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Editorial on the Research Topic

Cross-Modal Learning: Adaptivity, Prediction and Interaction

Crossmodal learning has in recent years emerged as a new area of interdisciplinary research.
The term crossmodal learning refers to the synergistic synthesis of information from multiple
sensory modalities such that the learning that occurs within any individual sensory modality can
be enhanced with information from one or more other modalities. Crossmodal learning is a crucial
component of adaptive behavior in a continuously changing world, and examples are ubiquitous,
such as: learning to grasp and manipulate objects; learning to walk; learning to read and write;
learning to understand language and its referents; etc. In all these examples, visual, auditory,
somatosensory or other modalities have to be integrated, and learning must be crossmodal. In
fact, the broad range of acquired human skills are crossmodal, and many of the most advanced
human capabilities, such as those involved in social cognition, require learning from the richest
combinations of crossmodal information. In contrast, even the very best systems in Artificial
Intelligence (AI) and robotics have taken only tiny steps in this direction. Building a system that
composes a global perspective from multiple distinct sources, types of data, and sensory modalities
is a grand challenge of AI, yet it is specific enough that it can be studied quite rigorously and in such
detail that the prospect for deep insights into these mechanisms is quite plausible in the near term.
Crossmodal learning is a broad, interdisciplinary topic that has not yet coalesced into a single,
unified field. Instead, there are many separate fields, each tackling the concerns of crossmodal
learning from its own perspective, with currently little overlap. By focusing on crossmodal learning,
this Research Topic brings together recent studies demonstrating avenues of progress in artificial
intelligence, robotics, psychology and neuroscience.

Several articles of this Research Topic review recent developments in this emerging field
and, thus, are well-suited to provide the reader with an overview and with a compact
introduction to several aspects of particular interest. The review by Bruns focuses on
ventriloquism, one of the classic examples of crossmodal integration and learning. The article
provides an overview of established experimental paradigms to measure the ventriloquism
effect and aftereffect and summarizes new results regarding the role of top-down influences,
recalibration processes and brain networks involved in multisensory learning. Li et al. discuss
applications of probabilistic models in machine signal processing and human psychophysics.
Focusing on audio-visual processing, they aim to identify commonalities between probabilistic
models addressing brain processes and those aiming at building intelligent machines. Fu
et al. review studies of selective attention in unimodal and crossmodal settings from
the perspectives of psychology and cognitive neuroscience, and evaluate different ways to
implement analogous mechanisms in computational models and robotics. Alaçam et al.
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review the interaction of language and vision in human
crossmodal processing and describe performance characteristics
that facilitate the robustness of language understanding.
Furthermore, they discuss how such empirical findings in
humans can be applied for situated language comprehension
in artificial systems. Focusing on neural mechanisms, Xu et al.
review the interdependence of low- and high-level cortical areas
for the emergence of crossmodal processing during development.
Furthermore, they discuss the applicability and relevance of
insights on biological crossmodal processing for brain-inspired
intelligent robotics.

CROSSMODAL LEARNING IN NATURAL
SYSTEMS

Crossmodal Recalibration
Three articles of this Research Topic address the question of
how vision calibrates representations of other sensory modalities,
either audition (Ahmad et al.; Kramer et al.) or haptics (Katzakis
et al.). Ahmad et al. investigated patients who have lost central
vision due to a retinal disease called macular degeneration.
They observe crossmodal changes, that is, not only visual but
also additionally distorted auditory spatial representations. These
results suggest that vision shapes auditory space. Kramer et
al. experimentally investigate a similar question. It has been
known for a long time that in case of discrepant auditory spatial
stimulation, auditory localization is shifted toward the visual
stimulus (the ventriloquist effect). After a repeated exposure to
audio-visual spatial discrepant stimulation, auditory localization
is adapted (the ventriloquist after effect), similar as shown over
a longer time scale by Ahmad et al. in patients with macular
degeneration. Kramer et al. provide evidence that both audio-
visual integration and visual recalibration of auditory spatial are
subject to top-down modulation rather than being exclusively
bottom-up driven. Katzakis et al. demonstrate that the life-long
ability of crossmodal recalibration allows human observes to
adapt to virtual reality. They asked subjects to judge haptic size
in the context of discrepant visual information in virtual reality
and observed a similar visual dominance as known for real
world situations.

High-Level Cognitive Processes
It remains unclear how crossmodal information is integrated
and represented in crossmodal learning. Three articles address
this question in different ways. Using a congruency evaluation
task, Spilcke-Liss et al. find that participants made more errors
and responded more slowly to paired audio-visual stimuli
accompanying with an unattended incongruent stimulus than
with an unattended congruent stimulus. The results indicate that
semantic incongruencies of crossmodal integration could occur
even when they are not endogenously attended. Using a mental
rotation task of digitally-rendered haptic objects, Tivadar et al.
observe a typical mental rotation effect for trained letters. The
findings indicate that multiple sensory modalities can support
spatial computations and have important implications on how
to mitigate visual impairments. Using a prototype category
learning task, Zhou et al. find that participants could incidentally

combine the sound and the defined visual features to form
category knowledge. Moreover, a larger learning effect for the
edge- than the surface-based category in implicit knowledge
rather than explicit knowledge indicates that edge-based features
play a more crucial role than surface-based features in implicit
category learning.

Mechanisms of Crossmodal Processing
Two of the articles in this Research Topic deal with mechanisms
that may be involved in crossmodal learning. The study by Li
et al. investigates the long-term dynamics of cortical activity
patterns during the formation of multimodal memories by two-
photon imaging of immediate early gene expression in the
mouse. The results demonstrate that, in superficial cortical
layers, the patterns show similar dynamics across structurally
and functionally distinct cortical areas and can be consistent
across several days. By contrast, in deep layers, the activity
dynamics varies across different areas and is sensitive to activities
at previous time points. These results suggest different roles of
superficial and deep layer neurons in the long-term multimodal
representation of the environment. A modeling study by Maye et
al. investigates the learning of sequences of uni- andmultisensory
events which are presented in a rhythmic manner. The paper
introduces a neurobiologically plausible computational model
that captures the sequences by attuning an ensemble of neural
oscillators. The learning properties of the model are compared
with behavioral results from a study in human participants,
yielding good agreement for sequences with different levels
of complexity.

CROSSMODAL LEARNING IN ARTIFICIAL
SYSTEMS

Sensorimotor Processing
Three articles in this Research Topic consider crossmodal
learning of crossmodal perception and visuo-motor skills in
robots. Unsupervised learning of multisensory bindings of visual
and auditory stimuli is addressed by Barros et al. For example,
humans quickly learn to associate a barking sound with the
visual appearance of a dog, and continuously fine-tune this
association over time. The authors develop a computational
model for this task that addresses the important properties
of expectation learning, namely the lack of explicit external
supervision other than temporal co-occurrence. The proposed
hybrid neural model is based on audio-visual autoencoders and
a recurrent self-organizing network. The authors demonstrate
the learning of concept bindings by evaluating the trained
system on unisensory classification tasks on a large video corpus.
Deng et al. introduce a grasp planning system that combines a
computational visual attention model to locate regions of interest
in a table scene with a deep convolutional neural network to
predict grasp type and grasp contact areas. The system is trained
on images of common household objects, each annotated with
grasp type and finger contact regions. The approach is evaluated
in simulation and real-world experiments, showing a speed-
up and improved grasp stability over the tested baseline. The
paper by Kerzel et al. introduces the NICO robot, a child-sized
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humanoid specially designed for both social interaction and
manipulation experiments. To engage in social interaction, the
robot can express stylized facial expressions and utter speech via
an Embodied Dialogue System. The ability for social interaction
is considered a key factor for companion robots that learn with
the help of non-expert teachers, as these robots are capable of
asking questions that are vital to their learning process. In the
presented study, NICO acquires visuomotor grasping skills by
interacting with its environment and human teachers with little
or no prior experience with robots.

Language Processing Grounded in Robotic
Actions
In crossmodal language learning, information from multiple
modalities is processed to form abstract semantic representations
that are associated with language. Language itself can be regarded
as an abstract modality that can be transferred differently, e.g.,
by acoustics, sign language or text. Three of the papers in
this Research Topic (Heinrich et al.; Mi, Liang, et al.; Mi,
Lyu, et al.) propose models to investigate the problem of
language grounding in the context of adaptive and interacting
robots. Heinrich et al. study early language learning in a
neurocognitively plausible end-to-end model. While the robot
interacts with the environment receiving language labels, the
model neurons act on multiple timescales to self-organize
hierarchically and capture abstract information. Mi, Liang, et
al. apply affordance detection on the image objects and extract
the semantic intention from the command, in order to predict
abstract desires, such as “I am thirsty,” which do not refer to
objects explicitly. Mi, Lyu, et al. use visual language grounding to
address ambiguities of natural language queries in human-robot
interactions. A referring expression comprehension network
understands visual semantics while a scene graph network allows
finding relevant regions on the image even when the given
language commands are complex. These three related papers
on language grounding include validations on complementary
robots such as the humanoid NICO, the UR5 arm, and the
Robotiq 3-finger gripper.

Knowledge and Reasoning
Visual reasoning is a multimodal task that extends visual
classification by requiring both abilities of comprehension and
reasoning. Three papers in this Research Topic report results
on visual reasoning in multiple domains, namely visual question
answering (Su et al.), video captioning (Chen et al.), and
knowledge graph generation (Mao et al.). Su et al. improve the
state-of-the-art of visual reasoning in visual question answering.
They extend a neural module network, which is capable of
spatial reasoning over the input image, by a layout generation
network, which learns a policy that combines primitive modules
of reasoning. The policy is rewarded in a dual-image task and,
as a result, generates more comprehensible reasoning steps than
previous models. Chen et al. introduce multiple innovations to
video captioning models. They improve the visual input features
for better detection of semantics with adequate complexity,
overcome some constraints of teacher-forcing by adding self-
teaching, and propose a sentence-length-modulated loss function

that promotes the model to generate longer, more expressive
sentences. Mao et al. generate structured knowledge graphs
from either text or images as inputs. To generate a semantic
graph of a scene, a hybrid relation extractor iteratively predicts
relation pairs with the use of explanatory logic rules. The model
performs particularly well for dense knowledge graphs. Together,
these three models demonstrate how state-of-the-art models can
acquire knowledge and perform reasoning on large-scale real-
world visual data.

OUTLOOK

Combined, the 22 papers in this Research Topic present an
up-to-date and representative overview of current trends in the
emerging research field of crossmodal learning, integrating
contributions from psychology, neuroscience, artificial
intelligence, and robotics. On the theory side, the review
and survey papers collected in this volume all agree on the
fundamental importance of Bayesian approaches for crossmodal
information integration and learning. The computational models
developed for the behavioral studies included here are based on
this, and future research can be expected to follow this line as
well. Except for one paper still reporting an elegant analytical
model, the different application studies all propose deep neural
networks trained on custom datasets, confirming the recent near-
absolute dominance of deep learning approaches for complex
artificial intelligence or robotics tasks. However, the proposed
deep networks are all different and highly optimized toward their
respective domain and input modalities. This remains in striking
contrast to the operation of the mammalian brain, with its
apparent ease to process, integrate, and memorize information
from a variety of sensory channels using a surprisingly uniform
structure. Proponents of deep learning often conjecture that
performance will scale with network and training set size. We
expect that the trend toward more complex networks trained on
ever larger and more diverse multimodal datasets will continue,
resulting in better AI applications as well as better computational
models for neuroscience and psychology.
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Sensory substitution is an effective means to rehabilitate many visual functions after
visual impairment or blindness. Tactile information, for example, is particularly useful for
functions such as reading, mental rotation, shape recognition, or exploration of space.
Extant haptic technologies typically rely on real physical objects or pneumatically driven
renderings and thus provide a limited library of stimuli to users. New developments in
digital haptic technologies now make it possible to actively simulate an unprecedented
range of tactile sensations. We provide a proof-of-concept for a new type of technology
(hereafter haptic tablet) that renders haptic feedback by modulating the friction of a
flat screen through ultrasonic vibrations of varying shapes to create the sensation of
texture when the screen is actively explored. We reasoned that participants should
be able to create mental representations of letters presented in normal and mirror-
reversed haptic form without the use of any visual information and to manipulate
such representations in a mental rotation task. Healthy sighted, blindfolded volunteers
were trained to discriminate between two letters (either L and P, or F and G;
counterbalanced across participants) on a haptic tablet. They then tactually explored
all four letters in normal or mirror-reversed form at different rotations (0◦, 90◦, 180◦,
and 270◦) and indicated letter form (i.e., normal or mirror-reversed) by pressing
one of two mouse buttons. We observed the typical effect of rotation angle on
object discrimination performance (i.e., greater deviation from 0◦ resulted in worse
performance) for trained letters, consistent with mental rotation of these haptically-
rendered objects. We likewise observed generally slower and less accurate performance
with mirror-reversed compared to prototypically oriented stimuli. Our findings extend
existing research in multisensory object recognition by indicating that a new technology
simulating active haptic feedback can support the generation and spatial manipulation
of mental representations of objects. Thus, such haptic tablets can offer a new avenue
to mitigate visual impairments and train skills dependent on mental object-based
representations and their spatial manipulation.

Keywords: haptic, object, multisensory, mental rotation, sensory substitution, low vision, vision impairment
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INTRODUCTION

In everyday life, vision supports crucial functions that enable
us to successfully interact with our environment, such as
manipulation of objects as well as spatial orientation and
navigation in space. These functions depend on the correct
acquisition and maintenance of mental representations of
our environment and the objects within it. In sighted
individuals, vision typically predominates these functions and
spatial abilities more generally (e.g., Welch and Warren,
1980; Knudsen and Knudsen, 1989; Schutz and Lipscomb,
2007). However, visual impairments affect nearly 300 million
people globally, with another ∼36 million suffering from
complete loss of vision (World Health Organization, 2000).
This calls for effective rehabilitation methods, including sensory
substitution approaches.

Studies in visually impaired individuals document the
extensive neuroplasticity of both non-visual functions, as well
as within visual cortices. For example, visual deprivation
enhances tactile acuity not only in sighted individuals (Pascual-
Leone and Hamilton, 2001; Merabet et al., 2007; Norman
and Bartholomew, 2011), but also in blind and visually
impaired patients (Goldreich and Kanics, 2003; Lederman
and Klatzky, 2009). It is now well-established that cross-
modal plasticity can promote functions that are supported
predominantly by vision. Tactile information has been most
widely utilized to date to train functions such as reading
(e.g., Braille) and exploration of space (e.g., white cane).
Specifically, object geometry and form judgments based on
haptics have been demonstrated to activate visual areas along
the so-called dorsal pathway (Prather et al., 2004; Sathian, 2005).
Furthermore, visual areas have been found to be activated
during Braille reading in functional imaging studies (Sadato
et al., 1996, 1998, 2002; Burton et al., 2002; Amedi et al.,
2003). Sathian et al. (1997) were the first to demonstrate,
via haemodynamic imaging, that discrimination of orientation
of tactile gratings activates the same extrastriate areas as
those observed active during visual orientation discrimination.
This cross-modal functional recruitment of nominally visual
cortices for tactile perceptual functions most likely results
from cross-modal plasticity operating via the interplay between
unisensory and multisensory neurons (Amedi et al., 2001; Kitada
et al., 2006). More generally, there is now convergent and
consistent evidence for visual cortex activation during tactile
perception in both blind and sighted individuals (reviewed in
Lacey and Sathian, 2014).

In addition to evidence pointing to the involvement of
visual cortices in tactile discrimination, spatial functions can
also be achieved in a modality-independent fashion, including
based solely on tactile information. For example, studies of
mental rotation where participants need to judge whether an
image is portrayed in its normal or mirror-reversed form
demonstrate a typical increase in reaction times (RTs) with
increasing rotation of the image (Shepard and Metzler, 1971;
Lacey et al., 2007a,b). Marmor and Zaback (1976) showed that
the same mental rotation effect occurs with tactile stimuli.
This and other findings have led to the belief that spatial

properties can be encoded in a modality-independent format
(Lacey and Campbell, 2006), and may thus engage a common
spatial representational system (Lacey and Sathian, 2012;
Lee Masson et al., 2016).

The discovery of modality-independence of spatial
representations has opened a new avenue for vision
rehabilitation, i.e., tactile-based sensory substitution. One
particularly striking example here is the successful use of haptic
stimulation of the tongue with the tongue-display unit (TDU)
to retrain ‘‘tactile-visual’’ acuity (TDU, Chebat et al., 2007).
The TDU is a sensory substitution device (SSD) that converts
a visual stimulus into electro-tactile pulses delivered to the
tongue via a grid of electrodes. Visually impaired individuals
were able to discriminate various orientations of the letter E
(i.e., the Snellen E test) based solely on stimulation with the
TDU (Chebat et al., 2007). While such efforts are impressive,
they risk remaining limited in their applications. However,
this is at least partially addressed in new technologies for
digitization of information, such as tablets digitally rendering
tactile information (e.g., Xplore Touch1). This digitization of
information has led to significant improvements in healthcare,
including reduced costs and increased accessibility and reliability
of treatments (Noffsinger and Chin, 2000; Dwivedi et al.,
2002). Currently, visually impaired individuals require
persistent training for the rehabilitation of visual functions
that support basic everyday activities such as cooking, cleaning,
and navigating one’s environment. This involves numerous
hours of work together with therapists. Digitalizing the method
of delivery of therapeutic procedures would likely allow
visually impaired patients to be more independent and, so,
successful, in their training. For one, the therapeutic programs
could be created online and then easily downloaded onto
a digital device. Second, patients would be able to practice
and improve their tactile acuity as well as their form and
object perception abilities without the constant presence
of a therapist.

It is known that spatial operations such as mental rotation
can be supported solely by tactile stimuli such as Plexiglas forms
or wooden blocks (Marmor and Zaback, 1976; Carpenter and
Eisenberg, 1978, for recent reviews see Prather and Sathian,
2002; Lacey et al., 2007a). By contrast, it is unknown whether
individuals can create and manipulate mental representations
of objects based solely on simulated haptic representations.
If spatial functions can be rehabilitated with digital devices,
this should substantially improve both the speed and the
extent of the recovery as well as the independence of
visually impaired patients. Haptic tablets thus promise to
open up unprecedented possibilities for recovery of visual
functions for blind and visually impaired individuals, due
to the ease of delivery of digital information and of the
transfer of the learnt information from tablet to veridical
environments. Being able to mentally rotate digitally presented
haptic objects would serve as an important proof-of-concept
for the successful acquisition of a representation of a simulated
haptic space.

1http://www.hap2u.net

Frontiers in Integrative Neuroscience | www.frontiersin.org 2 March 2019 | Volume 13 | Article 7

http://www.hap2u.net
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Tivadar et al. Mental Rotation of Digitally-Rendered Haptic Objects

To this end, the present study investigated whether
participants would be able to successfully mentally rotate
representations of letters in their normal and mirror-
reversed forms, experienced solely via digitally-rendered
haptic feedback. We focused on the distinction of letter
forms (i.e., normal vs. mirror-reversed), because judgments
of letter identity (for example the distinction between a
letter and a number) do not necessarily implicate mental
rotation (White, 1980). We hypothesized that normally-
sighted participants should show the prototypical mental
rotation effect, with steadily decreasing accuracy (and
increasing RTs) with increasing angular disparity from the
prototypical upright letter orientation, which would translate
into a main effect of angle. Moreover, we expected that
participants would show better performance with letters
in their normal form compared to mirror-reversed letters,
due to the well-investigated effect of stimulus familiarity on
mental rotation (White, 1980; Bethell-Fox and Shepard, 1988;
Prather and Sathian, 2002). We also expected a main effect of
training, meaning that participants would perform better with
letters which they had trained with, compared to letters that
were untrained.

MATERIALS AND METHODS

Participants
All participants provided written informed consent to
procedures approved by the cantonal ethics committee in
accordance with the Declaration of Helsinki. We tested 17 adults
(12 women and five men; age range 25–37 years, mean ± stdev:
28.9 ± 3.5 years), who volunteered for our experiment.
Participants reported normal or corrected-to-normal vision.
No participant had a history of or current neurological or
psychiatric illnesses. Handedness was assessed via the Short
Form of the Edinburgh Handedness Inventory (Oldfield, 1971).
Two of our participants were left-handed, while the remainder
were right-handed. We also asked our participants about their
experience playing a musical instrument, due to evidence
of increased cortical representation of the hands of musical
instrument players (see e.g., Elbert et al., 1995). Nine participants
were active instrument players (i.e., actively played instruments
at the time of the testing session), five had formerly played
instruments (i.e., during childhood, adolescence and early
adulthood, however they were not actively practising at the time
of testing), and three played no instruments.

Apparatus
Haptic stimulation was delivered via a tablet with a
TFT capacitive 7-inch touchscreen with a resolution of
1,024 × 600 pixels. The screen of the tablet is controlled by
a Raspberry Pi 3 based system, and the operating system is
Raspbian (Linux). The processor of the tablet is a Broadcom
ARMv7, quadcore 1.2 GHz and it has 1 Go RAM and Rev C
WaveShare. The tablet comes with a haptic creation tool, which
is a software that allows for user control of haptic textures.
Several other APIs based on C++ or Java are installed, such as
library tools that allow the implementation of haptics on other

applications. Figures in jpeg format were re-coded in haptic
format using a kit written in C++. For more technical details
describing the rendering of the haptic feedback, see Vezzoli et al.
(2016, 2017) and Rekik et al. (2017).

Stimuli
Stimuli consisted of four capital letters—L, P, F and G—created
in Paint (see e.g., Carpenter and Eisenberg, 1978; see also
Figure 1). We chose these capital letters as their mirror-image
counterparts do not confuse, as compared to for example
lower-case ‘‘d,’’ whose mirror image is ‘‘b’’ and ‘‘b,’’ whose mirror
image is ‘‘d’’ (Corballis and McLaren, 1984). Moreover, these
letters have previously been used in mental rotation tasks (Cohen
and Polich, 1989; Rusiak et al., 2007;Weiss et al., 2009), including
tasks with tactile objects (e.g., Carpenter and Eisenberg, 1978).
The letters were resized to always be presented centrally on
the screen of the haptic tablet, which has a pixel resolution
smaller than that used to generate the images. Letters were then
rotated to 0◦, 90◦, 180◦ and 270◦ and mirrored in Matlab. Letter
size was 935 × 509 pixels. With regard to the image-to-haptic
conversion, the letters appeared centrally on a white background.
White pixels did not produce the feeling of a texture on a finger
(i.e. ‘‘empty’’ pixels). All non-white pixels were then coded with
the same haptic texture, which was created using the hap2u
pre-installed Texture Editor software. The ultrasonic vibration
was adjusted to have a square shape, as this offers the most
intense and quick reduction of the friction of the screen under
the finger, thus conferring a rather sharp and pointy sensation,
in contrast to a sinusoidal-shaped wave, which would confer
a rather smooth perception. The period of the window of one
square ultrasonic signal was chosen to be 3,500 µm (which is
considered a ‘‘coarse’’ texture, see Hollins and Risner, 2000),
and the amplitude was set at 100%, meaning roughly 2 µm
(as the friction reduction hits a plateau at this value, see e.g.,
Sednaoui et al., 2017).

Procedure and Task
Participants were tested in a sound-attenuated, darkened room
(WhisperRoom MDL 102126E). Subjects were blindfolded and
wore noise-canceling headphones (Bose model QuietComfort 2),
in order to block any residual light and the sounds of
the ultrasonic vibrations produced by the tablet. None of
the participants had any prior visual or haptic exposure to
the stimuli used in the paradigm, minimizing any cross-modal
facilitation (Lacey et al., 2007a,b). The participant’s task was
a two-alternative forced choice that required discrimination
of normal and mirror-reversed letters via a mouse click (left
mouse press for the normal form, right mouse press for the
mirrored form; same for all participants). Participants were
instructed to use a finger from their dominant hand for tablet
exploration, and the non-dominant one for responses. The
task was to feel the letter on the haptic tablet for 30 s,
recognize the letter, and if needed, to mentally rotate the
letter to the 0◦ form, in order to decide whether the normal
or the mirror-reversed form had been presented. We used
explicit instructions, since it has been reported that this is
not a determinant of whether a mental rotation effect is
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FIGURE 1 | (A) Stimuli used in the experiment. These images are based on reverse translation of the haptic “image.” The checkered portions refer to regions with
no haptic texture. The letters were created to have the same proportions on the haptic tablet screen, and thus they appear slightly distorted. Normal stimuli and their
mirror images were rotated at 90◦, 180◦, 270◦ and were individually presented to participants on the tablet. (B) Transformation of the stimuli into haptic renderings
was possible via a pre-installed kit. The transformation takes a cell (8 × 8 pixels) from the picture file and codes the cells into textures with the help of a haptic library
where different textures are defined. Participants were then able to feel the vibrations on the tablet screen only at those places where the cells were transformed.
(C) Experimental setup. Participants had their eyes blindfolded and wore noise-canceling headphones in order to prevent any other external stimulation interfering
with the haptic sensation. After exploring the letter on the tablet for 30 s with a single finger, they indicated if the letter was normal or mirrored via a computer mouse
button-press with their non-dominant hand, which would then initiate the passage to the next trial.

observed (reviewed in Prather and Sathian, 2002). Stimuli were
presented for a duration of 30 s. Next, participants had 20 s
for responding, and were instructed to respond as quickly
and as accurately as possible. After the response, the next
trial was initiated and was preceded by an inter-trial interval
randomly ranging between 500 and 1,000 ms. Each participant
completed three blocks of training, each comprising 16 trials
(two per condition; informed by a pilot study). Participants
were trained on pairs of two letters—either L and P or F and
G—that they were assigned in a counterbalanced manner across
individuals. We grouped these letters given their perceptual
closeness, which allowed a progressive learning procedure. We
decided to focus the training on a particular letter pairing in
order to investigate skill transfer to new, untrained stimuli.
Participants were first trained to explore the tablet screen via
lateral sweeps [(Stilla and Sathian, 2008), see e.g., (Lederman
and Klatzky, 1993) for a discussion of which tactile exploration
strategies are particularly appropriate to disclose specific object
characteristics, and (Hollins and Risner, 2000) for a discussion
of how dynamic vs. static exploration affects coarse (>100 µm)
as compared to fine texture discrimination], using only one
finger at a time. Subjects were allowed to change the finger
they used for exploration, due to a common complaint about
adaptation of their tactile sensation during the pilot experiments
or during the training blocks. However, they were not allowed
to change the hand used for exploration. Subjects were then
taught how to discriminate horizontal from vertical lines, and
finally, how to discriminate between the two letters that they were

trained on. The experimenter gave subjects verbal instructions
and feedback throughout the training session. The testing
phase comprised four blocks of 32 trials, making 128 trials
in total per participant (i.e., eight trials per each condition,
in total 16 conditions). During the experiment, participants
were allowed to take regular breaks between blocks of trials
to maintain high concentration and prevent fatigue. Stimulus
delivery and behavioral response collection were controlled by
Psychopy software (Peirce, 2007).

Behavioral Analysis
Data were pre-processed in Matlab and analyzed in R (R Core
Team, 2018) and SPSS (IBM Corp, 2017). First, we excluded
all trials with RTs longer than 15 s (5% of trials), as well as
missed trials (2.5% of trials), which were trials where a response
was not given within 20 s. We then excluded any remaining
outlier trials on a single subject basis (i.e., for each subject and
condition), applying a mean ± 2 standard deviations criterion
to their RTs (2.7% of trials, see Ratcliff, 1993; Field et al.,
2012). Accuracy was then calculated. RT data were not further
analyzed, since responses were only provided after stimulus offset
followed by a subsequent cue. Data from three participants were
excluded due to very low accuracy for the 0◦ condition (<50%).
We compared Accuracy with a 2 × 2 × 4 repeated measures
ANOVA with factors Training (trained/untrained), Condition
(normal/mirror) and Angle (0◦, 90◦, 180◦, 270◦), after not having
found a significant deviation from the Normal distribution and
from homoscedasticity.
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RESULTS

Mean accuracy rates are displayed in Figure 2. The
2 × 2 × 4 ANOVA with factors of Training (trained/untrained),
Condition (normal/mirror) and Angle (0◦, 90◦, 180◦, 270◦)
revealed a significant interaction and two main effects. The
Angle × Trained interaction was significant (F(1,13) = 4.912;
p < 0.05, η2p = 0.274), and there were main effects of Training
(F(1,13) = 5.88; p = 0.03, η2p = 0.314), with generally higher
accuracy scores for trained vs. untrained letters, and Condition
(F(1,13) = 6.02; p = 0.02, η2p = 0.317), with generally higher
accuracy scores for normal compared to mirrored stimuli.
Given this significant interaction, we carried out separate
2 × 4 ANOVAs (Condition × Angle) for trained and untrained
letters. Untrained letters revealed no interactions or main
effects (F ≤ 0.6). By contrast, trained letters exhibited a main
effect of Condition (F(1,13) = 11.46, p < 0.01, η2p = 0.470) and
a main effect of Angle (F(3,13) = 6.625, p = 0.02, η2p = 0.338).
Trained letters in their normal form had higher accuracy
scores compared to trained letters in their mirrored form,
and accuracy generally decreased with increasing angular
disparity. Performance on untrained normal letters was more
similar to performance on mirrored letters than to normal
trained letters.

DISCUSSION

Weprovide the first demonstration that digitally-rendered haptic
stimuli can support the creation of mental representations of
objects that can then be spatially manipulated. Participants’
accuracy scores decreased with greater angular disparity of
the presented letters from upright, indicating a prototypical
mental rotation effect for trained letters (Shepard and Metzler,
1971). Moreover, letters in their mirrored form were less
accurately detected compared to letters in their normal form,
consistent with the stimulus familiarity effect that has been
previously found to influence mental rotation with real visual

stimuli (White, 1980). Specifically, normally sighted participants
performed significantly better when tested on previously trained
compared to untrained letters. This effect was observed for
letters presented in their canonical form, and less for letters
in their mirrored form. In addition, our results show that a
short training session of about 45 min on the haptic tablet
was sufficient to significantly increase the ability to correctly
identify the correct form of haptic letters. These results extend
previous efforts to support rehabilitation of spatial functions
using SSDs, and open new avenues for applications of digital
haptic technology.

Mental rotation of objects created by haptic feedback
successfully modulated accuracy of object recognition; increasing
angular disparity away from the prototypical orientation linearly
reduced recognition accuracy. As expected, performance was
significantly higher for normal letters, compared to mirrored
letters, and for trained letters, as compared to untrained letters.
Accuracy for letters in their normal upright form decreased up
to 180◦, with a slight increase for stimuli rotated at 270◦. Similar
results have previously been found in mental rotation tasks with
stimuli of different kinds (see e.g., Kosslyn et al., 1998; Hyun and
Luck, 2007; Milivojevic et al., 2011; Zeugin et al., 2017), further
corroborating that our experimental manipulation was effective
and that mental rotation of our haptic letter stimuli indeed
took place. The significant interaction between factors Condition
and Angle illustrates the fact that mental rotation of familiar
stimuli was more successful than for unfamiliar stimuli. To be
precise, given that the stimuli were letters, they can generally
be considered familiar stimuli, however only letters presented
in their normal form can be considered overlearned (White,
1980), while letters in their mirrored form can be considered
unfamiliar, as individuals are seldomly using mirrored letters
in their everyday lives. In addition, the significant effect of the
factor Training indicates that with only little training on the task
and limited exposure to haptic stimulation before the testing,
participants were able to improve their performance, which was
not the case for untrained letters.

FIGURE 2 | Group-averaged (N = 14) accuracy data for normal and mirrored stimuli (SEM indicated). The left column displays results for normal stimuli, while the
right displays results for mirrored stimuli. Red lines refer to trained stimuli, while the blue lines represent untrained stimuli.
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Our findings replicate and extend prior studies of mental
rotation based on haptic information. Mental rotation has
been studied with Plexiglas letters and objects (Carpenter
and Eisenberg, 1978; Hunt et al., 1989), abstract Braille-like
stimuli (Röder et al., 1997), as well as with haptic versions of
the Shepard and Metzler (1971) stimuli (Robert and Chevrier,
2003). These and other similar works have likewise shown that
performance worsens with increasing angular displacement from
upright, independently of whether an explicit instruction was
provided to use a strategy based on mental rotation (reviewed
in Prather and Sathian, 2002). By contrast, evidence of mental
rotation with tactile stimuli does appear to vary with task. Tasks
requiring mirror-image discrimination yield mental rotation
effects, whereas those requiring identification of isolated stimuli
generally do not (Prather and Sathian, 2002). Our study required
participants to discriminate whether each stimulus was normal
vs. mirror-reversed, and we indeed observed a mental rotation
effect for trained letters. Our accuracy rates are consistent
with, albeit somewhat lower than, what has been reported in
sighted participants presented with physical objects (∼80%–90%
in Marmor and Zaback, 1976; Röder et al., 1997; Robert
and Chevrier, 2003). However, two important distinctions
in our study are the use of digital haptics, and moreover, that
participants could only use a single finger to explore the stimulus.
Ongoing efforts are working to enhance the haptic perceptual
qualia as well as to permit exploration by multiple fingers
simultaneously. Such notwithstanding, this limitation may
nonetheless help us hone in on specific exploration and haptic
learning strategies. Minimally, our results demonstrate that
mental representations of haptic objects and their discrimination
can be ascertained using information acquired with a
single digit.

To summarize, our results indicate that participants were
able to mentally manipulate internal representations of familiar
stimuli that they learned solely in a haptic manner, through
interaction with a digitally created texture. While our results
have potential applications in the simulation of tactile sensorial
perceptions in virtual reality, we do not have the space to
discuss these at length here. Instead, we would like to focus on
the important implications that our results have for cognitive
models of spatial functions, as well as on the implications for
the rehabilitation thereof in patients suffering from impairments
due to vision loss. In what follows, we will discuss these latter
two points.

Implications for Models of Spatial
Functions
Our results have implications for current models of cortical
mechanisms that decode spatial characteristics of objects.
Recently, evidence has been accumulating for a decoding
mechanism that is modality-independent, with spatial features
of objects and spaces being communicated through visual
(Koenderink et al., 1992; Erens et al., 1993), haptic (Kappers and
Koenderink, 1999; Prather et al., 2004; Snow et al., 2014; Lee
Masson et al., 2018), and auditory (Amedi et al., 2007, 2002)
information alone, as well as through multisensory information
(Lacey et al., 2009; Sathian et al., 2011; Lacey and Sathian, 2014;

Lee Masson et al., 2016, 2017). Moreover, it was demonstrated
that multisensory regions, such as V1, IPS, and LOC, specifically
encode spatial characteristics such as shape, but not object
identity (Amedi et al., 2002). Our results further support
such modality-independent models of spatial representations.
In particular, it was possible for us to convey the shapes of
haptic objects (i.e., letters) to participants through unisensory
haptic stimuli. This indicates that spatial features of objects,
and, specifically, of object shape, can be decoded from a variety
of stimulus formats—be it visual, auditory, or somatosensory.
However, sensory impressions coming from haptic and visual
information are very different (Rose, 1994), and vision and touch
use different metrics and geometries (Kappers and Koenderink,
1999). Nevertheless, there is substantial neuroimaging evidence
showing that vision and touch are intimately connected even
if there is no direct, one-to-one mapping (see Amedi et al.,
2005; Sathian, 2005 for reviews). For one, cerebral cortical
areas previously regarded as exclusively unisensory in nature
are activated by sensory inputs in a task- and stimulus-specific
manner (Lacey et al., 2007a). New evidence also supports
high similarities between visual and haptic representations
of object perceptual spaces (Cooke et al., 2007; Wallraven
et al., 2014; Lee Masson et al., 2016). These results have been
further complemented by neuroimaging studies, that helped in
corroborating the result of high correlations between perceptual
spaces reconstructed using tactile vs. visual information (Snow
et al., 2014; Smith and Goodale, 2015). Indeed, clinical cortical
lesion studies demonstrate that lesions of visual brain areas,
such as the inferior occipito-temporal cortex, or the anterior
intraparietal sulcus, are accompanied by tactile agnosia for
objects, despite intact somatosensory cortical areas (Feinberg
et al., 1986; James et al., 2002). Collectively, our results support
a task-specificity, as compared to a stimulus-specificity, of
spatial functions.

Implications for Rehabilitation of Spatial
Functions
Our study further validates efforts of rehabilitation of spatial
functions through SSDs. Cross-modal and multisensory
integration are the drivers of neuroplasticity in visual areas
(Kirkwood et al., 1996; Amedi et al., 2004; Merabet et al., 2005;
Pascual-Leone et al., 2005; Murray et al., 2015), which promotes
a task-selective and modality-independent re-specialization of
these cortical structures. Besides the known applications of
tactile sensory substitutions such as the Braille alphabet, white
cane, or the TDU, our results open new avenues for mitigation
of deficiencies of spatial functions in the blind and visually
impaired. Indeed, it has been demonstrated numerous times
that tactile information can support spatial functions in blind,
visually impaired, and sighted subjects (Marmor and Zaback,
1976; Carpenter and Eisenberg, 1978; Grant et al., 2000; Ptito
et al., 2005; Sathian, 2005; Chebat et al., 2007; Wan et al., 2010;
Rovira et al., 2011; Vinter et al., 2012). However, the main
innovation introduced by our study is the digital simulated
nature of the tactile stimuli. As digital information is easily
recoded and reproduced, our results open new exciting venues
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for increased accessibility of traditionally visual functions, such
as reading, navigation, etc., to visually impaired people.

In addition, such tactile substitution and multisensory
techniques can also be used to retrain spatial functions after
sight restoration. Specifically, patients with long-lasting cataracts
have deficient depth perception after cataract removal (Hartung,
1962; Gregory, 2003; McKyton et al., 2015), despite normal
low-level visual perception. Thus, as auditory information is
unable to confer spatial information (Amedi et al., 2002), one
could imagine complementing rehabilitation programs with
tactile spatial information, in order to confer distance relations
in a multisensory manner. Another exciting endeavor for further
research that we are now also pursuing in the laboratory is the
extent to which simulated haptic information can support the
encoding of entire familiar and new spaces. In short, simulated
tactile information has critical implications for applications in
rehabilitation regimes. Besides being specifically able to convey
spatial relations, as opposed to auditory information, simulated
tactile stimuli have the added value of accessibility. This benefit
renders tactile tablets a promising solution for the mitigation
of complete or partial loss of spatial abilities due to sensory
loss or deprivation.

CONCLUSION

We trained normally-sighted participants on a haptic mirror-
image discrimination task, using a new technology that digitally
simulates texture. After only a short exposure and habituation
to the new sensation, and relatively little training on the
task, participants were able to mentally manipulate internal
representations of the trained letters. This indicates that spatial
functions and attributes such as object shape rely on a modality-
independent mechanism, and that multiple sensory modalities
are capable of supporting spatial computations. Furthermore,

our results have important implications for research on virtual
simulated sensorial perception, as well as for neural plasticity and
visual rehabilitation, and highlight the merit of restoring visual
functions through SSDs.
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We present an attention based visual analysis framework to compute grasp-relevant

information which helps to guide grasp planning using a multi-fingered robotic hand. Our

approach uses a computational visual attention model to locate regions of interest in a

scene and employ a deep convolutional neural network to detect grasp type and grasp

attention point for a sub-region of the object in a region of interest. We demonstrate

the proposed framework with object grasping tasks, in which the information generated

from the proposed framework is used as prior information to guide grasp planning. The

effectiveness of the proposed approach is evaluated in both simulation experiments and

real-world experiments. Experimental results show that the proposed framework can not

only speed up grasp planning with more stable configurations, but also handle unknown

objects. Furthermore, our framework can handle cluttered scenarios. A new Grasp Type

Dataset (GTD) which includes six commonly used grasp types and covers 12 household

objects is also presented.

Keywords: grasp planning, grasp type, visual attention, deep learning, multi-fingered robotic hand

1. INTRODUCTION

Imagine a toddler is in front of a table top with several objects, very likely he or she would interact
with those objects by trying to pick up the red mug either by the handle or the rim, or trying to
grasp the green ball. The ability to rapidly extract relevant information from visual input is an
important mechanism and natural behavior for humans to conduct various activities. The majority
of visual analysis approaches for grasp planning with multi-fingered robotic hands follow a pipeline
containing object localization, recognition and representation (Schwarz et al., 2017). For most
existing approaches, finding a target object in a scene is the first step for robotic grasping. However,
reliable object detectors, such as deep-learning based approaches require vast amounts of training
data, as well as good hardware to achieve a reasonable time performance for robotic applications,
while handcrafted feature based approaches can not handle the dynamics in real life scenarios.

This paper proposes an attention based visual analysis framework which directly locates
sub-regions of objects as regions of interest (ROIs), and generates grasp-relevant information
from visual data inside the ROIs for grasp planning with a multi-fingered robotic hand. The
proposed learning framework is inspired by psychological studies which demonstrated that humans
combine early bottom-up processing with later top-down processing to visually analyze the scene
(Theeuwes, 2010; Awh et al., 2012). The bottom-up process starts with sensor input data and is
completely stimulus-driven, while the top-down process extracts relevant information, which may
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be influenced by prior experience and semantics. In particular,
a computational attention model is used to process visual data
and outputs a pixel-precise saliency map, from which salient
regions are selected for further processing. Inside those salient
regions, the grasp type and grasp attention point are predicted
by a network. The grasp attention point indicates the location on
the object surface where the robot plans the grasp. Finally, this
information is used to guide grasp planning with amulti-fingered
robotic hand.

Grasp type and grasp attention point convey useful
information for planning the configuration of a robotic
hand. In the computer vision community, most previous
works sample human hand pose with a motion tracking system
and use it to detect hand grasp types (Rogez et al., 2015;
Cai et al., 2017). In the robotics community, there are few
previous approaches that try to integrate grasp type detection
into robotic grasp planning (Harada et al., 2008; Vahrenkamp
et al., 2018). In those works, only two kinds of grasp types,
i.e., power and precision (Napier, 1956), are considered, which
is not sufficient for exploring the potential of multi-fingered
robot hands. Moreover, the desired grasp type is determined
manually for robotic hands. In terms of visual analysis, there
are approaches which use visual analysis to define heuristics
or constraints for grasp planning (Hsiao et al., 2010; Aleotti
and Caselli, 2012; Vahrenkamp et al., 2018). In comparison
to those approaches, there are three main differences: (1) our
approach learns features directly from raw sensor data, while
most of the previous approaches use handcrafted features; (2) six
grasp types are considered while the previous approaches only
consider two grasp types. (3) Most of the previous works only
focus on visual analysis by using computer vision techniques.
This work uses the results of the visual analysis for grasp
planning with multi-fingered robotic hands. The effectiveness
of the proposed framework is evaluated in a real-world object
grasping experiment.

In this paper, we address the problem of visual analysis of
natural scenes for grasping by multi-fingered robotic hands. The
objective is to compute grasp-relevant information from visual
data, which is used to guide grasp planning. A visual analysis
framework which combines a computational visual attention
model and a grasp type detection model is proposed. A new
Grasp Type Dataset (GTD) which considers six commonly used
grasp types and contains 12 household objects is also presented.

The rest of the paper is organized as follows: section 2 presents
related work. Section 3 introduces the architecture and main
components of the proposed visual analysis framework. Grasp
planning is described in section 4. Experimental results are
presented in section 5. Finally, the conclusion and future work
are discussed in section 6.

2. RELATED WORK

Stable grasping is still a challenge for the robotic hands,
espectically multi-fingered robotic hand, since it usually require
to solve a complex non-conex optimization problem (Roa and
Suárez, 2015; Zhang et al., 2018). Information extracted from

visual analysis can be used to define heuristics or constraints
for grasp planning. Previous grasp planning methods can be
divided into geometric-based grasping and similarity-based
grasping. In geometric-based grasping (Hsiao et al., 2010; Laga
et al., 2013; Vahrenkamp et al., 2018), geometric information
of the object is obtained from color or depth images, and it
is used to define a set of heuristics to guide grasp planning.
Hsiao et al. (2010) proposed a heuristic which maps partial
shape information of objects to grasp configuration. The direct
mapping from object geometric to candidate grasps is also used
in Harada et al. (2008) and Vahrenkamp et al. (2018). Aleotti
and Caselli (2012) proposed a 3D shape segmentation algorithm
which firstly oversegments the target object, and candidate
grasps are chosen based on the shape of the resulted segments
(Laga et al., 2013). In similarity-based approaches (Dang and
Allen, 2014; Herzog et al., 2014; Kopicki et al., 2016), the
similarity measure is calculated between the target object and
the corresponding object model from human demonstrations
or simulation. The candidate grasp is then queried from
datasets based on similarity measures. Herzog et al. (2014)
defined an object shape template as the similarity measure.
This template encodes heightmaps of the object observed from
various viewpoints. The object properties can also be presented
with semantic affordance maps (Dang and Allen, 2014) or
probability models (Kroemer and Peters, 2014; Kopicki et al.,
2016). Geometric-based approaches usually require a multiple-
stage pipeline to gather handcrafted features through visual data
analysis. Due to sensor noise, the performance of the geometric-
based grasping is often unstable. Meanwhile, similarity-based
methods are limited to known objects and can not handle
unknown objects. In contrast to previous methods, our method
increases grasp stability by extracting more reliable features from
visual data using deep networks, meanwhile, it is able to handle
unknown objects.

Many saliency approaches have been proposed in the
last two decades. Traditional models are usually based on
the feature integration theory (FIT) (Treisman and Gelade,
1980) to compute several handcrafted features which were
fused to a saliency map, e.g., the iNVT (Itti et al., 1998;
Walther and Koch, 2006) and the VOCUS system (Frintrop,
2006). Frintrop et al. (2015) proposed a simple and efficient
system which computes multi-scale feature maps using
Difference-of-Gaussian (DoG) filters for center-surround
contrast and produces a pixel-precise saliency map. Deep
learning based saliency detection mostly relies on high-level
pre-trained features for object detection tasks. Those learning-
based approaches require massive amounts of training data
(Huang et al., 2015; Li et al., 2016; Liu and Han, 2016).
Kümmerer et al. (2015) used an AlexNet (Krizhevsky et al.,
2012) pretrained on Imagenet (Deng et al., 2009) for object
recognition tasks. The resulting high-dimensional features are
used for fixation prediction and saliency map generation. Since
most of the deep-learning based approaches have a central
photographer bias which is not desired in robotic applications,
we choose to use a handcrafted feature based approach which
gathers local visual attributes by combing low-level visual
features (Frintrop et al., 2015).
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FIGURE 1 | The proposed attention based visual analysis framework. With an input RGB image, a ROI is selected using the saliency map produced by a Saliency

detection model. Inside the ROI, grasp type and grasp attention point are computed based on the six probability maps produced by the Grasp type detection

network. The obtained information containing grasp type and grasp attention point is then used as a prior to guiding grasp planning. The planned grasp is executed

by a robotic hand to verify its quality.

3. ATTENTION BASED VISUAL ANALYSIS

The proposed framework contains two main components, a
computational visual attention model which gathers low-level
visual features and selects ROIs for further processing, and a
grasp type detection model which learns higher level features
and produces grasp-relevant information in the ROIs. Figure 1
illustrates an overview of the proposed attention based visual
analysis framework.

3.1. Computational Visual Attention Model
The pixel-level saliency map is computed using the
computational visual saliency method VOCUS2 (Frintrop
et al., 2015). In principle, any saliency system which has a real-
time capability and does not have a center-bias could be used.
Center bias gives preference to the center of an image, which is
not desired in robotics applications. Unfortunately, this excludes
most deep-learning based approaches since they are usually
trained on large datasets of Internet images, which mostly have
a central photographer bias. Therefore, the VOCUS2 system
was chosen, which belongs to the traditional saliency systems
with good performance on several benchmarks. In VOCUS2,
an RGB input image is converted into an opponent-color space
including intensity, red-green and blue-yellow color channels.
DoG contrasts are computed with twin pyramids, which consist
of two Gaussian pyramids—one for the center and one for the
surround of a region—which are subtracted to obtain the DoG
contrast. Finally, the contrast maps are fused across multiple
scales using the arithmetic means to produce the saliency map.

Given the produced saliency map, the pixels of the saliency
map are clustered using Mean Shift (Comaniciu and Meer, 2002)
to form saliency regions. The salient region with the highest
average salient value is selected as the ROI, and it is passed to
the next stage for further processing. Figure 2 shows an example
of the saliency region detection. The visual attention model takes
the RGB image shown in Figure 2A as input and produces the

saliency map shown in Figure 2B. After clustering, the desired
saliency region is determined, as shown in Figure 2C.

3.2. Grasp Type Detection
Grasp type is a way of representing how a hand handles
objects. Typically, the robotic grasps are divided into power and
precision grasp (Napier, 1956). Power grasp uses the fingers
and palm to hold the object firmly, while precision grasp
only uses fingertips to stabilize the object. However, this two-
categories grasp taxonomy is not sufficient to convey information
about hand configuration. Feix et al. (2016) introduced a
GRASP taxonomy in which 33 different grasp types used by
humans are presented. All the 33 different grasp types are
classified into four groups: prismatic power, circular power,
intermediate, prismatic precision, circular precision. Considering
the kinematic limitations of the robotic hand as well as Feix’s
GRASP taxonomy, we extend the above two-categories grasp
taxonomy into six commonly used grasp types: large wrap, small
wrap, power, pinch, precision, and tripod. Figure 3 illustrates the
proposed grasp taxonomy.

In order to detect grasp types directly from visual data, we
refer to the architecture proposed by Chen et al. (2018). This
architecture is based on a deep convolutional neural network
[VGG-16 (Simonyan and Zisserman, 2015)] and uses atrous
convolution for signal down sampling. Since an object may
support multiple feasible grasp types (Feix et al., 2016), the grasp
type detection is a multi-label detection. Hence, we modify the
output layer of the network and do not use the additional fully
connected Conditional Random Field (CRF). Corresponding to
the six grasp types, the modified network predicts six pixel-level
probability maps with the same resolution as the input image.
In order to train the modified network for grasp type detection,
this paper introduces a grasp type detection (GTD) dataset, in
which 12 household objects are used and all the instances are
annotated following the proposed six grasp types. The details
of the GTD dataset are provided in section 5.1. This work uses
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FIGURE 2 | Saliency region detection with the visual attention model. (A) The input RGB image, (B) the pixel-level saliency map, (C) the result after clustering, (D) the

output. The red rectangle denotes the selected ROI which has the highest average saliency value. The blue rectangles denote the candidate ROIs for objects. The

numbers are indices for bounding boxes.

FIGURE 3 | The proposed six commonly used grasp types.

FIGURE 4 | The detection process of grasp type and grasp attention point. Six pixel-level probability maps corresponding to the six grasp types are first computed

from the grasp type detection network. Given the object location computed by the visual attention model, these probability maps are clustered. Then the predicted

probability of each grasp type and the location of its grasp attention point are computed. Finally, the grasp type with the highest probability and its grasp attention

points are determined.
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a cross-entropy function to define the loss function which is
defined as

L(θ) =

h∑

i=1

w∑

j=1

∑

s∈S

logP(ysi,j|I, θ) (1)

where ysi,j ∈ {0, 1} indicates if the pixel yi,j belongs to the grasp

type s ∈ S or not. S = [1, 2, · · · , 6] is the index of the six grasp
types. I denotes an RGB image with height h and widthw. θ is the
weight of the proposed detection model.In this work, the cross-
entropy based on the sigmoid function is defined in Equation (2),
where f is the trained network.

P(ysi,j|I; θ) = 1/(1+ exp(−f (ysi,j|I; θ))) (2)

Given an RGB image I with height and width h × w as input,
our network outputs pixel-level probability maps P(Y|I) for each
grasp type s ∈ S, where Y = {ysi,j}i=1 : h,j=1 :w. The predicted

probability of pixel {[i, j]i=1 : h,j=1 :w} belonging to the grasp
type s is denoted by ysi,j. With the pixel-level probability maps,

the probability P(Ys|O) is computed by summing the predicted
probabilities of all the pixels inside the ROI O (defined in section
3.1), as shown in Equation (3). The grasp type with the highest
probability is used as the final grasp type s∗.

P(Ys|O) =
1

hO × wO

hO∑

i=1

wO∑

j=1

P(ysi,j|xi,j), ∀s ∈ S. (3)

After determining the best grasp type s∗, we need to localize the
grasp attention point for the grasp type s∗ inside O. In order
to find a stable grasp attention point p, subregions with higher
predicted probabilities are clustered. Mean Shift (Comaniciu and
Meer, 2002) is used to find a grasp attention point p inO. Multiple
clusters withmultiple centers are produced, and the cluster center
with the highest probability is selected as the grasp attention
point p. Finally, the grasp relevant information � = {O, s∗, po},
i.e., ROI O, the grasp type s∗ and the grasp attention point
po, are generated from the proposed visual analysis framework.

Figure 4 illustrates the detection process of grasp type and grasp
attention point.

4. GRASP PLANNING WITH
GRASP-RELEVANT INFORMATION

The objective of grasp planning is to find the feasible grasp
configuration for a stable grasping. Hence, grasp planning in this
work is formulated as an optimization problem. A search based
algorithm exploiting grasp-relevant information � generated
from the proposed visual analysis framework is proposed to find
the grasp configuration with high grasp quality. In this work, the
search of the feasible grasp configuration is processed from two
steps: (1) the formation of the initial grasp configuration based
on the grasp-relevant information, (2) the determination of the
feasible grasp configuration by the local transformation.

In the first step, we take advantage of the grasp-relevant
information � = {o, s∗, po} to determine the initial grasp
configuration and the number of the required finger. The initial
grasp configuration of the robotic hand is defined as follows:
(1) The number of needed fingers is selected according to the
grasp type s∗ and the gripper; (2) The grasp center ph is set to
be a point that deviate a initial offset dinit from the 3D grasp
attention point p′o which is obtained from 2D grasp attention
point p0 using frame transformation; (3) The hand palm is
controlled to approach the grasp attention point. Using a multi-
fingered robotic hand to grasp objects typically requires the
relative pose between the object and the robotic hand, as well
as the hand joint configuration. Due to the high dimensionality
of the robotic hand and partially observability of objects, it is

TABLE 1 | Performance on GTD dataset (IoU).

L-wrap S-wrap Power Pinch Precision Tripod Average

Ours 0.63 0.58 0.71 0.56 0.61 0.52 0.60

Segnet-based 0.51 0.56 0.41 0.61 0.46 0.48 0.50

Bold numbers denote better accuracies.

FIGURE 5 | Illustration of GTD dataset. (A) Twelve household objects contained in the GTD. (B) The original image. (C) A labeled image with large wrap. (D) A labeled

image with precision. Pixels that belong to a grasp type are marked with color and others are background.
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FIGURE 6 | The confusion matrix of the six grasp types.

FIGURE 7 | Examples of object grasping by the Shadow Dexterous Hand in the simulator.

challenging to find the optimal contact points on the object
surface to form a grasp configuration. In this work, we exploit
the concept of Opposition introduced by De Souza et al. (2015)
to execute the grasp configuration. The robotic hand is controlled
to reach the target pose and close the two finger groups to grasp
an object.

Next, A local search method is used to find the grasp
configuration with the highest quality in a grasp search space.
Due to the existence of uncertainties, the defined pre-grasp
configuration may fail to grasp objects. Hence, a local search is

used to find the grasp configuration with higher quality. During
searching, the pre-grasp configuration is used as the initial
grasp configuration. We sample a set of candidate grasps with
coordinate transformation. The search space is a 4 dimensional
space, S = {d,α,β , γ }, where d = dinit ± 1d is the offset of
the 3D grasp attention point p′o. 1d is a pre-defined searching
range. {α,β , γ } denote the searching ranges of the rotate angles in
the X, Y and Z axes of the hand coordinate, respectively. During
the search process, all the candidates are evaluated by using
force-closure method (Suárez et al., 2006). The force-closure
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method has been widely used in grasp planning, which measures
the grasp quality through the evaluation of certain geometric
relations of the contact points. A grasp is force-closure if a
hand can exert arbitrary force on the grasped object through
a set of the contact point. After the grasp quality measure, the
grasp configuration with the highest quality is chosen for object
grasping. Finally, during executing candidate grasps, the fingers
move to contact with the object surface and hold it. The robotic
arm lifts the object to finish the grasping task.

Algorithm 1 shows the process of the grasp planning
procedure.

Algorithm 1 : Attention based visual analysis for grasp planning

1: Requires: a computational saliency model, a grasp type
detection model

2: Acquire an RGB image I of the table scene.
3: Visual analysis framework returns the grasp-relevant

information � = {O, s∗, po}.
4: Using the information � to initialize the pre-grasp

configuration of the hand.
5: Using a local search method to find a list of feasible candidate

grasps.
6: Find the grasp configuration with the highest quality from all

the feasible grasps
7: Execute the grasp operation by using robotic hands.

5. EXPERIMENTAL RESULTS

5.1. Dataset and Implementation
Existing datasets, such as the Yale human grasping datasets
(Bullock et al., 2015) and the UT grasp dataset (Cai et al.,
2015), are used for the analysis of human hand behavior. These
datasets are not suitable for the grasp planning with robotic
hands. Hence, we introduce a new grasp type detection (GTD)
dataset specified for robot grasping. The GTD dataset contains
RGB-D1 images and ground-truth grasp type labels. There are
11,000 annotated images with resolution 640 × 480. In this
dataset, six commonly used grasp types were considered and 12
household objects with various shape attributes were chosen, as
shown in Figure 5A. A MATLAB GUI is designed to manually
annotate grasp types on collected data. According to the GRASP
taxonomy defined in Feix et al. (2016), object parts in images
were labeled with different grasp types which enable multi-label
detection, as shown in Figures 5B,C. The GTD dataset was split
randomly into a training set (90%) and a testing set (10%).
The training parameters of the grasp type detection model are
set as follows: the initial learning rate was 0.00001, and a step
delay policy is used to lower the learning rate as the training
progresses.Stochastic gradient descent (SGD) method with a
momentum rate of 0.9 is used.

1We use only RGB data in this paper, and plan to exploit the depth data in the

future.

TABLE 2 | Performance of the proposed grasp planning.

Ours Veres et al. (2017)

Object Success

rate

Search

attempt

Success

rate

Search

attempt

Tomato soup can 8/10 2.5 8/10 20

Tuna fish can 9/10 8.7 5/10 23.6

Banana 9/10 2.1 5/10 21.6

Apple 9/10 2.5 8/10 27.5

Orange 8/10 2.8 7/10 19.4

Chips can 10/10 2.7 10/10 11.4

Average 88.3% 3.5 71.6% 20.5

5.2. Evaluation of Grasp Type Detection
We first evaluated the accuracy of the grasp type detection on
the proposed GTD dataset. For comparison, another network
based on the Segnet architecture introduced in Badrinarayanan
et al. (2017) is trained and evaluated. Segnet has an encoder-
decoder architecture and is widely used for image segmentation.
For pixel-level multi-label detection, we modified the output
layer of the Segnet network as introduced in subsection 3.2. The
same training and testing procedures are used for both networks
described in section 5.1. Table 1 shows the Intersection-over-
union (IoU) of the two networks. Our approach achieves a higher
average detection accuracy and outperforms the segnet-based
network by 10%.

A confusion matrix (Figure 6) is used to evaluate the overall
quality of detected the grasp type. Since the network predicts six
labels corresponding to six grasp types for each pixel, each row
of the matrix shows the predicted probabilities of each grasp type
for one ground truth label. It shows that the proposed method
is able to predict correct grasp types with the highest probability
since the diagonal elements have the highest values. It is worth
mentioning that several off-diagonal elements also have rather
high values. For example, the prediction results for Power type
also show a high probability for Precision, which means those
two grasp types are easily mislabeled by the proposed method.
The reason is that those two types have a high correlation and
share many similar characters. Hence, the confusion matrix can
also help to discover the similarity among grasp types.

5.3. Grasp Planning in Simulator
The proposed visual analysis framework was further evaluated
in object grasping tasks. We implemented a grasping simulation
based on the V-REP2, which is a physical simulator that
supports rapid verification, to conduct this experiment.
The grasping experiments were performed on a Shadow
Dexterous Hand3, a five-fingered robotic hand which is
an approximation of a human hand. During simulations,
the hand configuration and the contact force between the
Shadow Dexterous Hand and objects were simulated in
real-time, which were used for measuring the qualities of

2http://www.coppeliarobotics.com/
3https://www.shadowrobot.com/products/dexterous-hand/
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FIGURE 8 | Examples of object grasping. (A) Objects grasped by the Barrett hand. (B) An object grasped by the Baxter gripper.

FIGURE 9 | Experimental setup with a UR5 arm and a three-fingered robotic

hand.

candidate grasps. In order to evaluate the performance of the
visual analysis framework for grasp planning, we compared the
proposed planning method with the method proposed by Veres
et al. (2017). Veres et al. used a method which randomly samples
a set of candidate grasps based on the normal of the object surface
and then ranked all the candidates to find the best one. Since there
is no grasp type provided in this method, we use the commonly
used power type for the ShadowDexterous Hand to grasp objects.
In this comparison experiment, six objects were selected, as
shown in Figure 7. Ten trials are tested for each object. For each
trial, an object is placed on the table top and a depth sensor is
used to capture the RGB-D image of the table scene. Then, the
grasp configuration of the Shadow Dexterous Hand is planned in
the simulator. The maximum number of search attempts for both
methods is limited to 40. For each object, the success rate of object
grasping and the average number of search attempts needed for
finding a feasible grasp are shown in Table 2.

It can be seen that the proposed method obtained a higher
success rate of grasping than the random search method.
Moreover, the number of search attempts by the proposed
planning method is only 17.0% of the search attempts by

FIGURE 10 | Eight different objects for robotic experiments.

the random search method. It shows that the grasp-relevant
information generated helps to reduce the search time needed
for grasp planning and to more accurately find the feasible grasp
configuration in the search space. It is worth mentioning that the
random search method with a power type easily fails at grasping
some small objects, such as the banana and the tuna fish can.
This limitation does not occur in the proposed planning method
since a feasible grasp type is predicted before grasping. Hence, for
multi-finger robotic hands, objects with different shape attributes
should be handled with different grasp types.

We also noticed that there are several failures of object
grasps using the proposed planning method. The main reason
for the failures is because the predicted grasp attention point
on the object surface is too close to the table top. Since the
environmental constraints are not considered in this work, the
Shadow Dexterous Hand will collide with the table and fail to
grasp the object. In the future, it will be beneficial also to consider
the environment and task constraints.

In order to further evaluate the generalization of the proposed
framework, we also tested our framework with a 3-fingered
Barrett hand4 and a 2-fingered Baxter gripper5, Figure 8 shows
some results of object grasping. In this experiment, the 2-fingered
Baxter gripper only used the pinch type to grasp objects. On

4https://www.barrett.com/about-barrethand/
5https://www.rethinkrobotics.com/baxter/
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FIGURE 11 | Example of the visual analysis on various objects. The first column is the input RGB image. The second column is the pixel-level saliency map, in which

the red rectangle denotes the selected ROI. The third column is six pixel-level probability maps which describe the results of grasp type detection. The six probability

maps from top left to bottom right corresponds to the six grasp types (i.e., large wrap, small wrap, power, pinch, precision, and tripod). The cross in the probability

maps denote the cluster centers which is considered as the grasp attention point. The last column is the output of the visual analysis.

average, Barrett hand has 90% success rate with four search
attempts while Baxter gripper has 100% success rate with 1.4
search attempts.

To further verify the effectiveness of the grasp planning with
prior information, we compared with the work from Ciocarlie
and Allen (2009). This work searches a grasp configuration for
dexterous robotic hands in a hand posture subspace which is
determined by using grasp synergies. In their work, the grasp

planner only results in a power type, which means their grasp
planner may fail to grasp small objects. Another limitation of
their grasp planner is that it needs a long search time for finding
a feasible solution, with over 70,000 attempts for each plan, and
an average running time of 158 s (Ciocarlie and Allen, 2009).
Compared with their work, our method requires fewer search
attempts and enables the robotic hand to grasp objects with
different grasp types.
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FIGURE 12 | Examples of object grasping using the UR5 robot. In each subfigure, the left showed the analyzed results and the right showed the robot grasped the

object. (A) Grasping of a chip can With Precision grasp type, (B) grasping of a coffee bottle with power grasp type, (C) grasping of a bottle with Tripod grasp type, (D)

grasping of an apple with precision grasp type.

5.4. Real-World Robotic Experiment
The robotic experiments were conducted using the six DOF
UR5 robot6 and the three-fingered Robotiq gripper7. Figure 9
shows the experimental setup for the object grasping tasks. A
Kinect sensor was used to capture the RGB-D image of the
table scenes. Eight objects selected from YCB object set (Calli
et al., 2015) were used for the evaluation, as shown in Figure 10.
It contains six unknown objects comparing to our dataset
(Figure 5). In the object grasping experiments, we adopted the
following procedure. Multiple objects were randomly selected
and placed on the table. The proposed visual analysis framework
took the image captured by Kinect as input and outputted the
grasp-relevant information. Then, the grasp configuration was
planned by taking advantage of this computed information and
sent to the UR5 robot for grasping. A video is provided as
Supplementary Material.

Figure 11 shows the process of attention based visual analysis.
Given an input RGB image, the ROI denoted by a rectangle
in the saliency map is firstly selected by the attention model.
Meanwhile, six pixel-level probabilitymaps are obtained from the
grasp type detection model. The grasp attention point denoted
by the cross in each probability map is obtained by clustering.
Finally, the grasp type with the highest probability in the ROI
is selected. As it is shown in Figure 11, our system is also
able to produce grasp type and grasp attention point results on
unknown objects.

6https://www.universal-robots.com/products/ur5-robot/
7https://robotiq.com/products/3-finger-adaptive-robot-gripper

The performance of the whole system is evaluated based on
object grasping tasks. Four trails were tested for each object
and a total of 32 trails were implemented. Because the robotic
gripper only had three finger, we consider large wrap and small
wrap equivalent, and consider precision and tripod equivalent.
So the numbers of the used finger for precision and tripod
were same. The experimental results were that 28 successful
graspings out of 32 trails (87.5%). Basically, the proposed method
enabled the robotic hand to find the feasible grasp configuration
and successfully grasp it. Figure 12 shows some examples of
the object grasping using the proposed framework. As we can
see, the grasp-relevant information generated from the proposed
framework was used as prior information to guide the grasp
formation. For each frame, ROI localization takes 1.8 s, grasp
type detection takes 6.5 s and the complete process takes 8.5 s
on average. The proposed framework is implemented in python
and runs on a 2.50 GHz Intel i5 CPU.

It is worth mentioning that several failures of object grasping
have occurred. As in simulation experiments, when grasping the
small object (e.g., an apple), the planned grasp pose was too close
to the table, the UR5 robot failed to find a feasible kinematic
solution. Another cause was that the proposed visual attention
method sometimes only locate a small region of an object and
a feasible grasp configuration cannot be found. This is caused
by low color contrast between the object and its background. It
also occurred that the object fell out of the gripper during lifting.
It was caused by the uncertainty from the object weight. In the
future, it will also be beneficial to incorporate grasp adaptation
into the proposed framework.
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6. CONCLUSION

This paper proposes an attention based visual analysis
framework, which computes grasp-relevant information
directly from visual data for multi-fingered robotic grasping.
By using the visual framework, an ROI is firstly localized by
a computational attention model. The grasp type and grasp
attention point on object segment presented in the ROI is then
computed using a grasp type detection model, which is used as
prior information to guide grasp planning. We demonstrated
that the proposed method is able to give a good prediction
of grasp type and grasp attention point. Furthermore, the
performance of the proposed visual analysis framework has
been evaluated in object grasping tasks. Compared to previous
methods without prior, the information generated from the
visual analysis can significantly speed up grasp planning.
Moreover, by using a feasible grasp type, the success rate of
the grasping is also improved. Results show that the proposed
framework helps the robotic systems to know how and where to
grasp objects according to attributes of sub-regions of objects.
Since our method does not rely on object detection, it can also
handle unknown objects.

For future work, several aspects will be considered:
first, the current framework is goal-driven, and it only
learns how to grasp an object, so it will be interesting
to extend the proposed framework into a task-driven
framework, e.g., grasping in human-robot handover task.
Second, currently the choice of grasp type and grasp
attention point only depends on the attributes of sub-
regions of objects. Since grasp planning is also affected by
environment and task constraints, those constraints will be taken
into consideration.
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Blindness is an ideal condition to study the role of visual input on the development
of spatial representation, as studies have shown how audio space representation
reorganizes in blindness. However, how spatial reorganization works is still unclear.
A limitation of the study on blindness is that it is a “stable” system and it does not
allow for studying the mechanisms that subtend the progress of this reorganization.
To overcome this problem here we study, for the first time, audio spatial reorganization
in 18 adults with macular degeneration (MD) for which the loss of vision due to scotoma
is an ongoing progressive process. Our results show that the loss of vision produces
immediate changes in the processing of spatial audio signals. In individuals with MD,
the lateral sounds are “attracted” toward the central scotoma position resulting in a
strong bias in the spatial auditory percept. This result suggests that the reorganization
of audio space representation is a fast and plastic process occurring also later in life,
after vision loss.

Keywords: macular degeneration, multi-sensory integration, scotoma, audio-space representation, PRL

INTRODUCTION

In sighted individuals, the visual cortex responds mainly to visual inputs. Recent evidence shows
that in some specific cases the visual cortex of blind individuals processes spatial information
of audio and tactile signals (Rauschecker, 1995; Collignon et al., 2009, 2011, 2013; Voss and
Zatorre, 2012). Moreover, sighted individuals are reported to show a reset in visual cortex driven
by auditory phase shifts and this kind of cross modal changes is found extensively in visual cortex
(Mercier et al., 2013; Keil and Senkowski, 2018). This result is in agreement with studies in sighted
individuals showing multisensory interactions between sensory modalities in human primary
cortices (Martuzzi et al., 2006; Romei et al., 2009). This cortical reorganization in blindness has
been associated with the enhanced abilities of blind individuals in processing audio information
such as sound localization in the azimuth location (Lessard et al., 1998; Voss et al., 2004; Röder
et al., 2007). However, blind individuals are not always better in the audio processing than sighted
individuals and in some cases they show strong impairments in audio space representation tasks

Abbreviations: CR, central responses; MD, macular degeneration; PR, peripheral responses.
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FIGURE 1 | The device and simulation of device.

such as in the spatial bisection task or in the dynamic sound
localization (Gori et al., 2014; Finocchietti et al., 2015; Vercillo
et al., 2015). To date, it is not clear why some skills are
enhanced and some other impaired. More in general, an open
question is the start of cortical and perceptual reorganization
after the beginning of the visual impairment. A limit of the
study of blindness is that it is a “stable” system and it does not
allow for study of the mechanisms that subtend the progress
of cross-sensory plastic changes. To overcome this problem
we studied, for the first time, audio spatial reorganization in
individuals with macular degeneration (MD) for which the loss
of vision due to scotoma is an ongoing progressive process.
MD is a retinal disorder that damages the retina and produces
scotoma (blind spots) on the eye cutting inputs on corresponding
visual cortical representations (Sunness et al., 1996; Hassan
et al., 2002; Schuchard, 2005). MD is an ideal condition to
study the mechanisms that subtend audio spatial reorganization.
Depending upon the pathology, scotoma can be central or
peripheral, hereditary (also called “juvenile” JMD), or age-related
(AMD). More in general, retinal damage increases with time
and thus the scotoma size. 18 MD individuals with central
visual scotoma were involved in an audio spatial task. Auditory
stimuli were presented at different points of the frontal surface
consisting of a vertical matrix of speakers, considering spaces
within (central), and outside (peripheral) the visual scotoma
(see Figure 1 for details). Our hypothesis was that if the lack
of vision has a direct and immediate effect on the cross-
modal reorganization of spatial audio representation, this should
provide a distortion of audio processing within the scotoma zone
in MD but not in sighted individuals. Our results support our
hypothesis showing that the loss of vision produces changes
in the processing of spatial audio signals in MD patients. In
individuals with MD, the lateral sounds are “attracted” toward
the central scotoma position resulting in a strong bias in the
spatial auditory percept. We discuss our results suggesting that
the reorganization of audio space representation is a fast and
plastic process occurring in a few years also later in life, starting
after vision loss.

MATERIALS AND METHODS

Subjects
A total of 18 MD participants (mean age: 66.28, standard
deviation: 21.74) and 18 sighted subjects (mean age: 53.72,
standard deviation: 19.55), unpaired t-test (t = 1.58, df = 33.55,
p = 0.12), and participated in the study (see details in Table 1).
We performed a power analysis based on data acquired in pilot
studies and we estimated for the difference between groups, an
effect size (measured with Cohen’s d) which were at least 0.96
(large according to Cohen’s classification). Based on the expect
size, on a significance of 0.05 and a statistical power of 0.8, we
retained as sufficient a minimum sample of approximately 18
subjects All MD participants were suffering from central vision
loss due to scotoma caused by different diseases as reported in
Table 1. Some of these participants were born with congenital
retinal diseases (JMD, e.g., RP) leading to slow degeneration of
the retina and development of central scotoma with growing
age, while others were suffering from AMD; hence developing
a scotoma in one or both eyes in later years of life. All
these patients were recruited from “Istituto David Chiossone”
based in Genoa, Italy. Since all these participants were suffering
from central vision loss (central scotoma), they were part of a
rehabilitation program where they were learning to fixate with
their preferred retinal locus (PRL) instead of damaged fovea using
certain rehabilitation training techniques. All necessary subject
data (history, visual acuity, disease, dominant eye, PRL, fixation,
and retinal maps) were obtained from the ophthalmologist and
rehabilitators at “Istituto David Chiossone” as shown in Table 1
(visual acuities for P06, P16, P17, and P18 are not reported in
the table, as the hospital was unable to provide a VA record for
these participants). The dominant eye of sighted participants was
determined prior to the experiment using the classic dominant
eye test (Heiting, 2017).

Ethics Statement
All subjects involved in this study were adults (age above
16 years). This study was approved by the ethics committees of
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TABLE 1 | Characteristics of MD participants.

Duration of Dominant

ID Age (Y∗∗) Disease disease (Y∗∗) Visual acuity eye

Left∗ Right∗ Both

P01 83 Glaucoma 15 1/20 1/20 1/20 Right

P02 87 AMD 03–04 1–2/10 Blind 1–2/10 Left

P03 86 Myopia + Maculopathy 02 Blind 1/15 1/15 Right

P04 85 Myopia 15 1/10 Blind 1/10 Left

P05 18 Maculopathy + RP Congenital 1 1–2/10 1 Right

P06 62 AMD 15 – – – Right

P07 77 Maculopathy + AMD 15 1/100 1/10 1/10 Right

P08 75 Maculopathy + AMD 10 1/20 1/10 1/10 Right

P09 82 Maculopathy + AMD 20 1/50 1/100 1/50 Left

P10 80 AMD 30 1/20 Blind 1/20 Left

P11 22 RP Congenital 1/20 Blind 1/20 Right

P12 70 AMD 05 1/10 1/100 1/10 Left

P13 78 AMD 07–08 1/20 1/20 1/20 Right

P14 78 Myopia 20 1/20 Blind 1/20 Left

P15 73 AMD 10 1/50 Blind 1/50 Left

P16 42 Maculopathy 03 – – – Left

P17 51 Glaucoma 26 – – – Right

P18 44 JMD 08 – – – Right

∗Left/Right Eye; ∗∗Years.

the local health services: Comitato Etico, ASL3 Genovese, Italy.
Subjects (both patients and controls) signed the written informed
consents prior to performing the experiment.

Stimuli and Procedure
A 5 × 5 matrix (dimension 50 cm × 50 cm) of 25 speakers (each
speaker dimension 10 cm× 10 cm) was used for the experiment.
Each speaker was covered by 16 haptic blocks, making the whole
matrix touch-sensitive (see Figure 1). Sounds were produced
using sound card of PC and controlled using Matlab R2013b

R©

(MathWorks.Inc.).
Before starting the experiment, fixation stability and a retinal

map of each patient were obtained using the Nidek MP-1 Retinal
Microperimetry (NIDEK TECHNOLOGIES SRI) with the help
of a rehabilitator at “Istituto David Chiossone.” The retinal
images provided by microperimetry covered a visual angle of±20
degrees (essentially where the central scotoma was present). Since
all the MD participants had vision loss due to central scotoma,
device matrix was virtually divided into central and peripheral
parts as shown in Figure 1. The red highlighted part mimics the
center of the eye (covering a visual angle of ±23.7 degrees) while
the green highlighted part mimics the periphery (covering visual
angle of ±47.47 degrees). None of the subjects were aware of the
virtual division of the matrix. Subjects sat straight at a distance of
30 cm from the device with their eyes positioned in front of the
fixation point in the center of matrix (see Figure 1). Position of
device was adjusted according to height of subject.

The experiment was divided into two conditions; Monocular
and blindfolded. All subjects (MD participants and sighted)
performed the test in the Monocular condition, while only a

sub-group of participants (9 MD participants and 8 sighted
subjects) performed the experiment in blindfolded condition as
well. This subgroup was estimated using power analysis based on
pilot studies for the difference between groups in the blindfolded
condition, an effect size (measured with Cohen’s d) which was
at least 1.5 (large according to Cohen’s classification). Based on
the expect size, on a significance of 0.05 and a statistical power of
0.8, we retained as sufficient a minimum sample of approximately
8 subjects. The blindfolded condition was tested on a sub-group
of participants that performed the major study in order to check
if there is a bias due to visual inputs or not. In the monocular
condition, subjects were asked to fixate (with dominant eye) at the
marked fixation point in the center of the device while listening to
sounds produced from different speakers (white noise, duration
1 s). Participants were asked to touch, with the index finger
of the dominant hand, the position from where they perceived
sound was produced, hence localizing the sounds, while fixating
at the center of the device. Here it is important to mention
that MD participants were asked to fixate with their PRL, while
controls were asked to fixate with their fovea. When the touch
was registered by the tactile sensors, a feedback sound (“meow”
of a cat) was reproduced from the central speaker to end the
trial. Thus, the subject was allowed to bring his/her finger back to
resting position. A pause of 3 s was inserted between trials. A total
of 72 random trials were produced with each speaker producing
sound 3 times randomly (central speaker marked as fixation
point only produced feedback sound). The same experiment was
repeated in the blindfolded condition while blindfolding both
eyes and localizing sounds. A training session was also run until
subject understood the task before starting of actual experiment.
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FIGURE 2 | Subject responses. Left, example of retinal maps for two MD individuals (P1 and P2). The central red area indicates the damaged retina, yellow for
partially damaged retina, and green for the leftover healthy part of the retina. Center, example of the responses of the same two MD individuals (P1 and P2) for sound
localization. Sounds were equally distributed on the surface of the device, but their responses were mainly localized in the central region (in red) indicating the
position of their scotoma. Right, example of the responses of two age sighted participants (C1 and C2) for sound localization. Responses are equally distributed on
the surface.

Subject Responses
To determine the scotoma position, the fixation stability of
subjects and the exact visual angle subtended by the scotoma,
we collected retinal maps (Chen et al., 2009) for all the MD
participants (see Figure 2 left for an example of retinal maps
in two participants). Subject responses were recorded over the
device matrix and are shown as a function of visual angles in
relation with the fixation point on the device. As an example,
in Figure 2 (central panel) are provided responses of the two
MD participants (whose retinal maps are presented on the left)
and for two sighted individuals. While for sighted individuals
(Figure 2, blue dots) the responses for sound localization are
equally distributed on the surface, the responses of the MD
participants (Figure 2, red dots), were mainly localized on the
central region, namely where the scotoma was present suggesting
an “attraction” of sound toward the scotoma position.

RESULTS

To quantify the sensory precision and the bias in sound
localization (i.e., the sound attraction toward the scotoma
position), responses were subdivided as central responses (CR)
and peripheral responses (PR), considering the central and
peripheral portions of the device (Figure 1B), respectively.

A significant difference between CR and PR was found in
MD participants with a higher number of responses in the

CR than in the PR. A mixed model ANOVA (2 × 2) was
performed with the group as between factor (two levels, sighted
and MD), and position as within factor (two levels, CR and
PR). A significant interaction was found between group and
position [F(1,34) = 6.79, p = 0.02]. Post hoc t-tests revealed
that MD individuals tend to touch the central speakers (CS)
more compared to the sighted individuals (MD: mean = 45.56,
SEM = 3.18, Controls: mean = 34.72, SEM = 2.67, un-paired
t-test, t = 2.58, df = 33.01, p = 0.014), while sighted participants
tend to touch the peripheral speakers more compared to the
MD individuals (MD: mean = 26.45, SEM = 3.18, Controls:
mean = 37.56, SEM = 2.72, un-paired t-test; t =−2.65, df = 33.19,
p = 0.012). Also, MD individuals touched more the central rather
than the peripheral speakers (CR: mean = 45.56, SEM = 3.18;
PR: mean = 26.45, SEM = 3.18, paired t-test: t = 3.01, df = 17,
p = 0.008). Sighted participants respond equally in the CR and PR
(CR: mean = 34.72, SEM = 2.67; PR: mean = 37.56, SEM = 2.72,
paired t-test: t = −0.53, df = 17, p = 0.61) as shown as a bar plot
in Figure 3.

In order to get a detailed picture of how CR are comparable to
PR, we implemented in R the methods developed by Rousselet
et al. (2017). First, we extracted all the deciles and medians
of distributions in each condition (CR and PR) and for each
group (MD and controls) as shown in Figures 4A,B, respectively.
The horizontal lines represent the nine deciles with a thicker
line showing the median of each condition, the dots represent
each participant.
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FIGURE 3 | Comparison between controls and MD considering CR and PR.
Results show that the MD participants (right side) are more attracted toward
the central speakers (red bars). This attraction is higher compared to the one
showed by the sighted (left side) which provided responses equally distributed
for central and peripheral regions. ∗Significance between groups;
∗∗Significance with-in group.

Since the two conditions (CR and PR) are paired, the
investigation was not merely limited to computation of marginal
distributions; we also computed how responses are linked
between center and periphery for MD (Figure 5A) and Controls
(Figure 5B) group, respectively: paired observations of each
subject are joined by a single line of a different color. Figure 5A
show that a majority of lines are decreasing from CR to PR,
suggesting a greater tendency for responding in the center
compared to the periphery, while Figure 5B reveals the absence
of any trend due to a huge variability among the slopes of subjects.

Figures 5C,D also show the link between two conditions
in terms of decile differences, the thicker line represents the
difference in medians for two conditions. The black diagonal
shows line of no effect with slope one and intercept zero as
reference line (CR = PR). Quartiles of two conditions are shown
by the dashed lines. Here, it is important to mention that since

the total number of trials is constant (i.e., 72), CR and PR are
negatively related (CR = 72 – PR). This means that if a subject
responds more in the center (CR), the value of PR automatically
reduces and vice versa, hence a negative correlation between
CR and PR. For the MD group, Figure 5C shows differences
that are quite scattered from the center. Whereas for controls,
Figure 5D shows that the differences are rather symmetrically
grouped around the central line revealing that the probability
of having subjects with positive or negative differences between
conditions are similar.

Figures 5E,F illustrate the distribution of the differences
between CR and PR. The horizontal lines show the deciles
with the thicker black line showing the median of differences.
Difference between marginal distributions of CR and PR is larger
for MD than for control groups. In fact, for MD group, the
median for CR is 42.5 and for PR it is 29.5. The difference between
the two medians is−13 with a 95% confidence interval of (−68.6,
14.6) (Figure 5E). Figure 5F shows the differences between
marginal distribution (CR: median = 36.5; PR: median = 35.5) for
the control group as strip charts. The difference between the two
medians is+1 with a 95% confidence interval of (−21.3, 38.3).

To systematically compare the distributions, shift function
for dependent variables was also evaluated (Doksum, 1974;
Wilcox and Erceg-Hurn, 2012), as shown for both groups in
Figures 6A,B, respectively. The circles represent the decile
differences and the vertical lines correspond to the 95%
confidence interval which is computed using bootstrap technique
(2000 bootstrap samples) (Rousselet et al., 2017). The vertical
dashed line shows the mean. For each decile, confidence intervals
which are not crossing zero correspond to significant difference.
For the MD group (Figure 6A) only the first and the last decile
differ significantly. Instead, for the controls group in Figure 6B,
we see no significant difference for any decile.

Then, we quantified distribution difference asymmetries using
a new method called difference asymmetry function, proposed by

FIGURE 4 | Differences in CR and PR for MD (A) and controls (B) groups. (A,B) Strip chart of two distributions. Each circle represents one participant, horizontal
lines shows the deciles and thicker line show the median. The dotted line corresponds to zero.
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FIGURE 5 | Differences in CR and PR for MD (left panel) and controls (right panel) groups. (A,B) Pairwise observations. Paired observations of each subject are
joined by a single line of a different color. (C,D) Scatter plot. The diagonal black line shows reference with no effect; CR = PR (slope = 1, intercept = 0). Colored
letters show the scattered data points and dashed line show quartiles for each condition. (E,F) Strip chart of difference responses. Each circle represents the
difference between conditions for one participant. Deciles are shown by horizontal lines; the thicker line shows the median.

Wilcox (Wilcox and Erceg-Hurn, 2012). The method computes
the quantile sums = q + (1 – q) considering different quantile
estimations by using Harrell-Davis estimator. The confidence
intervals are derived using the percentile bootstrap technique.
Figures 6C,D show the resulting difference asymmetry function
for MD and Controls groups, respectively. Along x-axis, the
starting point 0.05 shows the sum of quantile 0.05 + quantile
0.95; the next point 0.10 is for the sum of quantile 0.10+ quantile
0.90; and continues along the axis in similar fashion. MD
group (Figure 6C) show negative sums at extreme quantiles
(0.05+ 0.95) for all deciles. On the other hand, the controls group
(Figure 6D) show that distributions do not differ because the
confidence intervals difference asymmetry function is crossing
zero line for all deciles.

Next, we compared the bias for each condition (CR and PR)
between the two groups (MD and controls). Figures 7, 8 shows
a detailed picture of comparison between MD and C (controls)
group for CR (left Panel) and PR (right Panel), respectively.

Figures 7A,B show the two marginal distributions in the form
of a strip chart for each condition (CR and PR), respectively. The
spread of the dots for each group (MD and C) is proportional
to the local density of responses recorded for the said condition
(CR or PR). The vertical lines show the deciles for each group
with the thicker line showing the median of distributions. For
instance, Figure 7A shows the distributions for two groups when
the responses were recorded in the center (CR). For MD, the
median of responses is 42.5 and for C median is equal to 36.5;
hence the marginal difference is+6. As can be seen in Figure 7A,
there is a shift between the distributions of the two groups: the
deciles of MD are systematically greater compared to the C group.
The difference in deciles is positive and is represented by orange
lines joining corresponding deciles for each group. Decile values
for first and ninth decile are +10.82 and +17.67, respectively as
shown in Figure 7A. Similarly, Figure 7B shows the marginal
distributions in the similar fashion as that of Figure 7A but for
the PR condition. It is evident from Figure 7B that the shift

Frontiers in Integrative Neuroscience | www.frontiersin.org 6 August 2019 | Volume 13 | Article 44

https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-13-00044 August 19, 2019 Time: 16:51 # 7

Ahmad et al. The Sound of Scotoma

FIGURE 6 | Differences between conditions. (A,B) Shift function with 95% confidence intervals. (C,D) Difference asymmetry function with 95% confidence intervals
computed via bootstraps technique.

between distributions is opposite in PR condition compared to
CR condition, as expected because CR = 72 – PR. MD group
is shifted to lower values (median = 29.5 and controls have
higher values median = 35.5). The difference in the medians
is −6 and the corresponding deciles are joined by purple lines
showing a negative shift. This means that MD participants show
dominance in CR condition compared to Controls and vice versa
for PR condition.

Figures 7C,D shows the shift function for each condition,
respectively. In both figures, on x axis we have deciles for MD
which correspond to the gray shaded area in Figures 7A,B.
Instead, on the y-axis we have the decile differences (MD – C).
Hence, for each decile the shift function shows by how much one
observation needs to be shifted to match another one. The vertical
lines show the 95% bootstrap confidence interval. Only the first
and the last deciles in both figures do not cross zero, hence they
are considered significant.

In order to find the typical differences between the members
of the two groups (MD and C), Figures 8A,B shows the kernel
density representation (Han et al., 2004) of pairwise differences
for each condition, respectively. The number of participants in
each group is 18 (n = 18), so we get a total of 324 differences.
In Figure 8A, the median of the differences is 9.49 i.e., far
from zero with a 95% confidence interval at (2.39, 18.98).
Hence, if we randomly select a sample from each group, it will
differ significantly (Rousselet et al., 2017). These differences are

distributed asymmetrically; negative values extend around −30
while positive values extend around −57. So, positive differences
out-weigh negative differences in this case; revealing that the
two differences differ. Similarly, Figure 8B shows this difference
in case of PR condition. The median of differences is −9.57
with a 95% confidence interval at (−19.15, −3.23), which is –
as expected – again far from zero. The asymmetry is also
evident with negative values extending to−57 and positive values
extending to +30, again showing an opposite behavior to CR
condition with pairwise differences.

The difference asymmetry method introduced earlier for
dependent conditions (Figures 6C,D) is also applied in this case
for the two groups in each condition, respectively. Figures 8C,D
shows the resulting difference asymmetry function for CR and
PR, respectively. Along x-axis, the starting point 0.05 shows the
sum of quantile 0.05 + quantile 0.95; the next point 0.10 is for
the sum of quantile 0.10 + quantile 0.90; and continues along
the axis in similar fashion. Condition CR (Figure 8C) shows
always positive quantile sums (0.05 + 0.95). On the other hand
PR (Figure 8D) shows again the opposite pattern with quantile
sums below zero.

To disambiguate whether the effect was just a bias in response
to the unseen area we tested the blindfolded condition. A sub-
portion of individuals were taken from the groups of sighted
and MD individuals (N = 8 and N = 9, respectively) as a
control condition. Since the hypothesis of normality was not
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FIGURE 7 | Differences between groups; MD and Controls for CR (left panel) and PR (right panel). (A,B) Strip charts for marginal distributions. Vertical lines mark the
deciles for each group with a thicker line marking the median. Among distributions, the colored lines join the matching deciles (orange for positive decile differences
and purple for negative values). (C,D) Shift function. Decile differences are shown with MD group deciles on x-axis and decile difference (MD-C) on y-axis. The
vertical lines show the 95% bootstrap confidence interval. The first and the last deciles in both figures do not cross zero, hence they are considered significant.

confirmed in this case, an ANOVA test is performed based on
permutations by means of the R function aovp (Wheeler and
Torchiano, 2010). The model (2 × 2 × 2) is provided by a
between factor, group (MD and sighted), and two within factors:
condition (monocular and blindfolded) and position (CR and
PR). Only one significant interaction group ∗ position [F(1,59),
p = 0.008)] is found, therefore, we performed Post hoc analysis
with both paired and un-paired t-tests based on permutations
as well (perm t test R function) (Fellows, 2012). Bonferroni
correction is used for multiple comparisons. The only significant
difference is found between the positions for MD participants
(t = 3.71, df = 33.25, p = 0.003). The results show a higher
tendency for MD individuals in touching the CS (coinciding with
the position of the scotoma) compared to the group of the sighted
even in blindfolded condition.

As a check that responses of both groups are a result of
stimulus and not just random responses over the device, we
calculated distance errors. Distance error is the distance between
stimulus position and response position. We found that for
central stimuli, the distance errors for MD and control groups
are 9.86 and 9.74 cm, respectively, while in the periphery the
distance errors are 15.8 and 14 cm, respectively. As mentioned
in section “Materials and Methods” and shown in Figure 1,
the distance between two speakers on the device is 10 cm.

Hence, for both conditions the distance error is within 15 cm
showing that responses correspond to stimuli and are not
random. As evidence that subjects actually responded to the
stimulus and didn’t make random responses on the device,
a Hits and Misses matrix was computed for the two groups.
Figure 9 shows the matrix computed to evaluate the percentage
of responses. CS and PS represent the Central Stimulus and
Peripheral Stimulus, respectively while CR and PR represent the
CR and PR, respectively. The 2 × 2 matrix show the responses
against the stimuli in terms of percentage. Percentage for CS (first
column) is computed as the total number of responses when the
sound was produced from CS divided by the total number of
trials in the center (9 speakers × 3 trials each = 24). Similarly,
the percentage value for PS (second column) is computed as
the total number of responses when sound was produced in
the periphery divided by total number of trials in the periphery
(16 × 3 = 48). For instance, index (1,1) of the matrix shows the
percentage of responses when both the stimulus and response
were central, index (2,1) shows the percentage of responses
when the stimulus was central but the response was peripheral,
index (1,2) is the case when the stimulus was peripheral but the
response was central and lastly, index (2,2) is the case when both
stimulus and response were peripheral. Figure 9A represents that
MD participants had a higher percentage to respond in center
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FIGURE 8 | Comparison between groups. (A,B) Kernel density depiction of the distribution of all pairwise differences amongst the two groups. Deciles are marked
by vertical lines with a thicker line for median. (C,D) Difference asymmetry function using 95% confidence intervals. The pair-wise error is controlled by altering the
critical p-values with Hochberg’s method; the confidence intervals are not adjusted.

FIGURE 9 | Hits and misses chart. CS, central stimuli; PS, peripheral stimuli; CR, central stimuli; PR, peripheral stimuli. The values are represented as percentage;
For CS, total number of responses corresponding to CS/Total number of trials for CS; For PS, total number of responses corresponding to PS/Total number of trials
for PS. (A) MD group. (B) Control group.

for central stimulus compared to Controls group (Figure 9B).
The higher accuracy for the MD group can be explained in
terms of results drawn from Figures 3–8. Since this group
has a higher tendency to respond in the center, they have a

higher probability to respond to central stimulus. This can also
be explained in terms of peripheral stimuli. The percentage to
respond correctly for peripheral stimuli is lower in MD compared
to controls because MD group respond more frequently in the
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FIGURE 10 | Pearson’s Correlations. The black dots represent data points; the black solid line represents regression line, the black dashed line shows 50% and the
gray area show 95% confidence interval. (A) Correlation between onset age (age – duration) and percentage of CR (CR/72 ∗ 100). (B) Correlation between scotoma
duration and percentage of CR. (C) Correlation between age of MD group and percentage of CR. (D) Correlation between age of controls group and percentage of
CR.

center. The same is true for incorrect responses as well. For the
MD group, the percentage of correct responses in the center is
almost double to the percentage of correct responses in periphery,
which confirms the dominance to respond in the center. For
controls group, the percentage of correct responses are almost
equal, again as an evidence that they are not attracted toward any
specific region, hence they are equally probable for correct and
incorrect responses.

To fully take advantage of MD as a model for audio-spatial
representation and to provide more information about the
mechanisms of multisensory recalibration we have analyzed the
correlation between blindness duration and sound attraction.
This correlation is analyzed by defining two parameters:
Percentage of CR: which is calculated as CR/72 ∗ 100 (where 72 is
the total number of trials); and the onset of scotoma that indicates
when the scotoma was diagnosed in the first instance (Table 1);
it is equal to the difference between the age and duration of
the scotoma (for how long the subject has had the scotoma).
A positive trend in correlation (Pearson’s coefficient r = 0.47,
p = 0.051) is found between the Percentage of CR and the onset
of the scotoma (Figure 10A). Results suggest that there is a trend
in correlation between attraction toward the scotoma (CR) and
clinical onset of the scotoma. Another correlation is computed

between the Percentage of CR and duration of scotoma (r = 0.04,
p = 0.88). As we have no significant correlation with the duration
of disease, this shows that the effect remains consistent even
when the duration increases (Figure 10B). The same result is
confirmed by another correlation in which we considered the
Percentage of CR against the age of MD individuals (Figure 10C)
and the Percentage of CR against the age of typical participants
(Figure 10D). A significant correlation between age and CR is
evident only for MD individuals (Pearson’s coefficient (r = 0.53,
p = 0.02) and not for typical (Pearson’s coefficient (r = 0.05,
p = 0.94). The presence of an effect for the correlation of Age
and CR for MD group and not for Controls group shows that
MD participants are attracted more to the scotoma position
with increasing age and that the correlation is present only
when there is a “scotoma,” without scotoma (controls) we
found no correlation.

DISCUSSION

Audio space reorganization was studied here for the first time in
adults with central scotoma due to MD disease. Results suggest
a robust attraction of sound toward the scotoma position in
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MD patients. Lateral sound positions were strongly biased and
perceived as coming from the central scotoma region. The similar
precisions in central and peripheral regions between MD and
sighted participants (distance errors) suggest that the bias was
not due to a less reliable spatial perception in MD individuals.
Moreover, for MD participants the sound attraction toward the
center is present even with eyes closed. On the contrary, there
is no attraction toward a specific area of the device in controls
both with eyes open or closed. This result indicates that the
audio bias in MD individuals is not due to an attraction toward
the unseen area supporting the idea of an ongoing multisensory
recalibration process.

Results also support the idea that spatial reorganization of
audio processing is an ongoing process that occurs after the
loss of visual input in a plastic manner. The correlation that we
observed between the attraction toward the center and onset of
scotoma, indicates that the older the subject is at the onset of
the scotoma, the more s/he is attracted toward the center. As
expected, this result suggests that this multisensory recalibration
process reflects the brain plasticity that is maximal in younger
individuals and reduced at older ages (Lund, 1985; Kramer et al.,
2004). This is even more interesting if we think that 12 of the
18 subjects tested were older than 70 years and the correlation
effect between age and percentage of responses in the center
was found only in the MD group and not in the control group.
This suggests that central blind region has a minimal effect on
audio–spatial reorganization of younger MD individuals, thanks
to their cortical plasticity, and this effect due to scotoma increases
in elderly population as cortical plasticity reduces with age
(Erickson et al., 2007; Kramer and Erickson, 2007). Why do MD
participants show an attraction of sound toward the central visual
field, where they have the scotoma? Which is the mechanism
associated with the bias we observed?

The ability to detect the spatial coordinates associated with
neural signals from different sensory modalities is fundamental
for a coherent perception. Given the superiority of visual over
other sensory systems for space representation (Alais and Burr,
2004), the visual modality might offer a spatial background
for remapping other sensory information. Supporting this idea,
evidence suggests that eye-centered coordinates are used to align
neural representations of space for different sensory modalities
in the brain (Jay and Sparks, 1984; Cohen and Andersen, 2002;
Pouget et al., 2002; King, 2009). When the visual information
is not available, such as in blind individuals, the visual input
starts to be activated by auditory stimuli and responses in these
areas to auditory stimuli appear to be organized in a topographic
manner (Rauschecker, 1995; Collignon et al., 2009, 2011, 2013;
Voss and Zatorre, 2012; Abboud and Cohen, 2018; Harrar et al.,
2018; Voss, 2018).

A possible explanation of our findings could be that the bias we
observed is the result of the ongoing audio cortical reorganization
due to the lack of visual input. This cortical reorganization is a fast
process that starts immediately when the visual input is loss such
as in MD individuals. The recruitment of the visual cortex from
the auditory modality could produce the misperception of sound
localization that we observed because audio and visual spatial
maps require some time to realign. On the other hand, it is not

clear which is the short term benefit of this audio reorganization.
Indeed on one side, the attraction of sound is not useful to
enhance audio spatial precision as it happens in blind individuals
[as previously showed by Lessard et al. (1998)] since the audio
precision we observed in this work is the same between sighted
and MD participants. On the other side, it produces a strong
misperception of sound, which is perceived as more central than
the real position and this can be problematic for MD individuals.

Taking into consideration these two aspects mentioned
above, a second possible explanation that we can consider
is that the effect observed here is a result of multisensory
integration process. Spatial audio and visual information are
commonly integrated to create a unique percept when vision
is available. In sighted individuals, given the higher reliability
of the visual information for space, a visual dominance
is reported as for example in the ventriloquist effect (as
predicted by Bayesian Modeling e.g., see Alais and Burr, 2004).
Considering this processing, our results could be also discussed
in terms of reorganization of multisensory mechanisms. When
the high reliability of visual input is decreasing, due to
the loss of visual input such as in MD participants, the
remaining visual spots are more weighted than predicted.
This wrong weight may affect the spatial processing of
multisensory information resulting in a capture of sound thus
producing an “inverse ventriloquist effect.” This effect could
be stronger in older than young participants who show less
cortical plasticity and less multisensory integration skills (Lund,
1985; Kramer et al., 2004) which is in agreement with our
correlation results.

Thirdly, a final possibility is that attention may have a role
on the bias we observed. Santangelo and Macaluso (2012) have
reviewed several behavioral and fMRI studies showing that
attention can affect how audio and visual signals interact with
each other in spatial domain (Santangelo and Macaluso, 2012;
Stein, 2012). In this context, scotoma is indeed a “black hole” and
with potential risks coming therefore, attentional resources can
act as anchors by attracting audio signals in the invisible regions
to increase the quantity of information, hence drawing attention
of audio modality toward the non-visual zone. To disentangle
which one of these three explanations is the correct, further
investigations will be necessary considering cortical analysis, top
down processing and multisensory modeling.

Two competing hypotheses have been proposed to explain
the neural mechanisms of multisensory activation after visual
deprivation (Amedi et al., 2007; Striem-Amit et al., 2012; Ortiz-
Terán et al., 2017; Chebat et al., 2018): the “rewiring hypothesis”
suggests that cross-modal brain responses are mediated by the
formation of new pathways in the sensory deprived brain and
the “unmasking hypothesis” suggests that the loss of a sensory
input induces unmasking and/or strengthening of the existing
neural pathways. Our results support the unmasking hypothesis
suggesting that cortical reorganization is a fast process that
supports changes of audio space perception after a short period
of visual loss. These results may have a strong impact for
rehabilitation purposes by using the audio input to improve
spatial representation and to stimulate residual visual regions of
patients having central scotoma due to Macular Degeneration.
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Learning and memorizing sequences of events is an important function of the human

brain and the basis for forming expectations and making predictions. Learning is

facilitated by repeating a sequence several times, causing rhythmic appearance of the

individual sequence elements. This observation invites to consider the resulting multitude

of rhythms as a spectral “fingerprint” which characterizes the respective sequence. Here

we explore the implications of this perspective by developing a neurobiologically plausible

computational model which captures this “fingerprint” by attuning an ensemble of neural

oscillators. In our model, this attuning process is based on a number of oscillatory

phenomena that have been observed in electrophysiological recordings of brain activity

like synchronization, phase locking, and reset as well as cross-frequency coupling. We

compare the learning properties of the model with behavioral results from a study in

human participants and observe good agreement of the errors for different levels of

complexity of the sequence to be memorized. Finally, we suggest an extension of the

model for processing sequences that extend over several sensory modalities.

Keywords: phase-locked loops, phase reset, frequency tuning, multisensory integration, crossmodal, prediction

1. INTRODUCTION

Oscillations are a ubiquitous phenomenon when brain activity is observed at a sufficiently
high temporal resolution, e.g., using EEG/MEG (electro-/magneto-encephalography), or invasive
methods. Great progress has been made toward understanding the functional role of oscillations in
cognitive processes (Singer, 1999; Engel et al., 2001, 2013; Canolty and Knight, 2010; Giraud and
Poeppel, 2012; Fries, 2015). Their rhythmic nature suggests that neuronal oscillations could be used
by the brain for learning, recognizing and producing rhythmic patterns in the interaction with the
environment, and corresponding mechanisms have been suggested and studied in computational
models. In particular, oscillator-based models have replicated many of the properties of human
memory for serial order (Brown et al., 2000). To this end, the two most relevant computational
mechanisms are the encoding of arbitrary time intervals by an ensemble of oscillators with different
periods and the dynamic adjustment of oscillation frequency and phase. The time representation
by a single oscillator is limited by its period length and phase resolution. In a set of oscillators with
different frequencies and phases however more rapid oscillations can provide temporal accuracy,
while slower oscillations disambiguate cycles of the faster oscillations (Church and Broadbent,
1990). Basically the phases of the oscillators in the set provide a unique temporal context which
can be associated with a sequence of events in the environment (Brown et al., 2000). This dynamic
context has a number of desirable properties for learning sequences of events: First, despite the
cyclic activity of the individual oscillators, the vector of the combined phases repeats over very
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long epochs if their frequency ratios are appropriately chosen.
By associating items in a complex sequence (e.g., ABAC)
with the dynamic learning context, repetitions of the same
item can be disambiguated. Second, the learning context for
adjacent time points, when only the phases of oscillators with
higher frequencies made substantial progress, is more similar
than between more distant points, when also the phases of
the low-frequency rhythms progressed. This property makes
the approach suitable for sequences that involve temporal
hierarchies like, for example, spoken language. And third, the
series of learning contexts can easily be replayed by resetting the
oscillators to their initial phase and restarting the clocking. By
modifying the scale of the time signal that drives the oscillators in
the set, stored sequences can be replayed at rates that are different
from the original one.

The dynamic adjustment of oscillation frequency and
phase is another mechanism which is frequently employed in
computational models. The main idea is that the phase of
the input relative to the ongoing oscillations determines how
the synchronization patterns between the neural populations
change. Sudden changes of the phase of ongoing oscillations
in response to a stimulation, so called phase resetting, can
frequently be observed in signals recorded from human and
animal brains, where this phenomenon is considered to underlie
multisensory integration functions (Lakatos et al., 2012; van
Atteveldt et al., 2014). The simultaneous tuning of phase and
frequency is aptly modeled by a phase-locked loop (PLL),
in which the phase difference between an external rhythm
and the ongoing oscillation generates a signal that adjusts the
PLL’s frequency to minimize this phase difference. In PLL-
based computational models of neuronal processing, memorized
patterns are not equilibria or attractor states, like in conventional
artificial neural networks, but synchronized oscillatory states
with a certain phase relation (Hoppensteadt and Izhikevich,
2000). The dynamically stable oscillation patterns can flexibly
bind and unbind neural populations by synchronization, which
can be used to model cognitive processes in working memory
for associating and dissociating elements, inference by binding
objects to the variables of a predicate, or algebraic operations
defined by the transition rules between oscillation patterns of the
network (Pina et al., 2018).

In this article we introduce a new perspective on sequence
learning and present a computational model which integrates
the two mechanisms of information processing by oscillatory
dynamics that were discussed above. This perspective rests on the
observation that when humans learn sequences, they frequently
do so by verbally or mentally repeating the sequence over and
over again. For example, to memorize the number code 9392,
one might repeat “9392 9392 9392...” a few times, e.g., by reading
it off again from a note or mentally rehearsing it in short-term
memory. This repetition can entrain a rhythm for each item.
In the example, appearances of the digit “9” would entrain a
high frequency rhythm, whereas the rhythms entrained by digits
“3” and “2” would have lower frequencies and distinct phases.
In addition to the periods that correspond to the temporal
distance between any two repeating items, even slower rhythms
can emerge when items in every other repetition are considered,

whereas fast rhythms could cycle several times between two
successive appearances of an item. All the different rhythms that
are entrained by this sequence together constitute a characteristic
entity that can be used to recognize correct instantiations of
the sequence and detect deviations. Any incongruent item, e.g.,
the erroneous “2” at the end of “9392 932,” would disturb
the rhythms that were entrained by digits “2” and “9” during
the learning phase and would be easily detected. From this
perspective, the rhythms of a sequence appear to be analogous
to the polyphony of an orchestra in which the tempi of the
individual instruments compose an integrated experience that
is unique for the respective piece of music and that is easily
impaired by one or several instruments getting out of tune.

In the following, we develop a model that implements this
concept by an ensemble of oscillators with a learning rule
which attunes them to a given sequence. We analyze the error
detection accuracy of the model and compare it to those from a
cohort of human participants who performed the same sequence
learning task. Finally we explore an extension of the model that
demonstrates learning of sequences that involve more than one
sensory modality.

2. METHODS

2.1. Oscillator Ensemble Model
We start by developing the model equations for input from
a single sensory modality. In each time step, the phase φ of
every oscillator in the ensemble is updated according to the
following equation:

φ(t + 1) = φ(t)+ 2π f (t)+ η (1)

The noise η models random fluctuations in the period of
neuronal oscillations and is sampled from a normal distribution.
The learning objective for the ensemble is to associate a set of
target inputs Î = {Î1, Î2, . . .} with target phases φ̂ = {φ̂1, φ̂2 . . .}.
This requires adjusting oscillation frequencies f to match the
rhythm at which target inputs are presented.

2.1.1. Learning Algorithm for Tuning Individual

Oscillators
We distinguish three states depending on the phase when an
input is presented at time t to the oscillator: If the phase φ(t) is
close to the target phase φ̂i of an input Îi, we call this oscillation
locked to the rhythm of this input. This is the dynamically stable
state for an oscillator, when no further adjustments to its phase or
frequency are made by the learning algorithm. If the phase is in a
given range around the target phase but not (yet) locked, we call
this state locking. Oscillations in this state will have their phases
set to the target phase of the respective input in the next time step,
and the frequency will be adjusted to match the rhythm of the
input. We will call any other phase in transit, which means that
this oscillator will not be tuned in the current time step. These
oscillators are either locking or locked to other target phases, or
they constitute a pool of “free” oscillators which are available for
synchronizing at a later time or when the input sequence changes.
Using two corresponding thresholds θlocked and θlocking , the three
states can be formally defined by:
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1. Locked: |φ(t)− φ̂| < θlocked
2. Locking: θlocked < |φ(t)− φ̂| < θlocking

3. In transit: θlocking < |φ(t)− φ̂|

Depending on phase state at a given time t, oscillators are updated
as follows. The phase of oscillators in locked or transit state is
changed according to Equation (1), and their frequency is not
modified, i.e., f (t + 1) = f (t). Oscillators in the locking state
however have their phases and frequencies adjusted depending
on the input I. If I = Îi, the phase is set to the target phase φ̂i and
the frequency is increased or decreased depending on whether
the current phase is lagging or leading w.r.t. the target phase:

φ(t + 1) = φ̂i (2)

f (t + 1) = f (t)−
φ(t)− φ̂i

2π1T
(3)

Delta T is the number of time steps since the last phase reset of
the respective oscillator. It is used to scale the magnitude of the
frequency change that is calculated from the phase difference to
the magnitude of the oscillator’s current frequency f (t).

If the input does not correspond to the phase to which an
oscillator is locking, i.e., I 6= Îi, then the phase is inverted and the
period length is increased or decreased depending on whether the
current phase is lagging or leading w.r.t. the target phase so that
in the next cycle, the target phase is reached one sequence item
later or earlier than it would have with the current period length:

φ(t + 1) = 2π − φ̂i (4)

f (t + 1) = f (t)+
1

1T



f (t)−
φ(t)+

(
2π − φ̂i

)

2π1T



 (5)

Note that this learning algorithm neither ensures that all rhythms
composed by a sequence are picked up by the ensemble nor that
the tuning process converges for each oscillator. It does ensure
however that the number of locked oscillators monotonically
increases over time. The number of rhythms that are picked up
from the polyphony in the sequence by the ensemble is a function
of the ensemble size, i.e., the number of oscillators.

2.1.2. Calculating the Error Signal
Initially, most oscillators will adjust their phases and frequencies
until they match the rhythm of one of the items in the sequence.
As the tuning progresses, fewer and fewer oscillators will be in
the locking state at any time point. This suggests that the total
number of locking oscillators is a measure for the attunement of
the ensemble to the sequence. Now, if an item suddenly appears
at the wrong position, the oscillators that were tuned to the
original item at this position would restart tuning, hence the
sudden increase in locking oscillators could be used to detect
incongruent items.

