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Editorial on the Research Topic

Lignans: Insights Into Their Biosynthesis, Metabolic Engineering, Analytical Methods and

Health Benefits

Lignans constitute a multifaceted group of phytochemicals widely distributed in terrestrial
plant lineages (Ayres and Loike, 1990; Vassão et al., 2010). Lignans have important roles in
plant physiology, development, and ecology (i.e., interactions and adaptations to ever-changing
environments) (Burlat et al., 2001; Markulin et al., 2019). As their specialized metabolite nature
might suggest, lignans have been implicated in plant defense protection against a variety of
herbivores and microorganisms (Gang et al., 1999; Vassão et al., 2010; Seneviratne et al., 2015).

Reputable studies in the fields of human diet and/or nutritional care were initiated with the
discovery of mammalian lignan (ML) formation from lignan-rich diets over the last decades
(Axelson et al., 1982). Indeed, some lignans, aka “phytoestrogen” lignans, are converted into the
MLs, enterodiol and enterolactone, by human gut microbiota upon their ingestion. These MLs
have extensively described and discussed chemopreventive properties against various tumors (such
as breast, colon, and prostate cancers) and/or cardiovascular disorders (Rietjens et al., 2017).

Critical analysis of the lignan research literature by Yeung et al. also revealed important
features about trends in lignan research. Significantly, around 80% of lignan-related papers were
published since 2000, of which about half of these were in 2010 or later; this clearly demonstrates a
significant growth in interest over the last 20 years for this natural product family. Furthermore,
the overall importance of flax (Linum usitatissimum), Schisandra (Schisandra chinensis), and
Forsythia (Forsythia x. intermedia) is clearly evident in the literature analysis of lignans. Far from
being limited solely to plant biology (around 20% of publications), many papers were centered
on pharmacology (around one fourth) and chemistry (around one fourth). It should be noted
that, in line with this observation, the current Research Topic herein includes studies on plant
biology [i.e., biosynthesis of lignans and neolignans in flax (Bose et al.), chemistry] [e.g., extraction
of sesame oil lignans (Michailidis et al.)], and pharmacology [e.g., pharmacological value of
nordihydroguaiaretic acid (NDGA) and its (semi-)synthetic derivatives (Manda et al.)]. Yeung et al.
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also indicated a significant increase, in the most recently
published publications, for studies based on the pharmacological
importance of ingestion of lignans (e.g., secoisolariciresinol,
lariciresinol, matairesinol, pinoresinol, medioresinol, and
syringaresinol) in the diet, with particular emphasis on their
cancer, cardiovascular disease, and diabetes prevention or
antioxidant properties. However, the authors of this critical
analysis also pointed out the need for more clinical trials to
support beneficial effects and to establish optimal doses of lignan
intake in humans, as such trials are estimated to contribute to
only 0.2–1.1% of the literature reviewed.

Many lignans are formed by the oxidative coupling of
E-coniferyl alcohol moieties. Lignans can share the same
precursors as for lignins, the complex biopolymers that provide
rigidity and support to vascular plants (Davin and Lewis, 2003).
Understanding regulation of lignan biosynthesis is of particular
importance for many applications. For instance, the use of plant
tissue culture in cosmetics has gained renewed impetus in the
last few decades, and the cosmetics industry is expected to
expand to a turnover of several hundred billion US dollars per
year. Interestingly, Bose et al. focused on in vitro culture of
flax (Linum usitatissimum), a well-known rich source of lignans
and neolignans, for its potent cosmetic properties. In-depth
phytochemical study using UPLC-HRMS confirmed the high
lignan and neolignan accumulation potential of this species,
including 7 neolignans newly described, and their potential use
in cosmetic applications. In particular, the study confirmed the
importance of optimizing conditions of in vitro culture for a
specific application.

Designing effective analytical methods for lignans also
helps to gain new insights into natural lignan chemodiversity,
evolution across the plant kingdom, as well as into the
mechanism(s) of certain biological activities that remain elusive,
and which require purified compounds for further study
(Teponno et al., 2016). Moreover, extraction and purification
steps are well-known limitations for the potential industrial use
of certain lignans. Accordingly, due to their broad biological
importance, a range of studies reported herein address isolation
and purification of the lignans sesamin and sesamolin from
sesame (Sesamum indicum), including their sourcing from
sesame seed and sesame seed-derived products. Just a few
previous works have reported producing both of these two
lignans in high quantity and purity using a low cost, fast,
methodology. That is, Michailidis et al. describe an integrated
method for the recovery of sesame and sesamolin from
sesame oil, with a purity of more than 95%, using centrifugal
partition extraction. These purified compounds were then
further tested for their tyrosinase, elastase, collagenase, and

inhibition function of hyaluronidase in order to assess their
cosmetic properties.

The path to the market of a natural product can often
be lengthy and sometimes involves the removal of significant
disadvantages, such as low solubility or adverse toxicity (Cragg
andNewman, 2001). Themost commonly known lignan example
is podophyllotoxin, which is medicinally used worldwide as
a starting compound for semi-synthesis of potent anticancer
drugs that inhibit topoisomerase II (Cragg and Newman,
2001). Moreover, the review paper herein by Manda et al.
sheds light on nordihydroguaiaretic acid (NDGA), another lead
lignan medicinal compound, and a clear example of all these
considerations. NDGA is a phenolic lignan from the creosote
bush (Larrea tridentata), found in deserts of Mexico and the
United States. It has long been used in traditional medicine for
treating various diseases, including cancer, renal, cardiovascular,
immunological, and neurological disorders, and even aging.
The review encompasses current knowledge of NDGA uses,
including its targets and side-effects and its synthetic analogs as
potential therapeutic agents. In particular, preclinical studies in
cell culture and rodents suggest that NDGA is a promising drug
for the prevention or treatment of many chronic diseases and
cancers, largely due to its direct (scavenging of reactive oxygen
species) and indirect (activation of endogenous antioxidant
responses mediated by transcription factor Nrf2) antioxidant
effects. However, high concentrations of NDGA can also be
cytotoxic. In recent years, production of NDGA analogs, some
being more potent and target-selective, and exhibiting lower
toxicity due to the prevention of the conversion of the catechol
functionality to a quinone, has given new impetus to this area.
These efforts have culminated in the development of tetra-
O-methyl nordihydroguaiaretic acid (Terameprocol), currently
used in several cancer clinical trials. Interestingly, some NDGA
analogs are also promising in treatment of neurodegenerative
disorders and metabolic syndrome.

In summary, in planta lignan biosynthesis and functions,
together with their improved extraction procedures and/or
health benefits, provide exciting new frontiers for scientists from
numerous fields of expertise for further research. It is anticipated
that the papers herein on this Research Topic have the benefit of
shedding new light on this family of natural products, the interest
in which has been increasing over the last 20 years, whether in
plant science, chemistry or pharmacology.
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Recovery of Sesamin, Sesamolin, 
and Minor Lignans From Sesame 
Oil Using Solid Support-Free 
Liquid–Liquid Extraction and 
Chromatography Techniques and 
Evaluation of Their Enzymatic 
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Dimitris Michailidis, Apostolis Angelis, Nektarios Aligiannis, Sofia Mitakou, 
and Léandros Skaltsounis*
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In this study, an integrated process for the recovery of sesamin and sesamolin, two high 
added-value lignans of sesame oil (SO) was developed, using synchronous extraction and 
chromatography techniques. The extraction of SO phenolic content was studied using 
two different extraction techniques: Annular centrifugal extraction (ACE) and centrifugal 
partition extraction (CPE). The derived data of each experiment were compared in terms 
of revealing the yields, time, and solvents consumption showing that CPE is the most 
effective technique, concerning the solvent consumption. The isolation of lignans was 
achieved using centrifugal partition chromatography (CPC) both on semi-preparative and 
preparative scale. The biphasic system used for this purpose consisted of the following 
solvents: n-Hex/EtOAc/EtOH/H2O in proportion 2:3:3:2 (v/v/v/v) and direct recovery 
of the two major lignans sesamin and sesamolin was achieved. In parallel the CPC 
analysis resulted in the isolation of four minor lignans of sesame oil, i.e., samin, sesamol, 
sesaminol, and episesaminol. Structure elucidation of isolated lignans was based on 
HRMS/MS and NMR experiments. High-performance liquid chromatography (HPLC) was 
employed for quantitative analysis of the obtained extracts to determine the purity of the 
isolated compounds as well. The results of this study demonstrated that sesamin and 
sesamolin were recovered in purity higher than 95%, verifying the effectiveness of the 
purposed separation methodology. Finally, due to the general application of sesame oil in 
cosmetic industry, all the pure compounds were evaluated for their tyrosinase, elastase, 
collagenase, and hyaluronidase inhibition activity.

Keywords: sesame oil, sesamin, sesamolin, liquid–liquid extraction, centrifugal partition extraction, annular 
centrifugal extraction, centrifugal partition chromatography, collagenase inhibition activity
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INTRODUCTION

Sesame oil is a product of high importance, obtained from the 
seeds of Sesamum indicum (Pedaliaceae) and is directly linked 
to the traditional nutrition of Asian and African people for 
more than 5,000 years (Zhang et al., 2013; Sarkis et al., 2014). 
According to Food and Agriculture Organization of the United 
Nations (FAO) in 2014 the global production of SO exceeded the 
amount of one and a half million tonne to meet market needs 
(Food and Agriculture Organization of the United Nations 
(FAO), 2017). These numbers have attracted scientific interest, 
leading to the study of the chemical content and bioactivity of SO 
secondary metabolites (Barbosa et al., 2017; Dossa et al., 2017). 
Many scientific researches have proved that phenolic compounds 
of SO have numerous biological activities. Especially sesamin and 
sesamolin (Figure 1), the two major lignans of SO extract, have 
been tested in vitro, in vivo, and in clinical studies for numerous 
activities.

Particularly, in vivo experiments have proved the 
hypocholesterolemic activity of sesamin (Nakai et al., 2003), 

whereas a clinical study demonstrated positive results against 
total and LDL-cholesterol on humans, probably synergistic 
with vitamin E (Penalvo et al., 2006). In addition, this molecule 
promotes the reduction of fat ratio on human body obviating 
atherosclerosis and corpulence (Dar and Arumugam, 2013), 
whereas experiments on gerbils and mice have demonstrated 
the neuroprotective role of sesamin against cerebral ischemia 
(Chung et al., 2010; Dar and Arumugam, 2013). Another 
important activity of this lignan is the anti-inflammatory, via 
the inhibition of delta 5-desaturase (Ohnmacht et al., 2008), an 
enzyme that is connected with the pro-inflammatory mediators 
(Obukowicz et al., 1998). When the organism lacks glucose, 
ketone bodies are used to cover the energy demands. Sesamin 
is able to increase the ketone body concentration (Anilakumar  
et al., 2010). This furanofuran lignan also decreases the metabolism 
of γ-tocopherol and as a result, elevates the concentration 
of tocopherol (Wu et al., 2009). The antioxidant activity of 
sesamin and its protective role against damages of alcohol and 
carbon tetrachloride on liver have been proven as well (Nakai 
et al., 2003).

FIGURE 1 | Chemical structures of major (A: sesamin and sesamolin) and minor (B: samin, sesamol, sesaminol, and episesaminol) lignans isolated from sesame oil.
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Sesamolin, the second major lignan of SO, has also a 
significant number of biological activities. It induces apoptosis of 
human lymphoid leukemia Molt 4B cells, inhibits the growth of 
those cells (Miyahara et al., 2001), and prevents from mutagenic 
activity of H2O2 (Grougnet et al., 2012). Sesamolin has also 
free radical scavenging activity and provides protection against 
neuronal hypoxia (Park et al., 2010).

Due to the high pharmacological interest of sesamin and 
sesamolin, there are several works regarding the isolation and 
purification of these lignans from Sesamum indicum materials 
like sesame seeds, sesame meal, and SO (Lee and Choe, 2006; 
Wang et al., 2009; Reshma et al., 2010; Dar et al., 2015; Hammann 
et al., 2015; Jeon et al., 2016). In the literature, silica gel column 
is referred as separation technique of SO extract, which is mostly 
applied for laboratory purposes (Lee and Choe, 2006). Moreover, 
crystallization method is carried out, providing mixture of 
lignans (Reshma et al., 2010). Another study is based on semi-
preparative high-performance liquid chromatography (HPLC), 
which has limited capacity of sample treatment (Dar et al., 2015). 
Considering counter-current chromatography, two studies are 
reported, whereas one of them provide a mixture of sesamin and 
sesamolin, and the other one is characterized by reduced yield 
of pure compounds (Wang et al., 2009; Hammann et al., 2015). 
Only in one study was the centrifugal partition chromatography 
(CPC) technique applied, but because raw material sesame seed 
meal was used, while the procedure was more time-consuming, 
and the results gave lower recovery and lower purity (Jeon et al., 
2016). However, there is no previous work for producing these 
two lignans in high amounts and purity using a low cost and 
fast methodology. Following this need, our research targeted to 
develop a novel approach, which could meet the abovementioned 
parameters.

The following experimental procedure is based on liquid–
liquid techniques. Centrifugal partition extraction (CPE) is a 
solid support-free liquid–liquid extraction technique which is 
based on the immiscible nature of two phases and the partition 
of compounds in the formed biphasic system (Berthod et al., 
2009; Michel et al., 2011; Ungureanu et al., 2013). This technique 
is mainly used for rapid fractionations of mixtures, pH zone 
refining separations as well as for the extraction of liquid nature 
raw materials, such as edible oils (Ungureanu et al., 2013; Angelis 
et al., 2017). Low experimental time and solvent consumption 
rendered it suitable for analytical, preparative, pilot, and industrial 
scale as well (Hamzaoui et al., 2011; Kumar et al., 2014). Two 
common extraction methods of CPE are co-current elution and 
multi-dual mode. In the first method, the biphasic system passes 
through the column and is separated out of the apparatus. At the 
second method, column is fed with the stationary phase, and the 
mobile phase passes through the first. The kinetic nature of the 
two phases can be changed by the rotation of valve ascending/
descending, which sets the inlet of solvents in column. Another 
extraction technique that was used in this study was annular 
centrifugal extraction (ACE). This technique can rapidly separate 
the biphasic systems and is characterized by high mass transfer 
efficiency per time unit (Jing et al., 2017). The centrifugal force 
is used, first, to mix the two phases and then to separate them 
(Duan et al., 2015).

CPC is governed by the same principles of CPE with a 
difference in the number and the volume of column cells 
(Hamzaoui et al., 2011). The CPE and CPC columns are metallic 
cylinders with a number of cells that are proportionally related 
with theoretical plates. Chromatography column cells are higher 
in number but smaller in volume than extraction column cells 
(Goll et al., 2015). One phase (stationary phase) is immobilized 
by strong centrifugal forces into the column, whereas the other 
phase (mobile phase) is pumped through the column, separating 
thus the mixture compounds, on the basis of their partition 
coefficient (KD) (Roullier et al., 2009; Ning et al., 2018). The nature 
of this technique gives the ability of obtainment the maximum 
amount of the extract and handling high amounts of sample 
(Jeon and Kim, 2013; Agalou et al., 2018). Also, this technique 
permits the use of various polarity solvent systems which result 
in widening the chromatographic performances (Toribio et al., 
2011). Another advantage of CPC is the ability of alternation 
the mobile phase to stationary during a run, accelerating the 
recovery of compounds (Sutherland, 2007).

The aim of this study was the development of an effective 
and capable scaling up process for the treatment of sesame 
oil and isolation of sesamin and sesamolin in high purity. The 
primary step was the extraction of phenolic compounds from 
SO. Two extraction techniques were compared to choose the 
most advantageous concerning experimental time and extract 
productivity. The second step was the isolation of sesamin 
and sesamolin in semi-preparative and preparative scale. The 
last part of the study was the quantification of the obtained 
lignans using HPLC-DAD. Also, NMR experiments were used 
for the  identification of the targeted molecules. TLC analysis 
and HPLC experiments were conducted for the qualification 
of SO extracts. In parallel, sesamin, sesamolin, and minor 
compounds isolated from SO were evaluated with enzymatic 
assays (tyrosinase, elastase, collagenase, and hyaluronidase) for 
their inhibition activity.

MATERIALS AND METHODS

Reagents
The standards of lignans that were used for the quantitative 
analysis  were purchased from Sigma-Aldrich (Missouri,  USA). 
Also, all the reagents were purchased from Sigma-Aldrich.  In 
detail, for the enzymatic assays mushroom tyrosinase (lyophilized 
powder, ≥1000 units/mg solid, EC Number: 1.14.18.1), 
3,4-dihydroxy-L-phenylalanine, sodium phosphate monobasic, 
sodium phosphate dibasic, kojic acid, elastase type IV from porcine 
pancreas (EC Number 254-453-6), N-Succinyl-Ala-Ala-Ala-p-
nitroanilide (EC Number 257-823-5), Trizma base reagent grade, 
elastatinal, collagenase from Clostridium histolyticum (released 
from physiologically active rat pancreatic islets Type  V,  ≥1 
FALGPA units/mg solid, > 125 CDU/mg solid, EC Number: 
232-582-9), MMP 2 substrate fluorogenic, chlorexidine, bovine 
serum albumin (BSA), acetic acid glacial, p-(dimethylamino) 
benzaldehyde, sodium tetraborate, hyaluronidase (released from 
bovine testes Type I-S, lyophilized powder, 400–1,000 units/mg  
solid, EC Number: 3.2.1.35), hyaluronic acid, and tanic acid 
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were purchased also from Sigma-Aldrich. The used solvents for 
the extraction and separation processes were of analytical grade 
while those used for UPLC-HRMS analysis were of LC-MS grade. 
All solvents were supplied from Fisher Scientific (Pennsylvania, 
USA). TLC analysis was performed on Silica gel 60 F254 20 × 
20  cm plates purchased from Merck Millipore (Massachusetts, 
USA). Sesame oil was provided from HAITOGLOU BROS S.A.

Apparatus
The extraction of SO phenolic fraction was performed using 
two different liquid–liquid techniques: CPE and ACE. The CPE 
experiments were performed on an A-CPC apparatus (Rousselet-
Robatel Kromaton, Anonay, France) equipped with a 300-ml 
capacity extraction column (FCPE300®) while solvents pumped 
with preparative Lab Alliance Series III P300 pumps (Pennsylvania, 
USA). ACE experiments were performed using laboratory scale 
BXP012 apparatus (Rousselet-Robatel Kromaton, Anonay, France) 
with 2.2 ml bowl volume. Basic Verderflex pumps (Castleford, 
United Kingdom) were used for pumping the solvents through the 
annular extractor.

Semi-preparative and preparative fractionations of SO 
phenolic fraction were carried out on an FCPC apparatus 
(Kromaton, Anonay, France) equipped with a 200-ml capacity 
chromatographic column (FCPC200®) and 1,000-ml capacity 
chromatographic column (FCPC1000®), respectively. Solvents 
were pumped with preparative Ecom ECP2000 pumps (Prague, 
Czech Republic). Chromatograms were recorded with a detector 
UV Flash 14 DAD UV of Ecom (Prague, Czech Republic) and 
the fractions were collected with a C6-60 Buchi collector (Flawil, 
Switzerland).

HPLC analysis was performed on a Thermo Finnigan HPLC 
system (Ontario, Canada) equipped with a SpectraSystem P4000 
pump, a SpectraSystem 1000 degasser, a SpectraSystem AS3000 
automated injector, and a UV SpectraSystem UV6000LP detector. 
Data acquisition was controlled by the ChromQuest™ 5.0 software 
(ThermoScientific™).

Nuclear magnetic resonance spectra were registered on 600 MHz 
of Bruker AvanceAVIII-600 spectrometer (Karlsruhe, Germany) 
and was supported by TopSpin software (Bruker). UPLC-HRMS 
and HRMS/MS analysis was performed on an AQUITY system 
(Waters) connected with an LTQ Orbitrap Discovery hybrid mass 
spectrometer (Thermo Scientific) equipped with an ESI source, in 
negative and positive mode.

For all the enzymatic assays the reader Infinite 200 PRO series 
(Tecan, Zürich, Switzerland) was used, supported by software 
Magellan™ (Tecan, Zürich, Switzerland).

Liquid–Liquid Extraction of SOs’ Lignans
Extraction of Lignans Using Laboratory Scale 
Annular Centrifugal Extractor (BXP012)
Two different experiments were performed using for the 
extraction the biphasic system SO/Acetonitrile (AcN). In both 
experiments the rotor speed was set at 3,900 rpm and 200 ml of 
SO were extracted by using 600 ml of acetonitrile. For the first 
experiment, the extraction was performed on three successive 
cycles using 200 ml of AcN in each run (total 600 ml of AcN). 

AcN (upper phase) and SO (lower phase) were pumped through 
the apparatus at a flow rate of 8 ml/min for each phase (1/1 ratio 
of the two phases). The total experiment lasted approximately 1 h 
and 15 min (~25 min for each cycle). In the second experiment, 
the flow rate of AcN was increased at 24 ml/min while the flow rate 
of SO remained stable at 8 ml/min giving thus a ratio of 1/3 SO/
AcN into the extraction bowl. The procedure was accomplished 
on one single run after 25  min. Samples were collected from 
each experiment and were analyzed for quantification of the two 
targeted lignans via HPLC technique.

Extraction of Lignans Using FCPE300®

Three extraction runs took place with CPE using multi-dual mode 
method (Angelis et al., 2017). CPE column was filled with SO 
(stationary phase) in descending mode, whereas the flow rate and 
the rotation were set at 20 ml/min and 200 rpm, respectively. Then, 
AcN was pumped in ascending mode at 10 ml/min and 800 rpm 
to equilibrate the biphasic system (SO/AcN) inside the column. 
Stationary phase retention volume was 200 ml and Sf was calculated 
at 66.6%. Afterward, 240 ml of AcN were collected in 12 fractions of 
20 ml. Then, the pumping mode switched to descending and 200 ml 
of untreated SO replaced the extracted SO with a flow rate of 10 ml/
min. The above extraction-recovery cycle was repeated three times 
of 44  min per run. The extraction solvent (AcN) was evaporated 
under vacuum at 40°C to dryness to obtain the SO extract.

Fractionation of SO Extract Using Semi-Preparative 
FCPC200® and Preparative FCPC1000® Apparatus
Solvent System Selection
Seventeen biphasic solvent systems (Supplementary Table 1) were 
created and studied to select the appropriate systems for the CPC 
separation process. All systems were initially tested regarding the 
solubility of the extract and settling time and then the suitability 
of biphasic systems was evaluated by TLC and HPLC-DAD. The 
procedure was as follows: 10 mg of SO extract were weighed into 
a 10-ml glass tube, 3 ml of each phase of the pre-equilibrated 
biphasic solvent systems were added to the sample and shaken 
vigorously. After equilibration of the biphasic system (t < 1 min), 
1 ml of each layer was evaporated to dryness, the residues were 
diluted in 1 ml of acetonitrile, and analyzed by TLC and HPLC-
DAD. The KD values of the target compounds were expressed as 
the ratio between the peak area in the stationary phase and the 
peak area in the mobile phase.

Semi-Preparative CPC Analysis
The CPC experiment was carried out in elution extrusion mode by 
using the biphasic system n-Hex/EtOAc/EtOH/H2O in proportion 
2:3:3:2 (v/v/v/v). Initially, the column was filled with the stationary 
phase (the upper phase) on descending mode at a flow rate of 
10 ml/min and setting the rotation speed at 200 rpm. Then, the 
rotation speed was maximized at 900 rpm, and the mobile phase 
was pumped through the column with a flow rate of 5 ml/min on 
descending mode. After the system equilibration, the retention 
volume of the stationary phase was calculated at 105 ml giving a high 
Sf value of 52.5%. Crude SO extract (110 mg) were dissolved in 10 
ml of biphasic system and injected into column. In the elution step 
350 ml of mobile phase were passed through the stationary phase at 

10

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Lignans Isolation with Liquid–Liquid TechniquesMichailidis et al.

5 June 2019 | Volume 10 | Article 723Frontiers in Pharmacology | www.frontiersin.org

a flow rate of 5 ml/min on descending mode. The experiment was 
completed by passing 200 ml of the stationary phase on descending 
mode and extruding the column content. All procedures were 
monitored by UV detector at 255, 275, 280, and 320 nm while the 
automatic fraction collector was set to collect fractions every 2 min. 
The total analysis time was 110 min, and finally, 55 fractions of 10 
ml were collected.

Preparative CPC Analysis
The semi-preparative method was scaled up to preparative column 
(1,000 ml rotor) adjusting all the experimental parameters to the 
larger scale. After filling the column with the upper stationary 
phase (500 rpm and 25 ml/min), the rotation speed was 
increased to 750 rpm, and the lower phase of the same system 
(mobile phase) was pumped at 15 ml/min in descending mode 
to equilibrate the two phases into the column (Sf was calculated 
at 65%). Then, 900 mg of the extract were diluted in a mixture of 
the two phases (ratio 7/3 upper phase/lower phase) and injected 
via a 30-ml injection loop. The volume of mobile phase used for 
the elution step was 1,600 ml while the experiment completed 
by passing 1,000 ml of the stationary phase in descending 
mode (extrusion step). The rotation speed and flow rate were 
kept stable at 750 rpm and 15 ml/min, respectively, during the 
whole experiment. The total analysis time lasted approximately 
170 min, and finally, 130 fractions of 20 ml were collected.

Quantitative Analyses of Sesamin 
and Sesamolin in Crude Extracts 
and CPC Fractions
For the quantitative analysis of the two lignans, the construction of 
standard calibration curves on HPLC-DAD was necessary. For the 
separation, a Supelco Analytical (Sigma-Aldrich) HS C18 column, 
with dimensions 25 × 4.6 mm, 5 μm was used, heated at 40°C. 
As mobile phase was used in a gradient system consisted of AcN 
(A) and water (B). The elusion started with 54% of A and reached 
79% in 5 min. Then, in 5 min, A reached 83% and during the next 
3 min was increased to 95%. The gradient continued for 2 min with 
A reaching 100%. In 1 min, the solvent system returned to initial 
conditions and maintained for 4 min. The total running time was 
20 min, and the flow rate was set at 1 ml/min. The injection volume 
was 10 μl. For sesamin, six concentrations were used: 50, 75, 100, 
125, 150, and 175 μg/ml. Also, for sesamolin were used: 25, 50, 
75, 100, 125, and 150 μg/ml. As internal standard (IS) vanillin was 
used in a concentration of 10 μg/ml. For the construction of the 
calibration curves the ratio area of analyte/IS was used. Linearity 
was evaluated by coefficient of determination, which was over 0.99 
for both analytes (Supplementary Diagrams 1 and 2).

