX
such as enhanced glucose transport in the small intestine (63)
and an increase in gastroparesis (delayed stomach emptying)
and gastric acid secretion (113). However, some side-effects of
glucocorticoids still occur in GRdim mice (95, 114). For example,
DEX induced a similar degree of atrophy in the tibilialis anterior
and gastrocnemius muscles of GRwt and GRdim mice (115).
Investigation involving a key regulator of muscle atrophy, the E3-
ubiquitin ligase, MuRF1, suggests that GR-binding is stabilized
by the binding of an adjacent FOXO1 on a composite DNA-
binding element in the proximal promotor of the gene, as GRdim

alone, in contrast to GRwt, did not induce the MuRF1 promoter
but did result in a modest induction in the presence of FOXO1,
which itself is upregulated by DEX via GRwt (116), but not
GRdim (115). CpdA has not been evaluated in this model and
it would be interesting to establish if, like for osteoporosis,
loss of dimerization through CpdA administration has a more
favorable outcome than seen with GRdim. Tantalizingly, in the
mdx mouse model of Duchenne muscular dystrophy CpdA,
unlike prednisolone, did not reduce gastrocnemius muscle
mass (117).

However, as an important caveat it should be noted that loss
of GR dimerization through the GRdim mutation can impair
the effect of glucocorticoid treatment in some inflammatory
conditions and as discussed may still display some DEX-induced
side-effects (95, 114). For example, in skin, inhibition of the
swelling response during the challenge phase, upon re-exposure
to the hapten, 2,4-dinitrofluorobenzene, by exogenous intra-
peritoneal or oral DEX administration in contact dermatitis, a
T cell–dependent delayed-type hypersensitivity reaction, is not
observed in GRdim mice (118), yet in phorbol ester-induced
inflammation, a classic model of acute irritant inflammation and
epidermal hyperplasia, topical DEX-treatment was as effective
in GRdim mice (96). For CpdA, results in acute irritant
inflammation of the skin are conflicting and may depend on
the topical dose used. At low doses [µg range (119, 120)]
CpdA not only inhibited irritant-induced skin inflammation and
hyperplasia but also did not induce skin atrophy, an important
side-effect of topical glucocorticoid treatment. However, at
higher doses (mg range) CpdA increased, rather than decreased,
epidermal thickness (121).

In two models of arthritis in mice, antigen-induced arthritis
(AIA), a mouse model of human rheumatoid arthritis, and
glucose-6-phosphate isomerase-induced arthritis, a severe
form of polyarthritis, GRdim mice were, respectively, fully
or partly resistant to intravenous Micromethason (liposomal
encapsulated DEX) treatment (122). In contrast, CpdA
administered intraperitoneally showed similar or slightly
reduced efficacy compared to DEX in attenuating collagen-
induced arthritis (82, 123, 124) and repressed the inflammatory
response as effectively as glucocorticoids in ex-vivomodels using
fibroblast-like synoviocytes (FLS) from rheumatoid arthritis
or osteoarthritis patients (108, 123, 125, 126), while displaying
less side-effects, such as hyperinsulinemia (82), bone-loss
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(108, 124) and homologous down-regulation of the GR (123),
than glucocorticoids.

Both GRdim (127) and CpdA (104, 128) was as effective as DEX
treatment in experimental autoimmune encephalomyelitis, a
mouse model of multiple sclerosis, while CpdA, unlike DEX, did
not elicit hyperinsulinemia or hypothalamic-pituitary-adrenal
axis suppression (104). However, in allergic airway inflammation
(AAI), a mouse model of allergic asthma, GRdim mice, unlike
GRwt mice, did not respond to intraperitoneal injection of DEX
(129), while CpdA was as effective as DEX in this model (130).

In acute systemic inflammatory settings GRdim mice are
highly vulnerable and resistant to glucocorticoid treatment. For
example, in two mouse models of sepsis, cecal ligation and
puncture and lipopolysaccharide (LPS)-induced septic shock,
GRdim mice are highly susceptible to sepsis and their bone
marrow-derived macrophages are resistant to DEX treatment
in vitro (131). Interestingly, even low dose LPS treatment
resulted in GRdim mice displaying exaggerated sickness behavior
compared to GRwt mice (132). Furthermore, in TNF-induced
acute lethal inflammation GRdim mice displayed increased TNF
sensitivity and resistance to DEX treatment (133, 134). Acute
graft- vs.-host disease, a severe complication of hematopoietic
stem cell transplantation, is another severe inflammatory disease
characterized by a cytokine storm in which GRdim mice presented
with exacerbated clinical symptoms and increased mortality
relative to GRwt (135). To our knowledge CpdA has not been
evaluated in these acute inflammatory models although it has
been suggested that it would be as ineffective as the GRdim mice
as for full resolution of the inflammatory response dimerization
of the GR is required (22, 23).

In addition, concerns regarding specifically the use of CpdA
as a therapeutic agent have been raised (102, 124, 128, 130)
as it degrades to an aziridine in solution (78) thus mediating
cytotoxic effects independent of the GR that may severely narrow
its therapeutic window.

Glucocorticoid-Induced Resistance
Glucocorticoid resistance is characterized by impaired sensitivity
to glucocorticoid treatment and may be inherited (136) or
acquired, which is more common and may result from disease
progression or chronic high-dose glucocorticoid treatment (5,
91). One of the main drivers of acquired glucocorticoid resistance
is homologous down-regulation of the GR (5, 137, 138).

Mechanism-based pharmacodynamic models use the
term drug tolerance to describe the decrease in expected
pharmacological response after repeated or continuous drug
exposure (139) and modeling of the pharmacogenomic
responses of glucocorticoid-induced leucine zipper (GILZ)
(140) and tyrosine aminotransferase (TAT) (141) mRNA
induction by both acute and chronic glucocorticoid regimes
in diverse rat tissues indicate that drug tolerance is primarily
controlled by the cytosolic free receptor density, which is
substantially down-regulated.

Receptor density is modulated by de novo receptor synthesis
and receptor degradation, which may be described by a simple
“push” vs. “pull” mechanism (5), where the “push” mechanism

includes transcription initiation and mRNA stability, while the
“pull” mechanism involves degradation of the receptor.

Already 30 years ago, it was established that ligand-mediated
down-regulation of the GR occurs at the level of both
transcription initiation and GR protein degradation, but not
at the level of mRNA stability (142). Further elucidation of
the process has established that inhibition of transcription is
mediated through binding of the liganded-GR to a nGRE in exon
6 of the GR gene and assembly of a repressive complex, consisting
of the GR, the coregulator NCoR1, and histone deacetylase
3 (HDAC3), at the transcriptional start site through DNA-
looping (143), while ligand-dependent GR protein degradation
has been localized to the ubiquitin-proteasome system (UPS)
through the use of the proteasome inhibitors (144). Proteasomal
degradation requires ligand-induced phosphorylation of the
human GR at S404 (Figure 1A) by glycogen synthase kinase
3β (GSK3β) (145), which is required for ubiquitination of the
human GR at the upstream K419 (mouse GR K426) in a PEST
sequence (144, 146). Ubiquitin is attached to the GR in a three
step pathway involving ubiquitin activating (E1), conjugating
(E2), and ligase (E3) enzymes to produce a polyubiquitylated
receptor for targeting to the 26S proteasome (147). Several E2-
conjugating enzymes, such as ubiquitin-conjugating enzyme 7
(UbcH7) (148), susceptibility gene 101 (TSG101) (149), and
Ubc9 (150–152) and E3-ligases, such as E6-AP (encoded by the
Ube3a gene) (153, 154), carboxy-terminus of heat shock protein
70-interacting protein (CHIP)(155–157), murine (Mdm2), or
human (Hdm2) double minute (158–160), UBR1 (161), and F-
box/WD repeat-containing protein 7 (FBXW7α) (162), have been
shown to interact with the GR. Recently, however, micoRNAs
(miRNAs), upregulated by glucocorticoids (163, 164), have been
implicated in the ligand-induced reduction of the GR mRNA
pool (5, 10), suggesting that the initial study indicating that
receptor density is not regulated by the stability of mRNA levels
has to be re-examined.

The relative contributions of GR mRNA and protein down-
regulation may be dependent on the dose of glucocorticoid
and/or the duration of treatment. For example, in podocytes GR
protein, but not RNA, is down-regulated during both short (1 h)
high (100µM) dose and long-term (5 days) low (1µM) dose
DEX regimes (165), while in HeLa S3 cells, 24 h, 2 weeks or a
2-year low (1µM) dose DEX regime suggests that at 24 h, GR
protein is more profoundly down-regulated than mRNA, while
at 2 weeks both protein and mRNA is down-regulated, while
by 2-years no detectable protein or RNA was observed (166).
Furthermore, in FLS derived from patients with rheumatoid
arthritis a short (7 h) vs. long (30 h) protocol of low (1µM) dose
DEX indicates substantially more GR protein down-regulation at
the longer time point (123).

Although little to no work has been done on the implications
of GR dimerization for GR resistance, some tantalizing results
with GR ligands have been noted. For example, RU486
(mifepristone), a GR antagonist shown to cause significantly
less dimerization than DEX (167), was unable to down-regulate
nascent GR RNA (143) and was less effective than DEX at down-
regulating GR protein levels (168), while ZK216348, a SEGRA
(169) for which no data on GR dimerization is available, did not
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down-regulate GR protein levels (102). CpdA, which abrogates
GR dimerization (31, 81, 82, 170), does not result in GR down-
regulation at either protein (102, 123, 171–175) or RNA (123,
172) level.

Recently, our laboratory investigated the hypothesis that GR
dimerization may be required for homologous down-regulation
of the GR by employing conditions that either promote or
reduce GR dimerization (176). Promotion of GR dimerization
through the use of dimerization promoting ligands, such as
DEX and cortisol, induced significant down-regulation of GRwt,
both transiently transfected and endogenous in HepG2 cells,
while reduction of dimerization, through the use of either CpdA
or GRdim, severely restricted GR turn-over. Receptor down-
regulation was primarily mediated by increasing the rate of
receptor protein turnover by the proteasome as (1) promotion
of GR dimerization significantly increased the rate of turnover
and decreased receptor half-life relative to the unliganded
receptor and (2) inhibition of the proteasome by MG132, but
not protein synthesis by cycloheximide, abolished GR turn-
over. Interestingly, the GRwt half-life with CpdA was very
similar to that of the half-life of the unliganded receptor, a
finding previously reported (171). Mechanistically, degradation
of the GR by the proteasome requires hyperphosphorylation
of the GR at S404 by GSK3β (145), which enables binding
of the E3 ligase FBXW7α (162). Loss of GR dimerization
restricted hyperphosphorylation at S404 and interaction with
FBXW7α. Furthermore, inhibition of DEX-mediated S404
hyperphosphorylation through the use of the pharmacological
GSK3β inhibitor, BIO, restored GR levels. In summary, GR
dimerization is required for ligand-induced post-translational
processing and downregulation of the receptor via the UPS
system. Subsequently, the requirement of GR dimerization for
autologous down-regulation of the GR was confirmed in a study
in arthritic mice indicating that DEX does not down-regulate the
GR in GRdim mice, in contrast to GRwt mice (164).

Although, loss of GR dimerization has been generated by
using either dimerization deficient mutants such as GRdim, or
monomerization biased ligands such as CpdA, and it has been
suggested that the behavior of DEX-induced GRdim equates
to that of CpdA-induced GRwt (81), results show that the
two scenarios do not always produce exactly the same results.
At a molecular level, for example, although both GRdim and
CpdA prevent homologous down-regulation of the GR the
two conditions differ in terms of the extent of the repression
of the post-translational modifications (PTMs) required for
the process, with CpdA reducing S404 phosphorylation, while
no discernible, not even basal, phosphorylation is observed
with GRdim (176). Nuclear translocation of the GR is another
area of potential difference as some studies show that CpdA
does not allow for nuclear translocation of the GRdim (176),
while others suggest that both GRdim and CpdA can cause
nuclear translocation albeit with diminishedmaximal import (81,
170). Furthermore, in disease models, although glucocorticoid-
induced metabolic side-effects may be attenuated under both
conditions, GRdim can still induce osteoporosis, while CpdA
does not, which has been ascribed to the ability of GRdim, but
not CpdA, to suppress interleukin-11 via interaction with AP-1

(108, 111, 177). Additionally, in terms of efficacy in disease
models loss of dimerization through CpdA administration often
had a more favorable outcome than seen with GRdim mice, in
for example, arthritis (82, 108, 122–126) and allergic asthma
(128–130) models. Although it may be tempting to ascribe these
differences to the extent of GR dimerization elicited, with total
abrogation of dimerization by CpdA (31, 81) and no (31, 62), to
partial (38), to almost full (35, 36) loss of dimerization via GRdim,
this would probably be an oversimplification. More likely is that
CpdA, in contrast to GRdim that impacts only the DBD (65), also
elicits a differential conformation of the LBD upon binding (97),
which could impact on GR PTMs (97, 171, 176) and interaction
with cofactors (178, 179). Despite the fact that both CpdA and
GRdim modulate GR dimerization there are few comparative
studies directly comparing implications for molecular aspects of
GR signaling or the impact on the therapeutic index in mouse
models of disease.

CONCLUSION

Monomeric GR, like the dimer, binds to DNA and is
transcriptionally functional (101), thus these two receptor species
may represent distinct drug targets to tailor for improved
glucocorticoid treatments. Rational design of conformationally
biased ligands that select for a monomeric GR conformation,
may be a productive avenue to explore in the pursuit of drugs
that lessen the side-effect profile and increase glucocorticoid
sensitivity through improving GR protein stability and increasing
half-life, yet the optimal conformational and gene expression
signatures to either drive the monomer-dimer equilibrium
toward a particular state or evaluate its implications remain
elusive, as does the question of whether this would be feasible or
even desirable in the clinic.

For rational structure-based drug optimization strategies
the field needs to look at both methods to accurately
measure and quantify GR dimerization bias and an updated
theoretical framework or model to evaluate the implications of
GR dimerization.

Biased signaling is well-developed in the field of GPCR
signaling (180) and offers quantification approaches (181) that
yield useful empirical parameters, such as the transduction
coefficient (τ /KA) that incorporates ligand efficacy and potency
as well as receptor density, to compare extent of bias relative
to a reference ligand, usually the endogenous ligand (182).
However, in the GR field there have been only isolated reports
that harnessed classical analytical pharmacology approaches to
generate quantitative information about the pharmacodynamic
properties of GR ligands (183, 184). In addition, although
mechanistic pharmacokinetic and pharmacodynamic models for
the GR (140, 185, 186) and mathematical models to increase
drug specificity (187–189) are being developed their uptake by
most investigators has been slow. This is unfortunate as they
provide a much-needed new perspective and are an essential
component for understanding the quantitative behavior of biased
GR ligands and to provide tractable design strategies such as
functional selectivity fingerprints for drug development.
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FIGURE 3 | Simulated dimerization curves for unliganded and liganded GRwt

and liganded GRdim and GRI628A. Simulations were done using GraphPad

Prism version 7. Kd values from Oasa et al. (36) were used, except for

liganded GRI628A, where a 10-fold increase in the Kd of the unliganded GRwt

was used as per Bledsoe et al. (9). The figure clearly shows that ligand-binding

to the GRwt results in a left shift of the dimerization curve, while mutations in

either the DBD or the LBD dimerization interfaces result a right shift of the

curve relative to GRwt, with a more pronounced shift in the case of the

mutation to the LBD dimerization interface.

The importance of quantitative, rather than semiquantitative
analysis is illustrated by the recent commotion around the
usefulness of the GRdim model to investigate effects of loss
of dimerization. The initial study by Presman et al. (31)
using the N&B assay that demonstrated dimerization by the
GRdim was semiquantitative yet several reviews since then
have given this evidence underserved prominence. Mass action
dictates that increasing GR levels would force the steady state
to dimerization even in the case of a GR species poorly
able to elicit dimerization, such as the GRdim. Thus, a valid
evaluation and comparison of the dimerization potential of
the GRdim requires a quantitative approach that measures

dimerization affinity such as done by the group of Kinjo (35, 67).
Furthermore, it has recently been pointed out that the N&B
assay may suffer from drawbacks, which could be avoided by
using the two-detector number and brightness analysis (TD-
N&B) (190), whereby it was shown that the GRdim is poorly
dimerized in the nucleus, with a concentration ratio between
monomers and dimers of 1:0.66 as compared to GRwt that
has a concentration ratio between monomers and dimers of
1:19.1. Finally, simulated dimerization curves using the Kd values
obtained from the literature (Figure 3) clearly shows that the
GRdim is indeed poor at eliciting dimerization in comparison
to GRwt.

Despite optimism regarding the potential of biased ligands
such as SEGRMs to improve on the therapeutic potential
of glucocorticoids, to date none have entered the market
(191). For biased ligands promoting GR monomers there are
indeed legitimate concerns raised that for full resolution of
inflammation transactivation by GR-dimers of genes such as
mitogen-activated protein kinase phosphatase-1 (MKP-1), GC-
induced leucine zipper (GILZ), and IL10 are required (22).
Notwithstanding these concerns a strong argument has been
made for the tailoring of ligands that favor GR monomer
formation for chronic long-term use (23), a scenario where the
additional ability of these ligands to prevent resistance would be
most relevant.
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Glucocorticoid Toxicity in Lupus?
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Glucocorticoids (GC) are used globally to treat autoimmune and inflammatory disorders.

Their anti-inflammatory actions are mainly mediated via binding to the glucocorticoid

receptor (GR), creating a GC/GR complex, which acts in both the cytoplasm and

nucleus to regulate the transcription of a host of target genes. As a result, signaling

pathways such as NF-κB and AP-1 are inhibited, and cell activation, differentiation

and survival and cytokine and chemokine production are suppressed. However, the

gene regulation by GC can also cause severe side effects in patients. Systemic lupus

erythematosus (SLE or lupus) is a multisystem autoimmune disease, characterized by

a poorly regulated immune response leading to chronic inflammation and dysfunction

of multiple organs, for which GC is the major current therapy. Long-term GC use,

however, can cause debilitating adverse consequences for patients including diabetes,

cardiovascular disease and osteoporosis and contributes to irreversible organ damage.

To date, there is no alternative treatment which can replicate the rapid effects of

GC across multiple immune cell functions, effecting disease control during disease

flares. Research efforts have focused on finding alternatives to GC, which display

similar immunoregulatory actions, without the devastating adverse metabolic effects.

One potential candidate is the glucocorticoid-induced leucine zipper (GILZ). GILZ is

induced by low concentrations of GC and is shown to mimic the action of GC in several

inflammatory processes, reducing immunity and inflammation in in vitro and in vivo

studies. Additionally, GILZ has, similar to the GC-GR complex, the ability to bind to both

NF-κB and AP-1 as well as DNA directly, to regulate immune cell function, while potentially

lacking the GC-related side effects. Importantly, in SLE patients GILZ is under-expressed

and correlates negatively with disease activity, suggesting an important regulatory role

of GILZ in SLE. Here we provide an overview of the actions and use of GC in lupus,

and discuss whether the regulatory mechanisms of GILZ could lead to the development

of a novel therapeutic for lupus. Increased understanding of the mechanisms of action

of GILZ, and its ability to regulate immune events leading to lupus disease activity has

important clinical implications for the development of safer anti-inflammatory therapies.
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SYSTEMIC LUPUS ERYTHEMATOSUS
(SLE)—A DIVERSE CHRONIC
AUTOIMMUNE DISEASE

Systemic lupus erythematosus (SLE) is an incurable chronic
disease, affecting ∼1 in 1,000 people world-wide (1, 2), resulting
in a marked loss of life expectancy and quality of life. The
prevalence of SLE is higher in women, particularly of child
bearing age, and in African American, Asian and indigenous
Australian populations (1). SLE is one of the top 10 causes of
death in young adult women (3), but the current treatment
consists mainly of glucocorticoids (GC) which cause severe
adverse effects (4).

SLE is characterized bymultisystemic inflammation occurring
in periodic disease flares, which can affect multiple organs
such as the kidneys, lungs, brain, heart, blood, and skin. The
most common symptoms include rash, arthritis, and fatigue.
The heterogeneity of the disease makes clinical diagnosis
and measurement very challenging, resulting in the use
of clinical criteria to categorize patients with autoimmune
disease as having SLE. For example, the American College
of Rheumatology (ACR) classification criteria, which comprise
11 disease features, identifies patients who have at least four
features as SLE (5). The requirement for multiple features
highlights the heterogeneity of the disease. The majority of SLE
patients are positive for antinuclear antibodies (ANA) which
target the nuclear components of cells. The most commonly
detected specific autoantibodies are dsDNA, anti-Ro and anti-Sm
antibodies which also can act as markers for kidney disease (6).
Furthermore, the presence of autoantibodies especially to Ro, La,
Sm, and RNP is strongly associated with detection of interferon
(IFN)-induced gene expression in peripheral blood (7). This
profile of IFN-induced genes is termed the IFN signature, and
is found in approximately 95% of children and 50–70% of adults
with SLE (8–10).

Although the initiating cause of SLE is unknown, it is
thought to result from a failure in tolerance checkpoints in
several components of the immune system. This includes the
escape and proliferation of autoreactive B cells, the development
of autoantibodies, and the formation of immune complexes
which can initiate organ inflammation and/or directly damage
cells (8, 11).

Production of Autoantibodies and Immune
Cell Dysfunction
One theory regarding the initiation of SLE is impaired clearance
of apoptotic cells. Phagocytes from SLE patients are less effective
in clearing apoptotic cells, and the uncleared apoptotic cells
present apoptotic bodies and nucleic antigens to the extracellular
space (12). These nucleic antigens, if internalized via Fc receptor
binding of nucleic acid immune complexes, activate toll like
receptors (TLRs). Particularly TLR 7 whose ligand is ssRNA
[associated with the production of anti-Sm antibodies in SLE
(13)], and TLR 9 whose ligand is unmethylated CpG-rich DNA.
Downstream signaling resulting in the production of multiple
cytokines, including interleukin (IL)-6, IL-1, and tumor necrosis

factor (TNF)-α, which play a pivotal role in immune cell
dysfunction and chronic inflammation (14).

Importantly, this pathway also leads to production of type
I IFN (IFN-α and IFN-β), an important hallmark of SLE (15).
Type I IFNs can also be induced via TLR-independent pathways
such as retinoic acid-inducible gene 1 (RIG-I), melanoma
differentiation-associated protein 5 (MDA-5) and cyclic GMP-
AMP synthase (cGAS) receptors which activate innate immune
cells through the detection of cytoplasmic nucleic acids (16).
The main producers of type I IFN are plasmacytoid DCs (pDC).
Despite a reduction in the number of circulating pDC in SLE
patients, these cells accumulate at inflamed sites, particularly
the skin and kidneys, and secrete large amounts of type I
IFNs (17, 18).

One of the actions of IFN-α is to prime mature neutrophils
and assist the formation of neutrophil extracellular traps (NETs)
(19, 20). NETs are mesh-like structures composed of chromatin
fibers and nuclear components, designed to trap and kill
microbes (21). However, when inappropriately cleared, these
NETs are also a source of auto-antigens. Thereby, they contribute
to the development of auto-antibodies, particularly against
dsDNA, and the immune complexes that cause organ damage in
SLE (22). Finally, by exposing intracellular nucleic acid antigens,
NETs activate pDCs and further exacerbate the production of
type I IFN, creating a cycle of type I IFN production and NET
formation in SLE patients (20).

Components of apoptotic cells can also be taken up by
antigen-presenting cells and will activate T and B cells through
the normal antigen presentation pathway. CD4+ T cells from
SLE patients display a high expression of CD40 ligand (CD40L)
compared to healthy donors, which also assists in activation and
differentiation of B cells due to its role as co-stimulatory molecule
(23). T follicular helper cells are expanded in SLE patients and
promote the differentiation of autoantibody producing B cells
(24). Additionally, Th17 cells, which promote inflammation,
are increased in SLE, whilst T regulatory cells (Tregs) are
suppressed (25). Furthermore, increased T cell numbers in SLE
provides more T cell help for B cell differentiation, survival and
proliferation (25), as does an elevated level of B cell activating
factor (BAFF; also known as B Lymphocyte Stimulator, BLyS
or TNF like ligand, TNFSF13B). Overexpression of BAFF is
associated with increased survival of activated autoreactive B
cells and a decrease in self-tolerance which leads to lupus-like
autoimmune disease in mouse models (26). BAFF also assists
in B cell survival during differentiation and is associated with
SLE disease activity (14). B cells, which are activated by CD4+

T cells, contribute to disease both via antibody production and
antigen presentation to T cells. B cells in SLE are hyperactive
and contribute significantly to the production of autoantibodies,
cytokines and augmented antigen presentation to T cells (25).
Naïve B cells are reduced in number in the blood of SLE
patients, whilst there is an increase in plasmablasts leading to
an increase in antibody production. The cycle of excess antibody
production perpetuates inflammation via immune complexes, as
noted above.

Thus, SLE is a diverse autoimmune disease mediated by
the disordered activation of multiple immune cells causing
widespread chronic inflammation, resulting in multi-system
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morbidity and making management an enormous challenge. To
combat the diverse nature of the systemic inflammation, the
broad effects of GC on immune cell function has led to them
being used widely to elicit broad suppression of autoimmunity
and its inflammatory consequences.

Glucocorticoid Treatment of SLE
GC have been used for decades for the treatment of inflammatory
and autoimmune diseases such as rheumatoid arthritis and SLE
(27, 28). GC have a substantial impact on the immune system
via the ability to regulate 1,000 of genes. Gene regulation occurs
via GC binding to the GC receptor (GR), which is expressed in
almost every cell in the body. Thus, the effects of GC are not
tissue- or organ-specific and treatment with GC has the ability
to target inflammation in multiple parts of the immune system,
and in multiple organs, simultaneously. This is valuable in a
disease like SLE, in which cell types are implicated and multiple
organs are affected. In SLE, dosing of GC varies according to the
severity of inflammation and the nature of the organs affected
(28). Unfortunately, adverse effects of GC, chiefly metabolic, are
also dose-dependent, and are seen almost universally in patients
with SLE treated with GC long term (28, 29).

To reduce reliance on GC, and hence dose-dependent adverse
effects, patients with SLE are usually also treated with additional
immunomodulatory or immunosuppressive drugs, such as anti-
malarials, mycophenolate mofetil, or azathioprine. These drugs
are also broad spectrum in their effects, and associated with
significant adverse effects. The only targeted therapy approved
for the treatment of SLE is belimumab, approved by the FDA
for use in 2011. Belimumab is a neutralizing human monoclonal
antibody to BAFF, which is elevated in SLE, suggesting that a
BAFF inhibitor has the potential to control B cell dysfunction
in SLE (14, 26). Belimumab has been approved for treatment
of patients with active autoantibody positive SLE who have not
responded to conventional therapies (30). Belimumab does not
induce a rapid clinical benefit and though its use is associated
with reduced GC dosing (31), GC remains the treatment for the
majority of SLE patients. Additional targeted therapies directed
against key inflammatory cytokines for SLE, such as IL-6, have
been found to be ineffective in Phase II trials in SLE, despite
their efficacy in rheumatoid arthritis (32). This suggests upstream
targeting of inflammatory signaling pathways is important for
development of a GC replacement therapy.

That GC are the mainstay treatment for SLE despite its
use being plagued with severe side effects, such as increased
cardiovascular disease, osteoporosis and diabetes (28, 29, 33),
highlights the lack of a viable alternative. Thus, there is a critical
need for the development of new therapeutics with similar potent
immune actions but without the detrimental metabolic effects.

THE MECHANISM OF GC ACTION IN THE
TREATMENT OF SLE

The main mechanism via which GC act on the immune system
is through binding to the glucocorticoid receptor (GR). The
GR is encoded by the NR3C1 gene and has two major forms,

GRα and GRβ, which are alternative splicing isoforms from
N3C1 (34). GRα is the form that resides in the cytoplasm and
is dependent on GC binding for function. The GR contains an
N-terminal regulatory domain, central DNA binding domain,
hinge region and C-terminal ligand binding domain (35–37).
The GRα is located in the cytoplasm and forms a complex with
several proteins including heat shock protein 70 and 90 (38).
Upon ligand binding, GRα is released from this complex and
can interact with cytoplasmic signal transduction molecules or
translocate to the nucleus.

The main mechanisms via which GC drive the transcription
and regulation of multiple genes are direct DNA binding,
tethering and composite binding (38–40) (Figure 1). In the
nucleus, GRα is able to modulate gene transcription through
binding to target sequences termed GC-response elements
(GREs), largely in the cis-regulatory region of target genes
(41). This results in either induction or repression of target
gene expression. The binding of the GRα to the GRE can
also cause conformational changes in the GR which causes
the recruitment of cofactors and coregulators to the site with
the ability to modulate and alter the transcriptional rate of
many target genes (35, 37). Direct DNA binding of the GRα

to GREs results in the induction of gene expression and causes
the transcription of multiple genes, including anti-inflammatory
genes such as IL-10 and IL-1 receptor antagonist (38, 40) as
well as GC-induced leucine zipper (GILZ). GRα can also directly
bind to negative GREs (nGRE), which results in suppression
of the transcription of several proinflammatory modulators and
cytokines including interleukin (IL)-1β (38, 40, 42). Another
form of gene repression, termed tethering, is mediated by the
ability of GRs to tether to pro-inflammatory transcription factors
such as the p65 subunit of nuclear factor kappa B (NF-κB) and
activator protein 1 (AP-1), antagonizing their function (35, 43–
45). Finally, composite binding encompasses the binding of GRα

to a gene locus containing a GRE as well as a binding site for
another transcription factor (Figure 1).

Additional factors also influence the ability of GRα to regulate
gene transcription such as chromatin structure, epigenetic
regulators, proximity to the TATA box, and indirect activation
of target genes (38, 41). Next to the genomic actions of
GRα, it also affects cellular function through non-genomic
mechanisms, including suppression of mitogen activated protein
kinases (MAPK) and phosphoinositide 3-kinase (PI3K) signaling
pathways and activation of proteins with SRC homology 3 [SH3]
domains (46) (Figure 1).

Other factors influencing GC regulation of gene expression
include tissue-specific differences in GR expression, and the
level of GC dosing (47, 48). Whereas, a single bolus GC
dose highly activates GC-mediated biological responses, chronic
GC dosing can be associated with GC resistance. Studies in
acute adrenalectomized rat models have demonstrated that this
resistance is correlated with a down-regulation of GR mRNA
and cytosolic receptor density (49, 50). A study by Ayyar et al.
found a similar effect of chronic dosing when studying GILZ
as a pharmacodynamic marker of GC action in different rat
tissues (47). Similar to Ramakrishnan et al. (50) this study also
demonstrated drug-induced tolerance during chronic dosing,
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where GC receptor down-regulation was the main mechanism of
regulation (47). Taken together these studies highlight that tissue-
specific, and GC-induced, differences in GR levels are important
physiological factors to consider in GC responses.

The molecular mechanisms of GRα-mediated effects have
been extensively studied, however, much less is known about the
GRβ isoform. GRβ results from alternative splicing in exon 9 of
NR3C1 and is a truncated isoform that lacks helix 11 and 12 from
the ligand-binding domain (51). Since these helices are important
for ligand binding, GRβ cannot bind GC and does not directly
affect GC-sensitive genes (52). In fact, it is thought that GRβ

acts as a dominant negative regulator for GRα. Overexpression
of GRβ suppresses GRα-mediated gene transcription, and cells
which have higher endogenous levels of GRβ are less responsive
to the effects of GC (53–55). How this inhibition occurs is not
well-understood, but various mechanisms have been proposed.
These include heterodimerization of GRβ with GRα to inactivate
GRα, competition for binding at GREs and competition for
binding to coactivators such as GRIP1 (53, 56, 57). Furthermore,
GRβ also has transcriptional activity independent of GRα and
controls its own set of genes (58, 59). Interestingly, GRβ

expression is induced by a variety of pro-inflammatory cytokines,
such as IL-2, IL-4, IL-17A, IL-17F, IL-23, and TNF-α (60–62).
Given their prominent role in inflammatory diseases and the
dominant-negative role of GRβ, it is not surprising that high GRβ

levels seem to be related to GC resistance in diseases such as
asthma, ankylosing spondylitis and SLE (63–65). Furthermore,
a polymorphism in NR3C1 which enhances the stability of GRβ

is associated with rheumatoid arthritis (66). Therefore, a better
understanding of GRβ biology and how to suppress its function
may be an important step toward improving GC-based therapies.

It should be noted that GRα and GRβ are not the only
forms of GR. In fact, 27 splice variants of the NR3C1 gene
have currently been identified (67), and hundreds of single
nucleotide polymorphisms (SNPs), insertions and deletions
which potentially also lead to different variants of the GR proteins
have been cataloged (67). Although the physiological role of these
variants is currently unknown, they may play a role in individual
GC response and therefore warrant further study.

In the context of SLE, GC elicit rapid and potent anti-
inflammatory effects upon multiple organs and immune cells.
Many of the immune regulatory effects of GC are through direct
binding to transcription factors including NF-κB, AP-1, nuclear
factor of activated T cells (NFAT) and T-bet (38, 68, 69). This
causes a myriad of effects upon immune cells, described in
more detail below, and important for the treatment of SLE, the
suppression of key mediators of inflammation TNF-α and type I
IFNs (9, 14, 70).

Effect of GC Treatment on Immune Cells
Operative in SLE
Thymocytes, particularly double positive CD4+CD8+TCRlow

thymocytes, are sensitive to GC-induced apoptosis (71). Cell
death can also be induced in mature T cells indirectly by GC-
mediated inhibition of IL-2 activation and production (72, 73).
GC have been described to affect T cell polarization, shifting the

phenotype from Th1 to Th2 (74, 75), however it should be noted
that GC affect both T-bet and GATA-3 transcriptional activity,
with long-term GC treatment favoring Th2 expansion (75).
Further support for polarization toward a Th2 phenotype comes
from GC increasing expression of Itk, a Tec kinase able to induce
Th2 differentiation through the negative regulation of T-bet
(76, 77). GC also increases Treg number and activity, promoting
IL-10 producing T cells. This is through several mechanisms:
inhibition of activation of T effector cells, GC-mediated Foxp3
induction, and Tregs being more resistant to GC (76).

GC treatment also affects B cells. Firstly, GC induce apoptosis
in B cells at all developmental stages (78–80). In addition,
GC suppress plasma cell differentiation potentially via down-
regulation of Blimp1 and Bcl6 (81, 82). Finally, GC may
also directly affect the production of IgG antibodies through
inhibition of activation-induced cytidine deaminase (AICDA),
an enzyme required for class switch recombination and somatic
hypermutation (83). As a result of these GC-induced changes,
GC reduce the number of plasma cell precursors and plasma
cells and the level of anti-nuclear antibodies demonstrated in the
murine MRL/lpr model for SLE (82). Importantly, the number
of circulating B cells in human blood is also reduced upon GC
treatment (84).

GC also impair dendritic cell (DC) maturation and function
(85). DCs treated with GC increase their antigen uptake, decrease
their expression of maturation markers (CD80, CD86) and
decrease TNF-α, IL-6, and IL-12 production which in turn
decreases the induction of T cell responses (85, 86). GC treated
DCs have also been described as tolerogenic with the ability to
drive T cells toward a Treg phenotype, creating an increase in IL-
10 production (87, 88). As a result of these effects, GC enhance
the clearance of dead cells and toxins, and increase scavenger
function and phagocytosis. GC treatment also decreases the
number of pDCs in the peripheral blood, which is important
in SLE since they are key IFN-α producers (89). Following GC
treatment, levels of IFN-α have been reported to be reduced
to levels approximately 25-fold below those seen in untreated
healthy donors (89). As type I IFN is implicated in disease
severity and activity in SLE, control of pDC number and IFN-
α production by GC could be of benefit for the treatment of
SLE. Of note, however, pDC IFN production has been reported
to be resistant to GC inhibition in SLE, because of TLR-induced
NF-κB overcoming GC inhibitory effects (90); it is noteworthy
that the IFN signature recognized as associated with SLE is still
present in GC-treated patients. Were it to be proven that SLE-
related IFN activity was resistant to GC, this would provide a
novel target for “assisting” the effects of GC in SLE, for example
by reversing factors associated with their inability to suppress IFN
in this disease.

Treatment with GC increases the phagocytic ability
of macrophages, a finding demonstrated in human
macrophages and mouse models (91, 92). This process is
assisted by up regulation of mannose receptor (CD206)
and scavenger receptors (CD163) on macrophages and
enhancement of IL-10 production (93, 94) in response to
GC. Significantly for SLE, GC treatment thus also increases
the phagocytosis of apoptotic neutrophils by macrophages
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FIGURE 1 | Mechanisms of cellular regulation by GC and GRα. GC bind to GRα, which then dissociates from its chaperone proteins and can regulate target gene

expression upon migration to the nucleus. Non-genomic effects of GRα include modulation of apoptotic processes in the mitochondria and direct and indirect (dotted

line) regulation of cytoplasmic kinases and NF-κB.

(95), thus reducing the number of NETs and reducing their
pro-inflammatory impact. GC also have direct immune
modulating effects on neutrophils, dampening their activation
through several mechanisms including anti-apoptotic
effects (96), inducing detachment via effects on cell surface
CD62L (97) and reducing expression of pro-inflammatory
cytokines (98).

This wide array of immunomodulation entrained by GC
underpins reliance on GC treatment in SLE. Thus, it is imperative
that any replacement for GC is able to target multiple immune
pathways and provide potent anti-inflammatory immune cell
regulation (Figure 2). The ability to achieve these effects without

causing the devastating metabolic adverse effects of GC has been
described as the “holy grail” of inflammatory pharmacology (99).

COULD GC-INDUCED LEUCINE ZIPPER
(GILZ) TARGETING BE A REPLACEMENT
FOR GC TREATMENT IN SLE?

GILZ mRNA expression negatively correlates with SLE
disease activity (100) and we have demonstrated that active
SLE is associated with lower intracellular GILZ protein
levels across multiple leukocyte subsets (11). These findings
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FIGURE 2 | Immunomodulatory effects of GC and GILZ. Overview of the effects of GILZ and GC that contribute to their suppressive capacities and potential side

effects in SLE. Unique effects of GC are depicted in the blue circle, unique effects of GILZ in the yellow circle. Shared actions between GC and GILZ are shown in the

middle green area.

suggest the possibility that GILZ deficiency contributes to SLE
immunopathogenesis, and conversely that GILZ augmentation
might be effective in SLE.

GILZ, also known as TSC22 domain family protein 3
(TSC22D3) is a 134aa protein in humans. It contains three
main regions: an N-terminal domain with a tuberous sclerosis
complex (TSC) domain, a leucine zipper, and a proline-rich C-
terminal domain. The leucine zipper domain of GILZ largely
mediates the homodimerization of GILZ, a requirement formany
of its functions (101). The N-terminal and C-terminal domains
of GILZ are regions where several protein-protein interactions
occur, particularly with transcriptional and signaling molecules.
These interactions are critical for the immunosuppressive effects
of GILZ.

GILZ has been demonstrated to modulate immune cell
activation and promote an anti-inflammatory phenotype (102,
103). This is mediated in part by inhibiting the nuclear
translocation and DNA binding of NF-κB, largely through direct
binding of the C-terminus of GILZ to the p65 subunit of NF-
κB (101, 103). Additionally, GILZ binds to AP-1, a transcription
factor consisting of c-Jun and c-Fos with a broad range of

functions on immune cell activation (104), GILZ binds to AP-1
through its N-terminal domain and prevents AP-1 from binding
to its target DNA (105).

GILZ also interferes with other cellular signaling molecules,
such as extracellular signal-regulated kinases (ERK). The ERK
pathway is involved in multiple regulatory processes and is key
to many immune cell functions included cell differentiation,
proliferation, survival, apoptosis, transcription and metabolism
(106). GILZ suppresses the ERK pathway via direct binding
to Ras via its TSC domain and, depending on the level of
Ras activation, via formation of a trimeric complex with Ras
and Raf (107, 108). This results in a decrease in activation of
downstream targets of Ras and Raf, for example the ERK1/2 and
protein kinase B (AKT/PKB) (107), and a subsequent decrease in
cell proliferation.

The Effect of GILZ on Immune Events
Involved in SLE Pathogenesis
As noted above, GILZ regulates pivotal transcription factors and
cellular pathways involved in immune-inflammatory responses.
Notably, many of these transcription factor interactions of GILZ,
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mimic the transrepressive effects of GC. This raises the potential
of GILZ as a replacement for GC. A comparison between the
effects of GILZ and GC in animal models of inflammatory
diseases has been summarized previously (39).

GILZ has a pro-apoptotic effect on thymocytes similar to
GC, as demonstrated by GILZ overexpression systems in mouse
models. GILZ overexpression led to a reduction of Bcl-xL
expression and increased activation of caspase 3 and 8 (109). This
results in a decrease in CD4+CD8+ thymocytes. However, in
T cells, GILZ can exert an anti-apoptotic effect, inhibiting anti-
CD3 antibody-induced cell apoptosis through binding to AP-1
(110). This leads to inhibition of FasL expression and inhibition
of apoptotic pathways (105, 108).

Similar to GC, GILZ also promotes a Th2 over a Th1
phenotype in T cells. This was demonstrated in activated
CD4+ T cells from GILZ transgenic mice, which had increased
expression of Th2 transcription factors GATA-3 and STAT6
but decreased production of the Th1 transcription factor T-bet
(111). Additionally, GILZ induced a Th2 cytokine profile with
increased IL-4, IL-5, IL-10, and IL-13 production and a reduction
in IFN-γ production. Supporting the role of GILZ in reducing
Th1 cytokine production, mouse GILZ-deficient T cells show an
increase in IFN-γ production compared to wildtype T cells (112).
GILZ also induces the production of Tregs and IL-10, further
promoting a regulatory environment and increased production
of IL-10 (113).

GILZ regulates cytokine production in T cells and other
immune cells largely through inhibition of the transcriptional
activity of AP-1, NF-κB, and NFAT transcriptional factors. For
example, GILZ binding to NF-κB results in a reduction in IL-2
and IL-2R (103, 114) and regulation of T cell activation (103) and
also regulates IL-2 production via binding to AP-1. In human
T cells GILZ also inhibits IL-5 production via AP-1 binding,
resulting in a negative correlation between expression of IL-
5 and GILZ (115). These findings are particularly important
for reducing inflammation in a chronic inflammatory disease
like SLE, which is characterized by hyperactive T cell responses
including T cell-dependent B cell activation.