One approach for this detection would be the definition
of a threshold which would signal a sequence violation when
exceeded. The two problems with this approach are that it is
not obvious how such threshold could be defined in advance
and that the error signal very likely is above the threshold not

only for an incongruent item, but also during the initial learning
phase.We therefore looked for a solution that does not require an
additional parameter and that accounts for the tuning during the
learning phase. What differentiates the learning phase from the
re-tuning for an incongruent item is the time since the last phase
reset: The initially random phase and frequency of an oscillator
will be relatively far off the rhythms that are generated by the
sequence; therefore, they will be adjusted several times until they
match the rhythm of a particular item. In contrast, the oscillator
probably has been attuned for some time before an incongruent
item appears. Thus, the time since the last adjustment was made
to the oscillator by the learning algorithm is an indicator whether
or not this oscillator was in tune with any one rhythm in the
sequence. This indicator yields a much stronger signal when an
incongruent item perturbs an attuned ensemble than during the
initial tuning process. Using the function δi(t) to indicate whether
oscillator i in an ensemble of size N has a phase reset at time t
(Equations 2, 4), we define the error signal by:

e(t) =

N∑

i

δi(t)1Ti, (6)

and the decision about the (in-)congruence of the current item is
given by:

incongruent =

{
true if e(t) > max e(1 . . . t − 1)

false otherwise
(7)

2.2. Accommodating Several Sensory
Modalities
In the brain, signals from different sensory modalities are
processed in different yet interacting cortical areas. We model
these cortical areas by modules of oscillator ensembles which
receive input from a single modality. Just tagging ensembles
as “visual” or “auditory” obviously changes nothing in the
dynamics of the corresponding oscillators; therefore, a non-
trivial extension of the model toward multimodal sensory input
requires introducing additional distinguishing features. Rather
than assuming fundamentally different processing mechanisms
in different sensory modalities, we consider it to be more
appropriate to think of similar mechanisms that operate in
different parameter regimes for each modality. For example,
auditory processing in the human brain has a higher temporal
resolution than visual processing (Fujisaki et al., 2012), but
the anatomical structure of auditory and visual cortices does
not seem to be fundamentally different (Rauschecker, 2015).
This finding inspired us to use different base frequencies in
different modules. Thus the multimodal model we investigate
here consisted of a visual module and an auditory module in
which the oscillator ensembles were initialized in a frequency
band that was five times higher than that for the ensembles
in the visual module. The admittedly arbitrary selection of
this frequency ratio was inspired by the intent to demonstrate
robustness of the model over a wide range of frequencies.
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2.3. Numerical Simulation
To model the results from the human study, we generated
the input from the pixel values of a sequence of images. Each
oscillator in an ensemble received input from the same pixel
in the images, and there was one ensemble per pixel. Stimulus
images from the human study were downsampled to a resolution
of 20 × 20 pixels. There was no topographic mapping of the
input or any other spatial layout of the ensembles. The two target
inputs (Î1 = black, Î2 = white) were associated with phases
φ̂1 = π/2 and φ̂2 = 3/2π , respectively. There was also a
background color in the images that provided no input (I = 0).
The distribution for sampling the noise term in Equation (1) had
zero mean and a standard deviation of 1× 10−10. The thresholds
for defining locked and locking oscillations were θlocked = π/60
and θlocking = π/6.

The properties of both models were determined by running
repeatedly numerical simulations with randomized initial
conditions. All the results we present below show the average of
100 runs. Initial frequencies for ensembles in the visual module
were drawn from a uniform random distribution in the interval
[0.01 1], whereas the interval for ensembles in the auditory
module was [5 6]. Initial phases in both modules had a uniformly
random distribution in the interval [0 2π].

2.4. Human Study
We performed a magnetoencephalography study in human
participants to investigate the neural mechanisms of sequence
learning. Results of analyzing the neurophysiological data will be
published elsewhere. Here we use only the behavioral results to
compare them to the model output.

Subjects observed different sequences of visual and auditory
stimuli. Sequence repetition stopped after a random interval
at which subjects were asked whether the last item they had
seen or heard was a valid element of the sequence (congruent
item) or whether it violated the sequence they had perceived so
far (incongruent item). Two stimulation conditions were used:
In one condition, visual and auditory stimuli were presented
simultaneously, but subjects were asked to attend to the sequence
only in one sensory modality and neglect the other. Therefore,
we call this condition the unimodal condition. In the other
condition, the items of the sequence were presented either as a
visual or auditory stimulus, and subjects were requested to attend
to an abstract, modality-independent feature of the stimulus and
neglect themodality in which the stimulus was presented.We call
this condition the crossmodal condition.

The sequences in the unimodal condition were composed of 5
items showing either a horizontally (H) or vertically (V) oriented
Gabor patch (10◦ visual angle, 0.5 cycles per degree), resulting in
a total of 32 different sequences. Each stimulus was displayed for
150 ms and followed by 550 ms of a uniform gray background
(–). A sine wave tone was presented simultaneously with the
image to both ears of the subject. The frequency was either high
(2,000 Hz) or low (1,800 Hz). Its volume was adjusted to 30
dB above the hearing threshold of the subject. The association
between pitch of the tone and orientation of the Gabor patch
was fixed in all but the last item of the sequence for each subject

and randomized across subjects. Figure 1A shows the sequence
-V-H-V-V-V as an example.

For the crossmodal condition, each item in the sequence
was a combination of 2 feature dimensions (height, intensity), 2
feature levels (high/low, strong/weak), and 2 modalities (visual,
auditory). Visual “high” and “low” stimuli were gray discs (6◦

visual angle) above or below the horizontal midline, respectively.
Auditory stimuli were the same like in the unimodal condition.
Intensity was varied between two contrast levels of the disc in
the visual stimuli and two volume levels of the beeps. Subjects
were tested on random subsets from the space of sequences. The
trivial sequences in which all items have the same feature level
were excluded. In each block of the crossmodal condition, they
were requested to attend to only one feature dimension (height
or intensity) and neglect the other.

A green fixation cross (0.25◦ visual angle) was shown at
the center of the screen, and subjects were asked to maintain
fixation during the stimulation. Sequences were repeated until
at least 8 and at most 20 items were presented in the unimodal
condition. Within this range, a hazard rate of 0.377 was used to
randomize the actual sequence length. Since learning crossmodal
sequences was more difficult, at least 10 and at most 20 items
were presented in this condition. Here, a hazard rate of 0.448
was used to randomize the actual sequence length. The fixation
cross turned red 1,200 ms after the offset of the last image,
indicating that the subjects should decide whether or not the last
item seen was congruent with the sequence. Using the index or
middle finger of the right hand, they hit one of two buttons on
a response pad that had the responses “yes” (congruent) or “no”
(incongruent) assigned. The ratio of congruent/incongruent test
items was 0.5. The fixation cross turned green again after the
subjects pressed a button, and after another 1,500 ms delay, the
next trial began.

Sequences were presented in blocks of 32, followed by a
short break. Blocks with the congruent/incongruent task were
alternated with blocks in which subjects solved an n-back
memory task. In this task, subjects had to decide whether the
last item matched the nth previous one. In order to adjust the
average performance across participants in the n-back memory
task to that in the sequence prediction task, 20 of them
performed a 1-back task and 9 a 2-back task. In contrast to the
congruent/incongruent task, the memory task did not require
subjects to learn the whole sequence, but only to remember the
last two stimuli seen. In the crossmodal condition, a different
control task was employed. Here subjects decided whether or not
the last stimulus had appeared anywhere in the sequence before.
Deviants were generated by jittering the vertical position of the
disc or the pitch of the tone in the terminal stimulus. Each subject
completed two sessions of 16 blocks each on separate days.

Twenty nine healthy volunteers (26.3± 4.2 years, 17 females)
participated in the unimodal human study. Another 25 healthy
volunteers (25.1 ± 3.5 years, 14 females) participated in the
crossmodal human study. They gave written informed consent
and received financial compensation. The study was approved
by the ethics committee of the medical association of the city of
Hamburg. The experiments were performed in accordance with
the Declaration of Helsinki.
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FIGURE 1 | (A) Example of an audiovisual sequence for the unimodal task. Sequences were composed of 5 items that were either horizontally (H) or vertically (V)

oriented Gabor patches and simultaneously played high- and low-pitch beeps. The sequence -V-H-V-V-V is repeated from item 6 on. (B) Example of the sequences

that were used in the crossmodal condition. Here, 4 items that were either a visual stimulus (V) or a beep (A) were presented, each representing a “high” (H) or “low” (L)

stimulus. The example shows the sequence -VL-VH-AL-VL.The sequence is repeated from item 5 on.

The computational models were studied with the same
stimulus material, but the following simplifications were made:
The unimodal model was stimulated with the sequence of images
only, corresponding to the blocks in which the participants
were requested to attend to the visual modality and neglect the
auditory. For testing the multimodal model, we used the subset
of stimuli that varied only in one feature dimension and that
were constant in the other. The model works on a single feature
dimension which may be height as well as intensity. Without loss
of generality we selected height for the distinguishing feature.
From the 256 possible sequences (2 feature levels, 2 modalities,
4 items), we excluded the 32 strictly unimodal ones and tested
the model on all remaining 224 truly crossmodal sequences.
Figure 1B shows an example sequence.

3. RESULTS

3.1. Unimodal Model
First we demonstrate the properties of the model for two
oscillator ensembles which receive input from two representative
locations in the images. At location 1 the gray level is different
for the horizontal and vertical Gabor patches; at location 2 it is
the same (see Figure 2). Hence the sequence -H-V-V-V-V, for
example, drives the input of the ensemble at location 1 with
0B0W0W0W0W, whereas the input sequence at location 2 reads
0W0W0W0W0W (B-black, W-white, 0-no input).

The learning rule adjusts the phases and frequencies to the
polyphony that is afforded by the sequence. This attunement
process is slower for the more complex input pattern at
location 1 than for the regular pattern at location 2, where
the frequencies and phases basically converged after about 10
repetitions (Figure 3A vs. Figure 3B). This is also evident from
the phase dynamics which shows frequent phase resets only in
the beginning for the stable input (Figure 3D) but up to about
100 item repetitions for the alternating input (Figure 3C). The
slow attunement in the case of alternating input results from the
fact that in the example sequence -H-V-V-V-V, the H stimulus is

FIGURE 2 | Examples for image locations (marked by “+”) where the input to

the oscillator ensembles is different for horizontal and vertical Gabor patches

(1) and where it is the same (2).

seen only once per repetition of the sequence (relative frequency
of 0.1), and hence more repetitions are needed to synchronize
with this input rhythm than to the rhythm of a more frequently
presented input. In the ensemble with the stable input, most
oscillators tune to a frequency of 0.5 and the target phase for
white pixels (Figure 3H). For the alternating input, however, the
dominant frequency is 0.1, corresponding to the periodicity of
the input at the full length of the sequence, and there are two
phase clusters of oscillators which synchronize to the H and V
items (black and white input), respectively (Figure 3G).

If the model is tested with a conflicting item after the
sequence was learned, many oscillators in the ensemble undergo
a phase reset, which causes a sharp increase of the error signal
(Figures 3E,F). By detecting whether or not the last item caused
a significant increase of the error signal, the model can classify
the tested item as incongruent or congruent, respectively.

We analyzed the response accuracy of the model depending
on how many times the sequence was repeated before testing an
item (Figure 4A, black curve). After the initial presentation of the
sequence, the model’s response accuracy is at chance level (0.5). It
starts to increase after the second repetition of the sequence (test
item 16) and approaches 1 after about 30 repetitions (item 60).
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FIGURE 3 | Temporal evolution of frequencies (A,B), phases (C,D), error signals (E,F), and phase-frequency distribution (G,H) of two ensembles, each consisting of

100 oscillators, with input that differs between items in the sequence (location 1–A,C,E,G) or is the same in all items (location 2–B,D,F,H). The sequence was

composed of 20 repetitions of -H-V-V-V-V and an incongruent V test stimulus at the end. The phase-frequency distributions in panels g and h show a snapshot before

the test stimulus was presented.

We also analyzed the response accuracy for congruent and
incongruent test items separately. Congruence of the tested item
is correctly recognized after a few repetitions (Figure 4A, green
curve). Incongruent items, however, seem to require much longer
learning time (Figure 4A, red curve). An interesting observation

is that response accuracy for incongruent test items does not
increase monotonically with more repetitions, but that it clearly
depends on the position of the item in the sequence: It is high
when the item at the first position is tested and decreases for
the following positions before this pattern is repeated at a higher
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FIGURE 4 | (A) Probability of correct model output when the item given on the x-axis is tested in the unimodal model. Green/red curves show the accuracy when the

tested item is congruent/incongruent, respectively, black curve is the combined accuracy. All accuracies are averages across all 32 sequences generated from 5

items. (B) Average response accuracy of human participants in the unimodal condition. Errorbars show standard error.

FIGURE 5 | Gray-level-coded map of clusters of oscillators that attune to

similar combinations of phase and frequency and hence exhibit a

functional coupling.

accuracy level for the next repetition of the sequence. This
property is reflected in the periodic modulation of the response
accuracy for incongruent items, where the period length is given
by the number of items in the sequence.

After demonstrating the properties of two individual oscillator
ensembles, we investigated the dynamic relation between several
ensembles. To this end we mapped low-resolution versions of the
Gabor stimuli to a corresponding number of oscillator ensembles
and analyzed the distribution of the phases and frequencies
that developed in the ensembles. Ensembles which received
the same input developed similar combinations of phases and
frequencies. In Figure 5 we show the map of phase-frequency
clusters that results from the sequence -H-V-V-V-V, for example.
After attuning to this sequence, the ensembles developed five
clusters with distinct phase-frequency combinations. Clusters of
oscillators with the same phase-frequency combination reflect a
spatial segmentation of the stimuli in the input sequence.

The distribution of phases and frequencies in each of the
five clusters is shown in Figure 6. Since the image background
did not yield any input, the corresponding oscillators retain the
initial random distribution of phases and frequencies (cluster
1). Regions with white/black pixels in both stimuli drive the
corresponding oscillators to the respective target phases of 3/2π
or π/2, respectively (clusters 5 and 4). Most oscillators in these
clusters tune to a frequency of 0.5, which reflects the interleaving
presentation of an empty stimulus in the sequence. Nevertheless
there are oscillators tuning to other frequencies which are
compatible with this input rhythm, e.g., 1, 0.3 etc. For image
regions where the input alternates between black and white along
the sequence, the resulting phase-frequency landscape is more
complex. Here the dominant frequency is 0.1, corresponding to
the repetition of an item after all other items in the sequence
were shown. The phases converged to the target phase of the
respective gray level in the stimulus (cluster 3 - black, cluster
2- white). Whereas there is only one phase compatible with the
occurrence of the rare stimulus (H in the example here), the
frequent stimulus can entrain oscillations with different phases
(corresponding to the repetition of the first, second etc. V in
the sequence), which is expressed in the phase bins immediately
above and below 3/2π and π/2 in clusters 3 and 2, respectively.

3.2. Multimodal Model
In a similar manner like for the unimodal model, we investigated
the relation between the response accuracy of the multimodal
and the number of repetitions of the input sequence. With
an increasing number of repetitions, the response accuracy
improves (Figure 7A, black curve), and it is generally higher
when congruent items are tested than for incongruent items
(green and red curves, respectively). A comparison of the
accuracies with the unimodal model (cf. Figure 4A) shows that
the dependence on the sequence repetitions is very similar despite
the fact that themultimodal model was tested with a larger variety
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FIGURE 6 | Relative phase-frequency distribution for each of the five clusters shown in Figure 5. Color represents the number of oscillators with the indicated

combination of phase and frequency relative to the bin with the maximum number.

FIGURE 7 | (A) Probability of correct model output when the item given on the x-axis is tested in the multimodal model. Green/red curves show the accuracy when

the tested item is congruent/incongruent, respectively, black curve is the combined accuracy. All accuracies are averages across all 224 sequences generated from

four items. (B) Average response accuracy of human participants in the crossmodal condition. Errorbars show standard error.

of sequences (224 vs. 32) which were composed of only four
rather than the five elements for the unimodal model.

Finally we considered the distribution of phases and
frequencies after a multimodal sequence had been learned
(Figure 9). As expected, the majority of oscillators in the
ensemble that was stimulated by the auditory signal tuned to
the base frequency of the auditory modality (5) and adjusted
their phase to the presentation of the auditory stimulus (3/2π).
An interesting finding is that a sizable population of oscillators
tuned to the neighboring frequency bins centered around 4.9
and 5.1 and phases of 0 and π , respectively. Closer inspection of
these phase-frequency combinations revealed that these rhythms
never hit the target phase of the auditory stimulus, i.e., they
were always in transit when the auditory stimulus appeared,
but that their phase nonetheless was compatible with the silent
episodes during presentation of the visual stimuli. This pattern of
phase-frequency distributions is repeated at the frequencies 4.5
and 5.5.

The ensembles that receive visual input (Figure 8) mostly tune
to the target phase for bright input (3/2π) and a frequency of
one half the base frequency of the visual modality, i.e., 0.5. In the
ensemble that receives input from location 2, several oscillators
also tune to the frequencies 0.4 and 0.6 and a phase of π/2.

FIGURE 8 | Examples for image locations (marked by “+”) in the visual part of

the multimodal sequence which provide input only in VH (1), only in VL (2), or

both (3) stimuli.

This activation of neighboring frequencies at a different phase
resembles the observation we made for the auditory ensemble,
which likely is a consequence of the fact that the VL stimulus
appears at the same frequency in the example sequence as
the AH stimulus.

Taken together, the phase-frequency analyses demonstrate
that the learning rule tunes the oscillator ensembles to the various
rhythms that are generated by repeating the sequence, and that
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FIGURE 9 | Relative phase-frequency distribution after learning the multimodal sequence AH-VL-VH-VH in an ensemble which received auditory input and three

ensembles which received visual input from the representative locations shown in Figure 8. Color represents the number of oscillators in the cluster that have the

indicated combination of phase and frequency. Note the different frequency axes for auditory and visual ensembles.

the higher base frequency of the auditory ensemble affords amore
complex polyphony to emerge.

3.3. Comparison With Behavioral Results
From the Human Study
Response accuracy of the human participants seemed to
increase with more repetitions of the sequence. This trend was
more obvious in the unimodal study (Figure 4B) than in the
crossmodal study (Figure 7B). In both studies, congruent items
were more frequently identified correctly than when the tested
item was incongruent with the sequence. In comparison with
the response accuracies of the models, human performance was
always better for a given sequence length and more similar
for congruent and incongruent test items. With more sequence
repetitions however, the response accuracies of the models
increased to the level of the human participants and beyond,
indicating that learning is slower in the models.

From the unimodal study, we also analyzed the response
accuracies for each of the 32 sequences that the subjects were
requested to learn. As expected, the two trivial sequences with
only one pattern (always H or V, corresponding to a binary
code of 0 and 31, respectively) were the easiest to learn, thus
yielding the highest response accuracies (Figure 10). Next are
the sequences in which one element differs from the other four
(binary codes 1, 2, 4, 8, 15, 16, 23, 27, 29, 30). The remaining
sequences were the most difficult to learn. It is interesting
to observe that the response accuracies of the unimodal
model largely follow this distribution (Pearson correlation
r=0.81,p=2.2× 10−8). The model also reproduces the response
accuracies of the human participants when sequences are
grouped by complexity quantified by their entropy (Figure 10,
right panel).

4. DISCUSSION

The oscillator ensemble model is a new approach to sequence
learning which exploits the rhythmic, “polyphonic” stimulation
that results from repeating a sequence. The basic functional
units in this model are oscillators which lock to a rhythm

by resetting their phase and adapting their frequency. The
results from the unimodal model show that the oscillator
ensembles attune to the various rhythms that are generated
by a sequence of images. Clusters of distinct combinations
of phases and frequencies link image regions that correspond
to a meaningful segmentation of the input. Hence clusters
of similar phase-frequency distributions can be considered as
functional units which link oscillator ensembles that receive
input from corresponding regions in visual space. This is an
interesting feature, because the segmentation is derived solely
from the temporal coherence of image patterns and not from a
topographical map of the input. Whereas the functional coupling
between ensembles within a cluster is given by their tuning to
the same frequency but different phases, such coupling between
clusters can be established by oscillators sharing the same phase
but having different harmonic frequencies. It has been suggested
that such cross-frequency coupling is relevant for integrating
functional systems across multiple spatiotemporal scales in the
human brain, and it has developed to a well-established concept
for understanding brain activity (Engel et al., 2013). In our
model, cross-frequency coupling is not achieved by fitting the
ensemble with a set of fixed frequencies; instead, it results
from tuning frequencies and phases to the rhythms in the
sequence. The multimodal version of the model demonstrates
that the functional coupling also links neuronal populations
which operate in different parameter ranges for processing
sensory information from different modalities.

It seems also noteworthy that the model does not build or
maintain an iconic internal representation of the stimuli. Yet
it is capable of predicting whether or not an input is a valid
continuation of a sequence. Any incongruent input perturbs
the phases of those oscillators that hitherto were attuned to the
rhythm of the item at the respective position in the sequence.
In the model, this perturbation generates an error signal. The
magnitude of this signal is much larger for perturbations of
attuned oscillators than for the phase and frequency adjustments
made during the initial phase of the learning process. The ability
to correctly predict whether or not a given input is a valid
continuation of the sequence improves with the number of its
repetitions. Our analyses show that the model can correctly
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FIGURE 10 | Probabilities of correct response (hit rate) for each of the 32 unimodal sequences that the participants in the study learned (in blue) and response

accuracies of the model (in red). Errorbars show the standard error. The sequence number is given by the binary representation of the sequence with the H stimulus

corresponding to a 0 bit and V to 1. The right panel shows the average hit rate when sequences are grouped by their entropy.

identify valid inputs after only a few repetitions, but that the
recognition of incongruent inputs requires to repeat the sequence
more often. This matches well with the observations from human
sequence learning, albeit the models need a longer learning
phase to reach the response accuracy of the human participants.
Investigating the effect of the model parameters on the learning
rate is beyond the scope of the current study. Another aspect that
we did not investigate here is that the model could also be used to
detect inaccuracies in the timing of the stimulus presentation. It
is therefore general enough to cover aspects of predicting “what”
and “when” at the same time. Considering also the timing of the
error signal would allow us to compare the model dynamics with
the reaction times of the human participants, which will be an
interesting objective for the further development of the model.

In our model, item position is encoded in the phase relation
of a multitude of rhythms which are entrained by the sequence.
This corresponds well with concepts for sequence encoding in
the hippocampus, derived from animal studies, in which the
timing of spikes relative to the phase of ongoing extracellular
theta oscillations is considered to encode position in a behavioral
sequence. Even if the stimuli are separated by several seconds,
their order information is compressed into a single theta cycle,
providing a mechanism for short-term buffering and working
memory (Jensen and Lisman, 2005). When the animal traverses
a sequence of places, sequence items subsequently move toward
the beginning of the theta cycle. This phase precession has been
suggested to be the underlying mechanism for episodic memory
(Jaramillo and Kempter, 2017). In the human brain, the phase
relation between gamma and theta oscillations may constitute a
similar mechanism (Heusser et al., 2016). Our model also relates
to the multi-timescale, quasi-rhythmic properties of speech,

where coordinated delta, theta and gamma oscillations have
been suggested to hierarchically structure incoming information
(Giraud and Poeppel, 2012). Further support for the relevance
of frequency and phase adaptation comes from earlier studies
which found single-cell oscillators in somatosensory cortex
of awake monkeys that seemed to operate as a phase-locked
loop (PLL) for processing of tactile information during texture
discrimination (Ahissar and Vaadia, 1990). Phase and frequency
adaptation has also been observed in thalamo-cortical loops
in the brain of rats and guinea pigs, where the frequency
of spontaneous oscillations shifted under rhythmic stimulation
of a whisker to the stimulation frequency. This may be
an essential function for actively decoding information from
vibrissal touch (Ahissar et al., 1997).

The joint phase space of the oscillators in an ensemble
constitutes a pacemaker system that could be used for
the discrimination between intervals in the range of
seconds, minutes and for circadian rhythm (Church and
Broadbent, 1990). Even when the oscillation frequencies
in the set are in the same range but have slightly
different periods, the characteristic “beating,” i.e., the
time after which the phases of several of these oscillators
match, can be exploited to learn sequences of time
intervals (Miall, 1992).

By comparing the properties of the model with results of
humans in a sequence learning task, we contribute to a long
line of approaches to understanding the properties of human
sequence learning through the development of oscillator models
that reproduce the structure of errors that humans make in
sequence learning (see overview in Church and Broadbent,
1990; Brown et al., 2000). The main difference between these
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models and ours is how they explain what drives the oscillator
ensemble. Whereas in our model the oscillator rhythms adjust
to the sequence, those models work with sets of intrinsically
driven, fixed-frequency oscillations. This internal pacemaker
provides a dynamic learning context that can be associated
with the occurrence of an event by Hebbian learning (for
example Brown et al., 2000). It has been argued that models of
association with intrinsic oscillation are more compatible with
findings from experimental studies on the sequence and timing
of events (Gallistel, 1990). However, the striking similarity in the
structure of errors for congruent and incongruent test items as
well as for varying levels of complexity of sequences between
the oscillator ensemble model and the human participants
in our study suggests that, at least in this dataset, entrained
oscillations captured the relevant processes for solving the
task. It seems worth therefore to explore the implications of a
concept in which externally entrainable and intrinsically driven
oscillations interact.
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Efficient multisensory integration is often influenced by other cognitive processes
including, but not limited to, semantic congruency and focused endogenous attention.
Semantic congruency can re-allocate processing resources to the location of a
congruent stimulus, while attention can prioritize the integration of multi-sensory stimuli
under focus. Here, we explore the robustness of this phenomenon in the context
of three stimuli, two of which are in the focus of endogenous attention. Participants
completed an endogenous attention task with a stimulus compound consisting of 3
different objects: (1) a visual object (V) in the foreground, (2) an auditory object (A), and
(3) a visual background scene object (B). Three groups of participants focused their
attention on either the visual object and auditory sound (Group VA, n = 30), the visual
object and the background (VB, n = 27), or the auditory sound and the background (AB,
n = 30), and judged the semantic congruency of the objects under focus. Congruency
varied systematically across all 3 stimuli: All stimuli could be semantically incongruent
(e.g., V, ambulance; A, church bell; and B, swimming-pool) or all could be congruent
(e.g., V, lion; A, roar; and B, savannah), or two objects could be congruent with the
remaining one incongruent to the other two (e.g., V, duck; A, quack; and B, phone
booth). Participants exhibited a distinct pattern of errors: when participants attended
two congruent objects (e.g., group VA: V, lion; A, roar), in the presence of an unattended,
incongruent third object (e.g., B, bath room) they tended to make more errors than in
any other stimulus combination. Drift diffusion modeling of the behavioral data revealed
a significantly smaller drift rate in two-congruent-attended condition, indicating slower
evidence accumulation, which was likely due to interference from the unattended,
incongruent object. Interference with evidence accumulation occurred independently of
which pair of objects was in the focus of attention, which suggests that the vulnerability
of congruency judgments to incongruent unattended distractors is not affected by
sensory modalities. A control analysis ruled out the simple explanation of a negative
response bias. These findings implicate that our perceptual system is highly sensitive to
semantic incongruencies even when they are not endogenously attended.

Keywords: cross-modal integration, semantic congruency, exogenous attention, endogenous attention, drift
diffusion model
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INTRODUCTION

Cross-modal, multi-sensory integration is one of the most
remarkable achievements of perceptual processing as it enables
the binding of information from different sensory modalities into
a single coherent percept [see, e.g., (Senkowski et al., 2008) for a
review]. Yet the efficiency of integration is influenced by several
modulating factors including, but not limited to, spatial and
temporal proximity (Meredith and Stein, 1986a,b), and semantic
congruency (Taylor et al., 2006; Doehrmann and Naumer, 2008;
Steinweg and Mast, 2017). By varying these modulating factors
and observing their effects on multi-sensory integration, we can
study how the brain accomplishes the requisite binding processes,
along with the role of endogenous attention. To capture these
dynamics requires a design that engages endogenous attention in
selecting at least two objects for comparison, in the presence of at
least one distractor, and controlling for modality.

Several studies point to the notion that attention is likely
critical for the advantage that semantic congruence confers upon
cognitive processes of cross-modal integration. For instance,
recent accounts demonstrate a performance advantage for
semantically congruent multisensory stimuli during visual search
(Iordanescu et al., 2008, 2010), but only under low cognitive
load (Matusz et al., 2015). Furthermore, semantic congruency of
multi-modal stimuli facilitates perceptual processing of unrelated
material at the same location of the congruent multisensory
prime (Mastroberardino et al., 2015). The implication of this first
line of research is that semantic congruency facilitates attentional
selection at the location of the congruent stimuli and boosts
perceptual processing and performance. This attentional focusing
is not directly linked to the stimuli per se and therefore cannot
be classified as “bottom-up” or “stimulus-driven” (Corbetta and
Shulman, 2002; Koelewijn et al., 2010; Talsma et al., 2010). Rather,
it is enhanced by the semantic congruency of the stimuli. The
facilitation is therefore due to learned semantic associations and
as such must be classed as a “top-down” process. Yet in these
studies, the attentional engagement is exogenously controlled
via semantic priming, and voluntary, endogenous attention was
not investigated.

Contrasting with the previous literature, a more recent second
line of research investigating the same cognitive processes
arrived at a different conclusion. A recent study found that
task performance involving two cross-modal objects diminished
in the presence of a third modality if that task-irrelevant
object was semantically congruent with one, but not both,
of the two task-relevant objects, especially when the task-
relevant objects were themselves incongruent (Misselhorn et al.,
2016). A similar effect was observed in two other studies.
When participants attended to one of two laterally presented
visual streams of letters while performing a sequential matching
task, their response times (RT) were significantly longer, when
incongruent, task-irrelevant letter sounds were presented as well.
The increase in RTs on these trials coincided with increased
fMRI activation in the anterior cingulate cortex and over fronto-
central EEG sensors (Zimmer et al., 2010a,b). These findings
suggest that semantically incongruent stimuli induce a cognitive
conflict between the components of a multi-modal stimulus and

subsequently, likely exogenously, recruit executive attentional
resources to resolve the conflict, thus reducing the efficiency
of multi-sensory integration of semantically congruent stimuli.
Thus, this line of research suggested that the voluntary allocation
of attentional resources in processing semantically congruent
stimuli can be disrupted by endogenously unattended, task-
irrelevant semantically incongruent stimuli.

These two lines of research imply different mechanisms for
the interaction of semantic congruency and attentional selection.
While the former suggests that congruent stimuli at an attended
location boosts performance, the latter implies that incongruent
and unattended stimuli recruit exogenous attention, and so
divert resources from processing the congruent stimuli in the
attentional focus, which reduces behavioral performance.

Here, we aimed to address these conflicting findings by
investigating the interaction of attentional focus and semantic
congruency in greater detail. We systematically varied the
semantic congruency of three objects (a visual object, an
auditory sound, and a visual background scene) in single- and
cross-modal combinations, under different attentional foci and
under conditions of explicit semantic congruence processing.
Participants in three different groups directed their attention
to two of three objects in the stimuli and made semantic
congruency judgments for two attended stimuli. This allowed
us to observe behavioral performance under conditions that
replicated and extended critical features of the two lines of
research yielding conflicting evidence. We were able to evaluate
whether performance for attended congruent stimuli is increased
or diminished in the presence of a distracting unattended and
incongruent stimulus.

MATERIALS AND METHODS

Participants
Participants (n = 87, mean age 25.53 years, SD 3.71, and
43 male) were recruited from the student population of the
University Hamburg and participated for a small payment. They
all had normal hearing and normal or corrected-to-normal
vision. The study was approved by the ethics committee of the
German Psychological Society (JG072015) and was conducted in
accordance with the principles of the Declaration of Helsinki on
human subject research.

Experimental Design and Stimuli
To investigate the interaction of semantic congruence and
attentional focus on the processing of multi-sensory stimuli, we
created 3-object-component stimuli consisting of a visual object
in the foreground (V), and typical auditory object (A) associated
with the visual object (V), and a visual background scene (B).
Semantic congruence was designed as a within-subject factor and
varied between stimulus components, giving rise to the following
5 experimental conditions1 (see also Table 1): (1) none of the
components are semantically congruent (coded as III), (2) V and

1The three letters in the condition codes always refer to 1, visual; 2, auditory; 3,
background in that order.
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TABLE 1 | Experimental conditions and example objects comprising the
cross-modal stimuli conditions.

Condition code Visual Auditory Background

III Door bell Ambulance Sky

CCI Duck Duck Phone booth

CIC Fire truck Church bell Burning house

ICC Vacuum cleaner Door bell Door with bell

CCC Lion Roar Savannah

Condition codes are listed in the order visual-auditory-background. C
indicates semantic congruency between the respective components, I indicates
incongruency with the other components.

A are congruent (coded as CCI, 1st and 2nd components are
congruence), (3) V and B are congruent (coded as CIC, 1st, and
3rd component are congruent), (4) A and B are congruent (coded
as ICC, 2nd and 3rd components are congruence, and (5) all
components are congruent (coded as CCC).

Endogenous attention was manipulated as a between-subject
factor in 3 groups: visual object and auditory sound (VA, n = 30,
16 males); visual object and background (VB, n = 27, 13 males);
and auditory sound and background (AB, n = 30, 14 males).
Participants in each group were instructed to focus their attention
on the two object components of their group and judge these
2 components accordingly (see section “Experimental Task and
Procedure” below).

Visual objects were pictures of animals and everyday items,
auditory objects were typical sounds of these visual objects, and
background scenes depicted typical contexts in which the visual
or auditory object could be found (see Figure 1 for an example).
Incongruent combinations were created by randomly pairing an
indoor object with an outdoor background (or sound) and vice
versa. Upright pictures of the visual objects were scaled to a height
of 250 pixels (px) [7.6 degrees of visual angle (dva)], horizontal
pictures were scaled to a width of 510 px (16.13 dva, mean
height 252.82 px, SD 52.41 px, mean width 315.48 px, and SD
99.98 px). The background pictures were scaled to 768× 1024 px
(25.36× 33.4 dva) and presented with a gray frame on a Samsung
SyncMaster 2443DW screen. The sounds were presented via

headphones with a volume of ∼65 DB. All stimulus aspects were
presented simultaneously with the foreground picture centered
on the background (see Figure 1 for an example).

Experimental Task and Procedure
After obtaining informed consent from the subject the
experimenter instructed the participants about the goals of
the study, the 3-component nature of the stimuli, and the
attentional focus that they should maintain throughout the
experiment. Participants were instructed to evaluate the
congruency of the two components in their attentional focus,
which was framed as a judgment of plausibility. Initial pilot
data suggested that participants understood the term “plausible”
better than “congruent.” In the main experiment it was explained
to the participants that their plausibility judgment referred to
the semantic congruence of the two components in question.
They were told to respond as quickly and as accurately as
possible with either the left and right arrow key representing
a “YES” or a “NO” answer. The assignment of the response to
the two response keys was counterbalanced across participants
who responded with their index and middle finger of their
dominant hand. Prior to the main experiment each participant
completed a few training trials from the CCC and III condition
until they responded correctly in 5 consecutive trials. In the
main experiment, participants completed 150 trials (30 in each
condition). Each stimulus was presented for a variable duration
(depending on the duration of the sound clip (mean duration
1.53 s). Participants had to respond within 4 s. Failure to response
in this window resulted in a missing trial. Trials were separated
by 1.4 s. The experiment lasted around 15 min.

Data Preprocessing
Response accuracy and RT were collected as experimental data.
All missing trials were removed from the data. Outliers were
defined as 2 SD above the mean of the square-root transformed
RT data and also removed from the experimental data. Finally,
the effect of stimulus duration was removed using a regression
approach: RT data were log-transformed and regressed onto the
stimulus duration (general linear model with stimulus duration

FIGURE 1 | Experimental Task. Participants were presented with a 3-components stimulus compound consisting of a visual foreground object (V), an auditory sound
(A) pertaining to the foreground object, and a visual background image (B). Each group of participants were instructed to focus their attention on 2 components and
judge the semantic congruency of them (i.e., make plausibility judgment). In the example (presented to the AB group), the visual and auditory components are
congruent, whereas the background is incongruent to the two foreground components. The displayed response (“not plausible”) is a correct response for
participants in the AB group.
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and intercept as predictor variables). Duration-predicted RTs
were removed by subtractions, and residuals from this regression
were back projected into the original RT space and subjected to
exponential transformation.

Statistical Analysis
Response accuracy and RT were analyzed with linear mixed-
effects models using the nlme package in R. Specifically, we set
up omnibus mixed-effects repeated measures ANOVAs with the
within-subject factor Condition (III, CCI, CIC, ICC, and CCC)
and the between subject-factor Focus (VA, VB, and AB) using
the formula:

DV ∼ condition ∗ focus, random = ∼ 1 | id/condition

where DV is the dependent variable “percent error,” “RT (correct
trials},” or “RT (incorrect trials).” Post hoc Bonferroni-adjusted
contrasts were carried out using the multcomp package in R.

Cognitive Computational Modeling
Hierarchical Bayesian parameter estimation with the drift
diffusion model (DDM) yielded group and individual participant
estimates the drift rate (v), the boundary separation (a), and
the non-accumulation time (t), also called the non-decision time
(Ratcliff and McKoon, 2008). The DDM treats a binary decision
as the result of an evidence accumulation process, in which the
gathering of evidence for one or the other option is modeled as a
Gaussian random walk that drifts at a certain rate toward one of
two decision boundaries representing the two alternative options
[see Ratcliff and McKoon (2008) for a schematic of the model].
Once one of these boundaries is crossed, a decision for this
option is made. There are 4 primary free parameters in the DDM,
whose optimized values are determined during model fitting:
(1) the drift rate v governs the speed of evidence accumulation,
corresponds to the slope of the random walk, and reflects choice
difficulty, (2) the boundary separation a represents the distance
between both decision boundaries and models how cautious a
decision maker is with higher caution corresponding to a larger
boundary separation, (3) the starting point z is the point between
both decision boundaries at which the evidence accumulation
starts. Although this parameter is unused in this study (i.e., is set
to a/2) it can model general biases toward one or the other option,
(4) the non-decision time t captures all aspects of the RT that
are not related to evidence accumulation, i.e., stimulus-encoding,
feature selection, action-planning, and action-execution time.

Model fitting with the HDDM package in Python (Wiecki
et al., 2013) offered a Hierarchical Bayesian workflow using
Markov Chain Monte Carlo (MCMC) techniques. In most
cases this yields more stable results than traditional Maximum
Likelihood estimation and includes measures of estimation
uncertainty in the form of posterior distributions of parameters.
In addition, subject-specific parameter values are sampled from
an overarching group distribution, which is updated using the
data from all participants. This usually leads to more stable
optimized parameter solutions, while also allowing for individual
variability in these estimates.

The package offers a model parameterization depending on
the experimental factors, e.g., one could model different drift
rates for all conditions or for all groups or any combination
of them. We compared these different model variants using
the deviance information criterion (DIC), a model comparison
index similar to the Bayesian information criterion (BIC),
but applicable for Bayesian analysis using MCMC sampling.
A difference in DIC scores of 15 and above is considered
meaningful (Spiegelhalter et al., 2002).

Each model variant was fit using the HDDM package (Wiecki
et al., 2013) with 4 chains and 7000 samples following a burn-
in phase of 500 samples to reduce the dependencies on initial
values and to reach a steady state of the chain. Convergence was
tested through visual inspection of the chains and by calculating
the R̂ statistic (Gelman and Rubin, 1992), which compares
within-chain and between-chain variance. The threshold for non-
convergence was set at 1.05. We used the HDDM defaults as
group-level priors, namely the drift rate was modeled as a group-
level normal distribution [N (µ,σ2)], whose parameters µv and
σv

2 were modeled as N (2,3) and half-normal distribution HN
(2) (2 being the variance parameter). The boundary separation
was modeled as a Gamma (G) distribution, whose parameters µa
and σa

2 were modeled as G (1.5,0.75) and HN (0.1) distributions.
Finally, the non-decision time was also modeled as a normal
distribution, whose parameters µt and σt

2 were modeled as
N (2,3) and HN (1) distributions. We compared parameter
estimates for the different levels of each factor by mean of the
group posterior distribution.

RESULTS

Analysis of Errors and Response Times
We first inspected the percent errors in all 3 groups of subjects
with different attentional foci across all 5 stimulus conditions.
To be counted as an error, the participant would have to (a)
respond “not plausible” to two congruent components in the
attentional focus (e.g., in group VA visual: lion, auditory: roar,
background: swimming pool) or (b) respond “plausible” to two
incongruent components in the attentional focus (e.g., in group
VA visual: fire truck, auditory: church bell, background: burning
house). Overall, participants only made few errors on the task
(overall percentage of errors: (group VA: 8.1% incorrect, 91.2%
correct, 0.7% missing trials, group VB: 9.1% incorrect, 90.5%
correct, 0.4% missing trials, group AB: 13.2% incorrect, 86.3%
correct, and 0.5% missing trials). However, despite the overall
low number of errors the different groups made substantially
more errors in different, yet specific conditions in the task (see
Figure 2): whenever the unattended component was incongruent
to the two congruent components in the attentional focus (i.e., in
group VA – CCI, in group VB – CIC, in group AB – ICC), the
error rate was substantially higher, than in all other conditions.

A mixed effects ANOVA with the within-subject factor
Condition and between-subject factor Focus confirmed a
significant main effect of Condition (F4,336 = 10.48, p < 0.0001)
and a significant Condition × Focus interaction effect
(F8,336 = 14.42, p < 0.0001). Subsequent, Bonferroni-adjusted
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FIGURE 2 | Mean percent errors and response times. Participants in all 3 attention groups committed substantially more errors when the unattended stimulus
component was incongruent to the other (congruent) components in the attentional focus.

contrasts between the different stimulus conditions revealed that
the interaction effect was driven in each group by a significant
difference between the critical condition (in group VA – CCI,
in group VB – CIC, in group AB – ICC) and all conditions
(all z-values > 3.9, p < 0.001).

Across all conditions a “NO” response (not plausible) was
more frequently correct (for instance in conditions III, CIC,
and ICC for the VA group) than a “YES” response (namely in
condition CCI and CCC for the group VA). Thus, it is conceivable
that participants learned about this subtle response bias and
that they committed more errors in the critical conditions. The
possibility of such a response bias is detectable, if the data are
sorted according to the response itself instead of the response
accuracy. If a response bias was present in the data, we would
expect to see higher frequency of “NO” response across all
conditions in all groups. Figure 3 demonstrates that this is not
the case. In fact, the pattern found in this analysis mirrors the
finding from Figure 2: in the critical conditions there were
a significant number of “NO” responses (i.e., and incorrect
decision), whereas in the non-critical condition there were mostly
“NO” and “YES” responses (correct responses depending on the
condition). Importantly, this figure reveals that there was no
overall bias toward “NO” responses.

In contrast, analyses of the RTs did not yield an equally
systematic pattern of findings despite a significant effect for
Condition (F4,331 = 7.11, p < 0.001) and for Condition x Focus
(F8,331 = 5.53, p< 0.0001) for RT in correct trials and a significant
effect for Condition (F4,170 = 2.78, p = 0.029) and a trend-level
Condition × Focus interaction (F8,170 = 1.86, p = 0.069) for RT
in error trials. Subsequent Bonferroni-adjusted post hoc contrasts
revealed that for RTs in correct trials only, condition ICC in

group AB was significantly longer than all other conditions (all
z-values > 4.1, p < 0.001). In addition, for RTs in error trials,
conditions III, and CCI in group VB were significantly larger than
all other conditions (all z-values > 3.16, p < 0.05). There were no
additional RT effects in any of the other groups.

CONCLUSION

In conclusion, participants made significantly more errors
whenever the unattended stimulus was semantically incongruent
with the two congruent stimuli in the focus of endogenous
attention. However, a corresponding increase in RT on those
error trials could not be found.

Computational Cognitive Modeling
In the next step we applied cognitive computational modeling to
these data to gain additional insights into the cognitive processes
governing the responses in this task. The drift diffusion model
(DDM) (Ratcliff and McKoon, 2008) is particularly well-suited
for modeling the decisions in this task. A decision in the DDM
is the result of an evidence accumulation process, which “drifts”
at a specific rate to one of two decision boundaries representing
the two decision options. In our case we defined the two options
as “correct” and “incorrect” responses as this form of data coding
has provided fruitful insights into the speed-accuracy trade-off
present in most behavioral decision-making paradigms (Ratcliff
and Rouder, 1998; Steinweg and Mast, 2017).

We compare variants of the DDM with different
configurations of free parameters. Each of the 3 selected
parameters (drift rate v, boundary separation a, and non-decision
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FIGURE 3 | Response bias in the data (proportion scale). Data are displayed according to the actual response of the participant (“YES” and “NO”) for all conditions in
all groups. While in some conditions subject responded with “NO” more frequently, there was no overall evidence for a general response bias in the data.

time t) could be modeled as a single parameter across all stimulus
conditions or as a single parameter across all groups. In
contrast, each parameter could be also modeled separately
for each stimulus condition and for each attention group. We
systematically compared all possible variants of the DDM using
their DIC score (see Figure 4).

This model comparison analysis reveals that the model
variants in which all three parameters are modeled separately
for each condition provided the best model fit, but there
are no meaningful differences between these regarding the
group impact (DIC differences < 15). Nevertheless, model 1
(the model with the lowest DIC score) also provided separate
parameter distributions for each group, which allowed us to
compare parameter distribution for each condition in each
group. Given that the critical condition corresponded to different
stimulus configurations in each group, model 1 thus provides
the granularity to detect the effect of critical conditions in
the parameter distributions. We show the group posterior
distributions for all parameters in Figure 5.

Interestingly, the drift rate parameter (Figure 5, top) for the
critical condition is always smaller than all other conditions in
each group. This resembles the patterns of errors seen in the
behavioral analysis above: whenever the unattended stimulus
component was incongruent to the two other components in the
attentional focus, we observed a reduced drift rate parameter.
Similarly, the boundary separation parameter for the critical

condition is also the smallest compared with all other conditions,
but this pattern is less clear than for the drift rate. Finally,
no such pattern of the critical conditions was observed for the
non-decision time.

Having selected the best-fitting model from within a family
of model variants does not insure that the model actually fits
the data. This can be tested using posterior predictive checks
(PPC), in which the model generates new data using the fitted
parameters. These data are then compared to the original data.
Below, we show the PPC findings for our selected Model 4, which
simulated 500 new data points for the same number of subjects
in each attention group. The response accuracy and correct and
error RTs were then compared to the original data (see Figure 2).
Figure 6 shows the findings from this posterior predictive check.

The correct and incorrect responses of the PPC match the
original data with high accuracy. However, the simulated RTs
do not fit with the subtle differences in correct and incorrect
RTs in the data. In fact, it seems that in the PCC simulations
all conditions in all groups are modeled with essentially
the same mean RT.

DISCUSSION

We found a specific effect of attentional focus on the processing
of our multi-sensory stimuli. Whenever the unattended
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FIGURE 4 | Model comparison. Top, deviance information criterion (DIC) for all model variants tested in this study sorted by size. DIC balances model fit (deviance,
difference between fitted model and data), and model complexity (number of free parameters). Middle, indicator variable for the model variant. A black dot for a
particular model variant indicates that the parameter listed in the row is modeled separately for each level of the factors Condition (5 levels) or Focus (3 levels
corresponding to the three experimental groups). Bottom, number of parameters (color-coded) for each model variant indicating model complexity.

FIGURE 5 | Group posterior distribution for all parameters in each condition and attention group. The critical conditions are plotted with thick lines. Note that the
variance parameter for the normal distribution shown here is always the same for a specific parameter (i.e., each condition in each group has the same variance
parameter).

stimulus is incongruent with the two others in the attentional
focus, participants made significantly more errors in semantic
congruency judgments than in any other stimulus condition.
This effect is paralleled by a significantly reduced drift rate
parameter in these stimulus conditions as revealed in our
drift diffusion modeling. RTs do not show a similar increase
in RTs in error trials in these specific conditions. Rather, the
pattern in error RTs seems to be driven by non-systematic
increases in specific stimulus conditions, but unrelated to the
attentional manipulation.

Our findings are in line with those studies demonstrating
that semantically incongruent stimuli outside the focus of
attention can capture those processing resources and disrupt
the processing and evaluation of the attended stimuli (Zimmer
et al., 2010a,b; Misselhorn et al., 2016). Indeed, it seems that in
our data semantically incongruent stimuli induce a re-focusing
of attention, such that the incongruency of the unattended
stimulus is then considered leading to an incorrect (incongruent)
judgment. If this was the case, then from the perspective of the
participants, they would be making correct responses. This could
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FIGURE 6 | Posterior predictive checks. The simulated new data from Model 4 shows great accuracy in reproducing the choices (top), but it does not capture the
slight differences in the RTs in correct, and incorrect trials (bottom).

be the reason why the RTs between correct and incorrect trials
in these critical conditions are almost identical (see Figure 2
bottom, VA – CCI, VB – CIC, AB – ICC). Such an account would
still be consistent with the neuroimaging findings from earlier
studies demonstrating higher activations in anterior cingulate
cortex (ACC) implying a processing of the conflict between
semantically incongruent stimuli (Zimmer et al., 2010b). Other
previous studies that also investigated sematic congruency in a
multimodal context also observed higher ACC activations during
the processing on incongruent stimuli (Weissman et al., 2004)
reminiscent of the findings on conflict detection in the Stroop
task (Fan et al., 2003). The brains in our subjects could be
detecting the incongruency between the one of the previously
attended congruent stimuli and the incongruent previously
unattended, but now re-focused stimuli and yet still make an
incongruent (but from their perspective correct) judgment. Of
note, our primary finding of attentional capture of semantically
incongruent stimuli occurs irrespective of the modality of the
stimuli suggesting that we observed a general effect between
attentional selection that is influence by sematic (in) congruency.

Nevertheless, previous studies investigating semantic
congruency with multi-modal stimuli also observed modulation
of brain activity in the primary uni-sensory areas. In general,
activation in primary sensory cortices in boosted if the modality
is task-relevant (Weissman et al., 2004) and (semantically)
congruent with other modality in stimulus compound (van
Atteveldt et al., 2004), although an active encoding task might
alleviate the advantage for congruent stimulus compounds
(van Atteveldt et al., 2007). In fact, other studies have also

reported increased activity in higher activations for incongruent
stimuli in primary sensory areas of the target modality
(Weissman et al., 2004). These neural findings generally support
the influence of endogenous and exogenous attention on the
processing of multi-modal semantic congruency: as attention is
directed toward a target modality (endogenous attention) the
activation in those primary uni-sensory is increased, but if the
target modality is incongruent with an unattended modality,
processing resources are also recruited (exogenous attention) and
activation in related brain regions is also increased. Our findings
support the exogenous attention recruitment hypothesis: that
is, participants committed significantly more errors whenever
the unattended stimulus was incongruent to the two stimuli in
the attentional focus, irrespective of the sensory modality of the
stimuli. This points toward a general attentional bias for the
processing of semantic incongruency.

In our study, the differences between the critical conditions
mentioned above and the other conditions involving one
incongruent stimulus is that in the critical conditions, the
participants are initially primed to process a congruent stimulus
combination because it is in the attentional focus. The
incongruent stimulus then captures attentional resources leading
to a refocusing of attention and prompting the participants
to make more “incongruent” judgments, which are counted
as “incorrect” here from the standpoint of an all-knowing
observer, who knows what the participant should focus on.
That is, in the critical condition the congruent stimulus pair
comes first, whereas in the other conditions (e.g., for VA – CIC
and ICC) the attention is already focused on an incongruent
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stimulus pair, which is in most cases correctly detected through
an “incongruent” judgment. This could be a potential reason
for the lack of a systematic response time difference between
the conditions: participants make the identical “incongruent”
judgment, which could take approximately the same amount of
processing time, but in the critical condition these responses are
counted as incorrect.

Our drift diffusion modeling revealed that the observed
increases in error rate in the critical conditions involving
an unattended incongruent stimulus were paralleled by a
significantly lower drift rate (Figure 5). The drift rate in
diffusion models describes the speed of evidence accumulation
until a decision is reached, when the diffusion process hits
one of the two decision boundaries (Ratcliff and McKoon,
2008). In terms of cognitive processing, a lower drift rate
in the presence of constant boundary separation means that
participants take longer to accumulate evidence over the same
boundary. This is commonly an indicator of difficulty induced
by task condition or some other variable. The situation in
our critical conditions would qualify as increased difficulty
of evidence accumulation if exogenous attention engaged by
incongruent, task-irrelevant stimuli interfered with endogenous
attention. This implication has further evidence in that our
model fitting of the DDM resulted in a significantly reduced
boundary separation parameter in the critical condition, meaning
that the representation of the two task options of congruent vs.
incongruent was less stably separate, likely due to interference
from exogenous attention to the incongruent distractor. The
combination of lower drift diffusion rates and reduced boundary
separation is consistent with our observation that RTs were not
reduced in the critical conditions, and with the increased error
rates in decisions in the critical conditions. Thus, the cognitive
computational modeling revealed cognitive dynamics that a more
conventional analysis of RTs would have missed.

Our RT data (Figure 2) also revealed a small number of
significant RT differences between correct and incorrect trials
in some conditions in the VB and AB groups. However, there
appears to be no systematic pattern in these differences that can
be related to the experimental manipulation. A potential reason
for these non-systematic effects could be that the overall error rate
in the experiment is quite low leaving only a few error trials for
computing an average error RT. It is therefore likely that some of
these high error RTs are driven by outlying data points that were
not detected in our preprocessing steps.

The low number and unsystematic occurrence of error trials
is also the likely reason that the classic DDM failed to replicate
the observed differences in RT in the posterior predictive check
(Figure 6), while at the same time reproducing the pattern of
errors quite accurately. In fact, the synthetic data generated from
the fitted parameters of the classic DDM exhibited no difference
in mean RTs for any condition in any group, which could be
interpreted that the observed RT differences are unsystematic and
cannot be accurately modeled by the classic DDM. One way of
accounting for different RT distributions of correct and incorrect
responses is to add parameters that model inter-trial variability
of drift rate, starting point and non-decision time. We did not
include these parameters, because our main interest was on the

core DDM parameters such as drift rate and boundary separation,
and estimating the latter can be compromised by adding the
former (Boehm et al., 2018). However, this does not mean that
the classic DDM is not suitable for modeling the data in our
experiment. In fact, by tuning drift rate, boundary separation
and non-decision time independently for each condition, the
model is capable of reproducing the pattern of correct, and
incorrect responses with a high degree of accuracy (Figure 6).
This reinforces the interpretation from above that a lower drift
rate in the critical condition indicates an increased processing
demand due to the refocusing of the attentional focus to include
the (formerly) unattended, incongruent stimulus.

Semantic congruency is a powerful amplifier of multi-sensory
integration leading to higher brain activation (Doehrmann and
Naumer, 2008) and better performance (Taylor et al., 2006;
Steinweg and Mast, 2017). In addition, it can focus non-
voluntary, “stimulus-driven” attention toward congruent stimuli
and can boost perceptual processing resources at their location
(Iordanescu et al., 2008, 2010). Moreover, semantic incongruency
can disrupt the perceptual processing of stimuli in the attentional
focus (Zimmer et al., 2010a,b). The findings of the present study
are in line with these previous findings as we were able to
show that semantic incongruency – independent of the stimulus
modality – led to a re-focusing of attention to include the
previous unattended (and incongruent) stimulus. It thus seems
that our perceptual system is finely attuned to detect semantic
incongruencies, even at a pre-attentive state. From a predictive
coding perspective (Rao and Ballard, 1999; Friston, 2005), such
incongruencies constitute prediction errors (violations of our
expectations), which prompts the reallocation of processing
resources via exogenous attention in implicitly attempting to
resolve the incongruency of the percept. This would imply
that the behavioral performance of our subjects in the critical
condition is not erroneous, but rather adaptive to the needs for
further cognitive processing independently of modality.
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Ventriloquism, the illusion that a voice appears to come from the moving mouth of
a puppet rather than from the actual speaker, is one of the classic examples of
multisensory processing. In the laboratory, this illusion can be reliably induced by
presenting simple meaningless audiovisual stimuli with a spatial discrepancy between
the auditory and visual components. Typically, the perceived location of the sound
source is biased toward the location of the visual stimulus (the ventriloquism effect).
The strength of the visual bias reflects the relative reliability of the visual and auditory
inputs as well as prior expectations that the two stimuli originated from the same source.
In addition to the ventriloquist illusion, exposure to spatially discrepant audiovisual
stimuli results in a subsequent recalibration of unisensory auditory localization (the
ventriloquism aftereffect). In the past years, the ventriloquism effect and aftereffect
have seen a resurgence as an experimental tool to elucidate basic mechanisms of
multisensory integration and learning. For example, recent studies have: (a) revealed
top-down influences from the reward and motor systems on cross-modal binding; (b)
dissociated recalibration processes operating at different time scales; and (c) identified
brain networks involved in the neuronal computations underlying multisensory integration
and learning. This mini review article provides a brief overview of established experimental
paradigms to measure the ventriloquism effect and aftereffect before summarizing these
pathbreaking new advancements. Finally, it is pointed out how the ventriloquism effect
and aftereffect could be utilized to address some of the current open questions in the
field of multisensory research.

Keywords: cross-modal, multisensory, recalibration, space, ventriloquism

INTRODUCTION

Ventriloquism, literally meaning to speak with the stomach, has a long cultural history
that dates back to the ancient Greeks (Connor, 2000). Modern-day ventriloquists entertain
their audiences by exploiting the illusion that their voice, produced without overt lip
movements, is perceived to originate from the moving lips of a puppet. This visual capture
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of the perceived auditory location has become one of the
most frequently studied examples of multisensory processing
in the scientific literature (Stratton, 1897; Klemm, 1909;
Thomas, 1941; Jackson, 1953; Thurlow and Jack, 1973;
Bertelson and Radeau, 1981; Bertelson and Aschersleben, 1998;
Alais and Burr, 2004).

In a typical experimental procedure, participants are
presented with a synchronous but spatially discrepant
audiovisual stimulus. When asked to localize the sound
source, participants usually perceive the auditory stimulus
closer to the visual stimulus than it actually is (Bertelson and
Radeau, 1981). Although this effect is often tested with simple
meaningless stimuli such as tones and light flashes, it has
become widely known as the ventriloquism effect (Howard
and Templeton, 1966). The strength of the ventriloquism
effect depends on the relative reliability of the auditory and
visual stimuli (Alais and Burr, 2004) as well as on the prior
(or expectation) that the two stimuli originated from the same
event (Van Wanrooij et al., 2010). This flexible multisensory
integration seen at the behavioral level is well-described
by Bayesian causal inference models in which the spatial
estimates obtained under the assumption of a common vs.
separate causes are combined (Körding et al., 2007; Rohe
and Noppeney, 2015b). Recent findings suggest that human
observers tend to put overly high emphasis on the visual
cue in this process (Arnold et al., 2019; Meijer et al., 2019).
In addition to the immediate visual influence on auditory
localization seen in the ventriloquism effect, exposure to
audiovisual stimuli with a consistent audiovisual spatial disparity
results in a subsequent recalibration of unisensory auditory

spatial perception known as the ventriloquism aftereffect
(Canon, 1970; Radeau and Bertelson, 1974; Recanzone,
1998). The aftereffect represents an instance of cross-
modal learning that can be dissociated from multisensory
integration seen in the ventriloquism effect (Bruns et al., 2011a;
Zaidel et al., 2011).

The ventriloquism effect and aftereffect are both highly
reliable effects that have been replicated in dozens of studies
(see Table 1). Both effects are not specific for audiovisual
processing but have been demonstrated for audio-tactile
and visuo-tactile stimulus pairings as well (Pick et al., 1969;
Caclin et al., 2002; Bruns and Röder, 2010; Bruns et al.,
2011b; Samad and Shams, 2016, 2018). This robustness and
versatility make them ideal experimental paradigms to study
basic mechanisms of multisensory integration and learning.
The extensive literature on the ventriloquism effect and
aftereffect has been summarized in several excellent reviews
(Bertelson and de Gelder, 2004; Woods and Recanzone,
2004; Recanzone, 2009; Chen and Vroomen, 2013). However,
since the last comprehensive review by Chen and Vroomen
(2013), several new lines of research have emerged that
have helped clarifying the role of the reward and motor
systems in cross-modal binding, the time scales involved
in recalibration, and the neural mechanisms underlying
multisensory integration and learning. The aim of the present
review article is to provide an update on these exciting
recent developments which are summarized in Table 1.
In addition, the following section describes some of the
standard procedures to measure the ventriloquism effect and
aftereffect to encourage more researchers to utilize these

TABLE 1 | Key studies on the ventriloquism effect and aftereffect published since 2013.

Study Main finding

Arnold et al. (2019) and Meijer et al. (2019) Visual bias in VE is stronger than predicted by maximum likelihood integration
Bruns et al. (2014) Monetary reward for accurate sound localization reduces the VE
Zierul et al. (2019) Reduced VE for self-initiated audiovisual stimuli
Zaidel et al. (2013) Feedback results in yoked recalibration of both cues in the same direction
Pages and Groh (2013) VAE depends on visual feedback rather than on audiovisual synchrony
Berger and Ehrsson (2013) and Berger and Ehrsson (2018) Imagined visual stimuli induce a VE and VAE
Delong et al. (2018) Subliminal visual stimuli induce a (reduced) VE
Bruns and Röder (2015) Immediate and cumulative VAE are dissociable processes
Bosen et al. (2017) VAE accumulates with repetitions and decays over time
Bosen et al. (2018) VAE consists of both a large and transient initial localization shift, as well as a smaller and more

enduring shift
Mendonça et al. (2015) Last audiovisual trial affects subsequent VAE the most
Watson et al. (2019) VAE involves distinct recalibration mechanisms operating at different time scales
Bruns and Röder (2019) Repeated training sessions enhance the VAE over days
Callan et al. (2015) VE is associated with modulation of activity in space-sensitive auditory cortex
Bonath et al. (2014) Separate but adjacent auditory regions code VE to synchronous and asynchronous stimuli
Rohe and Noppeney (2015a) and Rohe and Noppeney (2016) Multisensory integration and causal inference are performed in parietal regions
Aller and Noppeney (2019) Causal inference in the brain is accomplished by a dynamic encoding of multiple spatial

estimates
Park and Kayser (2019) VE and immediate VAE have a common neural substrate in parietal cortex
Cuppini et al. (2017) Biologically inspired neural network model explains behavioral VE
Zierul et al. (2017) VAE results in persistent adjustments of spatial representations in auditory cortex
Bruns and Röder (2017) VAE depends on the sensory context
Odegaard et al. (2017) Cross-modal binding (i.e., VE) increases after exposure to synchronous but spatially unrelated

stimuli
Odegaard and Shams (2016) Cross-modal binding (i.e., VE) is stable over time in adulthood

VE, ventriloquism effect; VAE, ventriloquism aftereffect.
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effects in their quest to tackle the remaining open questions in
multisensory research.

MEASURING THE VENTRILOQUISM
EFFECT AND AFTEREFFECT

The ventriloquism effect and aftereffect have been reliably
obtained with a large variety of different localization tasks.
These tasks can be categorized into absolute (or continuous)
localization measures and relative (or dichotomous) localization
measures. In absolute localization tasks, participants directly
localize the stimuli with a hand pointer (Lewald, 2002; Bruns
and Röder, 2015, 2017, 2019) or by performing a finger
(Frissen et al., 2003, 2005, 2012), head (Recanzone, 1998;
Van Wanrooij et al., 2010), or eye movement (Kopco et al.,
2009; Pages and Groh, 2013) toward the perceived stimulus
location. Some studies have used categorical responses
(e.g., left, center, or right) instead (Bonath et al., 2007,
2014; Bruns and Röder, 2010; Bruns et al., 2011a; Rohe and
Noppeney, 2015a, 2016; Zierul et al., 2017). While categorical
responses are less sensitive than continuous measures, they
are preferable in studies involving electrophysiological or
neuroimaging recordings to reduce motor noise. An alternative
are relative localization tasks, in which stimulus location
is judged relative to central fixation (i.e., left vs. right) or
relative to a reference stimulus in a two-alternative forced
choice (2AFC) manner (Bertelson and Aschersleben, 1998;
Recanzone, 1998; Bruns et al., 2011b; Berger and Ehrsson,
2018). Some authors have also advocated two-interval
forced choice (2IFC) procedures because they are less
susceptible to response strategies (Alais and Burr, 2004;
Vroomen and Stekelenburg, 2014).

The study design differs slightly depending on whether
the ventriloquism effect or the ventriloquism aftereffect (or
both) are to be measured (see Figure 1). To measure the
ventriloquism effect, it is critical that different degrees and
directions of cross-modal spatial disparity are presented in a
random order to avoid cumulative recalibration effects during
the test block (Bertelson and Radeau, 1981; Bertelson and de
Gelder, 2004). In addition, baseline localization can be assessed
in unimodal trials, either intermixed with the bimodal trials
or in a separate pretest block. Aside from the size of the
localization bias in the bimodal trials, the ventriloquism effect
has been conceptualized as the percentage of trials in which
participants perceive the (spatially disparate) cross-modal stimuli
as originating from a common cause or the same location
(Chen and Spence, 2017). Localization bias and perception of
unity are usually correlated (Hairston et al., 2003; Wallace
et al., 2004) but measure different aspects of cross-modal
integration (Bertelson and Radeau, 1981; Bosen et al., 2016;
Chen and Spence, 2017).

When assessing the ventriloquism aftereffect, a distinction
needs to be made between immediate and cumulative
recalibration effects (Bruns and Röder, 2015). In a study
design in which unimodal trials are intermixed with bimodal
trials (see Figure 1B), Wozny and Shams (2011) showed that
localization responses in unimodal trials are systematically

influenced by the cross-modal spatial disparity in the directly
preceding bimodal trial, indicating an immediate or trial-
by-trial recalibration effect. By contrast, the cumulative
ventriloquism aftereffect requires exposure to a consistent
cross-modal disparity (e.g., visual stimuli always 10◦ to
the right of auditory stimuli). Typically, unisensory sound
localization is measured before and after the exposure
block (see Figure 1C), and the cumulative aftereffect is
revealed by a shift in unisensory localization from pre- to
post-test (Recanzone, 1998; Lewald, 2002; Frissen et al., 2003;
Bruns and Röder, 2017).

Bruns and Röder (2015) recently introduced a procedure
that allows assessing both immediate and cumulative
aftereffects (as well as ventriloquism effects) at the same
time (see Figure 1D). In this paradigm, auditory-only and
audiovisual trials were intermixed. Crucially, tones of two
different sound frequencies were used that were paired with
opposite directions of audiovisual disparity (leftward vs.
rightward). Sound localization responses in auditory-only
trials (averaged across tone frequencies) were modulated
by the direction of audiovisual disparity in the directly
preceding audiovisual trial, indicating an immediate aftereffect.
Additionally, sound localization responses differed between
the two tone-frequencies, indicating a frequency-specific
cumulative aftereffect induced by the consistent pairing
of tone-frequency and direction of audiovisual disparity
(but see Frissen et al., 2003, 2005; Bruns and Röder, 2017;
for a discussion of the sound frequency specificity of the
cumulative aftereffect).

RECENT FINDINGS

Top-Down Influences on Cross-Modal
Binding and Learning
A long-standing debate in multisensory research is the extent
to which multisensory processing is influenced by top-down
factors (Röder and Büchel, 2009; Talsma et al., 2010). Contrary
to earlier findings suggesting that the ventriloquism effect
and aftereffect reflect largely automatic processes (Bertelson
et al., 2000; Vroomen et al., 2001; Passamonti et al., 2009;
Odegaard et al., 2016), several recent lines of evidence have
identified top-down influences on the ventriloquism effect
and aftereffect.

In a study by Bruns et al. (2014), participants could earn
either a high or a low monetary reward for accurate sound
localization performance, which put their motivational goal of
maximizing the reward in conflict with the auditory spatial bias
induced by the ventriloquism effect. As compared to stimuli
associated with a low reward, the ventriloquism effect was
significantly reduced for high reward stimuli. A similar reduction
of the ventriloquism effect was observed when emotionally
salient auditory stimuli (fearful voices) were presented prior
to the audiovisual test phase (Maiworm et al., 2012). In
both cases, the experimental manipulations did not affect
unisensory auditory localization performance, suggesting that
top-down influences from the emotion and reward systems
specifically reduced cross-modal binding. A similar pattern of
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FIGURE 1 | Typical experimental designs to measure the ventriloquism effect and aftereffect. Exemplarily, letters indicate unimodal auditory (A) trials and relative
locations of auditory (A) and visual (V) stimuli in bimodal trials. In an actual experiment, absolute stimulus locations typically vary between trials. (A) Ventriloquism
effect. Participants have to localize cross-modal stimuli with varying spatial discrepancies. Unisensory localization is assessed in an optional pretest block.
Comparison of responses between equivalent left- and right-side discrepancies or between bimodal and unimodal stimuli reveal the size of the ventriloquism effect.
(B) Immediate ventriloquism aftereffect. Intermixed presentation of bimodal and unimodal trials. Localization in unimodal trials is modulated by the cross-modal
discrepancy in the directly preceding bimodal trial. (C) Cumulative ventriloquism aftereffect. Unisensory sound localization is measured before and after exposure to
cross-modal stimuli with a consistent spatial discrepancy. (D) Design used in Bruns and Röder (2015) to measure the immediate and cumulative ventriloquism
aftereffects concurrently. Tones of two different sound-frequencies (A1 and A2) are consistently paired with opposite directions of cross-modal spatial discrepancy.
Differences in localization responses between unimodal trials preceded by audiovisual trials with leftward vs. rightward discrepancy reveal the immediate aftereffect,
and differences between unisensory localization of A1 vs. A2 reveal the cumulative aftereffect (see text for details).

results was observed in a recent study in which participants
either actively initiated audiovisual stimulus presentations
with a button press or were passively exposed to the same
stimuli. Contrary to the intuitive assumption that self-initiation
would increase the prior expectation that auditory and visual
stimuli had a common cause, a reduction of the size
of the ventriloquism effect was observed for self-initiated
stimuli, possibly due to an increased sensitivity to cross-
modal spatial discrepancies in the self-initiation condition
(Zierul et al., 2019).

A second line of research investigated the effects of
feedback information about the stimulus location on cross-
modal recalibration. In a visuo-vestibular version of the
ventriloquism aftereffect, participants received a reward for
correct localization responses which was contingent either
on the visual or on the vestibular cue. This manipulation
resulted in a yoked recalibration of both cues in the same
direction (Zaidel et al., 2013), whereas passive exposure
without feedback shifted both cues independently toward
each other (Zaidel et al., 2011). The importance of feedback
information was substantiated in the classic audiovisual
ventriloquism aftereffect. Here, asynchronous stimuli in which

the visual stimulus lagged the auditory stimulus and, thus,
provided feedback about the auditory location were more
effective in inducing an aftereffect than synchronous stimuli
in which the visual stimulus was extinguished too quickly to
provide feedback (Pages and Groh, 2013). Thus, feedback,
which presumably exerts top-down influences on perception,
might be an important but previously overlooked driver of
cross-modal recalibration.

Finally, in a third line of research, Berger and Ehrsson
(2013, 2014, 2018) showed that imagining a visual stimulus at
a location discrepant to an auditory stimulus had the same
effect on auditory localization as actually seeing a visual stimulus
at that location. Both imagery-induced ventriloquism effects
(Berger and Ehrsson, 2013, 2014) and aftereffects (Berger and
Ehrsson, 2018) were obtained. Explicit mental images were, thus,
integrated with auditory sensory input in a similar manner as
actual visual input, providing strong evidence for top-down
influences on multisensory processing. A somewhat opposite
approach was taken by Delong et al. (2018), who used continuous
flash suppression to render an actual visual stimulus invisible.
They obtained a significant ventriloquism effect with the invisible
stimuli, which was, however, reduced in size compared to visible
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stimuli. Taken together, these results show that the ventriloquism
effect is influenced by both bottom-up and top-down processes.

Time Scales of Cross-Modal Recalibration
Cross-modal recalibration in the ventriloquism aftereffect has
been described at two different time scales. Initial studies
measured shifts in sound localization after exposure to several
hundred audiovisual trials with a consistent spatial disparity
(Radeau and Bertelson, 1974; Recanzone, 1998; Lewald, 2002),
implicitly assuming that recalibration requires accumulated
evidence of cross-modal mismatch. This assumption was
challenged by findings demonstrating immediate effects on
sound localization after a single audiovisual exposure stimulus
(Wozny and Shams, 2011). Several recent studies have addressed
the theoretically important question of how immediate and
cumulative cross-modal recalibration are related.

A consistent finding is that the size of the ventriloquism
aftereffect increases if several audiovisual exposure trials with
a consistent spatial disparity precede the auditory test trials
(Wozny and Shams, 2011; Bruns and Röder, 2015; Bosen et al.,
2017, 2018), until the aftereffect reaches a maximum after about
180 exposure trials (Frissen et al., 2012). The last audiovisual
stimulus, however, seems to have a particularly strong influence
on subsequent sound localization (Mendonça et al., 2015).
Theoretically, the immediate and cumulative portions of the
ventriloquism aftereffect could be explained by the same
underlying mechanism, a strong but rapidly decaying immediate
aftereffect with a long tail that allows for accumulation across
trials (Bosen et al., 2018). However, recent experimental
evidence suggests dissociable mechanisms underlying immediate
and cumulative recalibration (Bruns and Röder, 2015;
Watson et al., 2019).

A controversial point is the longevity of the (cumulative)
ventriloquism aftereffect after cessation of cross-modal
discrepancy training. While some studies observed a rapid
decay of the aftereffect if there was a delay between audiovisual
exposure and auditory localization posttest (Bosen et al., 2017,
2018), others have found no significant decline of the aftereffect
(Frissen et al., 2012). However, it was assumed that the aftereffect
would last at most until new (spatially coincident) audiovisual
evidence is encountered, as would naturally occur after leaving
the experimental situation (Recanzone, 1998). Contrary to this
assumption, a recent study showed that repeated exposure to
audiovisual stimuli with a consistent spatial disparity enhanced
the ventriloquism aftereffect over the course of several days,
that is, aftereffects were still present after 24 h and accumulated
with additional audiovisual discrepancy training (Bruns and
Röder, 2019). This finding raises the possibility that cross-modal
recalibration effects are context-specific (e.g., for the laboratory
situation), making them more stable than previously thought.

Neural Mechanisms Underlying
Cross-Modal Binding and Learning
Neuroimaging studies have shown that the ventriloquism effect
is associated with a modulation of activity in space-sensitive
regions of the planum temporale in auditory cortex (Bonath et al.,
2007, 2014; Callan et al., 2015; Zierul et al., 2017). Behaviorally,

the ventriloquism effect is reduced if audiovisual stimuli
are presented asynchronously (Slutsky and Recanzone, 2001;
Wallace et al., 2004). Interestingly, Bonath et al. (2014) showed
that separate (but adjacent) regions of the planum temporale
coded ventriloquist illusions to synchronous and asynchronous
audiovisual stimuli, which might suggest an involvement of
different multisensory temporal integration windows.

Adjustments of auditory spatial processing in the
ventriloquism effect have been linked to feedback influences
on auditory cortex activity (Bonath et al., 2007; Bruns and
Röder, 2010). Recent EEG and functional magnetic resonance
imaging (fMRI) evidence has indeed implicated multisensory
association areas of the intraparietal sulcus in the generation
of the ventriloquism effect. While primary sensory areas
initially encoded the unisensory location estimates, posterior
intraparietal sulcus activity reflected the integrated estimate
which depends on the relative reliabilities of the auditory
and visual estimates (Rohe and Noppeney, 2015a). The
brain needs to weigh the unisensory estimate against the
integrated estimate due to the inherent uncertainty about
the true causal structure (Körding et al., 2007), and this
weighing was reflected in anterior intraparietal sulcus activity
emerging from 200 ms poststimulus onwards (Rohe and
Noppeney, 2015a; Aller and Noppeney, 2019). Parietal
representations were found to mediate both multisensory
integration and the immediate recalibration of unisensory
perception in the subsequent auditory trial (Park and Kayser,
2019). In a re-analysis of their data, Rohe and Noppeney
(2016) further showed that parietal areas take into account
top-down task relevance (i.e., which modality had to be
reported), which might suggest a neural basis for other
top-down influences discussed in the subsection ‘‘Top-Down
Influences on Cross-Modal Binding and Learning.’’ EEG
and MEG studies have revealed a crucial role of neural
oscillations in orchestrating the interplay between stimulus-
driven and top-down effects in multisensory processing
(Senkowski et al., 2008; Keil and Senkowski, 2018). Based
on the available evidence, neural network models of the
ventriloquism effect have been developed (Magosso et al., 2012;
Cuppini et al., 2017).

While the neural computations underlying multisensory
spatial integration and immediate recalibration might critically
depend on parietal areas, cross-modal recalibration in the
cumulative ventriloquism aftereffect was found to result in
an enduring change of spatial representations in the planum
temporale and an increase of connectivity between the planum
temporale and parietal areas (Zierul et al., 2017). This suggests
that sustained changes in unisensory sound localization reflect
altered bottom-up processing along the auditory ‘‘where’’
pathway (Bruns et al., 2011a).

FUTURE DIRECTIONS

The ventriloquism effect and aftereffect have generated an
abundance of new insights into the mechanisms of multisensory
processing in recent years. Future challenges include translating
these new findings into a more general theoretical framework
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of multisensory processing in naturalistic environments as well
as clarifying the developmental trajectory of multisensory spatial
integration and learning.

In real-world scenarios, cross-modal stimuli are usually
accompanied by a myriad of other continuously changing
stimuli. This sensory context inevitably modulates how a
particular stimulus is processed (Bruns and Röder, 2017; Bruns
and Watanabe, 2019) and shapes priors for processing that
stimulus during future encounters (Habets et al., 2017; Odegaard
et al., 2017). In addition, the sensory evidence itself might
be corrupted by varying amounts of noise. Interestingly, in a
phenomenon referred to as cross-modal stochastic resonance, it
has been found that intermediate levels of noise in one sensory
modality can enhance (rather than impair) responses to weak
stimuli in another sensory modality (Manjarrez et al., 2007;
Mendez-Balbuena et al., 2018). Future studies should address
how learned priors and sensory context interact with bottom-up
sensory evidence in the brain. To address these questions,
emerging technologies like augmented and virtual reality might
help bringing the ventriloquism effect and aftereffect paradigm
closer to more complex real-world scenarios (Sarlat et al., 2006;
Kytö et al., 2015).

Multisensory spatial processing appears relatively stable
over time during adulthood (Odegaard and Shams, 2016),
but surprisingly few studies have tested its ontogenetic
development in humans. Non-human animal studies have

typically investigated visual calibration of auditory spatial
representations over rather long time scales of weeks to
months (King, 2009), but the developmental trajectory of
short-term recalibration effects (as observed in the ventriloquism
aftereffect) and its relation to optimal cross-modal integration
(as measured in the ventriloquism effect) remains unknown.
To assess developmental influences on multisensory spatial
functions, retrospective studies in which the impact of sensory
deprivation during sensitive periods of development (e.g., due
to blindness) is tested in adult individuals are needed as well
(Occelli et al., 2012).

With their long history, the ventriloquism effect and
aftereffect are timeless experimental paradigms and invaluable
tools for the field of multisensory research. Hopefully,
this review article will stimulate further discoveries in the
years to come.
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Activity patterns of cerebral cortical regions represent the current environment in which
animals receive multi-modal inputs. These patterns are also shaped by the history of
activity that reflects learned information on past multimodal exposures. We studied
the long-term dynamics of cortical activity patterns during the formation of multimodal
memories by analyzing in vivo high-resolution 2-photon mouse brain imaging data
of Immediate Early Gene (IEG) expression, resolved by cortical layers. Strikingly, in
superficial layers II/III, the patterns showed similar dynamics across structurally and
functionally distinct cortical areas and the consistency of dynamic patterns lasted for one
to several days. By contrast, in deep layer V, the activity dynamics varied across different
areas, and the current activities were sensitive to the previous activities at different time
points, depending on the cortical locations, indicating that the information stored in
the cortex at different time points was distributed across different cortical areas. These
results suggest different roles of superficial and deep layer neurons in the long-term
multimodal representation of the environment.

Keywords: cortical dynamics, cortical layers, multimodal learning and memory, 2-photon imaging, mice

INTRODUCTION

The brain can represent, integrate, and remember information from more than one sensory
modality (Ghazanfar and Schroeder, 2006; Driver and Noesselt, 2008; Bruns and Röder, 2019;
Leon et al., 2019; Taesler et al., 2019). This cross-modal integration is structured such that
items can be represented both as a whole as well as a set of cross-modal details. In a complex
environment, the learning of these integrated representations is a difficult task requiring
repeated exposures to the multi-sensory stimuli. Moreover, the learning mechanisms need to
address plasticity-stability trade-offs, by forming relevant new cross-modal associations while
ignoring and forgetting irrelevant associations and preserving prior memories. As a result, the
formation of cross-modal memories becomes a long-term dynamic process. Understanding
the long-term dynamics of cortical memory representation in multimodal environments is
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not only a worthwhile topic by itself in brain research but
also significant for inspiring the enhancement of cross-modal
learning abilities of artificial brains (Parisi et al., 2019).

The cerebral cortex of the mammalian brain, which is
parcellated into a multitude of structurally and functionally
specific, layered areas, is believed to be involved in higher-order
brain functions, including multisensory perception (Ghazanfar
and Schroeder, 2006). Substantial evidence suggests that the
cerebral cortex has both area-specific and layer-specific functions
in the processes of learning and memory. For example, Phoka
et al. (2016) found increased neural activity and concomitant
ensemble firing patterns in mouse somatosensory cortex,
specifically layers IV and Vb, sustained for more than 20 min
after multi-whisker, spatiotemporally rich stimulation of the
vibrissae. Kitamura et al. (2017) pointed out that contextual
fear memory can be quickly produced at the onset of learning
in the prefrontal cortex (PFC). Xie et al. (2014) discovered
memory trace neurons in layers II/III of various areas of the
mouse cortex. Wang et al. (2019) demonstrated that the cross-
modal integration of visual and somatosensory inputs evoked
specific neural responses in particular cortical areas, such as
the primary visual (VISp) cortex and the retrosplenial cortex
(RSC). Sellers et al. (2013, 2015) demonstrated that anesthetics
could selectively alter spontaneous activity as a function of the
cortical layer and suppress both multimodal interactions in the
VISp cortex and sensory responses in the PFC. Despite these
extensive observations, however, it remains unclear whether and
how the long-term dynamics of cortical memory representations
are cortical area- and layer-specific.

In this study, we investigated the long-term dynamics of
cortical area- and layer-distributed cellular activity patterns
during the formation of cross-modal memories by analyzing
in vivo high-resolution 2-photon imaging data from BAC-EGR-
1-EGFP mouse brains in multimodal environments. On each
day, animals were put into one type of environment, receiving
multimodal inputs. Several cortical locations from various brain
regions of each subject were monitored, and within each location
the neural activity patterns were represented by the firing
rates of 6,000–15,000 neurons, across multiple cortical layers.
During memory formation, the activity patterns of a particular
day could be related to those on previous days, as analyzed
using a prediction algorithm by a gradient boosting decision
tree implemented in the LightGBM Python-package (Ke et al.,
2017). We show that the long-term memory-related cortical
dynamics are significantly layer-specific. In layers II/III, the
dynamic patterns are similar across different types of cortical
areas and different hemispheres, and the neural activities show
an unspecific memory effect, that is, they aremore sensitive to the
recent history of one to several days than to activity of a longer
time lapse, even if the more recent memories belong to different
environments from the present one. In layer V, the activity
patterns vary among cortical locations as the information stored
in this laminar compartment at different previous time points
appears distributed nonuniformly across different cortical areas.
Those results, therefore, suggest different roles of superficial
and deep layer neurons in the multimodal representation
of the environment.

MATERIALS AND METHODS

Animal Experiments
We analyzed data from four mice. The used mouse strain was
BAC-EGR-1-EGFP (Tg(Egr1-EGFP)GO90Gsat/Mmucd from
the Gensat project, distributed by Jackson Laboratories. Animal
care was in accordance with the Institutional guidelines of
Tsinghua University, and the entire experimental protocol
was also approved by Tsinghua University. Imaging and data
acquisition procedures were previously described by Xie et al.
(2014). Specifically, mice were 3–5 months old, and received
cranial window implantation; recording began 1 month later.
To implant the cranial window, the animal was immobilized in
custom-built stage-mounted ear bars and a nosepiece, similar to
a stereotaxic apparatus. A 1.5 cm incision was made between the
ears, and the scalp was reflected to expose the skull. One circular
craniotomy (6–7 mm diameter) was made using a high-speed
drill and a dissecting microscope for gross visualization. A
glass-made coverslip was attached to the skull. For surgeries and
observations, mice were anesthetized with 1.5% isoflurane. EGFP
fluorescent intensity (FI) was imaged with an Olympus Fluoview
1200MPE with pre-chirp optics and a fast AOM mounted on
an Olympus BX61WI upright microscope, coupled with a 2 mm
working distance and a 25× water immersion lens (numerical
aperture 1.05). The anesthetization was done 1 h after the
animal explored a multisensory environment. Previous studies
showed that, under these circumstances, anesthesia has very
little effect on protein expression (Bunting et al., 2016) and that
protein expression reflects the neural activities related to the
environmental exploration very well (Xie et al., 2014).

We employed several types of environments for the
animals. In principle, the environments were all multimodal
environments, but of different complexity in terms of the sensory
modalities. Home Cage was considered as the default, where,
although the animals could see and touch the cage, as well as
smell their own smells, they habituated to this environment and
were closely familiar with the sensory inputs. Therefore, the
visual, somatosensory and olfactory inputs in the Home Cage
environment were all considered as weak, and this multimodal
environment was considered as the simplest one compared to
all others. An increased level of complexity was created by
introducing stronger and specific inputs of certain modalities.
To this end, we used another three boxes, labeled as contexts A,
B, and C, which comprised different shapes, colors, materials of
the floors, and combinations of different smells, so that animals
received strong and specific visual, somatosensory, and olfactory
inputs. In addition, we also employed strong light and sound
stimuli in box C. When an animal was put into one of the
boxes, it could experience three types of situations. Training
A, B, or C meant that the animal received foot shocks that
were strong enough to lead to freezing behavior, as part of
conditioning for learning. At the same time, the foot shock could
also be considered as a very strong and special somatosensory
(nociceptive) input by itself. When the animal did not receive the
foot shock, we labeled the boxes as Context A, B, or C if before
training, or as Retrieval A, B, or C after training, respectively.
In practice, the data used in this study do not include Context
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C or Retrieval C. Training C had the largest complexity in
terms of sensory modalities when compared to the others, and
interestingly, in the pre- and post-training phases, the animals
displayed different behaviors, that is, freezing in Retrieval A, B,
or C but not in Context A, B, or C (Xie et al., 2014), but we
assumed that the provided sensory information was identical
between the Context and Retrieval environments. Several other
environments were also employed, which were more complex
than the Home Cage, but simpler than those mentioned
before. Enriched Environment and Tunnel were two boxes
where animals could receive strong visual and somatosensory
inputs. Another two simple environments were employed
where the animals only received visual inputs of vertical or
horizontal stripes.

Illustrations of the different environments are provided in
Figure 1A and the sensory modalities encountered in the
environments are summarized in Table 1. The respective
environments that the four mice experienced are summarized in
Table 2. The time of exploration in different environments varied
from 5 min to 2 h, and the imaging was carried out about 1–1.5 h
after the exploration, which was optimized to capture the neural
activities of the animals in the explorations (Xie et al., 2014).

Data Selection
For each mouse, 10–20 cortical locations were typically
monitored, but we only selected the ones that could be scanned at
least to a depth of layer Vb for all days of scanning. As a result, we
selected 7, 8, 6, and 3 locations for those four mice, respectively,
which covered motor, posterior parietal (PTLp), RSC, primary
somatosensory (SSp), anterior medial visual (VISam), and VISp
cortical areas on both the left and right hemispheres. The neuron
positions in the images were automatically detected, as described
in detail by Xie et al. (2014). If a neuron was missed in the
detection for not more than 3 days, its missed activity values were
filled as the median value of all the other neurons on that day.
If, however, a neuron was missed in the detection for more than
3 days, the neuron would be excluded from the analysis. The area
types and laminar compartments were manually annotated based
on their cytoarchitecture by one expert (GW) and approved by
all other experimental experts among the authors (HX, YH and
J-SG). In practice, we first measured the relative position of
each location with reference to the Bregma point and used the
position to estimate the functional area type according to the
atlas of the Allen Brain Institute (Lein et al., 2007; Oh et al.,
2014). Subsequently, in the laminar compartment annotation,
we mainly considered the depth, the neural density, and the
morphology of the somata in terms of different sizes and shapes.
In the functional area type annotation, we first discriminated
motor/RSC from VISam/VISp/SSp/PTLp based on their distinct
laminar structures and then further discriminated each area type
based on their positions relative to the Bregma. Since the border
between different functional regions is sometimes not very clear,
some imaged locations are cross-functional regions, but these
data were excluded from the analysis in this study. In this study,
we focused our analysis on the activities in layers II/III and layer
V. A summary of the data available for the analyzed four animals
is provided in Table 2.

LightGBM Prediction Approach
We analyzed the long-term dynamics of cortical memory
representations as a regression problem, by predicting the
activity pattern on a certain day based on the history of activity
patterns. Practically, we used the gradient boosting decision tree
implemented in the LightGBM (Ke et al., 2017) Python-package.

For each prediction, we needed to select training, validation,
and test data. Once the activities on a certain day were selected
as the target, their values in the training and validation data
sets were used as the labels. The values in the test data were
not used in the prediction process but were used as ground
truth to evaluate the prediction performance. Features included
the activities on the previous days. The parameters used in the
LightGBM prediction are shown in Table 3.

Since we used ‘‘l2’’ for the parameter ‘‘metric’’ in the
evaluation process (which means that the mean square error
was the target to be optimized in the process of the regression),
we calculated the mean square error δ between the prediction
results and the ground truth as an accuracy estimate. To
generate controls, we shuffled the data on the feature days for
each neuron.

Cross-location Prediction
For each animal, we selected one specific laminar compartment
Λ (Λ was either in layers II/III or layer V). One model
was trained by using the training and validation data from
one cortical location iΛ, and predictions were subsequently
performed by using the test data from a different location jΛ
in the same laminar compartment. At this stage, the target was
always selected as the data on the last day when the animal’s
brain was scanned, and the features were the data on all the
previous days that were available, excluding Day 0, in total from
10 to 30 days (see Table 4). To make all pairs of predictions
comparable, at this stage, for each animal we needed to select
the data sizes of training, validation and test data, respectively,
so as to have identical data for every model. To this end,
for each mouse, we first identified the minimal number of
neurons in every location in layers II/III or layer V in the data
set, which turned out to be 311, 399, 116, and 342 neurons,
respectively (Table 4). This number was the size of the test
data for each mouse, and the size of training and validation
data were 90% and 10% of these numbers, respectively, as seen
in Table 4. With those fixed numbers, the data sampling was
random, and the validation and the training data sets never
had overlaps.

To evaluate the prediction results, we not only calculated
the square error δ(iΛ, jΛ), but also shuffled the data on the
feature days in the test data sets 20 times for the comparison
of each pair of training-test locations, and predicted the target
each time, so as to obtain another 20 predicted results. The
control square error δs(iΛ, jΛ) was calculated by using the
average of the 20 predicted results from the shuffled data.
The relative error was then calculated as δr(iΛ, jΛ) = δ(iΛ,
jΛ)/δs(iΛ, jΛ). We defined the prediction quality measurement
κ as κ(iΛ, jΛ) = exp[−δr(iΛ, jΛ)], and the matrix MκΛ, whose
off-diagonal entry at the ith row and jth columns was κ(iΛ,
jΛ) and diagonal elements were all empty. MκΛ was, therefore,
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FIGURE 1 | Example of a prediction of memory trace activities. (A) Illustration of different environments employed in this article. (B) One example slice of cortical
location A1 (primary visual, VISp, left) of animal Ma and the manual annotations of the cortical layers, where x indicates the anterior-posterior direction and z indicates
the superior-inferior direction. Panels (C,D) show slice examples of layers II/III and layer V (more specifically, Vb) of the same cortical location A1, where x indicates
the anterior-posterior direction and y indicates the rostrocaudal direction. (E) The model was trained on layers II/III in this cortical location A1. Neural activities on Day
58 (context B) were used as the target, and the data for 12 previous days were used as the features. (F) Prediction powers of the 12 days in features. (G) Prediction
performance of the model on other layers II/III neurons within the same location, and (H) prediction performance of the same model on all layer V neurons within the
same location, where blue dots indicated the prediction from the original data [R2 = 0.82 in panel (G) and R2 = 0.81 in panel (H)] and red dots from the shuffled data
[R2 = 0.61 in panel (G) and R2 = 0.48 in panel (H)].

able to reflect how the memory-dependent dynamics of the
neural populations from the testing location were similar to the
training location.

We repeated these predictions and evaluations 10 times so as
to obtain 10MκΛ. The differences in prediction performances for
layers V and II/III could be demonstrated in two ways. In the first
instance, we averaged all the 10MκΛ for each layer compartment,
to obtain M̃κΛ, and calculated Mκ = M̃κII/III − M̃κV, and finally
used the matrix Ms = (Mκ+ Mκ

T)/2 to demonstrate the
difference. If one entry was 0, it meant that the predictions
for layer V and layers II/III had the same performance in
the corresponding pair of locations, and the values larger (or

smaller) than the 0 mean prediction in layers II/III (or layer V)
performed better. In the second instance, we directly compared
the difference of the 10 values between κ(iV, jV) and κ(iII/III,
jII/III) to search for the significant difference (p < 0.01, t-test with
Bonferroni correction).

Intra-location Prediction
Intra-location prediction was basically performed in the same
way as cross-location prediction. The only difference was that,
since the test data set came from the same population as the
training and validation data sets, it was necessary to make sure
that those data did not overlap. To this end, we divided the
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TABLE 1 | List of the used multimodal environments.

Environments Abbreviation Visual1 Auditory1 Olfactory1 Somatosensory1

Home Cage H w - w w
Context A CA S - S S
Training A TA S - S S + Footshock
Retrieval A RA S - S S
Context B CB S - S S
Training B TB S - S S + Footshock
Retrieval B RB S - S S
Training C TC S + Light S S S + Footshock
Enriched Environment EE S - w S
Tunnel TU S - w S
Horizontal stimulus HS S - w w
Vertical stimulus VS S - w w

1W means weak inputs, while S means strong, specific inputs.

TABLE 2 | Summary of the subjects.

Mouse Scanned
length
(day)1

Scanned
times

Environments Selected
Locations

Cortical
areas
covered2

Minimal
number of
neurons
in layers
II/III in
each

location

Maximal
number of
neurons
in layers
II/III in
each

location

Minimal
number of
neurons
in layer V

in
each

location

Maximal
number of
neurons
in layer V

in
each

location

Ma 131 32 Home cagel 7 PTLp (L) 3,683 6,158 311 2,626
Training A SSp (L)
Retrieval A VISp (L)
Context B RSC (R)
Training C VISp (R)
Enriched Environment
Tunne

Mb 52 22 Home Cage 8 RSC (L) 2,041 4,863 399 1,104
Training B VISam (L)
Retrieval B VISp (L)
Context A Motor (R)

RSC (R)
VISam (R)

Mc 61 12 Home cage 6 PTLp (L) 842 3,775 116 986
Training A RSC (L)
Retrieval A VISam (L)
Context B PTLp (R)

VISam (R)
Md 55 26 Home cage 3 Motor (R) 2,821 5,492 342 1,400

Horizontal stimulus SSp (R)
Vertical stimulus
Enriched Environment

1Calculated from the first to the last day of scanning, and signed as Day 0, Day 1, etc. 2L and R mean the left and right hemispheres, respectively.

TABLE 3 | Parameters for LightGBM prediction.

Num_leaves Objective Min_data_in_leaf Learning_rate Feature_fraction Bagging_fraction Bagging_freq Metric Num_threads

10 Regression 1 0.05 0.93 0.93 1 l2 4

data equally across each location and laminar compartment
into 10 groups. For each prediction, we sampled one group of
neurons, and randomly sampled 50 neurons from this group
as the validation data, sampled another two groups of neurons,
and randomly sampled 100 neurons from these two groups as
the test data, and randomly sampled 350 neurons from the left
groups as the training data. Locations whose layers II/III or layer

V did not contain at least 500 neurons were excluded from this
part of analysis.

Prediction Power
Once a model Mod(r) was trained, and we signed the set of
feature days as S(r), LightGBM returned the total gains of splits
for each feature GD

(r), where D indicates the feature day used
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in this model. We therefore directly used the gain normalized
by their summation, i.e., P(r)D = G(r)

D /
∑

D∈S(r)
G(r)
D to indicate

the prediction power of the feature day D in model Mod(r).
Because the prediction power was the property within a model
itself, insensitive to its performance with test data, and the
measurement was a value normalized within the model, for each
model we used a large part (90%) of the neurons within the
population (80% as training data and 10% as validation data).

Repeat Environment Prediction
In this part of the study, we used four features to predict the target
activities. Day 0 was always excluded from the analysis, and the
data of the next three scanning time points (labeled as Day S1,
Day S2, and Day S3) were always included in the features, in order
to generate controls to evaluate the prediction performance.
However, in order to eliminate the predictive effects from those
3 days that could be different among the situations which we
were going to compare, we shuffled the neurons on each of
those 3 days. For each animal, from Day S4 onwards, we looked
for the next scanning day on which the mouse was put into a
repeated environment for the first time, and included this pair of
repeated environments into the analysis, except for that between
those days, when the mouse used to be put into the same box,
even though the environment was different. For instance, in the
sequence consisting of Retrieval A (Day Sn), Home Cage (Day
Sn+1), and Retrieval A (Day Sn+2), the pair of Day Sn and Day
Sn+2, which has the environment-repeat interval Inv = Sn+2-Sn,
would be included in the analysis, but in the sequence consisting
of Retrieval A (Day Sn), Training A (Day Sn+1), and Retrieval
A (Day Sn+2), the pair of Day Sn and Day Sn+2 would be
excluded. For each selected pair, we used the data of the previous
day together with the aforementioned shuffled data on Day S1,
Day S2, and Day S3 to predict the activities on the following
day, which resulted in a mean square error δ(iΛ) in location
(iΛ in layer compartment Λ), and we shuffled the days in the
test data, resulting in δs(iΛ). Therefore, we eventually obtained
δr(iΛ) = δ(iΛ, )/δs(iΛ), whichmeasured the performance of this
prediction, where smaller δr(iΛ) indicates better prediction. We
repeated the prediction 100 times within each location iΛ, and
obtained the averaged value <δr(iΛ)>, where <·> stands for the
average over trials. Within each location iΛ, we still randomly
divided the neurons into 10 groups, and for each prediction,
we randomly selected four groups (40% of the data) as the
training data, one group (10% of the data) as the validation
data, and left the other five groups (50% of the data) as the
test data.

We calculated the average of <δr(iΛ)> among all the locations
of the mouse, to obtain the mean value δ̄r and the standard
deviation σ(δr) so that we could analyze their dependence on the
environment-repeat interval Inv, simply by using lining fitting
δ̄r = ρm· Inv + αm and σ(δr) = ρs· Inv + αs, respectively.
To analyze their dependence on the multimodal environments,
we selected the two most often repeated environments for each
mouse (eventually 5–8 repeating times), and compared δ̄r and
σ(δr) twice over all the repeats between those two environments.
First, we made the comparison by using the original values, and
afterward, in order to eliminate the influence of the different
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environment-repeat interval Inv as much as possible, we made
the comparison again by using a kind of modified values,
which equalled the original values minus Inv times the fitted
slopes, namely δ̄′r = δ̄r − ρm· Inv, and σ′(δr) = σ(δr)− ρs·

Inv, respectively.
SubjectMc was excluded from this part of the analysis because

it only experienced very few environment repeats.

Supplementary Explanations of the
Terminology Used in This Study
In this section, we provide supplementary explanations of the
terminology used for various purposes in this study, in order to
avoid misunderstandings of the terms.

• Type of cortical area and cortical location: there are two
concepts regarding the cortical imaging positions that may
be potentially confused. Therefore, we used two distinct
terms to distinguish them. Type of cortical area means
the structural-functional cortical area, for example, VISp,
VISam, motor, etc, whereas cortical location means one
of several particular positions that was monitored in the
research. To label the cortical locations of a mouse Mx
(x stands for a, b, c, d), we used numbers following the
capital form of x (for example, for mouse Ma, those cortical
locations were labeled A1, A2, A3, etc). Different cortical
locations might, therefore, belong to the same type of
cortical area.
• Environment and Environment repeat: in this work,

environment describes the set of all the environmental
conditions that could be perceived by any sensory modality,
for example, the box or cage in which the animal was located,
with particular walls, floors and even toys, the smells, the
sounds, the foot-shocks, and any other external stimuli.
Environment repeat means an animal experienced the same
environment for another time.
• Complexity: in this study, the complexity of the environment
comprises the range, types, and strength of the stimuli
provided in the different sensory modalities.
• Model: throughout this article, model is only used in the sense

of a machine learning model, and never refers to an animal
model or any other kind of model.

RESULTS

Predictability
Activities of cortical neurons could be predicted by using a
gradient-boosting decision tree, taking their past activities as
features and already knowing some of the activities at the target
day as the training labels. One example is shown in Figure 1,
where a model was trained on layers II/III in a cortical location
of mouse Ma, and the neural activities on Day 58 (context B)
were used as the target, and the data on twelve previous days
were used as the features (Figures 1E,F). The prediction from
this model by using the original data produced much more
similar results to the actual data than by using shuffled data
(Figure 1G, where R2 = 0.82 for original data vs. R2 = 0.61 for
shuffled data). Moreover, although prediction performance

varied, a model trained in a laminar compartment of a cortical
location was able to predict the neural activities in a different
laminar compartment (Figure 1H) or in a different cortical
location (Figures 2A–C).

Cross-location and Intra-location
Predictions
The performance of cross-location prediction was significantly
layer-specific. In layers II/III, any model trained from one
cortical location could well predict the neural activities in
other cortical locations, whether they belonged to the same
type of cortical area or the same hemisphere (Figure 2A). By
comparison, cross-location prediction performed much worse
for layer V (Figures 2B,C and Table 4). Specifically, when
we compared the different prediction performances in layer V
to layers II/III of each pair of training-test locations, for all
four animals among all the 134 pairs, we obtained 104 worse
performances in layer V compared to layers II/III (in terms of
the averaged value κ), out of which 54 were significant (p < 0.01,
t-test with Bonferroni correction within each animal), whereas
we had only 30 better performances in layer V, out of which only
11 were significant (Table 4).

Intra-location prediction showed the same bias, that is,
it performed worse in layer V than in layers II/III, but
the difference was much less significant than cross-location
prediction (when Table 5 is compared to Table 4). Specifically,
among all the 17 comparisons, there was only one result showing
significant difference.

Furthermore, we found that in the cross-location prediction,
the large differences in performance tended to appear for pairs
of locations involving different types of cortical areas (see for
example locations A1 and A4 in Figure 2C, which were in left
VISp and left SSp, respectively) or different hemispheres (see for
example locations A1 and A7 in Figure 2C, which were in left
VISp and right VISp, respectively).

The analysis of the prediction powers of the days in
history helped us obtain deeper insights into the differential
performances of layer V and layers II/III predictions. Taking the
models trained on A1 (left VISp), A4 (left SSp), and A7 (right
VISp), for example, the distributions of the prediction powers
for the models in layers II/III were very similar (Figure 2D).
Specifically, most powerful predictors were those on the most
recent days (such as Day 128 and Day 129 when the targets were
on Day 130). In layer V, the prediction power had significantly
different distributions for the models trained on those three
locations (Figure 2E), where for A1 and A7, 3 days (Day 125,
Day 128 and Day 129) with the same environment as the
target day (Tunnel) had high prediction powers and only for
A7, 1 day (Day 74) also had high prediction power, whereas
for A4, 2 days (Day 24, Training A and Day 126, Tunnel)
had significantly high prediction powers. Even if we used the
data within a short duration in those three locations to train
models, for example, Day 41 (Retrieval A) as the target day and
all previous days as features, we can still find those different
patterns of the prediction power distributions between layers
II/III and layer V. In layers II/III, the distributions were still very
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FIGURE 2 | Cross-location prediction performance M̃κΛ in layers II/III (A) and in layer V (B), and their relative difference Ms (C), by using the data from animal Ma.
Diagonal elements do not have values. Prediction power distributions of layer II/III model (D) and layer V model (E) trained in cortical location A1 (left VISp), A4 (left
primary somatosensory, SSp, and A7 (right VISp), when the neural activities on Day 130 (Tunnel) was used as the target and all previous days in the data set as the
features. Panels (F,G) show the prediction power distributions of layer II/III model and layer V model, respectively, when the neural activities on Day 41 (Retrieval A)
was used as the target and eight previous days in the data set as the features. Abbreviations: H, home cage; TA, training A; RA, retrieval A; CB, context B; TC,
training C; EE, enriched environment and TU, tunnel.
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TABLE 5 | Summary of intra-location prediction.

Mouse Number of
days in
features

Data points
in training/
validation/

test set

Total pairs
of comparison

Number of
worse performance
(significant ones)1

Number of better
performance

(significant ones)1

Worst difference
in performance1

Best difference
in performance1

Ma 30 350/50/100 5 2 (0) 3 (0) −0.346 0.035

Mb 20 350/50/100 6 4 (0) 2 (0) −0.173 0.151

Mc 10 350/50/100 4 2 (0) 2 (0) −0.102 0.290

Md 24 350/50/100 2 1 (1) 1 (0) −0.265 0.006

sum - - 17 9 (1) 8 (0) - -

1Compared the performance in layer V to layers II/III.

similar (Figure 2F), but in layer V, the distributions were widely
different (Figure 2G).

Repeat Environment Prediction
For each mouse, δ̄r in layers II/III was always more sensitive to
environment-repeat interval Inv compared to layer V, reflected
by the bigger slopes ρm, or bigger R2 values of the line fitting
results, or both (the first column of Figure 3). σ(δr) did not
have a very strong interrelation with Inv (the second column of
Figure 3). In the comparisons of δ̄r and σ(δr) with the original
values between the most often repeated environments, we only
found one result which had statistical significance (p < 0.05),
which was the σ(δr) in layer V of mouse Ma between Training
C and Tunnel. After modifying the values, the significance
did not change too much (p is still smaller than 0.1). Other
comparisons that had small p values (<0.1) included δ̄r in
layers II/III of mouse Mb between Context A and Retrieval
B (p > 0.1 after the modification), σ(δr) on layers II/III of
mouse Md between Enriched Environment and Home Cage
(p > 0.1 after the modification), and σ(δr) on layers II/III of
mouse Md between Enriched Environment and Home Cage
(p < 0.05 after the modification). In addition, σ(δr) in layers
II/III of mouse Ma between Training C and Tunnel did not
have a small p-value (p > 0.1), but it became smaller than 0.1
after modification.

DISCUSSION

Interpretation of the Predictions
Although cortical activity patterns in the context of learning
and memory appear very complex, they are not purely random.
Rather, they are sensitive to outside stimuli as well as their
own histories (Soon et al., 2008). The prediction approach
employed in this study indeed followed such a hypothesis,
that cortical neurons can represent long-term memories in
multimodal environments, so as to have long-term memory-
dependent dynamics. If a model trained within one neural
population can also successfully predict the neural activities in
another population, it means that within the considered history
period, these two populations have similar memory-dependent
dynamics. Moreover, the features with high prediction powers
indicate the time point when the fresh information in the history
that is useful for forming the current activity patterns starts
to encode in the neural populations. However, the days of the

features with very low prediction powers do not necessarily mean
that their activities do not correlate with the activities on the
target day. Another possibility may be that they do not encode
additional useful information for predicting the neural activities
on the target day, on top of the days of higher prediction powers.

As a result, we show that within the same cortical location
and same laminar compartment, neurons indeed have similar
long-term memory-dependent dynamics. Even across layers,
or across areas, the neurons may still have certain similarities
in these long-term memory-dependent dynamics, but the
similarities vary from case to case.

Comparison Between Layers II/III and
Layer V
Many parts of the neocortex are involved in learning and
memory processes (McClelland et al., 1995). In this study,
while aiming to explore the layer-specific long-term memory-
dependent dynamics of cortical neural activities, we specifically
selected layers II/III and layer V for a number of reasons.
In particular, both layers II/III and deep cortical layers have
been shown to play important roles in learning and memory in
previous studies (Xie et al., 2014; Hayashi-Takagi et al., 2015;
Gao et al., 2018; Wang et al., 2019) and the quality of the data
under study is good in multiple locations scanned down to layer
V (more specifically, to layer Vb). Thus, layers II, III, Va and
Vb turned out to be the good candidates for this study. Ideally,
we would have liked to study all these laminar compartments
individually, but in practice, the approach was subject to
some restrictions.

First, layer II and layer III are not easy to discriminate based
on their cytoarchitecture as obtained in the protein expression
data set (Li et al., 2019); thus, we had to analyze them as one
joint laminar compartment. There may be some differences in
terms of the long-term memory-dependent dynamics between
these layers, but we have to leave this problem to future studies.

Likewise, layer Va cannot be analyzed individually because
it is too thin and difficult to discriminate in the data set. In
some locations, the boundaries between layers Va and IV or the
boundaries between layers Va and Vb are vague. The thickness
fluctuations are already larger than the thickness of layer Va
itself. Analyses of the data from the individual layer compartment
Va in this research would, therefore, comprise too much noise.
Combining layers Va and Vb into a single laminar compartment
layer V appeared, therefore, to be the best solution. However, it is
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FIGURE 3 | Results of the environment-repeat prediction. Rows from top to bottom are layers II/III of mouse Ma, layer V of mouse Ma, layers II/III of mouse Mb,
layer V of mouse Mb, layers II/III of mouse Md, and layer V of mouse Md. The first column is the dependence of δ̄r on the environment-repeat interval Inv, where error
bars in fact indicate the standard deviation σ(δr), and the red lines are the linear fitting results. The second column shows the dependence of σ(δr) on Inv. The third to
the sixth columns show the comparisons of δ̄r and σ(δr) with the original and modified data, respectively, between the most often repeated environments that each
mouse experienced. Colors in the figure are used to discriminate environment types. +p < 0.1 and *p < 0.05.

worth mentioning here that, since layer Vb contains many more
neurons than layer Va, the properties of layer V that we revealed
in this work may in fact mainly reflect the properties of layer
Vb. In line with this conclusion, results are qualitatively the same
when we used data just for layer Vb instead of joint layer V (see
the Supplementary Material). We acknowledge that in previous
studies the response properties to external stimuli in layer Va was
significantly different from layer Vb (de Kock et al., 2007), but
due to the described technical limitations, the potential difference
in the long-term memory-dependent dynamics of these laminar
subcompartments has to be left as an open problem for
future research.

In any case, the comparison between cross-location
predictions in layers II/III and V already revealed differences

between superficial and deep layer cortical neural activities in
the long-term memory-dependent dynamics. These differences
are not due to the relatively different data qualities at different
scanning depths, as we show in the intra-location prediction that
the difference between these two-layer compartments is much
less significant.

In layers II/III, the prediction performances are always quite
good in any pair of training-test locations (in the example shown
in Figures 2A–C, and mainly distribute between 0.6 and 0.8; in
comparison, in the intra-location prediction in layers II/III of
this mouse, all approximate to 0.8, although technically they are
not comparable due to the different sizes of training, validation
and test data sets). This means that in layers II/III, the cortical
memory representations have very similar long-term dynamics

Frontiers in Integrative Neuroscience | www.frontiersin.org 10 October 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Li et al. Layer-Specific Long-Term Dynamics of Multimodal Memory

across cortical areas. This result is not equal to, but matches, the
results of previous studies that memory trace neurons were found
in layers II/III, irrespective of the cortical areas (Xie et al., 2014).
In the present study, however, we did not specifically focus on
memory trace cells, but the whole pattern of neural activities.
Further analysis revealed that the neural activity patterns in layers
II/III are always sensitive to the very recent activities in history,
which implies ongoing dynamics in layers II/III with a time scale
of one to several days. The functional role of these dynamics
in learning and memory processes need to be investigated in
future research.

In contrast, in layer V, cross-location predictions perform
much worse (in the example shown in Figures 2A–C, some
κ̃(iII/III, jII/III) can be as low as 0.2; in comparison, in the
intra-location prediction in layer V of this mouse, most of
κ̃(iII/III, jII/III) also approximate to 0.8, although, again, they
cannot technically be comparable due to the different sizes of
data sets), but between the locations that belong to the same
types of cortical areas and same hemispheres, the performances
are not too bad, which already implies the different functional
roles of cortical areas in layer V in long-term learning and
memory processes. Consistently, the cross-location predictions
within the associative cortices, including PTLp and RSC (dorsal)
show a much more similar performance between layers II/III
and layer V, whereas the sensory cortices, including visual cortex
and somatosensory cortex, show larger difference between those
two-layer compartments. Results from a comparison between
the different prediction power distributions further indicate that
information encoded in the neural activities that is useful for
the neural responses to the current environment is segregated
and stored in layer V in different cortical locations. In other
words, when the animal is located in a particular environment,
its layer V neurons form the patterns as a result of both the
response to external multi-modal inputs and the retrieval of
previously stored information of different modalities, where the
information stored at different previous time points is distributed
across different cortical areas. However, one should mention that
our approach used in this work did not enable us to localize the
cortical areas for any particular feature of information, which will
be an important task in future studies. In addition, the anatomical
mechanisms underlying the layer-specific long-term dynamics of
the neural activities are also an intriguing topic that needs to be
investigated in future studies.