Thin Layer Chromatography (TLC), Ultra 
High-Performance Liquid Chromatography-
High Resolution MS/MS (UHPLC-HRMS/MS),  
and NMR Analysis
TLC plates were developed in dichloromethane (DCM). Plates 
were observed at 254 nm, 366 nm, and at visible after treatment 

with a sulfuric vanillin solution (5% w/v in methanol)—H2SO4 
(5% v/v in methanol) and heated at 100°C to 120°C for 1 min.

The phenolic fraction and selected CPC fractions were analyzed 
using UPLC-HRMS technique. The separation was run in a 
Fortis C-18 (1.7 µm, 150 × 2.1 mm) column at 40°C. The elution 
system consisted of water acidified with 0.1% formic acid (A) and 
acetonitrile (B) in the following gradient mode: 0–2 min 2% B, 2 
to 18 min from 2% to 100% B, 18 to 20 min 100% B, 20–21 min 
from 100% to 2% B, and 21 to 25 min 2% B. The flow rate was set 
at 0.4 ml/min, and the injection volume was 10 µl. Ionization was 
achieved in negative and positive ion mode (ESI+ and ESI−) at 
350°C. The mass spectrometric parameters were: sheath gas and 
aux gas flow rate 40 and 10 units, respectively; capillary voltage, 
30  V; and tube lens, 100  V for the positive mode and capillary 
voltage of −20 V and tube lens of −80 V for the negative mode. 
The mass range was adjusted from 113 to 1,000 m/z.

NMR samples were dissolved in 600 μl of deuterated chloroform 
(CDCL3). All the 1H NMR experiments were applied on 600.11 
MHz, while 13C NMR spectra were acquired at 150.90 MHz. 
During all the experiments, temperature was set at 300°K. Spectral 
width of 1H NMR was set to 14 ppm, offset to 6.5 ppm, and scans 
number to 32. Concerning 2-D NMR experiments, proton spectra 
were registered according to the abovementioned parameters with 
12 scans number for COSY, while carbon spectra width set to 
240 ppm, offset to 110 ppm, and scans number to 32 and 160 at 
HSQC and HMBC, respectively.

Tyrosinase, Elastase, Collagenase, 
and Hyaluronidase Inhibition Assays
Tyrosinase, elastase, and collagenase assays were applied following 
the enzymatic methods described by Angelis et al. (2016) with 
some modifications, while the enzymatic assays for the inhibition of 
hyaluronidase were conducted as described by Kim et al. (2013), with 
some modifications. All the enzymatic assays provide the competitive 
inhibition activity of the compounds. Three concentrations of pure 
compounds, i.e., 500, 100, and 25 µM (final concentration in the 
well) were used on the above enzymatic assays. Experiments were 
performed in triplicates and twice in total while the final DMSO 
concentrations did not exceed 5% of total volume. The inhibition 
percentage was calculated by the formula: Inhibition (%) = [((X 
control − X control’s blank) − (X sample − X sample’s blank))/(X 
control − X control’s blank)] × 100, where X control is the absorbance 
or fluoresces of the mixture consisting of buffer, enzyme, sample 
solvent, and substrate, and X sample is the absorbance or fluoresces 
of the mixture of buffer, enzyme, sample, or positive control 
solution and substrate. Blanks contained all the abovementioned 
components except the enzyme. Concerning tyrosinase, elastase, 
and collagenase enzymatic assays, the half maximal inhibitory 
concentration (IC50) of each positive control was used as standard 
of comparison, while at hyaluronidase enzymatic assay the maximal 
inhibitory concentration (IC100) was used.

Tyrosinase enzymatic assay: This assay measures the inhibition 
of the tested samples at the catalytic oxidation of L-DOPA to 
dopachrome by tyrosinase. Kojic acid (IC50 = 50 µM) was used 
as positive control. In a 96-well microplate, 80 µl of phosphate-
buffered saline (PBS) (1/15 M, pH = 6.8), 40 µl of the tested sample 
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(dissolved in the PBS buffer), and 40 µl of mushroom tyrosinase 
(100 U/ml) (dissolved in PBS buffer) were mixed and incubated 
in the dark for 10  min at room temperature. Afterward, 40 µl 
of 2.5 mM L-DOPA (substrate) dissolved in PBS buffer was 
added, and the mixture was incubated for 15 min. The 96-well 
microplate was measured at 475 nm.

Elastase enzymatic assay: Elastase protocol monitors the release 
of p-nitroaniline from N-succinyl-Ala-Ala-Ala-p-nitroanilide that 
is stimulated by elastase. Elastatinal (IC50 = 0.5 µg/ml) was used as 
a positive control. In a 96-well microplate, 70 μl of Trizma buffer 
(50 mM, pH = 7.5), 10 µl of tested sample (dissolved in Trizma 
buffer), and 5 µl of elastase (0.45 U/ml) (dissolved in Trizma 
buffer) were mixed and incubated in the dark for 15 min at room 
temperature. Afterward, 15 μl of 2 mM N-succinyl-Ala-Ala-Ala-
p-nitroanilide (substrate) dissolved in Trizma buffer was added, 
and the mixture was incubated for 30 min at 37°C. The 96-well 
microplate was measured at 405 nm.

Collagenase enzymatic assay: Collagenase fragmentates the 
fluorescence molecule MMP2. The inhibition of the enzyme was 
measured concerning the reduction of the fluorescent intensity that 
was produced. Chlorhexidine (IC50 = 50 µM) was used as a positive 
control. In a 96-well dark microplate, 120 µl of Tris-HCl buffer 
(50 mM, pH = 7.3), 40 μl of tested sample, and 40 µl of collagenase 
(50 µg/ml) from C. histolyticum (dissolved in Tris-HCl buffer) were 
incubated for 10 min at 37°C avoiding light exposure. Afterward, 
40 µl of 50.0 µM MMP2 (substrate) (MCA-Pro-Leu-Ala-Nva-DNP-
Dap-Ala-Arg-NH2) dissolved in Tris-Cl buffer was added, and the 
mixture was incubated in dark for 30 min at 37°C. The fluorescent 
intensity of 96-well microplate was measured at an excitation 
maximum of 320 nm and an emission maximum of 405 nm.

Hyaluronidase enzymatic assay: The inhibition activity of this 
enzyme was calculated inversely proportional of the production of 
N-acetyl-d-glucosamine. Tannic acid (IC100 = 800 μΜ) was used 
as positive control; 100 μl of acetate buffer (0.1 M NaCl, pH = 3.5), 
150 μl of tested sample (dissolved in acetate buffer), and 50 μl of 
hyaluronidase solution 1% w/v (dissolved in acetate buffer) were 
added in Eppendorfs. Afterward, 100 μl of BSA solution 0.2% w/v 
(dissolved in ddH2O) was added in each Eppendorf and incubated 
for 20 min at 37°C. Then, 50 μl of hyaluronic acid solution 0.5% 
w/v (dissolved in ddH2O) was added and incubated for 60 min 
at 37°C; 45 μl from each Eppendorf was transferred in new 
Eppedorfs containing 10 μl of sodium tetraborate solution 0.8 M 
(dissolved in ddH2O), and heated for 3 min at 100°C and cooled 
down on ice. In each tube 300 μl of dimethylaminobenzaldehyde 
(DMAB) solution was added (10% w/v dissolved in 10  N HCl 
and then dissolved 10 times in acetic acid glacial) and incubated 
for 20 min at 37°C. Finally, 200 μl from the last Eppendorf was 
transferred in a 96-well microplate and measured at 586 nm.

RESULTS AND DISCUSSION

Liquid–Liquid Extraction of Phenolic 
Compounds from SO
Several extraction processes of phenolic compounds from SO 
have been reported previously, both in laboratory and large scale 
(Dachtler et al., 2003; Lee and Choe, 2006; Wang et  al.,  2009; 

Reshma  et al., 2010; Dar et al., 2015). However, the described 
experimental procedures consume large amount of solvents 
(Wang et al., 2009; Reshma et al., 2010), in some cases the 
sesame oil-solvent ratio is 1:8 (Dar et al., 2015), and overnight 
experimental tasks are needed (Dachtler et al., 2003; Lee 
and Choe, 2006; Reshma et al., 2010; Dar et al., 2015). Also, 
a lot of the proposed procedures have many steps, like solvent 
extraction, crystallization, and saponification, working in very 
low (−40°C, 4°C) and high temperatures (70°C), facts leading 
to long experimental protocols and high energy consumption 
(Dachtler et al., 2003; Lee and Choe, 2006; Reshma et al., 2010; 
Dar et al., 2015).

To avoid all the abovementioned disadvantages, during the 
extraction process of SO phenols, two different liquid–liquid 
techniques were compared. Both ACE and CPE techniques use 
the centrifugal force to achieve a fast mixture and separation 
of the immiscible liquid phases during the extraction process 
(Xu et al., 2006; Hamzaoui et al., 2011). These two techniques 
are characterized as green eco-friendly processes due to the low 
solvent and energy consumption, with industrial applications 
(Meikrantz et al., 2002; Duan et al., 2005; Hamzaoui et al., 2011).

Selection of the Suitable Method for Liquid–Liquid 
Extraction
The initial step for the liquid–liquid extraction process was the 
selection of the most suitable solvent system for the quantitative 
recovery of bioactive ingredients from SO. Taking advantage 
of the nonpolar oil nature, SO was used as ingredient of the 
biphasic system. This fact allowed the treatment of large amount 
of raw material increasing thus the process efficiency (Angelis 
et al., 2017). More specifically, several systems were created and 
tested by TLC and HPLC (Supplementary Table 2). The results 
of this analysis demonstrated that the presence of water as a 
part of the polar phase (systems ES1-ES8) led to the creation of 
stable emulsion, and thus, in unsuitable biphasic systems. On 
the other hand the non-aqueous biphasic systems containing 
mainly acetonitrile, ethanol or methanol (ES11-ES17) resulted 
in better separation of the two phases. The following HPLC-
DAD analysis showed that the addition of butanol in the biphasic 
systems (ES11-ES14) (Supplementary Table 3) resulted in an 
unsatisfactory recovery of the lignans from the feed oil phase. 
In contrast to these results the direct extraction of SO with 
acetonitrile, methanol or ethanol (systems ES15, ES16, and ES17, 
respectively) led to the better recovery of the targeted compounds. 
These three systems were tested using triple funnel extraction 
of SO with the corresponding solvent, and the recovered upper 
phases were analyzed by TLC (Supplementary Figure 1) and 
HPLC (Supplementary Table 4). Both techniques demonstrated 
that system ES15 (extraction with AcN) is the most effective in 
receiving the lignan fraction and, thus, was chosen for the liquid–
liquid extraction of SO.

Liquid–Liquid Extraction Using ACE
ACE is a liquid–liquid extraction technique with numerous 
advantages, such as high mass transfer coefficient, high interfacial 
areas, low solvents consumption, and flexible phase ratios (Tamhane 
et al., 2014). To find the critical parameters for the analytical scale 
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ACE extraction of SO using acetonitrile it was necessary to 
standardize the solvents flow rate and rotor speed. After several 
trials, it was found that the flow rate of SO should be lower than 
14 ml/min and the rotation of the annular rotor at 3,800 to 
4,050 rpm. Under these conditions, the two phases of the biphasic 
system are mixed and separate rapidly into the extraction bowl 
eliminating thus the formation of an emulsion that affects the 
quality of the extraction. The first experiment aimed to check 
the extraction efficiency using acetonitrile as extraction solvent. 
For this purpose, 200 ml of SO were extracted with 600 ml of 
acetonitrile in three successive cycles (200 ml in each cycle). 
The experiment lasted 75  min and totally 2.02  g of SO extract 
was obtained. The quantitative HPLC analysis of the obtained 
extract showed the present of 1.05  g of sesamin and 0.36  g of 
sesamolin (5.25 mg of sesamin and 1.80 mg of sesamolin per ml 
of SO) (Table 1). To reduce the process time and to increase the 
efficiency of the method, the ACE extraction was repeated. The 
main difference from the previous experiment was that the flow 
rate of ΑcΝ was increased three times (24 ml/min), replacing the 
triple extraction. Thus, 200 ml of SO was extracted with 600 ml 
of AcN in a single run and in total time of 25 min. The procedure 
resulted in the recovery of 1.68 g of extract, which contains 0.84 g 
of sesamin and 0.29 g of sesamolin (Table 1).

As a result, it was observed the continuous receiving of lignans 
but reduced recovery. At these conditions, 4.20 mg of sesamin 
and 1.50 mg of sesamolin were obtained from each ml of SO. It 
is important to note that is the first time that ACE technique was 
applied for the extraction of bioactive compounds, not only from 
SO, but generally from edible oils.

Liquid–Liquid Extraction Using CPE
The experiment was repeated successfully using multi-dual mode 
method. SO was used as stationary phase while acetonitrile 
(mobile phase) was pumped through the SO in ascending mode. 
After passing approximately one column volume (240 ml) of 
mobile phase, the experiment stopped and the collected fractions 
(12 fractions of 20 ml) were analyzed by TLC.

As it is observed in the TLC analysis of CPE fractions 
(Figure 2), the first two fractions are fully enriched in SO extract. 
Thereafter, the next four fractions are highly concentrated, while 
the following fractions have a decreasing amount of SO extract. 
It has to be noted that even the appliance of concentrated spots 
on the TLC plate, the final fraction provides a negligible amount 
of the extract. The fact that after 12 fractions we obtained the 
total amount of SO extract proves the effectiveness of AcN as 
an extraction solvent. Moreover, it is important to underline 

the repeatability of CPE technique. The above procedure was 
repeated two more times by replacing each time the treated 
SO with the fresh one in descending mode (multi-dual mode 
process). All the repetitions (three runs) provide exactly the 
same phenomenon, a total recovery of lignans’ extract after 12 
fractions. The fractions of each run were combined, evaporated 
under vacuum, and weighted, yielding 1.97, 2.01, and 1.94  g, 
respectively. The quantitative HPLC analysis of the above extracts 
reveals that sesamin constituted approximately the 50% (1.01, 
1.03, and 0.96 g) of total extract, while sesamolin was included 
also in high amount of approximately 18% (Table 1, repetitions 
a, b, and c).

Overall, the first experiment (i) of ACE provided an adequate 
extract yield, but with high solvent (ratio SO/AcN 1/3) and time 
consumption. Concerning the second ACE experiment (ii), the 
experimental time decreased at 1/3, but the solvent consumption 
remained the same, while the yield decreased for 17%. Although 
CPE gave a high amount of extract after reasonable time, the 
solvent needs decreased almost three times. In detail, after 44 min 
and with an extraction ratio of 1/1.2 of SO-AcN, CPE technique 
is able to obtain the total extract of sesame oil. The above seems 
to lead to the conclusion that CPE is the best extraction solution, 
because it is efficient on yield, time, and solvent consumption, 
with high repeatability. It should be highlighted that this 
technique was applied for the first time, concerning the recovery 
of lignan fraction from SO.

According to UPLC-HRMS analysis of SO extract, sesamin 
and sesamolin were detected in the SO extract. Sesamin 
molecular ion was 355.1176 m/z, and sesamolin molecular ion 
was 371.1142 m/z in positive mode. Also, other minor lignans as 
well as fatty acids were detected (Supplementary Table 5).

Separation of Sesamin and Sesamolin 
from Crude Extracts by CPC
Study of the CPC Solvent Systems
Crucial step in the innovated chromatographic process of 
CPC was to find the biphasic system needed for the separation 
(Supplementary Table 1) and then for the distribution of the 
target compounds by using TLC analysis. Based on this test, 
systems CS9, CS10, CS11, CS12, and CS16 were rejected because 
they do not meet the required specifications (Supplementary 
Table 1) while at systems CS1, CS2, CS14, and CS15, 
unsatisfactory distributions of sesamin and sesamolin in the TLC 
chromatograms were observed. Seven biphasic systems (CS3–
CS8 and CS17) were further investigated using HPLC to calculate 

TABLE 1 | Comparison of two extraction techniques used for the treatment of SO in regard to yield, time, and solvent consumption.

Extraction 
Technique

SO volume Extraction Time Yield, g/200 ml 
SO

Solvent consumption Yield sesamin Yield 
sesamolin

ACE i. 200 mL
ii. 200 mL

i. 75 min
ii 25 min

i. 2.02
ii.1.68

i. 600 mL AcN
ii. 600 mL AcN

i. 1.05 g
ii. 0.84 g

0.36 g
0.30 g

CPE a. 200 mL 44 min 1.97 240 mL AcN 1.01 g 0.35 g
b. 200 mL 44 min 2.01 240 mL AcN 1.03 g 0.36 g
c. 200 mL 44 min 1.94 240 mL AcN 0.96 g 0.34 g
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the partition coefficient values (KDs) of the target compounds and 
thus the suitability of the biphasic systems (based on the values of 
the separation factor α, which follow the rule KD1/KD2, KD1≥KD2). 
The results of this analysis are given in Table 2.

The study of KDs values and separation factors showed that 
five of the tested biphasic systems (CS3, CS6, CS7, CS8, and 
CS17) meet the criteria for a satisfactory separation of the target 
compounds (α > 1.5). Given that the higher value of α enables 
better separation of the two compounds and the treatment of 
higher amount of extract, system CS7 (n-Hex/EtOAc/EtOH/H2O 
in proportion 2:3:3:2 v/v/v/v) seems to be the most effective (α = 
2.78) and thus this system was chosen for the CPC analysis of the 
SO extract.

Purification of Lignans by Semi-Preparative 
FCPC200® and the Scale-Up Operation on a 
Preparative FCPC1000®

The capability of the selected method (elution–extrusion) 
and biphasic system (n-Hex/EtOAc/EtOH/H2O in proportion 
2:3:3:2 v/v/v/v) to efficiently isolate the two major lignans of 
SO extract was initially tested in semi-preparative column. 

FIGURE 2 | TLC analysis of CPE fractions from three continuous runs in 254 nm (A) and in visible sprayed with vanillin solution (B). Schematic presentation of 
concentration of extraction solvent in lignans during the extraction process (C).

TABLE 2 | Partition coefficient values (KDs) and separation factor (α) of sesamin 
and sesamolin in seven biphasic systems. 

CPC 
Systems

Partition 
coefficient of 

sesamin

Partition 
coefficient of 

sesamolin

Separation factor 
(α) of sesamin and 

sesamolin

CS3 1.18 0.72 1.63
CS4 1.42 1.76 1.24
CS5 1.20 1.26 1.05
CS6 1.27 0.80 1.59
CS7 1.03 0.37 2.78
CS8 1.15 0.72 1.60
CS17 0.34 0.58 1.71

14

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Lignans Isolation with Liquid–Liquid TechniquesMichailidis et al.

9 June 2019 | Volume 10 | Article 723Frontiers in Pharmacology | www.frontiersin.org

Except the phenolic part, SO extract contains high amounts of 
nonpolar fatty compounds, such as glycerides and fatty acids. 
Due to this nonpolar nature of the extract, the experiment 
was run in reverse mode by using as stationary phase the 
upper (nonpolar) phase of the system. This fact stabilizes the 
fatty compounds at the beginning of the column (due to the 
close affinity with the nonpolar phase) eliminating thus their 
co-elution with sesamin and sesamolin. After equilibrating the 
two phases into the column (Sf = 52.5%), 110 mg of crude SO 
extract was injected via a 10-ml injection loop. The elution 
step was completed by passing 350 ml of the aqueous mobile 
phase in descending mode and then the column content was 
extruded by passing 200 ml of the upper stationary phase also 

in descending mode. The experiment lasted 115 min while the 
separation process was monitored by UV at 255, 275, 288, and 
320 nm (Figure 3A). All resulting fractions (55 fractions of 
10 ml) were analyzed using TLC and fractions with similar 
chemical composition were put together. The result of this 
analysis was the recovery of 31.6 mg of sesamin and 14.1 mg 
of sesamolin both in a purity higher than 95% as this was 
calculated from the quantitative HPLC analysis.

The result obtained from semi-preparative analysis was very 
promising, and thus separation was scaled up to preparative CPC 
mode. The scaling up from 200 ml column (semi-preparative) 
to fivefold larger, 1L CPC column (preparative) can be easily 
applied, paying particular attention on rotational speed and 

FIGURE 3 | UV Chromatogram (λ = 288, 275, 255, and 320 nm) of semi-preparative elution-extrusion CPC (A) in comparison to preparative elution-extrusion 
CPC (B), indicating the better separation of the two main lignans during the scaling up from semi preparative to preparative mode. Biphasic solvent system: n-Hex/
EtOAc/EtOH/H2O in proportion 2:3:3:2 (v/v/v/v).
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flow rate, two parameters that affect stationary phase retention 
(Fumat et al., 2016). After equilibrating the two phases into the 
column, 900 mg of SO extract was injected. The elution step of 
the experiment was completed after passing 1,600 ml of aqueous 
mobile phase in descending mode, and then the column was 
extruded by pumping 1,000 ml of the upper stationary phase 
also in descending mode. The CPC procedure was monitored 
with a UV detector, and the chromatogram (at 255, 275, 288, 
and 320 nm), presented in Figure 3B, shows a recovery of the 
target compounds according to their KD values in the used 
biphasic system. By setting the rotational speed at 750 rpm and 
the flow rate of the eluent at 15 ml/min, the retention factor of 
stationary phase (Sf) was approx. 65%, much higher than Sf 
calculated for the semi-preparative CPC experiment (52.5%). 
Higher retention of the stationary phase led to higher theoretical 
plate number and thus in better fractionation of the extract. 
Indeed, the comparison of the CPC chromatograms obtained 
from semi-preparative and preparative analysis revealed that 
the preparative process resulted in better separation of the two 
major lignans (Figure 3A, B).

The preparative CPC process lasted 170 min while fraction 
collector was set to collect 20-ml fractions (total 130 fractions). 
All fractions were analyzed by TLC to check the quality of 
the separation. The analysis showed that the lignans were 
recovered during the elution step of the experiment while the 
fatty compounds were collected in the last fractions of the 
experiment during the extrusion of the column content. The 
fractions containing sesamin (fractions 51–64) and sesamolin 
(fractions 64–75) were subjected to quantitative HPLC 
analysis. The result of this analysis (presented as fractogram 
in Figure 4) showed that fractions 51 to 63 and 65 to 75 
contain only sesamin and sesamolin, respectively, whereas 
only one fraction (64) contains a mixture of both compounds. 
Sesamin fractions were pooled and evaporated to dryness, 
yielding 276.07 mg, whereas the combined sesamolin fractions 
yielded 138.15 mg. The following UPLC-HRMS, NMR, and 
quantitative HPLC analysis of combined fractions showed 
that both sesamin and sesamolin were isolated in high purity  

(>95%) and good recovery (61.3% and 87.7% of the total 
amount of their SO extract content, respectively) verifying the 
efficient separation of these two bioactive compounds by using 
the proposed preparative elution–extrusion CPC method.

Except the isolation of the two major lignans, the preparative 
CPC analysis led to the additional separation of four minor lignans 
of SO extract, i.e., samin, sesamol, sesaminol, and episesaminol 
(Figure 1). In more details, fractions 13–18 (4.3  mg) samin, 
fractions 22–31 (9.4 mg) sesamol while fractions 35–39 (8.2 mg) 
and fractions 40–49 (6.6 mg) contained a mixture of sesaminol 
and episesaminol in ratios of approximately 85/15 and 45/55, 
respectively. It is important to note that samin and sesamol were 
recovered in one step separation procedure in high purity as this 
was determined by 1H-NMR analysis (Supplementary Figures 
2–6). The structure elucidation of the isolated compounds was 
achieved by studying HRMS/MS and NMR (1D and 2D) spectra 
and verified by comparison of the experimental data with 
the corresponding bibliographic data (Yamauchi et al., 2000; 
Dachtler et al., 2003; Kuo et al., 2011; Xia et al., 2016; Liu et al., 
2018a; Liu et al., 2018b). Experimental data of 1H and 13C NMR 
of the isolated compounds are referred to at Supplementary 
Table 6.

Tyrosinase, Elastase, Collagenase, and 
Hyaluronidase Inhibition Activity of SO 
Compounds
All isolated lignans were evaluated for their tyrosinase, elastase, 
collagenase, and hyaluronidase inhibitory activities. For all the 
enzymatic assays, the IC50 of positive controls was used, with 
only exception being the hyaluronidase assay where the positive 
control was used at the IC100 concentration (see experimental 
part).

The tyrosinase inhibition assay showed that sesamol and 
sesamolin are able to inhibit the enzyme activity, in contrast to 
sesamin, samin, sesaminol, and episesaminol. In detail, sesamol 
exhibited an important inhibition activity at 500 μΜ (52.34%), 
while no activity was present at doses of 100 and 25 μΜ. 

FIGURE 4 | Fractogram obtained from quantification analysis of preparative CPC fractions 51 to 76.
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Sesamolin presented moderate anti-tyrosinase activity at 500 μΜ 
(27.78%) and weak activity at 100 and 25 μΜ (Figure 5). These 
results are in agreement with literature data reporting the potent 
anti-tyrosinase activity of sesamol and sesamolin (Srisayam 
et al., 2017). The above results demonstrate a potent correlation 
between the structure of tested compounds and the anti-
tyrosinase activity. Although sesamin, sesamolin, sesaminol, and 
episesaminol are structurally related compounds, only sesamolin 
inhibited the tyrosinase activity, showing that sesamol moiety 
seems necessary for the enzyme inhibition.

All tasted compounds expressed important activity on 
collagenase assay. The sesaminol/epi-sesaminol mixture revealed 
the highest anti-collagenase activity with inhibition values of 
91.99% at 500 μΜ, 71.94% at 100 μΜ, and 40.36% at 25 μΜ. 
Sesamin presented moderate anti-collagenase activity with 
inhibition value of 61.16% at 500 μΜ, 40.77% at 100 μΜ, and 
44.71% at 25 μΜ. Samin revealed anti-collagenase activity with 
inhibition values of 65.66% at 500 μΜ, 40.65% at 100 μΜ, and 
40.33% at 25 μΜ. Sesamolin also presented moderate activity 
with inhibition value of 54.05% at 500 μΜ, 36.20% at 100 μΜ, 
and 47.83% at 25 μΜ, while sesamol revealed the lowest anti-
collagenase activity with inhibition values of 46.19% at 500 μΜ, 
48.20% at 100 μΜ, and 36.57% at 25 μΜ (Figure 5). To our 
knowledge, this is the first report connecting SO lignans with 
collagenase activity.