Next to the classical Th1 and Th2 cells, GILZ also affects
Th17 cells. We and others have shown that GILZ inhibits
the differentiation of Th17 cells (116, 117). Mechanistically,
this is thought to be mediated via direct binding of GILZ to
the promoters of Th17 genes including Batf, Stat3, Irf4, and
ROR-γt (117). Knockdown of GILZ increases expression of
Th17 transcription factors (Rorc, Rbpj, and Batf), cytokines
(IL-17A and IL-21) and also reduces Foxp3 expression (117).
Furthermore, we have demonstrated, in studies of GILZ-deficient
mice, that endogenous GILZ inhibits production of Th17-
inducing cytokines IL-1β, IL-23, and IL-6 from bone marrow-
derived dendritic cells, further limiting Th17 differentiation
(116). Also, using the imiquimod-induced psoriasis model, we
have found that GILZ deficiency increases IL-17A, IL-1β, IL-6,
and IL-23 in skin lesions. However, these findings may contrast
the results of Carceller et al. that demonstrate lesional expression
IL-17F, IL-22, and IL-23 increases upon systemic exogenous
GILZ overexpression in the same model (116, 118). In human
psoriatic lesions, GILZ expression is decreased and correlates

negatively with Th17-related pro-inflammatory cytokines IL-23,
IL-17A, IL-22, and STAT3 demonstrated in human psoriatic
lesions (116).

SLE is characterized by hyperactive B cells and a failure
of B cell tolerance to self-antigens. GC have suppressive and
cytotoxic effects on B cells (78, 119) and GILZ is able to mimic
several of these effects, inhibiting cell proliferation, activation,
differentiation, IgG production, and apoptosis (80, 81). We have
also demonstrated a reduction in GILZ expression in B cells from
both SLE patients and in a lupus prone mouse model (11). Our
study also demonstrated that GILZ deficiency results in lupus-
like autoimmunity in aged mice, manifesting as excessive B cell
responses to T dependent stimulation and the upregulation of
genes which promote germinal center B cell phenotype, lupus
susceptibility genes and genes for B cell survival and proliferation
(11). The consequences of GILZ deficiency in vivo in these
experiments included spontaneous production of lupus-related
autoantibodies including ANA, anti-dsDNA, and anti-Sm, as
well as immune complex glomerulonephritis. Additionally,
treatment of human B cells with GILZ protein suppressed
their responsiveness to T dependent stimuli, providing more
evidence that GILZ is a regulator of B cell activity and proof-
of-principle that therapeutic supplementation of GILZ could
negative regulate B cell activation in SLE.

Deletion of GILZ in mouse models has also been
demonstrated to result in an increase in B cell numbers in
bone marrow, blood, and lymph nodes (119). This is a corollary
of the effect on B cell numbers of GC, which cause a decrease
of B cells in several organs and circulation. Thus, GILZ is a
key mediator in the regulation of B cell survival. This increase
in B cell survival in GILZ-deficient mouse models correlates
with an increased NF-κB activity and Bcl-2 expression (119).
GILZ regulation of inflammatory immune responses is further
demonstrated in a colitis mouse model where GILZ deficient
mice had increased IFN-γ production by B cells, increased
CD4+ T cell activation and enhanced AP-1 activity (120).
These mouse models demonstrate proof of principle for the
potential therapeutic effect of GILZ in regulating B cell-
dependent inflammatory diseases, wherein increased colitis in
the setting of GILZ deficiency was reversible via GILZ protein
administration (120).

The ability of GILZ to modulate the activation of several
signal transduction pathways also affects the maturation of DCs.
This is supported in GILZ overexpression models, where GILZ
mimicked the inhibitory effects of GC on human DCmaturation
and activation. For example, GILZ caused a decrease in the
expression of DC activation markers (CD80, CD86, and CD83),
less IL-12 production and increased IL-10 production (121, 122).
GILZ overexpression in DCs can also cause DCs to favor the
induction of Tregs over T effector cells (123). Thus, it is suggested
that GILZ supports an alternative pathway of activation and
differentiation of DCs, leading to a more tolerogenic DC
phenotype (122). This has also been demonstrated in mouse
studies wherein GILZ affected splenic DC function by inhibiting
macropinocytosis and inhibited antigen uptake by CD8a-positive
mouse DCs, which had the highest level of GILZ of the splenic
DC subsets (124).
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Modulation of the NF-κB pathway by GILZ also reduces
macrophage activation, as illustrated by the reduced expression
of CD80, CD86, TLR 2, and chemokines CCL5 and CCL3
(102). TLR 4 stimulation of GILZ deficient bone marrow derived
macrophages results in enhanced NF-κB and AP-1 activity
(125). As well as cytokine and chemokine production, GILZ
also decreases the phagocytic capacity of macrophages (126).
Interestingly, this effect is opposite to the effect of GC, which
promote phagocytosis by macrophages. Additionally, GILZ also
regulates several neutrophil functions including their activation
through inhibition of the MAPK pathway (127), their migration
(via annexin A1) (128) and apoptosis (associated with caspases 3,
8, 9) (129, 130).

Interestingly, GILZ is not only regulated by GC, but can
also be induced by IL-4, IL-10 and curcumin (102, 131–133).
Furthermore, studies in macrophages, in vitro, ex vivo, and in
vivo, have shown that TLR 1/2 and TLR 4 stimulation reduce
GILZ mRNA and protein levels (126, 134). Similar findings
were reported in T cells, where TCR triggering reduces GILZ
expression (103). These data indicate a feedback loop where
GILZ is higher in unactivated immune cells and decreases upon
their activation.

THERAPEUTIC POTENTIAL AND
DEVELOPMENT OF GILZ DELIVERY

In previous attempts to find safer GC replacement therapies,
much research has focussed on selective glucocorticoid receptor
agonists and modulators, termed SEGRAMs (135). These
compounds were designed to address the hypothesis that GR
transactivation was responsible for GC-induced adverse effects,
and GR transrepression for anti-inflammatory effects, such
that compounds targeting transrepression might be powerfully
therapeutic without the side effects of GC. However, it is now
known that transactivation effects of GC, such as the induction of
GILZ and other GC-induced immune regulators such as DUSP1
(136), are required for the anti-inflammatory effects of GC in
vivo (137), while adverse effects from GC such as osteoporosis
are mediated by both transactivation and transrepression (138).

The potential of GILZ to be the target of a new therapeutic
for SLE not only relies upon its immunosuppressive ability but
also on a lack of detrimental metabolic effects. Evidence to date
is encouraging, although more research is needed. GCs have
an inhibitory effect on osteoblast formation, which accounts
partially for the rapid bone loss seen in GC-treated patients (139).
In contrast, GILZ may exert the opposite effect. Mesenchymal
stem cells (MSC) can differentiate into osteoblasts or adipocytes;
GILZ expression in MSC increases osteogenic differentiation and
inhibits adipocyte formation (140, 141). Furthermore, osteogenic
differentiation and development has been shown to be reduced
by silencing GILZ (141). The underlying mechanism for this shift
in differentiation includes GILZ binding to the tandem repeat
of the CCAAT/enhancer binding protein (C/EBP) site in the
promotor of peroxisome proliferator-activated receptor gamma-
2 (PPARγ2). This decreases PPARγ2 expression, a regulator
of adipocyte differentiation (140, 141). Thus, GILZ may play

a role in enhancing or stabilizing bone density, rather than
inhibiting osteoblast formation and inducing rapid bone loss as
seen in GC treated patients. Furthermore, osteoblast-restricted
GILZ overexpression resulted in a phenotype characterized
by high bone mass, increased bone formation, and increased
osteoblast numbers (142). Whereas, the effects of GILZ on
osteoblast differentiation are opposite to the effects of GC,
a study by Bruscoli et al. indicates that GILZ is required
for the anti-myogenic effects of GC on skeletal muscle cells
(143). Since both GILZ and GR expression are correlated with
protein consumption, this may be mediated by increased protein
catabolism that is associated with muscle atrophy (144). In
relation to other metabolic adverse effects of GC, such as
gluconeogenesis, skin thinning, cataracts and/or cardiovascular
side effects, it is still unknown whether GILZ is protective or
contributory. Therefore, further studies are essential to determine
whether GILZ induces other metabolic adverse effects of GC in
order to evaluate its value as a GC replacement therapy.

Studies to date investigating the clinical potential of GILZ-
based therapies for autoimmune disease have largely used mouse
disease models. Proof of principle studies have demonstrated
that local upregulation of GILZ expression through the
administration of adeno-associated virus vector system on
the day of disease onset inhibits arthritis in the collagen-
induced arthritis model (112). Additionally, transgenic mouse
models, creating an overexpression of GILZ in T cells, were
protective against Th1 mediated colitis (111). In vitro, a fusion
protein of GILZ with a protein transduction domain (HHpH-
GILZ), allowing entry of exogenously applied GILZ to the
cell, was able to induce inhibition of Th17 activation and B
cell activation (11, 116). Similarly, delivery of GILZ using a
transactivator of transcription (TAT)-GILZ fusion protein was
able to protect against dinitrobenzene sulfonic acid–induced
colitis (145). However, it should be noted that systemic GILZ
overexpression may not be beneficial for all disease states. For
example, in themurine imiquimod-induced psoriasis model both
GILZ deficiency (116) and GILZ transgenic overexpression led
to worsening of skin inflammation (118); this is of interest given
the clinical finding of glucocorticoid-withdrawal induced flares of
psoriasis in humans. Thus, further studies are needed to address
the therapeutic utility of GILZ in different disease settings and
during established disease states.

Studies utilizing truncated regions of the GILZ protein
have also demonstrated therapeutic promise. One study used
a peptide targeting the C-terminus region of GILZ 115-
137aa from the mouse GILZ sequence. This region binds
to the p65 subunit of NF-κB, inhibiting NF-κB translocation
to the nucleus and DNA binding (146). This peptide was
demonstrated to have therapeutic potential in experimental
autoimmune encephalitis (EAE), where it decreased T cell
proliferation, decreased IL-12, IFN-γ, and IL-17 production
and increased IL-10 production (146). Furthermore, the GILZ
peptide decreased T-bet mRNA and increased GATA-3 mRNA
levels creating a Th2T cell phenotype. A single dose of
GILZ peptide on day of disease induction was protective
against the development of EAE in mice (146). Another
study, utilizing a similar region of GILZ 98-134aa of the
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human GILZ sequence, demonstrated the anti-inflammatory
activity GILZ (147). Here GILZ administration similarly
suppressed the nuclear translocation of NF-κB, inhibited
cytokine production and inhibited the gliosis of Muller
cells (147).

Although these studies utilizing the C-terminus of GILZ are
promising for use of a GILZ-based therapy in autoimmune
diseases, it should be noted that the N-terminal domain of
GILZ is also important for inhibition of transcription factors
and signaling pathways. Therefore, all or several regions of
GILZ may be required for the potent regulation of multiple
inflammatory immune responses, an essential requirement of
a new SLE therapy. This implies that strategies targeting the
endogenous expression of natural GILZ, or its degradation,
may hold greater promise. A greater understanding of the
mechanisms of regulation of GILZ and its gene targets is
critical to advance this field. This knowledge is also important
for a potential gene therapy approach to deliver GILZ, either
via expressing peptides or the entire protein. An additional
method which may hold promise as a future therapeutic
mechanism could be to induce GILZ expression using small
molecules. For example, two SEGRAM compounds under
investigation, RU24858 and ORG 214007-0, induce GILZ (135).
We consider that methods to induce GILZ expression that
do not utilize the GR could avoid GR-dependent metabolic
effects. Additionally, a GC replacement therapy which delivers
or targets GILZ could alleviate the effects of GR down-
regulation by chronic GC dosing. Thus, evaluation of multiple
pathways is required to lead to the development of a therapy
to therapeutically induce GILZ. As GILZ is also a bona fide
transcription factor (117), studies cataloging in full the gene
targets of GILZ are also required in order to understand
the targets for GILZ mimics, both for comprehending the
potential for potent immunemodifying effects as well as potential
adverse effects.

SUMMARY

SLE is a complex chronic autoimmune disease characterized by
heterogeneous clinical features as a consequence of a failure
of multiple immune checkpoints. This leads to hyperactive
B and T cell responses, the production of autoantibodies
and formation of immune complexes, activation of innate
immunity, and consequently inflammation, organ damage,
morbidity and mortality. Currently there is no cure for SLE
and mainstay treatment with GC causes debilitating adverse
effects. GILZ represents a novel target for the induction of
a potent anti-inflammatory and immune suppressive response
targeting multiple signaling pathways and immune cells. Proof
of principle studies have demonstrated GILZ to have significant
therapeutic effects in animal models of autoimmune disease. The
immunosuppressive effects of GILZ are broadly similar to those
of GC and to date, other than myogenic effects, there is no
evidence of adverse metabolic effects of GILZ. Further research is
required, to determine whether a GILZ based therapy would have
metabolic effects, and into the molecular mechanisms for the
induction and targeting of GILZ. The idea of a new therapy which
enhances GILZ expression, and/or targets the same molecular
pathways as GILZ, is a very attractive one with the potential to
provide a critically-needed replacement for GC therapy in SLE.
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Annette Kraegeloh 5, Hanno Huwer 6 and Alexandra K. Kiemer 1*
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Science, German Jordanian University, Amman, Jordan, 3Department of Experimental and Clinical Pharmacology and

Toxicology, Saarland University, Homburg, Germany, 4Helmholtz Institute for Pharmaceutical Research Saarland,
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Glucocorticoids (GCs) are widely prescribed therapeutics for the treatment of

inflammatory diseases, and endogenous GCs play a key role in immune regulation.

Toll-like receptors (TLRs) enable innate immune cells, such asmacrophages, to recognize

a wide variety of microbial ligands, thereby promoting inflammation. The interaction of

GCs with macrophages in the immunosuppressive resolution phase upon prolonged

TLR activation is widely unknown. Treatment of human alveolar macrophages (AMs)

with the synthetic GC dexamethasone (Dex) did not alter the expression of TLRs −1,

−4, and −6. In contrast, TLR2 was upregulated in a GC receptor-dependent manner,

as shown by Western blot and qPCR. Furthermore, long-term lipopolysaccharide

(LPS) exposure mimicking immunosuppression in the resolution phase of inflammation

synergistically increased Dex-mediated TLR2 upregulation. Analyses of publicly available

datasets suggested that TLR2 is induced during the resolution phase of inflammatory

diseases, i.e., under conditions associated with high endogenous GC production.

TLR2 induction did not enhance TLR2 signaling, as indicated by reduced cytokine

production after treatment with TLR2 ligands in Dex- and/or LPS-primed AMs. Thus,

we hypothesized that the upregulated membrane-bound TLR2 might serve as a

precursor for soluble TLR2 (sTLR2), known to antagonize TLR2-dependent cell actions.

Supernatants of LPS/Dex-primed macrophages contained sTLR2, as demonstrated by

Western blot analysis. Activation of metalloproteinases resulted in enhanced sTLR2

shedding. Additionally, we detected full-length TLR2 and assumed that this might

be due to the production of TLR2-containing extracellular vesicles (EVs). EVs from

macrophage supernatants were isolated by sequential centrifugation. Both untreated

and LPS/Dex-treated cells produced vesicles of various sizes and shapes, as shown by

cryo-transmission electron microscopy. These vesicles were identified as the source of

full-length TLR2 in macrophage supernatants by Western blot and mass spectrometry.

Flow cytometric analysis indicated that TLR2-containing EVs were able to bind the TLR2

ligand Pam3CSK4. In addition, the presence of EVs reduced inflammatory responses
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in Pam3CSK4-treated endothelial cells and HEK Dual reporter cells, demonstrating that

TLR2-EVs can act as decoy receptors. In summary, our data show that sTLR2 and full-

length TLR2 are released by macrophages under anti-inflammatory conditions, which

may contribute to GC-induced immunosuppression.

Keywords: innate immunity, corticosteroid, pulmonary macrophage, exosome, microvesicle

INTRODUCTION

Glucocorticoids (GCs) represent the most effective anti-
inflammatory drugs in the therapy of inflammatory lung diseases.
Genes that are upregulated by GC treatment, such as dual-
specificity phosphatase 1 (DUSP1), GC-induced leucine zipper
(GILZ), and interleukin (IL)-10, are highly immunosuppressive
and contribute to the overall effect of GC treatment (1–3).

Alveolar macrophages (AMs) are the tissue-resident
macrophages in the lung alveolar space. They represent the
first line of defense against pathogens in the lower airspace
and recognize microbial ligands via pattern recognition
receptors (4, 5). Toll-like receptors (TLRs) are the major pattern
recognition receptors of the innate immune system that sense a
wide range of “danger” signals or pathogen-associated molecular
patterns (PAMPs) (6–8).

To date, 10 TLRs have been identified in humans. Surface-
expressed TLRs (i.e., TLR1,−2,−4,−5,−6, and−10) recognize
bacterial, fungal, and parasitic PAMPs, whereas endosomal TLRs
(i.e., TLR3, −7/−8, and −9) sense nucleic acids of viral or
bacterial origin. After recognition and binding of a specific
PAMP, TLRs induce an intracellular signaling cascade that
culminates in the activation of the activator protein (AP)-
1, nuclear factor (NF)-κB, and interferon regulatory factors
(IRFs). These signaling cascades result in the secretion of pro-
inflammatory factors that ultimately protect the host from
microbial infection (6, 9).

Although GCs usually dampen TLR signaling, GC-mediated
induction of TLR2 has for example been shown in dendritic cells
(10), THP-1 macrophages (11), and AMs (12). TLR2 recognizes
a wide variety of pathogens, including bacteria, viruses, fungi,

Abbreviations: ACTB, beta actin; ADAM, a disintegrin and metalloproteinase;

AFC, 7-amino-4-trifluoromethylcoumarin; AMs, alveolar macrophages; ANXA1,

Annexin A1; AP-1, activator protein-1; APC, allophycocyanine; CCL, CC-

chemokine ligand; COX2, cyclooxygenase-2; CXCL, C–X–C motif ligand; Dex,

dexamethasone; DMEM, Dulbecco’s modified Eagle medium; DUSP1, dual-

specificity phosphatase-1; EVs, extracellular vesicles; FCS, fetal calf serum; FITC,

fluorescein isothiocyanate; flTLR, full length TLR; FPR2, formyl peptide receptor

2; GC, glucocorticoid; GILZ, glucocorticoid-induced leucine zipper; HEK, human

embryonic kidney; HKSA, heat-killed Staphylococcus aureus; ICAM1, intercellular

adhesion molecule 1; IL, interleukin; IL1RN, IL1 receptor antagonist; IFN,

interferon; IRFs, interferon regulatory factors; LPS, lipopolysaccharide; LTA,

lipoteichoic acid; MMP, matrix metalloproteinase; NF-κB, nuclear factor-κB;

NOS2, nitric oxide synthase 2; NTA, nanoparticle tracking analysis; MAPK,

mitogen-activated protein kinase; PE, phycoerythrin; MARCO, macrophage

receptor with collagenous structure; PMA, phorbol 12-myristate 13-acetate;

Poly(I:C), polyinosinic:polycytidylic acid; PRR, pattern recognition receptor;

RPMI, Roswell Park Memorial Institute; SELE, selectin E; STAT, signal transducer

and activator of transcription; sTLR, soluble TLR; TCA, trichloroacetic acid;

TEM, transmission electronmicroscopy; TNF, tumor necrosis factor; TLR, toll-like

receptor; VCAM1, vascular cell adhesion molecule 1; VCAN, versican.

mycobacteria, and parasites. Unlike other TLRs, the formation of
TLR2 heterodimers with other TLR family members (i.e., TLR1,
TLR6, or TLR10) or non-TLR cellular molecules (e.g., CXCR4
or scavenger receptors) is a prerequisite for the initiation of cell
activation (13).

Since TLR2 activity plays a prominent role in the pathogenesis
of numerous acute and chronic inflammatory diseases, its
activation has to be tightly regulated. In general, negative
regulation of TLR signaling can be mediated by soluble factors,
including soluble TLRs (sTLR) that act as decoy receptors
and bind to PAMPs in the extracellular space, preceding
their engagement with specific PRRs and reducing TLR
signaling efficiency (14–16). sTLR2 is produced via proteolytic
cleavage of the TLR2 trans-membrane protein, also referred
to as ectodomain shedding, by disintegrin metalloproteinases
(ADAMs) (17). Elevated sTLR2 plasma levels were observed
in experimental models of human endotoxemia and sepsis
patients and have therefore been suggested as a biomarker
for infections (18, 19).

Sepsis represents a life-threatening systemic inflammation
caused by bacterial infections. If sepsis patients survive the acute
inflammatory response, compensatory mechanisms result in
profound immunosuppression, often leading to lethal secondary
infections. Several critical factors have been identified that
contribute to the transition of the pro-inflammatory phase
into the immunosuppressive phase, including endogenous GCs
(1, 20, 21). In addition, prolonged exposure to bacterial
components, such as lipopolysaccharide (LPS), skews monocytes
and macrophages toward a hypo-responsive state termed LPS
tolerance. LPS-tolerant cells are characterized by a decreased
ability to produce pro-inflammatory mediators whereas their
expression of mediators involved in immunosuppression and
wound healing is elevated (20).

In the present study, we examined TLR2 expression in
primary human AMs after GC administration and in chronic
inflammation, as mimicked by prolonged LPS treatment.

MATERIALS AND METHODS

Materials
RPMI1640 (#R0883), DMEM (#D6546), trypsin/EDTA (#T3924),
fetal calf serum (FCS, #F7524), penicillin / streptomycin
(#P433), kanamycin (#K0254), and glutamine (#G7513) were
from Sigma-Aldrich. Endothelial cell growth media (#C-22010)
including supplement mix (#C-39215) were from PromoCell.
The anti-TLR2 antibody used for Western blot analysis
was obtained from Abcam (EPNCIR133, #ab108998). The
Phospho-p38 MAPK (Thr180/Tyr182, 3D7, #9215) and total
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p38 MAPK (#9212, polyclonal) antibodies were from Cell
Signaling. The anti-tubulin antibody (#T9026) was obtained
from Sigma-Aldrich. Anti-rabbit IRDye 680- and anti-mouse
IRDye 800-conjugated secondary antibodies were from LI-COR
Biosciences (#926-68071, #926-32210). The anti-rabbit IRDye
800-conjugated secondary antibody was from Rockland (#612-
132-120). APC-labeled anti-TLR2 and the respective isotype
control were from ThermoFisher Scientific (TL2.1, # 17-9922-
41; IgG2a kappa Isotype Control #17-4724-81). FITC anti-
CD9 (HI9a, #BLD-312103), FITC anti-CD63 (H5C6, #BLD-
353005), and the respective isotype control (MOPC-21, #BLD-
400109) were purchased from Biozol. The Zombie YellowTM

Fixable Viability Kit (#423103) was from BioLegend. Ultrapure
LPS from Escherichia coli K12 (#tlrl-peklps), Pam3CSK4 (#tlrl-
pms), rhodamine-labeled Pam3CSK4 (#tlrl-rpms), Pam2CSK4

(#tlrl-pm2s), heat-killed Staphylococcus aureus (#tlrl-hksa),
lipoteichoic acid (LTA, # tlrl-pslta), normocin (#ant-nr-1), and
zeocin (#ant-zn-1) were obtained from Invivogen. Phorbol
12-myristate 13-acetate (PMA, # 524400) was from Cayman
Chemical. Dexamethasone (#D8893) was obtained from Sigma-
Aldrich. Dexamethasone stock solutions were either prepared
in DMSO or ethanol (EtOH), and the appropriate vehicle
control is indicated in the figure legends. Alternatively, water-
soluble dexamethasone 21-phosphate disodium salt (Sigma-
Adrich, #D1159) was dissolved in medium, and untreated cells
served as a control (Figures 6C,D, 7, and 8). Primers and
dual-labeled probes were from Eurofins MWG Operon. Taq
polymerase (5 U/µL, #E00007), Taq buffer (#B0005), and the
dNTP mix (#D0056) were from Genscript. Other chemicals
were obtained from either Sigma-Aldrich or Carl Roth unless
stated otherwise.

Cell Culture
Cell Lines

THP-1 (#TIB202) and L929 cells (#CRL-6364) were obtained
from ATCC and grown in RPMI 1640 supplemented with 10%
FCS, 100 U/mL penicillin G, 100µg/mL streptomycin, and
2mM glutamine. THP-1 were differentiated into macrophage-
like cells by treatment with PMA (100 nM) for 48 h. HEK-DualTM

hTLR2 reporter cells (Invivogen, #hkd-htlr2ni) were grown in
DMEM supplemented with 10% FCS, 2mM glutamine, 50 U/mL
penicillin G, 50µg/mL streptomycin, 100µg/mL normocin, and
100 µg/mL zeocin.

Human Alveolar Macrophages (AMs)

Human lung tissue was obtained from patients undergoing
lung resection. The use of human material was reviewed and
approved by the local ethics committee (State Medical Board of
Registration, Saarland, Germany; permission no. 213/06). The
informed consent of all participating subjects was obtained. AM
isolation was performed according to a previously described
method (4, 22, 23) with minor modifications. After visible
bronchi were removed, the lung tissue was chopped and washed
with PBS (137mM NaCl, 2.7mM KCl, 10.1mM Na2HPO4,
1.8mM KH2PO4, pH 7.4). The washing buffer was collected
and centrifuged (15min, 350 x g). Remaining erythrocytes were
lysed by briefly resuspending the pellet in autoclaved water,
followed by immediate washing with PBS and centrifugation.

Cells were resuspended in AM medium (RPMI 1640 containing
5% FCS, 100 U/mL penicillin G, 100µg/mL streptomycin, and
2mM glutamine). Unless stated otherwise, AMs were seeded at
a density of 0.5–1 × 106 cells/well into a 12- or 6-well plate
and incubated at 37◦C for 2 h, washed with PBS, and cultured
overnight before further use. AM preparations were 95% pure as
judged by flow cytometric analysis of intracellular CD68 (4, 24).

Human Umbilical Vein Endothelial Cells (HUVECs)

HUVECs were isolated from umbilical cords provided by
the Klinikum Saarbrücken (Saarbrücken, Germany; ethics
committee permission no. 131/08). The informed consent of
all donors was obtained. HUVEC isolation and culture was
performed as described previously (25, 26). In brief, HUVECs
were isolated by digestion of umbilical veins with 100 mg/L
collagenase A (Roche, Mannheim, Germany). Cells were grown
in endothelial growth medium with supplement mix, 100 U/mL
penicillin G, 100µg/mL streptomycin, 50 mg/mL kanamycin,
and 10% FCS. For all experimental procedures, HUVECs were
used in passage three. Cells were detached with trypsin/EDTA,
seeded at a density of 1 × 105 cells per well in a 24-well plate
and incubated overnight before further treatment. HUVECs were
>95% pure, as assessed by flow cytometry using an antiserum
against the von Willebrand factor (27).

TNF-α Bioassay
TNF-α concentrations in cell culture supernatants were
quantified by bioassay as previously described (28). L929
cells were seeded into a 96-well plate (3 × 104 cells per well)
and incubated overnight at 37◦C, 5% CO2. The medium was
discarded, and 100 µL of actinomycin D solution (1µg/mL in
growth medium) was added. After incubation for 1 h at 37◦C,
AM supernatants (100 µL per well) were added. Dilution series
of recombinant human TNF-α (100–2,500 pg/mL) were run
alongside the samples to generate a standard curve. The plate was
incubated for 24 h at 37◦C, followed by incubation with MTT
solution (0.5 mg/mL in medium) for 2 h. The supernatant was
discarded, and cells were lysed in 100 µL DMSO. Absorbance
measurements were carried out at 550 nm with 630 nm as the
reference wavelength using a microplate reader (Tecan Sunrise).

RNA Isolation, Reverse Transcription, and
Quantitative RT-PCR
Total RNA was isolated using the RNeasy Plus Mini Kit
(Qiagen, #74134) or the High Pure RNA Isolation Kit (Roche, #
11828665001), and RNA was reverse transcribed using the High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
#4368813) according to the manufacturer’s instructions. The
cDNA was diluted with TE buffer (Applichem, #A0386) before
use. The CFX96 TouchTM Real-Time PCRDetection System (Bio-
Rad) was used for real-time RT-PCR. For ACTB, CXCL10, IL10,
TLR1, TLR2, TLR4, TLR6, and TNF, one 25 µL reaction mix
contained 2.5U Taq polymerase, 500 nM sense and antisense
primers, 60-100 nM probe, 200µM dNTPs, 3-4mM MgCl2, 2.5
µL 10x Taq buffer, 3 µL Template, and molecular biology grade
water (Applichem, #A7398). The reaction conditions were 95◦C
for 8min followed by 40 cycles of 15 s at 95◦C, 15 s at a reaction
dependent temperature varying from 57 to 60◦C, and 15 s at

Frontiers in Immunology | www.frontiersin.org 3 July 2019 | Volume 10 | Article 1634136

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hoppstädter et al. TLR2 Release by Macrophages

FIGURE 1 | Dexamethasone induces TLR2 in AMs. (A–E) AMs were incubated with solvent control (0.1% DMSO, Co) or dexamethasone (Dex, 1µM) for up to 24 h

(A–D) or at the indicated concentrations for 4 h (E). (E–G) AMs were preincubated with the GR inhibitor RU486 (10µM) or solvent control (0.1% EtOH) and treated

(Continued)
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FIGURE 1 | with Dex (1µM) for 24 h. Data from at least three independent experiments performed in duplicate with cells from different donors are presented as

means ± SEM. TLR expression was measured by or qPCR (A,B,E,F) or Western blot (C,D,G,H). (A) TLR expression upon Dex treatment was normalized to the TLR

expression values for the respective vehicle-treated control (indicated by the dotted line). (B–H) TLR2 expression in solvent-treated cells were set as 1. (C,G)

Representative blots. (D,H) Densitometric analysis. TLR2 signal intensities were quantified and normalized to the loading control tubulin. *p < 0.05, **p < 0.01, ***p <

0.001, ###p < 0.001 vs. vehicle-treated cells. p-values were generated by ANOVA with Bonferroni’s post-hoc test or Mann–Whitney U-test.

FIGURE 2 | TLR2 is overexpressed during the immunosuppressive phases of SIRS and sepsis. (A,B) Dataset GSE4607 was obtained from Gene Expression

Omnibus (GEO) and normalized using log2-RMA. The dataset included transcriptional profiles of human whole blood samples of 15 healthy controls, 27 patients with

non-infectious SIRS and 12 samples from patients with resolved non-infectious SIRS. Patients were classified as SIRS, or SIRS resolved (no longer meeting criteria for

SIRS) on d3 after ICU admittance. (C,D) Dataset GSE8121 was retrieved from GEO and normalized using log2-RMA. The dataset included transcriptional profiles of

human whole blood samples of 15 healthy controls and 30 patients with sepsis. Samples were obtained at d1 and d3 after admittance to the ICU. The statistical

significance was determined by the Kolmogorov–Smirnov test.

72◦C. For ADAM10, ADAM17, CCL2, DUSP1, FPR2, ICAM,
MMP9, SELE, and VCAM detection, the 5x HOT FIREPol R©

EvaGreen R© qPCR Mix Plus (Solis Biodyne, #08-25) was used
according to the manufacturer’s recommendations. Primer and

probe sequences, as well as specific reaction conditions, are
given in Supplementary Table 1. Standard curves were generated
by using a dilution series of the PCR product cloned into
pGEMTeasy (Promega, #A1360) (23, 28, 29). All samples
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FIGURE 3 | Long-Term LPS exposure upregulates TLR2 in AMs. (A–D) AMs were incubated with LPS (100 ng/mL) for 24 h (A) or the indicated time points (B–D).

TLR expression was measured by qPCR (A,B) or Western blot (C,D). (A) TLR expression was normalized to the TLR expression values for the respective

(Continued)
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FIGURE 3 | vehicle-treated control which was set as 1 (indicated by the dotted line). (E–F) AMs were treated with LPS (100 ng/mL), Pam3CSK4 (Pam3, 100 ng/mL)

or Poly(I:C) (PIC, 1µg/mL) for 24 h. TLR2 expression was analyzed by qPCR (E) and Western blot (F). (G,H) Long-Term LPS exposure results in LPS tolerance. AMs

were pretreated with LPS (100 ng/mL) for 24 h and restimulated with LPS (1µg/mL) for 2 h. TNF, CXCL10, IL10, MMP9, FPR2, and TLR2 mRNA expression levels

were determined by qPCR. NT/NT, not treated; NT/LPS, LPS stimulation without pretreatment; LPS/NT, LPS pretreatment only; LPS/LPS, LPS pretreatment followed

by LPS stimulation. Data from at least three independent experiments performed in duplicate with cells from different donors are shown and are presented as x-fold of

solvent-treated cells ± SEM. #p < 0.05, ###p < 0.001 vs. untreated cells, *p < 0.05, **p < 0.01, ***p < 0.001 as indicated, §p < 0.05 vs. Pam3-treated cells.

p-values were generated with ANOVA and Bonferroni’s post-hoc test.

and standards were analyzed in triplicate. All samples were
normalized to the housekeeping gene ACTB.

Extracellular Vesicles (EVs)
Isolation

AMs or differentiated THP-1 cells were incubated for 3 d in
FCS-free medium in the presence or absence of LPS (100 ng/mL)
and/or dexamethasone (1µM). EVs were purified from cell
culture supernatants by sequential centrifugation as previously
described (30). For THP-1-derived vesicles, 5 × 107 cells
were used per preparation. After differentiation for 48 h, cells
were washed with PBS, and FCS-free medium was added.
Serum deprivation did not result in increased cell death, as
indicated by caspase 3 assay and Zombie Yellow staining
(Supplementary Figure 1).

Cell culture supernatants were collected and centrifuged at
300 × g for 10min to remove remaining cells, followed by
removal of dead cells and large cell debris by centrifugation
at 2,000 × g for 10min and 10,000 × g for 30min.
Supernatants were transferred into stable polycarbonate tubes
(# 4416, Laborgeräte Beranek), and EVs were collected by
ultracentrifugation at 100,000 x g for 90–120min in an L70
ultracentrifuge with a 70Ti rotor (Beckman Coulter). EVs were
washed with 25mL sterile-filtered PBS and pelleted again by
ultracentrifugation (100,000 × g, 90–120min). The EV pellet
was then resuspended in sterile-filtered PBS (AMs: 200–350
µL; THP-1: 200 µL) and stored at −80◦C in protein LoBind
microcentrifuge tubes (# Z666505, Eppendorf).

Nanoparticle Tracking Analysis (NTA)

For nanoparticle tracking analysis (NTA), EV suspensions were
diluted 1:200 in sterile-filtered PBS. 300–500 µL of the dilution
were injected into the sample chamber of a NanoSight LM10
(NanoSight Ltd). A video of 60 s was recorded and analyzed by
the NTA software Nanosight NTA 2.3 to calculate vesicle size
and concentration.

Protein Concentration

Total protein concentrations were determined with the Pierce
BCA protein assay kit (ThermoFisher Scientific, #23225) using
a GloMax R© Discover Multimode Microplate Reader (Promega)
according to the manufacturer’s instructions.

Cryo-Transmission Electron Microscopy (TEM)

A 3 µL droplet of the aqueous EV dilution was placed onto a
holey carbon covered TEM grid (Plano, type S147-4), plotted
onto a thin liquid film for 2 s and plunged into a bath of liquid
ethane at −165◦C using a Gatan CP3 cryoplunger (Pleasanton).
The frozen sample was transferred under liquid nitrogen to a

Gatan cryo-TEM sample holder (model 914) and investigated
at −173◦C by low-dose bright-field imaging TEM (JEOL JEM-
2100 LaB6). A Gatan Orius SC1000 CCD camera was used for
image acquisition.

Proteomics

Thirty micrograms of EV protein were precipitated by
trichloroacetic acid (TCA) precipitation with an end
concentration of 20% TCA. Samples were washed thrice
with acetone. After a final centrifugation of 15min in a SeedVac
Plus concentrator (Savant, Thermo Fisher, Waltham, USA),
samples were resuspended in 2x Lämmli buffer (4% SDS, 20%
glycerol, 120mM Tris-HCl (pH 6.8), 0.02% bromophenol blue
in Millipore water) and denatured at 95◦C for 5min. Proteins

were separated on NuPAGE
R©

10% gels and prepared for
mass spectrometry as described previously (31). Three protein
bands per sample were cut out of the gel and incubated with
porcine trypsin (Promega, #V5111) for in-gel digestion at 37◦C
overnight. Resulting peptides were extracted twice by shaking
the gel pieces in aqueous extraction buffer (2.5% formic acid,
50% acetonitrile). Extracted peptides were concentrated via
vacuum centrifugation and resuspended in 0.1% formic acid.
Six microliters of each tryptic peptide extract were analyzed by
online nanoflow LC-HR-MS/MS (Ultimate 3000 RSLC nano
system equipped with an Ultimate3000 RS autosampler coupled
to an LTQ Orbitrap Velos Pro, ThermoFisher Scientific) as
described previously (31). Peptides were analyzed at a flow
rate of 200 µL/min with buffer A (water and 0.1% formic
acid) and B (90% acetonitrile and 0.1% formic acid) using
the gradient given in Supplementary Figure 2. Fragmented
peptides were identified using software Proteome Discoverer
1.4 (ThermoFisher Scientific) and database SwissProt 2015_01
(species human). For further data evaluation, software Scaffold4
(version 4.8.3) was used. In order to allow expression of x-fold
values if a protein was absent in one of the treatments, log2
fold changes were calculated as log2[(mean of unique spectrum
counts in EVLPS+Dex) + 0.1) / (mean of unique spectrum
counts in EVCo + 0.1)]. The mass spectrometry proteomics data
have been deposited to the ProteomeXchange Consortium via
the PRIDE partner repository (32) with the dataset identifier
PXD013977 and 10.6019/PXD013977.

Flow Cytometry

For analysis of EV surface proteins by flow cytometry, vesicles
were coupled to the surface of 4µm aldehyde/sulfate latex beads
(Invitrogen, #A37304). In detail, an amount of EVs resembling
10 µg protein or the same amount of the negative control BSA
were allowed to bind to 10 µL latex beads for 15min at room
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temperature in a final volume of 100 µL in PBS. After adding
400 µL PBS, samples were incubated for 1 h at room temperature
with gentle shaking. The reaction was stopped by adding 500

FIGURE 4 | Synergistic upregulation of TLR2 by dexamethasone and LPS.

AMs were preincubated with the GR inhibitor RU486 (10µM) or solvent control

(0.1% EtOH) and treated with LPS (100 ng/mL), Dex (1µM) or both for 24 h.

TLR2 expression was measured by qPCR (A) or Western blot (B,C). (B)

Representative blot. (C) Densitometric analysis. TLR2 signal intensities were

quantified, normalized to tubulin values, and expressed as x-fold of untreated

cells. (A,C) Data from at least three independent experiments performed in

duplicate with cells from different donors are presented as means + SEM.

*p < 0.05, **p < 0.01. p-values were generated by ANOVA with Bonferroni’s

post-hoc test.

µL 200mM glycine, followed by incubation for 30min at room
temperature. EV- or BSA-coupled beads were washed three times
with 1% BSA in PBS, with centrifugation steps at 2,000 × g
for 3min in between. Samples were stained with fluorescently
labeled antibodies directed against TLR2 or the EV markers CD9
and CD63 or the respective isotype controls on ice in the dark.
Staining with rhodamine-labeled Pam3CSK4 was performed
accordingly. Details are given in Supplementary Table 2. After
30min, samples were washed twice with 1% BSA in PBS and
analyzed on a BD LRS Fortessa (BD Biosciences) using BD
FACSDiva 8.0. For graphical illustrations, BD FACSuite (version
1.0) software was used.

Western Blotting
For whole cell analysis, cells were lysed in lysis buffer (50mM
Tris-HCl, 1% (m/v) SDS, 10% (v/v) glycerol, 5% (v/v) 2-
mercaptoethanol, 0.004% (m/v) bromphenol blue) supplemented
with a protease inhibitor mix (cOmplete; Roche Diagnostics,
#04693124001). Samples were sonicated, centrifuged at 10,000
× g for 10min at 4◦C, and stored at −80◦C until further use
(23, 28, 29, 33). Cell culture supernatants from AMs cultured in
a 12 well plate (5 × 105 cells per well in 300 µL medium) were
concentrated 10x by centrifugation at 15,000 × g for 8min in

Vivaspin
R©
500 tubes with 10 kDa cut off (Sartorius #VS0102).

Concentrated supernatants (21 µL per lane), as well as isolated
EVs (5 × 109 vesicles per lane), were supplemented with a 4x

loading buffer (Carl Roth, Roti
R©
-load 1, #K929.1). Before gel

electrophoresis, all samples were denatured at 95◦C for 5min and
subsequently kept on ice before gel loading.

SDS-polyacrylamide gel electrophoresis (PAGE) was carried
out using polyacrylamide gels (4% stacking gel, 12% resolving

gel) and the Mini-PROTEAN
R©
system (Bio-Rad). A prestained

protein ladder was used to estimate the molecular mass (#26616,
ThermoFisher Scientific). Samples were transferred onto an
Immobilon FL-PVDF membrane (# IPFL00010, Millipore-

Merck, Darmstadt, Germany) using a Mini Trans-Blot
R©
Cell

(Bio-Rad). The membrane was blocked for 1–4 h at room
temperature in blocking buffer for near-infrared fluorescent
Western blotting (#MB-070, Rockland) to saturate unspecific
binding sites. Subsequently, the membrane was incubated with
primary antibody dilutions (1:500–1:2,000 in Rockland blocking
buffer) at 4◦C, either overnight or for 48 h. After thorough
washing with PBST (PBS + 0.1% Tween-20), the membrane
was stained with IRDye680- or IRDye800-conjugated secondary
antibodies (1:5,000–1:10,000) diluted in blocking buffer for 1.5-
2 h at room temperature, washed again, and signals were detected
and quantified using an Odyssey imager and software (LI-COR
Biosciences). For densitometric analysis, signal intensities were
normalized to the loading control tubulin except for pp38 which
was normalized to values for total p38.

Viability Assays
Caspase 3-Like Assay

Cells were washed twice with ice-cold PBS. Seventy microliters
ice-cold lysis buffer (25mM HEPES, 5mM MgCl2, 1mM
EGTA, 0.1% [v/v] Triton X-100) were added, and the samples
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were stored at −80◦C. After thawing on ice, the lysates were
centrifuged (14,000 × g, 10min, 4◦C) and 10 µL of the
supernatant were transferred to a black 96 well plate (TPP). 90µL
substrate solution (55µM of fluorogenic substrate Ac-DEVD-
AFC (Enzo, #ALX-260-032-M005) 50mM HEPES, 0.1% [w/v]
CHAPS, 1% [w/v] sucrose, 10mM DTT, pH 7.5) were added,

FIGURE 5 | Impaired response toward TLR2 ligands in LPS- and/or

Dex-pretreated AMs. (A) AMs were preincubated with LPS (100 ng/mL), Dex

(1µM), or both for 24 h and treated with Pam3CSK4 (Pam3, 1µg/mL, 4 h).