Repeat Environment Prediction
At the current stage, we could reasonably hypothesize that
neural activities in layers II/III are more sensitive to temporal
information, but relatively more insensitive to the complexity in
terms of the sensory modality of the environments compared to
layer V, whereas, when the environment becomes more complex,
neural activities in layer V coordinate more strongly across
cortical areas to represent the environment. This hypothesis
motivated us to test the repeat environment prediction.

Since δr(iΛ) measures in location iΛ how well the present
neural activities can predict the activities in a repeated
environmental exposure in the future, it basically reflects
how reliably an environment-specific cortical pattern can

be reactivated. Therefore, the variable δ̄r reflects the overall
reliability of a layer compartment for reactivating the
environment-specific cortical patterns, and σ(δr) reflects the
differences of these reliabilities across cortical locations/areas.

The results show that δ̄r is sensitive to the environment-repeat
interval Inv, which is consistent with a decay process of memory.
In comparison, for layers II/III, δ̄r, is more sensitive to Inv
than layer V, which verifies the first part of our hypothesis that
layers II/III is more sensitive to temporal aspects of representing
information than layer V.

Among all three pairs of environments that we compared,
only Training C comprised more sensory modalities than
Tunnel, so we expected that σ(δr) would be smaller in Training
C than Tunnel in layer V, which turned out to be true
(Figures 3Bd,Bf). This result, therefore, verifies the second part
of our hypothesis, that layer V is more sensitive to the complexity
of remembered contexts in terms of sensory modalities.

Even more interestingly, we know that in Context A and
Retrieval B, the animal had significantly different behaviors, that
is, it showed freezing in Retrieval B but not in Context A (Xie
et al., 2014), but the environments Context A and Retrieval
B comprise the same sensory modalities. In comparison, their
σ(δr) in layer V or layers II/III did not show a significant
difference (Figures 3Cd,Cf,Dd,Df). Therefore, the difference
in the behaviors was not related to the same aspect of the
cortical activities which relates to the sensory modalities of the
environments. The only difference of δ̄r in layers II/III was in
fact due to the different environment-repeat intervals (compared
Figure 3Cc to Figure 3Ce).

The data of animal Md gave some unexpected results (the last
two rows of Figure 3), but since the studied cortical locations of
this animal were limited (only three locations from two cortical
areas), it is difficult to interpret them in a convincing way.

Regarding the Methodology
LightGBM is a machine-learning package based on decision
trees. Therefore, its prediction ability is derived from the
correlations between the target and the features, given that the
data are cut into leaves. Similar results could potentially be
achieved by correlating the activities on different days. Given
the massive number of data points, it is also possible that some
deep learning methods might give better prediction results than
LightGBM. However, a higher prediction accuracy was not our
goal in this work, and deep learning methods usually cannot
reveal the deeper mechanisms underlying the different dynamics,
as revealed here, based on the prediction power distributions.

CONCLUSION

Activities of cortical neurons are sensitive to both the current
environment in which the animals receive stimuli from various
modalities as well as the history of activities reflecting the learned
experience of various types of environments, forming long-term
memory-dependent activation dynamics. These long-term
dynamics are specific for different cortical layers. In layers II/III,
they are similar across different cortical areas and different
hemispheres, implying a distributed cortical memory system
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in layers II/III that integrates multisensory information into
the memory. The layers II/III memory network shows ongoing
dynamics with a time scale of one to several days. In layer V,
such consistent memory signal dynamics across-time are lost
and their patterns are varied among cortical locations. Between
the locations that belong to different types of cortical areas,
or belong to different hemispheres, the differences between
the long-term memory-dependent dynamics tend to be bigger.
Thus, information that has been stored at different previous time
points is distributed across layer V of different cortical areas,
which determines the present activity patterns, jointly with the
current multimodal inputs from the environment. Different
roles of superficial and deep layers neurons in cross-modal
learning process are, therefore, suggested by the layer-specific
long-term dynamics of cortical memory representations.
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The problem of generating structured Knowledge Graphs (KGs) is difficult and open but

relevant to a range of tasks related to decision making and information augmentation. A

promising approach is to study generating KGs as a relational representation of inputs

(e.g., textual paragraphs or natural images), where nodes represent the entities and

edges represent the relations. This procedure is naturally a mixture of two phases:

extracting primary relations from input, and completing the KG with reasoning. In

this paper, we propose a hybrid KG builder that combines these two phases in a

unified framework and generates KGs from scratch. Specifically, we employ a neural

relation extractor resolving primary relations from input and a differentiable inductive

logic programming (ILP) model that iteratively completes the KG. We evaluate our

framework in both textual and visual domains and achieve comparable performance on

relation extraction datasets based on Wikidata and the Visual Genome. The framework

surpasses neural baselines by a noticeable gap in reasoning out dense KGs and overall

performs particularly well for rare relations.

Keywords: relation learning, relation prediction, information extraction, knowledge graphs, inductive logic

programming

1. INTRODUCTION

For human infants, it is seemingly easy to learn to reason about the relation between any two
objects. Infants show this capability because they learn to understand the world, and they acquire
language by integrating cross-modal information. In particular, they do not only learn referents in
language by statistically matching words with occurrences of objects in the environment, but also
begin to understand the characteristics and affordances of the objects. AI systems, however, are
usually developed based on single modalities or tasks with limited access to the context. Since a
crucial aspect of current AI systems is to learn appropriate representations for designated tasks, it
seems particularly important to reflect cross-modal learning also in learning these representations.
For learning relational representations, let’s consider the following example. In The Little Match
Girl’s dream, Hans Christian Andersen wrote:

On the table was spread a snow-white tablecloth; upon it was
a splendid porcelain service, and the roast goose was steaming
famously with its stuffing of apple and dried plums.

From either the text, or an image capturing the scene (Figure 1), it is effortless to conclude that
Tablecloth is On the Table, while the Apple is Inside a Goose which is On a porcelain
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FIGURE 1 | The scene1.

FIGURE 2 | Resulting semantic graph of the scene in Andersen’s The Little

Match Girl’s dream.

dish put on the Tablecloth. Now, let us ask another question:
what is the relation between Apple and Table? Figure 2

indicates the reasoning chain.
For us human beings this requires little reasoning efforts, even

infants can get the answer On. However, current computational
architectures barely support it, not even for restricted purposes.

The process above can be more broadly described as relation
extraction, which is to determine the relationship between objects
(entities) that appear in a textual paragraph or in a visual scene.
We focus on the problem of conditional relation extraction,
which generates a graph regarding a specific paragraph or
an image, with each edge representing a relation instance
(subject, object, relation) such as (Apple,Table,On). We
call the resulting graph “Semantic Graph” for textual paragraphs
(Sorokin and Gurevych, 2017), and “Scene Graph” for visual
images (Xu et al., 2017), respectively. By bringing together textual
and visual relation extraction, we are particularly interested
in dependencies between both modalities and how synergies
lead to more robust representation learning. Relation extraction
additionally has many potential applications, including question
answering (Xu et al., 2016), fact checking (Vlachos and Riedel,

1Image sources. Goose: pngimg.com/download/58532, license CC 4.0 BY-NC.

Table: commons.wikimedia.org, author Tangopaso, released into public domain.

2014), word sense disambiguation (Okamoto and Ishizaki, 2007),
and document summarization (Hachey, 2009).

In most recent literature (Sorokin and Gurevych, 2017; Xu
et al., 2017), the generation of knowledge graphs (KGs) is
decomposed into two phases: (1) detecting the entities (or
objects) as nodes, and (2) extracting relations between entities
as edges. The first phase can be reduced to a Named Entity
Recognition for textual paragraphs (Lample et al., 2016) or
Object Detection for images (Ren et al., 2015). Usually, the more
challenging part receivingmore attention is how to determine the
relations between entities and is usually cast as a classification
problem. A critical difference between relation extraction
and typical classification problems [e.g., image classification
(Krizhevsky et al., 2012) or natural language inference (Bowman
et al., 2015)] lies in the existence of dependencies between
relation instances. That is, two entities, even when separated
spatially, may form a relation when they are both related to one or
more other entities (in the above case, Apple and Table both
interact with Tablecloth, Dish, etc.).

In order to deal with this challenge, we extend the second
step—extracting relations between entities—by applying a set of
differentiable logic rules to extract further relations based on the
current KG. We note that the process of predicting unknown
relations based on the current (incomplete) KG shares some
commonalities with knowledge graph completion (KGC). The
reasoning module of our model predicts unknown relations
by applying first-order logic rules, which can be naturally
replaced with previous KGC methods. However, most of the
previous approaches for KGC make the completion by learning
representations of entities and relations and viewing relations as
translations between entities (Bordes et al., 2013; Wang et al.,
2014; Ji et al., 2015; Lin et al., 2015). In contrast, we apply
logical, rule-based reasoning in order to find unknown relations,
similarly to Yang et al. (2017). However, while the model by
Yang et al. (2017) works only for global KGC our approach finds
unknown relations in a contextual manner.

Informally, given the set of entities, determining the relation
between them can be viewed as a mixture of two sub-tasks: (1)
extracting primary relations from the input and (2) completing
the KG with reasoning. Primary relations are mostly literal
ones such as, in the match girl’s example (Tablecloth,
Table, On). The completion of the KG, on the other hand,
requires reasoning over these primary relations and resolving the
dependencies or correlations.

In the past, methods based on neural networks have been
shown to be successful on a large range of tasks in various
fields (LeCun et al., 2015). Particular approaches try to resolve
the dependencies between relation instances by modeling other
relations as the “context” of specific pair entities. A number of
researches have been done in this direction, such as attention-
based encoding (Sorokin and Gurevych, 2017) or graph-based
message passing (Xu et al., 2017). Figure 3, left, shows a general
framework for neural network-based relation extractors. There
are multiple drawbacks of such contextual encoders:

1. From a systematical point of view, although neural networks
are Turing-complete (Siegelmann and Sontag, 1995), and
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FIGURE 3 | An illustration on the comparison between typical neural network-based relation extractors and the proposed hybrid relation extractor. (Left) A general

framework for typical neural network-based relation extractors. Dependencies or correlations between relation instances are modeled by viewing other relations as the

“context.” Dashed connections denote the cross-pair connections, which may involve an attention mechanism (Sorokin and Gurevych, 2017) or message passing (Xu

et al., 2017). (Right) The proposed hybrid relation extractor (HRE) working in an iterative manner. With a pair selector collaborating with a predictor, it naturally resolves

the dependencies or correlations between relation instances. The pair prediction module works with a relation induction model based on explanatory logical rules. See

section 3 for details.

can be wired to mimic any computer circuit, in practice,
they are more suitable for processing associations rather than
rules. For example, starting from (Fodor and Pylyshyn, 1988),
there has been a long-lasting debate over the problem of
systematicity (such as understanding recursive systems) in
such connectionist models (Fodor and McLaughlin, 1990;
Hadley, 1994; Jansen andWatter, 2012). In the case of relation
extraction, reasoning is usually performed in a chained, or
recursive way (e.g., consider the relation between Apple and
Table in the match girl’s example), which the contextual
autoencoders do not reproduce.

2. From an implementational point of view, relation
extraction requires the processing of high-order
relational data and quantifiers. For example, to apply
the transitivity: (Tablecloth, Table, On) ∧

(Porcelain, Tablecloth, On) H⇒ (Porcelain,
Table, On), we need to consider the relation among a
triple of symbols (Table, Tablecloth,
Porcelain). This is beyond the scope of typical
graph-structured neural networks (Kipf and Welling,
2016).

3. In most datasets, the distribution of relations is uneven and
has a long tail of rarely occurring relations between specific
objects. Approaches based purely on neural networks have
problems to learn these rare object-relation triplets due to the
limited number of occurrences in the training data and can
often not generalize them to objects not seen during training.
In contrast, by using inductive reasoning we can incorporate
previous knowledge about the characteristics of relations into
the KG generation process to help extract rare relations and to
increase generalizability. Inductive reasoning can be especially
powerful for transitive relations [e.g., geometric (left, right) or
possessive (is-part-of) relations] which make up most of the

relations in many datasets (Zellers et al., 2018). Many datasets
actually miss labels for relations that occur in the data due
to incomplete labeling (Wan et al., 2018), which means that
models that are trained purely on the (labeled) data do not
learn about these relations.

4. Recent work also indicates that purely neural approaches
do not generalize learned relations (e.g., spatial ones), at
least not in the vision domain (Kim et al., 2018; Bahdanau
et al., 2019). This means that simple learned relations
such as “left of” do not usually generalize to novel object
combinations. Currently, the only way for these neural
architectures to generalize is by using a perfect model
architecture specifically tailored for the domain (dataset), such
as optimally constructed Neural Module Networks (Andreas
et al., 2016). This is challenging because we need perfect
knowledge about the data and the relations for this, which

is not possible for real-world datasets. Our hypothesis is that

logical reasoning is implicitly better suited to handle the

generalization of relations since it is a symbolic approach and

models the relations independently of the objects they refer to.
5. Another challenge is that in the vision domain the processing

is usually done with convolutional neural networks (CNNs),
which only perform local pixel-level reasoning (Chen et al.,
2018), making it difficult to extract relations between objects

that are far apart. However, especially for transitive relations
(which can be extracted with logic rules), large distances (in

pixel-space) between objects are very common.

To address the above issues, in this paper we propose a

hybrid KG builder that combines two procedures into a unified

framework and generates KGs from scratch using visual or

textual information. As described in section 3 in more detail,

we employ (1) a neural relation extractor detecting primary
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relations from the input and (2) a differentiable inductive
logic programming (Muggleton, 1991) model that iteratively
completes the KG. We suggest the neural relation extractor as a
key element because relations between entities are usually tightly
interwoven within high dimensionality and neural networks are
particularly good in learning distributed representations. The
programmable logic induction system element, on the other
hand, is especially strong in extracting the structure of facts
from natural language and images. In this framework, relations
between entities are detected by the joint effort of the neural
module as well as the logic module.

Through extensive experiments in section 4, we compare our
framework against strong relation extraction baselines in both
textual and visual domains, on a Wikidata-based dataset and the
Visual Genome dataset, respectively. Empirical results show the
superiority and flexibility of our proposed method. Moreover, we
show a significant gain over baselines and other prior works in a
subset of the database that contains dense graphs2, i.e., a higher
than average number of relations per entity pair. We discuss
related works in section 2 and conclude in section 5.

2. RELATED WORK

Relation extraction is an important task and necessary to obtain
a detailed understanding of texts or images. In the following
we first describe current approaches for relation extraction from
textual data, before continuing to describe relation extraction
from images.

2.1. Relation Extraction From Texts
Relation extraction has been widely used to obtain structured
knowledge from plain text. The resulting structured relational
facts are crucial to understanding large-scale corpora and can
be utilized to automatically complete missing facts in KGs.
Early neural relation extraction methods generally attempted a
supervised paradigm (Zeng et al., 2014; Nguyen and Grishman,
2015; Santos et al., 2015) and heavily rely on human-
labeled datasets. However, the annotation of these datasets is
labor-intensive and time-consuming. Recent relation extraction
methods address the problem by creating large-scale training
data via distant supervision. However, the assumption of distant
supervision is very strong and often introduces noise. Much
work has been invested in order to alleviate the wrong-labeling
problem in distant supervision and to extract global relations
between two entities from multiple supporting sentences (Riedel
et al., 2010; Zeng et al., 2015; Lin et al., 2017; Feng et al., 2018;
Qin et al., 2018). Recently many approaches also explore the
extraction of relations between entities on the sentence level in
rich context (Sorokin and Gurevych, 2017; Zeng et al., 2017;
Christopoulou et al., 2019; Zhu et al., 2019).

Mintz et al. (2009) propose distant supervision to
automatically generate a large-scale dataset for relation
extraction by aligning plain text with knowledge graphs. The
assumption of distant supervision is that all sentences containing

2Mathematically, given a graph G = (V ,E), the density can be computed as

|E|
/
|V|2 .

an entity will express the corresponding relation in KGs. Zeng
et al. (2015) further formulate distantly supervised relation
extraction as a multi-instance learning problem, where instance
bags consist of multiple sentences containing an entity pair,
and take the uncertainty of instance label into consideration by
selecting the most confident supporting instance for relation
prediction. Lin et al. (2017) propose to obtain bag representations
by semantic composition of instances, where instance weights are
determined by selective attention. Feng et al. (2018) propose to
filter false positive relation instances via reinforcement learning.
Qin et al. (2018) propose an adversarial framework that jointly
learns a generator and discriminator to distinguish false positive
relation instances from distant supervision.

Sorokin and Gurevych (2017) identify sentence-level relation
between entity pairs in a rich context. They predict relations
between each entity pairs by considering all other possible
entity pairs in the same sentence as context and modeling the
correlation of relations via attention mechanism. Christopoulou
et al. (2019) model the context of an entity pair by iteratively
aggregating walk paths between the target entity pair on the
graph, and achieve comparable results without using external
linguistic tools. Zhu et al. (2019) model implicit reasoning via
message passing among context entity pairs. In this work, we also
focus on extracting sentence-level relations. A crucial difference
is that we extract relations within a sentence or paragraph
sequentially to explicitly model the relation reasoning structure.
Zeng et al. (2017) explicitly use a special first-order logic rule
to model the dependencies of relations within a sentence. A
crucial distinction of our model is that we are capable of
modeling general and also long reasoning chains by recursively
applying rules.

2.2. Relation Extraction From Images
In order to understand and reason about the context of an image
we need not only information about objects within the scene, but
also about relations between these objects. Therefore, extracting
the relations between objects (e.g., in/on/under, support, etc.)
yields a better scene understanding compared to just recognizing
objects and their individual properties (Elliott and de Vries,
2015). While relations can be predicted pair-wise (Chao et al.,
2015; Ramanathan et al., 2015), most current work focuses on
the generation of a directed graph generally referred to as scene
graph (Johnson et al., 2015; Xu et al., 2017; Zhang et al., 2017).
Scene graphs are a way of representing the context of an image
in a structured way to improve the performance of tasks such
as visual question answering or image retrieval. Existing scene
graph generators usually extend an object detection framework
that first detects bounding boxes for objects, then extracts visual
features and classifies objects inside bounding boxes, and finally
predicts relations between objects in a parallel manner. One of
the challenges is that the number of possible relations grows
exponentially with the number of objects in an image. This makes
it computationally challenging to evaluate all possible relations.
Therefore, many approaches work on ways to prune unlikely
relations from the graph or to only focus on the most probable
relations from the beginning.
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Li et al. (2017) combine three tasks—object detection, scene
graph generation, and region captioning—and show that learning
all three tasks at once leads to an overall better performance
since learned features can be shared across tasks. Xu et al.
(2017) propose an end-to-end trainable approach for creating an
image-grounded scene graph that consists of object categories,
bounding boxes for the individual objects, and relationships
between pairs of objects by iteratively refining its predictions.
Liang et al. (2017) perform prediction together with a traversal
of the graph, essentially in a sequential manner. However, it
takes only the last two prediction results into account and thus
is unable to perform general logic inductions based on a partial
inference result.

Li and Gupta (2018) learn to transform 2D image
representations into a graph representation where the nodes
represent image regions and edges model similarity between
these image regions while Chen et al. (2018) introduce a graph
structure specifically to facilitate reasoning between regions that
are far apart in the image. Yang et al. (2018) make the scene
graph generation more tractable and efficient by using a relation
proposal network that identifies likely edges in the scene graph
and a Graph Convolutional Network to update objects and their
relationships based on the objects’ neighbors. Woo et al. (2018)
propose a relational embedding module to jointly represent
connections among all objects instead of focusing on objects
in isolation.

Related to our approach, Wan et al. (2018) work on
completing existing scene graphs given an image and a
corresponding scene graph. However, they do not use logic
reasoning, but instead, use a neural network to extract
unidentified relations between existing nodes in the scene graph
to obtain improved scene graphs with more accurate relations.
The approach, however, is still completely data-driven and, as
such, it is not clear how it handles the long tail of sparsely
occurring relations and how it generalizes to novel object-
relation triplets.

Zellers et al. (2018) observe that object labels are highly
predictive of relation labels (but not vice versa) and use this
insight to develop both a new baseline and a network that takes
this into consideration by staging bounding box predictions,
object identities (in the bounding boxes), and relations in a
hierarchical manner. Chen et al. (2019) show that using the
knowledge about correlations between objects and associated
relations can be explicitly represented in a KG. A novel routing
network then facilitates scene graph generation by using prior
statistical knowledge about the interplay of objects and relations.

Gu et al. (2019) incorporate commonsense knowledge into
the generation process of a scene graph by using an external
KG while Qi et al. (2019) use linguistic knowledge to improve
the performance on detecting semantic relations by using a
semantic transformation module to map visual features and
word embeddings into a common semantic space. So far,
most work on extracting scene graphs from images is based
purely on data-driven learning with neural networks. This
creates challenges in scalability (especially for images with many
objects) and suffers from the long tail of relations in the
training data, which is difficult to learn for neural network-based

approaches. Additionally, it is not clear whether these approaches
are able to generalize learned relations to novel settings. In
contrast, our approach combines data-driven neural networks
with a differentiable model that applies logic rules for relation
extraction. This enables us to insert prior knowledge about
certain relations (e.g., transitivity) into our model which can help
with generalizability (since relations are now decoupled from the
objects), scalability (we can efficiently evaluate the learned rules),
and the long tail of relations in the training data (once a rule
encodes one of these relations we can easily apply it to other
objects, too).

3. METHODS

We build our hybrid relation extractor (HRE) by combining a
neural relation extractor detecting primary relations from inputs
and an inductive logic-based model that iteratively completes the
KG. Illustrated in Figure 3, right, the framework works in an
iterative manner and detects the relations by the joint work of the
neural module and the logic module. As discussed in the above
section, there are two major challenges for modeling the relation
reasoning:

1. Chaining or recursions. We resolve the dependencies among
relations by iteratively detecting edges. Specifically, we
propose to use a pair selector working jointly with the relation
predictor.

2. High ordering and quantifiers. We model relation reasoning
with a differentiable inductive logic programming (ILP)model
(Muggleton, 1991). The model discovers probabilistic rules
from examples by inductive reasoning.

In the rest of the paper we write (subject, object, relation) to
denote a specific relational triplet, while rel(object, subject) is used
to refer to the distribution over relations for an entity pair, and
rel(object, subject)i is the probability of relation i to be true. We
now begin the introduction of the model with an overview.

3.1. Overview of the Framework
We build our framework on the top of the extracted entities
by either named entity recognition algorithms (Lample et al.,
2016) or object detectors (Ren et al., 2015). Specifically, for each
paragraph or image, we first use entity detectors to find all of
the entities and localize them. In the textual paragraph case, we
match all tokens and phrases in the paragraphs with the entities
appeared in the Wikidata dataset. In the visual image case, we
employ Faster-RCNN (Ren et al., 2015), a modern CNN-based
object detector to find all entities and determine their class labels.
For a detailed analysis of the dataset and the pre-processing,
please refer to section 4.

After the pre-processing, the relation extractor takes all
possible entity pairs as input, and assigns proper relations to
each pair. As shown in Figure 3, the HRE contains two units,
a pair selector and a relation predictor, and runs in an iterative
way. At each time step, the pair selector takes a look at all pairs

P− = (si, oi)
k−
i=0 of (subject, object) that have not been associated

with a relation and chooses the next pair of entities p∗ = (s∗, o∗)
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whose relation is to be determined. The relation predictor utilizes

the information contained in all pairs P+ = (si, oi, r)
k+
i=0 whose

relations have been determined and the contextual information
(from raw texts or images) of the pair p∗ to make the prediction
on the relation. The prediction result is then added to P+ and
benefits future predictions.

The pair selector and relation predictor work jointly and
focus on different sub-problems of the task. The predictor’s
objective is to make use of the relations that have already been
determined in order to make a valid prediction for the next entity
pair. The selector, on the other hand, works as the predictor’s
collaborator with the goal to figure out the next relation which
should be determined. Ideally, the choice p∗ made by the selector
should satisfy the condition that all relations that will affect the
predictor’s prediction on p∗ should be sent to the predictor ahead
of p∗.

3.2. Relation Predictor
The relation predictor is composed of two modules: a neural
module predicting the relations N between entities based on
the given context (i.e., a textual paragraph or a visual image)
and a differentiable inductive logic module L performing
reasoning on P+ (the set of pairs whose relations have already
been determined). Both modules predict the relation between
a pair of objects s∗ and o∗ individually as relN(s

∗, o∗) and
relL(s

∗, o∗). These predictions are classifications over a categorical
distribution of all relations: relN(s

∗, o∗)i = Pr[relN(s
∗, o∗) = i]

and relL(s
∗, o∗)i = Pr[relL(s

∗, o∗) = i]. The output prediction for
the pair p∗ is a mixture3 of the two individual predictions:

rel(s∗, o∗)i ∝ relN(s
∗, o∗)i × relL(s

∗, o∗)i.

The neural relation extractor relN is domain-specific. We leave
the implementation of relN to the experiment section (section
4). In real-world applications, this module can be replaced by
any compatible implementation. In the following, we present our
model L for KG reasoning, which is a differentiable variant of
inductive logic programming (Muggleton, 1991).

We design a programmable module for KG reasoning,
which is highly motivated by previous works on inductive
logic programming (ILP) (Muggleton, 1991) and its modern
extensions (Kersting et al., 2000; Richardson and Domingos,
2006; Kimmig et al., 2012). ILP focuses on the problem of how
to discover rules from known facts and applies them to deduce
unknown facts.

To get an intuitive idea on how ILP works, we take The Little
Match Girl’s dream as an example. We want a model that is able
to perform logic deduction:

(Tablecloth, Table, On) ∧ (Porcelain,

Tablecloth, On) H⇒ (Porcelain,Table,On).

This logic rule can be generally written as a definite clause:

(x, y,On) ∧ (y, z,On) H⇒ (x, z,On),

3We normalize the distribution.

where x, y, and z are variables that can be replaced (grounded) by
any entities such as Tablecloth, Table, and Porcelain.

ILP is a general programming framework, which provides a
higher level of abstraction on logic rules. For example, the above
logic rule can be derived (instantiated) by the followingmeta-rule
in ILP:

r1 = rel(s∗, x) ∈ P+∧ r2 = rel(x, o∗) ∈ P+ H⇒ rel(s∗, o∗) = r3.
(1)

In the instantiation of the meta-rule, r1, r2, and r3 will be
instantiated as (On,On,On). Another possible instantiation can
be (Inside,On,On). Intuitively, the entity triple (s∗, x, o∗)
essentially forms a “relation triangle,” and we use two of the edges
which we already know — (s∗, x) and (x, o∗) — to determine the
last edge (s∗, o∗).

Practically, the underlying logic is a probabilistic logic. That is,
we will say

Pr[r3 = rel(s∗, o∗)] ∝ Pr[r1 = rel(s∗, x)]× Pr[r2 = rel(x, o∗)]

×confidence(r1, r2, r3),

where confidence(r1, r2, r3) is the confidence (a floating number)
associated with the applied rule. We implement the logic
induction programming in a differentiable manner. Unless
explicitly specified, all rules are derived from Equation (1)
in this paper. During inference, relations between all entity
pairs are predicted. Thus, a long reasoning chain (e.g., Table,
Tablecloth, Dish, Goose in The Little Match Girl’s dream)
can be resolved by multiple primitive logic deduction steps.
In this case, the simple “triangular” logic rule (Equation 1) is
sufficient to resolve a long reasoning chain.

Given a set of rules R instantiated from a pre-programmed
set of meta-rules, we enumerate all rules and compute the final
prediction from inductive logic module L as:

relL(s
∗, o∗)i ∝ max

rule∈R
rule(s∗, o∗;P−)i

∝ max
j,k,x

(
rel(s∗, x)j × rel(x, o∗)k × confidence(j, k, i)

)

The tensor confidence, as the representation of logic rules, is
optimized through back-propagation during the training.

Given a set of relation instances, the aforementioned logic
rule is just one choice to perform induction. In practice, one
can design own rules based on the characteristic of the dataset
or the underlying application. We show in the experiments
section that the system is compatible with other rules and yields
different results.

3.3. Pair Selector
The pair selector works together with the relation prediction
module and chooses subject-object pairs for prediction. At each
time step, the pair selector takes a look at all relation pairs in

P− = (si, oi)
k−
i=0 whose relations have not been determined and

outputs an index i ∈ [k−] = {0, 1, · · · k−} as the index for the
entity pair whose relation will be added to P+ by the predictor in
this time step.
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FIGURE 4 | Encoder for textual entity pairs. We use the concatenation of

marker embedding and word embedding with an LSTM model (Hochreiter and

Schmidhuber, 1997; Greff et al., 2016) to encode the feature.

We implement the pair selector as a greedy selector which
always chooses the entity pair from P− to be added to P+ as the
entity pair of which the relation predictor is most confident in
its prediction. The relation predictor’s output probability Pr(r =
rel(s∗, o∗)) (section 3.2) can be interpreted as its confidence for
assigning the relation r to the pair (s∗, o∗):

conf (s∗, o∗) = max
r

Pr(r = rel(s∗, o∗)).

Thus, in order to choose the pair of which the relation predictor
is most confident, the pair selector chooses i such that:

i = max
i

conf (si, oi).

4. EXPERIMENTS AND RESULTS

We evaluate our model on tasks for two modalities: textual and
visual relation extraction. Our aim is to study how the hybrid
relation extraction is affected by different encoding and how it
scales for different complexity. Our experiments show that it
outperforms other approaches by a noticeable gap when dealing
with dense entity graphs.

4.1. Textual Relation Extraction
4.1.1. Entity Pair Encoding in Text
Recall that we need to predict a relation for each possible entity
pair. For the textual relation extraction task, we encode the
features of an entity pair following Sorokin and Gurevych (2017)
as shown in Figure 4. First, we pre-process the sentence and run
named-entity-recognition to find all relevant entities. We then
add an extra embedding as a marker indicating all appearances
of the given head (subject, with es) and tail (object, with eo) of
the entity pair. All other context symbols are marked with ec.
The embeddings {es, eo, ec} are initialized randomly and jointly
optimized with the model.

The marker embedding is concatenated with the word
embedding (Pennington et al., 2014) and passed to a bi-
directional LSTM (Hochreiter and Schmidhuber, 1997; Graves
and Schmidhuber, 2005; Greff et al., 2016). We use a standard
bi-directional LSTM with one layer, 256 LSTM units, the TANH
activation function, and 0.5 dropout rate Srivastava et al. (2014).
The final outputs of the LSTM of both forward and backward

TABLE 1 | Statistics of the dataset generated from Wikidata.

#Sent #Fact #Avg ent. #Avg pos. rel.

Train 124,212 70,598 5.51 2.47

Test 31,054 29,148 5.56 2.33

#Avg ent. stands for the average number of entities per paragraph, while #Avg pos. rel.

refers to the average number of positive relations per paragraph.

passes are concatenated as the final encoding for this entity
pair. We apply a two-layer multi-layer perceptron followed by
a softmax layer on the feature for neural relation extraction:
relN . This process is repeated for each possible entity pair in the
sentence, i.e., n× (n− 1) times for a sentence with n entity pairs.

4.1.2. Data Generation With Distant Supervision
We introduce a new dataset generated fromWikidata (Vrandečić
and Krötzsch, 2014) to evaluate our framework on the
task of textual relation extraction. Wikidata is a KG which
stores knowledge as structured triplets (e.g., Earth, Mount
Everest, highest point). We align Wikidata with
English Wikipedia articles via distant supervision (Mintz et al.,
2009; Zeng et al., 2015; Sorokin and Gurevych, 2017). We
select the 86 most frequent properties (relations) to form the
property set.

We generate paragraphs by concatenating two sentences
which are chosen from the same article. The selected sentences
should share at least one common entity. This partially alleviates
the sparsity of relations. For entity pairs without relation, we
manually mark their relation as N/A (a special relation). We also
filter out paragraphs that contain fewer than 2 positive relation
instances. Following the setting of previous work (Lu et al., 2016;
Xu et al., 2017), in our experiments, we randomly split the dataset
into training and test sets, and tune the hyper-parameters of all
models on the test set. We manually evaluate 500 sentences from
the test set and find 83.2% of them are correctly labeled with
distant supervision. Table 1 shows the statistics of our dataset.

The dataset generated from Wikidata is very sparse with
respect to relation instances: each sentence contains only 2.7
relation instances on average and the fraction of relation
instances over the entity pairs is less than 0.12. To better focus
on evaluating the reasoning ability of ourmodel, we select a dense
test set where semantic graphs can be deduced4. Within the dense
subset reasoning chains are substantially more common which
requires the model to perform both primary relation detection
and relation reasoning. The dense test set covers ∼ 2% of the
whole dataset. We adopt the precision-recall curve, a widely
used metric in textual relation extraction. The k-th point in
the curve is computed by the precision and recall of the top k
confident predictions. We also report the F1 score (Goutte and
Gaussier, 2005), which is computed by the harmonic average of
the precision and recall of the most confident predictions of each

4A semantic graph can be deduced if it contains at least three connected entities,

i.e., at least 1 reasoning chain.
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FIGURE 5 | Precision-recall on the dense test set.

FIGURE 6 | Precision-recall on the entire test set.

entity pair. The special relation N/A does not affect recall but only
precision.

We train our model on the entire training set and evaluate
the performance on the dense test set. In Figure 5 and
Table 2, experimental results show that our model significantly
outperforms baseline methods (with only relN) on the dense
test set. To further zoom in, we compare the recall score of all
frameworks under a moderate precision (e.g., 0.8) in Table 3. The
strong baseline is identical to, and is a re-implementation of, the
model used by Sorokin and Gurevych (2017).

We also show a comparable result on the entire test set
(Figure 6 and Table 4). In this case, logic deduction seems to
bring both accurate predictions and noise to the result (note the
drop in precision, as themodel will be penalized if it detects a false
positive). The better way to incorporate logic rules in applications
on large and sparse KGs is left for future work.

TABLE 2 | F1 scores on the dense test set.

Model Micro F1

P R F1

Baseline 0.75 0.56 0.640

Ctx Attention 0.77 0.52 0.621

HRE 0.72 0.63 0.675

The best results are highlighted in bold.

TABLE 3 | Recall at different precision levels on the dense test set.

Baseline Ctx Attention HRE

R@0.60 0.741 0.674 0.740

R@0.70 0.633 0.574 0.661

R@0.80 0.488 0.444 0.505

The best results are highlighted in bold.

TABLE 4 | F1 scores on the entire test set.

Model Micro F1

P R F1

Baseline 0.64 0.61 0.634

Ctx Attention 0.72 0.56 0.637

HRE 0.60 0.67 0.634

The best results are highlighted in bold.

Incorporating New Rules
We also try to incorporate new rules into the induction system.
Specifically, we add the meta-rule: r1 = relation(s∗, x) ∈

P+ H⇒ relation(s∗, o∗) = r2. Intuitively, this models the logic
that if an object s∗ has a relation r1 with another object x,
then there is an increased probability for another relation r2 to
any other object o∗. For example, if a man is riding a horse,
there is an increased probability that he is wearing a hat. More
generally, when an object maintains one relation, it is more
likely to maintain further relations. The experimental results
showed a large increase in recall but a decrease in precision of
the framework. This leads to the conclusion that the logic rules
used by the system should be carefully designed based on the
underlying application.

4.2. Visual Relation Extraction
4.2.1. Entity Pair Encoding in Images
Figure 7 illustrates the overall architecture of the visual entity
pair encoder. Each object appears as a bounding box in a visual
image. The detection, classification, and localization is done with
the Faster-RCNN framework (Ren et al., 2015). We extend the
method proposed by Lu et al. (2016) to extract the featuresF(s, o)
of the object pair (s, o). To obtain the neural relations relN we

Frontiers in Neurorobotics | www.frontiersin.org 8 November 2019 | Volume 13 | Article 93

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Mao et al. Bootstrapping Knowledge Graphs

FIGURE 7 | Encoder for visual entity pairs. We extend the union box encoder proposed by Lu et al. (2016) and add the entity’s features (what is it) and its location

(where is it) into the embedding vector.

apply a two-layer perceptron followed by a softmax layer on the
extracted features F(s, o).

To effectively encode features of an entity pair into distributed
representations F(s, o), we extract features of the subject,
the object, and their interaction environment. We denote
feat as the extracted features of the whole input image.
These features are extracted with a VGG-16 network pre-
trained on MS-COCO (Xu et al., 2017). The features of
a given region specified by a bounding box are denoted
as feat[box]. These features are obtained with the Region-
Of-Interest (ROI) pooling operation introduced by Girshick
(2015). feat[box{s,o}] then denotes the features of an individual
entity (subject or object), extracted from the image features
feat at the given bounding box location with the ROI
pooling operation.

Wemodel the interaction environment of an entity pair by the
union box of their bounding boxes boxs, boxo. The features of the
interaction environment are then denoted as feat[boxu]. Similar
to themarker embedding in textual relation extraction, we specify
the locations of subject and object in the interaction environment
by adding a mask to the features after ROI pooling. The mask is a
binary matrix in the same shape as the feature after ROI pooling
of the union box. Each element of the feature after ROI pooling
corresponds to a grid region in the original image. Each non-zero
element of the mask then corresponds to the Intersection-over-
Union (IoU) of the entity bounding box and the bounding box
of the bin. Formally, the indices of non-zero elements Ind{s,o} are
given by:

Ind
{s,o}
i,j = IoU

(
Region(boxu)i,j, box{s,o}

)
,

where Region(boxu)i,j is the corresponding region on the image of
the grid located at row i and column j in the ROI Pooling window
of boxu.

Formally, given the subject features feat[boxs], object features
feat[boxo], and union features feat[boxu], the features F(s, o) of
an entity pair are then calculated as follows:

F(s, o) = feat[boxs]

⊗ feat[boxo]

⊗ feat[boxu]

⊗ feat[boxu]⊙ Inds

⊗ feat[boxu]⊙ Indo,

where ⊗ is the feature concatenation operation and ⊙ is the
element-wise multiplication.

4.2.2. Visual Genome
Visual Genome (Krishna et al., 2016) is a dataset consisting
of 108, 077 images. On average, each image contains 21.2
objects and 17.7 relation instances. Due to the poor quality of
annotations, we follow Xu et al. (2017) to manually clean up the
dataset. We further remove the duplicate relations in each image.
The final dataset contains 11.0 distinct objects and 6.0 relation
instances per image on average. The average fraction of relations
over entity pairs is∼ 6%. We also generate a dense test set which
is a subset of the entire test set, where the fraction of relations
over entity pairs is at least 15%. The dense test set contains 2, 361
images, with an average of 4.2 distinct objects and 5.3 relations
per image.

Following (Lu et al., 2016; Xu et al., 2017) we use Recall@k
(R@k) to evaluate models on the task of visual relation extraction.
R@k measures the fraction of correct predictions in the top k
confident predictions. We do not adopt AP (average precision,
which can be viewed as the area under precision-recall curve)
as our evaluation metric because relations are not exhaustively
labeled, as analyzed in Lu et al. (2016).

As shown in Table 5, equipped with a logic deduction module,
we gain a significant improvement over the baselines (only relN)
as well as other existing methods. The baseline is identical to
the baseline model used in Xu et al. (2017) except the feature
extractor. The performance of our baseline model demonstrates
the effectiveness of our entity pair embedding.

Interestingly, we observe that our model achieves almost
identical performance in terms of Recall@k metric on the
dense and the entire test set. Since the Recall@k metric does
not penalize false positive predictions of the relation, the
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TABLE 5 | Experimental results of visual relation extraction on the entire Visual

Genome test set.

R@50 R@100

UnionBox 0.279 0.350

MsgPass 0.448 0.531

Baseline 0.489 0.570

HRE 0.502 0.577

We compare our model with UnionBox (Lu et al., 2016) and MsgPass (Xu et al., 2017).

The best results are highlighted in bold.

noise brought by the induction module is significantly reduced
compared to the text case.

4.3. Implementation Details
For visual relation extraction models, Fentity has 512 channels,
and Funion has 256 channels. The window size of ROI Pooling
is set to 7× 7. All fully-connected layers except the ones used by
attention model have 4,096 channels following the typical VGG-
16 structure. We use a 512-dim vector to represent the attention
vector ei.

For textual relation extraction models, we use GloVe50
(Pennington et al., 2014) as the word embedding and 256 as the
value for the hidden size of LSTMs and of fully-connected layers.

We implemented themodel based on the open-source package
PyTorch (Paszke et al., 2017). We optimize the model, including
the entity pair encoder and relation predictor, in an end-to-
end manner with Adam (Kingma and Ba, 2014) and use cross-
entropy loss for the relation classification. The average training
time is 0.17 s for a single sentence, and 0.48 s for an image on a
GeForce GTX 1080 Ti.

5. CONCLUSION AND FUTURE WORK

We proposed a novel sequential prediction model for conditional
neural relation extraction, which explicitly takes the previously
determined or known relations of entity pairs into consideration
for better future relation prediction. We achieved this by an
induction system based on explanatory logic rules. Experimental
results show the superiority of the proposed model in
both textual and visual relation prediction tasks. Our model
outperforms other existing works when the entity graphs
become denser.

An interesting observation of our experiments is that the
prediction model shows a stable improvement of performance
independent of whether using a textual or visual entity encoder.
Since both encoders rely on a high dimensional representation
space that inherently encodes the semantic closeness of entities
(Lu et al., 2016; Sorokin and Gurevych, 2017), it seems that the
relation predictor is in many cases able to derive a prediction for
a data point that includes novel or uncommon entities. Similarly
to infant learning, the encoders learned the characteristics of
entities statistically from the data. As a consequence, this work
does not only improve relation extractors but also builds a bridge

between brain-inspired neural networks and logic induction
systems as well as other KG completion models. For application
purposes, the resulting framework is highly customizable and
programmable, which opens a new path toward a better machine
reasoning system.

Compared to most previous approaches our method can
deal better with the long tail in the distribution over relations.
Through the use of logic rules and the pair prediction module
our approach is able to deal with rare relations and apply
them correctly to previously unseen object pairs. This is a
key advantage since dealing with the skewed distribution over
relations and generalizing relations to unseen object pairs
is a key requirement for successful relation extraction from
text or images. Furthermore, through the use of differentiable
inductive logic our model is trainable in an end-to-end manner,
meaning only minimal human involvement and only few
hand-crafted rules.

However, the addition of the pair selector increases the size of
our model and the number of parameters. Additionally, the rules
for the inductive logic still have to be handcrafted and we only
evaluated the model with one meta-rule. Future work should,
therefore, evaluate how well the approach works with multiple
complex logic rules or if it is even possible to learn new, valid
rules. Another limitation is that our approach currently only
works on either textual or visual relation prediction. In future
work, we want to combine textual and visual relation prediction.
Our model easily allows to combine multimodal features, e.g., by
feeding concatenated visual and textual features to the HRE input
(Figure 3, right). This is relevant for human-robot interaction,
where dialogue contains not only purely linguistic entities, but
where references to entities in the surrounding scene are being
made. Aligning textual input, e.g., from transcribed speech,
with visual input will enable better linguistic understanding
by an embedded agent that matches the verbally perceived
relations to the scene, e.g., for disambiguation of an object
among others.
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Expectation learning is a unsupervised learning process which uses multisensory

bindings to enhance unisensory perception. For instance, as humans, we learn to

associate a barking sound with the visual appearance of a dog, and we continuously fine-

tune this association over time, as we learn, e.g., to associate high-pitched barking with

small dogs. In this work, we address the problem of developing a computational model

that addresses important properties of expectation learning, in particular focusing on the

lack of explicit external supervision other than temporal co-occurrence. To this end, we

present a novel hybrid neural model based on audio-visual autoencoders and a recurrent

self-organizing network for multisensory bindings that facilitate stimulus reconstructions

across different sensory modalities. We refer to this mechanism as stimulus prediction

across modalities and demonstrate that the proposed model is capable of learning

concept bindings by evaluating it on unisensory classification tasks for audio-visual stimuli

using the 43,500 Youtube videos from the animal subset of the AudioSet corpus.

Keywords: multisensory binding, deep learning, autoencoder, unsupervised learning, online learning

1. INTRODUCTION

Multisensory binding is one of the most important processes that humans use to understand their
environment. By using different sensory mechanisms, we are able to collect and process distinct
information streams from the same experience, which leads to a complex association learning. This
mechanism allows us to improve the perception of individual stimuli (Frassinetti et al., 2002), solve
contextual, spatial and temporal conflicts (Diaconescu et al., 2011), and progressively acquire and
integrate novel information (Dorst and Cross, 2001).

There are different mechanisms involved in learning multisensory binding. One of the most
important is the ability to process and understand unisensory information robustly (Macaluso,
2006). When the perception of individual stimuli has failed, the multisensory binding mechanism
is affected by what is referred to as a multisensory illusion effect (Biocca et al., 2001). This effect
creates artifacts via the binding mechanism which can influence the perception of other sensory
stimuli (Driver, 1996; Mishra et al., 2007) and the formation of novel multisensory experiences
(Spence and Driver, 2000). Our brain adapts to the multisensory illusion with a bottom-up selective
mechanism (Soto-Faraco and Alsius, 2007) which shifts the attention resources over to the different
sensing pipelines (Talsma et al., 2010).

An important aspect of multisensory bindings is known as the expectation effect (Yanagisawa,
2016). When perceiving an event, we compare it to other events we have experienced before, and
make certain assumptions based on our experience. For instance, when seeing a cat, we expect it
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to meow and not to bark. This effect modulates our multisensory
association in terms of top-down expectation. In consequence,
when a cat barks at us, we assume that our perception is
inconsistent, and that either the unisensory perception failed, or
that the spatial or temporal attention was misleading. If we see
barking cats repeatedly, we create a new concept of the species
of a barking cat. For each of these scenarios, our brain adapts to
the situation and we update our multisensory knowledge. This
learning process, referred to as learning by expectation (Ashby
and Vucovich, 2016), strongly suggests the role of unsupervised
learning for multisensory binding, and leads to an adaptive
mechanism for learning novel concepts (Ellingsen et al., 2016).

Despite its importance for human cognition and learning,
there exists currently no functional computational model that is
capable of modeling the multisensory binding and expectation
learning effect in an unsupervised manner (see section 2). Such
a model, however, would benefit from expectation learning as
a mechanism to generate stimulus predictions across different
sensory modalities. These cross-modal predictions potentially
improve the robustness in perception and classification of
unisensory stimuli through the binding of multisensory stimuli.
This paper addresses the mentioned issues above by formalizing
the following research questions:

Q.1 How can we build a computational model that allows for
unsupervised learning of multisensory bindings?

Q.2 Can we adapt the expectation learning from humans to this
model and use it to generate expected unisensory visual
stimuli from auditory stimuli and vice versa?

Q.3 Can we exploit the generated expected stimuli to improve
unisensory classification?

Q.4 How can we measure the quality of the learned
multisensory bindings?

We address Q.1 in section 3, where we employ autoencoders
to learn auditory and visual representations, which allows
for unsupervised learning. As a novelty and innovative
core mechanism to address continuity, we propose to
link the autoencoders with a recurrent Grow-When-
Required (GWR) neural network that changes its size as
demanded, thus allowing for the unsupervised learning of
multisensory bindings.

We address Q.2 in section 4 by demonstrating that the
recurrent GWR network learns prototypes of multisensory
bindings, which allows us to reconstruct auditory information
from visual stimuli and vice versa. For example, when perceiving
the sound of a cat, we expect the model to reconstruct the image
of a cat, while when a dog enters a scene, the sound of the
dog will be reconstructed. By extending the GWR association
mechanism, we expect the model to be able to create concept-
level bindings. Specifically, we hypothesize that by activating
the neural units that represent prototypical concepts such as
cats, dogs, and horses, the model will reconstruct prototypical
auditory and visual stimuli in the absence of any sensory input.
Our novel method is inspired by the multisensory imagery effect
(Spence and Deroy, 2013), i.e., the ability of humans to create
concepts from underspecified stimuli, and to use the abstract
concepts to reconstruct unisensory information to enhance the
overall perception.

We address Q.3 in sections 5 and 6, where we demonstrate
the expectation learning effect can be used to improve the
classification performance and hypothesize that our approach
improves unisensory classification by reconstructing unisensory
stimuli based on multisensory bindings.

To the best of our knowledge, there exists no standard
benchmark to evaluate audio-visual bindings. Therefore, we
propose an ablation study that includes a series of binding
and classification experiments to address Q.4, and to assess
the binding mechanism by measuring if and to what extent
the expectation learning mechanism improves unisensory
classification (see section 5). Herein, we employ the Youtube
AudioSet corpus (Gemmeke et al., 2017) which contains
human-labeled samples of Youtube videos based on the audio
information. We select the animal subset of the corpus consisting
of 44k samples to train the multisensory bindings in an
unsupervised manner and exploit the multisensory bindings by
using them to train a classifier for 24 different animal classes.
We then employ the classifier to recognize absent stimuli, i.e., to
recognize auditory stimuli when visual stimuli are present and
vice versa.

To confirm our hypotheses, we summarize the results of
our experiments in section 6 and show that the expectation
learning improves the multisensory bindings in order to enhance
the recognition of unisensory stimuli1.We analyze the results
in section 7, providing evidence that correlates our network
behavior with the multisensory imagery effect. Furthermore,
we discuss the capabilities and limitations of our model. We
conclude in section 8 that the expectation learning mechanism
improves the quality of themultisensory association by providing
a better unisensory classification.

2. RELATED WORK

Most existing computational models for multisensory learning
apply explicitly weighted connections, and the sensor
information is integrated using early (Wei et al., 2010) or
late (de Boer et al., 2016; Liu et al., 2016) fusion techniques. The
weighted connections are usually tuned in a data-driven manner,
whereby the data distribution directly affects the multisensory
binding. Such existing methods have the drawback that they
require supervision and that they are sensitive to the training
data distribution when performing the multisensory integration.
There exist computational models that are neurocognitively
more accurate in the sense that they consider unisensory biases
(Pouget et al., 2002; Rowland et al., 2007; Kayser and Shams,
2015). Such models, although similar to the brain’s neural
behavior, are usually not feasible to be used on real-world data,
as they are mostly applied to simple stimuli scenarios, and do
not scale well. There exist other complex models that implement
attention mechanisms based on multisensory information, but
the most recent focus in this area is on data-driven fusion models
(Barros et al., 2017; Hori et al., 2017; Mortimer and Elliott,
2017). The introduction of expectation learning would give these

1Note that our approach is different frommultimodal classification where multiple

sensory modalities are necessary to recognize the class of a stimulus.
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models the ability to adapt better to novel situations and learn
from their own errors in an online and continuous way.

Recent contributions build on data-driven learning for
multisensory representations (Arandjelović and Zisserman,
2017a,b; Kim et al., 2018; Owens and Efros, 2018; Senocak et al.,
2018). Such solutions employ transfer learning and attention
mechanisms to improve unisensory recognition and localization.
Although they provide solid results in these specific tasks, they
rely on strongly labeled data points or have extensive training
procedures that are not suitable for online learning. In particular,
the work by Arandjelović and Zisserman (2017a) introduces
a data-driven model for multisensory binding with bottom-up
modulation for spatial attention. Their model uses the network’s
activity to spatially identify which part of an image a certain
sound is related to. Although the model is data-driven, the
authors claim that it learns real-world biasing on a multisensory
description for unisensory retrieval by using a large amount of
real-world training data. Their results show that the model can
use multiple unisensory channels to compensate absent ones and
identify congruent and incongruent stimuli.

A similar approach was presented by Zhou et al. (2017), who
focus on audio generation. Their model relies on a sequence-
to-sequence generator to associate audio events with visual
information. The same generator is used to generate audio for
newly presented video scenes. This requires an external teacher
to identify congruent and incongruent stimuli which makes it
impossible to be used in online learning scenarios.

All approaches that we summarized in this section depend
on end-to-end learning that is not continuous. That is, the
approaches cannot learn novel information without forgetting

old information or extensively retraining the entire model. In the
following, we discuss our GWR approach to address this issue.

3. MULTISENSORY TEMPORAL BINDING

We divide the conceptual design of our model into two tasks:
first, we propose a hybrid neural network that learns, in a fully
unsupervised manner, to associate co-occurrent multisensory
stimuli through a novel expectation learning mechanism. Once
this network is trained, and the multisensory bindings are
learned, we evaluate the learned bindings using a supervised
classifier. This is necessary to guarantee that (1) our model
learns in an unsupervised manner, without interference of giving
labels, and (2) we provide a comparable objective metric for
performance evaluation.

In our first task, we focus on multisensory binding
learning. Our novel model learns based on the co-occurrence
association enhanced through the reconstruction of expected
stimuli.To reconstruct auditory and visual stimuli, we develop
neural autoencoder networks for each of the unisensory
channels. These networks encode high-dimensional data into
a latent representation and reconstruct real-world audio-
visual information. The binding between auditory and visual
information is realized by means of a recurrent GWR network.
The GWR is a self-organizing network that learns to create
conceptual prototypes of data distributions in an unsupervised,
incremental manner that allows for continuous learning. To
address the temporal aspects of coincident binding, we extend
the Gamma-GWR (Parisi and Wermter, 2017) which endows
prototype neurons with a number of temporal contexts to

FIGURE 1 | An overview of the proposed multisensory binding model with the audio/visual autoencoder structures and the recurrent self-organizing binding layer. The

auditory autoencoder uses a CBHG network to reconstruct audio signals from the Mel Spectrum (Lee et al., 2017).
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learn the spatiotemporal structure of the data distribution.
An overview of our multisensory binding model is illustrated
in Figure 1.

In the second task, we train and evaluate a supervised
classifier to evaluate the bindings. Note that the classifier does
not participate in the learning process of the multisensory
bindings; the learning of the bindings in the first tasks remains
unsupervised, and no learning feedback is sent from it to the
proposed model. Therefore, the learned bindings represent the
multisensory co-occurrence and are not biased by supervision.

3.1. Visual Channel
To process high-level information by the visual channel, we drew
inspiration from a variational autoencoder (VAE) (Kingma and
Welling, 2013) which enforces the encoded latent variables to
follow a Gaussian distribution.

In our experimental setup, the VAE produced better results
when recognizing the animals from the AudioSet dataset
when compared with normal convolution autoencoders. Recent
studies demonstrate that the VAE learns how to extract
useful information for image classification better than other
unsupervised approaches on complex backgrounds (Li et al.,
2017). Also, the embedding learned by the VAE showed to
be more robust against noisy information and multi-view
variance (Huang et al., 2018).

We assume that in our scenario, the improvement achieved
with the VAE is due to the great variance on the image quality,
perspective and resolution of the visual information of the
images from the AudioSet dataset. Most likely the VAE learns to
represent the important characteristics of the animals through
the latent vector sampling instead of learning to reconstruct
the entire encoded image. To train the VAE, we implemented a
composite loss function based on the image reconstruction error
and the Kullback-Leibler (KL) divergence between the encoded
representation and the Gaussian unit. This composite loss
function is important to enforce that the encoded representations
learn general concepts of the animals instead of reconstructing
input images from memorized parameters.

Our model receives as input a color image with a resolution
of 128 × 128 × 3. The input data is processed by our encoding
architecture which is composed of a series of four convolution
layers, with a stride of 2 × 2, and kernel sizes of the dimension
3 × 3. The first convolution layer has three channels and the
subsequent three layers have 64 filters. The latent representation
starts with a fully connected layer with 128 units. The VAE
computes the standard deviation and mean of this layer’s output,
generates a Gaussian distribution from it and samples an input
for another fully connected hidden layer with 128 units, which is
the final latent representation. The decoding layer has the same
structure as our encoding layer but in the opposite direction and
applying transpose convolutions.

We optimized the VAE using a tree-structured Parzen
Estimator (TPE)(Bergstra et al., 2011) in order to minimize the
visual reconstruction error. Table 1 exhibits all the important
parameters used to train our vision channel. We used the ADAM
optimizer with an adaptive learning rate.

TABLE 1 | Training parameters of the vision channel.

Parameter Value

Epochs 200

Batch size 32

Optimizer ADAM

Initial learning rate 0.05

ADAM beta1 0.9

ADAM beta2 0.999

3.2. Auditory Channel
For the auditory channel, we implement a recurrent autoencoder
based on Gated Recurrent Units (GRU) (Cho et al., 2014).
Different from the vision channel, the auditory channel processes
temporal information. As we have demonstrated in previous
work, the auditory processing with autoencoders based on GRUs
(Eppe et al., 2018a) obtained better representations than the
ones with VAEs. We assume that this happens due to recurrent
units allowing us to process and to reconstruct audio with better
quality than when using non-recurrent layers since auditory
signals are sequential, and each audio frame depends highly on
previous contextual information (Eppe et al., 2018b).

As input and output of the auditory autoencoder, we compute
a Mel spectrum which we generate from the raw waveform. To
reconstruct the audio from the output Mel spectrum, we employ
a convolutional bottleneck CBHG network model (Lee et al.,
2017) which consists of a 1-D convolutional bank, a highway
network and a bi-directional GRU layer. This network receives
as input the Mel spectrum, and outputs a linear frequency
spectrum which is then transformed into waveform using the
Griffin Lim algorithm (Griffin and Jae Lim, 1984). This approach
of transforming Mel coefficients into a linear spectrum and
then into waveform achieved better audio synthesis quality than
performing Griffin Lim on the Mel spectrum directly (Wang
et al., 2017; Eppe et al., 2018a), and it improves the audio data
of our expectation learning approach.

We performed hyperparameter optimization for the
autoencoder and found that an audio spectrum window
length of 50 ms, a window shift of 12.5 ms with 80 Mel
coefficients and 1,000 linear frequencies yield best reconstruction
results. We also found that 80 units for the dense bottleneck layer
and two GRU layers with 128 units each for both the encoder
and decoder network are sufficient for achieving a high audio
quality. An additional number of Mel coefficients, GRU layers,
and neural units did not significantly improve the reconstruction
quality. The number of bottleneck units is important for the
multisensory binding as it determines the number of connections
between the binding layer and the audio encoder and decoder.

Similarly to the vision channel, we optimize the auditory
channel using a tree-structured Parzen Estimator (TPE) (Bergstra
et al., 2011) in order to minimize the auditory reconstruction
error. Table 2 exhibits the important parameters used to train
our auditory channel. We follow the same training procedure as
the vision channel, and also used the ADAM optimizer with an
adaptive learning rate.

Frontiers in Robotics and AI | www.frontiersin.org 4 December 2019 | Volume 6 | Article 137

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Barros et al. Expectation Learning Improves Unisensory Classification

TABLE 2 | Training parameters of the auditory channel.

Parameter Value

Epochs 250

Batch size 32

Optimizer ADAM

Initial learning rate 0.01

ADAM beta1 0.9

ADAM beta2 0.999

3.3. Self-Organizing Temporal Binding
To learn coincident bindings between audio and visual stimuli,
we use an unsupervised binding layer. An unsupervised learning
strategy allows us to learn an online manner, where the bindings
are created based on the data distribution. Also, excluding an
external teaching signal allows the bindings to learn how to best
represent the co-incident multisensory stimuli. In this regard,
Growing-When-Required (GWR) networks have been recently
explored as continual learning mechanism (Parisi et al., 2019).
Their capability to grow and shrink, adding and removing
neurons while they are learning, made them experts on avoiding
catastrophic forgetting (Soltoggio et al., 2018). Such networks,
however, are experts on learning topological relations between
the input data. To be able to process co-incident multisensory
stimuli, we propose here the implementation of a recurrent GWR
layer which receives as input the latent representations of our
visual and auditory channels which are processed coincidentally,
and learn how to create prototype neurons which represent the
multisensory binding.

To synchronize the two data streams, we resample video
and audio streams to a temporal resolution of 20 frames per
second, i.e., each video frame is associated with 12.5 ms of
auditory information. In contrast to traditional self-organizing
models with winner-takes-all dynamics for the processing of
spatial patterns, the Gamma-GWR (Parisi and Wermter, 2017)
computes the winner neuron taking into account the activity of
the network for the current input and a temporal context. Each
neuron of the map consists of a weight vector wj and a number

K of context descriptors ckj (with wj, c
k
j ∈ R

n). As a result,

recurrent neurons in the map will encode prototype sequence-
selective snapshots of the input. Given a set of N neurons, the
best-matching unit (BMU), b, with respect to the input x(t) ∈ R

n

is computed as:

b = argmin
j∈N

(
α0‖x(t)− wj‖

2 +

K∑

k=1

αk‖Ck(t)− cj,k‖
2

)
, (1)

Ck(t) = β · wI(t−1) + (1− β) · cI(t−1),k−1, (2)

where αi and β ∈ (0; 1) are constant values that modulate the
influence of the current input with respect to previous neural
activity, wI(t − 1) is the weight of the winner neuron at t − 1,
and Ck ∈ R

n is the global context of the network (Ck(t0) = 0).
New connections are created between the BMU and the

second BMU for any given input. When a BMU is computed,
all the neurons the BMU is connected to are referred to as

its topological neighbors. Each neuron is equipped with a
habituation counter hi ∈ [0, 1] expressing how frequently it
has fired based on a simplified model of how the efficacy of a
habituating synapse reduces over time. In the Gamma-GWR,
the habituation rule is given by 1hi = τi · κ · (1 − hi) − τi,
where κ and τi are constants that control the decreasing behavior
of the habituation counter (Marsland et al., 2002). We say that
a neuron is habituated, if its habituation counter hi is smaller
than a given habituation threshold hT . The network is initialized
with two neurons and, at each learning iteration, it inserts a new
neuron whenever the activity of the network a(t) of a habituated
neuron is smaller than a given threshold aT , i.e., a new neuron r
is created if a(t) < aT and hb < hT . The training of the neurons
is carried out by adapting the BMU b and its topological neurons
n according to:

1wi = ǫi · hi · (x(t)− wi), (3)

1ck,i = ǫi · hi · (Ck(t)− ck,i), (4)

where ǫi is a constant learning rate. The learning process of the
Gamma-GWR is unsupervised and driven by bottom-up sensory
observations, thereby either allocating new neurons or adapting
existing ones in response to novel input. In this way, fine-grained
multisensory representations can be acquired and fine-tuned
through experience.

As an extension of the Gamma-GWR, we implement temporal
connections for the purpose of predicting future frames from
an onset frame. The temporal connections are implemented as
sequence-selective synaptic links that are incremented between
those two neurons that are consecutively activated.When the two
neurons i and j are activated at time t − 1 and t, respectively,
their synaptic link P(i,j) is strengthened. Thus, at each learning
iteration, we set 1P(I−1,b) = 1, where I − 1 and b are the indexes
of the BMUs at time t− 1 and t, respectively. As a result, for each
neuron i ∈ N, we can retrieve the next neuron v of a prototype
sequence by selecting

v = arg max
j∈N\i

P(i,j). (5)

This approach results in the learning of trajectories of neural
activations that can be reconstructed in the absence of sensory
input. We also optimized the parameters of the Gamma-GWR
using a tree-structured Parzen Estimator (TPE) (Bergstra et al.,
2011) minimizing the network’s quantization error. Table 3

exhibits the parameters used to train our Gamma Growing-
When-Required (Gamma-GWR) network. We use a small
insertion threshold, which helps the network to maintain a
limited number of neurons, reinforcing the generation of highly
abstract clusters.

3.4. Supervised Classifiers
The supervised classifiers were implemented to generate an
objective performance metric of the unsupervised learning
mechanism. In this regard, they are trained in a separated training
step which does not influence the multisensory binding learning.
We provide two classifiers, one for vision and one for audio, to
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TABLE 3 | Training parameters of the self-organizing temporal binding layer.

Parameter Value

Epochs 50

Insertion threshold 0.01

Context size 4

Initial Gamma Weights 0.64391426, 0.23688282, 0.08714432, 0.0320586

βb 0.5

ǫb 0.2

ǫn 0.003

measure the unisensory recognition capabilities of the learned
multisensory bindings.

Each classifier receives as input the audio or visual part of
the BMU, depending on which unisensory stimuli we want to
classify, of the GWR which represents the perceived stimuli.
Each classifier is composed of a dense layer with 128 units
and an output softmax layer. Similarly to the autoencoders
and the GWR, we optimized the classifiers to maximize the
recognition accuracy using a tree-structured Parzen Estimator
(TPE) (Bergstra et al., 2011) and use the optimal parameters
through all of our experiments (see Table 3). An overview of
the proposed multisensory binding model with the audio/visual
autoencoder structures and the recurrent self-organizing binding
layer. The auditory autoencoder uses a CBHG network to
reconstruct audio signals from the Mel Spectrum.

4. EXPECTATION LEARNING

As the self-organizing layer is updated in an unsupervised
Hebbian manner, it learns to associate audio-visual stimuli
online. This implies that the binding process is entirely co-
occurrent-driven, without the necessity of external supervision
other than temporal co-occurrence. More specifically, after
finding the BMU related to a unimodal perceived stimulus, the
associated absent stimuli will be reconstructed based on the
prototypical concept that this neuron learned. This is possible
because each neuron in the self-organizing layer processes the
union of the auditory and visual encodings at training time,
where both signals are provided.

The reconstruction and expectation learning capability is
the basis for our novel proposal of a expectation learning
mechanism for the self-organizing layer.First, we pre-train our
self-organizing binding to generate prototype neurons with
strong audio-visual encodings. This allows the model to learn a
prior association between auditory and visual concepts. Second,
after the network has learned these associations, we use unseen
data points to fine-tune the bindings with the expectation
learning through the update of the learned associations using the
reconstructed stimuli.

The network encodes a visual or auditory stimulus (s), and
computes the BMU (bav) using only the associated auditory or
visual weights as follows:

bav = argmin
j∈N

(
α0‖s(t)− w̃s

j‖
2 +

K∑

k=1

αk‖C̃
s
k(t)− c̃j,k‖

2

)
, (6)

where w̃s
j represents the audio or visual representation encoded

on the neuron’s weights. In this case, the global context of the
network at any time step (C̃

s
k(t)) is represented by the stimulus

encoding; the same happens with the BMU context (̃cj,k). We
then use the auditory and vision parts of the multisensory
representation stored on bav to reconstruct the auditory (a′) and
visual (v′) information using the specific channel decodingDv for
vision and Da for audio:

a′ = Da(ba),

s′ = Dv(bv).
(7)

When the model processes the perceived auditory and visual
signals, it creates two extra pairs of multisensory stimuli by
combining the perceived auditory and visual ones with the
reconstructed auditory and visual stimuli. We bind the encoded
information of the reconstructed audio-visual information to
the originally perceived stimuli and re-train the self-organizing
layer with the new pairs. By pairing the perceived and the
reconstructed stimuli representations, we enforce the self-
organizing layer to learn general concepts, and not specific
instances of the animals. In consequence, animals which sound
similar will be paired together, and connections of coincident
stimuli will be learned with relatively small amounts of training
data. Inconsistencies will cause the model to pair different audio-
visual stimuli, thus creating new prototype neurons, but these will
be forgotten quickly by the self-organizing layer as they occur
less frequently.

5. EXPERIMENTAL SETUP

Our goal is to evaluate the performance of the model to
reconstruct audio/visual stimuli based on unimodal perception,
and to evaluate the conceptual relations learned by the
network. Although there exist several datasets with multimodal
information, the animal subset of the AudioSet corpus2

(Gemmeke et al., 2017) presents a unique advantage for our
evaluation: It contains natural scenarios with different levels
of conceptual binding, including broader prototype associations
like images of cats linked to meowing, but also more fine-grained
associations like high-pitched barking linked to small dogs.

Each video in the dataset has a duration of 10 s and it
is possible that, e.g., there is both a cat and a dog present
in the video. As there are no standard published results of
this specific task for the AudioSet corpus, we run a series
of baseline recognition experiments that serve as the main
comparison to measure our model’s performance. To obtain a
precise measure of the contribution of the expectation learning,
we decide to cluster some overlapping classes and use 16
single labels, one per video: Cats (“Cat” + “Meow” + “Purr”),
Dogs (“Bark” + “Dog” + “Howl”), Pigs (“Oink” + “Pig”), Cows
(“Moo” + “Cattle, bovinae”), Owls (“Owl” + “Coo”), Birds,
Goats, Bee (“Bee, wasp, etc.”), Chickens (“Chicken, rooster”),
Ducks (“Duck”), Pidgeons (“Pidgeon, dove”), Crows (“Crow”),
Horses (“Horse”), Frogs (“Frogs”), Flies (“Fly, housefly”), Lions

2https://research.google.com/audioset/
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(“Roaring cats (lions, tigers)”). We use the unbalanced training
subset consisting of approximately 43,500 videos to train our
model and evaluated it with the test subset consisting of
approximately 20,000 videos. The labels of this dataset are
crowdsourced based on the video descriptions.

We perform two sets of experiments: one to evaluate the
contribution of the expectation learning to the multisensory
binding and one to compare the performance of our
model with currently successful deep learning models for
unisensory recognition.

The first set of experiments is divided into three steps.
In EXP 1.1, we train the multisensory bindings of the GWR
using half of the training subset in order to guarantee that the
model learns strong audio-visual prior bindings. In EXP 1.2,
we continue the training of the EXP 1.1 network using the
other half of the training subset. This experiment serves as a
baseline for learning bindings without expectation and as a main
comparison point for the contribution of the expectation learning
mechanism. Finally, in EXP 1.3, we repeat the continuation of the
training of the EXP 1.1 network with the other half of the training
subset but now using the expectation learning mechanism when
creating the GWR associations.

To evaluate the performance contribution of each of our
experimental steps on the association learning we use the
implemented supervised classifiers for each of the channels
(auditory and visual). To evaluate the capability of the model
to learn meaningful associations, we always classify an absent
stimulus, i.e., when perceiving an auditory stimulus, the network
uses the associated visual stimulus as input to the classifier and
vice versa.This means that, when perceiving 50ms of audio, we
have an associated representation of 4 frames and vice versa. As
the videos from the AudioSet dataset have a length of 10s, we use
a simple voting scheme to obtain the final label. For every 50 ms
of audio and every 4 frames per video, we produce one label and
after having all the labels for a 10 s video, we select the one which
appears most often.

Our second set of experiments is designed to evaluate how
our proposed model compares with deep learning networks for
auditory and visual stimuli recognition. In EXP 2.1, we compare
our model with the Inception V3 network (Ioffe and Szegedy,
2015) for the visual stimuli, and in EXP 2.2 with the SoundNet
(Aytar et al., 2016) for the auditory stimuli. These two models
present competitive results on different audio-visual recognition
tasks (Jansen et al., 2018; Jiang et al., 2018; Kiros et al., 2018;
Kumar et al., 2018). For all experiments, we trained themodels 10

TABLE 4 | Mean accuracy, in percentage, and standard deviation of our

experiments.

Exp. Model Audio Vision

EXP 1.1 Prior binding association 58.5 (3.1) 69.0 (3.9)

EXP 1.2 Without expectation 66.4 (2.4) 86.8 (3.2)

EXP 1.3 With expectation 70.8 (3.2) 89.8 (1.9)

EXP 2.1 Inception V3 (Ioffe and Szegedy, 2015) – 89.4 (1.3)

EXP 2.2 SoundNet (Aytar et al., 2016) 68.5 (2.4) –

times and determined the mean accuracy and standard deviation
for eachmodality.We used the same 10% of the training subset as
a validation set for each experiment, and used an early stopping
mechanism based on the accuracy of the validation subset to
prevent overfitting.

6. RESULTS

Our final results are depicted in Table 4. Our first experiment,
EXP 1.1, demonstrates that training the model with half of
the data, to create strong binding associations, is enough
to obtain a baseline performance. Continuing to train the
model using standard GWR associations (EXP 1.2) shows the
expected improvement, i.e., an 8% gain in the recognition
accuracy for audio and more than 17% of accuracy gain for
vision when compared to EXP 1.1. The results of EXP 1.3 show
that the expectation mechanism improves the recognition
of unisensory stimuli, when compared to EXP 1.2. We
obtained an improvement of more than 4% on audio and
3% on vision.

The performance of the network follows the general behavior
of other models to recognize vision stimuli better than auditory
stimuli. This effect is demonstrated by the results of the
Inception-V3 (EXP 2.1) and the SoundNet (EXP 2.2) models.
This is probably due to the dataset presenting challenging audio
stimuli with much background noise.

When compared with Inception-V3 (EXP 2.1) and SoundNet
(EXP 2.2), our expectation model (EXP 1.3) presents better
auditory recognition, and slightly better vision recognition
performance. The auditory stimulus is more affected, as
it presents much more noisy information. In the latter
case, the network relies more on the visual stimuli and
creates neurons with strong visual encoding. This effect is
represented by creating neurons with similar visual encoding
associated with the auditory encoding. When training with
expectation learning, the network creates an average of 5,400
neurons, while when training without the expectation, it creates
4,000 neurons.

The latent representations from the auditory and visual
channels encode different characteristics of the stimulus and are
then connected by our self-organizing layer. The expectation
learning enforces the generation of robust bindings, especially
for distinct animals. For example, the network eventually
created specific neurons for cats and dogs and shared neurons
for chickens and ducks. This explains the improvement
of the recognition of the reconstructed stimuli of easily
separable animals, as illustrated by the differences between
the accuracy differences of the cats and horses categories
in Figure 2.

This behavior can be easily observed when comparing
the mean accuracy and standard deviation per class of
our baseline experiments (SoundNet and Inception V3) with
the detailed accuracy per class obtained by our expectation
learning model (see Table 5). Animal classes which more
distinct between each other presents a better accuracy and
standard deviation.
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FIGURE 2 | Mean accuracy per class, in percentage, of the reconstructed absent stimuli. We compare audio and visual reconstruction with the results when training

the network with all the samples of the training set.

TABLE 5 | Mean accuracy, in percentage, and standard deviation of our experiments per classification class.

Animal class Audio Vision

– SoundNet Without With Inception Without With

Expectation Expectation V3 Expectation Expectation

Cats 90.2 (3.2) 87.6 (3.2) 93.8 (2.1) 94.8 (2.4) 93.8 (1.9) 95.6 (2.1)

Dogs 92.5 (4.1) 89.5 (3.6) 94.4 (2.9) 96.7 (2.5) 94.6 (2.2) 97.5 (1.8)

Pigs 80.7 (3.7) 84.6 (3.2) 86.5 (3.7) 95.6 (3.4) 87.5 (1.4) 93.4 (1.7)

Cows 83.8 (3.5) 85.9 (4.1) 86.7 (2.7) 94.8 (1.7) 90.4 (1.6) 93.4 (2.8)

Owls 71.8 (1.4) 71.8 (3.7) 74.9 (2.9) 87.8 (1.0) 80.7 (1.8) 84.7 (1.9)

Birds 62.7 (2.2) 60.1 (2.6) 63.7 (1.9) 90.6 (3.6) 86.7 (4.7) 89.7 (3.7)

Goats 60.2 (3.9) 50.2 (1.6) 60.7 (3.7) 95.8 (2.1) 90.4 (2.8) 93.2 (1.9)

Bee 63.1 (1.1) 53.7 (2.7) 62.1 (3.9) 91.2 (4.7) 89.5 (2.7) 91.7 (3.1)

Chickens 59.8 (3.0) 63.8 (1.9) 60.7 (2.1) 85.1 (1.7) 93.8 (1.7) 95.7 (1.9)

Ducks 68.7 (4.1) 66.9 (1.9) 70.5 (2.8) 96.8 (2.3) 79.5 (1.6) 84.6 (2.9)

Pidgeons 76.8 (2.6) 83.6 (4.7) 83.8 (2.6) 92.5 (3.1) 92.6 (2.7) 94.7 (2.9)

Crows 67.9 (1.8) 62.1 (1.9) 68.3 (2.2) 91.3 (2.7) 90.1 (2.0) 93.4 (2.8)

Horses 43.6 (3.7) 32.8 (2.6) 41.6 (3.9) 69.8 (4.1) 63.7 (3.1) 67.8 (1.8)

Frogs 57.8 (1.4) 51.8 (3.7) 59.4 (2.7) 79.8 (2.5) 80.6 (2.7) 82.1 (3.4)

Flies 53.1 (1.3) 57.8 (3.0) 58.3 (2.5) 89.8 (1.9) 84.9 (1.6) 86.7 (2.6)

Lions 63.5 (3.4) 60.3 (2.9) 68.5 (2.6) 94.5 (2.5) 90.4 (2.4) 93.2 (3.8)

7. DISCUSSION

As the self-organizing layer is updated in an unsupervised
manner, it learns to associate audio-visual stimuli online.
Moreover, by activating the BMU related to a specific perceived
stimulus, the associated absent stimulus can be reconstructed
based on the concept that this neuron learned. However, the
reconstructed data is, of course, not identical to the original data.
For example, when processing an image of a dog, the network
will reconstruct an appropriate barking sound, but not exactly the
sound that this specific dog would make. This mimics precisely

the multisensory imagery effect (Spence and Deroy, 2013) of
humans, who tend to simplify and cluster absent stimuli when
asked to reconstruct them. For example, every time one sees a
small yellow bird, the person will expect it to sound very similar
to the ones she/he has seen before. This is an important effect
that helps our model to reconstruct animal concepts instead of
specific instances.

To provide an indication of this effect, and as an additional
indicator for multisensory concept formation, we performed an
additional overlapping analysis to estimate how well the model
is binding and clustering audio-visual information. To this end,
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FIGURE 3 | Example of the reconstruction output. The left image displays the audio reconstruction when the visual stimulus is perceived. The right image displays the

vision reconstruction when the audio stimulus is perceived.

we first train the model with the expectation learning mechanism
and then we classify every single neuron of the GWR using
both audio and visual classifiers which generate two labels for
each neuron: one for auditory and one for visual information.
The total overlap between visual and auditory labels for each
prototype neuron in our self-organizing layer is 93%, suggesting
that our prototype neurons are very concise when storing audio-
visual information. Performing the same experiment on the
network training without the expectation mechanism gave us an
overlap of 85% for the neurons.

Another effect that we investigate is multisensory
correspondence (Spence and Driver, 2000). The effect causes
humans not only to associate dogs with barking but also,
more specifically, small dogs with high-pitched barking. The
associations between the stimuli are continuously reinforced
when perceptive stimuli are experienced. We observed this
effect in some examples where the variety of animals was higher,
such as dogs. We illustrate one of these examples in Figure 3.
The figure depicts the reconstruction of visual information
based on an auditory stimulus of different dogs barking. A
high-pitched barking generates images related to a small dog.
Furthermore, when the simultaneous barking of more than one
dog is processed, the network generates an image of several dogs.
We expect this effect to become more visible with larger datasets
that contain more diverse samples.

The cognitive plausibility of our approach is underpinned
by an important limitation: Both multisensory imagery and
multisensory correspondence only occurs when both auditory
and visual stimuli can be understood and represented as a
simplified concept. This also holds for human cognition: For
example, humans cannot reconstruct precisely the characteristics
of how the voice of a person will sound when reading a text. Our
experiments demonstrate that ourmodel learns to associate high-
level animal concepts, and even multisensory correspondences,
but could not be applied to reconstruct information that demands
a much higher precision, i.e., person identification.

8. CONCLUSION

Multisensory binding is a crucial aspect of how humans
understand the world. Consequently, the development of
computational systems able to adapt this aspect into information

processing is important to many research fields. An extensive
number of models has been proposed that incorporate different
aspects of multisensory binding. However, our approach
combines several novelties. It combines a Grow-When-Required
(GWR) network with convolutional autoencoders to realize
unsupervised expectation learning. In addition, we propose to
exploit expectation learning by reconstructing stimuli that can be
used as additional training data to generate a significant positive
effect on perceptive tasks like classification. We, therefore,
provide a novel proof of concept for a data augmentation
mechanism to improve the accuracy and performance of
unimodal classification methods.

An interesting future research direction is to also address
spatial expectation, because this would provide a complementary
component to integrate contextual, temporal, and spatial
correspondence. Realizing the transfer of learned multisensory
bindings is another unexplored research area that we plan
to investigate as a follow-up to this work. To model the
multisensory characteristics of the classification, in particular
aspects regarding multisensory conflict resolution and fusion
would be an interesting next step as well.
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Feedback Modulates Audio-Visual
Spatial Recalibration
Alexander Kramer* , Brigitte Röder and Patrick Bruns

Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany

In an ever-changing environment, crossmodal recalibration is crucial to maintain precise
and coherent spatial estimates across different sensory modalities. Accordingly, it
has been found that perceived auditory space is recalibrated toward vision after
consistent exposure to spatially misaligned audio-visual stimuli (VS). While this so-called
ventriloquism aftereffect (VAE) yields internal consistency between vision and audition,
it does not necessarily lead to consistency between the perceptual representation of
space and the actual environment. For this purpose, feedback about the true state
of the external world might be necessary. Here, we tested whether the size of the
VAE is modulated by external feedback and reward. During adaptation audio-VS with
a fixed spatial discrepancy were presented. Participants had to localize the sound
and received feedback about the magnitude of their localization error. In half of the
sessions the feedback was based on the position of the VS and in the other half it
was based on the position of the auditory stimulus. An additional monetary reward
was given if the localization error fell below a certain threshold that was based on
participants’ performance in the pretest. As expected, when error feedback was based
on the position of the VS, auditory localization during adaptation trials shifted toward the
position of the VS. Conversely, feedback based on the position of the auditory stimuli
reduced the visual influence on auditory localization (i.e., the ventriloquism effect) and
improved sound localization accuracy. After adaptation with error feedback based on the
VS position, a typical auditory VAE (but no visual aftereffect) was observed in subsequent
unimodal localization tests. By contrast, when feedback was based on the position of
the auditory stimuli during adaptation, no auditory VAE was observed in subsequent
unimodal auditory trials. Importantly, in this situation no visual aftereffect was found
either. As feedback did not change the physical attributes of the audio-visual stimulation
during adaptation, the present findings suggest that crossmodal recalibration is subject
to top–down influences. Such top–down influences might help prevent miscalibration
of audition toward conflicting visual stimulation in situations in which external feedback
indicates that visual information is inaccurate.

Keywords: crossmodal learning, crossmodal recalibration, sound localization, ventriloquism aftereffect,
supervised learning, multisensory, feedback, spatial perception
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INTRODUCTION

When spatially interacting with our environment, vision and
audition communicate in multifaceted ways to guide attention
(Driver and Spence, 1998), enhance spatial acuity (Bolognini
et al., 2007), and form a coherent representation of our
environment. In order to benefit from multiple sensory sources,
the signals must be integrated across sensors. Spatial proximity
is one of the main cues to decide whether or not two signals
belonged to the same event (Holmes and Spence, 2005). In
the case of audio-visual spatial perception, assessing spatial
proximity is a strikingly complex task, as spatial representations
in vision are directly provided by the retina (in eye-centered
coordinates), whereas in audition spatial cues emerge from the
interaction of the sound waves with the head (Mendonça, 2014)
and have to be transformed into a (head-centered) spatial code.
It has been argued that the perceptual system uses vision to
calibrate auditory spatial perception due to its usually superior
spatial resolution and, thereby, resolves misalignments between
sensory representations (Radeau and Bertelson, 1974; Knudsen
and Knudsen, 1989; Bertelson et al., 2006; King, 2009; Kopco
et al., 2009). Misalignments between sensory representation
typically arise during development due to changes in interocular
and interaural distance and head size. However, multisensory
calibration is not limited to development but rather a lifelong
process (Gilbert et al., 2001).

A vivid example of crossmodal recalibration in adults is the
ventriloquism aftereffect (VAE), in which exposure to audio-
visual stimuli (VS) with a consistent spatial discrepancy induces a
subsequent shift in unisensory auditory localization (Radeau and
Bertelson, 1974). The VAE can be induced with various audio-
visual exposure durations ranging from a single exposure (Wozny
and Shams, 2011; Bruns and Röder, 2015) over an exposure
lasting for several minutes (Recanzone, 1998; Lewald, 2002; Bruns
et al., 2011) to several days (Zwiers et al., 2003). With longer
adaptation times, the size of the aftereffect increases (Frissen
et al., 2012). The size of the aftereffect is usually only a fraction
of the original audio-visual discrepancy (10–50%) (Bertelson
et al., 2006; Kopco et al., 2009; Frissen et al., 2012). More
drastic interventions such as the use of prisms over days (Zwiers
et al., 2003) to weeks (Bergan et al., 2005) while continuously
interacting with the environment have been shown to result in
a stronger and more complete realignment of audition with the
new visual world.

In case of the VAE, the mere existence of an audio-visual
discrepancy implies that at least one of the sensory estimates
must be inaccurate. However, without external feedback, the
perceptual system cannot infer which sensory estimate was
inaccurate and, thus, which sensory representation should be
recalibrated (Zaidel et al., 2013). While the VAE as a form of
recalibration manifests in subsequent unisensory shifts, auditory
localization is also biased toward vision during audio-visual
stimulation, referred to as the ventriloquism effect (VE). Studies
investigating such immediate effects as examples of multisensory
integration have found that a unified multisensory percept
is formed as a weighted average based on the precision of
the individual cues, which is considered optimal since such a

combination rule maximizes the precision of the multisensory
percept (Ernst and Banks, 2002; Alais and Burr, 2004). It has been
demonstrated that auditory localization accuracy is positively
correlated with precision along the horizontal plane (Garcia et al.,
2017). If accuracy is correlated with precision and precision is
directly accessible to the perceptual system (Ernst and Di Luca,
2011), some authors have argued that it would be optimal if
recalibration was based on the reliability of the individual cues,
too (reliability-based adaptation, for examples see Ghahramani
et al., 1997; van Beers et al., 2002; Burge et al., 2010; Makin et al.,
2013). However, precision does not necessarily imply accuracy
(Ernst and Di Luca, 2011). Thus, several authors have argued that
the perceptual system forms prior beliefs about the accuracy of
individual senses which are independent of precision (Block and
Bastian, 2011; Ernst and Di Luca, 2011). Recalibration is then
assumed to be based on the prior beliefs about accuracy rather
than on current reliability. Accordingly, it has been proposed
that sensory estimates are adapted according to a fixed ratio
(fixed-ratio adaptation) which is relatively stable over time and
independent of short-term variations in sensory precision (Zaidel
et al., 2013). Crossmodal recalibration consistent with a fixed-
ratio adaptation was indeed observed in visual-vestibular motion
perception (Zaidel et al., 2011).

Regardless of whether recalibration is reliability-based or
follows a fixed-ratio, it would lack external validation in a purely
sensory context in which accuracy can only be inferred either
from the same cues that are subject to recalibration, which
would be circular, or from prior beliefs that can turn out to
be wrong when the environment changes. Several authors have
argued that this circularity can only be overcome by the use of
external feedback which provides independent information about
the state of the world (Di Luca et al., 2009; Zaidel et al., 2013).
While it is known that unisensory and sensorimotor perceptual
learning is susceptible to external feedback (Adams et al., 2010),
to our knowledge only one study has investigated whether
crossmodal recalibration is modulated by external feedback
(Zaidel et al., 2013).

Zaidel et al. (2013) demonstrated that, unlike recalibration
without external feedback (unsupervised recalibration),
crossmodal recalibration depended on cue reliability when
external feedback about the sensory accuracy was provided
which was based on the spatial location of one of the two
sensory cues (supervised recalibration). In a visual-vestibular
motion VAE paradigm, Zaidel et al. (2013) manipulated visual
reliability such that it was either set higher or lower than
vestibular reliability. Feedback was either given based on
motion implied by visual motion stimuli or based on vestibular
motion stimuli which were presented simultaneously. Whereas
unsupervised recalibration was independent of cue reliability
(Zaidel et al., 2011), supervised recalibration was found to
be based on the discrepancy between the multisensory (i.e.,
integrated) percept and the location indicated by feedback. As
the multisensory percept in visual-vestibular motion perception
is highly dependent on cue reliability (Gu et al., 2008; Fetsch
et al., 2009) supervised recalibration therefore also depended on
cue reliability. Zaidel et al. (2013) argued that both mechanisms
together result in accurate, precise and consistent multisensory
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and unisensory representations of space. The idea is that
unsupervised recalibration aligns sensory modalities, thereby
providing a consistent representation of space, and supervised
learning realigns this internally consistent representation with
the external world.

However, in order to accept these ideas as a general rule, it
has to be demonstrated that they hold for other combinations
of sensory modalities such as for audio-visual stimulation. In
fact, empirical results have suggested that audio-visual spatial
recalibration in the VAE might be unaffected by top–down
processes. For example, the VAE did not differ between audio-
visual trials which included matching voices and faces or
percussion sounds and a video of hands playing bongo, compared
to trials in which the VS was simply a synchronously modulated
diffuse light (Radeau and Bertelson, 1977, 1978). Furthermore,
although attentional load was found to influence the spatial
pattern of the VAE, the overall size of the VAE remained
unaffected (Eramudugolla et al., 2011). These results were taken
as evidence for the idea that the VAE is largely independent
of top–down effects such as attention. In accordance with this
proposal are findings that the VAE occurs even when participants
are asked to ignore VS or become aware of the audio-visual
discrepancy (Bertelson, 1999). However, it is not known whether
the VAE is modulated by external feedback regarding the spatial
accuracy of either the auditory or visual cue. In fact, such
feedback would be a crucial prerequisite to guarantee external
accuracy of perception, that is, a correct relation between sensory
representations and the external world.

In order to test whether crossmodal recalibration is affected
by external spatial feedback, we extended the classical VAE
paradigm (Radeau and Bertelson, 1974; Recanzone, 1998) by
introducing feedback similar to that employed by Zaidel et al.
(2013). During an audio-visual block, participants had to localize
audio-VS with a fixed spatial discrepancy. In contrast to previous
studies, feedback about the localization error was provided. Each
participant completed four sessions and in half of the sessions
feedback in audio-visual blocks was calculated based on the
discrepancy between the participant’s response and the true visual
position, and in the other half of the sessions feedback was based
on the discrepancy between the participant’s response and the
true auditory position.

As there are a few reports of visual aftereffects in the
ventriloquism paradigm (Radeau and Bertelson, 1976; Lewald,
2002) which could potentially be increased by feedback that is
based on the auditory stimulus (AS) position, we tested both
auditory and visual unimodal localization before and after the
audio-visual block to assess both auditory and visual aftereffects.
Based on the assumption that feedback would update the
perceptual system’s beliefs about the accuracy of the involved
sensory cues, we hypothesized that the VAE would decrease for
the sensory modality that feedback was based on. The opposite
effect was expected for the other modality for which feedback did
not indicate the true stimulus location. Moreover, as accuracy
was found to be correlated with precision in audition (Garcia
et al., 2017) and precision modulated effects of feedback in visual-
vestibular recalibration (Zaidel et al., 2013), we additionally tried
to manipulate the reliability of the VS. In accordance with Zaidel

et al. (2013), we hypothesized that recalibration in the presence
of feedback is based on relative cue reliabilities. Hence, the VAE
would be increased for the less reliable sensory modality.

MATERIALS AND METHODS

Participants
In order to counterbalance all control conditions (see section
“Procedure” for details), we were restricted to multiples of 24 for
our sample size. We aimed for a sample size of 24 participants,
which has 80% power (at an α level of 0.05) to detect a medium-
sized effect (dz = 0.52) for a directional difference between two
within-subject conditions (corresponding to our main hypothesis
that the VAE is reduced when feedback is based on the auditory
position rather than on the visual position). The power analysis
was conducted in G∗Power 3.1 (Faul et al., 2009).

A total of 37 healthy adult volunteers were recruited through
an online subject pool of the University of Hamburg, because
13 datasets had to be removed from the initial sample due
to technical issues which led to a wrong presentation of AS
locations. All affected datasets were replaced such that complete
datasets from 24 participants were acquired. At the analysis
stage, six additional datasets had to be excluded from the
24 participants which completed all sessions. One participant
reported visual field restrictions in one hemifield after completion
of the experiment and had to be removed from the sample.
Moreover, five participants had to be removed due to untypically
inaccurate responses or poor performance in catch trials (see
section “Data Analysis” for details).

The remaining 18 participants (4 males, 14 females) were from
19 to 39 years of age (mean: 24.4 years) and reported normal
hearing and normal or corrected-to-normal vision. Participants
received course credits as compensation. Additionally,
participants received monetary rewards (mean = 25.56€,
possible minimum = 0€, possible maximum = 46.80€, empirical
minimum = 17.55€, empirical maximum = 39.60€) as part of
the experiment. Written informed consent was obtained from
all participants prior to taking part. The study was performed
in accordance with the ethical standards laid down in the 2013
Declaration of Helsinki. The procedure was approved by the
ethics commission of the Faculty of Psychology and Human
Movement of the University of Hamburg.

Apparatus
Experiments were conducted in a sound-attenuated and
darkened room. Participants were seated in the center of a
semicircular frame (90 cm radius) on which six loudspeakers
were mounted at ear level. Hence, all auditory stimuli were
presented at the same height. Loudspeaker locations ranged
horizontally from 22.5◦ left from straight-ahead (0◦) to 22.5◦
right from straight-ahead in steps of 9◦ (−22.5, −13.5, −4.5, 4.5,
13.5, and 22.5◦). Participants positioned their head on a chin rest
to fix the head position across trials. An acoustically transparent
curtain covered the loudspeakers. A schematic illustration of the
apparatus is shown in Figure 1. Visual stimulation was provided
via four laser pointers which projected a light point onto the
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FIGURE 1 | Illustration of the setup and an audio-visual trial. Six speaker positions from –22.5 to 22.5◦ in steps of 9◦ are represented by black boxes. The curtain
covering the speakers is only transparent for illustration purposes and was visually opaque and only acoustically transparent. A chin rest used to fixate the head is
not displayed. At first, a green laser dot appeared as fixation point and participants could start the trial by pointing to the fixation dot and pressing a button. The trial
started when the pointing error was below ± 10◦. During a second interval, a step motor adjusted a second laser used for stimulus presentation. Auditory (indicated
by blue waves) and visual (red light cone) stimuli were presented for 200 ms in synchrony. Participants could respond immediately by pointing toward the perceived
direction and pressing a button on the pointer. Corrective feedback followed instantaneously in form of a centrally presented arrow. The color of the arrow (green for
reward, red for no reward) and a unique sound indicated whether a reward was obtained. After a varying interval (600–800 ms) the green laser dot reappeared, and
the participant could start the next trial. Avatar image adapted from “Low Poly Character” by TehJoran (2011) (https://www.blendswap.com/blend/3408) licensed
under CC BY.

curtain for 200 ms. Two laser beams were diffused resulting in
circular red light blobs with approximately Gaussian luminance
amplitude envelopes. The sizes (horizontal and vertical) of
the VS, defined by the standard deviation of the luminance
distribution, were 12.84◦ for the low reliable VS and 2.83◦ for
the high reliable VS. The position of a VS was defined as the
center of its luminance distribution. The center of the luminance
distribution in the vertical dimension was always at the same
height as the speakers. A third and fourth laser pointer were not
diffused and purple and green in color. The laser pointers were
mounted on a step motor with an angular resolution of 0.9◦ and
a horizontal range of 180◦. Auditory stimuli were narrow-band
filtered (1/2 octave) pink noise bursts with four different center
frequencies (250, 500, 1000, or 2000 Hz) and were presented
for 200 ms including 5 ms on- and off-ramps. The stimulus
intensity was randomly varied over a 4-dB range centered at
70 dB(A) to minimize potential differences in the loudspeaker
transformation functions. Participants localized stimuli with a
custom-build pointing stick which recorded azimuthal position
with 1◦ resolution.

To deliver feedback, an LED-panel (APA 102, Shiji Lighting,
Shenzhen, China) measuring 32 cm in width and 8 cm in height
with a pixel width of 0.5 cm and a spacing of 0.5 cm (2.54 ppi)
was attached to the semi-circular frame between± 10.2◦ azimuth

and 2 cm below the lower edge of the loudspeakers. An Arduino
Leonardo (Arduino SRL, Strambino, Italy) was used to interface
between the experimental computer and the LED-panel.

Procedure
The study was split into four sessions which were conducted on
separate (but not necessarily consecutive) days (see Figure 2A).
Each session started with a unimodal pretest to measure baseline
localization accuracy and precision for VS and auditory stimuli
presented in isolation. Afterward, an audio-visual adaptation
block (see below) was conducted to induce auditory and
potentially visual VAEs. The adaptation block was followed by
unimodal test blocks to assess the magnitude of the aftereffects.
To ensure that aftereffects did not decay over unimodal test
blocks, each test block was preceded by a short re-adaptation
block. The general procedure of a session is illustrated in
Figure 2B.

Two factors were varied between sessions, the reliability of the
VS (manipulated by the size of the circular light cone) and the
feedback modality. During adaptation blocks participants were
asked to localize the AS and feedback about the magnitude and
direction of their localization errors was provided. Error feedback
was consistently calculated either based on the position (i.e.,
center of the luminance distribution) of the VS (vision feedback
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FIGURE 2 | Study design and session procedure. (A) The flow diagram shows the counterbalancing procedure. An exemplary procedure for one participant is
depicted with bold black pointed lines. All possible assignments between the main conditions, session number, bimodal disparity, and auditory stimulus (AS) pair are
depicted with light gray pointed lines. Assignments of main conditions to session number, bimodal disparity and AS pairs were mutually counterbalanced by
orthogonal Latin squares. (B) The flow diagram visualizes the procedure of a single session. All four sessions were performed following the same procedure.

modality) or based on the position of the auditory stimuli
(audition feedback modality) within each session. All participants
completed all combinations of visual reliability (high vs. low)
and feedback modality (vision vs. audition) across sessions. The
auditory stimuli were grouped into four pairs (250 Hz/1000 Hz,
500 Hz/2000 Hz, 1000 Hz/250 Hz, 2000 Hz/500 Hz) with non-
overlapping frequency spectra. The first stimulus of each pair
was the adapted AS and was used during both unimodal blocks
and audio-visual adaptation blocks. The second stimulus was
only used during the unimodal blocks and served as a control
stimulus (CS). Thereby, the CS allowed to test for a sound-
frequency transfer of the aftereffect. Each session was conducted
with a unique pair of auditory stimuli to avoid carry-over effects
between session (Bruns and Röder, 2019a).

Moreover, to avoid that participants became aware of the
audio-visual discrepancy during adaption blocks and, thus, might
apply explicit response strategies, in half of the sessions the VS
were consistently displaced to the left and in the other half
to the right of the sound source. To avoid effects of session
order, AS assignment or visual discrepancy direction on the
feedback modality and reliability conditions, these factors were
counterbalanced across participants using a mutual orthogonal
Latin square design (Julian et al., 1996). For factors with four
levels (discrepancy was dummy coded by taking each discrepancy
twice) three mutual orthogonal 4 × 4 Latin squares exist, so that
there were six possible ways of assigning Latin squares to the
three factors (session order, AS assignment, visual discrepancy
direction). As four participants are necessary to realize one Latin
square, in total 24 participants were necessary for a balanced

design that realizes all combinations of Latin squares. However,
factors relevant for the data analysis (visual reliability and
feedback modality) were measured within-subject and, thus, were
counterbalanced irrespective of participant exclusion (see section
“Data Analysis” for details).

Unimodal Blocks
Unimodal pre- and post-tests were identical, except that the
post-test was split into several blocks. The two auditory stimuli
(AS, CS) were presented from all six speakers (−22.5, −13.5,
−4.5, 4.5, 13.5, and 22.5◦). One VS was presented from the same
six positions as the auditory stimuli. Either the low reliable VS
or the high reliable VS was consistently used across the whole
session according to the counterbalancing procedure. The VS
was described to participants as a diffuse light cloud and they
were instructed to localize the center of this light cloud. For
each position and stimulus type (AS, CS, and VS) 10 trials were
presented, yielding 180 trials in total. For the pretests, all 180
trials were presented in a random order. For the post-tests, the
180 trials were split into five blocks of 36 trials each. Two trials
per position and stimulus type were presented in each block of
the post-test. Each trial started with the presentation of a green
fixation laser point at 0◦ azimuth. Participants were required to
direct the pointing stick toward the fixation point and started the
trial by a button press. The trial only started when the pointing
direction deviated less than± 10 from 0◦. This procedure assured
a constant starting position for all pointing movements. After a
random delay between 400 and 600 ms the presentation of the
VS was prepared: the step motor carrying the laser pointer was
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first moved to a random position between −50 and 50◦ and then
moved to the target position. This was done to avoid that the
duration of the sound evoked by the moving step motor provided
a cue for the VS position. After another delay of 600 to 800 ms, the
VS was presented. During AS and CS trials only a random delay
between 1000 and 1400 ms was used after fixation, followed by the
presentation of the stimuli. Responses were allowed immediately
after stimulus onset. Participants were instructed to respond fast
and accurately, but to prioritize accuracy over response speed.
Moreover, participants were informed that all stimuli (during
unimodal and audio-visual blocks) would be displayed at the
same height and that they should focus on localizing stimuli
accurately in the horizontal plane. No feedback or reward was
provided during pre- and post-test trials. Between trials a random
delay between 600 and 800 ms was introduced.

Audio-Visual Blocks
In order to induce the VAE, the AS and the VS were
synchronously presented for 200 ms with a spatial displacement
of the VS of either 13.5◦ to the left or 13.5◦ to the right
of the sound location. The spatial discrepancy was constant
during a session. In the initial audio-visual adaptation block,
stimuli were presented 20 times at each of six positions (sound
at −22.5, −13.5, −4.5, 4.5, 13.5, and 22.5◦). The four audio-
visual re-adaptation blocks (prior to each of the following
unimodal post-test blocks) only contained 10 trials per position
and were conducted to counteract a potential decay of the
aftereffect (for similar procedures, see Bruns et al., 2011; Zierul
et al., 2017). Overall, each session included 360 audio-visual
adaptation trials and 360 unimodal test trials (720 trials in
total). Participants were instructed to localize the sound (i.e., to
ignore the visual location) in audio-visual trials. Immediately
after the response, feedback about the azimuthal localization
error the was given. The localization error was either calculated
as the deviation of the azimuthal pointing direction from the
true azimuthal location of the AS or as the deviation of the
azimuthal pointing direction from the true azimuthal location
of the VS. The modality used for calculating the localization
error was held constant within a session. Feedback consisted of
a centrally presented arrow with the origin at 0◦ and heading
in the direction participants had to correct their localization
response to in order to reduce the error. The length of the
arrow equaled the magnitude of the localization error in cm
rounded to the next integer, with an upper bound of 16 cm
(10.2◦) and a lower bound of 4 cm (2.55◦). Errors below
4 cm (2.55◦) were indicated with a filled circle with a radius
of 3 cm (1.9◦). Furthermore, participants received a monetary
reward (0.03€) when the error fell below an individual threshold
which was set to the participant’s 30th percentile of the absolute
localization error in the auditory trials of the pretest. A reward
was indicated by a unique sound (400 ms custom rebuild of the
Super Mario coin sound effect) and a green feedback arrow or
circle. A localization error above the individual threshold was
indicated by another unique sound (300 ms tone that changed
pitch from 100 to 60 Hz after 150 ms) accompanied by a red
feedback arrow. The whole sequence of an audio-visual trial
is depicted in Figure 1. After each block participants were

informed about the amount of reward they had collected during
the block. The total amount of reward was disbursed at the
end of the session.

In order to assure that participants attended to both visual
and auditory stimuli, deviant trials were presented intermixed
between regular trials with a probability of 0.1. In deviant
trials, participants were instructed to localize a laser point as
fast and accurately as possible that differed in color (purple)
and was not accompanied by a sound. The laser point was
presented until a response was given. When the reaction time
fell below the 50th percentile of the reaction time in visual trials
of the pretest and localization error was less than 5◦, a reward
(0.03€) was earned in these trials. The same visual and auditory
feedback was used as for regular trials, except that always circular
shapes were used.

Data Analysis
Data were acquired for 24 participants in order to counterbalance
control conditions (session order, stimulus assignment, and
audio-visual disparity). However, overall six participants had
to be excluded from further analyses. One participant reported
partial vision in one hemifield after the study was completed.
Another two participants failed to respond properly to audio-
visual deviant trials. The deviant trials required participants
to respond fast and accurately (see section “Audio-Visual
Blocks” for details) to receive a reward. Hence, not attending
to the VS or closing the eyes during audio-visual blocks
would lead to a low amount of rewards in deviant trials.
These two participants consistently received rewards in less
than 2% of the deviant trials across all sessions, whereas on
average participants received rewards in 55% (minimum = 15%,
maximum = 82%) of the deviant trials. Hence, we excluded
their data from further analyses. For each of the remaining
participants we fitted linear models between true azimuthal
stimulus positions and azimuthal localization responses for each
session and each stimulus (a slope of one and an intercept
of zero indicate perfect localization). Three participants with
either a slope or an intercept that differed three standard
deviations from the mean of all participants were excluded as
this indicated an extremely inaccurate localization behavior. All
further data analyses were based on the data of the remaining
18 participants.

Importantly, all factors relevant for further data analyses
(i.e., Feedback Modality and Visual Reliability) were still
fully counterbalanced after exclusion of the participants. The
reduction of the sample size only affected the counterbalancing
of session order, assignment of sound pairs to sessions and
assignment of audio-visual discrepancy directions to sessions.
The final numbers of participants for each combination of these
factors are summarized in Supplementary Tables 1–3.

To test whether participants changed their localization
behavior in audio-visual adaptation trials according to the error
feedback, we took the mean localization error in the first 10
adaptation trials of the initial adaptation block and compared this
score with the mean localization error of the last 10 adaptation
trials in the last re-adaptation block. We performed two separate
t-tests for the conditions of feedback modality (audition or
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vision) comparing the mean of the first 10 trials to the mean of
the last 10 trials.

Measurements for accuracy and reliability were derived from
unimodal blocks and based on a common model of measurement
error (Grubbs, 1973). Each trial is interpreted as a measurement
yik for the true stimulus position xk where i is an index over the
trial numbers and k over stimulus positions. The measurement
model is then formalized as

yik = xk + ak + eik, (1)

were ak is a constant bias for the kth stimulus position and
eik are independent mean zero random errors. As an estimator
for accuracy we calculated the constant error âk by averaging
localization responses of all trials for each combination of
stimulus position, condition and participant. For a given stimulus
position this is a robust estimator of the bias term ak and thus
accuracy. We will further refer to â := M

(
âk
)

as constant bias,
which is an overall measure for the tendency to systematically
mislocalize in one direction across all locations. Reliability is
defined as the inverse of the variance of eik. Due to the direct
relation between variance and reliability we assessed the variable
error, a robust estimator of the variance (Levene, 1960), as
a measure for reliability. The variable error is defined as the
mean absolute deviation of the localization response from the
mean localization response for a given stimulus position, that
is, if ŷik are the participant’s responses the variable error is
defined as M

(
|ŷik − âk|

)
. A high variable error indicates a low

reliability and vice versa.
First, we tested whether we were successful in manipulating

the reliability of the VS (high or low) and controlled that
auditory reliabilities did not differ prior to adaptation.
Therefore, variable errors calculated from all pretest trials
were submitted to a repeated measures MANOVA (O’Brien
and Kaiser, 1985) with factors Feedback Modality (audition or
vision), Stimulus Type (AS, CS, and VS), Stimulus Position
(−22.5, −13.5, −4.5, 4.5, 13.5, and 22.5◦) and Visual
Reliability (low or high). This approach is not affected by
violations of the sphericity assumption and allows for post hoc
interaction contrasts, which were conducted to further analyze
significant MANOVA effects.

The VAE was measured as change in the constant bias
between pre- and post-test blocks. For this purpose, data
from the five post-test blocks were pooled. More specifically,
the difference of post-test constant bias (âpost) and pretest
constant bias (âpre) multiplied with the sign of the audio-
visual discrepancy (Diff AV) was taken as a measure for the
VAE, thus VAE =

(
âpost − âpre

)∗ sign
(
Diff AV

)
(for a similar

procedure see Bruns and Röder, 2019b). This procedure assured
that aftereffects in the direction of the VS always had a
positive sign irrespective of whether the VS was displaced
to the left (−13.5◦) or to the right (13.5◦). The resulting
values were submitted to a repeated measures MANOVA
(O’Brien and Kaiser, 1985) with Feedback Modality (audition
or vision), Stimulus Position (−22.5, −13.5, −4.5, 4.5, 13.5,
and 22.5◦) and Stimulus Type (AS, CS, and VS) as within-
subject factors.

RESULTS

Unimodal Precision
Unimodal pretests were performed in order to assess localization
biases and reliabilities for all stimulus types and positions. We
evaluated whether we succeeded in manipulating the visual
reliability and whether auditory reliability significantly differed
across conditions at baseline. Therefore, variable errors at pretest
(see section “Data Analysis” for a definition) were submitted to
a repeated measures MANOVA (O’Brien and Kaiser, 1985) with
factors Feedback Modality (audition or vision), Stimulus Type
(AS, CS, and VS), Stimulus Position (−22.5, −13.5, −4.5, 4.5,
13.5, and 22.5◦) and Visual Reliability (low vs. high). Only a main
effect of Stimulus Type was found, F(1,17) = 35.22, p < 0.001,
showing that visual reliability was higher than auditory reliability
independent of the reliability manipulation (see Figure 3). Since
no main effect of visual reliability was found (see Table 1
for full results), this factor was not further considered in the
following analyses.

Additionally, we performed pairwise contrasts to assess
whether the variable error changed from pre- to post-test
separately for all stimulus types (AS, CS, and VS). Results are
summarized in Table 2. Importantly, the variable error did not
decrease for auditory stimuli (AS and CS), but it decreased
for the VS, both when audition was the feedback modality,
F(1,17) = 16.75, p < 0.001, and when vision was the feedback
modality, F(1,17) = 6.43, p = 0.021.

Moreover, a contrast was performed to test whether in the
post-test blocks the variable error differed for the AS between the
conditions audition feedback modality (M = 4.4◦, SD = 1.3◦) and
vision feedback modality (M = 4.9◦, SD = 1.9◦). No significant
difference was found, F(1,17) = 2.50, p = 0.132.

Audio-Visual Blocks
To test whether feedback altered auditory localization in bimodal
trials during adaptation, we calculated the difference of the
auditory localization response from the true auditory position.
The VE was apparent in a shift of auditory localization toward
the accompanying VS (Figure 4). Crucially, when feedback was
given based on to the true auditory position, the VE decreased
over the course of the adaptation trials. In contrast, feedback
based on the visual position increased the VE. To statistically test
the change of the VE size over the course of the audio-visual
adaptation trials, we calculated the means of the first 10 trials
and the means of the last 10 trials in the audio-visual blocks,
multiplied with the sign of the audio-visual discrepancy (thus, a
shift of auditory localization toward the VS was always positive).
These values were compared with Bonferroni–Holm corrected
paired-sample t-tests. Feedback based on to the auditory position
significantly decreased the VE from the first 10 trials of the audio-
visual block (M = 2.8◦, SD = 4.5◦) to the last 10 trials of the
audio-visual block (M =−0.2◦, SD = 1.5◦), t(17) = 4.27, p < 0.001.
When feedback was given based on the visual position, the bias
significantly increased from the first 10 trials of the audio-visual
block (M = 7.1◦, SD = 3.7◦) to the last 10 trials of the audio-visual
block (M = 11.4◦, SD = 2.9◦), t(17) = 5.10, p < 0.001.
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FIGURE 3 | Mean variable errors in the pretest. Variable errors were defined as absolute trial-wise deviation from the mean localization response, averaged across
stimulus positions and participants. (A) Results when audition was the feedback modality. (B) Results for vision as the feedback modality. Each panel shows the
variable error separately for the different stimuli [adapted sound (AS), control sound (CS), and visual stimulus (VS)]. Moreover, results for the VS are shown separately
for the VS with low reliability (Low Rel) and high reliability (High Rel). Individual data are shown with light-colored points and lines, whereas sample averages are
indicated by dark-colored points and bold lines. Paired data points (i.e., individual data from a single participant) are connected via lines. Error bars represent
standard error of the mean. Mean values are depicted on top of each bar.