Regarding the elastase and hyaluronidase inhibition assays, all 
the tested compounds were found to be non-effective compared 
with the positive controls. The only exception was sesamolin, 
which presents a moderate anti-elastase activity at the highest 
dose of 500 μΜ with inhibition value of 37.24% (Figure 5).

CONCLUSION

This study constitutes a holistic procedure for the swift isolation 
of sesamin and sesamolin in high purity, using techniques 
with scale up to pilot and industrial prospects. Two different 
approaches were used for the extraction of SO lignans based on 
innovative liquid–liquid techniques, ACE and CPE, to obtain 
both sesamin and sesamolin in high amounts. However, CPE 
needs almost one third of solvent volume that was required 
from ACE to obtain the total extract. The green characteristic 
is not the only advantage of CPE. Also, this procedure is less 
time-consuming. CPC, as the superior liquid–liquid solid 
support-free technique, can treat the SO extract, giving high 
recovery of sesamin and sesamolin with purity over 95% with 
the minimum time consumption. The ability of CPC technique 
to analyze high portions of sample has as a result the isolation 
of other minor compounds from the SO extract in high purity. FIGURE 5 | Continued

FIGURE 5 | Tyrosinase, elastase, collagenase, and hyaluronidase 
inhibition activity of isolated compounds. Tested concentration for 
tyrosinase, elastase, and collagenase inhibition: 500, 100, and 25 μM. 
Tested concentration for hyaluronidase inhibition: 500 μM. Positive control 
for tyrosinase: Kojic acid (KA), Positive control for elastase: Elastatinal 
(El), Positive control for collagenase: Chlorexidine (Ch), Positive control for 
hyaluronidase: Tanic acid (TA).
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Obtaining compounds in pure form permitted the realization 
of enzymatic assays. As a result, significant anti-collagenase 
activity was observed from all the isolated molecules.
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The current study provides a comprehensive overview and analysis of the lignan literature.
Data for the current study were extracted from the electronic Web of Science Core
Collection database via the search string TOPIC = (“lignan*”) and processed by the
VOSviewer software. The search yielded 10,742 publications. The ratio of original articles
to reviews was 14.6:1. Over 80% of the analyzed papers have been published since the
year 2000 and nearly 50% since the year 2010. Many of the publications were focused on
pharmacology, chemistry, and plant sciences. The United States and Asian countries,
such as China, Japan, South Korea, and India, were the most productive producers of
lignan publications. Among the 5 most productive institutions was the University of
Helsinki in Finland, the country that ranked 9th. Nineteen journals collectively published
3,607 lignan publications and were considered as core journals. Their impact factor did
not correlate with the proportion of uncited papers. Highly cited publications usually
mentioned phytoestrogen, isoflavone, daidzein, enterodiol, enterolactone, equol,
genistein, and isoflavonoid. Cancer (e.g., breast cancer), cardiovascular disease, and
antioxidation were the major themes. Clinical trials were estimated to contribute to 0.2–
1.1% of the analyzed body of literature, so more of them should be conducted in the future
to substantiate the beneficial effects and optimal dose of lignan intake in humans.
Moreover, researchers can refer to these findings for future research directions
and collaborations.
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INTRODUCTION

The current study aimed to perform a quantitative analysis on
the literature of lignans to unveil the major contributors in terms
of institutions, countries/regions, and journals. By analyzing the
publication and citation data, the major research themes present
in the lignan literature were identified and further discussed.

Lignans are 1,4-diarylbutan compounds derived from the
shikimic acid biosynthetic pathway (Lewis and Davin, 1999;
Imai et al., 2006). In the 1970s, it was still commonly believed
that lignans were synthesized in plants only (Hartwell, 1976). It
was only in the 1980s when scientists identified lignans produced
by microbes living in humans and animals (Axelson et al., 1982).
Geographically, the intakes are greater in the European
population relative to the Asian population (Bhakta et al., 2006).
The main common dietary lignans are secoisolariciresinol,
lariciresinol, matairesinol, pinoresinol, medioresinol, and
syringaresinol (Durazzo et al., 2018); the range of components is
very wide and efforts on isolation of new compounds are being
carried out (Eklund and Raitanen, 2019; Xiao et al., 2019). Plant
lignans are metabolized to enterodiol and enterolactone, called
enterolignans or mammalian lignans (Landete, 2012).

The recent work of Durazzo et al. (2018) well summarized the
occurrence of lignans in food groups and existing lignan databases at
European level. As reported byDurazzo et al. (2018), themain sources of
dietary lignans are oilseeds such asflax, soy, rapeseed, and sesame; whole-
grain cereals such as wheat, oats, rye, and barley; legumes; various
vegetables and fruits (particularly berries); beverages (i.e., coffee, tea, and
wine); and, recently, lignans are also determined in dairy products, meat,
and fish (Valsta et al., 2003; Milder et al., 2005a; Milder et al., 2005b;
Peñalvo et al., 2005; Thompson et al., 2006; Penalvo et al., 2007; Kuhnle
et al., 2008a; Kuhnle et al., 2008b; Durazzo et al., 2009; Kuhnle et al.,
2009a; Kuhnle et al., 2009b; Smeds et al., 2009; Moreno-Franco et al.,
2011; Smeds et al., 2012; Durazzo et al., 2013a; Durazzo et al., 2013b;
Mulligan et al., 2013; Durazzo et al., 2014b; Turfani et al., 2017; Angeloni
et al., 2018; Angeloni et al., 2019).

Within the bioactive compounds realm (Santini et al., 2018;
Santini and Novellino, 2018; Daliu et al., 2019; Durazzo et al., 2019),
the class of lignans is of interest for their potential biological
activities, i.e., estrogenic and antiestrogenic, antioxidant, anti-
inflammatory, metabolism-modulating, anti-proliferative, and
anticancerogenic properties (Baumgartner et al., 2011; Teponno
et al., 2016; Wang et al., 2016; Linder et al., 2019; Zálešák et al.,
2019). Moreover, it is worth mentioning that the spectrum of
biological activities attributed to lignans is being enlarged, i.e.,
related to newly discovered compounds belonged to this group
(Zhang et al., 2014; Gnabre et al., 2015; Su and Wink, 2015;
Hongthong et al., 2016; Azam et al., 2019; Zhuang et al., 2019).

Several studies showed that consumption of lignan-rich diets,
which contain vegetables, fruits, and whole grain products, may
protect against chronic diseases, particularly hormone-dependent
cancer and cardiovascular diseases (Ward et al., 2009; Peterson et al.,
2010; Buck et al., 2011; Guglielmini et al., 2012; Penalvo and López-
Romero, 2012; Zamora-Ros et al., 2012; Lowcock et al., 2013;
Durazzo et al., 2014a; Rodríguez-García et al., 2019). Proper
Frontiers in Pharmacology | www.frontiersin.org 221
evaluation of adherence, efficacy, and communication aspects
should be taken into account as well as the retrospective analysis
of databases as per recent studies in the field (Iolascon et al., 2016;
Scala et al., 2016; Guerriero et al., 2017; Menditto et al., 2018).

The overview presented in the current study should be helpful
to readers in better understanding the lignan research
community, identifying potential research directions and
collaboration partners, and conducting more in-depth
literature searches of chemicals/chemical classes of interest.
MATERIALS AND METHODS

In July 2019, we queried the Web of Science (WoS) Core Collection
online database, owned by Clarivate Analytics, to identify lignan
publications with the following search string: TOPIC = (“lignan*”).
This search identified publications mentioning the word “lignan” or
its derivatives in the title, abstract, or keywords. No additional filters
were placed on the search.

Data Extraction
Several aspects of each publication identified from the search
were recorded, namely: (1) publication year; (2) institutions; (3)
countries/regions of the institutions; (4) journal title; (5) WoS
journal category; (6) type of publication; (7) language; and (8)
number of total citations received. By using the “Export Records
to File” function of WoS, full records and cited references of the
identified publications were exported as “tab-delimited text files”
to VOSviewer for additional processing.

The VOSviewer software (v.1.6.11, 2019) was used to analyze
the titles and abstracts of publications, by breaking down the
paragraphs into words and phrases, associating them with the
citation data of the publications, and presenting the results in
the form of a bubble map (Van Eck and Waltman, 2009). Default
parameterswere used for the analyses andvisualizations. The size of
a bubble represents the frequency of appearance of a term (multiple
appearances of a word counted once, single use of the sameword in
a paper equally weighted). Two bubbles are positionedmore closely
to each other if the terms co-appeared more often in the analyzed
publications. The color represents the averaged citations per
publication (CPP). To simplify the bubble map, we analyzed and
visualized words that appeared in at least 1% (n = 108) of
the publications.

Apart from analyzing the whole dataset, we additionally
probed into the articles published by the most prolific journals
to see how many of them were uncited. According to Bradford's
law of scattering, the core journals for a body of literature are
defined as the prolific journals that collectively published 1/3 of
the papers (Vickery, 1948). Using the current analyzed dataset,
we tested if the core journals had their impact factor negatively
correlated to the proportion of uncited papers, which was
previously demonstrated in another field (Yeung, 2019).
Pearson's correlation test was performed using SPSS 25.0
(IBM, New York, USA). Test results were significant if p < 0.05.
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RESULTS

The literature search resulted in 10,742 publications. The earliest
publications on lignans indexed in WoS were published in 1970,
which isolated new lignans at that time and identified their
structures (Corrie et al., 1970). Over 80% of the analyzed papers
have been published since the year 2000, and nearly 50% since the
year 2010. The numbers of original articles (n = 9,422) and reviews
(n = 644) were in the ratio of 14.6:1. Reviews were more cited (CPP =
56.8) than original articles (CPP = 22.5). The majority of the
publications were written in English (n = 10,483; 97.6%).
Contributions came from 4,748 institutions located in 141
countries/regions and were published in 1,509 journals. The top
five contributors with regard to WoS category, journal, institution,
and country/region are listed in Table 1. It is worth mentioning that
Molecules was the 6th most productive journal, with 208 lignan
publications (1.9%) and CPP of 11.9. Nineteen journals collectively
published 3,607 lignan publications and were considered as core
journals (Table 2). Their impact factor did not correlate with the
proportion of uncited papers (r = -0.257, p = 0.289). Though
University of Helsinki was among the top 5 most productive
institutions, Finland was ranked 9th in terms of countries/regions
(n = 437, 4.1%). The 5most productive countries were all fromAsia,
except the United States.

There were 311 terms that appeared in at least 1% (n = 108) of
the 10,742 lignan publications (Figure 1). The highly cited
publications usually mentioned phytoestrogen (4.3%, n = 463,
CPP = 64.6), isoflavone (3.6%, n = 391, CPP = 64.9), or related
terms such as daidzein (2.3%, n = 243, CPP = 84.1), enterodiol
(2.6%, n = 280, CPP = 51.4), enterolactone (4.6%, n = 496, CPP =
48.0), equol (1.5%, n = 158, CPP = 82.3), genistein (2.4%, n = 260,
CPP = 84.2), and isoflavonoid (1.2%, n = 134, CPP = 99.8). These
terms were often mentioned together with cancer (6.1%, n = 655,
CPP = 51.8), breast cancer (2.2%, n = 237, CPP = 51.8), or
cardiovascular disease (1.5%, n = 157, CPP = 61.9). Some of the
main common dietary lignans were frequently mentioned, such as
lariciresinol (1.4%, n = 147; CPP = 27.3), matairesinol (2.5%, n =
264; CPP = 44.1), pinoresinol (3.4%, n = 368; CPP = 30.1),
secoisolariciresinol (2.6%, n = 279; CPP = 36.9), syringaresinol
(1.4%, n = 146; CPP = 23.1). The structures of these chemicals are
shown in Figure 2. The top 20 recurring terms are listed in Table 3.

The keywords listed by authors and WoS (KeyWords Plus)
were collectively analyzed. There were 88 keywords that
appeared in at least 1% (n = 108) of the lignan publications,
and the 20 most common ones are listed in Table 4. The
keywords suggested that antioxidation (4.3%) and apoptosis
(3.2%) were two frequently investigated themes, and that in
vitro (5.0%) studies were prevalent.

To analyze the temporal changes in the keywords, we
separately assessed lignan publications in three time periods:
1990s and before, 2000s, and 2010s. The top 20 recurring
keywords for each of the three periods are listed in Table 5.
Antioxidant activity rose to popularity since the 2000s.
Apoptosis, cytotoxicity, and oxidative stress became popular in
the 2010s.
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TABLE 1 | The top five contributors in terms of Web of Science category,
journal, institution, and country/region of publications concerning lignans.

Contributor
Publication count

(% of total)
Citation per
manuscript

Web of Science category
Pharmacology pharmacy 2,522 (23.5%) 20.5
Chemistry medicinal 2,520 (23.5%) 18.9
Plant sciences 2,050 (19.1%) 22.9
Biochemistry molecular biology 1,796 (16.7%) 24.8
Chemistry multidisciplinary 1,509 (14.0%) 16.3

Journal
Phytochemistry 587 (5.5%) 31
Journal of Natural Products 345 (3.2%) 27.1
Planta Medica 332 (3.1%) 18.9
Chemical and Pharmaceutical Bulletin 266 (2.5%) 28.4
Journal of Agricultural and Food
Chemistry

213 (2.0%) 54.5

Organization
Chinese Academy of Sciences 473 (4.4%) 13.8
University of Helsinki 246 (2.3%) 81.9
Chinese Academy of Medical Sciences
Peking Union Medical College

195 (1.8%) 14.0

Kunming Institute of Botany 193 (1.8%) 12.9
Universidade de Sao Paulo 186 (1.7%) 18.1

Country/Territory
China 2,482 (23.1%) 13.0
United States 1,321 (12.3%) 41.2
Japan 1,305 (12.1%) 24.5
South Korea 691 (6.4%) 15.5
India 638 (5.9%) 16.5
Fe
bruary 2020 | Volume
TABLE 2 | Core journals publishing lignan papers.

Journal Impact
factor

Proportion of
uncited

lignan papers (in %)

Phytochemistry 2.905 1.5
Journal of Natural Products 4.257 1.4
Planta Medica 2.746 17.8
Chemical & Pharmaceutical Bulletin 1.405 0.8
Journal of Agricultural and Food
Chemistry

3.571 3.8

Molecules 3.060 15.9
Tetrahedron Letters 2.259 1.1
Tetrahedron 2.379 1.8
Natural Product Research 1.999 13.7
Journal of Organic Chemistry 4.745 3.4
Fitoterapia 2.431 13.4
Biochemical Systematics and Ecology 1.127 12.1
Journal of Ethnopharmacology 3.414 2.5
Journal of Asian Natural Products
Research

1.170 7.1

Bioorganic & Medicinal Chemistry Letters 2.448 2.8
Food Chemistry 5.399 4.8
Phytochemistry Letters 1.338 15.8
Bioscience, Biotechnology, and
Biochemistry

1.297 3.2

Archives of Pharmacal Research 2.458 5.4
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FIGURE 1 | Bubble map visualizing words from titles and abstracts of the 10,742 lignan publications. VOSviewer software was used to evaluate the recurring terms.
Only the 311 terms that appeared in at least 1% (n = 108) of the publications were analyzed and visualized. The size of a bubble represents the frequency of
appearance of a term (multiple appearances within one publication were treated as one appearance). Two bubbles are positioned more closely to each other if the
terms co-appeared more often. The color represents the averaged citations per publication.
FIGURE 2 | Chemical structures of key single phytochemicals or representatives of chemical classes that were often discussed in the evaluated lignan publications. In
parentheses are the cited compound classes (italic), number of publications (n), and citations per publication (CPP) for each chemical or representative chemical class.
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DISCUSSION

The current literature analysis on lignan publications revealed
the large publication shares from Asian countries, which were
consistent with related bodies of literature such as antioxidants
and curcumin (Yeung et al., 2019b; Yeung et al., 2019c).
Examples of some highly cited original research papers
recently published by Asian teams in the 2010s, without
international collaborations, are discussed here. For instance, a
Chinese paper reported results from sesame transcriptomes that
provide useful information for understanding the relevant lignan
biosynthesis molecular mechanism (Wei et al., 2011). Another
Frontiers in Pharmacology | www.frontiersin.org 524
Chinese team tested the effects of new lignans and neolignans on
inhibiting nitric oxide production in mouse macrophages and
against serum deprivation-induced PC12 cell damage (Xiong
et al., 2011). These papers received over 100 citations.
Meanwhile, Korean teams published the anti-inflammatory
effects of several lignans isolated from Schiandra chinensis (Oh
et al., 2010), and the hepatoprotective effect of pinoresinol
isolated from Forsythiae Fructus (Kim et al., 2010). These
papers were cited over 50 times. In Japan, a randomized
controlled trial was conducted, and results found that oral
intake of flaxseed (Linum usitatissimum L.) lignan could lower
blood cholesterol level and risk of hepatic diseases in
hypercholesterolemic men (Fukumitsu et al., 2010). Another
Japanese team described an efficient synthetic route to
synthesize herbindoles as naturally occurring forms (Saito
et al., 2012). In India, researchers extracted, separated, and
characterized sesame oil lignan (Reshma et al., 2010) and
reported a phylogenetic analysis of L. usitatissimum L.
(Barvkar et al., 2012). These Japanese and Indian papers had
around 40 citations each. All these examples demonstrate the
variety of the lignan research field, which ranged from basic
sciences to human clinical trials.

Similar to the related research fields of berries, dietary natural
products, and functional foods (Yeung et al., 2018a; Yeung et al.,
2018b; Yeung et al., 2019d), the bubble map suggested that
cancer and cardiovascular diseases were highly cited topics for
lignan research. Readers can refer to comprehensive reviews on
the relationship between phytoestrogens (such as lignans and
isoflavonoids) and Western diseases (such as breast cancer and
coronary heart disease) (Adlercreutz and Mazur, 1997; Rietjens
et al., 2017). Their modulatory effects on steroid biosynthetic
enzymes, hormone concentrations, and cellular events seem to
be beneficial against cancer development (Adlercreutz and
Mazur, 1997; Rietjens et al., 2017). In the early 1990s, a
Finnish-Japanese collaboration probed into the low mortality
in hormone-dependent cancer among the Japanese and found
that they had high intake of soybean products rich in
phytoestrogens, as demonstrated by a high concentration of
isoflavonoids (and lignans to a lesser extent) excreted in their
urine (Adlercreutz et al., 1991). In the year 1997, a case-control
study published in Lancet reported that a high intake of
phytoestrogens particularly lignan enterolactone and isoflavone
equol could substantially reduce breast cancer risk in women
(Ingram et al., 1997). Later, another paper reviewed data on
existing epidemiologic studies and suggested that lignans and
flavonoids have beneficial effects on cardiovascular diseases and
lung cancer, but not other cancers (Arts and Hollman, 2005).
The issues of low bioavailability might partly explain the
differences in the results obtained between studies using cell/
animal models and humans, particularly for the anti-cancer
effects (Yang et al., 2001).

In addition, the bubble map can also relate to some of the
potential biological activities of lignans, e.g., estrogenic and
antiestrogenic, antioxidant, anti- inflammatory, and
anticancerogenic properties (Baumgartner et al., 2011; Teponno
et al., 2016; Wang et al., 2016; Linder et al., 2019; Zálešák et al.,
TABLE 3 | The top 20 recurring terms from titles and abstracts.

Term Appearance (% of 10,742 publications)

Lignan 5,700 (53.1%)
Compound 3,995 (37.2%)
Study 3,120 (29.0%)
Effect 2,878 (26.8%)
Activity 2,843 (26.5%)
Structure 2,443 (22.7%)
Analysis 2,121 (19.7%)
Acid 1,768 (16.5%)
Cell 1,629 (15.2%)
Level 1,367 (12.7%)
Concentration 1,365 (12.7%)
Synthesis 1,347 (12.5%)
Treatment 1,217 (11.3%)
Value 1,197 (11.1%)
Group 1,186 (11.0%)
Plant 1,144 (10.6%)
Addition 1,085 (10.1%)
Data 1,065 (9.9%)
Derivative 974 (9.1%)
Content 949 (8.8%)
TABLE 4 | The top 20 recurring keywords.

Keyword Occurrence (% of 10,742 publications)

Lignans 3,825 (35.6%)
Lignan 1,358 (12.6%)
Constituents 1,217 (11.3%)
Derivatives 536 (5.0%)
Neolignans 536 (5.0%)
In-vitro 535 (5.0%)
Flavonoids 509 (4.7%)
Phytoestrogens 488 (4.5%)
Antioxidant activity 458 (4.3%)
Identification 438 (4.1%)
Cells 435 (4.0%)
Leaves 433 (4.0%)
Antioxidant 399 (3.7%)
Glycosides 388 (3.6%)
Flaxseed 383 (3.6%)
Inhibition 366 (3.4%)
Enterolactone 347 (3.2%)
Apoptosis 345 (3.2%)
Acid 344 (3.2%)
Expression 334 (3.1%)
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2019), especially with antioxidant and anti-inflammatory activity
being identified as frequently mentioned terms, whereas they were
strong interests in phytoestrogen and cancer.

By limiting to “articles” (excluding other publication types
such as reviews), a quick query of “clinical trial*” within the
analyzed body of literature returned with 50 hits only. After
evaluation, we found that there were only 19 randomized clinical
trials, which was equivalent to 0.2% of the 10,742 lignan
publications. A follow-up search in PubMed database with a
query of “lignan*” and limited article type to “Clinical Trial”
returned with 121 hits, which was equivalent to 1.1% of the
analyzed publications. With such a small ratio of clinical trials in
the lignan research literature, we believe that more clinical trials
should be conducted to substantiate the beneficial effects and
optimal dose of lignan intake on humans. In addition,
researchers are currently experiencing common difficulties in
estimating the dietary intakes of lignans (and also other non-
nutritive substances) because they are not routinely included in
the food composition tables, and there exists variability in
contents reactive to soil quality, sun exposure, etc. All these
complicate the works concerning the dose of lignan intake.

This study inherited some limitations, such as using indexed
data based on a single database (WoS). Furthermore, the latest
research trends, if any, might remain undetected due to a lack of
time to accumulate publication and citation counts. Similar to
previous literature analyses on curcumin and resveratrol (Yeung
et al., 2019a; Yeung et al., 2019b), we did not analyze the
authorship of the lignan publications, as there existed many
Chinese authors with similar initials that caused inaccurate
counting. Analyzing authorship by authors' full names was also
not practical, as many publication records listed author initials
only. Moreover, the analysis cannot evaluate the scientific
methods used to determine the research findings (e.g.,
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distinguish between in vivo work used to determine
mechanistic relationships at a molecular level, and disease
associations elucidated from population research). For an
analysis of over 10,000 publications, this requires additional
automatic labeling of the documents (data tagging), which is
currently very limited in the literature databases. For Web of
Science, for example, there are only a few publication types, e.g.,
articles, reviews, editorials. Besides, lignan sub-types and method
of action in metabolizers are not analyzed.

Overall, the current report identified the terms and themes in
the lignan research literature, being important in terms of
publication and citation data. Results revealed several recurring
or highly cited themes, implying that the bibliometric analysis
was able to quantitatively highlight the topics in the field deemed
important by the field experts.
CONCLUSIONS

To summarize, a bibliometric analysis was conducted to evaluate
publications on lignans. The current findings revealed that the
United States and Asian countries, such as China, Japan, South
Korea, and India, were the most productive countries. Some
productive institutions were based outside these countries, such
as the University of Helsinki in Finland. Many of the
publications were focused on pharmacology (23.5%), chemistry
(23.5%), and plant sciences (19.1%). Over 80% of the analyzed
papers have been published since year 2000, and nearly 50%
since year 2010. The highly cited publications usually mentioned
specific terms such as phytoestrogen, isoflavone, daidzein,
enterodiol, enterolactone, equol, genistein, isoflavonoid, cancer,
breast cancer, or cardiovascular disease. Some frequently
mentioned and discussed main common dietary lignans were
TABLE 5 | The top 20 recurring keywords in each decade.

1990s and before Occurrence (% of 2,144) 2000s Occurrence
(% of 3,312)

2010s Occurrence
(% of 5,295)

Lignans 593 (27.7) Lignans 1,304 (39.4) Lignans 1,928 (36.4)
Lignan 192 (9.0) Lignan 467 (14.1) Constituents 708 (13.4)
Constituents 148 (6.9) Constituents 361 (10.9) Lignan 699 (13.2)
Neolignans 108 (5.0) Phytoestrogens 254 (7.7) In-vitro 366 (6.9)
Phytoestrogens 96 (4.5) Neolignans 180 (5.4) Flavonoids 324 (6.1)
Genistein 86 (4.0) Derivatives 179 (5.4) Antioxidant activity 313 (5.9)

Breast-cancer 60 (2.8) Enterolactone 157 (4.7) Antioxidant 307 (5.8)
Derivatives 60 (2.8) Flaxseed 152 (4.6) Cells 298 (5.6)
Identification 57 (2.7) In-vitro 143 (4.3) Derivatives 297 (5.6)
Cancer 50 (2.3) Antioxidant activity 140 (4.2) Leaves 295 (5.6)

Women 48 (2.2) Flavonoids 138 (4.2) Apoptosis 272 (5.1)
Chemistry 47 (2.2) Phyto-estrogens 132 (4.0) Identification 266 (5.0)
Flavonoids 47 (2.2) Breast-cancer 127 (3.8) Expression 253 (4.8)
Bark 46 (2.1) Inhibition 119 (3.6) Glycosides 252 (4.8)
Acid 45 (2.1) Metabolism 119 (3.6) Neolignans 248 (4.7)
Inhibition 44 (2.1) Identification 115 (3.5) Phenolic-compounds 210 (4.0)

Podophyllotoxin 44 (2.1) Acid 114 (3.4) Oxidative stress 209 (3.9)
Diet 42 (2.0) Mammalian lignans 114 (3.4) Flaxseed 203 (3.8)
Estrogens 42 (2.0) Cells 113 (3.4) Inhibition 203 (3.8)
Route 42 (2.0) Podophyllotoxin 113 (3.4) Cytotoxicity 194 (3.7)
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lariciresinol, matairesinol, pinoresinol, secoisolariciresinol,
and syringaresinol.
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Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from Larrea tridentata, the
creosote bush found in Mexico and USA deserts, that has been used in traditional
medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular,
immunological, and neurological disorders, and even aging. NDGA presents two catechol
rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and
this may explain part of its therapeutic action. Additional effects include inhibition of
lipoxygenases (LOXs) and activation of signaling pathways that impinge on the
transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2). On the other hand,
the oxidation of the catechols to the corresponding quinones my elicit alterations in
proteins and DNA that raise safety concerns. This review describes the current knowledge
on NDGA, its targets and side effects, and its synthetic analogs as promising therapeutic
agents, highlighting their mechanism of action and clinical projection towards therapy of
neurodegenerative, liver, and kidney disease, as well as cancer.