TNF secretion was assessed by TNF bioassay. (B,C) Primary human AMs were

incubated with LPS (100 ng/mL, 24 h) before restimulation with TLR2 ligands

for 2 h. LTA: lipoteichoic acid (5µg/mL), HKSA: heat-killed S. aureus (108

cells/mL), Pam2: Pam2CSK4 (1µg/mL), Pam3: Pam3CSK4 (1µg/mL). TNF

(B) and TLR2 (C) mRNA levels were determined by qPCR. Data from at least

three independent experiments performed in duplicate with cells from different

donors are presented as means + SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

p-values were generated by ANOVA with Bonferroni‘s post-hoc test.

and the production of free 7-amino-4-trifluoro-methyl coumarin
(AFC) at 37◦C was determined by fluorescence measurement

(excitation: 405 nm; emission: 495-505 nm) using a GloMax
R©

Discover Multimode Microplate Reader (Promega).

Zombie Yellow Staining

Cells were stained with the Zombie YellowTM Fixable Viability
Kit as recommended by the supplier. Samples were analyzed
on a BD LRS Fortessa (BD Biosciences) using BD FACSDiva
8.0 software.

HEK-Dual hTLR2 Reporter Assay
HEK-DualTM hTLR2 reporter cells express TLR2, an NF-κB/AP1-
inducible secreted embryonic alkaline phosphatase (SEAP)
reporter gene, and a secretable luciferase reporter gene (Lucia
luciferase) placed under the control of the endogenous IL-
8 promoter.

Cells were seeded into 96-well plates (5 × 105 cells/well) and
immediately treated as indicated to monitor TLR2-dependent
activation. After 24 h, supernatants were collected, and the
activity of Lucia luciferase was determined using the QuantiLuc
reagent (Invivogen, #rep-qlc1) according to the supplier’s
instructions. SEAP activity could not be used as a readout
parameter in our setting because EVs interfered with the assay
(data not shown).

Analysis of Publicly Available Datasets
Datasets were obtained from Gene Expression Omnibus (GEO)
and normalized using log2-RMA. Dataset GSE4607 included
transcriptional profiles human whole blood samples of 15
healthy controls, 27 patients with non-infectious SIRS, and
12 samples from patients with resolved non-infectious SIRS.
Patients were classified as SIRS or SIRS resolved (no longer
meeting criteria for SIRS) on d3 after ICU admittance. Dataset
GSE8121 included transcriptional profiles of human whole blood
samples of 15 healthy controls and 30 patients with sepsis.
Samples were obtained at d1 and d3 after ICU admission.
Statistical significances were determined by the Kolmogorov–
Smirnov test. Detailed information about the patient cohort
is given in the GEO database and the corresponding original
publications (34, 35).

Statistics
All experiments were performed at least three times, and at least
two replicates were analyzed for all experiments unless stated
otherwise. Data distribution was determined by the Shapiro-
Wilk test. For normally distributed data, means of two groups
were compared with non-paired two-tailed Student’s t-test or
one sample t-test where applicable. For data that were not
normally distributed, means of two groups were compared
using the Mann-Whitney test. Means of more than two groups
were compared by one-way ANOVA with Bonferroni’s post hoc
test (normal distribution) or Kruskal–Wallis ANOVA followed
by Mann-Whitney test (no normal distribution). Statistical
significance was set at p < 0.05, p < 0.01, or p < 0.001.
Data analysis was performed using Origin software (OriginPro
2015G; OriginLab).
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RESULTS

Upregulation of TLR2 by GCs
Human AMs express the surface TLRs −1, −2, −4, and −6 (4).
Thus, we initially quantified the expression of these receptors
after treatment with the GC dexamethasone (Dex) for 24 h by
qPCR. Whereas Dex administration had no significant effect
on TLR1, −4, and −6 mRNA levels, TLR2 was highly induced
(Figure 1A). Further analysis showed that TLR2 upregulation
was already detectable 4 h after treatment (Figure 1B), and TLR2
protein production was maximal after 16 h, as shown byWestern
blot analysis (Figures 1C,D). Dex induced TLR2 starting at
a concentration of 100 nM (Figure 1E). Next, we evaluated
whether Dex binding to the GR is necessary for TLR2 induction.
To this end, we pretreated AMs with RU486, a specific GR
antagonist, before Dex was added. RU486 completely abrogated
Dex-mediated TLR2 mRNA and TLR2 protein upregulation,
indicating a GR-dependent mechanism (Figures 1F–H).

TLR2 Induction in SIRS and Sepsis
In vivo, endogenous GCs contribute to immunosuppression
occurring at later stages of inflammatory processes (1, 20, 21).

Analyses of publicly available datasets showed that TLR2 mRNA
was induced in whole blood samples from pediatric patients
suffering from SIRS (Figures 2A,B) or sepsis (Figures 2C,D). In
both groups, TLR2 induction was paralleled by the upregulation
of genes involved in the resolution of inflammation or wound
healing (MMP9, MARCO, VCAN, FPR2, IL1RN, ANXA1, IL10,
DUSP1), whereas the gene expression of pro-inflammatory
factors (TNF, IL12B, IL6, IFNG, CXCL10, COX2, NOS2) was not
elevated compared with healthy controls, suggesting the onset of
anti-inflammatory feedback mechanisms.

TLR2 Induction by LPS in the Absence or
Presence of GCs
Prolonged exposure to LPS, which often occurs in sepsis, can
result in LPS tolerance in macrophages and monocytes, thereby
contributing to immunosuppression (20). Thus, we wondered
whether TLR2 levels might be altered by LPS stimulation.
LPS treatment for 24 h potently induced TLR2, but not TLR1,
TLR4, and TLR6 mRNA expression in AMs (Figure 3A). TLR2
mRNA and TLR2 protein upregulation were most evident at
later time points after LPS addition (Figures 3B–D). Other

FIGURE 6 | TLR2 in AM supernatants. (A,B) AMs were incubated with solvent control (0.1% DMSO), LPS (100 ng/mL), Dex (1µM), or LPS+Dex for 24 h.

4-aminophenylmercuric acetate (APMA, 10µM) was added to the indicated samples 5 h before supernatants were harvested. Soluble TLR2 (sTLR2) and full-length

TLR2 (flTLR2) were detected in the supernatants by Western blot. (A) representative blot. (B) Relative sTLR2/TLR2 signal intensities are presented as means + SEM

(n = 5). *p < 0.05 (Student’s t-test). (C,D) Cells were either left untreated (Co) or treated with LPS (100 ng/mL) + Dex (1µM) for 3 days, and EVs were isolated by

sequential centrifugation. (C) Representative cryo-TEM images of EVs from untreated (Co) and LPS+Dex-treated cells. (D) Representative Western blot analysis for

TLR2 in AM supernatants before and after ultracentrifugation (UC) and in EVs is shown (n = 5).
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FIGURE 7 | Characterization of THP-1 vesicles. Cells were incubated with medium only (Co), LPS (100 ng/mL), Dex (1µM), or LPS+Dex for 72 h and EVs were

isolated by sequential centrifugation. (A) Vesicles were visualized by cryo-TEM. Scale bar = 500 nm. (B,C) Average EV size (B) and concentration (C) were

(Continued)
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FIGURE 7 | determined by nanoparticle tracking analysis. Data are presented as means + SEM (n = 7). *p < 0.05, **p < 0.01. p-values were generated by

Mann–Whitney U-test. (D,E) EVs originating from differentially treated THP-1 cells were subjected to proteomics analysis (n = 3). (D) Overlap of identified proteins

among treatment groups. (E) TLR2 and EV marker distribution. Log2 values of unique spectrum counts are shown for all three independent preparations per

treatment. (F) Volcano plot of p-value vs. fold change in expression level in EVLPS+Dex vs. EVCo. Proteins that were upregulated at least 4-fold in EVLPS+Dex vs. EVCo
with a p < 0.01 are highlighted. (G) Representative Western blot result for TLR2 detection in THP-1 supernatant before and after ultracentrifugation (UC) and in EV

fractions (n = 3).

TLR ligands, i.e., the TLR2 ligand Pam3CSK4 and the TLR3
ligand Poly(I:C), also induced TLR2, although to a lesser
extent (Figures 3E,F). LPS-mediated TLR2 upregulation was
accompanied by LPS tolerance, as indicated by the inability
of LPS-primed AMs to produce the inflammatory cytokines
TNF and CXCL10 in response to repeated LPS stimulation
(Figure 3G). As seen in whole blood samples from sepsis patients
(Figure 2), TLR2 induction correlated with the overexpression
of genes associated with immunosuppression (IL10, FPR2) or
wound healing (MMP9) (Figure 3H).

We next evaluated whether the presence of both GCs and LPS
might elevate TLR2 expression even further. Indeed, we observed
that both compounds cooperatively induced TLR2 mRNA and
protein (Figures 4A–C). Binding of Dex to its receptor was
required for the cooperative regulation of TLR2 because the
GR antagonist RU486 blocked Dex-induced effects both in the
absence or presence of LPS. LPS-mediated upregulation of TLR2
was not affected by RU486 administration (Figures 4A–C).

We hypothesized that TLR2 upregulation might rescue TLR2
signaling in otherwise immunocompromised AMs. Therefore, we
treated AMs pretreated with LPS, Dex, or a combination of both
with the TLR2 ligand Pam3CSK4 and measured TNF levels in
AM supernatants. None of the pretreatment schemes sensitized
AMs toward Pam3CSK4. Quite in contrast, TLR2 signaling was
inhibited in each of the conditions tested (Figure 5A). Similar
effects were observed when we used different TLR2 ligands, i.e.,
lipoteichoic acid (LTA) and heat-killed Staphylococcus aureus
(HKSA), to stimulate LPS-tolerant AMs. The response to the
TLR1/6 ligand Pam2CSK4 showed a comparable tendency, but
the reaction to this ligand was heterogenous amongst cells from
different donors (Figure 5B). Interestingly, LTA treatment even
enhanced TLR2 induction in LPS-pretreated AMs (Figure 5C).
The lack of responsiveness toward TLR2 ligands in AMs that
highly expressed TLR2 suggested an entirely different function
of TLR2 in this context.

TLR2 in Macrophage Supernatants
We hypothesized that the upregulated membrane-bound TLR2
might serve as a precursor for sTLR2, known to antagonize
TLR2-dependent cell actions. Supernatants of LPS+Dex-primed
AMs indeed contained the soluble 83 kDa form of TLR2, as
indicated by Western blot analysis (Figure 6A). As previously
shown by Langjahr et al. (17), activation of metalloproteinases by
4-aminophenylmercuric acetate (APMA) resulted in enhanced
sTLR2 shedding (Figure 6B). sTLR2 is produced via proteolytic
cleavage of the TLR2 trans-membrane protein by ADAM10
and ADAM17 (17). These ADAMs were also expressed by
alveolar macrophages, and ADAM17 was even induced when
LPS and Dex were present (Supplementary Figure 3). Thus, an
involvement of ADAM17 in sTLR2 shedding is suggested.

Surprisingly, we also detected full-length TLR2 (flTLR2,
∼ 102 kDa) and assumed that this might be due to the
production of TLR2-containing extracellular vesicles (EVs).
Therefore, EVs from macrophage supernatants were isolated by
sequential centrifugation. Both untreated and LPS+Dex-treated
cells produced vesicles of various sizes (50–300 nm) and mostly
round in shape, as shown by cryo-TEM (Figure 6C). These
vesicles were identified as the source of full-length TLR2 in
macrophage supernatants, as indicated by Western blot analysis
(Figure 6D).

Vesicle Characterization
For vesicle characterization and functional analysis, we
used differentiated THP-1 cells as an easily accessible EV
source. THP-1-derived EVs were similar to AM-derived
EVs regarding size and shape (Figure 7A). Nanoparticle
tracking analysis (NTA) was used to determine the EV size
and concentration. Treatment schemes did not influence the
vesicle size (∼220 nm), but the number of vesicles slightly
increased with Dex- or LPS+Dex-treatment (Figures 7B,C).
This was not due to increased apoptosis, as determined by
caspase-3 activity (Supplementary Figure 1). Vesicle numbers
correlated with protein concentrations of the vesicle preparations
(Supplementary Figure 4).

EV preparations were analyzed by high-resolution tandem
mass spectrometry (MS/MS) to determine whether the treatment
scheme had an impact on vesicle composition. A total of 709
proteins was detected in each of the independent experiments,
and 401 proteins occurred in all four EV types (Figures 7D,E).
The preparations did not show differences in vesicle marker
abundance, and both exosome- and microvesicle-specific
markers (36, 37) were detected (Figure 7E). Several proteins
were enriched in EVs from LPS+Dex-treated cells (EVLPS+Dex),
including TLR2 (Figure 7F). As seen in AM-derived EVs, TLR2
was most abundant in EVLPS+Dex preparations when compared
with other treatment schemes (Figure 7G).

THP-1-derived EVs were further analyzed by flow cytometry.
To this end, vesicles were coupled to aldehyde/sulfate latex
beads. The presence of vesicle markers, tetraspanins CD9 and
CD63 (36, 38), indicated that the vesicles were attached to the
beads (Figures 8A,B). TLR2 staining confirmed that TLR2 was
present in EVLPS+Dex samples, but not in preparations from
vehicle-treated cells (EVCo) (Figures 8C,E). In addition, staining
of bead/EV complexes with fluorochrome-labeled Pam3CSK4

showed that EVLPS+Dex were able to bind the TLR2 ligand,
whereas EVsCo were not (Figures 8D,F).

To examine the functional implications of TLR2-EV
production, we treated primary human umbilical vein
endothelial cells (HUVECs) with a mix of Pam3CSK4 and
either EVCo or EVLPS+Dex. Subsequently, the expression of
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FIGURE 8 | TLR2-containing vesicles act as decoy receptors. Differentiated THP-1 cells were incubated with medium only (Co) or LPS (100 ng/mL) + Dex (1µM) for

72 h and EVs (EVCo and EVLPS+Dex, respectively) were isolated by sequential centrifugation. (A–F) Bead-bound EVs from untreated or LPS+Dex-treated

(Continued)
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FIGURE 8 | THP-1 cells were analyzed by flow cytometry. Unloaded latex beads served as controls. Histograms show bead counts vs. log fluorescence intensity.

(A,B) EV loading was confirmed by staining for vesicle markers CD9 (A) and CD63 (B). Representative histograms are shown (n = 3). (C–F) TLR2 staining and binding

of rhodamine-labeled Pam3CSK4 (Pam3). (C,D) Representative histograms. (E,F) Mean fluorescence intensities were expressed as x-fold of EVCo values + SEM (n =

3, duplicates). (G) Pam3-induced gene expression in HUVECs was measured by qRT-PCR. Pam3 was preincubated with the specified vesicles for 30min at 37◦C (2

× 1010 EVs/µg Pam3), and HUVECs were treated with the Pam3/EV mix (2 × 1010 EVs and 1 µg Pam3/mL) for 3 h. Data from 3 independent THP-1 vesicle

preparations and HUVEC donors are presented as a percentage of EVCo-treated cells + SEM. H: Pam3-induced CXCL8 promoter-dependent luciferase activity was

quantified in hTLR2 HEK-Dual cells. Cells were either treated with Pam3 only (1 ng/mL, Co) or co-treated with Pam3 (1 ng/mL) and the specified vesicles (5 × 109

EVs/ml) for 24 h. The Pam3/vesicle mix was preincubated for 30min at 37◦C before it was added to the cells. Data are expressed as percentage of Co-values + SEM

(n = 4, duplicates). *p < 0.05, **p < 0.01, n.s.: not significant. P-values were generated by ANOVA with Bonferroni‘s post-hoc test or Student’s t-test.

the chemokine CCL2 and the adhesion molecules ICAM,
VCAM, and SELE were measured. Pam3CSK4-induced CCL2
expression was decreased in HUVECs treated with ECVLPS+Dex

(Figure 8G). The expression of the three adhesion molecules
tended to be reduced, although not significantly so due to
high inter-individual differences between donors. Additionally,
TLR2-responsive HEK reporter cells expressing a luciferase
reporter gene under the control of the CXCL8 promoter were
used to study the influence of EVs on Pam3CSK4-induced
inflammatory responses. We found indeed that TLR2-containing
vesicles derived from LPS+Dex-treated cells were able to
inhibit Pam3CSK4-induced luciferase production (Figure 8H).
In summary, these data suggest that TLR2-EVs can exert
decoy functions.

DISCUSSION

AMs are one of the first lines of defense against the invasion
of airborne pathogens. The stimulation of TLRs triggers the
production of proinflammatory cytokines, which in turn activate
the hypothalamic-pituitary axis to induce the synthesis and
secretion of anti-inflammatory GCs by the adrenal cortex,
thereby limiting inflammation (39). Therapy of pulmonary
diseases, such as asthma and chronic obstructive pulmonary
disease, with inhaled GCs mimics the effects of endogenous
GCs, resulting in decreased production of pro-inflammatory
mediators by AMs (12).

Paradoxically, glucocorticoids have also been suggested
to enhance inflammation and innate immune responses,
particularly by upregulating TLR2 (40). An increase in TLR2
expression after GC administration was observed in many cell
types, including epithelial cells (41–43), keratinocytes (44, 45),
dendritic cells (10), and macrophages (11, 12, 45). Several studies
showed that TLR ligands or inflammatory cytokines cooperate
with GCs to induce TLR2 (12, 41–45). In line with our findings,
Ji et al. (12) reported that coadministration of the GC budesonide
and LPS resulted in elevated TLR2mRNA levels in human AMs,
whereas TLR4 was not affected.

Different mechanisms were suggested to underly the
cooperative induction of TLR2 by GCs and pro-inflammatory
stimuli. For example, Haemophilus influenzae-mediated TLR2
upregulation was enhanced by GCs via negative cross-talk
with the mitogen-activated protein kinase (MAPK) p38 (41).
Likewise, GC-mediated TLR2 induction was reported to
depend on p38 inhibition via the GC-inducible phosphatase
DUSP1 in keratinocytes and epithelial cells (44, 46). An

entirely different mechanism was suggested to drive TLR2
expression in TNF-α/GC-treated A549 cells, requiring the
collective recruitment of NF-κB, signal transducer and
activator of transcription (STAT) transcription factors, and
the GR to the TLR2 promoter (42). In our hands, Dex-
mediated TLR2 induction was GR-dependent and accompanied
by DUSP1 induction (Supplementary Figure 5A). High
DUSP1 expression levels correlated with the repression of p38
phosphorylation (Supplementary Figures 5B,C), suggesting
that Dex-induced p38 inhibition may indeed play a role
in TLR2 upregulation. However, direct binding of GC/GR
complex to the TLR2 promoter might also contribute to the
overall effect.

Although GC-induced TLR2 upregulation has been suggested
to enhance inflammation, a link between TLR2 induction
and enhanced TLR2 responsiveness in immune cells has
not been shown so far. In contrast, TLR2 upregulation
has been reported to be paralleled by immunosuppression
(10, 12), which was confirmed by our study. The lack of
cytokine release upon TLR2 stimulation of GC-treated cells
has been explained by the downstream blockade of the
TLR2 receptor signaling and lack of TLR2 heterodimerization
partners (10, 12, 40, 45).

In addition to GC treatment, we showed that long-term LPS
exposure results in elevated TLR2 levels. Similar to GC-mediated
effects, chronic exposure to LPS represses pro-inflammatory
macrophage responses to recurring stimulation with LPS or
other TLR ligands. TLR signaling is inhibited on many levels
upon constant LPS stimulation, including downregulation of
TLR adapter molecules and upregulation of anti-inflammatory
factors (3, 20). In accordance, increased TLR2 expression did
not lead to improved TLR2-mediated inflammatory responses in
LPS-primed AMs in our study. Thus, we speculated that TLR2
induction by LPS and/or Dex might have anti-inflammatory
effects, e.g., by sTLR2 release.

Secretion of sTLR2 balances responses to both viral and
bacterial infections by binding a wide range of PAMPs and
DAMPs, thereby inhibiting the activation of cellular TLR2 (16).
We observed that sTLR2 was indeed produced by AMs, in
particular after LPS+Dex-treatment. sTLR2 was enriched after
activation of MPs, indicating that ectodomain shedding led to
sTLR2 production (17).

In addition, we detected an unexpected protein that resembled
full-length TLR2. In a previous study, Langjahr et al. (17) also
observed a full-size TLR2 glycoprotein in human macrophage
supernatant and hypothesized that it might correspond to the
full-length protein associated with membrane vesicles. This
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hypothesis is supported by our results showing that flTLR2
is present in isolated extracellular vesicles (EVs). Of note,
quantification of sTLR2 by ELISA, as used to analyze plasma
samples from LPS-exposed volunteers or septic patients (18,
19), would also detect vesicular flTLR2. Thus, it presently
remains elusive whether sTLR2, flTLR2, or both are present in
the circulation in response to LPS or sepsis. Elevated sTLR2
plasma levels have been suggested as a biomarker for infections
(18, 19). Therefore, it might be interesting to investigate
whether TLR2-EVs might serve as diagnostic markers to assess
disease progression, as currently discussed for various types of
EVs (47).

Under physiological and pathological conditions, almost
all cell types release cell-derived phospholipid-based bilayer
membrane vesicles equipped with functional surface and
membrane proteins and encapsulating various cargoes, including
proteins, cytokines, lipids, and nucleic acids (48, 49). They are
categorized as exosomes, microvesicles (MVs), and apoptotic
bodies based on their size, pathway of formation, and membrane
composition (49). Exosomes, which are 30–200 nm in size, derive
from the late endosome. In contrast, MVs are between 100 and
1,000 nm in diameter and are formed through outward budding
of the plasma membrane. Apoptotic bodies derived from
apoptotic cells are very heterogeneous in size and morphology,
and are, therefore, different from the other two EV subtypes
(36, 50). Since exosomes and microvesicles display a similar
appearance and composition as well as an overlapping size
distribution, it is difficult to define their origin once isolated (36).
Thus, we made no further distinction between these vesicle types
in this work.

Flow cytometric analysis confirmed the presence of TLR2
in EV preparations derived from LPS+Dex-treated AMs and
indicated an intact ligand binding ability. The overall inhibitory
function of these vesicles suggests that they may act as a decoy,
as previously shown for sTLR2 (17, 51). This decoy activity may
involve competition for not only the microbial ligand but also the
heterodimerization partners (51). Further studies are required
to elucidate the anti-inflammatory potential of TLR2-containing
EVs. These investigations might comprise more complex in vitro
(52) or in vivomodels (53, 54).

In summary, we showed for the first time that sTLR2
and full-length TLR2 are released by macrophages under
anti-inflammatory conditions. Our data suggest that
vesicle-bound flTLR2 has decoy functions, which may
contribute to immunosuppression induced by GCs and
chronic infections.
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Glucocorticoids regulate fundamental processes of the human body and control

cellular functions such as cell metabolism, growth, differentiation, and apoptosis.

Moreover, endogenous glucocorticoids link the endocrine and immune system and

ensure the correct function of inflammatory events during tissue repair, regeneration,

and pathogen elimination via genomic and rapid non-genomic pathways. Due to

their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune

cells, tissues and organs, glucocorticoids significantly improve the quality of life of

many patients suffering from diseases caused by a dysregulated immune system.

Despite the multitude and seriousness of glucocorticoid-related adverse events including

diabetes mellitus, osteoporosis and infections, these agents remain indispensable,

representing the most powerful, and cost-effective drugs in the treatment of a wide range

of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective

tissue diseases, as well as many other pathological conditions of the immune system.

Depending on the therapeutically affected cell type, glucocorticoid actions strongly

vary among different diseases. While immune responses always represent complex

reactions involving different cells and cellular processes, specific immune cell populations

with key responsibilities driving the pathological mechanisms can be identified for

certain autoimmune diseases. In this review, we will focus on the mechanisms of

action of glucocorticoids on various leukocyte populations, exemplarily portraying

different autoimmune diseases as heterogeneous targets of glucocorticoid actions:

(i) Abnormalities in the innate immune response play a crucial role in the initiation

and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper

(Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the

establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged

as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly

triggered by several different cytokines released by activated Th2 lymphocytes. Using

these examples, we aim to illustrate the versatile modulating effects of glucocorticoids

on the immune system. In contrast, in the treatment of lymphoproliferative disorders the

pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending

on the type of cancer. Therefore, wewill also give a brief insight into the current knowledge

of the mode of glucocorticoid action in oncological treatment focusing on leukemia.

Keywords: glucocorticoids, immune system, inflammation, giant cell arteritis, rheumatoid arthritis, systemic lupus

erythematosus, allergic diseases, leukemia
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INTRODUCTION

Hormones enable intercellular communication as well as the
exchange of information between different organ systems
throughout the human body. They are involved in a variety of
processes such as growth, development, and metabolism. The
synthesis and secretion of hormones is subject to stringent
regulations, comprising positive, and negative feedback loops
as crucial mechanisms. Steroids are lipophilic hormones that
are subdivided into mineralocorticoids produced in the zona
glomerulosa of the adrenal cortex, glucocorticoids produced
in the zona fasciculata as well as sex hormones produced
in the zona reticularis and to a great extent in the gonads.
Since it has been demonstrated that natural glucocorticoids also
have some mineralocorticoid effects, the classification into these
groups is not completely accurate. The term “glucocorticoids” is
more suitable when talking about synthetic glucocorticoids (e.g.,
prednisolone or dexamethasone), because these drugs are more
restricted to glucocorticoid effects only (1).

The initial step of steroid hormone biosynthesis is the
conversion of cholesterol to the precursor pregnenolone in the
mitochondria. Steroid hormone biosynthesis is mainly realized
by enzymes of the cytochrome P450 family (2). Sex hormones
affect growth, development and reproductive cycles whereas
mineralocorticoids regulate sodium and water balance and
glucocorticoids influence energy and metabolic processes as well
as immune and stress responses.

Between 5 and 30mg of the active endogenous (physiological)
glucocorticoid cortisol is produced per day, regulated by the
hypothalamic–pituitary–adrenal (HPA) axis. Glucocorticoids
bind to glucocorticoid receptors that are present in cells
throughout the body, including cells in the hypothalamus and
pituitary gland, which are part of the negative feedback loop
controlling the glucocorticoid production. Furthermore, the
hormone concentration varies in a circadian manner peaking
at 9 a.m. in the morning and reaching the lowest plasma
concentration at midnight.

The dehydrogenation of cortisol to its inactive form
cortisone is promoted by the enzyme 11β-hydroxysteroid
dehydrogenase (11β-HSD) type 1 in the liver. The same
enzyme also exhibits reductase activity promoting the reverse
reaction. The type 2 11β-HSD is only able to convert the
active into the inactive form due to its sole dehydrogenase
activity. Depending on the balance and activity of both
enzymes, the intracellular glucocorticoid concentration and
thus the tissue sensitivity for glucocorticoids varies (3). In
addition to that, glucocorticoids have been demonstrated
to possess immunomodulating effects which depend
on concentration and time of administration: While an
immunostimulatory effect is observed at lower concentrations
(below serum level), higher concentrations (therapeutic range)
lead to an immunosuppression (4). Due to their strong
immunosuppressive, anti-inflammatory and anti-allergic effects,
synthetic glucocorticoids have been established as important
drugs in the treatment of diseases driven by immune and
inflammatory dysregulation.

Glucocorticoid Signaling
Glucocorticoids are lipophilic substances with a low molecular
weight that can easily pass cellular membranes and bind
to the glucocorticoid receptor in the cytosol. The cytosolic
glucocorticoid receptor is ubiquitously expressed by nucleated
cells and resides in the cytoplasm as a multi-protein complex.
Proteins and co-factors stabilize the receptor and support a
specific conformation leading to a high binding affinity for its
ligands (5–9). Two main receptor isoforms are described, the
α glucocorticoid receptor, which is activated by glucocorticoids,
and the β isoform with a deformed ligand-binding domain
that cannot bind ligands (10–13). Further receptor isoforms
which differ in their transcriptional activity as a result of
alternative splicing and/or post-translational modifications, have
been extensively described elsewhere (12–14).

The hormone-receptor complex is translocated into the
nucleus as a homodimer and binds to palindromic DNA-
binding sites in the promoter region of different target genes,
so called glucocorticoid response elements. This genomic
mechanism of glucocorticoid action is known as transactivation,
which describes the binding to positive glucocorticoid response
elements leading to the activation of the transcription of
anti-inflammatory but also regulatory proteins. These include
for example IL-10, Annexin 1, and IκB as well as enzymes
of gluconeogenesis such as tyrosine aminotransferase, serine
dehydrogenase, or phosphoenol pyruvate carboxykinase. In
contrast, the term transrepression refers to an impairment of the
expression of immunoregulatory and proinflammatory proteins
caused by (i) competition for nuclear co-activators between
the hormone-receptor-complex and transcription factors; (ii)
direct or indirect interaction with transcription factors like
NF-κB and AP-1. Similarly, glucocorticoids diminish gene
expression by a mechanism referred to as cis-repression,
which involves binding to negative glucocorticoid response
elements. Genomic mechanisms of glucocorticoid action result
in “delayed effects,” meaning that the protein level does not
change directly after glucocorticoid administration. The duration
of the delay depends on different factors, including transport
within the bloodstream, onset of activation/translocation of
the hormone-receptor complex and the transcriptional and
translational processes themselves. Nevertheless, the description
of rapid improvements which are observed within a few
minutes—especially after intravenous or intraarticular injection
of high glucocorticoid doses—demonstrates the existence of non-
genomic effects. These are triggered by (i) proteins released from
the multi-protein complex after the binding of glucocorticoids
to the cytosolic receptor, (ii) interactions with membrane-
bound receptors, and (iii) nonspecific effects resulting from the
interaction of glucocorticoids with cellular membranes (15, 16).

More pronounced glucocorticoid effects are observed with
increasing glucocorticoid dosages, as receptor saturation is
achieved (17). Unfortunately, rising dosages and duration of
administration simultaneously increase the risk of adverse
events. While the long-term use of dosages ≤5mg prednisone
equivalent per day is generally associated with a low risk of
adverse effects, the application of dosages >10 mg/day increases
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the frequency of the latter (18). These adverse effects are
thought to depend on the mechanism of glucocorticoid action:
Repression of cytokines such as IL-1, IL-2, IL-6, TNF-α, IFN-
γ, and prostaglandins mediates the positive anti-inflammatory
effects, while transactivation is thought to be responsible for the
majority of adverse effects (19–21). However, this classification
is not absolute. In contrast, it has been demonstrated that
transactivation also contributes to the anti-inflammatory effects,
e.g., by the upregulation of genes like GILZ and DUSP1.
In addition, in a mouse model the prevention of receptor
dimerization and thereby inhibition of DNA-binding impaired
the anti-inflammatory capacity of glucocorticoid action (22–26).

Glucocorticoids and Inflammation
These findings clearly show that our knowledge concerning
the mechanisms of glucocorticoid action—including the
desirable anti-inflammatory and the undesirable adverse
effects—is yet insufficient. Nevertheless, these drugs still
represent an indispensable component of the treatment of most
inflammatory diseases because of their efficient and cost-effective
characteristics. However, the considerable toll taken by adverse
events must not be neglected and the development of an
equally effective alternative with a more favorable side-effect
profile would be most desirable. The extent and importance of
glucocorticoid toxicity has been reviewed elsewhere (27, 28) and
will not be discussed in detail in this article.

The immune system consists of two major components: The
innate immune response represents our first line of defense
and includes physical and chemical barriers such as the skin

and tears. In addition, non-specialized cells recognize foreign
invaders by components like bacterial lipopolysaccharide and
destroy them by phagocytosis or release of toxic substances.
The adaptive immune response—our second line of defense—
includes B and T lymphocytes. While the former are responsible
for antibody production, the latter can differentiate into distinct
subpopulations that participate in B cell maturation or possess
cytotoxic potential (29–31). The two lines of defense are
linked by cytokines and cell-cell interaction, which is crucial
for the initiation of the adaptive response. The most notable
attribute of the adaptive immune response is memory, enabling
an immediate and very specific pathogen defense following
previous exposure. The protective actions of the immune
system are accompanied by pain, swelling, itching, redness
and heat, typical signs of an inflammation. At the same time,
these symptoms represent a significant burden in autoimmune
diseases. Normally, the immune response is strictly regulated
to discriminate self from non-self—a mechanism known as
tolerance (29, 30). It is realized by positive and negative selection
of lymphocytes in the bone marrow or thymus. In more detail
(for T cells), T cells that cannot bind MHC class 1 or class 2
complexes undergo apoptosis due to the lack of survival signals.
The subsequent negative selection determines if T cells bind
self-peptides presented by epithelial cells of the thymus. Naive
T cells that have passed both, the positive and the negative
selection are qualified tomigrate into secondary lymphoid organs
(29). Autoimmune diseases originate from a dysregulation of the
immune response, while the particular cause of the disease is
often unknown. Some factors, including genetic predisposition,

FIGURE 1 | Effects of glucocorticoids on immune and other cells. Glucocorticoids affect the number and function of immune cells (cells and compartments adapted

from Servier Medical Art, 2007; Les Laboratoires Servier, München, Germany).
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sex, and environment have been identified to promote the
establishment of autoimmune diseases. Due to their strong
anti-inflammatory and immunosuppressive effects on almost
all immune cells (summarized in Figure 1), glucocorticoids
are indispensable in the treatment of autoimmune diseases. In
general, glucocorticoids inhibit leukocyte traffic and thereby the
access of leukocytes to the site of inflammation. Furthermore,
glucocorticoids interfere with immune cell function and suppress
the production and actions of humoral factors involved in the
inflammatory process.

Since the establishment and the course of autoimmune
diseases are driven by different cell populations, glucocorticoid
application targets diverse leukocyte populations and thus the
mechanism of glucocorticoid action varies. Recently, Franco et al.
have investigated the transcriptional effects of glucocorticoids
on nine primary human cell types. They found 9,457 genes
to be differentially expressed in response to glucocorticoids,
whereas only 25 of them (0.3%) involved all cell types examined,
demonstrating that the transcriptional response of each cell type
is quite distinct (32).

The next chapters will illustrate the versatile modulating
effects of glucocorticoids on the immune system on the
basis of exemplary diseases involving the respective leukocyte
population. Glucocorticoid regimens used in daily practice
according to current guidelines are presented in Table 1 for the
selected diseases.

ABNORMALITIES IN INNATE IMMUNE
RESPONSE PLAY A CRUCIAL ROLE IN
THE INITIATION AND THE PERPETUATION
OF GIANT CELL ARTERITIS

Giant cell arteritis (GCA) is defined as a granulomatous large-
vessel vasculitis, which primarily involves medium- and large-
caliber branches of the aorta (34, 58, 59). Both the innate and the
adaptive immune responses are involved in the pathogenesis of
this disease which can be divided into different phases (59). The
initiation of inflammation is followed by its amplification and the
constitution of feed forward loops leading to arterial remodeling
and ultimately vascular damage. Recently, the current knowledge
on the pathophysiology of GCA has been discussed in detail in
two reviews (59, 60). Al-Mousawi et al. describe this disease as
being mainly mediated by T cells (60). The first step, however,
is the abnormal maturation of vascular dendritic cells (DC)
in the adventitia of the affected vessels. An unknown trigger,
perhaps microorganisms or viral agents, drives this initial step
(59). Predisposing factors include a certain genetic background,
female sex, and alterations of the immune and arterial systems
related to aging (59). The activatedDC recruit and activate CD4+
naïve T cells in the arterial wall where they polarize into T helper
(Th) 1 cells, Th17 and regulatory T (Treg) cells (59, 60). The
secreted products of these cells, namely and most importantly
interferon-γ, interleukin (IL)-2, and IL-17, facilitate both the
recruitment and activation of neutrophils, macrophages and
vascular smooth muscle cells, and the formation and activation
of multinucleated giant cells (Figure 2). These giant cells are

also capable of secreting cytokines and growth factors. Of note,
Th17 cells also secrete other cytokines such as IL-21, IL-22, IL-
8, and IL-26. Macrophages produce IL-6 and IL-1β within the
adventitia. The latter cytokines are thought to mainly drive the
systemic manifestations of GCA such as fatigue, fever, and weight
loss. The fact that the levels of these cytokines largely determine
glucocorticoid requirements underlines the importance of the
innate immune response in the pathogenesis of GCA (61).
Macrophages also produce matrix metalloproteinases (MMP)
such as MMP-9, a type IV collagenase. Watanabe et al. have very
recently identified this enzyme in vasculitic lesions of GCA and
have shown MMP-9 to control the access of monocytes and T
cells to the vascular wall. MMP-9–producing monocytes facilitate
migration of T cells through the collagen IV-containing basement
membrane. The enzymatic activity of MMP-9 is required for
invasion of vasculitogenic T cells and monocytes, formation
of neoangiogenic networks, and neointimal growth (62). As a
consequence, the elastic lamina and growth factors are destroyed,
which propagates intimal hyperplasia. Of note, macrophages also
produce reactive oxygen species which contribute to the damage
of smooth muscle cells in the media (60). Ultimately, the injured
arterial cells respond to the damaging immunological events
mentioned above by initiating dysfunctional repair processes.
This vascular remodeling leads to inflammatory wall thickening,
decreased luminal diameter, and ischemicmanifestations of GCA
with potential organ damage (34).

Glucocorticoids represent a most effective therapy and,
therefore, remain—despite the recently shown favorable effects
of the IL-6 receptor inhibitor Tocilizumab (63)—the primary
treatment in GCA (34). These drugs have been the mainstay
of treatment since the 1950s. Their genomic and non-genomic
effects contribute to the successful treatment of this disease.
We have recently summarized details regarding glucocorticoids
in the management of polymyalgia rheumatica and GCA (64).
In brief, glucocorticoids induce important anti-inflammatory
and immunosuppressive effects on both primary and secondary
immune cells involved in the pathophysiology as described
above. Glucocorticoids inhibit some of their crucial functions
with key mechanisms being the suppression of the production of
pro-inflammatory cytokines, and the prevention and inhibition
of activation of T cells and monocytes/macrophages.

Innate immune cells that are predominantly responsible
for the features of systemic inflammation present in GCA
are most susceptible to glucocorticoid treatment (65, 66). By
inhibiting the NFκB pathway by direct or indirect interaction
with this transcription factor as described in the introduction,
glucocorticoids efficiently suppress the production of central
cytokines (Figure 2) (67). In this context, Linden and Brattsand
demonstrated that GM-CSF showed the highest susceptibility
to glucocorticoid treatment compared to IL-1β and IL-6
(68). These findings conform to the beneficial effects of IL-6
blockade in GCA therapy (63). Of note, higher glucocorticoid
sensitivity has been attributed to monocytes compared to
more differentiated macrophages (68). Consequently, it can
be inferred that glucocorticoids are most potent in inhibiting
freshly attracted monocytes in states of acute inflammation. In
addition, glucocorticoids affect the recruitment of cells of the

Frontiers in Immunology | www.frontiersin.org 4 July 2019 | Volume 10 | Article 1744154

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Strehl et al. Mechanisms of Glucocorticoids

TABLE 1 | Glucocorticoid regimens in selected diseases.

Disease Induction Tapering Maintenance Relapse

INFLAMMATORY RHEUMATIC DISEASES

Giant cell arteritis - Immediate treatment with

40–60 mg/day* for induction of

remission in active GCA** (33)

- Tapering is recommended

when the disease is under

control to achieve a target

dose of 15–20 mg/day* within

2 to 3 months

- After 1 year target dose should

be ≤5 mg/day* (33)

- If long-term therapy is required

a dose of 5 mg/day* or less

should be used

- GC therapy should ideally be

tapered to zero as early as

clinically feasibly (18)

- Increase to pre-relapse dose or by

up to 5–10 mg/day*

- Taper within 4–8 weeks to

pre-relapse dose

- Repeat induction therapy for

ischemic complications (34)

Rheumatoid arthritis - When initiating/changing

csDMARDs short-term GC

therapy should be considered

(35)

- GC tapering should start as

soon as clinically feasible (35)

- If long-term therapy is required

a dose of 5 mg/day* or less

should be used

- GC therapy should ideally be

tapered to zero as early as

clinically feasibly (18)

- Usually doses between 10 and 20

mg/day* are sufficient to treat

flares in this disease

Systemic lupus

erythematosus

- Therapy depends on disease

manifestations and

severity (36)

- In acute, organ-threatening

disease high-dose intravenous

pulse therapy (usually

250–1,000 mg/day* for 3 days)

is often used (36)

- GC should be tapered or at

least minimized as rapidly as

clinically feasible

- Long-term aim is to minimize

daily dose to ≤7.5 mg/day* or

to discontinue GC therapy (36)

- The characteristic of flare therapy

depends on disease, as has been

similarly stated for the induction

therapy

ATOPY

Atopic dermatitis - Stepwise approach: adjust treatment based on disease severity assessed by SCORAD (37)

→ Mild disease: class II topical glucocorticoids (e.g., flumethasone 0.02%) (38)

→ Moderate disease: class II/III topical glucocorticoids (e.g., mometasone 0.1%) (39)

→ Severe disease: short-term oral glucocorticoids may be considered in adults (38)

Allergic rhinitis - Moderate to severe rhinitis: nasal glucocorticoids, e.g., fluticasone, mometasone, beclametasone (40, 41)

- Oral glucocorticoids should only be used in severe persisting disease (40, 41)

- stepped-care approach according to disease severity (42)

Asthma - Most patients initially receive

low dose ICS (e.g., 200–400

µg/d budesonide) (43)

- Frequent troublesome

symptoms justify medium

(400–800 µg/d) to high dose

ICS (>800 µg/d) (44)

- Low dose oral corticosteroids

(≤7.5 mg/day *) should only be

considered in adults with

severe asthma or poor

symptom control (45)

- ICS should not be stopped

completely, cessation is

associated with a higher risk of

exacerbations (46)

- In stable disease ICS doses

can be reduced by 25–50%

every 3 months (47)

- ICS are recommended as

controller treatment in all

asthma patients either

as-needed or daily depending

on disease severity (43)

- Dose adjustment according to

a stepwise approach***

ranging from 200–400 to >800

µg/d budesonide or

comparable doses of other

formulations in adults, reduced

doses are used in the

treatment of children <12

years (48)

- Worsening symptoms: adjustment

of the treatment (increase

reliever/controller use, step

up to higher dose) according to a

written asthma action plan***

- Severe exacerbation: → adults:

40–50 mg/d prednisolone →

Children: 1–2 mg/kg/d, max. 40

mg/d prednisolone to be

continued for 5–7 days (49, 50)

Anaphylactic shock - Glucocorticoids are used to prevent protracted anaphylactic symptoms, while their efficacy in the acute phase is limited

due to slow onset of action (51, 52)

- 250–1,000mg i.v. prednisolone (weight-adjusted dosing in children) (53)

LEUKEMIA

Chronic lymphoblastic

leukemia****

- Patients with diagnosed limited-stage Hodgkin’s lymphoma (HL) and a positive interim positron-emission tomography

after two cycles of ABVD (adriamycin, bleomycin, vinblastine, and dacarbazine) should be treated with two cycles of

bleomycin/etoposide/doxorubicin/cyclophosphamide/vincristine/procarbazine/prednisone in escalated dose before ISRT

- Patients with refractory or relapsed HL dexamethasone can be given in combination with high-dose cytarabine/cisplatin

(DHAP) before high-dose chemotherapy followed by autologous stem cell therapy

- Patients diagnosed for nodular lymphocyte predominant Hodgkin lymphoma benefit from the combination of

rituximab/cyclophosphamide/doxorubicin/vincristine/prednisone (R-CHOP)

- CLL patients with transformation into a diffuse large B-cell lymphoma benefit from therapies used in DLBCL such as

rituximab plus CHOP (cyclophosphamide, vincristine, doxorubicin, and dexamethasone) (54–56)

(Continued)
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TABLE 1 | Continued

Disease Induction Tapering Maintenance Relapse

Chronic myeloid leukemia N/A

Acute myeloid leukemia N/A

Acute lymphoblastic

leukemia

- Glucocorticoids are given as a so-called pre-phase therapy (usually prednisone 20–60 mg/day or dexamethasone 6–16

mg/day, both i.v. or p.o.) alone, or in combination with another drug (e.g., vincristine, cyclophosphamide), but often given

together with allopurinol and hydration for ∼5–7 days. The response to pre-phase therapy defines the chemosensitivity of

the disease, and is included in some studies for risk assessment, since good responders to prednisone may have a better

outcome.