During audio-visual blocks participants received a monetary
reward when the error fell below an individual threshold
(see section “Audio-Visual Blocks for details). A summary
of the received rewards is given in Table 3. A repeated
measures MANOVA with factors Feedback Modality
(audition or vision) and Visual Reliability (low or high) did
neither reveal any significant main effects nor a significant
interaction of Feedback Modality and Visual Reliability
(see Table 4).

TABLE 1 | Repeated measures MANOVA on variable errors in the pretest.

Effect Num Df Den Df Pillai test
statistic

Approximately
F

p

Intercept 1 17 0.93 249.66 <0.001

Feedback
modality

1 17 0.04 0.11 0.43

Visual
reliability

1 17 0.01 0.03 0.74

Stimulus type 1 16 0.81 27.49 <0.001

Feedback
modality:
visual
reliability

1 17 0.06 0.54 0.29

Feedback
modality:
stimulus type

1 16 0.10 1.47 0.43

Reliability:
stimulus type

1 16 0.21 1.92 0.14

Feedback
modality:
reliability:
stimulus type

1 16 0.04 0.39 0.70

Ventriloquism Aftereffect
We next examined whether the magnitude of the VAE depended
on whether feedback was given based on the visual or based
on the auditory position (see Figure 5). In contrast to the
standard VAE for the auditory modality (VAE), we will
refer to visual aftereffects as visual Ventriloquism Aftereffect
(vVAE). A reliable VAE was observed for auditory stimuli
when vision was the feedback modality. By contrast, no VAE
was observed for auditory stimuli when audition was the
feedback modality. In none of the two conditions a vVAE
significantly different from zero was found. However, mean
visual localization responses when vision was the feedback
modality compared to when audition was the feedback modality
differed significantly. A detailed depiction of mean auditory and
visual localization behavior can be found in Supplementary
Figures 1, 2. A repeated measures MANOVA (2 × 3 × 6)
with factors Feedback Modality (audition or vision), Stimulus
Type (AS, CS, and VS) and Stimulus Position (−22.5, −13.5,
−4.5, 4.5, 13.5, and 22.5◦) revealed a significant interaction of
Feedback Modality and Stimulus Type, F(2,16) = 7.14, p = 0.006.
Furthermore, a significant main effect of Stimulus Type was
found, F(1,17) = 11.07, p = 0.001, as well as a significant
interaction between Feedback Modality and Stimulus Position,
F(5,13) = 4.84, p = 0.010.

Subsequent pairwise contrasts between the two levels of
feedback modality separately calculated for the three levels
of Stimulus Type (CS, AS, and VS) revealed that the VAE
significantly differed for the AS, F(1,17) = 12.7, p < 0.001, and
the VS, F(1,17) = 7.91, p = 0.024, such that the VAE for the AS
increased when vision was the feedback modality and the vVAE
increased when audition was the feedback modality. No effect of
feedback modality was found for the CS, F(1,17) = 1.36, p = 0.259.
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TABLE 2 | Pairwise contrasts for auditory variable errors between pre- and post-test.

Contrast Stimulus FB-modality Mean variable
error at pretest

Mean difference Pillai test
statistic

Approximately F Num Df Den Df p

Post - pre AS Audition 4.51 −0.14 0.011 0.20 1 17 0.663

Post - pre AS Vision 4.92 −0.02 <0.001 <0.01 1 17 0.942

Post - pre CS Audition 4.51 0.16 0.028 0.51 1 17 0.487

Post - pre CS Vision 4.70 0.47 0.20 4.33 1 17 0.053

Post - pre VS Audition 2.93 −0.49 0.50 16.75 1 17 <0.001

Post–pre VS Vision 2.86 −0.25 0.27 6.43 1 17 0.021

All p-values are uncorrected.

FIGURE 4 | Mean localization deviations in audio-visual adaptation blocks. (A,B) Averages across participants and stimulus positions for each adaptation trial are
displayed depending on whether audition (red) or vision (blue) was the feedback modality. Mean deviations were derived by averaging across all participants for one
specific trial. The trial number reflects the order of the trials during audio-visual blocks. The position of the sound was used as reference (relative position of 0◦).
Sessions including an audio-visual discrepancy to the left (–13.5◦) are depicted in (A), and sessions with a discrepancy to the right (13.5◦) are depicted in (B). The
actual data (solid line) were logarithmically interpolated (dashed line) to visualize the trend across trials. The relative position that was used to calculate error feedback
is indicated by the dotted lines (rel. FB Position). In all conditions, participants adjusted their localization behavior in the direction implied by the error feedback.
Participants started with an offset toward the visual position which reflects the well-known ventriloquism effect. The first and last 10 trials are highlighted by khaki
rectangles. These trials were averaged per participant for statistical analyses. (C) Localization deviations averaged across the first 10 and the last 10 audio-visual
adaptation trials. Individual data are shown with light-colored points and lines whereas sample averages are indicated by dark-colored bold lines. Paired data points
(i.e., individual data from a single participant) are connected via lines. Error bars represent the standard error of the mean. The effect of feedback was very prominent
already within the first 10 trials (A,B). As a consequence, localization responses already differed at baseline (i.e., over the first 10 trials) depending on whether
audition or vision was the FB modality (C). Nevertheless, a comparison of the first 10 trials and the last 10 trials demonstrated a clear effect of FB modality (see text
for details).

We additionally performed Bonferroni–Holm corrected post hoc
t-tests to test whether aftereffects were different from zero for
each stimulus type and feedback modality. When vision was the
feedback modality, significant aftereffects were found for the AS
(M = 3.2◦, SD = 2.4◦), t(17) = 7.05, p < 0.001, and the CS
(M = 2.1◦, SD = 1.4◦), t(17) = 6.21, p < 0.001, but not for the VS
(M = −0.6◦, SD = 1.1◦), t(17) = −2.52, p = 0.088. No significant
aftereffects were found when audition was the feedback modality
(see Table 5 for all results).

In addition, we performed post hoc contrasts (Bonferroni–
Holm corrected) separately for each pair of stimuli (CS, AS, and
VS) when vision was the feedback modality, to test whether the
VAE differed between stimuli. The VAE for the AS was larger than
the VAE for the CS, F(1,17) = 12.89, p = 0.009, and larger than the
vVAE for the VS, F(1,17) = 46.09, p < 0.001. The VAE for the CS
was larger than the vVAE for the VS, F(1,17) = 32.84, p < 0.001.

In order to test whether the influence of the feedback modality
was greater for the AS than for the CS, we performed an
interaction contrast comparing the difference of the VAE between
the conditions vision feedback modality and audition feedback
modality for AS (M = 2.6◦, SD = 3.4◦) and CS (M = 1.0◦,
SD = 3.4◦). The difference between VAEs was larger for the AS,
F(1,17) = 6.65, p = 0.020. These results suggest that the effect of
feedback modality generalized to the CS only partially.

DISCUSSION

The present study investigated whether crossmodal recalibration,
as operationalized with the VAE, and multisensory integration,
as operationalized with the VE, are top–down modulated by
feedback. We adapted the standard VAE paradigm by adding
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TABLE 3 | Average reward per session received in audio-visual blocks.

Reliability FB-
modality

Absolute
mean

SD Minimum Maximum Rel.
reward

Visual Rel.
low

Audition 6.27 1.86 3.21 10.11 0.58

Visual Rel.
high

Audition 6.31 1.92 2.49 10.08 0.58

Visual Rel.
low

Vision 6.30 2.34 2.34 10.53 0.58

Visual Rel.
high

Vision 6.66 2.39 1.29 10.17 0.62

The absolute reward is given in €. The last column (Rel. Reward) depicts the reward
relative to the maximally possible reward.

TABLE 4 | Repeated measures MANOVA on reward in audio-visual blocks.

Effect Num Df Den Df Pillai test
statistic

Approximately F p

Intercept 1 17 0.94 279.26 <0.001

Feedback
modality

1 17 0.02 0.29 0.60

Visual reliability 1 17 0.02 0.37 0.55

Feedback
modality: visual
reliability

1 17 0.01 0.14 0.72

feedback during audio-visual adaptation. By giving feedback
either based on the position of the auditory stimuli or based on
the position of the VS, we were able to assess whether feedback
modulates the magnitude of the VE and the VAE. During
adaptation, we found that the VE was reduced if feedback was
based on the position of the AS. A significant VAE for auditory
stimuli was only found when vision was the feedback modality,
but not when audition was the feedback modality. Finally, we
observed a generalization of the VAE to an untrained sound with
a different frequency spectrum.

Ventriloquism Effect
The analysis of audio-visual trials during adaptation revealed a
clear modulation of the VE by feedback. In the ongoing debate of
whether the VE is a rather automatic perceptual process (Radeau,
1985; Bertelson and Aschersleben, 1998; Bertelson et al., 2000)
or at least to some degree susceptible to top–down processes
(Maiworm et al., 2012; Bruns et al., 2014), our results provide
further evidence for the latter assumption. The results show
similarities to the study of Bruns et al. (2014) in which it
was demonstrated that reward can reduce the VE. In their VE
paradigm participants received a monetary reward for precise
and accurate auditory localization. Any visual bias induced by the
VE was, thus, in conflict to the motivational goal of maximizing
the reward. Importantly, the amount of reward depended on the
hemifield in which the AS was presented. When audio-VS were
presented in the hemifield associated with a high reward, the VE
was reduced compared to when the audio-VS were presented
in the hemifield associated with a low reward. Noteworthy,
feedback in our study did not only comprise information about

the localization error but also a monetary reward when the
localization error fell below a threshold. Thus, our findings
extend the results of Bruns et al. (2014) by showing that additional
corrective feedback can not only reduce but even extinguish the
VE when feedback is based on the AS position. By contrast,
feedback and reward increased the VE when they were based on
the VS position.

One explanation for the modulation of the VE might
be that feedback and reward enhanced auditory processing
when audition was the feedback modality. It has been shown
that feedback can facilitate visual perceptual learning (Herzog
and Fahle, 1997) and that reward can facilitate unisensory
discrimination performance (Pleger et al., 2008, 2009). Similarly,
feedback in our study might have led to an increase in auditory
localization reliability. Given that the size of the VE depends
on the relative reliabilities of vision and audition (Ernst and
Banks, 2002; Alais and Burr, 2004) this would have resulted
in a decreased VE. If this was the case, feedback would have
modulated multisensory integration via changed bottom–up
processing rather than top–down influences. However, we did
not find any differences in unisensory auditory localization
reliability (indicated by the variable error) between unimodal
trials in the pretest and post-test blocks. Moreover, we did
not find differences in localization reliability depending on
which modality was feedback-relevant either. In fact, only visual
reliability increased from pre- to post-test, regardless of whether
audition or vision was feedback-relevant. Thus, changes in
reliability-based bottom–up processing should have resulted in
an increased VE regardless of which sensory modality was
feedback-relevant. Hence, it is unlikely that the decrease or
increase of the VE was simply due to altered auditory reliabilities
and thus altered bottom–up processing.

Similar to the present findings, recent studies showing a top–
down modulation of the VE did not find changes in unisensory
processing. Therefore, the authors (Maiworm et al., 2012; Bruns
et al., 2014) argued that it might be the process of crossmodal
binding itself that is altered by top–down processing. Binding
refers here to the problem of inferring whether two signals
have a common or distinct source. For both scenarios different
strategies are optimal: if the signals emerged from a common
cause, a reliability-weighted average is the optimal estimate (Ernst
and Banks, 2002; cue integration, see Alais and Burr, 2004).
Otherwise, perceptual estimates should be derived separately
from unisensory cues (cue segregation). In fact, the brain seems to
form estimates for both scenarios at different stages of the cortical
hierarchy (Rohe and Noppeney, 2015). In a further processing
step, the probability of a common or distinct cause is estimated
and a final multisensory percept is formed as a weighted average
of the estimates derived by cue segregation and integration
(Körding et al., 2007; Beierholm et al., 2010). Each estimate is
weighted by the probability of the underlying model (Körding
et al., 2007). This approach has proven to describe the VE well
in a range of studies (Beierholm et al., 2010; Wozny et al., 2010;
Rohe and Noppeney, 2015) and is referred to as “causal inference”
(Körding et al., 2007).

In fact, decreasing the binding tendency and relying on
unisensory estimates would have been a beneficial strategy
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FIGURE 5 | Ventriloquism aftereffects. Aftereffects were collapsed over leftward and rightward audio-visual disparities for the adapted sound AS (A), the control
sound CS (B), and the visual stimulus VS (C). Each panel shows aftereffects separately for the conditions Audition FB modality and Vision FB Modality. Individual
data are shown with light-colored points and lines whereas sample averages are indicated by dark-colored bold lines. Paired data points (i.e., individual data from a
single participant) are connected via lines. Values were calculated as differences between pre- and post-test localization error multiplied with the sign of the
audio-visual discrepancy. Thus, shifts in the direction of the competing stimulus during adaptation are positive. Error bars represent the standard error of the mean.

TABLE 5 | One-sample post hoc t tests comparing VAE and vVAE against zero.

Stimulus FB-modality Mean SD t Df p

AS Audition 0.53 2.36 0.95 17 0.355

AS Vision 3.17 1.90 7.05 17 <0.001

CS Audition 1.16 2.62 1.89 17 0.230

CS Vision 2.11 1.44 6.21 17 <0.001

VS Audition 0.65 1.63 1.68 17 0.230

VS Vision −0.62 1.05 −2.52 17 0.088

All p-values are Bonferroni–Holm corrected. The VAE for the AS and CS as well as
the vVAE for the VS were tested against zero depending on whether feedback was
based on the position of the auditory or visual stimuli during audio-visual blocks.

in our paradigm. The shift in localization behavior during
bimodal trials toward the feedback-relevant sensory modality
indicates that participants picked up the relation between sensory
modality and feedback. Thus, the feedback-relevant modality
might have been identified as task-relevant. It is known that task
relevance modulates auditory and visual weights in multisensory
integration independently from bottom–up factors such as
reliability (Rohe and Noppeney, 2016). This up- or down-
weighing might be mediated by attentional shifts toward one
modality (Mozolic et al., 2007; Padmala and Pessoa, 2011) or
reallocation of cognitive control resources (Pessoa, 2009) to the
feedback-relevant modality.

Although the VE seems to be independent from spatial
attention, several examples exist in multisensory integration
where attentional shifts to a specific modality (rather than
to a specific location) lead to decreased integration of task-
irrelevant stimuli presented in another modality (Johnson
and Zatorre, 2005; see Keil and Senkowski, 2018 for a
review). Recent studies have demonstrated that audio-visual

integration occurs at different stages of the cortical hierarchy
in parallel (Calvert and Thesen, 2004; Rohe and Noppeney,
2015) and that these different stages are associated with distinct
computational principles (Rohe and Noppeney, 2015, 2016).
It has been argued that multisensory integration associated
with late processing stages might be prone to top–down
modulation whereas integration associated with early stages
might be more or less automatic (Koelewijn et al., 2010).
Following this argument, feedback might have modulated late
stages of the cortical hierarchy which are linked to audio-visual
percepts based on causal inference (Rohe and Noppeney, 2015;
Aller and Noppeney, 2019).

The importance of top–down processing seems to increase
when tasks include motivational incentives, monetary reward
(Rosenthal et al., 2009; Bruns et al., 2014), emotional valence
(Maiworm et al., 2012) or avoiding harm (Shapiro et al.,
1984). For instance, the sound-induced flash illusion was only
susceptible to feedback when feedback was accompanied by a
reward (Rosenthal et al., 2009). Similarly, explicit knowledge of a
spatial discrepancy between audition and vision did not alter the
VE (Bertelson and Aschersleben, 1998). However, here we show
that corrective feedback paired with a monetary reward clearly
increased or decreased the VE depending on whether audition or
vision was feedback-relevant.

Ventriloquism Aftereffect
In order to maintain accuracy, the perceptual system must infer
which sensory modality is inaccurate and to what extent. Ideally,
each sensory modality should be recalibrated according to the
magnitude of its inaccuracy. In the standard VAE paradigm
audition is calibrated toward vision which can provide internal
consistency (Radeau and Bertelson, 1974; Kopco et al., 2009;
Zaidel et al., 2011; Pages and Groh, 2013). However, when
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audition is accurate, and vision is biased, recalibrating audition
toward vision introduces inaccuracies in the perceptual system.

As predicted by the assumption that the maintenance
of accurate sensory modalities is the primary objective of
crossmodal recalibration (Di Luca et al., 2009; Block and
Bastian, 2011; Zaidel et al., 2013), we found that feedback
based on audition can suppress the VAE. Hence, the perceptual
system did not recalibrate auditory spatial perception when
feedback implied that audition was already accurate. By
contrast, when vision was feedback-relevant a substantial
VAE of 23.5% of the size of the audio-visual discrepancy
(13.5◦) was found. We did not provide direct sensory feedback
(as often used in sensory-motor adaptation paradigms)
about the true stimulus position which would have allowed
the perceptual system to infer sensory prediction errors
in a bottom–up manner (Izawa and Shadmehr, 2011).
Instead, a centrally presented arrow indicated magnitude
and direction of the localization error, requiring participants to
consciously infer the semantic meaning of the feedback. Hence,
feedback must have modulated crossmodal recalibration in a
top–down manner.

In contrast to our assumption that external accuracy drives
recalibration, one could argue that the VAE in our study followed
the principles of reliability-based adaptation (Ghahramani et al.,
1997; van Beers et al., 2002; Burge et al., 2010; Makin et al.,
2013). Feedback might have facilitated unisensory auditory
processing, as has been shown in unimodal experiments (Pleger
et al., 2008, 2009), and, thereby, increased auditory reliability.
Thus, according to this assumption audition would be weighted
more in the recalibration process, leading to less recalibration.
Analogously to our results for the VE, it is unlikely that changes in
reliability could explain the results as we did not find an increase
in auditory localization reliability between pretest and post-test
and reliability in AS trials did not differ depending on which
sensory modality was feedback-relevant.

Zaidel et al. (2013) proposed that external feedback invokes
a second recalibration process which is superimposed on
unsupervised crossmodal recalibration without external feedback
and relies on cue reliabilities. Hence, both processes occur in
parallel when feedback is present. According to Zaidel et al.
(2013), feedback based on the less reliable sensory modality
leads to increased supervised recalibration to an extent that
outreaches the effect of unsupervised recalibration. Importantly,
supervised and unsupervised recalibration result in shifts in
opposite directions for the cue that feedback is based on. This
results in an overall recalibration of the less reliable sensory
modality away from the reliable sensory modality (negative
aftereffect). In contrast to Zaidel et al. (2013), we did not find any
significant negative aftereffects although audition was clearly less
reliable than vision (Figure 3).

Interestingly, Pages and Groh (2013) argued that the VAE
without external feedback might be a form of supervised
learning itself, whereby vision functions as the supervisor for
audition. In line with this assumption, they demonstrated
that a VAE only occurred when the VS were presented
long enough for participants to perform saccades toward
them. When VS were extinguished before participants

could accomplish saccades, no VAE occurred. Our results
support the assumption that external feedback in audio-visual
spatial recalibration needs to provide information about the
magnitude and direction of the localization error in order
to be effective.

We did not observe a recalibration of vision (a vVAE) in our
study, neither when audition was feedback-relevant nor when
vision was feedback-relevant. There are only a few reports of
vVAEs (Radeau and Bertelson, 1976; Lewald, 2002), and even
prism adaptation for several weeks usually does not result in
visual aftereffects (Welch, 1978). Hence it is questionable whether
it is possible to induce visual aftereffects through audio-visual
adaptation at all (Welch, 1978; Lewald, 2002; Zaidel et al., 2011).
Ernst and Di Luca (2011) have argued that in order to stay
accurate, the perceptual system has to infer to which extent a
sensory discrepancy can be attributed to individual inaccuracies
of the contributing sensory modalities. As there is no direct
information in the sensory cues allowing to assess accuracy, a
way to resolve this assignment problem is to form prior beliefs
about the probability of a sensory cue to be biased (bias prior).
Sensory recalibration then only depends on the ratio of the
bias priors. The lack of visual aftereffects could be explained by
a remarkably small bias prior for vision. Our results indicate
that it might not be possible to update this bias prior on the
time scale and by the type of external feedback that was used
in the present study (fixed prior, Van Wassenhove, 2013). It
has been argued that vision, as the most reliable spatial sense,
serves as a reference to calibrate the other senses (Radeau and
Bertelson, 1974; Knudsen and Knudsen, 1989; Bertelson et al.,
2006; Kopco et al., 2009). If the visual system serves as a
reference for other sensory modalities, a fixed prior is beneficial
to avoid unstable visual sensory estimates in an ever-changing
multisensory environment.

To efficiently recalibrate, the perceptual system must infer
whether the discrepancy between two sensory cues is due
to sensory inaccuracies or whether the cues simply reflect
distinct sources. Ideally, recalibration should only occur when
a discrepancy can be attributed to sensory inaccuracies
(Mahani et al., 2017). We argue that during bimodal trials
the VE might have decreased when feedback was based
on audition relative to when feedback was based on vision
due to a decreased binding tendency which manifests in
a reduced prior probability of a common cause (Körding
et al., 2007). Hence the increased probability of distinct
causes in bimodal trials might have also reduced recalibration.
A recent fMRI study (Zierul et al., 2017) showed that
the VAE is associated with activity changes in the planum
temporale, a region which has also been associated with the
VE (Bonath et al., 2007), suggesting that neural circuitries
involved in the VE and VAE are overlapping (see also Park
and Kayser, 2019). Thus, causal inference processes might
affect the VAE via the same neural circuitry as the VE
(Rohe and Noppeney, 2015).

In contrast to previous studies (Recanzone, 1998; Lewald,
2002; Bruns and Röder, 2015) we found a significant transfer of
the VAE to an untrained AS (see Figure 5). However, there is
an ongoing debate whether the VAE is sound frequency-specific
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(Recanzone, 1998; Lewald, 2002; Bruns and Röder, 2015)
or generalizes across sound frequencies (Frissen et al.,
2003, 2005), and generalization might depend on the
sensory context in which audio-visual adaptation takes
place (Bruns and Röder, 2019b). Although a significant VAE
emerged for the CS, our results indicate that feedback had a
specific effect on the AS used during adaptation (AS) as the
difference of the VAE between the conditions vision feedback
modality and audition feedback modality was significantly
reduced for the auditory CS which was only presented during
pre- and post-test.

In summary, the suppression of the VAE by feedback
based on audition challenges the assumption that the VAE
is an automatic process which is independent from top–
down influences (Epstein, 1975; Radeau and Bertelson, 1978;
Passamonti et al., 2009). Although the VAE readily occurs
when top–down processing can be excluded (Passamonti et al.,
2009), our findings demonstrate that the perceptual system can
flexibly integrate external feedback into the process of crossmodal
recalibration, highlighting the importance of external accuracy as
a driving factor for crossmodal recalibration.
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Crossmodal interaction in situated language comprehension is important for effective and

efficient communication. The relationship between linguistic and visual stimuli provides

mutual benefit: While vision contributes, for instance, information to improve language

understanding, language in turn plays a role in driving the focus of attention in the visual

environment. However, language and vision are two different representational modalities,

which accommodate different aspects and granularities of conceptualizations. To

integrate them into a single, coherent system solution is still a challenge, which

could profit from inspiration by human crossmodal processing. Based on fundamental

psycholinguistic insights into the nature of situated language comprehension, we derive a

set of performance characteristics facilitating the robustness of language understanding,

such as crossmodal reference resolution, attention guidance, or predictive processing.

Artificial systems for language comprehension should meet these characteristics in order

to be able to perform in a natural and smooth manner. We discuss how empirical findings

on the crossmodal support of language comprehension in humans can be applied in

computational solutions for situated language comprehension and how they can help to

mitigate the shortcomings of current approaches.

Keywords: language comprehension, crossmodality, psycholinguistics, incrementality, prediction, speaker

intention

1. INTRODUCTION

Enabling artificial systems to engage in a natural and smooth spoken dialog with humans is a
major scientific and technological challenge. To make this dream come true, developers have
always sought inspiration from the only model available, the human. Compared to other means
of communication, the expressiveness and flexibility of natural language to accommodate to vastly
changing application needs is unparalleled. A closer look at the phenomenon shows that the
language faculty is not an isolated capability of human cognition. Instead, it maintains close ties
to other cognitive subsystems, like visual perception, from where it receives information about
the surrounding environment and into which it feeds back. While the additional extra-linguistic
information by and large provides an instrumental contribution to overcome comprehension
difficulties, for instance in the areas of ambiguity or reference resolution, the linguistically conveyed
information drives the attention of the listener toward the relevant areas of the visual stimulus that
can maximize the information gain.

Such a closed feedback loop can be particularly productive if the relevant comprehension results
are available early enough, so that they can exert their influence on the visual system. Only then can
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the visual percepts improve the ongoing linguistic processing by
means of the specific information they contribute. Obviously,
language comprehension and visual perception work together
for common benefit in a closely time-locked manner, producing
tentative results. Language comprehension not only amounts
to a kind of understanding of what has been said, but also
has to determine as early as possible the reference of linguistic
expressions to entities in the world as well as the relationships
these entities maintain among each other.

From a technical perspective, the use of visual cues for
improving natural language processing can be studied as a
problem of information fusion (Bloch, 2008). In contrast to,
for instance, combining spatial information from a range of
different cameras or laser range finders, here the integration has
to happen on a conceptual level, because vision and speech do
not usually share a common metrical space beyond the task
of sound source localization. Linguistically described concepts
and visually perceived entities have to be mapped by means of
an abstract representation that allows the listener to achieve a
coherent interpretation of the current state of affairs in spite of
partially deviating contributions.

Consequently, the fusion metaphor of combining the output
of two independent information sources will not be viable if we
aim for the more ambitious goal of taking advantage of a closed
feedback loop between language and vision. Both subsystems
seem to be developed into separate components that are able to
produce and receive contributions from one another while they
are processing the input; hence, they interact with each other.
This situation raises many questions on how the human mind
organizes this interplay in detail and how certain aspects of it can
be implemented in an artificial agent, thereby leading to systems
that, rather than fuse both modalities, maintain separate, but
interacting representations.

It is this interactive nature of the cooperation between
two complementary modalities that we are mostly concerned
with. We not only study language comprehension that is
sensitive to the visual information from a task-oriented spatially
embedded scenario, but also considers the guidance language
comprehension can provide to drive the hearer’s attention to the
most relevant aspects of the visual scene which might contain
more detailed information vital for the ongoing process of
language comprehension.

We are mainly concerned with the mechanisms of meaning
recovery, ambiguity resolution and visual grounding, focusing
specifically on the syntactic and semantic processes at the lexical
and sentential level. The impact of emotion, irony, metaphoric
use etc. is not considered. Speaker-related information is reduced
to the bare utterance she produced, ignoring any cues such
as lip movements or gestures. We also do not cover problems
or computational solutions for language generation, speech
recognition, and visual perception. Visual stimuli are assumed to
be static ones but subject to a kind of attention processing where
visual comprehension also evolves over time.

To better understand the underlying mechanisms of
such a highly complex behavior, we identify a range of
performance characteristics that seem to contribute crucially to a
generally highly successful and efficient processing architecture.
Nevertheless, we set out to analyze these performance

characteristics in a holistic way that sheds light into their
intertwined nature. We also interpret them as challenges for
computational systems designed to be capable of engaging
themselves in a task-oriented dialog with a human interlocutor.
To this end, we review important findings from psycholinguistic
research and confront them with recent advances in building
crossmodal natural language comprehension systems, trying to
identify potential drawbacks of existing computational solutions
and to learn from the human model to overcome them.

We adopt a fairly broad perspective on the language
capabilities of artificial systems, which transcends limited
command-and-control approaches. Instead of dealing with
narrow-domain approaches, we envision a kind of mixed-
initiative system that is capable of sharing information,
discussing alternative options and negotiating action strategies
toward a common goal with its human partner. The linguistic
means, required to achieve such a level of communicative
competence are shortly outlined in section 2. In subsequent
sections we discuss how the visual input can help to resolve
linguistic ambiguities (section 3), how the mapping between
visually perceived entities and their linguistic descriptions can be
established (section 4), how language can drive visual attention
and support visual search (section 5), and how the twomodalities
can be combined to reach a maximum degree of synergy
(section 6). We then turn to the temporal aspects of the
interaction between language and vision, concluding that such
a benefit can only be achieved if the mutual contributions are
available early enough (section 7), possibly even before they
actually are available in the discourse (section 8). Finally, we
discuss some heuristics humans apply to speed up language
comprehension (section 9).

2. SPEAKER INTENTION

In a task-oriented setting, it is of particular importance to
determine the intention of the speaker, i.e., what she wants the
listener to do: accept a message, answer an information request,
carry out an action, etc. If visual information is involved in
this process, it will be expected to contribute to successfully
accomplishing this task.

To achieve feasible solutions, language-based human-machine
communication traditionally restricts the interaction to only
explicit commands that the machine is meant to comply with. In
such a case, identifying the intention of the speaker amounts to

• selecting the desired action from those the machine can carry
out (c.f. [1] in the example below), and

• unambiguously determining the referential objects involved in
the action by means of additionally given information about
their types [2], properties [3], and (spatial) relationships [4]:

“Bring[1] me the blue[3] mug[2] from the table[4].”

As shown by Gorniak and Roy (2005), automatic reference
resolution in situated language processing benefits from taking
speaker intention into account. Their system follows the
instructions of the user in a role playing video game. To
determine her intention, a probabilistic parser for context free
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grammars predicts which objects from the environment the
user will talk about next. These objects, together with the
actions that seem most likely in the current state of the user’s
plan, are interpreted as intention. The authors reported that
combining language and vision with the intention of the speaker
yielded the best reference resolution results (see Table 1). The
tasks of intention detection, reference resolution, crossmodal
information fusion and prediction are closely tied to each other
rather than addressed separately by the system.

While the system of Gorniak and Roy (2005) is limited
to command execution, the task becomes considerably more
difficult in the case of collaborative problem solving, where
dynamic effort from both parties is required. Collaborative
problem solving usually happens in structurally rich visual
environments like the one in Figure 1, which contains several
windows, cabinets, boxes, pills, magazines, bottles etc., some of
them even (partially) occluded from the viewer’s perspective.
Objects in such an environment can be referred to in quite
different, sometimes underspecified manners, and their sheer
number naturally creates a vastly larger space for reference
resolution. Under these conditions, the optimal interplay
between language, visual information and world knowledge
is crucial.

Collaborative problem solving also requires the negotiation of
common goals and a solution strategy to achieve them despite
unexpected difficulties that may arise during problem solving.
Thus, the intention of the speaker can no longer be restricted
to the special case of giving commands, but has to be inferred
from her utterance. Often, information needs to be requested and
exchanged, for instance by means of direct or indirect inquiries,
which both may come in various forms, such as:

direct inquiry as a direct question “How many pills are left?”
indirect inquiry as a direct question “Did you count the pills?”
direct inquiry as an indirect question “Do you know, whether we have enough pills?”
indirect inquiry as an imperative “Please count the leftover pills.”
direct inquiry as a confirmation question “The bottle is really empty?”

and assertions about:

the current state of affairs “The book lies on the couch.”
an embedded current state of affairs “You can find the book on the couch.”
an embedded previous state of affairs “I left the book on the couch.”

or even embedded states of affairs expressed, for instance, as:

a confirmation question “The book is no longer lying on the couch?”

Negotiating a joint solution strategy for a given problem also requires means for establishing and maintaining consensus, for
instance, making:

a direct proposal “To pack the bottles, we need a bigger box.”
a counterproposal “It might be better to first check the pills.”
or an indirect counterproposal “This box is bigger.”

establishing consent signaling:

weak agreement “If you think so.”

or strong agreement “That’s a great idea.”

or rejecting a proposal:

indirectly “The book is too boring.”
or with an explanation “No, I am tired.”

TABLE 1 | The number of correctly resolved referents given different combinations

of information sources in the role playing video game setting of Gorniak and Roy

(2005).

Language + Vision Language + Intention Language + Vision + Intention

27/90 (30.0%) 21/90 (23.0%) 50/90 (56.0%)

Here and in all other tables, numbers in bold indicate the results with the highest accuracy

for each approach.

All these different kinds of communicative goals can be expressed
by a very limited set of general utterance types, namely declarative
(direct or indirect), interrogative and imperative sentences,
which actually can be spelled out by means of an extremely
rich inventory of syntactic variation. The same kind of sentence
type or syntactic pattern can be used to express quite different
intentions. Thus, determining the correct intention is not
always straightforward.

Moreover, the hearer will be faced not only with a much

broader spectrum of possible intentions and syntactic variation,

but also with indirect utterances where the real intention
(illocution) is hidden. Implicit commands like “Have you seen
my book?” or “I left the book on the table.” or “I’d like to
read.” require the hearer to reconstruct the underlying intention
(“Bring the book here.”) (Clark et al., 1983; Kelleher and Costello,
2009; Gundel et al., 2012). Expressing this intention explicitly
most often results in unwieldy utterances, whereas leaving
part of it underspecified contributes substantially to the ease
and economy of language communication. Reconstructing the
intended purpose requires more or less complex inferences
that rely on the available information about the immediate
environment and the world in general.
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FIGURE 1 | An example image for a living room scenario.

On the other hand, overspecification is also frequent in
natural language communication. Speakers usually use it when
one of the properties of the target entity is salient but has
no contrastive value (Engelhardt et al., 2006; Koolen et al.,
2011; Rubio-Fernández, 2016). From the perspective of language
comprehension, such a redundancy poses no serious problem,
unless it creates an inconsistency that needs to be resolved. Even
though the necessity to deal with unnecessarily long expressions
could affect the response time, the additional processing effort
may be compensated for by faster reference resolution in
complex environments.

3. RESOLUTION OF LINGUISTIC
AMBIGUITIES

One of the most prevalent difficulties in language comprehension
is the number of ambiguities inherent in both lexical items
and complex structures. Therefore, developing algorithmic
approaches for disambiguation has always been a major concern
when designing natural language understanding systems. These
systems usually rest on combinatorial decision procedures
combined with a powerful scoring mechanism as the basis
for preferential reasoning. However, in restricted domains,
the number of linguistic expressions with several completely
different meanings is fairly low. In the living room scenario (see
Figure 1), the alternative readings of polysemous words like chair
or window can be easily excluded from consideration. Part-of-
speech ambiguities of words like open (adjective vs. verb) or book
(noun vs. verb) are more relevant in such a scenario. They may
create spurious interpretations in the comprehension process and
thus inflate the space of possible intermediate hypotheses. Similar
processing problems are created by truly structural ambiguities
like the famous case of prepositional phrase attachment (“...the
lid of the box on the table.”). A fourth type of ambiguities arises
from language-internal references, which can be established for

example by means of different pronouns or definite noun phrases
(“...but it is broken.”).

For all kinds of ambiguous constructions, crossmodal
evidence may help to resolve the ambiguity by either re-ranking
the possible interpretations or even excluding some of them

according to their plausibility in the visual world. Especially when
linguistic cues alone do not suffice to determine the actually
intended interpretation, for instance because it contradicts

both frequency of use and human preferences, crossmodal
interaction will become indispensable to achieve an effective and
timely disambiguation.

In general, ambiguities can be dealt with most efficiently if
they are resolved locally. Otherwise, their combinatorics will
overwhelm the comprehension system. Therefore, it is important

to have the disambiguating information available early enough.
Visually contributed information does exactly this: Inmany cases,
it can be extracted from the visual environment long before it

is actually needed. The linguistic channel, in contrast, provides
its information sequentially. Thus, the comprehension system
always needs to wait until the relevant contributions appear in

the ongoing utterance. This may cause serious comprehension
problems and processing delays.

Although humans use visual information for resolving
structural ambiguities, they seem to acquire this ability at

a fairly late stage in their linguistic development. While, by
the age of five, children are already able to apply bottom-up
lexical information supplied by the verb to correctly attach
a prepositional phrase (Spivey-Knowlton and Sedivy, 1995),
incorporating extra-linguistic top-down knowledge required
to deal with long-range dependencies comes later (Atkinson
et al., 2018). Obviously, the optimal combination of visual and
linguistic cues is a capability that can and needs to be developed,
reinforced by positive feedback.

The facilitating role of visual information has been
demonstrated by Tanenhaus et al. (1995) using a task of
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incremental thematic role assignment. In their seminal
study, participants were given sentences with a prepositional
phrase (PP) attachment ambiguity, where different semantic
interpretations are possible depending on how the linguistically
encoded entities are assigned to the different thematic roles of
the verb. In the example sentence, “Put the apple on the towel in
the box.”, the PP on the towel can be interpreted as the goal point
of the movement action in

“Put [the apple]THEME [on the towel [in the box]LOCATION]GOAL”

or as a modifier of an apple (namely the location of the apple)

“Put [the apple [on the towel]LOCATION]THEME [in the box]GOAL”

In the absence of visual information, both interpretations are
possible, but linguistic attachment preferences will assign towel
as a goal of the putting event immediately after hearing the PP
on the towel. Then, after being exposed to the next PP in the box,
re-evaluation of the already assigned thematic role from GOAL to
a LOCATION role is required, and the box becomes the goal. If,
on the other hand, the listener has access to a picture that shows
a towel in a box, early reference resolution will happen without
any need to revise the initial hypothesis.

Baumgärtner (2013) studied the problem of visually guided
ambiguity resolution using an incremental, crossmodal parser.
He was able to show that crossmodal interaction of language
and vision indeed helps to resolve global as well as temporal
ambiguities that were truly ambiguous without the contribution
of the visual channel. He applies a broad-coverage, grammar-
based syntactic parser for German extended by a component
for thematic role assignment (McCrae and Menzel, 2007;
McCrae, 2009; Beuck et al., 2013). The grammar is encoded
by means of weighted constraints that license linguistically
meaningful structures and provide for preferential reasoning
capabilities even in case of conflicting linguistic preferences.
Sentences are processed on a word-by-word basis, and partial
analyses are extended and re-evaluated after each new word.
Predictions are modeled explicitly by means of placeholders
which can be incorporated into the analysis if this leads to
a solution with a higher plausibility score based on linguistic
well-formedness criteria.

The visual information was made available by Baumgärtner
(2013) in the form of manual annotations of the most relevant
relationships that could in principle be extracted from a picture.
The mapping between linguistically and visually expressed
entities, i.e., the crossmodal reference resolution, is achieved
by means of additional constraints for linguistic structures that
also have access to the visual input. Hence, language and vision
interact in a bidirectional manner through the normal constraint
solving mechanism, and visual information guides the parsing
process. In turn, the intermediate parsing results guide the visual
attention. The predictions are combinedwith low-level indicators
of visual saliency, like saturation and contrast (Itti and Koch,
2000), to create a modified saliency landscape that correctly
predicts the eye fixations of human subjects. If the visual channel

is missing, parsing will be performed based on the linguistic
input alone.

Since the constraints that establish the mapping between
the two modalities are weighted, the mutual influence is based
on preferences rather than hard consistency requirements, and
the bias between the input channels can be adjusted, thereby
reducing the influence of noisy and potentially contradicting
input from the visual channel.

Baumgärtner (2013) uses the placeholders as referents for
concepts that participate in a visually depicted action with a
specific thematic role, and therefore are likely to occur with this
role in the remainder of the sentence. These results indicate that,
similar to the experiments on intention recognition, a system
architecture that combines ambiguity resolution with reference
resolution, crossmodal information fusion and prediction is able
to deal with ambiguity more effectively and more rapidly, thus
making the system more responsive.

Linguistic stimuli with (temporal or global) structural
ambiguities are used intensively in psycholinguistic research,
as they open an excellent observation window into the hidden
processes of human language comprehension. They provide
valuable insights into the time course of language comprehension
in general and ambiguity resolution in particular, for example in
combination with eye-tracking analyses. The relative amount of
eye fixations on the different parts of a static visual environment
is interpreted as a signal at which point in time reference has
been successfully established, and what kind of information was
required to achieve this. This approach has been named the visual
world paradigm; see Huettig et al. (2011) for a review.

4. CROSSMODAL REFERENCE
RESOLUTION

Crossmodal reference resolution can be understood as another
kind of ambiguity resolution. It does not concern the reference
to linguistically described entities of the world, but to those that
can be inferred from the visual stimulus. In rich environments,
a lexical expression can possibly refer to a number of entities:
For instance, there are multiple books in the scenario depicted
in Figure 1. Also, expressions can be related to entities in
the environment that might be confused with other objects
of similar appearance. Moreover, visual objects sometimes are
partly occluded from the perspective of the listener, or are
otherwise difficult to perceive. Again, the resulting combinatorics
can be controlled best if the space of possible mappings can
be constrained as early as possible. This creates a very strong
incentive for an incremental (and predictive) processing mode,
which facilitates the interaction between the two modalities
as early as possible in order to exchange disambiguating
information in both directions.

Even under ideal conditions, there is no exact mapping
between the concepts contributed linguistically and the visually
perceived information. The two modalities differ in their
ability to accommodate different aspects and granularities of
conceptualizations. Language, for example, is well-suited to
describe entities with a very fine grained inventory of categories,
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which most often are difficult to distinguish visually: For
example, it is possible to linguistically refer to the same entity
by means of expressions like the book, the paperback, the thriller,
or the Agatha Christie. The large degree of linguistic variability
that is available to refer to entities is not limited to objects, but
also extends to actions that can be lexicalized in quite different
ways, such as to talk, to discuss, to negotiate, to chat, etc. The
visual channel, on the other hand, is usually superior when spatial
properties are involved. Incorporating the information from the
visual channel, the reference for a relative expression like the mug
on the left can easily be determined.

Generally, a simple combination of linguistic and visual
information will not suffice to establish the mapping between
the linguistic concepts and their visual correspondences. At least
some kind of ontological knowledge will be indispensable to
solve this problem satisfactorily (McCrae, 2009). Often, however,
reference resolution will require considerably more complex
inferences: For instance, the sentence “Bring me my grandma’s
book.” with respect to Figure 1 requires either a substantial
amount of background knowledge about the relatives of the
speaker and their visual appearance or even less reliable non-
monotonic reasoning based on the absence of other people that
could be used as referential entities. Moreover, the linguistically
expressed ownership relation adds uncertainty because it cannot
easily be derived from a visual stimulus in general.

From a neurophysiological perspective, the mapping of
(situated) language to conceptual categories is facilitated by a
common brain area, namely the hippocampal structure (Duff and
Brown-Schmidt, 2012; Moscovitch et al., 2016). A recent study by
Piai et al. (2016) also revealed that the mapping between the two
modalities in the hippocampus is performed incrementally and
enables the prediction of upcoming words.

Psycholinguistic studies into the nature of relating instances
(visual entities) to the relevant conceptual category point
toward a dynamic mapping process instead of a one-shot
association (Altmann, 2017). It is assumed that, based on the
similarity to an already existing abstract mental representation,
an episodic representation for the perceived visual entity is
generated incrementally based on the expectations about
the incoming sentence parts and the visual event. In
return, conceptual categories are updated, which results in
abstract concepts that have lost the individual details of the
original instance.

Concept mapping will become even more difficult if the entity
referred to undergoes a change of state as a spoken utterance
unfolds. Different versions of the same instance have to be
created, mapped on to each other and updated according to
the actions carried out. Given the simple story “The woman
chopped an onion. Then, she fried it.”, the different states of the
onion (1) intact and raw, (2) chopped and raw and finally (3)
chopped and fried need to be maintained and bound together
in order to understand the utterance (Hindy et al., 2012, 2013;
Altmann, 2017). Mapping the current state of the entity to its
past and possible future states has to keep track of the common
features, namely the visual properties of the object, its spatial
relationships with the other objects in the environment, as well
as the properties of the conceptual category that it belongs to.

Kruijff et al. (2010) studied the problem of dynamically
evolving worlds by means of a system for human-robot
interaction, whose dialogue understanding capabilities
significantly improved when visual information was taken
into account. Its ability to keep track of instances whose state
or semantic category changes over time allows the system to
talk about entities that will cease or be transformed, such as the
building materials a house is built from.

Whereas Baumgärtner (2013) used manually coded
constraints to realize crossmodal reference resolution, Kitaev
and Klein (2017) showed that the mapping between language and
vision can be learned. Their study focuses on spatial descriptors,
i.e., linguistic descriptions of relations between objects in images,
and their localization. Employing a neural network based on an
LSTM and pretrained word embeddings, the authors were able
to demonstrate that this architecture can learn the grounding of
spatial descriptors and the selection of the most plausible focus
point given a set of possible target locations. The system achieved
an accuracy of 62.5 % compared to 16.7 % for a randomized
baseline and 85.8 % for human performance.

Besides learning the mapping from language to vision, the
generation of linguistic expressions can be learned from visual
entities, too. Zarrieß and Schlangen (2017b) provide an overview
of different machine learning approaches to generate referential
expressions from images (Lazaridou et al., 2014; Schlangen
et al., 2016; Zarrieß and Schlangen, 2017a), a subtask of image
captioning. In contrast to such explicit mappings, many of
the systems discussed throughout this article apply end-to-end
neural approaches, where the crossmodal reference resolution
happens implicitly.

5. VISUAL GUIDANCE AND SEARCH

Apart from describing or referring to visually presented entities,
language can also be used to guide the attention of the listener
toward a certain area of the visual environment. This is also
possible in artificial systems, as demonstrated, for instance, by
Baumgärtner (2013). Such a shift of attention can be triggered by
different means: Simply mentioning or describing an entity will
cause listeners to fixate their gaze on the possible visual referents.
In familiar environments or scenarios of low complexity, this
happens almost involuntarily and with a very low latency. Also,
the speaker can explicitly direct the visual attention of the
listener by describing relevant parts of the visual environment,
for example by talking about landmarks in the vicinity of an
intended referent. Hearing a sentence like ”Next to the big
table there is a white tennis bag.”, with respect to Figure 1, the
listener will already look out for tables after hearing the initial
prepositional phrase. She can select the larger one among them,
and possibly start moving into that direction. After receiving
the color attribute white, her visual attention can further zoom
in on white objects, which are restricted to a tennis bag only a
word later.

Visual attention can be guided not only by mentioning objects
in the environment explicitly, but also by means of more indirect
characteristics like the affordances they offer or the current state
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of the environment. For instance, processing the request ”Could
you please close the window?” in the environment of Figure 1, the
listener may already start the visual search for closable objects
like a window, a box, or a drawer, as soon as she perceives the
verb close. Since there is only one open item among the possible
options, the window to the right can be identified as the intended
target with a very small delay. This result can be produced so
rapidly only through a combination of incremental processing
with crossmodal interaction and the predictions derived from the
selectional restrictions of the verb.

In cases where possible candidates are not immediately
available for reference resolution, they have to be actively
searched for in the visual environment. However, the
time available for this purpose is limited by the ongoing
comprehension process that is driven by the linguistic input.
In principle, the search could terminate after the target object
has been uniquely identified, but at this point in time, it is
usually not clear whether the object found is the only fitting
one (Hollingworth, 2012), and completely or partially occluded
target objects have also to be taken into account. Psychophysical
experiments indicate that humans implicitly utilize a threshold
to stop visual search (Wolfe, 2012). This threshold is set based on
the gist of the scene, which factors in the number of the targets
searched for (if it is known), the properties of the target(s), the
distinctiveness of the properties, as well as the complexity of the
environment and the task at hand. Memory capacity, which is
required to keep track of the items, is another factor, especially
when there are many more instances that match the search
criteria fully or partially. Revisiting the visual objects repeatedly
is inhibited and humans are able to adapt the threshold to
changing conditions very flexibly.

6. CROSSMODAL INTERACTION OF
LANGUAGE AND VISION

A growing body of psycholinguistic evidence gives rise to the
assumption that crossmodal integration is more than just a
simple procedure of information selection or merging. Instead,
it requires intense interactions between independent but closely
cooperating processing components. But how, when and (in
more recent research also) to what extent this crossmodal
interaction occurs is still under investigation.

Crossmodal integration can occur at different levels, from
multi-sensory fusion (e.g., audio-visual, audio-tactile or visio-
tactile) to higher-level comprehension processes like language
understanding. Usually processing is biased with one modality
dominating the other one, e.g., the evolutionary acquired
dominance of the visual modality over the auditory one for
sound-source localization. However, this dominance can be
neutralized or even reversed when the dominant modality is not
reliable (Witten and Knudsen, 2005; King, 2009).

While perceptual phenomena have a noticeable influence,
the integration of linguistic and visual information mostly
happens on the conceptual level. Syntax-first approaches assume
a privileged role of grammar that is applied in a modular fashion
without external influence from other information sources. In

case of a crossmodal conflict, the syntax-first approach assumes
that only a structure which is licensed by the grammar is chosen
(e.g., Frazier and Clifton, 2001, 2006). As a consequence, these
theories predict a strict temporal order of processing steps with
syntactic constraints being applied first and others later.

Constraint-based approaches (also known as interactive
models) suggest a different view, namely that syntactic structures
are activated in parallel, taking into account all the relevant
information from the available modalities at the same time
(e.g., Tanenhaus et al., 1995). From this point of view, all
the available contributions can be understood as (contextual)
constraints on the language comprehension process, and they
exert their influence on the eventual outcome, a consolidated
meaning representation, which evolves over time as the utterance
unfolds. In constraint-based approaches, the role of extra-
linguistic evidence, for example visual percepts, prior experiences
or prototypical knowledge about the world, in principle does
not differ from the genuine linguistic influence. Crossmodal
language comprehension is considered a richly interactive
cognitive process of constraint satisfaction that mediates between
the different, possibly even conflicting requirements (Louwerse,
2008; Ferreira et al., 2013; Spivey and Huette, 2013). This high
degree of openness seems to contribute much to the flexibility,
economy and robustness of human sentence comprehension.

Data from several studies has revealed that the assumption
that all the constraining information is available at once was too
simplistic. Coco and Keller (2015) investigated which kinds of
information affect different comprehension processes. In a set
of three experiments, they manipulated only the visual saliency,
only the linguistic saliency (by means of prosodic markers) and
both of them together. The results revealed (1) that visual saliency
narrows down the visual search space toward a target, but does
not have a direct role on linguistic ambiguity resolution, (2)
that intonational breaks add prominence to linguistic referents
and favor one interpretation over the other, and (3) that no
statistical effect between the two modalities has been found,
although they complement each other and both contribute to
the overall understanding of the sentence by playing a role in
different aspects of language processing.

A more detailed view on the interplay of world knowledge,
visual information and linguistic expressions was presented
by Knoeferle and Crocker (2006). They showed that people
indeed use world knowledge, for example, to assign thematic
roles. In case this assignment contradicts the visual context, the
information from the visual world will outweigh the lexical biases
induced by world knowledge. Similarly, Mirković and Altmann
(2019) showed that the visual information is used immediately,
but constraints based on inferences from world knowledge come
into play later on. Another recent study, targeting the task of
meaning recovery from acoustically noisy speech comprehension
in German, demonstrated how these two sources (general world
knowledge and situation-specific cues) interact with each other
while forming the interpretation (Alaçam, 2019). Typical object
features and affordances (for example, tables have the affordance
of putting things on top of it) can be learned by exposure
to daily objects. Episodic affordances [such as being available
(empty/occupied)], on the other hand, are closely tied to the

Frontiers in Neurorobotics | www.frontiersin.org 7 January 2020 | Volume 14 | Article 2

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Alaçam et al. Crossmodal Language Comprehension

situation at hand most of the time. The results of the study show
that, in case of conflicting cues, the episodic affordances informed
by the current situational information will kick in and influence
the interpretation toward the less-expected one. The results also
indicate that if there is a strong bias toward the default case (based
on real-world contingencies), then situation-specific information
may not always be strong enough to override it. From the
design perspective of crossmodal natural language processing,
this finding informs us that a situated language processing system
should not only incorporate the prototypical affordances on the
world-knowledge level, but also be able to filter them based on
their situation-specific features to achieve a correct evaluation of
the described situation.

Considering the benefits of crossmodal interaction in human
situated language processing, such as mutual support or
guidance, combining the data streams in an interactive manner
instead of fusing them seems to be a promising approach.
Actually, there is a broad range of possibilities for language and
vision to interact, which have already been or could be tried. They
can be classified along a number of different dimensions:

• Crossmodal integration can range from maintaining
independent, but interacting representations for each
modality to having a single, common representation. The
latter is not interactive since any independence gets lost.
We discuss such approaches here because they are an often
used computational approach and reveal initial findings,
for instance integrating two modalities improves system
performance compared to using only one.

• Either crossmodal interaction takes place just once, or both
modalities modulate each other repeatedly.

• The interaction can occur at any point, ranging from an early
stage to a later one.

• Either only one modality influences the other or both
modalities influence one another mutually.

• If the influence is mutual, it can be realized by means of a
bidirectional mapping or with two separate mechanisms, one
for each direction of influence.

Most systems discussed throughout this paper do not address
all of these distinctions, and they sometimes apply simplifying
assumptions, such as using manually annotated images as
visual input. Also, not all approaches are designed solely for
the general purpose of language understanding. Often, they
deal with specific tasks that, among other things, require
at least rudimentary language comprehension capabilities, for
example sentiment analysis or question answering. It can be
assumed that the use visual information in these systems, to a
certain degree, compensates for the lack of genuine language
understanding capabilities.

Yu and Jiang (2019) reported that using both modalities
together is more effective than using them individually with
respect to the task of Target-Oriented Sentiment Classification,
which determines the sentiment over different individuals, for
instance people or places. For this task, the authors propose a
neural network that combines the BERT architecture (Devlin
et al., 2019) with a target attention mechanism and self-attention
layers to model intra- and inter-modality alignments. Table 2

TABLE 2 | Comparison of using linguistic and visual information individually or

together for Target-Oriented Sentiment Classification, evaluated by Yu and Jiang

(2019) on two publicly available data sets.

Accuracy

Modality Twitter-15 Twitter-17

Language 74.3% 68.9%

Vision 59.9% 58.6%

Language + Visiona 77.2% 70.5%

aDifferent configurations of the neural network architecture were used for each test data

set.

shows that combining linguistic and visual information results
in an improved system performance compared to using these
modalities in isolation. This holds true for the two publicly
available data sets Twitter-15 (Zhang et al., 2018) and Twitter-
17 (Lu et al., 2018).

While Yu and Jiang (2019) did not consider any acoustic
input, in particular no prosodic information, the results will
be contradictory if prosody is included as well. The benefit
of prosodic information strongly depends on the task to be
achieved. Table 3 compares two crossmodal approaches for
sentiment detection that were both evaluated on the CMU-
MOSI data set (Zadeh et al., 2016). In addition to the linguistic
and visual input, this data set contains prosodic features
as a third input modality. Zadeh et al. (2017) showed that
combining all available modalities improved the overall system
performance, compared to using any of the input modalities
alone. The authors applied a Tensor Fusion Network, which
is a neural network approach that results in a common,
crossmodal representation based on a combination of features for
unimodal, bimodal and trimodal interactions. The accuracy of
the crossmodal classification improves by 2.3 percentage points
compared to the purely linguistic model, by 10.3 percentage
points compared to the visual one and by 12.0 percentage points
compared to the acoustic one. Poria et al. (2017), who utilized
an LSTM-based approach, reported that these improvements
mainly result from combining linguistic and visual input. In
contrast, adding prosodic features only yields an accuracy
improvement of 0.1 percentage points, which suggests that
prosody does not significantly contribute to the particular case
of sentiment analysis.

Whereas, sentiment analysis does not benefit from using
prosody, Poria et al. (2017) found a strong influence when
applying their system to the task of emotion recognition. Table 4
contains their recognition results for four typical emotions that
were obtained on the IEMOCAP data set (Busso et al., 2008).
Again, they achieved better results using crossmodal features.
The accuracy increases by up to 2.5 percentage points compared
to using the linguistic features alone, by 28.6 percentage
points compared to using only the visual ones and by 27.6
percentage points compared to employing only the acoustic
ones. In contrast to their sentiment analysis study, including
prosody leads to better results. The accuracy improves from
0.8 (Angry) up to 1.7 percentage points (Neutral) compared
to only combining language and vision. For Sad, either visual
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TABLE 3 | Comparison of three crossmodal sentiment analysis approaches

evaluated on the CMU-MOSI data set, one being incremental (Liang et al., 2018)

as opposed to two non-incremental ones.

Accuracy

Modality Zadeh et al.

(2017)

Poria et al.

(2017)

Liang et al.

(2018)

Language 74.8% 78.1% –

Vision 66.8% 55.8% –

Prosody 65.1% 60.3% –

Language + Vision – 80.2% –

Language + Prosody – 79.3% –

Vision + Prosody – 62.2% –

Language + Vision + Prosody 77.1% 80.3% 78.4%

or prosodic information is required whereas the combination
of all modalities does not further improve the accuracy. For
Happy though, language alone is sufficient. Considering the
contradictory findings for sentiment analysis and emotion
recognition, we have to assume that prosody is able to improve
system performance only for particular tasks. Since many recent
language and vision data sets do not contain any prosodic
annotations, this hypothesis is hard to verify at the moment.

Not only the choice of input features but also how the
modalities are integrated affects system performance. Tan and
Bansal (2018) used crossmodal interaction by means of mutual
attention mechanisms so that language and vision can exert
their influence on one another. For the visual reasoning task of
the NLVR data set (Suhr et al., 2017), the accuracy improved
to 69.7 % for using mutual attention compared to 58.7 % for
applying the neural network architecture without any interaction
between the two modalities. Comparable results were achieved
by Yao et al. (2018), who proposed a similar approach where
the interaction occurs repeatedly. Although more evidence is
required, these results suggest that separate representations for
language and vision, which interact with and influence each
other early on, are advantageous compared to the late fusion of
unimodal representations without any prior interaction.

While the aforementioned approaches in this section do
not consider the possibility that one of the modalities could
sometimes not be available or accessible, McCrae (2009) and
Crocker et al. (2010) studied this issue by enabling their systems
to produce results based on the linguistic input alone. Also,
Kiros et al. (2018) proposed a system architecture that can
fall back to processing only the linguistic input in case of
missing visual information. The authors perform a top-k image
web search for each word, extract neural features from each
image and combine them with pretrained word embeddings
via a gating function that controls the influence of the two
modalities. If, for example, the web search failed, the system will
fall back on the word embeddings alone. Alternatively, Wang
et al. (2018), who investigated how to deal with information
that is either incomplete or missing entirely in one modality,
suggested training a crossmodal system to account for such
cases. They reconstructed the missing data based on intra- and

TABLE 4 | Comparison of two crossmodal emotion recognition approaches

evaluated for four emotions of the IEMOCAP data set, one being incremental

(Liang et al., 2018) as opposed to a non-incremental one (Poria et al., 2017).

Accuracy

Approach Modality Angry Happy Sad Neutral

Language 76.1% 79.0% 76.2% 67.4%

Vision 53.2% 58.2% 55.5% 51.3%

Prosody 58.4% 60.5% 61.4% 52.3%

Poria et al.

(2017)

Language + Vision 77.2% 79.0% 78.4% 68.2%

Language + Prosody 77.2% 79.1% 78.1% 69.1%

Vision + Prosody 68.2% 72.0% 70.4% 62.4%

Language + Vision + Prosody 78.0% 79.3% 78.3% 69.9%

Liang et al.

(2018)

Language + Vision + Prosody 85.1% 87.5% 83.8% 69.5%

inter-modal correlations, which are learned during training by
means of a modality dropout simulating the information deficit
in one channel.

For fundamental reasons, a learning system can only acquire
the kind of desired synergy between linguistic and visual
contributions if they are well represented in the training data.
Unfortunately, a study by Shekhar et al. (2017) has shown
that many existing multi-modal data sets for visual question
answering (VQA), a particular version of visual reasoning,
possess a certain linguistic bias. The authors found that
some questions can already be answered correctly without
taking the image into account at all. As a countermeasure,
they designed a new unbiased data set that can only be
processed successfully if language and vision are modeled in an
unbiased manner. Since different state-of-the-art VQA systems
performed poorly on this data set, the authors concluded
that this indicates a lack of proper integration of language
and vision in these approaches. Still, further investigations
are required to find out what makes multi-modal data
sets well-suited for the study of crossmodal interaction and
how they can be compiled to not suffer from any implicit
prior preference.

Although there are many different ways to combine language
and vision with respect to the aforementioned classification
criteria, no optimal solution that fits all the requirements does
exist. A consistent finding across the different experiments has
been that combining linguistic and visual information improves
system performance and that this effect increases when both
input channels mutually influence each other compared to them
being integrated without interacting.

7. INCREMENTALITY

Human language processing occurs over time irrespective of
its modes, be it written or spoken, or be it comprehended or
produced. Incremental processing is one of the key factors that
makes natural language conversation fluent and robust at the
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same time. It becomes a necessity because the length of the
utterance to be dealt with is not known in advance and the state
of affairs may change while the utterance unfolds. Being able
to make sense of the initial parts of an utterance as early as
possible allows the listener to respond to the incoming utterance
in a timely manner, either by replying with an appropriate
verbal response, such as producing a back-channel signal (like
nodding, raising one’s eye-brows, or looking at a possible object
of reference), or by preparing and initiating an appropriate
problem-related action; see Crocker (1999) for a review.

Incremental processing is particularly valuable for early
reference resolution. Reliable hypotheses about suitable
candidates in the visual environment reduce the space of possible
alternative interpretations, which may save computational
effort. Moreover, a closer inspection of the candidate and its
visual surrounding may contribute additional information
that supports the ongoing comprehension process, and
therefore has the potential to create the feedback loop for
mutual benefit between the linguistic and the visual channel.
If strong enough evidence is contributed by another modality,
it will even lead to early decisions on sentence structures
and referential relationships without realizing that another
(linguistic) interpretation would be possible (Tanenhaus et al.,
1995; Christianson et al., 2001; Knoeferle et al., 2005; Altmann
and Mirković, 2009).

Incrementality can be observed on all levels of linguistic
granularity. Words are identified at a very early point in time
as soon as the available phonetic and contextual information
is sufficient to make a certain enough choice, usually during
or shortly after the very first phoneme of the word (Marslen-
Wilson and Welsh, 1978). Less obvious is the incremental nature
of phonetic perception on the suprasegmental level. But even
there, prosodic signals provide additional information to resolve
ambiguities and predict the upcoming structure (Bailey and
Ferreira, 2007; Snedeker and Yuan, 2008; Coco and Keller, 2015).
These cues also allow the listener to estimate the distance to
the next point in time when she can interrupt the speaker
without risking to be unpolite. Moreover, changing the speech
rate between the determiner and the noun during an indefinite
noun phrase was shown to have an effect on perceiving the
determiner (or ignoring it at all) and on understanding the
noun phrase (Brown et al., 2012). Furthermore, contrastive
intonation contours seem to be processed incrementally, and
their processing is guided by the contextual cues during spoken
language understanding (Weber et al., 2006; Kurumada et al.,
2014). Not just phonetic cues but also visual information like
facial expressions seems to have an immediate impact on
sentence processing, facilitating early reference resolution in an
incremental manner (Carminati and Knoeferle, 2013; Graham
et al., 2017).

From a technical point of view, incremental (online)
processing can be distinguished from batch mode (offline)
processing. While a system in batch mode waits for the
whole input being available before attempting to analyze it, an
incremental analysis integrates partial input into a (coherent)
processing result as soon as it becomes available. For an outside
observer, batch mode processing is equivalent to ignoring the
dynamic nature of the input data completely, and therefore

this type of processing is not able to explain the dynamics of
human language comprehension. We only mention it here to
highlight the contrast between human behavior and traditional
computational solutions. Incremental processing, on the other
hand, reflects the dynamic characteristics of the input in its
output: The results produced evolve over time like the input does.
A language comprehension system, for instance, processes the
input word-by-word constructing semantic relations (possibly
even only partially instantiated ones) between linguistic and
visual entities as soon as possible.

The dynamics of incremental decision taking ranges from
greedy (monotonic) approaches that extend previous partial
analyses without ever changing them to pseudo-incremental
ones, ignoring all previous results and always analyzing the entire
input up to the current increment anew. Truly incremental ones
take previous solutions into account and revise them according
to the new information just becoming available.

Forcing the language comprehension process to take its
decisions as early as possible comes at the price of making
intermediate interpretations less certain and more ambiguous
because large portions of the linguistic input are not yet available
at the point in time when the decision has to be taken. In effect,
responsiveness is traded against reliability and in case of wrong
decisions, a reanalysis has to be initiated. In the long run, the
additional information that is made available from the visual
channel by the closely time-locked interaction between the two
input channels might overcompensate this effect. Evidence from
the human model as well as from computational systems shows
that committing to an initial interpretation early on and revising
it whenever this becomes necessary is often the more successful
strategy compared to a wait-and-see approach (Ferreira, 2003;
Baumann et al., 2013).

For English, the phenomenon of temporal ambiguities caused
by incremental processing has been investigated most often
by means of reduced relative clause constructions. The two
sentences “The pills brought no relief.” and “The pills brought by
the nurse helped a lot.” share a common initial part; thus, they
initially look the same but later diverge into two constructions
that are preferred to different degrees. Despite this superficial
similarity, the verb brought is actually part of two different kinds
of verb groups, either in the active voice (brought no relief ) or
the passive voice (brought by the nurse), where the second one is
part of a (reduced) relative clause. As a consequence, the pills are
either the subject, i.e., in that particular case the AGENT of the
verb to bring, or its direct object, i.e., the THEME. Since humans
prefer the first reading, they have to revise their interpretation in
the second case.

An early artificial approach that deals with partial input was
proposed by Brick and Scheutz (2007). Their system, which
they claimed to be psychologically plausible, is able to perform
actions, like grasping, and provides feedback at an early point
in time. Additionally, it can deal with ambiguous utterances
as well as references. The system is built upon an incremental
semantic module based on constraint propagation that integrates
linguistic knowledge with perceptual information from the
visual channel. After each increment, reference resolution is
performed. If a unique referent is found, the system will start
to react. In case of an ambiguity, it will continue with the
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most plausible interpretation until the unfolding information
requires a revision.

One problem of processing sentences incrementally is
caused by possible dependencies between incrementality and
crossmodality, which have an impact on the system performance
that is hard to assess. Liang et al. (2018) proposed a
neural architecture (Recurrent Multistage Fusion Network)
for incremental processing that, first, processes each modality
individually to capture intra-modal dependencies at each time
point. Then, all modalities are fused into a common, crossmodal
representation. Finally, this inter-modal representation of time
point t is fed back into the intra-modal representations of
step t + 1 before the procedure is called again for that next
step. The architecture is incremental since it processes the
linguistic input word-by-word, with the other input streams
segmented accordingly. It was applied to different tasks including
sentiment analysis and emotion recognition. Compared to the
non-incremental approach of Poria et al. (2017), the accuracy
increased for all emotions by at least 5.5 percentage points
(see Table 4), except the emotion class Neutral, which decreased
by 0.4 percentage points. For sentiment analysis, the accuracy
decreased by 1.9 percentage points compared to (Poria et al.,
2017) (see Table 3). Although incrementality enables a system
to react at an early point in time, there is a potential trade-
off with respect to the overall system performance that one
should be aware of when developing artificial solutions that
are both crossmodal and incremental. The most influential
factors that could explain these contradictory results still need to
be determined.

Standard evaluation metrics for natural language processing
systems do not take the dynamic nature of incremental results
into account. They only evaluate the quality at a fixed point
in time (usually after completion of the computation) and they
are not able to describe the timeliness of a system. Therefore,
Schlangen et al. (2009) proposed a number of novel measures
to evaluate the intermediate results of incremental processing
with respect to when a systems takes decisions and how often
it changes them. Timeliness, for instance, refers to the delay of
the system output, and non-monotonicity measures the portion
of the intermediate results that will be part of the final result.
Unfortunately, these metrics do not quantify the quality of the
intermediate results. To overcome this deficiency, Beuck et al.
(2013) suggested to use temporal quality profiles, which can
be determined by a point-wise analysis of intermediate results
in terms of accuracy. These profiles describe the reliability of
attaching the nmost recent words in a window left of the current
point in time and usually show a fairly low reliability for the
newest word, which increases the older the hypotheses are. A
detailed description of these performance characteristics and a
discussion of the inherent trade-offs of an incremental system can
be found in Köhn (2018).

8. PREDICTION

While incremental comprehension aims at integrating all the
already available pieces of input into a coherent tentative result,
predictive processing takes a more radical approach by trying to
produce output based on its expectations about the upcoming

observations. Predictions can be checked against the visual
evidence proactively and they can guide the visual attention
toward the relevant entities in the environment, even though
the referring expression is still missing or underspecified at
that point in time. Thus, predictive processing amplifies the
advantages of incrementality even further. It also minimizes the
temporal delay between perceiving the initial part of an utterance
and understanding it, effectively providing an additional gain in
responsiveness at the price of taking more risky decisions and the
need to possibly correct them later on. The quality of predictions
can be calculated by precision and recall (Beuck et al., 2013).

Predictions are guided by an incomplete or unconnected
structural interpretation of the already processed linguistic input.
They may, for instance, concern the most plausible filler of
a thematic role or they can help to create a fully connected,
thereby more expressive meaning representation when a concept
connecting two other ones is still missing. Having predictions
available not only speeds up reference resolution, but also helps
the listener to disambiguate the role assignment itself.

Expectations about the most likely thematic role fillers usually
are introduced by a verb or a comparable lexical item (e.g.,
Trueswell et al., 1993; Altmann and Kamide, 1999; Chambers
et al., 2004). These expectations can be used, for example,
to determine the THEME of a particular action. Altmann and
Kamide (1999) have found that listeners are able to predict the
complements of a verb based on its selectional constraints and
the affordances of the possible role fillers. When people hear
the verb break, for instance, their attention is directed toward
breakable objects in the scene. Similar to verbs, some non-verbs
also generate expectations about what may follow (McRae et al.,
2001).

A natural language understanding system whose
comprehension and prediction capability improved by including
predictions derived from affordances into the decision taking
process was presented by Gorniak and Roy (2007). In their
study, they employ a probabilistic, hierarchical approach for
plan recognition and, thereby, integrate language, situation-
specific knowledge from the visual channel and general world
knowledge, namely action affordances. Their method requires
predictive parsing, which they realize by means of a Combinatory
Categorial Grammar in combination with affordance filters.
After processing a noun, a subset of actions remains that can be
applied to all past, present and future states. For instance, gate
relates to opening, locking or walking through. In contrast, a
verb restricts the set of possible objects: For example, open refers
to objects that can be opened.

The other kind of prediction is used to create a connected
structural description for the partial linguistic input. This
becomes necessary in a situation where the attribute of an object
is already available, but not yet the noun to which it refers:
“I’ll take the white...”. Here, the prediction helps to establish
the semantic connection between the verb to take and the color
attribute white by means of the still unknown, but already
predictable object role.

Predictions can also be triggered by salient characteristics of
the visual environment: The grouping of objects may help to
anticipate possible completions of a coordinated structure (plates
and...), or the display of a dominating action may help to predict
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the predicate together with all the restrictions for its arguments.
If the environment is dynamic, one can also predict possible
updates, like the probable outcome of an action that changes the
state of an entity.

Knoeferle et al. (2005) demonstrated the predictive nature
of sentence comprehension using German sentences with
Subject-Object ambiguities that directly map to an ambiguous
AGENT/PATIENT assignment. Each visual scene to which a
sentence refers depicts two actions and three characters. Two
different sentence patterns have been compared either in an
unmarked word order (Subject-Verb-Object) or in a marked
word order (Object-Verb-Subject). Due to the case ambiguity
of German feminine nouns (nominative or accusative), it is
not possible to decide whether the first noun phrase in the
sentence is an AGENT or a PATIENT until the case-marker of the
second noun phrase following the verb becomes available. Eye-
tracking results showed that in case of the marked word order,
the initial role assignment for the first noun phrase creates a
conflict with the following assignment for the second one, and a
reanalysis becomes necessary. Most interestingly, visual attention
already started to move toward the target character before the
associated post-verbal noun phrase actually appeared, i.e., while
the verb was still being spoken. This clearly signals that reference
resolution for the second noun phrase was not based on the
observation of the phrase itself but on its prediction induced by
the verb. A follow-up study on the same data set but using event-
related brain potentials (ERPs) as a research methodology also
confirmed this conclusion (Knoeferle et al., 2007).

Based on the aforementioned studies, Knoeferle and
Crocker (2007) developed the Coordinated Interplay Account,
a recurrent connectionist network, which models language-
mediated visual attention and sentence interpretation. With a
direct correspondence to the psycholinguistic findings, the model
can successfully predict human behavior and neuro-imaging
results described previously (Knoeferle et al., 2005; Knoeferle and
Crocker, 2007). In particular, it can correctly resolve ambiguous
thematic role assignments at the same point in time as people
do (Crocker et al., 2010). The network assigns thematic roles
incrementally in the unimodal as well as in the crossmodal
one. It consists of three subparts: (1) unimodal sentence
comprehension, (2) modulation of visual attention by the partial
linguistic analyses and (3) the modulation of the sentence
interpretation using the additional information gathered from
the visual scene. All three subparts maintain independent
representations, and crossmodal reference resolution is realized
by means of co-indexation. The approach can deal with
scenes that contain more entities than those referred to in the
sentence. The model is also robust in the absence of visual
input (Mayberry et al., 2009), since it can capture stereotypical
associations between agents and their actions if they appear
frequently enough in the training data. Integrating the visual
information will improve the interpretation in case these
associations are difficult to extract or irrelevant. It should be
noted, though, that the system utilizes a model structure that is
specifically tailored to predict the experimental data. Therefore,
the system does not possess any kind of general language
comprehension capability.

The objects or events that are not directly referred to in an
utterance will attract an increased amount of attention if they
are inferred either from what has been said so far or from the
concurrent visual information (Dahan and Tanenhaus, 2005).
Altmann and Kamide (2007) investigated this relationship by
manipulating the tense of the main verb. The visual stimuli
contained a cat (i. e. an animal that could kill), some mice (i.e.,
animals that can be killed by a cat, but are still alive), a pile
of feathers (i.e., the remainder of a bird that has been killed)
and some distractor objects. Two different versions of a spoken
sentence were presented, either “The cat will kill all of the mice.”
or “The cat has killed all of the birds.” While more fixations on
the mice, after the onset of the auxiliary verb, have been observed
in the former condition, more fixations on the feathers occurred
in the latter case, although the feathers cannot be the target of a
killing action, but still overlap with the conceptual requirements
of the verb. Thus, the participants still anticipated feathers as the
THEME using contextual information which the authors call real-
world contingencies. In such cases, the mapping of language onto
the scene becomes even more challenging but crucial for natural
language processing solutions since the temporal structure of the
events entailed by the sentence or change of state (namely objects
that disappear or change their appearance such as things which
have been eaten up or will be constructed) needs to be considered.

Even the objects that have no semantical relation to the
spoken words are able to attract attention to themselves. To
study to which degree the aforementioned findings (Knoeferle
et al., 2005) are influenced by the visual complexity of the visual
scene, Alaçam et al. (2019) followed the same experimental
paradigm and used the same sentence patterns (unmarked and
marked word orders). The visual stimuli differed from those
used in Knoeferle et al. (2005) by a meaningfully structured
background containing a substantial amount of distractors (c.f.
Figure 1), additional background objects and an additional
character acting on the ambiguous AGENT/PATIENT character.
The results replicate the findings previously reported in Knoeferle
et al. (2005) that participants are garden-pathed when they hear
a sentence in Object-Verb-Subject order. Although none of the
visual manipulations is directly related to the entities mentioned
in the sentence, the amount of fixations on the target is still
influenced by the visual clutter regarding the irrelevant entities in
the scene. The overall fixation rate decreases when the complexity
increases with a stronger effect caused by the additional character
compared to additional background objects.

9. HEURISTIC DECISION TAKING

The studies on structural prediction and ambiguity resolution
discussed above have been carried out within relatively simple
visual and linguistic settings, where the relationships between
events and entities can be extracted easily. More recently, the
effect of visual complexity has increasingly attracted attention.
As the complexity (either of the visual context or the task)
grows, using the visual information to narrow down the space
of possible linguistic interpretations becomes more difficult. In
such cases, subjects either tend to choose a more passive strategy,
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such as waiting for more detailed information about the entities
mentioned in the utterance instead of taking decisions based
on risky anticipations (Ferreira et al., 2013). Alternatively, they
can resort to simple heuristics, like choosing an interpretation
which is in line with stereotypical semantic information or the
visual world, even though this interpretation requires to accept
grammatically unacceptable syntactic structures (MacWhinney
et al., 1984; Christianson et al., 2001). In a Dutch noun phrase,
the prenominal adjective(s) as well as the head noun are gender-
marked, and the gender of the adjective(s) has to agree with the
gender of the noun. Normally, the gender information of the
preceding adjective is used to predict the target object before
the corresponding noun has been uttered (Van Berkum et al.,
2005). Instead, Brysbaert and Mitchell (2000) found that people
sometimes are insensitive to this kind of morphological cue. In
their study, subjects have chosen good enough representations
with a better semantic fit, but ignored the disambiguating gender
information that contradicts their interpretation.

Such kind of heuristic decision taking plays a crucial role in
human cognition as comprehensively discussed in Gigerenzer
(2000) and Gigerenzer (2008). In complex enough tasks, reaching
a decision by considering all possible options is unrealistic due
to temporal or memory-related resource limitations. Thus, there
must be a cognitivemechanism that is able to abandon processing
and to settle the issue as soon as a sufficiently high degree of
confidence has been reached.

Ferreira (2003) argues that spoken sentence comprehension is
an inherently demanding task that involves complex sequential
decision taking and is affected by both uncertainty about the
current input and a lack of knowledge about the upcoming
material. Thus, enforcing consistency among the sequential
decisions is not always feasible and people resort to fast and frugal
heuristics, thereby producing good enough representations. The
assumption of good enough representations also provides a valid
explanation for the (partial) success of conversations in noisy
environments. In such a scenario, instead of waiting for or
requesting intelligible spoken input, combining the uncertain
information from the linguistic and the visual channel would be
a more effective comprehension strategy.

A computational approach discussed above that applies
heuristics can be found in Baumgärtner (2013). Its constraints
rely on attachment heuristics. Some attachments are preferred
compared to others that are nonetheless plausible. For instance,
low attachments occur more often in German than higher ones.
Hence, the latter incur a small penalty. In case no alternative is
possible, these mild constraint violations are accepted, though,
and deemed as a good enough solution. Also, the constraint
solving mechanism will stop after a predefined number of steps
or if only minimal improvements are made. In such cases, the
solution will also be viewed as good enough.

The Late Assignment of Syntax hypothesis (Townsend and
Bever, 2001) addresses the role of heuristics on language
comprehension from a theoretical perspective. According to this
theory, sentence processing is performed in two steps. First, a
pseudo-parser tries to obtain a very shallow interpretation based
on syntactic frequencies and semantic associations, for example,
a heuristic captures the tendency to treat the first argument in a

sentence as AGENT, and the second argument as PATIENT. In the
second step, a full-fledged and therefore more time-consuming
parser is applied which is guided by the results of the shallow
one. In case of resource limitations, the results of the shallow
parser are taken, which could of course be wrong. Occasionally,
the results of the two different parsers might not agree. Then the
system needs to reconcile them and decide on the final, possibly
still erroneous interpretation.

10. CONCLUSIONS

It is commonplace that language comprehension takes advantage
of the availability of crossmodal information. Indeed, recent
psycholinguistic research as well as the development of
computational language comprehension systems have confirmed
this assumption and contributed a number of valuable insights
into how this added benefit comes about and what its
prerequisites are:

• Language comprehension benefits from being sensitive to
extra-linguistic information about the kind of entities in
the surrounding world, their spatial relationships, the events
they take part in, and the general or episodic affordances
they offer. Because it is situation-specific, this information
provides a welcome complement to the more static type of
knowledge that can be extracted from large-scale linguistic
data collections. It helps, for instance, to resolve ambiguous
thematic role assignments, to correctly attach words and
phrases, and eventually to determine the most likely intention
of the speaker.

• The interplay between linguistic and visual processing
components seems to be based on interaction rather than
fusion. Interaction preserves the autonomy of the modalities
while providing the possibility for information exchange
and reconciliation from the very first moment. Avoiding a
separate post-hoc component for information selection and
combination, such an architecture improves the robustness
against information deficits in one of the channels. This
property might have contributed to the gains in output quality
found in interactive computational solutions.

• Language processing can profit most from the available visual
information if it proceeds in an incremental and predictive
manner. Incrementality and prediction not only make a
comprehension systemmore responsive, but can also guide the
visual attention almost instantaneously to the relevant areas in
the visual environment, facilitating early reference resolution
and a rapid extraction of additional disambiguating cues from
the visual channel. The sources that inform prediction are the
same as the ones that are used for language comprehension in
general. They range from purely language-internal ones, such
as the lexically induced valency requirements of verbs, to the
purely visual, which can also be used for ambiguity resolution.

Building visually informed language comprehension systems
also requires a major effort to collect and annotate appropriate
data. On the one hand, this data should be free of bias,
since only then a training procedure will be able to extract

Frontiers in Neurorobotics | www.frontiersin.org 13 January 2020 | Volume 14 | Article 2

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Alaçam et al. Crossmodal Language Comprehension

the relevant associations between the modalities involved. On
the other hand, it has to conform to the requirements of
incremental and predictive processing, which in general is non-
monotonic and often requires modifying already produced,
tentative output in the light of additional input becoming
available later. Ignoring these temporal aspects might mislead
model training toward wrong crossmodal mappings. Thus, novel
annotation schemes, suitable data transformation approaches
and sophisticated training procedures will be needed.

While still falling short of what the human model can
accomplish, artificial systems have made significant advances in
many of the above-mentioned respects. Models and algorithms
for incremental and predictive processing have been developed,
and at least in restricted application scenarios a beneficial impact
of crossmodal interaction has been found. Nevertheless, all the
approaches we reviewed focus on selected aspects of crossmodal
language comprehension, i.e.,

• addressing conceptual integration and structural
disambiguation, but ignoring the inherent perceptual
uncertainty of speech and vision,

• experimenting with crossmodal interaction without
considering the dynamic nature of incremental processing, or

• aiming at shallow processing tasks, like sentiment detection
or emotion recognition, avoiding any problems with reference
resolution, meaning analysis and intention detection.

However, such an isolated consideration ignores the many
dependencies which exist between the different aspects andwhich
might have a significant impact on the overall performance of a
system. The full potential of crossmodal language comprehension
will only become available if these aspects are dealt with in an
integrated manner. Visually guided sentence parsing, visually or
lexically induced prediction of upcoming linguistic structures,
continuous interaction between the modalities, linguistically
guided visual attention, etc. all contribute in different but

complementary ways to the ongoing process of language
comprehension. None of them alone will be sufficient to achieve
human-like natural language communication behavior. While
the first successful attempts have been made to implement
human-inspired processing mechanisms in artificial agents, their
interplay is not well understood, neither in the human brain
nor in silico. Only their combination in a single, well-balanced
architecture where the modalities can interact with each other
on small enough input increments will pave the way toward
behavior that comes close to the language processing capabilities
of the human model.

AUTHOR CONTRIBUTIONS

All four authors have been equally much involved in the
discussion of the structure, the general content, and the final
integration. In particular: ÖA, XL, WM, and TS: introduction,
visual guidance, search, and conclusions. ÖA, WM, and
TS: speaker intention, resolution of linguistic ambiguities,
crossmodal reference resolution, crossmodal interaction of
language and vision, incrementality, prediction, and heuristic
decision taking.

FUNDING

This research was partially funded by the German Research
Foundation - DFG Transregio SFB 169: Cross-Modal Learning
and the National Natural Science Foundation of China (NSFC) -
No. 61621136008.

ACKNOWLEDGMENTS

We thank Kerstin Fischer and Kilian A. Foth for their valuable
comments on the manuscript.

REFERENCES

Alaçam, O. (2019). “Enhancing natural language understanding through cross-

modal interaction: meaning recovery from acoustically noisy speech,” in

Proceedings of the 22nd Nordic Conference on Computational Linguistics, eds

M. Hartmann and P. Barbara (Turku: Linköping University Electronic Press),

272–280.

Alaçam, O., Menzel, W., and Staron, T. (2019). “How does visual complexity

influence predictive language processing in a situated context?,” in Preliminary

Proceedings of the 15th Conference on Natural Language Processing (KONVENS

2019) (Erlangen: German Society for Computational Linguistics & Language

Technology), 256–261.

Altmann, G. T. M. (2017). Abstraction and generalization in statistical learning:

implications for the relationship between semantic types and episodic tokens.

Philos. Trans. R. Soc. B Biol. Sci. 372:20160060. doi: 10.1098/rstb.2016.0060

Altmann, G. T. M., and Kamide, Y. (1999). Incremental interpretation at

verbs: restricting the domain of subsequent reference. Cognition 73, 247–264.

doi: 10.1016/S0010-0277(99)00059-1

Altmann, G. T. M., and Kamide, Y. (2007). The real-time mediation of

visual attention by language and world knowledge: linking anticipatory (and

other) eye movements to linguistic processing. J. Mem. Lang. 57, 502–518.

doi: 10.1016/j.jml.2006.12.004

Altmann, G. T. M., and Mirković, J. (2009). Incrementality and
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The emergence of cross-modal learning capabilities requires the interaction of
neural areas accounting for sensory and cognitive processing. Convergence of
multiple sensory inputs is observed in low-level sensory cortices including primary
somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas
such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional
connectivity between sensory cortices participate in cross-modal processing. However,
little is known about the functional interplay between neural areas underlying sensory
and cognitive processing required for cross-modal learning capabilities across life.
Here we review our current knowledge on the interdependence of low- and high-level
cortices for the emergence of cross-modal processing in rodents. First, we summarize
the mechanisms underlying the integration of multiple senses and how cross-modal
processing in primary sensory cortices might be modified by top-down modulation
of the PFC. Second, we examine the critical factors and developmental mechanisms
that account for the interaction between neuronal networks involved in sensory and
cognitive processing. Finally, we discuss the applicability and relevance of cross-
modal processing for brain-inspired intelligent robotics. An in-depth understanding
of the factors and mechanisms controlling cross-modal processing might inspire the
refinement of robotic systems by better mimicking neural computations.

Keywords: cross-modal processing, primary sensory cortices, prefrontal cortex, top-down, bottom-up,
development

SENSORY-COGNITIVE INTERPLAY DURING CROSS-MODAL
PROCESSING

The brain permanently receives sensory information addressing multiple modalities. Its capability
to process diverse sensory inputs is mandatory to create a coherent perception of the environment,
and ultimately to guide adaptive behavior. The diverse sensory components of a stimulus
are processed and conveyed in a discrete manner by modality-specific pathways (Figure 1A),
where each modality provides unique information about the stimulus. Complementing stimulus
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FIGURE 1 | Bottom-up and top-down cross-modal processing. (A) Schematic drawing of a mouse receiving visual information (red arrow) about a
behaviorally-irrelevant object (trees) and a behaviorally relevant object (approaching eagle) that is accompanied by tactile and auditory information (vibrations and
sounds, green and blue arrows). (i) Schematic diagram showing how visual (ii), tactile (iii), and auditory (iv) information is transferred in the brain. (B) Schematic
diagram of bottom-up sensory information flow from primary sensory cortices to PFC. The black arrows correspond to cross-modal processing from primary
sensory cortices to PFC, whereas the gray arrows correspond to cross-modal processing within primary sensory cortices. (C) Schematic diagram of top-down
prefrontal modulation of neuronal activity in primary sensory cortices. PFC has been proposed as the source of top-down attention signals that modulate
cross-modal processing in primary sensory cortices in favor of the attended features. Studies have highlighted the effects of attention on neuronal responses in
primary sensory cortices, such as an increase in neuronal discharges and a decrease in the variability of neuronal responses. The black arrows correspond to the
direct connections from PFC to primary sensory cortices. The gray arrows correspond to the top-down modulation of sensory processing in primary sensory cortices
during attention. (D) Neural mechanisms of bottom-up and top-down cross-modal processing. (i) Spike trains before and after stimulus. Neuronal firing is random
pre-stimulus, whereas post-stimulus firing rate is enhanced and marked by a precisely timed onset. Stimulus is represented by the red arrow. (ii) Phase reset as a
mechanism of bottom-up cross-modal processing. The phase of oscillatory activity is random pre-stimulus, but resets post-stimulus. Stimulus is represented by the
red arrow. (iii) Phase locking as a mechanism of bottom-up and top-down sensory processing. Black lines on the peak of the ongoing oscillation indicate spikes.
Effective communication occurs when spiking activity of area b arrives at the high excitatory phase of area c and induces spikes in area c. Ineffective communication
occurs when spiking activity in area b arrives at the low excitation phase of the signal a and fails to induce spikes in area a. When spiking activity in area b arrives at
the rising phase of area a, communication between effective and ineffective levels (indicated by crossed-out check mark) occurs. (iv) Communication between two
areas using cross-frequency coupling (CFC). Signal b shows that green and gray high frequency rhythms “ride” on the black low frequency rhythm. CFC between
signal a and b enables area a and b to communicate through high frequency rhythm (marked in green). CFC between signal b and c enables b and c to
communicate through high frequency rhythm.

information reduces stimulus uncertainty and enhances
behavioral responses, thus leading to faster and more accurate
decision-making (Stein et al., 1988; Gleiss and Kayser, 2012;
Siemann et al., 2014; Hammond-Kenny et al., 2017; Meijer
et al., 2018). The process of sensory convergence, where inputs
of different senses are combined without being able to easily
dismantle them into independent unimodal components,
is termed as cross-modal integration (Keil and Senkowski,
2018; Nikbakht et al., 2018). In order to evoke a coherent
cross-modal perception, neural areas accounting for sensory
and cognitive processing need to optimally interact with each
other. This appears to be a challenging computation given the
multidimensionality of neural activity and the fact that neural
areas specialized in processing one component of a stimulus are
located at distant parts in the brain (Harris and Mrsic-Flogel,
2013; Runyan et al., 2017; Stringer et al., 2019). In addition,
the neural interactions of systems accounting for sensory and
cognitive processing are highly dynamic, emerging at early age
and developing over time (Goodman and Shatz, 1993; Siegel
et al., 2012; Parisi et al., 2019). Comparable sensory systems and
the ease of measuring behavioral effects motivated the use of large
mammalian species as prime models to study the mechanisms of
cross-modal processing and their emergence during development
(Stein et al., 1993; Wallace and Stein, 1997; Calvert and Thesen,
2004). Here we focus on the interdependence of primary sensory
cortices (S1, V1, A1) and PFC in rodents, aiming to critically
review our current understanding of the mechanisms that enable
the communication between remote brain areas dedicated to
sensory and cognitive processing during cross-modal perception.
In addition, we will review how bottom-up and top-down
mechanisms underlying cross-modal processing emerge during
development. Despite possible differences of neuronal processing
when compared to larger mammals such as cats or monkeys,
the use of rodent models bears several advantages for the
study of cross-modal processing. Recent developments in
rodent behavior and genetics, viral methods, and genetically
encoded Ca2+ indicators offer the possibility to study causal
relations in the brain, monitor neuronal activity over time, and

explore the relationship between neural network properties and
behavior underlying cross-modal processing (Fenno et al., 2011;
Chen et al., 2013). Relying on these state-of-the-art methods,
our understanding of the cellular and network mechanisms
underlying cross-modal processing as well as their development
should be fostered. Detailed insights on the neural computations
are critical for the development of autonomous agents and their
optimal interaction with the environment under conditions of
sensory uncertainty. Thus, by providing knowledge of neuronal
computations underlying cross-modal integration, this review
aims to uncover general principles of neuronal processing and to
inspire multidisciplinary research in the field of robotics.

Bottom-Up Cross-Modal Processing in
Primary Sensory Cortices
Sensory interactions have primarily been demonstrated in high-
level association cortices, such as PFC or posterior parietal cortex
(PPC) (Lippert et al., 2013; Yau et al., 2015; Song et al., 2017).
However, cross-modal processing has been shown to take place
already at early stages of sensory processing, such as in the
brainstem (Aitkin et al., 1981; Jain and Shore, 2006; Koehler et al.,
2011), thalamus (Komura et al., 2005; Allen et al., 2017; Bieler
et al., 2018) or primary sensory cortices (Lakatos et al., 2007;
Kayser et al., 2010; Sieben et al., 2013).

The superior colliculus (SC) of the midbrain received
particular attention when investigating the principles of
multisensory processing. The SC receives multiple ascending
(Edwards et al., 1979; Mize, 1983) and descending (Clemo
and Stein, 1984; Meredith and Clemo, 1989) unisensory
afferent sources that converge onto individual neurons,
making the SC a prime model to study mechanisms of cross-
modal processing. Deep-layer multisensory neurons of the
SC control sensory as well as motor responses. Cross-modal
but not unimodal, or multiple unimodal stimuli of the same
modality (Alvarado et al., 2007), cause an enhancement of
neuronal firing (Meredith and Stein, 1983; Perrault et al.,
2005), which consequently mediates orienting behavior
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(Stein et al., 1988; Gingras et al., 2009). It has been shown
that the inputs from cortical association areas are critical
to manifest cross-modal responses in the SC (Stein et al.,
2002; Alvarado et al., 2009). While SC neurons in behaving
animals continue to respond to multiple sensory modalities
following cortical inactivation, multisensory responses
are suppressed, and multisensory integration is eliminated
(Jiang et al., 2002, 2007).

The described neuronal responses to cross-modal stimuli in
first-order thalamic nuclei and primary sensory cortices occur at
too short latency to result from processing feedback information.
Thus, also low-level putatively unimodal brain areas integrate
cross-modal information in a bottom-up manner. The bottom-
up detection and discrimination of stimuli are fundamental
stages of sensory processing, because they allow, on the one hand,
for rapid detection of a stimulus, and on the other hand, for
discrimination between similar stimuli based on fine details (Guo
et al., 2017). The detection and discrimination of a stimulus are
improved when it provides features from multiple modalities
(Gleiss and Kayser, 2012; Sheppard et al., 2013; Siemann et al.,
2014; Hollensteiner et al., 2015; Nikbakht et al., 2018).

Similar mechanisms of cross-modal processing first described
in the cat SC have also been found in rodent SC (Gharaei
et al., 2018) as well as in primary sensory cortices, thus
challenging the strict hierarchical model of sensory processing
(Foxe and Schroeder, 2005). For example, co-presentation of
an auditory stimulus enhances orientation selectivity of V1
neurons (Ibrahim et al., 2016). This cross-modal enhancement
of neuronal firing was strongest under low-contrast conditions,
suggesting that cross-modal information is particularly beneficial
for perceptually-guided behavior under ambiguous situations. In
addition to cue-integration, cross-modal processing also depends
on modality segregation, i.e. the suppression of neuronal activity
in one modality-specific primary sensory cortex due to the
concurrent presentation of a stimulus of a non-matching sensory
modality (Iurilli et al., 2012; Song et al., 2017; Bieler et al.,
2018; Gharaei et al., 2018). For example, Gharaei et al. (2018)
demonstrated that unisensory stimulation enhances neuronal
responses in the SC, whereas cross-modal stimulation rarely
enhances but rather suppresses neuronal firing discharges. At
the level of primary sensory cortex, Iurilli et al. (2012) showed
that evoked activity in A1 enhances local inhibitory firing in
deep layers of V1, which in turn decreases the activity of V1
supragranular pyramidal neurons. Consequently, at behavioral
level, visually-conditioned responses were suppressed by acoustic
stimulation. Experimental research examining the mechanisms
of sensory convergence in low-level sensory regions emphasized
the processing and relay of basic object feature information
(Iurilli et al., 2012; Sieben et al., 2013; Bieler et al., 2018;
Morrill and Hasenstaub, 2018). However, the formation, storage,
and utilization of cross-modal object representations during
behavior require an interaction of neuronal areas accounting
for sensory and cognitive processing (Hindley et al., 2014;
Reid et al., 2014; Jacklin et al., 2016). Thus, while both
sensory integration and separation are part of bottom-up cross-
modal processing in primary sensory cortices, the mechanisms
underlying the functional communication between low- and

high-level brain areas during cross-modal perception are still
largely unknown.

Top-Down Modulation of Cross-Modal
Processing in Primary Sensory Cortices
Creating a consistent mental representation of the multisensory
environment depends on more than the convergence of sensory
information in primary sensory cortices (Choi et al., 2018).
Sensory processing in primary sensory cortices is modulated top-
down to create a multisensory perception, and finally, behavioral
action (Ernst and Newell, 2007; Gilbert and Li, 2013; Talsma,
2015; Bizley et al., 2016; Kunicki et al., 2019). In particular,
top-down influences from high- to low-level brain areas allow
for the preferential processing, and thereby the facilitation of
specific sensory inputs in primary sensory cortices (Talsma et al.,
2010). Such top-down information may be related to attention,
expectation or perceptual demands (Paneri and Gregoriou, 2017;
Choi et al., 2018). Attention is a core property of all perceptual
and cognitive operations. Given the limited capacity to process
competing environmental inputs, attentional mechanisms allow
for the selection and modulation as well as for sustained focus
on information most relevant for behavior (Chun et al., 2011).
Attention modulates neuronal activity and improves the signal-
to-noise ratio thereby increasing signal efficacy for attended
stimuli and enhancing the representation of attended features
(Noudoost et al., 2010). Attention facilitates the integration of
multisensory inputs in a top-down manner (Fiebelkorn et al.,
2010; Mühlberg and Soto-Faraco, 2019). Top-down modulation
enables the flexible selection of information based on task goals,
as well as providing an order for selectively modulating multiple
stimuli within each modality if they are competing for processing
resources (Alsius et al., 2005; Doty et al., 2006). For example,
Terreros et al. (2016) showed that mice are able to selectively
focus on a visual stimulus, ignoring distractive auditory stimuli
during selective attention in a two-choice visual discrimination
task (Terreros et al., 2016). Furthermore, top-down modulation
reweights sensory information and facilitates the integration
of cross-modal inputs (Alsius et al., 2005; Busse et al., 2005;
Bresciani and Ernst, 2007; Talsma et al., 2007; Lakatos et al.,
2009; Fiebelkorn et al., 2010; Muhlberg et al., 2014). Prior cross-
modal exploration of task-relevant objects significantly facilitates
the detection performance of a rat in a cross-modal object
recognition task (Jacklin et al., 2016). Moreover, rats are able
to recognize a visually presented object, which has been only
explored by the tactile sense (Winters and Reid, 2010). Top-
down task demands further modulate cross-modal processing
in primary sensory cortices. For example, during the free
exploration of novel objects in the dark (whisker-based tasks),
V1 and S1 responses carried comparable amounts of information
about object identity (Vasconcelos et al., 2011). However, during
the execution of an aperture tactile discrimination task, which is
based on top-down task demands, S1 showed faster and more
robust tactile recruitment when compared to V1.

Several frontal and parietal cortical regions, such as PPC and
PFC, have been proposed as the source of top-down modu-
latory signals (Noudoost et al., 2010; Winters and Reid, 2010;
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Jacklin et al., 2016; Paneri and Gregoriou, 2017; Mohan et al.,
2018). For example, it has been shown that top-down modulation
originating in PPC influences cross-modal processing in primary
sensory cortices (Mohan et al., 2017; Kunicki et al., 2019),
and damage to PPC leads to performance deficits in sensory
discrimination tasks (Binkofski et al., 2001; Winters and Reid,
2010). Given the well-established role of PFC in cognitive control
and executive function (Miller and Cohen, 2001), it has been
hypothesized that it modulates sensory processing in primary
sensory cortices as well (Buschman and Miller, 2007). Bichot
et al. (2015) showed in non-human primates performing a visual
search task, that feature-based attention adjusts the neural firing
activity of prefrontal neurons representing an attended feature
to quickly locate a target object (Bichot et al., 2015). Moreover,
neural responses in PFC emerge earlier when compared to
the responses in visual cortex during covert attention tasks
(Gregoriou et al., 2009; Monosov et al., 2010; Zhou and
Desimone, 2011; Lennert and Martinez-Trujillo, 2013; Bichot
et al., 2015; Siegel et al., 2015). Pharmacological inactivation
of PFC induced space-specific impairments in a covert visual
search task, and was particularly prominent when a shift in
attention was required (Monosov and Thompson, 2009). The
PFC might provide top-down modulatory signals to primary
sensory cortices through direct axonal projections. For example,
Zhang et al. (2014) showed that activation of prefrontal local
GABAergic circuits powerfully influences sensory processing
in V1 through direct connectivity from PFC to V1 (Zhang
et al., 2014). Moreover, prefrontal modulatory signals may reach
primary sensory cortices via the sensory thalamus. Stimulating
the PFC has been shown to increase tactile responses and alter
basal activity in the ventrobasal region of the thalamus (Cao
et al., 2008). In line with this, optogenetic manipulation of
prefrontal activity perturbs the ability of mice to appropriately
select between conflicting visual and auditory stimuli during a
cross-modal divided-attention task that is known to depend on
prefrontal-thalamic interactions (Wimmer et al., 2015).

Anatomical Substrate of Interactions
Between Neuronal Networks Accounting
for Sensory and Cognitive Processing
Direct bottom- up (Henschke et al., 2015; Mowery et al., 2016;
Bieler et al., 2017b; Henschke et al., 2017) and top-down cortico-
cortical (Zhang et al., 2014; Makino and Komiyama, 2015) as
well as indirect cortico-thalamo-cortical pathways (Theyel et al.,
2010; Roth et al., 2016) represent the anatomical substrate of
the functional communication between low- and high-level brain
areas during cross-modal processing (Figures 1B,C).

Short latency cross-modal interactions in low-level sensory
cortices rely on direct long-range connections (Sieben et al.,
2013; Stehberg et al., 2014; Henschke et al., 2015). For
example, visual stimulation modulates S1 activity via direct
cortico-cortical connections, while pharmacological inactivation
of V1 diminishes cross-modal effects in S1 (Sieben et al.,
2013). In addition, optogenetic stimulation of A1-V1 projection
neurons sharpens the orientation selectivity of neurons in V1
(Ibrahim et al., 2016). Similarly, impairing the direct A1-V1

connectivity by cortico-cortical transections abolishes the sound-
driven hyperpolarization of V1 (Iurilli et al., 2012). Compared
to the described connectivity patterns between primary sensory
cortices in rodents (Burkhalter, 1989; Wang and Burkhalter,
2007; Stehberg et al., 2014; Henschke et al., 2015), direct cortico-
cortical projections are sparse in primate primary sensory areas,
which has functional implications on cross-modal processing
(Falchier et al., 2002; Clavagnier et al., 2004; Cappe and Barone,
2005). Single-cell recordings revealed only subthreshold neuronal
responses in primate primary sensory areas (Molholm et al., 2002;
Lakatos et al., 2007; Kayser et al., 2008), and suprathreshold
multisensory neurons were restricted to higher cortical areas
(Fu et al., 2003; Ghazanfar et al., 2005). In contrast to primate
low-level areas where feedback cross-modal information only
has a subthreshold influence on its postsynaptic targets (Allman
et al., 2009), multisensory responses in rodent primary sensory
cortices might rely on the direct cortico-cortical connections and
less on feedback information from higher cortical association
areas. This suggests that the presence or absence of multisensory
suprathreshold effects might result from the number and strength
of cross-modal inputs reaching rodent or primate primary
sensory cortices respectively.

In contrast to the early cross-modal responses in primary
sensory cortices, cross-modal effects occurring at longer
poststimulus latency may be under the control of feedback
information, which is sent via projection neurons from high-
to low-level sensory areas (Smith et al., 2010; Banks et al.,
2011). Recently, Morrill and Hasenstaub (2018) revealed that
a minority of neurons in A1 responds at 40 ms after visual
stimulus presentation, exceeding the time delay of monosynaptic
information transmission. Inputs from higher sensory cortex,
such as secondary visual cortex, might account for the occurrence
of visual responses with a long latency in A1 (Bizley et al., 2007;
Banks et al., 2011). Information between primary sensory
cortices may also be transferred via a cortico-thalamic-cortical
route (Hackett et al., 2007; Sherman, 2016). For example,
Hackett et al. (2007) showed that thalamic nuclei (first-order
medial geniculate complex and higher-order posterior nucleus
of thalamus) share anatomical connections with somatosensory
as well as with auditory cortex. This cortico-thalamo-cortical
pathway might resemble the anatomical substrate of tactile
information transfer from somatosensory to auditory cortex
through first- as well as higher-order thalamus (Schroeder et al.,
2001; Kayser et al., 2005).

Besides anatomical projections from higher sensory cortices,
long-range prefrontal projection neurons have been proposed
to modulate cross-modal responses in primary sensory cortices
(Vaneden et al., 1992; Sellers et al., 2015; Zhang S.Y. et al.,
2016). For example, Zhang S.Y. et al. (2016) identified
retrogradely labeled neurons in the cingulate sulcus of PFC
targeting V1. Furthermore, the anterior cingulate subdivision
of PFC shares direct connections with V1, while primary
and secondary motor cortices are connected to somatosensory
and auditory cortex (Zhang S.Y. et al., 2016). The identified
direct long-range projections between PFC and primary sensory
cortices might act as anatomical substrate for the functional
communication between low- and high-level areas during
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cross-modal processing. Future studies using virus-assisted
circuit mapping and optogenetic manipulations shall unravel
the contribution of top-down projections from PFC to primary
sensory cortices during cross-modal processing.

Mechanisms of Bottom-Up Cross-Modal
Processing in Primary Sensory Cortices
Encoding of information requires coordinated neuronal firing
that selectively filters relevant from irrelevant environmental
information (Parker and Newsome, 1998; Connor et al., 2004;
Harris and Mrsic-Flogel, 2013). Two neural communication
codes – rate coding (i.e., changes in the frequency of action
potentials) and temporal coding (i.e., changes of spike timing
in relationship to the phase of network oscillations) – have
been described (Oram et al., 2002; Kayser et al., 2009; Meredith
and Allman, 2015). These two coding strategies often occur
concurrently (Biederlack et al., 2006; Kayser et al., 2009; Bieler
et al., 2017b), and as a result, increase the coding capacity
(Tiesinga et al., 2008; Kayser et al., 2009; Figure 1Di). It is
hypothesized that rate changes in single neurons code for the
discrete properties of a stimulus, whereas temporal coding marks
the relatedness of neuronal firing among neurons eventually
leading to a coherent perception of the stimulus (Singer,
2009). Studies in the SC have identified two major operating
principles of cross-modal processing. First, the more spatially and
temporally coincident cross-modal cues appear, the greater is the
multisensory enhancement (i.e., an increased neuronal response
after cross-modal when compared to unimodal stimulation)
(Meredith and Stein, 1983; Wallace et al., 1998). Second, the
strength of the unimodal cues defines the magnitude of the
cross-modal effect, such that weaker individual sensory stimuli
evoke stronger cross-modal effects (inverse effectiveness) (Perrault
et al., 2005). These principles of cross-modal integration served
as a general guideline for deciphering cross-modal processing
mechanisms in low-level sensory areas at single-cell and network
level (Bieler et al., 2017b; Bieler et al., 2018).

Oscillatory activity reflects the rhythmic excitability
fluctuations of neuronal populations within particular frequency
bands that correspond to specific spatial scales of brain operation.
This rhythmic nature of neural activity creates time windows
during which inputs are more effective in driving the neurons.
By making use of anatomical connectivity between and within
brain networks, neuronal network oscillations account for
local-global neuronal interactions as well as for maintaining
persistent activity (e.g., during behavioral state) (Buzsaki and
Draguhn, 2004; Buzsaki, 2010; Buzsaki and Wang, 2012).
Synchronization of neuronal network oscillations subserves
neuronal communication and enables the integration of sensory
information across distant locations of the brain (Senkowski
et al., 2008). Selective communication among neural networks
might be achieved by coherence of oscillatory firing patterns
(sending neurons) and gain modulation (receiving neurons)
(Fries, 2015). Thus, rhythmic synchronization generates
sequences of excitation and inhibition which focus the spike
output of firing neurons and sensitivity to synaptic inputs of
receiving neurons to a short temporal window.

Synchrony of activity in distant neural networks ultimately
leads to the binding of anatomically segregated functional
networks (Fries, 2005; Canolty et al., 2010; Canolty and Knight,
2010). Since unisensory networks encode relationships between
detected information by synchronizing their activity, it raises the
likelihood that similar mechanisms are involved in cross-modal
processing. For example, information processing by one modality
can enhance the population synchrony in lower-order regions
responsive to another modality, such as primary sensory cortices
or subcortical regions, in reciprocal relationship with other brain
regions (Kayser and Logothetis, 2007; Driver and Noesselt, 2008;
Tyll et al., 2011). This cross-modal synchrony enhancement of
neuronal activity has been described for evoked as well as for
induced responses: the impact of an external stimulus sensed by
one modality is strengthened by appropriately timed information
about the event in another modality (Figure 1Di; Sieben et al.,
2013). Furthermore, the phase reset of spontaneous neuronal
oscillations might facilitate the communication of distant neural
networks during cross-modal processing (Figure 1Dii). The re-
alignment of phases of ongoing neuronal oscillations in one
processing region in relation to a cue of another sensory
modality allows inputs to arrive at a high excitability phase
(Lakatos et al., 2007; Kayser et al., 2008; Iurilli et al., 2012;
Sieben et al., 2013; Figure 1Diii). In addition, the interaction of
oscillations in different frequency bands, termed cross-frequency
coupling (CFC), has been proposed as another mechanism of
how distant brain regions synchronize their activity to interact
(Canolty and Knight, 2010; Figure 1Div). The question arises
whether CFC acts as a mechanism for the interaction of multiple
sensory areas, and thus the integration of cross-modal inputs
in rodent sensory cortices (Canolty et al., 2006; Schroeder and
Lakatos, 2009). Recently, we examined the oscillatory interactions
underlying CFC in a thalamo-cortical circuit during cross-modal
processing (Bieler et al., 2018). Our study revealed a significant
increase in beta-gamma phase-amplitude CFC between first-
order thalamus and primary somatosensory cortex during cross-
modal but not unimodal processing. Thus, the phase of the
beta rhythm controls the power of coupled gamma oscillations
through synchronization of the gamma amplitude envelope
with the beta phase during cross-modal processing in thalamo-
cortical networks.

While cross-modal effects at functional and anatomical
level are widespread in primary sensory cortices, the exact
configuration of a cross-modal stimulus ultimately defines which
processing strategy, i.e., enhancement or depression of neural
responses, is applied (Meijer et al., 2017).

Mechanisms of Top-Down Modulation of
Cross-Modal Processing in Primary
Sensory Cortices
Several mechanisms of prefrontal top-down modulation of cross-
modal processing in primary sensory cortices have been proposed
(Tomita et al., 1999; Barceló et al., 2000; Monosov et al.,
2011; Gilbert and Li, 2013; Teufel and Nanay, 2017). Temporal
coding of neuronal excitability reflected by oscillatory activity in
primary cortices might provide a temporal window for effective
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processing of top-down information (Figure 1Diii). Phase
locking of oscillatory activity between PFC and primary sensory
cortices was proposed to fulfill this role. In particular, oscillatory
activity in primary sensory cortices creates temporal windows
during which top-down PFC signals are more effective in driving
neuronal activities in primary cortices during sensory processing.
If this holds true, spikes from PFC arriving within temporal
excitation windows of the sensory cortices might produce
postsynaptic spikes in primary sensory cortices more effectively.

Several studies reported enhanced gamma synchronization
between prefrontal and unisensory cortices during attention
tasks. For example, Gregoriou et al. (2009) found a specific
enhancement in gamma phase synchronization between frontal
cortex and V4 during sustained attention in a covert spatial
attention task (Gregoriou et al., 2009). Frontal locking of spikes
to gamma activity in visual cortex encodes the attended location.
Interestingly, frontal spike activity occurred ∼10 ms before the
maximal excitability in visual cortex. This time delay might
correspond to the transmission lag from frontal cortex to V4.
Furthermore, the authors applied Granger causality analysis to
study the directional coupling between PFC and V4. They showed
that during the early stage of the task, when attention must
to be shifted to a relevant location, frontal cortex initiated the
oscillatory coupling across PFC and V4. Enhanced phase locking
to gamma rhythm in V4 during the attention task was restricted
to visual processing neurons, and did not include V4 neurons
representing aspects such as visuo-movement or movement
(Gregoriou et al., 2012). Of note, the gamma coherence between
two distant brain regions may have an artifactual origin. It has
been proposed that gamma coherence might reflect the coupling
of two phase-locked network oscillations as well as the co-
modulating effect of an upstream network common to both
recorded networks (Buzsáki and Schomburg, 2015).