Keywords: catechol, quinone, electrophiles, NRF2, KEAP1, cytoprotection, oxidative stress, inflammation
INTRODUCTION

Nordihydroguaiaretic acid (NDGA), also called masoprocol {IUPAC name: 4-[4-(3,4-
dihydroxyphenyl)-2,3-dimethylbutyl]benzene-1,2-diol}, is a phenolic lignan mainly extracted from
the five plant species that constitute the genus Larrea (Arteaga et al., 2005; Peralta et al., 2018). A
general source of NDGA is the leaves of Larrea tridentata, also known as “chaparral”, “creosote
bush”, and “gobernadora”, which is abundant in the deserts of Mexico and southwest USA (Arteaga
et al., 2005). NDGA accounts for approximately 10% of the leaves’ dry weight of L. tridentata and
80% of all flavonoids and lignans that are found in the resin of this plant (Floriano-Sanchez
et al., 2006).

The leaves have been used in traditional medicine of the mentioned regions for the treatment of over
50 diseases, including rheumatism, arthritis, diabetes, pain, and inflammation (Arteaga et al., 2005).More
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recently, NDGA started to be tested in other pathologies that are
becoming prevalent as a result of population aging (Sadagurski et al.,
2017). NDGA has been utilized as an antioxidant food preservative
and as nutritional supplement, mainly in the form of chaparral tea.
The best characterized effects of NDGA are: 1) the ROS scavenging
nature of NDGA decreases the pro-oxidant effects of inflammation;
2) the inhibitory effects on lipoxygenases (LOX) activity, leading to
the reduction of lipid hydroperoxides (5-HEPE and 5-HETE at 50
µM NDGA) that trigger oxidative stress due to their decomposition
to free radicals (Mashima andOkuyama, 2015) the induction of ROS
production through activation of NADPH-oxidases, MAPKs, etc.
(Li Q. et al., 2016; Nagahora et al., 2017); 3) the activation of
endogenous antioxidant responses mediated by NRF2. Most of the
pleiotropic effects that have been attributed to this compound are
briefly summarized in Table 1.

Despite the existence of many preclinical studies that
highlight the therapeutic potential of NDGA, the fact is that
most of its beneficial effects are not supported by clinical studies,
as it usually happens with parapharmaceutical products (Abou-
Gazar et al., 2004; Arteaga et al., 2005). Moreover, it was found
that excessive consumption of this phytochemical may damage
several organs including kidney and liver (Goodman et al., 1970;
Evan and Gardner, 1979), hence raising awareness about the
need of careful control of NDGA dosing and treatment length.
Therefore, the clinical development of NDGA and its analogs is
progressing slowly. This review will critically discuss the best
characterized mechanisms and targets attributed to NDGA,
safety concerns and the potential of NDAG analogs for
clinical translation.
Abbreviations: 4-VO, four-vessel occlusion; 5-HEPE, 5-hydoxyeicosapentaenoic acid;
5-HETE, 5-hydroxyeicosatetraenoic acid; AA, arachidonic acid; AD, Alzheimer’s
disease; ALS, Amyotrophic Lateral Sclerosis; ARE, Antioxidant Response Element;
ALT, alanine aminotransferase; AST, aspartate aminotransferase; beta-TrCP, beta-
transducin repeat-containing protein; BTB, broad complex, Tramtrack, Bric-a-brac;
bZip, basic region-leucine zipper; COX, cyclooxygenase; CUL3/RBX1, cullin 3 and
RING-box protein 1; DGR, double glycine repeat; DHA, docosahexaenoic acid; DPP,
dipeptidyl Peptidase 3; DUSPs, dual specificity phosphatases; EPA, eicosapentaenoic
acid; EWL, egg white lysozyme; FAM117B, Family with sequence similarity 117
member B; GSH, glutathione; HD, Huntington’s disease; HO-1, heme oxygenase-1;
HPETEs, hydroperoxy eicosatetraenoic acids; IGF-1R, insulin-like Growth Factor 1
Receptor; IGF-I, insulin-like growth factor-1; IKBKB, inhibitor ofNuclear Factor Kappa
BKinase Subunit Beta; IP-10, interferon-gamma inducible protein-10; IRF-1, interferon
regulatory factor-1; KEAP1, Kelch-like erythroid cell–derived protein with Cap’n’collar
homology (ECH)-associated protein 1; LDH, lactate dehydrogenase; LOXs,
lipoxygenases; LTA4, leukotriene A4; LTB4, leukotriene B4; LTBR1/2, leukotriene B4
receptor 1 or 2; MAD2L1, mitotic Arrest Deficient 2 Like 1; MAF, small musculo
aponeurotic fibrosarcoma proteins; MCAO, middle cerebral artery occlusion; MCC,
mutated in colorectal cancers; MCMBP, minichromosome maintenance complex
component; MCP-1, monocyte chemoattractant protein-1; MMP, matrix
metalloproteinases; NDGA, nordihydroguaiaretic acid; NO, nitric oxide; NRF2,
Nuclear factor erythroid 2-related factor 2; OGD, oxygen-glucose deprivation;
PALB2, partner and localizer of BRCA2; PD, Parkinson’s disease; PGAM5, PGAM
Family Member 5, Mitochondrial Serine/Threonine Protein Phosphatase; PI3K,
phosphatidylinostisol 3-kinase; PKD, polycystic kidney disease; PPARg, peroxisome
proliferator-activated receptor gamma; PTEN, phosphatase and tensin homolog; PUFA,
polyunsaturated fatty acids; ROS, reactive oxygen species; SLK, STE20 like kinase; Sp1,
specificity protein 1; SQSTM1, Sequestosome 1; tBHQ, tert-Butylhydroquinone; TDP-
43, TAR DNA binding protein 43; TGF-b, transforming growth factor b;
TMZ, temozolomide.
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ANTIOXIDANT AND ELECTROPHILIC
ACTIVITIES OF NDGA

NDGA presents two catechol rings that confer both
cytoprotective and cytotoxic effects depending on the dosage
and the context. The cytoprotective effect stems from the strong
scavenging activity of NDGA against multiple types of Reactive
Oxygen Species (ROS) such as peroxynitrite, singlet oxygen,
hydroxyl radical, superoxide anion, and hypochlorous acid
(Floriano-Sanchez et al., 2006). NDGA can donate one
electron and one proton from each of its four hydroxyl groups
contained in the two catechol rings, converting itself into an
oxidized catechol-quinone (Yam-Canul et al., 2008). Since
NDGA is a symmetrical molecule with two catechol groups,
both catechols can be oxidized to quinones. The reactions
involved in the oxidative modifications of NDGA have been
described previously (Billinsky et al., 2007; Billinsky and Krol,
2008) (Figure 1). Briefly, at physiological pH, NDGA rapidly
auto-oxidizes, resulting in the formation of a semi-quinone
radical which is further converted in a second oxidation step to
generate ortho-quinone and superoxide anion, mostly
spontaneously or through peroxidases- and cytochrome p450-
catalyzed reactions (Billinsky and Krol, 2008). Ortho-quinone
may be converted back to the reactive semi-quinone by cellular
NADPH-dependent reductases (O’brien, 1991; Monks et al.,
1992; Chichirau et al., 2005). This redox cycle is highly toxic,
as it evokes superoxide-generated oxidative stress, which may
become deleterious at high concentrations of NDGA. The ortho-
TABLE 1 | Some NDGA targets. The table summarizes some of the best
characterized NDGA targets.

Molecular target NDGA effect References

5-LOX, 12-LOX, 15-LOX Inhibition (Tateson et al., 1988; Pavani
et al., 1994; Vasquez-Martinez
et al., 2007)

Lipoprotein lipase Inhibition (Kang et al., 2019)
Reactive oxygen species Scavenging (Floriano-Sanchez et al., 2006)
a-amylase, a-glucosidase and
dipeptidyl peptidase 4

Inhibition (Roskar et al., 2016)

mTORC1 Inhibition (Zhang et al., 2012)
large conductance
Ca2+-activated K+

activation (Yamamura et al., 2002)

KEAP1 KEAP1
inhibition/
NRF2
activation

(Satoh et al., 2008; Rojo et al.,
2012)

Insulin-like receptor-1 (Tyr
kinase receptor)

Inhibition (Youngren et al., 2005)

c-ErbB2/HER2/Neu (Tyr
kinase receptor)

Inhibition (Youngren et al., 2005; Rowe
et al., 2008)

Transforming growth factor b
type 1 receptor (Ser/Thr
kinase receptor)

Inhibition (Youngren et al., 2005; Li et al.,
2009)

GSH depletion (Im and Han, 2007)
PTEN (Redox-sensitive
phosphatase)

Inhibition (Rojo et al., 2014)

DUSPs (Redox-sensitive
phosphatase)

Inhibition (Liu et al., 2012; Rios et al.,
2014)
February
PTEN and DUSPs are postulated as NDGA targets based on information from other
polyphenols (see text).
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quinone is a highly electrophilic Michael reaction acceptor
(Talalay et al., 1988) that reacts with sulfur neutrophiles such
as cysteine residues in glutathione (GSH) and in various proteins
(Powis, 1987). Adduct formation of ortho-quinone with GSH
results in increased excretion of these compounds, but at the cost
of depleting the GSH pool, hence leading to a shift in the redox
balance towards deleterious oxidative stress. On the other hand,
adduct formation with cysteines in critical proteins may lead to
changes in signaling pathways that trigger cytoprotective
mechanisms through NRF2 activation (Figure 1).

Therefore, the effect of NDGA on cell physiology depends on
the balance between its protective effect, which is mediated by its
antioxidant nature and electrophilic interaction with several
signaling proteins, and its toxic effect, which is related to
enhanced superoxide formation and GSH depletion. This
balance is narrowly dependent on NDGA concentration.
Although not analyzed for NDGA, diphenols provide
cytoprotection at low doses, whilst being toxic at high doses
(Satoh et al., 2013). In this context, NDGA has a redox potential
and a geometric distribution of atoms that make it suitable for
interaction with cysteines in proteins over a small range of
concentrations at which GSH levels are not substantially
depleted. Moreover, NRF2 activation by NDGA (described in
detail later in this review) leads to increased expression of the two
subunits that conform the glutamate-cysteine ligase (GCLC and
GCLM) which is the rate-limiting enzyme in GSH biosynthesis,
hence contributing to the maintenance of the cellular GSH pool.
NDGA IS A PAN-LIPOXYGENASE
INHIBITOR

Lipoxygenases (LOXs) are non-heme iron-containing enzymes (six
isoforms have been identified in humans) that catalyze the
Frontiers in Pharmacology | www.frontiersin.org 331
stereospecific oxygenation of cis,cis-1,4-pentadiene moieties of
polyunsaturated fatty acids (PUFAs), such as arachidonic acid,
eicosapentaenoic acid and docosahexaenoic acid, and formation of
their corresponding hydroperoxy-derivatives, which may be
further reduced by glutathione peroxidases. For instance, LOXs
catalyze the formation of hydroperoxyeicosatetraenoic acids
(HPETEs) from arachidonic acid (Figure 2A). HPETEs are
subsequently reduced and transformed into bioactive eicosanoids
such as 5-hydroxyeicosatetraenoic acid (5-HETE) and 5-
hydroxyeicosapentaenoic acid (5-HEPE) which can be further
metabolized to hepoxilins, lipoxins, and resolvins. These
metabolites are versatile signaling molecules that play an
important role in many physiological and pathological processes.
Of utmost importance for the immune response is the 5-LOX-
mediated generation of leukotriene A4 (LTA4) and its further
transformation, by LTA4 hydrolase, into the pro-inflammatory
leukotriene B4 (LTB4). LTB4 regulates inflammatory pathways
and immune responses against infection and tissue injury (Brandt
and Serezani, 2017).

LOXs were the first identified molecular targets of NDGA
(Tang et al., 1996; Tang and Honn, 1997; Tong et al., 2002;
Floriano-Sanchez et al., 2006; Czapski et al., 2012), which was
initially defined as a pan-LOX inhibitor with micromolar and
sub-micromolar IC50 values (Table 2). Accordingly, the biologic
effects of NDGA were firstly explained from the LOX inhibition
perspective in various pathologic conditions. For catalysis, the
iron component of the LOX enzymes must cycle between Fe2+

and Fe3+ states (Figure 2B) and the potent antioxidant activity of
NDGA is halting iron in the Fe2+ state (Nelson et al., 1991). As
shown in Table 2, micromolar and sub-micromolar NDGA
concentrations inhibit various LOX isoforms including both
15-LOX-1 and 15-LOX-2. Compared to the FDA approved 5-
LOX inhibitor zileuton (IC50 = 0.15 µM) (Braeckman et al.,
1995), NDGA has a lower IC50 value (IC50 = 0.097 µM) for
human 5-LOX (Estrada-Valencia et al., 2019).
FIGURE 1 | Main reactions for conversion of the catechol rings of NDGA into semi-quinone and ortho-quinone, and adduct formation with cysteines in glutathione
(Glu-Cys-Gly) or in proteins. Of note are the generation of the semi-quinone free radical as well as superoxide anion during the redox cycling reactions. Adapted with
permission from (Billinsky et al., 2007). Copyright (2007) American Chemical Society.
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NDGA REGULATES THE KEAP1/NRF2
AXIS

A more profound antioxidant action of NDGA than its ROS-
scavenging activity is probably related to the activation of the
endogenous antioxidant system through the inhibition of the
redox sensor KEAP1 (Kelch-like Erythroid Cell–derived Protein
with Cap’n’collar Homology (ECH)-associated Protein 1)
(Figure 3A). KEAP1 is a homodimeric protein that comprises
three functional domains: a Broad complex, Tramtrack, Bric-a-
brac (BTB) homodimerization domain, an intervening region
Frontiers in Pharmacology | www.frontiersin.org 432
(IVR) and a C-terminal Kelch domain with a double glycine
repeat (DGR) (Canning et al., 2015). KEAP1 is an ubiquitin E3
ligase adapter that binds certain proteins at the Kelch domain
and presents them to the E3 ligase complex formed by Cullin 3
and RING-box protein 1 (CUL3/RBX1), leading to their
ubiquitination and proteasomal degradation (Zhang and
Hannink, 2003; Cullinan et al., 2004; Kobayashi et al., 2004).
Therefore, KEAP1 inhibition results in accumulation of
these proteins.

The exceptional feature of KEAP1 is that it is a redox sensor.
Human KEAP1 contains 27 cysteine residues and several of them
can be modified by sulfhydryl reactions under oxidant conditions
and by adduct formation with electrophiles, such as NDGA. The
most sensitive cysteines for adduct formation are C151, C273,
and C288 (Yamamoto et al., 2008). Although experimental
evidence is still lacking for NDGA, another catechol,
hydroxytyrosol butyrate, appears to interact with the above
mentioned cysteines in vivo (Funakohi-Tago et al., 2018).
However, a single point mutant, C151S, was sufficient to yield
KEAP1 refractory to inhibition by the diphenolic compound
tert-butylhydroquinone (tBHQ) (Zhang and Hannink, 2003) as
well as by carnosic acid, a catechol-type electrophilic compound
(Satoh et al., 2008). Therefore, it is tempting to speculate that
NDGA inhibits KEAP1 through conversion to its quinone form,
followed by adduct formation with C151 of KEAP1 (Satoh
et al., 2008).

The best characterized protein interacting with KEAP1 is the
transcription factor NRF2, which is considered a master
regulator of multiple homeostatic responses (Cuadrado et al.,
2018; Cuadrado et al., 2019). NRF2 is a basic region-leucine
zipper (bZip) transcription factor that forms heterodimers with
the small muscle aponeurotic fibrosarcoma proteins (MAF) K, G,
and F (Katsuoka and Yamamoto, 2016). The heterodimer
recognizes an enhancer sequence termed Antioxidant Response
Element (ARE) that is present in the regulatory regions of over
250 genes (Ma, 2013; Hayes and Dinkova-Kostova, 2014). These
TABLE 2 | Inhibitory action of NDGA on lipoxygenases (LOXs).

LOX IC50

(µM)
Extracts
from:

References

Arachidonate 5-lipoxygenase
(5-LOX)

0.8 Leukocytes (Tateson et al., 1988)

Arachidonate 12-lipoxygenase
(12-LOX)

2.6 SF9 cells
transfected
with human
LOX genes

(Vasquez-Martinez
et al., 2007)

Arachidonate 5-lipoxygenase-1
(15-LOX-1)

0.25

Arachidonate 15-lipoxygenase-
2 (15-LOX-2)

0.11

Arachidonate 12/15-
lipoxygenase 15/12-LOX

0.1

Arachidonate 12-lipoxygenase
(12-LOX)

3-5 Human
platelets

(Pavani et al., 1994)

Arachidonate 5-lipoxygenase
(5-LOX)

2.3 Nucleated
platelets

(Chen et al., 2005)

Arachidonate 12-lipoxygenase
(12-LOX)

1.6

Arachidonate 15-lipoxygenase
(15-LOX)

1.7

Arachidonate 5-lipoxygenase
(5-LOX)

0.91 Rabbit
reticulocytes

(Hope et al., 1983)

Soybean lipoxygenase 0.45 Soybean (Whitman et al., 2002)
IC50 values established in vitro.
FIGURE 2 | Catalytic mechanism proposed for lipoxygenases (LOXs) inhibition by NDGA. (A) conversion of arachidonic acid to HPETEs by specific LOX enzymes
that are targeted by NDGA. (B) LOXs contain a non-heme Fe in the catalytic center that allows redox cycling of the enzyme, coupled with oxygen consumption. In
the first reactions, unsaturated fatty acids, such as arachidonic acid, undergo a hydrogen abstraction and electron rearrangement, converting Fe3+ to Fe2+, and
yielding a free radical (red dot). Then, a molecule of oxygen is taken to form a peroxy radical. Finally, the conversion of peroxy radical to hydroperoxy fatty acid is
coupled to the regeneration of Fe3+. NDGA maintains Fe in the Fe2+ form, hence breaking the redox cycle of LOXs and resulting in its inactivation.
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genes encode a network of enzymes involved in phase I, II, and
III biotransformation reactions, antioxidant metabolism (e.g.
generation of NADPH-, glutathione- and thioredoxin-
mediated reactions), lipid and iron catabolism, interaction with
other transcription factors, as well as autophagy (Hayes and
Dinkova-Kostova, 2014; Cuadrado et al., 2019). Although the
crystal structure of NRF2 has not yet been reported, its primary
sequence reveals several domains termed (Neh)1-6 (NRF2-ECH
homology). Under basal homeostatic conditions, the Kelch
domains of the KEAP1 homodimer bind one molecule of
NRF2 at two N-terminal amino acid sequences in the Neh2
domain: the low affinity binding site (aspartate, leucine, and
glycine; DLG) and the high affinity binding site (glutamate,
threonine, glycine, and glutamate; ETGE) (Mcmahon et al.,
2006; Tong et al., 2006). Thereafter, KEAP1-bound NRF2 is
directed to ubiquitination by CUL3/RBX1 and its subsequent
degradation by the proteasome. As a result, the constantly
synthesized NRF2 is continuously degraded, having a very
short half-life of about 20–45 min, depending on the cell type
(Mcmahon et al., 2004). However, in an oxidant environment or
in the presence of electrophiles (e.g. NDGA), KEAP1 switches
towards an inactive form which is no longer capable of
promoting NRF2 ubiquitination. As such, NRF2 is stabilized
by avoiding proteasomal degradation, and supports cellular
adaptation to oxidative stress (Rojo et al., 2012). Definite
evidence that NDGA increases NRF2 stability by disrupting
the KEAP1/NRF2 interaction was obtained using a chimeric
protein that contains the enhanced green fluorescence protein
fused to the Neh2 domain of NRF2 (Rojo et al., 2012). The Neh2
tag conferred instability to the chimeric protein and this was
prevented in the presence of NDGA. In fact, NDGA promotes
the stabilization of the NRF2 protein and upregulation of its gene
target HMOX1 that encodes heme-oxygenase-1 (HO-1), hence
conferring cytoprotection against the hydrogen peroxide-
induced damage in mouse fibroblasts (Rojo et al., 2012) and
against 3-nitropropionic acid in cerebellar granule cells
Frontiers in Pharmacology | www.frontiersin.org 533
(Guzman-Beltran et al., 2008). Moreover, NDGA induces the
nuclear translocation of NRF2 in vivo in the rat kidney, leading
to the activation of its transcriptional signature and consequent
protection against renal oxidative injury and apoptosis in a
model of ischemia reperfusion (Zuniga-Toala et al., 2013).

Although for the moment there is no clear experimental
evidence, the inhibition of KEAP1 by NDGA might also
impact the stability and function of other KEAP1 substrates,
besides NRF2. These substrates are still poorly defined but they
all share a motif that is identical to or resembles the ETGE motif
in the high affinity binding site of NRF2. Empirical evidence
for association to KEAP1 has been shown for SQSTM1
(Sequestosome 1), MCM3 (Minichromosome Maintenance
Complex Component 3), MCMBP (Minichromosome
Maintenance Complex Binding Protein), MCC (Mutated In
Colorectal Cancers), the metallopeptidase DPP3 (Dipeptidyl
Peptidase 3), SLK (STE20 Like Kinase), MAD2L1 (Mitotic
Arrest Deficient 2 Like 1), FAM117B (Family With Sequence
Similarity 117 Member B), IKBKB (Inhibitor Of Nuclear Factor
Kappa B Kinase Subunit Beta), PGAM5 (PGAM Family Member
5, Mitochondrial Serine/Threonine Protein Phosphatase), and
PALB2 (Partner and localizer of BRCA2) (Lo and Hannink,
2006; Goldfarb et al., 2014; Orthwein et al., 2015). However, it
should be noted that the disruption of the KEAP1/NRF2
interaction by NDGA might not represent a general
mechanism for other KEAP1 substrates and therefore
experimental work is needed, not only to establish mechanistic
interactions but also to know if these proteins might be
functional effectors underlining the anti-tumor and anti-
inflammatory activities of NDGA. At least in the case of
SQSTM1, there is some indirect evidence indicating that
NDGA alters this interaction and inhibits Mycobacterium
tuberculosis growth in infected macrophages by inducing
autophagy (Guzman-Beltran et al., 2016). SQSTM1 is a crucial
autophagy protein involved in transporting KEAP1 to
autophagosomes. It contains a STGE motif that, upon
FIGURE 3 | Hypothetical mechanisms of NRF2 activation by NDGA. (A) The E3 ligase adapter KEAP1 recognizes the Neh2 domain of NRF2, leading to its
ubiquitination and proteasomal degradation. NDGA might inhibit KEAP1 by making adducts with specific cysteines of KEAP1, including Cys151. (B) The Neh6
domain of NRF2 is a target for phosphorylation by the Glycogen Synthase Kinase-3 (GSK-3). This phosphorylation creates a site for recognition by the E3 ligase
adapter beta-TrCP, leading to its ubiquitination and proteasomal degradation. GSK-3 is inhibited by phosphorylation at its N-terminus by several kinases including
AKT. NDGA might inhibit GSK-3 indirectly through adduct formation with the catalytic Cys124 of PTEN. Inhibition of PTEN results in sustained activation of AKT and
inhibition of GSK-3, therefore allowing NRF2 to escape this degradation pathway. See text for details of both mechanisms.
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phosphorylation at the serine residue, resembles the high affinity
binding site for KEAP1 (Komatsu et al., 2010). Accordingly, it is
possible that, in addition to the induction of autophagy genes
through NRF2 activation (Pajares et al., 2016; Pajares et al.,
2018), NDGA might modulate autophagy by disrupting the
KEAP1/SQSTM1 interaction.
NDGA ELICITS DUAL EFFECTS ON
VARIOUS SIGNALING CASCADES

Studies in cell culture indicate that, depending on the context,
NDGA may either inhibit or activate the PI3K/AKT axis and the
three main MAPK cascades, namely ERK1/2, p38, and JNK. At
high concentrations, NDGA disrupts the activation of ERK and
AKT signaling pathways activated by IGF-I (insulin-like growth
factor-1) and induces apoptosis (Meyer et al., 2007), the effect
being highly important for cancer treatment but also for
unwanted side-effects. At least in the case of the PI3K/AKT
pathway, the NDGA-mediated inhibition resembles the effect of
high concentrations of hydrogen peroxide, which lead to elevated
levels of intracellular ROS and ceramide. These intermediary
molecules tr igger the down-regulat ion of AKT by
dephosphorylation and subsequent proteolysis (Martin et al.,
2002). However, low micromolar concentrations of NDGA were
found in most reports to activate the mentioned kinase pathways.
This effect is most likely due to the redox cycling nature of
NDGA which, depending on dosing and cell type, induces a mild
oxidative stress and alteration of redox sensitive cysteines in
particular proteins by sulfhydryl modification, as well as GSH
depletion. For instance, NDGA-mediated apoptosis in the
murine prolymphocytic cell line FL5.12 was shown to be
independent of LOX inhibition but was partially related to p38
activation, and was prevented by the antioxidant N-acetyl
cysteine (Deshpande and Kehrer, 2006). In fact, redox cycling
polyphenols like NDGA can alter the balance between
phosphorylation and dephosphorylation by inhibiting redox-
sensitive phosphatases (Ostman et al., 2011). An example is
PTEN (Phosphatase and Tensin Homolog) in which a catalytic
cysteine is required to form a covalent intermediate with the
phosphate group in order to be eliminated from the substrate
protein. Evidence gathered with the diphenolic compound tBHQ
indicates that this cysteine is susceptible to form adducts with the
oxidized benzoquinone form of tBHQ, hence triggering PTEN
inhibition and consequent AKT activation (Ostman et al., 2011;
Rojo et al., 2014). Assuming that the catechol quinone derived
from NDGA oxidation behaves as this benzoquinone, it is most
likely that NDGA is activating the PI3K/AKT pathway by
inhibiting PTEN.