- Regimens of induction therapy are centered on vincristine, glucocorticoids, and anthracycline (daunorubicin, doxorubicin,

rubidazone, idarubicin), with or without cyclophosphamide or cytarabine. Dexamethasone is often preferred to

prednisone, since it penetrates the blood–brain barrier and also acts on resting leukemic blast cells (LBCs).

- In adult ALL glucocorticoids are often used in the hyper-CVAD (cyclophosphamide, vincristine, doxorubicin,

dexamethasone) protocol, preferentially used in the United States, but also in other parts of the world

- Maintenance therapy usually consists of daily 6-mercaptopurine and weekly methotrexate. In some treatment regimens,

repeated cycles of vincristine, dexamethasone or other drugs in monthly or longer intervals are given (57)

*Doses are given as prednisone-equivalent. ** In patients with GCA suffering from acute visual loss or amaurosis fugax, the use of very high GC dosages, namely 0.25–1 g i.v.

methylprednisolone daily for up to 3 days should be considered. ***Details are provided by the Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention,

2019. Available from: www.ginasthma.org N/A: glucocorticoids are not used as standard therapy in these diseases. ****The transformation into a diffuse large B-cell lymphoma (DLBCL)

or Hodgkin’s lymphoma occurs in 2%−15% of CLL patients during the course of their disease.

FIGURE 2 | Key players of the immune system driving the pathogenesis of immune-mediated diseases. GCA, giant cell arteritis; DC, dendritic cell; pDC, plasmacytoid

dendritic cell; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus (cells adapted from Servier Medical Art, 2007; Les Laboratoires Servier, München,

Germany).

mononuclear phagocytic system by suppressing the expression of
adhesion molecules on the surface of the endothelium (69). With
respect to monocyte function, Blotta et al. demonstrated that the
incubation of monocytes with dexamethasone led to a decreased
IL-12 production in vitro (Figure 3) (70). In line with this, they
presented a limited capacity to induce Th1 differentiation.

Deng et al., however, have shown that glucocorticoids suppress
the production of Th17-promoting cytokines (IL-1β, IL-6, and

IL-23) (Figure 3), but IFN-γ-producing Th1 responses persist
in treated patients (71). Also, patients presenting prominent
expression of IL-17A in temporal artery biopsies demonstrated
favorable responses to glucocorticoid treatment (72). Therefore,
it was assumed that the IL-6-IL-17 cluster is highly responsive
to glucocorticoid therapy, whereas the IL-12-IFN-γ cluster is
resistant to glucocorticoid-mediated immunosuppression (73).
Nevertheless, there are reports of a reduction in Th1 response
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FIGURE 3 | Glucocorticoids modifying the Th balance Glucocorticoids affect the predominance of different T helper (Th) cell subsets, e.g., by influencing cytokine

production. MC, monocyte (cells adapted from Servier Medical Art, 2007; Les Laboratoires Servier, München, Germany).

after glucocorticoid treatment in patients with Takayasu’s
arteritis—a condition closely linked to GCA (74). Moreover,
further studies revealed a decrease in both Th1 and Th17 cells,
and a reduction of IFN-γ in GCA patients after glucocorticoid
treatment (75, 76). Reviewing the pathogenesis of GCA, Samson
et al. thus concluded that the conflicting results regarding
glucocorticoid response result from prevalent plasticity between
Th1 and Th17 cells influenced by the surrounding cytokine
milieu (77).

At higher glucocorticoid dosages, for instance in form of
pulse therapy in complicated GCA and in case of established
visual loss, rapid non-genomic effects as already described in the
introduction contribute to their therapeutic efficacy [reviewed
in (64)].

AUTOIMMUNE DISEASES DRIVEN BY
IRREGULARITIES IN THE ADAPTIVE
IMMUNE SYSTEM

Th1 and Th17 Cells Represent Important
Players in the Establishment and Course of
Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a systemic autoimmune disease
that affects up to 1% of the population worldwide with a higher
prevalence in women than in men. RA patients suffer from

pain, immobility, and fatigue leading to decreased quality of
life (78). The pathogenesis of RA is characterized by chronic
inflammation mainly localized in the synovial joints leading
to the destruction of articular cartilage and the establishment
of bone erosions. Joint inflammation is accompanied by the
infiltration of the synovium with immune cells such as T cells,
B cells, macrophages, and dendritic cells and the proliferation of
fibroblast-like synoviocytes of the synovial sub-lining layer which
finally contribute to the joint destruction (79).

Glucocorticoids play a very important role in the treatment
of RA, rapidly suppressing inflammatory activity especially
at disease onset and during flares (15, 16, 80–82). Although
glucocorticoids satisfactorily suppress inflammation and reduce
symptoms such as pain and morning stiffness, data regarding
their ability to manage cartilage degradation and bone erosions
remain controversial (83, 84). Only limited success with regard
to remission rates using glucocorticoids has been reported, e.g.,
in early treatment of undifferentiated arthritis (85) but also
the SAVE trial (remission-rate: 17%) (86) and the STIVEA
trial (remission-rate: 20%) (87). However, glucocorticoids still
efficiently limit inflammation. Although the exact mechanism of
RA pathogenesis remains unclear, it has become evident that Th
cell subsets play an important role in the course of the disease.
CD4+ T cells, especially Th1 and Th17 cells, play a major role in
RA (88). RA patients present an enrichment of effector memory
CD4+CD45RO+ T cells in the affected joints (89) and a massive
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expansion CD4+ T cell clones in synovial tissue of early disease,
which suggests a local antigen-induced proliferation (90). In this
context, it should be noted that blocking co-stimulation targeting
CD80/CD86-CD28 interaction significantly improved the signs
and symptoms of RA illustrating the importance of T cells in the
pathogenesis (91). Moreover, genetic association of certain HLA-
DRB1 alleles with increased susceptibility to RA further supports
the central role of Th cells in RA (92).

When the Th1/Th2 paradigm dominated the understanding
of the pathogenesis of autoimmune diseases, RA was defined
as a Th1-driven disease because CD4+ T cells identified to
be enriched in synovial fluids from RA patients were prone
to secrete IFN-γ but not IL-4 (93, 94). These findings were
further supported by the enrichment of the IFN-γ-induced
chemokines CXCL9 and CXCL10 and the chemokine receptor
CXCR3 binding both of the latter in RA synovium (95–98). Th1
cells classically activate macrophages and increase their capacity
to produce pro-inflammatory cytokines present in RA synovium
such as TNF (Figure 2) (99). Moreover, IL-12, IL-18, and IFN-γ,
the drivers of Th1 differentiation have been also identified in
synovial tissues of RA patients (100, 101), although the levels of
Th1-mediated IFN-γ were relatively low compared with those of
TNF-α, IL-1, or IL-6 derived from synovial fibroblasts (102, 103).

The discovery of Th17 cells (100, 101) and the delineation
of the IL-17 family members (104) as well as the shift from
Th17 cells to Th1 cells (i.e., “non-classic Th1 cells”) being
more pathogenic than Th17 cells per se shed new light on
the contribution of inflammatory Th subsets to the initiation
of RA (Figure 2) (105–108). Th17 cells are highly unstable
and easily shift to Th1 cells but can also transdifferentiate
back as demonstrated for Th1 cells in the gut (109–112).
At the onset and in the early phase of the pathogenesis
of RA, Th17 cells shift to Th1 cells, whereas methotrexate
(MTX) reduced the ratio of Th17 cells but not Th1 cells
(113). Finally, these finding demonstrate that Th17 and ex-
Th17 or “non-classic Th1 cells” cells play important roles
in the early phase of RA and for the treatment using a
combination of MTX and glucocorticoids according to the
EULAR recommendations for the management of rheumatoid
arthritis (35). While MTX reduces the ratio of Th17 cells,
which are—depending on the immunopathological setting—
resistant to glucocorticoid mediated suppression in terms of
survival and the production of IL-17A and IL-17F but not IL-
22 (114), glucocorticoids induce Th1 cell apoptosis via induction
of BIM (114, 115). Moreover, glucocorticoids decrease IFN-γ
production by T cells from patients with rheumatoid arthritis
ex vivo and in vitro mechanistically via their suppressive action
on the IL-12-induced STAT4 phosphorylation and by direct
protein-protein interactionwith the transcription factor T-BET—
described as transrepression in the introduction (Figure 3) (116–
119). Inhibition of Th1 activity by glucocorticoids may reduce
overall inflammation in RA patients while the glucocorticoid
resistant joint destruction can be assumed to be Th17 mediated.
Mechanistically, glucocorticoid resistant joint destruction may
be maintained by the glucocorticoid-mediated promotion of
intrinsic Th17 differentiation (120), and the induction of bone
resorption via synovial IL-17 (121). IL-17 also contributes to

neutrophil recruitment (122) and an increase in neutrophil
survival, a hallmark of RA synovial fluid promoting joint damage
(Figure 2) (122–124).

B Cells Have Emerged as Central Players
in Systemic Lupus Erythematosus
Components of the innate and the adaptive immune system
play an important role in the pathogenesis of systemic
lupus erythematosus (SLE). Clinical manifestations of this
autoimmune disease are diverse, affecting a wide spectrum
of organs and tissues. The pathogenesis of the disease is
not yet fully understood, but beside environmental factors
a genetic susceptibility to SLE has been described including
a variety of nucleotide polymorphisms [reviewed elsewhere
(125)]. Plasmacytoid dendritic cells (pDC) produce type I
interferon in response to viral infections. A large number of
SLE patients possess an ongoing production of type I interferons
and subsequently an increased expression of type I interferon
regulated genes, termed IFN-signature, which correlates with
autoantibodies and disease activity (126–128). This type I
interferon synthesis is induced by immune complexes containing
nucleic acid via Toll-like receptor (TLR) ligation. In addition
to their antiviral features, type I interferons contribute to the
activation of the adaptive immune system, e.g., by activation of
autoreactive T and B cells (Figure 2) (129, 130). T cell signaling
alterations and hyperactive B cells, producing and presenting
autoantibodies against nuclear complexes to T cells, constitute
the main drivers of SLE. The important role of B cells has
been demonstrated in a murine model lacking this lymphocyte
population (131). In addition to that, the same group showed that
B cells also play an antibody-independent role in murine lupus
in their function as antigen presenting and cytokine secreting
cells (132).

Alterations in B cell maturation and differentiation affect
several B cell subsets, targeting different checkpoints of B
cell development. In SLE patients the frequency of antibody
producing plasma cells in the peripheral blood is increased
and correlates with autoantibody production and disease
activity (133). It has been demonstrated that amongst
others the overexpression of BAFF/BLyS (B-cell activating
factor/B-lymphocyte stimulator), type I interferon and Blimp-1
(B lymphocyte-induced maturation protein-1) is responsible for
these alterations in SLE patients (134–136).

Although B cells have emerged as central players in SLE,
B cell depletion failed repeatedly as a therapeutic strategy in
clinical trials. For example, the EXPLORER study demonstrated
that rituximab, a CD20 antibody, did not show any statistically
significant efficacy in achieving treatment response compared to
placebo. Moreover, a recent reanalysis confirmed these findings,
reevaluating the data with the help of newly available disease
activity scores (137, 138).

There is only one therapeutic antibody approved by the
FDA and the EMA for SLE therapy, namely belimumab, which
neutralizes BAFF/BLyS and thereby decreases the number of
newly formed B cells (139, 140).
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The management of SLE strongly depends on the course of
the disease. Glucocorticoids represent highly effective agents in
order to immediately control the inflammatory process in SLE.
Systemic glucocorticoids are required as initiation therapy in
severe SLE, whereas maintenance immunosuppressive therapy is
added in order to enable steroid tapering. Nevertheless, especially
in acute, organ-threatening disease high-dose intravenous pulse
therapy (usually 250–1,000mg prednisone equivalent per day for
3 days) is often used to reduce disease activity (36). Interestingly,
Guiducci et al. demonstrated that oral glucocorticoids (5–20mg
per day) modulate multiple gene expression pathways but the
IFN pathway (including 36 type-I-IFN-inducible transcripts) is
not affected in SLE patients. In contrast, the IFN signature was
normalized after intravenous pulse therapy, which correlates
with a reduction in pDC. The IFN-α production was reduced
after a combined inhibition of TLR7 and 9 in purified pDC
indicating that continuous triggering of TLR7 and 9 in these cells
by immune complexes containing nucleic acid in SLE patients
counteracts the activity of glucocorticoids on the IFN pathway.
Thus, TLR7, and 9 inhibitors could be effective as glucocorticoid-
sparing drugs (128).

However, the mechanism of glucocorticoid action in SLE
patients is largely unknown. A study in MRL/MpSlac-lpr mice
with systemic autoimmune symptoms similar to human SLE
analyzed prednisone action on plasma cell differentiation with
regard to the impact of regulatory factors, including IL-21,
Blimp-1, and Bcl-6 (B cell lymphoma-6—essential for germinal
center development). The percentages of plasma cells and plasma
cell precursors as well as activated T cells were decreased after 13
weeks of prednisone treatment (Figure 2). In addition, serum IL-
21 and the expression of splenic Blimp-1 and Bcl-6 were reduced,
which may be correlated with the restriction of B lymphocyte
differentiation into plasma cells in these mice (141).

Haneda et al. went further in order to analyze which
step of B cell differentiation is affected by glucocorticoids.
They differentiated human B cells by sequential addition of
cytokines and other agents in a three-step culture system
to obtain activated B cells [CD19(hi)CD38(lo)IgD(-)],
plasmablasts [CD19(hi)CD38(hi)IgD(-)], and plasma cells
[CD19(lo/-)CD38(hi)IgD(-)]. They added low and high
concentrations of prednisolone at the beginning of each
differentiation step and found a significant inhibition of
B cell proliferation and differentiation in the last step,
whereas IgG production was decreased in step 2 and 3
only at high glucocorticoid concentrations (100 ng/ml) (142).
Interestingly, the number of circulating B cells was less affected
by glucocorticoids compared to T cells which showed a rapid
depletion in the circulation. In contrast, plasma cells and
naive B cells are markedly decreased in the peripheral blood
of SLE patients upon immunosuppressive therapy (143)—
indicating that the inhibition of T cell help might contribute
to the immediate glucocorticoid responses in SLE (144).
Using transcriptome data to generate a pathway-level map of
glucocorticoid effects across immune cell types, Franco et al.
identified that glucocorticoid treatment (i) up-regulated the
expression of PRDM1, which encodes BLIMP-1 involved in
terminal differentiation and reduced proliferation of B cells and

IL10, (ii) functionally impaired BCR signaling by suppressing
CR2 and CD19 which encode the two components of the B
cell co-receptor complex that serve as an enhancer of BCR-
mediated signaling and (iii) selectively impaired TLR signaling
by downregulation of TLR1, TLR6, and TLR7 (32).

However, responses to glucocorticoids differ from patient
to patient suffering from SLE. This may, at least in part, be
related to the glucocorticoid receptor α whose alteration has
been demonstrated in several autoimmune diseases (145–150).
In SLE patients, the receptor expression is reduced compared
to healthy controls. In addition, treatment with glucocorticoids
further reduces the receptor mRNA and protein expression
and it has been demonstrated that the receptor expression
is negatively associated with SLE disease activity. Thus, the
determination of receptor expression may be of importance with
regard to insensitivity to glucocorticoids or determination of
therapeutically effective dosages (151).

The glucocorticoid-induced leucine zipper (GILZ), an anti-
inflammatory protein whose expression is upregulated by
endogenous and exogenous glucocorticoids, has been in the focus
of an in vitro study in human B cells. In general, GILZ mRNA
and protein expression in peripheral blood mononuclear cells
obtained from patients with SLE were downregulated compared
to controls and correlated negatively with different markers of
disease activity. An analysis of human B cell subsets revealed
that intracellular GILZ was significantly decreased in circulating
HLA-DRlo plasmablasts [precursors of HLA-DRhi cells which
indicate active disease (152)] in patients with SLE. Treatment
with prednisolone restored the GILZ expression to the level
of control donors, a process described as transactivation—the
activation of the transcription of anti-inflammatory proteins—in
the introduction. Furthermore, an impaired induction of GILZ in
SLE patients under glucocorticoid treatment was associated with
an increased disease activity (153).

In the past decade, several additional factors including p-
glycoprotein and the macrophage migration inhibitory factor
(MIF) have been identified in the context of glucocorticoid
resistance in SLE [reviewed in (154)]. P-glycoprotein (P-gp), a
product of the multidrug resistance gene MDR-1, mediates the
excretion of numerous drugs including antibiotics and cytotoxins
but also glucocorticoids (155). P-gp is widely expressed in
a variety of tissues, including peripheral blood T and B
lymphocytes (156). However, P-gp expression is increased in
these cells in SLE patients and is correlated with disease
activity (157). Thus, elevated levels of P-gp lead to poor
disease control by systemic glucocorticoid therapy and are
associated with glucocorticoid resistance (157, 158). Beside
P-gp, the inflammatory cytokine macrophage MIF actively
reduces glucocorticoid action, participates in multiple stages
of the inflammatory response and is widely associated with
autoimmune disorders such as RA and SLE (159). MIF is
also known as a naturally occurring counter-regulator of
glucocorticoid action, correlates with disease activity in SLE
and mediates the development of glucocorticoid resistance in
SLE (159–162).

Although glucocorticoids are highly effective in the treatment
of SLE, these drugs bear the risk of severe adverse effects,
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especially when given over a longer period of time and/or
at higher dosages. A study analyzing the relationship between
glucocorticoids and damage accrual in SLE demonstrated that
medium to high mean daily prednisone doses and higher
cumulative doses were associated with an increased occurrence
of adverse effects. Eighteen patients developed new damage
attributable to glucocorticoid treatment including cataracts,
osteoporotic fractures, avascular necrosis, and diabetes mellitus
(163). New drug developments or improved formulations for
SLE therapy are promoted with the objective of reducing
the glucocorticoid dosage and thereby attenuating adverse
effects. The therapeutic effect of a liposome-based steroidal
methylprednisolone nano-drug has been evaluated in a murine
model of SLE compared to the free agent. The study revealed
that the steroidal nano-drug formulation is significantly more
effective in suppressing anti-dsDNA antibody levels, proliferation
of lymphoid tissue and renal damage, and in prolonging survival
compared to free methylprednisolone given at the same dosage
(164). The advantage of nano-liposomes is that they passively
reach the inflamed site due to the enhanced permeability of the
inflamed tissue vasculature, ensuring a reduced level in non-
inflamed tissues (165, 166). Due to these advantages, liposomal
glucocorticoids are also of great interest in the treatment of other
inflammatory diseases (167–170).

Th2 Lymphocytes Constitute Major
Contributors to the Pathogenesis of
Allergic Diseases
Contrary to Th1 cells CD4+ T helper cells type 2 (Th2) are
mainly involved in eosinophil activity as well as IgE production
caused by an immunoglobulin class-switch in B cells (171).
Th2 cells are characterized by the expression of GATA-3 and
the secretion of Th2 cytokines, namely interleukin (IL)-4, IL-
5, and IL-13 (172). Their development is promoted by a milieu
abundant in IL-2 and IL-4 that activate STAT6 signaling and
thereby promote Th2 differentiation (Figure 3). Thus, the key
role of IL-4 consists in both mediating Th2 cell function and
maintaining Th2 predominance by autocrine secretion.

Physiologically, Th2 cells exert their main function in the
control of helminth infections. This mechanism of defense,
referred to as the “type 2 response,” involves players of both
the innate and adaptive immune system. Besides the activation
and proliferation of Th2 cells and the secretion of their
characteristic cytokines, this cascade comprises eosinophil and
basophil granulocytes, mast cells as well as IgE secreted by
plasma cells (173). Considered to possess anti-inflammatory
characteristics, the type 2 response is thought to have evolved
as a mechanism of parasite control that simultaneously confines
collateral damage and promotes tissue repair (174). In this
regard, the antibody isotype IgE fulfills an important function in
responding to metazoan infections. Cross-linking of IgE bound
to high-affinity receptors (FcεRI) on mast cells and basophils
triggers the release of mediators that facilitate healing without
activating complement. However, rising hygienic standards have
reduced the necessity of antihelminthic defense mechanisms,
thereby depriving Th2 cells of their original target pathogens.

In this context, the role of a dysregulated type 2 response in
the pathogenesis of immune-mediated diseases has attracted
increasing attention.

With a lifetime prevalence of about 40%, allergic diseases
represent the most common immune disorder in western
countries, affecting both children and adults (175). The
German Health Interview and Examination Survey for
Children and Adolescents (KiGGS) revealed a prevalence
of 22.6% among children and adolescents with three main
diagnoses in descending order: atopic dermatitis (AD), allergic
rhinoconjunctivitis (AR), and asthma (176). The pathogenesis
of atopic disorders is defined by a predominant type 2 response
involving all major players described above (177–180). The
allergic cascade is set into motion by IL-4 and thymic stromal
lymphopoietin (TSLP) secreted from basophils (181). This
step promotes Th2 differentiation followed by the secretion
of IL-4 and IL-13 from activated T lymphocytes (Figure 2).
Subsequently, these cytokines cause B cells to undergo a class-
switch to IgE producing plasma cells. Upon allergen exposure
cross-linking of these antibodies bound to mast cells results
in a release of histamine, prostaglandins, and leukotrienes
that enhance paracellular permeability (Figure 2). As a result,
dendritic cells (DCs) infiltrate the affected tissue and maintain
T cell stimulation in their role as antigen-presenting cells
(APCs). Activated Th2 cells produce type 2 cytokines that
sustain the mechanisms underlying allergic reactions. While
IL-4 mainly induces the class-switch toward IgE production,
IL-13 additionally causes mucus production and airway
hyperresponsiveness (182, 183). On the other hand, IL-5
supports eosinophil survival and function (Figure 2) (184, 185).
The substantial role of the type 2 response in the pathogenesis of
allergic diseases has also been highlighted by the examination of
samples from patients suffering from AD (186), AR (187), and
asthma (188–191) demonstrating the preponderance of Th2 cells
and cytokines in the affected tissues.

Glucocorticoids, administered both topically and systemically,
represent indispensable agents in the treatment of atopic
disorders (192). Generally, these drugs are capable of reducing
the number of immune cells present at the site of allergic
reactions (Figure 2) (193, 194). On examining the effect of
glucocorticoids on Th2 cells in greater detail, a contradiction
becomes evident. Although these agents are successfully
administered to atopic patients, glucocorticoids have been
described to promote Th2 cell predominance (Figure 3)—a
well-described driver of allergic diseases (195–201). In order
to solve this apparent conflict, the mechanism of action of
glucocorticoids in Th2-driven disorders needs to be reviewed
more closely.

Firstly, one has to distinguish between short-term and long-
term drug effects. Temporary application of supraphysiological
glucocorticoid doses results in an inhibition of Th2 cytokine
production (Figures 2, 3) (202–205). This effect is mainly
mediated by glucocorticoid action on transcription factors as
described in the introduction (206–208). For instance, binding
of the GR to the IL-5 gene promoter region results in
the repression of the cytokine by interfering with GATA-
3 signaling (209). Moreover, this process seems to involve
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histone deacetylation. Similarly, inhibition of GATA-3, the key
transcription factor of Th2 differentiation, plays an important
role (210). Maneechotesuwan et al. showed that ligand-activated
GR and GATA-3 compete for importin-alpha interaction
enabling nuclear localization (211). Application of inhaled
fluticasone propionate (FP) prevented nuclear transport of
GATA-3 by means of this mechanism in asthmatic patients.
The authors also demonstrated that the induction of MAPK
phosphatase-1 (MPK-1) by FP results in the inhibition of p38
MAPK function, thus preventing GATA-3 phosphorylation. Also,
dexamethasone treatment decreased GATA-3 expression in an
asthmatic mouse model by inhibiting Notch1 signaling (212).
In contrast, chronic exposure to glucocorticoids may cause a
shift toward Th2 predominance. On the one hand, this thesis
is underlined by multiple studies analyzing the role of stress
in atopic diseases. Periods of stress are marked by elevated
levels of endogenous cortisol that promote Th2 predominance
and thereby susceptibility to allergy (213). The impact of
psychological stress on the course of disease in asthmatic patients
has been reviewed by Miyasaka et al. (214). On the other hand,
Ramirez revealed that prior glucocorticoid exposure provokes
type 2 cytokine production in T cells (201).

Secondly, the effect of glucocorticoid administration on
Th2 cells in atopic patients appears to differ from the Th2
enhancement generally caused by these drugs. Hydrocortisone
significantly reduced the presence of IgE, histamine, and
type 2 cytokines in serum and skin samples from AD
patients (215). Correspondingly, AR patients presented
a decrease in eosinophils, IgE, IL-4, and IL-5 in their
nasal fluid after topical and oral glucocorticoid application
(Figure 2) (187, 216–218). Lastly, the suppression of the type
2 response by glucocorticoid treatment was also observed
in bronchial tissue and bronchoalveolar lavage fluid from
asthmatics (219–221).

Finally, the beneficial glucocorticoid actions in allergic
diseases are not only caused by their impact on Th2
lymphocytes. On the contrary, several players of the type
2 immune response are equally affected by glucocorticoid
treatment. Namely, mast cell maturation and activation, FcεRI
expression as well as mediator production and release are
inhibited by glucocorticoid exposure (222–227). Furthermore,
glucocorticoids impede histamine release from basophils and
induce eosinophil apoptosis (228, 229). Recruitment and
function of APCs as well as the class-switch to IgE in B
cells are also restrained (230–232). Additionally, Klaßen et al.
demonstrated the importance of non-hematopoietic cells in
mediating glucocorticoid effects in a mouse model of allergic
asthma (233). In the end, it has to be mentioned that
recent findings emphasize the involvement of other CD4+
T helper cell subsets in the pathogenesis of allergic diseases.
Increasing importance has been ascribed to Th17, Th9, Th22,
and Th25 cells in this context (234). Similarly, the impact of
regulatory T cells (Treg) must not be neglected. Several studies
describe defective Treg activity as a major contributor to the
development andmaintenance of atopy (235–242). In this regard,
glucocorticoids greatly contribute to the restoration of Treg
function, thereby controlling the dysregulated type 2 immune
response (243–246).

MECHANISMS OF GLUCOCORTICOIDS IN
THE TREATMENT OF MALIGNANCIES
WITH A FOCUS ON LEUKEMIA

The last chapter will give a brief insight into the mechanisms
of glucocorticoid action in cancer therapies. Interestingly,
the effects of glucocorticoids on different cancer subtypes
and thereby the underlying mechanisms vary, even regarding
opposite effects. This may be related to the subtype of
cancer itself including its location, the affected cell type,
the microenvironment and emerging comorbidities. Also, the
glucocorticoid dose ranging from low to high daily dosages,
and the level of glucocorticoid receptor expression and activity
play an important role. In addition to that, the co-existence
of other receptors of the steroid receptor family, namely the
androgen and the estrogen receptors, can affect glucocorticoid
action, especially in breast or prostate cancer, since there are
also differences in receptor positive and receptor negative cancer
subtypes. Another beneficial effect on different subtypes of
cancer should not be neglected: Glucocorticoids are used as
co-therapy during chemotherapy or radiotherapy in order to
reduce side effects. They have been shown to improve mood,
increase appetite and thereby lessen weight loss, reduce fatigue,
diminish ureteric obstruction, prevent vomiting, and alleviate
pain (247–250).

In the following, we will concentrate on hematopoietic
malignancies which form a particular subset of cancerous
conditions that were first discovered as such in the Nineteenth
century when Rudolf Virchow coined the term “leukemia,”
meaning “white blood.” Glucocorticoids play a crucial role
in the treatment of these malignancies, among others as
part of the CHOP regimen to treat non-Hodgkin lymphoma
as well as in myeloma therapy. Nevertheless, due to the
considerable differences of glucocorticoid effects on diverse
cancer types, we will focus on one subtype here, namely
leukemia. The epidemiology of the disease is summarized in
Table 2 according to the German and Austrian cancer register
(www.gekid.de; www.statistik.at).

Four different types of leukemia are described: chronic
lymphoblastic leukemia (CLL), chronic myeloid leukemia
(CML), acute myeloid leukemia (AML), and acute lymphoblastic
leukemia (ALL). CLL is the most common leukemic disease in
western industrialized countries, where the disease constitutes
95% of the overall cases in older individuals (50 years and older)
(251). The main reason for the therapeutic use of glucocorticoids
in leukemia is their pro-apoptotic action.

Chronic Lymphoblastic Leukemia (CLL)
The inhibition of B cell apoptosis and the dysregulation of
proliferation and differentiation are themain causes of CLL. They
lead to an accumulation of mature CD5-positive, CD10-negative,
CD20 weakly positive, and CD23-positive B cells within blood,
bone marrow and solid lymphoid organs (252–254). Therefore,
the B cell itself, the B cell receptor and the subsequent signaling
pathways are novel targets of therapies using e.g., monoclonal
antibodies like rituximab or small molecules such as the kinase
inhibitor ibrutinib [reviewed in (253)].
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TABLE 2 | Epidemiology of leukemia.

Registry Cancer type Female Male Total

Rate Number of cases Rate Number of cases Number of cases

Germany Cancer (total) 336.7 223.019 436.5 259.013 482.032

Leukemia 8.1 5.550 13.2 7.489 13.039

Leukemia (mortality) 4.0 3.575 6.4 4.168 7.743

Austria Cancer (total) 421.8 19.393 581.4 21.342 40.735

Leukemia 9.0 420 16.5 586 1.006

Leukemia (mortality) 7.3 354 11.9 386 740

Rate and absolute numbers of cases of total cancer (without other tumors of the skin) and leukemic (including mortality) in Germany and Austria in the year 2014. Rate is given per

100,000 individuals per year (new disease) according to the German and Austrian cancer registry (www.gekid.de; www.statistik.at).

In healthy subjects, the administration of glucocorticoids
affects different subsets of the peripheral blood leukocytes,
resulting in a transient lymphocytopenia (255). This has been
demonstrated to be mostly caused by a glucocorticoid induced
redistribution of lymphocytes from the blood into the tissue,
affecting mainly T cells and B cells to a lesser extent (252, 256).
In CLL patients however, the administration of glucocorticoids
leads to an increase in blood lymphocytes accompanied by a rapid
reduction in spleen and lymph node sizes. Following the therapy,
the number of lymphocytes decreased even beneath pretreatment
levels (257, 258). Unfortunately, the underlying mechanism
is still unknown and glucocorticoids are consequently not
commonly used to treat CLL. Nevertheless, these drugs are
currently of interest to complement treatment with monoclonal
antibodies or small molecules. In 2016, Manzoni et al. analyzed
the in vitro effects of the combination of ibrutinib and
dexamethasone on the proliferation andmetabolic stress markers
in lymphocytes obtained from patients suffering from CLL. They
demonstrated an enhanced inhibition of cell cycle progression,
an increase in apoptosis and a decrease in DNA damage in
lymphoid B cells by a combination of dexamethasone and
ibrutinib compared to the tyrosine kinase inhibitor alone (259).

Chronic Myeloid Leukemia (CML)
Tyrosine kinase inhibitors also show remarkable success in
controlling CML, a disease of myeloid progenitor cells. This is
due to the knowledge of the underlying molecular pathogenesis
of this disease which arises mainly from a translocation t(9,22)
(q34;q11), resulting in transcripts and fusion proteins with
unusual tyrosine kinase activity (260). Thus, tyrosine kinase
inhibitors, e.g., imatinib and dasatinib, are used as standard
therapy with a high rate of remission (261). Consequently, the
use of glucocorticoids has become dispensable. Unfortunately,
this kind of molecular-targeted therapy is exceptional since the
molecular target is unknown in all other types of leukemia.

Acute Myeloid Leukemia (AML)
The heterogeneous character of AML impedes such targeted
therapies. Therefore, the treatment largely relies on the
use of aggressive chemotherapy (262). AML is characterized
by an infiltration of the bone marrow, blood, and tissues
by hematopoietic progenitor cells which lose their ability

to differentiate physiologically due to heterogeneous clonal
disorders. The extent of the genetic variability of AML patients
has been the focus of different studies aiming at customized
therapeutic approaches (263). In contrast to more recent
findings, it has been demonstrated in 2006 that short-term
treatment with high-dose methylprednisolone resulted in an
induction of differentiation and apoptosis of leukemic cells in
children with AML. Furthermore, the addition of this high-
dose glucocorticoid therapy to chemotherapy led to increased
remission rates and improved patient outcome (264). However,
high rates of glucocorticoid resistance in AML patients have been
reported in the last years, so that glucocorticoids are not suitable
as standard therapy (265).

Acute Lymphoblastic Leukemia (ALL)
In contrast, leukemic cells in ALL are much more sensitive
to glucocorticoids. Therefore, the administration of high-
dose glucocorticoids (i.e., dexamethasone and prednisolone)
represents the standard induction therapy in ALL (266). The
specific genotypes of ALL are diverse, including aberrant
expression of proto-oncogenes, chromosomal translocations
resulting in fusion genes and hyperdiploidy involving more than
50 chromosomes [reviewed in (267)]. These genetic alterations
contribute to changes in cellular function, such as a dysregulation
of differentiation, proliferation, and programmed cell death of
hematopoietic stem cells (254, 267, 268).

The glucocorticoid-induced cell death in leukemia is
mediated by the glucocorticoid receptor via transrepression
and transactivation (please see Introduction). It has
been demonstrated that the repression of anti-apoptotic
BCL2 and the activation of the antagonizing pro-
apoptotic BIM induce cell death in ALL (269, 270). Other
genes and even microRNAs have been described to be
regulated by glucocorticoids and thereby mediate apoptosis
(271–273). In addition, cell death is also triggered by
calcium release from the endoplasmic reticulum into the
cytosol and by an enhanced expression of thioredoxin-
interacting protein (TXNIP) which induces cell death by
increasing reactive oxygen species and/or blocking glucose
transport (270).

Finally, the underlying mechanisms which mediate
glucocorticoid-induced cell death in leukemia are
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diverse and not yet well-understood. The existence
and the development of glucocorticoid resistance after
long-term therapy aggravate treatment strategies or
reverse the achieved remission. This applies to both the
treatment of cancer and the treatment of inflammatory
autoimmune diseases.

CONCLUDING REMARKS

After highlighting the effects of glucocorticoids in different
immune cells in the context of a variety of immunopathologies,
we have to conclude that the understanding of the mode
of glucocorticoid action in the scope of immune responses
and glucocorticoid resistance is still incomplete. Although
glucocorticoids have ranked among the most potent
immunosuppressive drugs in daily clinical care for more
than 70 years, knowledge on their mechanisms of action on
cellular and sub-cellular levels in an immune cell type-specific

manner and in the context of the respective immunopathology

remains scarce. Further research into this topic will enhance
our comprehension of the capacity spectrum of glucocorticoid
action and the establishment of glucocorticoid resistance, also
providing guidance for personalized therapy.
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For many decades, glucocorticoids have been widely used as the gold standard

treatment for inflammatory conditions. Unfortunately, their clinical use is limited by severe

adverse effects such as insulin resistance, cardiometabolic diseases, muscle and skin

atrophies, osteoporosis, and depression. Glucocorticoids exert their effects by binding

to the Glucocorticoid Receptor (GR), a ligand-activated transcription factor which both

positively, and negatively regulates gene expression. Extensive research during the past

several years has uncovered novel mechanisms by which the GR activates and represses

its target genes. Genome-wide studies andmousemodels have provided valuable insight

into the molecular mechanisms of inflammatory gene regulation by GR. This review

focusses on newly identified target genes and GR co-regulators that are important for

its anti-inflammatory effects in innate immune cells, as well as mutations within the GR

itself that shed light on its transcriptional activity. This research progress will hopefully

serve as the basis for the development of safer immune suppressants with reduced side

effect profiles.

Keywords: glucocorticoid receptor, inflammation, macrophages, mouse models, gene regulation

INTRODUCTION

Glucocorticoids as Immunomodulators
Glucocorticoids (GCs) are steroid hormones secreted in a diurnal and stress responsive manner,
under the control of the hypothalamic-pituitary-adrenal (HPA) axis (1).GCs regulate numerous
essential physiological and developmental processes, ranging from lung maturation to glucose
metabolism and immune responses. This is clearly demonstrated in mice with abrogated GC
signaling, which die perinatally due to pulmonary atelectasis (2). The effect on lung maturation
is not merely limited to mice: in clinical practice, pre-term neonates are given GCs to accelerate
pulmonary development (3). In adult mammals, endogenous GCs play important homeostatic
roles. For instance, GCs increase glucose production through glycogenolysis and gluconeogenesis
in the liver upon fasting, and as part of daily rhythmic energy mobilization (4, 5).

Pharmacologically, GCs are widely used to treat acute and chronic inflammatory diseases, such
as asthma, allergies, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis etc., due
to their potent anti-inflammatory actions. In addition, GCs are commonly prescribed to prevent
graft-vs.-host immune responses after organ transplantation and for certain cancer types, such as
lymphoma (6, 7). Currently, it is estimated that 1–3% of the adult Western population are receiving
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GCs, demonstrating their broad applications (8). GCs have been
used for over 70 years as anti-inflammatory drugs, despite their
adverse effects on systemic metabolism, which were noted soon
after their first clinical use (9). Long term exposure to GCs
induces adipocyte hypertrophy, glucose intolerance and insulin
resistance, hypertension, muscle and skin atrophy, osteoporosis,
glaucoma, impaired wound healing and psychological effects
such as mood changes, insomnia, and depression (4, 10).
Long term GC exposure due to increased secretion from
endocrine tumors or chronic exogenous administration, often
causes a pathological condition known as Cushing’s syndrome
(11). Cushing’s manifests as debilitating muscle wasting, fat
accumulation, and susceptibility to infection and can be fatal if
left untreated.

Separating beneficial therapeutic properties from detrimental
side effects based on a molecular understanding of GC action
is a long-term goal of biomedical research. Furthermore, the
glucocorticoid receptor (GR) has been key to understanding the
basic molecular concepts of GC action. There have been several
paradigm shifts of the molecular understanding of GC/GR
mechanisms since cloning of the receptor more than 30 years ago
(12). The generation of GR mutants that interfere with specific
functions of the receptor, the introduction of several mutants
into preclinical models and the characterization of genome wide
profiles all revolutionized our view of GC action. In this review,
we summarize recent insights into the anti-inflammatory effects
of GR, focusing on mechanisms of macrophage gene regulation,
GR co-regulators, novel GR target genes, and mouse models of
inflammation. We also summarize the current understanding of
immune modulatory mechanism in the innate immune system
based onmousemutants. Thesemight explain why, despite much
progress, developing novel immune modulators that match the
efficacy of GCs but avoid the adverse effects remains a major
challenge for the field.

The Glucocorticoid Receptor
The endogenous GC, cortisol in humans and corticosterone
in rodents, binds to the GR, encoded by the NR3C1 gene.
GR belongs to the nuclear receptor superfamily of ligand
activated transcription factors. It consists of threemajor domains,
the central DNA binding domain (DBD), the N-terminal
transactivation domain (NTD), and the C-terminal ligand
binding domain (LBD) [(12); Figure 1].

The NR3C1 gene encodes several isoforms that are generated
by alternative splicing and alternative initiation of translation
(10, 13). The full-length isoform GRα-A is the focus of this
review. GRβ, a second splice variant, and other GR isoforms,
are known to modify GC sensitivity, but are discussed in detail
elsewhere (14).

In the absence of ligand, GR resides in the cytoplasm,
bound to heat shock proteins 70 and 90 (Hsp70 and Hsp90)
together with other chaperones and immunophilins (15). Upon
binding of GCs, GR translocates to the nucleus where it binds
to DNA sequences. In this way, GR is recruited to target
gene enhancers and promoters where it can both activate and
repress transcription (16, 17). Canonical binding sites for the
GR are called glucocorticoid response elements (GREs) and

are composed of two 6bp palindromes (half sites) separated
by a 3bp spacer, with the consensus AGAACAnnnTGTTCT.
However, GR binding sites (GBS) in the genome vary to a certain
degree of motif mismatch, expanding the number of possible
target sequences. Furthermore, the context of neighboring
transcription factor binding sites and the ensuing crosstalk is
relevant for the regulation of inflammatory genes by the GR. The
beauty of using GR as a model transcription factor is that its
ability to regulate genes can be easily controlled in vitro and in
vivo by the absence or presence of the GC ligand.

Chromatin Residence Time and
Multimerization of the Glucocorticoid
Receptor
GR, along with other transcription factors, was assumed to bind
DNA in a relatively static manner, “sitting down” for long periods
of time to regulate gene expression. However, visualization of
the dynamics of fluorescent-tagged GR in living cells led to the
insight that occupancy of dimeric GRmolecules at GREs is rather
in the order of seconds and less (18). Only a small portion of
available molecules are specifically bound to chromatin at a given
time, suggesting that transcription factors and co-factors have
a transient rather than stable interaction at genomic response
elements (19).

GR acts as a monomer (20), dimer (21, 22), and even tetramer
(23–25) depending on the subcellular localization, presence
of ligand, GREs, or artificial response elements such as the
MMTV array. Interestingly, DNA binding was proposed to
trigger allosteric regulation of GR, followed by a change in
its oligomeric state (24). Ligand bound GR is mainly nuclear
and dimeric. Interestingly, upon DNA binding, the structural
LBD rearrangement promotes the formation of higher order
oligomers, predominantly tetramers, through unstudied LBD
surfaces (25). The physiological relevance and implications
of a tetrameric GR, however, are still open for debate and
further investigation.

In general, chromatin binding and gene regulation by GR
appear to be much more dynamic than previously thought, and
the residence time of GR on chromatin may have differential
effects. The LBD seems to regulate the number of GR molecules
bound at a specific genomic region, which may also affect the
transcription of target genes.