According to a largely accepted hypothesis, the PFC selectively
facilitates the selection of task relevant information and enhances
the representation of attended stimuli in primary sensory cortices
(Baluch and Itti, 2011). To address this, Ardid et al. (2010) built
a simulated model with weak coupling between two networks
resembling a low-level sensory and a high-level brain area (Ardid
et al., 2010). Enhanced gamma coupling between these two
regions heavily influenced the synchronization between specific
neurons encoding attended features across the areas. The results
support the idea that inter-areal LFP coupling between PFC and
primary sensory cortex selectively facilitates the communication
between neurons encoding attention-related information. Several
lines of evidence support the hypothesis that the top-down
prefrontal signal effectively influences sensory processing in
primary cortices. For instance, top-down attention affects V1
processing by enhancing the firing rate of neurons representing
the attended stimulus (Treue and Trujillo, 1999; Bichot et al.,
2005) and reducing the variability of inter-neuronal correlation
(Cohen and Maunsell, 2009; Mitchell et al., 2009; Herrero
et al., 2013). The reduced variability of correlation among
neurons improves the signal-to-noise ratio for attention-relevant
information and promotes efficient coding of attended features.
Consequently, the signal-to-noise ratio improves (Cohen and
Maunsell, 2009; Mitchell et al., 2009). Moreover, top-down

attention modulates local oscillatory activity of primary sensory
cortices in a frequency-specific manner (Gregoriou et al., 2015).
For example, during attentional selection, neurons in visual
and frontal areas encoding the attended location or feature
synchronize their activity in gamma frequency (30–60 Hz) range
(Tallon-Baudry et al., 2004; Bichot et al., 2005; Fries, 2005; Kreiter
et al., 2005; Fries et al., 2008; Gregoriou et al., 2009). This might
facilitate the propagation of information between these two areas
(Salinas and Sejnowski, 2001; Azouz and Gray, 2003; Fries, 2005,
2009). In addition, reduced local alpha-beta oscillatory activity in
V2 and V4 during an attention task (Thut et al., 2006; Fries et al.,
2008; Siegel et al., 2008; Gregoriou et al., 2009; Buffalo et al., 2011)
has been proposed to inhibit distracting inputs (Palva and Palva,
2007; Händel et al., 2011). Top-down attention also modulates
the size and position of visual receptive fields, bursting activity,
response latency as well as feature tuning of neurons (Murray and
Wojciulik, 2004; David et al., 2008).

Investigation of local circuits and synaptic processes provide
additional evidence for top-down modulation of cross-modal
processing. Zhang et al. (2014) demonstrated that long-range
glutamatergic projections from PFC modulate local circuits in V1
(Zhang et al., 2014). Optogenetic activation of prefrontal neurons
led to enhanced responses of V1 neurons. Light stimulation
of prefrontal axonal terminals in V1 induced center-surround
modulation, which increased the response at the activation site,
while suppressing the response at a nearby location. Three
subtypes of interneurons in local visual circuits were targeted
by top-down prefrontal modulation. First, somatostatin-positive
interneurons (SOM+) were critical for surround suppression,
since they inhibited the response of pyramidal neurons to the
prefrontal input within a 200 µm radius. Second, vasoactive
intestinal peptide-positive interneurons (VIP+) were crucial
for center facilitation in V1 (Fu et al., 2014), mediating the
disinhibition of pyramidal neurons. This disinhibition effect
was mainly localized at the site of prefrontal axons in V1
and caused the increase of attention-inducing firing rate.
Third, parvalbumin-positive (PV+) GABAergic interneurons
were required for long distance inhibition, since their inactivation
reduced prefrontal axon-induced inhibitory inputs at a distance
of 400 µm. Thus, long-range prefrontal projections act
through local microcircuits to exert top-down modulation of
sensory processing.

THE EMERGENCE OF
SENSORY-COGNITIVE INTERPLAY
DURING CROSS-MODAL
DEVELOPMENT

The brain’s ability to create a coherent perception of the
environment by integrating information of various sensory
modalities is not present immediately following birth. The
development of cross-modal integrative capabilities is a
protracted process both in rodents (Ghoshal et al., 2011;
Mowery et al., 2016; Hattori and Hensch, 2017) as well as in
humans (Scheier et al., 2003; Lewkowicz and Ghazanfar, 2009;
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Lewkowicz, 2010). This process depends on the alteration and
refinement of neural circuitry following uni- and cross-modal
sensory experiences.

Cross-modal abilities mature under the influence of intrinsic
(i.e., genetic cues) and extrinsic (i.e., environment) factors
(Rauschecker et al., 1992; Yu et al., 2010; Frangeul et al., 2016;
Moreno-Juan et al., 2017). During embryonic development,
molecular cues and genetic programs control the generation,
migration, and differentiation of neurons as well as the formation
of rudimentary connectivity (Toda et al., 2013; Diao et al., 2018;
Telley et al., 2019). At later stages, but before the onset of sensory
transduction, spontaneous electrical activity occurring in distinct
spatial and temporal patterns refine rudimentary connectivity
and facilitate the formation of sensory maps (Galli and Maffei,
1988; Dehorter et al., 2012; Luhmann et al., 2016; Anton-
Bolanos et al., 2019). The patterns of spontaneous network
activity are conserved across species, and their perturbation
causes deficits in network refinement (Huberman et al., 2008).
During defined developmental periods (i.e., critical/sensitive
periods) the circuits, and later behavioral abilities, are particularly
prone to being shaped by experience-dependent electrical activity
(Chapman, 2000; Chang and Merzenich, 2003; Pfeiffenberger
et al., 2006; Ghoshal et al., 2009; Khazipov et al., 2013). The
patterns of electrical activity are similar in age-matched rodents
and humans (Khazipov and Luhmann, 2006).

Development of the Tactile System
By using their highly sensitive whiskers, nocturnal rodents can
acquire tactile information and build spatial representations
of the environment (Petersen, 2007). Whisker-related inputs
are processed in somatotopic maps where each whisker is
represented by a discrete anatomical unit (“barrel”). Barrel-
like cell aggregates form soon after birth (Jhaveri et al., 1991;
Schlaggar and O’Leary, 1994). Early sensory experience is
mandatory for the development of somatosensory processing.
Neonatal whisker trimming from birth on impairs the dendritic
complexity of neurons in the barrel cortex and behavioral
performance in the gap-crossing task during adulthood (Carvell
and Simons, 1996; Lee et al., 2009). Whisker-dependent
exploratory behavior does not develop until the second postnatal
week (Welker, 1964; Figures 2A,B). This suggests that prior
to experience-dependent plasticity other mechanisms must
contribute to the development of somatosensory perception.
Transcription factors, such as Gbx2, Mash1, and Pax6 have been
reported to be involved in pathfinding of axons from thalamus
to S1 (Tuttle et al., 1999; Hevner et al., 2002). In addition,
discontinuous electrical activity, which appears within the first
two postnatal weeks, shapes the development of topographic
organization in S1. Several patterns of neonatal electrical activity
have been characterized, such as gamma oscillations, spindle
bursts with frequencies in theta-beta range, and long-oscillations
(Yang et al., 2009; Minlebaev et al., 2011; Yang et al., 2016).
Peripheral inputs are not mandatory for the emergence of these
early activity patterns. Gamma oscillations and spindle bursts
remain after the peripheral pathways were lesioned (Khazipov
et al., 2004; Minlebaev et al., 2011; Yang et al., 2013). Early activity
patterns may act as a template for the emergence of cortical

topography. For instance, the volume of synchronized neurons
during spindle burst activity reflects the anatomical size of the
future barrels (Yang et al., 2016). Long oscillations are assumed to
synchronize large neuronal networks and boost the formation of
functional neuronal ensembles (Yang et al., 2009). With ongoing
maturation, rodents start to whisker and early tactile experience
further refines the somatosensory circuits.

Development of the Auditory System
Similar to tactile development, the maturation of auditory
pathways containing orderly representations of frequency
selectivity involves both molecular cues and spontaneous
electrical activity. For example, neurotrophins such as BDNF
and NT-3, ephrins (Ernfors et al., 1992; Hossain et al., 2008)
and semaphorins (Gu et al., 2003; Webber and Raz, 2006)
have been reported to guide auditory innervation. Spontaneous
electrical activity further refines and maintains the tonotopic
architecture set by molecular cues (Wang and Bergles, 2015).
In rodents, the ability to respond to acoustic stimuli emerges
around postnatal (P) day 12 (Uziel et al., 1981; Kelly, 1992;
Figures 2A,B). Experience-dependent activity then promotes the
fine-tuning of auditory networks (Friauf and Lohmann, 1999).
Before this age, environmental factors regulate the maturation
of auditory processes. For example, early interactions with the
mother modulate the maturation of the auditory system in
pups (Cárdenas et al., 2015). Auditory reflexes in pups were
accelerated when the mothers were reared in an enriched
environment during gestation. Moreover, exposure to frequency-
enriched acoustic environments during the first 14 days after
birth significantly decreased the threshold of auditory responses
in a frequency-specific manner (Chang et al., 2018). Rearing in a
disturbed acoustic environment impairs the development of the
auditory system (Zhang et al., 2002; Chang and Merzenich, 2003;
Nakahara et al., 2004; Speechley et al., 2007). Early noise exposure
induced permanent structural changes in the rat auditory system
(Ouda et al., 2016). Rat pups exposed to trains of 5 kHz
pure tones showed larger regions of auditory cortex tuned to
5 kHz at adulthood (Han et al., 2007). Thus, over-representations
of certain frequencies during early development likely reduces
auditory discrimination.

Development of the Visual System
Rodents are born blind. The retina starts to be light-sensitive
during the second postnatal week, and shortly after that, the
eyelids open (Figures 2A,B; Sernagor, 2005). From birth on,
axonal projections from the lateral geniculate nucleus (LGN)
target cells in the granular layers of V1 leading to the initiation of
cortical topographical organization. During early development,
when the retina is light-insensitive, bursts of action potentials
(i.e., retinal waves) emerge under the control of the cholinergic
system (Brombas et al., 2017) and propagate across the retina
(Wong et al., 1993). These retinal waves are transmitted via
the optic nerve to the LGN and finally to V1, where they
boost cortical spindle bursts (Hanganu et al., 2006). At each
developmental stage of V1, retinal waves differ in their properties,
thereby instructing the development of visual feature processing
mechanisms (Huberman et al., 2008).
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FIGURE 2 | Schematic diagram displaying the developmental milestones of sensory and limbic development in rodents. (A) Schematic illustration displaying the
developmental timeline of sensory development from postnatal day (P) zero onward. (B) Schematic arrows showing the time points (marked by dotted line) of (i) the
critical/sensitive period of somatosensory (green), auditory (blue), and visual (red) development, (ii) the onset of unisensory behavior, and (iii) the start of cross-modal
modulation. Uni- and cross-modal inputs in the first days of life are hypothesized to drive the development of the limbic system in a bottom-up manner, while
bottom-up as well as top-down interactions between the primary sensory cortices and limbic system are present at later stages of development (gray boxes,
bottom). (C) Same as (B) for PFC. Time points shown in gray arrow mark developmental milestones of limbic system development.

With the onset of light sensitivity, visual experience shapes
the cortical topography (Smith and Trachtenberg, 2007). In
cats, monocular visual deprivation led to a size reduction of
columns corresponding to the sutured eye, whereas columns
corresponding to the non-deprived eye expanded (Hubel
et al., 1977; Le Vay et al., 1980). Visual deprivation during
the sensitive period leads to alterations in thalamo-cortical
connectivity (Fox and Wong, 2005; Hofer et al., 2008) and
as a consequence alters the input organization from both
eyes (Espinosa and Stryker, 2012). Experience has been

shown to control the tuning of V1 neurons to stimulus
orientation and direction (Hubel and Wiesel, 1962; Weliky
et al., 1996). Thus, even though coarse orientation selectivity
emerges under the influence of experience-independent
neuronal activity (White et al., 2001), high-level orientation
selectivity appears only in the presence of visual inputs
(Chapman and Stryker, 1993). In contrast, neither molecular
cues nor spontaneous activity, but visual experience seems
to be required for tuning V1 neurons to stimulus direction
(Li et al., 2006).
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External Inputs Controlling the
Development of Cross-Modal Processing
in Rodent Primary Sensory Cortex
While a wealth of studies documented the relevance of
early electrical activity for the maturation of topographic
organization, few studies addressed the mechanisms of cross-
modal development in primary sensory cortices. One key
question is whether perturbing unisensory development –
even prior to full responsiveness of all stimulus-related
sensory modalities – has long-lasting consequences for the
development of cross-modal processing. It appears that cross-
modal development requires a certain level of unisensory
maturity (Ghoshal et al., 2011; Sieben et al., 2015). For instance,
Sieben et al. (2015) showed that tactile deprivation shortly
after birth (P0-5) causes abnormal visual-tactile cross-modal
processing later in life. Furthermore, it has been shown that
the power and phase of neuronal activity were modulated by
cross-modal stimuli of juvenile rats with only minimal cross-
modal experience (i.e., closed eye lids, but light-sensitive retina
and tactile sensation in P14-16 rats) (Bieler et al., 2017a).
Thus, network interactions ensuring cross-modal processing
emerge before cross-modal experience and refine during juvenile
development (Figure 2B).

Development of the PFC
As previously mentioned, the PFC is involved in memory,
attention, and decision-making (Miller, 2000; Vertes, 2006). In
addition, it is considered to act as a hub of cross-modal processing
(Fuster et al., 2000; Nieder, 2017). Overall, the PFC follows the
developmental milestones described for primary sensory cortices.
Early patterns of oscillatory activity are highly discontinuous and
temporally fragmented (Brockmann et al., 2011), yet they emerge
a few days later when compared with V1 or S1. Moreover, the
maturation of the PFC is remarkably prolonged when compared
to other cortical areas (Leipsic, 1901; van Eden and Uylings,
1985). The prefrontal cytoarchitecture and correspondingly, the
executive and mnemonic abilities, are not fully developed until
adolescence (van Eden and Uylings, 1985).

The functional development of PFC seems to be controlled
by activity in the intermediate/ventral hippocampus (HP).
Hippocampal theta bursts emerging a few days before prefrontal
spindle bursts, drive the generation of neonatal prefrontal
oscillations by phase-locking the neuronal firing via axonal
pathways (Brockmann et al., 2011). Remarkably, the early
entrainment of prefrontal-hippocampal networks is critical for
the mnemonic ontogeny at juvenile stage (Krüger et al., 2012).
During later development (∼P10), the oscillatory activity in both
PFC and hippocampus switches from discontinuous bursts to
continuous theta-gamma oscillations. This switch occurs almost
simultaneously in the prefrontal and primary sensory cortices
(Colonnese and Khazipov, 2010).

Sensory-Cognitive Interactions During
Development
As outlined in sections “Development of the Tactile System,”
“Development of the Auditory System,” and “Development
of the Visual System,” early endogenous and sensory-driven

activity patterns contribute to the development and refinement of
neuronal networks (Hanganu et al., 2006; Minlebaev et al., 2009;
Yang et al., 2009; Yang et al., 2013). Perturbing sensory inputs
during critical/sensitive periods of development has profound
effects on the neuronal activity and its underlying anatomical
connectivity, and thus affects behavior (Fagiolini et al., 1994;
Carvell and Simons, 1996; Erzurumlu and Gaspar, 2012; Levelt
and Hubener, 2012; Kral, 2013).

Perturbation of a sensory input leads to anatomical and
functional modifications in the remaining sensory systems. As
a consequence, neurons adaptively reorganize to integrate the
function of other sensory systems, in a process termed cross-
modal plasticity (Bavelier and Neville, 2002; Lee and Whitt, 2015).
Cross-modal plasticity alters perceptual abilities. For example,
several studies have shown that bilateral lid suture or enucleation
impairs orientation and direction selectivity of V1 neurons, but
enhances the processing of auditory and somatosensory inputs
in V1 (Rauschecker et al., 1992; Rauschecker and Kniepert,
1994; Yaka et al., 2000; Izraeli et al., 2002). Similar cross-modal
activation patterns after sensory deprivation have been observed
in other primary sensory cortices (Goel et al., 2006; Hunt et al.,
2006; Lee and Whitt, 2015; Meng et al., 2015).

Recently, the effects of non-visual inputs on experience-
dependent plasticity in V1 during early postnatal development
have been investigated (Hattori and Hensch, 2017; Figure 2B).
Concurrent visual-auditory inputs impaired the development of
orientation selectivity of V1 neurons if they occurred before or
after the critical period. However, the effect was dampened if
cross-modal visual-auditory stimuli occurred during the critical
period. The authors suggest that this effect is likely caused
by a sound-driven balance of suppression and enhancement
of V1 spiking activity, which is required for the tuning and
consolidation of visual selectivity. Similarly, it has been shown
that the onset of visual experience controls the development
of auditory processing (Mowery et al., 2016). In particular,
the critical period of auditory development was precociously
closed by early eyelid opening and extended by delayed eyelid
opening (Figure 2B).

Few experimental data have documented the impact of
altering the functional anatomy and neuronal activity of primary
sensory cortices on the development of PFC (Kolb and Gibb,
2015). It has been shown that sensory deprivation increases the
density of interneurons in PFC (Ueno et al., 2015). This is in
line with findings from primary visual cortex where the laminar
distribution of PV+ neurons is altered following enucleation
(Desgent et al., 2010). Overall, a mechanistic understanding
of the effects of sensory deprivation on the bidirectional
communication between primary sensory cortices and PFC is
currently lacking.

As discussed in section “External Inputs Controlling the
Development of Cross-Modal Processing in Rodent Primary
Sensory Cortex,” perturbations of unisensory development prior
to full maturation of all unisensory systems has long-lasting
consequences for the development of cross-modal processing
abilities (Ghoshal et al., 2011; Sieben et al., 2015). Notably,
during the sensitive period of tactile development, the functional
maturation of the PFC is boosted by the excitatory drive
from the hippocampus (Brockmann et al., 2011; Bitzenhofer
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et al., 2017; Ahlbeck et al., 2018; Figure 2C). However, it is
largely unknown how early sensory development affects the
maturation of the limbic system. Several studies have shown that
sensory experience is important for synaptic pruning during PFC
development (Schanberg and Field, 1987; Richards et al., 2012).
For example, raising rodents in a tactile-enriched environment
from birth on increases the prefrontal spine density and
improves the performance in PFC-dependent tasks at adulthood.
The increased dendritic branching and spine density in PFC
(Kolb et al., 2012; Kolb and Gibb, 2015) argue for significant
plastic changes occurring when experiencing a sensory enriched
environment. Thus, sensory-driven activity might directly impact
the maturation of the limbic system.

Early electrical activity in sensory and limbic circuits
may facilitate the network development required for their
communication (Mohns and Blumberg, 2008). Neocortical
spindle bursts are induced by proprioceptive feedback which
is initiated by twitches of the distal limbs (Khazipov et al.,
2004). These spindle bursts drive the activation of CA1 neurons
and critically depend on neocortical-hippocampal interactions
(Mohns and Blumberg, 2010). Since myoclonic movements
induce bursts of activity in the medial entorhinal cortex, which
in turn drives hippocampal responses, it has been suggested
that entorhinal-hippocampal interactions are part of a large-scale
bottom-up circuit activated during neonatal movements (Valeeva
et al., 2019). While the impact of somatosensory processing on
limbic system development began to be elucidated, it is currently
unknown whether similar bottom-up interactions exist for other
sensory systems. Similarly, the impact of top-down PFC activity
on early sensory development and its importance for adult cross-
modal processing capabilities are still unknown.

ANIMAL AND HUMAN RESEARCH AS
BACKGROUND FOR BRAIN-INSPIRED
INTELLIGENT ROBOTICS

Neuroscientific insights can be harnessed to build adaptive and
intelligent machines. Given recent advances in calcium (Ca2+)
imaging using genetically encoded Ca2+ indicators and in the
use of optogenetic tools for causal manipulation of neural circuits
(Fenno et al., 2011; Grienberger and Konnerth, 2012), current
and future research can provide a plethora of insights into the
neuronal computations of cross-modal processing. Based on
brain-like neural architectures and biologically plausible learning
mechanisms (Pitti et al., 2009), computer implementations can
create robot perception and action (Floreano et al., 2014). The
field of robotics is one of the most dynamic areas of technological
development (Zhang B. et al., 2016), and robots performing very
specific tasks are increasingly found in industry, service, and
medicine. A growing field is also the interplay between robotics
and neuroscience. For instance, equipping cognitive robots with
the ability to process and integrate cross-modal information
streams ensures that they will interact with the environment
more efficiently, even under conditions of sensory uncertainty
(Parisi et al., 2019). Similarly, developmental robotics, which is
motivated by human cognitive and behavioral development, aims
to provide a better understanding of the development of cognitive

processes using robots with rich sensory and motor capabilities as
testing platforms (Breazeal and Scassellati, 2002; Lungarella et al.,
2003; Prince, 2008; Cangelosi and Schlesinger, 2015, 2018).

As outlined above, low-level sensory and high-level neural
networks accounting for cognitive processing interact in a
bottom-up and top-down manner to create a coherent perception
of the multisensory environment. Similarly, bottom-up and top-
down processing underlying the integration of multipleisensory
information streams play a crucial role in the development
of autonomous agents and cognitive robots. However, these
two research streams often developed independently. Closer
interactions between them appear mutually beneficial for
several reasons. First, biological inspiration for the modeling
of bottom-up cross-modal processing in robots is of crucial
interest in order to endow agents with improved robustness,
flexibility and performance, particularly in the case of uncertain,
ambiguous or incongruent cross-modal inputs (Parisi et al.,
2019). For example, biological inspiration has played a major
role in the field of odor-guided navigation (Russell, 2001).
Bailey et al. (2005) developed a robot with multisensory
processing capabilities, and in particular stellar odor-tracking
performance similar to that found in animals, in order to
locate the source of chemical plumes (Bailey et al., 2005).
Barsky et al. (2019) applied a deep learning method to
combine disparate sensory inputs, such as auditory and visual
information. Cross-modal processing facilitated the learning
of a humanoid drumming robot to generate suitable motion
sequences to match desired unseen audio or video sequences
(Barsky et al., 2019). Axenie et al. (2016) proposed a
novel audio-visual sensory processing architecture for robust
multisensory fusion in robotic systems, which is inspired by
the distributed macro-architecture of the mammalian cortex
(Axenie et al., 2016).

Second, biological inspiration for the modeling of top-down
cross-modal processing in robots is mandatory for autonomous
agents and cognitive robots to develop perception through
active groping. Fujimoto et al. (2009) developed a robot being
able to pick up dishes based on active groping. The robot
roughly formulated a strategy for selecting dishes placed close
to each other. Subsequently, by actively acquiring the geometric
information of the dishes during the implementation of the
strategy, the robot was able to efficiently complete the task
(Fujimoto et al., 2009). Inoue (1971) developed a robot to search
for a block by actively moving the hand along a predefined
track and detecting contact with items using touch sensors
(Inoue, 1971). Maekawa et al. (1992) developed a finger-shaped
tactile sensor which could reconstruct the shape of an object
by actively moving along a predefined grid and detecting the
position and direction of contact by using sensors (Maekawa
et al., 1992). These studies demonstrate that robots have the
capability to progressively learn in an ever-changing multisensory
environment by means of self-exploration and social interaction.

However, robots are still limited in their dynamic movements,
emotional perception and adaptive interactions with humans,
and this drawback limits their application (Wiese et al., 2017;
Cross et al., 2019). To overcome this challenge, brain-inspired
intelligent robotics may equip systems with advanced human-like
cognitive abilities such as improved multisensory processing
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and learning capabilities by mimicking the structures and
mechanisms underlying sensory-cognitive processing (section
“Sensory-Cognitive Interplay During Cross-Modal Processing”).
In fact, multisensory perception has been named as one of the
key sensory-cognitive functions in order for cognitive robots
to thrive in a complex and dynamic environment (Zhang B.
et al., 2016). A lack of multisensory perceptive capabilities, makes
it more sophisticated to acquire other cognitive computations
and to function autonomously. Continuous learning of robotic
systems is crucial, because internal models of the multisensory
world must be acquired and adapted throughout development in
order for multisensory processing capabilities to emerge (section
“The Emergence of Sensory-Cognitive Interplay During Cross-
Modal Development”) (Rohlf et al., 2017). Recent endeavors led
to the creation of an open source humanoid called NICO (Neuro-
Inspired COmpanion), which due to its flexible design and open
and modular hardware and software framework can adapt to
individual experimental set-ups and opens the door to multimodal
human-robot interaction research with the aim of developing
autonomous agents and cognitive robots (Kerzel et al., 2017).

CONCLUSION AND FUTURE LINES OF
RESEARCH

It has been hypothesized that the bottom-up sensory drive
contributes to establishing neuronal circuits in the limbic
system during early development (Mohns and Blumberg,
2008). At adulthood, the interaction between low-level sensory
and high-level limbic areas enables cross-modal perceptual
decision-making. Cross-modal representations are transferred
from primary sensory cortices to PFC in a bottom-up

manner, and the representation of an attended stimulus
in primary sensory cortices is selectively enhanced by top-
down prefrontal modulation (Bizley et al., 2016). However,
the interactions between primary sensory cortices and PFC
during bottom-up/top-down cross-modal processing have been
poorly characterized. To this end, techniques that specifically
manipulate neuronal pathways between PFC and primary
sensory cortices are necessary. Relying on recent advances
in optogenetic terminal field excitation/inhibition, selectively
illuminating axon terminals originating from PFC and targeting
primary sensory cortices, would allow for the manipulation
of the direct pathways between PFC and primary sensory
cortices. This pathway-specific targeting will link function and
connectivity underlying cross-modal processing within sensory-
limbic circuits.
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Selective attention plays an essential role in information acquisition and utilization

from the environment. In the past 50 years, research on selective attention has been

a central topic in cognitive science. Compared with unimodal studies, crossmodal

studies are more complex but necessary to solve real-world challenges in both human

experiments and computational modeling. Although an increasing number of findings

on crossmodal selective attention have shed light on humans’ behavioral patterns and

neural underpinnings, a much better understanding is still necessary to yield the same

benefit for intelligent computational agents. This article reviews studies of selective

attention in unimodal visual and auditory and crossmodal audiovisual setups from the

multidisciplinary perspectives of psychology and cognitive neuroscience, and evaluates

different ways to simulate analogous mechanisms in computational models and robotics.

We discuss the gaps between these fields in this interdisciplinary review and provide

insights about how to use psychological findings and theories in artificial intelligence from

different perspectives.

Keywords: selective attention, visual attention, auditory attention, crossmodal learning, computational modeling,

deep learning

1. INTRODUCTION

“The art of being wise is knowing what to overlook.”

–William James, 1842-1910.

The real world is complex, uncertain and rich in dynamic ambiguous stimuli. Detecting sudden
changes in the environment is significant for organisms to survive because these events need
prompt identification and response (Todd and Van Gelder, 1979). Considering the limited capacity
for processing information, selective attention is like a filter with the ability to remove unwanted or
irrelevant information and thus optimizes a human’s action to achieve the current goal (Desimone
and Duncan, 1995). It is crucial as well for intelligent agents to integrate and utilize external and

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://doi.org/10.3389/fnint.2020.00010
http://crossmark.crossref.org/dialog/?doi=10.3389/fnint.2020.00010&domain=pdf&date_stamp=2020-02-27
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liux@psych.ac.cn
https://doi.org/10.3389/fnint.2020.00010
https://www.frontiersin.org/articles/10.3389/fnint.2020.00010/full
http://loop.frontiersin.org/people/657346/overview
http://loop.frontiersin.org/people/731/overview
http://loop.frontiersin.org/people/734977/overview
http://loop.frontiersin.org/people/680229/overview
http://loop.frontiersin.org/people/913695/overview
http://loop.frontiersin.org/people/638743/overview
http://loop.frontiersin.org/people/226676/overview
http://loop.frontiersin.org/people/25946/overview
http://loop.frontiersin.org/people/21776/overview


Fu et al. Selective Attention Mechanisms and Modeling

internal information efficiently and to reach a signal-to-noise
ratio as high as humans can (signal detection theory, SDT)
(Green and Swets, 1966; Swets, 2014).

Selective attention is involved in the majority of mental
activities, and it is used to control our awareness of the
internal mind and the outside world. Selective attention also
helps to integrate information from multidimensional and
multimodal inputs (Talsma et al., 2010). Empirical research
shows that stimuli with multimodal properties are more salient
than unimodal stimuli; therefore, selective attention is more
easily captured by multimodal inputs to promote further
processing (Van der Burg et al., 2008, 2009). Selective attention is
predominantly categorized by psychologists and neuroscientists
into “endogenous” and “exogenous” attention. Endogenous
attention helps to allocate limited cognitive resources to the
current task (Posner and Snyder, 1975; Corbetta and Shulman,
2002; Styles, 2006). The metaphor for this process is described
as directing a spotlight in a dark room. Such a process helps us,
for instance, to search for one specific email only by glimpsing
the crammed email box. However, the action can sometimes be
interrupted by attractive advertisements or breaking news on a
website. This latter kind of orienting attention is called exogenous
attention which is usually caused by an unexpected change in the
environment. It is considered to be instinctive and spontaneous
and often results in a reflexive saccade (Smith et al., 2004; Styles,
2006). Another point of view distinguishes between “covert” and
“overt” orienting attention: covert attention can attend events
or objects with the absence of eyes movement, while overt
attention guides the fovea to the stimulus directly with eyes or
head movements (Posner, 1980). This is because covert attention
requires inhibition of saccades to sustain fixation, which is not
needed during overt attention (Kulke et al., 2016). Analogously,
covert and overt mechanisms exist in the auditory system. Since
humans cannot move ears like eyes, the difference between these
two mechanisms is that covert auditory attention can govern
attention without any motion, while overt auditory attention
attends to sound sources with head movements (Kondo et al.,
2012; Morillon and Baillet, 2017). Head movements contribute
to sound localization during overt auditory attention (Wallach,
1940; Perrett and Noble, 1997).

To understand the mechanisms underlying selective attention
is helpful for computational models of selective attention for
different purposes and requirements (Das et al., 2017). Attention
models have been proposed and applied in computer science
for decades, and attention mechanisms have achieved high
performance in sequence modeling (Vaswani et al., 2017; Peng
et al., 2019). Bio-inspired implementations of attention in
computer science address the limited computation capacity of
machines through assigning computational resources by priority
(Xu et al., 2015). However, gaps exist between computational
models and theories of human selective attention. Some theories
are metaphysical and mystifying, especially for readers that
lack experience in humans’ behavioral and neural studies.
Frintrop et al. (2010) published a survey about computational
visual systems with an extensive description of the concepts,
theories and neural pathways of visual attention mechanisms.
It is stated that “the interdisciplinarity of the topic holds

not only benefits but also difficulties: concepts of other fields
are usually hard to access due to differences in vocabulary
and lack of knowledge of the relevant literature” (p. 1).
These interdisciplinary challenges are still unsolved thus far.
Additionally, the development and application of technical
measurements and methods like functional magnetic resonance
imaging (fMRI), Magnetoencephalography (MEG), and state-of-
the-art artificial neural networks (ANN) and deep learning (DL)
open up a new window for studies on humans, primates, and
robots. Such new findings should be valuated and integrated into
the current framework.

Although there are several review articles on selective
attention in the field of both psychology and computer science
(Shinn-Cunningham, 2008; Frintrop et al., 2010; Lee and
Choo, 2013), most of them only focus either on a single
modality or on general crossmodal processing (Lahat et al.,
2015; Ramachandram and Taylor, 2017). However, it is essential
to combine and compare selective attention mechanisms from
different modalities together to provide an integrated framework
with similarities and differences among various modalities. In
the current review, firstly, we aim to integrate selective attention
concepts, theories, behavioral, and neural mechanisms studied by
the unimodal and crossmodal experiment designs. Secondly, we
aim to deepen the understanding of the interdisciplinary work in
multisensory integration and crossmodal learning mechanisms
in psychology and computer science. Thirdly, we aim to bridge
the gap between humans’ behavioral and neural patterns and
intelligent system simulation to provide theoretical and practical
benefits to both fields.

The current review is organized into the following parts.
Section 2 is about the existing mainstream attention theories
and models based on human experimental findings and attention
mechanisms in computer science. Section 3 summarizes human
visual selective attention studies and introduces the modeling
work in computer science inspired by psychology. Section 4
describes results on less studied auditory selective attention
and the corresponding modeling work. Section 5 reviews
mechanisms and models about crossmodal selective attention
and state-of-the-art approaches in intelligent systems. Here, to
provide focus, we select the most representative phenomena and
effects in psychology: Pop-out Effect (visual attention), Cocktail
Party Effect (auditory attention), and audiovisual crossmodal
integration and conflict resolution (crossmodal attention). Since
these effects are also well-established and often simulated in
computer science, we highlight the classic and latest work.
Finally, we discuss the current limitations and the future trends of
utilization and implications of human selective attention models
in artificial intelligence.

2. DIFFERENT THEORIES AND MODELS
OF SELECTIVE ATTENTION

2.1. Classic Bottom-Up and Top-Down
Control vs. Priority Map Theory
The mainstream view of selective attention proposes that there
exist two complementary pathways in the brain cortex, the
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FIGURE 1 | (A) Neuroanatomical model of bottom-up and top-down attentional processing in the visual cortex. The dorsal system (green) executes the top-down

attentional control. FEF, frontal eye field; IPS, intraparietal sulcus. The ventral system (red) executes the bottom-up processing. VFC, ventral frontal cortex; TPJ,

temporoparietal junction (adapted from Corbetta and Shulman, 2002); (B) Cortical oscillation model of attentional control in visual and auditory sensory areas. The

posterior medial frontal cortex (pMFC) modulates selective attention by the excitation of task-relevant processing and the inhibition of task-irrelevant processing. Theta

oscillations facilitate the communication between the pMFC and lateral prefrontal cortex (LPFC) (purple arrow). Gamma oscillations and alpha oscillations are

promoted in task-relevant and task-irrelevant cortical areas, respectively (gray arrows) (adapted from Clayton et al., 2015).

dorsal and ventral systems. The former, which includes parts
of the intraparietal sulcus (IPS) and frontal eye field (FEF),
is in charge of the top-down process guided by goals or
expectations. The latter, which involves the ventral frontal cortex
(VFC) and right temporoparietal junction (TPJ), is in charge
of the bottom-up process triggered by sensory inputs or salient
and unexpected stimuli without any high-level feedback. When
novelty is perceived, the connection between the TPJ and
IPS plays the role of cutting off continuous top-down control
(Corbetta and Shulman, 2002) (see Figure 1A). The classic
bottom-up and top-down control theory can explain many cases
in selective attention, and a lot of computational models are
based on this simple theoretical structure (Fang et al., 2011;
Mahdi et al., 2019). However, in some cases, stimuli that are
not relevant to the current goal, and that do not have any
salient physical features can also capture attention. For instance,
Anderson et al. (2011) let participants do a visual search task in
the training phase to determine the direction of a line segment
inside of a target. One target is associated with a high reward
compared with other targets. During the test phase, that target
only appears as a shape without any reward property. Participants
show significantly longer reaction times doing the visual search
among conditions with this foregoing high-value distractor,
suggesting their attention is still captured by these goal-irrelevant
stimuli. Other research finds that emotional information can also
increase the salience (Vuilleumier, 2005; Pessoa and Adolphs,
2010) to capture attention. Thus, beyond the classical theoretical
dichotomy, the priority map theory remedies the explanatory
gap between goal-driven attentional control and stimulus-driven
selection by adding the past selection history to explain selection
biases (Awh et al., 2012). Here, selection history means the
attention bias to stimuli that have been shown in the previous
context. This bias could be irrelevant or in conflict with the
current goal, so selection history should be independent of top-
down or goal-driven control. In general, these two theoretical
frameworks are both helpful to explain most behavioral cases of
selective attention.

2.2. Functional Neural Networks Model
The Functional neural networks model separates attention into
clear sub-components. Fan and Posner designed the Attentional
Network Test (ANT) by combining the classic Flanker task and
Posner cueing task to provide a quantitative measurement for
studying the sub-components: alerting, orienting, and executive
control (Fan et al., 2002, 2005; Fan and Posner, 2004). The
component of the alerting network increases the focus on the
potential stimuli of interest, and anatomical mechanisms of
alerting are correlated with the thalamic, frontal, and parietal
regions. The orienting function is responsible for selecting task-
related or survival-related information from all the sensory
inputs. The orienting network also determines an attention
shift between exogenous attention engagement (bottom-up)
and endogenous attention disengagement (top-down). Orienting
is associated with the superior parietal lobe (SPL), TPJ, and
frontal eye fields (FEF). The executive control component of
attention plays a dominant role in planning, decision-making,
conflict detection and resolution. The anterior cingulate cortex
(ACC) and lateral prefrontal cortical regions are involved in
the executive control component (Benes, 2000). During the
ANT, participants are asked to determine the direction of the
central arrow above or below the fixation. The central arrow is
acommpanied by congruent or incongruent flankers. In neutral
conditions, the central arrow has no flankers. There are four
cue conditions: no cue, center cue, double cue, and spatial cue.
Effects are calculated by subtracting participants’ reaction time
(RT) under two different conditions: the alerting effect = RT (no-
cue) - RT (double-cue); the orienting effect = RT (center cue) -
RT (spatial cue); the executive control effect = RT (incongruent
flanking) - RT (congruent flanking) (Fan et al., 2002). Clinical
studies using the ANT can explore specific differences of
cognitive performance between patients and healthy participants
(Urbanek et al., 2010; Togo et al., 2015). For example, Johnson
et al. (2008) used the ANT to test children with attention deficit
hyperactivity disorder (ADHD) and found that they show deficits
in the alerting and executive control networks but not in the
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orienting network. Themodel and findings arising from the ANT
could serve to provide useful interventions for clinical treatment.

2.3. Neural Oscillation Model
Neural oscillations characterize the electrical activity of a
population of neurons (Musall et al., 2012). Synchronization
of oscillations is the coordination of firing patterns of groups
of neurons from different brain areas (Varela et al., 2001). In
contrast, the desynchronization of oscillations is the inhibition
of neuron activities with opposite phases. Attention is correlated
with synchronization and desynchronization of specific cortical
neural oscillations. Clayton et al. (2015) propose a gamma-
theta power-phase coupling model of attention and point out
that attention is selectively adjusted via the excitation of task-
relevant processes and the inhibition of task-irrelevant processes
(see Figure 1B). The excitation of task-relevant processes is
controlled by frontomedial theta (fm-theta) power (4–8 Hz)
from the posterior medial frontal cortex (pMFC) to the lateral
prefrontal cortex (LPFC). Among the communication between
LPFC and excited sensory areas, gamma power (>30 Hz) is
associated with the excitation of the task-relevant processes. The
inhibition of task-irrelevant processes is linked with alpha power
(8–14 Hz). The pMFC deploys the crucial inhibition processing
by controlling the default mode network [posterior cingulate
cortex (PCC) and ventromedial prefrontal cortex (vmPFC)] via
the alpha oscillation. The limitation of the model is that the
results obtained and presented across different brain regions are
mainly correlations and descriptive results rather than causal
relationships. Besides, most of the empirical evidence for the
model was obtained by visual tasks instead of other modalities.
Nevertheless, this gamma-theta power-phase coupling model
shows interpretative neural pathways of the neural oscillation of
selective attention.

2.4. Free-Energy Model and Information
Theory
The free-energy model explains attention from a hierarchical
inference perspective (Friston, 2009; Feldman and Friston,
2010). The gist of the model is that the stimuli in the living
environment can be viewed as sensory inputs, surprise or
uncertainty which can increase the entropy of the human brain.
Our brains have a tendency to maintain the information order
to minimize the energy cost caused by surprise. In doing so,
perception brings about the sensory inputs, and attention infers
the consequence caused by the inputs to adjust action and control
the entropy growth.

Corresponding to the free-energy model, Fan’s review (Fan,
2014) tries to combine the information theory and experimental
neural findings to explain the top-down mechanisms of humans’
cognition control (the hub of the cognition capacity) and
selective attention. Inspired by the free-energy view, Fan
points out that cognitive control is a high-level uncertainty
or entropy reduction mechanism instead of a low-level
automatic information perception. According to Shannon’s
information theory (Shannon, 1948), uncertainty can be
quantified by entropy, and the rate of entropy is used to
calculate the time density of the information transmission

through different channels. Performance costs appear during
cognitive channel switching. The benefits of the information
theory are that attention or other cognitive processes can
be quantified, and situations (like incongruent or congruent
conditions in conflict processing) can be computed as bits
quantitatively. Fan assimilates stimulus types, time frequency
of the stimulus presentation, and human reaction time from
cognitive psychology experimental tasks into entropy, surprise,
and channel capacity. In this theory, if we know the probability
of an event or a stimulus condition, we can calculate the surprise
value of that condition and infer the information processing rate.
For example, studies found that visual attention can select 30–60
bits per glimpse (Verghese and Pelli, 1992) and the upper limit
of human information processing is around 50 bps. Under this
framework, the anterior insula (AI) and the anterior cingulate
cortex (ACC) are associated with processing the uncertain inputs
and the frontoparietal cortex plays a ubiquitous role in the
active control.

Research from network neuroscience takes a similar viewpoint
that the brain is designed to be functioning with the lowest cost
(Bullmore and Sporns, 2012; Barbey, 2018). However, the free-
energy model and information theory concentrate on top-down
control pathways which may fail to explain some bottom-up
phenomena. For instance, why can human attention be captured
by the salient external stimuli involuntarily? It can cause the rise
of the information entropy and be opposite to the hypothesis
that the human brain instinctively resists the disorder. Besides,
experimental evidence of processing channels is still lacking.

2.5. Attention Mechanisms in Computer
Science
Previous models (1980s–2014) mainly use the saliency-based
winner-take-all algorithm based on human datasets to mimic
humanlike visual or auditory attention (Borji and Itti, 2012;
Lee and Choo, 2013). Those models aim to extract the target
information from the environment or noisy background. In
recent years since 2014, attention mechanisms have been applied
to Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and Long-short Term Memory (LSTM) for
sequencemodeling work. Attentionmechanismswere firstly used
in computer vision (Ba et al., 2014) and then became widely
used across different domains according to the type of input data,
such as object recognition (Hara et al., 2017), image description
generation (Xu et al., 2015), speech recognition (Chorowski et al.,
2015), machine translation (Luong et al., 2015), video caption
generation (Gao L. et al., 2017), sentiment classification (Wang
et al., 2016), visual question answering (Li et al., 2018), etc.

Attention mechanisms in computer science can be
distinguished as soft and hard attention (Xu et al., 2015),
or as global and local attention (Luong et al., 2015). Soft
attention is the expectation of selected information in the input
attention distribution. For example, there is a translation task to
translate one German sentence “Ich komme aus Deutschland”
into an English sentence “I come from Germany.” In machine
translation, attention scores mean different weights assigned to
words in the source sentence (German) according to each word
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TABLE 1 | Main theories of visual selective attention based on various processing pathways.

Theory Viewpoint Processing

Stimulus-driven Theory (1992) Singletons automatically capture visual attention Bottom-up

Goal-driven Theory (1992) Individuals’ intentions determine attentional capture Top-down

Contingent Capture Hypothesis (1992) Contingent on attentional control settings induced by task demands Top-down

Attention Selection Bias Competition (1995) Response to distractors around the target is inhibited Bottom-up & Top-down

Signal Suppression Hypothesis (2010) Salience signal automatically generated by singletons can be suppressed Bottom-up & Top-down

in the target sentence (English). In this example, corresponding
to “Germany,” “Deutschland” should be assigned more weights
than other words in the source sentence. Soft attention
focuses more broadly than hard attention. Hard attention only
concentrates on information of the specific location by assigning
zero weight to other information (Xu et al., 2015). The concepts
of global and local attention vaguely correspond to soft and
hard attention, respectively. Recently, an important application
is the self-attention mechanism (Vaswani et al., 2017). Different
from soft and hard attention, self-attention does not capture
features of mapping between source and target but can learn
the inherent structure both within the source and target text.
In the above example, “from” is more likely to be followed by
“Germany.” Self-attention can be applied in each decoder layer
of neural networks to achieve distributed processing (Bahdanau
et al., 2014). In this way, self-attention shows good performance
and efficiency when the input sentence is too long as in machine
translation (Luong et al., 2015) or the input image is too large as
in computer vision (Peng et al., 2019).

In summary, we conclude in this section that human attention
is a process to allocate cognitive resources with different
weights according to the priority of the events. Similarly,
in computer science, attention mechanisms in models are
designed to be allocating different weights to relevant input
information and ignore irrelevant information with low-valued
weights. However, the connection between computer science
models and psychology is still loose and broad. Especially for
understanding crossmodal selective attention from a functional
view, it is required to explore the human cognition processing
from a computational perspective, which is also beneficial
for confirming psychological and biological hypotheses in
computer science.

3. VISUAL SELECTIVE
ATTENTION—“POP-OUT” EFFECT

3.1. Behavioral and Neural Mechanisms of
Human Visual Selective Attention
Many systematic reviews in the areas of primate vision and
computer vision have introduced the concepts and research
findings in visual selective attention (Frintrop et al., 2010; Borji
and Itti, 2012; Lee and Choo, 2013). In our current review, we
further concentrate in particular on mechanisms of the “pop-
out” effect and computational models based on the saliency map.
In general, the “pop-out” effect describes saliency processing.

Considering that an object is not salient by itself (Itti and Baldi,
2009), the “pop-out” effect usually happens when an object
has more salient physical features than other objects in the
context, such as location, color, shape, orientation, brightness,
etc. (VanRullen, 2003). Saliency can also be extended to affective
and social domains, like familiarity, threat, etc. (Fan, 2014).
Humans’ attention can be immediately captured by salient
objects, which can explain why the warning signs on streets are
always red and apparent.

Nevertheless, controversy remains about the role of top-
down control when a salient stimulus captures attention.
Stimulus-driven theory (bottom-up saliency hypothesis) suggests
that an abrupt-onset object can automatically capture humans’
attention without any intention and be processed faster than
other non-onset elements (Yantis and Jonides, 1984; Theeuwes,
1991). To the contrary, the goal-driven theory (Bacon and
Egeth, 1994) and the contingent capture hypothesis (Folk et al.,
1992) propose that the overlap dimension between stimulus
properties and task setting goals is the crucial factor, since it
can determine whether the salient stimulus can be captured
or not. Experiments show that if the salient stimulus has no
task-relevant feature, participants adopt a feature-search mode
autonomously to suppress the distraction from the salient
stimulus (Bacon and Egeth, 1994).

Hybrid theories attempt to integrate components of both
stimulus-driven and goal-driven theories in attention capture.
Findings from monkey studies showed that attention selection
through biased competition occurred when the target and
the distractor were both within the receptive field. Neurons
responded primarily to the target, whereas the responses to
the distractor were attenuated (Desimone and Duncan, 1995).
Subsequently, Mounts (2000) discovered a phenomenon named
“surround inhibition.” If a salient stimulus appears near the
target, it can be inhibited by top-down control. Later, the
signal suppression hypothesis proposed that the salient stimulus
automatically generates a salience signal at first and then the
signal can be subsequently suppressed, possibly resulting in no
attention capture (Sawaki and Luck, 2010; Gaspelin et al., 2015,
2017) (the theories are summarized in Table 1).

Neural findings of humans and primates contribute a lot
to understand saliency processing in the primary cortex and
subcortex. The saliency map theory (Li, 1999, 2002) suggests
that neurons in the primary visual cortex (V1) play a crucial
role for the input feature processing during the “pop-out” effect.
V1 is the neural foundation of the preattentive process during
visual search, and it only responds to stimuli located in the
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classical receptive fields (CRFs). In this saliencymap theory, V1 is
considered to define the saliency degree of visual inputs. Various
features of the target and context enter into the V1 CRFs at the
same time. When features of the target are more significant than
the context, the target pops out. The saliency map computes
the saliency value for all locations in the CRFs rather than only
encoding the target location (Veale et al., 2017). In comparison to
the classical feature integration model (Treisman and Gormican,
1988) and Itti’s saliency model (Itti and Koch, 2000), the main
property of the saliency map theory is that saliency processing is
only based on a single general feature selection map rather than
using a combination map to bind several individual feature maps
together. Furthermore, dominant inputs from V1 convey signals
to an evolutionarily old structure in the midbrain—the superior
colliculus (SC). Superficial layers of the SC encode saliency
representations through center-surround inhibition and transfer
the inputs to deep layers to trigger priority selection mechanisms
to guide attention and gaze (Stein et al., 2002; Veale et al., 2017;
White et al., 2017). There is not only bottom-up processing in
the primary visual cortex and SC, but also top-down processing.
Within the primary visual cortex, the top-down mechanism is
mediated by V2 and the interaction occurs in humanV4 (Melloni
et al., 2012). Moreover, deep layers of the SC represent goal-
related behaviors independent of the visual stimuli (Hafed and
Krauzlis, 2008; Hafed et al., 2008; Veale et al., 2017).

The large-scale human brain networks also play important
roles in visual selective attention. The salience network (SN),
composed of AI (anterior insula) and ACC (anterior cingulate
cortex), is considered to be working as the salience filter to
accept inputs from the sensory cortex and trigger cognitive
control signals to the default mode network (DMN) and central-
executive network (CEN). Functions of the SN are mainly
about accomplishing the dynamic switch between externally and
internally oriented attention (Uddin and Menon, 2009; Menon
and Uddin, 2010; Uddin, 2015). Another taxonomic cingulo-
opercular network shares a large overlap with the SN, containing
the anterior insular/operculum, dorsal anterior cingulate cortex
(dACC), and thalamus. The cingulo-opercular network has
the highest cortical nicotinic acetylcholine receptor (nACHr)
density, which is highly correlated with attention functions
(Picard et al., 2013). However, conclusions about functions of
the cingulo-opercular network are not consistent. For instance,
Sadaghiani and D’Esposito (2014) revealed that the cingulo-
opercular network plays a role in staying alert but not in
selective attention during visual processing. In sum, the V1 and
SC consist of primary cortex-subcortex pathways of saliency
processing and attention orienting. The AI and ACC consist of
large-scale functional networks of saliency processing, alertness
and attention shifting. However, the correlation or interaction
between these two pathways remains unclear.

Besides elementary physical salient features, scene regions
that contain semantic meaning also proved to play a critical
role in attentional guidance (Henderson and Hollingworth,
1999; Wolfe and Horowitz, 2017). Henderson and Hayes (2017)
express the spatial distribution of meaning across scenes as
meaning maps, which are obtained by participants’ ratings of the
meaningfulness of scene regions. They encode the meaning maps

comparable to the image salience and operationalize the attention
distribution to be duration-weighted fixation density. Their
work demonstrates that both, salience and meaning, predict
attention but only meaning guides attention while viewing real-
world scenes. According to the cognitive-relevance theory of
attentional guidance, the meaning maps contain more semantic
information for the real context. Their updated findings appear
to be particularly insightful and practical for artificial intelligence
methods for labeling real-world images.

3.2. Computational Models Based on
Human Visual Selective Attention
Based on human saccade and fixation research, a vast body of
bio-inspired visual attention models has been developed and
broadly applied in object segmentation (Gao G. et al., 2017),
object recognition (Klein and Frintrop, 2011), image caption
generation (Bai and An, 2018), and visual question answering
(VQA) (Liu and Milanova, 2018). The visual attention model
aims to predict the human eye fixation with minimal errors
(Borji and Itti, 2012). Consistent with humans’ visual processing
pathways, models in visual attention are generally classified based
on the bottom-up and top-down streams (Borji and Itti, 2012;
Liu and Milanova, 2018). Bottom-up models are successful in
modeling low-level and early processing stages (Khaligh-Razavi
et al., 2017). The most classic saliency model, which uses features
of color, orientation, edge, and intensity, allocates an attention
weight to each pixel of the image (Itti et al., 1998; Itti and Koch,
2000) (see Figure 2A). The “winner-take-all” strategy is the core
algorithm of saliency models. However, several criticisms on the
saliency model cannot be ignored either. For instance, a salient
feature is obtained by calculating the difference between input at
one location and other input surrounding it so that any spatial
discountinuities of features can be detected (Itti et al., 1998).
This center-surround scheme is analogous to attention selection
via bias competition within the visual receptive fields (Desimone
and Duncan, 1995). However, the salient feature obtained by
this scheme can only correspond to a small local region of an
image scene with higher contrast but not to a whole object or an
extended part of it (VanRullen, 2003; Lee and Choo, 2013) (also
see Figure 2A).

In contrast, high-level task-driven attention models remain
to be explored and developed further. Some research predicts
human eye fixation with free-viewing scenes based on end-to-end
deep learning architectures (Jetley et al., 2016; Kruthiventi et al.,
2017; Kummerer et al., 2017). Deep neural networks (DNNs)
have sometimes been shown to have better performance than
other known models by using top-down processing mechanisms.
Especially, DNNs can successfully simulate human-like attention
mechanisms (Hanson et al., 2018). Here task-driven components
can not only be implemented as targets but also implemented
as prior knowledge, motivation, and other types of cues.
Furthermore, models like DeepFeat incorporating bottom-up
and top-down saliency maps by combining low- and high-
level visual factors surpass other individual bottom-up and top-
down approaches (Mahdi et al., 2019). Nowadays, computer
vision research intends to make models learn the semantic
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FIGURE 2 | (A) Visual saliency model. Features are extracted from the input image. The center-surround mechanism and normalization are used to generate the

individual feature saliency maps. Finally, the saliency map is generated by a linear combination of different individual saliency maps (adapted from Itti et al., 1998); (B)

Auditory saliency model. The structure of the model is similar to the visual saliency model by converting sound inputs into a frequency “intensity image” (adapted from

Kayser et al., 2005).

meaning rather than simply classify objects. For instance, image
captioning requires models not only to detect objects but also
extract relationships between objects (Hinz et al., 2019). Co-
saliency tends to be a promising preprocessing step for many
high-level visual tasks such as video foreground extraction,
image retrieval, and object detection. Because co-saliency implies
priorities based on human visual attention, it can detect the most
important information among a set of images with a reduced
computational demand (Yao et al., 2017). In future research, co-
saliency approaches may be combined with the meaning maps of
human attention for better image interpretation accuracy.

As the number of interdisciplinary studies keeps increasing,
research from psychology and artificial intelligence complement
each other deepening the understanding of human visual
attention mechanisms and improving the performance of
computational models. On the one hand, psychologists interpret
humans’ behavioral or neural patterns by comparing them
with the performance of DNNs. For example, Eckstein et al.
(2017) found that human participants often miss giant targets
in scenes during visual search but computational models such
as Faster R-CNN (Ren et al., 2015), R-FCN (Dai et al.,
2016), and YOLO (Redmon and Farhadi, 2017) do not show
any similar recognizing failures. Their results suggest that
humans use “missing giant targets” as the response strategy to
suppress potential distractors immediately. On the other hand,
computer scientists interpret features of computational models
by comparing their performance with simulations of humans’
behaviors. For instance, Hanson et al. (2018) found that the
Deep Learning (DL) network rather than the single hidden layer
backpropagation neural network can replicate human category
learning. This is because hidden layers of the DL network can

selectively attend to relevant category features as humans do
during category learning.

4. AUDITORY SELECTIVE
ATTENTION—COCKTAIL PARTY EFFECT

4.1. Behavioral and Neural Mechanisms of
Human Auditory Selective Attention
At a noisy party, a person can concentrate on the target
conversation (a top-down process) and easily respond to
someone calling his/her name (a bottom-up process). This
capability (in a real-life scenario) is named “Cocktail Party Effect”
(Cherry, 1953). Auditory information conveys both temporal
and spatial features of objects. For instance, we can determine
whether water in a kettle is boiling by the special sounds
of different heating phases. Auditory scene analysis (ASA)
allows the auditory system to perceive and organize sound
information from the environment (Bregman, 1994). Since
humans cannot close their ears spontaneously to avoid irrelevant
information, selective attention is important to segregate the
forefront auditory information from a complex background and
distinguishmeaningful information fromnoise. Besides, auditory
selective attention allows humans to localize sound sources and
filter out irrelevant sound information effectively.

In the Cocktail Party problem, energetic masking and
informational masking cause ambiguity between the auditory
target and noise in the environment. Energetic masking occurs
when different sound sources have overlaps in frequency spectra
at the same time. The perception and recognition of the target
sound can be weakened physically by noise (e.g., the target speech
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overlaps with a white noise masker). Informational masking
occurs when the target and masker voices sound similar (e.g.,
a target male is speaking while another nontarget male is
speaking at the same time). The listener cannot discriminate
them perceptually (Brungart, 2001; Lidestam et al., 2014). The
neural mechanisms of these two causes are different. Scott et al.
(2004) asked participants to listen to a target speaker with
added noise (energetic masking) or added speech (informational
masking). They found that informational masking was associated
with the activation in the bilateral superior temporal gyri (STG)
and energetic masking was associated with the activation in
the frontoparietal cortex. The activation was correlated with
explicit attentional mechanisms but not specifically to the
auditory processing.

In accordance with the Gestalt framework, ASA is the
solution to the Cocktail Party problem (Bee and Micheyl, 2008).
Similar to visual processing, ASA can be separated into two
components. The primitive analysis (bottom-up process) and the
schema-based processing (top-down process) (Bregman, 1994).
In the primitive analysis, auditory signals are separated into
independent units and integrated into disparate auditory streams
according to sound features and time-frequency. In the schema-
based processing, prior knowledge such as language, music, other
auditory memory, and endogenous attention helps to compare
the auditory input signals with previous experience (Shinn-
Cunningham, 2008) (see Figure 3A). In laboratory studies,
psychologists adopt the dichotic listening paradigm to mimic
the Cocktail Party problem. During the task, participants are
asked to attend to the auditory materials presented to one ear
and ignore the auditory materials presented to the other ear.
Afterwards, participants are asked to report the information
from the attended or unattended ear. Previous studies show that
a higher working memory capacity (WMC) predicts a better
attention focus (Conway et al., 2001; Colflesh and Conway, 2007),
because a lower capacity cannot accomplish segregation and
grouping of any auditory information well. Those findings are
in accordance with the controlled attention theory of working
memory (Baddeley et al., 1974).

Event-related potential (ERP) N1-P2 components, alpha
oscillations, and frequency-following responses (FFRs) disclose
how the human brain copes with the Cocktail Party problem
(Du et al., 2011; Strauß et al., 2014; Lewald and Getzmann,
2015). The ERP N1 component peaks between 80 and 120 ms
after the onset of a stimulus. It is sensitive to the exogenous
auditory stimuli features (Michie et al., 1990). N1 (equivalent
in MEG is M100) is generated from the primary auditory
cortex (A1) around the superior surface of the temporal lobes
(Zouridakis et al., 1998). P2 is always observed as the following
component of N1. It peaks at around 200 ms after receiving
the external stimulus. These early components support the
early selection model of auditory attention (Woldorff et al.,
1993; Broadbent, 2013; Lee et al., 2014). Alpha oscillations
occur in the parietal cortex and other auditory cortical regions
during spatial attention. Selective attention modulates alpha
power oscillations in temporal synchrony with the sensory input
and enhances the neural activity related to attended stimuli.
Wöstmann et al. (2016) conducted a MEG study with a dichotic

task and revealed that alpha oscillations are synchronized with
speech rates and can predict the listener’s speech comprehension.
Scalp-recorded frequency-following responses (FFRs) are part of
auditory brainstem responses (ABR). They are evoked potentials
generated from the brainstem area (Mai et al., 2019). FFRs
are phase-locked to the envelope or waveform of the low-
frequency periodic auditory stimuli (Zhang and Gong, 2019). In
the Cocktail Party problem, FFRs encode important features of
speech stimuli to enhance the ability to discriminate the target
stimuli from the distracting stimuli (Du et al., 2011). In summary,
to exert the auditory selective attention, N1-P2 components are
involved in perceiving and detecting the auditory stimuli in the
early control processing; alpha oscillations and FFRs are mainly
modulated by the selective control to accentuate the target and
suppressing noise.

Analogous to the specialized streams of visual selective
attention, there are “what” and “where” pathways in the
auditory cortex (see Figure 3B). The ventral “what” pathway,
which involves the anterolateral Heschl’ gyrus, anterior superior
temporal gyrus, and posterior planum temporale, is in charge
of identifying auditory objects. The dorsal “where” pathway,
which involves the planum temporale and posterior superior
temporal gyrus (pSTG), is in charge of spatially localizing
auditory objects. Within the “what” pathway, the supratemporal
plane-inferior parietal lobule (STP-IPL) network dynamically
modulates auditory selective attention; within the “where”
pathway, the medial pSTG shows a higher-level representation of
auditory localization by integrating the sound-level and timing
features of auditory stimuli (Higgins et al., 2017; Häkkinen and
Rinne, 2018). In addition, the “where” pathway is observed to
activate around 30ms earlier than the “what” pathway implying
that top-down spatial information may modulate the auditory
object perception (Alain et al., 2001; Ahveninen et al., 2006).
However, current studies find that functional overlaps exist
in brain areas under different processing pathways, suggesting
that brain areas are not function-specific (Schadwinkel and
Gutschalk, 2010; Yin et al., 2014). The observed brain activities
are not only stimulus-dependent but also task-dependent
(Häkkinen et al., 2015). Besides, a suggested “when” pathway
for temporal perception (Lu et al., 2017) deserves to be studied
further because the temporal coherence is crucial for binding
and segregating features into speech and speaker recognition
when attention is engaged. Apart from the paralleled pathways,
the distributed processing under different structures may also
provide feedback to facilitate the auditory attention (Bizley and
Cohen, 2013).

For the Cocktail Party problem, previous neural findings
show the attentional selective mechanism occurs in different
phases of information processing. Ding and Simon (2012)
found that the selective mechanism exists in both top-down
modulation and bottom-up adaptation during the Cocktail Party
problem. When the unattended speech signals were physically
stronger, attended speech could still dominate the posterior
auditory cortex responses by the top-down execution. Besides,
when the intensity of the target was more than 8dB louder
than the background, the bottom-up neural responses only
adjusted to the target speaker rather than the background
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FIGURE 3 | (A) Auditory selective attention model with interaction between bottom-up processing and top-down modulation. The compound sound enters the

bottom-up processing in the form of segregated units and then the units are grouped into streams. After segregation and competition, foreground sound stands out

from the background noise. The wider arrow represents the salient object with higher attentional weights. Top-down attention control can modulate processing on

each stage (adapted from Bregman, 1994; Shinn-Cunningham, 2008). (B) The “where” and “what” cortical pathways of auditory attention processing. Within the

dorsal “where” pathway, the superior frontal gyrus (SFG) and superior parietal (SP) areas activate during sound localization. Within the ventral “what” pathway, inferior

frontal gyrus (IFG) and auditory cortex activate to recognize the object (adapted from Alain et al., 2001).

speaker. Golumbic et al. (2013) demonstrate that the selective
mechanism happens only in the high-level cortices such as the
inferior frontal cortex, anterior and inferior temporal cortex,
and IPL. Here, only attended speech was selectively retained.
However, in the low-level auditory cortices like the STG, both
attended and unattended speech were represented. In addition,
one study used functional near-infrared spectroscopy (fNIRS)-
hyperscanning and found that the brain-to-brain interpersonal
neural synchronization (INS) selectively enhances at the left
TPJ only between the listener and the attended speaker but not
between the listener and the unattended speaker. The listener’s
brain activity overtakes the speaker’s showing a faster speech
prediction by the listener. Besides, the INS increased only for the
noisy naturalistic conversations with competing speech but not
for the two-person conversation and was only associated with
the speech content. Their findings implied that the prediction
of the speaker’s speech content might play an important role
in the Cocktail Party Effect (Dai et al., 2018). In summary, the
human brain’s auditory processing during the Cocktail Party
problem is not hierarchical but heterarchical, which is mainly
a bottom-up process aided by top-down modulation (Bregman,
1994). This includes interactions between different pathways
and adaptations to the environment (Shinn-Cunningham, 2008;
Bizley and Cohen, 2013).

4.2. Computational Models for the Human
Cocktail Party Problem Solution
In the future, we may have moving robots offering food and
drinks in noisy restaurants by precisely localizing speaking
customers. Steps to solve the Cocktail Party problem in computer

science can be mainly separated into: speech separation, sound
localization, speaker identification, and speech recognition. The
aims of acoustic models for the Cocktail Party problem are:
identifying multiple speakers and disentangling each speech
stream from noisy background. Numerous classical acoustic
models are data-driven and based on algorithms of signal
processing (Dávila-Chacón et al., 2018). Those models are robust
and with good accuracy but lack the prior knowledge, biological
plausibility and rely on the large datasets. Currently, models
inspired by the human auditory attention system rely on smaller
datasets and have shown improved adaptation. In this section, we
focus on the following bio-inspired models: (1) computational
auditory scene analysis (CASA): neural oscillator models as
examples; (2) saliency models; (3) top-down- and bottom-up-
based models.

Based on the Gestalt framework (Rock and Palmer, 1990),
the goal of most CASA models is to segregate sounds with
similar patterns or connections and group them into independent
streams from the mixed auditory scene. Stemming from CASA
models, neural oscillator models show good adaptation in
auditory segregation. Neural oscillator models perform stream
segregation based on the oscillatory correlation. Attention
interest is modeled as a Gaussian distribution across the attended
frequency. The attentional leaky integrator (ALI) consists of
the connection weights between oscillators and the attentional
process. The synchronized oscillators activate the ALI to separate
sounds into streams like the endogenous attention mechanism
(Wrigley and Brown, 2004). Furthermore, to make use of
the temporal proximity of sound sources, Wang and Chang
(2008) propose a two-dimensional (time and frequency) network
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FIGURE 4 | Locally Excitatory, Globally Inhibitory Oscillator Network (LEGION)

(adapted from Wang and Terman, 1995).

oscillator model with relaxation oscillators of local excitation
and global inhibition (see Locally Excitatory, Globally Inhibitory
Oscillator Network, LEGION; Wang and Terman, 1995) (see
Figure 4). Analogous to humans’ neural oscillations, the local
excitation mechanism makes oscillators synchronize when they
are stimulated by the same stimuli and the global inhibition has
an effect on the whole network to make oscillators desynchronize
by different stimuli (Dipoppa et al., 2016). In their model, they
use alternating sequences of high- and low-frequency tones
as inputs. Tones with similar patterns (e.g., close frequency,
onset or offset time) tend to be grouped into the same stream.
One stream corresponds to an assembly of synchronized neural
oscillators. The oscillator models mimic the human selective
attentional control and show good adaptation to separate the
multi-tone streams.

The oscillator models try to mimic the endogenous attentional
control while the saliency models try to mimic the exogenous
attention. Similar to visual saliency models (see section 3.2),
auditory saliency models are built by abstracting features
(intensity, frequency contrast, and temporal contrast) from
the sound “intensity image,” which is a visual conversion of
auditory time-frequency spectrograms and normalized to be
an integrated saliency map (Kayser et al., 2005; Kalinli and
Narayanan, 2007) (see Figure 2B). Considering that humans
and other primate animals can process the pure auditory
signals without any visual conversion, Kaya and Elhilali (2012)
modify the auditory saliency model by directly extracting the
multi-dimensional temporal auditory signal features (envelope,
frequency, rate, bandwidth, and pitch) of the auditory scene
as input. Their model relies on the selection of parameters
to reduce error rates of the saliency determination by fewer
features. Several limits exist for developing the auditory saliency
models. Firstly, unlike visual attention, acoustic signals are
distributed across different frequency bands and time windows.
This makes auditory models rely much on temporal features.
There is no apparent physical marker for a person to locate
sounds compared with eye gaze used in visual saliency models.
Secondly, in some cases differences between the saliency of
sound streams are not apparent enough for the auditory saliency

models to discriminate (e.g., separating one girl’s voice from a
group of chatting girls). Therefore, more high-level features or
top-down modulation could be helpful for a model to indicate
the significant sound stream. To integrate both endogenous
and exogenous attention in the model, Morissette and Chartier
(2015) propose a model by extracting frequency, amplitude, and
position as features and connecting them with the oscillator
model LEGION. Segments with consistent features are bound
into the saliency map according to the temporal correlation.
Notably, a module of inhibition-of-return (IOR) is inserted to
inhibit attention from fixing at the most salient scene for a long
time. This mechanism can achieve the attentional shifting and
orientation (Klein, 2000).

Prior knowledge (e.g., memory, prediction, and expectation)
also plays a crucial role in human auditory perception, therefore
several top-down- and bottom-up-based models integrate the
prior knowledge into the data-driven models. Some of them
extract acoustic features of the target sound and store them
in memory-like modules to mimic humans’ long-term memory
function as top-down modulation. Oldoni et al. (2013) combine
a self-organized map (SOM) of the acoustic features in the
bottom-up processing to continuously learn the saliency and
novelty of acoustic features. After training, each SOM unit
matches up with a representative sound prototype. For the
top-down processing, the IOR and LEGION mechanisms are
introduced to shift and select attention, respectively. Xu et al.
(2015) propose an Auditory Selection framework with Attention
and Memory (ASAM). In this model, there is one speech
perceptor extracting the voiceprint of speakers and accumulating
the voiceprint in a lifelong-learning memory module during
the training phase to be the prior knowledge for the model.
Later, the learned voiceprint is used to attend and filter the
target speech from the sound input to achieve the top-down
and bottom-up interaction. The testing performance showed
good robustness and adaptation for both top-down (follow a
specific conversation) and bottom-up (capture the salient sound
or speech) attention tasks.

Shi et al. (2018) propose the Top-Down Auditory model
(TDAA) and use the prediction of the target speaker as the top-
down modulation. Their model contributes to the auditory scene
analysis with multiple unknown speakers. They adopt the Short-
Time Fourier Transformation (STFT) and Bidirectional Long-
Short Term Memory (BiLSTM) to predict the number of the
speakers. Later, the classifier recurrent neural networks (RNN)
separate the most salient speaker and iterate until no more
speakers can be separated to avoid repeated prediction. Finally,
an attention module is used to separate each speaker’s spectrum
from the spectrum mixture. Besides, binaural models are apt to
make use of the spatial localization information to address the
Cocktail Party problem. For instance,Ma et al. (2018) train DNNs
to localize acoustic features in full 360◦ azimuth angles. After
the training phase, the binaural localization with spectral features
is used as prior knowledge in the top-down modulation of the
model. Their model serves to predict the speech with different
localizations under noisy situations with room reverberation. In
summary, those top-down and bottom-up interaction models
incorporate mechanisms of processing in the human auditory
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FIGURE 5 | (A) Human crossmodal integration and attentional control. The black and gray arrows denote the feed-forward bottom-up stimulus saliency processing

and the green arrows denote the top-down modulation of attention. The yellow dashed arrows represent the recurrent adjustment (adapted from Talsma et al., 2010);

(B) Artificial neural networks of crossmodal integration. The crossmodal integration mechanisms are used to realign the input from visual and auditory modalities

(adapted from Parisi et al., 2017, 2018).

system. They selectively attend or shift attention to the target
speech dynamically rather than only focusing on the stream
separation, which can be more adaptive to those uncertain and
complex auditory scenarios.

5. AUDIOVISUAL CROSSMODAL
SELECTIVE ATTENTION

5.1. Behavioral and Neural Mechanisms of
Human Crossmodal Selective Attention
In order to survive in an uncertain and multimodal world,
humans develop the ability to integrate and discriminate
simultaneous signals from multiple sensory modalities, such as
vision, audition, tactile, and olfaction. For example, humans
can make use of visual cues like lip movement and body
gestures to recognize and localize sounds in noisy circumstances.
The crossmodal integration ability is beneficial for humans to
localize and perceive objects but can also cause ambiguity.
Crossmodal conflicts arise when information from different
modalities are incompatible with each other and can result in
failures of the crossmodal integration and object recognition.
To resolve conflicts, selective attention is required to focus
on the task-relevant modality information and to ignore the
interference from irrelevant modalities (Veen and Carter, 2006).
For humans, the capacity for conflict adaptation plays a crucial
role in learning and adapting to the environment. When human
toddlers detect any conflict between the current environment
and their prior knowledge, they will generate curiosity and be
motivated to learn new knowledge or rules (Wu and Miao,
2013). Curiosity is also important for the trial and error
learning of robots (Hafez et al., 2019). In this subsection, we
mainly talk about behavioral and neural mechanisms of selective
attention underlying audiovisual crossmodal integration and
conflict resolution.

First, how and when does a crossmodal conflict occur?
Previous studies proved that humans tend to integrate visual
and auditory stimuli with spatial-temporal linkage into the
same object (Senkowski et al., 2008). The “Unity assumption”
proposes that when humans believe that the multisensory inputs
they perceive are generated from the same source, crossmodal
integration occurs (e.g., when students think the speech they
hear in the lecture room matches the lip movements of the
professor, they believe that the speech is from the professor)
(Roseboom et al., 2013). Besides, prior knowledge and experience
can generate expectation effects to facilitate object recognition
during crossmodal integration. Therefore, when the stimuli from
different modalities are spatially (e.g., ventriloquism effect; Choe
et al., 1975) or temporally incongruent (e.g., double flash illusion;
Roseboom et al., 2013) or contrary to our expectations (e.g.,
see a cat with a “bark” sound), humans perceive crossmodal
conflicts. During the early integration stage, selective attention
plays the role of capturing the salient visual and auditory stimuli
by bottom-up processing. When conflicts are detected, selective
attention executes a top-down modulation from higher-level
semantic representations according to the internal goal and
relevant modalities. The crossmodal information processing is
not only a feed-forward process but also contains backward
feedback and recurrent processes, which are important to
facilitate the primary sensory processing (Talsma et al., 2010;
see Figure 5A).

Second, which modality dominates when humans are
confronted with audiovisual conflicts? Lots of studies have
examined the “ventriloquism effect,” which originally refers to
the strong visual bias during the sound localization (Thurlow
and Jack, 1973; Choe et al., 1975; Warren et al., 1981). Research
findings show that this strong modality bias changes through
the lifespan of a human (Sloutsky, 2003). Compared to toddlers,
adults aremore likely to have visual stimuli preferences (Sloutsky,
2003). Some researchers argue that the ventriloquism effect
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results from an optimal or suboptimal decision-making strategy,
especially when unimodal stimuli are blurred. If the auditory
stimuli are more reliable than the visual stimuli, an auditory
bias occurs as well (Alais and Burr, 2004; Shams and Kim, 2010;
Ma, 2012; Roseboom et al., 2013). To sum up, vision in general
has a higher spatial resolution than audition, whereas audition
has a higher temporal resolution than vision. As the modality
appropriateness hypothesis points out, the information from
one modality dominates according to the temporal or spatial
features of the audiovisual event and themodality with the higher
accuracy (Welch and Warren, 1980).

Third, how do humans resolve crossmodal conflicts? In the
conflict-monitory theory, the module of conflict monitoring
(CM) is activated when conflicts are detected and passes the
signal to the executive control (EC) module to accomplish
the task-related conflict resolution by the top-down attentional
control (Botvinick et al., 2001). From the previous findings,
to perceive crossmodal signals and detect crossmodal conflicts,
selective attention plays the role of gating crossmodal coupling
between sensory function areas in a modality-general fashion
(Eimer and Driver, 2001; Mcdonald et al., 2003; Convento et al.,
2018). However, to solve crossmodal conflicts, selective attention
inclines toward processing in a modality-specific fashion (Yang
et al., 2017; Mengotti et al., 2018).

Except for some specific vision and audition processing
brain areas, the superior colliculus (SC) is a crucial brain
area with multisensory convergence zones from visual and
auditory primary cortices to higher-level multisensory areas.
As it is mentioned in section 3.1, the SC also implements
selective attention by orienting both covert and overt attention
toward the salient stimulus and triggers corresponding motor
outputs (e.g., eye movements, saccades) (Wallace et al., 1998;
Meredith, 2002; Krauzlis et al., 2013). Besides, the superior
temporal sulcus (STS), inferior parietal sulcus (IPS), frontal
cortex (including premotor and ACC), and posterior insula are
involved in the crossmodal processing (for review see Calvert,
2001; Stein and Stanford, 2008). Within the crossmodal brain
functional network, the STS plays the role of linking unimodal
representations (Hertz and Amedi, 2014). The parietal lobe
is thought to process representations of visual, auditory, and
crossmodal spatial attention (Farah et al., 1989). However, when
audiovisual inputs are incongruent, crossmodal attenuations
or deactivations occur (Kuchinsky et al., 2012). To resolve
conflicts, as human fMRI studies have shown, the dorsal anterior
cingulate cortex (dACC) is responsible for dealing with conflicts
between the current goal and irrelevant distractors. The dACC is
positively correlated with attention orientation and interference
suppression (Weissman et al., 2004). Song et al. (2017) conducted
a mice experiment by using a task with audiovisual conflicts,
where audition was required to dominate vision. They found
that when the conflict occurred, the co-activation of the primary
visual and auditory cortices suppressed the response evoked by
vision but maintained the response evoked by audition in the
posterior parietal cortex (PPC).

Electrophysiological studies have shown the existence of
cells that respond to stimulation in more than one modality to
accomplish crossmodal integration and conflict resolution. Diehl

and Romanski (2014) found that neurons in the ventrolateral
prefrontal cortex (VLPFC) of Macaques were bimodal
and nonlinear multisensory. When incongruent faces and
vocalizations were presented, those neurons showed significant
changes with an early suppression and a late enhancement
during the stimulus displaying period. Other experimental
evidence argues that coherent oscillations across different
modality cortices are the key mechanism of the crossmodal
interplay (Wang, 2010). An enhancement of the phase locking
for the short-latency gamma-band activity (GBA) is found for
the attended multisensory stimuli. The early GBA enhancement
enables the amplification and integration of crossmodal task-
relevant inputs (Senkowski et al., 2008). Incongruent crossmodal
inputs cause a stronger gamma-band coherence than congruent
inputs suggesting the involvement of gamma oscillations
decoupling under crossmodal binding (Misselhorn et al.,
2019). Attentional control during the crossmodal integration
and conflict resolution is associated with alpha-band effects
from the frontoparietal attention network rather than primary
sensory cortices. Frontal alpha oscillations are involved in
the top-down perceptual regulation; parietal oscillations are
involved in the intersensory reorientation (Misselhorn et al.,
2019). Reversed to the gamma oscillation patterns, incongruent
conditions showed weaker alpha oscillation changes compared
to congruent conditions. This gamma-alpha oscillation cycle
pattern is proposed to be the information gating mechanism
by inhibiting task-irrelevant regions and selectively routing the
task-relevant regions (Jensen and Mazaheri, 2010; Bonnefond
and Jensen, 2015). In sum, cortical areas that have multimodal
convergence zones accomplish crossmodal integration of
projections from visual and auditory primary cortices. Neural
oscillations coordinate the temporal synchronization between
the visual and auditory modality.

5.2. Computational Models Simulating
Human Crossmodal Selective Attention
In robotics, crossmodal research focuses mainly on multisensory
binding to make robots interact with the environment with
higher robustness and accuracy. Compared with unimodal
information, crossmodal information is more beneficial to
model complex behaviors or achieve high-level functions on
artificial systems, such as object detection (Li et al., 2019),
scene understanding (Aytar et al., 2017), lip reading (Mroueh
et al., 2015; Chung et al., 2017), etc. In psychology, crossmodal
research focuses on how crossmodal information helps humans
to recognize objects or events by integrating multimodal
information and eliminating the crossmodal ambiguity (Calvert,
2001). In computer science, crossmodal research focused on
recognizing one modality by using a multimodal dataset or
making use of the data from one single modality and retrieve
relevant data of other modalities (Skocaj et al., 2012; Wang
et al., 2017). However, compared with unimodal, computational
modelings based on crossmodal attention remains lacking.
In this section, we particularly introduce the undeveloped
computational modeling work on selective attention from the
audiovisual crossmodal perspective.
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Many studies focus on multimodal fusion (Ramachandram
and Taylor, 2017), but research about crossmodal selective
attention in computer science is limited. Parisi et al. conducted a
series of audiovisual crossmodal conflict experiments to explore
human selective attention mechanisms in complex scenarios
(Parisi et al., 2017, 2018; Fu et al., 2018). During human
behavioral tasks, visual and auditory stimuli were presented in
an immersive environment. Four loudspeakers were set behind
the corresponding positions on a 180-degree screen, where
four human-like avatars with visual cues (lip movement or
arm movement) were shown. The visual cue and the sound
localization could be congruent or incongruent (e.g., the left-
most sound with the right-most avatar’s lip movement). During
each trial, human participants were asked to determine where
the sound was coming from. Participants had to pay attention
to the sound localization and suppress the attentional capture
by any visual stimuli. Analyses of human behavior results
showed that even though arm moving was visually more salient
than lip moving, humans had higher error rates of the sound
localization when viewing lip movement. This suggests that lip
moving might contain more speech or semantic information
so it is more difficult to be ignored. Besides, the magnitude
of the visual bias was also significant when the incongruent
AV stimuli were coming from the two avatars at the extreme
right and left sides of the screen. This indicated a wider
integration window than other simplified scenes. Based on
the bio-inspired cortico-collicular architecture, deep and self-
organizing neural networks consisting of visual and auditory
neuron layers and crossmodal neuron layers were used to learn
crossmodal integration and selective attention (see Figure 5B).
In this way, human-like responses were modeled and embedded
in an iCub robot.

The work above shows that computational models can
simulate human selective attention on audiovisual sound
localization and semantic association. Due to the limited
resources and sensory modules, the future exploration of
modeling and simulating the attention module is desirable in
crossmodal robotics. Besides, selective attention mechanisms can
boost the applicability and accuracy of robots in real human-
robot interaction scenarios. Robots can select more reliable
modalities and reduce distraction and errors.

6. CONCLUDING REMARKS AND
OUTSTANDING QUESTIONS

The current review summarizes experimental findings, theories,
and model approaches of audiovisual unimodal and crossmodal
selective attention from psychology, neuroscience, and computer
science perspective. Currently, psychologists and neural scientists
are working toward computational modeling, standardizing,
and replication. In parallel, computer scientists are trying
to design and make agent systems more intelligent with
higher-level cognitive functions, meta-learning abilities, and
lower learning costs. Some advantages, unresolved problems,
and future directions of collaborative research in psychology,
neuroscience, and computer science are summarized as follows:

6.1. How Psychology, Neuroscience, and
Computer Science Benefit From Each
Other
One the one hand, findings and methods from psychology and
neuroscience can interpret and improve models’ performance
(Hohman et al., 2018). For instance, representational similarity
analysis (RSA) is nowadays also used to compare the responses
recorded in fMRIs and artificial systems like deep learning
CNNs. RSA analyzes the similarity of fMRI responses and
brain representations by a set of stimuli (Kriegeskorte et al.,
2008). Dwivedi and Roig (2019) found that RSA shows
good performance on transfer learning and task taxonomy
by computing correlations between the models on certain
tasks. On the other hand, the-state-of-the-art approaches offer
tools to analyze big data of neural findings. For example,
the SyConn framework used deep CNNs and random forest
classifiers to accelerate data analyses on animal brains to compute
the synaptic wiring of brain areas (Dorkenwald et al., 2017).
Another application of computational modeling is examining
theories and interpreting mechanisms in human behaviors or
neural responses (O’Reilly, 2006). The key idea is to examine
crucial cognitive function in hidden layers of the modal.
Models can be built to simulate normal behaviors and then
mimic the “damage” by changing parameters of sub-units. If
the “damage” causes similar abnormal behaviors as psychiatric
patients do, the changed units may be the corresponding
mechanisms to the behaviors. For instance, Wang and Fan
(2007) collected human behavioral data by the ANT and used
leabra (local, error-driven, and associative, biologically realistic
algorithm) model (O’Reilly, 1998) to explore the potential
interaction between each functional network (alerting, orienting,
and executive control). Their model successfully simulated
healthy human behavior. After changing one parameter of
the executive control module, their model could simulate the
behavior of schizophrenic patients, suggesting the crucial role of
executive control.

6.2. Limits Remain in Current
Interdisciplinary Research
Even though we have reviewed and summarized a number of
findings from psychology and computer science, lots of unsolved
issues of attention processing remain to be disclosed. The
simulation work of crossmodal attention and conflict processing
is insufficient on robots. Besides, the problem of perceptual
constancy has not been deeply addressed in computer science.
For humans, it is easy to recognize one object from different
perspectives, such as finding an open door in a dim room.
Moreover, humans can transfer the intrinsic knowledge to learn
and infer new objects or concepts with a small number of learning
samples. However, artificial intelligent systems cannot reach
humans’ performance yet. For example, even though the scale-
invariant feature transform (SIFT) algorithm (Lowe, 1999) can
extract features from variant shapes of the same object, it cannot
recognize the variant objects when only colors exist without any
structural patterns. Current deep learning approaches like the
VGG net (Simonyan and Zisserman, 2015) has shown better
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performance on object recognition than traditional approaches.
However, such deep networks rely on the training dataset and
need substantial computational resources.

6.3. Future Directions for Interdisciplinary
Research
There is a lot of potential for psychologists and computer
scientists to work together to investigate both human cognition
and intelligent systems. On the one hand, psychologists can
focus on designing paradigms to diagnose and remedy shortages
of current models to improve the model accuracy. Besides,
neural studies are still needed to understand human brain
mechanisms better. It will be insightful to develop bio-inspired
computational models with a better interpretability. On the
other hand, for computer science, enhancing the complexity
of models to increase the adaptivity and flexibility to the
environment is required. At last, to balance the computational
complexity and biological plausibility is also crucial, because
humans’ behavioral patterns are limited by their capacity and
energy load, even though the properties of machines will keep
improving. In summary, deepening the understanding of each
processing mechanism rather than only describing phenomena
is the direction for research from both sides to endeavor.
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In perceptual psychology, estimations of visual depth and size under different

spatial layouts have been extensively studied. However, research evidence in virtual

environments (VE) is relatively lacking. The emergence of human-computer interaction

(HCI) and virtual reality (VR) has raised the question of how human operators perform

actions based on the estimation of visual properties in VR, especially when the sensory

cues associated with the same object are conflicting. We report on an experiment in

which participants compared the size of a visual sphere to a haptic sphere, belonging

to the same object in a VE. The sizes from the visual and haptic modalities were

either identical or conflicting (with visual size being larger than haptic size, or vice

versa). We used three standard haptic references (small, medium, and large sizes) and

asked participants to compare the visual sizes with the given reference, by method of

constant stimuli. Results show a dominant functional priority of the visual size perception.

Moreover, observers demonstrated a central tendency effect: over-estimation for smaller

haptic sizes but under-estimation for larger haptic sizes. The results are in-line with

previous studies in real environments (RE). We discuss the current findings in the

framework of adaptation level theory for haptic size reference. This work provides

important implications for the optimal design of human-computer interactions when

integrating 3D visual-haptic information in a VE.

Keywords: visual, haptic, size, force-feedback, perceptual estimation, peripersonal space, virtual reality

1. INTRODUCTION

During daily operation, haptic inputs (including force feedback) to the human body (e.g., hands),
provide a genuine and instant sensory experience for human operators and streamline the intuitive
and natural multisensory interaction. During the interaction, sensory information is transmitted
and distributed between the sender (the operator) and the receiver (real world). With the recently
emergent advances in virtual reality (VR), rich and immersive sensory experiences become possible,
such as through our enhanced perception of audiovisual stimuli (Van der Meijden and Schijven,
2009). However, haptic feedback technology is still relatively under-developed in the quest to
approximate the genuine sense of “reality.” Moreover, it is still a challenge to touch and manipulate
various objects (even with force feedback) in VR as we do in the real world, and psychophysics
measurements in this regard are lacking.

To address this problem, sophisticated haptic displays have been designed. A number of
those displays (Dataglove, 3DS Touch, http://www.3dsystems.com) offer a convincing haptic
sensation in some situations. Stylus-based haptic inputs, externally grounded shape displays
(Follmer et al., 2013; Abtahi and Follmer, 2018), wearable (Katzakis et al., 2017), mid-air
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(McClelland et al., 2017), etc., have an advantage over other
solutions in that they do not require the user to carry a
heavy device or constantly hold a controller (like a joypad)
in their hands. Typically, with the stylus, users can efficiently
explore a virtual object through a single point (corresponding to
a fingertip).

The potentially wide applications of haptic inputs in VR
have been hindered by some practical constraints including
higher cost, limited workspace bounds and most importantly,
an insufficient understanding of the working principles of
crossmodal correspondence between different sensory stimuli
and the multisensory integration during the haptic-feedback
based operation.

This work targets applications, such as immersive
teleoperation (Van der Meijden and Schijven, 2009), in which the
operator is wearing a head-mounted display (HMD) and uses
the haptic device to teleoperate a robotic arm. The workspace of
the haptic device is, from the user’s perspective, different than
the typical (remote) working space in which the operators reach
their arms; It is therefore necessary to transform and map the
sensory properties, such as visual sizes and haptic sizes, and
this raises questions regarding gain between different sensory
properties. To this end, demonstrating how humans perceive
sizes, especially when they are conflicting from different sensory
modalities in peripersonal space, is an important step that must
be made in order to understand how virtual objects or remote
objects should be displayed/rendered in during teleoperations.

2. RELATED WORK

There is a large body of work that has attempted to integrate
haptics in Virtual Reality (Stone, 2001). Another body of
work in virtual and augmented reality has used vision to
guide/manipulate haptic sensations (Punpongsanon et al., 2015;
Katzakis et al., 2017) and thus modulate and even modify the
passively received haptic sensations. In summary, the interaction
between visual stimuli and tactile inputs have been implemented
in different application fields (desktop VR vs. walking with an
HMD), different platforms (Augmented reality vs. Virtual reality)
and different tactile properties (surface vs. stiffness). We detail
some examples below.

Kokubun et al. (2014) conducted experiments to explore
the effect of visuo-haptic interaction of normal and shearing
forces with a rear-touch interface. Their study suggested the
effectiveness of the setup: more than 80% of participants
perceived greater stiffness with the deformed model than
the model without deformation. Ban et al. (2014) proposed
a visuo-haptic system to display various shapes which have
curvature, edges, and inclined surfaces, by using a simple physical
device for transmutation and by exploiting the effect of visuo-
haptic interaction. In their study, they built a transmutative
device, which the user could easily touch. The device does
not undergo significant transformation, but its surface can be
slightly modulated to be bumping in and out, and rendered
various shapes (with various angles, length, and curvature).
Their results suggest that displaying each primitive shape can

help to render more complex objects with subtle transformation
techniques (Ban et al., 2014).

Lecuyer and Burkhardt (2015) evaluated the influence of
the control/display (C/D) ratio on the perception of mass
of manipulated objects in virtual environments (VE). In two
experiments, they asked the participants to identify the heaviest
between two virtual balls. Participants could estimate the weight
of each ball through a haptic interface and at the same time look
at its synthetic display on the screen. Participants did not know
in advance the two parameters between each trial: the difference
of mass between the balls as well as the C/D ratio used in the
visual display when weighing the comparison ball. They found
that the control-display ratio influenced the result of the mass
estimation task and sometimes even reversed it. The absence of
gravity force largely increased this effect. These results suggest
that if the apparent visual motion of a manipulated virtual object
is amplified as compared to the motion of the user’s limb (i.e.,
if the C/D ratio used is smaller than 1.0), the user feels that the
mass of the object decreases. Thus, decreasing or amplifying the
motions of the user in a VE can strongly modify the perception
of haptic properties of objects that are being manipulated. In this
way, designers of virtual environments could use these results to
avoid potential perceptual aberrations when they implement the
relevant tasks (Lecuyer and Burkhardt, 2015).

Following up from the work of Yokokohji et al. (1996),
with a similar paradigm, Abtahi and Follmer (2018) explored
angle redirection, resolution and speed change by modifying the
Control-Display ratio. They demonstrated that it is possible to
redirect up to 40◦ and scale up to 1.8 to increase the resolution of
shape displays.

Matsumoto et al. (2017) proposed a visual and haptic display
system that comprised of a portable passive haptic device and
an HMD. They employed visuo-haptic integration to emulate
a wide range of perceived stiffnesses while at the same time
avoiding mechanical actuators that could make the device bulky
and power-consuming. The user sees his or her own rendered
hand via an HMD with its finger flexion appropriately modified
in relation to presented virtual stiffness. They experimentally
verified that the proposed system could display both a pinchable
elastic ball and a rigid undeformable one (Matsumoto et al.,
2017). The interaction between visual and haptic modalities
has also been implemented in augmented reality (AR). In an
interactive AR environment, Bianchi et al. (2006) explored the
overlay of the computer-generated objects, by providing accurate
haptic feedback from real and virtual deformable objects and
introducing the landmark occlusion on tracking stability during
user interaction.

Recently, Zhao and Follmer (2018) presented an algorithm
for haptic retargeting. The work contributes a spatial warping
approach that allows users of VR to remap objects of arbitrary
shape onto haptic objects. This approach could potentially be
used with force feedback, with haptic devices, such as the 3DS
Touch family of devices. During the visuo-haptic interaction,
there could be multiple semantic mappings. Blanch et al.
(2004) designed two semantic metaphors (sizes): one size for
motor space targeting the importance of manual manipulation
and one size in visual space for the amount of information
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FIGURE 1 | Experiment setup: (a) Participants mounted the Oculus Rift during the experiment, in which (b) virtual objects were rendered inside the haptic workspace

of the haptic device (Geomagic Touch), adjacent to the original location of the haptic device. As illustrated in (c) during the homing phase of the task the user (typified

as a cursor) was superimposed on the haptic stylus hinge center (haptic proxy point). The view through the head mounted display (HMD) is shown in (d) with a

progress bar, a green cursor, a visual stimulus in red, and a response UI with hand cursor (for reference).

being given. Importantly, the decoupling between visual and
motion size was implemented by changing the C/D ratio as a
function of distance of the cursor to nearby targets. By taking
advantage of the independent manipulation of motor and visual
(widget) sizes, traditional graphic user interfaces (GUIs) have
been redesigned.

Visuo-haptic interaction has been recently explored in more
ecological scenarios. In addressing the practical difficulties in
walking and tracking the surrounding environment by wearing
head mounted displays, Nagao et al. (2017) presented “Infinite
Stairs,” in which they simulated haptic feedback by providing
small bumps (reflecting the edge of the steps in the VE) under
the feet of the user, and the visual images of the stairs and
shoes. This system has successfully enabled users to experience
nearly all kinds of virtual stairs with vivid haptic feedback.
The visuo-haptic interaction has been extended in the field of
pedagogy. In teaching STEM (Science, Technology, Engineering,
and Mathematics), learning about nanotechnology has gained
popularity by implementing visuohaptic simulations of point
charges and their interactions. Students in visuohaptic (VH)
groups were more motivated and developed positive attitude
toward learning than their peers in visual-only (V) groups (Park
et al., 2010; Rubio, 2012; Rubio et al., 2018; Yen et al.,
2018).

Finally, Ban et al. (2013) explored altering the shape of an
object with a video-see-through HMD. For all the above cited
visuo-haptic interaction studies in VE, to our best knowledge,
there is no information about how the visuo-haptic mapping
in sizes could be perceived and learned/transferred by using
traditional force feedback haptic devices (3DS Touch family of
devices). This line of research is important since the exploration
of objects’ edges and hence the inference of their sizes (including
both visual size and haptic size) is common during peripersonal
motor actions in our daily life. Moreover, depending on the
complexity of the task at hand, users of VR systems could
use haptic information to pick up objects with different mean
(haptic) sizes when the objects are (partially) occluded. There is
a gap in the literature concerning how human operators adapt
to and resolve potentially conflicting information between visual
size and haptic size and make appropriate perceptual decisions
to execute the right action. The present study aims to bridge
this gap.

3. EXPERIMENT

In this section we describe the material and methods used in
our study.

3.1. Participants
Twenty-five volunteers (age 22–38 years old, M = 28.5, 11
females–14 males) participated in the experiment. Most of the
participants were students or staff members from the local
department. All participants had normal or corrected to normal
vision, and they signed an informed consent form before taking
part in this experiment. None of the participants suffered from
a disorder of equilibrium. The study was approved by the Ethics
committee of Hamburg University.

3.2. Apparatus
Participants sat on a height-adjustable chair and desk (Figure 1a).
We used the adjustable chair to ensure that participants could
maintain their eye level upon the central point of the screen. In
addition, the height of the desk was adjusted so that the haptic
device was gripped comfortably. They mounted an Oculus Rift
Consumer Version 1 HMD (1,080 × 1,200 per eye @90 Hz)
and gripped the stylus of a Geomagic Touch device with their
dominant hand (Figure 1a) while keeping their thumb on the
gray stylus button for submitting responses.

3.3. Stimuli and Task
The objective of the task was to compare the size of a visual sphere
rendered by the Oculus Rift with a sphere rendered by the haptic
device for “feeling” (Figure 1b). A green opaque spherical cursor
was rendered superimposed on the haptic proxy point of the
Geomagic Touch (Figure 1c). When the task started, a homing
position was displayed in the form of a cyan sphere. Participants
had to first dock their cursor into the home position; there was
no time limit for this step. Upon reaching the home position,
both the homing cursor and the user cursor disappeared and
an auditory tone was given (c.f. Video figure). Simultaneously,
the visual stimulus and the haptic stimulus to be compared were
rendered (Visual, rendered in the Oculus Rift, haptic rendered in
the Phantom Omni).

The home position was arranged so that upon stimulus onset,
the stylus was resting on top of the visual and haptic sphere. i.e.,
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FIGURE 2 | Illustration of the task: (A) At the start of a trial, participants were asked to return the cursor to the home position. (B) Once the home position was

reached, the homing sphere and the user cursor vanished, an auditory tone was given to cue the appearance of the visual sphere and the haptic sphere. (C) Users

were free to explore the haptic reference. They were instructed to slide the cursor on the surface and loop/explore around the sphere using the haptic device as many

times as they could but should not beyond 3 s. (D) When the given time period was over, all visual and haptic objects disappeared and a user interface (UI) appeared

to show the options for response (“Visual was smaller” or “Visual was larger”). Participants now controlled the X-Y position of a hand cursor that can be moved around

to make the “Larger/Smaller” two alternative forced (2-AFC) choice.

since participants slightly relaxed their arm upon reaching the
home position, they automatically rested on the surface of the
haptic sphere and were ready to explore.

Upon stimulus onset, participants were instructed to glide
the contact point of the haptic device on the surface of the
haptic sphere and complete revolutions around it during a time
period of 3 s (Figure 2). After 3 s, the visual and haptic stimuli
disappeared and a user interface for making a choice popped up
(Figure 1d). Participants then had to respond whether the visual
stimulus they saw through the Oculus Rift was larger or smaller
than the haptic stimulus they “felt.” Participants controlled a
hand cursor using the stylus and pressed the stylus button to
submit their response (Figure 2). The UI then disappeared, the
cursor was rendered again at the stylus proxy point and the
homing position appeared to guide the participant to the home
position, in preparation for the next trial.

3.4. Variables
The independent variables were haptic reference and gain. The
haptic reference was controlled at three levels—4, 5, and 6 cm
diameter. The gain is the ratio of the diameter of the haptic sphere
relative to the visual sphere. A gain of 1.0 means that the red
sphere seen through the HMD was identical in diameter to the
haptic sphere. A gain of 2.0 means the visual sphere was twice as
large as the haptic sphere etc.

We chose seven gain levels of 0.33, 0.55, 0.77, 1.0, 1.22, 1.44,
and 1.66. These seven gain levels combined with the three haptic
reference levels allow us to conduct a psychometric analysis with
two alternative choice (2-AFC) task. We chose those levels by
considering that the height of the phantom omni workspace
is limited to 12 cm vertically. I.e., 6cm × 1.66 = 9.9cm. I.e.,
Had we made the gain or the haptic reference values larger, the
resulting rendered sphere in the HMD would be larger than the
haptic workspace of the tactile device and therefore impossible
to render. Conversely, the smallest haptic reference level was
4 cm, multiplied by the smallest gain (0.33) results in a visual
sphere of 1.32 cm diameter. Anything smaller than that would
be impossible for participants to glide around and trace using the
haptic stylus proxy point.

In total, participants received a test with 3 haptic reference
levels × 7 gain values × 10 repetitions per level = 210 trials.
All the trials were randomly presented. Before the formal
experiment, participants were allowed to familiarize themselves
with the device and did 15 practice trials. The experiment lasted
∼25 min, including instruction and practice.

4. RESULTS

Data from six participants were discarded due to the random
responses, which are far beyond the 2.5 standard deviations of
the mean, and hence the low quality for the subsequent data
fitting. Responses across seven visual gains, under three levels of
haptic references, were fitted to the psychometric curve using a
logistic function with default parameters (formula 1) (Treutwein
and Strasburger, 1999; Wichmann and Hill, 2001).

f (x) =
1

1+ e−x
(1)

The transitional threshold, that is, the point of subjective
equality (PSE) at which the participant was likely to report the
visual size was larger than the haptic size, was calculated by
estimating 50% of reporting of larger on the fitted curve. The just
noticeable difference (JND), an indicator of the sensitivity of size
discrimination, was calculated as half of the difference between
the lower (25%) and upper (75%) bounds of the thresholds from
the psychometric curve.

The mean PSEs for small, medium, and big haptic size
references were 3.24 (SE = 0.15), 5.31 (SE = 0.15), and 6.86
(SE = 0.22) (Supplementary Table 1). Repeated measures of
ANOVA showed a main effect of the reference haptic size,
F(2, 36) = 201.47, p < 0.001, eta = 0.918. Bonferroni corrected
comparisons showed significant differences among the three
PSEs, p < 0.001. A one-sample T-test showed that for the
medium reference (size = 5 cm), t(18) = 2.018, p = 0.059.
However, participants over-estimated the visual size in small
haptic size reference, t(18) = −5.118, p < 0.001. They under-
estimated the visual sizes for the large haptic size reference,
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FIGURE 3 | A plot of the psychometric curves.

TABLE 1 | Listing of PSE per haptic sphere reference size.

PSE SE

Small 3.24 0.167

Medium 5.31 0.15

Large 6.86 0.22

t(18) = 3.948, p = 0.001. The resulting pattern shows a central
tendency effect (Figure 3). The mean PSEs for small, medium,
and large references are listed in the following table (Table 1, plot
in Figure 3).

For the JNDs, mean JNDs for small, medium, and big haptic
size references were 0.94 (SE = 0.11), 1.12 (SE = 0.08), and 1.15
(SE = 0.08), repeated measures of ANOVA showed a main effect
of the “reference,” F(2, 36) = 3.612, p = 0.037, eta = 0.167.

5. DISCUSSION

In the present experiment, participants explored and compared
the visual and haptic sizes in the peripersonal space with
cues from the real world and the VE. The sizes from
two modalities were either congruent or conflicting (but
with different disparities). The difficulties of the tasks
under three tactile size references were controlled well,
since the JNDs were statistically the same for the given
three conditions.

Results show a dominant functional priority of the visual
size perception. In general, a one sample T-test showed that the
obtained PSEs under three haptic conditions were smaller than
the corresponding reference sizes (4, 5, and 6 cm, respectively,

ps < 0.001). Therefore, participants tended to judge the visual
sizes as larger than the haptic sizes, even though they were
physically the same. This finding provides novel implications for
the design of perceptually realistic visuo-haptic interactions in
the peripersonal space.

Moreover, in the context of the general under-estimation
perceptions, participants demonstrated a typical central tendency
effect: over-estimation for the smaller haptic size but under-
estimation for the larger haptic size (Watson, 1957; Thomas
et al., 1974; Newlin et al., 1978; Mehrdad and Michael, 2010;
Karaminis et al., 2016). Those results could be accounted
for in a framework of adaptation level (theory) for haptic
size reference during human-computer/machine interaction.
Adaptation level theory states that the perceptual discrimination
of the comparison properties (here we designated them as visual
sizes) with the target properties (haptic sizes), is dependent
both on the discrepancies between the two sensory stimuli,
and the mean property (of standard stimuli) being introduced.
Put in another way, for the given medium size of haptic
reference (5 cm in diameter), human observers have consistently
demonstrated the central tendency effect and under-estimation
of the haptic sizes, compared with the physically same visual
sizes. Experiments with a single mean reference are common
in the literature. However, in the current study, the setup
with two additional references (4 and 6 cm on both ends),
has magnified the differences of perceived haptic sizes on
the two ends compared to the 5 cm reference condition.
Therefore, participants could, to some degree, change their
perceptual discriminations by adapting to different levels of
the mean properties (small, medium, and large sizes) of the
standard stimuli (Helson, 1959, 1964; Eysenck, 1966). This
effect has also been shown in other distance perception
experiments in VR, in which under-estimation has been found
for larger distances, whereas over-estimation has been found for
shorter distances.

With that said, there are several potential limitations in this
study. We did not collect baseline data, i.e., the judgments of
visual sizes and haptic sizes separately across the individuals.
Therefore, currently we are not able to implement a cue-
combination Bayesian model to quantitatively account for the
current findings, as previous studies have done, including Ernst
and Banks (2002). For future studies, we could record the grip
apertures when participants compared the sizes between the
visual and haptic stimuli, to reveal the temporal dynamics when
human operators implement goal-directed action in the presence
of conflicting perceptual information.

6. CONCLUSION

We studied estimations between visual and haptic sizes when
humans actively explore targets and execute certain actions
(such as docking based on size information) in peripersonal
space and in a virtual environment. Similar to previous
studies, we observed spatial dominance of visual size over
haptic size (with general over-estimation of visual sizes)
when the information is conflicting. Moreover, across the
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spectrum of haptic sizes for references, human operators
demonstrated a typical central tendency effect. We found
that our participants over-estimate the visual size when the
haptic reference is smaller but under-estimate the visual size
when the object haptic reference is larger. This flexibility
and adaptivity helps us optimize our actions during human-
computer/machine interaction, especially when we primarily
rely on different levels of mean sensory properties (including
sizes) for perceptual decisions and subsequent action planning
and execution.

These results provide interesting implications for the design
of perceptually-inspired visuo-haptic interactions in fields
related to redirected touching, haptic retargeting due to the
changes of visual gain (with respect to haptic properties),
as well as passive haptic feedback. For further empirical
studies, we plan to simulate more complex scenarios which
take into consideration of the combinations of multiple
visual/haptic properties, such as size, depth and stiffness
of the materials, and examine how the weightings of each
dimension evolve during the teleoperation in a VE. In addition,
in current settings, we did not investigate spatio-temporal
bindings during operation. For potential further studies, we
could purposely inject time delay (to mimic transmission
latency) of given sensory events during the binding of visual
and haptic properties across different visual eccentricities,
and discover/measure the efficiency of human performance
in VE.
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Similar to specific natural language instructions, intention-related natural language

queries also play an essential role in our daily life communication. Inspired by the

psychology term “affordance” and its applications in Human-Robot interaction, we

propose an object affordance-based natural language visual grounding architecture

to ground intention-related natural language queries. Formally, we first present an

attention-based multi-visual features fusion network to detect object affordances from

RGB images. While fusing deep visual features extracted from a pre-trained CNN

model with deep texture features encoded by a deep texture encoding network, the

presented object affordance detection network takes into account the interaction of the

multi-visual features, and reserves the complementary nature of the different features

by integrating attention weights learned from sparse representations of the multi-visual

features. We train and validate the attention-based object affordance recognition network

on a self-built dataset in which a large number of images originate from MSCOCO and

ImageNet. Moreover, we introduce an intention semantic extraction module to extract

intention semantics from intention-related natural language queries. Finally, we ground

intention-related natural language queries by integrating the detected object affordances

with the extracted intention semantics. We conduct extensive experiments to validate the

performance of the object affordance detection network and the intention-related natural

language queries grounding architecture.

Keywords: intention-related natural language grounding, object affordance detection, intention semantic

extraction, multi-visual features, attention-based dynamic fusion

1. INTRODUCTION

Human beings live in a multi-modal environment, where natural language and vision are the
dominant channels for communication and perception. Naturally, we would like to develop
intelligent agents with the ability to communicate and perceive their working scenarios as humans
do. Natural language processing, computer vision, and the interplay between them are involved in
the tasks for grounding natural language queries in working scenarios.
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We often refer to objects in the environment when we have
a pragmatic interaction with others, and we have the ability
to comprehend specific and intention-related natural language
queries in a wide range of practical applications. For instance, we
can locate the target object “remote controller” according to the
given specific natural language instruction “give me the remote
controller next to the TV,” and we also can infer the intended
“drinkware” from the intention-related query “I am thirsty, I
want to drink some water.”

Cognitive psychologist Don Norman discussed affordance
from the design perspective so that the function of objects could
be easily perceived. He argued that affordance refers to the
fundamental properties of an object and determines how the
object could possibly be used (Norman, 1988). According to
Norman’s viewpoint, drinks afford drinking, foods afford eating,
and readings, such as text documents are for reading.

When new objects come into our sight in our daily life, we
can infer their function according to multiple visual properties,
such as shape, size, color, texture, and material. The capacity to
infer functional aspects of objects or object affordance is crucial
for us to describe and categorize objects more easily. Moreover,
affordance is widely used in different tasks to boost their model’s
performance, such as Celikkanat et al. (2015) demonstrate
affordance can improve the quality of natural human-robot
interaction (HRI), Yu et al. (2015) integrate affordance to
improve human intentions understanding in different time
period, Thermos et al. (2017) fuse visual features and affordance
to improve robustness for sensorimotor object recognition, Mi
et al. (2019) utilize affordance to prompt a robot to understand
human spoken instructions.

Following Norman’s standpoint, we generalize 10 affordances
[calling, drinking(I), drinking(II), eating(I), eating(II), playing,
reading, writing, cleaning, and cooking] for objects that are
commonly used in indoor environments. Although drinkware
and drinks can be used for drinking, drinkware affords different
function to drinks, i.e., the affordance of drinkware is different
from drinks. The same situation also exists between foods and
eating utensils. Therefore, we utilize drinking(I) for denoting
the affordance of drinkware, drinking(II) for drinks, eating(I) for
eating utensils, and eating(II) for foods, respectively.

Moreover, multiple features can improve model
performance to recognize objects. The texture features can
be Supplementary Information for the visual representation
of partially occluded objects. And according to Song et al.
(2015), the local texture features can enhance the object grasping
estimation performance. Motivated by the complementary
nature of the multiple features, we adopt multi-visual features,
the deep visual features extracted from a pretrained CNN and
the deep texture features encoded by a deep texture encoding
network, to learn object affordances. The primary issue of fusing
multi-visual features is that the fusion scheme should preserve
the complementary nature of the features. Fusing different
features through naive concatenation may fail to learn the
relevance of multi-features, bring about redundancies and may
lead to overfitting during the training period. Consequently,
in order to reserve the complementary nature of multi-visual
features in the process of affordance learning, we take advantage

of the interaction information between the multi-visual features,
and integrate an attention network with the interaction
information to fuse the multi-visual features.

Besides, inspired by the role of affordance and its applications
in HRI and in order to enable robots to understand intention-
related natural language instructions, we attempt to ground
intention-related natural language queries via object affordance.
In this work, we decompose the intention-related natural
language grounding into three subtasks: (1) detect affordance of
objects in working scenarios; (2) extract intention semantics from
intention-related natural language queries; (3) ground target
objects by integrating the detected affordances with the extracted
intention semantics. In other words, we ground intention-related
natural language queries via object affordance detection and
intention semantic extraction.

In summary, we propose an intention-related natural
language grounding architecture which is composed of an object
affordance detection network, an intention semantic extraction
module, and a target object grounding module. Moreover, we
conduct extensive experiments to validate the performance
of the introduced object affordance detection network and
the intention-related natural language grounding architecture.
We also implement target object grounding and grasping
experiments on a robotic platform to evaluate the introduced
intention-related natural language grounding architecture.

2. RELATED WORK

2.1. Natural Language Grounding
Natural language grounding requires a comprehensive
understanding of natural language expressions and images,
and aims to locate the most related objects within images.
Multiple approaches are proposed to address natural language
grounding. Yu et al. (2016) introduce referring expression
grounding which grounds referring expressions within given
images via joint learning the region visual feature and the
semantics embedded in referring expressions. Chen et al. (2017)
present phrase grounding which aims to locate referred targets
by corresponding phrases in natural language queries. These
approaches need large datasets to train models to achieve natural
language grounding.

Natural language grounding also attracts great interest in
robotics. Thomason et al. (2017) apply opportunistic active
learning to ground natural language in the home and office
environment, and the presented model needs to ask human
users “inquisitive” questions to locate target objects. Shridhar and
Hsu (2018) employ expressions generated by a captioning model
(Johnson et al., 2016), gestures, and a dialog system to ground
targets. Ahn et al. (2018) utilize position maps generated by the
hourglass network (Newell et al., 2016) and a question generation
module to infer referred objects. Thomason et al. (2019) translate
spoken language instructions into robot action commands and
uses clarification conversations with human users to ground
targets. However, conversation and dialog systems make HRI
time-consuming and cumbersome.