The modulation of MAPKs by NDGA is less clear. It is
noteworthy that dual specificity phosphatases (DUSPs), which
are involved in shutting down these pathways, exhibit a catalytic
cysteine, similar to PTEN. Therefore, a comparable inhibitory
effect of NDGA as described for PTEN is suggested, resulting in
MAPK activation (Rios et al., 2014). NDGA seems to use this
mechanism also in the case of JNK for protection against cerebral
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ischemia/reperfusion (Liu et al., 2012). The JNK upstream kinase
ASK1 is sensitive to oxidative stress through interaction with
thioredoxin, and it was demonstrated that the electrophile
acrolein alkylates thioredoxin reductase-1 and thioredoxin-
activating JNK (Randall et al., 2013). More experimental
work is required to determine if NDGA inhibits catalytic
cysteines, in particular phosphatases and other proteins, and
impacts the signaling networks that are critically involved in
various pathologies.
NDGA CAN ACTIVATE NRF2 IN A
KEAP1-INDEPENDENT MANNER

As described above, NDGA inhibits the redox sensor KEAP1,
leading to NRF2 activation. However, the fact that NDGA can
stabilize the protein levels of NRF2, even in fibroblasts derived
from Keap1-knockout mouse embryos, points towards other
mechanisms besides KEAP1 inhibition for regulating NRF2
stability. It was found that NDGA stabilizes NRF2 in a
KEAP1-independent manner through phosphorylation of its
Neh6 domain (Rojo et al., 2012). In fact, the Neh6 domain was
shown to confer instability to a chimera made of cyan fluorescent
protein and the Neh6 domain, and this effect was prevented by
NDGA. In this domain, NRF2 presents two motifs, DSGIS and
DSAPGS, that, upon phosphorylation, are converted into a
degradation signal recognized by the E3 ligase adapter beta-
TrCP (beta-transducin repeat-containing protein) (Cuadrado,
2015). This protein connects phospho-NRF2 with the CUL1-
RBX1 ubiquitin ligase complex, and promotes its degradation
(Figure 3B). The kinase involved in phosphorylation of the
DSAPGS motif was not identified (Chowdhry et al., 2013), but
it is known that the DSGIS motif is phosphorylated by the serine/
threonine protein kinases GSK-3a and GSK-3b (Cuadrado,
2015). GSK-3 is an active kinase under resting conditions, but
it is inhibited upon growth factor signaling by phosphorylation
of its N-terminal domain (Serine 21 and Serine 9 in GSK-3a and
GSK3b, respectively) (Rada et al., 2011; Rada et al., 2012). A very
well established kinase involved in GSK-3 phosphorylation is
AKT (Van Weeren et al., 1998; Woodgett, 2005). NDGA mimics
growth factor signaling to activate AKT, rendering GSK-3
inactive and preventing the formation of the DSGIS
phosphodegron (Rada et al., 2011; Rada et al., 2012). It has
also been reported that p38 inhibits human GSK-3b through
phosphorylation of T390 (Thornton et al., 2008) and therefore
NDGA might also contribute to inhibition of GSK-3 and
subsequent stabilization of NRF2 via activation of the p38
pathway, but this mechanism needs remains to be demonstrated.
NDGA AS A THERAPEUTIC AGENT

NDGA Protects Against Renal Damage
Deterioration of renal function is associated with impairment of
the electrolyte and acid balance, resulting in irreversible kidney
damage and renal necrosis. Therapy may include hemo- and
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peritoneal dialysis, and a kidney transplant is required in severe
cases. All these therapeutic strategies are helping in alleviating
symptoms, but cannot prevent or reverse renal damage. In this
context, NDGA has emerged as a novel promising candidate
considering that oxidative stress and inflammation are the major
pathological mechanisms of nephrotoxicity.

Firstly, the antioxidant capacity of NDGA has been evaluated
in renal dysfunction induced by ferric-nitrilotriacetate. NDGA
prevented the reduction in the expression of key antioxidant
enzymes, such as glutathione-S-transferase, glutathione-
reductase, glucose-6-phosphate dehydrogenase, and catalase,
that are induced by ferric-nitrilotriacetate. Accordingly, NDGA
increased GSH concentration and reduced the levels of oxidative
damage markers such as lipid peroxides and oxygen peroxide
(Ansar et al., 1999). Similar results were obtained in a later study
of streptozotocin-induced nephropathy in rats. Administration
of NDGA prevented the increase in renal malondialdehyde levels
and the decrease in the renal GSH content, superoxide dismutase
and catalase activities, paralleled by the decrease of proteinuria
(Anjaneyulu and Chopra, 2004). Moreover, the effect of NDGA
on K2Cr2O7-induced nephrotoxicity and the associated
oxidative/nitrosative stress indicates that when this drug is
administered in mini osmotic pumps, it can reduce the levels
of the oxidative and nitrosative stress markers 4-hydroxy-2-
nonenal and 3-nitrotyrosine, respectively (Yam-Canul et al.,
2008). Histologic analysis of slices from K2Cr2O7-treated rats
showed extensive tubular damage, and most of cortical tubules
exhibited epithelial atrophy and casts. Interestingly, K2Cr2O7/
NDGA-treated rats had lesser tissue damage and fewer epithelial
tubular cells were affected. In addition, the levels of urinary
N-acetyl-b-d-glucosaminidase, serum creatinine and serum
glutathione peroxidase activity were actually normalized after
NDGA treatment (Yam-Canul et al., 2008). These results are
further supported in rodent models of the human idiopathic
nephrotic syndrome, which is based on puromycin
aminonucleoside-induced nephrosis . Ultrastructural
investigations by electron microscopy showed that podocyte
morphology was changed after induction of nephrosis but
recovered after NDGA administration. Moreover, protein
excretion in urine was significantly lower in the animal groups
treated with NDGA than in the control groups (Lee et al., 2009).
In diabetic nephropathy, NDGA was also shown to improve
renal function by decreasing the ratio of urinary albumin to
creatinine, paralleled by a decrease in serum lipid peroxide levels
(Gad, 2012). Moreover, NDGA was shown to accelerate the
recovery of the renal function after cisplatin treatment. In line
with the results of previous studies, NDGA pretreatment
prevented oxidative and nitrosative stress, as well as
inflammation (restoration of the levels of the anti-
inflammatory IL-10 cytokine in the kidney), and preserved the
renal function (Mundhe et al., 2019). In a model of polycystic
kidney disease, which is characterized by increased levels of renal
cyclooxygenase (COX)-derived eicosanoids, NDGA decreased
the levels of prostaglandin PGF2 and LOX-derived metabolites,
but this inhibition was not clearly associated with changes in the
renal function or disease progression (Ibrahim et al., 2015). In
conclusion, NDGA exerts renal protective actions in preclinical
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models, hence suggesting its therapeutic potential for the
treatment of patients with kidney failure and other
associated complications.

NDGA Protects Against Liver Disease
The role of NDGA in liver protection has been widely addressed
experimentally using various models that mimic key hallmarks
of acute hepatotoxicity. Diverse studies have pointed out that
both metabolic syndrome and liver damage induced by an
unbalanced diet, were improved when NDGA was co-
administered. Obesity, insulin resistance, hepatic steatosis and
liver fibrosis were attenuated by NDGA in mice fed with high
trans-fat, cholesterol, and fructose diet (Han et al., 2019). In mice
submitted to a typical American “fast food” diet, NDGA
normalized insulin sensitivity, but not glucose intolerance,
body and fat pad weight, ALT, AST, and liver triglycerides
(Chan et al., 2018). By contrast, in mice fed with a high-fat
diet for 8 weeks, NDGA reduced weight gain, fat pad mass and
hepatic triglyceride accumulation, and improved serum lipid
parameters (Zhang et al., 2016). Further analysis showed that
this NDGA effect is underlined by the activation of the AMP-
activated protein kinase (AMK) in the liver and in HepG2
hepatocytes. Specific analysis of the mechanism through which
NDGA exerts its anti-hypertriglyceridemic action was
determined in response to a high-fructose diet. Oral
administration of NDGA decreased the plasma levels of
glucose, insulin, triglycerides and fatty acids, increased hepatic
mitochondrial fatty acid oxidation and attenuated hepatic
accumulation of triglycerides (Zhang et al., 2016). In addition,
chronic administration of NDGA to obese mice (ob/ob)
s ignificant ly improved plasma tr ig lycer ides leve ls ,
inflammatory chemokines levels, hyperinsulinemia, insulin
sensitivity and glucose intolerance, while enhancing the rate of
fatty acid oxidation (Zhang et al., 2013). Type 2 diabetes mellitus
is a complex disease with alterations in metabolic and
inflammatory markers which could be spontaneously
developed by Stillman Salgado rats. Dain et al. (2016) analyzed
in these rats the effects of w-3 polyunsaturated fatty acids
supplementation with or without NDGA added, and they
observed that NDGA treatment ameliorated inflammatory,
metabolic, and oxidative stress markers (Dain et al., 2016).

NDGA deeply impacts the transcriptomic profile of the liver.
Global transcriptional changes have been analyzed in response to
chronic administration of NDGA in the context of a high-
fructose diet. NDGA upregulated the expression of several
genes involved in fatty acid oxidation (ACOX1, CPT1B, CPT2,
ACADVL, ECI1, and EHHADH) and PPARa, which is the
transcription factor considered as the master regulator of fatty
acid oxidation. On the other hand, the expression of some
lipogenic genes and relevant transcriptional factors were
reduced in the NDGA-treated animals (GCKR, GCK, ACLY,
FASN, SCD1, ELOVL2, ELOVL5, FADS1 FADS2, DGAT2, ARF3,
HMGCR, INSIG1, INSIG2). NDGA differentially affected the
genes encoding fatty acid transporters, acetyl CoA synthetases,
elongases, fatty acid desaturases, and lipid clearance proteins
(Zhang et al., 2015). Some of these findings were validated by
qRT-PCR and immunoblot in independent studies. NDGA
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downregulated the protein level of SREBP-1 and therefore of its
target genes, ACC and FAS. In turn, it upregulated the levels of
proteins involved in fatty acid oxidation, such as PPARa, PGC-1,
CPT-1L, UCP2 and UCP3 (Lee et al., 2010). The transcription
factor PPARa plays a crucial role in the response to NDGA. Both
the mRNA and nuclear protein levels of PPARa were
upregulated by NDGA (Lee et al., 2010; Zhang et al., 2013). In
fact, NDGA increased PPARa promoter activity in AML12
hepatocytes. Very relevant, reduction of PPARa expression by
siRNA abrogated its stimulatory effect on fatty acid catabolism.
Likewise, no stimulatory effect of NDGA on hepatic fatty acid
oxidation was observed in the liver of PPARa-deficient mice
(Zhang et al., 2013). These findings suggest that NDGA
ameliorates hypertriglyceridemia and steatosis primarily by
altering the expression of genes encoding key enzymes and
transcription factors involved in de novo lipogenesis and fatty
acid oxidation.

Altogether, these studies strongly suggest that the antioxidant
and anti-inflammatory properties of NDGA are involved in its
kidney protective effect; whereas its role in liver is closely related
to its capacity to increase lipid catabolism. However, we might be
aware that NDGA concentration is a key issue to correctly
interpret the experimental data. For instance, NDGA exhibits
adverse pro-oxidant effects on clone-9 rat hepatocyte cultures in
the concentration range of 20-100 mM, while it has beneficial
antioxidant effects on rat alveolar macrophages and Chinese
hamster lung fibroblasts at concentrations below 10 mM
(Robison et al., 1990). As it will be discussed in section Adverse
Effects of NDGA, a growing body of evidence supports the fact
NDGA is deeply impacting kidney and liver physiology,
precluding is clinical development.

NDGA Protects Against
Neurodegeneration
Extensive data from animal models and human samples provide
strong evidence for an early role of redox and neurotransmitter
imbalance, inflammation, mitochondrial dysfunction, and altered
proteostasis as common mechanisms in the pathogenesis of
neurodegenerative diseases that are clinically characterized by
progressive loss of neurons and compromised motor or cognitive
functions (Ibanez et al., 2004; Alzheimer’sassociation, 2016).
Existing therapeutic approaches do not control the unrelenting
progression of neurodegeneration, and the therapeutic
approaches designed to target individual signaling pathways
have failed in clinical studies. As we have reviewed here,
NDGA exerts protective effects against various deleterious
signals involved in neurodegeneration.

NDGA Modulates Oxidative Stress in the Brain
Compared with other organs, the brain consumes very high
oxygen amounts, has low antioxidant defense mechanisms and a
high content of polyunsaturated fatty acids that are readily prone
to be oxidized. Mitochondrial impairment, resulting in ROS
overproduction, is also an underlying mechanism of
neurodegeneration (Cenini et al., 2019). These features make
the brain especially vulnerable to oxidative stress-induced
damage. Therefore, the use of antioxidant compounds which
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are able to restore the redox balance may greatly help to keep
under control the susceptibility of the brain to oxidative damage.

The intrinsic antioxidant activity of NDGA was evidenced in
rat brain homogenates by measuring the production of
thiobarbituric acid reactive substances, formation of peroxy-
lipids and carbonyl-proteins. These redox markers were
significantly reduced when the brain extracts were incubated
with NDGA (Shishido et al., 2001; Czapski et al., 2012). The
neuroprotective effect of NDGA has been also evaluated in
neuronal cultures submitted to generic oxidant compounds
such as oxygen peroxide (Guzman-Beltran et al., 2008) or
iodoacetate (Cardenas-Rodriguez et al., 2009) used as inhibitor
of glyceraldehyde-3-phosphate dehydrogenase. In both
experimental settings, the neuroprotective effects exerted in
vitro by NDGA were associated with the prevention of
oxidative stress. Additionally, NDGA prevented the increase in
ROS and calcium levels, as well as neuronal injury in an in vitro
model of Alzheimer’s disease (AD), consisting in the treatment
of neuronal cultures with amyloid beta (Ab) (Goodman et al.,
1994). Moreover, Guzman-Beltran et al. (2008) demonstrated
that NDGA protects neurons against 3-nitropropionic acid, a
chemical model of Huntington Disease (HD), through the
activation of the NRF2 transcription factor. Furthermore, this
study pointed out the stimulatory activity of NDGA on the NRF2
target HMOX1, which has an important role in neuroprotection
(Guzman-Beltran et al., 2008).

Further demonstration of the antioxidant activity of NDGA
in the brain has been done using in vivo models characterized
by increased oxidative stress. For instance, diabetic
encephalopathy is a chronic complication of diabetes mellitus
that affects the central nervous system. Plasma and brain samples
of diabetic rats exhibited higher levels of oxidative stress
markers, gamma-glutamyltranspeptidase activity, and hydro-/
lipoperoxides than those found in control rats. Interestingly, the
levels of those markers were reduced when the rats were injected
monthly with NDGA for 12 months (Diaz-Gerevini et al., 2019).
In the striatal neurons of the R6/2 mouse model of HD, NDGA
markedly reduced the levels of 4-HNE (marker of lipid
peroxidation) and preserved mitochondrial morphology and
ATP generation. These beneficial effects of NDGA were
associated with an increase of the lifespan of HD mice (Lee
et al., 2011).

NDGA Regulates Neurotransmission
Alterations in the cholinergic neurotransmission at the cortex
and hippocampus are important hallmarks in many forms of
dementia (Wilcock et al., 1982; Muir, 1997). In fact,
acetylcholinesterase (AChE) inhibitors are currently the main
therapeutic tool for restoring acetylcholine levels in the
pathogenesis of AD (Arvanitakis et al., 2019). Virtual screening
of diverse natural products against AChE revealed that NDGA
was among the top scored compounds with an IC50 value of 46.2
mM. Moreover, structural modifications of NDGA were
performed in silico to obtain derivatives with improved blood
brain barrier penetration and improved activity in the central
nervous system. The new NDGA derivatives were more
lipophilic, less flexible and had lower molecular weight than
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NDGA. AchE binding analysis showed higher binding affinity
for the designed ligands, probably due to higher hydrogen
bonding and p–p interactions (Remya et al., 2013).

Chronic excitotoxicity plays a role in many neurodegenerative
diseases, having a particular relevance in amyotrophic lateral
sclerosis (ALS). Excitotoxicity results from excessive activation of
glutamate receptors, and leads to loss of neuronal structures
including dendrites and cell bodies (Meldrum and Garthwaite,
1990; Limanaqi et al., 2019). Considering that synaptic
accumulation of glutamate is detrimental to neurons, drugs like
NDGA, that are capable of increasing glutamate uptake by the
astrocytes, might be therapeutically beneficial (Lynch et al.,
1989). Indeed, subcutaneous administration of NDGA for 30
days in mice, increased glutamate uptake in synaptosomes from
the spinal cord (Boston-Howes et al., 2008). In turn, the effect of
NDGA in a mouse model of ALS (SOD1-G93Amouse) is slightly
controversial. Initially, oral NDGA administration significantly
extended lifespan by 10%, slowed motor dysfunction and
triggered a reduction in gliosis and neuron damage (West
et al., 2004). However, a later study did not find that NDGA
could extend life span of these mice when administered
subcutaneously (Boston-Howes et al., 2008).

NDGA Limits Neuroinflammation
Chronic inflammation plays a critical role in neurodegenerative
disease and therefore immunosuppressive/modulatory strategies
hold great promise. For instance, immune interventions have
been successfully applied in the clinic to treat multiple sclerosis
(Rieckmann et al., 2008). Several studies analyzed the anti-
inflammatory role of NDGA in the context of LOX inhibition
and the resulting reduction of harmful arachidonic acid (AA)-
derived metabolites. NDGA was shown to prevent ischemic/
reperfusion damage in a model of cultured rat cortical neurons
that were subjected to oxygen-glucose deprivation (OGD) (Liu
et al., 2012). In this study, NDGA reduced the levels of phospho-
JNK and phospho-c-JUN, preventing neuronal apoptosis
through 12/15-LOX inhibition. In addition, NDGA protected
neurons in stroke models based on permanent or transient
occlusion of the middle cerebral artery followed by reperfusion
(Liu et al., 2012). Moreover, NDGA significantly attenuated post-
ischemic learning and memory impairment after transient four-
vessel occlusion in rats. Furthermore, consecutive administration
of NDGA for 4 days significantly reduced the post-ischemic
neuronal death of pyramidal cells in the rat hippocampus
(Shishido et al., 2001). In a Parkinson’s disease model, the
toxic effect of nitric oxide (NO) on GSH-depleted primary
midbrain cultures was partially prevented by NDGA (Canals
et al., 2003). The anti-inflammatory effects of NDGA were also
evaluated in a spinal cord injury model which is characterized by
inflammation. In this context, NDGA significantly decreased
myeloperoxidase (MPO) levels, as an indicator of neutrophil
activity, and also the number of macrophages/microglia cells. In
addition, NDGA suppressed the expression of the pro-
inflammatory cytokines IL-1b and TNF-a. Of utmost
importance, histological analysis of the spinal cord showed an
increased number of neurons after NDGA administration and
the extent of secondary damage, measured as the number of
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apoptotic cells and proliferating astrocytes, was significantly
decreased (Xue et al., 2013).

Modulation of the IFNg response by NDGA deserves special
attention. It has been proposed that in rat astrocytes, NDGA
suppresses the pro-inflammatory response mediated by IFNg in a
LOX-independent manner (Jeon et al., 2005). Thus, in the
presence of NDGA, the expression of pro-inflammatory factors
such as IRF-1 (interferon regulatory factor-1), MCP-1
(monocyte chemotactic protein-1), interferon-gamma inducible
protein-10 (IP-10), and the CXCL10 chemokine) were
significantly reduced, as well as the levels of phospho-JAK and
phospho-STAT. However, the 5-LOX products LTB4 and LTC4
were not detected in cells treated with IFNg. In addition, two
other 5-LOX inhibitors (Rev5901 and AA861) did not mimic the
effect of NDGA, and addition of 5-LOX metabolites did not
reverse the NDGA-driven suppression of STAT. These results
suggest that NDGA regulates IFNg-mediated inflammation
through mechanisms that are not related to LOX inhibition
and might be the result of combined mechanisms, possibly
related to NRF2 activation (Cuadrado et al., 2018).

NDGA Prevents Proteinopathy
Proteinopathy is a pathological condition characterized by the
formation of protein deposits in the form of amyloid fibrils. In
the brain, protein aggregates encompass dimers, oligomers,
protofilaments, and fibrils (Stefani, 2010). Thus, misfolded
aggregates of a-synuclein are found in PD, b-amyloid (Ab)
plaques and hyper-phosphorylated TAU neurofibrillary tangles
in AD, huntingtin in HD, superoxide dismutase 1, and TAR
DNA binding protein 43 (TDP-43) in ALS, etc. A growing body
of evidence supports a connection between NDGA and
amyloidosis. Nusrat et al. (2016) studied this concept using egg
white lysozyme (HEWL) as a model protein for amyloidosis.
NDGA interferes with the amyloid fibrillogenesis process by
hydrophobic interaction with the amino acid residues found in
the highly prone amyloid fibril forming region of HEWL, as
demonstrated by molecular docking results (Nusrat et al., 2016).
Previous studies have also addressed the role of NDGA in Ab or
a-synuclein oligomerization. Particularly, by analyzing the
fluorescence derived from the Ab probe, thioflavin T,
Yamada’s group showed that NDGA inhibits Ab fibril
formation (Naiki et al., 1998; Ono et al., 2004) and
disaggregates Ab fibrils formed in vitro (Ono et al., 2002).
These results were confirmed and extended to Ab protofibrils
in a later study, where the authors have combined fluorescence
analysis of the thioflavin T probe with electron microscopy.
However, the authors established that the NDGA-induced
decrease in thioflavin T fluorescence was not accompanied by
a reduction in Ab aggregate size or quantity. To elucidate these
controversial results, NDGA supplementation was given to AD
transgenic mice (Tg2576) for 10 months starting at the age of 5
months. It was found that Ab deposition, assessed
immunohistochemically, was significantly decreased in the
brain of NDGA-treated mice (Moss et al., 2004).

NDGA inhibits dose‐dependently a-synuclein oligomerization
(Takahashi et al., 2015) due to the binding of multiple molecules of
NDGA per a-synuclein molecule (Haney et al., 2017). Recently, it
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was shown that NDGA induced modest but progressive
compaction of monomeric a-synuclein, hence preventing its
aggregation into amyloid-like fibrils. This conformational
remodeling preserved the dynamic adoption of a-helical
conformations that are essential for physiologic membrane
interactions (Daniels et al., 2019). The modulation of a-
synuclein dynamics by NDGA was studied in connection with
climbing ability in a Drosophila PD-model expressing normal
human a-synuclein in neurons. Diet supplementation with
NDGA for 24 days improved in a dose-dependent manner the
locomotor dysfunction exhibited by the mutant flies (Siddique
et al., 2012).

NDGA Has Anti-Cancer Action
NDGA exerts in vitro anti-cancer effects on various types of
tumor and leukemia cell lines in the concentration range 1–100
µM. The mechanisms underlining the observed effects might
differ depending on NDGA concentration and the type of cancer
cells. In tumor-bearing animal models NDGA was tested in the
dose range of 0.750–100 mg/kg body weight (Hernandez-Damian
et al., 2014). As shown in Table 3, NDGA holds great promise as
a therapeutic agent for several types of cancer, as extensively
demonstrated by preclinical studies on tumor cell lines and
animal/human tumors. The rationale behind the anti-tumor
action resides in the fact that most cancer cells are
characterized by low-grade oxidative stress and inflammation
that provide a survival and growth advantage in the hostile tumor
microenvironment, as well as resistance to therapy (Manda et al.,
2015). Table 4 summarizes the nine clinical studies on NDGA
and its analog terameprocol (see section NDGA-Analogs as Novel
Therapeutic Small Molecules), but only two of them have reported
results. They will be discussed in the following subsections.

NDGA Exerts Anti-Cancer Effects by LOX Inhibition
Several types of cancer cells exhibit altered LOX expression or
activity, and this is highly differentiated according to the involved
LOX isoform, cancer cell type and the context. Moreover, the
interplay between tumor cells and stroma (epithelial, endothelial
and immune cells) is critically involved in tumor progression
from the LOX perspective. As demonstrated in colorectal cancer
(Mariani et al., 2014), inflammation and necrosis within the
tumor niche lead to the recruitment of monocytes and their
polarization towards a pro-inflammatory phenotype, hence
reinforcing inflammation in the tumor microenvironment
through increased production of pro-inflammatory cytokines
(TNFa, IL-12 and IL-23). Moreover, stromal, epithelial and
endothelial cells express LOXs (5-LOX, 12-LOX), and COX2
which generate potent inflammatory mediators (leukotrienes
and prostaglandins) that trigger the recruitment of neutrophils,
and consequently amplify inflammation through increased
production of ROS and matrix metalloproteinases (MMP). If
the inflammatory stimulus is switched-off, the stromal and
epithelial cells expressing 15-LOX produce pro-resolving
lipoxins, which block neutrophils migration, stimulate the
phagocytosis of apoptotic cells by macrophages and polarize
macrophages to an anti-inflammatory phenotype. If the stimulus
is not resolved, stromal and epithelial cells amplify the
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inflammatory signals in the tumor niche (IL-1, IL-8, 5-LOX,
and 12-LOX), hence inhibiting neutrophils’ apoptosis and
sustaining tumor growth and metastasis through increased
production of ROS and MMPs.

The LOX status plays a critical role in several types of cancer.
Increased levels of 12-HETE, the arachidonic acid metabolite
derived from 12-LOX activity, promotes the proliferation of
human colon, pancreatic and breast cancer cell lines, and plays
an important role in cell adhesion and metastasis (Yang et al.,
2012). AA turnover was found to be 10 times higher in prostate
tumors than in the corresponding normal tissue, and elevated
mRNA expression of 12-LOX was found more frequently in
advanced stage, high-grade prostate cancer (Gao et al., 1995). 12-
LOX sustains the proliferation of prostate cancer cells, favors
their metastasis to the bone and stimulates angiogenesis (Tang
and Honn, 1999). 12-HETE and 5-HETE, the products of 12-
LOX and 5-LOX respectively, were shown to act as pro-growth
and pro-survival factors for human prostate cancer cells by
inducing a tumor-sustaining inflammatory and oxidative
microenvironment. Additionally, 5-LOX promotes the growth
of prostate tumor cells by over-activating the c-Myc oncogene, as
demonstrated by a whole genome gene expression study
(Sarveswaran et al., 2015). Furthermore, 5-LOX and 12-LOX
appear to be promising biomarkers and therapeutic targets for
prostate cancer stem cells (Yin et al., 2011).

In turn, low levels of the 15-LOX-2 isoform and consequently
decreased 15-HETE formation were found as distinctive
alterations of AA metabolism in prostate cancer cells. 15-LOX
enzymes may exert anti-tumoral effects in particular types of
tumors (Klil-Drori and Ariel, 2013) by promoting apoptosis,
ferroptosis, or autophagy (Li et al., 2018). For instance, 15-LOX-
1 contributes to inflammation resolution through its 13-HODE
product (13-hydroxyoctadecadienoic acid) derived from linoleic
acid, and has an important role in the terminal differentiation of
normal cells. 15-LOX-1 is down-regulated in human colorectal
polyps and cancers (Il Lee et al., 2011). In turn, the 5-LOX
isoform contributes to tumorigenesis in colorectal cancer, mostly
due to the infiltration of mast cells (Cheon et al., 2012; Mashima
and Okuyama, 2015).