Glucocorticoid Receptor Co-regulators
All nuclear receptors (NRs), including GR, require a host
of co-activators and co-repressors to ultimately control the
transcriptional apparatus.

Steroid receptor coactivator-1 (SRC-1, also known as nuclear
receptor co-activator 1, NCOA1) was one of the first identified
(26), followed by glucocorticoid receptor interacting protein
(GRIP1, SRC-2, and NCOA2) (27). Originally found to be a co-
activator of the progesterone receptor (PR), SRC-1, and GRIP1
were shown to directly interact with GR and other steroid
receptors. This direct co-activator interaction with GR depends
on the evolutionarily conserved LXXLL motif, or NR-box, and
without this motif, GR loses transcriptional activity (28). SRC-1

Frontiers in Immunology | www.frontiersin.org 2 August 2019 | Volume 10 | Article 1859172

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Escoter-Torres et al. Inflammatory Gene Regulation by GR

FIGURE 1 | Overview of the glucocorticoid receptor protein. The Glucocorticoid Receptor (GR) is organized into three main domains: the N-terminal Transactivation

Domain (NTD), the DNA-Binding Domain (DBD), and the Ligand Binding Domain (LBD). In addition, there are the transactivation domains 1 and 2 (AF-1 and AF-2).

These mutations numbered above are relevant for GR’s immunomodulatory effects. Numbers are amino acids of the human protein.

FIGURE 2 | Glucocorticoid receptor co-regulators. The Glucocorticoid Receptor (GR) binds to Glucocorticoid Receptor Binding Sites (GBS) in open chromatin. GR

interacts with other transcription factors (TFs) and recruits co-activators or co-repressors, such as: the Steroid Receptor co-activators 1, 2, and 3 (SRC-1, SRC-2, and

SRC-3); the histone acetyl transferases CREB binding protein (CBP) and p300; the Nuclear Receptor co-repressors NCOR1 and NCOR2 (NCOR, SMRT), which

recruit histone deacetylases 1 and 3 (HDACs); and the SWItch/Sucrose-Non Fermentable (SWI/SNF) chromatin remodeling complex.

directly activates genes with its histone acetyltransferase (HAT)
domain that decondenses chromatin [(29); Figure 2].

The strength of GR’s interaction with SRC-1 and GRIP1 might
determine the steroid responsiveness of cancer cells, suggesting
that the loss of GC-induced apoptosis or growth arrest is due to,
at least in part, co-activator recruitment (30). However, GR seems
to preferably interact with GRIP1 over SRC-1, while the opposite
is true for PR, which confers selectivity of GR activation and PR
activation on chromatin modifications (31).

Importantly, the co-activator GRIP1 can also act as a co-
repressor. Depending on the individual GR target gene, GRIP1
functions as either an activator or repressor by using its co-
repressor domain. For example, GRIP1 was described to act
as a co-repressor at the osteocalcin promoter (32). Moreover,
the functionality of GRIP1 is modulated by post-translational
modifications. CDK9 mediated phosphorylation of GRIP1 was
shown to increase GR dependent activation, but had no effect on
repression (33).

SRC-3 (NCOA3), another member of the SRC family,
was originally identified through interaction with the estrogen
receptor (ER) (34). Similar to SRC-1 and GRIP1, SRC-3 is
recruited in a locus-specific manner (35).

In the mid-1990s, the discovery of two nuclear receptor
co-repressors (NCOR)—NCOR1 (36), and NCOR2 (otherwise
known as SMRT, silencing mediator co-repressor) drove further
research into the field of NR co-regulators (37). The NCOR
family interacts with nuclear receptors via the coRNR-box,
consisting of the consensus sequence LXX I/H I XXX I/L, which
contacts the AF-2 domain of NRs (38, 39). This is analogous
to the LXXLL sequence in co-activators and occupies a similar
location on the receptors.

While the NCOAs display intrinsic HAT activity, the co-
repressors NCOR/SMRT were described to interact with the
histone deacetylase HDAC3 (40). Both NCOR1 and SMRT were
able to recruit HDAC3 to condense chromatin as part of their
repressive mechanism (41).

SUMOylation of mouse GR at K310 was shown to be essential
for repression, and in point mutant mice, neither NCOR1, SMRT
nor the associated HDAC3 complex were recruited (42, 43).
GCs down-regulate expression of GR itself, through a negative
feedback loop. This occurs by recruitment of a GR-NCOR1-
HDAC3 complex to an nGRE in exon 6 of the NR3C1 gene (44).
GC-mediated suppression of natural killer cells activity however,
was described to be mediated by HDAC1 and SMRT specifically
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(45). The differential control of GR action by recruitment of
alternative co-activators and co-repressors, in tissue or signal
specific contexts, is still an open area of investigation. Different
GR ligands selectively recruit alternate co-factors (46), suggesting
that ligand induced conformational changes might have discrete
effects on GR target genes, adding another level of complexity to
GR mediated gene regulation.

Two major proteins that are recruited by co-activators are
CBP (CREB binding protein) and p300. Both CBP and p300
are histone acetyl transferases (HATs), and induce chromatin
relaxation (47) (Figure 2). SRC-1 was shown to recruit p300 into
a complex with nuclear receptors to activate transcription (48).
Part of GR’s repressive action might involve competition for CBP
and p300, as GR repression of an AP-1 (Activator Protein 1)
reporter was abolished by overexpression of CBP and p300 (49).
Moreover, enhanced engraftment of hematopoietic stem cells in
response to GCs was described to be controlled by SRC-1 and
p300 recruitment to the CXCR4 gene, with acetylation of histones
H4K5 and H4K16 upregulating CXCR4 (50).

GR and the tumor suppressor protein 53 (p53) were shown to
interact in a ligand dependent manner via Hd2m (a transcription
factor), which enhanced the GC-induced degradation of both
GR and p53 (51). In fact, the interaction between GR and p53
is important for the repression of NF-κB (nuclear factor-κB)
responsive genes. Without p53, GR did not repress inflammation
in a mouse model of endotoxic shock (52).

Finally, GR interacts with components of the SWI/SNF
complex (SWItch/Sucrose-Non Fermentable). These highly
evolutionarily conserved ATP-dependent chromatin remodelers
use energy from ATP hydrolysis to alter nucleosome positioning.
GR was shown to directly interact with the Baf250, Baf57, and
Baf60a subunits of SWI/SNF complexes, further demonstrating
the ability of GR to modify the chromatin architecture
[(53–56); Figure 2].

In summary, GR recruits co-activators such as SRC
family members, which in turn assemble a transcriptional
complex containing histone modifying enzymes and chromatin
remodelers to control the transcriptional machinery and RNA
Pol II activity. These interactions are crucial for its anti-
inflammatory actions and might present novel therapeutic
targets in the future.

Mechanistic Insights Into
Immunomodulation From GR Point
Mutations in vitro
Introducing point mutations into the NR3C1 gene significantly
contributed to our understanding of the molecular mechanisms
of GR action. Here, we briefly address the insights gained from
specific residues that revealed certain GR functions essential to
suppress inflammation in cultured cells.

Besides promoter/enhancer occupancy, post-translational
modifications of GR play a major role for transcriptional
control. Three key phosphorylation sites were identified in
the human GR: S203, S211, and S226 (57–59). All of them
are located in the AF-1 domain, which is crucial for protein-
protein interactions with TATA-box binding protein and others
(60). By using phospho-deficient (S211A) or phospho-mimetic

(S211D) mutations, it was shown that phosphorylation of GR
at S211 increases association with the MED14 subunit of the
mediator complex, a key bridge to the transcriptional machinery
(59). In confirmation, the S211A mutant displays reduced
expression of the GR targets GILZ and IRF8. S226A mutation
however, had the opposite effect. The phosphorylation-deficient
mutant S226A showed increased expression of GILZ and IRF8,
suggesting an inhibitory role (59). In addition, S404, a site for
GSK3β phosphorylation, regulates GR transcriptional activity.
Mutation to S404A rewired the GR-regulated transcriptome,
interestingly increasing its repressive capacity (61). Moreover,
the SUMOylation-deficient murine GR K310R was shown
to affect repression and the recruitment of co-regulators
[(42, 43); Figure 1].

The AF-2 domain, located within the LBD (62), has additional
sites modulating GR function. The mutation C656G within
the AF-2 domain of the rat GR (C638 in human) reduced
the ligand concentration required for activation of the PEPCK
promoter (63). Mutations within the “charge-clamp”—that is the
co-activator interaction site of K579 and E755—resulted in loss
of transcriptional activation, but had no effect on repression (64).

Applying a random mutagenesis approach in yeast,
Yamamoto and colleagues showed that multiple mutations
within the zinc finger of the DBD impede GR binding to GREs
in vitro, demonstrating the importance of this particular domain
(65). Further mutagenesis studies in the 1990s identified a
multitude of important amino acids involved in activation and
repression. For example, the mutations S425G and L436V in the
DBD could double the activation in a reporter assay, but almost
completely abolished repression by GR (66).

Mutations in the dimer interface are also central for the
understanding of GR biology. The GRdim (human A458T),
corresponding to rat A477T (67), and GRmon (mouse
A465T/I634A) (68) mutations disrupt the dimer interface.
Further mutation of A458T outside the D-loop to the double
N454D/A458T further increased the capacity of GR to repress a
reporter in vitro (66). Generation of the GR(D4X), a quadruple
mutant GR with the residues N454D, A458T, R460D, and D464C
in the dimerization region of mouse GR provided deeper insight
into the monomer/dimer action of GR. The GR (D4X) had
equivalent repressive activity to wild type, while activation
capacity as measured in reporter assays was near zero. This
mutant demonstrated that opposition of TNF-α involved both
activation of IKKB and repression, since mutant GR was unable
to induce IKKB, but repressed the production of TNF-α (69).
There is significant work on the GRdim mutation in vivo, covered
in the next section. Early in vitro work however, showed that
the A477T mutation induced loss of the dimer interface and
reduced DNA residence time, making target gene regulation
by A477T rather difficult to interpret (70). Both wild type GR
and GRmon bound GRE half sites, but A447T was incapable of
binding classic, full length GREs, which are occupied by receptor
dimers [(67); Figure 1].

Another mutation in the second zinc finger of the DBD
in rat GR R488Q (R469 in the human GR) was designed
to discriminate between interactions with NF-κB and AP-
1. Overexpressing GR R488Q in activated CV-1 cells under
inflammatory conditions failed to suppress NF-κB reporter
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activity, whereas AP-1 inhibition was preserved (71). Additional
GR mutations with less impact on inflammation are reviewed in
more detail elsewhere (72).

Taken together, these GR point mutants show the importance
and complexity of GR interactions with transcription factors and
chromatin modifiers. In fact, several discrete mutations within
the GR AF-1, AF-2 domains and the dimer interface alter its
activity in a gene-specific manner, indicating that different parts
of the receptor are dispensable for certain gene regulatory events,
but essential for others (32). Differentially interfering with GR
function therefore affects multiple physiological processes, and
distinct types of inflammatory responses.

Lessons Learned From Genome-Wide
Studies
Chromatin as a key determinant of GR function has been
highlighted in multiple genome-wide ChIP-sequencing studies
since the early 2010s. For instance, GR gene regulation is
determined by the chromatin architecture of the responsive
cell. GR does not act as its own pioneer factor, but rather
cell-type-specific gene regulation is dependent on pre-existing
available binding sites, determined by chromatin accessibility
(73). The pro-inflammatory transcription factor AP-1 governs
a large subset of GR regulatory sites, making areas of DNA
accessible to GR (74). As GR is largely dependent on pre-
existing open chromatin for binding, it cemented the possibility
that stimuli which are known for chromatin remodeling, for
example inflammation, alters GR binding. Indeed, treatment with
TNF-α amends the transcriptional response to GCs, as well as
chromatin occupancy of GR, and surprisingly GR activation
also transformed the occupancy of NF-κB (75). Recent data
showed that GR could indeed act as a pioneer factor for other
transcription factors, such as FOXA1, but only at a minority of
genomic sites, and thus far this effect has not been demonstrated
in immune cells (76).

When assessing GR activity in a more relevant cell-type,
macrophages treated with LPS, GR, p65 (part of the NF-κB
complex), and c-Jun (one of the members of the AP-1 dimer)
binding overlapped significantly (see below). However, the
directionality of the gene regulatory response did not correlate
well with the type of interaction. That is, contrary to established
models, GR binding to NF-κB loci did not only result in
repression of target genes, but either repression or activation
depending on the particular locus. The inverse is also true,
that GR binding to canonical GREs did not only result in up-
regulation of transcription at the assigned gene. Rather than
the presence or absence of GR as the determining factor, the
recruitment of different chromatin modifiers, such as GRIP1,
were the prime measure of whether the particular gene would be
activated or repressed (77).

Moreover, GR effects can be dependent on the timing of the
inflammatory signal. Pre-treatment of macrophages with GCs
before LPS stimulation resulted in differential gene regulation
compared to treatment with GCs after LPS stimulation. In
addition, a large part of GR’s anti-inflammatory action can
be accounted for by the induction of negative regulators of

inflammation such as Mkp1, GILZ, and A20, see below (78).
GRdim macrophages treated with LPS and Dex also showed that
the dimerization impaired GR preferentially occupied GR-half
sites (16), a phenomenon also observed in cells overexpressing
GR A477T (67).

Importantly, all these studies showed that GR not only binds
to GREs, but occupies motifs near lineage determining factors,
such as PU.1 in macrophages. Again this underscores the idea
that GR requires open, pre-programmed chromatin for finding
its genomic target sites (16, 74, 77–79). The chromatin landscape
is cell-specific and depends on pioneer factors, cell lineage
transcription factors and epigenetic marks that all predetermine
GR binding. Only a minority of GR peaks are found in
inaccessible chromatin and trigger chromatin remodeling upon
hormone treatment (16, 73, 79–82). These findings strongly
suggest that other DNA-binding proteins prime the chromatin
landscape prior to GR arrival. The collaborative binding of
lineage-determining transcription factors results in nucleosome
remodeling, which generates open regions of chromatin. This
provides access to signal-dependent transcription factors to
bind open regions and modulate gene transcription in a cell-
specific manner (83). In the context of macrophages, PU.1
and C/EBP are essential for the development of the myeloid
lineage and have been shown to establish the monocyte-specific
enhancer landscape (83, 84). PU.1 deletion results in loss of
macrophages, neutrophils and B cells (85, 86). Importantly, PU.1
and C/EBP transcription factors often co-localize with GR in
macrophages (16).

This new methodology has given deeper insights into the
mechanisms by with GR regulates gene expression, identifying
chromatin remodeling, and cooperation with other transcription
factors, as a key determinants of GR activity. Importantly, GR’s
reliance on other factors to define its binding sites underscores
the necessity of studying GC responses in a tissue-specific
manner, rather than extrapolating effects from one cell-type
to another.

Molecular Mechanisms of
Immunomodulation by the Glucocorticoid
Receptor
Non-genomic Actions of GR
Some therapeutic GC effects, such as bronchodilation, resolution
of airway irritation or suppression of inflammation, occur almost
too rapidly to result from transcription, raising the possibility of
non-genomic GR actions (87, 88). These could be GR-unspecific
interactions with cellular membranes, functions of membrane-
bound GR or specific interactions with cytosolic GR, thereby
altering posttranslational modifications like phosphorylation, or
other mechanisms (89).

Membrane-bound GR was described in human monocytes
and B cells (90, 91), and non-genomic functions have been found
in macrophages (92), lung epithelial cells (93), and T-cells (94).

Downstream of inflammatory MAPK signaling, mitogen- and
stress-activated protein kinase-1 (MSK1) is an essential kinase
for NF-κB p65 S275 phosphorylation (95).Interestingly, GC-
mediated repression of NF-κB targets involves loss of MSK1
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kinase recruitment at inflammatory promoters and nuclear
export of MSK1 via cytosolic GR (96). Putatively, GR can also
crosstalk with AKT, GSK-3β, and mTOR signaling (93).

These non-genomic effects might be very interesting for the
development of novel therapeutics, and will benefit from future
studies, for example with novel cell lines or mouse models to
dissect these complex interactions.

Genomic Actions of GR
Lipopolysaccharide (LPS) is a molecular component of the
cell wall of Gram-negative bacteria commonly used to study
inflammation (97, 98). On macrophages, LPS binds to Toll-Like
Receptor 4 (TLR4) and activates a signaling cascade that results
in NF-κB and AP-1 nuclear translocation. Together with other
inflammatory transcription factors, these two protein complexes
then activate pro-inflammatory gene expression (99, 100). TLR4
activates AP-1 via the MAPK signaling pathway and NF-κB via
degradation of the cytosolic IKK complex that frees the NF-κB
transcription factor (Figure 3).

GR can antagonize or synergize with pro-inflammatory
signaling, depending on the context of promoters or enhancers.
For antagonism of pro-inflammatory signaling, several
mechanisms are proposed. These include the direct interference
with MAPK or JNK signaling (101, 102), leading to repressive
actions at the gene regulatory level. Conversely, repression
of GR-target genes might be explained by tethering to other
transcription factors or trans-repression, negative GREs (nGREs,
with a different sequence), composite GREs, non-canonical novel
GREs, DNA as a modulator of GR, and consensus classical GREs.

Most frequently, GR tethering to AP-1 or NF-κB via protein-
protein interactions (trans-repression), instead of direct DNA
binding, was suggested to underlie its repression of inflammatory
responses (103, 104). In other words, GR has been shown
to represses genes via protein-protein interactions with AP-
1 (105), NF-κB (106), STAT3 (107), and other DNA-bound
transcription factors (Figure 3). Interestingly, STAT3 tethering
to GR resulted in synergistic gene regulation, and increased
target gene expression in AtT-20 cells. On the other hand,
GR tethering to DNA-bound STAT3 resulted in transcriptional
repression (107).

Negative GREs (nGREs) were originally described as GREs
motifs in the promoters of repressed target genes. nGREs can be
found in very different cell types and genes involved in various
processes, for example: HPA axis (POMC and CRH) (108, 109),
lactation (PRL3) (110, 111), bone homeostasis (osteocalcin) (112),
skin structure (keratins) (113), and inflammation (IL-1β) (114).

However, the definition of nGREs has not yet reached
consensus in the literature, and subsequently, GBS with non-
classical consensus sequences, near repressed targets, are also
named nGREs. One study described a variation of nGREs, termed
“inverted repeat (IR) nGRE.” IR nGRE is a complex GBS with the
following consensus motif: CTCC(n)0−2GGAGA, which differs
from the classical GRE (AGAACAnnnTGTTCT) or nGRE (115).
These elements however, have not been identified by ChIP-seq,
questioning how relevant they are to GR responses.

Similar to nGREs, composite elements, such as degenerate
GREs overlapping with other transcription factor consensus

motifs, may also affect the transcription of inflammatory targets.
For example, a 25-base pair composite element (plfG element)
in the promoter of the proliferin gene, is regulated by GR and
AP-1 (116, 117). Furthermore, the GR DNA-binding domain
(DBD) can bind a newly identified motif inside NF-κB consensus
sequences. Crystal structures of the GRDBD demonstrated direct
binding of GR to the AATTT nucleotides within the NF-κB
motif from the promoter regions of CCL2, IL-8, PLAU, RELB,
and ICAM1. This cryptic GR-binding site overlapping the NF-
κB response element was named κBRE and was highly conserved
between species (118).

An important aspect is the concept of DNA being an
allosteric modulator of the GR. Here, the precise nucleotide
sequence in a GBS is proposed to function as a shaping ligand
that specifies GR’s transcriptional activity. X-ray crystallography
of GR DBD dimers bound to different GBSs showed that
conformation of the lever arm in the DBD appeared to be
influenced by the DNA sequence (24, 119). Furthermore, the
addition of a single GR-binding site was sufficient to convert a
gene, which was normally not regulated by GR, into a target
gene, such as IL-1β and IL1R2 in U2OS cells (120). The
presence of classical GREs in GR-bound enhancers near both
activated and repressed genes in murine bone marrow-derived
macrophages (BMDM) stimulated with LPS and Dexamethasone
(Dex) challenge these models. These findings suggest that first,
direct GR:GRE binding is relevant for repression of inflammatory
genes. Secondly, that the classical models described above are
not sufficient for prediction of GR mediated activation or
repression. Therefore, the presence of a different combination
of cofactors in activated vs. repressed sites could explain
or contribute to the up- or down-regulation of GR target
genes (77, 118, 121, 122).

Taken together, how GR activates one set of target genes
while repressing another is still an open question, and the
molecular mechanisms specifying the repression of inflammatory
genes remain unknown. Repression by GR is a complex
process which likely involves different determinant factors.
One factor is GR itself (phosphorylation, post-translational
modifications and ligand-specific conformations), another factor
is the DNA sequence, the cell type-specific chromatin landscape
and the cooperation with co-regulators and other transcription
factors. All of these, together with potentially unknown
factors, ultimately determine which target genes are up-
or down-regulated.

Mechanistic Insights Into
Immunomodulation From GR Point
Mutations in vivo
As described above, one particular class of point mutations,
which interfere with GR dimerization, caught considerable
attention. In tissue culture experiments expressing these GRdim

mutants (human GR A458T, mouse GR A465T, and rat A477T),
the concept was developed that abrogation of dimerization
could be beneficial to limit side effects of anti-inflammatory
treatments. Therefore, pharmaceutical companies directed their
research to develop dissociated ligands favoring GR monomer
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FIGURE 3 | Models for inflammatory gene regulation by the glucocorticoid receptor. Upon ligand binding (GCs), the glucocorticoid receptor (GR) is released from heat

shock proteins (Hsp) and translocates to the nucleus. Inflammation can be activated by lipopolysaccharide (LPS) binding to Toll-like receptor 4 (TLR4). TLR4 signaling

results in the activation of NF-κB, AP-1, and other inflammatory transcription factors that bind and regulate pro-inflammatory target genes. Different mechanisms have

been proposed for GR’s potent anti-inflammatory actions, i.e., binding to Glucocorticoid Response Elements (GREs), to composite GREs together with other

transcription factors, to negative GREs (nGRE), by tethering to DNA-bound transcription factors, by competing with other factors for DNA binding sites or by

non-genomic actions.

dependent favorable effects and reducing unwanted GR dimer
action (123, 124).

Various selective GR agonists (SEGRAs), such as RU24858,
RU24782, and non-steroidal ligands (LDG552, ZK216348,
Compound A), were examined for desired anti-inflammatory
effects with the hope that there would be minimal metabolic
actions (124, 125). Only a few of these compounds, however,
showed promise in preclinical trials (126). Their limited
success arose from the generalized and oversimplified view
that the GR monomer mediates trans-repression (anti-
inflammatory) and the GR dimer regulates only unwanted
effects (127). The disappointing conclusion of these programs
for SEGRAs and non-steroidal ligands and their translation
to the clinic called for new perspectives in the context of
pathophysiology (10, 16, 104, 127–129). With knowledge
gained from the GRdim mouse and others, the development
of selective monomerizing GRagonists or modulators
(SEMOGRAMs) and selective dimerizing GRagonists or
modulators (SEDIGRAMs) has begun to make progress
(130). To find SEDIGRAMs, a screening identified Cortivazol
and AZD2906 as compounds that increase GR dimerization
and enhance the transactivation capacity. Both chemicals,
however, still have GR monomer activity, indicating that
these are not yet the ideal SEDIGRAMS (129). Efforts are still

ongoing to identify perfect GR modulators separating dimer
from monomer.

In 1998, the GR A465T mutation was introduced into mice
(131, 132). Intriguingly, mice born with this mutation survived
in certain backgrounds (131), and simple inflammatory models,
such as phorbol ester induced skin irritation, responded to GC
treatment in these animals. This indicated that GRmonomer and
thus transrepression by tethering might be sufficient to reduce
inflammation. However, for most other inflammatory models,
GCs failed to have an effect in these GRdim mice (Figure 4A).

For instance, during LPS, CLP (cecal ligation and
puncture), and TNF-α induced shock, GRdim mice were
highly susceptible to inflammation and cytokine production,
impaired thermoregulation and metabolic alterations (133–135).
Furthermore, macrophages from GRdim mice were unable to
efficiently repress cytokines in response to LPS (135). Moreover,
GRdim mice treated with exogenous GCs showed impairment
of anti-inflammatory responses in models of acute lung injury
(ALI), arthritis, contact allergy, and allergic airway inflammation
(136–139). During ALI, this was partially due to diminished
expression of the GR-dimer target gene Sphk1 (138) (see
above). In models of allergic airway inflammation, contact
hypersensitivity, antigen-induced arthritis (AIA) or serum
transfer-induced arthritis (STIA), GRdim mice failed to repress
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FIGURE 4 | Glucocorticoid receptor mutant mouse models of inflammation. Overview of the mouse lines discussed in this article. (A) GRdim mice are more sensitive

during LPS-, CLP-, or TNF inflammation. GRdim mice are refractory to GC treatment in models of skin inflammation, acute lung injury and arthritis. (B) In GRLckCre

mice, GR is lacking in T-cells, making them refractory to GC treatment during arthritis. (C) GRCol1a2CreERT2 (lacking GR in fibroblasts) show delayed GC-induced

suppression in arthritis. (D) GR K310R mutant mice lack GR SUMOylation and show impaired control of skin inflammation. (E) GR-C3 mice, lacking the most active

GR isoform C3, are more sensitive to LPS-induced endotoxic shock. (F) During fracture, GR is necessary in all cells, as shown by GRgtRosaCreERT2

(tamoxifen-induced ubiquitous Cre-mediated recombination) for fracture healing. (G) GRLysMCre mice (GR is deleted in myeloid cells) show no proper healing in LPS-

or CLP-sepsis, skin inflammation, acute lung injury, DSS colitis, cardiac healing, and Parkinson disease. The skin, lungs, bones, intestine, heart and brain cartoons

were obtained from Servier Medical Art.

inflammation when given GC therapy (136, 137, 139, 140). In
the model of AIA, GR dimerization was shown to be essential
in T cells (GRLckCre mice) to reduce inflammation [(137);
Figures 4A,B]. More recently, GRdim mice reconstituted with
wild type hematopoietic stem cells failed to induce non-classical
(CD11b+, F4/80+, Ly6C−), non-activated (CD11b+, F4/80+

MHCII−), anti-inflammatory (CD163, CD36, AnxA1, Axl,
and MertK) macrophages during STIA, while cytokines were
repressed normally (140). This strongly indicated that intact
dimerization in stromal non-immune cells could contribute
to the suppression of inflammation. More precise, the GR in
fibroblast-like synoviocytes (GRCol1a2CreERT2) was crucial to
reduce STIA (140) (Figure 4C). GRdim mice were also resistant

to GC treatment during TNF-induced inflammation, and
exhibited increased gut barrier leakiness, cell death of intestinal
epithelial cells and cell death. An increased STAT1-responsive
interferon-stimulated gene signature was observed in the gut of
GRdim mice (141).

Whereas, the GRdim knock-in mice were intensively studied,
less is known about other point mutations. The GRK310R
mutation, which abrogates SUMOylation of the GR, failed to
respond to GCs during skin inflammation. This was in part due
to reduced SMRT/NCoR-co-repressor recruitment to GR/NF-
κB/AP-1 repressive complexes [(42, 43); Figure 4D].

Finally, Cidlowski and colleagues published a knock-in mouse
of the most active GR isoform C3. The lethality of these mice

Frontiers in Immunology | www.frontiersin.org 8 August 2019 | Volume 10 | Article 1859178

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Escoter-Torres et al. Inflammatory Gene Regulation by GR

could be overcome by antenatal GC administration, and adult
mice were hypersensitive to LPS administration. This indicated
that either the absence of other isoforms like the most abundant
GR-A, or indeed the specific overexpression of GR-C3 might
confer anti-inflammatory actions [(142); Figure 4E]. However,
further studies are warranted to dissect these observations in
more detail.

Taken together, GR point mutations introduced in vivo,
namely the GRdim mutation, but also the more recent mutations,
have yield valuable insight into the molecular features of GR.
With the emergence of CRISPR/Cas9 gene editing technology,
more in vivo models for specific GR functions will help our
understanding of GR in physiological processes in the future.

Glucocorticoid Action on Macrophages
GCs exert their immunosuppressive effects through many cells of
the innate immune system, including dendritic cells, mast cells,
neutrophils, and eosinophils (143, 144). GCs also play a major
role in the regulation of adaptive immunity. For example, GCs
decrease the proliferation of early B cell progenitors (145) and
induce apoptosis in B cells and T cells (145–149). In this review,
we will focus mainly on the effects of GCs in macrophages, since
these innate immune cells are essential mediators of defense
responses, beyond the mere removal of pathogens, and regulate
tissue homeostasis in a myriad of ways (150).

Macrophages reside in many different tissues and are the
first line of defense against pathogens (151). Depending on
the activating stimulus, they can be categorized as M1-like
and M2-like macrophages. The M1-like macrophages (classically
activated macrophages) mediate pro-inflammatory actions. They
are activated by exposure to LPS, INFγ, TNF-α, or pathogen-
and danger-associated molecular patterns (PAMPs and DAMPs,
respectively) (151–153). GCs suppress inflammatory responses
downstream of TLRs, in part by interfering with the NF-κB- and
AP-1-activated transcription of pro-inflammatory cytokines and
chemokines (154, 155).

The M2-like macrophages on the other hand, are
characterized by their anti-inflammatory potential and are
activated by cytokines involved in inflammatory resolution,
like IL-4, IL-10, and IL-13 (151, 153, 156). GCs can also
polarize macrophages to an M2-like phenotype by regulating the
expression of anti-inflammatory proteins (153, 156). A major,
yet undervalued aspect of GC control of anti-inflammatory
macrophage polarization is the regulation of efferocytosis. GCs
enhance the clearance of apoptotic cells, which in itself can
augment the development of an anti-inflammatory macrophage
phenotype (157, 158).

In sum, GCs can modulate macrophage activity in a number
of different and intricate ways, which include suppressing the
production of pro-inflammatory proteins and inducing anti-
inflammatory mediators.

Glucocorticoid Receptor Target Genes Mediating

Immune Modulation
GC stimulated macrophages shift to an M2-like anti-
inflammatory and inflammation-resolving phenotype
(156). These effects are achieved by the repression of

pro-inflammatory genes, the induction of gene products
antagonizing pro-inflammatory signaling, and by synergism
with pro-inflammatory signaling pathways to activate genes
resolving inflammation.

While the mechanisms of gene repression have been
extensively discussed [referring to interleukins, chemokines,
matrix metalloproteinases, inducible nitric oxide synthase
(iNOS), and other mediators], the activated anti-inflammatory
genes have only recently received attention (Table 1).

Prominent examples are the induction of MAPK phosphatase
1 (Mkp1 or Dusp1), that interferes with the p38MAPK
pathway; GC induced leucine zipper (GILZ/Tsc22d3), which
binds to the NF-κB subunit p65; the induction of IκBα and
β, which oppose NF-κB activity; the activation of kruppel like
transcription factors (Klf), which are important for alternative
macrophage polarization, and many others (Table 1). This
upregulation of anti-inflammatory genes further emphasizes
that both gene repression and activation are required for the
immunomodulatory effects of GCs.

More recently, there were intriguing observations that GCs
not only antagonize inflammatory signaling, but also synergize
with pro-inflammatory signaling pathways (Table 1). GCs
synergize with Haemophilus influenzae activated inflammatory
pathways in macrophages, bronchial epithelial cells (BEAS-
2B) and lung epithelial cells (A549) to induce IRAK-M, a
negative regulator of TLR signaling (203). Mechanistically, this
synergistic activation of Irak-M/Irak-3 transcription is dependent
on binding of both GR and p65 to its promoter, showing a
cooperative induction byNF-κB andGR that limits inflammation
(203). Similarly, GCs activate TLR2 expression synergistically
with H. influenza signaling in vitro (194).

In ALI models, GR was shown to cooperate with LPS-induced
p38MAPK-Msk1 to induce Sphingosine Kinase 1 (SphK1)
expression in macrophages (138). SphK1 produces the active
mediator Sphingosine-1-phosphate (S1P), that binds to the S1P
receptor 1 (S1PR1) on endothelial cells to reduce vascular leakage
and infiltration during lung inflammation (138, 204–208). In
ALI, mice lacking SphK1 in macrophages were resistant to GC
treatment and showed reduced S1P levels. Additional examples
of synergistically regulated genes important for modulation of
inflammation are acute phase proteins like Serpin A3 (α1-
antichymotrypsin) (195) and Metallothioneins (Mt1 and Mt2)
(196, 197).

The synergistic regulation of immune-modulating genes by
GCs and pro-inflammatory pathways is an important component
of their mechanism, but the underlying dynamics and time
windows are still poorly understood.

Loss of Function Models of GC Signaling in

Macrophages
Strong evidence for the role of GR during homeostasis and
inflammation was derived from conditional loss-of-function
studies in mice. Applying the Cre/LoxP system, GR tamoxifen-
inducible mice (GRgtROSACreERT2) could be used to determine
the impact of GR deletion in adult animals, circumventing
the lethality of global GR knockouts. For example, they have
been useful to study GR during inflammation-dependent bone
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TABLE 1 | GR target genes relevant for (anti-) inflammatory action.

GC-regulated genes Targets GC effect on immune responses References

Cytokines Il-1α, Il-1β, Il-6, Il-8, and Il-12 Repression of cytokine production (114, 159, 160)

Chemokines Ccl2, Ccl3, Ccl4, Cxcl9, and Cxcl11 Suppression of chemokine release (77, 160–162)

Matrix

metalloproteinases

Mmp12 and Mmp13 Reduction of extracellular matrix remodeling, proteolytic

processing

(77, 161)

MAPK phosphatase 1 Induction of Mkp1 Suppression of Jnk and p38Mapk (133, 163–169)

GC-induced leucine

zipper (Tscd22d3)

Induction of Gilz Inhibition of NF-κB (170–177)

IκBα and IκBβ Induction of IκBα and IκBβ Trapping NF-κB in the cytoplasm, reduced NF-κB activity (178, 179)

Kruppel-like factor 2 Induction of Klf2 Competition with AP-1 and NF-κB, reduction of inflammatory

cytokines

(180–182)

Kruppel-like factor 4 Induction of Klf4 Inhibition of NF-κB (180, 183)

A3 adenosine receptor Upregulation of A3AR Enhanced Erk1/2, anti-apoptotic and pro-survival (184)

Annexin A1 Induction of Annexin A1 Induction of efferocytosis and monocyte recruitment (185–189)

Pparγ Upregulation of Pparγ Reduced migration (190)

Tristetraprolin Induction of TTP Destabilization of TNF-α (191–193)

Irak-M Irak-M induction through synergistic action

of GC/GR and NF-κB

Suppression of pro-inflammatory mediators (193, 194)

Sphingosine Kinase 1 Sphk1 induction through synergism of

GC/GR and p38Mapk-Msk1

Reduced vascular leakage and infiltration during acute lung

injury

(138)

Serpin A3 Serpin A3 induction through synergism

GC/GR and TNFSR1

GR recruitment to Serpin A3 TSS by Dex and TNF-α

treatment

(195)

Metallothioneins Mt1 induction through synergism of Il-6

and GC/GR

Increased susceptibility in inflammatory model in the absence

of Mts

(196–202)

repair after fracture (209). Overall, the mice displayed a mild
increase in inflammation, with elevated serum IL-6 levels and
increased IL-1β levels at the fracture hematoma, accompanied
by increased CD3+ and CD8+ cells. Consequently, the lack
of GR and potentially the elevated inflammation, caused a
delayed endochondral regeneration and maturation of callus and
a decreased healing response [(209); Figure 4F].

Since the publications of conditional GR alleles in 1999 (210),
2003 (211), and 2012 (212), many cell types have been targeted
with specific Cre lines to characterize specific functions of the GR
in numerous cell types in the brain, muscle, heart, T lymphocytes,
and others.

Insights into the function of GR in macrophages in vivo
mainly stems from Lysozyme 2 (LysM)–Cre mice crossed to GR
floxed alleles, which causes deletion in the myeloid cell lineage
(monocytes, mature macrophages, and granulocytes) [(135, 136,
163, 213); Figure 4G].

In both the LPS-induced endotoxic shock model and during
CLP, myeloid GR is crucial for the repression of inflammatory
cytokines and for survival (135, 163). Not only in LPS-
induced inflammation, but also in dextran sodium sulfate (DSS)-
induced colitis, the action of endogenous GCs in macrophages
was essential to reduce intestinal inflammation (214). Mice
deficient for macrophage GR had a higher disease score, with
increased infiltration of neutrophils, T cells and macrophages
in the colon, which was associated with enhanced serum
IL-6 (214). Moreover, macrophages were shown to play an
essential role for cardiac healing, tissue repair and hence
survival in myocardial infarction (215). Deletion of GR in

macrophages delayed cardiac healing 7 days after myocardial
infarct, with impaired cardiac function, collagen scar formation
and neovascularization, and largermyofibroblasts. Consequently,
targeting macrophage GR during myocardial infarction might be
a potential pharmacological intervention for tissue repair (215).
In contrast, in a mouse model of atherosclerosis, macrophage
GR deletion was beneficial and showed reduced levels of
vascular calcification, due to reduced RANKL, BMP2, and Mx2
expression (216).

During skin inflammation in a model of contact
hypersensitivity, the anti-inflammatory effects of GCs required
GR in myeloid cells (136). Additionally, in a model of ALI,
GRLysMCre mice were resistant to GC therapy, did not reduce
cellular infiltration in the lung and did not induce the endothelial
barrier stabilizing sphingosine-1-phosphate [(138); Figure 4G].

GRLysMCre mice were shown to efficiently express Cre in
microglia, knocking out GR in brain resident macrophages.
Studies on the function of microglial GR during acute
inflammation demonstrated more cellular lesions, damage,
demyelination in the corpus callosum, and increased neuronal
degeneration. It also significantly increased pro-inflammatory
cytokines after LPS injections (217). The activation of
microglia induces secretion of pro-inflammatory proteins
that contribute to dopaminergic neuronal death, a major
a hallmark of Parkinson’s disease. The absence of GR in
microglia revealed that increased death of dopaminergic
neurons in Parkinson’s may contribute to neurodegenerative
processes (218). Additionally, recent studies suggest that
the absence of microglia GR facilitates TLR9 activation
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of inflammatory processes and affects Parkinson’s disease
progression (219).

In summary, the genetic deletion of GR in myeloid cells in
various inflammatory models demonstrated the pivotal role of
this cell type for GC actions. However, one of the limitations
of the LysMCre mouse is the recombination in other myeloid
cells such as neutrophils, whose contribution cannot be excluded.
Nonetheless, this wealth of data supports the concept that
selective targeting of glucocorticoids to macrophages, while
sparing other cell types, could be a promising approach to
optimize therapy.

CONCLUSION

During the past decade, much has been learned about the
immunomodulatory mechanisms employed by GR: analyzing
various mouse models, creating distinct mutations, mapping
GR target genes genome-wide, functionally characterizing
individual proteins mediating GC responses, studying different
inflammatory settings, identifying essential co-regulators, and
applying novel molecular biology methods, have broadened
our understanding of these steroids’ intricate actions. Taken
together, it becomes obvious how basic research is fundamental
in enabling drug development. However, we now realize that GR’s
molecular mechanisms are very complex, cell-type, locus- and
signal-specific, and much more sophisticated than we previously
anticipated. Intra- and extra-cellular signals can control GR

function on many levels, and these multi-layered machineries
demand new interpretation of previous over-simplified models.
In the future, the rapid advancement of high-throughput
technologies such as machine learning, genomics, proteomics,
genome engineering, etc. will be key to the development of safer
immunomodulators or novel GR ligands.
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Glucocorticoid-induced leucine zipper (GILZ) is a protein with multiple biological roles

that is upregulated by glucocorticoids (GCs) in both immune and non-immune cells.

Importantly, GCs are immunosuppressive primarily due to their regulation of cell signaling

pathways that are crucial for immune system activity. GILZ, which is transcriptionally

induced by the glucocorticoid receptor (GR), mediates part of these immunosuppressive,

and anti-inflammatory effects, thereby controlling immune cell proliferation, survival,

and differentiation. The primary immune cells targeted by the immunosuppressive

activity of GCs are T cells. Importantly, the effects of GCs on T cells are partially

mediated by GILZ. In fact, GILZ regulates T-cell activation, and differentiation by binding

and inhibiting factors essential for T-cell function. For example, GILZ associates with

nuclear factor-κB (NF-κB), c-Fos, and c-Jun and inhibits NF-κB-, and AP-1-dependent

transcription. GILZ also binds Raf and Ras, inhibits activation of Ras/Raf downstream

targets, including mitogen-activated protein kinase 1 (MAPK1). In addition GILZ inhibits

forkhead box O3 (FoxO3) without physical interaction. GILZ also promotes the activity of

regulatory T cells (Tregs) by activating transforming growth factor-β (TGF-β) signaling.

Ultimately, these actions inhibit T-cell activation and modulate the differentiation of T

helper (Th)-1, Th-2, Th-17 cells, thereby mediating the immunosuppressive effects of

GCs on T cells. In this mini-review, we discuss how GILZ mediates GC activity on T

cells, focusing mainly on the therapeutic potential of this protein as a more targeted

anti-inflammatory/immunosuppressive GC therapy.

Keywords: glucocorticoids, glucocorticoid-induced leucine zipper (GILZ), T-cell activation, T-cell, immune

response, glucocorticoid receptor

INTRODUCTION

Glucocorticoids (GCs) are the mainstay of current immunosuppressive and anti-inflammatory
therapies (1). Decades of study have revealed that their primary mechanism of action involves GC
binding to GC receptors (GRs) tomodulate gene transcription (2–5). However, the biological effects
of GCs are diverse and are likely controlled by several mechanisms. Given this functional diversity,
identifyingmolecules that are transcriptionally induced byGCs, and canmediate specific GC effects
presents a significant challenge.
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One potential molecule is glucocorticoid-induced leucine
zipper (GILZ), a ubiquitously expressed protein that is primarily
under GR transcriptional control. GILZ was originally identified
in 1997 when searching for genes that mediate GC-induced
apoptosis (6). However, since that time, the roles of GILZ
have expanded to include most of the anti-inflammatory,
and immunosuppressive effects of GCs (7). Indeed, GILZ
is now known to regulate cell apoptosis, proliferation,
and differentiation by modulating transcription factors,
and signaling pathways associated with host immunity, and
inflammation (8–12).

GILZ has a high degree of homology with other members of
the TSC22D family. The TSC22D family includes leucine zipper
proteins that are differentially expressed and involved in the
regulation of multiple biological processes (13). TSC22D isoform
heterodimers regulate cell cycle entry and exit (14).

One mechanism by which GCs induce immunosuppression
is through regulation of the T-cell response (15, 16). In this
review, we discuss the literature concerning how GILZ mediates
the effects of GCs on T cells. Regardless of the specific
role of GILZ, we highlight information about GC-dependent,
and GC-independent GILZ functions to expand the current
understanding of the GC mechanism of action. Ultimately, such
understanding is critical to improving GC clinical use.