Other work presents non-dialog methods to ground natural
language queries. Bastianelli et al. (2016) utilize features extracted
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from semantic maps and spatial relationships between objects
within the working environment to locate the targets for spoken
language-based HRI. Alomari et al. (2017) locate target objects by
learning to extract concepts of objects and building the mapping
between the concepts and natural language commands. Paul
et al. (2018) parse hierarchical abstract and concrete factors
from natural language commands and adopts an approximate
inference procedure to ground targets within working scenarios.
Roesler et al. (2019) employ cross-situational learning to
ground unknown synonymous objects and actions, and the
introduced method utilizes different word representations to
identify synonymous words and grounds targets according to the
geometric characteristics of targets. These methods are proposed
to ground natural language commands which embed specific
target objects.

Different from the above mentioned approaches, we attempt
to address intention-related natural language queries grounding
without dialogs between human users and other auxiliary
information. To this end, we draw support from object affordance
to ground intention-related natural language instructions.

2.2. Object Affordance
Existing work utilizes multiple approaches to infer object
affordances. Sun et al. (2014) predict object affordances
through human demonstration, Kim and Sukhatme (2014)
deduce affordance through extracted geometric features from
point cloud segments, Zhu et al. (2014) reason affordance
through querying the visual attributes, physical attributes, and
categorical characteristics of objects in a pre-built knowledge
base. Myers et al. (2015) perceive affordance from local shape and
geometry primitives of objects. These methods adopted visual
characteristics or geometric features to infer object affordances,
so the scalability and flexibility of these approaches are limited.

Several recently published methods adopted deep learning-
based approaches to detect object affordance. Dehban et al.
(2016) propose a denoising auto-encoder to actively learn
the affordances of objects and tools through observing the
consequences of actions performed on objects and tools. Roy
and Todorovic (2016) use a multi-scale CNN to extract mid-
level visual features and combines them to segment affordances
from RGB images. Unlike (Roy and Todorovic, 2016), Sawatzky
et al. (2017) regard affordance perception as semantic image
segmentation and adopts a deep CNN based architecture to
segment affordances from weakly labeled images. Nguyen et al.
(2016) extract deep features from a CNN model and apply an
encoder-decoder architecture to detect affordances for object
parts. Mi et al. (2019) utilize deep features extracted from
different convolutional layers of pretrained CNN model to
recognize object affordances, Nguyen et al. (2017) apply an object
detector, CNN and dense conditional random fields to detect
object affordance from RGB images.

The aforementioned work utilized geometric features or
deep features extracted from a pretrained CNN to infer object
affordance, and did not take into consideration that the features
from another source can be applied to improve affordance
recognition accuracy. Rendle (2010) propose Factorization
Machines (FM), which can model interactions between different

features via factorized parameters and has the capability to
assess the interactions from sparse data. And (Bahdanau
et al., 2015) initially present attention mechanisms to acquire
different weights for different parts of input features, and can
automatically search the most relevant parts to acquire better
results from source features.

Inspired by Rendle (2010) and Bahdanau et al. (2015), we
propose an attention-based architecture to fuse deep visual
features with deep texture features through an attention network.
The introduced fusion architecture takes sparse representations
of the multi-visual features as input and achieves attention-based
dynamic fusion for learning object affordances.

3. ARCHITECTURE OVERVIEW

Similar to specific natural language instructions, intention-
related natural language queries are also a crucial component
in our daily communication. Given an intention-related natural
language command, such as “I am hungry, I want to eat
something,” and a working scenario which is composed of
multiple household objects, the objective of intention-related
natural language grounding is to locate the most related object
“food” within the working scenario.

In order to ground intention-related natural language queries,
we propose an architecture as shown in Figure 1. In this work,
we formulate the proposed intention-related natural language
grounding architecture into three sub-modules: (1) an object
affordance detection network detects object affordance from
RGB images; (2) an intention semantic extraction module
extracts semantic word from intention-related natural language
instructions; (3) a target object grounding module locates
intended target objects by integrating the detected object
affordances with the extracted intention semantic words.

We illustrate the details of the object affordance detection
in section 4, we introduce the intention semantic extraction in
section 5, and we describe the target object grounding module
in section 6. Moreover, we give the details of the experiments
conducted to validate the performance of the object affordance
detection network and the intention-related natural language
grounding architecture, and outline the acquired results in
section 7.

4. OBJECT AFFORDANCE DETECTION

Following Norman’s viewpoint, we generalize ten affordances for
ordinary household objects, and we present an attention-based
multi-visual features fusion architecture, which can be trained
end-to-end, to learn the affordances. Figure 2 illustrates the
details of the proposed multi-visual features fusion architecture.
The presented architecture is composed of a Region of Interest
(RoI) detection network (RetinaNet), a deep features extraction
module, an attention network, an attention-based dynamic
fusion module, and an MLP (Multi-Layer Perceptron). We adopt
two different deep networks to extract multi-visual features, the
attention network is employed to generate dynamic attention
weights through the sparse representations of the extracted
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FIGURE 1 | Architecture of the intention-related natural language grounding via object affordance detection and intention semantic extraction. The object affordance

detection network detects object affordance from RGB images. The intention semantic extraction module calculates the different weights of each word in given natural

language queries and extracts the intention semantic word. The grounding module locates target objects by combining the outputs of the object affordance detection

network and the intention semantic extraction module.

features, while the dynamic fusion module fuses the multi-
visual features by integrating them with the generated attention
weights, and the MLP is applied to learn the object affordances.
In this section, we introduce the details of each component of the
proposed architecture.

4.1. Deep Features Extraction
4.1.1. Deep Visual Feature Extraction
RetinaNet (Lin et al., 2020) acquires better detection accuracy on
MSCOCO (Lin et al., 2014) than the all state-of-the-art two-stage
detectors. Considering the performance of RetinaNet, we adopt
RetinaNet to generate RoIs from raw images. The deep visual
feature fv is extracted by a pretrained CNN for each RoI IR:

fv = CNN(IR) (1)

where fv ∈ R
m×n×dv , m×n denotes the size of the extracted deep

features, dv is the output dimension of the CNN layer. In order
to improve learning dynamics and reducing training time, we use
L2 normalization to process the extracted deep visual features.

4.1.2. Deep Texture Feature Extraction
Multiple presented texture recognition networks can be used
to encode texture features, e.g., Cimpoi et al. (2015) generates
texture features through Fisher Vector pooling of a pretrained
CNN filter bank, Zhang et al. (2017) proposes a texture
encoding network for material and texture recognition, the
texture encoding network encodes the deep texture features
through a texture encoding layer which is integrated on top
of convolutional layers and is capable of transferring CNNs
from object recognition to texture and material recognition.
Furthermore, the texture encoding network achieves state-of-
the-art performance on the material dataset MINC2500 (Bell
et al., 2015). Due to the good performance of the texture encoding
network introduced in Zhang et al. (2017), we select it to encode

the texture feature for each detected RoI and convert the texture
feature to vector vt :

vt = TexNet(IR) (2)

where vt ∈ R
1×dt , dt is the output size of the texture

encoding network.
We also apply L2 normalization to process each texture vector

vt . For modeling convenience, we utilize a single perceptron
which is comprised of a linear layer and a tanh layer to transform
vT into a new vector:

v̂t = tanh(Wvt + b) (3)

where v̂t ∈ R
1×dl ,W is a weight matrix and b is a bias vector for

the linear layer, and dl is the dimension of the linear layer. From
Ben-Younes et al. (2017) and the experimental results, hyperbolic
tangent produces slightly better results.

For fusing convenience, we adopt the tile operation to expand
the texture vector v̂t to generate the deep texture representation
ft which has the same dimension with the deep visual feature fv,
i.e., the generated ft ∈ R

m×n×dv .

4.2. Attention-Based Multi-Visual Features
Dynamic Fusion
Factorization Machines (FM) were proposed for
recommendation system (Rendle, 2010), and aimed at solving
the problem of feature interactions under large-scale sparse
data. Given a feature vector list, FM predicts the target through
modeling all interactions between each pair of features:

ŷ(x) = w0 +

t∑

i=1

wixi +

t∑

i=1

t∑

j=i+1

ŵijxixj (4)
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FIGURE 2 | Architectural diagram of the object affordance detection via attention-based multi-visual features fusion. The RetinaNet is adopted to detect RoIs from

raw images, and then for each detected RoI, the deep visual features and deep texture features are extracted by a pretrained CNN and a texture encoding network,

respectively. In order to reserve the complementary nature of the different features and avoid causing redundancies during the multi-visual features fusion, an

attention-based fusion mechanism is applied to fuse the multi-visual features. Through the attention-based fusion, the fused features are fed into an MLP to learn

object affordances.

where w0 ∈ R is the global bias, xi and xj denote the i-th and j-th
feature in the given feature list, wi ∈ R

t represents the weight of
the i-th feature, ŵij models the interaction between the i-th and
j-th feature and is calculated by:

ŵij = vTi vj (5)

where vi, vj ∈ R
s are the sparse representations of xi and xj,

i.e., embedding vectors for the non-zero elements of xi and xj,
s denotes the dimension of the embedding vectors.

In light of the FM, the ŵij comprises the interaction
information of different features, and should be represented by
the sparse non-zero elements of the different features. Formally,
we extract the non-zero element set from fv and vt , and adopt an
embedding layer to acquire the sparse representations ev for fv
and et for vt , respectively. We calculate the interacting matrix kvt
which embeds the interaction information between fv and vt by:

kvt = eTv et (6)

where kvt∈ R
p×p, ev and et ∈ R

1×p, p denotes the output size of
the embedding layer.

In order to avoid causing information redundancies during
features fusion, we integrate the attention mechanism with
kvt to complete feature fusion. By learning attention weights,
the attention mechanism endows the model with the ability
to emphasize the different weights of the multi-visual features
during learning affordance. The attention weights can be
parameterized by an attention network which is composed of an
MLP and a softmax layer. The input of the attention network
is the interacting matrix kvt , the generated weight encodes

the interaction information between the different features. The
attention weights τatt can be acquired by:

τatt =
exp(Avt)∑
exp(Avt)

(7)

and

Avt = αT tanh(Wattkvt + batt) (8)

where τatt ∈ R
1×p, Watt , batt , and α are weight matrices,

bias vector and model parameters for the attention network,
respectively.

By means of the learned τatt , we fuse fv and ft to produce the
fused feature ffuse to learn object affordances. The fused feature
ffuse is generated by:

ffuse = (1− τatt)fv ⊕ (τatt)ft (9)

where ffuse ∈ R
m×n×d, ⊕ denotes concatenation. Figure 3 shows

the details of the attention-based multi-visual features fusion.

5. INTENTION SEMANTIC EXTRACTION

Each word plays a different role in representing the semantic
of natural language expressions, so we argue that each word
should have different weights in natural language queries to
ground target objects. In order to acquire the different weights,
we propose a self-attentive network to calculate the weight of each
word in natural language queries.We acquire the weights in three
steps. First, given a natural language sentence S, we tokenize S
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FIGURE 3 | Attention-based multi-visual features fusion network. The feature embedding layers process the sparse representations of the deep visual feature and the

deep texture feature, and the outputs of the feature embedding layers are applied to generate the interaction information of the multi-visual features. Subsequently, the

interaction information is fed into the attention network to acquire the attention weights, which are adopted to complete attention based dynamic fusion.

into words by NLTK (Perkins, 2010) toolkit, i.e., S = s1, s2, . . . , sn,
i ∈ (1, n), n denotes the word number of S. Moreover, the lexical
category of each tokenized word si is generated by a POS-tagger
(part of speech tagger) of NLTK.

Second, we adopt GloVe (Pennington et al., 2014) to transfer
si into a 300-D vector ri as word representation, ri ∈ R

1×300.
These word representation vectors are concatenated as the
representation of the sentence, i.e., R = (r1, r2, . . . , rn), R ∈

R
n×300. We then feed the generated sentence representation R

into the self-attentive network to calculate the weight of each
word. The self-attentive network adopts an attention mechanism
over the hidden vector of a BiLSTM to generate a weight score αi

for si. The self-attentive network is defined as:

ht = BiLSTM(R)

ui = tanh(Wht + b)

αi =
exp(ut)∑
t exp(ut)

(10)

where ht represents the hidden vector of the BiLSTM, ui is
the transformation vector generated by an MLP with learnable
weight matrix W and bias vector b. In practice, we adopt the
weight trained on the supervised data of the Stanford Natural
Language Inference dataset (Conneau et al., 2017) to be the initial
weight of the BiLSTM in the self-attentive network.

Finally, the sentence S is re-ordered according to the acquired
αi, the verb with the largest weight is selected to present
the semantic of intention-related instruction, and the selected
verb is fed into the grounding module to complete target
object grounding.

6. TARGET OBJECT GROUNDING

An essential step to achieve intention-related natural language
grounding is to build the mapping between the detected
affordances and the extracted intention semantic words. Inspired
by the Latent Semantic Analysis (LSA) which is used to measure

the similarity of words and text documents meaning, we propose
a semantic metric measuring based approach to build the
mapping between the detected affordances and the intention-
related natural language queries.

We first transfer the extracted intention semantic word and
the detected affordances into 300-D vectors by GloVe, and then
calculate the word semantic similarity between them to achieve
target grounding. Formally, we transform the extracted intention
semantic word to vector vsem ∈ R

1×300, and also transfer the
detected affordances into vectors vaff ,i ∈ R

1×300, i ∈ (1,N),
where N denotes the number of detected object affordances. We
calculate the semantic similarity between them by:

Sim(vsem, vaff ,i) =
vsem · vaff ,i

‖vsem‖2 · ‖vaff ,i‖2
(11)

where ‖ · ‖2 denotes L2 normalization operation.
The object with the largest semantic similarity value of the

intention semantic-affordance pair is selected as target. Through
the semantic similarity calculation, the extracted intention
semantics are mapped into the corresponding human-centered
object affordance.

7. EXPERIMENTS AND RESULTS

7.1. Object Affordance Detection
7.1.1. Dataset
In MSCOCO (Lin et al., 2014) and ImageNet (Russakovsky
et al., 2015), there are only a few indoor scenes and few
objects associated with the introduced ten affordances. Therefore,
we create a dataset to train and evaluate the proposed object
affordance recognition architecture. The proposed dataset1 is
composed of images collected by a Kinect V2 sensor and indoor
scenes from MSCOCO and ImageNet.

The dataset contains in total of 12,349 RGB images and 14,695
bounding box annotations for object affordance detection (in

1https://tams.informatik.uni-hamburg.de/research/datasets/index.php
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FIGURE 4 | Example images from the proposed dataset. (Top) Images from MSCOCO. (Middle) Images from ImageNet. (Bottom) Images taken by Kinect V2.

which 3,378 annotations are from MSCOCO and ImageNet).
We randomly select 56.1% regions (8,250) from the dataset for
training, 22.1% regions (3,253) for validation, and the remaining
21.8% regions (3,192) for testing. Figure 4 shows some example
images from the proposed dataset.

As mentioned above, we generalize ten affordances that are
related to ordinary household objects. Figure 5 illustrates the
affordance distribution in the presented dataset. There are few
writing and cleaning objects included in the images in the
MSCOCO and ImageNet dataset, so we collect a large portion
of the two categories images by a Kinect sensor.

7.1.2. Experimental Setup and Results
We utilize the available source2 which is an implementation
of RetinaNet (Lin et al., 2020) and select ResNet 50 to be the
backbone to detect RoIs from RGB images. We extract the deep
visual features from the last pooling layer of VGG19 (Simonyan
and Zisserman, 2014) trained on Imagenet (Russakovsky et al.,
2015) for each detected RoI. To produce a length-uniformed
feature map for RoIs with different size, we rescaled the detected
RoIs to 224 × 224 pixels. Accordingly, the dimension of the
extracted deep visual feature for each RoI is 7 × 7 × 512, i.e.,
fv ∈ R

7× 7× 512.
We adopt the deep texture encoding network (Zhang et al.,

2017) trained on the material database MINC2500 to generate
deep texture representations. We extract the texture features

2https://github.com/fizyr/keras-retinanet

FIGURE 5 | The affordance distribution in the presented dataset. Y-axis

denotes the region number of each affordance.

from the texture encoding layer for RoIs. The output size of the
texture encoding layer is 32 × 128, so the dimension of vt is 1
× 4,096. We set the output size of the single perceptron dl =
512, therefore, the dimension of the transformed texture vector
v̂t is 1 × 512. Through the tile operation, the dimension of the
generated deep texture representation ft ∈ R

7× 7× 512.
For modeling convenience, we set the size of the embedding

layer to p = 512, the generated sparse representation for the deep
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visual feature and the deep texture feature, ev and et , are vectors
with the dimension of 1 × 512, and the dimension of produced
interacted matrix kvt ∈ R

512× 512. We tile the produced kvt and

FIGURE 6 | Generated confusion matrix of object affordance detection on the

test set.

feed it into the attention network, so the size of the generated
attention weights τatt ∈ R

1× 512. Through the attention weights
based dynamic fusion, the dimension of each produced fused
feature ffuse is 7× 7× 1,024, i.e., ffuse ∈ R

7× 7× 1,024.
The fused features are fed into the MLP to learn affordances.

The parameters of the MLP include: Cross Entropy loss function,
Rectified Linear Unit (ReLU) activation function, and Adam
optimizer. The structure of the MLP is 50176-4096-1024-10.
In practice, we adopt the standard error back-propagation
algorithm to train the model. We set the learning rate to 0.0001
and batch size to 32, and to prevent overfitting, we employ
dropout to randomly drop 50% neurons during training.

We train the architecture in PyTorch. After 100 epochs
training, the proposed network acquires 61.38% average accuracy
on the test set. Figure 6 shows the confusion matrix of the
acquired results by the presented network.

From Figure 6, the affordances writing, cleaning, and cooking
have relative low accuracy compared to the other affordances.
The shapes and textures of the selected objects in the three
categories are significantly different from each other. Therefore,
we deduce the primary cause that lead to the low accuracy of the
three affordances is the great shape and texture differences, so
that the similarities between the deep features in one category
are difficult to generalize and learn. Figure 7 shows some
acquired example results of object affordance detection on the
test set.

FIGURE 7 | Example results of object affordance detection on the test dataset. Raw images are collected from MSCOCO and ImageNet, used with permission.
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7.1.3. Ablation Study and Comparison Experiments
Except validating the attention-basedmulti-visual features fusion
network on the presented dataset, we also adopt different features
fusion approach and utilize different networks to compare the
detection accuracy.

VGG19 Deep Features: In order to verify the effectiveness of
the multi-visual features fusion for object affordances learning,
we compare the results generated by the attention-base fusion
network with a model trained by the deep visual features
extracted from VGG 19. In this case, the deep features with
shape of 7 × 7 × 512 are fed into an MLP with structure of

25088-4096-1024-10 to learn the affordances. After 100 epochs
training, the generated model acquires 55.54% on the test set.

Naive Concatenation: For validating the performance of
attention-based fusion scheme, we adopt naive concatenation
to concatenate the deep visual features and the deep texture
features to generate the fused representations of the multi-visual
features. The concatenated features are with the shape of 7 × 7
× 1,024 and are fed into the MLP which has the same structure
in the multi-visual fusion architecture to recognize affordances.
After 100 epochs, the generated model acquires 58.21% on the
test set.

TABLE 1 | Object affordance detection results acquired by different networks, deep features and feature fusion method.

Attention multi-visual

features fusion

VGG deep features Naive concatenation RetinaNet YOLO V3

calling 0.9036 0.9096 0.8723 0.7747 0.5783

drinkingI 0.8991 0.7785 0.8195 0.7806 0.4771

eatingII 0.7943 0.7658 0.7569 0.6829 0.5696

playing 0.5676 0.4791 0.5305 0.8305 0.7871

reading 0.5148 0.4938 0.5297 0.6424 0.652

writing 0.2995 0.2028 0.286 0.2628 0.2028

cleaning 0.1875 0.1625 0.175 0.375 0.3327

drinkingII 0.7838 0.7627 0.7248 0.6128 0.5824

eatingI 0.8162 0.7103 0.7049 0.6738 0.4837

cooking 0.3719 0.2893 0.4214 0.2562 0.2968

Average 0.6138 0.5554 0.5821 0.5892 0.4963

The bold value of each row is the acquired best accuracy of each affordance.

FIGURE 8 | Example results of intention-related natural language query grounding. The first row lists example results of object affordance detection. The bar charts in

the second row show the different weights of each word in given natural language instructions acquired by the intention semantic extraction module. <s> and </s>

represent the beginning of sentence token and the end of sentence token, respectively. The third row includes the natural language queries, and the extracted

intention semantic words are covered with the corresponding color of the detected affordances.
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FIGURE 9 | Example results of spoken natural language query groundings, point cloud segmentation, and learned target object grasping poses. The rectangles in the

first row list the natural language queries, and the extracted intention semantic words are covered with corresponding color. The second row shows the results of the

target object groundings. The images in the third row are point cloud segmentation by combining the bounding box values of grounded targets and the depth data

acquired by a Kinect camera, and the red point clouds are the segmentations of the grounded target objects. The images in the fourth row show the grasping

scenarios in MoveIt, the red grippers represent the learned best grasping poses.

RetinaNet: We directly train the RetinaNet (Lin et al.,
2020) (available source2) on the proposed dataset. For a fair
comparison, the backbone also utilizes ResNet 50. After 100
epochs training, the generated model obtains 58.92% average
accuracy on the test set.

YOLO V3: We also adopt the original pretrained weights to
train YOLO V3 (Redmon and Farhadi, 2018) (available code3)
on the dataset. After 100 epochs training, the YOLO V3 model
obtain 49.63% average accuracy on the test set. Table 1 lists
the results acquired by these different networks, different deep
features, and different feature fusion approach.

From the experimental results, it is clear that the attention-
based multi-visual features fusion network acquires the higher
accuracy than the VGG deep features and naive concatenation
approach. Although the RetinaNet obtains 58.92% average
accuracy, our attention-based fusion network acquires the best
detection accuracy on five affordance categories and the best
average accuracy on the test set. The results demonstrate the

3https://github.com/qqwweee/keras-yolo3

performance of the multi-visual features and attention-based
fusion network for learning object affordances.

7.2. Intention-Related Natural Language
Queries Grounding
In order to validate the performance of the intention-related
natural language grounding architecture, we select 100 images
from the introduced test dataset. To ensure the diversity of the
intention-related queries, we collect 150 instructions by showing
10 participant different scenarios and ask them to give one
or two queries for each image. We use the intention semantic
extraction module to extract semantic words from these natural
language sentences, the presented extraction module acquires
90.67% accuracy (136 correct samples in total 150 sentences).

We utilize the collected images and queries to test the
effectiveness of the grounding architecture. Figure 8 lists some
example results of intention-related natural language queries
grounding. Through analyzing the failure target groundings, we
found that the performance of the grounding architecture is
greatly influenced by the affordance detection.
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7.3. Robotic Applications
We also conduct several spoken intention-related instruction
grounding and target object grasping experiments on a
UR5 robotic arm and a Robotiq 3-finger adaptive robot
gripper platform. We first train an online speech recognizer
under Kaldi (Povey et al., 2011) and translate the spoken
instructions into text by the online speech recognizer, we then
ground spoken intention-related queries via the introduced
grounding architecture.

In order to complete target object grasping, we combine
bounding box values of the grounded target objects with depth
data acquired by a Kinect V2 camera to locate the targets in
3D environments. Furthermore, we adopt the model from our
previous work (Liang et al., 2019) to learn the best grasping poses.
Figure 9 shows some example results of spoken instructions
grounding, target objects point cloud segmentation, and learned
target object grasping poses. The robotic applications video
can be found in the link: https://www.youtube.com/watch?v=
rchZeoAagxM.

8. CONCLUSION AND FUTURE WORK

We proposed an architecture that integrates an object affordance
detection network with an intention-semantic extraction module
to ground intention-related natural language queries. Contrary
to the existing affordance detection frameworks, the proposed
affordance detection network fuses deep visual features and
deep texture features to recognize object affordances from RGB
images. We fused the multi-visual features via an attention-
based dynamic fusion architecture, which takes into account
the interaction of the multi-visual features, preserves the
complementary nature of the multi-visual features extracted
from different networks, and avoids producing information
redundancies during feature fusion. We trained the object
affordance detection network on a self-built dataset, and we
conducted extensive experiments to validate the performance
of the attention-base multi-visual features fusion for learning
object affordances.

Moreover, we presented an intention-related natural
language grounding architecture via fusing the object affordance
detection with intention-semantic extraction. We evaluated the
performance of the intention-related natural language grounding
architecture, and the experimental results demonstrate the
performance of the natural language grounding architecture. We
also integrated the intention-related natural language grounding
architecture with an online speech recognizer to ground spoken

intention-related natural language instructions and implemented
target object grasping experiments on a robotic platform.

Currently, the introduced affordance detection network learns
ten affordances through fusing the deep visual features and
the deep texture features. In the future, we will apply meta-
learning to learn more affordances from a smaller amount
of annotated images, and develop a network-based framework
to learn the different contributions of the different features
for object affordances learning. Additionally, we will integrate
the image captioning methodology with affordance to generate
affordance-aware expression for each detected region within
working scenarios.
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To overcome novel challenges in complex domestic environments, humanoid robots can

learn from human teachers. We propose that the capability for social interaction should

be a key factor in this teaching process and benefits both the subjective experience of

the human user and the learning process itself. To support our hypothesis, we present a

Human-Robot Interaction study on human-assisted visuomotor learning with the robot

NICO, the Neuro-Inspired COmpanion, a child-sized humanoid. NICO is a flexible, social

platform with sensing and manipulation abilities. We give a detailed description of NICO’s

design and a comprehensive overview of studies that use or evaluate NICO. To engage

in social interaction, NICO can express stylized facial expressions and utter speech via

an Embodied Dialogue System. NICO is characterized in particular by combining these

social interaction capabilities with the abilities for human-like object manipulation and

crossmodal perception. In the presented study, NICO acquires visuomotor grasping

skills by interacting with its environment. In contrast to methods like motor babbling,

the learning process is, in part, supported by a human teacher. To begin the learning

process, an object is placed into NICO’s hand, and if this object is accidentally dropped,

the human assistant has to recover it. The study is conducted with 24 participants with

little or no prior experience with robots. In the robot-guided experimental condition,

assistance is actively requested by NICO via the Embodied Dialogue System. In

the human-guided condition, instructions are given by a human experimenter, while

NICO remains silent. Evaluation using established questionnaires like Godspeed, Mind

Perception, and Uncanny Valley Indices, along with a structured interview and video

analysis of the interaction, show that the robot’s active requests for assistance foster

the participant’s engagement and benefit the learning process. This result supports the

hypothesis that the ability for social interaction is a key factor for companion robots

that learn with the help of non-expert teachers, as these robots become capable of

communicating active requests or questions that are vital to their learning process. We

also show how the design of NICO both enables and is driven by this approach.

Keywords: crossmodal learning, developmental robotics, neurocognitive models, human-robot interaction,

visuomotor learning
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1. INTRODUCTION

In the future, robots may perform complex visuomotor tasks in
domestic environments as human assistants and companions.
Today, this is still a challenge due to the complexity of the
dynamic, non-standardized environments and tasks involved. A
promising approach for coping with this complexity is to take
inspiration from biological systems and develop neurocognitive
learning models embodied in developmental robots (Cangelosi
and Schlesinger, 2015) that learn, similar to a human child or
infant, from interaction with the environment and imitation
of, or teaching by, adult experts. A spectrum of such learning
approaches exists in the literature, ranging from relying entirely
on the imitation of a human teacher to nearly autodidactic
approaches without any human assistance. Imitation approaches
often face challenges when the robotic anatomy diverges from
that of the human demonstrator: though anthropomorphically
designed, robotic hands usually do not match the degrees of
freedom (DoF) of the human hand sufficiently to allow a direct
mapping (Gupta et al., 2016). Furthermore, external tracking
approaches for hands and objects are often constrained to
laboratory settings. On the other hand, deep reinforcement
learning promises human-level control (Mnih et al., 2015)
through autonomous interaction with the environment. The
agent learns through trial and error to achieve a given goal.
However, most robot platforms and environments are not suited
to the large number of interactions in the real world or the
possibility of harmful actions. Therefore, many intermediate
approaches have been developed that combine autonomous
learning with human expert knowledge in the form of
instructions (Cruz et al., 2016), or imitation (Gupta et al., 2016).
The presented research follows the concept of developmental
robotics, which aims to leverage efficient learning strategies
inspired by nature. We adopt the principle of scaffolding, a
teaching approach based on collaborative interaction between the
learner and an expert (Newson, 1979), which plays a crucial role
in early human development, for a robot.

We hypothesize that there are two requirements of the robotic
learner to enable successful scaffolding:
(1) Sensory and motoric similarity: human and robot need to
have a substantial overlap in their motor and sensory abilities
to enable the robot to profit from human demonstration and to
enable the human to affect the learning of the robot positively.
Especially, non-expert users rely on their intuitive ability for
human-to-human teaching to convey their skills. Different
sensory modalities, body forms, and degrees of freedom can
hinder this transfer. Therefore, a robotic companion needs to
mimic human sensory and motor abilities to a certain degree.
As an example, the way a human grasps or handles an object
might not be applicable to a robot with a non-hand-like end-
effector. Also, the robot’s size is essential; while smaller robots
might be easier to construct and require less powerful motors or
materials, a robot must have a sufficient size to operate efficiently

in a domestic environment.
(2) Approachability and social interaction: the robot’s physical

design and behavior need to encourage users to engage in

teaching interactions. Not only are safety issues a concern

when it comes to physical human-robot interactions; perceived
safety and approachability are important because they encourage
especially non-expert users to engage in (physical) interactions
to improve the learning outcome, for example, reaching into
the robot’s workspace while the robot is performing a manual
task. Furthermore, the robot should encourage an intuitive,
natural teaching interaction that relies on natural language and
social cues.

Through meeting these criteria, we expect the Neuro-Inspired
COmpanion robot, NICO (see Figure 1), an open-source
developmental robot platform developed by the Knowledge
Technology group1, to be able to acquire visuomotor skills with
the assistance of non-expert users. We present an update to the
NICO platform with a focus on the properties that are relevant
for this study and a review of related studies; we examine the
assumption that social interaction and human-like sensorimotor
abilities are a key to robots learning from humans by conducting
a Human-Robot Interaction study with 24 participants in which
we evaluate the effect of an active role of a humanoid in a
grasp-learning experiment. In a novel comparative crossmodal,
visuomotor learning study, NICO is supported by a non-expert
participant in a visuomotor learning task. This study, for the first
time, evaluates the interplay between NICO’s social interaction
and visuomotor learning abilities. NICO learns to grasp by
repeatedly placing and re-grasping an object at different positions
in its workspace. During this semi-autonomous grasp learning,
NICO requires the aid of human assistants to initialize the
learning process and to provide aid in case NICO loses the
object. Two experimental conditions are evaluated, in which
NICO either takes a passive or an active role in the learning
process: in the baseline human-guided condition, all instructions
toward the participant are given by the experimenter; in the
active learning condition, the robot uses a crossmodal Embodied
Dialogue System to actively guide a non-expert participant
through the learning process and to request assistance when
needed. The experimenter is present during this time but does
not communicate with the participant. We show that the active,
communicative, and emotional engagement of the robot in a
teaching situation leads not only to a subjectively better rating
of the robot using a set of established measures for HRI research
but also to an increase in the engagement of the human, non-
expert teachers, which in turn can lead to better visuomotor
learning results.

We would also like to address the methodological gap between
machine learning in robotics and neurorobotics. The embodiment
of state-of-the-art machine neural machine-learning in a physical
platform allows training and evaluation that is hardly possible
in simulation, e.g., physical interaction between a robot’s hand
and a soft, deformable object. More importantly, we argue
that research communities for machine learning in robotics
and developmental robotics are growing closer together. While
classical roboticists focus on human-in-the-loop approaches that
rely on imitation learning and demonstration, developmental
roboticists have been researching scaffolding by caregivers to

1Visit http://nico.knowledge-technology.info for further information, the open

NICO API, NICO CAD files, and released datasets.
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FIGURE 1 | NICO, the Neuro-Inspired COmpanion, is being taught how to grasp a training object by a human assistant and is giving positive feedback with its facial

emotion display.

learn complex cognitive and visuomotor skills. The underlying
idea is the same: leveraging human competence can be an
essential part of robotic learning. This competence can be
supplied by trained experts as well as non-expert users. In the
latter case, one of the main goals is to enable these non-expert
users to use their intuitive teaching abilities in a robotic scenario,
which in turn relies on an intuitive and natural communication
with the robot.

Our main claim is that non-expert users can teach visuomotor
skills to a developmental robot; however, the more these non-
experts are engaged in the teaching experience, the more they
tend to use intuitive teaching approaches that in the end lead
to more efficient teaching. This effect requires a humanoid
platform that enables intuitive and engaging social interaction
and, at the same time, has sufficient sensing and motor abilities
for the learned action. In section 2, we report on different
robot platforms and robotic visuomotor learning approaches. In
section 3.1, we present the updated NICO and a comprehensive

review of studies on its sensory, motor, and HRI abilities.
We show how its design both enables and is driven by the

interplay of social interaction and sensorimotor learning by

summarizing previous studies that often focused either on social
interaction or on crossmodal and visuomotor learning. We bring
these aspects together in section 4, where we detail the grasp-
learning approach, the Embodied Dialogue System, and the
setup for the HRI experiment, which couples social interaction
and visuomotor learning, and we show, in section 5, how an
engaging social interaction can enhance the quality of robotic
visuomotor learning. We conclude with a discussion of the
results and examine their implications as a contribution to the
future development of learning companion robots in section
6, finding that the ability of a balanced robotic platform to
engage non-expert users can benefit the learning of non-social
tasks. The social aspect not only enhances the user’s subjective

experience but also to enables non-experts to apply intuitive
teaching approaches.

2. RELATED WORK

2.1. Humanoid Platforms
Today, a wide range of robots is available, though not all
of them fulfill the above-mentioned criteria of possessing a
sensory and motoric similarity to humans in addition to an
approachable design and social interaction abilities: a humanoid
is expected to have two arms with a human-like range of
motion and hand-like end-effectors to use tools and manipulate
objects in domestic environments. Often, the hands’ fingers
have tactile sensors to enhance grasping, tool use, and in-
hand manipulation but also to create shared, embodied sensory
concepts with human interaction partners regarding haptic
properties like softness or texture. The locomotion of a humanoid
is usually bipedal. Though complex to realize, walking allows the
navigation of domestic environments, for instance, a cluttered
floor. However, for better stability and easier handling, many
platforms use a wheeled base instead. A humanoid also has a
head with eyes. Though other sensing setups might be more
efficient for specialized tasks, such as 360◦ laser scanners for
mapping, eye-like cameras can enable shared attention with
human interaction partners and thus also fulfill a critical
communicative role. Many humanoids feature some form of
emotional expression on their face, ranging from color changes
of status LEDs to stylized and animated facial expressions and
mouth movements. An alternative to an actual face is a monitor
or tablet that displays a virtual avatar or face. Another important
criterion for research platforms is an open design that allows
customization of the platform toward novel experimental setups,
easy maintainability of the platform, and compatibility with
common software standards.
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One way to categorize humanoids is by their size. Small,
infant-sized humanoids are affordable, easy to handle, and secure.
For example, the NAO from Aldebaran is well-used in research
on developmental robots, while the DARwIn-OP from Robotis
was a popular walking platform for the RoboCup competitions
(Ha et al., 2011). However, these small platforms cannot interact
with most domestic environments, cannot use tools, and are not
able to manipulate everyday objects.

Child-sized robots overcome this challenge while still being
relatively easy to handle in terms of weight and size. The iCub
resembles a 3.5-years-old child (Metta et al., 2010). The iCub
has many relevant features for developmental robot research
and HRI: 53 human-like DoF, five-fingered hands, eyes with
mechanical gaze shift, an LED-based display for stylized emotion
expression, and optional tactile sensing skin. However, its holistic
design impedes individual modifications. More modular are
the NimbRo-OP (Schwarz et al., 2013) and its slightly larger,
novel design Nimbro-OP2X (Ficht et al., 2018) from the AIS
(Autonomous Intelligent Agents) group of the University of
Bonn. These platforms are designed for the RoboCup TeenSize
and AdultSize league and, as such, prioritize walking over
manipulation ability: the arms have non-actuated end-effectors
and serve primarily for balance and getting up from a prone
position. The Poppy robot (Lapeyre et al., 2014) is a 3D-printable
open-source robot developed in 2014 by a research group at
the French Institute for Research in Computer Science and
Automation (INRIA). The objective of the robot is to be a robot
base for scientists, students, and artists originally aiming to study
the role of morphology in sensorimotor control. The software
API of the Poppy robot is based on Pypot2, a framework for
modeling controllers for custom robots, which is used by the
NICO robot as well. The Reachy robot is a commercial robot
torso developed by Pollen robotics3 in 2017. The robot has 7-
DOF arms and can lift up to 500 g (Mick et al., 2019). The
software of Reachy is Python-based. The strengths of the robot
seem to be in the field of manipulation, as the capabilities of the
arm are sophisticated for a robot of this size category. The Pepper
by Softbank (formerly Aldebaran) (Pandey and Gelin, 2018) is
mainly designed for Human-Robot Interaction. Its human-like
torso is fitted onto a wheeled platform. Pepper has 20 DoF and
human-like arms with five-fingered hands; however, its arms and
fingers are mainly designed as a means for making gestures.

Soft-skin platforms offer a more realistic human-like
appearance. The CB2 (Child with Biomimetic Body) from Osaka
University (Minato et al., 2007) is a 130-cm tall platform for
cognitive developmental robotics and features soft skin and
flexible pneumatic actuators; it has a total of 63 degrees of
freedom. Its face has actuators for eyeballs, eyelids, eyebrows,
cheeks, and mouth to display emotions. In addition to cameras
and microphones, skin tactile sensors in the skin can mediate
haptic interaction. It is designed with a view to social interaction
with a human caregiver. Affetto (Ishihara and Asada, 2015)
has a similar design. It is an upper-body platform that has the
proportions of an 80-cm tall child and has 22 degrees of freedom.

2https://github.com/poppy-project/pypot
3https://www.pollen-robotics.com

It is designed to appear human-like, including in terms of its
visual and tactile impression. Among the adult-sized robots, the
high-performance biped Talos from PAL robotics (Stasse et al.,
2017) is a further development of their REEM robot and offers
a platform for research in complex industrial environments. It
is well-suited for physical manipulation tasks and can traverse
rough terrain but is not designed for social interaction. The
PR2 from Willow Garage, a wheeled robot with two 7-DoF
arms endowed with grippers with tactile sensors, has a similar
function. Like the Talos, it has no means for emotion-expression
and is instead designed for physical tasks rather than HRI.
Finally, the InMoov (Langevin, 2014) is an open, 3D-printable
robot with a human-like design and tendon-operated five-
fingered hands. Instead of displaying emotions, it can move its
jaw to emulate talking.

In summary, many robotic platforms are available, though
currently, no single platform offers a combination of object
manipulation, sensing, and HRI qualities in an affordable and
open design. This gap in the state of the art is addressed with
the NICO robot (Kerzel et al., 2017c), whose design will be
summarized below.

2.2. End-to-End Visuomotor Learning
Visuomotor skills map raw sensory input to motor actions.
Modular approaches divide this task; they process sensory
information into explicit internal representations like
coordinates that are then used as input for modules like
inverse kinematics solvers. However, these approaches
often have difficulties adjusting to novel challenges due to
their lack of inherent learning ability. A complementary
approach is to learn visuomotor skills through interaction
with the environment (Cangelosi and Schlesinger, 2015). Deep
reinforcement approaches employ trial and error learning.
Based on initial random exploration, rewards for successful
actions drive the learning of visuomotor policies. Lillicrap et al.
(2016) introduced the Deep Deterministic Policy Gradient
algorithm (DDPG) to solve a series of visuomotor tasks in
a simulated two-dimensional environment. This approach is
based on early direct motor model learning, where motor skills
are learned in the target space only based on minimizing the
error from observations Rolf et al. (2009), Nguyen-Tuong and
Peters (2011). However, adapting these algorithms to physical
robots is challenging. The trial and error exploration can be
harmful to the robot or its environment; a large number of
required trials can cause material stress and might be too time-
consuming. Therefore, extensions to the DDPG algorithm and
related algorithms have been suggested to enhance the sample
efficiency and reduce the required training episodes. These
approaches leverage the principles of intrinsic curiosity (Hafez
et al., 2019), imagination (Andrychowicz et al., 2017), and task
simplification (Kerzel et al., 2018). However, the basic problem
of reinforcement learning of possibly unproductive and harmful
exploratory actions remains.

This issue can be addressed in several ways. Nair et al.
(2018) combine imitation and reinforcement learning. Instead
of random explorations, the learner first learns to mimic the
actions of a human teacher. The learner then refines its policy for
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exploration once a sufficient level of performance is reached to
avoid unproductive or harmful actions. The basic idea behind this
approach is to give the learner a set of good samples to bootstrap
the learning process. A variation of this strategy is not to use
an external teacher to imitate but to design the learning setup
such in a way that the learner can generate these good learning
samples autonomously. In the Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017), imagination is used after
the execution of an action to, in hindsight, imagine the optimal
goal for the previously executed action. This imagined training
sample is then used to update neural policy models. However,
though the creation of imagined samples works well in simulated
environments, it can prove difficult in real environments. A
related strategy is to let the learner generate good samples through
physical actions. This strategy is employed by Levine et al. (2016),
who utilize the known forward kinematic of the PR2 robot.
Samples are generated by having one of the robot’s hands move a
target object while the other hand tries to grasp the object. Kerzel
and Wermter (2017b) introduced a related approach where a
robot generates samples for grasp learning by repeatedly placing
and re-grasping an object at a random location. This approach
has the advantage that the kinematics of the robot do not need
to be known. However, human assistance is needed to initialize
the process and to interfere in the case of re-grasping errors.
A second approach, adopting a strategy from human learning,
is to have an expert observe the reinforcement learning process
and interfere in critical situations by giving advice and warnings
to the learner in case of harmful actions (Cruz et al., 2018a).
In summary, human teachers play an essential role in making
reinforcement learning more sample-efficient, be it as models for
imitation, physical assistants, or advisers.

2.3. Natural Teaching of Robot Learners
To ease the transfer of humanoid social robots from laboratories
to the cluttered surroundings of domestic life, they need to be
able to adapt their behavior dynamically and learn new skills
through the instructions of non-expert human users. Humanoid
social robots have the advantage that they generally foster a
human-like interaction with the user, allowing users to easily
anthropomorphize the artificial agent (Epley et al., 2007). Social
interaction through spoken dialogue is the most intuitive way to
enable such communication since it does not require additional
knowledge and training from the non-expert user. The robot
has to be a transparent learner, with its observable behavior and
spoken feedback motivating the user to teach it further.

In a study by Thomaz et al. (2006) examining the way people
teach a virtual agent in a reinforcement learning simulation,
evidence was found for people’s willingness to view their
interaction and teaching of the agent as a collaboration. The
human teacher guides and adjusts the training behavior of the
agent, with a tendency toward positive feedback. Even without
any specific amplifying behavior by the artificial agent, there
seems to exist a clear concept of partnership in human-robot
teaching scenarios. However, in comparison to a virtual agent,
a physical robot has to be much more transparent about its
intentions and internal states to ease the cooperation between
human and robot.

A typical teaching cycle usually consists of the teacher
demonstrating the desired skill for the student, followed by a
series of supervised repetitions by the student. During these
repetitions, the teacher might offer spoken feedback, display
corrective behavior, or provide additional demonstrations to
further improve the performance of the student (Nicolescu and
Mataric, 2003). To enable teaching behavior that feels natural
to the teacher while being effective for the robot learner, one
must consider the design and behavior of the artificial agent. A
childlike design, according to the baby schema (Lorenz, 1943),
with round eyes set low in a comparatively big head, can help in
facilitating intrinsic teaching methods like scaffolding.

Scaffolding is a form of assistive teaching regularly and
often unknowingly displayed by human adults when interacting
with children or infants (Breazeal, 2002). While infants are not
capable of actually requesting assistance, they display a form of
proto-social response that resembles an adult’s behavior closely
enough that the caregiver can assign meaning to them and
act accordingly. By reinforcing the infant’s interaction with the
environment, the caregiver can encourage and assist the learning
of new abilities (Newson, 1979). The adult handles the parts that
are beyond the infant’s or, in our case, the robot’s capabilities,
allowing them to focus on solving the simpler parts of the
problem first. The learning process is supported by the adult
giving affective feedback, reducing distractions, and simplifying
the problem in a way that allows the learner to recognize the
solution to a problem before being able to implement it (Breazeal,
2002).

Designing the robot as an approachable, transparent
interaction partner allows the human-robot team to show
better performance and the learner to reach a higher level of
competence. In a study by Srinivasan and Takayama (2016)
examining how the behavior of the robot during the interaction
influences people’s willingness to help it, one seemingly obvious
conclusion could be drawn: robots that get assistance from
people tend to accomplish more.

3. NICO, THE NEURO-INSPIRED
COMPANION

3.1. NICO Robot Platform
To create a robotic research platform for embodied
neurocognitive models based on human-like sensory and
motor capabilities that is at the same time well-suited for HRI
studies, the Knowledge Technology group at the University of
Hamburg designed the NICO humanoid (Kerzel et al., 2017c)4.

The first version of NICO was developed based on
the NimbRo-OP, which was discussed in section 2.1. It
is constructed mainly from 3D-printed parts and Robotis
Dynamixel servomotors, endowing it with simple maintenance
and high flexibility. This flexibility was used to gradually improve
NICO, driven by experience from experimental setups and
research. The designers followed a modular approach: each new

4Further technical details, including CAD files for 3D-printed parts, a construction

guide, video material, and the NICO API can be found at https://www.inf.uni-

hamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html.
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functionality of the robot was first evaluated and iteratively
improved before it was integrated with other functionalities.
Following this scheme, a description of the sensory, motor, and
HRI capabilities of NICO are given below alongside a review
of scientific studies where these capabilities have been used.
Figure 2 shows NICO with optional clothing and a close-up of
its robotic hand with embedded tactile sensors.

3.1.1. Physical Form and Appearance
NICO stands 101 cm tall and has a weight of 7 kg, with its body
proportions and degrees of freedom resembling those of a child
between the ages of three to four. NICO’s face is adapted from the
open iCub design, giving it a stylized, child-like appearance. In its
standard design, NICO has no outer shell, i.e., it is possible to see
through the frame of the robot. To alleviate this, a 3D-printed
cover is being developed. Furthermore, its child-like anatomy
allows the robot to wear off-the-shelf clothing.

3.1.2. Motor Capabilities
NICO has 30 DoF, which are distributed as follows. Two DoF
perform yaw and pitch movements of the head, which has
an important signaling function in human-robot interaction,
in addition to supporting joint attention and addressing
communication partners. The arms have 6DoF, with the shoulder
forming a cluster of three motors that mimic the physiology of
the human shoulder ball joint. An additional DoF allows bending
of the elbows, and the final two DoF for wrist rotation and wrist
flexion are provided by the Seed Robotics SR-DH4D articulated
hands. These three-fingered hands are tendon operated; two
motors contract the two linked index fingers and the opposed
thumb. The tendon operation emulates hand synergies during
grasping (Mason et al., 2001) to simplify the control during
this complex process: only two DoF for closing the hand can
securely grasp a wide range of different objects. Figure 2D shows
a schematic depiction of the mechanical design of NICO’s upper
body. For locomotion, each of NICO’s legs has three DoF in the
hip joint, one DoF in the knee, and two DoF in the foot.

3.1.3. Sensory Capabilities
NICO’s head features two parallel See3CAMCU135 cameras with
4K resolution (4,096 × 2,160). The cameras have an opening
angle of 202◦. Via the API, the camera can be configured to
transmit only parts of the image and thus constrain the field
of view to a human opening angle of 70◦. This results in a
reduced amount of data and the possibility of realizing virtual
gaze shifts. NICO’s head is endowed with two SoundmanOKM II
binaural microphones embedded in realistically shaped and 3D-
printed pinnae, which allows human-like binaural hearing for
vertical and horizontal sound source localization. The location
of the microphones and the dampening factor of the head
and also of the pinnae have been designed to mimic human-
child anatomy for providing a realistic distortion of the sounds.
To reduce ego-noise and improve speech recognition, NICO’s
head was designed without internal fans, mechanics, or motors.
Haptic sensing subsumes proprioception and tactile sensing.
While proprioception provides information about body posture,
movement, and forces, the tactile modality registers deformation,

vibration, and temperature. Both sub-modalities are realized in
NICO: information about motor position and torque provide a
proprioceptive sense for all DoF. To allow faster andmore precise
measurement of forces in motors even during movements and
under load, the energy supply to all motors has been redesigned
to exclude artifacts from power spikes due to energy-intensive
motions. For tactile sensing, OPTOFORCE OMD-10-SE-10N7
force sensors were installed in all three fingertips of each hand.
These dome-shaped sensors are slightly deformable and measure
forces of up to 10 N in three dimensions at up to 400 Hz, making
them well-suited to picking up vibration.

3.1.4. Interaction Capabilities
NICO’s head is fitted with three LED arrays in the mouth and
eye areas that can display stylized facial expressions. The areas
behind the eyes consist of 8 × 8 LEDs; the array in the mouth
area consists of 16 × 8 LEDs. The thickness of the 3D-printed
head is reduced in the respective areas and optimized to allow
the LEDs to shine through the material while blurring individual
lights. A set of fixed emotions can be displayed, as well as freely
programmable patterns; thus, emotional expressions can also
be learned over time or be adjusted to individual interaction
partners. Figure 3 shows examples of expressions for happiness,
sadness, surprise, anger, and a neutral mood. These facial displays
can give intuitive feedback to the user about the state of NICO in
the context of a task. In addition to this specialized facial display,
NICO, like many robotic platforms, has an internal speaker for
uttering spoken messages and can express non-verbal social cues
like gestures, poses, and head movements.

3.1.5. API and Virtual Model
The NICO API supports direct control via Python and the
robot operating system ROS. Python allows easy integration
into the most common frameworks for GPU processing and
deep learning like Tensorflow (Abadi et al., 2016). This gives
scientists an easy way to embody neurocognitive models into
the robot. NICO’s full functionality can also be accessed via
ROS (Quigley et al., 2009), the de facto standard in the robotics
community, to allow easy sharing of software modules. The
low-level motor control of the API is based on PyPot (Lapeyre
et al., 2014), which was extended to support NICO’s hands.
The use of Python makes it possible to utilize existing libraries
for control and preprocessing of sensory information, such as
OpenCV for camera and PyAudio for microphone recordings. A
set of predefined facial expressions is provided for the Arduino-
controlled facial emotion display. As virtual environments are
often used in robotics research for allowing extended and
controlled experiments without strain to the robotic hardware,
a virtual realization of NICO for the V-REP robotics simulator
(Rohmer et al., 2013) is provided. V-REP supports simulated
physical interactions, including forces and friction between
different objects. Additionally, the robot model is provided in the
established Unified Robot Description Format (URDF) for use in
other simulation environments. The URDF description contains
information about the kinematics of the robot, its collision
model, and visual representation. The API allows seamless
switching between real and simulated environments.
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FIGURE 2 | (A) NICO humanoid robot sitting on child-sized furniture. (B) NICO can wear regular clothing without being hindered in its motor abilities. (C) NICO’s

three-fingered hand with tactile sensors. (D) Schematic depiction of the mechanical design of NICO’s upper body.

FIGURE 3 | NICO’s facial emotion display showing different expressions: (A) neutral, (B) happiness, (C) sadness, (D) surprise, and (E) anger.

3.2. NICO Evaluation and Studies
Following the design strategy to iteratively evaluate and
improve each functionality of the robot before integrating it
in larger experiments, a set of studies has been conducted
involving NICO’s motor, sensory, and human-robot interaction
capabilities5. In some studies, the main scientific focus was not
on the robot itself but on the neurocognitive models embodied
within it. However, these studies are especially valuable for

5An overview video of selected studies carried out onNICO can be found at https://

www2.informatik.uni-hamburg.de/wtm/videos/NICO_papers_2017-2020.mp4.

NICO’s ongoing design process, as they provide feedback under
realistic research conditions.

3.2.1. Embodied Sensing Evaluation
Embodied Visual Perception. Compared to the typical
applications of computer vision approaches, there are no
differences in a robotic vision system. Therefore, the performance
of state-of-the-art approaches for object detection, e.g., RetinaNet
(Lin et al., 2017) can be utilized without limitations on NICO.
However, a robot offers the ability to combine vision with active
object manipulation: the robot can move and turn an object to
learn a more elaborate visual representation. Additionally, object
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manipulation can also be used to train and evaluate models for
object tracking under deformation and occlusion. Heinrich et al.
(2019) recorded the NICO-object interaction dataset featuring
sixty object-hand interactions, including different push, pull,
grasp, and lift actions on a broad range of toy objects that show
diverse behaviors, such as rolling, bouncing, or deformation.
The exploration procedures were inspired by typical child-like
behavior that could be realized on a humanoid. The dataset was
used to evaluate the HIOB framework, an adaptive convolutional
object tracker based on an incremental update mechanism.
Josifovski et al. (2018) applied a convolutional neural network
for object detection and pose estimation trained with 3D-
models of NICO’s hand. Though the pose of the hand can be
computed via forward kinematics, such models can contribute to
developmental approaches in which the kinematics of the robot
are learned. Furthermore, the work demonstrates the transfer of
models trained on the simulated model to the real world.

Embodied Audio Perception. Like computer vision, audio
processing on a robotic platform does not differ greatly from
any non-robotic audio task. However, the robot’s ego-noise
during operation and its ability to actively manipulate objects
to elicit audio information have to be considered. Humanoids
can perform common audio exploratory procedures like shaking
an opaque container to gain insight into its content. Eppe et al.
(2018) and Strahl et al. (2018) recorded an audio dataset with
1,080 samples of active audio exploration of 30 capsules filled
with different materials, which NICO could shake with its hand,
to train a recurrent neural network classifier. High classification
accuracy of 91% was achieved due to the low ego-noise of the
robot in the head area.

Embodied Haptic Perception. In contrast to audio and
vision approaches, haptic perception is inherently based on
active exploration to gain information about handled objects
and materials. Compressing or squeezing an object can give
information about the compliance of the material, while forces
along themovement direction during lateral motions reveal static
and slip friction as well as texture information. NICO’s haptic
sensory setup enables the use of human-like haptic exploratory
procedures: in two studies, the use of lateral motion across
surfaces to gain texture information and the use of squeezing
objects to gain information about their compliance and shape
was evaluated. Kerzel et al. (2017a) collected a 3200-sample
dataset of lateral motions over a set of 32 samples of common
household materials ranging from metal to different fabrics or
cardboard. High classification accuracy of 99% could be achieved
with a neural model. The study could also positively evaluate
the robustness of the sensors; in over 5,000 trials, no wear
and tear to the sensor occurred. Kerzel et al. (2019b) collected
a dataset of human-inspired active haptic exploration of 16
different toys by enclosing and squeezing the objects in the robot’s
hand. These objects range from foam dice to different plush
and plastic figures. The dataset contains 100 active exploration
trials for each of the 16 objects; in each trial, seven haptic
sensory channels were recorded for 52 time steps. A neural model
that integrates the different haptic sensory channels over time
achieved a 66.6% classification accuracy. Both studies showed
that a key to recognizing haptic properties is the integration of

motoric, proprioceptive, and tactile information. To this end,
the NICO API is designed to synchronize motor commands and
different sensory streams.

3.2.2. Motor Learning Evaluation
Several approaches for grasp learning have been evaluated on
NICO: Hafez et al. (2017, 2019) successfully evaluated curiosity-
driven reinforcement learning both on a simulated and on a
physical NICO. For the physical experiments, full training of the
deep RL approach was conducted without human supervision
for over 50 h during which NICO performed arm movements
and grasp actions. This uptime attests to the robustness of
NICO’s hardware. Cruz et al. (2016, 2018a,b) used a virtual model
of NICO to develop and evaluate interactive reinforcement
learning by allowing NICO to receive parent-like advice during
a simulated cleaning task. Vocal commands and hand gestures
were supplied during training and could be shown to enhance
the training efficiency. These studies show the effectiveness
of intuitive supervision by non-expert users during domestic
tasks that are enabled by an interactive humanoid. Kerzel and
Wermter (2017a,b) developed an end-to-end learning approach
for object grasping based on a semi-autonomous self-learning
cycle, which is described in more detail in section 4.1. Eppe
et al. (2017) extended the approach with a modular, attention-
based vision approach to grasp a diverse set of small objects
in a cluttered scene. Kerzel et al. (2019a) further refined
the approach by unifying the visuomotor architecture with a
pyramidal convolutional network for identifying, localizing, and
grasping a goal object in a complex scene.

3.2.3. Datasets
A series of mono and crossmodal datasets from the above-
described active sensing studies that have been recorded with
NICO have been published for further use by the scientific
community. Kerzel et al. (2019b) provide a haptic dataset
of tactile and proprioceptive information during active haptic
exploration of objects. Heinrich et al. (2019) provide a vision
dataset of 60 object-hand interactions. Heinrich et al. (2018,
2020) recorded the EMIL dataset on embodied multi-modal
interaction for language learning. The dataset focuses on
low-level crossmodal perception during the environmental
interactions from a body-rational perspective. The robot
explored a set of toy objects through different actions like
shoving, pulling, lifting, and scooting the object across the table.
For each action, continuous recording from the robots’ cameras,
microphones, and proprioception, as well as from an external
RGB and depth camera, is provided. Additionally, each sample
is annotated with multiple natural language descriptions of
the action.

3.2.4. Human-Robot Interaction Evaluation
A wide range of HRI research questions has been addressed
using the NICO platform. Initial studies focused on the reception
of NICO and its emotional display. Churamani et al. (2017b)
evaluated the seven abstracted facial expressions of NICO.
Twenty participants (seven female, 13 male, aged between 19
and 49 years, English at a conversational level or better) from
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eleven different countries from Europe, Asia, South America, and
the Middle East took part in the study. The participants could
identify a subset of five expressions (neutral, happiness, sadness,
surprise, and anger) with an accuracy of ≥75%. Furthermore,
the effect of emotion-display on the subjective user rating
was evaluated: users completed the Godspeed questionnaire
(Bartneck et al., 2009) before and after having seen NICO’s facial
emotion display; the results showed a significant increase in
ratings for the anthropomorphism, animacy, and likeability of
the robot.

Churamani et al. (2018) also proposed an alternative to the
fixed facial expressions by applying a reinforcement learning
approach, taking advantage of NICO’s freely programmable LED
display. To learn to express social cues, recognition of emotions
is used. A deep hybrid neural model for crossmodal processing
recognized the emotion of a human interaction partner by
analyzing facial expressions. The recognized emotion modulates
an internal emotion model, which then drives the learning of
situation-appropriate facial expressions. The system is aimed to
enable NICO to express empathy toward its interaction partner.
Churamani et al. (2017b) extended the emotion recognition
capabilities of NICO by using a hybrid, deep neural network
model based on self-organization to learn the general and person-
specific ability to mirror back facial emotions. Siqueira et al.
(2018) further extended the emotion recognition capabilities by
applying a crossmodal approach. They developed an emotion-
driven dialogue system that allows NICO to combine evaluations
of emotional valence from vision and language during human-
robot interaction. The system enables NICO tomodel an affective
association between an external auditory stimulus and the user’s
emotional reaction to gain an understanding of the user’s
preferences. It adjusts its dialogue behavior depending on learned
affective information. The system also disambiguates incoherent
perceptions of emotions via dialogue.

The use of emotion recognition and expression is aimed at
the overall goal of creating natural and engaging interactions.
This idea was further explored by personalizing the interaction
with individual interaction partners and also by evaluating
different “personalities” or interaction strategies for NICO.
Griffiths et al. (2018) investigated the effect of different roles
of a social robot as a motivational exercise aid. Using an
online questionnaire based on videos and images of NICO, they
evaluated the preferred role in which people would want to
be assisted by a social exercise robot: companion or coach. Ng
et al. (2017) and Churamani et al. (2017a) realized a natural
language dialogue system for NICO that engages the users
in a personalized conversation where the robot tracks and
remembers the user’s face as well as information given during
the conversation, such as name and personal preferences. The
effects of the personalized interaction capabilities with regards
to social acceptance, perceived intelligence, and likeability were
evaluated in an object learning scenario where a human user
taught the robot about different objects. The authors found
that a personalized system is rated as more intelligent and
likable but receives less social acceptance. Beik-Mohammadi et al.
(2019) evaluated the influence of two different robot personalities
(socially engaged vs. competitive) on user acceptance in the
context of a dice game. To show social engagement, NICO

makes jokes and engages itself in small talk via a natural
language dialogue system; it also uses physical gestures. A
neural network analyses the facial expression of the human
interaction partner. Physical interaction between participant
and robot (handover of dice, congratulatory fist bump) was
used to enhance the engagement of the interaction. Results
gained from questionnaires indicate that social engagement
evokes stronger emotions and achieves higher ratings regarding
likability and animacy.

In summary, these studies utilize NICO’s ability for
crossmodal sensing, motion, and social interaction to extend
existing neurocognitive models, e.g., for emotion recognition,
which were previously trained on prerecorded datasets (e.g.,
Barros et al., 2018), to live interactions. This allows the evaluation
of the model’s ability to adapt to individual users and, more
importantly, it allows the effect of different HRI strategies on
subjective user rating under realistic conditions to be studied.
In the following section, we will further extend this research by
evaluating how these more engaging interactions can benefit the
learning of neurocognitive visuomotor models.

4. METHODOLOGY

In the presented HRI experiment, non-expert users perform a
training procedure for a visuomotor task with the developmental
humanoid robot NICO. Two conditions are compared: in the
robot-guided condition, the robot takes an active role as a learner
and guides the user through the process using an Embodied
Dialogue System; in the human-guided condition a human
experimenter gives all instructions to the participant and controls
the robot. We evaluate both the effect on the subjective user
rating of the robot and the effect on the learning process. The
visuomotor learning task is based on an end-to-end approach
for visuomotor learning by Kerzel andWermter (2017b) and will
be described in detail in section 4.1. To enable the bio-inspired
development of grasping abilities from interaction with a physical
environment, the robot repeatedly places and re-grasps an object
on a table. This semi-autonomous learning cycle requires human
assistance for initialization and also in the case of a failed re-
grasping attempt. The learning task for the HRI study was
chosen for two reasons: first, it is a state-of-the-art approach for
visuomotor learning from neurocognitive robotics, and second,
the approach can run in the robot-guided condition without
intervention from the experimenter. Together, these properties
create a realistic robotic learning scenario.

4.1. Neural Architecture and Self-Learning
Cycle for End-to-End Grasp Learning
To circumvent the long and possibly damaging trial-and-error-
learning periods required for reinforcement learning, Kerzel and
Wermter (2017b) presented an approach for transforming the
learning task into supervised learning with a neural architecture.
A neural architecture can link a visual input image of an
object in the robot’s field of view to a joint configuration to
reach for the object. This regression can be performed by a
convolutional neural network (CNN). Figure 4 (top) shows the
neural architecture. Given an input RGB image of 80 × 60
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pixels, the two convolutional and two dense layers of the network
predict a joint configuration for grasping. The two convolutional
layers consist of 16 filters, each with a size of 3 × 3 and a
ReLu activation function; the dense layers have 900 neurons each
and, like the output layer with six neurons, one for each joint
in NICO’s arm, use a sigmoid activation function. The output
is a joint position for reaching for the object, normalized to
the interval [0, 1]. The architectural parameters were initially
informed by successful approaches for learning visuomotor skills
(e.g., Mnih et al., 2015), and empirically optimized (see Kerzel
and Wermter, 2017a for details).

The neural architecture can associate an image of an object
on the table with a joint configuration to reach for the object.
For the supervised training of the network, annotated samples
are needed that link said images to joint configurations. As it
would be too time-consuming to manually create these samples,
e.g., by guiding NICO’s hand toward the object, the learning task
was transformed: instead of grasping, NICO performs the far
easier task of placing the object. Starting in an initial pose with
the object in its hand, NICO places it at a random position on
the table. It stores its current joint configuration, releases the
object, removes the hand, and records an image. The resulting
image-configuration pair will later be used to train the neural
architecture. To complete the learning-cycle, NICO uses the
stored joint configuration to re-grasp the object. Once the object
is in its hand, NICO starts from the beginning and places the
object at another random location on the table. Figure 5 (bottom)
shows this semi-autonomous learning cycle.

Kerzel and Wermter (2017b) evaluated the architecture with
training sets of different sizes (10, 25, 50, 100, 200, and 400
samples). All experiments were conducted for 2,000 epochs with
stochastic gradient descent with Nesterov momentum (learning
rate = 0.01, momentum = 0.9). The batch size was 40, except
for the experiments with fewer samples, where a batch size
of 10 for the 10-sample condition and a batch size of 20
for the 25-sample condition were used. Mean squared error
was used as loss. Each condition was repeated ten times with
Glorot uniform initialization and evaluated with 50 random test
samples. Figure 6 shows results for different training set sizes.
A grasp success rate of 85.7% was achieved with 400 samples
of a single object. In a related study, Eppe et al. (2017) report
an average accuracy of 76.4% using a total of 535 samples of six
different objects. The later model was used for the demonstration
phase during the HRI experiment. The success rates represent
complete and successful physical grasp actions. A large portion
of the non-successful grasps results from objects slipping from
the robot’s hand during the closure of the fingers or lifting of
the hand.

However, two challenges arise: First, NICO needs to learn
to place objects on the table. For this, initial motor training
needs to be performed, during which NICO’s hand is moved
randomly over the table surface by a human assistant for a few
seconds. Second, a human assistant is also required to place the
training object into the robot’s hand at the beginning of the
learning process or when a re-grasping attempt fails. Using its
proprioception, NICO can detect such a failure. It then stops the
learning cycle, deletes the last collected sample, and moves back
into its initial pose, waiting for a human assistant to place the

object into its hand so that it can resume. The learning-cycle is
semi-autonomous, as it can run for extended periods unattended.
In the study by Kerzel and Wermter (2017b), errors occurred
in about one out of thirty attempts; however, the number of
consecutive error-free cycles fluctuated between 2 and 106. To
allow human assistants to focus on other tasks while NICO is
learning, the setup was further modified to not just halt the
learning-cycle upon detection of failure but to also alert the
experimenter, utilizing NICO’s inbuilt communication abilities
and the Embodied Dialogue System.

4.2. Embodied Dialogue System
The Embodied Dialogue System (Kerzel et al., 2017b) is designed
as a control center connecting the six main components
needed to accomplish visuomotor grasping tasks, namely
Motion, Vision, Emotion, Computation, Knowledge, andNatural
Language Generation (NLG). Motion controls the sensorimotor
functions of the robot, while Vision uses the cameras in NICO’s
head to capture the stereo images necessary for the computation
of joint values. The data for the task is stored and made
available in the Knowledge component, while the Computation
component handles the loading of the trainedmodel to the neural
network and the computation of the joint values for grasping.
Communication with the user happens mainly through the
Emotion component, which displays stylized facial expressions
with embedded LED lights, and theNatural Language Generation
(NLG), which outputs the situationally appropriate response
or request through text-to-speech synthesis. The Embodied
Dialogue System is implemented as an agenda-driven system,
with the agenda being the training of object grasping skills
or the testing and demonstration of the acquired ability. The
Dialogue System implements the joint-task agenda approach
(Piwek, 2017) in which tasks are accomplished via human-
robot collaboration. NICO performs visuomotor actions and
communicates its progress and the possible need for help, while
the user hands the learning object to the robot and provides
assistance when requested.

The Embodied Dialogue System is realized in a structured
dialogue model (Schlangen, 2005) with atomic and finite
states. Figure 6 shows the underlying state machine: states
represent actions of the robot that are carried out with
different combinations of components. The Embodied Dialogue
System decides which action to perform next based on internal
knowledge, external commands, or perception with visual or
tactile sensors. If, for example, the learning to grasp task is
selected, the system will initialize the learning process and ask
for assistance from the user, it will execute the grasp-learning
cycle until it reaches the desired number of successful samples
or until NICO fails at a grasp attempt in which case assistance is
required again. The NLG function is executed concurrently with
other functions to report progress without interfering with the
action currently being executed.

4.3. Experimental Design
4.3.1. Participants
The recruitment of participants occurred through various
sources (internet advertising, flyers, academic offices) to attract
participants with no or little prior experience with humanoid
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FIGURE 4 | (Top) The neural architecture for grasp learning, adapted from Kerzel and Wermter (2017b), maps a visual input to a six-DoF joint configuration to reach

for the object in NICO’s field of view. (Bottom) NICO’s self-learning cycle: (A) an object is put into NICO’s hand. (B) NICO places the object at a random position on the

table and records its joint configuration. (C) NICO releases the object, removes the hand, and records an image. (D) Using the recorded joint configuration, NICO

re-grasps the object and repeats the self-learning cycle.

FIGURE 5 | Results of the visuomotor learning from Kerzel and Wermter (2017b), based on the number of training samples, averaged over ten trials. With 400 training

samples, 85.5% of all grasp trials are successful.

robots, to avoid a so-called “convenience” sample (Baxter
et al., 2016). The only requirement was a basic knowledge of
conversational English. As an incentive, all participants were able
to participate in a draw for gift certificates. Of the 24 participants
(12 female and 12 male), an overwhelming majority (83.3%)
reported no or little experience with humanoid robots prior to
the experiment. Even though the participants were distributed
randomly between the two conditions, the gender ratio remained

equal in both. The overall average age of the participants was 27,
with a range of 17–60. The majority (62.5%) identified as atheist
or of no religion, 33.3% was Christian, and 4.16% as ‘other.’
In terms of English proficiency, 45.83% self-assessed themselves
as advanced, 41.6% as intermediate, and 12.5% as beginner. The
study was approved by the Ethics Commission of the University
of Hamburg. Written informed consent was acquired from every
participant before the start of the experiment.
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FIGURE 6 | Diagram of the Embodied Dialogue System: depending on the task, NICO guides the user through the grasp training until a fixed amount of samples is

successfully collected or demonstrates its grasp abilities to the participant.

4.3.2. Experimental Setup and Process
In the experimental setup, NICO is seated at a table with
appropriate dimensions for a child-sized robot, as depicted in
Figure 7. This experimental setup was initially introduced by
Kerzel and Wermter (2017b) and subsequently adapted for
various studies related to visuomotor learning and crossmodal
object interaction (e.g., Eppe et al., 2017; Kerzel et al., 2017b,
2019b; Heinrich et al., 2018, 2020). Therefore, the experimental
setup recreates a realistic neurorobotic learning scenario. The
human participant is sitting face-to-face with the robot. The
participant and the robot are enclosed by a semi-circular screen.
A ceiling-mounted camera captures the interaction between
participant and robot. The experimenter is positioned at an extra
table to the side, where the interaction phase is started, observed
and, depending on the experimental condition, narrated from.
A separate adult-sized table was provided for filling out the
questionnaires and the consent form.

Figure 8 shows the experimental process. To measure the
effect of the Embodied Dialogue System on the effectiveness

of the training process and the user’s perception of the
agent, independent measures were used. The participants were
randomly assigned to either a human-guided condition (HG), in
which the human experimenter guides them through the grasp-
learning task, or a robot-guided condition (RG), in which NICO
itself narrates the process and asks for help if needed. Before the
experiment, a short introduction to the process and to NICO
itself was given to the participants. The camera above the table
was shown to them, and the purposes of both audio and video
recording were explained. The participants had the opportunity
to ask questions before written consent for their participation in
the experiment was obtained.

Before the interaction, the participants were seated opposite
an unmoving NICO and were asked to evaluate their immediate
impression of NICO by filling out the first questionnaire, based
on the refined version of the Uncanny Valley indices by Ho and
MacDorman (2017), measuring perceived humanness, eeriness,
separated into eerie and spine-tingling, and attractiveness.
Since perceived humanness measures a similar concept to
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FIGURE 7 | Experimental setup. Photo (A) and schematic depiction (B) of the experimental setup. The participant is seated face-to-face with NICO, while the

experimenter is standing at a separate table and, depending on the experimental condition, guides the participant through the experiment and visibly operates the

robot (human-guided condition) or remains silent (robot-guided condition). A ceiling-mounted camera records the interaction.

the anthropomorphism and animacy indices of the Godspeed
questionnaires (Ho andMacDorman, 2010), this serves as a basis
for the comparison of the change of the participants’ impressions
of the robot after the interaction.

The interaction was divided into two phases: A training phase
and a demonstration phase. The training phase was limited
to 10 min to allow a comparison of the number of collected
samples in both conditions. To start the training process, the
participant placed the object into NICO’s hand. For an increase
in interactivity, an intentional grasping error was included in the
training. The error occurred randomly every two to five grasping
attempts. (For comparison, without the intentional error, failed
grasp attempts occurred on average only after more than 30 trials
in the study by Kerzel and Wermter (2017b).

In the human-guided condition, the human experimenter
instructed the participant when and how to initiate the training
and narrated the process. NICO remained silent in this condition
and only displayed facial expressions dependent on the success
or failure of the grasping attempt. The human experimenter
informed the participant if the robot was in need of assistance.
In the robot-guided condition, NICO took over the role of
the instructor, combining the display of emotions with verbal
expressions of happiness or distress, and requesting the assistance
of the participant if needed. The script for the training phase can
be viewed in Table 1.

The demonstration phase consisted of the participant placing
the object on the table in front of NICO three times, and the
robot trying to pick it up. If the attempt was successful, the robot
handed the object back to its interaction partner and, depending
on the condition, voiced its happiness in addition to displaying
an appropriate facial expression. The participants were given no
instruction on where to place the object exactly. This allowed
the participants to witness the effects of the prior training phase,
even though a previously trained neural network was used. For
the sake of transparency, the participants were informed about
this fact beforehand. Equivalent to phase one, depending on the
condition, either the human expert or the humanoid itself guided
the participants through the process (see Table 2).

After the interaction, the participants were asked to return
to the interview table to fill in the second questionnaire, based
on the Godspeed questionnaires by Bartneck et al. (2009) and
the Mind Perception questionnaire by Gray et al. (2007), with
some additional questions collecting demographic information
about the participants. The Godspeed questionnaires measure
anthropomorphism, animacy, likeability, perceived intelligence,
and perceived safety. While they are known to be very dependent
on the environment of the experiment and the experimental
design (Weiss and Bartneck, 2015), more so than on the
robot itself, they remain a popular evaluation tool and were
included here for comparison’s sake. TheMind Perception survey
questions measure the amount of mind participants attribute
to the evaluation subject, in two dimensions: Experience and
Agency. While Experience is about how much the subject feels
or senses, Agency describes the robot’s capacity to act, plan,
and exert self-control. As before, the participants were asked
to evaluate NICO based on their personal impressions alone.
The interview that followed was conducted in a semi-structured
manner, with the questions based on the USUS evaluation
framework of Weiss and Bartneck (2015), with a combination of
obligatory and additional questions for the categories Usability,
Social Acceptance, and User Experience. The interview was
audio-recorded, about which the participants had been informed
before the start of the experiment.

5. RESULTS

5.1. Subjective Effect of an Active Role in
Learning on the Participants
5.1.1. Humanoid Evaluation
Initial evaluation. The Uncanny Valley indices were used to
evaluate the participants’ first impression of a silent, motionless
NICO. The mean scores are M = 2.32(SD = 0.66) for
humanness,M = 3.01(SD = 0.56) for eeriness,M = 3.13(SD =

0.53) for spine-tingling, and M = 3.79(SD = 0.72) for
attractiveness. A visualization of the results can be viewed in
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TABLE 1 | Script for a training cycle in the first phase of the interaction.

Visible robotic action Human-guided dialogue Robot-guided dialogue

NICO moves into the starting position;

NICO displays a neutral facial expression

NICO is ready to train. It’s training time!.

NICO opens its right hand Please put the object in NICO’s right hand. Please put the training object

in my right hand.

NICO places the object at a random

position on the table

NICO is choosing a location for the object. Let’s put the object here.

NICO moves the hand away (and records

a picture)

NICO is remembering the location of the

object.

I am remembering the location

of the object.

NICO attempts to grasp the object again NICO will now try to grasp the object. I will try to grasp the object.

(SUCCESS)

NICO displays a happy facial expression;

repeat from beginning

NICO is choosing a new location for the

object.

Let’s put the object here.

(FAILURE)

NICO displays a sad facial expression NICO failed to grasp the object. Oh, no! I failed to grasp the

object.

NICO moves back into starting position NICO deleted the last recorded file. I deleted the last recorded file. I

am done training.

TABLE 2 | Script for the grasping attempt in the second phase of the interaction.

Visible robotic action Human-guided dialogue Robot-guided dialogue

NICO moves into the starting position;

NICO displays a neutral facial expression

NICO is now ready to look, please put the

object in front of NICO on the table.

Ready to look! Please put the

grasp-learning object onto the

table.

No visible action (NICO records a picture) NICO is now looking at the object. I am looking at the object.

No visible action NICO is building the network and loading it

from file.

Let me think about this very

carefully. Building network.

Loading network from file.

No visible action The network is loaded and is now

connecting to NICO.

Network loaded, connecting to

myself.

NICO reaches for the object NICO is now ready to grasp. Output joint values. Ready to

grasp.

(SUCCESS)

NICO grasps the object, lifts it up and

presents it to the participant; NICO

displays a happy facial expression

NICO managed to grasp the object. Here

you go, this is for you.

I grasped the object. Here you

go, this is for you.

(FAILURE)

NICO does not grasp the object; NICO

displays a sad facial expression and

moves back into the starting position

Since NICO failed to grasp the object, we

will try again.

Oh, no! I failed to grasp the

object. I will try again.

Figure 9. These results establish a baseline against which we
can make comparisons after the robot interaction in the two
experimental conditions.

Evaluation of the two experimental conditions. As Figure 10
shows, the mean scores of the Godspeed questionnaires
are slightly higher in the robot-guided condition for
anthropomorphism, animacy, and perceived safety. In the
human-guided condition, NICO ranked higher on likeability and
perceived intelligence. The mean scores and standard deviations
can be viewed in Table 3. To test the statistical significance of the
different scores in both conditions, a two-sided Mann-Whitney
test was performed. The evaluation of the differences between
the two groups produced no significant results (p > 0.05).

As for the results of the evaluation of the Mind Perception
survey, NICO scored higher in regards to both Experience (M =

2.65, SD = 0.63) and Agency (M = 3.12, SD = 0.54) in the
human-guided condition (Figure 10). The scores in the robot-
guided condition wereM = 2.34 (SD = 0.83) for Experience and
M = 2.84 (SD = 0.93) for Agency. However, a two-sided Mann-
Whitney test showed no statistical significance to the difference
between the conditions (p > 0.05).

Evaluation after the interaction compared to the baseline. To
evaluate a possible change in perceived humanness during the
interaction in relation to the established baseline, a Wilcoxon
signed-rank test was performed, under the assumption that
humanness measures the same concept as anthropomorphism,
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FIGURE 8 | The experimental process. After an introduction, participants were asked to fill in a first questionnaire (Uncanny Valley Indices) based on their initial

impression of NICO. Participants were then randomly assigned to the robot-guided or human-guided condition. In both conditions, participants performed a training

phase with NICO, followed by a demonstration by NICO. After the demonstration, participants filled in two more questionnaires (Goodspeed and Mind Perception) and

took part in a structured interview using the USUS framework.

FIGURE 9 | Initial evaluation to establish the participants’ first impression of a

silent, motionless NICO as a baseline for later comparison. Mean scores and

standard error for the Uncanny Valley indices.

animacy, and likeability. As suggested by Ho and MacDorman
(2010) in their analysis of the Godspeed questionnaires, a high
correlation between anthropomorphism and animacy (rs = 0.71,
p < 0.01) and a medium correlation between animacy and
likeability (rs = 0.46, p = 0.03) was found. The small correlation
between anthropomorphism and likeability (rs = 0.35, p = 0.09)
was not statistically significant.

The comparison of pre-interaction humanness and post-
interaction anthropomorphism did not yield a significant result,
with p = 0.11 (Z = 93.5). The p-value of the test within the
human-guided condition is p = 0.7203 (Z = 34.5), and p = 0.11
(Z = 18.5) within the robot-guided condition. The comparison
between humanness and animacy produced a significant result
overall, with p < 0.01 (Z = 55.5), as well as within the robot-
guided condition, with p < 0.05 (Z = 14). The test within the
human-guided condition shows no significant difference (p =

0.17,Z = 21.5). The comparison between humanness and
likeability produced a significant result overall, with p < 0.01
(Z = 4), as well as within the robot-guided condition, with p <

0.01 (Z = 2), and the human-guided condition, with p < 0.01
(Z = 0).

5.1.2. Interaction Evaluation
The evaluation by interview reinforces and clarifies some of the
conclusions of the statistical analysis; it also uncovers additional
information by giving the participants the space to talk about
their experience. The interview questions were based on the
indicators of the USUS evaluation framework by Weiss and
Bartneck (2015), and the interview was conducted in a semi-
structured way. On average, the interviews took between 7 and
8 min per participant.

The effectiveness of the training process was perceived more
favorably in the robot-guided condition, with a majority of
participants believing in the accomplishment of a goal (60%)
and experiencing a high level of satisfaction regarding NICO’s
progress (79.9%). In the human-guided condition, only 33.3% of
the people reported a feeling of accomplishment, and only 16.6%
were satisfied with the achieved performance.

All of the participants in the robot-guided condition rated
the communication as satisfactory for them, and a majority
(66.6%) felt that they would be confident enough to interact with
NICO again in the future without the presence of an expert.
The most commonly mentioned reason for their confidence was
the fact that NICO had previously told them what to do. The
remaining 33.4% who were unsure about future interactions
mentioned insecurity regarding the expected extent of their help
toward NICO. In the human-guided condition, the split was
approximately even, with 58.3% of participants admitting the
need for further help by a human assistant in a future interaction
withNICO and 41.7% being confident in the simplicity of the task
and in NICO’s ability to conduct the training process without any
mistakes. The majority of participants (60%) in the robot-guided
condition reported a lack of anxiety due to the dialogue system
and NICO’s instruction. The remaining 40% expressed anxiety
with regard to their own failings, but with the underlying theme
being a concern for NICO and its learning process.

In the robot-guided condition, 73.3% of the participants felt
that they played a more active role in the interaction, and 80% felt
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FIGURE 10 | (A) Shows the mean scores and standard error for the categories of the Godspeed questionnaires. The active NICO scored higher in regard to

Perceived Safety, Animacy, and Anthropomorphism. (B) Shows the mean scores and standard error for Experience and Agency in the Mind Perception survey

questions. Blue signifies the robot-guided condition and red signifies the human-guided condition.

TABLE 3 | Mean scores and standard deviations for the Godspeed questionnaires

for both conditions.

Robot-guided Human-guided

Mean SD Mean SD

Anthropomorphism 2.62 1.01 2.55 1.10

Animacy 2.82 1.07 2.78 1.01

Likeability 4.19 0.86 4.23 0.72

Perceived intelligence 3.17 1.01 3.37 0.78

Perceived safety 3.64 0.88 3.61 1.02

more integral to the success of the learning process. Meanwhile,
people in the human-guided condition perceived themselves
more frequently as passive observers or in a subordinate role,
which is mirrored in the fact that they felt less important
to the success of NICO’s training. The Embodied Dialogue
System also influenced how involved the participants felt in
the whole interaction. Since NICO was not equipped with any
additional functionalities that facilitate personal involvement,
like face-tracking, the emotion display and dialogue system
had to fill that role. As mirrored by the participants’ perceived
lack of importance to the training process in the human-
guided condition, only 16.6% felt directly involved. Meanwhile,
in the robot-guided condition, 73.3% felt a sense of personal
involvement and continuous engagement, which was amplified
by NICO addressing them and looking at them directly.

The interaction with NICOwas perceived as enjoyable by both
groups, with NICO’s observable improvement and the feeling
of teaching a child being the two most frequently mentioned
reasons. But when asked about the type of roles NICO could
fill in the future, dangerous, repetitive, or monotonous work
featured more prominently in the answers of the participants
in the human-guided condition. People in the robot-guided
condition placed NICO mostly in elderly care or as a social
companion robot. Additionally, 41.6.% of people in the human-
guided condition cited NICO’s lack of social interaction and

emotional understanding as the main reasons for their refusal to
accept NICO into their social circle. Meanwhile, 66.6% of people
in the robot-guided condition could imagine welcoming NICO
into their family, with the remaining 33.3% mentioning roles like
“family pet” or “colleague at work.”

To summarize: the Embodied Dialogue System had a
noticeable influence on the way people talked about and
described NICO. In the robot-guided condition, user satisfaction
was overall higher because the participants felt more integral
to and engaged in the learning process. This was primarily
attributed to NICO’s vocal expressions, which made the
participants overall confident enough to imagine a possible
unsupervised interaction. In contrast, the people in the human-
guided condition who experienced a higher level of confidence
largely attributed it to the simplicity of the task. This overall
detachment from the process and NICO itself can also be found
in their active refusal to imagine NICO as more than a utility.
This shows that in order to facilitate an environment that allows
non-expert users to confidently supervise and actively assist the
training process, the robot needs to be able to generate and keep
the engagement of the user.

5.2. Objective Effect of an Active Role in
Learning on the Learning Process
To ensure comparability between the two conditions, the first
phase of the interaction was limited to a time frame of 10 min,
during which the participant assisted NICO with the collection
of samples. The number of collected samples during this training
phase was on average higher in the human-guided condition
(M = 9.08, SD = 2.63) than in the robot-guided condition (M =

6.5, SD = 2.53). This difference can, in large part, be attributed to
the time the audio output of the dialogue system required.

However, in only the robot-guided condition, an interesting
pattern could be observed: people were more inclined to engage
themselves in the training process in a positive way, contributing
to a smaller number of errors in the observed cases. By correcting
the orientation and position of the object after NICO had placed
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FIGURE 11 | Participants correcting the object position during the training phase, after NICO put it on the table (A,B) and during a grasping attempt (C,D).

it on the table, they made the subsequent repeated grasping
less error-prone, leading to a larger number of uninterrupted
iterations of the training process. This went as far as them actively
putting the object back into NICO’s hand after a predetermined
failed grasp in the third or fifth iteration.

In order to quantify this effect, the video recordings of
the training phase were analyzed: out of 24 participants, 23
agreed to a video recording and a qualitative analysis of their
interaction behavior. Therefore, 230 min of video were annotated

for physical interactions between participant and NICO or

participant and learning object. We defined any action in
which the participant touches the training object or the robot

as a physical interaction during the learning phase. Physical
interactions were categorized as being either requested or
participant-initiated. Depending on the experimental condition,
the request for interaction could either come from the robot
or from the experimenter. Interactions are requested for two
reasons: first, to start the training process, the human participant
is asked to put the training object into NICO’s hand; second,
if, during the learning process, NICO fails to grasp the object,
which was artificially caused on each third to fifth trial, NICO
moves back into its starting position, and the participant is
asked to place the learning object into NICO’s hand again.
While there were no explicit reasons given for participant-
initiated interactions, the fact remains that these interactions
overwhelmingly occurred in the robot-guided condition, which
can be linked back to the overall higher confidence in NICO’s
capabilities, as discussed in section 5.1.2, and a higher Perceived
Safety score. The examination of the video material shows that
participant-initiated interactions occurred if the robot lost its

TABLE 4 | Requested and participant-initiated physical interactions during the

learning phase, mean and standard deviations.

Physical Interaction Robot-guided Human-guided

Mean SD Mean SD

Requested 2.67 0.98 2. 91 1.30

Participant-initiated 1.08 1.83 0.18 0.40

initial grip on the object before or while placing it on the table,
in which case the participants picked it up and placed it where
they assumed the robot had intended to place the object. The
participants also corrected the position of the object after the
robot released it, with a possible trigger for that interaction
being that the participants observed the object moving during the
release. The majority of participant-initiated interactions were
small corrections to the object’s position during an ongoing grasp
attempt. It can be assumed that the participants predicted the
end position of NICO’s hand based on the observed trajectory
and positioned the learning object accordingly. As shown in
Figure 11, this also happened in physical contact with the robot6.

Table 4 shows the average requested and participant-initiated
interactions per training phase. There is a visible increase in

6Redundant safety features limit the closing force of the robotic hands: the

mechanical design of the robotic hand is based on magnet connectors for the

fingers that give away in case of excess load; furthermore, both software and

firmware limitations for all motors are implemented. Therefore, the physical

interaction between the participants and the robot was safe at all times.
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the number of participant-initiated interactions in the robot-
guided condition (MR = 1.08 compared to MH = 0.18),
even though half of them did not initiate any interactions at
all. The prerequisites that could have enabled this behavior
are discussed in section 5.1.2: participants have little fear of
contact with the robot; they feel more engaged in the learning
situation and more actively care about the learning outcome.
The second observation, namely there being fewer requested
interactions in the robot-guided condition (MR = 2.67 compared
to MH = 2.91), can also be linked back to this. A possible
interpretation of these combined results is that fewer requested
interactions were necessary because the participants anticipated
and prevented situations that would cause an unsuccessful grasp
through participant-initiated interactions. While these results
show no statistical significance for α = 0.05, there is a trend to be
observed here: participants in the robot-guided condition showed
more engagement and proactive behavior, which can have an
effect on the actual neural learning processes of the robot.

6. CONCLUSION

6.1. Discussion of Results on
Human-Robot Interaction
The participants reported a high rate of identification with
active teaching or supporting roles and continued to refer to
NICO as childlike. This indicates that the desired relationship
dynamic of a teacher-learner team was achieved. The fact that
the participants ascribed the reasons for their enjoyment to the
feeling of teaching a child suggests that the collaborative learning
approach further facilitated the student-teacher relationship
dynamic. The results of the Godspeed questionnaires showed
higher scores for anthropomorphism, animacy, and perceived
safety in the robot-guided condition. Although the difference in
ratings between the groups showed no statistical significance, the
results of the interviews were able to confirm them to a degree.
The participants attributed human characteristics to NICO in
both conditions, but an examination of how they imagined
NICO to react to their mistakes showed a tendency toward more
human-like behavioral patterns in the robot-guided condition.
Following the theory that a high anthropomorphism score could
serve as an indicator of social acceptance, as suggested by Weiss
and Bartneck (2015) in their meta-analysis of the Godspeed
questionnaires, a greater disposition toward accepting NICO as
part of their family or social circle could be observed among the
participants in the robot-guided condition. Emotional support
and elderly or health care appeared more frequently as imagined
tasks for the active NICO in a domestic or work environment,
which supports the higher anthropomorphism score.

Under the assumption, made in section 4.3.2, that humanness
and anthropomorphism, animacy, and likeability measure
a similar concept, a significant improvement of perceived
humanness after the interaction with an active NICO could
be observed. The effect was distinctly lower in the human-
guided condition, suggesting that the Embodied Dialogue System
was the influencing factor. Participants in the robot-guided
condition reported a higher level of perceived involvement after

interacting with NICO, although in both groups, the feeling of
reciprocity peaked in the demonstration phase. This shows that
the Embodied Dialogue System could help with keeping user
involvement high throughout an interaction.

The number of collected samples and successful grasping
attempts had no measurable influence on the perceived
intelligence rating. A reason for this could be a missing basis
of comparison for the users, amplified by the fact that the
majority had no previous experience with humanoid robots. This
is reflected in the fact that NICO’s performance did not have
any influence on the participants’ sense of achievement. People
in the robot-guided condition were on average more forgiving of
NICO’s mistakes, reporting an accomplished goal even with a low
number of collected samples. In the human-guided condition,
participants were much more ready to dismiss the learning
process, even though a high number of samples indicated a fast
training phase.

Although people in both conditions were equally afraid of
making mistakes during NICO’s training phase, the higher
perceived safety score in the robot-guided condition indicates that
participants overall felt more secure during this interaction. This
is endorsed by the fact that the participants were more confident
in their capability of interacting with NICO unsupervised, basing
this confidence on NICO’s clear instructions. This confidence
is also mirrored in the fact that in the robot-guided condition,
the participants more actively intervened in the grasp learning
process by, e.g., correcting object positions (Figure 11). These
results support the hypothesis that the Embodied Dialogue
System enables non-expert users to supervise the learning process
with confidence and efficiency.

6.2. Discussion of Results on Robotic
Visuomotor Learning
The presented study shows that the Embodied Dialogue System
can realize a successful visuomotor learning scenario between a
non-expert user and NICO. Though the scenario was carried out
in controlled laboratory conditions, the results indicate that the
robot-guided learning interaction could also take place ad hoc in
a domestic environment, e.g., when the robot encounters a novel
visuomotor task and requires some form of human aid. This
assistance can take different forms like demonstration (Gupta
et al., 2016), advice, and instruction (Cruz et al., 2016) or physical
assistance (Kerzel and Wermter, 2017b).

The positive subjective rating of the participants that was
achieved in the robot-guided condition is an important factor for
the use of humanoid robots as learning companions in everyday
tasks. However, it is equally important to consider the quality
of the learning outcome. Our results show that while using the
Embodied Dialogue System to communicate its internal states
and intentions tookmore time, resulting in less collected samples,
it also led to a number of participants actively collaborating
with NICO in its training and thus improving the learning
process. The participants physically intervened in the learning
process on their own initiative and prevented, e.g., unsuccessful
grasps by correcting the position of the object. This behavior, in
turn, enhances the quality of the collected samples. Moreover,
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in an actual learning scenario in the wild, learning based on
the supervision of a human expert defeats the purpose of a
semi-autonomous learning companion robot.

In summary, though fewer samples were collected in the
robot-guided condition, the participants rated the robot-guided
interaction more positively, indicating that they might be willing
to spend more time teaching the robot, which could compensate
for the slower speed of sample collection in this condition.
Furthermore, participant-initiated interactions improved the
quality of the collected samples. Finally, results from the
interviews conducted indicate that the participants would put
more trust in the abilities that result from NICO’s training and
are more willing to accept NICO as a companion in their home.

6.3. Discussion on Social Humanoid
Robots
The presented study shows how a robot’s ability to socially
interact is a key factor for learning from and with humans.
Considering the challenging nature of many real-world robotic
tasks, the ability and willingness of non-expert users to aid in
the necessary learning process is an important resource. The
presented results are in line with the concept of developmental
robotics (Cangelosi and Schlesinger, 2015): when looking at early
human development, social interaction, especially scaffolding
provided by caretakers, is critical for the development of
cognitive abilities.

The results give evidence to support the proposition that
successful scaffolding of a robotic learner in interaction with
non-expert users is fostered by sensory and motoric similarity,
approachability, and social interaction abilities. We show that
this idea is reflected in the design of NICO (section 3.1) and
by the previous studies carried out on NICO (section 3.2)
evaluating it as a platform for social interaction, human-inspired
active visual, auditory, and haptic perception, and developmental
grasp-learning. The studies show in multiple cases that human
strategies, e.g., active audio exploration (Eppe et al., 2018) and
can be adapted to NICO. In turn, this also implies that non-
expert users can apply their common sense and expertise as
teachers in the NICO scenario. Multiple studies on Human-
Robot Interaction demonstrate that NICO can engage in different
Human-Robot Interaction scenarios and is rated positively by
participants and that features like its facial emotion display
have a positive effect on subjective user ratings (Churamani
et al., 2017b). These properties of NICO are reflected in the
questionnaire and interview responses of the presented study,
and it can be assumed that they contributed to the positive
learning outcome. The presented HRI study brings together,
for the first time, human-robot interaction and visuomotor
learning on NICO and shows that social interaction can be a
key factor for enabling human teachers. The presented learning
setup can be adapted to other platforms as a contribution to
both the robotic machine learning as well as the developmental
robotics community7.

7The NICO API and code examples, including a pre-trained neural grasping

model, can be found at https://github.com/knowledgetechnologyuhh/NICO-

software.

6.4. Future Work
If a state-based Embodied Dialogue System is able to greatly
improve the user experience of non-expert participants while
teaching NICO, it might be possible to further amplify that
behavior by designing a system that focuses on user comfort,
not just to improve the experience of the human interacting
with the robot but also to increase the training success of
the robot learner. A natural learning process, with clearly
communicated intentions, that is accessible to non-expert
humans, will ultimately benefit both user and robot.

Valuable lessons can be drawn from the structured interviews
for improving NICO’s design and social interaction capabilities:
NICO’s three-fingered hands will be upgraded to four-fingered
hands with a movable thumb, giving NICO a more human-
like appearance. More importantly, the design will enable
different types of grasps that can be selected according to object
affordances. This more anthropomorphic design is intended to
contribute to grasp learning with the aid of non-expert human
teachers by enabling a more intuitive understanding of NICO’s
kinematics. To enhance NICO’s overall appearance, NICO will
be upgraded to allow concealed cable routing inside its limbs and
also be fitted with an optional outer shell.

For the interaction scenario, suggestions by the participants
will be implemented and evaluated: A module for face tracking
and gaze shifts will be integrated into the API, as the missing
eye-contact during the training phase was the most commonly
mentioned grievance because it disconnected the user from the
process. Also, a new text-to-speech module will be developed,
as NICO’s voice was also repeatedly remarked upon, either
as being unfitting for a young child or causing confusion
about NICO’s perceived gender. At the moment, the evaluated
Embodied Dialogue System only covers the instructions and
assertions necessary for a smooth training process. A wish for
a more detailed introduction to or narration of the process was
mentioned, which could be a way to keep user involvement
high even during longer phases without eye-contact and create
a more satisfying user experience. In future studies, we will
also more tightly control the participant’s initiative in the
interaction as an evaluation tool. With regard to crossmodal
neurocognitive models, the suggested extensions will support a
tighter integration of semi-autonomous reinforcement learning
andmultiple forms of learning from humans, like advice, physical
aid, learning from demonstration, and human feedback as
reward signal.
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Natural language provides an intuitive and effective interaction interface between human

beings and robots. Currently, multiple approaches are presented to address natural

language visual grounding for human-robot interaction. However, most of the existing

approaches handle the ambiguity of natural language queries and achieve target

objects grounding via dialogue systems, which make the interactions cumbersome and

time-consuming. In contrast, we address interactive natural language grounding without

auxiliary information. Specifically, we first propose a referring expression comprehension

network to ground natural referring expressions. The referring expression comprehension

network excavates the visual semantics via a visual semantic-aware network, and

exploits the rich linguistic contexts in expressions by a language attention network.

Furthermore, we combine the referring expression comprehension network with scene

graph parsing to achieve unrestricted and complicated natural language grounding.

Finally, we validate the performance of the referring expression comprehension network

on three public datasets, and we also evaluate the effectiveness of the interactive

natural language grounding architecture by conducting extensive natural language query

groundings in different household scenarios.

Keywords: interactive natural language grounding, referring expression comprehension, scene graph, visual and

textual semantics, human-robot interaction

1. INTRODUCTION

Natural language grounding aims to locate target objects within images given natural language
queries, and grounding natural language queries in visual scenes can create a natural
communication channel between human beings, physical environments, and intelligent agents.
Moreover, natural language grounding is widely used in image retrieval (Gordo et al., 2016), visual
question answering (Li et al., 2018), and robotics (Paul et al., 2018; Mi et al., 2019).

With applications of robots becoming omnipresent in varied human environments such as
factories, hospitals, and homes, the demand for natural and effective human-robot interaction
(HRI) has become urgent. Natural language grounding-based HRI is also attracting considerable
attention, and multiple approaches have been proposed (Schiffer et al., 2012; Steels et al., 2012;
Twiefel et al., 2016; Ahn et al., 2018; Hatori et al., 2018; Paul et al., 2018; Shridhar and Hsu, 2018;
Mi et al., 2019; Patki et al., 2019).
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Natural language grounding-based HRI requires a
comprehensive understanding of natural language instructions
and working scenarios, and the pivotal issue of is to locate
the referred objects in working scenarios according to given
instructions. Although the existing models achieve promising
results, some of them either do not take the inherent ambiguity of
natural language into consideration (Paul et al., 2018; Katsumata
et al., 2019; Mi et al., 2019; Patki et al., 2019), or alleviate the
ambiguity via drawing support from auxiliary information, such
as dialogue system (Ahn et al., 2018; Hatori et al., 2018; Shridhar
and Hsu, 2018) and gestures (Shridhar and Hsu, 2018). However,
the dialogue-based disambiguation systems entail time cost and
cumbersome interactions.

Tasks that utilize textual descriptions or questions to help
human beings to understand or depict images and scenes are in
agreement with the human desire to understand visual contents
at a high semantic level. Examples of these tasks include dense
captioning (Johnson et al., 2016), visual question answering
(Antol et al., 2015), referring expression comprehension (Yu
et al., 2016), etc. Referring expression comprehension imitates
the role of a listener to locate target objects within images
given referring expressions. Compared to other tasks, referring
expression comprehension focuses on objects in visual images
and locates specific targets via modeling the relationship between
objects and referring expressions.

Inspired by the role of referring expression comprehension,
we propose an interactive natural language grounding
architecture based on referring expression comprehension.
Specifically, we propose a semantic-aware network for referring
expression comprehension task. The proposed semantic-aware
network is composed of a visual semantic-aware network, a
language attention network, and a target localization module.
The visual semantic-aware network highlights the visual
semantics of regions by fully utilizing the characteristics of
deep features extracted from a pretrained CNN (Convolutional
Neural Network). The language attention network learns
to assign different weights to each word in expressions and
parse expressions into phrases that embed information of
target candidate, relation between objects, and spatial location,
respectively. And the target localization module combines
the visual and textual representations to locate target objects.
We train the proposed network on three popular referring
expression datasets: RefCOCO (Yu et al., 2016), RefCOCO+ (Yu
et al., 2016), and RefCOCOg (Mao et al., 2016).

In real applications, natural language queries are complicated
and ambiguous.While the expressions in the referring expression
datasets are simple sentences and only indicate one target, so the
complicated queries can not be grounded only by the trained
referring expression comprehension model. Inspired by the role
of scene graph which describes objects within visual images
and the relationship between objects, we integrate the referring
expression comprehension network with scene graph parsing
(Johnson et al., 2015) to ground unconstrained and complicated
natural language queries.

Moreover, we conduct extensive experiments on test sets of
the three referring expression datasets to validate the proposed
referring expression comprehension network. In order to

evaluate the performance of the interactive natural language
grounding architecture, we collect plenty of indoor working
scenarios and diverse natural language queries. Experimental
results demonstrate that the presented natural language
grounding architecture can ground complicated queries without
the support from auxiliary information.

To sum up, our major contributions are two-fold. First,
we propose a semantic-aware network for referring expression
comprehension, in which we take full advantage of the
characteristics of the deep features and exploit the rich contexts
of referring expressions. Second, we present a novel interactive
natural language grounding architecture by combining the
referring expression comprehension network with scene graph
parsing to ground complicated natural language queries.

2. RELATED WORK

2.1. Natural Language Grounding for HRI
Multiple approaches have been proposed to address natural
language grounding for HRI. Schiffer et al. (2012) adopted
decision-theoretic planning to interpret spoken language
commands for natural language-based HRI in domestic service
robotic applications. Steels et al. (2012) presented Fluid
Construction Grammar (FCG) to understand natural language
sentences, and FCG was suitable for real robot requires because
of its robustness and flexibility. Fasola and Matarić (2014)
proposed a probabilistic method for service robots to interpret
spatial language instructions.

Twiefel et al. (2016) combined an object classification
network, a language understanding module with a knowledge
base to understand spoken commands. Paul et al. (2018)
proposed a probabilistic model named adaptive distributed
correspondence graph to understand abstract spatial concepts,
and an approximate inference procedure to realize concrete
constituents grounding. Patki et al. (2019) utilized distributed
correspondence graph to infer the environment representation
in a task-specific approach. Katsumata et al. (2019) introduced
a statistical semantic mapping method that enables the robot to
connect multiple words embedded in spoken utterance to a place
in a semantic mapping processing. However, these models did
not take into account the inherent vagueness of natural language.
Our previous work (Mi et al., 2019) first presented an object
affordances detection model, and then integrated the object
affordances detection with a semantic extraction module for
grounding intention-related spoken language instructions. This
model, however, was subject to limited categories of affordances,
so it can not ground unconstrained natural language.

Shridhar and Hsu (2018) adopted a pretrained captioning
model, DenseCap (Johnson et al., 2016), to generate expressions
for detected regions in uncluttered working scenarios, and
through conducting K-means clustering to identify the
relativeness of input instructions and the generated expressions.
The expressions generated by DenseCap (Johnson et al., 2016)
do not include the interaction information between objects, such
as the relationship between objects. Therefore, the authors of
work (Shridhar and Hsu, 2018) employed gestures and a dialogue
system to disambiguate spoken instructions. Hatori et al. (2018)
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drew support from a referring expression comprehension model
(Yu et al., 2017) to identify the target candidates, and tackled with
the ambiguity of spoken instructions via conversation between
human users and robots. Ahn et al. (2018) first employed
hourglass network (Newell et al., 2016) to generate position
heatmap for working scenarios, and combined the generated
heatmap with a question generation module to locate targets
according to the answers for the generated questions. Thomason
et al. (2019) translated the spoken instructions into discrete robot
actions and improved objects grounding through clarification
conversations with human users. Nevertheless, dialogue systems
usually make HRI cumbersome and time-consuming.

Thomason et al. (2016) took into account visual, haptic,
auditory, and proprioceptive data to predict the target objects,
and the natural language grounding supervised by an interactive
game. However, this model needs to gather language labels
for objects to learn lexical semantics. Magassouba et al. (2018)
presented a multi-modal classifier generative adversarial network
to enable robots to implement carry-and-place tasks, and
disambiguates the natural language commands by utilizing
the contexts of working environments and the states of
the robots.

By contrast, we disambiguate natural language queries
by a referring expression comprehension network and
achieve interactive natural language grounding without
auxiliary information. To alleviate the ambiguity of natural
language queries, we take into consideration the relations, the
region visual appearance difference, and the spatial location
information during the referring expression comprehension
network training. Besides, we integrate the trained referring
expression comprehension model with scene graph parsing
to achieve unrestricted and complicated interactive natural
language grounding.

2.2. Referring Expression Comprehension
Referring expression comprehension aims to locate the most
related objects in images according to given referring expressions.
Compared with image captioning and visual question answering,
referring expression comprehension is widely used in image
retrieval (Chen k. et al., 2017), video question answering (Gao
et al., 2017), and natural language based HRI (Hatori et al., 2018;
Shridhar and Hsu, 2018).

In terms of representations of image regions and natural
language referring expressions, existing approaches for referring
expression comprehension can be generalized into two
categories: (1) visual representations un-enriched models,
which directly extract deep features from a pretrained CNN as
the visual representations of detected image regions (Mao et al.,
2016; Yu et al., 2016, 2017; Hu et al., 2017; Deng et al., 2018;
Zhang et al., 2018; Zhuang et al., 2018). (2) visual representations
enriched models, which enhance the visual representations
by adding external visual information for regions (Liu et al.,
2017; Yu et al., 2018a,b). Liu et al. (2017) leveraged external
knowledge acquired by an attributes learning model to enrich
the information of regions. Yu et al. (2018b) trained an object
detector on the Visual Genome dataset (Krishna et al., 2017)
to generate diversified and discriminative proposals. Yu et al.

(2018a) extracted deep features from two different convolutional
layers to predict region attribute cues. However, these mentioned
approaches neglected the rich information embedded in the
extracted deep features.

Attention mechanism was introduced for image captioning
(Xu et al., 2015) and become an indispensable component
in deep models to acquire superior results (Anderson et al.,
2018; Yu et al., 2018a). Due to the excellent performance of
attention mechanisms, they have also been utilized in referring
expression comprehension (Hu et al., 2017; Deng et al., 2018;
Yu et al., 2018a; Zhuang et al., 2018). Hu et al. (2017) parsed
the referring expressions into a triplet (subject, relationship,
object) by an external language parser, and computes the weight
of each part of parsed expressions with soft attention. Deng
et al. (2018) introduced an accumulated attention network that
accumulated the attention information in image, objects, and
referring expression to infer targets. Zhuang et al. (2018) argued
that the image representation should be region-wise, and adopted
a parallel attention network to ground target objects recurrently.
Notwithstanding, these models processed expressions as holistic
and ignored the rich context of expressions. Wang et al. (2019)
introduced a graph-based attention mechanism to address the
target candidates and the relationships between objects within
images, while the visual semantic in images was neglected.

Unlike the above mentioned approaches, we address the
visual semantics of regions by taking advantage of the inherent
semantic attributes of deep features, i.e., channel-wise and
spatial characteristics of extracted deep features. Additionally,
we explore the textual semantics by adopting BERT to generate
word representations and employ a language attention network
to learn to decompose expressions into phrases to ground
target objects.

3. ARCHITECTURE OVERVIEW

Natural language provides a more intuitive interface to achieve
natural and effective HRI. For grounding unrestricted and
complicated interactive natural language queries, we propose a
novel architecture, as shown in Figure 1. We decompose the
interactive natural language grounding into two subtasks: (1)
parse the complicated natural language queries into scene graph
legends by scene graph parsing. The scene graph legend is a data
structure consisting of nodes that denote objects with attributes
and edges that indicate the relations between objects; (2) ground
the parsed natural language queries by the referring expression
comprehension network.

In this work, we aim to locate the most related referents in
working scenarios given interactive natural language expressions
without auxiliary information. The inputs consist of a working
scenario given as an RGB image and an interactive natural
language instruction given as text, and the outputs are the
bounding boxes of target objects. We parse the input natural
language instructions into scene graph legends by scene graph
parsing, and then we ground the acquired scene graph legends
via the referring expression comprehension network.
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FIGURE 1 | The architectural diagram of the proposed interactive natural language grounding. We first parse the interactive natural language queries into scene graph

legends by the scene graph parsing. We then ground the generated scene graph legends via the referring expression comprehension network. The mark rectangle in

bottom encompasses the scene graph parsing result for the input natural language query. The rounded rectangles with black dashed lines denote the parsed scene

graph legends, color shaded rectangles represent referents, no color shaded rectangle is an object, ovals indicate objects attributes, rounded rectangles act for edges

which indicate relations between target and other objects. The same color of the bounding boxes in the output image and the referents in the generated scene graph

legends denotes a grounding.

We elaborate the details of the referring expression
comprehension network in section 4, and we describe the
scene graph parsing in section 5. Following this, we outline
the experiments conducted to evaluate the referring expression
comprehension network and the interactive natural language
grounding architecture in section 6.

4. REFERRING EXPRESSION
COMPREHENSION VIA
SEMANTIC-AWARE NETWORK

Given a referring expression r with M words r = {wi}
M
i=1 and

an image I with N region of interests (RoIs) I = {oj}
N
j=1, we

model the relation between wi and oj to locate the target object.
In this study, we propose a referring expression comprehension
network comprises: (1) a language attention network learns
to assign different weights to each word in expressions, and
parse the expressions into phrases that denote target candidate,
relation between target candidate and other objects, and location
information; (2) a visual semantic-aware network generates
semantic-aware visual representation, which is acquired by
the channel-wise and the region-based spatial attention; (3)
a target localization module achieves targets grounding by
combining the outputs of the language attention network,
the output of the visual semantic-aware network with the

components of the target localizationmodule. Figure 2 illustrates
the details of the proposed semantic-aware network for referring
expression comprehension.

4.1. Language Attention Network
We propose a language attention network to learn the different
weights of each word in referring expressions, and also to
learn to parse the expressions into target candidate embedding
rtar , relation embedding rrel, and spatial location embedding
rloc, respectively.