Altogether, these data highlight that 12- and 5-LOX inhibitors
with antioxidant properties, like NDGA, could be efficiently used
for targeting simultaneously critical pathological mechanisms in
cancer such as proliferation, defective apoptosis, metastasis and
angiogenesis, as well as the chronically enhanced oxidative stress
in the tumor niche.

Anti-Cancer Effects of NDGA Are Mediated Also by
Tyrosine Kinases
NDGA decreases tumor progression in various preclinical
models by inhibiting metabolic enzymes that are critically
involved in prostate, lung, esophageal and skin cancers (e.g.
fatty acid synthase and LOX enzymes) (Lu et al., 2010).
Additionally, NDGA inhibits tumor-relevant receptor tyrosine
kinases and downstream signaling related to the IGF-1 receptor
and the downstream protein serine/threonine kinase AKT, along
with the c-ErbB2/HER2/Neu receptor in breast cancer cells and
in tumor-bearing mice (Youngren et al., 2005; Li et al., 2009;
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TABLE 3 | Some preclinical studies on the effect of NDGA and NDGA analogs in cancer.

Cells/Animal models Compound Concentration Effect/Mechanism of action Reference

Breast cancer cells: trastuzumab-
naive and trastuzumab-refractory
HER2-overexpressing SK-BR-3
and BT-474 human cells

NDGA 25-100 µM Induces DNA fragmentation, cleavage of poly(ADP-ribose) polymerase
and caspase-3, and promotes cell death of both trastuzumab-naive
and trastuzumab-refractory HER2-overexpressing breast cancer cells.
NDGA and trastuzumab suppressed proliferation and survival of
trastuzumab-refractory cells to a greater degree than either agent
alone

(Rowe et al., 2008)

SiHa cervical cancer cells (grade II
squamous cell carcinoma)

NDGA 20-100 µM Growth inhibition induced by up-regulating p21 (Gao et al., 2011)

Human SW 850 pancreatic and
C4-I cervical cancer cells

NDGA 25 µM Inhibits anchorage-independent growth of pancreatic and cervical
tumor cells. Increases apoptosis (cells exhibiting fragmented DNA at
12 h post-exposure to NDGA). Disrupts the actin cytoskeleton and
activates JNK and p38mapk before cell detachment

(Seufferlein et al.,
2002)

Athymic NMRI/nu-nu mice
transplanted with human SW 850
pancreatic and C4-I cervical
cancer cells

90 mM Moderately inhibits tumor growth in vivo (delays the growth of
pancreatic and cervical human tumors in athymic mice)

PC3 human prostate cancer cells NDGA 20-50 µM Inhibits cell growth in a concentration-dependent and increases
intracellular calcium levels (EC50 = 30 µM)

(Huang et al., 2004)

NDGA 10 and 20 µM Inhibits cell migration and tumor metastasis. Suppresses neuropilin 1
(NRP1) function by downregulating its expression, leading to
attenuated cell motility, cell adhesion to extracellular matrix, and FAK
signaling in cancer cells

(Moody et al.,
1998)

PC3 xenografts (14 and 28 days
treatment)

NDGA 50 and 100 mg/kg Blocks the expression and consequently the function of NRP1 in
tumor xenografts

NCI-H1264 lung cancer cells NDGA 3–10 µM Decrease tumor cell growth (3µM) and colony number (10µM) (Moody et al.,
1998)Non-small-cell lung cancer

xenografts (NCI-H157 or H1264
cells) in athymic BALB/c nude
mice

0.1% in drinking water
for 4 months

Inhibits lung cancer growth and prevents lung carcinogenesis

Chemically induced (urethane)
adenoma in A/J mice
TA3 grown in CAF 1 Jax mice
and 786A cells grown in A Swiss
mice

NDGA 25–100 µM (TA3 cells)
42–126 µM (786A
cells)

Inhibits the respiration rate of tumor cell lines by preventing electron
flow through the respiratory chain, hence decreasing ATP levels, cell
viability and culture growth rates.

(Pavani et al., 1994)

Human leukemic HL‐60 and U‐
937 cell lines

NDGA 3–60 µM Decreases cell viability in a dose-dependent manner
• IC50 at 48 h in HL‐60: 5.8 ± 0.5
• IC50 at 72 h in U-937 cells: 7.5 ± 1.0. Inhibits glucose uptake

leukemic cell lines through a non-competitive mechanism.

(Leon et al., 2016)

Human red blood cells 0.1–100 µM Blocks hexose transport in human red blood cells and displaces pre-
bound cytochalasin B from erythrocyte ghosts (KDapp=4.5 mM),
possibly through a direct interaction with the glucose transporter
GLUT1.

Lymphatic leukemia P388 cells,
grown in the abdominal cavity of
DBA2 mice

NDGA 0.01–30 µg/ml Induces apoptotic death (IC50 = 0.66 mg/ml). (Bibikova et al.,
2017)

Multiple myeloma cells (RPMI-
8226, LP-1, KMS-18 and KMS-
11)

NDGA 0.1–40 µM Inhibits FGFR3 autophosphorylation both in vitro (dramatic reduction
induced by 0.5 mM NDGA) and in vivo (IC50 = 10 µM). Decreases
MAPK activation which results in increased apoptosis.

(Meyer et al., 2008)

Acute lymphoblastic leukemia
(ALL) (MOLT-4, Jurkat-FADD
deficient)

NDGA 2 µM Protects ALL cells from lipid peroxidation, ROS generation and cell
death induced by the small molecule RSL3 (inducer of ferroptosis).

(Probst et al., 2017)

Proliferating C3, C33a, CEM-T4,
and TC-1 cells

Terame
procol

10–100 µM Arrests proliferation at the G2 phase (10–40 µM). Reduces mRNA
levels and protein production of the cyclin-dependent kinase CDC2
(40 µM), resulting in the inactivation of the maturation promoting factor
CDC2/cyclin B complex.

(Heller et al., 2001)

C3-cell induced C57bl/6 mouse
tumor model

Terame
procol

20 mg/day intratumoral Substantial tumoricidal activity that correlated with a reduction in tumor
cell CDC2 protein levels.

Leukemic cell lines (OCI-AML3,
U937, U937neo, U937XIAP,
Jurkat, JurkatI2.1, HL-60, HL-
60neo, HL-60Bcl-2, and
HL60Bcl-XL c, KBM5 cells), and

Terame
procol

5–40 µM Inhibits growth and induces cell death in leukemic cell lines and blasts
from AML patients. Significant inhibition of AKT phosphorylation was
observed in M4N treated OCI-AML3 cells. The effects are not
mediated by a mechanism not mediated by Cdc2 and survivin
inhibition or by the extrinsic and the mitochondrial apoptotic pathways.

(Mak et al., 2007)

(Continued)
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Lu et al., 2010). Of utmost importance for cancer treatment,
NDGA inhibits signaling pathways mediated by the
transforming growth factor b (TGF-b) type I receptor which
triggers Smad2 translocation to the nucleus and its subsequent
phosphorylation (Li et al., 2009). As demonstrated in pancreatic
cancer cells, TGF-b functions as a tumor suppressor in the early
stage of neoplasia, but acts as a pro-tumoral stimulus at later
stages (Truty and Urrutia, 2007). Therefore, the moment of
NDGA administration during tumor progression may be critical
for efficiently controlling tumor growth.

NDGA Promotes Death of Cancer Cells
Another mechanism through which NDGA seems to exert anti-
tumoral effects is by directly promoting the death of various
tumor cells or by sensitizing tumor cells to other anti-tumor
agents. For instance, NDGA increases the susceptibility of
prostate and colorectal tumor cells to TRAIL-induced
apoptosis by up-regulating the expression of the death receptor
5 (Yoshida et al., 2007), and was also shown to sensitize
refractory breast cancer cells to trastuzumab, a monoclonal
antibody against HER2 (Rowe et al., 2008).

Precaution should be taken when using NDGA as anti-cancer
agent, considering that, in particular types of cancer such as
malignant glioma, NDGA can inhibit caspase 8 and 3, poly
(ADP-ribose)polymerase cleavage and consequent CD95L-
mediated apoptosis (Wagenknecht et al., 1998). Moreover,
Frontiers in Pharmacology | www.frontiersin.org 1240
NDGA at low concentrations (< 0.3 µM) proved to moderately
sustain the survival of some leukemic cancer cell lines, but
becomes cytotoxic at higher, micromolar concentrations
(Shaposhnikova et al., 2001). There is also evidence that LOX
inhibitors like NDGA and baicailin can inhibit ferroptotic cell
death caused by the accumulation of lipid-based ROS in acute
lymphoblastic leukemia cells (Probst et al., 2017).

NDGA Inhibits Metastasis and Angiogenesis
NDGA impacts metastasis of tumor cells through LOX
inhibition but also due to down-regulation of neuropilin 1, a
single-pass transmembrane protein that functions as a “signaling
platform” on the cell surface. Neuropilin 1 is over-expressed in
breast, prostate, pancreatic, colon, and kidney cancers, and exerts
important roles in tumor progression, angiogenesis and anti-
cancer immunity (Rizzolio and Tamagnone, 2011). As shown in
human PC3 prostate cells, decreased levels of neuropilin 1,
induced by NDGA treatment, lead to alterations in the motility
and cell-matrix adhesion, and attenuated tumor metastasis in a
nude mice model of prostate cancer. Thus, neuropilin 1
suppression impacts on both tumor cells and the tumor
microenvironment by down-regulating angiogenesis and
extracellular matrix formation during the progression of
metastasis (Li X. et al., 2016).

The formation of new capillaries from preexisting vessels is
tightly regulated process that involves a complex network of cells,
TABLE 3 | Continued

Cells/Animal models Compound Concentration Effect/Mechanism of action Reference

acute myeloid leukemia (AML)
blasts
Nude mice with xenografts of
hepatocellular (Hep 3B) prostate
(LNCaP) colorectal (HT-29) breast
(MCF7) carcinomas;
erythroleukemia (K-562)

Terame
procol

2 mg/day for 3 weeks
(i.p.) 300 mg/day for 3
weeks (oral)

Suppresses the in vivo growth of xenografts. Induces growth arrest
and apoptosis in both xenograft tumors and in tumor cells grown in
culture, accompanied by reduction in both Cdc2 and tumor-specific
s37urvivin gene expression.

(Park et al., 2005)

ICR mice 44 mg/kg (5-40 min,
2–16 h)

Absolute bioavailability of oral M4N: approximately 88%. Minimal drug-
related toxicity.

Glioma stem-like cells (GSLC) dl-NDGA
(Nordy)

5–60 µM Inhibits self-renewal and induces differentiation of tumor stem cells in
vitro (10 mM) and in vivo. Inhibits 5-LOX (19 µM). Reduces the GSLC
pool through a decrease in the CD133+ population and abrogates
clonogenicity. This occurs apparently via astrocytic differentiation, by
up-regulating GFAP and down-regulating stemness related genes,
rather than by inducing apoptosis of GSLCs.

(Wang et al., 2011)
Xenografted glioma 13.5 mg/kg or 27 mg/

kg every other day (8
times)
February 2020 | Volu
TABLE 4 | Clinical trials with NDAG or its derivate terameprocol.

Compound Identifier Disease Phase Status Results

NDGA NCT00678015 hormone-sensitive non-metastatic prostate cancer phase 2 terminated (Friedlander et al., 2012)
NDGA NCT00313534 Nonmetastatic Relapsed Prostate Cancer phase 1 terminated No
terameprocol NCT00404248 Recurrent High-Grade Glioma phase 1 completed (Grossman et al., 2012)
terameprocol NCT00154089 Cervical Intraepithelial Neoplasia phase 1/2 completed No
terameprocol NCT00259818 Recurrent or Refractory Solid Tumors phase 1 completed No
terameprocol NCT00057512 Refractory Malignant Tumors of the Head and Neck phase 1 completed No
terameprocol NCT00664677 Leukemia phase 1 terminated No
terameprocol NCT00664586 Refractory Solid Tumors phase 1 terminated No
terameprocol NCT02575794 Recurrent High Grade Glioma phase 1 active No
See text for discussion of outcomes of the two studies that reported results.
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soluble factors and extracellular matrix molecules (Nie et al.,
2000). Therefore, the persistently deregulated angiogenesis found
in cancer is critically involved in promoting tumor growth and
metastasis. Vascular endothelial cells express LOX and the
resulting eicosanoids have potent biologic activities in these
cells. This is probably the reason why NDGA can efficiently
limit angiogenesis and hence tumor outgrowth. The pan-LOX
inhibitor NDGA and the selective 12-LOX inhibitor baicalein,
both exhibiting also antioxidant properties, were shown to
reduce the expression of the vascular endothelial growth factor
(VEGF) in human prostate cancer PC3 cells through inhibition
of Sp1 (specificity protein 1) which is the transcription factor
responsible for 12-LOX-mediated stimulation of VEGF (Nie
et al., 2006). Moreover, proliferation and angiogenesis are
suppressed by NDGA in breast cancer through inhibition of
the rapamycin complex 1 (mTORC1), as demonstrated both in
cultured breast cancer cells and in xenograft models (Zhang
et al., 2012). NDGA reduced the basal level of mTORC1 and
suppressed mTORC1 downstream signaling (expression of
cyclin D1, hypoxia-inducible factor-a, and VEGF) by
disrupting the mTOR/raptor interaction.

Controversies on the Antioxidant Activity of NDGA in
Cancer Treatment
As described above, most of the anti-tumor effects of NDGA are
supported by its inhibitory action on LOX enzymes and other
inflammatory pathways as well as inhibition of receptor tyrosine
kinase signaling pathways. Meanwhile, the stimulating action of
NDGA on the cytoprotective transcription factor NRF2 raises
concerns in oncologic pathologies (Milkovic et al., 2017).
Various types of cancers (Kitamura and Motohashi, 2018) are
characterized by chronic activation of the cytoprotective NRF2
system which accounts, at least partially, for the selection of more
aggressive neoplastic phenotypes by conferring survival and
growth advantage, as well as resistance to therapy (Cuadrado
et al., 2018). Of utmost importance for cancer recurrence is the
unique pattern of persistent NRF2 activation in cancer stem cells
which sustains stemness and shields these cells against anti-
cancer therapies (Kim et al., 2018). Therefore, activation of the
NRF2 pathway by NDGA might be deleterious in advanced
stages of cancer. From the antioxidant perspective, NDGA
therapy seems to be in fact relevant for chemoprevention in
patients at risk and in early steps of carcinogenesis, when
persistent exposure of normal cells to oxidative stress and
carcinogens may trigger their neoplastic transformation. In this
case, NRF2-mediated transcription of cytoprotective genes helps
to restore the redox balance, as well as to avoid unwanted DNA
mutations and cancer initiation. Nevertheless, intensive research
is nowadays ongoing for better defining the boundaries between
NRF2 positive and negative effects in cancer, and for establishing
a precise rationale for undertaking NRF2 therapeutic targeting
(Milkovic et al., 2017). It is worth mentioning that NDGA
might turn into a pro-oxidant at higher doses (Biswal et al.,
2000; Sahu et al., 2006) which sustains apoptosis of tumor
cells, hence supporting the use of NDGA in cancer treatment
either as monotherapy or as adjuvant for conventional
therapeutic strategies.
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NDGA Protects Normal Tissues Against the
Deleterious Action of Anti-Cancer Therapies
Mundhe et al. (2015) found that NDGA ameliorated cisplatin-
induced nephrotoxicity and was even capable of increasing in vivo
the anti-tumoral properties of cisplatin in a 7,12-dimethyl benz[a]
anthracene (DMBA)-induced breast cancer rat model (Mundhe
et al., 2015). Cisplatin is toxic for the kidneys because it promotes
the generation of ROS and inhibits the activity of the endogenous
antioxidant defense system. The protective action of NDGA was
mirrored by the reduction in the levels of serum creatinine and
BUN (Blood Urea Nitrogen) and also by the increase of
superoxide dismutases protein levels in the breast cancer tissue.
ADVERSE EFFECTS OF NDGA

Despite compelling preclinical evidence on the potential benefits
of NDGA treatment in various pathologies, the major drawback
for further clinical development is related to its important side-
effects (Alderman et al., 1994; Lu et al., 2010). Most of the
available information about safety issues in humans has been
obtained from consumption of the chaparral infusion, which is a
non-standardized mixture of compounds extracted from Larrea,
in which NDGA is the main constituent and may generally
contain uncontrolled carcinogens or tumor promoters (Gold and
Slone, 2003; Bode and Dong, 2015). Nevertheless, preclinical
data gathered with pure NDGA indicate that many of the toxic
effects of chaparral tea can be attributed to this compound,
particularly in kidney and liver damage.

Kidney toxicity associated with NDGA, leading to cystic
nephropathy, was initially reported in rats (Goodman et al.,
1970). Later on, a case report in humans further associated high
consumption of chaparral tea with cystic renal disease and cystic
adenocarcinoma of the kidney (Smith et al., 1994). The liver is
also highly affected by high consumption of NDGA in the form of
chaparral tea. Thus, prolonged consumption of this infusion for
over 10 months led to severe non-viral hepatitis (Gordon et al.,
1995). The effects can be attributed to NDGA since a later study in
mice demonstrated that intraperitoneal administration of NDGA
dose-dependently increases the levels alanine aminotransferase in
serum (Lambert et al., 2002). The toxic effect may be related, at
least in part, to the conversion of NDGA to its ortho-quinone
form. Indeed, a study performed with clone-9 rat hepatocytes
demonstrated that exposure to high concentrations of NDGA (up
to 100 µM) caused lipid peroxidation, DNA double-strand breaks
and cell death (Sahu et al., 2006). In addition to kidney and liver
damage, other organs are also affected by prolonged or high
NDGD dosing. A clinical trial addressing the pharmacokinetics
and efficacy of NDGA in non-metastatic recurrent prostate cancer
evidenced the following side-effects on 12 patients, at a dosage of
2000 mg/day given orally in three divided doses: diarrhea (12/12),
fatigue (5/12), headache (4/12), abdominal distension, and nausea
(3/12). Elevated levels of alanine aminotransferase (8/1), aspartate
aminotransferase (6/12), bilirubin (3/12), and alkaline
phosphatase (2/12) were registered (Friedlander et al., 2012).

Although, the reported toxic doses of NDGA in humans and
experimental animals generally exceeded the traditional use of
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the plant (Arteaga et al., 2005), based on the evidence of
hepatotoxicity and nephrotoxicity the US Food and Drug
Administration (FDA) removed NDGA from the list of
Generally Regarded As Safe (GRAS) compounds. Moreover,
food containing any added NDGA is deemed to be adulterated
in violation of the act based upon an order published by FDA in
the Federal Register in April 11, 1968.

The toxicity related to NDGA is most likely due to the
oxidation of the catechol rings to their corresponding quinones,
leading to adduct formation in proteins and glutathione depletion
(Billinsky et al., 2007; Jeong et al., 2017). Moreover, catechol
quinones form depurinating DNA adducts and DNA double
strand brakes, leading to cancer and other diseases (Cavalieri
et al., 2002). Therefore, NDGA analogues with potentially low
toxicity are being developed by protecting the catechol groups
from oxidation to their ortho-quinone derivative.
NDGA-ANALOGS AS NOVEL
THERAPEUTIC SMALL MOLECULES

Several NDGA analogs are currently in various phases of
development, aiming to increase therapeutic efficacy while
limiting side-effects. Figure 4 shows the most relevant NDGA
analogs under clinical development.

Recently, a series of NDGA analogs with modified catechol
rings were shown to correct metabolic alterations related to
hepatic lipid metabolism in a high fructose diet-fed rat model
of dyslipidemia, insulin resistance and hypertension (Singh et al.,
2019). Oral gavage of these analogs reduced the hepatic and
plasma levels of triacylglycerides. In particular, Nordy [(5,5-(2,3-
dimethylbutane1,4-diyl)bis(benzo[d][1,3]dioxole); Figure 4] was
very effective at inhibiting the expression of several genes
involved in triacylglycerides synthesis (Scd, Gpam and Dgat2)
and fatty acid elongation (Elovl2 and Elovl5). These effects were
consistent with inhibition of transcription factors SREBP-1c
(sterol regulatory element binding transcription factor 1c) and
ChREBP (carbohydrate-responsive element-binding protein). In
contrast to NDGA, these analogues did not alter the expression
of genes involved in hepatic fatty acid oxidation or transport.

In ischemic stroke, oxidative damage is a crucial factor. Novel
NDGA analogs have been developed that combine potent ROS
scavenging and NRF2 activation (Huang et al., 2018).
Compound 3a of this study [(2Z, 5E)-2,5-bis (3,4-
dihydroxybenzylidene)cyclopentanone; Figure 4] was more
effective than the antioxidant edaravone in reducing brain
infarction after cerebral ischemia-reperfusion injury in rats
subjected to transient middle cerebral artery occlusion.
However, this study did not compare the efficacy of this
compound vs. NDGA in stroke protection or in overall toxicity
and therefore, its benefit over NDGA remains to be ascertained.

High concentrations of NDGA are required to inhibit tumor
growth, thus yielding toxicity. Therefore, an intensive search has
been made to develop NDGA analogs with low toxicity. This is
the case of tetra-O-methyl nordihydroguaiaretic acid, also called
Terameprocol, M4N or EM-1421. As shown in Figure 4, in this
Frontiers in Pharmacology | www.frontiersin.org 1442
FIGURE 4 | Chemical structures and names of NDGA and NDGA-analogs:
(A) NDGA (PubChem ID 4534); (B) Terameprocol (PubChem ID 476861);
(C) Re-draw of NDGA-analog reported in (Blecha et al., 2007); (D) Re-draw
of NDGA-analog reported in (Zhao et al., 2017); (E) Re-draw of NDGA-analog
reported in (Huang et al., 2018).
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molecule the four hydroxyl groups of the two catechol rings have
been methylated, thus preventing the formation of catechol
quinones. While NDGA intraperitoneally injected in mice has a
LD50 value of 75 mg/kg, in a phase 1 clinical study it was found
that Terameprocol is well-tolerated even at 1700 g/kg in humans
(Chang et al., 2004). Terameprocol induces rapid cell death in
combination with Etoposide and Rapamycin in prostate LNCaP
cells, both in vitro and in animal experiments (Eads et al., 2009).
Terameprocol entered Phase I/II clinical trials in patients with
recurrent high grade lymphoma (Grossman et al., 2012) or
advanced forms of leukemia (Tibes et al., 2015), but proved
only low anti-tumor activity. Nevertheless, these clinical studies
emphasized that Terameprocol has an improved toxicological
profile as compared to NDGA and further reshaping could
improve its anti-cancer activity. The pharmacological target
appears to be the transcription factor Sp1 which controls a
large number of genes, and therefore Terameprocol exerts
pleiotropic effects: 1) it induces caspase-7 cleavage and inhibits
autophagy by suppressing ATG5 and BNIP3; 2) it broadly
modulates metabolic processes related to glucose-6-phosphate/
glucose-1-phosphate/UDP-glucose; 3) it reduces glutathione
levels by up-regulation of CHAC1, a key enzyme that affects the
stress pathways; 4) it suppresses energy metabolism by inhibiting
the mitochondrial electron transport system (like NDGA), along
with the TCA cycle; 5) it induces oxidative stress by decreasing the
content of glutathione and propionylcarnitine, a superoxide
scavenger. Transcriptomic and metabolomic analysis using
high-throughput screening methods (GC/LC-MS and deep
RNA sequencing) revealed that Terameprocol is a global
transcriptional repressor of genes that are dependent on the Sp1
transcription factor. Studies in glioblastoma primary cultures and
cell lines have shown that Terameprocol, in combination with
temozolomide (TMZ), down-regulates the expression of Cdk1
and survivin, while the survivin-2B variant was up-regulated
(Castro-Gamero et al., 2013). In this study, Terameprocol
decreased cell proliferation separately and synergistically with
TMZ, enhanced the effects of radiotherapy, especially when
associated with TMZ, induced apoptotic cell death, decreased
the mitotic index and arrested the cell cycle mainly in the G2/M
phase. Once again it was demonstrated that Terameprocol could
be successfully used as co-therapy in various types of cancer.

Blecha et al. prepared a series of NDGA-analogs to be more
potent and selective against MCF-7 breast cancer cells by
targeting the IGF-1 receptor (IGF-1R) or 15-LOX (Blecha
et al., 2007). The NDGA analogs consisted of introducing
various substituents into one of the two catechol rings. One of
the analogs (5-phenyl-5,6,7,8-tetrahydronaphthalene-2,3-diol)
showed higher specificity for IGF-1R (Blecha et al., 2007).
Zhao et al. demonstrated that the NDGA analog NDGA-P21
[1, 4-bis (3, 4-dimethoxy phenyl)-2, 3-dimethyl-2, 3-epoxy
butane] was capable of inhibiting the in vitro proliferation of
glioma cells and their stemness. Under the action of NDGA-P21,
the cell cycle was arrested in the G0/G1 phase. However, NDGA-
P21 has limited water solubility which is a major drawback for
further clinical development (Zhao et al., 2017).

In a very interesting work, Asiamah et al. found that the
oxidative cyclization of NDGA forms a dibenzocyclooctadiene,
Frontiers in Pharmacology | www.frontiersin.org 1543
which may have therapeutic benefits (Asiamah et al., 2015).
Certain NDGA-analogs may be more susceptible to cyclize. Only
NDGA-analogs that have two catechols have the capacity to form
dibenzocyclooctadienes. The formation of quinones may not be a
necessary step for the formation of dibenzocyclooctadienes, and
cyclization depends on radicals (Asiamah et al., 2015).
Furthermore, in order to test the hypothesis of reactive
intermediate metabolites of NDGA, Asiamah et al. (2015)
synthesized catechol- and phenol-type analogs of NDGA,
aiming to study the formation of quinone-types, and found
that the phenol-type NDGA-analogs are probably safer for
clinical applications. It was presumed that the formed quinone-
type methide would depend on the substitution in the aromatic
rings, but found no evidence that para-quinone methide was
formed, thereby suggesting that the reactive intermediate
metabolite of NDGA that is toxic for the liver is ortho-quinone
methide (Asiamah and Krol, 2018). Altogether, compelling
preclinical and clinical evidence highlighted that some of the
newly designed NDGA analogs hold great promise as therapeutic
agents for cancer treatment, either as monotherapy or in
combination with conventional anti-cancer agents.