GCS AND THE T-CELL RESPONSE

T-cell activation is an essential part of the adaptive, cell-
mediated immune response. GCs modulate T-cell differentiation
and activation regulating: (1) antigen-presenting cells (APCs);
(2) T helper (Th) cell differentiation; and (3) T-cell receptor
(TCR) signaling (Figure 1) (15). The GR acts through genomic
and non-genomic mechanisms, regulating adhesion molecules,
co-accessory molecules, and cytokines implicated in T-cell
activation (17–19).

Acting directly on T cells, GCs function through different
mechanisms, most of which involve GR/transcription factor
interaction. GCs affect the activity of transcription factors
downstream of TCR activation, including nuclear factor-κB
(NF-κB), activator protein-1 (AP-1), and nuclear factor of
activated T cells (NF-AT) (15). GCs can also act through
non-genomic mechanisms to limit kinase activity downstream
of TCR activation, ultimately inhibiting the above-mentioned
transcription factors and T-cell activation (20) (Figure 1).

Moreover, GCs can modulate T-cell activation indirectly
through other cells such as dendritic cells (DCs), which are
professional APCs. DCs have dual functionality, as they both
orchestrate adaptive immune responses and also actively
maintain peripheral specific tolerance against innocuous
antigens (21). The balance between the activating and
tolerogenic DC phenotypes is crucial to generating an efficient
immune response while also preventing autoimmunity. GCs
inhibit DC functions, reducing expression of MHC class II,
and costimulatory molecules, decreasing proinflammatory
cytokines and increasing anti-inflammatory cytokines
such as IL-10 (22). Importantly, GCs can also increase

the ability of DCs to capture antigens, suggesting that
GCs drive DCs toward a tolerogenic phenotype (23).
Tolerogenic DCs induce T-cell suppression and anergy and
promote the generation of regulatory T cells (Tregs) (24).
Therefore, GC modulation of DCs indirectly inhibits T-cell
activation (Figure 1).

GCs can also modulate T cells by targeting tissue
macrophages, mast cells, and stromal cells. Myeloid cells
modulate T-cell function, acting as APCs and/or secreting
inflammatory cytokines in response to stimulation of pattern
recognition receptors (PRRs) (15). GCs can attenuate signals
downstream of PRR activation, including the transcription
factors AP-1, NF-κB, and the mitogen-activated protein kinase
1 (MAPK1) pathway (15, 25, 26). Those signaling changes alter
the cytokine network, with important consequences for both
inflammation, and T-cell responses. In fact, this mechanism
may partially account for both GC inhibition of Th-1 and Th-17
differentiation and GC promotion of Th-2 differentiation and
Treg production (27, 28) (Figure 1).

What is the role of GILZ in this context?

GILZ AND THE T-CELL RESPONSE

Similar to the GCs, GILZ inhibits innate, and adaptive
immune responses, affecting T-cell function (activation,
differentiation, and apoptosis) either directly or through APCs
(7, 9, 10) (Figure 2).

GC-induced GILZ expression in T cells is involved in multiple
GC effects (9); however, its endogenous expression in the naïve T
cell suggests a GC-independent function (29).

GCs can modulate T-cell apoptosis, and GILZ can either
induce or protect against apoptosis (6). The first studies on
apoptosis were performed using the T-cell hybridoma 3DO,
which overexpresses GILZ (6, 30). In this cell line, GILZ inhibits
both NF-κB (30), and AP-1 (31), behaves as a GC by inhibiting
CD3-mediated apoptosis and TCR-driven IL-2 production
through Fas/FasL modulation (30). Furthermore, T cells from
GILZ-knockout mice (GILZ-KO) show increased antigen-
induced T-cell activation (32). These data indicate mutual
antagonism between GILZ expression and T-cell activation,
suggesting that T cells must inhibit GILZ expression to become
activated (29, 33). Moreover, in T cells, GILZ expression mimics
the antiproliferative effects of GCs by interacting with Ras and
Raf and inhibiting Ras downstream signals, such as MAPK (33,
34) (Figure 2). Notably, IL-2 deprivation in T cells upregulates
GILZ (35), whereas IL-2 treatment (35), and T-cell activation
(29, 30, 33) decrease GILZ expression.Moreover, IL-2 withdrawal
induces cell death and upregulates GILZ by promoting forkhead
box O3 (FoxO3) transcriptional activity in GILZ promoter
region. In turn, GILZ prevents FoxO3 transcriptional activity,
promoting its nuclear exclusion through a mechanism involving
the nuclear export receptor Crm1 (36), and inhibiting its
own expression and that of the proapoptotic gene Bim. In
this case, GILZ protects T cells from IL-2 withdrawal-induced
apoptosis by regulating its own expression (35, 37). The role of
GILZ in T-cell apoptosis has been further clarified using GILZ
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FIGURE 1 | Glucocorticoids and the T-cell response. Glucocorticoid (GCs) and glucocorticoid receptor (GR) interactions induce: (1) a tolerogenic

antigen-presenting cell (APC) phenotype with decreased production of both proinflammatory chemokines and costimulatory molecules and development of regulatory

T cells (Tregs). This subsequently inhibits T-cell activation; (2) a modulation of naïve T-cell differentiation, including inhibition of Th-1 and Th-17 cell development and

induction of Th-2 cells and Tregs; and (3) inhibition of T-cell receptor (TCR) signaling by inhibiting (genomic effects) key transcription factors such as NF-AT, AP-1, and

NF-κB (3A) and disruption of TCR-associated multiprotein complexes containing GR, LCK, and FYN (rapid, non-genomic effects) with inhibition of NF-AT, AP-1, and

NF-κB (3B). Ultimately, these interactions impair TCR signaling and T-cell activation/proliferation. Red T-headed leaders indicate inhibition; green arrow-headed leaders

indicate activation.

transgenic mouse models (GILZ-TG). Thymocytes from GILZ-
TG mice undergo apoptosis through caspase-8 activation and
Bcl-xL downregulation (38), regulating the thymic repertoire
similar to GCs. However, these cells are rescued by TCR-
induced apoptosis, suggesting a GC-like mechanism of mutual
exclusion (39). In contrast, GILZ does not induce apoptosis in
peripheral mature mouse T lymphocytes (40). The ability of
GCs to induce the apoptosis of lymphoid cells supports their
inclusion in protocols for the treatment of lymphohematopoietic
malignancies. GILZ upregulation may underlie these effects of
GCs. For example, in multiple myeloma, for which GCs are
used, decreasing GILZ levels by siRNA knockdown inhibited
GC-induced apoptosis (41).

Constitutive expression of GILZ in naïve T cells (29) plays
a major role in their differentiation (Figure 2). GILZ promotes
Treg differentiation by activating transforming growth factor-β

(TGF-β) signaling (42) and is partly responsible for GC-mediated
effects on Tregs (15). In fact, dexamethasone (DEX) treatment
augments the frequency of splenic Tregs in WT, but not GILZ-
KO, mice (42).

Moreover, GILZ overexpression in CD4+ lymphocytes from
GILZ-TG mice promotes Th-2 and inhibits Th-1 differentiation
(43); thus, GILZ behaves like GCs (27, 44). As a consequence,
GILZ-TG mice are less susceptible to Th-1-mediated diseases,
such as experimental dinitrobenzene sulfonic acid- (DNBS-)
colitis (45), and spinal cord injury (46). In these models, GILZ-
TG mice exhibit an attenuated immune response, which may
be explained by GILZ-mediated inhibition of NF-κB, which is
crucial for Th-1 cytokine production, in T cells of the intestinal
lamina propria, and in spinal cord lesions, respectively (45, 46).
Accordingly, injection of mice with either the transactivator
of transcription (TAT)-glutathione-S-transferase (GST)-GILZ
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FIGURE 2 | GILZ and the T-cell response. GILZ, expressed basally and/or in response to GCs, induces: (1) a tolerogenic dendritic cell (DC) phenotype and inhibition of

human monocyte and mouse macrophage activation via inhibition of NF-κB, thereby limiting production of both proinflammatory chemokines, and costimulatory

molecules. In DCs, GILZ expression is regulated by a GR corepressor, DC-specific transcript (DC-SCRIPT), whose recruitment inhibits GILZ expression. GILZ-induced

inhibition of APC functions promotes development of Tregs and ultimately inhibits T-cell activation; (2) a modulation of naïve T-cell differentiation (expressing

endogenous GILZ) that includes induction of Th-2 cells and Tregs (favoring TGF-β signaling), inhibition of Th-1 cells, and inhibition or development of Th-17 cells; (3) an

inhibition of TCR signaling by inhibiting pathways, such as MAPK, and transcription factors, such as AP-1, and NF-κB, through protein-protein interactions. Red

T-headed leaders indicate inhibition; green arrow-headed leaders indicate activation.

(TAT-GST–GILZ) fusion protein or high doses of DEX, which
upregulates GILZ in mucosal T lymphocytes, rescues mice from
Th-1-mediated experimental colitis, again by inhibiting NF-κB
(45). GILZ, in this model, is crucial for effects on Tregs cells.
In fact, in GILZ-KO mice, the severity of DNBS-colitis is
increased compared with WT due to impaired generation of
Tregs cells. Transfer of WT Treg cells reverses the augmented
vulnerability. DEX ameliorates the symptoms of DNBS-colitis in
WT, but not GILZ-KO, through Treg augmentation. Therefore,
GC anti-inflammatory activities in this model may be mediated

by GILZ expression in T lymphocytes (45), and GILZ-induced
Treg generation (42). However, in other murine models of
inflammation, GILZ does not appear to be involved in the anti-
inflammatory activity of GCs. For example, endogenous GILZ is
detectable in the synovia of mice with collagen-induced arthritis
(CIA), and in patients with active rheumatoid arthritis, and
is upregulated by GC therapeutic doses (47). Moreover, GILZ
reduction by RNAi worsens the symptoms of CIA, suggesting
a role for GILZ as an endogenous inhibitor (47). However, its
deletion does not impair the effects of exogenous GCs in CIA
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and does not affect the severity of antigen-induced or K/BxN
serum–transfer arthritis (32). In fact, no difference in arthritis
severity was found between GILZ-KO and WT mice, although
antigen-induced T-cell proliferation was higher in GILZ-KO
mice. However, injection of adeno-associated virus expressing
GILZ (GILZ-rAAV) in CIA mice results in joint GILZ expression
and attenuation of joint inflammation without affecting T-cell
proliferation (32). These data suggest different roles for GILZ
in inflammation, again as a brake for T-cell proliferation, an
endogenous natural anti-inflammatory protein, and as a drug.

A pharmacological use of the GILZ protein was also
shown in experimental autoimmune encephalomyelitis (EAE),
an inflammatory model for human multiple sclerosis. GILZ
peptide (GILZ-P) binds to and inhibits NF-κB, suppresses T-cell
activation, and shows therapeutic efficacy when administered in
EAE mice. Specifically, GILZ-P inhibits NF-κB, Th-1 cytokines,
and T-Bet transcription but increases expression of GATA-3 and
Th-2 cytokines, mimicking GILZ (48), and GC activity (17, 27).

GILZ negatively modulates Th-17 development by binding
to IL-21 and Irf4 sites, as demonstrated via ChIP-seq analysis
of Th-17 cells. These sites overlap the binding sites of
major transcription factors involved in Th-17 polarization.
Therefore, GILZ may act as a transcriptional repressor, inducing
displacement of Th-17 transcription factors from their sites
with inhibitory effects on Th-17 development (49). Consistently,
GILZ downregulation in naïve CD4+ T cells is required for
development of Th-17 (29). GILZ expression in T cells is
protective against several pathologies, including psoriasis, a
disease commonly treated with GCs, and myocardial infarction,
in which Th-17 lymphokines are pathogenetic (29, 50). However,
conflicting data were obtained in vivo with imiquimod (IMQ),
a murine model for IL23-, and IL17-dependent psoriasis.
Some researchers demonstrate that IMQ-induced psoriasis is
more serious in GILZ-deficient mice, with upregulation of Th-
17 cytokines and Th-17 proliferation (29). In contrast, other
researchers show that IMQ-induced psoriasis is more severe in
GILZ-TG mice, with increased Th-17 cytokines (51) (Figure 2).
Thus, based on this model, GILZ can be proinflammatory,
similar to the effects of prolonged GC treatment (51), or anti-
inflammatory (29).

As mentioned, GILZ can modulate T-cell activity indirectly
through its actions on APCs. Its effects on myeloid cells have
a broad spectrum of action on all cells of the immune system
(9). DC subsets constitutively express GILZ at different levels
depending onDC functional status (52). Endogenous GCs appear
to regulate constitutive DC GILZ expression, whereas exogenous
GCs upregulate DCGILZ in vivo and in vitro. Thus, by mediating
the effects of GCs, GILZ can regulate the balance between
activating and tolerogenic DCs (53, 54). GILZ expression is
transcriptionally regulated by the GR, which can either induce or
inhibit GILZ by recruiting its corepressor, DC-specific transcript
(DC-SCRIPT) (Figure 2). Importantly, neutralizing DC-SCRIPT
augments GR-induced GILZ expression (55). This suggests that
the tolerogenic-promoting effects of GILZ in DCs are so crucial
that a biological brake on its expression is required. Indeed, GILZ
overexpression induces a DC tolerogenic phenotype comparable
to that induced by GCs (56), downregulating the costimulatory

molecules CD86, CD83, and CD80 (57, 58), and reducing
CD4+ T-cell proliferation (53) (Figure 2). Knocking down GILZ
in activated monocyte-derived DCs (Mo-DCs) promotes more
efficient CD8+ T-cell secondary responses (59). In vitro GC
treatment of human Mo-DCs induces GILZ expression, driving
a DC tolerogenic phenotype that prevents efficient antigen
presentation (57), and induces IL-10-promoting Tregs. Together,
these changes inhibit the T-cell response (58). This effect is
reproduced by GILZ overexpression (60) and abolished by GILZ
silencing (57, 59). Finally, GILZ expression in tumor-infiltrating
DCs drives a tolerogenic DC phenotype, and T-cell tolerance
against the tumor (54). This suggests that tumor cells may “learn”
to secrete GCs to induce GILZ as an escape mechanism against
the immune system. These results may explain how GCs, both
endogenous and exogenously administered, can either block or
worsen tumor progression (especially epithelial tumors) through
GILZ expression (61).

Similar to DCs, human monocytes and mouse macrophages
constitutively express GILZ. GCs further upregulate GILZ
expression, which, via inhibition of NF-κB, mediates GC activity
in these cells (62–64) (Figure 2). In fact, transfecting GILZ into
THP-1 macrophages mimics the effects of GCs and inhibits
the production of chemokines, and costimulatory molecules
(62). Correspondingly, GILZ is downregulated by Toll-Like
agonists, leading to macrophage activation (65). Moreover, GILZ
expression is decreased during neuroinflammation, inversely
correlating with the development of innate immune responses
(66), and in white blood cells from patients with sepsis (67). These
findings confirm the immunosuppressive role of GILZ inmyeloid
cells and the biological necessity of GILZ downregulation for
efficient natural or adaptive immune responses.

Furthermore, expression of GILZ, as with GC (15), limits Th-
17 differentiation, and induced Treg cell activity by modulating
cytokine production by DCs and mesenchymal cells (68, 69).
In a mouse model of rheumatoid arthritis, GILZ expression
in mesenchymal stem cells (MSCs) is required for therapeutic
effectiveness of MSCs in arthritis (68) and inhibition of
transferred- Th-1, and Th-17 cells in immunized mice (70). In
a model of acute kidney injury, TAT-GST-GILZ fusion protein
conferred renoprotection by regulating cross-talk between T cells
and neutrophils, reducing proinflammatory type 1 neutrophils
and Th-17 cells, and increasing anti-inflammatory type 2
neutrophils and Tregs (71).

The role of GILZ in T-cell activation is even more complex
if we consider the effects on its expression following accessory
molecule triggering. Indeed, blocking the co-accessory molecule,
CD80, enhances GILZ expression in activated CD4+ T cells (72).
However, this field of investigation remains unexplored.

PERSPECTIVE AND EXPECTATIONS

Based on our critical review of the literature, we suggest that
GILZ has at least three different functions in T cells: (1)
endogenous; (2) mediator of GC activity; and (3) as a drug.

As discussed above, basal endogenous GILZ expression in
immune cells has a predominant role in T-cell activation, the
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development of CD4+ naïve T cells, and the physiological
control of inflammation. The latter is demonstrated by the
many murine models of inflammation, in which the absence of
GILZ aggravates inflammatory pathologies (12, 29, 32, 42, 47).
However, GILZ expression in T cells underlies many of the
effects of GCs established in experimental in vivo and in vitro
models. These models demonstrate that a lack of GILZ inhibits
the activity of GCs, and overexpression may mimic GC effects
(8–10, 43).

The use of GILZ as a drug is a great challenge given
the potential side effects on metabolism. However, many
experimental models support and encourage this possibility.
Experiments with fusion proteins TAT-GST-GILZ, and HHph-
GILZ, viral constructs GILZ-rAAV expressing GILZ, and GILZ-
peptide GILZ-P provide examples of achieving pharmacokinetic,
pharmacodynamic, and therapeutic efficacy using GILZ in vivo
as a drug (29, 32, 45, 47, 73). Many of the experimental models
discussed above involve pathologies due to an imbalance of
the development of naïve CD4+ cells, demonstrating how the
therapeutic activity of GILZ is related to actions on T cells
(11, 12, 45, 47).

GCs inhibit T-cell activation through genomic and non-
genomic mechanisms. GR-mediated genomic regulation induces
immunosuppressive molecules, including GILZ (8, 15, 74–
76). GCs also modulate T-cell activity through non-genomic
mechanisms that occur immediately after drug exposure (77,
78). In T cells, the GR physically associates with the TCR
in a multiprotein complex with LCK, and FYN. Short-term
treatment with DEX induces the non-genomic destruction of
this complex, thereby limiting TCR activation (20) (Figure 1).
Is it possible to hypothesize that GCs regulate GILZ function
and/or expression through both genomic and non-genomic

mechanisms? The regulation of GILZ by GC non-genomic effects
would lay the groundwork for several future lines of study. In
particular, because GC-induced GILZ transcription in T cells
interacts with and inhibits TCR-triggered signaling pathways
and transcription factors, it is likely that there is a GC-induced
non-genomic effect on constitutive GILZ expression. This would
reveal another mechanism by which GCs regulate the T-cell
response. Such a mechanism might provide further explanation
for the basal level of GILZ in immune cells (63, 79). Therefore, it
would be interesting to investigate whether GC/GR interactions
induce rapid changes in the cytoplasmic basal pool of GILZ, as
such GILZ expression may have alternative functions compared
to those of peak GILZ activation induced by GR-mediated
transcription. Ultimately, building on our understanding of the
molecular mechanisms involving GCs and GILZ may improve
the use of GCs as clinical therapeutics and limit treatment-related
side effects.
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Glucocorticoids (GCs) act via the glucocorticoid receptor (NR3C1, GRα) to combat

overshooting responses to infectious stimuli, including lipopolysaccharide (LPS). As

such, GCs inhibit the activity of downstream effector cytokines, such as tumor necrosis

factor (TNF). PPARα (NR1C1) is a nuclear receptor described to function on the

crossroad between lipid metabolism and control of inflammation. In the current work,

we have investigated the molecular mechanism by which GCs and PPARα agonists

cooperate to jointly inhibit NF-κB-driven expression in A549 cells. We discovered a

nuclear mechanism that predominantly targets Mitogen- and Stress-activated protein

Kinase-1 activation upon co-triggering GRα and PPARα. In vitro GST-pull down

data further support that the anti-inflammatory mechanism may additionally involve a

non-competitive physical interaction between the p65 subunit of NF-κB, GRα, and

PPARα. Finally, to study metabolic effector target cells common to both receptors,

we overlaid the effect of GRα and PPARα crosstalk in mouse primary hepatocytes

under LPS-induced inflammatory conditions on a genome-wide level. RNA-seq results

revealed lipid metabolism genes that were upregulated and inflammatory genes that

were additively downregulated. Validation at the cytokine protein level finally supported a

consistent additive anti-inflammatory response in hepatocytes.

Keywords: PPARα, GRα, crosstalk, molecular mechanism, inflammation, MSK1

INTRODUCTION

Glucocorticoid hormones (GCs) are the mainstay of treatment for most inflammatory and
autoimmune diseases (1, 2). GCs also regulate glucose and fat homeostasis, however a long-term
therapeutic treatment with exogenous GCs causes hyperglycaemia, insulin resistance and disturbed
fat profiles as clinically worrying drawbacks (3). A reduction in adverse effects related to glucose and
fat regulation would be highly desirable in clinical GC applications.

Therapeutic activities of GCs are mediated by the glucocorticoid receptor (NR3C1) (4),
belonging to the superfamily of ligand-inducible transcription factors (4). Unliganded GR
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predominantly resides in the cytosol in an inactive state
associated with heat shock proteins (HSPs) and immunophilins
(4, 5). Upon GC binding, GR translocates to the nucleus
and binds to GR binding sequences (GBSs), widely dispersed
throughout the genome (6). These may include enhancers,
hot spots, as well as GC-response elements (GREs) within
the promoter regions of target genes, hereby regulating their
transcriptional activity (7–10). Additionally, transcriptional
regulation mediated by the GR also encompasses inhibitory
effects on the activity of pro-inflammatory transcription factors
driving the onset of inflammation, such as nuclear factor-κB
(NF-κB), resulting in pro-inflammatory gene suppression (11–
13). Throughout the years, many different mechanisms have
been proposed explaining how GR inhibits pro-inflammatory
gene expression, including direct mechanisms as well as
feedback loop mechanisms by GC-induced anti-inflammatory
proteins (14, 15). Suggestive of conserved mechanisms among
nuclear receptors, the fibrate ligand-activated transcription factor
peroxisome proliferator-activated receptor α (PPARα), a member
of the nuclear hormone receptor superfamily, may also exert
anti-inflammatory actions by down-regulating the activity of
NF-κB and other pro-inflammatory transcription factors via
multiple mechanisms, with some reminiscent of the ones GR is
deploying (16, 17).

In addition, both GR and PPARα exhibit overlapping and
complementary roles in liver with regard to carbohydrate and fat
metabolism (13, 18) and co-ordinately control key genes involved
in the maintenance of blood glucose levels, cooperatively support
fatty acid β-oxidation during fasting, and stimulate immune
suppression (19–21).

We previously reported that GRα and PPARα, when co-
activated, physically interact in vitro and in cellulo, in the nucleus
(22), paving the way for an extra level of gene regulatory
mechanisms apart from triggering their own cognate gene
programs. PPARα activation further enhanced GR-triggered
suppression of TNF-induced NF-κB-driven gene expression and
pro-inflammatory cytokine production in fibroblast (L929sA)
cells (22). PPARα activation also suppressed GR-induced
upregulation of G6PC (22), one of the metabolic genes
responsible for adverse effects related to glucose metabolism
upon chronic GC therapy. Mice subjected to a 7-week high fat
diet and that received a daily administration of the synthetic
GC Dexamethasone (DEX) for another 7 days instead of
solvent, demonstrated a worsened glucose intolerance which
coincided with enhanced hyperinsulinemia. Oppositely, high fat
diet fat mice receiving the PPARα agonist fenofibrate (FENO)
for 7 days supported clear glucose tolerance. Remarkably, the
latter phenotype was also observed when combining DEX
with FENO, indicating crosstalk and a potential advantage at
the glucose metabolism level when combining two nuclear
receptor ligands for which anti-inflammatory actions had been
demonstrated (22). Collectively, these results justify further
mechanistic exploration of a combination of GCs with PPARα

agonists in a context of inflammation, starting with simple cell
models to understand first the cell-autonomous crosstalk modes
in more detail.

Mitogen- and Stress-activated protein Kinase-1 (MSK1) is a
kinase that acts, among others, in the TNF-signaling pathway.
It promotes inflammatory gene transcription by phosphorylating
NF-κB, which facilitates association of p65 with cofactors, and
by phosphorylating histone H3 (23–25). We previously reported
that GCs counteract MSK1 recruitment at inflammatory gene
promoters and partially drive MSK1 to the cytoplasm, as a
contributory mechanism to inhibit NF-κB transactivation (23).

Crosstalk between GCs and MAPK signaling pathways was
considered before as a valid mechanism to effectively inhibit NF-
κB-driven inflammatory gene promoters (26). PPARα agonists
have also been shown to modulate MAPK activities, indirectly
suppressing inflammatory responses (27, 28). As we previously
observed no significant inhibitory effect of GCs on p38 and
ERK MAPK activation in L929sA mouse fibroblasts (29) and
A549 human epithelial cells (23), we explored whether in
A549 human epithelial cells combined treatment of GCs and
PPARα agonists might target the more downstream kinase MSK1
and thus might contribute to the additive transrepression of
NF-κB-driven inflammatory genes observed when triggering
both receptors.

In the present research we overlaid a mechanistic study
of the effect of GR and PPARα crosstalk under TNF-induced
inflammatory conditions in A549 human epithelial cells as a
first cellular model system for inflammatory responses, with a
genome-wide impact of combined ligand treatment in metabolic
effector cells using LPS-induced primary hepatocytes as a
second, complementing, model system. RNA-seq results in
primary hepatocytes revealed inflammatory genes that were
synergistically downregulated and lipid metabolism genes that
were additively upregulated following the activation of both
nuclear receptors. In addition, our data reveal that, upon co-
triggering of GRα and PPARα, a nuclear anti-inflammatory
mechanism may follow from a hampering at the level of
TNF-activated kinase MSK1 activation in a lung epithelial
cell line. Taken together, our findings unveil novel molecular
aspects of the PPARα-GR-mediated NF-κB-targeting anti-
inflammatory mechanism.

MATERIALS AND METHODS

Cytokines, Plasmids, and Reagents
Dexamethasone (D4902) (DEX) and GW7647 (G6793) (GW)
were obtained from Sigma–Aldrich (St. Louis, MO, USA). Anti-
GR, anti-PPARα, anti-RNA pol II and anti-p65 antibodies were
obtained from Santa Cruz. Phospho-specific rabbit antibodies
to p38 (Thr-180/Tyr-182), p42/44 ERK (Thr202/Tyr204), MSK1
(Thr581) and IKKα/β (Ser180/S181) were used to detect
the respective phosphorylated forms and purchased from
Cell Signaling. Anti-p38, anti-ERK, anti-MSK1, and anti-IκBα

antibodies were purchased from Cell Signaling. Anti-tubulin
and anti-actin were used as loading control and obtained
from Santa Cruz. Anti-phospho-65 was obtained from Santa
Cruz. Recombinant murine TNFα was produced and purified
as described (30). TNFα was used at a final concentration of
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2,000 IU/ml. p(IL6κB)350hu.IL6P-luc+ (hereafter renamed NF-
κB-Luc), PPARα, GR, and 5HT7 control plasmids were described
previously (21, 31–33). LPS was purchased from Invivogen.

Cell Culture
A549 cells were grown in DMEM plus 10% fetal calf serum,
100 U/ml penicillin and 0.1 mg/ml streptomycin. Cells were
maintained in a 5% CO2-humidified atmosphere at 37◦C.

Transfection and Reporter Assays
A549 cells were transiently transfected using Lipofectamine and
PLUS reagents, as described by the manufacturer (Invitrogen,
Life Technologies). In short, cells within each well of a 24-well
plate were transfected using 400 ng DNA, 1.2 µl lipofectamine
and 0.8 µl PLUS reagent. After 5 h incubation with the
transfection reagent, the medium was refreshed with standard
culture medium (see above). After transfection, cells were left
to rest for another 24 h before inductions. Cells were induced
as indicated in the figure legends, after which luciferase assays
were carried out according to instructions of the manufacturer
(Promega). Luciferase measurements were performed at least
in triplicate and normalized by measurement of β-galactosidase
levels using the Galacto-Light kit (Tropix). Results presented are
from 3 independent biological replicates.

Western Analysis
Total cell lysates were prepared using 1 × SDS sample buffer
(50mM Tris pH 6.8; 2% SDS; 10% glycerol; bromophenol blue
and 100mM DTT, freshly added). Samples were incubated

at 95◦C for 5min and separated on a SDS-PAGE gel
and subsequently blotted onto a Nitrocellulose membrane
(Whatman, Dassel, Germany). Immunoblotting was performed
according to the standard protocol of Santa Cruz (Santa Cruz,
CA, USA). Imaging of antibody-tagged protein signal was
obtained via Western Lightning (PerkinElmer, Waltham, MA,
USA). To quantify bands obtained via Western analysis, we
applied band densitometric analysis via ImageJ software (http://
rsb.info.nih.gov/ij/). The area under curve (AUC) of the specific
signal of the protein of interest as indicated in the figure legend
was corrected for the AUC of the loading control, indicated in the
figure legend. Results representative of 2 independent biological
repeats are shown.

Immunofluorescence
Indirect immunofluorescence was performed as previously
described (34). In short, A549 cells, seeded on coverslips and
serum-deprived for 48 h, were induced as indicated in the
figure legends. After fixation, endogenous p65 and MSK1 were
visualized using the corresponding rabbit antibodies followed by
Alexa Fluor 488 or Alexa Fluor 568 anti-rabbit IgG (Molecular
Probes, Invitrogen). Endogenous PPARα was visualized using
the corresponding goat antibody followed by Alexa Fluor
488 anti-goat IgG (Molecular Probes, Invitrogen). Endogenous
GRα was visualized using the corresponding mouse antibody
followed by Alexa Fluor 568 anti-mouse IgG (Molecular Probes,
Invitrogen). Cell nuclei were stained using DAPI DNA staining
(300 nM, Invitrogen).

FIGURE 1 | GCs and PPARα agonists inhibit pro-inflammatory gene expression in A549 cells. (A) A549 cells were pre-incubated with solvent, DEX (1µM), GW

(0.5µM) or various combinations thereof, for 1 h, before TNF (2000 IU/ml) was added, where indicated, for a total induction time of 6 h. mRNA was isolated, reverse

transcribed, and subjected to QPCR using primers to detect IL8. qPCR measurements were performed in triplicates. qPCR results, normalized to expression of

household genes, are shown ± SD. (B) A549 cells were transiently transfected with NF-κB-Luc using Lipofectamine/Plus reagents, as described (Invitrogen,

Carlsbad, CA, USA). 24 h after transfection, cells were incubated with solvent, DEX (0.1 or 1µM), GW (0.25, 0.5, or 1µM) or various combinations thereof, for 1 h,

before TNF (2000 IU/ml) was added, where indicated, for a total induction time of 6 h. Cell lysates were assayed for luc activities and normalized with β-gal activities.

Promoter activities are expressed as relative induction factor calculated as percentage of maximal TNF response. Results in (A,B) are from three independent

biological replicates (n = 3) with measurements in triplicate. Statistical analysis was done using ANOVA with Tukey’s multiple comparison post-test (*p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001).
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In vitro Protein-Protein Interaction Assay
(GST Pull-Down)
GST-fusion proteins with PPARα and 5HT7 were expressed
in BL21 bacterial cells and purified with glutathione-agarose
beads. GRα and p65 proteins were transcribed and translated
in vitro using the TNT T7-coupled reticulocyte lysate system
(Promega) according to the manufacturer’s instructions. GST
pull-down was carried out by incubating the equivalent of 2
µg of GST-PPARα beads with 10 µl of in vitro translated
[35S]-methionine labeled GRα with increasing amounts of non-
labeled GRα, or by incubating the equivalent of 2 µg of GST-
PPARα beads with 10 µl of [35S]-methionine labeled p65 with
increasing amounts of [35S]-methionine labeled GRα or finally,
by incubating the equivalent of 2 µg of GST-PPARα beads with
10 µl of [35S]-methionine labeled GRα with increasing amounts
of [35S]-methionine labeled p65. All of these interaction studies
were performed in a total volume of 200 µl of incubation
buffer [20mM Tris-HCl (pH 8), 300mM NaCl, 6mM MgCl2,
8% glycerol, 0.05% Nonidet P-40, 0.1% dithiothreitol]. The
mixture was gently rotated for 2 h at 4◦C. After centrifugation,
the beads were washed five times with incubation buffer
supplemented with NaCl up to a final concentration of 500mM,
next resuspended in 25 µl of 1x Laemmli buffer, boiled for
3min, and centrifuged. After GST-mediated purification and
extensive washes, proteins were separated on polyacrylamide gels
and visualized by autoradiography. GST-5HT7 was used as a
negative control.

Primary Hepatocyte Isolation
Primary hepatocytes were isolated from 10 to 12 week-old male
C57BL/6 mice by collagenase perfusion (35). The procedure
was modified by excluding insulin and DEX supplementation
in the William’s medium (Sigma, W1878), but keeping 0.1%
free-fatty acids and 1% glutamine. After isolation cells were
seeded on collagen-coated 6-well plates at a density of
0.75 × 106 cells. After 2 h of attachment medium was
refreshed and ligands were introduced, as indicated in the
figure legends.

qPCR and ChIP-qPCR
RNA was isolated with the RNeasy purification kit (Qiagen)
according to the user manual. cDNA was synthesized with
a PrimeScript kit (Takara). qPCR was performed using Light
Cycler 480 SYBR Green I Master Mix (Roche). The primer
list is provided in Table S1. qPCR data were normalized and
quantified relative to the 2 most stable reference genes with
qbase+ (36). ChIP assays were performed as previously described
(37). The relative amount of the precipitated target sequence was
determined via normalization to the “input”, i.e., the purified
total gDNA levels. The primers for IL8, encompassing−121/+61,
have been described earlier (38).

RNA-Seq Analysis
RNA-seq was done in three biological replicates. Each replicate
was obtained by pooling cells from 3 to 4 mice and then
performing induction in three technical replicates. RNA was
isolated with the RNeasy purification kit (Qiagen) according

to the user manual. Library preparation and sequencing was
prepared by the VIB Nucleomics Core facility. 75 bp long
sequenced reads were generated with Illumina NextSeq 500 and
were mapped to the mm10 genome using tophat (version 2.0.11).
Gene counts were calculated with htseq-count (0.6.1) using
“intersection-strict” mode. Gene level differential expression
analysis was performed with the aid of the R package “DESeq2”
by applying the following contrasts (p adjusted < 0.05): LPS

FIGURE 2 | Co-activation of GRα and PPARα does not affect pathways

influencing the nuclear accumulation of activated p65. (A) A549 cells, starved

for 48 h in DMEM devoid of serum, were pretreated with solvent, DEX (1µM),

GW (0.5µM) or various combinations for 1 h, before TNF (2000 IU/ml) was

added, where indicated, for 30min. Cell lysates were subjected to western

blotting using anti-phospho-IKK or anti-IκBα antibodies, and using anti-tubulin

as a loading control, as indicated. A representative blot of n = 2 is shown. (B)

A549 cells were treated with DEX (1µM) and/or GW (0.5µM) and/or TNF

(2000 IU/ml). Indirect immunofluorescence was performed using an anti-p65

antibody. Endogenous p65 was visualized (green), DAPI staining indicates the

nuclei of the cells (blue) and “Overlay” shows a merged image with both

stainings combined. Representative images of n = 2 are shown. (C) Per

induction, minimally three random fields of minimally 5 cells/field were scored.

Scored cells are categorized into three groups according to the subcellular

distribution of p65, i.e., C, mainly cytoplasmic; N, mainly nuclear; N/C, equally

distributed (nuclear/cytoplasmic) with % distribution presented as pie charts.
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vs. DEX+LPS, LPS vs. GW+LPS, LPS vs. DEX/GW+LPS,
DEX+LPS vs. DEX/GW+LPS andGW+LPS vs. DEX/GW+LPS.
Differentially expressed genes were combined into a single list
and re-ordered using a K-mean clustering (6 clusters). Gene
ontology analysis of gene clusters 2, 3, and 5 was performed using
“goseq” R package.

ELISA

CCL2 and IL6 ELISA was performed on media
from primary hepatocytes after 19 h induction with

compounds DEX and/or GW in combination with
100 ng/ml LPS by using the ELISA MAX Standard
(BioLegend, 432702, 430502), in according with
the manual.

Statistical Analysis
Statistical analysis was performed using the GraphPad Prism
software (version 7.02 or 8). Significant differences between
groups were evaluated using two-way (2 factors) ANOVA
with Dunnett’s test for multiple comparison, which was
found to be appropriate as groups displayed a normal

FIGURE 3 | Co-activation of GRα and PPARα efficiently lowers levels of phospho-MSK-1 in A549. (A) A549 cells, starved for 48 h in DMEM devoid of serum, were

pretreated with solvent, DEX (1µM), GW (0.5µM) or various combinations for 1 h, before TNF (2000 IU/ml) was added, where indicated, for 30min. Cell lysates were

subjected to western blotting with anti-phospho-MAPK and the corresponding non-phospho antibodies; for this re-probed blot the same overall loading control

applies as shown in Figure 2A. A representative blot of n = 2 is shown. (B) A549 cells, starved for 48 h in DMEM devoid of serum, were pretreated with solvent, DEX

(1µM), GW (0.5µM) or various combinations for 1 h, before TNF (2000 IU/ml) was added, where indicated, for 15min and 30min. Cell lysates were subjected to

western blotting with anti-phospho-MSK1, anti-MSK1 and anti-actin as a loading control, as indicated. A representative blot of n = 2 is shown. (C) A549 cells were

treated with DEX (1µM) and/or GW (0.5µM) and/or TNF (2000 IU/ml) for 30min. Indirect immunofluorescence was performed using an anti-MSK1 antibody.

Endogenous MSK1 was visualized (green), DAPI staining indicates the nuclei of the cells (blue) and Overlay indicates an image of both stainings combined.

Representative images of n = 2 are shown. (D) Per induction, minimally three random fields of minimally 5 cells/field were scored. Scored cells are categorized into

three groups according to the subcellular distribution of MSK1, i.e., C, mainly cytoplasmic; N, mainly nuclear; N/C, equally distributed (nuclear/cytoplasmic) with %

distribution presented as pie charts.
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distribution. Normality was tested with the D’Agostino-
Pearson normality test. When variances across groups were
not equal, logarithmic transformation was applied prior to
statistical analysis. Values are expressed as mean + SEM,
and error bars were derived from biological replicates
rather than technical replicates. p < 0.05 was considered
statistically significant.

RESULTS

GCs and PPARα Agonists Inhibit
Pro-inflammatory Gene Expression in a
Concentration-Responsive Manner
We first verified, using A549 lung epithelial cells, that the
single PPARα agonist GW7647 (hereafter GW) and the single

FIGURE 4 | Ligand-activated GRα and PPARα are both localized in the nucleus in TNF-stimulated cells. (A) A549 cells, starved for 48h in DMEM devoid of serum,

were pretreated with solvent, DEX (1µM), GW (0.5µM) or various combinations for 1h, before TNF (2000 IU/ml) was added, where indicated, for 30min. Localization

of PPARα (green) and GRα (red) was assessed by confocal analysis. DAPI staining indicates the nuclei of the cells (blue). Immunofluorescence of representative cell

fields are shown (n = 1). (B) Per induction, minimally three random fields of minimally 5 cells/field were scored. Scored cells are categorized into three groups

according to the subcellular distribution of PPARα (green) and GRα (red), i.e., C, mainly cytoplasmic; N, mainly nuclear; N/C, equally distributed (nuclear/cytoplasmic).
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synthetic GR agonist dexamethasone (DEX) are both able to
inhibit TNF-induced gene expression (Figure 1A, lanes 6 and
7 compared to lane 5). We go on to show that an additive
anti-inflammatory effect can be observed for a complex NF-κB-
driven promoter in its endogenous promoter context, i.e., TNF-
induced IL-8 mRNA expression (Figure 1A, lane 8 compared to
lanes 6 and 7). Results from A549 cells transiently transfected
with a recombinant NF-κB-driven promoter construct as a direct
transcriptional read-out (Figure 1B) confirm TNF-induced NF-
κB as a relevant nuclear receptor target and show anti-
inflammatory effects by single DEX and GW, in a concentration-
responsive manner (Figure 1B, lanes 8 to 10 and lanes 11
and 15 compared to lane 7). Combined DEX/GW treatment
results in an additive repression of TNF-induced recombinant
NF-κB promoter activity when compared to compound alone
(Figure 1B, lanes 12 to 14 compared to lane 11 and lanes 16–
18, compared to lane 15) even when using saturating amounts
of DEX. Taken together, these data support our previous findings
in L929sA where the additive anti-inflammatory effect of DEX
and GW also converged on NF-κB (22). Collectively, these results
raise the question whether combined ligand treatment may
act differently on components of the upstream cascade leading
toward NF-κB or may differently impinge on NF-κB binding
or activity.

Co-activation of GRα and PPARα Does Not
Affect the Upstream TNF-Induced IKK
Activation Pathway or the Nuclear
Accumulation of Activated p65
To first test whether the TNF-induced kinase cascade upstream
of the activity of p65 can be a target of a GRα and PPARα-
mediated inhibition, we evaluated levels of activated IKK and

the inhibitory protein of NF-κB. IκBα is known to be degraded
following activation of IKK and subsequent phosphorylation
upon an inflammatory stimulus, e.g., TNFα. This was confirmed
in Figure 2A (for quantification please see Figure S1). No
significant effect of DEX, GW or the combination hereof was
apparent on TNF-activated IKK (Figure 2A). In line with these
results, DEX and GW also did not affect the TNFα-induced
nuclear translocation of the p65 subunit of NF-κB as shown
by indirect immunofluorescence analysis (Figure 2B). Based
on these results, the cooperative anti-inflammatory activity
of GCs and PPARα agonists most likely operates within the
cellular nucleus.

Co-activation of GRα and PPARα Does Not
Affect MAPK Activation but Efficiently
Lowers Levels of Phospho-MSK-1 in A549
As we observed no significant inhibitory effect of combined
DEX/GW treatment on the above-mentioned kinases in Figure 2,
we further explored whether combined treatment of GCs
and PPARα agonist might target TNF-induced phospho-
ERK, phospho-JNK and phospho-p38 or the downstream
nuclear kinase MSK1 (Figure 3). As shown in Figure 3A,
none of the TNF-activated MAPK is differentially affected
comparing GC/PPARα co-treatment with single treatments
(for quantification please see Figure S2A). However, compared
to each compound alone, co-treatment with the PPARα

agonist GW and DEX clearly reduces the TNF-induced MSK1
phosphorylation, apparent at 15min (Figure 3B, upper panel)
and at 30min (Figure 3B, lower panel) (for quantification
please see Figure S2B). In line with our previous results (23),
DEX is able to partially extrude TNF-induced MSK1 from the
nucleus (Figure 3C). Both GW alone as well as the combination
DEX/GW yields a similar result when combined with TNF, as

FIGURE 5 | Combined DEX and PPARα agonist treatment maintains chromatin recruitment of TNF-activated p65. Following serum starvation for 48 h, A549 cells

were pre-incubated with solvent, DEX (1µM), GW (0.5µM) or various combinations for 1 h, before TNF (2000 IU/ml) was added, where indicated, for 30min.