For an expression r, we employ BERT (Devlin et al., 2019) to
tokenize and encode r into contextualized word embeddings Er
= [e1, e2, ..., eM], where ei ∈ R

1×1024. We then feed Er into an
one-layer BiLSTM:

Lout = BiLSTM(Er) (1)

where Lout is the output of the BiLSTM.
To acquire the different weight of each word, we compute

attention distribution over the expressions by:

αl = softmax(F(Lout))

L =

g∑

i

αl,iLout,i
(2)
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FIGURE 2 | Semantic-Aware network for referring expression comprehension. We adopt the language attention network to compute the different weights for each

word in expressions, and learn to parse the expressions into phrases that embed the information of target candidate, relation, and spatial location, respectively. We

conduct both channel-wise and region-based spatial attention to generate semantic-aware region visual representation. We further combine the outputs of the visual

semantic-aware network, the language attention network, and the relation and location representations to locate the target objects. In the figure, f
′

v denotes the

projected deep features, VC represents the channel-wise weighted deep feature, VS is the spatial weighted feature, fSv is the generated semantic-aware visual

representation by concatenating f
′

v and VS, the details are described in section 4.2. The relation representation urel , the location representation uloc, and the details of

the target candidate module, the relation module, and the location module are introduced in section 4.3. 9 denotes a channel-wise multiplication for f
′

v and the

generated channel-wise attention weight σ , 8 represents element-wise multiplication for VC and the acquired spatial attention weight γ (Best viewed in color).

where αl denotes the calculated attention weight, and

M∑

m=1

αl = 1.

In the implementation, F is modeled by two convolution layers.
The generated expression representation L ∈ R

d×2048, d is length
of expressions in different dataset.

Expressions like “cup with printed red flowers,” some words
should be parsed to a phrase to represent specific information,
e.g., “with printed red flowers.” To this end, we employ a single
perceptron layer and a softmax layer to learn to parse the
expression into three module embeddings:

L = ϕ(WtL+ bt)

[wtar ,wloc,wrel] = softmax(L)
(3)

where ϕ is a non-linear activation function, in this paper, we
use hyperbolic tangent. Wt is a trainable weight matrix and bt
represents a bias vector. wtar , wloc, wrel represent weights guided
by target embedding rtar , relation embedding rrel, and spatial
location embedding rloc, respectively.

4.2. Visual Semantic-Aware Network
We take full advantage of the characteristics of deep features
extracted from a pretrained CNN model, and we conduct
channel-wise and region-based spatial attention to generate
semantic-aware visual representation for each detected region.
This process can be deemed as visual representation enrichment
for the detected regions.

4.2.1. RoI Features
Given an image, we adopt Faster R-CNN (Ren et al., 2015) to
generate RoIs, and we extract deep feature fv ∈R

7×7×2048 for each
oj from the last convolutional layer of the 4th-stage of ResNet101
(He et al., 2016), where 7×7 denotes the size of the extracted deep
feature, 2048 is the output dimension of the convolutional layer,
i.e., the number of channels. We then project the deep feature fv
into a 512-dimension subspace by a convolution operator with

1×1 kernel, i.e., the projected deep feature f
′

v ∈ R
7×7×512.

4.2.2. Channel-Wise Attention
Essentially, deep features extracted from CNN are spatial,
channel-wise, and multi-layer. Each channel of a deep feature
correlates with a convolutional filter which performs as a pattern
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detector (Chen L. et al., 2017). For example, the filters in lower
layers detect visual clues such as color and edge, while the filters in
higher layers capture abstract content such as object component
or semantic attributes. Accordingly, performing channel-wise
attention on higher-layer features can be deemed as a process of
semantic attributes selection.

We first reshape the projected RoI deep feature fv
′ to V=[v1,

v2, ..., vdv ], where vi ∈R
7×7 is the i-th channel of the deep feature

fv
′, dv=512. We then perform average pooling on each channel to

generate the channel-wise vector V = [v1, v2, ..., vdv ], where V ∈

R
1×512, vi represents the i-th pooled channel feature.
After the feature pooling, we first utilize L2-normalization

to process channel-wise vector V and expression representation
L to generate more robust representations, we then perform
channel-wise attention by a channel-wise attention network
which is composed of an MLP (multi-layer perceptron) and a
softmax layer. For the detected image region, the input of the
attention network is average-pooled feature V and the weighted
expression representation L. The channel-wise attention weight
is acquired by:

Ac = ϕ((Wv,cV + bv,c)⊗ (Wt,cL+ bt,c))

σ = softmax(Ac)
(4)

where Wv,c and Wt,c are learnable weight matrices, bv,c and
bt,c are bias vectors, Wv,c and bv,c are the parameters of
the MLP for visual representation, while Wt,c and bt,c for
textual representation. ⊗ denotes outer product, σ ∈ R

1×512

is the learned channel-wise attention weight which encodes
the semantic attributes of regions. In the following, Wv,. and
bv,. represent the weight matrix and bias vector for visual
representation, whileWt,. and bt,. denote the trainable parameters
for textual representation.

4.2.3. Region-Based Spatial Attention
The channel-wise attention attempts to address the semantic
attributes of regions, while the region-based spatial attention
is employed to attach more importance to the referring
expressions related regions. To acquire region-based spatial
attention weights, we first combine the learned channel-wise

attention weight σ with the projected deep feature f
′

v to generate
channel-wise weighted deep feature VC.

VC = 9(fv
′, σ ) (5)

where9 is a channel-wisemultiplication for deep feature channel
and the corresponding channel weights,
VC ∈ R

49×512.
We put the weighted channel-wise deep features VC and the

weighted expressions into an attention network similar to the
channel-wise attention to calculate the spatial attention γ :

As = ϕ((Wv,sV
C + bv,s)⊗ (Wt,sL+ bt,s))

γ = softmax(As)
(6)

The acquired γ ∈R
49×1 denotes the weight of each region related

to the expressions. We further fuse the γ with channel-wise

weighted feature VC to obtain spatial weighted deep feature VS:

VS = 8(VC, γ ) (7)

where 8 denotes element-wise multiplication for generated VC

and the corresponding γ .
Spatial weighted deep feature VS ∈ R

7×7×512 comprises
the semantics guided by the channel-wise attention as well
as the spatial weight of each region. Therefore, we define
VS as semantic-aware deep feature. Finally, we concatenate

VS with projected feature f
′

v to obtain semantic-aware visual

representation for each region, i.e., f Sv = [f
′

v ;V
S], f Sv ∈R

7×7×1024,
[· ; ·] denotes the concatenate operation.

4.3. Target Localization Module
In order to locate target objects for given expressions, we need
to sort out the relevant candidates, the spatial location, and the
appearance difference between the candidate and other objects.
For instance, to understand the expression “the cow directly to
the right of the largest cow,” we need to understand the spatial
location “the right of,” and the appearance difference “largest”
between the cows to identify the target “cow.” To this end, we
deal with the relevant candidates, the relation and spatial location
through a target candidate module, a relation module, and a
spatial location module, respectively.

4.3.1. Target Candidate Module
We compute the target candidate phrase matching score by
the target candidate module. For a given region semantic-aware
representation f Sv and target candidate phrase guided expression
embedding rtar , we process f

S
v and rtar by L2-normalization and

linear transform to compute the attentionweights on each region:

t = ϕ((Wvf
S
v + bv)⊗ (Wtrtar + bt))

β = softmax(t)
(8)

where β denotes the learned region-based attention weight.
We fuse β and f Sv to obtain the target candidate phrase

attended region visual representation utar , and we further
compute the target candidate matching score star by:

utar = β ⊗ f Sv

utar = Wv,tarutar + bv,tar

rtar = Wt,tarrtar + bt,tar

star = D(utar , rtar)

(9)

where D(·, ·) represents the consine distance measurement.

4.3.2. Relation Module
We adopt a relationmodule to obtain thematching score of a pair
of candidates and relation embedding rrel. We use the average-
pooled channel vector V as the appearance representation
for each candidate. To tackle with the appearance difference
between candidates, e.g., “the largest cow,” we calculate the visual

appearance difference representation δvi=
1
n

∑
j 6=i

vi−vj
||vi−vj||

as (Yu

et al., 2016), where n is the number of candidates chosen for
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caparison (in our implementation n = 5). We concatenate V and
δvi as the candidates visual relation representation urel, i.e., urel =
[V ; δvi]. We calculate the relation matching score by:

urel = Wv,relurel + bv,rel

rrel = Wt,relrrel + bt,rel

srel = D(urel, rrel)

(10)

4.3.3. Spatial Location Module
We calculate the location matching score through the location
module. To deal with the spatial relation of candidates in
images, following (Yu et al., 2016), we adopt a 5-dimensional

spatial vector ul = [
xtl
W ,

ytl
H ,

xbr
W ,

ybr
H , w·h

W·H ] to encode the top
left position, bottom right position, and the relative size of the
candidates in images. In order to address the relative position
expression like “the right of,” “in the middle,” we adopt the

relative location vector 1uij = [
[1xtl]ij

wi
,
[1ytl]ij

hi
,
[1xbr]ij

wi
,
[1ybr]ij

hi
,

wj·hj
wi·hi

] which is obtained by comparing with five surrounding

objects and concatenate with ul to generate candidate location
representation uloc = [ul ; 1uij].

Similar to the target candidate module, we process uloc and
location phrase rloc, and then combine the transformed uloc and
rloc to generate the location matching score sloc:

uloc = Wv,loculoc + bv,loc

rloc = Wt,locrloc + bt,loc

sloc = D(uloc, rloc)

(11)

4.4. Learning Objective
Given a referring expression r and an image I with multiple
RoIs pair, we calculate the target candidate score, the relation
score, and the location score, through the three above introduced
modules. We locate the target object by the final grounding score:

G(oi|r) = wtarstar + wrelsrel + wlocsloc (12)

In the implementation, we adopt a combined max-margin loss as
the objective function:

Lθ =
∑

i

[max(0, ξ − G(oi|ri)+ G(oi|rj))

+ max(0, ξ − G(oi|ri)+ G(ok|ri))] (13)

where θ denotes the parameters of the model to be optimized,
ξ is the margin between positive and negative samples. During
training, we set ξ = 0.1. For each positive target and expression
pair (oi, ri), we randomly select negative pairs (oi, rj) and (ok, ri),
where rj is the expression for other objects, ok is the other object
in the same image.

5. SCENE GRAPH PARSING

The introduced referring expression comprehension network
is trained on RefCOCO, RefCOCO+, and RefCOCOg. The
referring expressions in RefCOCO and RefCOCO+ were
collected by an interactive manner (Kazemzadeh et al., 2014),

and the average length of expressions in RefCOCO is 3.61,
and the average number of words in RefCOCO+ expressions
is 3.53. While RefCOCOg expressions were collected in a non-
interactive way, therefore produces longer expressions and the
average length is 8.43. From the perspective of expression length
distribution, 97.16% expressions in RefCOCO contain less than
9 words, the proportion in RefCOCO+ is 97.06%, while 56.0%
expressions in RefCOCOg comprise less than 9 words. Moreover,
the expressions in the three datasets only indicate one referent, so
the trained model cannot ground natural language instructions
with multiple target objects.

Considering the richness and diversity of natural language,
and the relatively simple expressions in the three datasets,
the trained referring expression comprehension model can
not achieve complex natural language grounding. To this
end, we combine scene graph with the referring expression
comprehension network to ground unconstrained and
sophisticated natural language.

Scene graph was introduced in Johnson et al. (2015), in
which the scene graph is used to describe the contents of a
scene. Compared with dependency parsing, scene graph parsing
generates less linguistic constituents. Given a natural language
sentence, scene graph parsing aims to parse the natural language
sentence into scene graph legends, which consist of nodes
comprise objects with attributes and edges express the relations
between target and objects. For instance, for the sentence “red
apple next to the bottle,” the generated scene graph legend
contains node (“red apple”) and node (“bottle”), and edge
(“next to”).

Formally, a scene graph legend is defined as a tuple G(S) =
(N (S), E(S)), where N (S) = {N1(S), N2(S), ..., Nn(S)} is a set
of nodes that encode objects with attributes, and E(S) = {E1(S),
E2(S), ..., Em(S)} is a set of edges that express the relations between
objects. Specifically, a node Ni(S) ⊆ ni × Ai represents attribute
Ai of an object ni (e.g., red apple). An edge Ei(S)⊆ (no × R× ns)
denotes the relation R between a subject no and an object ns, (e.g.,
next to).

In general, a scene graph parser can be constructed on a corpus
consisting of paired node-edge labels. However, no such dataset
is released for interactive natural language grounding. In order to
ensure the natural language is parsed correctly, we adopt a simple
yet reliable rule, i.e., word-by-wordmatch, to achieve scene graph
alignment. Specifically, for a generated scene graph, we check the
syntactic categories of each word in a node and an edge by part of
speech. A parsed node should consist of a noun or an adjective,
and an edge contains an adjective or an adverb. In practice, we
adopt the language scene graph (Schuster et al., 2015) and the
natural language toolkit (Perkins, 2010) to complete scene graph
generation and alignment.

6. EXPERIMENTS AND RESULTS

6.1. Referring Expression Comprehension
Benchmark
6.1.1. Datasets
We train and validate the referring expression comprehension
network on RefCOCO, RefCOCO+, and RefCOCOg. The images
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of the three datasets were collected from MSCOCO dataset (Lin
et al., 2014).

RefCOCO comprises 142,210 expressions for 50,000 referents
in 19,994 images. We adopt the same split with (Yu et al.,
2016). The dataset is divided into training, validation, and
test, respectively. The training set contains 120,624 expressions
for 42,404 objects in 16,994 images, the validation set has
10,834 expressions for 3,811 objects in 1,500 images. The testing
partition comprises two splits, testA and testB. TestA includes
5,657 expressions for 1,975 objects in 750 person-centric images,
while testB owns 5,095 object-centric expressions for 1,810
objects in 750 images.

RefCOCO+ consists 141,564 expressions for 49,856 referents
in 19,992 images. The split we use is same as (Yu et al.,
2016). The training set consists of 120,191 expressions for
42,278 objects in 16,992 images, the validation partition contains
10,758 expressions for 3,805 objects in 1,500 images. TestA
comprises 5,726 expressions for 1,975 objects in 750 images,
and testB encompasses 4,889 expression for 1,798 objects in
750 images. Compared to RefCOCO, RefCOCO+ discards
absolute location words and attaches more importance to
appearance differentiators.

RefCOCOg contains 95,010 expressions for 49,822 referents
in 25,799 images. As they are collected in a non-interactive
pattern, the length of referring expressions in RefCOCOg are
longer than RefCOCO and RefCOCO+. RefCOCOg has two
types of data splitting, (Mao et al., 2016) splits the dataset into
train and validation, and no test set is published. Another data
partition (Nagaraja et al., 2016) split the dataset as training,
validation, and test sets. We run experiments on the second
division, in which the training set contains 80,512 expressions
for 42,226 objects in 21,899 images, the validation split includes
4,896 expressions for 2,573 objects in 1,300 images, and the test
partition has 9,602 expressions for 5,023 objects in 2,600 images.

6.1.2. Experimental Setup
In practice, we set the length of the sentences to 10 for the
expressions in RefCOCO and RefCOCO+, and pad with “pad”
symbol to the expressions whose length is smaller than 10. We
set the length of the sentences to 20 and adopt the same manner
to process the expressions in RefCOCOg.

We employ “bert-large-uncased” model1 to generate
contextualized word embedding Er . According to Devlin et al.
(2019), the word embedding from the sum of the last four layers
acquire better results than the embedding extracted from the last
layer. We select the embedding of the sum of the last four layers
of BERT as Er . Therefore, the obtained expression representation
q ∈ R

10×1024 for RefCOCO and RefCOCO+, and q ∈ R
20×1024

for RefCOCOg.
Given an image and referring expression pair, we utilize

the final ground score defined in Equation 12 to compute the
matching score for each object in the image, and pick the one
with the highest matching score as the correct one. We calculate
IoU (Intersection over Unit) between the selected region and the

1https://github.com/huggingface/pytorch-pretrained-BERT

ground truth bounding box, and select the IoU value larger than
0.5 as the correct visual grounding.

We train our model with Adam optimizer with β1 = 0.9 and
β2 = 0.999, we set the initial learning rate 0.0004 and decay every
5,000 iterations with weight decay 0.0001, and the total number
of iterations is up to 30,000.

6.1.3. Ablation Analysis
We adopt different combinations to validate the performance of
each module, the results are shown in Table 1. According to (Yu
et al., 2018b) and (Yu et al., 2018a), the models trained by the
deep features extracted from VGG16 (Simonyan and Zisserman,
2014) generates lower accuracy than the features generated by
ResNet101, so we do not train our model use VGG features.

First, we validate the performance of our model from the
visual perspective. We concatenate the project feature fv

′ and
location representation uloc as the visual representation for each
region, and adopt the output of the BiLSTM as the representation
for expressions. We set this combination as the baseline, and the
results are listed in Line 1. We then add relation representation
urel to evaluate the benefits of the relation module, and the results
are listed in Line 2.

Second, we test the effectiveness of the visual semantic-aware
network. We adopt the semantic-aware visual representation
f Sv combined with the location and relation representation,
respectively. Compared to Line 1 and Line 2, the results listed in
Line 3 and Line 4 show the benefits of the visual semantic-aware
network, and the accuracies are improved by nearly 2%.

Third, We employ two manners to evaluate the performance
of the language attention network. We first select fv

′ as the
visual representation for the target candidate, and combine the
language attention network with the target localization module.
It is clear that the results outperform than the results listed in
Line 2. An interesting finding is that the results listed in Line 4
are close to Line 5, which also demonstrates the benefits of the
visual semantic-aware network. We then adopt f Sv to represent
the target candidate, and coalesce the language attention network
with the other two modules. This combination acquires the best
accuracies on the three datasets.

Fourth, we compare the influence of different word
embeddings. We extract the embeddings from the last layer
of BERT as the contextual representation for expressions and
feed them into the language attention network, we denote this
word embedding as LangAtten(I). Line 7 illustrates the obtained
results. Compared with Line 6, the results show the advantage
of the embeddings generated from the sum of the last four
layers of BERT.

Finally, we list some example results acquired by the referring
expression comprehension network in Figure 3. According to
the experimental results, the presented model is able to locate
the target objects for complex referring expressions, as shown
in the experiments on RefCOCOg. As shown in Table 1,
compared with the results on RefCOCO+ and RefCOCOg, our
model acquires better results on RefCOCO. We found the
expressions in RefCOCO frequently utilize the attributes and
location information to describe objects, while the expressions
in RefCOCO+ abandon the location descriptions while utilize
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TABLE 1 | Ablation studies of our model using different module combinations.

RefCOCO RefCOCO+ RefCOCOg

val(%) testA(%) testB(%) val(%) testA(%) testB(%) val(%) test(%)

1 sub(ProjFeat)+loc 79.28 79.57 80.37 64.77 65.29 62.41 69.63 69.28

2 sub(ProjFeat)+loc+rel 79.99 80.24 80.82 64.89 66.00 63.57 70.14 69.96

3 sub(SemanAware)+loc 80.59 80.61 81.73 64.20 65.89 63.47 72.94 72.72

4 sub(SemanAware)+loc+rel 81.24 81.42 82.20 65.11 66.03 63.76 72.98 72.76

5 sub(ProjFeat)+loc+rel+LangAtten 81.83 82.10 82.20 66.42 67.46 63.84 73.33 72.81

6 sub(SemanAware)+loc+rel+LangAtten 83.51 83.74 83.18 68.16 69.66 64.66 76.00 74.81

7 sub(SemanAware)+loc+rel+LangAtten(I) 83.25 82.55 82.55 67.77 69.70 64.00 74.53 73.61

The bold values show the best grounding accuracy on each dataset split acquired by the proposed network.

FIGURE 3 | Example results of referring expression comprehension on test sets of RefCOCO, RefCOCO+, and RefCOCOg. Referring expressions are listed under the

related images. In each image, the red box represents the correct grounding, and the green bounding box denotes the ground truth.

more appearance difference to depict objects. In addition,
the expressions in RefCOCOg involve the descriptions of
neighborhood objects of referents and frequently use the relation
between objects to define the target objects.

6.1.4. Comparison With State-of-the-Art
Table 2 lists the results acquired by the proposed model and the
state-of-the-art models. The table is split into two parts over the
rows: the first part lists the approaches without introducing the
attention mechanism. The second illustrates the results acquired
by attention integrated models.

First, the proposed model outperforms the other approaches
and acquire competitive results with the current state-of-the-art

approach (Wang et al., 2019). (Wang et al., 2019) built the
relationships between objects via a directed graph constructed
over the detected objects within images. Based on the directed
graph, this work identified the relevant target candidates by a
node attention component and addressed the object relationships
embedded in referring expressions via an edge attention module.
This work focused on exploiting the rich linguistic compositions
in referring expressions, while neglected the semantics embedded
in visual images. In our proposed network, we address both the
linguistic context in referring expressions and visual semantic
in images.

Second, through the experiments on the three datasets,
the introduced model acquires better results on RefCOCO
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TABLE 2 | Comparison with the state-of-the-art approaches.

RefCOCO RefCOCO+ RefCOCOg

val(%) testA(%) testB(%) val(%) testA(%) testB(%) val*(%) val(%) test(%)

1 visdif (Yu et al., 2016) - 67.57 71.19 - 52.44 47.51 59.25 - -

2 MMI (Mao et al., 2016) - 63.15 64.21 - 48.73 42.13 55.16 - -

3 attr+MMI+visdif (Liu et al., 2017) - 78.85 78.07 - 61.47 57.22 69.83 - -

4 Speaker (Yu et al., 2017) 79.56 78.95 80.22 62.26 64.60 59.62 72.63 71.65 71.92

5 Listener (Yu et al., 2017) 78.36 77.97 79.86 61.33 63.10 58.19 72.02 71.32 71.72

6 VC (Zhang et al., 2018) - 78.98 82.36 - 62.56 62.90 73.98 - -

7 DDPN+VGG16 (Yu et al., 2018b) 76.9 67.5 73.4 67.0 50.2 60.1 - - -

8 DDPN+ResNet101 (Yu et al., 2018b) 80.1 72.4 76.8 70.5 54.1 64.8 - - -

9 CMN (Hu et al., 2017) - - - - - - 69.30 - -

10 AccuAtten (Deng et al., 2018) 81.27 81.17 80.01 65.56 68.76 60.63 73.18 - -

11 PLAN (Zhuang et al., 2018) 81.67 80.81 81.32 64.18 66.31 61.46 69.47 - -

12 MAttNet+VGG16 (Yu et al., 2018a) 80.94 79.99 82.30 63.07 65.04 61.77 73.08 73.04 72.7

13 LGRANs (Wang et al., 2019) 82.0 81.2 84.0 66.6 67.6 65.5 - 75.4 74.7

14 VisSemanAware+LanAtten 83.51 83.74 83.18 68.16 69.96 64.66 - 76.00 74.81

The bold values show the best grounding accuracy on each dataset split.

compared with the results on RefCOCO+ and RefCOCOg. The
expressions in RefCOCO frequently utilize the location or other
details to describe target objects, the expressions in RefCOCO+
abandon the location descriptions and adopt more appearance
difference. While the expressions in RefCOCOg attach more
importance to the relation between the target candidates and
their neighborhood objects to depict the target objects.

Finally, we show some failure cases on the three datasets in
Figure 4. For complex expression, similar to “small table next
to the chair,” our model generates closest weights for “table” and
“chair.” Moreover, to locate the object with vague visual features,
such as the target for “black sleeves” in the first left image and
“guy leg out” in the third image of the second row, our model
frequently generates wrong predictions. For the long expression
and image with the complex background, such as the two images
in RefCOCOg, our model fails to generate correct predictions.

6.2. Interactive Natural Language
Grounding
We evaluate the effectiveness of the presented interactive natural
language grounding architecture in two different manners.
First, we collect 133 indoor scenarios from the test datasets
of RefCOCO, RefCOCO+, and RefCOCOg, and collect 187
expressions that contain 2 referents for the selected images. These
collected scenarios consist of the household objects that can be
manipulated by robots. The average length of the expressions for
MSCOCO images is 10.75. Second, we use a Kinect V2 camera
to collect 30 images which are composed of the commonly used
household objects and can be manipulated by robots. We collect
228 expressions, which contain 132 expressions with 2 referents
and 96 expressions with 3 targets. The average number of words
in these expressions is 14.31.

In order to collect diverse expressions for the collected images,
we recruit 10 participants and show them different scenarios.
For the MSCOCO images, we ask the participants to give

expressions to depict two specific targets for each scenario,
such as “the bottom row second donut from the left and the
bottom rightmost mug.” For the self-collected scenarios, we ask
the participants to give expressions with two or three referents
for each image, for example, “move the red apple outside the
box into the box and take the second water bottle from the
right.” The collected working scenarios and expressions can be
downloaded from the following link: https://drive.google.com/
open?id=1k4WgpHTGaYsIE9mMmDgE_kiloWnYSPAr.

In order to validate the performance of the proposed
interactive natural language grounding architecture, we conduct
grounding experiments on the collected indoor scenarios and
natural language queries. We adopt the available scene graph
parser source2 introduced (Schuster et al., 2015) to parse the
complicated queries into scene graph legends (e.g., the parsing
results listed in the rounded rectangles in the second row in
Figure 5), and the trained referring expression comprehension
model to locate target objects within given scenarios.

Figure 5 lists some grounding results on the collected
MSCOCO images. We adopt the referring expression
comprehension network trained on the three datasets to ground
the collected expressions, respectively. The accuracies of the
collected expressions grounding for MSCOCO images acquired
by the three models are RefCOCO 86.63%, RefCOCO+ 79.41%,
and RefCOCOg 80.48%. Figure 6 shows the grounding example
results on the self-collected scenarios. The grounding accuracies
attained by the three models are RefCOCO 91.63%, RefCOCO+
87.45%, and RefCOCOg 88.44%. From these experimental
grounding results, it is clear that the trained referring expression
comprehension models have superior robustness.

Because of the properties of referring expressions in the
RefCOCO, RefCOCO+, and RefCOCOg, the model trained
on RefCOCO acquired the best results on the self-collected

2https://nlp.stanford.edu/software/scenegraph-parser.shtml

Frontiers in Neurorobotics | www.frontiersin.org 10 June 2020 | Volume 14 | Article 43

https://drive.google.com/open?id=1k4WgpHTGaYsIE9mMmDgE_kiloWnYSPAr
https://drive.google.com/open?id=1k4WgpHTGaYsIE9mMmDgE_kiloWnYSPAr
https://nlp.stanford.edu/software/scenegraph-parser.shtml
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Mi et al. Interactive Natural Language Grounding

FIGURE 4 | Examples of incorrect predictions. The red boxes show wrong visual groundings, and the green boxes denote the ground truth bounding boxes.

FIGURE 5 | Example results of interactive natural language grounding on MSCOCO images. The input natural language instructions are listed in the third row with

rectangle, the scene graph parsing results are shown in the second row with rounded rectangle.

working scenarios. Instead of discarding spatial location
words in expressions provided by RefCOCO+ expressions,
and highlighting relationships between objects in RefCOCOg
expressions, the collected expressions are more similar to the
expressions in RefCOCO. Specifically, we take into consideration
of descriptions of target attributes, spatial location of targets

within images, and the relation between targets and their
neighborhood objects in the collected natural language queries.

We also analyze the failure target object grounded working
scenarios and related expressions, we found that the expressions
with more “and” cannot be parsed correctly. For instance, the
expression “take the apple between the bottle and the glass and
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FIGURE 6 | Example results of interactive natural language grounding on self-collected scenarios. The input natural language are listed in the rectangles, and the

parsed scene graph legends are covered with related colors.

the red cup” will be parsed into four nodes “apple,” “bottle,”
“glass,” and “red apple,” while the relation between “apple,”
“bottle,” and “glass” is lost, which leads to a failure grounding.

7. CONCLUSION

We proposed an interactive natural language grounding
architecture to ground unrestricted and complicated natural
language queries. Unlike the existing methods for interactive
natural language grounding, our approach achieved natural
language grounding and queries disambiguation without the
support from auxiliary information. Specifically, we first
presented a semantic-aware network for referring expression
comprehension which is trained on three commonly used
datasets in referring expressions. Considering the rich semantics
in images and natural referring expressions, we addressed
both visual semantic and textual contexts in the presented
referring expression comprehension network. Moreover, we
conducted multiple experiments on the three datasets to
evaluate the performance of the proposed referring expression
comprehension network.

Furthermore, we integrated the referring expression
comprehension network with scene graph parsing to

ground complicated natural language queries. Specifically,
we first parsed the complicated queries into scene graph
legends, and then we fed the parsed scene graph legends into
the trained referring expression comprehension network
to achieve target objects grounding. We validated the
performance of the presented interactive natural language
grounding architecture by implementing extensive experiments
on self-collected indoor working scenarios and natural
language queries.

Compared to the existing work for interactive natural

language grounding, the proposed architecture is akin to an
end-to-end approach to ground complicated natural language

queries, instead of drawing support from auxiliary information.

And the proposed architecture does not entail time cost as
the dialogue-based disambiguation approaches. Afterward,

we will improve the performance of the introduced referring
expression comprehension network by exploiting the rich

linguistic compositions in natural referring expressions and
exploring more semantics from visual images. Moreover, the
scene graph parsing module performs poorly when parsing
complex natural language queries, such as sentences with
more “and,” we will focus on improve the performance of
the scene graph parsing. Additionally, we will exploit more
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effective methods to ground more complicated natural language
queries and conduct target manipulation experiments on a
robotic platform.
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Extracting information from noisy signals is of fundamental importance for both biological

and artificial perceptual systems. To provide tractable solutions to this challenge, the

fields of human perception and machine signal processing (SP) have developed powerful

computational models, including Bayesian probabilistic models. However, little true

integration between these fields exists in their applications of the probabilistic models for

solving analogous problems, such as noise reduction, signal enhancement, and source

separation. In this mini review, we briefly introduce and compare selective applications of

probabilistic models in machine SP and human psychophysics. We focus on audio and

audio-visual processing, using examples of speech enhancement, automatic speech

recognition, audio-visual cue integration, source separation, and causal inference to

illustrate the basic principles of the probabilistic approach. Our goal is to identify

commonalities between probabilistic models addressing brain processes and those

aiming at building intelligent machines. These commonalities could constitute the closest

points for interdisciplinary convergence.

Keywords: signal processing, multisensory perception, audiovisual integration, optimal cue integration, causal

inference, speech enhancement, automatic speech recognition, human psychophysics

INTRODUCTION

Human perception and machine signal processing (SP) both face the fundamental challenge of
handling uncertainty. Probabilistic models provide powerful tools for representing and resolving
uncertainty (Rao et al., 2002). For example, a simple probabilistic model for estimating a speech
signal from a noisy audio recording can be constructed as follows: The stimulus parameter of
interest (e.g., the phoneme) is represented as a latent variable S. The existing information or
expectation regarding S prior to the data observation is represented by the prior probability
distribution, p(S) (“prior”). The perceptual system’s responses (often referred to as measurements)
are usually stochastic: they fluctuate from trial to trial even when the stimulus remains constant.
The conditional probability density function (PDF) of obtaining the measurements X given S is
described by the likelihood function of S, p(X| S) (“likelihood”). Probabilistic models commonly
use the framework of Bayesian inference, which specifies how belief is optimally updated in light of
new evidence. Computationally, this is achieved by applying the Bayes’ theorem (Pouget et al., 2013;
Ghahramani, 2015) to combine the likelihood and the prior to calculate the posterior probability
distribution (“posterior”), p(S |X):

p(S|X) = p(X|S) p(S)/p(X) (1)

Signal reconstruction often requires a point-estimator for S. Three methods are commonly used.
Themaximum likelihood estimator (MLE) is the S value thatmaximizes the likelihood (Equation 2)
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or equivalently the log-likelihood, implying a uniform (flat) prior.
The maximum a-posteriori (MAP) estimator can be seen as
maximizing the likelihood after factoring in an informative prior
(Equation 3) and is equal to the posterior mode. The minimum
mean square error (MMSE) estimator is the a-posteriori expected
value for S (Equation 4) and is equal to the posterior mean (Yuille
and Bülthoff, 1996; Maloney, 2002).

MLE : Ŝ = arg max
si

p(X|Si) (2)

MAP : Ŝ = arg max
si

p(Si|X) (3)

MMSE : Ŝ =

∫
Si p(Si|X)dSi (4)

Similar probabilistic approaches are applied in sensory
perception and machine SP for solving analogous problems,
such as robust perception. However, although recent reviews
have separately summarized probabilistic models in each of
these disciplines (Kolossa and Häb-Umbach, 2011; Ma, 2012;
Hendriks et al., 2013; Ursino et al., 2014), reviews that draw
parallels between the models across the disciplines are lacking.
Here, we will introduce and compare selective applications
of probabilistic models in psychology, neuroscience, and
machine SP, focusing on audio and audio-visual processing.
We use the topics of speech enhancement, automatic speech
recognition, audio-visual cue integration, and source separation
as examples, because probabilistic models have played a
particularly important role in advancing these research areas.
We emphasize two important aspects of resolving uncertainty:
noise reduction and source separation. While in recent years
machine learning approaches have had a great impact in SP
(Deng and Li, 2013; Padmanabhan and Premkumar, 2015),
neuroscience (Yamins and DiCarlo, 2016), and cognitive science
(Lake et al., 2017), here we highlight the commonalities between
basic probabilistic models for machine and perceptual SP.

NOISE REDUCTION AND SPEECH
ENHANCEMENT

Statistical approaches in speech enhancement for reducing
background noise usually deal with single-channel signals,
e.g., from a single microphone. The variance of a signal is
generally understood as the power of the signal, and the PDFs
characterize the coefficients of the digitized signals. Traditionally,
the complex Fourier coefficients of the speech and noise
components aremodeled with a zero-meanGaussian distribution
[but later research suggests that super-Gaussian PDFs are more
appropriate; see Lotter and Vary (2005), Martin (2005), and
(Rehr and Gerkmann, 2018)], and the frequency bands are
assumed to be statistically independent (Ephraim and Malah,
1984, 1985; Porter and Boll, 1984). The variances (i.e., the power)
of the speech and noise coefficients are time-variant; therefore,
the parameters must be continuously updated using adaptive
power estimators. A common way to derive the estimators is
by computing the MMSE between the true speech coefficients
and the estimated coefficients, which leads to a linear filter

known as the Wiener filter (Ephraim and Malah, 1984; Martin,
2001; Gerkmann and Hendriks, 2012). The Wiener filter has
been adapted for multi-channel (e.g., multi-microphone array)
processing (Krawczyk-Becker and Gerkmann, 2016), which
additionally allows exploiting the spatial properties of sound
(Kay, 1993; Balan and Rosca, 2002; Doclo et al., 2015). For multi-
channel noise reduction, a well-known concept is the minimum-
variance distortionless response (MVDR) beamformer. This
beamformer minimizes the power of the output signal while
ensuring that the sounds from the target speaker are not distorted
or suppressed. The MVDR beamformer can be derived as the
MLE of the speech coefficients if the background noise is assumed
to follow a multivariate complex Gaussian distribution (Kay,
1993; Balan and Rosca, 2002).

Another classical probabilistic approach for estimating speech
and noise coefficients is to use mixture models, most commonly
Gaussian mixture models (GMMs) and hidden Markov models
(HMMs) (Rabiner, 1989), with machine-learning methods
(Ephraim, 1992; Burshtein and Gannot, 2002; Zhao and Kleijn,
2007; Chazan et al., 2016). The time-varying speech components
are characterized by a sequence of discrete states related to
the phonemes uttered by a speaker. Each state is described by
a PDF linking it to the statistics of the observations. GMMs
explicitly quantify the joint contributions of different states,
whereas HMMs treat the states as latent variables that are related
through Markov processes. The resulting estimator is a mixture
of clean speech estimates from all possible combinations of
available states; the states that best explain the observations have
the strongest influence on the overall estimate. The advantage of
a mixture estimator is that it takes into account all possible states
and is more robust than basic MLEs.

Auditory systems of animals maintain robust neuronal
representation of relevant sounds in noisy environments
(Mesgarani et al., 2014). The dominant model for characterizing
auditory neuronal responses is the spectrotemporal receptive
field (STRF) (Zhao and Zhaoping, 2011; David, 2018; King et al.,
2018). STRF is a linear filter that approximates the neuronal
response at a given time as a linear weighted sum of the stimulus
power at recent time points in different spectral channels (King
et al., 2018). The weights can be viewed as a discrete-time
version of the Wiener filter if they are estimated via the MMSE
between the model output and the measured neuronal response,
assuming Gaussian response noise with constant variance (Meyer
et al., 2017). STRF is usually applied as part of a linear-
nonlinear (LN) model—linear input followed by static nonlinear
response generation (Chichilnisky, 2001; Paninski, 2003; Sharpee
et al., 2004). However, standard STRF and LN models do not
incorporate the highly nonlinear and dynamic neural processes
which are important for noise robustness (for reviews, see
Meyer et al., 2017; King et al., 2018). For example, auditory
neurons adapt to stimulus statistics, such as the mean level and
the contrast (i.e., the sound level variance) of recent sounds,
and adjust their sensitivity accordingly; this adaptation enables
efficient and robust neural coding (Fritz et al., 2003; David
et al., 2012; Rabinowitz et al., 2013; Willmore et al., 2014, 2016;
Lohse et al., 2020). STRF models extended with adaptive kernels
(Rabinowitz et al., 2012) and other nonlinear features, such as
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input nonlinearity (Ahrens et al., 2008), synaptic depression
(Mesgarani et al., 2014), gain normalization (Mesgarani et al.,
2014), or top-down influence, such as feedback (Calabrese et al.,
2011) and selective attention (Mesgarani and Chang, 2012), have
been shown to better account for noise robustness. In addition,
mixture-model approaches from SP (e.g., GMM) can be used to
scale these models to higher-dimensional stimuli (Theis et al.,
2013). In machine SP, machine-learning algorithms inspired by
the nonlinear, adaptive, and/or top-down features of auditory
neurons are being developed to improve speech enhancement
(Ephraim, 1992; Hendriks et al., 2013; Lee and Theunissen,
2015; Rehr and Gerkmann, 2018, 2019). Future research could
aim at building brain-inspired robust and flexible models to
cope with various noise types, cluttered real-world data, and
adversarial data.

AUDIO-VISUAL INTEGRATION MODELS IN
A SINGLE-SOURCE SETUP

Probabilistic approaches have been extensively used for
automatic speech recognition (ASR): the translation of audio
signals into written text. Identifying the spoken words based
only on the acoustic input signal can be challenging, especially
if noise is present. Incorporating visual information (e.g.,
mouth shape, lip movement) can substantially improve ASR
performance (Hennecke et al., 1996) in noisy environments,
because visual features provide contextual and complementary
(but additionally redundant) information about the audio scene
and are insensitive to the acoustic background noise (Nefian
et al., 2002). This approach is known as audio-visual speech
recognition (AVSR). AVSR systems require dynamic models
for optimal audio-visual (AV) integration. The performance
of conventional HMMs, although being time-flexible, is
limited by their strong restrictive assumptions, e.g., that the
signal-generating system is a single process with few states
and an extremely limited state memory (Brand et al., 1997).
Nevertheless, a variety of HMM extensions have been proposed
to better solve the AV fusion problem (Potamianos et al., 2003).
One approach is to use a combination of feature fusion and
decision fusion (Neti et al., 2000; Potamianos et al., 2003).
Feature fusion applies fusion on the feature level; it trains a single
HMM classifier on the concatenated vector of audio and visual
features (Adjoudani and Benoît, 1996). Decision fusion applies
fusion on the classifier output level; it linearly combines the
likelihoods of audio-only and visual-only streams into a joint
AV likelihood, using weights that capture the reliability of each
sensory modality (Jain et al., 2000; Neti et al., 2000). Measures
of reliability include the inverse variance (Hershey et al., 2004),
signal-to-noise ratio (Adjoudani and Benoît, 1996; Hennecke
et al., 1996), harmonics-to-noise ratio (Yumoto et al., 1982), or
an equivalent index (Neti et al., 2000).

Two other extensions of HMMs are coupled HMMs (Brand
et al., 1997; Abdelaziz et al., 2015) and factorial HMMs
(Ghahramani and Jordan, 1997). These models have several
advantages over conventional HMMs for AVSR: (1) they allow
state asynchrony between the audio and visual components while

preserving their natural correlation over time (Nefian et al., 2002;
Abdelaziz et al., 2015), (2) they can model multiple interacting
processes without violating the Markov condition (Brand et al.,
1997), (3) the distributed state representations employed by these
models allow automatic decomposition of superposed states
(Ghahramani and Jordan, 1997), and (4) they are less sensitive
to the initial conditions of parameters (Brand et al., 1997).

AVSRmodels are inspired by the human ability of using visual
information to reduce auditory ambiguity (Schwartz et al., 2004).
In human perception, a research topic related to AV fusion is
generally known as cue integration. A cue is a sensory signal that
bears information about the state of some stimulus property,
e.g., identity or position. Psychophysical and neurophysiological
studies have shown that the brain combines multiple cues both
within and across sensory modalities to reduce uncertainty
(for a review, see Fetsch et al., 2013). Computationally, to
reduce uncertainty means to minimize the variance of perceptual
estimates. One of the most well-known computational models
for cue integration in psychophysics is the forced fusion model
(Figure 1A), also known as the optimal cue integration model
or the MLE model. This model proposes that a minimum-
variance estimate for the target stimulus attribute S given
multiple cues can be computed as the weighted linear sum of
the MLEs for individual cues, and the weights are determined
by each cue’s relative reliability (Alais and Burr, 2004; Ernst and
Bülthof, 2004; Rohde et al., 2015). A cue’s reliability is defined
as its inverse variance, 1

σ 2
i

, which is akin to how reliability is

defined in a MVDR beamformer (Kay, 1993; Balan and Rosca,
2002). The forced fusion model assumes that the cues are
redundant, i.e., they are regarding a single stimulus attribute and
therefore should be completely integrated. Under the simplifying
assumptions of a uniform prior p(S) and independent Gaussian
noises, the posterior p(S | X1, X2, . . . , Xn) is also a Gaussian, with
its mean given by weighted summation:

Ŝopt =

n∑

i=1

wiŜi ,wi =

1
σ 2
i∑n
i

1
σ 2
i

(5)

where Ŝopt is the optimal combined estimate, Ŝi is the MLE for an
individual cue i, and wi is the weight determined by the relative
reliability of cue i. These weights (wi) minimize the variance of
the combined estimate, and thus Ŝopt is a minimum-variance
unbiased estimator for S [for a mathematical proof, see Colonius
and Diederich (2018)]. This forced fusion model is analogous to
the aforementioned fusion models used in multi-stream HMM
for AVSR (Neti et al., 2000). The reliability-based weighting is
similar to the stream weights that are determined by the inverse
variance (Hershey et al., 2004). However, in the forced fusion
model the weights are fixed, while in AVSR it has been shown
that dynamic stream weights resulted in better performance
(Meutzner et al., 2017). Furthermore, even in the seemingly
simple case of fusing information from multiple microphones,
the noise captured by individual microphones is typically
correlated, especially in low frequencies. As a consequence, the
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FIGURE 1 | Three probabilistic models for audio-visual cue integration in human psychophysics. Gray nodes depict the latent stimulus attribute S (e.g., identity or

position) or the latent causal structure C. White notes depict the sensory measurements X in response to the sensory cues (a: auditory, v: visual). Left panel: The

generative models and the underlying structures. The likelihood functions are derived under the assumptions that the auditory and visual cues are corrupted by

independent Gaussian noise. Black arrows represent the direction of generative process, and gray arrows represent the direction of inference. Middle panel: A-priori

knowledge. Right panel: Optimal estimates by Bayesian inference (adapted from Ursino et al., 2014 Box 1, copyright © 2014 Elsevier Ltd, and Shams and Beierholm,

2010 Figure 1, copyright © 2010 Elsevier Ltd; reused with permission). (A) Forced fusion model. The auditory and visual cues are assumed to have a common cause.

The prior is usually assumed to be uniform, in which case this model is equivalent to an MLE. The optimal estimate is a linear weighted summation of unimodal MLEs,

and the weights are the relative cue reliabilities (precision). This model describes complete cue integration (fusion). (B) Interaction prior model. The joint prior

distribution p(Sa, Sv ) reflects the prior knowledge about the audio-visual correspondence in the environment. A common choice is a 2D Gaussian or Gaussian-mixture

function with higher probabilities along the identity line Sa = Sv. The estimates could be linear or non-linear functions (ga, gv ) depending on the specific interaction prior.

This model can describe complete fusion, partial integration, or segregation of cues. (C) Causal inference model. The latent variable C determines the causal structure

that generates the cues and mediates cue integration: cues are integrated if they have a common cause (C = 1) and processed separately if they have independent

causes (C = 2). The model infers the probability of the unknown causal structure p(C |Xv, Xa) and weights the estimates Ŝa and Ŝv accordingly using some decision

strategy (Wozny et al., 2010). The estimates are nonlinear combinations of the cues and usually require Monte Carlo simulation to obtain (Körding et al., 2007). This

model can be recast as the coupling prior model (B) by integrating out the latent variable C, in which case it will no longer explicitly represent the causal structure.

minimum-variance estimate typically takes into account the full
correlation matrices of the noise (Doclo et al., 2015).

Recent psychophysical research has suggested that the MLE-
type complete fusion is not a general property of human
multisensory perception (e.g., Battaglia et al., 2003; Arnold et al.,
2019; Meijer et al., 2019). To capture the full spectrum of cue
interaction spanning from complete fusion to partial integration
to segregation, extensions of the forced fusion model have been
proposed. Among them, the coupling prior model (Figure 1B),

also known as the interaction prior model, extends the forced
fusion model (Figure 1A) by adding a joint prior distribution
to represent the correlation or co-occurrence statistics between
the cues (Shams et al., 2005; Rowland et al., 2007; Ernst, 2012;
Parise et al., 2014). For example, in a speech recognition task
with auditory and visual cues, a coupling prior model could
use a bivariate prior p(Sa, Sv) to describe the joint probability
distribution for the auditory (Sa) and visual (Sv) representations
of the stimulus attribute (e.g., syllables). The coupling prior
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can be conveniently modeled using a 2D Gaussian p(Sa, Sv) =
NSa, Sv(s, 6), with the mean s being the expected stimulus value,
and the covariance matrix Σ consisting of variances along the
principle axes (e.g., Ernst, 2007). The p(Sa, Sv) distribution is
sharper if the AV coupling is relatively constant (due to statistical
regularities in the environment or acquired through adaptation
or learning). The forced fusion model is a special case of the
coupling prior model where p(Sa, Sv)= 0 for all Sa 6= Sv. Another
method for characterizing the coupling prior is to use a GMM
to represent the correlated and the uncorrelated components
(e.g., Roach et al., 2006; Sato et al., 2007); the resulting mixture
estimator is more general and robust than MLE.

The coupling prior model for cue integration is analogous to
a GMM for AVSR, where the AV coherence (i.e., dependency
between the auditory and visual modalities) is expressed as a
joint AV PDF (Rivet et al., 2014). It can be viewed as loosely
similar to the basic concept of coupled HMMs for AVSR, too.
However, unlike coupled HMMs, the coupling prior model is not
dynamic and does not describe time-variant signals. Moreover,
the coupling prior model explicitly constrains the joint prior
distribution of the cues, whereas coupled HMMs implicitly learn
the hidden states that generate the cues.

SOURCE SEPARATION AND CAUSAL
INFERENCE

In machine SP, the most common scenario of source separation
is blind source separation (BSS): separating two or more source
signals given mixture observations (Jutten and Herault, 1991;
Castella et al., 2010). A fundamental challenge in BSS is the
label permutation problem: to track which speech signal belongs
to which speaker/source (Hershey et al., 2016). To achieve this,
a model needs to jointly solve two problems: isolating a single
speech signal from a dynamic mixture of sounds from multiple
speakers and the background noise, and assigning the speech
signal to the corresponding speaker (Ephrat et al., 2018). A
Bayesian approach to solve BSS is applying GMMs and HMMs
that either constrain or learn the unobservable source structure
underlying the mixture signals (Roweis, 2001, 2003; Hershey
and Casey, 2002; Yilmaz and Rickard, 2004). Inspired by human
perception, recent machine SP models have been exploiting
the intrinsic AV coherence to improve BSS performance (Rivet
et al., 2014). Full joint AV models based on maximizing the
AV likelihood can successfully extract source signals from
underdetermined mixtures (Sodoyer et al., 2002). However, such
models are limited to instantaneous mixtures, where multiple
source signals contribute to the mixtures without delay at a given
time point. Similarly in human perception, most existing mixture
models for cue integration consider only instantaneous mixtures
(e.g., Magnotti and Beauchamp, 2017). If multiple source signals
contribute to the mixtures with different levels of delay—known
as convolutive mixtures—alternative techniques are required to
resolve the added ambiguities in BSS (e.g., Rivet et al., 2007; Liu
et al., 2012. For a review, see Rivet et al., 2014).

In natural environments, the structure of the source(s) giving
rise to the signals is often ambiguous or unobservable; therefore,

to properly associate a signal with its source, the observer needs
to infer cause-effect relationships based on the noisy data. This
is an example of the so-called inverse problem in information
processing: inferring the cause given the effect (Ghahramani,
2015). Humans are remarkably apt at solving this problem, being
able to focus on a target speaker while filtering out interfering
sounds and background noise, as exemplified by the well-known
cocktail party effect (Cherry, 1953). However, the causal inference
problem is challenging for machine SP, especially in AVSR, as it
is difficult to determine which signals in the mixture data came
from the same source and thus should be fused.

Machine SP could draw inspiration from the causal inference
model in human psychophysics (Figure 1C), which explicitly
characterizes the hidden causal structure of the source signal(s)
(Körding et al., 2007; Shams and Beierholm, 2010; Magnotti and
Beauchamp, 2017). This model proposes that humans estimate
the hidden causal structure based on statistical regularities of the
environment and use this estimate to arbitrate between grouping
or segregating sensory cues (Noppeney and Lee, 2018). The
basic structure of this model has two hierarchies. In the higher
hierarchy is a binary latent variable representing whether the
multiple cues share a common cause, denoted as C (short for
“cause”). C = 1 means the cues have a common cause, and C =

2 means the cues have two separate causes. The a-priori belief
for C is the causal prior, and it influences whether and to which
degree cues are integrated: cues are integrated only if they have
a common cause, in which case the model is equivalent to a
forced-fusion MLE model (Figure 1A); in contrast, the cues are
processed separately if they originate from different causes. The
causal structure is unknown, so the model needs to infer C by
combining bottom-up sensory data with top-town causal priors
and calculating the posterior p (C|Xa, Xv) for different C values.
The model additionally computes the PDF for the task-relevant

estimate p
(
Ŝ
∣∣∣Xa, Xv, C

)
under the assumption of common or

separate causes, respectively. A final estimate for the stimulus
attribute is obtained by combining these estimates according
to some decision strategy. For example, if a model-averaging
decision strategy is applied, which is based on the use of MMSE,
then the resulting final estimate is the weighted average of the
estimates obtained under C = 1 and C = 2, respectively, with the
weights being the corresponding posterior probabilities for C =

1 and C = 2 (Körding et al., 2007; Wozny et al., 2010).

SUMMARY AND OUTLOOK

Here we reviewed a selection of probabilistic models of
audio- and AV-processing applied in machine SP and in
human perception, focusing on speech enhancement, speech
recognition, cue integration, and causal inference (Table 1).
In their cores, these models are stimulus-response functions:
they describe a probability distribution of responses given a
stimulus and parameters, and the parameters can be estimated
from experimental data or machine learning methods. Basic
probabilistic models are often linear filters with Gaussian PDFs
(e.g., Wiener filter, classic STRF), which can be extended
with nonlinear, adaptive, and/or top-down features (e.g., super-
Gaussian prior, gain control, selective attention). In addition,
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TABLE 1 | An overview of selective probabilistic models of audio- and audio-visual (AV) processing in machines and human perception.

Problem Model Main features and advantages Limitations

Noise reduction and speech enhancement

Machine speech

enhancement

Estimation of speech

coefficients

Wiener filter with simple

Gaussian PDFs

Linear, low computational cost, easy

to implement

Gaussian PDFs not appropriate for

modeling speech Fourier coefficients.

Super-Gaussian is better

MVDR beamformer Suitable for multi-channel noise

reduction

GMM Dynamics of speech and noise

captured by states of a mixture

model. Mixture estimator

Typically restricted to a small number

of classes; limited robustness in

reverberant conditions

HMM Improves modeling of temporal

behavior by including state

transitions. Mixture estimator

Strong restrictive assumptions,

intolerant to state asynchrony in AV

combined streams, sensitive to initial

parameter values

Auditory neural processing Maintaining robust

neuronal representation of

relevant sounds

Spectrotemporal receptive

field (STRF)

Computational simplicity, analytic

tractability, interpretability

Does not capture the highly nonlinear

and dynamic features of auditory

neurons

Audio-visual (AV) integration and speech recognition

Machine ASR ASR GMM/HMM Captures the dynamics of speech Other modalities cannot be easily

included

AVSR Coupled HMM, factorial

HMM

Improves AV fusion over conventional

HMM for AVSR

Human AV integration Optimal AV cue

combination

Forced fusion (MLE) model Reliability-weighting,

minimum-variance unbiased

estimator

Complete fusion only; does not

account for cue coherence or causal

structure

Accounting for AV

correlation

Coupling prior model, can

use GMM

Joint AV prior distribution. Can

capture the full range of AV integration

Cannot infer causal relationships

Source separation and causal inference

Machine source separation Source separation, label

permutation problem

Blind source separation

techniques with GMM,

HMM, etc.

Does not need a-priori information

about causal structure; works for

instantaneous mixtures and

convolutive mixtures

Human AV integration Causal inference Causal inference model Explicitly represents the underlying

causal structure; more general than

forced-fusion and coupling prior

models

Can be computationally expensive

the use of mixture models (e.g., GMM, HMM) simultaneously
accounts for multiple possible states and permits more robust
parameter estimation. Furthermore, basic probabilistic models

can be adapted to characterize multiple input channels or

streams (e.g., MVDR beamformer). If multiple inputs are
combined (e.g., cue integration, AVSR), fusion models with
reliability-based weighting and MLE are typically applied.
However, forced fusion is not always appropriate. Therefore, to
capture the large spectrum of input interactions, some models
incorporate the correlation between the inputs (e.g., coupling
prior model, coupled or factorial HMM) instead of assuming
fusion. Moreover, causal inference models estimate the hidden
source or causal structure of the inputs, by factoring in causality
which is important for determining input integration or source
separation. More advanced models, such as those in machine
learning, are beyond the scope of this mini review. In short,
this brief tutorial linked the analogous counterparts among

probabilistic models developed in artificial and natural systems
and identified the closest points of potential overlap between
these models.

AUTHOR CONTRIBUTIONS

All authors: conceptualization, review and editing, and approval
of final version. LL and RR: literature research and analysis and
manuscript drafting.

FUNDING

This work was supported by the German Research Foundation
(DFG) grant TRR 169/A1 to PB and BR, the DFG TRR 169/A6 to
TG, and Die Hamburger Behörde für Wissenschaft, Forschung
und Gleichstellung (BWfG) (City of Hamburg, Department of
Science, Research, and Equality) ahoi.digital project “Adaptive
crossmodal sensor data acquisition” to RR.

Frontiers in Robotics and AI | www.frontiersin.org 6 July 2020 | Volume 7 | Article 85

https://ahoi.digital/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Li et al. Probabilistic Models in Perception

REFERENCES

Abdelaziz, A. H., Zeiler, S., and Kolossa, D. (2015). Learning dynamic

stream weights for coupled-HMM-based audio-visual speech

recognition. IEEE ACM Trans. Audio Speech Lang. Process. 23, 863–876.

doi: 10.1109/TASLP.2015.2409785

Adjoudani, A., and Benoît, C. (1996). “On the integration of auditory and

visual parameters in an HMM-based ASR,” in Speechreading by Humans and

Machines, Models, Systems and Applications of NATO ASI Series F: Computer

and Systems Sciences, Vol. 150, eds D. G. Stork and M. E. Hennecke (Berlin:

Springer-Verlag), 461–471.

Ahrens, M. B., Linden, J. F., and Sahani, M. (2008). Nonlinearities and

contextual influences in auditory cortical responses modeled with

multilinear spectrotemporal methods. J. Neurosci. 28, 1929–1942.

doi: 10.1523/JNEUROSCI.3377-07.2008

Alais, D., and Burr, D. (2004). The ventriloquist effect results from near-optimal

bimodal integration. Curr. Biol. 14, 257–262. doi: 10.1016/j.cub.2004.01.029

Arnold, D. H., Petrie, K., Murray, C., and Johnston, A. (2019).

Suboptimal human multisensory cue combination. Sci. Rep. 9:5155.

doi: 10.1038/s41598-018-37888-7

Balan, R., and Rosca, J. (2002). “Microphone array speech enhancement by

bayesian estimation of spectral amplitude and phase,” in IEEE Sensor Array

and Multichannel Signal Processing Workshop Proceedings (Rosslyn, VA:

IEEE), 209–213.

Battaglia, P. W., Jacobs, R. A., and Aslin, R. N. (2003). Bayesian integration of

visual and auditory signals for spatial localization. J. Opt. Soc. Am. A 20:1391.

doi: 10.1364/JOSAA.20.001391

Brand, M., Oliver, N., and Pentland, A. (1997). “Coupled hidden markov models

for complex action recognition,” in Proceeding IEEE International Conference

on Computer Vision and Pattern Recognition (San Juan), 994–999.

Burshtein, D., and Gannot, S. (2002). Speech enhancement using a mixture-

maximum model. IEEE Trans. Speech Audio Process. 10, 341–351.

doi: 10.1109/TSA.2002.803420

Calabrese, A., Schumacher, J. W., Schneider, D. M., Paninski, L., and Woolley,

S. M. N. (2011). A generalized linear model for estimating spectrotemporal

receptive fields from responses to natural sounds. PLoS ONE 6:e16104.

doi: 10.1371/journal.pone.0016104

Castella, M., Chevreuil, A., and Pesquet, J.-C. (2010). “Convolutive mixtures,” in

Handbook of Blind Source Separation, eds P. Common and C. Jutten (NewYork,

NY: Elsevier, Academic Press), 281–324.

Chazan, S. E., Goldberger, J., and Gannot, S. (2016). A hybrid approach

for speech enhancement using MoG model and neural network phoneme

classifier. IEEE ACM Trans. Audio Speech Lang. Process. 24, 2516–2530.

doi: 10.1109/TASLP.2016.2618007

Cherry, E. C. (1953). Some experiments on the recognition of speech, with

one and with two ears. J. Acoust. Soc. Am. 25, 975–979. doi: 10.1121/1.19

07229

Chichilnisky, E. J. (2001). A simple white noise analysis of neuronal light responses.

Netw. Comput. Neural Syst. 12, 199–213. doi: 10.1080/713663221

Colonius, H., and Diederich, A. (2018). Formal models and quantitative measures

of multisensory integration: a selective overview. Eur. J. Neurosci. 51,

1161–1178. doi: 10.1111/ejn.13813

David, S. V. (2018). Incorporating behavioral and sensory context into

spectro-temporal models of auditory encoding. Heart Res. 360, 107–123.

doi: 10.1016/j.heares.2017.12.021

David, S. V., Fritz, J. B., and Shamma, S. A. (2012). Task reward structure shapes

rapid receptive field plasticity in auditory cortex. Proc. Natl. Acad. Sci. U.S.A.

109, 2144–2149. doi: 10.1073/pnas.1117717109

Deng, L., and Li, X. (2013). Machine learning paradigms for speech recognition:

an overview. IEEE Trans. Audio Speech Lang. Process. 21, 1060–1089.

doi: 10.1109/TASL.2013.2244083

Doclo, S., Kellermann, W., Makino, S., and Nordholm, S. E. (2015). Multichannel

signal enhancement algorithms for assisted listening devices: exploiting spatial

diversity using multiple microphones. IEEE Signal Process. Mag. 32, 18–30.

doi: 10.1109/MSP.2014.2366780

Ephraim, Y. (1992). A bayesian estimation approach for speech enhancement

using hidden markov models. IEEE Trans. Signal Process. 40, 725–735.

doi: 10.1109/78.127947

Ephraim, Y., and Malah, D. (1984). Speech enhancement using a minimum-mean

square error short-time spectral amplitude estimator. IEEE Trans. Acoust. 32,

1109–1121. doi: 10.1109/TASSP.1984.1164453

Ephraim, Y., and Malah, D. (1985). Speech enhancement using a minimummean-

square error log-spectral amplitude estimator. IEEE Trans. Acoust. 33, 443–445.

doi: 10.1109/TASSP.1985.1164550

Ephrat, A., Mosseri, I., Lang, O., Dekel, T., Wilson, K., Hassidim, A., et al.

(2018). Looking to listen at the cocktail party: a speaker-independent

audio-visual model for speech separation. ACM Trans. Graph 37:109.

doi: 10.1145/3197517.3201357

Ernst, M. (2007). Learning to integrate arbitrary signals from vision and touch. J.

Vis. 7:7. doi: 10.1167/7.5.7

Ernst, M. O. (2012). “Optimal multisensory integration: assumptions and limits,”

in The New Handbook of Multisensory Processes, ed B. Stein (Cambridge, MA:

MIT Press), 527–544.

Ernst, M. O., and Bülthof, H. H. (2004). Merging the senses into a robust percept.

Trends Cogn. Sci. 8, 162–169. doi: 10.1016/j.tics.2004.02.002

Fetsch, C. R., DeAngelis, G. C., and Angelaki, D. E. (2013). Bridging the gap

between theories of sensory cue integration and the physiology of multisensory

neurons. Nat. Neurosci. 14, 429–442. doi: 10.1038/nrn3503

Fritz, J., Shamma, S., Elhilali, M., and Klein, D. (2003). Rapid task-related plasticity

of spectrotemporal receptive fields in primary auditory cortex.Nat. Neurosci. 6,

1216–1223. doi: 10.1038/nn1141

Gerkmann, T., and Hendriks, R. C. (2012). Unbiased MMSE-based noise

power estimation with low complexity and low tracking delay. IEEE

Trans. Audio Speech Lang. Process. 20, 1383–1393. doi: 10.1109/TASL.2011.

2180896

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence.

Nature 521, 452–459. doi: 10.1038/nature14541

Ghahramani, Z., and Jordan, M. I. (1997). Factorial hidden markov models.Mach.

Learn. 29, 245–273. doi: 10.1023/A:1007425814087

Hendriks, R. C., Gerkmann, T., and Jensen, J. (2013). “DFT-domain based single-

microphone noise reduction for speech enhancement - a survey of the state of

the art,” in Synthesis Lectures on Speech and Audio Processing (San Rafael, CA:

Morgan & Claypool Publishers), 1–80.

Hennecke, M. E., Stork, D. G., and Prasad, K. V. (1996). “Visionary speech:

Looking ahead to practical speechreading systems,” in Speechreading by

Humans andMachines, Models, Systems and Applications, Volume 150 of NATO

ASI Series F: Computer and Systems Sciences, eds D. G. Stork and M. E.

Hennecke (Berlin: Springer-Verlag), 331–349.

Hershey, J., Attias, H., Jojic, N., and Kristjansson, T. (2004). “Audio-visual

graphical models for speech processing,” in IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 5 (Montreal,

QC), 649–652.

Hershey, J. R., and Casey, M. (2002). “Audio-visual sound separation via hidden

markov models,” in Advances in Neural Information Processing Systems (NIPS),

eds T. G. Dietterich, S. Becker, and Z. Ghahramani (Vancouver, BC:MIT Press),

1173–1180.

Hershey, J. R., Chen, Z., Le Roux, J., and Watanabe, S. (2016). “Deep

clustering: discriminative embeddings for segmentation and separation,” in

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) (Shanghai), 31–35.

Jain, A. K., Duin, R. P. W., and Mao, J. (2000). Statistical pattern recognition:

a review. IEEE Trans. Pattern Anal. Mach. Intel. Ligence 22, 4–37.

doi: 10.1109/34.824819

Jutten, C., and Herault, J. (1991). Blind separation of sources, part I: an adaptive

algorithm based on neuromimetic architecture. Signal Process. 24, 1–10.

doi: 10.1016/0165-1684(91)90079-X

Kay, S. M. (1993). Fundamentals of Statistical Signal Processing - Volume 1:

Estimation Theory. Upper Saddle River, NJ: Prentice-Hall.

King, A. J., Teki, S., and Willmore, B. D. B. (2018). Recent advances

in understanding the auditory cortex. F1000Research 7:1555.

doi: 10.12688/f1000research.15580.1

Kolossa, D., and Häb-Umbach, R. (2011). Robust Speech Recognition of Uncertain

or Missing Data: Theory and Applications, 1st Edn. Berlin; Heidelberg: Springer.

Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., and Shams,

L. (2007). Causal inference in multisensory perception. PLoS ONE 2:e943.

doi: 10.1371/journal.pone.0000943

Frontiers in Robotics and AI | www.frontiersin.org 7 July 2020 | Volume 7 | Article 85

https://doi.org/10.1109/TASLP.2015.2409785
https://doi.org/10.1523/JNEUROSCI.3377-07.2008
https://doi.org/10.1016/j.cub.2004.01.029
https://doi.org/10.1038/s41598-018-37888-7
https://doi.org/10.1364/JOSAA.20.001391
https://doi.org/10.1109/TSA.2002.803420
https://doi.org/10.1371/journal.pone.0016104
https://doi.org/10.1109/TASLP.2016.2618007
https://doi.org/10.1121/1.1907229
https://doi.org/10.1080/713663221
https://doi.org/10.1111/ejn.13813
https://doi.org/10.1016/j.heares.2017.12.021
https://doi.org/10.1073/pnas.1117717109
https://doi.org/10.1109/TASL.2013.2244083
https://doi.org/10.1109/MSP.2014.2366780
https://doi.org/10.1109/78.127947
https://doi.org/10.1109/TASSP.1984.1164453
https://doi.org/10.1109/TASSP.1985.1164550
https://doi.org/10.1145/3197517.3201357
https://doi.org/10.1167/7.5.7
https://doi.org/10.1016/j.tics.2004.02.002
https://doi.org/10.1038/nrn3503
https://doi.org/10.1038/nn1141
https://doi.org/10.1109/TASL.2011.2180896
https://doi.org/10.1038/nature14541
https://doi.org/10.1023/A:1007425814087
https://doi.org/10.1109/34.824819
https://doi.org/10.1016/0165-1684(91)90079-X
https://doi.org/10.12688/f1000research.15580.1
https://doi.org/10.1371/journal.pone.0000943
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Li et al. Probabilistic Models in Perception

Krawczyk-Becker, M., and Gerkmann, T. (2016). Fundamental

frequency informed speech enhancement in a flexible statistical

framework. IEEE ACM Trans. Audio Speech Lang. Proc. 24, 940–951.

doi: 10.1109/TASLP.2016.2533867

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017).

Building machines that learn and think like people. Behav Brain Sci. 40:e253.

doi: 10.1017/S0140525X16001837

Lee, T., and Theunissen, F. (2015). A single microphone noise reduction algorithm

based on the detection and reconstruction of spectro-temporal features. Proc.

R. Soc. A Math. Phys. Eng. Sci. 471:20150309. doi: 10.1098/rspa.2015.0309

Liu, Q., Wang, W., and Jackson, P. (2012). Use of bimodal coherence to resolve

per- mutation problem in convolutive BSS. Signal Process. 92, 1916–1927.

doi: 10.1016/j.sigpro.2011.11.007

Lohse, M., Bajo, V. M., King, A. J., and Willmore, B. D. B. (2020). Neural circuits

underlying auditory contrast gain control and their perceptual implications.

Nat. Commun. 11, 324. doi: 10.1038/s41467-019-14163-5

Lotter, T., and Vary, P. (2005). Speech enhancement by MAP spectral amplitude

estimation using a super-gaussian speech model. EURASIP J. Adv. Signal

Process. 2005:354850. doi: 10.1155/ASP.2005.1110

Ma, W. J. (2012). Organizing probabilistic models of perception. Trends Cogn. Sci.

16, 511–518. doi: 10.1016/j.tics.2012.08.010

Magnotti, J. F., and Beauchamp, M. S. (2017). A causal inference model explains

perception of the mcgurk effect and other incongruent audiovisual speech.

PLoS Comput. Biol. 13:e1005229. doi: 10.1371/journal.pcbi.1005229

Maloney, L. T. (2002). “Statistical theory and biological vision,” in Perception and

the Physical World: Psychologocal and Philosophical Issues in Perception, eds D.

Heyer and R. Mausfeld (Neywork, NY: Wiley), 145–189.

Martin, R. (2001). Noise power spectral density estimation based on optimal

smoothing and minimum statistics. IEEE Trans. Speech Audio Process. 9,

504–512. doi: 10.1109/89.928915

Martin, R. (2005). Speech enhancement based on minimum mean-square error

estimation and supergaussian priors. IEEE Trans. Speech Audio Process. 13,

845–856. doi: 10.1109/TSA.2005.851927
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Although it has been demonstrated that edge-based information is more important
than surface-based information in incidental category learning, it remains unclear how
the two types of information play different roles in incidental category learning. To
address this issue, the present study combined behavioral and event-related potential
(ERP) techniques in an incidental category learning task in which the categories
were defined by either edge- or surface-based features. The results from Experiment
1 showed that participants could simultaneously learn both edge- and surface-
based information in incidental category learning, and importantly, there was a larger
learning effect for the edge-based category than for the surface-based category. The
behavioral results from Experiment 2 replicated those from Experiment 1, and the ERP
results further revealed that the stimuli from the edge-based category elicited larger
anterior and posterior P2 components than those from the surface-based category,
whereas the stimuli from the surface-based category elicited larger anterior N1 and
P3 components than those from the edge-based category. Taken together, the results
suggest that, although surface-based information might attract more attention during
feature detection, edge-based information plays more important roles in evaluating the
relevance of information in making a decision in categorization.

Keywords: edge-based information, surface-based information, cross-modal category learning, incidental
category learning, event-related potentials

INTRODUCTION

A fundamental question in category learning is how the category knowledge is extracted and
represented in the human brain. The prototype theory posits that people form a summary
representation in the form of prototypes in category learning (Knowlton and Squire, 1993; Reber
et al., 1998a,b; Reed et al., 1999; Smith and Minda, 2002; Smith, 2002; Bozoki et al., 2006; Homa et al.,
2011). The exemplar theory posits that people store categorical members as individuated memory
representations in category learning (e.g., Nosofsky and Zaki, 2002; Zaki and Nosofsky, 2004, 2007;
Tunney and Fernie, 2012). The rule-based theory, however, contends that people extract verbal

Frontiers in Integrative Neuroscience | www.frontiersin.org 1 July 2020 | Volume 14 | Article 36

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://doi.org/10.3389/fnint.2020.00036
http://crossmark.crossref.org/dialog/?doi=10.3389/fnint.2020.00036&domain=pdf&date_stamp=2020-07-22
https://creativecommons.org/licenses/by/4.0/
mailto:fuqf@psych.ac.cn
https://doi.org/10.3389/fnint.2020.00036
https://www.frontiersin.org/articles/10.3389/fnint.2020.00036/full
https://loop.frontiersin.org/people/799991/overview
https://loop.frontiersin.org/people/54090/overview
https://loop.frontiersin.org/people/82824/overview
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Zhou et al. Incidental Category Learning

rules of prominent features as the category representations in
category learning (Maddox et al., 2003; Maddox and Ashby, 2004;
Ashby and Maddox, 2005, 2011; Carpenter et al., 2016; Ashby and
Valentin, 2017). The above theories differ in the exact content
of the category representation; all of them focus on what type of
category structure is formed in category learning but ignore the
issue of whether the category representation includes primarily
edge- or surface-based features.

Edge-based features (e.g., line, shape, and contour) often
appear at boundaries to separate an object from its background,
whereas surface-based characteristics (e.g., color, brightness,
and texture) always define the physical description of a
stimulus (Tanaka et al., 2001; Hagen et al., 2014). It has been
demonstrated that the representation mediating initial object
recognition contains edge-based information such as an object’s
shape but not surface-based information such as its color or
texture (Biederman, 1987; Biederman and Ju, 1988; Elder and
Velisavljević, 2009; Rokszin et al., 2015). It has been also
found that surface-based information such as color facilitates
recognition only when a stimulus is presented for a relatively long
period of time (Laws and Hunter, 2006; Fu et al., 2016) or when
objects belong to structurally similar categories with a high color
diagnostic (Tanaka and Presnell, 1999; Nagai and Yokosawa,
2003; Bramão et al., 2011, 2012). Importantly, although color
photographs include both edge- and surface-based information,
while line drawings include only edge-based information, the
neural activation in response to line drawings is similar to that
for color photographs, indicating that the information included
in the line drawings might be equivalent to the original objects
or scenes they depict (Sayim and Cavanagh, 2011; Walther et al.,
2011; Fu et al., 2016).

If object representation consists primarily of edge-based
information, it can be expected that edge-based information
might play a more crucial role than surface-based information
in category learning, as both include the processing of current
stimuli and the comparison between the current stimuli and
their internal representations. Indeed, it has been demonstrated
that people perform much better when the category is defined
by the edge-based features than by the surface-based features,
indicating that the two types of information play different roles
in category learning (Zhou et al., 2019). However, it remains
unclear how the two types of information play different roles in
category learning.

Object categorization has been described as a two-stage
process (Vanrullen and Thorpe, 2001; Palmeri and Gauthier,
2004; Ungerleider and Bell, 2011; Taminato et al., 2014;
Serre, 2016). During the first stage, visual features such as
color, motion, and texture are processed, and the proximal
representation of the current stimulus is formed in the primary
visual cortex and the extrastriata visual cortex (Riesenhuber and
Poggio, 2000; DiCarlo et al., 2012). The extraction of visual
features is often reflected by early event-related potential (ERP)
components including the posterior P1 and N1 and the anterior
N1 and P2 prior to about 200-ms poststimulus onset (Freedman
et al., 2003; Scholl et al., 2014). The posterior P1 component
indexes early sensory processing and is sensitive to attention
allocation (Anllo-Vento and Hillyard, 1996; Luck et al., 2000;

Fabre-Thorpe et al., 2001; Martínez et al., 2006), whereas the
posterior N1 component reflects a discrimination process and
also indicates a benefit of exogenous (i.e., bottom–up) attention
(Vogel and Luck, 2000; Curran et al., 2002; Chen et al., 2006;
Marzecová et al., 2018). The anterior N1 component is observed
with a peak latency approximately halfway between the posterior
P1 and N1 latencies (Luck and Kappenman, 2012) and reflects
the top–down (i.e., voluntary, endogenous) control needed for
focusing attention on stimuli (He et al., 2004, 2008; Marzecová
et al., 2018). For example, there is a larger anterior N1 component
when the cue and the target are presented at the same location
than at different locations (He et al., 2004, 2008). In addition,
the anterior P2 component has been linked to the detection and
analyses of target visual features (Hillyard and Münte, 1984; Luck
and Hillyard, 1994; Luck, 2012). For example, there is a larger
anterior P2 component for stimuli containing target features
compared to stimuli missing several features (Federmeier et al.,
2005; Chen et al., 2006; Gratton et al., 2009).

During the second stage, the information of the current
stimuli is compared with internal categorical representations to
make a decision (Ungerleider and Bell, 2011; Taminato et al.,
2014). The evaluation of information relevance in making a
decision is more likely to be reflected by relatively late ERP
components including the posterior P2, the anterior P3a, and
the posterior P3b after about 200 ms of the stimulus onset
(Scholl et al., 2014). The posterior P2 might be engaged in
more complex encoding processes including the reactivation of
stored information and evaluative processes that occur when a
visual input is compared with an internal representation (Dunn
et al., 1998). It has been found that there is a shorter posterior
P2 latency for easily categorizable stimuli (letters or geometrical
figures) than hardly categorizable stimuli (structured textures
and Asiatic characters; Pernet et al., 2003). The anterior P3a
component displays maximum amplitude over frontal/central
electrode sites and might reflect a mixture of category selection
and categorization uncertainty with enhanced responses to
stimuli at the category boundary (Scholl et al., 2014). The P3b
components are typically highest on the scalp over parietal
brain areas and are related to task demanding and cognitive
resources (Polich, 2007). In addition, noncategory members
elicit larger posterior P3b components than categorical members
(Folstein et al., 2008).

In the current study, to investigate how edge- and surface-
based information play different roles in category learning, we
adopted behavioral and ERP techniques in an incidental category
learning paradigm in which the categories were defined by either
edge- or surface-based features. The purpose of Experiment 1 was
to explore whether participants could simultaneously acquire
the representations of categories defined by edge- and surface-
based features and whether edge-based information plays a more
important role than surface-based information in incidental
category leaning. If edge-based information plays a more primary
role than surface-based information in category learning, we
would expect that the learning effect would be higher for the
category defined by edge-based features than those defined by
surface-based features as in Zhou et al. (2019). In Experiment 2,
the ERPs technique was used to investigate how the two types
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of information would play different roles in category learning.
If the category representation consists of primarily edge-based
information, the categorization based on edge- and surface-based
features would differ in early and later ERP components.

EXPERIMENT 1

We adapted the stimuli from Gorlick and Maddox (2013)
in which cartoon animals were constructed from 10 binary
dimensions and each dimension has two features. For example,
the shape of the horn can be like a comb or the moon, and
the shape of the head can be acutilingual or lamellirostral.
To compare the roles of edge- and surfaced-based features in
category learning, we maintained five edge-based dimensions
including the shapes of the horn, head, body, tail, and leg and
added five corresponding surface-based dimensions including
the color of the horn, head, tail, and the texture of the body
and leg. As a result, the current stimuli varied along 10 binary
dimensions, with five edge- and five surface-based dimensions
(see Figure 1A). It has been demonstrated that when the category
is defined by a four-feature-based rule, participants perform
better when the category is defined by edge-based features
than by surface-based features (Zhou et al., 2019). Thus, in
the present study, the two categories were defined by a four-
feature-based rule of either edge- or surface-based features. To
investigate whether participants could simultaneously acquire
the two categories and express a learning advantage for the
category defined by the edge-based features, the stimuli from
both categories were presented in the training phase, and
unbeknownst to participants, the stimuli of each category were
always accompanied by the same type of sound. Participants were
asked to rate how likeable the cartoon animal and the sound were
on each trial in the training phase.

Methods
Participants
Twenty-five university students (14 female, mean
age = 22.16 years, SD = 1.95) voluntarily participated in the
experiment. They were paid for their attendance. All of them
reported normal or corrected to normal vision. The experiment
was approved by the Institutional Review Board of the Institute
of Psychology, Chinese Academy of Sciences. Data from two
participants were excluded from further analysis because their
accuracy for both categories was below chance (0.5), and data
from one participant were excluded because his accuracy for the
surface-based category was above 2 standard deviations from the
mean accuracy.

Materials
The visual stimuli were cartoon animals that varied along
10 binary dimensions, with five edge-based dimensions including
the shape of the horn, head, body, tail, and leg, and five surface-
based dimensions including the color of the horn, head, tail,
and the texture of the body and leg. Each dimension has two
features. Each category was defined by a four-feature-based rule
of different types of features. For the edge-based category, the
category members were defined by the shape of the horn, tail, leg,

and head; correspondingly, for the surface-based category, the
category members were defined by the color of the horn and tail,
the texture of the leg, and the color of the head (see Figure 1B).
Specifically, for the edge-based category, category members were
those with a comb horn, a paw-shaped leg, a short and round
tail, and a bent head; for the surface-based category, category
members were those with a violet horn, a cuspidal leg, a green
tail, and a blue head. The features of the four defined dimensions
were fixed, while the features of the other six dimensions could
change randomly. Thus, there were a total of 64 members in
each category. Because four category members could be classified
to both categories, they were excluded in the training phase.
For each category, 20 category members were presented in the
training phase, and the other 40 were presented in the test phase.
The four stimuli that belonged to both categories were presented
twice in the test phase.

The auditory stimuli were two types of instrument sounds:
one was guitar sound, and the other was sand hammer sound.
They were produced by the software GarageBand and presented
with the same volume (80 db).

Procedure
There was a training phase, a test phase, a probability rating
phase, and an importance rating phase (see Figure 2) for
each participant.

Training Phase
The stimuli were presented on a 17-inch cathode-ray tube (CRT)
monitor and subtended a visual angle of <12◦ (see Nosofsky
et al., 2012). Each trial began with a fixation cross at the center
for 800 ms, and then, a visual stimulus and a sound were
presented for 5,000 ms. Participants were instructed to observe
the visual stimulus and listen to the sound carefully during their
presentation. After the stimuli disappeared, they were asked to
rate how likeable the cartoon animal and the sound were from
1 (very unlikeable) to 4 (very likeable). The intertrial interval
was 500 ms. Unbeknownst to the participants, the stimuli of
each category were always accompanied by the same type of
sound. The combination of the category and the sound was
counterbalanced between participants. There were 20 trials for
each category, for a total of 40 trials in the training phase. All the
trials appeared in a random sequence.

Test Phase
After the training phase, participants were informed that the
visual stimuli they had rated could be divided into two categories
(i.e., ‘‘category with guitar’’ or ‘‘category with sand hammer’’)
according to the sound they were accompanied with during the
training phase. Then, they were asked to classify some novel
visual stimuli according to the category knowledge they acquired
in the training phase. On each trial, a visual stimulus appeared
and remained on the screen until participants made classification
by pressing one of the two keys with labels ‘‘guitar’’ or ‘‘sand
hammer’’ on the keyboard. After the response, the next trial
was initiated following a 1,000-ms intertrial interval. There were
88 test trials, of which 40 belonged to the edge-based category,
40 belonged to the surface-based category, and eight belonged to
both categories.
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FIGURE 1 | Stimulus examples. (A) Two stimulus examples that varied on the features of 10 dimensions. (B) Examples of categorical members for each category.

FIGURE 2 | The trial procedure of different phases in Experiment 1.

Probability Rating Phase
During this phase, each defined dimension with different features
such as comb-like horn in blue was presented, and participants

were asked to report when a stimulus included the features
displayed, what was the probability it belonged to the category
accompanied with guitar, and the category accompanied with
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sand hammer separately. Participants were asked to indicate
the probability on a continuous sliding scale from 0 to 100,
where 0 = definitely no, 50 = equally likely to be yes or no, and
100 = definitely yes. Each defined dimension of the two categories
was presented two times, and thus, there were 16 trials in the
probability rating phase.

Importance Rating Phase
Finally, the names of the 10 dimensions including five edge-
based dimensions and five surface-based dimensions were listed
in a questionnaire, and participants were asked to rate how
important each dimension was when they classified the stimuli
on a continuous scale from 0 to 100, where 0 = not important at
all, 50 = moderately important, and 100 = very important.

Results
Accuracy in the Test Phase
The responses for the eight stimuli that belonged to both
categories were excluded from this analysis because they could
not be divided into correct and incorrect ones. Figure 3A
shows the accuracy for each category in Experiment 1. To
examine whether participants could simultaneously learn the
two categories incidentally, a one-sample t-test was used to
compare the performance with chance (0.50) for each category.
The accuracy for both categories were significantly above chance
(edge-based: M = 0.69, SD = 0.14, t(21) = 6.36, p< 0.001, Cohen’s
dz = 1.36; surface-based: M = 0.61, SD = 0.10, t(21) = 5.01,
p< 0.001, Cohen’s dz = 1.07), indicating that participants learned
the two categories incidentally at the same time. To explore the
role of different features in category learning, we conducted a
paired-samples t-test, which revealed that the accuracy for the
edge-based category was significantly higher than that for the
surface-based category [t(21) = 2.68, p< 0.05, Cohen’s dz = 0.57].
Thus, consistent with the previous research (Zhou et al., 2019),
the results suggested that participants performed better when
the category was defined by edge-based features than by surface-
based features.

Probability Ratings
To explore whether participants could be aware of the relation
between the defined features and the category membership, we
first calculated the average rating when the defined dimension
had or did not have the defined features separately and then
obtained the difference ratings between them (see Figure 3B).
If the difference rating was significantly above zero, it would
indicate that participants might be aware of the relation between
the defined features and the category membership, and vice versa.
A one-sample t-test revealed that for the edge-based category, the
difference ratings of the tail and head shapes were significantly
above zero (tail shape: t(21) = 4.04, p < 0.01, Cohen’s dz = 0.86;
head shape: t(21) = 3.08, p < 0.05, Cohen’s dz = 0.66); for the
surface-based category, the difference ratings of the tail and
head colors were significantly above zero (tail color: t(21) = 3.40,
p < 0.01, Cohen’s dz = 0.72; head color: t(21) = 2.37, p < 0.05,
Cohen’s dz = 0.51). The results indicated that participants were
partially aware of the relation between the defined features and
the category membership.

To explore whether participants could be more aware of
the relation between the defined features and the categorical
membership for one category than the other one, a 2 (category:
edge- vs. surface-based) × 2 (significant defined dimensions: tail
vs. head) within-subject ANOVA on the significant difference
ratings was conducted. The results revealed that the main effect
of defined dimensions was significant (F(1, 21) = 2.96, p = 0.10)
and the interaction effect (F(1, 21) = 0.01, p = 0.92) were not
significant. Importantly, the main effect of category was not
significant (F(1, 21) = 1.53, p = 0.23). Nothing at all follows from a
nonsignificant result in itself, but a Bayes factor (B) can indicate
substantial evidence for the null hypothesis (B < 1/3), that the
data are insensitive (1/3< B< 3), or substantial evidence for the
alternative (B> 3; Dienes, 2011, 2014; Fu et al., 2016). Therefore,
we calculated the Bayes factor B for the difference ratings between
the two categories, using the free online calculator on the website
from Dienes (2008). The mean difference of the difference ratings
between the two categories was 8.52; the standard error of
the difference was 6.89. Using the uniform range (0, 100) to
represent the alternative (where 100 was the extreme situation
when participants acquired completely explicit knowledge for
the edge-based category, but they did not acquire any explicit
knowledge for the surface-based category, i.e., the difference
was 100, while 0 was the extreme situation when participants
acquire similar explicit knowledge for the edge- and the surface-
based category, i.e., the difference was 0), it yields B = 0.32,
providing strong evidence that there was no difference in explicit
knowledge between the two categories.

Importance Ratings
To explore whether participants were more reliant on edge-
or surface-based features in classification, we calculated the
mean importance ratings for the four edge- or surface-based
defined dimensions, when participants classified the stimuli to
the two categories separately (see Figure 3C). A 2 (dimensions:
edge- vs. surface-based) × 2 (category: edge- vs. surface-based)
within-subjects ANOVA revealed only a significant effect of
dimensions (F(1, 21) = 8.04, p < 0.05, η2

p = 0.28). The main
effect of category (F(1, 21) = 0.26, p = 0.61) and the interaction
(F(1, 21) = 0.18, p = 0.68) did not reach significance. Similarity,
we calculated the Bayes factor B for the importance rating
difference between the two categories. The mean importance
rating difference between the two categories was 1.47, and the
standard error was 2.85. Using the uniform range (0, 100) to
represent the alternative (where 100 was the extreme situation
when the defined dimensions were rated with 100 for the
edge-based category but the defined dimensions were rated with
0 for the surface-based category, i.e., the difference was 100, while
0 was the extreme situation when the defined dimensions were
rated with similar importance ratings for the edge- and surface-
based categories, i.e., the difference was 0), it yields B = 0.06,
providing strong evidence that there was no importance rating
difference between the two categories. The results suggested that
participants always thought that the edge-based dimensions were
more important than the surfaced-based dimensions although
they could classify the stimuli based on either edge-based or
surface-based features.
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FIGURE 3 | Accuracy and ratings in Experiment 1. (A) The accuracy for the edge- and surface-based categories in the test phase. (B) The probability rating
differences of the defined dimensions between the edge- and surface-based category. (C) The importance ratings for the defined dimensions of the edge- and
surface-based categories. Error bars depict standard errors. *p < 0.05, **p < 0.01.

Discussion
The results of Experiment 1 showed that participants could
simultaneously learn the categories defined by edge- and
surface-based features, and importantly, there was a larger
learning effect for the category defined by edge-based category
than by surface-based features. Consistently, participants
reported that edge-based dimensions were more important
than surface-based dimensions although they could classify the
stimuli based on either edge-based or surface-based features,
providing convergent evidence that edge-based features matter
more than surface-based features. Nonetheless, there were
no differences for the two categories in the acquisition of
explicit knowledge about the relation between the defined
features and the category membership, indicating that the
higher accuracy of the edge-based category might be due
to the difference in implicit knowledge between the two
categories, which means that edge-based features play a
more important role than surface-based features in implicit
category learning.

EXPERIMENT 2

Based on results from Experiment 1, Experiment 2 was aimed
to further investigate how the two types of information played
different roles in category learning by using the ERP technique.
The experimental design was identical to that in Experiment 1.

Methods
Participants
Twenty-three university students (11 female, mean
age = 20.42 years, SD = 1.36) voluntarily participated in the
experiment. They were paid for their attendance. All of them
reported normal or correct to normal vision. None of them
had any history of neurological or psychiatric diseases. All of
them were given the written informed consent. The experiment
was approved by the Institutional Review Board of the Institute
of Psychology, Chinese Academy of Sciences. Data from four

participants were excluded from further analysis because their
accuracy of both categories was below chance (0.5), and data
from one participant was excluded because his accuracy was
beyond 2 SDs from the mean accuracy.

Materials and Procedure
The stimuli and procedure were identical to Experiment 1, with
exceptions that the four stimuli belonging to both categories were
excluded in the training and test phases and each trial began with
the fixation cross at the center for 650–950 ms at random.

EEG Recording and Analysis
The EEG was recorded from 64 scalp sites using Ag–AgCl
electrodes in an elastic cap according to the International 10-
20 system. The vertical and horizontal electrooculograms (EOGs)
were recorded with two pairs of electrodes placed 1 cm above
and below one eye and 1 cm lateral from the outer canthus of
both eyes. The left mastoid was used as an online reference, and
the algebraic average of the left and right mastoids was used
as an offline re-reference. The impedance of the reference and
right mastoids electrodes were maintained below 5 kΩ, and the
impedance of other electrodes were maintained below 10 kΩ.
The eye-movement-induced artifact was excluded by the ‘‘Ocular
Artifact Reduction’’ module of the NeuroScan system. The EEG
signals were amplified by a NeuroScan Synamps amplifier with
a band pass of 0.05–100 Hz at a sampling rate of 1,000 Hz. EEG
data were low-pass filtered with a cutoff frequency at 30 Hz and
averaged offline for epochs of 800 ms, starting 100 ms prior to the
stimulus onset in the test phase and ending 700 ms afterward. A
baseline correction was performed for each epoch with respect
to the 100-ms prestimulus interval. Trials with artifacts that
were determined by a criterion of 50 µV were rejected offline,
which amounted to only 2.9% of the trials. On average, there
were 54 and 48 correct trials for the edge- and surface-based
categories, respectively.

The ERPs were first averaged separately across correct and
incorrect trials for the edge- and surface-based categories for
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each participant. In the statistical analyses of the ERP data, we
focused on early components including the peak amplitudes of
the posterior P1 (60–130 ms) and N1 (100–140 ms), the mean
amplitudes of anterior N1 (80–130 ms) and P2 (140–180 ms),
and later components including the mean amplitudes of the
posterior P2 (200–240 ms) and anterior P3a (300–450 ms).
On the basis of previous studies (Vogel and Luck, 2000; Chen
et al., 2006; Freunberger et al., 2007; Folstein and Van Petten,
2011; Marzecová et al., 2018) and the topography of each
component, a group of posterior electrodes (P3, Pz, P4, PO3,
POz, PO4, O1, Oz, and O2) were selected for the posterior
P1, N1, and P2; a group of anterior electrodes (F3, Fz, F4,
FC3, FCz, FC4, C3, Cz, and C4) were selected for the anterior
N1, P2, and P3a. To investigate whether the stimuli from the
edge- and surface-based categories would produce different
waveforms, the analyses were focused on the correct trials
from the two categories. A 2 (category) × 9 (electrodes)
within-subject ANOVA was conducted. Greenhouse–Geisser
corrections were adopted when the sphericity assumption was
violated (Greenhouse and Geisser, 1959).

Results
Behavioral Results
Accuracy in the Test Phase
Figure 4A shows accuracy for each category in Experiment 2.
As in Experiment 1, a one-sample t-test was used to examine
weather participants could learn the two categories. It revealed
that participants performed significantly above chance (0.50) for
both categories (edge-based: M = 0.70, SD = 0.16, t(17) = 5.16,
p< 0.001, Cohen’s dz = 1.22; surface-based: M = 0.61, SD = 0.14,
t(17) = 3.44, p < 0.01, Cohen’s dz = 0.81), respectively, indicating
that they learned how to classify the stimuli of the two categories
incidentally. To explore the role of different features in incidental
category learning, we conducted a one-tailed paired-samples
t-test, which revealed that the accuracy for the edge-based
category was significantly higher than that for the surface-
based category, t(17) = 1.86, p < 0.05, Cohen’s dz = 0.44.
Thus, consistent with Experiment 1, the results confirmed that
participants performed better for the category defined by edge-
than by surface-based features.

Probability Rating
As in Experiment 1, we calculated the difference rating for
each defined dimension (see Figure 4B). The one-sample t-test
revealed that only the difference rating of tail shape for the
edge-based category was significantly above zero (tail shape:
t(17) = 3.75, p < 0.01, Cohen’s dz = 0.88). The results indicated
that participants were partially aware of the relation between
the tail shape and the category membership only for the
category defined by edge-based features. As the tail shape is one
defined dimension for the edge-based category, the tail color
is the corresponding defined dimension for the surface-based
category. To explore whether participants could be more aware
of the relation between the defined features and the categorical
membership for one category than the other one, a paired-
samples t-test was conducted on the significant difference ratings
for tail. The results showed that the difference ratings for tail

shape in the edge-based category was significantly higher than
the difference ratings for tail color in the surface-based category
(t(17) = 3.01, p < 0.01, Cohen’s dz = 0.71), indicating that
participants acquired more explicit knowledge for the edge-based
category than for the surface-based category.

Furthermore, to explore whether the higher accuracy for the
edge-based category was caused by the difference in explicit
knowledge between the two categories, the accuracy differences
between the edge- and surface-based categories was regressed
on the difference between significant rating differences of tail
shape and tail color. The results demonstrated that the rating
difference for tail could not predict the accuracy difference in the
test phase (F(1, 16) = 1.80, p = 0.20), indicating that the higher
accuracy for the edge-based category might be caused by the
difference in implicit knowledge rather than the difference in
explicit knowledge.

Importance Ratings
As in Experiment 1, we calculated the mean importance
ratings for the four defined dimensions when participants
classified the stimuli as belonging to the edge- or surface-based
category separately (see Figure 4C). A 2 (dimensions: edge- vs.
surface-based) × 2 (category: edge- vs. surface-based) within-
subjects ANOVA revealed only a significant effect of dimensions
(F(1, 17) = 10.26, p < 0.01, η2

p = 0.38). The main effect of category
and the interaction did not reach significance (F(1, 17) = 0.57,
p = 0.46; F(1, 17) = 1.82, p = 0.20). As in Experiment 1, the Bayes
factor B for the importance rating difference between the two
categories was calculated. The mean importance rating difference
between the two categories was 1.01, and the standard error of the
difference was 1.35. Using the uniform range (0, 100) to represent
the alternative, it yields B = 0.03. The results confirmed that
participants always thought that the edge-based dimensions were
more important than the surfaced-based dimensions although
they could classify the stimuli based on either edge-based or
surface-based features.

ERP Results
Figure 5 shows the ERP data of correct trials for the edge- and
surface-based categories at each of the anterior electrodes (F3,
Fz, F4, FC3, FCz, FC4, C3, Cz, and C4) and posterior electrodes
(P3, PZ, P4, PO3, POZ, PO4, O1, Oz, and O2). Figure 6A
shows the grand-average ERP waveforms of correct trials for
the two categories averaged across nine posterior electrodes and
nine anterior electrodes, respectively. Figure 6B shows the scalp
topography of the anterior N1, P2, P3a, and posterior P2.

ERP Effects in the Early Categorization Stage
To explore the role of edge- vs. surface-based features in the
early categorization stage, a 2 (category) × 9 (posterior or
anterior electrodes) within-subject ANOVA was conducted on
the peak amplitudes of posterior P1 and N1, as well as the mean
amplitudes of anterior N1 and P2.

For the peak amplitudes of posterior P1, it revealed only a
significant effect of electrodes (F(4.41, 74.98) = 7.99, p < 0.001,
η2
p = 0.32). The main effect of category (F(1, 17) = 0.06, p = 0.81)

and the interaction (F(3.34, 56.77) = 1.55, p = 0.21) were not
significant. For the peak amplitudes of posterior N1, it revealed
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FIGURE 4 | Accuracy and ratings in Experiment 2. (A) The accuracy for the edge- and surface-based categories in the test phase. (B) The probability rating
difference of the defined dimensions for the edge- and the surface-based categories. (C) The importance rating for the defined dimensions of the edge- and
surface-based categories. Error bars depict standard errors. *p < 0.05, **p < 0.01.

that neither the main effects (category: F(1, 17) = 0.86, p = 0.37;
electrodes: F(3.72, 63.26) = 1.70, p = 0.17) nor the interaction
(F(4.05, 68.84) = 1.46, p = 0.22) was significant.

For the mean amplitudes of anterior N1, it revealed only
a significant effect of category (F(1, 17) = 7.83, p < 0.05,
η2
p = 0.32), indicating that stimuli from surface-based category

elicited larger anterior N1 than those from edge-based category.
The main effect of electrodes (F(3.17, 53.91) = 1.55, p = 0.21)
and the interaction (F(3.54, 60.17) = 1.44, p = 0.24) did not
reach significance.

For the mean amplitudes of anterior P2, it revealed a
significant effect of category (F(1, 17) = 5.53, p < 0.05, η2

p = 0.25),
indicating that stimuli from edge-based category elicited larger
anterior P2 than those from surface-based category. There was
a significant effect of electrodes (F(2.57, 43.69) = 8.96, p < 0.001,
η2
p = 0.35). However, the interaction did not reach significance

(F(2.99, 50.78) = 0.32, p = 0.81).

ERP Effects in the Late Categorization Stage
To explore the role of edge- and surface-based features in the
late categorization stage, a 2 (category) × 9 (posterior or anterior
electrodes) within-subject ANOVA was conducted on the mean
amplitudes of posterior P2 and anterior P3a.

For the mean amplitudes of posterior P2, it revealed that a
significant effect of category (F(1, 17) = 4.82, p < 0.05, η2

p = 0.22),
indicating that stimuli from the edge-based category elicited
larger posterior P2 than those from the surface-based category.
The main effect of electrodes was significant (F(3.16, 53.68) = 8.34,
p< 0.001, η2

p = 0.33). The interaction (F(2.91, 49.49) = 1.13, p = 0.35)
did not reach significance.

For the mean amplitudes of anterior P3a, it revealed that
the main effect of category was significant (F(1, 17) = 5.85,
p < 0.05, η2

p = 0.26), suggesting that stimuli from the surface-
based category led to larger anterior P3a than those from the
edge-based category. The main effect of electrodes reached
significance (F(2.69, 45.76) = 9.06, p < 0.001, η2

p = 0.35). The
interaction did not reach significance (F(3.16, 53.79) = 1.57,
p = 0.21).

The Relation Between Behavioral Data and ERP Data
To examine the relation between ERPs and behavioral
performance, we calculated the accuracy difference between
the edge- and the surface-based categories and the mean
amplitude differences for anterior N1, P2, P3, and posterior
P2. Then, the accuracy differences between the two categories
were regressed on the mean amplitude differences for anterior
N1, P2, P3, and posterior P2. The stepwise regression showed
that only the mean amplitude differences of anterior P3a could
significantly predict the accuracy differences between the edge-
and surface-based category in the test phase (F(1, 17) = 4.82,
p< 0.05) with an adjusted R2 of 0.18.

DISCUSSION

The behavioral results of Experiment 2 replicated the main
findings in Experiment 1, indicating that participants learned
better for the edge-based category than for the surface-based
category, confirming that edge-based features play a more
crucial role than surface-based features in incidental category
learning. Importantly, the ERP results revealed that there were
larger anterior N1 but smaller anterior P2 for the surface-based
category than for the edge-based category, indicating that stimuli
from the surface-based category might attract more attention but
less feature analysis was done for them compared with those
from the edge-based category at the early categorization stage.
Moreover, there were smaller posterior P2 but larger anterior P3a
for the surface-based category than for the edge-based category,
suggesting that edge-based information plays more important
roles in evaluating information relevance in making a decision
at the late categorization stage.

GENERAL DISCUSSION

The behavioral results showed that knowledge for both edge-
and surface-based categories could be simultaneously acquired
in incidental category learning, and importantly, there was a
larger learning effect for the edge-based category than for the
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FIGURE 5 | Grand-average event-related potential (ERP) waveforms of correct trials for the edge- and the surface-based categories at anterior and posterior
electrodes separately. The color zone around the waveforms depicts standard errors.

surface-based category. Consistently, participants reported that
edge-based dimensions were more important than surface-based
dimensions although they could classify the stimuli based on

either edge-based category or surface-based features. The ERP
results revealed that the stimuli from the edge-based category
elicited larger anterior P2 and posterior P2 than those from
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FIGURE 6 | (A) Grand-average ERP waveforms of correct trials for the edge-based category and the surface-based category averaged across nine posterior
electrodes and nine anterior electrodes, respectively. The color zone around the waveforms depicts standard errors. (B) The scalp topography of the anterior N1, P2,
P3, and posterior P2, correct trials of the edge-based category minus correct trials of the surface-based category.

the surface-based category, while stimuli from the surface-based
category elicited larger anterior N1 and P3a than those from the
surface-based category. The results provided new behavioral and
ERP evidence that edge- and surface-based features play different
roles in incidental category learning. That is, although surface-
based information might attract more attention during feature
detection, edge-based information plays more important roles
in evaluating the relevance of information in making a decision
in categorization.

Participants were asked to observe each cartoon animal and
listen to the sound carefully and then rate how likeable they
were in the training phase. They were not asked to learn the
category directly, and no trial-by-trial feedback was provided
in both the training phase and the test phase. This guaranteed
that the learning process occurred incidentally. Under these
circumstances, participants performed above chance for both
categories, indicating that they could incidentally combine the
sound and the defined features to form the category knowledge
and use it in the test phase. Otherwise, the accuracy for one
category would be at chance level. Importantly, there was a larger
learning effect for the edge- than for the surface-based category,
and the larger learning effect was caused by the difference in
implicit knowledge between the two categories rather than the
difference in explicit knowledge, confirming that edge-based
features play a more crucial role than surface-based features in
implicit category learning.

The edge-based theory, such as Biederman’s recognition-by-
components model, posits that objects are recognized based on
their shape properties (Biederman, 1987; Biederman and Ju,
1988). Consistently, several studies have further demonstrated
that edge-based information is a principal discriminative cue
and its influence emerges earlier than texture and color (Elder
and Velisavljević, 2009; Rokszin et al., 2015). For example,
when extracting an average orientation from a set of objects,
performance has been found to be better when the orientation is
carried by the boundary features of the objects, relative to when it
is carried by the surface features of the objects (Choo et al., 2012).
Thus, the behavioral results of our two experiments provide new
evidence for the edge-based theory and extend the application of
this theory from object recognition to category learning.

Our ERP results revealed that the amplitude of anterior
N1 was larger for the surface- than for the edge-based category,
indicating that the stimuli from the surface-based category
might attract more attention compared with the stimuli from
the edge-based category. As stimuli from both edge- and
surface-based categories include five edge-based features and five
surface-based features, there should be no difference on feature
saliency between the two categories. That is, this attention effect
might not be due to a stimulus-driven attentional capture (e.g.,
Cave, 1999; Turatto and Galfano, 2000; Müller et al., 2009).
This is consistent with the finding that the posterior P1 and
N1 are not significantly different between stimuli from the two
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categories. Thus, the attention effect might be modulated by a
top–down mechanism (Connor et al., 2004; Theeuwes, 2010).
The information of the stimulus can be rapidly projected from
early visual areas directly to the prefrontal cortex resulting
in a coarse representation, which is subsequently used to
activate predictions about the most likely interpretations of the
stimulus (Bar et al., 2006; Schettino et al., 2011). If the category
representation consists of mainly edge-based features, the coarse
representation of stimuli for the edge-based category can be
formed more easily than that for the surface-based category.
Therefore, more top–down attention is needed for stimuli from
the surface-based category than for the edge-based category, as
reflected by a larger anterior N1 for the surface-based category
than for the edge-based category. These results are also consistent
with a previous study during which participants needed to decide
if the probe stimulus share the same category membership of
the previous two stimuli (Bigman and Pratt, 2004), and which
revealed that a larger N1 could be recorded in response to the first
stimulus when the knowledge of the target feature was unknown
and the attention was needed for all features during processing of
it compared with the second stimuli and the probe.

However, the ERP results revealed that the amplitude of
anterior P2 was larger for the edge-based category than for the
surface-based category. Relative to the condition under which
participants are instructed to discriminate between old and new
objects, the enhanced anterior P2 has been found in the condition
under which they need to decide additionally whether old objects
are larger or smaller since the more extensive evaluation of
specific perceptual attributes is engaged (Ranganath and Paller,
2000). It has also been found for word targets from which target
visual features can be more efficiently extracted when they are
congruent with the context (Federmeier et al., 2005). These
studies suggest that the anterior P2 reflects the detection of visual
features with feature-based attention (Luck and Hillyard, 1994;
Dunn et al., 1998; Luck, 2012). Because the anterior P2 is larger
for the edge-based category than for the surface-based category,
the anterior P2 component might reflect that the edge-based
features could be detected and analyzed more efficiently than the
surface-based features.

From the view of bottom–up visual processing, after
processing the presented object, the perceptual information is
matched to the representation in memory to make decisions
(Ungerleider and Bell, 2011; Taminato et al., 2014). It has been
found that the older adults with working memory encoding
decrements have lower posterior P2 amplitude than young adults
in a modified Sternberg recognition task (Finnigan et al., 2011),
and correct trials elicit larger posterior P2 than incorrect trials
in a digit span backward task (Lefebvre et al., 2005). The results
suggest that the posterior P2 reflects the cognitive matching
process. Consistent with this, our research shows that stimuli
from edge-based category elicit larger posterior P2 than that from
surface-based category, suggesting that edge-based information
from the current stimulus can be better evaluated and compared
with the stored inner categorical representation.

The P3a component has been proposed as an index of
stimulus categorization (Johnson and Donchin, 1980; Dien et al.,
2004). Folstein and Van Petten have separated that categorization

into a dual system: a relatively fast process if the category is
defined by a single- or two-feature conjunctions as indexed
by the posterior P3b, and a slower process engaged when the
number of relevant features exceeds two as indexed by the
P3a, which are late positive potentials at frontal scalp sites
(Folstein and Van Petten, 2004, 2011). As the category in the
present study is defined by four features and the surface- and
edge-based categories differ in the P3a, the results provide
supportive evidence for the two dual category systems (Folstein
and Van Petten, 2004, 2011). The larger P3a for the surface-
based category than for the edge-based category is also consistent
with previous studies showing that the anterior P3a might reflect
a mixture of category selectivity and categorization uncertainty
with enhanced responses to uncertain stimuli (Scholl et al.,
2014). Because the difference in the P3a amplitudes between
the two categories could predict the accuracy difference, the
relatively poor accuracy for the surface-based category might be
due to the difficulty in evaluating the surface-based features with
internal representations.

In summary, the current study suggests that the edge-based
features play a more important role than surface-based features.
Furthermore, although the surface-based features attract more
attention at the early stage of classification, it is the edge-based
features that play a more crucial role in retrieving internal
representations and evaluating the relevant information in
decision making at the late stage of classification.
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Elder, J. H., and Velisavljević, L. (2009). Cue dynamics underlying rapid detection
of animals in natural scenes. J. Vis. 9:7. doi: 10.1167/9.7.7

Fabre-Thorpe, M., Delorme, A., Marlot, C., and Thorpe, S. (2001). A limit to the
speed of processing in ultrarapid visual categorization of novel natural scenes.
J. Cogn. Neurosci. 13, 171–180. doi: 10.1162/089892901564234

Federmeier, K. D., Mai, H., and Kutas, M. (2005). Both sides get the point:
Hemispheric sensitivities to sentential constraint. Mem. Cognit. 33, 871–886.
doi: 10.3758/bf03193082

Finnigan, S., O’Connell, R. G., Cummins, T. D. R., Broughton, M., and
Robertson, I. H. (2011). Erp measures indicate both attention and working
memory encoding decrements in aging. Psychophysiology 48, 601–611.
doi: 10.1111/j.1469-8986.2010.01128.x

Folstein, J. R., and Van Petten, C. (2004). Multidimensional rule,
unidimensional rule and similarity strategies in categorization: event-
related potential correlates. J. Exp. Psychol. Learn. Mem. Cogn. 30, 1026–1044.
doi: 10.1037/0278-7393.30.5.1026

Folstein, J. R., and Van Petten, C. (2011). After the P3: late executive processes
in stimulus categorization. Psychophysiology 48, 825–841. doi: 10.1111/j.1469-
8986.2010.01146.x

Folstein, J. R., Van Petten, C., and Rose, S. A. (2008). Novelty and conflict in the
categorization of complex stimuli. Psychophysiology 45, 467–479. doi: 10.1111/j.
1469-8986.2007.00628.x

Freedman, D. J., Riesenhuber, M., Poggio, T., and Miller, E. K. (2003). A
comparison of primate prefrontal and inferior temporal cortices during visual
categorization. J. Neurosci. 23, 5235–5246. doi: 10.1523/JNEUROSCI.23-12-
05235.2003

Freunberger, R., Klimesch, W., Doppelmayr, M., and Höller, Y. (2007). Visual
P2 component is related to theta phase-locking. Neurosci. Lett. 426, 181–186.
doi: 10.1016/j.neulet.2007.08.062

Fu, Q., Liu, Y. J., Dienes, Z., Wu, J., Chen, W., and Fu, X. (2016). The role
of edge-based and surface-based information in natural scene categorization:
evidence from behavior and event-related potentials. Conscious. Cogn. 43,
152–166. doi: 10.1016/j.concog.2016.06.008

Gorlick, M. A., and Maddox, W. T. (2013). Priming for performance: valence of
emotional primes interacts with dissociable prototype learning systems. PLoS
One 8:e60748. doi: 10.1371/journal.pone.0060748

Gratton, C., Evans, K. M., and Federmeier, K. D. (2009). See what i mean? an erp
study of the effect of background knowledge on novel object processing. Mem.
Cogn. 37, 277–291. doi: 10.3758/mc.37.3.277

Greenhouse, S. W., and Geisser, S. (1959). On methods in the analysis of profile
data. Psychometrika 24, 95–112.