Regarding the role of NDGA-derivatives in neurodegenerative
disease, Daniels et al. (2019) found that the cyclized NDGA analog
prevented the aggregation of a-synuclein into amyloid-like fibrils
by producing modified monomers of a-synuclein that are
aggregation-resistant. Cyclized NDGA reduced neurodegeneration
in a Caenorhabditis elegans a-synuclein-driven neurodegeneration
model. The cyclized NDGA analog has to be capable of oxidation
because this fact is critical for preventing a-synuclein aggregation
(Daniels et al., 2019). Huang et al. (2018) synthesized NDGA-
analogs containing curcumin’s a, b-unsaturated ketone moiety
(Huang et al., 2018). The analogs provided cytoprotection against
oxidative damage. One of the analogs [(2Z,5E)-2,5-bis(3,4-
dihydroxybenzylidene] cyclopentanone) promoted NRF2
translocation to the nucleus and the expression of heme
oxigenase-1 in vitro in PC12 cells (pheochromocytoma of the rat
adrenal medulla). This analog was proposed for the treatment of
cerebral ischemia-reperfusion injury in stroke, especially due to its
lower cytotoxicity compared to other analogs, protection against
hydrogen peroxide and reduction of lipid peroxidation markers
such as MDA.
CONCLUDING REMARKS

For over 60 years, preclinical studies in cell culture and rodents
indicate that the lignan NDGA is a promising drug for prevention
or therapy of several chronic diseases and cancer. However, very
little progress has been made in the translation of these studies to
a clinical setting. This fact may reflect the large variety of side
effects described for NDGA. While NDGA might be considered
as a multi-target small molecule that elicits anti-oxidant and anti-
inflammatory responses at particular dose ranges, it is also clear
that under many difficult-to-control conditions it may also
produce harmful effects. In recent years a new impulse to this
field has been given with the development of NDGA analogs that
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might be more potent and target-selective, and at the same time
exhibit lower toxicity due to prevention of the catechol
conversion into quinone. This is the case of Terameprocol,
currently used in several clinical trials on cancer. Also, some
NDGA analogs are promising in neurodegenerative disorders
and in metabolic syndrome. However, much work needs to be
done in order to define and attain a safe pharmacological profile
of NDGA derivatives. Increasing the knowledge about their
pharmacokinetics, pharmacodynamics and mechanisms of
action will be crucial to translate findings from traditional
medicine to official medicine.
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Over the last few decades, methods relating to plant tissue culture have become prevalent
within the cosmetic industry. Forecasts predict the cosmetic industry to grow to an annual
turnover of around a few hundred billion US dollars. Here we focused on Linum
usitatissimum L., a plant that is well-known for its potent cosmetic properties. Following
the a) establishment of cell cultures from three distinct initial explant origins (root, hypocotyl,
and cotyledon) and b) selection of optimal hormonal concentrations, two in vitro systems
(callus vs cell suspensions) were subjected to different light conditions. Phytochemical
analysis by UPLC-HRMS not only confirmed high (neo)lignan accumulation capacity of this
species with high concentrations of seven newly described (neo)lignans. Evaluation over 30
days revealed strong variations between the two different in vitro systems cultivated under
light or dark, in terms of their growth kinetics and phytochemical composition. Additionally,
antioxidant (i.e. four different in vitro assays based on hydrogen-atom transfer or electron
transfer mechanism) and anti-aging (i.e. four in vitro inhibition potential of the skin remodeling
enzymes: elastase, hyaluronidase, collagenase and tyrosinase) properties were evaluated
for the two different in vitro systems cultivated under light or dark. A prominent hydrogen-
atom transfer antioxidant mechanismwas illustrated by the DPPH and ABTS assays. Potent
tyrosinase and elastase inhibitory activities were also observed, which was strongly
influenced by the in vitro system and light conditions. Statistical treatments of the data
showed relationship of some (neo)lignans with these biological activities. These results
confirmed the accumulation of flax (neo)lignans in different in vitro systems that were
subjected to distinct light conditions. Furthermore, we showed the importance of optimizing
these parameters for specific applications within the cosmetic industry.

Keywords: lignans, neolignans, callus, cell culture, antioxidant activity, anti-aging activity
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INTRODUCTION

Records on the cosmetic usage of natural plant products date
back to ancient times as described in famous texts, including 1)
Ayurvedic books on traditional Indian medicine (3,000–2,000
BC), 2) Chinese pharmacopoeia, 3) “The Divine Farmer’s Herb-
Root Classic”, by Shen Nong (3,494 BC), and 4) the ancient
Greek book “De Materia Medica”, written by Pedanius
Dioscorids (Ota and Yokoyama, 2010). However, regardless of
a vast and well-established ethnobotanical knowledge base, very
few plants have been thoroughly investigated in modern times
for their potential use within the cosmetic industry (Fongnzossie
et al., 2017).

Within this modern era of technology and globalization, it is
quite surprising to find a shift in consumer preference from
chemical based synthetic products to more natural or “green”
products. This could perhaps be explained by the increasing
concerns of side effects that are associated with chemical
products (Hazra and Panda, 2013). However, due to a recent
increase in the global demand for active plant ingredients within
the medical and cosmetic industries, medicinal plant species are
now experiencing severe mass exploitation which may ultimately
lead to their extinction. In vitro plant tissue culture technology
can aid in supplying the growing global demand for active
biomolecules, without over exploitation of plant biomes
(Barbulova et al., 2014).

Moreover, the use of plant cell cultures instead of cultivated
plants for active biomolecule production may help to overcome
limitations of inconsistent quality due to seasonal changes,
cultivation methods and geographic variations. Batch to batch
inconsistencies can also be avoided by creating an environment
that is free of pathogens and contamination (Barbulova et al.,
2014). Furthermore, due to the controlled conditions associated
with this technology, it can also be successfully applied to
increase the amount of active biomolecule production by using
biotransformation techniques and/or elicitation of stress (biotic
and abiotic) conditions.

Linum usitatissimum L., often referred to as flax, is a
commercially important plant, belonging to the Linaceae family.
Its literature dates back to 5,000 BC when it was primarily
cultivated for fiber and oil in Western Europe, Mediterranean
region, North Africa and South-West Asia (Oomah, 2001; Zohary
et al., 2012). Recent studies of L. usitatisimum have elucidated
several useful properties of the plant, including anticancer (Shim
et al., 2014), anti-diarrhea (Palla et al., 2015) anti-microbial (Bakht
et al., 2011), anti-inflammatory (Oomah, 2001), antioxidant and
prevention against cardiovascular diseases (Zanwar et al., 2011).
Part of these health benefits has been associated with the presence
of (neo)lignans in flax. Following their consumption, plant lignans
are converted to enterolignans (enterolactone and enterodiol) by
intestinal microbes in the gut which have been reported to reduce
the occurrence of different cancers (Lainé et al., 2009; Zanwar
et al., 2011).

There are many reports describing in vitro tissue culture
systems used for propagating L. usitatisimum from hypocotyl
(Cunha and Ferreira, 1999; Dedičová et al., 2000; Salaj et al.,
Frontiers in Plant Science | www.frontiersin.org 251
2005) and anther (Nichterlein et al., 1991; Rutkowska-Krause
et al., 2003) explants. Additionally, callus (Anjum et al., 2017a;
Zahir et al., 2018) and cell suspension cultures (Attoumbré et al.,
2006a; Attoumbré et al., 2006b; Hano et al., 2006; Beejmohun
et al., 2007; Hano et al., 2008; Corbin et al., 2013a; Corbin et al.,
2013b; Gabr et al., 2016; Anjum et al., 2017b; Nadeem et al., 2018;
Nadeem et al., 2019; Ahmad et al., 2019; Markulin et al., 2019)
producing higher amounts of industrially important lignans and
neolignans have also been described.

Flax is considered to be a potential cosmetic ingredient all
over the world, including China (China Food & Drug
Administration, 2015). It is therefore surprising that this
multifunction and economically important crop has hardly
been exploited within the cosmetic industry. Thus, the main
objective of this study was to establish cell lines (solid and liquid)
of L. usitatissimum, producing valuable specialized metabolites
of great importance for cosmetics.
MATERIALS AND METHODS

Chemicals and Reagents
The extraction solvents used in this experiment were of analytical
grade, supplied by Thermo Scientific (Courtaboeuf, France),
while all other standards and reagents were purchased from
Sigma-Aldrich (Saint-Quentin Fallavier, France).

Plant Material and Establishment of Callus
The selection of explants (hypocotyls, cotyledons, and roots) and
callus formation was achieved following the protocol described by
Hano et al. (2006), with slight modifications. Briefly, hypocotyl
explants were chosen, and the best growing callus was found to be in
Murashige and Skoog (1962) media containing 2 mg.L−1 BAP and
0.5 mg.L−1 NAA. Cultures were maintained under two illumination
conditions: 1) one with 12 h light with 25 µE m−2 s−1 light intensity/
12 h dark and 2) the other in total darkness (24 h per day). Light
intensity was measured by using Luxmeter under the light source.
Illumination was ensured by dark red/white LED (18 W, Green
Power TLED DR/W, Philips). The growth room temperature was
maintained at 24°C for both conditions. The callus was subcultured
after every 30 days for both conditions.

Establishment of Suspension Culture
For initiation of cell suspension culture, approximately 1 g of
fresh weight (FW) callus was added to a 125 ml Erlenmeyer flask
containing 25 ml of MS media fortified with 2 mg.L−1

benzylaminopurine (BAP) and 0.5 mg.L−1 1-Naphthaleneacetic
acid (NAA). The suspension cultures were kept on a gyratory
shaker at 120 rpm, at 24°C. Then suspension cultures were
maintained either in 12 h light/12 h dark or 24 h darkness and
subcultured every 14 days.

Study of Growth Kinetics
For analysis of growth kinetics (callus and cell suspension
culture), 10 sampling points were studied over a period of 30
days with 3 interval days.
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For the determination of the FW of the suspension culture,
the cells were harvested by filtration using a 0.45 mm stainless
steel sieve, then washed twice with distilled water to remove any
trace of medium. In order to remove the excess adhering water,
the cells are manually pressed between two filter papers several
times until no more traces of liquid are visible on the papers. The
cells are then weighed. For dry weight (DW) estimation, cells
were frozen and lyophylized 48 h (lyophilizator CHRIST Alpha
1-5) and then weighed.

Plant Extract Preparation
Dried cells were ground to a fine powder with a mortar and
pestle. Fifty milligrams of the powder was extracted in 1 ml
ethanol/water solution (75%, v/v) in a sonication bath for 1 h.
The extracts were then centrifuged at 18,000 g for 10 min.
Supernatant (500 µl) was collected and stored at −20°C for
performing bioassays and metabolic profiling.

UPLC-MS Analyses
For detection of phenolics, lignans, and neolignans, UPLC-MS
analyses were performed according to Billet et al. (2018). Briefly,
the analysis was performed on an ACQUITY™ Ultra Performance
Liquid Chromatography system coupled to a photo diode array
detector (PDA) and a Xevo TQD mass spectrometer (Waters,
Milford, MA). The Xevo TQD was controlled by MassLynx 4.1
software (Waters, Milford, MA) and equipped with an electrospray
ionization (ESI) source. Sample separation was accomplished by
Waters Acquity HSST3 C18 column (150 × 2.1 mm, 1.8 mm) with a
flow rate of 0.4 ml.min−1 at 55°C. The injection volume was 5 ml.
The mobile phase consisted of solvent A (0.1% formic acid (FA) in
water) and solvent B (0.1% formic acid in acetonitrile).
Chromatographic separation was accomplished using a 19-min
linear gradient from 5 to 60% mobile phase B. Mass spectrometry
(MS) detection was performed in both positive and negative
ionization modes, the source temperature being 120°C and the
desolvation temperature 350°C. The capillary voltage was 3,000 V,
and sample cone voltages were 30 and 50 V in full scan mode. The
cone and desolvation gas flow rates were 60 and 800 L.h−1

respectively. Analytes were annotated according to their retention
time, UV, and mass spectra by comparison with pure commercial
standards and data from the literature (Table S1). Integration of the
peaks was done using TargetLynx software. Targeted data collection
was carried in selected ion monitoring (SIM) mode for (1) erythro-
guaiacylglycerol-b-coniferyl alcohol ether glucoside ([M+H-
2H2O]

+; m/z 521; RT = 5.66 min), (2) threo-guaiacylglycerol-b-
coniferyl alcohol ether glucoside ([M+H-2H2O]

+; m/z 521; RT =
5.79 min), (3) p-coumaric ([M-H]−; m/z 163; RT = 6.49 min), (4)
dehydrodiconiferyl alcohol-4-b-D-glucoside isomer 1([M+H-
H2O]

+; m/z 503; RT = 7.3 min), (5) erythro-guaiacylglycerol-b-
coniferyl alcohol ether ([M+H-2H2O]

+; m/z 341; RT = 7.69 min),
(6) threo-guaiacylglycerol-b-coniferyl alcohol ether ([M+H-
2H2O]+; m/z 341; RT = 7.85 min), (7) dehydrodiconiferyl
alcohol-4-b-D-glucoside isomer 2 ([M+H-H2O]

+; m/z 503; RT =
8.3 min), (8) secoisolariciresinol ([M+H-2H2O]

+; m/z 327; RT =
9.42min), (9) lariciresinol ([2M+H]+;m/z 721; RT = 9.77min), (10)
epipinoresinol ([M+H-H2O]

+ m/z 341; RT = 9.9 min), (11)
pinoresinol ([M+H-H2O]+; m/z 165; RT = 10.48 min), (12)
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pluviatol ide ([M+H]+; m/z 357; RT = 11.36 min),
(13) guaiacylglycerol-b-coniferyl aldehyde ether hexoside ([M+H-
2H2O]

+; m/z 519; RT = 11.74 min), (14) phillygenin ([M-H]−;
m/z 371; RT = 13.23 min). Peak integration was performed
using the ApexTrack algorithm with a mass window of 0.1
Da and relative retention time window of 1 min followed by
Savitzky–Golay smoothing (iteration = 1 and width = 1). The
resulting pairs of m/z values and retention times were also
manually examined.

As there are limited reference mass spectra available for
lignan and neolignan identification, high-resolution mass
spectrometry was further employed for confirmation of UPLC-
DAD-MS identification. Chromatographic analyses were
performed using an Ultimate 3000 RSLC system equipped with
a binary pump, an autosampler and a thermostated column
compartment (Dionex, Germering, Germany). Analytes were
separated on a Luna omega C18 column (150 × 2.1 mm; 1.6
µm, Phenomenex) at 40°C. The mobile phase at a flow rate of 500
µl.min−1 was composed of solvent A (0.1% formic acid in water)
and solvent B (0.08% formic acid in acetonitrile); the gradient
program was as follows: 97% A and 3% B from 0 to 3 min, 55% A
and 45% B at 12 min, 10% A and 90% B from 14 to 15 min, 97%
A and 3% B at 15.5 min, then the column was re-equilibrated
under initial conditions during 3 min. The injection volume was
2 µl. MS experiments were performed on a maXis UHR-Q-TOF
mass spectrometer (Bruker, Bremen, Germany) in positive and
negative electrospray ionization (ESI) modes. Capillary voltage
was set at 4.5 kV in positive mode and 4.0 kV in negative mode.
The flow rates of nebulizing and drying gas (nitrogen) were
respectively set at 2 bars and 9 L.min−1, and drying gas was
heated at 200°C. The analysis was made with an acquisition
frequency of 0.6 Hz for MS and MS/MS; the mass scan range was
set from m/z 50 to 1,550. MS/MS experiments were carried out
using data dependent acquisition (DDA) mode. Two collision
energies were applied according to m/z, and the spectra were
averaged to obtain MS/MS spectra from 20 and 45 eV atm/z 140
to 35 and 78 eV at m/z 1,000. Data were processed using
DataAnalysis 4.4. The molecular formula was calculated using
the following parameters: elemental composition 12C, 1H, 16O,
14N0-5 and mass accuracy ≤2 ppm. The HRMS data for the 14
identified metabolites are presented in Table 1.

All the 14 metabolites identified were followed during growth
kinetic in callus and cell suspensions, and the relative abundance
of each metabolite is estimated according Arbitrary Unit (AU) by
mg of DW.

Antioxidant Activity
DPPH Radical Scavenging Assay
To determine the antioxidant activity in the cell culture extracts,
the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) antioxidant free
radical scavenging assay was performed according to the
method described by Lee et al. (1998). Briefly, 20 µl of cell
extract was mixed with 180 µl of DPPH reagent and kept for
30 min in the dark at room temperature, after which the
absorbance was noted using a microplate reader at 517 nm.
Trolox C was used as positive control. The assay was performed
in triplicate and results expressed in mM of Trolox C Equivalent
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Antioxidant Capacity (TEAC) using a 6-point calibration curve
(R2 = 0.9994).

ABTS Radical Scavenging Assay
This assay, also known as Trolox equivalent antioxidant capacity
assay, was performed with the 2,2′-azinobis-(3-ethylbenzothiazoline-
6-sulfonate) (ABTS) radical as described by Tagliazucchi et al. (2010)
with slight modifications. Briefly, equal volumes of 7 mM ABTS
solution were added to 2.45 mM potassium persulphate solution and
incubated in the dark for 16 h at room temperature. Next, the
absorbance was recorded at 734 nm and adjusted to 0.7, after which
the extracts were added. The reaction was then kept in the dark for
15min at 25°C, and the absorbance wasmeasured again at 734 nmby
the use of BioTek ELX800 absorbance microplate reader (BioTek
Instruments, Colmar, France). Trolox C was used as positive control.
The assay was performed in triplicate and results expressed in mM of
Trolox C Equivalent Antioxidant Capacity (TEAC) using a 6-point
calibration curve (R2 = 0.9977).

FRAP Assay
Ferric reducing antioxidant power assay (FRAP) was carried out
according to the protocol described by Benzie and Strain (1996)
with small modifications. Briefly, 10 µl of sample plant extract was
added to 190 µl of FRAP solution, which was composed of 20 mM
FeCl3 10 mM TPTZ, 6H2O, along with 300 mM acetate buffer (pH
3.6) in 1:1:10 (v/v/v) ratio. The reaction mix was incubated for
15min at 25°C. The absorbance was thenmeasured at 630 nm using
a BioTek ELX800 absorbance microplate reader (BioTek
Instruments, Colmar, France). Trolox C was used as positive
control. The assay was performed in triplicate and results
expressed in mM of Trolox C Equivalent Antioxidant Capacity
(TEAC) using a 6-point calibration curve (R2 = 0.9941).

CUPRAC Assay
A modified method of Apak et al. (2004) was used to determine
the cupric ion reducing antioxidant capacity (CUPRAC) of the
samples. Briefly, 10 µl of sample plant extract was mixed with 190
Frontiers in Plant Science | www.frontiersin.org 453
µl of CUPRAC solution, containing 10 mM Cu(II), 7.5 mM
neocuproine, and 1 M acetate buffer (pH 7.0) in a 1:1:1 (v/v/v)
ratio. The mixture was then incubated for 15 min at 25°C and the
absorbance recorded at 450 nm using the BioTek ELX800
absorbance microplate reader (BioTek Instruments, Colmar,
France). Trolox C was used as positive control. The assay was
performed in triplicate and results expressed in mM of Trolox C
Equivalent Antioxidant Capacity (TEAC) using a 6-points
calibration curve (R2 = 0.9997).

Anti-Aging Activity
Collagenase Assay
The collagenase assay was performed according to Wittenauer
et al. (2015). Collagenase from Clostridium histolyticum (Sigma
Aldrich) was used with the substrate N-[3-(2-furyl)acryloyl]-
Leu-Gly-Pro-Ala (FALGPA; Sigma Aldrich) and the decrease in
absorbance of FALGPA was monitored at 335 nm over a period
of 20 min, using a BioTek ELX800 absorbance microplate reader
(BioTek Instruments, Colmar, France). All the reactions were
performed in triplicate, and the anti-collagenase activity was
detected as a percentage of inhibition relative to the control (by
adding the same volume of extraction solvent) for each extract.
1,10-Phenantroline (100 µM) was used as the specific inhibitor of
collagenase leading to an inhibition of 33.6 ± 2.2%.

Elastase Assay
For this assay, porcine pancreatic elastase (Sigma Aldrich) was used
according to the protocol described by Wittenauer et al. (2015).
Here, N-Succ-Ala-Ala-Ala-p-nitroanilide (AAAVPN; Sigma
Aldrich) was used as a substrate, and the release of p-nitroaniline
was measured at 410 nm using an absorbance microplate reader
(BioTek ELX800; BioTek Instruments). All the experiments were
performed in triplicate, and the anti-elastase activity was expressed
as a percentage of inhibition relative to the control which consisted
of the same volume of extraction solvent. Oleanolic acid (10 µM)
was used as the specific inhibitor of elastase leading to an inhibition
of 47.8 ± 1.4%.
TABLE 1 | UHPLC-HR-ESI-MS data of Linum usitatissimum cell suspension extracts.

Peak RT
(min)

Compound class CompoundAssignement Molecular
formula

m/z measured m/z
calculated

Error
[ppm]

1 5.68 neolignan erythro-guaiacylglycerol-b-coniferyl alcohol ether
glucoside

C26H33O11 521.202052 [M+H-
H2O]+

521.201738 −0.6

2 5.80 neolignan threo-guaiacylglycerol-b-coniferyl alcohol ether
glucoside

C26H33O11 521.201547 [M+H-
H2O]+

521.201738 0.4

3 4.26 phenolic acid p-coumaric acid C9H9O3 165.054376 [M+H]+ 165.054621 1.5
4 7.19 neolignan dehydrodiconiferyl alcohol-4-b-D-glucoside isomer1 C26H31O10 503.1909 [M+H-H2O]+ 503.191174 1.6
5 7.35 neolignan erythro-guaiacylglycerol-b-coniferyl alcohol ether C20H24NaO7 399.14164 [M+Na]+ 399.14142 −0.5
6 7.52 neolignan threo-guaiacylglycerol-b-coniferyl alcohol ether C20H24NaO7 399.14150 [M+Na]+ 399.14142 −0.2
7 7.80 neolignan dehydrodiconiferyl alcohol-4-b-D-glucoside isomer2 C26H33O11 521.201475 [M+H]+ 521.201738 1.6
8 6.78 dibenzylbutane secoisolariciresinol C20H27O6 363.180449 [M+H]+ 363.180215 −0.6
9 9.31 furan lariciresinol C20H24NaO6 383.146804 [M+Na]+ 383.146509 −0.8
10 9.37 furofuran epipinoresinol C20H23O6

C20H22NaO6
359.148467 [M+H]+

381.131 [M+Na]+
359.148915
381.130859

1.2
−0.4

11 9.74 furofuran pinoresinol C20H22NaO6 381.131389 [M+Na]+ 381.130859 −1.4
12 10.68 dibenzylbutyrolactone pluviatolide C20H21O6 357.133699 [M+H]+ 357.133265 −1.2
13 10.93 neolignan guaiacylglycerol-b-

coniferyl aldehyde ether hexoside
C30H33O9 537.211577 [M+H]+ 537.211909 0.6

14 12.09 furofuran Phillygenin C21H24NaO6 395.146532 [M+Na]+ 395.146509 −0.1
September 2020 | Vo
lume 11 | Ar
ticle 508658

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Bose et al. Lignans in Flax In Vitro Cultures
Hyaluronidase Assay
The assay for hyaluronidase inhibitory action was carried out as
described by Kolakul and Sripanidkulchai (2017). For the
reaction, 1.5 units of hyaluronidase (Sigma Aldrich) was added
to the substrate i.e. 0.03% (w/v) hyaluronic acid solution, after
which, acid albumin solution [0.1% (w/v) BSA] was used to
precipitate undigested form of hyaluronic acid. The absorbance
was recorded at 600 nm using an absorbance microplate reader
(BioTek ELX800; BioTek Instruments, Colmar, France). All the
experiments were performed in triplicate, and the hyaluronidase
inhibitory action was expressed as a percentage of inhibition
relative to the control which consisted of the same volume of
extraction solvent. Oleanolic acid (10 µM) was used as the
specific inhibitor of hyaluronidase leading to an inhibition of
33.5 ± 2.8%.

Tyrosinase Assay
Tyrosinase inhibitory assay was carried out as described by Chai
et al. (2018). Briefly, the diphenolase substrate L-DOPA (5 mM;
Sigma Aldrich) was mixed in sodium phosphate buffer (50 mM,
pH 6.8) with 10 µl of L. usitatissimum extract after which, 0.2
mg.ml−1 of mushroom tyrosinase solution (Sigma Aldrich) was
added to the reaction mixture to make a final volume of 200 µl. A
control experiment was performed in parallel using an equal
amount of extraction solvent. The absorbance of the reaction
was measured using an absorbance microplate reader (BioTek
ELX800; BioTek Instruments) at 475 nm. All the experiments were
performed in triplicate, and the hyaluronidase inhibitory action
was expressed as a percentage of inhibition relative to the control
for each extract. Kojic acid (10 µM) was used as the specific
inhibitor of tyrosinase leading to an inhibition of 51.2 ± 0.9%.

Statistical Analysis
Visualization of the data and data analysis were carried out with
MeV 4.9.0 software (Saeed et al., 2003). Every experiment was
carried out in triplicate. Statistical significance from different
treatments was revealed after one-way analysis of variance
(ANOVA) followed by Tukey’s test. Partial Least Square (PLS)
models were performed using SIMCAP+ version 13.0 (Umetrics
AB, Umeå, Sweden) with 14 metabolites as X variables and eight
biological activities as Y variables. All variables were mean-centered
and unit-variance (UV) scaled prior to PLS. Correlation analysis
was performed using Past 3.0 (Øyvind Hammer, Natural History
Museum, University of Oslo, Oslo, Norway) using the Pearson
parametric correlation test and visualized using Heatmapper
(Babicki et al., 2016). Significant thresholds at p < 0.05 with
significant differences represented by different letters or p < 0.05,
<0.01, and <0.001 were used for all statistical tests and represented
by different letters or by *, **, and ***, respectively.
RESULTS

Establishment of Callus Culture
The most optimal callus induction frequency was established by
testing different hormonal combinations of auxins and cytokinins,
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either alone or in combination (Table 2). Media containing
cytokinin in combination with auxin resulted in the highest
accumulation of callus biomass. Murashige and Skoog (MS)
(1962) media supplemented with 2 mg.L−1 BAP and 0.5 mg.L−1

NAA gave the maximum growth index (Table 2).
Next, we evaluated the influence of the explant origin on

callus formation using root, cotyledon, or hypocotyl starting
explants. Callus formation was observed for each of these initial
explants. Growth index as the ratio between final biomass and
initial biomass (i.e., 1 g FW per petri dish for 5 micro-callus) has
been deduced for each case for determination at day 20 of
cultivation on MS media containing 2 mg.L−1 BAP and 0.5
mg.L−1 NAA. The present results showed that hypocotyls
constituted the best initial explants for the establishment of
calli in terms of biomass accumulation (Table 3).