Cross-linked and sonicated cell lysates were subjected to ChIP analysis against p65 (A), GR (B) or RNA pol II (C). qPCR was used to assay recruitment at the IL8

gene promoter. The quantity of p65, GR or RNA pol II detected at the IL8 promoter is shown with a correction of the SYBR green qPCR signal for input control. Lanes

1–8 contain data derived from DNA pulled with specific antibody-prepared ChIPs, as indicated in the graph; lane 9 includes the IgG control. The reaction was

performed in triplicate. Results are compiled from three independent biological replicates (n = 3). Statistical analysis was done using ANOVA with Tukey’s multiple

comparison post-test. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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compared to TNF alone (Figure 3C). From the cell counts it
is clear that combined DEX/GW with TNF recapitulates the
same phenotype as observed for DEX/TNF (Figure 3D). Still, in
all combinations a predominant nuclear MSK1 signal remains.
Taken together, these results suggest that the combined inhibitory
effect of GCs and PPARα agonists on phosphorylated MSK1
may contribute to the additive transrepression of NF-κB-driven
inflammatory genes triggered by activated GR and PPARα.

Ligand-Activated GRα and PPARα Are Both
Localized in the Nucleus in TNF-Stimulated
A549 Cells
Wenext wondered whether the activated nuclear receptors would
remain nuclear in absence and presence of TNF. Endogenous
co-immunolocalization analyses show that under conditions in
which p65 is activated upon TNF (Figures S3, S4) and under
conditions when both GRα and PPARα are activated, the

FIGURE 6 | PPARα and GRα interact with NF-κB p65, in a non-competitive

manner in vitro. GST-fusion proteins PPARα and 5HT7 were expressed in

BL21 bacterial cells and purified with glutathione-agarose beads.

[S35]-methionine labeled GRα and or p65 products were generated with TNT

reaction, using rabbit reticulocyte lysates. (A) [35S]-methionine labeled GRα

was incubated with Glutathione-Sepharose 4B beads loaded with GST-PPARα

or GST-5HT7 as control with increasing amount of non-labeled GRα. (B)

[35S]-methionine labeled p65 was incubated with Glutathione-Sepharose 4B

beads loaded with GST-PPARα or GST-5HT7 as control with increasing

amount of [35S]-methionine labeled GRα. (C) [35S]-methionine labeled GRα

was incubated with Glutathione-Sepharose 4B beads loaded with GST-PPARα

or GST-5HT7 as control with increasing amount of [35S]-methionine labeled

p65. Representative images of n = 2 are shown.

latter proteins effectively reside predominantly in the nuclear
compartment (Figure 4).

Combined DEX and PPARα Agonist
Treatment Maintains Chromatin
Recruitment of TNF-Activated p65
To next study the impact of single vs. combined ligand treatment
on the subsequent binding behavior of NF-κB we analyzed the
IL8 promoter nearby the promoter proximal NF-κB binding
site, using chromatin immunoprecipitation (ChIP) analysis. The
results in Figure 5A show that the PPARα agonist GW alone
reduces the TNF-induced p65 recruitment at this inflammatory
promoter, however, single DEX or combinedDEX/GW treatment
clearly does not affect TNF-induced promoter occupation of
p65. When analyzing concomitant GR occupancy under the
same conditions, DEX treatment consistently increases GR
recruitment at the IL8 promoter (Figure 5B). When combined
with TNF, DEX supports even more GR recruitment (Figure 5B,
compare lanes 2 and 6). Of note, additional GW treatment
does not further affect GR recruitment (Figure 5B, lane 8). In
concordance with the results on gene repression (Figure 1),
we detect lower IL8 promoter occupancy of RNA polymerase
II (RNA pol II) when combining DEX, GW or DEX/GW
as compared to TNF alone (Figure 5C). The combination of
DEX/GW with TNF did however not result in a lower IL8
promoter occupancy of RNA pol II as compared to DEX/TNF,
or GW/TNF alone. Lower levels of RNA pol II recruitment upon
GW/TNF (Figure 5C) nicely correlate with a lower level of p65
recruitment upon GW/TNF (Figure 5A), yet again the effect of
DEX, and additional presence of GR (Figure 5B) is dominant.
Taken together, these results show that even though MSK1
activation is reduced (Figure 3B), still, p65 is not dissociated
from the IL8 promoter under conditions of a maximal pro-
inflammatory gene inhibition by DEX and PPARα agonists.

PPARα and GRα Interact With NF-κB p65 in
a Non-competitive Manner in vitro
The underlying mechanism as suggested by the transcriptional
data (Figure 1) and the ChIP results (Figure 5) may involve
either tethering events or independent DNA binding events.
Direct interactions between single GR or single PPARα with the
p65 subunit of NF-κB were previously reported to contribute
to the inhibition of NF-κB-dependent pro-inflammatory gene
expression and were described to involve (a) the DNA binding
domain of either GRα or PPARα and (b) the Rel Homology
Domain (RHD) of p65 (33, 39, 40). To obtain further insight
into the molecular basis of the additive anti-inflammatory effect
observed upon combining GR and PPARα agonists, we tested
whether GRα and PPARα are able to bind p65 simultaneously
or instead in a competitive and mutually exclusive manner. Since
both receptors have been described to interact with largely similar
domains within p65 (AA 22-248 and 12-378 for GRα and PPARα,
respectively (33, 39, 40), the possibility of a competitive and
independent binding was considered.

GST-pull down experiments show that binding between GST-
PPARα and in vitro produced GRα (35S) can be outcompeted by
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FIGURE 7 | Co-activation of GRα and PPARα enhances lipid metabolism gene subsets and lowers stress response gene subsets in LPS-induced primary

hepatocytes. (A) Schematic overview of the RNA-seq experiment (n = 3). (B) Heatmap using K-mean clustering of 3,441 differentially expressed genes from contrasts

(p adjusted < 0.05): LPS (100 ng/ml) vs. DEX+LPS, LPS vs. GW+LPS, LPS vs. DEX/GW+LPS, DEX+LPS vs. DEX/GW+LPS and GW+LPS vs. DEX/GW+LPS.

Color scale represents gene counts. (C) Gene ontology analysis of differentially upregulated (clusters 2 and 3) and downregulated (cluster 5) genes by DEX/GW vs.

LPS, DEX and GW.

cold GRα (Figure 6A, quantification see Figure S5A), illustrating
the feasibility to detect competitive binding in a GST-pull
down assay and supporting our previous findings, via co-
IP, that PPARα and GRα indeed physically interact (22).
The interaction between GST-PPARα and in vitro produced
p65 (35S) is however not affected by increasing amounts of
GRα (35S) (Figure 6B, quantification see Figure S5B). Similarly,
adding increasing amounts of p65 (35S) also does not affect
the binding between GST-PPARα and in vitro produced GRα

(35S) (Figure 6C, quantification see Figure S5C). Altogether, our
GST-pull down experiments support that GR and PPARα may
interact with the RHD of p65 in a non-competitive manner,
supporting the hypothesis of complex formation between all
three transcription factors.

The in vitro experiments cannot take into account the
possibility that the single ligand treatments and/or co-treatments
may additionally affect receptor protein expressions in a cellular
environment. To address this extra parameter, A549 cells were
pretreated with solvent, DEX (1mM), GW (0.5µM) or various
combinations for 1 h, before TNF (2000 IU/ml) was added for
a total induction time of 6 h (to match the time points in
Figure 1). Interestingly, the results from Figure S6 show that in
inflamed cells (last 4 lanes, with TNF added) the combined ligand
treatment DEX/GW is capable of lowering not only protein
levels of the pro-inflammatory protein p65, but concomitantly
also of both receptor levels. Strikingly, GW/DEX alone largely
recapitulated the effect observed of both ligands in presence of
TNF. Similar data were found for a shorter time point (1.5 h)

(Figure S7), albeit not as outspoken. These findings nevertheless
support the validity of the findings presented in Figure S6.

GR and PPARα Co-regulate Lipid
Metabolism and Inflammatory Gene
Expression in Opposite Manners in
Inflamed Murine Hepatocytes
When looking at the broader picture of possible target cells,
GCs and PPARα will not only regulate genes in immune or
structural cell types coping with an inflammatory insult (e.g.,
synovial fibroblasts, macrophages, T-cells, or lung epithelial cells
as studied here), but will also trigger gene programs in metabolic
tissues, such as hepatocytes. Activated GR and PPARα have
been described before to additively upregulate a vast subset of
key genes of the lipid metabolism pathway in naïve murine
primary hepatocytes (21). Combined ligand treatment was
shown to exhibit anti-inflammatory capacities in lung epithelial
cells as typical effector cells contributing to an inflammatory
response (Figure 1), but it remained uncertain whether primary
hepatocytes would behave in a similar manner, given a dominant
role of GR/PPARα in glucose and fat metabolism in this cell
type. To address this question, we performed RNA-seq following
DEX and GW co-treatment for 19 h in presence of LPS to
additionally mimic an inflamed state (Figure 7A). K-means
clustering following the differential expression analysis revealed
992 genes (Figure 7B, cluster 2 and 3) upregulated by the
combination of DEX/GW with LPS treatment compared to
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FIGURE 8 | Co-activation of GRα and PPARα additively lowers inflammatory gene and protein expression in LPS-induced primary hepatocytes. Results are shown for

mRNA (A) and protein (B) levels. (A) Following the treatment of primary hepatocytes as described in the legend of Figure 6, mRNA was isolated followed by qPCR

analysis. Gene expression levels were normalized to Ppia/cyclophilin and Gapdh reference gene expression using qbase+ (n = 4–5). (B) CCL2 and IL6 ELISA from the

media of primary hepatocytes after 19 h treatment with DEX (1µM) and GW (0.5µM) in combination with 100 ng/ml LPS (n = 3). Statistical analysis was done using

1-way ANOVA and Dunnett’s test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). NI, non-induced.

LPS alone. Among those, 132 genes were significantly more
upregulated when compared to each compound alone (DEX +

LPS or GW + LPS). Gene ontology analysis of these 132 genes
attributed them to the lipid metabolism pathway (Figure 7C).
This was consistent with previous results obtained in a basal state
(21). LPS treatment did not influence DEX/GW-co-regulated
gene expression in primary hepatocytes of one of the key
co-controlled genes, Angptl4; a result that was independently
validated by qPCR (Figure S8). We detected also 279 genes
downregulated by DEX/GW + LPS treatment compared to LPS
(Figure 7B, cluster 5). Only 34 of those were significantly more
repressed upon comparing with either DEX+ LPS or GW+ LPS
treatment alone. Some of these genes are inflammatory markers
such as Icam1, Ikbke, Nfkb2, Mapk3, Tlr2.

GR and PPARα Cooperate to Downregulate
Inflammatory Genes and Proteins in
Inflamed Murine Hepatocytes
The results were next validated using qPCR in independently
isolated murine primary hepatocytes (Figure 8A). We also
determined mRNA levels of the classic inflammatory marker
Ccl2. Similar to mRNA results, the protein levels of CCL2 were
suppressed by combined DEX/GW treatment in presence of
the inflammatory stimulus when compared to each compound
alone (Figure 8B). Although the overall expression levels of

IL6 in LPS-induced hepatocytes were almost two orders of
magnitude lower than of CCL2 levels, we still observed a similar
regulation (Figure 8B). Taken together, in analogy with the TNF-
induced lung epithelial cell model, simultaneous GR and PPARα

activation also supports additive anti-inflammatory effects in the
LPS-inflamed primary hepatocyte model.

DISCUSSION

The activation of PPARα was shown before to suppress the
induction of liver gluconeogenic G6PC and PEPCK genes that
were activated by GR in mice subject to a high fat diet (22).
As such, combined PPARα and GRα agonist treatment might
hold a promise of therapeutic benefit when able to cooperatively
enhance anti-inflammatory effects, while circumventing (at least)
the side effect of GC-induced glucose intolerance. In the current
research we studied the GRα-PPARα crosstalk paradigm and its
putative role in the transcriptional regulation of inflammatory
genes comparing two cell types in which both GRα and PPARα

are well-expressed and functional, i.e., hepatocytes and lung
epithelial cells. We demonstrated that simultaneous GRα-PPARα

activation additively suppresses inflammation both in LPS-
treated murine primary hepatocytes and TNF-induced human
lung epithelial cells. In the latter cell type, we went on to
show via Western analysis using phospho-specific antibodies,
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FIGURE 9 | GRα/PPARα controlled points of interference with the TNF signaling pathway. Graphical abstract demonstrating activated GRα/PPARα efficiently inhibits

TNF-driven gene expression in A549 cells primarily by interfering with the phosphorylation status of MSK1. Signaling components of the NF-κB pathway that have

been studied in the manuscript are shown in non-gray colors. GR, Glucocorticoid Receptor α; IKK, IκB kinase, MAPK, Mitogen-activated protein kinase; MKK, MAP

kinase kinase; PPAR, peroxisome proliferator activated receptor α; TNF, tumor necrosis factor; TNFR, TNF receptor.

that GR-PPARα crosstalk may block inflammatory cytokine
gene expression in the nucleus by mitigating the activity of
a kinase upstream of NF-κB, MSK1, but not its upstream
MAPK activators. This mechanism seems in contrast with
a recently described mechanism in macrophages, explaining
anti-inflammatory effects of single GCs not solely via gene
suppression but through cooperative actions with p38 MAPK-
andMSK1-dependent pathways, culminating in the upregulation
and activation of another kinase, Sphingosine kinase 1 (SphK1)
(41). However, these mechanisms do not necessarily exclude
each other and are likely complementary. Indeed, it is not
unreasonable to infer that different GC-assisted mechanisms
may come in at different phases of the inflammatory response,
or that in different cell types GCs may preferentially impact
at different levels to establish a net anti-inflammatory effect.
From our data, both GCs and PPARα agonist alone are able
to partially drive MSK1 kinase from the nucleus, confirming
earlier findings for GCs (23). At any rate, the finding that
the subcellular distribution of MSK1 upon DEX/GW/TNF is
similar to DEX/TNF implies that extrusion by itself is probably
not a main mechanism explaining the additive gene repression.
Rather, inhibition of MSK1 activation, which will hamper
MSK1 activity, and interference at the level of NF-κB further

downstream seem sufficient mechanisms to achieve additive
cytokine gene repression (model in Figure 9). Taken together,
it is clear that anti-inflammatory pathways that jointly tackle
pathways leading to NF-κB activity will have an added advantage,
as also found before in a study combining GCs with MSK1
inhibitors (42). Of interest from a clinical perspective, increased
levels of activated MSK1 were detected in circulating blood
CD14+ cells from patients with steroid-resistant asthma as
compared to samples from steroid-sensitive asthma patients,
linking a potential involvement of MSK1 in the regulation of
cellular steroid responses (43). In a recent study in support
of combination strategies, the team of Goleva showed benefit
upon combining GCs with vitamin D, by demonstrating anti-
inflammatory and GC-enhancing effects inmonocytes of patients
not only in steroid-sensitive asthma but also to some extent in
steroid-resistant asthma (44).

We found that combined DEX/GW was able to reduce not
only GRα and PPARα protein levels but also p65, in absence
and presence of TNF. Regardless, inflammatory gene repression
by combined GRα-PPARα agonists (studied here at the human
IL8 promoter) was found to still involve maintaining the p65
subunit of NF-κB as well as GRα and PPARα at the chromatin
(model in Figure 9). This finding apparently contrasts a study
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in macrophages showing GR activation, on its own, results in
genome-wide blockade of NF-κB interaction with chromatin,
as a late GC-induced event when inflammatory responses are
allowed to fully mount (45). Again, this is not necessarily in
conflict, as our study rather brings forward mechanisms likely
to occur when GCs are ahead of a full-blown inflammatory
response. In support of our data, in another recent study on
mouse macrophages GR was rather shown to suppress pro-
inflammatory gene expression by targeting distinct temporal
events and components of transcriptional machinery in a gene-
dependent manner, yet, the mechanism consistently involved
a rapid GR tethering to p65 at NF-κB-binding sites (46). Our
findings, adding PPARα to the equation, make it tempting
to suggest a tripartite physical interaction mechanism may be
possible. In line herewith, we retrieve all activated proteins (p65,
GR, and PPARα) in the nuclear compartment, when performing
pairwise indirect immunofluorescence of endogenous proteins
in A549. Support for a physical interaction between p65, GRα

and PPARα, at least in vitro, was found through non-competitive
associations in GST-pull down analyses. Our data only shed light
on a little piece of the anti-inflammatory mechanism following
combined action of GRα and PPARα. Combined GRα/PPARα

treatment reduces MSK1 kinase activation and appears to change
the balance between nuclear vs. cytoplasmic MSK1, perhaps
by preventing the accessibility of the kinase to the NF-κB
target. Although these events clearly do not affect promoter
recruitment of p65 or of pol II, at least not for IL8, a change
in the activity status of NF-κB may well change coregulator
associations, leading to a negative impact on gene expression. The
in vitro interaction data, involving bacterial proteins and in vitro
translated protein, suggest GR/PPAR/p65 complex formation, at
least in vitro, might not be dependent on phosphorylation events,
which is supported by the finding from the cell data that activated
p65 remains efficiently recruited in presence of co-activated
GRα/PPARα. It remains to be studied however, how frequent
GRα and PPARα may co-localize in the cell models we have
presented here, when subject to an inflammatory stimulus. In
addition, direct proof of in cellulo complex formation at relevant
promoter regions awaits firm evidence, for instance upon using
re-ChIP experiments. Also the nature of the predominant
binding sites remains to be investigated (half-site or palindromic
GRE vs. PPRE vs. NF-κB response elements). In line with a
previously recognized role for GRIP1 acting as a corepressor
contributing to the suppressive action of GR (47–49), it is of
current also unclear which cofactors may differentially associate
with the GRα/PPARα co-suppressed inflammatory promoters as
compared to either stimulus alone. On the physiological side,
follow-up studies will have to demonstrate a predicted improved
therapeutic benefit may take place, when co-administering GCs
and PPARα agonists in an animal model of chronic inflammation
(e.g., multiple sclerosis, arthritis, or asthma). Such study will
allow simultaneous evaluation of the anti-inflammatory activity
in relevant inflammatory target cells (depending on the animal
model) with a metabolic impact addressing responses of the
liver, regulating glucose and fat metabolism, when allowed to
communicate with the other endocrine tissue within a complex
organism under chronic inflammatory pressure.
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Figure S1 | (Quantification Figure 2A). Western blot densitometric analysis. The

P-IKK band (upper panel) and IκBα band (Lower panel) visualized via Western blot

analysis in Figure 2A were subjected to band densitometric analysis using Image

J. The amount of specific signal for P-IKK and IκBα was corrected to the

respective tubulin loading control.

Figure S2 | (Quantification Figures 3A,B). Western blot densitometric analysis.

(A) The phospho-MAPK bands visualized via Western blot analysis in Figure 3A

were subjected to band densitometric analysis (Image J). The amount of specific

signal for phospho-MAPK was corrected to the respective corresponding

non-phospho-MAPK signal. (B) The phospho-MSK1 bands visualized via Western

blot analysis in Figure 3B were subjected to band densitometric analysis using

Image J. The amount of specific signal for the phospho-MSK1 was corrected to

the respective non-phospho-MSK1.

Figure S3 | Ligand-activated GRα and p65 are both localized in the nucleus in

TNF-stimulated cells. (A) A549 cells, starved for 48 h in DMEM devoid of serum,

were pretreated with solvent, DEX (1µM), GW (0.5µM) or various combinations

for 1h, before TNF (2000 IU/ml) was added, where indicated, for 30min.

Localization of p65 (green) and GRα (red) was assessed by confocal analysis.

DAPI staining indicates the nuclei of the cells (blue). Immunofluorescence of

representative cell fields is shown (n = 1). (B) Per induction, minimally three

random fields of minimally 5 cells/field were scored. Scored cells are categorized

into three groups according to the subcellular distribution of p65 (green) and GRα

(red), i.e., C, mainly cytoplasmic; N, mainly nuclear; N/C, equally distributed

(nuclear/cytoplasmic).

Figure S4 | Ligand-activated PPARα and p65 are both localized in the nucleus in

TNF-stimulated cells. (A) A549 cells, starved for 48 h in DMEM devoid of serum,
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were pretreated with solvent, DEX (1µM), GW (0.5µM) or various combinations

for 1h, before TNF (2000 IU/ml) was added, where indicated, for 30min.

Localization of PPARα (green) and p65 (red) was assessed by confocal analysis.

DAPI staining indicates the nuclei of the cells (blue). Immunofluorescence of

representative cell fields is shown (n = 1). (B) Per induction, minimally three

random fields of minimally 5 cells/field were scored. Absolute amounts of cells that

were scored per induction were between 30 and 65 cells and categorized into

three groups according to the subcellular distribution of PPARα (green) and p65

(red), i.e., C, mainly cytoplasmic; N, mainly nuclear; N/C, equally distributed

(nuclear/cytoplasmic).

Figure S5 | (Quantification Figures 6A–C). GST pull down analysis. (A)

[35S]-methionine labeled GRα pull down and (B,C) [35S]-methionine labeled p65

and [35S]-methionine labeled GRα pull down visualized via autoradiography in

Figure 5 were quantified using ImageJ analysis. Signals were normalized against

respective inputs.

Figure S6 | Combined PPARα/GRα activation diminishes p65 levels as well as

nuclear receptor levels following 6h inductions, in absence and presence of TNF.

(A) A549 cells, starved for 48 h in DMEM devoid of serum, were pretreated with

solvent, DEX (1µM), GW (0.5µM) or various combinations for 1h, before TNF

(2000 IU/ml) was added, where indicated, for a total induction time of 6h. Cell

lysates were subjected to western blotting to detect GRα, PPARα or p65.

Detection of β-actin served as a loading control. n = 1. (B) The bands visualized

via Western blot analysis were subjected to band densitometric analysis using

Image J. The amount of specific signal for was corrected to the respective actin

loading control.

Figure S7 | Combined PPARα/GRα activation already diminishes p65 levels as

well as nuclear receptor levels following 1.5 h inductions, in absence and presence

of TNF. (A) A549 cells, starved for 48 h in DMEM devoid of serum, were pretreated

with solvent, DEX (1µM), GW (0.5µM) or various combinations for 1 h, before TNF

(2000 IU/ml) was added, where indicated, for a total induction time of 1.5 h. Cell

lysates were subjected to western blotting to detect GRα, PPARα or p65.

Detection of β-actin served as a loading control. n = 1. (B) The bands visualized

via Western blot analysis were subjected to band densitometric analysis using

Image J. The amount of specific signal was corrected to the respective actin

loading control.

Figure S8 | Co-activation of GRα and PPARα enhances the lipid metabolism gene

Angptl4. Gene counts for Angptl4 upon DEX (1µM), GW (0.5µM) and LPS

(100ng/ml) treatment of primary hepatocytes, from the experiment described in

Figure 7. n = 1. Bars represent mean+SEM. NI, non-induced.

Table S1 | List of qPCR primers.
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Psoriasis is a prevalent chronic inflammatory human disease initiated by impaired

function of immune cells and epidermal keratinocytes, resulting in increased cytokine

production and hyperproliferation, leading to skin lesions. Overproduction of Th1- and

Th17-cytokines including interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin

(IL)-23, IL-17, and IL-22, is a major driver of the disease. Glucocorticoids (GCs) represent

the mainstay protocol for treating psoriasis as they modulate epidermal differentiation

and are potent anti-inflammatory compounds. The development of safer GC-based

therapies is a high priority due to potentially severe adverse effects associated with

prolonged GC use. Specific efforts have focused on downstream anti-inflammatory

effectors of GC-signaling such as GC-Induced-Leucine-Zipper (GILZ), which suppresses

Th17 responses and antagonizes multiple pro-inflammatory signaling pathways involved

in psoriasis, including AP-1, NF-κB, STAT3, and ROR-γt. Here we review evidence

regarding defective GC signaling, GC receptor (GR) function, and GILZ in psoriasis. We

discuss seemingly contradicting data on the loss- and gain-of-function of GILZ in the

imiquimod-induced mouse model of psoriasis. We also present potential therapeutic

strategies aimed to restore GC-related pathways.

Keywords: glucocorticoids (GCs), glucocorticoid-induced-leucine-zipper (GILZ/TSC22D3), skin inflammation,

psoriasis, keratinocytes, immune cells, signaling

INTRODUCTION

Endogenous glucocorticoids (GCs) regulate development, metabolism, and immune responses
in mammals (1, 2). In healthy individuals, GCs are synthesized by the adrenal glands and
released to circulation as the final step of a complex cascade governed by the central
hypothalamic–pituitary–adrenal (HPA) axis, with key roles in basal, and stress-related homeostasis
(2). In addition, GCs can be produced locally by multiple tissues including the nervous system,
thymus, and epidermis (3, 4). Synthetic GC counterparts are widely used as the first and most
effective treatment to combat acute and chronic inflammatory pathologies. Both endogenous and
exogenous GCs exert their actions through binding to the GC receptor (GR/NR3C1), a protein of
the superfamily of nuclear hormone receptors that act as ligand-regulated transcription factors (5).

A main mechanism of GR action involves binding to genomic regulatory sequences called
GR response elements to induce or repress target gene expression. GR induces genes encoding
for anti-inflammatory mediators such as GC-Induced-Leucine-Zipper (GILZ), Dual-Specificity
protein Phosphatase 1 (DUSP1), Inhibitor of kappaB alpha (IκBα), and Zinc Finger Protein
36/TrisTetraProlin (ZFP36/TTP) (6). Also, GR represses pro-inflammatory genes induced by the
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NF-κB and Mitogen Activated Protein Kinase (MAPK)/AP-
1 pathways through protein-protein interactions that do not
require GR binding to DNA. These two mechanisms classically
referred to as transactivation and transrepression, respectively,
coexist and are required for the optimal anti-inflammatory
actions of GCs. Notwithstanding their effectivity, GC-based
therapy is accompanied by side-effects of variable severity
(the most extreme including metabolic syndrome, osteoporosis,
and impairment of childhood growth), which may advise to
discontinue treatment (7).

GILZ (encoded by the TSC22D3 gene) was identified more
than 20 years ago as anti-apoptotic in dexamethasone-treated
thymocytes (8). Since then, GILZ expression has been reported in
cell types of immune, and non-immune lineages. Multiple GILZ
isoforms, resulting from alternative transcriptional initiation and
splicing, have been identified with differential activities, and
tissue specific expression patterns (9, 10). As of now, the majority
of studies regarding therapeutic applications have been centered
on the GILZ1 isoform (referred to as GILZ hereafter). GILZ plays
an anti-inflammatory role in macrophages, is crucial to regulate
proliferation, survival, and differentiation in regulatory T (Treg)
and dendritic cells; and contributes to regulation of phagocytosis
in neutrophils andmacrophages, thus putting an additional brake
on chronic inflammation (11–14). GILZ is also expressed in
airway epithelial cells (15), as well as in epidermal keratinocytes.
In keratinocytes, GILZ is rapidly induced byGCs although its role
in this cell type is not yet clarified (16–18).

GC immunosuppressive effects are exerted upon almost all
immune cells including distinct effector lineages of T helper
(Th) cells: Th1, Th2, Th17, or regulatory T (Tregs) (19). GCs
inhibit Th1 development and induce differentiation of Th2 and
Treg cells that limit immune response (20, 21). Th17 cells,
producing interleukin 17 (IL-17) as their signature cytokine,
are critical mediators of immune and inflammatory diseases
including rheumatoid arthritis, asthma, and psoriasis (22). One
key finding was the demonstration that GILZ increased Treg cell
production by enhancing the transforming growth factor (TGF)-
β/SMAD2 signaling pathway leading to induction of Foxp3, a
lineage specific transcription factor responsible for development
and function of these cells (21). GILZ has been shown to
limit pro-inflammatory Th17 cell differentiation by binding to
promoter regions and inhibiting expression of key cytokines, and
classic Th17 transcription factors, like STAT3, and the master
regulator of this cell lineage, retinoic acid-related orphan receptor
(ROR)-γt (23).

Other anti-inflammatory GILZ actions are mediated through
protein-protein interactions with NF-κB and AP-1 transcription
factors precluding nuclear translocation, DNA binding, and
regulation of gene expression (24, 25). Also, GILZ can bind to

Abbreviations: GC, glucocorticoid; GR, glucocorticoid receptor; HPA,

hypothalamic–pituitary–adrenal; GILZ, Glucocorticoid-Induced-Leucine-

Zipper; MAPK, mitogen-activated protein kinase; TGF-β, transforming growth

factor beta; TNF-α, Tumor necrosis factor alpha; IFN, interferon; ROR-γ,

retinoic acid-related orphan receptor gamma; ZFP36/TTP, Zinc Finger Protein

36/TrisTetraProlin.

RAS/RAF, and thus suppress the MAPK pathway by inhibiting
MAP2K/ERK1/2 phosphorylation (26).

In vitro studies in various cell types, including keratinocytes,
showed GILZ downregulation upon treatment with pro-
inflammatory mediators that activate toll-like receptors (TLRs)
or cytokines such as tumor necrosis factor (TNF)-α, IL-1-
β, or interferon (IFN)-γ (12, 15, 16, 27). In several chronic
inflammatory diseases, GILZ expression inversely correlates with
disease severity, suggesting that lower levels may aggravate these
diseases and/or may be part of the pathogenesis [reviewed in
(25, 28)] For instance, GILZ expression negatively correlates with
disease severity in lupus patients, and murine models of this
disease (29, 30). Moreover, GILZ mRNA was downregulated in
white blood cells of sepsis patients (14), in activated macrophages
of individuals with Crohn’s disease (31), in patients with
chronic rhinosinusitis where more pronounced decreases of
GILZ associated with poor response to surgery (32), and in
human psoriatic lesions (33, 34). However, in other instances,
such as in the synovium of patients with active rheumatoid
arthritis, GILZ levels were increased relative to healthy subjects;
nevertheless, among patients being treated with therapeutic GCs,
those able to induce GILZ showed improved disease activity (35).
Overall these data underline that GILZ levels and activity are
likely dependent on the disease type and tissue context.

MOUSE MODELS OF INFLAMMATION TO
ASSESS GILZ FUNCTION

GILZ was initially postulated as an alternative to GC therapies
that could mediate GC immune-suppressive actions and anti-
inflammatory effects without producing GC-associated side
effects (11, 12, 25, 36). GILZ-deficient mice were viable and
featured alterations that included male infertility due to impaired
spermatogenesis, and electrolyte alterations (37–41). The lack of
GILZ neither altered the immune response in several diseases
(including arthritis and LPS-induced sepsis) nor decreased the
anti-inflammatory effects of GCs in these models (37, 39, 42).
Given that global GILZ-deficient mice had increased levels of
endogenous GCs and other anti-inflammatory mediators, it is
feasible that these compensatory mechanisms account for the
observed results in vivo (28, 39, 43). In turn, the use of cell-
type specific GILZ KO mouse models, such as macrophage-
specific GILZ KO, which did not exhibit differences in their
serum corticosteroid levels, represent a more adequate setting to
investigate the impact of ablating endogenous GILZ (44).

However, in other settings, downregulation of GILZ during
inflammation led to enhanced pro-inflammatory responses (44).
For instance, the administration of GILZ siRNA enhanced
disease progression in a mouse model of rheumatoid arthritis
(45) and conversely, injection of GILZ-adeno-associated virus
into the joints inhibited disease development to a similar extent
as GC treatment (39). GILZ knockdown also resulted in increased
disease severity in a mouse model of colitis due to pronounced
granulocytic infiltrates and enhanced inflammation (13). GILZ-
deficient macrophages showed increased responsiveness toward
LPS, with augmented expression of pro-inflammatory cytokines
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due to ERK activation, and reduced desensitization to LPS, i.e.,
endotoxin tolerance (28).

In most mouse models of disease, higher levels of GILZ were
protective against inflammation although with a variable degree
of efficacy. The increased expression of GILZ in the SPRET/Ei
mouse strain was shown to be the cause of its resistance to
LPS-induced endotoxemia (46). GILZ overexpression with a
T cell lineage specific promoter induced an anti-inflammatory
Th2-type response in naive CD4T cells (47), and these mice
were less susceptible to a spinal cord injury model (48).
Moreover, the use of GILZ peptides suppressed inflammation in
a mouse model of autoimmune encephalomyelitis (24). Similarly,
mice with generalized overexpression of GILZ (GILZ-Tg) had
better survival rates in the cecal ligation and puncture sepsis
model relative to controls (14). However, in this model, the
protective effects of GILZ were not due to a decrease in
systemic inflammation but linked to increased bacterial clearance
due to more efficient phagocytosis by CD45+ peritoneal cells.
Overall GILZ gain- or loss-of-function in mouse models of
inflammation does not always result in opposite phenotypes. The
cell-type specific mechanisms by which GILZ modulates tissue
function both in normal homeostasis as well as in inflammatory
settings need to be considered. The pleiotropic effects of GCs
are mediated by numerous downstream targets in addition
to GILZ; this biological redundancy likely accounts for the
findings that GILZ deficiency does not always cause major
inflammatory phenotypes.

PSORIASIS

The epidermis is composed of keratinocytes which terminally
differentiate to form a permeability barrier essential for
survival. The balance between keratinocyte proliferation
and differentiation is tightly regulated, with alterations that
affect barrier function leading to common inflammatory skin
pathologies (49). One such disease, psoriasis, is a chronic
relapsing inflammatory condition identified in 1–2% of the
population, whose clinical presentation includes different
symptoms and severity, age of onset, and location of skin lesions
(50). Psoriatic patients typically develop reddish scaly plaques,
and one-third of patients also have affected joints, which may
lead to severe joint destruction (psoriatic arthritis). In addition,
this disease shows high comorbidity with other inflammatory
conditions such as metabolic and cardiovascular diseases (51).

Psoriasis pathophysiology is complex and includes both
genetic and environmental risk factors. Dysregulation of Th1
and Th17 lineages leads to overproduction of various cytokines
including IFN-γ, TNF-α, IL-23, IL-17, and IL-22 resulting in
epidermal hyperproliferation and skin immune infiltrates (52).
ROR-γt is induced during early Th17 differentiation and is a
central driver of the later stages of this process (53). ROR-γt
is present in IL-17-producing Th17 cells in a mouse model of
psoriasis, indicating involvement in the disease, and is currently
being investigated as a therapeutic target for drug design (54,
55). Both keratinocyte and lymphocytes can mediate psoriasis
due to alterations in pro-inflammatory signaling pathways and

transcription factors AP-1 [loss of function; (56–58)], as well as
NF-κB, STAT3, and TGF-β [gain of function; (59, 60)].

Histopathological characterization of psoriatic lesions reveals
epidermal thickening, abnormal epidermal differentiation, and
increased epidermal protrusions (rete-ridges), along with intra-
epithelial neutrophil infiltrates (Munro-like abscesses), and
pronounced immune infiltrates consisting of T cells and dendritic
cells (52). A widely used mouse model of psoriasis consists
of topical applications of imiquimod, a TLR7 agonist, which
induces the IL-23–Th17-cell axis and closely recapitulates the
histopathological, and molecular characteristics of the human
disease (57, 61, 62).

Therapeutic Actions of Glucocorticoids
The symptoms of psoriatic patients can be treated systemically,
topically, or by ultraviolet (UV) phototherapy (63). Classic
treatments include synthetic compounds (GCs, retinoids,
vitamin D derivatives, methotrexate, and cyclosporine) while
novel therapies use antibodies targeting major cytokines
associated with the disease (TNF-α, IL-17, and IL-23). As
psoriasis is a relapsing disease, most patients require long-term
management, which represents an important limitation for many
of these treatments due to poor tolerability and/or cumulative
toxicity (methotrexate and cyclosporine), or increased risk of
non-melanoma skin cancer (phototherapy or TNF inhibitors)
(64). These issues—age, specific symptoms, extent of lesions, and
previous records of diseases—need to be addressed in the clinical
practice to design efficient and safe treatments. While TNF-α
and IL-17 inhibitors avoid many adverse effects of classic drugs,
there are also concerns as these therapies can increase the risk of
systemic infections, and their long-term use may represent an
economic burden (52, 63).

GCs still represent the mainstay protocol for treating
psoriatic patients with mild disease severity, and are preferably
administered topically to minimize adverse side effects, including
skin atrophy, loss of skin barrier function, increased susceptibility
to infections, and delayed wound healing (65). However, in the
long term, even topical GCs can cause Cushing’s syndrome,
and adrenal insufficiency with serious consequences (66). In
addition, psoriatic patients with initially good responses to GCs
can experience flares due to insensitivity to topical steroids
(67). Downstream anti-inflammatory GC effectors such as ZFP36
and GILZ are attractive therapeutic candidates (36, 42, 68).
Indeed GILZ is ideal as it interferes with multiple levels of pro-
inflammatory signaling, including pathways involved in psoriasis
like AP-1, NF-κB, STAT3, and ROR-γt. However, given the tissue-
and cell type-specific differences in GILZ action it is important
to decipher the impact of therapeutic doses of GILZ not only
on skin immune cells, but also on epidermal keratinocytes, and
dermal fibroblasts.

Impaired Glucocorticoid-Signaling in
Psoriasis
GCs limit skin inflammation by signaling through GR (69).
Consistent with this, GR−/− mice featured dramatically
impaired epidermal differentiation, with decreased expression
of differentiation markers, common features in human psoriasis
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(49, 70). Also, late embryos and newborn mice with epidermal-
specific inactivation of GR featured phenotypic and molecular
alterations similar to those observed in psoriasis, including
enhanced expression of pro-inflammatory markers (71).
However, these alterations resolved spontaneously by yet
uncharacterized mechanisms, and adult GR epidermal KO mice
showed only mild skin defects (71). These data indicate that
besides being the target of a treatment for psoriasis, keratinocyte-
specific loss of GR is involved in the etiopathogenesis of
the disease.

In control adult mouse skin, treatment with imiquimod
strongly downregulated Nr3c1 as well as the closely related
mineralocorticoid receptor (MR/Nr3c2), which also plays anti-
inflammatory roles in this tissue and can be activated by GCs
(69, 72–74). Accordingly, GR- or MR- epidermal KO adult
mice displayed increased susceptibility to imiquimod-induced
psoriasis, and the loss of both receptors had significantly higher
impact on disease severity (72). In the absence of epidermal
GR and/or MR, regulation of downstream targets, like Gilz, is
affected. In cultured keratinocytes, Gilz was induced by GCs
in a GR-dependent manner (16, 17), consistent with a GR-
ChIP sequencing experiment that identified GR-binding sites
downstream of the Tsc22d3 gene (17). Importantly, full induction
of Gilz in response to GCs requires the presence of both
GR and MR and GC-induced binding of GR to the genomic
binding site near Tsc22d3 was diminished in the absence of
MR (17, 73).

In agreement with mouse models, expression of GR, MR,
and GILZ (33, 34, 75, 76) was downregulated in human
psoriatic lesions (Figure 1). Also, it has been reported that GR
nuclear translocation was reduced in psoriatic skin (77, 78).
Importantly, GILZ expression negatively correlated with levels
of pro-inflammatory cytokines IL-17A, IL-23, and IL-22; and
STAT3 in psoriatic lesions (33). In mice and humans, the
expression of other GC-target genes such as ZFP36, FKBP51,
and ZBTB16 was also decreased in psoriasis (34, 72), likely
aggravating disease severity. The findings that ZFP36 destabilizes
GILZ mRNA suggests a mechanism by which GILZ levels are
fine-tuned following exposure to GCs or cytokines that regulate
these genes (44).

Defective Cutaneous Glucocorticoid
Signaling in Psoriasis
Healthy skin is able to synthesize and release GCs through
its own local HPA axis analog (Figure 1); however, the
pathological relevance of local GC production had not been
addressed until recently (4, 75, 76, 79, 80). In line with the
observation that GC-target genes are downregulated in psoriasis,
metabolomics and transcriptomic profiling demonstrated that
cortisol was amongst the most decreased compounds in
psoriatic vs. non-lesional skin (76). It was also shown
that de novo synthesis of GCs was strongly decreased in
psoriatic skin lesions (Figure 1) due to reduced expression of
steroidogenic enzymes including steroidogenic acute regulatory
protein (StAR), 3β-Hydroxysteroid dehydrogenase (3bHSD1),
and the cytochrome P450 proteins CYP11A1, and CYP17

(75). 11-beta hydroxysteroid dehydrogenases type 1 and 2
(HSD11B1/HSD11B2) are responsible for cortisol to cortisone
interconversion (81). Their expression ratio and activity is
important for modulating epidermal differentiation, and have
been reported to be altered in lesional tissue [Figure 1; (75, 76)].
Consistent with this, treatment with TNF-α, IL-17A, and IL-
22 cytokines suppressed HSD11B1 and HSD11B2 expression in
human keratinocytes in a reconstituted skin model (76).

Importantly, psoriatic patients that received topical GCs
treatments not only normalized epidermal differentiation and
skin inflammation but also restored endogenous GC biosynthesis
in this tissue (76). Strikingly, mice exposed to clinically relevant
doses of UVB showed induction of the systemic steroidogenic
pathway, including GC production, indicating communication
between the skin, and central HPA axes (82). This could explain at
least partially why UVB therapy is beneficial for psoriatic patients
and indicates that systemic and local GC levels are vital for
cutaneous homeostasis. Altogether, these findings support that
defective GC signaling in the skin (by keratinocytes and likely
other cell types) is involved in the etiopathogenesis of psoriasis
as it interferes with epidermal differentiation, eliciting sustained
inflammatory responses. In this scenario, restoration of normal
GC signaling represents one major objective, underscoring
the relevance of elucidating the specific role of GILZ
in psoriasis.

GILZ AND MOUSE MODELS OF PSORIASIS

The role of GILZ in the imiquimod-model of psoriasis was
evaluated using gain- and loss-of-function mouse models
(Figure 2). In control mice, besides the cutaneous phenotype,
topical imiquimod also induces systemic effects including
increased circulating cytokines and splenomegaly (61). While
detailed histological evaluation of GILZ−/− skin has not
been published, GILZ−/− mice treated with imiquimod
showed increased severity in disease parameters, including
the macroscopic skin phenotype of scaling and swelling;
pro-inflammatory cytokine production; splenomegaly, and
draining lymph node cellularity (33). The higher susceptibility
to imiquimod-induced inflammation in GILZ−/− mice
was explained by the augment of Th17-inducing cytokines
by dendritic cells (IL-1, IL-23, and IL-6), and increased
proliferation of Th17 cells (33). However, it is important
to note that untreated GILZ−/− mice have increases in
IL-17A and IL-22 producing lymphocytes and that the
contribution of these basal alterations to the disease elicited
in the psoriasis model is unclear. Importantly, while addition
of IL-6 to Th17-promoting cytokines IL-1β/23 increased
T cell proliferation and expression of Th17 genes in vitro,
exogenous delivery of GILZ restored regulation of Th17 cell
proliferation (33). These data confirm that GILZ is key to restrict
pathogenic Th17 responses, which may be relevant for psoriasis
treatments (23, 33).