Study of Growth Kinetics
The growth kinetics of cell suspension (Figure 1A) and callus
(Figure 1B) under light or dark were studied in L. usitatissimum
over a period of 30 days. We decided to focus on dry weight (DW)
measurements, as fresh weight (FW) cannot provide an accurate
evaluation of biomass production (Park and Kim, 1993). In flax
callus cultures the maximum biomass accumulation (DW) was
observed on day 30 of culture (Figure 1B). In light grown cultures
(Figure 2A), 1.176 g DW/flask was recorded, while 0.702 g DW/
flask was measured for cultures growing in the dark (Figure 2B).
In both conditions i.e. dark and light, the exponential-growth
phase started from day 9 of culture, after an initial lag phase.
Whereas in cell suspension cultures, the exponential-growth phase
TABLE 2 | Growth indices of L. usitatissimum calli grown in vitro on Murashige
and Skoog media containing different 1-naphthaleneacetic acid (NAA) and 6-
benzylaminopurine (BAP) hormonal concentrations after 20 days of culture.

NAA(mg/L) BAP(mg/L) Growth index1

0.1 1 1.36 ± 0.07d

0.5 1 1.43 ± 0.06d

1 1 1.76 ± 0.05 c

0.1 2 2.07 ± 0.10b

0.5 2 2.79 ± 0.03a

1 2 2.67 ± 0.09a
September 2020 | Volume 11
1Growth index represents the ratio of final biomass (in dry weight (DW)) divided by the initial
biomass (in DW) determined at day 20 of cultivation. No callus induction was observed on
Murashige and Skoog medium without addition of any phytohormone. Values are means ±
SD of 3 independent experiments; superscript letters indicate significant differences (p < 0.05).
TABLE 3 | Growth indices in L. usitatissimum calli as a function of the initial
explant grown on Murashige and Skoog media containing 2 mg.L−1 6-
benzylaminopurine (BAP) and 0.5 mg.L−1 1-naphthaleneacetic acid (NAA).

Initial explant origin Growth index1

Root 2.55 ± 0.06b

Hypocotyl 2.79 ± 0.03a

Cotyledon 2.24 ± 0.07c
1Growth index represents the ratio of final biomass [in dry weight (DW)] divided by the initial
biomass (in DW) determined at day 20 of cultivation. Values are means ± SD of three
independent experiments; superscript letters indicate significant differences (p < 0.05).
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was activated earlier on day 3 in the light condition and on day 6 in
the dark condition (Figure 1A). The highest suspension cell
culture DW in the light was recorded on day 27 (0.399 g/flask)
whereas in the dark the highest biomass was recorded on day 24
(0.359 g/flask). These two opposing conditions, i.e. light (Figure
2C) and dark (Figure 2D), were studied to see if there was any
effect of the photoperiod on biomass accumulation. Light did not
have an effect on the growth of suspension cell cultures.

Identification of Metabolites by
UPLC-DAD-MS
To identify the phenolic compounds in cell extracts of L.
usitatissimum, qualitative UPLC-DAD-MS/MS analysis in both
ES+ and ES− modes were carried out, and major peaks were
annotated according to their MS and UV features (Table 1, Figure
S1, and Table S1). The 14 major analytes were assigned by
comparison with pure standards or data from the literature.
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Peaks 3, 8, 9, and 11 were undoubtedly identified as p-coumaric
acid, secoisolariciresinol, lariciresinol, and pinoresinol
respectively, by comparison with pure standards. Peaks 1 and 2
show similar MS and UV spectra. In ES+ mode the following ions
are produced; [M+H-H2O]

+ at m/z 521, [M+H-glucose]+at m/z
377.0, and [M+H-glucose-2H2O]

+ at m/z 341.1. In ES− mode, an
[M+FA-H]− ion at m/z 583.2 and an [M-H-glucose]− ion at m/z
375.2 were detected. These spectral features corresponded to the
two isomers previously reported in flax cell extracts (Beejmohun
et al., 2007) as erythro (peak 1) and threo (peak 2) forms of the
guaiacylglycerol-b-coniferyl alcohol ether glucosides (GGCG).
Peaks 4 and 7 showed similar MS and UV spectra. In ES+ mode
they produce the following ions: [M+H-H2O]

+ atm/z 503, [M+H-
H2O-glucose]

+ at m/z 341. In ES− mode, [M+FA-H]− ions at m/z
565, [M-H-H2O-glucose]

− ions at m/z 339.1 and [2M-H]− ions at
m/z 1039 were detected. These chemical features corresponded to
dehydrodiconiferyl alcohol-4-b-D-glucosides in agreement with
Beejmohun et al. (2007). Our analyses enabled the detection of two
isomers provisionally assigned as dehydrodiconiferyl alcohol-4-b-
D-glucoside (DCG) isomer 1 (peak 4) and isomer 2 (peak 7),
whereas previous studies reported only one isomer (Attoumbre
et al., 2006a; Beejmohun et al., 2007). Peaks 5 and 6 produced
similar MS and UV spectra. In ES+ mode they produced [M+H-
2H2O]

+ ions at m/z 341.0, [M+Na]+ ions at m/z 398.9, and [2M-
2H2O+H]+ ions at m/z 717.1. In ES− mode, [M-H]− ions at m/z
375, [2M-H]− ions at m/z 751.5, [M-H-H2O-CH2O]

− ions at m/z
327.1, and [M-H-H2O-CH2O-CH3]

− ions at m/z 312. 3 were
detected. The structures of these two isomers were tentatively
identified as erythro (peak 5) and threo (peak 6) forms of the
guaiacylglycerol-b-coniferyl alcohol ether (GGC), whereas only
their glucoside forms have been previously reported in flax cell
extracts (Beejmohun et al., 2007). In ES+ mode, peak 10 produced
the following ions: [M+H-H2O]

+ at m/z 341.1, [M+H-2H2O]
+ at

m/z 323.0, and [M+H-H2O-2CH3]
+ atm/z 311.1. In ES− mode an

[2M-H]− ion at m/z 715.2, [M+FA-H]− ion at m/z 403.1, [M-H-
H2O]

− ion at m/z 339.1 and [M-H-2CH3]
− ion at m/z 327.2 were

detected. These chemical features were similar to those observed
for pinoresinol (peak 11) and might be assigned to its enantiomer
epipinoresinol. The compound has been previously reported in
Forsythia intermedia cell suspension cultures (Schmitt and
Petersen, 2002) and now, for the first time, in flax cells. In ES+

mode, peak 12 produces an [M+H-H2O]
+ ion atm/z 339.1, and an

[M+H-2H2O]
+ ion at m/z 321.0. In ES− mode, the same peak

produces an [M-H-H2O]
− ion at m/z 337.1 and an [M+FA-H]−

ion at m/z 400.9. The formation of the two characteristic
fragments [A]+ ion at m/z 137 and [B]+ ion at m/z 161 allowed
for unambiguously assigning these compounds as pluviatolide as
previously described from aerial parts of L. usitatissimum
(Schmidt et al., 2008). The presence of pluviatolide in L.
usitatissimum cell suspension cultures is described for the first
time in this study. In ES+ mode, peak 13 produces an [M+H-
H2O]

+ ion at m/z 519.2, an [M+H-H2O-hexoside]
+ ion at m/z

357.0 (hexose neutral loss: −162 Da). In ES− mode, peak 13
produces an [M-H+FA]− ion at m/z 581.1, an [M-H-H2O]

− ion
at m/z 517 and an [M-H-H2O-hexose]

− ion at m/z 355 (hexose
neutral loss: −162 Da), with the UV spectrum showing a lmax at
A

B

FIGURE 1 | Growth kinetics of callus and cell suspension cultures in light and
dark represented in dry weight (in g/flask) on a time period of 30 days. (A) Dry
weight (DW) of callus grown in the light (Blue); dry weight of callus grown in the
dark (Red) (B) Dry weight (DW) of cell suspension culture grown in the light
(Blue); dry weight of cell suspension culture grown in the dark (Red).
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277 and 344 nm. These MS and UV characteristics corresponded
to the hexoside form of guaiacylglycerol-b-coniferyl aldehyde
ether described by Yao et al. (2018). Consequently, this
compound was tentatively assigned as guaiacylglycerol-b-
coniferyl aldehyde ether hexoside. To our knowledge, we are the
first to report its presence in flax cells. In ES+ mode peak 14
produces an[M+Na]+ ion atm/z 394.9, an [M+H-H2O-CH3]

+ ion
at m/z 341.0, and in ES− mode an [M-H-H2O]

− ion at m/z 352.9
and an [M-H-2CH3]

− ion at m/z 341. These MS spectral features
enabled us to provisionally assign this compound as phillygenin,
as previously described in sesame seed extracts (Eklund
et al., 2008).

Accumulation of Specialized Metabolites
The accumulation of these compounds in the cell cultures was
measured over a period of 30 days. We observed the
accumulation of 14 different specialized metabolites in L.
usitatissimum callus and cell suspension cultures, following
UPLC-HRMS analysis (Figures 3, S2).

The analysis of specialized metabolite accumulation in callus
grown under light versus dark conditions showed a higher
accumulation of these metabolites on day 18 of cultivation
under light conditions (Figures 3A, S2A). Similar results were
obtained for cell suspension cultures propagated under light
conditions, where the production of specialized metabolites was
Frontiers in Plant Science | www.frontiersin.org 756
comparatively higher than under dark conditions (Figures
3B, S2B).

Epipinoresinol and pluviatolide were the major lignans of flax
callus and cell suspension cultures. Their biosynthesis appeared to
be growth associated with maximum accumulation at the end of the
exponential growth phase. No significant difference was observed
between the accumulations in callus vs. cell suspension. However, a
stimulation of the light on their accumulation has been observed.
For the accumulation of other lignans, phillygenin was higher in the
dark-grown callus, while secoisolariciresinol and lariciresinol
contents were higher in the cell suspension under light
conditions. Under these conditions, pinoresinol accumulation did
not show any marked variation.

DCG (isomer 1) was the main neolignan produced in both
culture and cell suspension conditions. The DCG (isomer 1)
accumulation was twofold more important in cell suspension (day
6) than in callus (day 3), with an observed stimulating effect of light.
In both types of in vitro culture, its maximum accumulation was
observed both at the beginning and at the end of the culture cycle.
With the exception of erythro-guaiacylglycerol-b-coniferyl alcohol
ether glucoside, erythro-guaiacylglycerol-b-coniferyl alcohol ether,
and threo-guaiacylglycerol-b-coniferyl alcohol ether, all of which
peaked at day 18 in flax cell suspension under light conditions, the
accumulation of other neolignans under other conditions remained
relatively stable throughout the culture cycle.
FIGURE 2 | Pictures of representative L. usitatissimum cultures. (A) Callus culture in the light after 30 days. (B) Callus culture in the dark after 30 days.
(C) Suspension culture in the light after 27 days of culture. Suspension culture in the dark after 24 days of culture (D).
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Antioxidant and Anti-Aging Activities
A complete evaluation of antioxidant and anti-aging activities of
all the cell extracts of L. usitatissimum was performed. In total,
four different types of assays were performed in order to provide a
complete view on the antioxidant capacities of the extracts: two
assays (DPPH and ABTS) to detect antioxidants acting through a
hydrogen-atom transfer (HAT) mechanism, and two other assays
(CUPRAC and FRAP) acting through a single electron transfer
(ET) mechanism (Prior et al., 1998 and Apak et al., 2007).

It is clear from Figure 4 and Table S2 that ABTS and DPPH
activities were higher in comparison to the CUPRAC and FRAP
activities. Nonetheless, cell suspension extracts grown under
light conditions showed the best result, with the highest
Frontiers in Plant Science | www.frontiersin.org 857
antioxidant activity observed on day 18 of culture for all in
vitro assays (with TEAC of 558.5 µM (ABTS), 334.7 µM (DPPH),
142.8 µM (CUPRAC), and 108.5 µM (FRAP)).

Next, we examined the anti-aging capacity of all L. usitatissimum
cell extracts by performing four different assays. Tyrosinase, elastase,
collagenase, and hyaluronidase inhibitors are of great interest to the
cosmetics industry. From heat maps (Figure 5), it can be interpreted
that anti-tyrosinase and anti-elastase activities displayed a
comparatively higher propensity in the dark than in the light. But
in more details, cell suspension, in particular SL18 extract (i.e. cell
suspension grown under light conditions on day 18 of culture)
presented the maximum inhibitory action for tyrosinase and
elastase enzymes with observed inhibitions of 50.6 and 34.9%,
A

B

FIGURE 3 | (A) Comparison of metabolic variations in L. usitatissimum callus cultures in the light and dark. (B) Comparison of metabolic variations in L.
usitatissimum cell suspension cultures in the light and dark. A.U. mg−1 refers to the sum of arbitrary unit of each compound per mg of DW.
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respectively (Figure 5, Table S3). Better results have been achieved
with collagenase and hyaluronidase inhibition of callus cultures.
Nevertheless, L. usitatissimum extracts did not have major
inhibitory effects on collagenase enzyme activity, with a
maximum inhibition of 11.9% observed for CL3 extract (i.e.,
callus grown under light conditions on day 3 of culture). On the
contrary, the same CL3 extract showed the maximum inhibitory
potential for the hyaluronidase enzyme with a 52.8%
inhibition observed.

Multivariate Statistical Analyses
Partial Least Square models were performed on the data sets from
cell suspensions and callus cultures to extract relevant changes of
metabolic composition and biological activities under light or dark
treatments, as well as over time. For cell suspension cultures, the
PLS score plot of the two first components shown in Figure 6A
explained 72.3% of the variation and revealed a slight effect of the
light/dark treatment along component 1 axis. The loading plot
(Figure 6B) showed the variables potentially responsible for the
discriminations observed in Figure 6A.

As an example, the projection on component 1 positive values of
the neolignans (erythro-guaiacylglycerol-b-coniferyl alcohol ether,
threo-guaiacylglycerol-b-coniferyl alcohol ether, dehydrodiconiferyl
Frontiers in Plant Science | www.frontiersin.org 958
alcohol-4-b-D-glucoside isomer2, guaiacylglycerol-b-coniferyl
aldehyde ether hexoside), the lignans (secoisolariciresinol,
epipinoresinol, pinoresinol) and the anti-oxidant tests (ABTS,
FRAP and CUPRAC) suggested that under light treatment these
metabolites are induced resulting in higher antioxidant activities. It is
noteworthy that biomass accumulation (DW and FW) was not
associated with the variables corresponding to metabolic
composition and biological activities. For callus cultures, the PLS
score plot of the two first components shown in Figure 6C explained
77% of the variation and a slight effect of light/dark treatment was
observed similarly to cell suspension cultures. Interestingly, the
variables associated with the light treatment were the same in the
cell suspension and callus cultures (Figures 6B, D) suggesting that in
both callus and cell suspension cultures of L. usitattissimum light
treatment induced the production of several lignans and neolignans.

To evaluate the connection between phytochemicals and biological
activities of the extracts, Pearson coefficient correlations (PCCs) were
calculated (Figure 7; Table S4). From this analysis, according to their
high and significant PCC values, the lignans epipinoresinol,
secoisolariciresinol, and pinoresinol and the neolignans
dehydrodiconiferyl alcohol-4-b-D-glucoside (isomer 2) appeared as
themain potential contributors toward the ABTS antioxidant assay. In
addition to these compounds, the two neolignans erythro- and threo-
FIGURE 4 | Heat map showing in vitro antioxidant activity in all the cell cultures of cell suspensions and callus extracts of L. usitatissimum over a time period of 30
days. Antioxidant activities are expressed in µM of Trolox C Equivalent Antioxidant Capacity (TEAC). Values are presented in Table S2 . DPPH, 1,1-Diphenyl-2-picryl-
hydrazyl; ABTS, 2,2-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid); FRAP, ferric reducing antioxidant power; CUPRAC, cupric reducing antioxidant capacity; HAT,
hydrogen atom transfer antioxidant mechanism; ET, electron transfer antioxidant mechanism.
FIGURE 5 | Heat map showing relative in vitro anti-aging activity inhibitory activity against skin remodeling enzymes) of cell suspensions and callus extracts of L.
usitatissimum over a time period of 30 days. In vitro anti-aging activities are expressed in inhibition % relative to the control (same volume of extraction solvent).
Values are presented in Table S3.
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guaiacylglycerol-b-coniferyl alcohol ether and guaiacylglycerol-b-
coniferyl aldehyde ether hexoside were highly correlated to the
FRAP antioxidant assay. The same compounds were strongly
associated with the CUPRAC antioxidant assay, except for DCG
(isomer 2) and secoisolariciresinol. No significant correlation was
noted for DPPH radical scavenging assay.

The lignan epipinoresinol and the neolignans dehydrodiconiferyl
alcohol-4-b-D-glucoside (isomer 2) and guaiacylglycerol-b-coniferyl
aldehyde ether hexoside emerged as themain possible contributors to
tyrosinase enzyme inhibition. A high and significant correlation
pointed to the possible implication of pluviatolide in the inhibition
of elastase enzyme. A moderate but highly significant correlation
between inhibition of hyaluronidase enzyme and neolignans erythro-
guaiacylglycerol-b-coniferyl alcohol ether glucoside and
dehydrodiconiferyl alcohol-4-b-D-glucoside (isomer 1) and lignan
epipinoresinol was measured.
DISCUSSION

Flax extract is considered to be a potential cosmetic ingredient all
over the world, including China (China Food & Drug
Frontiers in Plant Science | www.frontiersin.org 1059
Administration, 2015). Therefore, our objective was to
characterize cell suspension extracts that could be used within this
field. An undoubted advantage of using cell cultures as opposed to
whole plants is that they can be used efficiently for a continuous
production of bioactive metabolites (Eibl et al., 2018; Georgiev et al.,
2018). This in turn guarantees more reproducible production of
economically important extracts and under controlled sanitary
conditions. Most importantly, the production of these extracts can
be adjusted to the demand at any time.

Flax cell suspensions have been proposed as a useful system for
the production of plant biomass able to produce and accumulate
bioactive compounds (Attoumbre et al., 2006b). L. usitatissimum
callus-derived cell suspension has been previously initiated from
various starting materials: root explants (Attoumbre et al., 2006a;
Attoumbre et al., 2006b), hypocotyls (Hano et al., 2006; Corbin et al.,
2013a), or shoots (Gabr et al., 2016). Efficiency in obtaining higher
biomass was assessed starting with different tissues. Unsurprisingly,
considering the high organogenesis competency of hypocotyl
epidermal and sub-epidermal cells (Lamblin et al., 2007), these
tissues gave the best results. In the present study, the most optimal
callus induction frequency was established by testing different
hormonal combinations of auxins and cytokinins. Murashige and
A

B D

C

FIGURE 6 | Partial Least Square models of metabolic composition and biological activities of cell suspension (A, B) and callus (C, D) cultures under light/dark
treatment. Score plots (A, C) with round size relative to the biomass expressed as dry weight and numbered with the corresponding days of culture. Loading plots
(B, D) with X variables in green and Y variables in blue.
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Skoog media containing cytokinin in combination with auxin (i.e., 2
mg.L−1 BAP and 0.5 mg.L−1 NAA) resulted in the highest biomass
accumulation. Attoumbre et al. (2006b) also reported higher biomass
production of L. usitatissimum cell suspension in LS medium
(Linsmaier and Skoog, 1965) supplemented with NAA at 1 mg.L−1,
whereas Gabr et al. (2016) reported higher biomass production with
B5 medium (Gamborg et al., 1968) supplemented with 2,4D at 1.0
mg.L−1 and GA3 at 0.5 mg.L−1. Here, the optimal hormonal
concentrations are in good agreement with our previous results
(Hano et al., 2006; Beejmohun et al., 2007; Hano et al., 2008;
Corbin et al., 2013a; Corbin et al., 2013b; Markulin et al., 2019).
The presence of two lignans (secoisolariciresinol diglucoside [SDG]
and lariciresinol diglucoside [LDG]) and two neolignans
(dehydrodiconiferyl alcohol glucoside [DCG] and guaiacylglycerol-
b-coniferyl alcohol ether glucoside [GGCG]) in in vitro cultured cells
has already been reported in L. usitatissimum (Attoumbre et al.,
2006a; Attoumbre et al., 2006b; Hano et al., 2006; Hano et al., 2008;
Corbin et al., 2013a; Corbin et al., 2013b; Gabr et al., 2016; Anjum
et al., 2017a; Anjum et al., 2017b; Zahir et al., 2018; Nadeem et al.,
2018; Nadeem et al., 2019; Ahmad et al., 2019; Markulin et al., 2019).
In this study, using a high resolving chromatographic method
(UPLC), we show for the first time that our newly established flax
callus and their corresponding derived cell suspension lines are able
to accumulate at least 14 lignans, neolignans, and derivatives. These
compounds include the four compounds already described and 10
metabolites never found before in flax cell suspension systems. This
shows the versatility of these cell systems and the usefulness of
developing new L usitatissimum cell lines to enhance specific
metabolic development according to targeted applications. Callus
and cell suspension of flax of our study presented a similar qualitative
metabolic profile. However, stress from the status modification (from
callus to the suspension), physiological and/or chronological
conditions (e.g., growth) or light conditions may alter the
accumulation of each component in the extracts. Light has already
Frontiers in Plant Science | www.frontiersin.org 1160
been mentioned as a stress inducer in several plant species, which
triggers specialized metabolite biosynthesis (Shohael et al., 2006;
Younas et al., 2018; Zahir et al., 2018; Shah et al., 2019). In our
study, all the 14 annotated metabolites were followed in callus and
cell suspensions at light or dark for 30 days in order to estimate the
effect of the culture parameters on their accumulation. The sum of
lignans and neolignans in both callus and cell suspensions is nearly
the same, except for two lignans (epipinoresinol and pluviatolide)
and one neolignan (DCG isomer 1). A beneficial influence of light
on this accumulation was presumably observed considering their
relative higher accumulation. The initial high level of DCG isomer 1
could be due to the osmotic stress during the subculture as it has
already been observed with other phenylpropanoids and lignans
(Seidel et al., 2002). Interestingly, phillygenin is the only lignan
produced in the same amount in callus, whatever the light
condition, while the accumulation of phillygenin in the cell
suspension was stimulated in the dark.

In a final step, we were interested in the biological activities of
interest for cosmetic application by using antioxidant and enzymatic
anti-aging tests. We observed that light condition produced cell
extracts with higher antioxidant activity, whereas dark condition
was linked with a higher anti-aging activity. Therefore, light not
only activates biosynthesis of lignans and neolignans in L.
usitatissimum cells, but also plays a significant role in the
biological properties of extracts which have been suggested by
Arias et al. (2016) for cell suspension of Thevenia peruviana. The
correlation analysis of phytochemicals and biological activities
contributed to the identification of metabolites correlated with
antioxidant or anti-aging activity. Some metabolites are commons
for both activity such as epipinoresinol, DCG (isomer 2) and
guaiacylglycerol-b-coniferyl aldehyde ether hexoside, while others
are more directly related to antioxidant activity, such as
secoisolariresinol, as it was previously showed for some of its
derivatives (Prassad, 1999; Kitts et al., 1999; Hano et al., 2017;
FIGURE 7 | Pearson correlation analysis (PCC) of the relation between the main phytochemicals from flax in vitro culture extracts and the different antioxidant
(ABTS, DPPH, CUPRAC, and TBARS) and anti-aging (tyrosinase, hyaluronidase, elastase, and collagenase) activities. *** significant p < 0.001; ** significant p < 0.01;
* significant p < 0.05; actual PCC values are indicated in Table S4.
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Socrier et al., 2019) or anti-aging, such as pluviatolide. Surprisingly,
phillygenin was not associated with anti-aging activity, probably due
to its narrow accumulation profile, because it was primarily present
in dark cultured cells. It is also difficult to conclude that the activity
of the extract is attributable to a specific metabolite, although some
accumulation patterns of similar metabolites tend to be closely
related to certain biological activities. To explore further the
properties of each molecule, analysis with purified molecules will
be necessary. In fact, the variability in the relative abundance of the
extract may also be the key to the possible biological activities of the
extract. It is commonly agreed that the biological activities of plant
extracts may result in the synergistic action of several metabolites,
which can be almost inactive on their own in their purified form.
Therefore, the study of a specific combination of such molecules
may be interesting. Finally, it is also important to bear in mind that
our analysis was centered on lignans and neolignans, but extracts
contained several other unidentified compounds that may be part of
their biological activity. Nevertheless, our findings reinforced and
further strengthened the interest in the cosmetic applications offlax
lignans and neolignans produced in plant cell culture grown in in
vitro systems under distinct light conditions.
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SUPPLEMENTARY FIGURE 1 | (A) UPLC-MS chromatogram of 30 days L.
usitatissimum cell suspension extract using photo-diode array detection. (1)
erythro-guaiacylglycerol-b-coniferyl alcohol ether glucoside, (2) threo-
guaiacylglycerol-b-coniferyl alcohol ether glucoside, (3) p-coumaric acid, (4)
dehydrodiconiferyl alcohol-4-b-D-glucoside isomer 1, (5) erythro-guaiacylglycerol-
b-coniferyl alcohol ether, (6) threo-guaiacylglycerol-b-coniferyl alcohol ether, (7)
dehydrodiconiferyl alcohol-4-b-D-glucoside isomer 2, (8) secoisolariciresinol, (9)
lariciresinol, (10) epipinoresinol, (11) pinoresinol, (12) pluviatolide, (13)
guaiacylglycerol-b-coniferyl aldehyde ether hexoside, (14) phillygenin. Chemical
structures of main specialized metabolites accumulated in the callus and
suspension cell cultures of L. usitatissimum. (B) Chemical structures of some of the
main specialized metabolites accumulated in the callus and suspension cell cultures
of L. usitatissimum.

SUPPLEMENTARY FIGURE 2 | Heat map showing relative cell suspensions
and callus extracts of L. usitatissimum cultivated in the light and dark for 30 days.
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