Given the role of GILZ in suppressing Th17 responses and
its downregulation in psoriatic lesions (33, 34), it was expected
that transgenic mice with generalized overexpression of GILZ
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FIGURE 1 | Defective cutaneous GC signaling in psoriasis. Healthy skin is able to synthesize and release GCs de novo by a hypothalamic–pituitary–adrenal axis

analog. The interconversion between inactive and active GCs by the enzymes 11-beta hydroxysteroid dehydrogenases type 1 and 2 (HSD11B1/HSD11B2) provides

another source of corticosteroids. When local steroidogenesis is stimulated, GC-activated GR regulates gene expression, including that of Gilz. The actions of GCs in

skin limit proliferation and inflammation. In psoriatic skin, de novo synthesis of GCs is strongly decreased and the expression/activity of HSD11B1/2 is impaired;

decreased GC levels have an overall negative impact on epidermal differentiation. The downregulation of GR and downstream anti-inflammatory mediators in psoriatic

lesions likely aggravates disease severity, including increased keratinocyte proliferation, impaired keratinocyte differentiation, and increased inflammation.

[GILZ-Tg mice (18)] would be protected from imiquimod-
induced inflammation. Surprisingly, these animals showed a
dramatic increase relative to controls inmany disease parameters,
including splenomegaly, and increased number and severity
of skin lesions. GILZ-Tg mice showed increased scaling,
abnormal keratinocyte differentiation, neutrophil infiltrates,
and increased induction of molecules associated with the
human disease (Il-17, Il-22, Il-23, Il-6, and Stat3). However,
the systemic response to imiquimod was similar in GILZ-
Tg and control mice (as was also the case in the cecal
ligation, and puncture sepsis protocol in GILZ-Tg mice; (14),
and there were not significant differences in the composition
of skin neutrophil or T cell infiltrates of GILZ-Tg vs.
controls (18).

Also, the pro-inflammatory actions of GILZ overexpression
were specific to skin as neither intestine nor spleen showed
increases in Th17-dependent cytokines relative to controls. The

deleterious effects of GILZ in the psoriasis model were likely
due to its overexpression in epidermis, rather than immune cells,

as TGF-β1 signaling via SMAD2/3 was constitutively activated

in GILZ-Tg keratinocytes. Moreover, GILZ overexpression in
cultured keratinocytes enhanced the induction of the psoriatic

marker S100a8 in response to IL-17A (18). Similar to human
disease, imiquimod-treated control skin showed reduced Gilz

expression (18). In contrast, as Gilz was not downregulated in
GILZ-Tg skin, it is feasible that the resolution of inflammation
requires reduced levels of GILZ, and that continuous expression,
and/or relatively high levels of this GC-target gene can exert
pro-inflammatory actions.

CONCLUSION

Despite their efficacy, topical administration of GCs to psoriatic
patients is accompanied by adverse effects including loss of skin
barrier function and increased susceptibility to inflammation
and infections. Also, later stages of inflammatory diseases
are characterized by a vicious circle of decreased response
to GCs, resulting in lower production of anti-inflammatory
mediators like GILZ and further loss of control of inflammation.
Given these limitations, there is need of improving GC-based
therapies for psoriasis and the delivery of GILZ appears as an
attractive possibility. There is an inverse correlation between
GILZ expression and psoriatic lesions; however, it is unclear
whether lower levels aggravate the disease or are part of
the pathogenesis. Also, the findings in mice that both gain-
and loss of function of GILZ result in higher susceptibility
to imiquimod-induced psoriasis raise questions about the
therapeutic potential of exogenous GILZ for this skin pathology.
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FIGURE 2 | Impact of GILZ in skin psoriatic lesions: Phenotypes of GILZ−/− and GILZ-overexpressing mice. (Left) Cell type-specific contributions to cutaneous

alterations in psoriatic lesions induced by the imiquimod mouse model in WT mice. Epidermal thickening (bracket), abnormal differentiation of keratinocytes

(arrowhead), and intra-epidermal neutrophil infiltrates (asterisk) are indicated. Dysregulation of both immune cells and keratinocytes leads to cytokine overproduction,

resulting in immune infiltrates, epidermal hyperproliferation, and abnormal epidermal differentiation. Arrows represent communication between cell types. (Right)

Summary of phenotypes in GILZ−/− (34) and GILZ-overexpressing (GILZ-Tg; 18) mice. Briefly, while untreated GILZ−/− mice had increased IL-17A and IL-22 in

immune cells, both GILZ−/−, and GILZ-Tg treated mice showed increased severity of imiquimod-induced psoriatic lesions. GILZ-Tg keratinocytes had constitutively

increased phosphorylation of SMAD2/3, which was further increased by imiquimod. E, epidermis; D, dermis; N, neutrophils; DC, dendritic cells; KC, keratinocytes.

Apparent discrepancies may derive from yet uncharacterized
cell-type specific functions of GILZ such as recently reported
effects on neutrophil and macrophage phagocytosis modulating
bactericidal activity. Also, as an exon common to all isoforms of
Tsc22d3 was deleted in GILZ−/− mice, it is plausible that other
GILZ isoforms play differential roles. Above threshold effects
from overexpression in GILZ-Tg mice may also explain these
seemingly controversial results. Until the physiological role of
GILZ in all skin compartments is better understood, therapies
based on generalized delivery of GILZ seem premature. Based on
the relevance of cutaneous GC-signaling, one may speculate on
future strategies of local delivery of GILZ specifically to immune
cells. It is also feasible that in psoriasis, the ability to produce
GILZ in response to GCs could be used to stratify patients
into two groups: those who upregulate this GC target would be
good candidates for GC therapy and those who do not could be
candidates for GILZ delivery to bypass the resistance.
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Steroids, Pregnancy and Fetal
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Maria Emilia Solano* and Petra Clara Arck

Department for Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Maternal glucocorticoids critically rise during pregnancy reaching up to a 20-fold increase

of mid-pregnancy concentrations. Concurrently, another steroid hormone, progesterone,

increases. Progesterone, which shows structural similarities to glucocorticoids, can

bind the intracellular glucocorticoid receptor, although with lower affinity. Progesterone

is essential for the establishment and continuation of pregnancy and it is generally

acknowledged to promote maternal immune tolerance to fetal alloantigens through

a wealth of immunomodulatory mechanisms. Despite the potent immunomodulatory

capacity of glucocorticoids, little is known about their role during pregnancy. Here we

aim to compare general aspects of glucocorticoids and progesterone during pregnancy,

including shared common steroidogenic pathways, plasma transporters, regulatory

pathways, expression of receptors, and mechanisms of action in immune cells. It was

recently acknowledged that progesterone receptors are not ubiquitously expressed

on immune cells and that pivotal features of progesterone induced- maternal immune

adaptations to pregnancy are mediated via the glucocorticoid receptor, including e.g., T

regulatory cells expansion. We hypothesize that a tight equilibrium between progesterone

and glucocorticoids is critically required and recapitulate evidence supporting that

their disequilibrium underlie pregnancy complications. Such a disequilibrium can occur,

e.g., after maternal stress perception, which triggers the release of glucocorticoids

and impair progesterone secretion, resulting in intrauterine inflammation. These

endocrine misbalance might be interconnected, as increase in glucocorticoid synthesis,

e.g., upon stress, may occur in detriment of progesterone steroidogenesis, by depleting

the common precursor pregnenolone. Abundant literature supports that progesterone

deficiency underlies pregnancy complications in which immune tolerance is challenged.

In these settings, it is largely yet undefined if and how glucocorticoids are affected.

However, although progesterone immunomodulation during pregnancy appear to be

chiefly mediated glucocorticoid receptors, excess glucocorticoids cannot compensate

by progesterone deficiency, indicating that additional und still undercover mechanisms

are at play.
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INTRODUCTION

In order to support mammalian pregnancies, a myriad of
adjustments in maternal physiology takes place. For example,
maternal immune responses are tightly regulated to prevent
inflammatory responses and rejection of alloantigens expressed
on fetal tissues (1, 2). The maternal immune adaptations to
pregnancy are pivotally modulated by endocrine signals. These
signals include the pronounced rise of sex hormones such as
progesterone and estradiol. Progesterone is essential for the
establishment and continuation of pregnancy (3). Progesterone
not only plays multiple immunomodulatory functions (4),
but also it supports uterine receptivity and quiescence (3,
5). Additionally to sex steroids, maternal glucocorticoids
dramatically increase over the course of pregnancy in order to
meet the increasing energy demands (6). Glucocorticoids are
potent activators of GR, and this activation has pleiotropic effects
on immune cells (7, 8). However, the molecular mechanisms
underlying how glucocorticoids contribute to the maternal
immune adaptation to pregnancy and the interplay between
glucocorticoids and sex hormones such as progesterone remain
largely unclear.

Intriguingly, although progesterone is generally
acknowledged to promote maternal immune tolerance to
alloantigens derived from the conceptus, progesterone receptors
are not ubiquitously expressed on immune cells (9). Light was
shed into this enigma only very recently, when it was identified
that pivotal features of progesterone induced- maternal immune
adaptations to pregnancy are mediated via the glucocorticoid
receptor (9, 10). Hence, in the present reviewmanuscript, we aim
to revisit the current evidence about the synthesis and interplay
between glucocorticoids and progesterone during pregnancy,
their impact on the immune system and consequences for
pregnancy maintenance and fetal development.

PROGESTERONE AND GLUCOCORTICOID
SYNTHESIS, REGULATION AND
RECEPTORS DURING PREGNANCY

Progesterone and Glucocorticoid
Receptors in Immune Cells
Both, progesterone and glucocorticoids, are significantly
involved in the regulation of immune responses (4, 7, 11).
The structural similarities between glucocorticoids and
progesterone raise the intriguing concept of mutual, interrelated
as well as individual pathways elicited by these hormones.
This concept gains relevance in the context of pregnancy,
where disequilibrium between these steroids is related
to altered maternal immune responses and pathological
pregnancy outcomes (2, 7).

The genomic effects of progesterone and glucocorticoids are
mediated by the intracellular progesterone and glucocorticoid
receptors (PR and GR), which belong to a subfamily of the
nuclear receptor superfamily (4, 7, 12). Upon binding to ligands,
PR and GR translocate to the cell nuclei, where they interact with
specific regions of the DNA to act as transcription factors that

modulate gene expression (7, 11, 12). Despite the high amino-
acid identity between PR and GR (12), their steroid binding
affinities, expression patterns, and target genes differ remarkably,
as summarized in Table 1.

The Nr3c1 gene encoding for GR is expressed in most tissues
of the organism, and virtually in all cells of the immune system
(31, 32). Glucocorticoids can bind the GR with high affinity to
elicit genomic but also non-genomic pathways in immune cells
(7, 33). Importantly, promiscuous binding of progesterone to
GR has also been observed in a number of settings, particularly
in in vitro models (9, 14). Due to alternative splicing and
alternative translation initiation sites, many isoforms of the GR
have been described (7, 13). These isoforms are also present in
immune cells and associated with diverse translational activities
or binding to glucocorticoids (7, 34). However, it remains
unknown whether GR isoforms are affected during pregnancy
or if they have differential affinity for progesterone. Indeed, as
detailed in Table 1 most progestogens have only very limited
affinity to glucocorticoid receptor compared to glucocorticoids
(14–16, 34).

The Nr3c3 gene encodes for two PR isoforms, PRA and PRB
(35). Both PR isoforms have differential transcriptional activity
and are predominantly found in mammary gland and in the
female reproductive tissues, such as the ovary and uterus (23, 35).
Overall, the presence of PR in immune cells is a matter of
controversy. Although a direct effect of progesterone on e.g., T
cells during pregnancy has long been proposed (36–39), recent
findings based on RT-qPCR approaches aiming to detect PR on
distinct immune cell subsets failed to confirm the expression of
PR in e.g., T and NK cells (9, 20, 40, 41). Promiscuous binding
of PR by glucocorticoids has been reported, although there is no
consensus on the reported relative binding affinities compared to
progesterone (14, 15).

Besides the PR, progesterone can elicit non-genomic
actions by binding to G-protein coupled membrane progestin
receptors (membrane progesterone receptors: mPR) and
the so-called progesterone receptor membrane components
(PGRMC) [reviewed in (4)]. Among them, mPRalpha/PAQR7
and mPRbeta/PAQR8 as well as PGRCM1 and 2 are present
in T cells (20, 29) and mPRalpha is expressed in particular
fractions of circulating Tregs (42). Hence, these pathways
may explain some of the effects of progesterone on immune
cells. Of note, information on glucocorticoid binding to
mPRs is ambiguous [(18), Table 1), whilst glucocorticoid
binding to PGRMCs has been described, albeit with low
affinity (19).

Taken together the close structural similarities and the
cell-restricted expression of receptors, progesterone and
glucocorticoids may act on immune cells via non-genomic
pathways as well as by likely binding to GR rather than to PR.
Due to their high levels during pregnancy, it seems plausible
that both progesterone and glucocorticoids act on GR to
trigger immunoregulatory signals. This will depend on the
bioavailability of the steroids, which varies across pregnancy
according to their synthesis, the amount of carrier proteins
limiting the free steroids reaching the tissues as well as from the
metabolism or exclusion of these steroids from the target cells.
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TABLE 1 | Comparison between general features of the progesterone and glucocorticoid receptors.

Progesterone receptor Glucocorticoid receptor Membrane progestin

receptors (mPR)

Progesterone receptor

membrane components

(PGRMC)

Genes NR3C3 NR3C1 PAQR 5-9 (progestin and

adipoQ receptor)

PGRMC1 and PGRMC2

Isoforms/subtypes PRA and PRB isoforms Multiple isoforms, including

variants of GRα, GRβ, GRγ,

GRA, GRB and GRP (13)

mPRα (PAQR7), mPRβ

(PAQR8), mPRγ (PAQR5),

mPRδ (PAQR6) and mPRε

(PAQR9)

PGRMC1 and PGRMC2

Relative binding affinity* Progesterone: 100%

(14–16) other progestogens:

1–46% (16)

Progesterone and other

progestogens: 1–6% (14) or

40% (15)

progesterone: 100% (17) progesterone: 100%

Corticosterone: 2.6% (16)

Dexamethasone: 0.2% (15)

Corticosterone: 85% (16)

Dexamethasone: 100% (16)

glucocorticoids: 0–26%

(17, 18)

glucocorticoids: low affinity

(19)

Expression in immune cells Limited to specific cell

lineages (9, 20, 21)

+++ (9, 20) ++ (20, 22) or

undetermined

++ (22) or undetermined

Uterus +++ (23) ++ (23, 24) ++ (22, 25) +++ (26)

Genomic pathways Dimers act as transcriptions

factors by binding

progesterone response

elements

Gene transactivation or

transrepression through

DNA and/or transcription

factor binding (27)

– –

Non-genomic pathways Monomers activate MAPK

pathways through

Src-kinase (28)

Binding to membrane

receptors (27) and signaling

through cytoplasmic

ligand-bound GR and

chaperone proteins (8)

Still controversial. Pathways

may involve G-proteins and

modulation of adenylyl

cyclase activity (4, 18, 29)

Multiple intracellular

signaling pathways, e.g.,

interacts with EGFR, ERK1,

casein kinase 2, and PDK

(30)

* Compared to the respective ligand with higher affinity.

Bioavailability of Progesterone and
Glucocorticoids During Pregnancy
Steroid synthesis such as in the case of progesterone and
glucocorticoids consists of the conversion of cholesterol as
a substrate through a series of enzymatic reactions, to
produce structurally interrelated products. This process is
tightly regulated by the tissue- and cell-specific expression of
steroidogenic enzymes (43).

For example after ovulation the ovarian follicular cells
that support the maturation of the oocyte undergo the so-
called luteinization process to form the corpus luteum. During
luteinization, the expression of genes and proteins that mediate
progesterone synthesis is prominently upregulated (44). In mice
and other mammals, the corpus luteum largely accounts for the
significant de novo synthesis of progesterone during the entire
duration of pregnancy. Here, progesterone concentration in the
blood increases until mid-late pregnancy, when it gradually starts
decreasing (45). This progesterone deficiency is considered as an
upstream event triggering parturition in mice (46). In humans,
the placenta expresses the enzymes involved in progesterone
production and commences steroidogenic synthesis at gestation
weeks 7–9, following the initial ovarian progesterone synthesis
(47). Progesterone levels continuously rise until reaching a
plateau in the last weeks of pregnancy (48). A progesterone
decline at late gestation does not occur in humans and it has been
suggested that parturition results from a functional progesterone
deficiency occurring at myometrial and other uterine tissues
(4, 49). Here, differential expression of progesterone receptor

isoforms may allow for progesterone-induced cervical relaxation
during parturition (49), hereby promoting the delivery of the
human fetus (50, 51).

It is well-known that glucocorticoids are largely produced in
the adrenal cortex, where they exhibit circadian and ultradian
rhythms (4). Maternal glucocorticoids rise dramatically
during pregnancy, e.g., during late murine pregnancy,
glucocorticoids reach an ∼20-fold increase compared to
mid-pregnancy concentrations (6). In humans, cortisol, the main
glucocorticoid, also increases dramatically during pregnancy,
reaching ∼350 ng/ml serum on week of gestation 26 (52).
Thereafter, cortisol remains relatively stable until parturition,
when it is strongly upregulated (52). In women, corticotrophin
releasing hormone (CRH) is produced by the placenta to further
stimulate adrenal glucocorticoid production (53) pinpointing the
critical relevance of glucocorticoid synthesis during pregnancy.

The actions of these high levels of progesterone and
glucocorticoids are limited by their binding to plasmatic carrier
proteins (54). Only the “free” fractions of progesterone and
glucocorticoids are considered to be able to bind receptors to
exert biological functions, e.g., after diffusing inside the target
cells (54). Corticosteroid-binding globulin (CBG) transports
around 75–80% of plasma glucocorticoids, thereby critically
limiting the abundance of free glucocorticoids available to cells
(55). Despite a pronounced increase of CBG levels and binding
capacity throughout pregnancy (6), 5–6% of the total cortisol
remains free (56). Hence, the absolute concentration of free
glucocorticoids increases during pregnancy (56). In contrast,
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both the fraction of free progesterone and its total concentration
increase throughout pregnancy (57). Progesterone only partially
binds CBG with four times lower affinity as glucocorticoids.
Instead, approximately the 80% of plasma progesterone primarily
binds albumin (54).

The availability of steroid hormones can be additionally
reduced by their intracellular metabolism. However,
physiological expression of 11β-hydroxysteroid dehydrogenase
type 2 capable of metabolizing glucocorticoids into inactive
forms (6) is largely negligible in human or mouse immune cells
(58) and potential modulation during pregnancy remains to date
unexplored. Moreover, the progesterone-metabolizing enzyme
20α-hydroxysteroid dehydrogenase (Akr1c18) was shown to
be highly expressed in thymocytes and initially considered as a
marker for mature T cells (59, 60). However, data available to
date seem ambiguous, as Akr1c18 is not listed when searching
gene-expression database for immune cells (32). Hence, the
significance or role of the expression of 20α-HSD or 11β-HSD in
lymphocytes and possibly also myeloid cells is still unknown.

Moreover, Abcb1a and Abcc1 efflux transporters, members
of the ATP binding cassette (ABC) transmembrane transporters
family can actively exclude intracellular glucocorticoids hereby
limiting their activity e.g., in mouse placenta (6). Abcb1a
and Abcc1 (also known as Mdr1 and Mrp1) are differentially
expressed in immune cells such as T lymphocytes (61) and
Abcb1a deficiency was associated to decreased generation of
Tregs in vivo and in vitro mouse models (62). Remarkably,
progesterone and other progestogens are potent inhibitors of
Abcb1a function (63), mechanism that may act synergistically
with the high levels of glucocorticoids to further promote
glucocorticoids actions during pregnancy.

Taken together existing published data on progesterone
and glucocorticoids levels as well as their binding to plasma
proteins during human pregnancy, it becomes evident that early
pregnancy consists in a period of high progesterone and low
glucocorticoid availability. In contrast, both free progesterone
and glucocorticoids increase throughout pregnancy and are
found at comparable concentration ranges in late pregnancy
(48, 57). Hence, while a large body of evidence supports that
steroid driven immunemodulation reliesmainly on progesterone
at the beginning of pregnancy it is tempting to hypothesize
that in later stages, glucocorticoids with high affinity for GR
gain relevance in sustaining maternal immune tolerance. In
this context, the regulation of progesterone and glucocorticoids
bioavailability by expression of specific metabolizing enzymes
and exclusion transporters in immune cells during pregnancy
remains still unknown.

Modulation of Steroids by External Factors
The availability of steroid hormones during pregnancy, but also
unrelated to reproduction, can be dramatically modulated by
external factors. One key example is the exposure to stress,
commonly described as a high perception of stress. It is well-
established that stressful stimuli trigger the activation of the
hypothalamic–pituitary–adrenal (HPA) axis, which results in
secretion of glucocorticoids by the adrenal glands (Figure 1).
Although this neuroendocrine response is gradually attenuated

FIGURE 1 | “Pregnenolone steal” or how high stress perception may drive the

depletion of progesterone. High stress perception activates the

hypothalamic–pituitary–adrenal axis, resulting in the respective secretion of

corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH)

and cortisol, the main glucocorticoid in humans. Moreover, stress can affect

steroidogenesis in peripheral tissues. Steroidogenesis refers to the

transformation of cholesterol into steroid hormones through a serious of steps.

Here, the intermediate pregnenolone is a precursor of most steroid hormones,

including progesterone and cortisol. Upon stress, the elevated synthesis of

cortisol may reduce (“steal”) the pregnenolone available for the synthesis of

down-stream hormones other than cortisol. This hypothetical scenario

provides an explanation for the impaired progesterone production in response

to stress.

across pregnancy (53), stressful stimuli can still elicit the
secretion of glucocorticoids in mouse and humans (6, 64).
Concomitantly, stress challenges reduce progesterone levels
during pregnancy in mammals (65–68). This could result
from impaired steroidogenesis in the ovary, e.g., due to
poor stimulation by placental lactogens (68). Stress-induced
glucocorticoids may directly influence progesterone synthesis,
as GR is also expressed in the ovary, where depending on the
experimental conditions they have been shown to stimulate or
inhibit steroidogenesis (69, 70).

Moreover, progesterone and glucocorticoids share common
steroidogenic pathways and precursors, such as cholesterol-
derived pregnenolone (Figure 1). Hence, a hypothesis for the
depletion of progesterone as a result of glucocorticoid production
in response to high stress perception has been proposed (71).
This hypothesis is referred to as “pregnenolone steal” (71)
and supports that the elevated synthesis of cortisol caused by
stress depletes (“steals”) the availability of pregnenolone for the
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synthesis of down-stream hormones other than cortisol, which
subsequently may also impede the synthesis of progesterone.
This hypothesis requires confirmation also in the context of
pregnancy. The conversion of cholesterol to cortisol occurs in
the mitochondria of steroidogenic tissues, best described for
the adrenal cortex, but also for various other tissues, including
primary lymphoid organs, intestine, skin and brain (72, 73).
If cortisol synthesis could also be induced e.g., by stress in
tissues such as the ovaries and placenta, it could theoretically
result in a reduction of the precursors available to produce
progesterone during pregnancy. Interestingly, in ovary, the main
site of progesterone synthesis in early human pregnancy, the
specific enzymatic machinery for glucocorticoid production has
already been described (74), and it remains to be confirmed
whether the pregnenolone steal may indeed impede ovarian
progesterone synthesis in response to stress.

IMMUNE PATHWAYS MEDIATED BY
PROGESTERONE AND
GLUCOCORTICOIDS

Antigenic disparity between the mother and the fetus is not only
tolerated by the maternal immune system, but also promotes
placental and fetal growth in mice (75). Understanding the
mechanisms through which maternal immune tolerance toward
fetal antigens is maintained is not only critical to decipher how
survival of species is ensured. Such insights also allow shedding
light on the pathogenesis of pregnancy complications. The
collapse of maternal immune tolerance can become evident as
cytotoxic responses at the feto-maternal interface and subsequent
fetal loss (21, 76, 77) or impaired placental and fetal development
(68, 78).

To date, a wealth of data highlights that high levels of
progesterone are critically required to switch the maternal
immune responses toward tolerance [e.g., discussed at length
in (4)]. Progesterone promotes a tolerogenic profile on innate
immune cell subsets, such as macrophages and dendritic cells,
which is essential for successful uterine tissue remodeling and
pregnancy maintenance (1–3). For example, in vitro stimulation
with progestogens induces maturation of macrophages with
M2 profile (79), and prevents the differentiation of dendritic
cells toward a mature phenotype (80). A progesterone-
mediated modulation of the adaptive immune responses has
also been investigated in in vivo and in vitro models.
Here, progesterone supports the expansion and suppressive
function of Tregs during pregnancy, the skew toward an anti-
inflammatory cytokine profile and suppression of CD8+ T cell
cytotoxicity (20, 68, 81–83).

Despite the availability of PR and GR specific pharmacological
agonists and antagonists (Table 1), experimental interventions
during pregnancy employed most often progesterone as agonist
or the antagonist RU486, both of which can bind PR and GR.
Hence, these approaches do not allow differentiation between
the individual effects of progesterone or glucocorticoids on
distinct immune cell subsets, which greatly limits to understand
the individual role of hormones or cell subsets in maintaining

pregnancy. Such limitation can now be easily overcome by the
use of mice with targeted deletion of certain hormone receptors
on distinct immune cell subsets. In fact, recent evidence revealed
that the targeted deletion of PR on dendritic cells in mice
promotes a non-tolerogenic, mature phenotype of dendritic cells,
along with the failure to generate CD4+ Treg and CD8+CD122+

Treg cells and impaired placental and fetal development (78).
Also targeted gene deletion of the GR on T cells in mice
pinpoints that GR and not PR is an upstream promotor of Treg
expansion during pregnancy. In vitro approaches further support
that GR mediates the expansion of T regulatory cells by selective
induction of apoptosis in conventional T cells (9, 10). These
mechanisms are at play during pregnancy, as in a mouse model
of experimental autoimmune encephalomyelitis, GR deletion in
T cells prevented pregnancy-induced expansion of T regulatory
cells, as well the corresponding mitigation of autoimmunity (9).

In this context, functional analyses of the contribution of
progesterone signaling through mPRs and PGRMC to immune
regulation during pregnancy remain still largely elusive. To date,
accumulating in vitro evidence highlights the importance of these
non-genomic pathways e.g., on T cell responses (20, 29, 84).

Besides the direct hormone-steroid receptor interaction,
progesterone can indirectly affect immune responses. Uterine
and placental expression of the PR promotes the local expression
of immunomodulatory molecules, such as progesterone-induced
blocking factor (PIBF), galectin-1 (Gal-1) (41, 83), and heme
oxygenase 1 (Hmox1) (68). These potent immunomodulators are
critical for the establishment and continuation of pregnancy, as
shown in mouse models and human pregnancies (41, 68, 83,
85, 86). For example, PIBF can enhance the synthesis of Th2
cytokines and dampens NK cell cytotoxicity (41) whereas Gal-1
induces a tolerogenic phenotype in dendritic cells, which results
in Treg expansion (81). In turn, the enzyme Hmox1 supports
the generation of CD8+CD122+ regulatory T cells that during
pregnancy promote placental vascularization and fetal growth
(68). Pathways involved in progesterone-mediated promotion
of pregnancy maintenance may also include the epigenetic
silencing of key T cell-attracting inflammatory chemokine genes
in decidual stromal cells, as observed in mice upon progesterone
stimulation (87). This epigenetic silencing of chemokine genes
can subsequently suppress the accumulation of anti-fetal effector
T cells in the decidua, hereby reducing the risk for fetal loss.

Some of progesterone-induced pathways in the uterus could
also be mediated by GR. In fact, although glucocorticoids seem
to be dispensable during early pregnancy (88) uterine GR
expression is critical to ensure successful pregnancy. Evidence
arising from transgenic mice shows that a targeted deletion of GR
in the uterus results in subfertility, excessive inflammation and
altered immune cell recruitment during decidualization (23).

In the light of these recent observations, an upstream role
of GR in pregnancy induced immune tolerance is underscored,
while new questions on the roles of progesterone and
glucocorticoid non-genomic pathways appear. These concepts
challenge previous notions on processes taking place during
pregnancy and invite not only to revisit former data but also to
advance in the research of these endocrine-immune mechanisms
from this novel perspective. Of note, a number of technical
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TABLE 2 | Salient technical tools available to discriminate steroid receptor-specific pathways.

Progesterone receptor Glucocorticoid receptor Membrane progestin

receptors (mPR)

Progesterone receptor membrane

components (PGRMC)

Selective agonists 20α-dihydrodydrogesterone

(DHD) (89)

Dexamethasone,

betamethasone (15),

ZK209614 (90)

progesterone conjugated to BSA (50)

Antagonist non-selective: RU-486 – –

selective: ZK98299 (91),

Ulipristal acetate (92),

Org31710 (93)

selective: RU-43044 (94)

Mouse models for cell

specific depletion

Prfl/fl (21) Grfl/fl (9, 10) – Pgrmc1fl/fl and Pgrmc2fl/fl (30)

tools to discriminate the receptor-specific pathways are to date
available (Table 2) and promise exciting progress in the research
in the field.

IMPACT OF PROGESTERONE AND
GLUCOCORTICOIDS ON PREGNANCY
OUTCOME AND MATERNAL IMMUNE
RESPONSE

Given the shared steroidogenic pathways and transport of
progesterone and glucocorticoids as well as their widespread
crosstalk in immune cells and reproductive tissues, it is
tempting to speculate that a tight equilibrium between these
steroids underlies healthy pregnancy and fetal development
(Figure 2). As discussed below, this equilibrium can be disrupted
with consequences for the establishment or continuation of
pregnancy or affecting the developing offspring (Figure 2).
Hence, progesterone and glucocorticoids appear as attractive
pharmacological treatments, e.g., that could restore maternal
immunotolerance, and they are often supplemented to women
at risk for pregnancy complications.

Progesterone, Infertility, and Early
Pregnancy Loss
Worldwide, around 10% of couples experience fertility problems,
wherebymale and female factors almost equally account for these
incidences. Interestingly, the overall burden of female infertility
has remained similar over the last 2 decades, despite the progress
in assisted reproductive techniques (95). Besides infertility, early
pregnancy loss clinically defined as spontaneous miscarriage
before the week 20 of gestation occurs in 10–15% of healthy
women (96). A large fraction of spontaneous miscarriages is due
to unknown etiologies, in which immune maladaptations, e.g., in
response to environmental factors (97), are suspected to play a
critical role.

Progesterone insufficiencies and related inability to mount
an appropriate immune response favoring embryo implantation
has been frequently put forward to explain these incidences.
However, to date, the high variability in progesterone secretion
and the limitation to measure glucocorticoids in clinical routine
hinder the diagnosis of progesterone deficiency or glucocorticoid

imbalances during normally progressing pregnancies as well
as pathologies such as infertility and spontaneous miscarriage
(98, 99). Given the soaring levels of steroid hormones
occurring during pregnancy, endocrine interventions have
been frequently used in couples suffering from infertility or
pregnancy losses. Infertile women orally treated with the
progestogen Dydrogesterone, which shows a high affinity
for the PR, had higher birth rates compared to treatment
with vaginal micronized progesterone (100). However, the
potential modulation of the maternal immune response by these
treatments has not been tested.

Similar to the infertility trial described above, treatment with
oral Dydrogesterone also reduced the risk in women with a
history of recurrent pregnancy loss, whereas treatment with
vaginal micronized progesterone failed to reduce the abortion

risk (101). In this study, cytokine levels were tested and
significantly differed between women with recurrent pregnancy

loss who were assigned to the different treatment arms, which

limits the analyses of treatment effects on immune responses.
Comparably, progesterone withdrawal or blockage results in fetal

loss in mammals (83, 102, 103) and the PR and GR antagonist
RU486 is effectively employed to terminate human pregnancies
(104, 105).

Insights into the mechanisms underlying the pregnancy
protective effects induced by oral progestogens are highly
desirable. Considering that vaginal administration of micronized
progesterone did not improve implantation success in infertile
patients and failed to reduce the abortion rate, it can be
speculated that the oral route of application increase systemic
progestogen levels to the degree required in order to initiate the
pregnancy-protective effects on the maternal immune system.

Additional evidence for an upstream role of progesterone in
ameliorating the risk for pregnancy pathologies arise from more
recent studies on progestogens supplementation during early
pregnancy (3, 106, 107). Reduced progesterone, e.g., due to luteal
insufficiency or stress may influence maternal tolerance toward
fetal antigens and result in fetal loss (108, 109). Despite the
wealth of information on the interaction between progesterone
and the immune response, very little insights into the causal
relationship between altered hormones levels, collapse of the
maternal immune tolerance and subsequent pregnancy loss are
available to date, which should be addressed in future trials.
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FIGURE 2 | During pregnancy a tight balance between glucocorticoids and progesterone may take place. An equilibrium between these hormones ensures adequate

levels to sustain uterine receptivity and quiescence, as well as a tolerogenic immune profile, which pivotally promotes placental vascularization and a healthy fetal

growth. In contrast, a disequilibrium in progesterone and/or glucocorticoids may fail to sustain pregnancy, and underlie an altered intrauterine immune profile, prone to

inflammation, which leads to placental insufficiency and poor fetal growth. Such a disequilibrium may play an upstream role in women suffering from infertility or from

pregnancy complications, such as early pregnancy loss, preterm birth, and IUGR. Impaired fetal growth and altered prenatal exposure to glucocorticoids influences

the fetal immune ontogeny, which may result on fetal programming of immune disease in the offspring. DC, dendritic cells; Mφ, macrophages; APC, antigen

presenting cells; IUGR, intrauterine growth restriction.

Due to their potent immune regulatory capacity,
glucocorticoids appear as a potential therapeutic option in
women suffering from with repeated idiopathic embryo
implantation failure. Corticoid therapy is becoming an
important medication for patients with history of repeated
implantation failures (RIF) after IVF/ICSI and at least a
proportion of the patients respond to such intervention (110).
Indeed, emerging data accumulated in small group of patients
with increased numbers of NK cells in the endometrium
suggests potential beneficial effects of corticosteroid therapy
(111) as intrauterine perfusion of dexamethasone reduced NK
cell frequencies and resulted in successful pregnancy (112).
Of note, the safety of glucocorticoid administration during
pregnancy has not yet been completely clarified (111, 113)
and concerted efforts need to be devoted to identifying
patients that can specifically benefit from corticosteroid
therapies (114).

Preterm Labor
Rates of prematurity are currently on the rise, not only in
developing countries or countries in transition to development,
but also globally (115). Consecutively, preterm birth is the main
reason for newborn death worldwide and a major contributing
factor to poor offspring’s health. Progress has been made to
predict the risk for preterm birth, but its etiology is still enigmatic.
In the context of preterm birth, the importance of the maternal
immune system is increasingly recognized. Term labor is initiated
by complex pathways, which include the up-regulation of
inflammatory signals (116). Pilot data suggest that the collapse
of maternal immune adaption and a premature activation of
inflammatory pathways trigger labor prematurely (117). Here,
it remains to be demonstrated whether the up-regulation
of inflammatory signals follows a functional progesterone
withdrawal. In fact, vaginal progesterone application has been
demonstrated to decrease the risk of preterm birth and to
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improve perinatal outcomes in singleton gestations with a short
cervix in humans, suggesting that progesterone ensures uterine
quiescence in cervical tissue (115). Very recently, it has been
demonstrated that treatment with progesterone may be a strategy
to prevent preterm labor/birth and adverse neonatal outcomes by
attenuating the proinflammatory responses at the maternal-fetal
interface and cervix induced by T cell activation (24).

Similar to PR, the myometrium expresses GR, although at
lower levels (118), and some of anti-inflammatory progesterone
actions in this tissue, e.g., COX-2 or IL-1β repression may be
also mediated by GR (23, 93). At term labor glucocorticoids
are potently triggered (52). However, there are no reports on
beneficial effects of glucocorticoids on the maternal outcomes,
e.g., on women that received antenatal steroid therapy for fetal
lung maturation. Altogether, potential implications of maternal
glucocorticoids on the modulation in preterm labor are not yet
clearly established.

Intrauterine Growth Restriction
Intrauterine growth restriction (IUGR) refers to suboptimal
fetal growth, a condition that affects 3–10% of pregnancies
(119). IUGR may result from placental insufficiency, e.g., due
to impaired uterine or placental vascularization. Progesterone
can promote uterine and placental vascularization by diverse
pathways. For example, progesterone upregulates the VEGF
homolog placental growth factor (PlGF) (120), which is expressed
by trophoblast and uterine NK cells (121, 122). PlGF promotes
NK cytokinesis and consequently decidual spiral arteries
remodeling during early pregnancy and labyrinth vascular
branching in mid to late murine pregnancy (122). Indeed, it is
well-accepted that uterine NK cells (122) promote pregnancy
related uterine vascular changes through pathways including the
secretion of cytokines such as IFN-γ and IL-17. IFN-γ affects
uterine vasculature and stromal gene expression, which leads to
vessel instability and facilitates remodeling of decidual arteries
(123). Recently, it was also proposed that progesterone and
estradiol trigger apoptosis in neutrophils, which transfer proteins
to T cells. These “neutrophil-induced T” (niT) cells upregulate
regulatory markers and promote vessel growth in vitro through
IL-17 and VEGF expression (124).

Moreover, in a mouse model of mid-gestational stress
we observed that reduced progesterone was associated to
epigenetic changes in the placenta that resulted in decreased
heme oxygenase-1 (Hmox-1) expression and IUGR. These
changes were caused by an increase of cytotoxic CD8+ T
cells producing inflammatory cytokines. This inflammatory
surge was unopposed by CD8+CD122+ T regulatory cells.
Notably, supplementation of progestogens mitigated the IUGR
by restoring Hmox-1 expression as well as suppressing
inflammation (68).

Intriguingly, stress-induced intrauterine inflammation takes
place in an environment rich in glucocorticoids (6, 68).
Glucocorticoids can affect placental gene expression and growth
(6, 125), with consequences in the nutrition and gas exchange
with the fetus. These effects together with potential fetal
excessive glucocorticoid exposure are hypothesized to underlie

intrauterine growth restriction i.e., in the case of maternal dietary
protein restriction, or stress [reviewed in (8)].

Together these observations provide evidence that the
functions of progesterone and glucocorticoids are not
exchangeable and that a regulated balance is required in
the uterus to promote fetal growth.

Prenatal Exposure to Excess
Glucocorticoids: Fetal Programming of
Postnatal Immunity
During late gestation, glucocorticoids are required to ensure
structural and functional organ maturation in the fetus (126,
127). However, prenatal exposure to glucocorticoid surges
is detrimental for fetal growth and may hold significant
consequences for postnatal physiology (8). Fetal glucocorticoid
excess can be induced e.g., by antenatal steroid treatments in
the case of risk for preterm birth (128). Additionally, antenatal
glucocorticoid exposure is proposed to underlie a number of
conditions, such as maternal malnutrition (129), stress (6), and
infection (130). In mice, prenatal stress and the consequent fetal
glucocorticoid excess resulted in intrauterine growth restriction
(IUGR) particularly in female offspring (6). These observations
could be explained by sex specific stress responses at the
placenta, which limits the transfer of maternal glucocorticoids
to the fetus. Indeed, placentas from female offspring failed to
upregulate placental protective mechanisms, such as 11β-HSD2
and ABC transporters in response to antenatal stress, whereas
these protective mechanisms prevented glucocorticoid excess in
male fetuses (6).

Growing evidence underscores a role of prenatal
glucocorticoid exposure in offspring’s immune ontogeny
and impaired postnatal immunity (131, 132). These effects
could be multifactorial, including indirect and direct effects
in the immune system (8). For instance, prenatal stress or
glucocorticoid excess can result in disarrangements in the HPA
[reviewed e.g., in (133)]. Generally, it is widely accepted that
postnatal HPA hypoactivity follows prenatal stress exposure
(134). Metabolic disarranges in offspring exposed to prenatal
stress or glucocorticoids have also been observed and include
the programming of a thrifty metabolic phenotype (135). Both
postnatal HPA and metabolism may affect postnatal immune
responses. Remarkably, premature exposure to glucocorticoids
may also affect the developing fetal immune system [reviewed
in (8)]. For example, antenatal steroid treatment resulted in
newborns with impaired immunity (136) e.g., due to poor
neutrophil (137) and T cell (138) responses.

FINAL REMARKS

Recent data emerging from mice carrying cell specific gene
deletions underscore that pathways downstream the GR in
immune cells are critically involved in promoting immune
tolerance during pregnancy (9, 10). As until recently this
tolerance was considered to be primary modulated by signaling
through the intracellular PR, these novel observations invite
to reexamine aspects of endocrine immune regulation during
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pregnancy. In early pregnancy such GR-mediated pathways
are likely elicited by high levels of progesterone. However,
glucocorticoids with high affinity for GR outpace progesterone
levels in mid-late stages of gestation. Simultaneously the
maternal inflammatory load intensifies due to the cumulative
exposure to antigens derived from the conceptus (139).
Whether this glucocorticoid predominance translates into a
chief immunomodulatory role remains unknown and requires
empirical validation. Taken together the here summarized data,
it is tempting to anticipate the proximity of a paradigm shift with
regards to immune-endocrine responses during pregnancy e.g.,
related to signaling pathways or potential therapies to promote
immune tolerance during pregnancy.

Of note, glucocorticoids and progesterone appear to
be present in a tight equilibrium during pregnancy. Even
subtle disruptions of this equilibrium may have significant
consequences for pregnancy progression and fetal development
(8, 68) (Figure 2). However, detailed information on their
modulation and potential associations to inflammatory
mechanisms taking place in the context of pathological
pregnancies remain largely elusive. This is at least partly due to
the fact that progesterone and glucocorticoids are not routinely
assessed during pregnancy. Such assessments could refine
the identification of women that can benefit from endocrine
therapies to achieve or support pregnancy and fetal growth.

Finally, the tight crosstalk between pathways downstream
progesterone and glucocorticoids could have therapeutic
implications. In clinical praxis, glucocorticoids are broadly

employed to reduce inflammation in pathological settings.
Still, due to the side effects of their long-term use, a great
body of research has attempted to find active compounds that
could replace corticosteroids particularly as a chronic therapy.

It could be hypothesized that progesterone could be such
an alternative. For example, the mitigation of the course of
multiple sclerosis in pregnant women, with an intensification
of the disease activity in the postpartum period (140), suggests
an upstream immunomodulatory role of pregnancy-induced
hormones (9, 141). However, a recent clinical trial failed to
demonstrate an effect of progestogens in preventing post-partum
relapses in women suffering from multiple sclerosis (141)
implying a limited efficacy of the treatment applied in this
trial. Hence, despite its high clinical relevance, the empirical
evidence to support the use of progestogens as a replacement
for glucocorticoids remains to date sparse and requires still
thorough investigation.
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