Hagen, S., Vuong, Q. C., Scott, L. S., Curran, T., and Tanaka, J. W. (2014). The role
of color in expert object recognition. J. Vis. 14:9. doi: 10.1167/14.9.9

He, X., Fan, S., Zhou, K., and Chen, L. (2004). Cue validity and object-based
attention. J. Cogn. Neurosci. 16, 1085–1097. doi: 10.1162/0898929041502689

He, X., Humphreys, G., Fan, S., Chen, L., and Han, S. (2008). Differentiating spatial
and object-based effects on attention: an event-related brain potential study
with peripheral cueing. Brain Res. 1245, 116–125. doi: 10.1016/j.brainres.2008.
09.092

Hillyard, S. A., and Münte, T. F. (1984). Selective attention to color and
location: An analysis with event-related brain potentials. Percept. Psychophys.
36, 185–198. doi: 10.3758/bf03202679

Homa, D., Hout, M. C., Milliken, L., and Milliken, A. M. (2011). Bogus concerns
about the false prototype enhancement effect. J. Exp. Psychol. Learn. Mem.
Cogn. 37, 368–377. doi: 10.1037/a0021803

Johnson, R. J., and Donchin, E. (1980). P300 and stimulus categorization: two
plus one is not so different from one plus one. Psychophysiology 17, 167–178.
doi: 10.1111/j.1469-8986.1980.tb00131.x

Knowlton, B. J., and Squire, L. R. (1993). The learning of categories: parallel brain
systems for item memory and category knowledge. Science 262, 1747–1749.
doi: 10.1126/science.8259522

Laws, K. R., and Hunter, M. Z. (2006). The impact of colour, spatial resolution and
presentation speed on category naming. Brain Cogn. 62, 89–97. doi: 10.1016/j.
bandc.2006.03.002

Lefebvre, C. D., Marchand, Y., Eskes, G. A., and Connolly, J. F. (2005). Assessment
of working memory abilities using an event-related brain potential (ERP)-
compatible digit span backward task. Clin. Neurophysiol. 116, 1665–1680.
doi: 10.1016/j.clinph.2005.03.015

Frontiers in Integrative Neuroscience | www.frontiersin.org 12 July 2020 | Volume 14 | Article 36

https://doi.org/10.3758/bf03211875
https://doi.org/10.1146/annurev.psych.56.091103.070217
https://doi.org/10.1111/j.1749-6632.2010.05874.x
https://doi.org/10.1073/pnas.0507062103
https://doi.org/10.1037/0033-295x.94.2.115
https://doi.org/10.1016/0010-0285(88)90024-2
https://doi.org/10.1016/j.biopsycho.2003.10.003
https://doi.org/10.1016/j.neuropsychologia.2005.08.001
https://doi.org/10.1080/13506285.2012.739215
https://doi.org/10.1016/j.actpsy.2011.06.010
https://doi.org/10.1002/hbm.23259
https://doi.org/10.1007/s004260050050
https://doi.org/10.1007/s11434-006-1586-2
https://doi.org/10.1037/a0026284
https://doi.org/10.1016/j.cub.2004.09.041
https://doi.org/10.3758/cabn.2.1.1
https://doi.org/10.1016/j.neuron.2012.01.010
https://doi.org/10.1111/j.1469-8986.2004.00193.x
https://doi.org/10.1111/j.1469-8986.2004.00193.x
http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/index.htm
http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/index.htm
https://doi.org/10.1177/1745691611406920
https://doi.org/10.3389/fpsyg.2014.00781
https://doi.org/10.1006/brcg.1998.0998
https://doi.org/10.1167/9.7.7
https://doi.org/10.1162/089892901564234
https://doi.org/10.3758/bf03193082
https://doi.org/10.1111/j.1469-8986.2010.01128.x
https://doi.org/10.1037/0278-7393.30.5.1026
https://doi.org/10.1111/j.1469-8986.2010.01146.x
https://doi.org/10.1111/j.1469-8986.2010.01146.x
https://doi.org/10.1111/j.1469-8986.2007.00628.x
https://doi.org/10.1111/j.1469-8986.2007.00628.x
https://doi.org/10.1523/JNEUROSCI.23-12-05235.2003
https://doi.org/10.1523/JNEUROSCI.23-12-05235.2003
https://doi.org/10.1016/j.neulet.2007.08.062
https://doi.org/10.1016/j.concog.2016.06.008
https://doi.org/10.1371/journal.pone.0060748
https://doi.org/10.3758/mc.37.3.277
https://doi.org/10.1167/14.9.9
https://doi.org/10.1162/0898929041502689
https://doi.org/10.1016/j.brainres.2008.09.092
https://doi.org/10.1016/j.brainres.2008.09.092
https://doi.org/10.3758/bf03202679
https://doi.org/10.1037/a0021803
https://doi.org/10.1111/j.1469-8986.1980.tb00131.x
https://doi.org/10.1126/science.8259522
https://doi.org/10.1016/j.bandc.2006.03.002
https://doi.org/10.1016/j.bandc.2006.03.002
https://doi.org/10.1016/j.clinph.2005.03.015
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Zhou et al. Incidental Category Learning

Luck, S. J. (2012). ‘‘Electrophysiological correlates of the focusing of attention
within complex visual scenes: N2pc and related ERP components,’’ in The
Oxford Handbook of Event-related Potential Components, eds S. J. Luck and
E. S. Kappenman (New York, NY: Oxford University Press), 329–360.

Luck, S. J., and Hillyard, S. A. (1994). Electrophysiological correlates of feature
analysis during visual search. Psychophysiology 31, 291–308. doi: 10.1111/j.
1469-8986.1994.tb02218.x

Luck, S. J., and Kappenman, E. S. (2012). ‘‘ERP components and selective
attention,’’ in The Oxford Handbook of Event-related Potential Components,
eds S. J. Luck and E. S. Kappenman (New York, NY: Oxford University Press),
295–327.

Luck, S. J., Woodman, G. F., and Vogel, E. K. (2000). Event-related potential
studies of attention. Trends Cogn. Sci. 4, 432–440. doi: 10.1016/s1364-
6613(00)01545-x

Maddox, W. T., and Ashby, F. G. (2004). Dissociating explicit and procedural-
learning based systems of perceptual category learning. Behav. Process. 66,
309–332. doi: 10.1016/j.beproc.2004.03.011

Maddox, W. T., Ashby, F. G., and Bohil, C. J. (2003). Delayed feedback effects
on rule-based and information-integration category learning. J. Exp. Psychol.
Learn. Mem. Cogn. 29, 650–662. doi: 10.1037/0278-7393.29.4.650

Martínez, A., Teder-Sälejärvi, W., Vazquez, M., Molholm, S., Foxe, J. J.,
Javitt, D. C., et al. (2006). Objects are highlighted by spatial attention. J. Cogn.
Neurosci. 18, 298–310. doi: 10.1162/089892906775783642

Marzecová, A., Schettino, A., Widmann, A., SanMiguel, I., Kotz, S. A.,
and Schröger, E. (2018). Attentional gain is modulated by probabilistic
feature expectations in a spatial cueing task: ERP evidence. Sci. Rep. 8:54.
doi: 10.1038/s41598-017-18347-1

Müller, H. J., Geyer, T., Zehetleitner, M., and Krummenacher, J. (2009).
Attentional capture by salient color singleton distractors is modulated by
top-down dimensional set. J. Exp. Psychol. Hum. Percept. Perform. 35, 1–16.
doi: 10.1037/0096-1523.35.1.1

Nagai, J. I., and Yokosawa, K. (2003). ‘‘What regulates the surface color effect in
object recognition: Color diagnosticity or category,’’ in Proceedings of the 3rd
Workshop on Attention and Cognition of the Japanese Psychological Association,
28, (Tokyo: Japan), 1–4.

Nosofsky, R. M., and Zaki, S. R. (2002). Exemplar and prototype models revisited:
response strategies, selective attention and stimulus generalization. J. Exp.
Psychol. Learn. Mem. Cogn. 28, 924–940. doi: 10.1037/0278-7393.28.5.924

Nosofsky, R. M., Denton, S. E., Zaki, S. R., Murphyknudsen, A. F., and
Unverzagt, F. W. (2012). Studies of implicit prototype extraction in patients
with mild cognitive impairment and early alzheimer’s disease. J. Exp. Psychol.
Learn. Mem. Cogn. 38, 860–880. doi: 10.1037/a0028064

Palmeri, T. J., and Gauthier, I. (2004). Visual object understanding. Nat. Rev.
Neurosci. 5, 291–303. doi: 10.1038/nrn1364

Pernet, C., Basan, S., Doyon, B., Cardebat, D., Démonet, J. F., and Celsis, P. (2003).
Neural timing of visual implicit categorization. Brain Res. Cogn. Brain Res. 17,
327–338. doi: 10.1016/s0926-6410(03)00134-4

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin.
Neurophysiol. 118, 2128–2148. doi: 10.1016/j.clinph.2007.04.019

Ranganath, C., and Paller, K. A. (2000). Neural correlates of memory retrieval and
evaluation. Cogn. Brain Res. 9, 209–222. doi: 10.1016/s0926-6410(99)00048-8

Reber, P. J., Stark, C. E. L., and Squire, L. R. (1998a). Cortical areas supporting
category learning identified using functional MRI. Proc. Natl. Acad. Sci. U S A
95, 747–750. doi: 10.1073/pnas.95.2.747

Reber, P. J., Stark, C. E., and Squire, L. R. (1998b). Contrasting cortical activity
associated with category memory and recognition memory. Learn. Mem. 5,
420–428.

Reed, J. M., Squire, L. R., Patalano, A. L., Smith, E. E., and Jonides, J. (1999).
Learning about categories that are defined by object-like stimuli despite
impaired declarative memory. Behav. Neurosci. 113:411. doi: 10.1037/0735-
7044.113.3.411

Riesenhuber, M., and Poggio, T. (2000). Models of object recognition. Nat.
Neurosci. 3, 1199–1204. doi: 10.1038/81479
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Visual reasoning is a critical stage in visual question answering (Antol et al., 2015),

but most of the state-of-the-art methods categorized the VQA tasks as a classification

problem without taking the reasoning process into account. Various approaches are

proposed to solve this multi-modal task that requires both abilities of comprehension and

reasoning. The recently proposed neural module network (Andreas et al., 2016b), which

assembles the model with a few primitive modules, is capable of performing a spatial

or arithmetical reasoning over the input image to answer the questions. Nevertheless,

its performance is not satisfying especially in the real-world datasets (e.g., VQA 1.0&

2.0) due to its limited primitive modules and suboptimal layout. To address these issues,

we propose a novel method of Dual-Path Neural Module Network which can implement

complex visual reasoning by forming a more flexible layout regularized by the pairwise

loss. Specifically, we first use the region proposal network to generate both visual and

spatial information, which helps it perform spatial reasoning. Then, we advocate to

process a pair of different images along with the same question simultaneously, named

as a “complementary pair,” which encourages the model to learn a more reasonable

layout by suppressing the overfitting to the language priors. The model can jointly learn

the parameters in the primitive module and the layout generation policy, which is further

boosted by introducing a novel pairwise reward. Extensive experiments show that our

approach significantly improves the performance of neural module networks especially

on the real-world datasets.

Keywords: machine learning, visual reasoning, visual question answering, neural module networks,

complementary pairs

1. INTRODUCTION

Visual Reasoning tasks require both abilities of scene understanding and semantic reasoning of AI
models to perform well. Among various visual reasoning tasks, visual question answering (VQA) is
such an excellent testbed to evaluate the reasoning capability of an AI model so that it attracts
more and more attention from the whole AI community for its complexity and practicability.
The VQA task targets to answer language questions based on given images, so that it binds both
natural language processing and visual scene understanding. Consequently, cross-modal learning
ability is of vital importance for AI models to perform well on VQA tasks, where precise answers
cannot be produced without a combined comprehension of both visual and semantic inputs. Some
challenging questions even require human-level reasoning intelligence for answer prediction. For

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00109
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00109&domain=pdf&date_stamp=2020-08-21
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:suhangss@mail.tsinghua.edu.cn
https://doi.org/10.3389/frobt.2020.00109
https://www.frontiersin.org/articles/10.3389/frobt.2020.00109/full
http://loop.frontiersin.org/people/673769/overview
http://loop.frontiersin.org/people/926509/overview
http://loop.frontiersin.org/people/941322/overview
http://loop.frontiersin.org/people/781112/overview


Su et al. Visual Reasoning With DP-NMN

instance, in order to correctly answer the question “What is
sitting beside the chair?” as in Figure 1, a model has to not only
detect chair in the input image, but also seek for objects that lie
beside the detected chair. Such capability to fully comprehend
the image and question and subsequently perform complicated
reasoning process is key to answer questions precisely.

Currently, VQA models apply deep neural networks to
generate a combined feature representation of both visual and
textual inputs. The VQA task is thereafter formalized as a
classification problem where an optimized classifier is able to
select for each combined feature representation a best answer
from a set of candidates. Those data-drivenmodels have achieved
reasonable performances on various VQA datasets. However,
as is known, VQA datasets are biased for the unavoidable
correlation between questions and answers (Goyal et al., 2017),
so that data-driven methods may easily overfit to language
priors, and encourages VQA models to ignore input images
and predict answers merely based on input questions. This
flaw severely damages the learning quality of multi-modal
joint embedding, which is supposed to be essential for VQA
models. The problem of data bias is widely discovered and
studied, as in Hudson and Manning (2019), Agrawal et al.
(2016), Kafle and Kanan (2017), and Agrawal et al. (2018).
To address this problem, the VQA v2.0 dataset is designed to
contain complementary pairs that contain a same question and
two similar images that have different answers to the assigned
question. As a consequence, any VQA model that digs deep into
the language bias will naturally fail on at least 50% samples in
VQA v2.0 as it can’t distinguish the two paired samples from
each other.

FIGURE 1 | A brief illustration of our Dual-Path Neural Module Network. We input a pair of complementary images to the network along with the same question

simultaneously. We propose to generate more flexible layout by regularizing the loss function with the pairwise reward. Our approach can therefore conduct more

complex visual reasoning by composing the linguistic structure along with the visual and spatial information provided by the attached region proposal network (RPN).

Most state-of-the-art VQA methods are formulated as answer
classification problem based on the joint embedding of textual
and visual features. There is little relationship modeling between
the question modality and image modality, so that it looks more
like a black box without interpretable process. Some recent works
(Fukui et al., 2016; Lu et al., 2016; Noh et al., 2016; Xu and Saenko,
2016; Ben-Younes et al., 2017; Kazemi and Elqursh, 2017; Yu
et al., 2017; Anderson et al., 2018; Kim et al., 2018; Patro and
Namboodiri, 2018) introduce the attentionmechanism into VQA
models to attend questions to salient regions of input images,
so that the joint embedding of attended regions and questions
carries more accurate information for question answering. With
model ensemble, attention based VQA models can achieve over
72% prediction accuracy (Jiang et al., 2018) on the test set of
the VQA v2.0 dataset (Goyal et al., 2017). Performance keeps
rising yet an important problem remains unsolved. The lack of
reasoning capability prevents human-level understanding of the
decision process, and restricts the applications which require
reasoning process. Besides, attention-based methods form a joint
feature representation by simply fusing visual and semantic
features, without considering their different roles in this multi-
modal task.

Recently, Neural Module Networks (Andreas et al., 2016b; Hu
et al., 2017, 2018; Johnson et al., 2017b; Mascharka et al., 2018)
address the incapability of visual reasoning for traditional VQA
models, and leap ahead by automatically assembling a collection
of composable neural modules into an end-to-end learnable
framework. To achieve this, a network layout is generated for
each input question that represents the inner reasoning process
from input to output. Primal neural modules are subsequently
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composed together according to the layout, forming a neural
module network that takes input images as input and produce
answer predictions as output. Neural module networks treat
the two fundamental modes of the VQA task differently, where
visual features provide sufficient information for predicting the
answer, and semantic features define the specific transformation
procedure from input attributes to output answer predictions.
Considering the different roles of different modes of input data
is of vital importance for cross-modal learning tasks that only in
this way can the human understanding of multi-modal data be
added naturally into the AI model. The neural module network
framework provides answer explanations for human users in the
form of the network layout, and achieves reasonable performance
on synthetic VQA datasets like SHAPES (Andreas et al., 2016b)
and CLEVR (Johnson et al., 2017a), while suffers from unsatisfied
performance on large-scale real-world datasets like the VQA
v2.0 dataset.

This imbalanced performance is due to three major reasons.
First, computer rendered images has extremely limited number
of objects compared with real-world photos. Incremental
difficulty in detecting objects naturally adds difficulty in
answering questions. Second, objects in real-world datasets
have more complicated relationships with each other compared
with generated images, where only spatial relationships are
considered. Third, questions in real-world datasets represent
more complicated reasoning process since they are annotated
by human users aiming at challenging intelligence systems,
while questions generated by a rule-based system have limited
variations. Consequently, it’s much harder to comprehend images
in real-world datasets than in computer generated datasets.
Specially, when integrating with attention mechanism, neural
module networks should be further improved for the ability to
generate precise network layouts representing input questions to
achieve better performance.

To address above flaws of neural module networks, this paper
proposes Dual-Path Neural Module Network (DP-NMN), which
applies a novel pairwise learning schema to boost its visual
reasoning capability on real-world datasets. A brief overview
of our model is given in Figure 1. The basic insight is that
complementary pairs in the VQA v2.0 dataset not only balance
the dataset for language priors, but also have the potential to
regularize and guide the training of VQAmodels. To achieve this
goal, we introduce two novel components into the neural module
networks. First, we reformulate the network layout generation
process as a reinforcement learning problem where a policy
network builds up the layout sequence step-by-step and receives
a reward after the network has been assembled according to the
generated layout. We make full use of the complementary pairs
annotation by giving an additional pairwise reward to the policy
network if the generated layout applies well for both images. This
fits human intuition that layouts generated by a robust neural
module network shall represent reasoning processes determined
by input questions well and work on any input image. Second,
we apply a region proposal network (RPN) on the input image to
obtain salient object regions in the image, which carries sufficient
visual and spatial features of detected candidate objects. This
approach makes it possible for primitive modules to take both

visual and spatial features as input, which naturally helps answer
space related questions. We re-implemented the structures of
primitive modules to ensure that the encoded information are
sufficiently adopted to help perform reasoning. With the help
of the region proposal network, our DP-NMN model deals with
the two subtasks of low-level feature extraction and high-level
reasoning separately to seek for better performance while still
being interpretable. Our main contributions are three points:

• We propose a novel Dual-Path Neural Module Network (DP-
NMN) model that processes input images with a region
proposal network and applies a policy network to generate
reasoning layout sequences;

• We present a novel pairwise learning schema that makes full
use of the complementary pairs available or easily getatable in
datasets to further improve performance;

• We demonstrate significant performance improvement for
visual question reasoning on VQA datasets with the
proposed DP-NMN.

2. RELATED WORKS

2.1. Visual Question Answering
Visual question answering requires comprehensive
understanding both input questions and images for answer
prediction. Recent few years have seen many newly formed
datasets including hand-crafted datasets with computer
generated images, like SHAPES (Andreas et al., 2016b), CLEVR
(Johnson et al., 2017a), and large-scale real-world datasets like
VQA (Antol et al., 2015) and VQA v2.0 (Goyal et al., 2017).
Visual reasoning is of vital importance to perform this task well,
for questions are designed to contain complicated reasoning
process. For example, questions in CLEVR tend to query about
relationships between objects, which require VQA models to
comprehend the complex relationships between detected objects.
The visual attention mechanism has been widely applied to
form joint representations of input questions and images, which
are subsequently handled by a classifier to produce answer
predictions. Recent years have seen significant improvement in
terms of performance, by either enhancing the visual attention
module (Xu and Saenko, 2016; Yang et al., 2016; Kazemi and
Elqursh, 2017; Anderson et al., 2018; Patro and Namboodiri,
2018), or improving quality of the joint embedding (Fukui et al.,
2016; Lu et al., 2016; Noh et al., 2016; Ben-Younes et al., 2017; Yu
et al., 2017). With model ensemble, the current state-of-the-art
model has achieved over 72% accuracy (Jiang et al., 2018) on the
VQA v2.0 test set.

However, VQA models based on the visual attention
mechanism are not able to provide a thorough explanation of the
reasoning process from input to output. Consequently, it remains
unclear whether the model truly has the ability to understand
the multi-modal input to make complicated reasoning, or the
model just simply overfits the dataset. The language bias problem
is discovered and discussed in Goyal et al. (2017), which reveals
that data-driven models may easily overfit to the unavoidable
language priors between questions and answers. In contrast,
the neural module network architecture takes a step ahead in
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visual reasoning that the generated network layout for each
input question is by itself a well defined explanation of the
inner reasoning process. But the performance of neural module
networks on real-world VQA datasets is unsatisfied, which
severely damages its practicability.

3. NEURAL MODULE NETWORKS

Neural module networks (NMN) (Andreas et al., 2016b; Hu
et al., 2017, 2018; Johnson et al., 2017b; Mascharka et al., 2018;
Vedantam et al., 2019) provide a general idea of composing a
new deep network with neural modules for each given input.
Specifically for the VQA task, a structure layout for neural
modules is generated based on semantic analysis on the input
question, which represents the reasoning process from input
image-question pair to output question answers. Subsequently,
composable modules that each represents a unit step of visual
reasoning are assembled together according to the generated
layout, yielding a neural module network that is able to process
images and predict answers. Those primitive modules have hand-
crafted structures designed by human experts.

Recently, Hu et al. (2017) present the End-to-End Module
Network which seeks for optimal layouts by predicting coarse
functional expressions given input questions which describe
desired network layouts. The layout generation problem is
formulated as a sequence-to-sequence learning problem, and
can be trained end-to-end with gradient backpropagation. This
framework achieved reasonable results on simple VQA datasets
like the SHAPES dataset, but suffered from relatively low
accuracy on large-scale real-world VQA v2.0 dataset. Yet neural
module networks still have demonstrated the advantages in
interpretability of the visual reasoning process. Therefore, it
remains an important direction to boost the performance for
neural module networks and close the performance gap to state-
of-the-art VQA methods.

4. METHODS

In this paper, we propose Dual-Path Neural Module Network
which processes pairwise data samples in parallel, and is trained
with a novel pairwise learning schema. An overview of our
model is provided in section 3.1. The implementation details of
our model are described in section 3.2. Optimization methods
applied for training our model are described in section 3.3. Our
model contains several types of composable primitive modules,
which are introduced in section 3.4.

4.1. Overview
VQA datasets contain triplet samples si = (Q, I,A) where Q
denotes the input question, I denotes the input image and A
denotes the ground truth answer to the question. Like previous
neural module networks, our model first generates a network
layout Lq based on the input question Q, and assembles a
neural module network with primitive modules according to
Lq. Those primitive modules are parameterized by θN . Then the
assembled network is capable ofmaking answer predictions given
input images.

However, VQAmodels that works merely on singular samples
tend to easily overfit to the language priors in the dataset,
focusing on the strong relationship between questions and
images. The VQA v2.0 dataset contains complementary pairs to
address this problem, where two paired samples have a same
question but different images and answers, which can be denoted
as si and sj, where sj = (Q, I′,A′) has the same question Q as si.

In order to minimize the impact of language priors in VQA
datasets and generate comprehensive network layouts, our Dual-
Path Neural Module Network applies a novel pairwise learning
schema that makes full use of complementary pairs. Input to our
model are paired samples si and sj instead of singular samples.
Since the relationship between network layout and answer
prediction is non-differentiable, we apply a policy network to
produce layouts given input questions, which is trained under a
reinforcement learning environment. During training, a reward
R(Lq, θN |s) is given to the policy network if the predicted answers
fits the ground truth answers for each sample s.

Our goal is to find optimal Lq and θN that not only
make most accurate answer predictions, but also produce more
comprehensive layouts. Intuitively, comprehensive network
layouts shall work well on both complementary samples si and
sj, making precise answer predictions for both images. Therefore,
a pairwise reward�(Lq, θN |si, sj) is defined on each pair that gives
the model additional reward if the predictions are correct on
both paired images to encourage robust layouts. During training,
we jointly optimize the task reward for answer accuracy and
the pairwise reward for regularization. Hence the optimization
objective of our model can be formalized as:

(Lq, θN) = argmax
Lq ,θN

( ∑

s=si ,sj

R(Lq, θN |s)+ λ�(Lq, θN |si, sj)
)
, (1)

where network layout Lq and module parameters θN are jointly
optimized to achieve highest reward. The network layout Lq
is determined by two factors: types of primitive modules and
connections between those modules. In practice, Lq is generated
via the layout generator, which is optimized jointly with module
parameters θN using this equation. Suppose that function g
builds a network structure with a sequence l containing type
information of all modules and a matrix 9 that describes
connections between them:

Lq = g(l,9). (2)

Hence given a sequence l of all type information of modules and
matrix 9 denoting the connections between them, a network
layout Lq can be determined by function g. An overview of our
model is shown in Figure 2. Details of the model architecture and
the training method will be discussed in later sections.

4.2. Model Architecture
Our model composes a neural module network and predicts an
answer (Â) out of a set of candidate answers for each given input
pair of image (I) and question (Q):

Â = F(rI; Lq, θN), (3)
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FIGURE 2 | An overview of our model. The input question is fed into the layout generation module which selects one module from all possible primitive modules at

each time step to assemble a neural module network, and the paired input images are fed into the dual-path neural module network which processes them in parallel.

A pairwise reward is calculated for each pair and given to the layout generation module to encourage layouts that work for both images.

where rI are region proposals that consist of visual features and
corresponding bounding boxes of all candidate objects detected
in the input image I. In this paper, we detect top 36 salient
regions in I as candidate objects, each corresponds with a 2, 048
dimension visual feature vector and a 6 dimension spatial feature
vector. Hence dimension for rI is (36 ∗ 2048+ 6). Textual feature
of input question is also extracted, denoted as fq which is a 2, 048
dimension vector:

rI = RPN(I), and fq = RNN(Q), (4)

where RPN denotes the pre-trained region proposal network that
extracts visual and spatial features of salient regions and RNN
denotes a recurrent neural network (Bahdanau et al., 2014) that
extracts textual features from the input question. The probability
of any candidate answer given input question and image is
divided into two parts. Firstly, a network layout Lq is generated
based on the input question. Then composable primitivemodules
can be assembled together to form a neural module network,
which is able to output answer predictions given input images.

Recall that in order to determine a layout Lq, the type
information of all modules l and the connections between those
modules 9 shall be settled. The layout sequence l = l1, l2, . . . , lT
is generated based on textual feature of the input question, fq.
For each t, the corresponding element lt in the layout sequence
represents a module type among all types of primitive modules.
Ourmodel generates the layout sequence l step-by-step according
to a policy network πθ , where θ denotes its parameters. At each
time step t, the policy network produces a probability distribution
πθ (lt

∣∣l1, . . . , lt−1, fq) for all possible types of neural modules based
on textual feature of the input question and previous generated
modules. The most possible module is selected to be the t-th
neural module lt to form the whole layout sequence l, where each
lt is generated by the policy network:

lt = argmax
lt

πθ (lt
∣∣l1, . . . , lt−1, fq), t = 1, 2, . . . ,T. (5)

This makes it possible to apply beam search during both training
and testing to form an optimal l with highest probability. As in
Hu et al. (2017), the layout sequence is mapped into a network
layout with possible tree structure using Reverse Polish Notation,
which is equivalent to 9 . Hence after the layout sequence l is
confirmed, we are able to apply Equation (2) to form a network
layout Lq and subsequently assemble neural modules according
to Lq. Each neural module is a function that takes 0, 1, or 2
attention maps and optional visual and textual feature as input,
and outputs either an attention map or a probability distribution
for all candidate answers. It’s safe to assume that the first T − 1
neural modules work together to output an attention map a,
which is taken as input by the last module to form the final answer
prediction. The overall function of the first T − 1 modules may
be summed up as one function m1...T−1, and the last module as
mT . Then the answer prediction process can be formalized as:

a = m1...T−1(rI; θN), (6)

F(rI; Lq, θN) = softmax(mT(a ◦ rI; θN)), (7)

where θN denotes parameters of primitive modules, and ◦

denotes element-wise multiplication between attention weights
and visual features. In conclusion, upon each input pair of
question and image, our model first assembles a neural module
network step-by-step conditioned on the question. Subsequently,
the assembled neural module network is able to take images as
input and predict answer probabilities.

4.3. Model Optimization
The prediction accuracy of neural module networks is directly
related to two separated parts of model: layout generation and
neural modules. Here we apply a E-M method to train the two
parts alternately. That is, we first initialize layouts with a rule-
based system as in Hu et al. (2017), and train the neural modules
with simple backpropagation, resulting in optimal parameters θN .
Then we fix the neural modules and train the layout generation
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module with policy gradient, leading to an optimal layout Lq.
This process can be repeated until we reach the joint optimum
of θN and Lq.

During training, we feed pairwise inputs si = (Q, I,A) and
sj = (Q, I′,A′) together into the Dual-Path Neural Module
Network, which processes the two data samples in parallel. The
network layout Lq has a non-differential relationship with the
prediction accuracy, therefore the policy network πθ cannot be
trained directly with back propagation. However, when the whole
layout is generated, which means the predicted answers Â and Â′

become accessible by feeding the input images I and I′ into the
assembled network, we are able to compare the predicted answers
with ground truth answers A and A′. We can define a reward
function representing the result of this comparison. Optimizing
this reward is thus beneficial to improving prediction accuracy.
The reward function on pairwise data samples can be defined as:

R(Lq, θN |si) = 1[Â = A], (8)

R(Lq, θN |sj) = 1[Â′ = A′], (9)

where Â and Â′ are predicted answers for I and I′

correspondingly. Note that here both answer predictions Â
and Â′ are generated by the neural module network that is
assembled according to layout Lq. 1[Â = A] is the indicator

function that equals 1 if and only if the condition Â = A is
satisfied. That is,

1[Â = A] =

{
1, Â = A,

0, Â 6= A.
(10)

And same equation stands for 1[Â′ = A′]. Those indicator
functions compare predicted answers with ground truth answers,
ensuring that optimizing this task reward is beneficial to the
prediction accuracy of the model. But as we have claimed,
models trained with merely task reward may easily overfit to
language priors in the dataset. For neural module networks, this
means that layouts generated for input questions may be under-
qualified to process visual reasoning on input images, but instead
fit the correlations between questions and answers. To address
this problem, our Dual-Path Neural Module Network applies a
novel pairwise reward �(Lq, θN |si, sj) for pairwise input samples
as additional regularization during the training process. The
pairwise reward is designed to encourage comprehensive layouts
that work well on both paired inputs:

�(Lq, θN |si, sj) = 1[Â = A ∧ Â′ = A′], (11)

where si and sj are paired inputs that share a same question.
It’s intuitive that this pairwise reward is given to the model
only when it’s capable of answering the question Q correctly
on both complementary images I and I′. Therefore, optimizing
this pairwise reward efficiently avoids overfitting to language
priors, for a VQA model must be able to distinguish the two
complementary samples si and sj to get this pairwise reward,
which is nearly impossible for overfitted models that predict

answers based on questions only. During training, we combine
task rewards and the pairwise reward to form a total reward:

R(Lq, θN) =
∑

s=si ,sj

R(Lq, θN |s)+ λ�(Lq, θN |si, sj)

= 1[Â = A]+ 1[Â′ = A′]+ λ1[Â = A ∧ Â′ = A′],

(12)

where λ serves as a weight factor, which is set to 0.1 in this
paper. Optimizing this total reward not only improves prediction
accuracies on singular data samples, but also avoids overfitting
to language priors. Note that at this step, θN is set to be fixed,
so that it can be omitted from the reward function. Therefore,
we optimize the total expected reward over θ to seek for optimal
parameters of the policy network:

θ∗ = argmax
θ

ELq [R(Lq))]. (13)

It’s clear that optimal layout Lq is equivalent to optimal θ .
However, there is no close-form solution for this optimization
problem since the reward is non-differentiable with regard to
the layout Lq. To simplify the optimization, we use Monte-
Carlo sampling to calculate an unbiased estimation of the
expected reward:

ELq [R(Lq)] ≈
1

N

N∑

n=1

R(L(i)q ), (14)

where N denotes the number of samples drawn, and L
(i)
q denotes

the i-th sampled layout. Each sampling process requires the
policy networkπθ to produce all module types to form a complete

layout L
(i)
q . Then the gradients for training can be computed using

policy gradient method, where we sum up the gradients at each
time step:

∇ELq [R(Lq)] ≈
1

N

N∑

i=1

T∑

t=1

∇θ log(π(lt
∣∣l1, . . . , lt−1, fq))R(L

(i)
q ).

(15)
Then we are able to train the policy network with gradient
backpropagation. After the policy network is trained, which
indicates that we’ve already reached optimal Lq under current
module parameters θN , we can fix πθ and alternate the training
process to train the parameters of composable primitive modules:

θ∗N = argmax
θN

R(Lq, θN), (16)

where Lq is set to be fixed during this process, hence the
reward function is equivalent to a simple loss function that is
differentiable with regard to θN , and can be directly optimized
with backpropagation. In this paper, we apply one iteration of this
E-M process to search for the joint optimum of Lq and θN .
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TABLE 1 | Definitions of composable neural modules.

Module name Inputs Output Implementation

find fq, rI att ao = conv(WrrI ⊙Wqfq)

relocate a, fq, rI att ao = conv(Wvv⊙Wqfq)

and a1, a2 att ao = min(a1, a2 )

or a1, a2 att ao = max(a1, a2 )

describe a, fq, rI ans ans = WT
a (Wvv⊙Wqfq)

compare a1, a2, fq, rI ans ans = WT
a (Wv [v1; v2]⊙Wqfq)

Note that with the help of the region proposal network, we are able to provide rI as

input for primitive modules which encodes both visual and spatial features. Among

implementations, [p;q] denotes concatenation of two vectors p and q, and ⊙ denotes

element-wise multiplication. Vectors v, v1, and v2 are attended visual features that are

weighted sum of the region proposal rI, weighted by a1 and a2, respectively. That is,

v1 =
∑

i a
(i)
1 r

(i)
I , and v2 =

∑
i a

(i)
2 r

(i)
I , where a

(i)
1 denotes the i-th component of the input

attention map, and r
(i)
I denotes the i-th row of the visual feature encoded in rI. Note that

model parameters Wq,Wr ,Wv ,Wa are not shared among different modules, which are

parameters related to textual features, region proposals, visual features, and attention

maps, respectively.

4.4. Primitive Modules
As is claimed before, with the help of the region proposal
network, we are able to design several new types of neural
modules that take not only visual features as input, but also take
spatial features into consideration. We list all types of primitive
neural modules in Table 1. Note that some of those modules are
declared in previous works, but are not applied for VQA v2.0.

It’s also worth noting that since we adopt a region
proposal network to extract candidate objects and corresponding
bounding boxes of them, not only noisy redundant information
are filtered, but also additional information is provided to the
composed neural module network. Neural modules are now able
to take spatial information as input, in addition to visual and
textual features. For example, being able to take rI as input,
which encodes both visual and spatial information, directly helps
the relocate module to solve space-related questions like
“to the left of,” “inside,” and “bigger than,” which contributes
to the performance improvement. Previous works adopt rule-
based systems to parse each question sequence in the training
set to automatically generate layouts for initialization during
training. Since our model contains several new types of neural
modules, we modify the question parser to generate more
suitable layouts, especially for space related questions. As a
consequence, the neural module network will generate more
comprehensive layouts on those questions and achieve higher
accuracy during testing.

5. EXPERIMENTS

We evaluate the proposed method on the test sets of VQA
v2.0 (Goyal et al., 2017) and CLEVR (Johnson et al., 2017a).
Similarly to previous works, we pre-process the question
sentences using pre-trained GloVe (Pennington et al., 2014)
vectors with 300 dimensions. The GloVe representations are
fed into a bi-layer LSTM with hidden dimensions set as 1,000.
The input image is pre-processed with a ResNet (He et al.,

2016) which outputs 2,048-dimension feature representations
of input images. Our model is implemented using TensorFlow
(Abadi et al., 2016), and is trained with Adam Optimizer
(Kinga and Adam, 2015), with learning rate set as 1 × 10−4

and β set as 0.99. We compare performances of our DP-
NMN with the baseline model End-to-End Neural Module
Network (N2NMN) (Hu et al., 2017), and also several attention-
based models. We also give qualitative analyses of generated
network layouts. During training, batches of size 64 are fed
into the model for 80, 000 iterations. The training process will
terminate when the validation performance stays unimproved for
5, 000 iterations.

5.1. Datasets
5.1.1. VQA v2.0

VQAv2.0 is a VQAdataset thatminimizes the impact of language
bias with pairwise data samples, containing over 1.1 M human
annotated questions and 0.4M MSCOCO (Lin et al., 2014)
images. Faster-RCNN (Ren et al., 2015) is applied as the region
proposal network that detects candidate objects, which uses a
ResNet (He et al., 2016) CNN trained on ImageNet (Russakovsky
et al., 2015) as visual feature extractor. We directly adopt the
pre-trained Faster-RCNN available in Anderson et al. (2018). As
in Hu et al. (2017), the layouts are firstly initialized with pre-
generated layouts in Andreas et al. (2016a). Then we use the
policy gradient method described in section 3.3 to search for
better layouts. Accuracies on VQA v2.0 are reported by EvalAI
(VQA, 2016).

5.1.2. CLEVR

The CLEVR (Johnson et al., 2017a) dataset focuses on relational
reasoning, and contains 700K, 150K, and 150K automatically
generated questions for training, validation and testing. We fine-
tune a VGG-Net (Simonyan and Zisserman, 2014) to provide
visual features. No complementary annotations are directly
available to train our DP-NMN, which makes it impossible to
adopt our pairwise learning schema out of the box. Fortunately,
since questions in CLEVR have limited grammar structures,
we may pre-process questions in the training set such that
words representing a same concept are replaced with a same
placeholder. For example, all words describing colors are replaced
with placeholder “{color}.” Similar replacements are applied for
all words describing sizes, shapes, materials, and directions.

After pre-processing, we are able to extract complementary
pairs. Two identical questions after the replacement indicate
that they represent a same reasoning process, although specific
semantic meanings of the two questions may differ. For example,
“What color is the cube to the right of the yellow sphere?”
and “What color is the sphere to the left of the red cylinder?”
refer to different colors, directions and shapes, but the layout
structure generated by NMN shall be identical. Therefore these
two questions are assigned pair with each other. Practically, we
are able to extract 258,329 complementary pairs (516,658 data
samples) this way, covering 74% of the training set. After that,
all unpaired questions are assigned pair with themselves. We are
hereafter able to train our DP-NMN with pairwise learning.
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5.2. Layout Complexity Analysis
The ability to perform complex reasoning process of neural
module networks can be measured with the complexity of the
generated layouts. Table 2 shows the average size of generated
layouts of our model and N2NMN (Hu et al., 2017) on the test-
dev set of VQA v2.0. The size of a reasoning layout is measured by
the number of primitive modules it contains. For example, size of
the layout find→ describe is 2 for it contains two modules.
It’s shown that layouts generated by our model are 12% larger in
size than those generated by N2NMN. Longer layouts indicate
that when solving a same question, our model is able to perform
more complicated reasoning process on the input image, which
naturally leads to performance improvement.

We also give a few examples of network layouts generated by
our model together with the corresponding input questions and
images to further demonstrate that our model produces more
comprehensive layouts than former neural module networks
like N2NMN. The results are shown in Figure 3. The presented
questions and images are selected from the test set of VQA v2.0.
It can be seen that our model answers more accurately, either
by applying specific modules to solve particular questions, or by
assembling more complex layouts to get a better understanding
of the scene. In Figure 4, we give three more examples of the
generated layouts by ourDP-NMN.When given simple questions
requiring either spatial or logical reasoning, our DP-NMN is
capable of generate proper layouts of neural module networks
that precisely represent the inner reasoning process. However,

TABLE 2 | Average size of generated layouts, measured by number of modules,

on the test-dev set of the VQA v2.0 dataset.

Model Average size of layouts

N2NMN (Hu et al., 2017) 2.79

DP-NMN (Ours) 3.14

The bold values indicate the parameters or results that belong to our model DP-NMN.

there are also cases observed that when the input question seems
too complicated, the corresponding layout has complex structure
and no clear meaning can be obtained. This may indicate that
the reasoning capability of such neural module networks is
still limited.

5.3. Benchmark Results
We report benchmark performance of our model on the test
sets of VQA v2.0 and CLEVR in Table 3. Compared with the
baseline model End-to-End Neural Module Network (N2NMN),
it’s shown that our model outperforms it by a large margin
on both VQA v2.0 and CLEVR. We also compare single
model performances of our model with several attention based
models, including Bottom-Up and Top-DownAttention (BUTD)
(Anderson et al., 2018) which took the lead in VQA Challenge
2017 (VQA, 2016). Our model outperforms BUTD on VQA
v2.0, while providing better interpretability for human users.
With model ensemble, our DP-NMN is able to achieve over
70% prediction accuracy. The ensemble is done by independently
train 9 models at once, where they have same settings except
with different random seeds. The ensemble output is given by
major vote.

This reveals that the neural module network architecture
is fully capable of achieving reasonable performance on large-
scale real-world datasets. It can be seen that there still remains
performance gap between well-designed attention-based VQA
models [like BAN (Kim et al., 2018) and LXMERT (Tan and
Bansal, 2019)] and neural module networks, probably showing
the widely-discovered trade-off between interpretability and
performance. It’s also worth noting that neural module networks
have the advantage over attention based models that they provide
better explanations to human users when answering questions,
thus being more interpretable.

We also propose experiments where randomly assigned pairs
are used to train our DP-NMN, namely Random Pairs in Table 3,
aiming to validate the effectiveness of the pairwise learning
schema. It’s clearly shown that when complementary pairs are

FIGURE 3 | An qualitative comparison between our Dual-Path Neural Module Network and End-to-End Neural Module Network. Our policy network generates more

comprehensive layouts that represent the visual reasoning process more precisely.
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FIGURE 4 | Several examples of the generated layouts by our DP-NMN. First two examples show that our DP-NMN is capable of performing spatial reasoning with

the transform module, and logical reasoning with the or module. In the third example, our DP-NMN generates a complicated layout without clear meaning and

outputs a wrong answer, which may indicates that the question is beyond its capability.

randomly assigned, performance of DP-NMN drops by a small
margin, proving that the proposed pairwise learning schema only
works with well designed complementary pairs.

As shown in Table 3, the DP-NMN (λ = 0) model processes
pairwise data samples but without receiving the pairwise reward.
It’s clearly visible that its performance drops by a large margin
compared to the DP-NMN, which indicates that the pairwise
reward affects the model’s performance positively. Compared to

the Random Pairs setting, DP-NMN (λ = 0) achieves slightly
better performance. This performance gap may be related to the
structure of training batches, where pairwise samples are always
shown to the model simultaneously.

The selection of the parameter λ is find challenging for DP-
NMN. Big values of lambda affect the training loss too much that
negative influence on performance are discovered. Small values
of lambda make the benefits of the proposed pairwise learning
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TABLE 3 | Prediction accuracies on test sets of VQA v2.0 and CLEVR.

Model
VQA v2.0

CLEVR

Overall Yes/No Number Others

Attention based models:

MCB (Fukui et al., 2016) 62.27 78.82 38.28 53.36 51.4

BUTD (Anderson et al., 2018) 66.40 79.32 39.77 52.59 94.5

BAN-12 (Kim et al., 2018) 69.52 85.31 50.93 60.26 –

LXMERT (Tan and Bansal, 2019) 72.5 88.2 54.2 63.1 –

Neural module networks:

N2NMN (Hu et al., 2017) 63.30 80.89 39.82 53.50 83.7

DP-NMN (Ours, Random Pairs) 66.21 83.34 43.00 56.89 90.1

DP-NMN (Ours, λ = 0) 66.37 83.43 43.81 56.95 –

DP-NMN (Ours) 67.15 84.37 44.83 57.50 92.0

DP-NMN (Ours, 9 ensemble) 70.10 87.24 51.53 61.09 94.1

Our model significantly improves performance on VQA v2.0 compared with former neural module networks, and has comparable performance with attention based models. On CLEVR,

our pairwise learning schema also shows positive impact on accuracy.

The bold values indicate the parameters or results that belong to our model DP-NMN.

TABLE 4 | Sensitivity analysis results of λ.

λ 1 0.5 0.1 0.01 0.001 0

Valid accuracy (%) 57.27 64.39 65.21 63.84 63.42 63.40

Reported are validation accuracies on VQA v2.0 for different values of λ. The impact of λ

can be clearly shown in the table that the trade-off between optimizing task reward and

pairwise reward shall be balanced to achieve best performance on the validation split.

According to the sensitivity analysis, we finally set λ as 0.1.

The bold values indicate the parameters or results that belong to our model DP-NMN.

schema less viable. Therefore, we finally choose 0.1 as the most
proper value of lambda. The detailed sensitivity analysis results
of λ is shown in Table 4.

6. CONCLUSION

In this paper, we propose Dual-Path Neural Module Network
that aims at better visual question reasoning on large-scale
real-world datasets by introducing a novel pairwise learning
schema. Our model processes the complementary images in
parallel to produce a pairwise reward during the training process,
which encourages to generate more comprehensive layouts of
reasoning modules. Besides, we adopt a region proposal network
to detect visual and spatial features of candidate objects in
the input image, which provides useful spatial information
for the assembled neural module network. Experimental
results show that our model significantly outperforms previous
neural module networks on real-world datasets, and also
generalizes well on other datasets. The pairwise learning

schema can be applied only when proper annotations of
complementary samples are given along with the dataset, or
can be easily extracted, which becomes a limitation of the
framework. However, we believe that the idea of adopting
those kind of complementary information to serve as additional
guidance during the training process of neural networks is
promising, and we expect further studies from the deep learning
community.
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Given the features of a video, recurrent neural networks can be used to automatically

generate a caption for the video. Existing methods for video captioning have at least three

limitations. First, semantic information has been widely applied to boost the performance

of video captioning models, but existing networks often fail to provide meaningful

semantic features. Second, the Teacher Forcing algorithm is often utilized to optimize

video captioningmodels, but during training and inference, different strategies are applied

to guide word generation, leading to poor performance. Third, current video captioning

models are prone to generate relatively short captions that express video contents

inappropriately. Toward resolving these three problems, we suggest three corresponding

improvements. First of all, we propose a metric to compare the quality of semantic

features, and utilize appropriate features as input for a semantic detection network

(SDN) with adequate complexity in order to generate meaningful semantic features for

videos. Then, we apply a scheduled sampling strategy that gradually transfers the training

phase from a teacher-guided manner toward a more self-teaching manner. Finally, the

ordinary logarithm probability loss function is leveraged by sentence length so that the

inclination of generating short sentences is alleviated. Our model achieves better results

than previous models on the YouTube2Text dataset and is competitive with the previous

best model on the MSR-VTT dataset.

Keywords: video captioning, sentence-length-leveraged loss, semantic assistance, RNN, scheduled sampling

1. INTRODUCTION

Video captioning aims to automatically generate a concise and accurate description for a video. It
requires techniques both from computer vision (CV) and natural language processing (NLP). Deep
learning (DL) methods for sequence-to-sequence learning are able to learn the map from discrete
color arrays to dense vectors, which is utilized to generate natural language sequences without the
interference of humans. These methods produced impressive results on this task compared with
the results yielded by manually crafted features.

It has gained increasing attention in video captioning that the semantic meaning of a video
is critical and beneficial for an RNN to generate annotations (Pan et al., 2016; Gan et al., 2017).
Keeping semantic consistency between video content and video description helps to refine a
generated sentence in semantic richness (Gao et al., 2017). But few researches have explored
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methods to obtain video semantic features, metrics to measure
their quality and the relation between video captioning
performance and meaningfulness of semantic features.

Several training strategies have been used to optimize video
captioning models, such as the Teacher Forcing algorithm and
CIDEnt-RL (Pasunuru and Bansal, 2017b). The Teacher Forcing
algorithm is a simple and intuitive way to train RNNs. But it
suffers from the discrepancy between training, which utilizes
ground truth to guide word generation at each step, and
inference, which samples from the model itself at each step.
Reinforcement learning (RL) techniques have also been adopted
to improve the training process of video captioning. CIDEnt-
RL is one of the best RL algorithms, but it is extremely time-
consuming to calculate metrics for every batch. In addition, the
improvement on different metrics is unbalanced. In other words,
the improvements on other metrics are not as large as that on the
specific metrics optimized directly.

The commonly used loss function for video captioning is
comprised of the logarithm of probabilities of target correct
words (Donahue et al., 2015; Venugopalan et al., 2015). A long
sentence tends to bring high loss to the model, as each additional
word reduces the joint probability by roughly at least one order
of magnitude. In contrast, a short sentence with few words has
a relatively low loss. Thus, a video captioning model is prone to
generate short sentences after being optimized by a log likelihood
loss function. Excessively short annotations may neither be able
to describe a video accurately nor express the content of a video
in a rich language.

We propose to improve solutions to the video captioning task
in three aspects. Firstly, we use mean average precision (mAP)
as the metric to evaluate the quality of semantic information. By
virtue of the evaluation metric, we build our semantic detection
network (SDN) with a proper scale and the best inputs that
brings the best performance, and, consequently, SDN is able to
produce meaningful and accurate semantic features for a video.
Secondly, we take advantage of a scheduled sampling method to
train our video captioning model, which searches extreme points
in the RNN state space more extensively as well as bridges the
gap between training process and inference (Bengio et al., 2015).
Thirdly, we optimize our model by a sentence-length-modulated
loss function, which encourages the model to generate longer
captions with more detail.

Our implementation, available on GitHub1, is based on the
TensorFlow deep learning framework.

2. RELATED WORKS

2.1. Image Captioning
The encoder-decoder paradigm has been widely applied by
researchers in image captioning since it was introduced to
machine translation (Cho et al., 2014). It has become a
mainstream method in both image captioning and machine
translation (Mao et al., 2014; Vinyals et al., 2015). Inspired by
successful attempts to employ attention in machine translation

1https://github.com/WingsBrokenAngel/Semantics-AssistedVideoCaptioning/

tree/master

(Bahdanau et al., 2015) and object detection (Ba et al., 2015),
models that are able to attend to key elements in an image
are investigated for the purpose of generating high-quality
image annotations. Semantic features (You et al., 2016) and
object features (Anderson et al., 2018) are incorporated into
attention mechanisms as heuristic information to guide selective
and dynamic attendance of salient segments in images. RL
techniques, which optimize specific metrics of a model directly,
are also adopted to enhance the performance of image captioning
models (Rennie et al., 2017). Graph Convolutional Networks
(GCNs) have been introduced to cooperate with RNN to integrate
both semantic and spatial information into image encoders in
order to generate efficient representations of an image (Yao et al.,
2018). Stimulated by the success of the Transformer model in
machine translation, researchers extend it to a multimodal model
for image captioning (Yu et al., 2019), which utilizes multi-view
visual features to further improve the performance. Multi-level
relationships between image regions are learnt and both low-
and high-level features are exploited at the decoding stage in
the Meshed Transformer with memory for image captioning
(Cornia et al., 2019).

2.2. Video Captioning
Though both image captioning and video captioning are multi-
modal tasks, video captioning is probably harder than the
former one, as videos show not only spatial features but also
temporal correlations.

Following the successful adoption of the encoder-decoder
paradigm in image captioning, multimodal features of videos
are fed into a sequence-to-sequence model to generate video
descriptions with the assistance of pretrained models in image
classification (Donahue et al., 2015; Venugopalan et al., 2015). In
order to alleviate the semantic inconsistency between the video
content and the generated caption, visual features and semantic
features of a video are mapped to a common embedding space
so that semantic consistency may be achieved by minimizing the
Euclidean distance between these two embedded features (Pan
et al., 2016). A model named POS generates video captions with
Part-of-Speech (POS) information and multiple representations
of video clips (Wang et al., 2019a). MARN exploits a memory
structure to explore the relation between a word and its various
visual contexts across the training data (Pei et al., 2019). JSRL-
VCT manages to generate video descriptions by corporating
visual representations and syntax representations (Hou et al.,
2019). GRU-EVE captures rich temporal dynamics in video
features by Short Fourier Transform, and extracts semantic
information from an object detector (Aafaq et al., 2019). Zheng
et al. (2020) propose a Syntax-Aware Action Targeting (SAAT)
component to learn an action and its subjects that exist in a video
for better semantic consistency in captioning.

RNN, especially LSTM, can be extended by integrating high-
level tags or attributes of video with visual features of the video
through embedding and element-wise addition/multiplication
operations (Gan et al., 2017). Yu et al. (2016) exploit a sentence
generator that is built upon an RNN module to model language,
a multimodal layer to integrate different modal information,
and an attention module to dynamically select salient features
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from the input. The output of a sentence generator is fed into
a paragraph generator for describing a relatively long video with
several sentences.

Following the attention mechanism introduced by Xu et al.
(2015), Gao et al. (2017) capture the salient structure of video
with the help of visual features of the video and context
information provided by LSTM. Although bottom-up (Anderson
et al., 2018) and top-down attention (Ramanishka et al., 2017)
have been proposed for image captioning, selectively focusing
on salient regions in an image is, to some extent, similar to
picking key frames in a video (Chen et al., 2018). Wang et al.
(2018) explore crossmodal attention at different granularity levels
and capture global temporal structures as well as local temporal
structures implied in multimodal features to assist the generation
of video captions.

Due to the lack of labeled video data and the abundance
of unlabeled video data, Pasunuru and Bansal (2017a) and Sun
et al. (2019) propose to improve video captioning with self-
supervised learning tasks or unsupervised learning tasks, such as
unsupervised video prediction, entailment generation and text-
to-video generation. Pasunuru and Bansal (2017a) demonstrate
that multi-task training contributes to sharing knowledge across
different domains, and each task, including video captioning,
benefits from the training of other irrelevant tasks. Sun et al.
(2019) take advantage of the abundance of unlabeled videos on
YouTube and train the BERT model introduced in Devlin et al.
(2018) on comparably large-scale videos, which is then used as
a feature extractor for video captioning. A large amount of pre-
training data is critical to BERT models both in video captioning
and machine translation (Devlin et al., 2018; Sun et al., 2019). By
aggregating different experts on different known activities, Wang
et al. (2019b) take advantage of external textual corpora and
transfer knowledge to unseen data for zero-shot video captioning.
A spatio-temporal graph model is built to find object interactions
and knowledge distillation mechanism is proposed to increase
stability of performance (Pan et al., 2020).

2.3. RNN Training Strategy
The traditional method to train an RNN is the Teacher Forcing
algorithm (Williams and Zipser, 1989), which feeds human
annotations to the RNN as input at each step to guide the token
generation during training and samples a token from the model
itself as input during inference. The different sources of input
tokens during training and inference lead to the inability of the
model to generate high-quality tokens in inference, as errors may
accumulate along the sequence generation.

Bengio et al. (2015) propose to switch gradually from guiding
generation by true tokens to feeding sampled tokens during
training, which helps RNNmodels adapt to the inference scheme
in advance. It has been applied to image captioning and speech
recognition. Inspired by Huszar (2015), who mathematically
proves that both the Teacher Forcing algorithm and Curriculum
Learning have a tendency to learn a biased model, Goyal
et al. (2016) solve the problem by adopting an adversarial
domain method to align the dynamics of the RNN during
training and inference. Zhang et al. (2020) propose an object
relational graph (ORG) to encode interaction features and

design a teacher-recommended learning (TRL) method to utilize
linguistic knowledge.

Inspired by the successful application of RL methods in
image captioning (Rennie et al., 2017; Pasunuru and Bansal,
2017b) propose a modified reward that compensates for the
logical contradiction in phrase-matching metrics as the direct
optimization target in video captioning. The gradient of the non-
differentiable RL loss function is computed and back-propagated
by the REINFORCEMENT algorithm (Williams, 1992). But
calculation of the reward for each training batch adds a non-
negligible computation cost to the training process and slows
down the optimization progress. In addition, the improvements
of RL methods on various metrics are not comparable with the
improvement on the specific metric used as RL reward.

3. THE PROPOSED APPROACHES

We consider the video captioning task as a supervised task. The
training set is annotated as N pairs of {Xi, Ŷi}, where Xi denotes
a video and Ŷi represents the corresponding target caption.
Suppose there areM frames from a video and a caption consisting
of Li words, then we have:

Xi = {xi,0, xi,1, . . . , xi,M−1},

Ŷi = {ŷi,0, ŷi,1, . . . , ŷi,Li−1},
(1)

where each x denotes a single frame and each y denotes a word
belonging to a fixed known dictionary.

A pretrained model is used to produce word embeddings,
and we obtain a low-dimension embedding of the caption Ŷi ∈

R
Li×Dw :

Ŷi = (wi,0,wi,1, . . . ,wi,Li−1)
T , wi,j ∈ R

Dw , (2)

where Dw is the dimension of the word embedding space.

3.1. Encoder-Decoder Paradigm
3.1.1. Encoder

Our encoder is composed of a 3D ConvNet, a 2D ConvNet and a
semantic detection network (SDN). The 3D ConvNet is utilized
to produce the spatio-temporal feature ei ∈ R

De for the ith video.
The 2D ConvNet is supposed to find the static visual feature ri ∈
R
Dr for the ith video. The visual spatio-temporal representation

of the ith video can then be obtained by concatenating both
features together as follows:

vi =

(
ri
ei

)
∈ R

Dv , (3)

where Dv = De + Dr .
For semantic detection, we manually select the K most

common and meaningful words, which consists of the most
frequent nouns, verbs or adjectives, from both the training set
and the validation set as candidate tags for all videos (Gan et al.,
2017). The semantic detection task is treated as a multi-label
classification task with vi as the representation of the ith video
and ŝi = {ŝi,0, ŝi,1, . . . , ŝi,K−1} ∈ {0, 1}

K as the ground truth. If
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the jth tag exists in the annotations of the ith video, then ŝi,j = 1;
otherwise, ŝi,j = 0. Suppose si is the semantic feature of the ith
video. Then, we have si = σ (f (vi)) ∈ (0, 1)K , where f (·) is a non-
linear mapping and σ (·) a sigmoid activation function. Mean
average precision is applied to evaluate the quality of semantic
features. A multi-layer perceptron (MLP) of adequate scale is
exploited to learn semantic representations from the samples.
The set of input features is determined by the experimental
results for each dataset. The SDN is trained by minimizing the
loss function:

L(si, ŝi) =
1

N

N−1∑

i=0

K−1∑

j=0

ŝi,j log si,j + (1− ŝi,j) log (1− si,j). (4)

A probability distribution of tags si is produced by the SDN to
represent the semantic content of the ith video in the training set,
the validation set or the test set.

3.1.2. Decoder

Standard RNNs (Elman, 1990) are capable of learning temporal
patterns from input sequences. But they suffer from the
gradient vanishing/explosion problem, which results in their
inability to generalize to long sequences. LSTM (Hochreiter and
Schmidhuber, 1997) is a prevailing variant of RNN that alleviates
the long-term dependency problem by using gates to update the
cell state, but it ignores the semantic information of the input
sequence. We use SCN(Semantic Compositional Network) (Gan
et al., 2017), a variant of LSTM, as our decoder, because it not
only avoids the long-term dependency problem but also takes
advantage of semantic information of the input video. Suppose
we have a video feature v, a semantic feature s, an input vector
xt at time step t and a hidden state ht−1 at time step t − 1.
The SCN integrates semantic information s into v, xt , and ht−1,
respectively, and obtains the semantics-related video feature v̂,
the semantics-related input x̂t and the semantics-related hidden

state ĥt−1 as follows:

x̂z,t =Wz,c · ((Wz,a · xt)⊙ (Wz,b · s)), z ∈ {c, i, f , o},

v̂z = Cz,c · ((Cz,a · v)⊙ (Cz,b · s)), z ∈ {c, i, f , o},

ĥz,t−1 = Uz,c · ((Uz,a · ht−1)⊙ (Uz,b · s)), z ∈ {c, i, f , o},

(5)

where c, i, f and o denote the cell state, the input gate, the forget
gate and the output gate, respectively.

Then input gate it , forget gate f t and output gate ot at
time step t are calculated, respectively, in a way similar to the
standard LSTM:

it = σ (x̂i,t + ĥi,t−1 + v̂i + bi),

f t = σ (x̂f ,t + ĥf ,t−1 + v̂f + bf ),

ot = σ (x̂o,t + ĥo,t−1 + v̂o + bo),

(6)

where σ denotes the logic sigmoid function σ (x) = 1
1+e−x

∈

(0, 1) and b is a bias term for each gate.
The raw cell state at the current step t can be computed

as follows:

ĉt = tanh (x̂c,t + ĥc,t−1 + v̂c + bc), (7)

where tanh denotes the hyperbolic function tanh (x) = ex−e−x

ex+e−x
∈

(−1, 1) and bc is the bias term for the cell state. The input gate it is
supposed to control the throughput of the semantic-related input
x̂t , and the forget gate f t is designed to determine the preservation
of the previous cell state ct−1. Thus, we have the final cell state ct
at time step:

ct = f t ∗ ct−1 + it ∗ ĉt . (8)

The output gate controls the throughput ratio of the cell state ct
so that the cell output ht can be determined by:

ht = ot ∗ tanh (ct). (9)

The semantics-related variables x̂t , v̂, ĥt−1, and ĉt are dependent
on semantic feature s so that the SCN takes semantic information
of the video into account implicitly. The forget gate f t is a key
component in updating ct−1 to ct , which, to some degree, avoids
the long-term dependency problem. The overview of the SCN
unit is showed in Figure 1.

3.2. Training Method
In the context of the RNN trained with the Teacher Forcing
algorithm, the logarithmic probability P(Yi|Xi;2) of a given
triplet of input/output/label (Xi,Yi, Ŷi) and given model
parameters 2 can be calculated as:

P(Yi|Xi;2) =

Li−1∑

t=0

log P(yi,t|ŷi,0, · · · , ŷi,t−1,Xi;2), (10)

where Li is the length of output.
In the case of SCN, the joint logarithmic probability can be

computed as:

P(Yi|Xi;2) =

Li−1∑

t=0

log P(yi,t|ŷi,0, · · · , ŷi,t−1, si,Xi;2),

=

Li−1∑

t=0

log P(yi,t|hi,t−1, ci,t−1, ŷi,t−1, si,Xi;2),

(11)

where hi,t , ci,t , and si are the output state, the cell state and the
semantic feature of the ith video, respectively.

To some extent, hi,t and ci,t can be viewed as the aggregation
of all the previous information. We can compute them using the
recurrence relation:

hi,t =

{
f (Xi, hi,t−1, ci,t−1, si,Xi;2) if t = 0,

f (ŷi,t−1, hi,t−1, ci,t−1, si,Xi;2) if t > 0,

ci,t =

{
g(Xi, hi,t−1, ci,t−1, si,Xi;2) if t = 0,

g(ŷi,t−1, hi,t−1, ci,t−1, si,Xi;2) if t > 0,

(12)

where hi,−1 = 0, ci,−1 = 0. In inference, we need to replace ŷi,t
with yi,t , whichmay lead to the accumulation of prediction errors.

In order to bridge the gap between training and testing in
the Teacher Forcing algorithm, we train our video captioning
model with scheduled sampling. Scheduled sampling transfers
the training process gradually from using ground truth words
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FIGURE 1 | The figure of SCN unit. σ , φ, semantic fusion (f ) denotes a sigmoid function, a tanh function and Equation (5), respectively. ⊙ and ⊕ in a circle denote

element-wise product and element-wise addition, respectively.

Ŷi for guiding to using sampled words Yi for guiding at each
recurrent step. The commonly used strategy to sample a word
from the output distribution is argmax. But the search scope
is limited to a relatively small part of the search space, since it
always selects the word with the largest probability. For the sake
of enlarging the search scope, we draw a word randomly from the
output distribution as a part of the input for the next recurrent
step. In this way, words with higher probabilities are more likely
to be chosen. The randomness of the sampling procedure will
enable the recurrent network to explore a relatively large range
of the network state space. In addition, the network is less likely
to get stuck in a local minimum. In the perspective of training
machine learning models, the multinomial sampling strategy
reduces overfitting of the network; in other words, it acts like
a regularizer.

Our method to optimize the language model consists of two
parts: the outer loop schedule the sampling probability at each
recurrent step (Algorithm 1), while the algorithm inside the RNN
(Algorithm 2) specifies the procedure to sample from the output
of a model with a given possibility as a part of the input for the
next step of the RNN.

3.3. Sentence-Length-Related Loss
Function
What is a good description for a video? A good description
should be both accurate and concise. In order to achieve this
goal, we design a sentence-length-modulated loss function for
our model as follows:

Algorithm 1: Scheduling Algorithm: schedule the ǫ across
epochs.

Require: EPOCH: max epoch number, STEPS_PER_EPOCH:
steps per epoch, feature: necessary features

1: ǫlist ← generate_epsilon() {Generate epsilon for each epoch
by a predeterminate strategy.}

2: output← 0

3: for i = 0 to EPOCH do

4: for j = 0 to STEPS_PER_EPOCH do

5: outputi,j ← function(featurei,j, ǫlist[i]) {Run RNN}
6: optimize the network with an optimizer
7: extend output with outputi,j
8: end for

9: end for

10: return output

Loss(ŷi, si,Xi;2) = −

bs−1∑

i=0

1

L
β
i

Li−1∑

t=0

log p(ŷi,t|hi,t−1, ci,t−1, si,Xi;2),

(13)
where bs is the batch size and β >= 0 is a hyper-parameter that is
used to keep a balance between the conciseness and the accuracy
of the generated captions. If β = 0, it is a loss function commonly
used in video captioning tasks:

Loss(ŷi, si,Xi;2) = −

bs−1∑

i=0

Li−1∑

t=0

log p(ŷi,t|hi,t−1, ci,t−1, si,Xi;2).

(14)
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Algorithm 2: Random Sampling Algorithm: specific procedures
in RNN.
Require: vi: video feature, si: semantic feature, xi: input array, ǫ:

sampling probability, STEP: max time step
Ensure: hi: output state, ci: cell state
1: hi,0 ← 0

2: ci,0 ← 0

3: hi ← 0

4: ci ← 0

5: embed← xi,0
6: for t = 1 to STEP do

7: hi,t , ci,t ← recurrent_step(hi,t−1, ci,t−1, vi, si, embed)
8: extend hi with hi,t
9: extend ci with ci,t
10: prob← random(0, 1)
11: if prob < ǫ then

12: prob_disti,t ← word_dist_map(hi,t) {Map output state
to word probability.}

13: word_index← multinomial(prob_disti,t) {Sample from
the word distribution.}

14: embed ← lookup_embed(word_index) {Use an
embedding vector to represent the word.}

15: else

16: embed← xi,t
17: end if

18: t← t + 1
19: end for

20: return hi, ci

In this loss function, a long sentence has greater loss than a short
sentence. Thus, after minimizing the loss, the RNN is inclined
to generate relatively short annotations that may be incomplete
in semantics or sentence structure. If β = 1, all words in the
generated captions are treated equally in the loss function as well
as in the process of optimization, which may lead to redundancy
or duplicate words in the process of generating captions.

Thus, we have the following optimization problem:

2 = argmin
2
−

N−1∑

i=0

1

L
β
i

Li−1∑

t=0

log p(ŷi,t|hi,t−1, ci,t−1, si,Xi;2),

(15)
where N is the size of the training data and 2 is the parameter of
our model.

GNMT,Google’s NeuralMachine Translation system, employs
a similar length-normalization technique in the beam search
during test, but not during training (Wu et al., 2016). In contrast,
our model abandons beam search in the decoder, and the model
parameters are optimized by the sentence-length-modulated
loss function (13). Note that beam search makes the decoding
process slower.

The overall structure of our model is visualized in Figure 2.
Our SDN and visual feature extractors in the encoder component
share the same 2D ConvNet and 3D ConvNet in practice.

4. EXPERIMENTS

We evaluate our model on two popular video captioning datasets
to show the performance of our approach. We compare our
results to other existing methods.

4.1. Datasets
4.1.1. YouTube2Text

The YouTube2Text or MSVD (Chen and Dolan, 2011;
Guadarrama et al., 2013) dataset, published in 2013, contains
1970 short YouTube video clips. The average length of them is
about 10 seconds. We get roughly 40 descriptions for each video.
We follow the dataset split setting used in prior studies (Pan et al.,
2016; Yu et al., 2016; Gan et al., 2017), in which the training
dataset contains 1200 clips, the validation dataset contains 100
clips, and the rest of them belong to the test dataset. We
tokenize the captions from the training and validation datasets
and obtain approximately 14,000 unique words. Twelve thousand
five hundred and ninety-two of them are utilized for prediction,
and the remaining words are replaced by < unk >. We add the
token < eos > to signal the end of a sentence.

4.1.2. MSR-VTT

MSR-Video to Text (MSR-VTT) (Pan et al., 2016; Xu et al., 2016)
is a large-scale video benchmark, first presented in 2016. In its
first version, MSR-VTT provided 10k short video segments with
200k descriptions in total. Each video segment was described by
about 20 independent English sentences. In its second version,
which was published in 2017, MSR-VTT provides additional 3k
short clips as a testing set, and video clips in the first version can
be used as training and validation sets. Because of lacking human
annotations for the test set in the second version, we perform
experiments on the first version. We tokenize and obtain 14,071
unique words that appear in the training set and validation set of
MSR-VTT 1.0more than once. Thirteen thousand seven hundred
and ninety-four of them are indexed with integer numbers
starting at 0, and the rest are substituted by < unk >. < eos >,
which signifies the end of a sentence, is added to the vocabulary
of MSR-VTT.

4.2. Overall Score
Based on the widely used BLEU, METEOR, ROUGE-L, and
CIDEr metrics, we propose an overall score to evaluate the
performance of a language model:

Soverall =
B-4

top1(B-4)
+

C

top1(C)
+

M

top1(M)
+

R

top1(R)
∈ [0, 1],

(16)
where B-4 denotes BLEU-4, C denotes CIDEr, M denotes
METEOR, R represents ROUGE-L and top1(·) denotes the best
numeric value of the specific metric. We presume that BLEU-4,
CIDEr, METEOR, and ROUGE-L reflect one particular aspect of
the performance of a model respectively. First, we normalize each
metric value of a model, and then we take the mean value of them
as an overall measurement for that model (16). If the result of a
model on each metric is closer to the best result of all models,
the overall score will be close to 1. If and only if a model has the
state-of-the-art performance on all metrics, the overall score is 1.
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FIGURE 2 | Overall framework of our model. A 3D ConvNet, a 2D ConvNet and a Semantic Detection Net (SDN) constitute the encoder component of our model.

S-LSTM stands for a semantics-assisted variant of LSTM which takes a semantic feature, a visual feature and a word embedding as inputs at each step. The word fed

as the input to the decoder is sampled from human annotations or the model itself randomly, and then is embeded with the pretrained weights.

If a model is much lower than the state-of-the-art result on each
metric, the overall score of the model will be close to 0.

4.3. Training Details
Our visual feature consists of two parts: a static visual feature
and a dynamic visual feature. ResNeXt (Xie et al., 2017), which
is pretrained on the ImageNet ILSVRC2012 dataset, is utilized as
the static visual feature extractor in the encoder of our model.
The ECO (Zolfaghari et al., 2018), which is pretrained on the
Kinetics-400 dataset, is utilized as the dynamic visual feature
extractor for the encoder in our model. More specifically, 32
frames are extracted from each video clip evenly. For each video,
we feed 32 frames as input to ResNeXt, take the conv5/block3
output, and apply average pooling to these outputs along the
time axis. The newly obtained 2048-dim feature vector is
taken as the 2D representation of that video. What’s more,
we take the 1536-way feature of the global pool in ECO as
the 3D representation of each video. Global Vectors for Word
Representations (GloVe) (Pennington et al., 2014) is used as the
pretrained word embedding model in our experiments. And it is
fixed during our training processes.

We set the initial learning rate to 2 × 10−4 for the
YouTube2Text dataset and 4 × 10−4 for the MSR-VTT dataset.
In addition, we drop the learning rate by 0.316 every 20,350 steps
for the MSR-VTT dataset. Batch size is set to 64, and the Adam
algorithm is applied to optimize the model for both datasets. The
hyper-parameter β1 is set to 0.9, β2 is set to 0.999, and ǫ is set
to 1 × 10−8 for the Adam algorithm. Each model is trained for

50 epochs, in which the hyper parameter sample probability ǫ is
set as ep × 0.008 for the epth epoch. We fine-tune the hyper-
parameters of our model on the validation sets and select the
best checkpoint for testing according to the overall score of the
evaluation on the validation set.

4.4. Comparison With Existing Models
Empirically, we evaluate our method on the
YouTube2Text/MSVD (Guadarrama et al., 2013) and MSR-VTT
(Xu et al., 2016) datasets. We report the results of our model
along with a number of existing models in Tables 1, 2.

4.4.1. Comparison on the YouTube2Text Dataset

Table 1 displays the performance of several models on
YouTube2Text. We compare our model with existing methods,
including LSTM-E (Pan et al., 2016), h-RNN (Yu et al., 2016),
aLSTMs (Gao et al., 2017), SCN (Gan et al., 2017), MTVC
(Pasunuru and Bansal, 2017a), ECO (Zolfaghari et al., 2018),
SibNet (Liu et al., 2018), POS (Wang et al., 2019a), MARN
(Pei et al., 2019), JSRL-VCT (Hou et al., 2019), GRU-EVE
(Aafaq et al., 2019), STG-KD (Pan et al., 2020), SAAT (Zheng
et al., 2020), and ORG-TRL (Zhang et al., 2020). Our method
outperforms all the other methods on all the metrics by a large
margin. Note that many of them were published after our initial
submission of the present work in the end of May in 2019.
Specifically, compared with ORG-TRL (Zhang et al., 2020), the
previous state-of-the-art model on this dataset, BLEU-4, CIDEr,
METEOR, and ROUGE-L are improved relatively by 14.9, 15.2,
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TABLE 1 | Result comparison with existing models on the YouTube2Text dataset.

Model B-4 C M R Overall (16)

LSTM-E (V+C3D) (Pan et al., 2016) 45.3 31.0

h-RNN (V+C3D) (Yu et al., 2016) 49.9 65.8 32.6

aLSTMs (I-3) (Gao et al., 2017) 50.8 74.8 33.3

SCN (R-152+C3D) (Gan et al., 2017) 51.1 77.7 33.5

MTVC (I-4) (Pasunuru and Bansal, 2017a) 54.5 92.4 36.0 72.8 0.8961

ECO (R-152+E) (Zolfaghari et al., 2018) 53.5 85.8 35.0

SibNet (I-1) (Liu et al., 2018) 54.2 88.2 34.8 71.7 0.8740

POS (IR+I3D) (Wang et al., 2019a) 53.9 91.0 34.9 72.1 0.8811

MARN (R-101+R3D) (Pei et al., 2019) 48.6 92.2 35.1 71.9 0.8633

JSRL-VCT (IR+C3D) (Hou et al., 2019) 52.8 87.8 36.1 71.8 0.8762

GRU-EVE (IR+C3D) (Aafaq et al., 2019) 47.9 78.1 35.0 71.5 0.8264

STG-KD (R-101+I3D) (Pan et al., 2020) 52.2 93.0 36.9 73.9 0.8975

SAAT (IR+C3D) (Zheng et al., 2020) 46.5 81.0 33.5 69.4 0.8110

ORG-TRL (IR+C3D) (Zhang et al., 2020) 54.3 95.2 36.4 73.9 0.9078

Our model 62.4 109.7 39.0 77.0 1.0000

V, C3D, I-n, R-n, E, IR, I3D and R3D denote VGG19, C3D, n-version Inception, n-layer ResNet, ECO, Inception-ResNet-v2, I3D and 3D-ResNeXt features, respectively. The boldness

denotes the best value in the corresponding column.

TABLE 2 | Result comparison with existing models on the MSR-VTT dataset.

Model B-4 C M R Overall

MTVC (I-4) (Pasunuru and Bansal, 2017a) 40.8 47.1 28.8 60.2 0.9223

CIDEnt-RL (I-4) (Pasunuru and Bansal, 2017b) 40.5 51.7 28.4 61.4 0.9435

SibNet (I-3) (Liu et al., 2018) 40.9 47.5 27.5 60.2 0.9137

HACA (R-152+A) (Wang et al., 2018) 43.4 49.7 29.5 61.8 0.9608

TAMoE (I3D) (Wang et al., 2019b) 42.2 48.9 29.4 62.0 0.9505

POS (IR+I3D) (Wang et al., 2019a) 41.3 53.4 28.7 62.1 0.9611

MARN (R-101+R3D) (Pei et al., 2019) 40.4 47.1 28.1 60.7 0.9162

JSRL-VCT (IR+C3D) (Hou et al., 2019) 42.3 49.1 29.7 62.8 0.9576

GRU-EVE (IR+C3D) (Aafaq et al., 2019) 38.3 48.1 28.4 60.7 0.9119

STG-KD (R-101+I3D) (Pan et al., 2020) 40.5 47.1 28.3 60.9 0.9192

SAAT (IR+C3D+Ca) (Zheng et al., 2020) 39.9 51.0 27.7 61.2 0.9303

ORG-TRL (IR+C3D) (Zhang et al., 2020) 43.6 50.9 28.8 62.1 0.9628

Our model 45.8 53.2 29.3 63.6 0.9957

A and Ca denote audio and category features, respectively. The boldness denotes the best value in the corresponding column.

7.1, and 4.2%, respectively. Our model has the highest overall
score as defined in (16).

4.4.2. Comparison on the MSR-VTT Dataset

Table 2 displays the evaluation results of several video captioning
models on the MSR-VTT. In this table, we compare our model
with existing models, including MTVC (Pasunuru and Bansal,
2017a), CIDEnt-RL (Pasunuru and Bansal, 2017b), SibNet (Liu
et al., 2018), HACA (Wang et al., 2018), TAMoE (Wang et al.,
2019b), POS (Wang et al., 2019a), MARN (Pei et al., 2019), JSRL-
VCT (Hou et al., 2019), GRU-EVE (Aafaq et al., 2019), STG-
KD (Pan et al., 2020), SAAT (Zheng et al., 2020), ORG-TRL
(Zhang et al., 2020). According to the overall score defined in
(16), ORG-TRL is the best among existing models. Our model

achieves higher values on all metrics than thismodel. Twomodels
POS and JSRL-VCT achieve slightly higher CIDEr value and
METEOR values than our model, respectively, but their other
metric values are clearly lower than our results.

Our model achieves better results on both the YouTube2Text
dataset and the MSR-VTT dataset. Note that our model is only
trained on a single dataset without an attention mechanism, and
it is tested without ensemble or beam search.

5. MODEL ANALYSIS

In this section, we discuss the utility of the three improvements
on our model.
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5.1. Analysis on Semantic Features
Semantic features are the output of a multi-label classification
task. Mean average precision (mAP) is often used to evaluate
the results of multi-label classification tasks (Tsoumakas and
Katakis, 2007). Here, we apply it to evaluate the quality of
semantic features.

5.1.1. Semantic Features Predicted With Different

Sets of Input Features

Figures 3, 4 demonstrate the quality of semantic features, using
different sets of feature maps as inputs, with respect to the
training epochs. Figure 3 shows that, on the YouTube2Text
dataset, themAP values are proportional to training epochs.With
the same number of training epochs, the qualities of semantic
features are in the order: ECO-ResNeXt > ResNeXt > ECO,
where ECO-ResNeXt, ResNeXt, and ECO denote the models
trained with visual features from ECO-ResNeXt, ResNeXt, or
ECO, respectively. Figure 4 demonstrates that, on the MSR-VTT
dataset, both mAP values of semantic information decline after

FIGURE 3 | The quality of semantic features predicted with different sets of

input features evaluated by mAP on the YouTube2Text. “ResNeXt,” “ECO,”

and “ECO-ResNeXt” denote that the semantic models are trained and the

semantic features are predicted with visual features produced by ResNeXt,

ECO, both ECO and ResNeXt, respectively.

FIGURE 4 | The quality of semantic features predicted with different sets of

input features evaluated by mAP on the MSR-VTT dataset.

the models are trained for more than 800 epochs with ResNeXt
feature maps or ECO-ResNeXt featuremaps as inputs.With ECO
featuremaps as inputs, the performance of the semantic detection
model is still proportional to the training epochs.

TABLE 3 | Results of scheduled sampling methods (multinomial sampling) on the

YouTube2Text dataset with different sets of semantic features.

Semantic features (mAP) B-4 C M R Overall

0.3295 53.9 90.5 35.8 73.4 0.8896

0.5977 60.5 102.7 38.0 75.9 0.9663

0.7414 62.4 109.7 39.0 77.0 1.0000

A larger mAP implies a better representation of semantic meanings. The boldness denotes

the best value in the corresponding column.

TABLE 4 | Results of scheduled sampling methods (multinomial sampling) on

MSR-VTT data with different sets of semantic features.

Semantic feature (mAP) B-4 C M R Overall

0.2072 40.5 46.8 27.2 62.7 0.9292

0.2913 44.0 50.7 28.9 62.6 0.9878

0.3827 44.9 51.8 28.8 63.12 0.9996

The boldness denotes the best value in the corresponding column.

TABLE 5 | Results of different training strategies on YouTube2Text data with the

best semantic features.

Training method B-4 C M R Overall

Teacher Forcing 61.93 108.56 38.96 76.75 0.9942

argmax 62.16 109.31 38.98 76.81 0.9972

Multinomial 62.35 109.71 39.04 77.04 1.0000

The boldness denotes the best value in the corresponding column.

TABLE 6 | Results of different training strategies on MSR-VTT data with the best

semantic features.

Training method B-4 C M R Overall

Teacher Forcing 45.05 50.25 29.12 62.72 0.9771

argmax 45.83 53.16 29.28 63.64 1.0000

Multinomial 44.94 51.77 28.82 63.12 0.9826

The boldness denotes the best value in the corresponding column.

TABLE 7 | Average length of the captions in the test set.

Model β = 0 β = 0.7 β = 1 Ground truth

mLen1 5.12 5.18 5.80 7.01

mLen2 6.27 6.69 6.99 9.32

mLen1 stands for the mean length of YouTube2Text, and mLen2 stands for the mean

length of MSR-VTT. Ground Truth denotes the human annotations for the test set.
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FIGURE 5 | Examples of machine-generated captions and human annotations (GT).

5.1.2. Models Trained With Different Semantic

Features

Tables 3, 4 list the performance of our model trained by
scheduled multinomial sampling with different semantic
features on the YouTube2Text and MSR-VTT datasets,
respectively. The results clearly show that a better multi-label
classification enables a better video captioning model. Semantic
features with higher mAP provide more appropriate potential
attributes of a video for the model. Thus, the model is able
to generate better video annotations by comprehensively
considering semantic features, spatio-temporal features, and
contextual information.

5.2. Analysis on the Scheduled Sampling
Tables 5, 6 show the comparison among the Teacher Forcing
algorithm, scheduled sampling with the argmax strategy
and scheduled sampling with the multinomial strategy on
YouTube2Text and MSR-VTT datasets, respectively. Teacher
Forcing utilizes human annotations to guide the generation of
words during training and samples from the word distribution
of the output of the model to direct the generation during
inference. The argmax strategy switches gradually from the
Teacher Forcing way to sample words with the largest possibility
from the model itself during training. The Multinomial strategy

is similar to the argmax strategy but samples words randomly
from the distribution of the model at each step. As we
can infer from Tables 3, 4, the scheduled sampling with the
multinomial strategy yields a better performance than the
other two methods on the YouTube2Text dataset and the one
with the argmax strategy yields the best performance on the
MSR-VTT dataset. Our method explores a larger range of
RNN state space and thus is likely to find a better solution
during training.

5.3. Analysis on the Length Normalization
of the Loss Function
As demonstrated in Table 7, the average length of human
annotations is larger than those generated by models with β =

{0, 0.7, 1} (13), respectively. But Figure 5 displays the tendency of
redundancy in captions generated by the β = 1 model, which
deteriorates the overall quality of model-generated sentences.
The average caption length of the model with β = 0.7 is greater
than that of the model with β = 0, whereas it is smaller than that
from the model with β = 1. The model with β = 0.7 generates
relatively long annotations for videos without suffering from
redundancy or duplication of words, and we therefore consider
it the optimal choice.
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6. CONCLUSION

We suggest three improvements for solving the video
captioning task. First, mAP is applied to evaluate the
quality of semantic information, and a SDN with adequate
computation complexity and input features is used to extract
high-quality semantic features from videos, which contributes
to the success of our semantics-assisted model. Second,
we employ a scheduled sampling training strategy. Third,
a sentence-length-modulated loss function is proposed to
keep the model in a balance between language redundancy
and conciseness. Our method achieves results that are
superior to the state-of-the-art on the YouTube2Text
dataset. The performance of our model is comparable to
the state-of-the-art on the MSR-VTT dataset. In the future,
we may obtain further improvements in video captioning
by integrating spatio-temporal attention mechanisms with
visual-semantics features.
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Human infants are able to acquire natural language seemingly easily at an early age.

Their language learning seems to occur simultaneously with learning other cognitive

functions as well as with playful interactions with the environment and caregivers.

From a neuroscientific perspective, natural language is embodied, grounded in most,

if not all, sensory and sensorimotor modalities, and acquired by means of crossmodal

integration. However, characterizing the underlying mechanisms in the brain is difficult

and explaining the grounding of language in crossmodal perception and action remains

challenging. In this paper, we present a neurocognitive model for language grounding

which reflects bio-inspired mechanisms such as an implicit adaptation of timescales

as well as end-to-end multimodal abstraction. It addresses developmental robotic

interaction and extends its learning capabilities using larger-scale knowledge-based

data. In our scenario, we utilize the humanoid robot NICO in obtaining the EMIL data

collection, in which the cognitive robot interacts with objects in a children’s playground

environment while receiving linguistic labels from a caregiver. The model analysis

shows that crossmodally integrated representations are sufficient for acquiring language

merely from sensory input through interaction with objects in an environment. The

representations self-organize hierarchically and embed temporal and spatial information

through composition and decomposition. This model can also provide the basis for

further crossmodal integration of perceptually grounded cognitive representations.

Keywords: language grounding, developmental robotics, multiple timescales, recurrent neural networks,

embodied cognition, multimodal learning, crossmodal integration, multimodal interaction dataset

1. INTRODUCTION

While research in natural language processing has advanced in specific disciplines such as parsing
and classifying large amounts of text, human-computer communication is still a major challenge,
due to multiple aspects: speech recognition is limited to good signal-to-noise conditions or
well-adapted models, dialogue systems depend on a well-defined context, and language elements
are difficult to reconcile with the environmental situation. Consequently, interactive robots that
match human communication performance are not yet available. One reason for this is the fact that
the crossmodal binding between language, actions, and visual events is not yet fully understood and
was thus not realized in technical systems that have to interact with humans (Hagoort, 2017).

Imaging techniques such as Functional Magnetic Resonance Imaging (fMRI) have provided a
better understanding of which areas in the cortex are involved in natural language processing and
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that these areas include somatosensory regions. Language studies
have shown that there is a tight involvement of crossmodal
sensation and action in speech processing and production as
well as in language comprehension (Friederici and Singer, 2015).
Thus, there is increasing evidence that human language is
embodied. This means that it is grounded in most sensory and
sensorimotor modalities and that the human brain architecture
favors the acquisition of language by means of crossmodal
integration (Pulvermüller, 2018).

As a consequence, research on cognitive modeling and
developmental robotics is working toward developing models
for natural language processing that reflect our understanding
of distributed processing and embodied grounding of language
in the brain. This way, the overall goal of studying the
problem of language grounding in crossmodal perception and
action can get approached. A particularly important aim is to
develop a model for language grounding which reflects bio-
inspired mechanisms and minimized difficult assumptions for
the computational mechanisms.

In this paper, we present an embodied neurocognitive model
for crossmodal language grounding that is trained in an end-to-
end fashion. Additionally, we explore the concepts of varying
multiple timescales in processing as well as distributed cell
assemblies in representation learning. Based on the proposed
model, we aim to investigate the characteristics of the learned
crossmodally integrated representations.

1.1. Related Work
In order to bridge the gap between formal linguistics and bio-
inspired systems, several valuable computational models have
been developed that bring together language and an agent’s
multimodal perception and action. In their seminal Cross-
channel Early Lexical Learning (CELL) model, Roy and Pentland
(2002) demonstrate word learning from real sound and vision
input. Each of these inputs is processed into a fixed-length
vector, then lexical items arise by associations between vectors
that represent the corresponding speech and an object’s shape.
Roy (2005) also highlights the importance of combining physical
actions and speech in order to interpret words and basic
speech acts in terms of schemas, which are grounded through a
causal-predictive cycle of action and perception. Several works
use self-organizing maps (SOMs), e.g., to form joint neural
representations of simulated robot actions and abstract language
input to encode the corresponding sensory-motor schemata
(Wermter et al., 2005). This model addresses mirror neurons
found in the motor cortical region F5, which link actor and
observer by activating when performing a corresponding action
or even just seeing or hearing it performed by someone else
(Rizzolatti and Arbib, 1998). Vavrečka and Farkaš (2014) use a
RecSOM (Voegtlin, 2002) which has a recurrent architecture with
recursive updates to handle sequential input. Using a RecSOM
and multiple SOMs, arranged in parallel for linguistic and visual
input, and hierarchically for the integration of modalities, the
model grounds spatial phrases within the corresponding image
information.

Recent works often make reference to biological findings that
support grounded language processing. Friederici and Singer

(2015) provide evidence that linguistic and other cognitive
functions are based on similar neuronal mechanisms, for
example, single neurons react similarly to seeing a picture of
a person’s face or reading the person’s name. More generally,
Pulvermüller et al. (2014) propose a cognitive theory of
distributed neuronal assemblies or thought circuits, integrating
brain mechanisms of perception, action, language, attention,
memory, decision, and conceptual thought. Rather than by
SOMs, these neuroscience findings are better accounted for
by distributed neural firing models. For example, in a multi-
area model of cortical processing (Garagnani and Pulvermüller,
2016), some neurons become category-general while others are
in category-specific semantic areas.

Among recurrent neural models, the multiple timescale
recurrent neural network (MTRNN) (Yamashita and Tani, 2008)
allows the emergence of a functional hierarchy with reusable
sequence primitives. Heinrich and Wermter (2018) ground the
generation of language in visual and motor proprioceptive
signals, showing that an MTRNN can self-organize latent
representations that feature hierarchical concept abstraction
and concept decomposition. Zhong et al. (2019) address the
generalization ability of MTRNNs by making use of semantic
compositionality of simple verb-object sentences. They train an
iCub robot to produce action sequences following a simple verb-
object sentence comprising a selection of 9 verbs and 9 objects,
where the network generalizes to all combinations despite being
trained only on a subset. Yamada et al. (2017) investigate the
handling of logic words in sentences from which an Long Short-
Term Memory (LSTM) network generates corresponding robot
actions. They show that, for example, the word “and” works like a
universal quantifier, while the word “or” creates an unstable space
in the LSTM dynamics.

While these models are used unidirectionally, bidirectional
models have been proposed that can map both perceived
language commands to actions and perceived actions to
language descriptions. For this task, Yamada et al. (2018) train
two paired recurrent autoencoders, one encoding the textual
description sequence, the other encoding the action sequence.
The autoencoders are paired by a joint loss function term that
drives the two autoencoders’ center-layer representations, which
both have the same dimensionality, to be similar. As a result, a
textual description leads to a representation that is suitable to
generate an action sequence, and vice versa. For interactivity,
the action sequence autoencoder receives additional image input
in both encoder and decoder, while producing only the joint
angle sequences as output. In each autoencoder, the direction
of information flow between layers is fixed from input toward
the output. In contrast, Antunes et al. (2018) implement a
model of truly bidirectional information flow between three
recurrent MTRNN layers of fast, medium, and slow timescale
units. A subset of the fast units acts as input (or output)
to a robot action sequence, and a subset of the slow layer’s
units acts as output (or input) to the language description.
However, it needs to be investigated whether neural groups
emerge that are solely devoted to information transmission into
one of the directions, or, rather, whether shared bidirectional
functionality emerges.
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Another line of recent works shows that enriching linguistic
data with other modalities can lead to better-performing
systems. For example, continuous word representations like
word2vec (Mikolov et al., 2013) or GloVe (Pennington et al.,
2014) have become popular, since they span some semantically
meaningful low-dimensional space leading to robustness and to
the possibility to track relations between words. Additionally,
the original words can be recovered from the representations
even when they are corrupted or altered by noise. These
embeddings can become even more powerful when involving
multiple modalities. Hill and Korhonen (2014) train a word2vec-
like model on the ESPGame dataset, which annotates images with
a list of lexical concepts, and on the CSLB Property Norms dataset
which contains concepts for which human annotators produced
several semantic properties. Lazaridou et al. (2015) train a similar
model on text from Wikipedia and add visual information
from the ImageNet database to a subset of the words, which is
processed into an abstract vector by a pre-trained Convolutional
Neural Network (CNN). Wang et al. (2018b) use GloVe vectors
pre-trained on the Common Crawl dataset together with CNN-
based visual vectors pre-trained on ImageNet. Auditory features
extracted from a CNN network pre-trained on Google’s AudioSet
data are included in Wang et al. (2018a). The results of these
models show that multimodal embeddings outperform unimodal
embeddings. Furthermore, suitable images can be generated not
only for concrete words but also for some abstract words by
selecting the nearest neighbor image for a generated image vector
(Wang et al., 2018a). For reinforcement learning interactive
game agents, it was shown that augmenting environmental
information with language descriptions (Narasimhan et al., 2018)
or instructions (Chaplot et al., 2018) leads to better generalization
and transfer capabilities.

There is also a recent focus on tasks like image captioning,
Visual Question Answering (VQA), and phrase grounding in
images. In these tasks, sequentially processed language refers to
elements of images and the availability of corresponding large
datasets for supervised learning has driven model development.
VQA research, for example, led to neural architectures that
facilitate reasoning steps, e.g. by affine transformations within
the visual processing stream based on conditioning information
from the question (Perez et al., 2018), by novel recurrent
Memory, Attention, and Composition (MAC) cells (Hudson and
Manning, 2018), or by more explicitly using graphs for reasoning
(Hudson andManning, 2019). Yet, these models do not cover the
production of language, since VQA tasks are cast as classification
problems where the network produces only the label to the
correct answer among a given set of answers. Instead, they are
tailored toward reasoning, but often fail in generalization, if their
architecture is not primed for the task (Santoro et al., 2017).
A potential reason for the lack of generalization can be in the
poor integration of language and image representations by these
models, since they are not embodied in interactive agents, which
Burgard et al. (2017) suggest.

Overall this shows the need for an embodied neurocognitive
model that can help to explain language processing in the brain
and at the same time proves to be effective in generalization.
To this end, we need to more closely look into components

of both temporal decomposition and composition and at the
same time realize an inherent multimodal abstraction on both
sensory as well as conceptual level. It seems crucial that temporal
decomposition and composition directly emerges in a model
based on the context or the data, while multimodal abstraction
needs to take place on sensory up to an overall contextual level.

1.2. Contribution
In this paper, we develop a neurocognitive model that
grounds language production into embodied crossmodal
perception. In particular, our model aims to map the auditory,
sensorimotor, and visual perceptions onto the production of
verbal utterances during the interaction of a learner with objects
in its environment.

As a core characteristic, the model allows for the implicit
adaptation of timescales based on the temporal characteristics
of both perception and language production. Furthermore,
the model tests multimodal abstraction in an end-to-end
fashion with limited constraints on the preprocessing of the
sensory input. The model is analyzed in depth based on a
developmental robotics data recording that mimics natural
interactions of an infant with said objects. This Embodied Multi-
modal Interaction in Language learning (EMIL) data collection
challenges the model by introducing a wider range of variability
of the temporally dynamic sensory features, in order to exhibit
effects on language learning and latent representation formation
concerning findings for the human brain.

Therefore, the contribution of this paper is three-fold1:

• We present a neurocognitive model for language grounding
which reflects bio-inspired mechanisms such as an implicit
adaptation of timescales as well as end-to-end multimodal
abstraction. It addresses developmental robotic interaction
and extends its learning capabilities using larger-scale
knowledge-based data.

• We demonstrate the effectiveness of our model on the novel
EMIL data collection, in which the cognitive robot interacts
with objects in a children’s playground environment while
receiving linguistic labels from a caregiver.

• We conduct an in-depth analysis of the model on the
real-world multimodal data and draw several important
conclusions. For example, crossmodally integrated
representations are sufficient for acquiring language
merely from sensory input through interaction with objects
in an environment.

2. EMBODIED NEUROCOGNITIVE MODEL

In order to add insight to related computational models,
we aim to develop a model that satisfies a number of
constraints. First, we seek to minimize difficult assumptions
for computational mechanisms. In particular, we avoid building
on top of mechanisms that are appealing for machine learning
but not yet proven or not plausible for the processing in the

1The source code of the model and experiment details can be found on https://

github.com/heinrichst/adaptive-mtrnn-grounding.git.
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brain such as neural gating, dropout regularization, or residual
connections. In fact, we aim at building on top of the most
simple computational architecture that still allows studying our
proposed mechanisms. Second, we work with a minimal level of
assumptions regarding language grounding. Here, we avoid using
an oversimplified language such as modeling on word-level only.
Additionally, we do not use natural speech but rather a simpler
phonetic representation as the desired output. We will build
our computational model with a distinct focus on the following
biological mechanisms.

2.1. Biological Inspiration
It has been suggested that the human cognition is particularly
strong because the human brain is good at both information
composition and decomposition (Murray et al., 2014).
Furthermore, it seems that many processes in the brain are
reused in or coupled to a range of cognitive functions. In the
brain, the decomposition and composition are governed by
neural oscillations, multiple timescales in hierarchical processing
streams, and a complex interplay of neural populations and
local integration by mode coupling (Buzsáki and Draguhn,
2004; Badre et al., 2010; Engel et al., 2013). Additional evidence
suggests that in higher stages of the spatial or temporal hierarchy
neurons are organized in cell assemblies (Damasio, 1989; Palm,
1990; Levelt, 2001). These sparsely connected webs of neurons
are distributed over different cortical areas and both hemispheres
and form consistently during development for concepts on
higher or lower levels.

In language grounding, both multiple timescales and cell
assemblies seem to be reused. Multiple timescales in processing
have been reported across the brain from lower auditory
processing up to higher processing of perception (Ulanovsky
et al., 2004; Smith and Kohn, 2008; Himberger et al., 2018) and
cell assemblies are suggested to activate for both word processing
as well as the overall thought processes (van der Velde, 2015;
Tomasello et al., 2019). As a consequence, in our computational
model, we further study the mechanisms of multiple timescales
in information processing as well as crossmodal fusion by and
sequence activation from cell assemblies.

2.2. Computational Model
We base our computational model on the Continuous Time
Recurrent Neural Networks (CTRNN) architecture because of
its universality in modeling sequential signals. Although we can
derive the CTRNN from the leaky integrate-and-fire model and
thus from a simplification of the Hodgkin-Huxley model from
1952, the network architecture was suggested independently by
Hopfield and Tank (1986) as a nonlinear graded-response neural
network and by Doya and Yoshizawa (1989) as an adaptive
neural oscillator. Specifically, the CTRNN can be understood as
a generalization of the Hopfield Network (Hopfield, 1982) with
continuous firing rates and arbitrary leakage in terms of time
constants. Compared to the Simple Recurrent Network (SRN, or
ElmanNetwork), the timescale τ is an additional hyperparameter
of asymptotically not leaking, thus, a neuron can maintain part of
its information for a longer period of time.

The activation y of CTRNN units is defined as follows:

yt = f (zt) , (1)

zt =

(
1−

1t

τ

)
zt−1t +

1t

τ

(
Wx+ Vyt−1t + b

)
, (2)

for inputs x, previous internal states zt−1t , input weights W,
recurrent weights V, bias b, and an activation function f . The
timescale can be a pre-determined common parameter τ for all
neurons or a vector τ of individual constants. In tasks with
discrete numbers of time steps, the CTRNN can be employed as
a discrete model, e.g., by setting 1t = 1.

With respect to modeling multiple timescales in information
processing, the timescale parameter τ provides an interesting
mechanism to capture sequential aspects on different timescales
or periodicities and is particularly crucial for the hierarchical
abstraction capability of the Multiple Timescale Recurrent
Neural Network (MTRNN, compare Yamashita and Tani, 2008).
Our model, therefore, integrates this predefined hierarchical
abstraction. In particular, a fixed number of layers is defined a
priori, e.g., having three adjacent layers called Input-Output (IO,
τ = 2), Context-fast (Cf, τ = 5), and Context-slow (Cs, τ = 70),
in order to force the architecture to hierarchically compose or
decompose information.

In order to achieve decomposition and composition in the
MTRNN, the overall context of a sequence is learned by or
stored into some of the units in the slowest layers, called
Context-controlling (Csc) units. Consequently, such an MTRNN
can be defined in two forms, providing a decoder and an
encoder component.

• MTRNN with Context Bias: the Csc units operate as a
parametric bias during production and thus the Csc values
are learned backwards during gradient descent training
(compare Awano et al., 2010). Since the network weights are
trained in parallel to the Csc units, the MTRNN with context
bias learns to decompose a temporally dynamic sequence from
a static initial bias.

• MTRNN with Context Abstraction: the Csc units operate as
abstracting a static output during sensory processing similar
to one-point classification (compare Heinrich and Wermter,
2018). Due to the increasingly larger timescales in the layers,
the network learns to compose a static overall context from a
temporally dynamic sequence.

When an MTRNN with context bias is coupled with an MTRNN
with context abstraction in an end-to-end architecture, the Csc
values of both networks are updated iteratively and form latent
representations similar to a sparse auto-encoder on sequences.

In the MTRNNs, however, the τ needs to be carefully
chosen as a hyperparameter, based on a priori known
temporal characteristics of the data. This is usually done in
coarse approximation on layer or module level. In contrast,
time constants in the brain are subject to change during
development and are hypothesized to be directly related to
temporal structures (He, 2014). In previous work we developed
a mechanism to obtain an adaptive timescale τ

A for each
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FIGURE 1 | Computational model: Adaptive MTRNNs with context abstraction for each input modality are coupled with an adaptive MTRNN with context bias via cell

assemblies. Example timescales visualize the logarithmic leakage of information in the neurons.

unit (Heinrich et al., 2018a). The timescales are governed by
learnable weights U that work like a bias on the timescale instead
of on the activation:

τt = τ
A
t = 1+ eU+τ0 , (3)

where the exponential function ensures timescales in (1,∞),
and the vector τ0 can be initialized with sensible values for the
timescales while the weights U get initialized to values close to
zero. As a rule of thumb, we can initialize τ0 either at random
between 1 and a reasonably large number, i.e., to the length of
the expected longest sequence (or a logarithm thereof) (Heinrich
et al., 2015), or with timescales that are known to work well for
MTRNNs in similar tasks.

In our computational model we, therefore, utilize adaptive
MTRNNs with context abstraction for sensory inputs from
multiple modalities and an adaptive MTRNN with context
bias for verbalizing the observed sensation in natural language.
Through this, the architecture provides a composition of a
sensation into an overall meaning for that sensation as well as
a decomposition of a meaning into a verbal description. The Csc
units of all MTRNNs are coupled in cell assemblies from which,
supposedly, a sparse latent representation for the meaning can
emerge through iterative learning. Specifically, we integrate up to
three MTRNNs for the abstraction of temporal dynamic auditory
(au), sensorimotor (sm), and visual (vi) perception as well as
an MTRNN which uses this context for language production
in terms of verbal utterances describing the perception. The

overall architecture is illustrated in Figure 1, further details on
the scenario are provided in section 3.

2.3. Developmental Robot Scenario for
Language Grounding
To investigate language grounding, we couple multi-modal
sensations and a verbal description in order to train our
model in an end-to-end fashion. Although supervised, this
is related to models that investigate language grounding by
mapping perception and action through Hebbian learning
and studying the emergence and consolidation of connection
patterns (e.g., Garagnani and Pulvermüller, 2016). Our aim
is to further scale to a temporally dynamic scenario from
real-word observations with the aim of studying both the
emergence of timescales as well as connection patterns in terms
of cell assemblies.

For this, our set-up is borrowed from a developmental
robot scenario, where a humanoid robot, such as the Neuro-
Inspired COmpanion (NICO, Kerzel et al., 2017), represents
an infant learner who explores the environment by interacting
with objects on a table and perceives verbal descriptions from a
caregiver for particular object manipulations (see Figure 2). We
conducted a data collection of the EMIL data set2 (Heinrich et al.,
2018b), that includes parallel multi-modal recordings from the

2More details on the collection are provided in the Appendix. We plan to obtain

several versions of the EMIL data set with increasing scenario complexity and

amount of data. The version 1 is publically available via https://www.inf.uni-

hamburg.de/en/inst/ab/wtm/research/corpora.html.
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A B C

FIGURE 2 | Developmental robot scenario of the EMIL data collection (Heinrich et al., 2018b): NICO is interacting with objects and perceives the interaction on

auditory, sensorimotor, and visual modalities. A teacher provides a description for the interaction. (A) Scenario, (B) Example descriptions, (C) Teacher perspective.

robot’s body-rational view as well as visual observations from
a teacher perspective. The robot performs an action from a
set of four predefined motions on a set of 30 distinct objects
which exhibit different shape, color, texture, weight, friction, and
sound characteristics when moved. The interaction is captured
by microphones in the robot’s ears for 48 kHz auditory sensation,
by proprioception in the arm (motor position and current from
eight motors, with 30 read-outs per second) for sensorimotor
perception, and by a 90 degree field-of-view and 30 fps camera for
visual perception. In addition, a textual description was recorded
that describes the interaction with the object.

To study themodel on this scenario, we prepared two data sets
from the EMIL version 1 collection:

• EMILv1 Data: 240 sensation-description pairs with up to 740
time steps for the perception streams and a simple holo-phrase
with up to four words for the description. The descriptions
were created from a vocabulary of 68 words and 4 symbols
for punctuation, where a word is represented with one to
nine phonemes.

• EMILv1 + Teacher Data: in order to mimic the situation
of a caregiver providing additional descriptions to foster
the infant’s learning, we extended the data with additional
teacher input. In particular, we appended data points where
we replaced the nouns and verbs with synonyms and added
slight Gaussian noise to the perception (σ = 0.01) in order to
obtain 2,880 unique pairs. This ismotivated by infants learning
language better through scaffolding and guidance from their
parents (Tomasello, 2003). The process can also be viewed as
data augmentation from linguistic knowledge, which results in
increased diversity and scale of crossmodal data for language
learning, and is shown to lead to better generalization ability
of neural models (Zhang et al., 2015). In order to ensure
the quality of the teacher data, synonyms are obtained from
WordNet (Miller, 1995), a high-quality lexical knowledge base
according to the sense of the replaced word.

The EMILv1 data exhibits a couple of interesting characteristics.
On the one hand, with the particularly long and noisy
sequences (especially in the sensorimotor modality) the training
is challenging for RNNs. On the other hand, in most sequences,
the visual modality is most informative for the presented action

+ object pair. Compared to previous developmental robotic data
sets, e.g. in Heinrich and Wermter (2018) the data does not
imply a necessity for superadditivity (i.e., that more information
is gained from multiple modalities only) but rather selectivity
(meaning that one modality might be strongly favored in
certain situations).

2.4. Representation and Training
For the verbal descriptions we prepared two different
language representations:

• Phonetic: we transformed the utterances into phonetic
sequences based on the ARPAbet and dictionary provided
by CMU3 and represented these sequences as simple one-
hot vectors. This is different from previous related research
(Hinoshita et al., 2011; Heinrich and Wermter, 2018) where a
single phoneme was stretched backwards and forward in time
and thus learned much easier by using teacher forcing.

• Word embedding: in order to study the model on both
fine-grained phonetic-level and coarse-grained word-level we
utilize the GloVe-6B embeddings provided by the Stanford
NLP group (Pennington et al., 2014).

We expect that the phonetic representation is more challenging
and provides the necessity for the emergence of temporal
composition in the MTRNN for verbal descriptions. The word
embeddings, on the other hand, are more informative for
studying the multi-modal fusion since the word embeddings
already reflect semantic relatedness.

For the multi-modal sensation, we perform some simple
preprocessing in order to provide input streams of comparable
dimensions and low-level feature abstraction. For the auditory
input, we transform the signals using Mel-Frequency Cepstral
Coefficients (MFCC) analysis into 13 dimensions with a frame
size of 33 ms and input window 60 ms. This is acceptable in
terms of biological inspiration as the cochlea is doing a Fourier
transformation of auditory signals that are roughly similar. The
sensorimotor input was taken as is, but normalized, to result
in 16 dimensions. The visual input in terms of a video stream

3ARPAbet is an American English phonetic transcription set, transcribed in ASCII

symbols, http://www.speech.cs.cmu.edu/cgi-bin/cmudict.
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was processed by a VGG16 neural network (Simonyan and
Zisserman, 2015) (we took the output of the first dense layer after
the convolution and pooling layers) and further condensed to 19
dimensions by Principal Component Analysis (PCA) in order to
provide visual features. The VGG architecture was chosen since
it is a powerful CNN architecture that was developed based on
biological inspiration but does not yet incorporate implausible
mechanisms such as arbitrary residual connections (Krüger
et al., 2013; Hu et al., 2019). In our model, we used VGG
layers that were pre-trained on ImageNet and thus provide
reasonable features for objects. The reduction with PCA is not
supposed to mimic any specific cortical processing but is an
easy step in systematically reducing complexity in the model,
which alternatively could be realized by neural unsupervised
learning as well.

Since all network parameters are fully differentiable (Heinrich
et al., 2018a), the architecture can be trained end-to-end
using gradient descent. Although for the brain theories are
in favor of Hebbian learning during development instead of
backpropagation, we argue that for our research aim of studying
the emergence of multiple timescales and the emergence of
crossmodally fused representations for language grounding a
supervised error signal is feasible (Dayan and Abbott, 2005;
Lillicrap and Santoro, 2019).

3. EVALUATION AND ANALYSIS

In order to analyse our model for how compositional language
is grounded in multimodal sensations and how multimodal
abstraction emerges through learning, we trained different
variants of our model on different variants on the EMIL data sets.

For all experiments, we optimized the hyperparameters, i.e.,
the architecture size, optimization algorithm, learning rate, and
batch size. We started with the model architecture from baseline
CTRNNs, which are configured with equal timescales τ = 1
for all neurons. Once good hyperparameters were found, we
used the same hyperparameters for all MTRNNs while separately
optimizing their timescales. These timescales, in turn, are used as
initial timescale values of the adaptive MTRNNs (AMTRNNs).
All models were trained for at most 5, 000 epochs and a validation
set was used for early stopping. We performed a 10-random sub-
sampling validation, i.e., we repeated each run ten times with a
different and independent split of training, test, and validation
data (75, 12.5, 12.5%) as well as different and independent
weights-initialization, based on a different random seed. The
best results were found with RMSprop (Tieleman and Hinton,
2012), a learning rate of 0.01, and a batch size of 30. The exact
architectural parameters are noted in Figure 1. In the following,
for the argmax on the output, we report the mean accuracy over
the cross-validation for each setup.

3.1. Generalization on Developmental
Interaction Data
As a first step, we are interested in how well the architecture
can actually learn verbal descriptions for the different sequential
inputs. In order to inspect the generalization, we compare the

accuracy on the test sets for both data sets, both verbal utterance
representations, and three different model variants. In particular,
we compare the baseline CTRNNs with the optimized MTRNNs
and AMTRNNs.

The accuracy results (including standard errors) are presented
in Table 1. We observe that the generalization is difficult for
all models and that utterances which were described entirely
correct are rare. For the phonetic representation, the model
produces descriptions with a range of small errors such as pauses
that are too long or producing incorrect phonemes at the end
of words (rare) or of the utterance (more common). In many
of those cases, the model shows tendencies to produce wrong
descriptions from the first incorrect phoneme onward. For the
word embedding representation, the descriptions are overall
better, but in some cases, words are mixed up that are not
necessarily semantically related.

Nevertheless, we observe strong differences between the
models with different timescale characteristics on both the
EMILv1 data and the data extended with additional teacher input
(significant different performance between baseline CTRNNs
and both other models, with p < 0.05). The baseline CTRNN
model is not able to derive any description completely correct for
the phonetic representation. In fact, we found that the CTRNN
fails after the first few phonemes and afterwards just produces
the phoneme that is most common in the data (usually the pause
symbol SIL). For the word embedding, the performance is better,
indicating that the CTRNN can handle the short utterances
describing the sequence (only up to five words, compared to
up to 25 phonemes in the phonetic representation). This also
means that the CTRNN is able to capture the meaning of the
input sequences (with up to 740 time steps) in terms of the
presented action + object. The model based on an MTRNN with
optimized timescales shows a large improvement on the phonetic
representation. The model using adaptive MTRNNs performs
even better (but not significant, with p > 0.05). Here, the
errors in production are distributed over the utterance and a
mostly incorrect description is characterized by the production
of semantically wrong words, although the words were spelt
correctly. Both the MTRNN- and AMTRNN-based models
show improvements on the word embedding representation but
notably differ in their mistakes. The incorrect words for the
CTRNN seem arbitrary, especially if the words are at the end
of the utterance. For the MTRNN and AMTRNN, we notice
that incorrectly produced words were in many cases semantically
related, e.g., mixing up “light” with “hard” or “red” and “pink.”

Overall it seems that the correct description is strongly
dependent on whether the latent distributed representation
(the cell assemblies) in the Csc units is able to abstract the
sensory input and, thus, if the composition in the sensory
CTRNN/MTRNN/AMTRNN correctly captures the temporally
distributed information. In the following, we will, therefore,
analyse the temporal aspect as well as the latent representations.

3.2. The Role of Adaptive Timescales
In order to inspect how the individual timescales contribute
to sensory abstraction and utterance production, we compare
the developed timescales as well as the activations within
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TABLE 1 | Test accuracy (%) for different CTRNN architectures on phonetic vs. word representation.

Model characteristic EMILv1 data EMILv1 + Teacher data

Phonetic Word embedding Phonetic Word embedding

Baseline CTRNNs 25.472± 0.765 56.115± 2.412 18.476± 0.118 37.991± 0.226

Optimized MTRNNs 42.087± 0.868 63.309± 1.260 34.655± 0.418 51.896± 1.604

AMTRNNs 43.327± 1.025 64.029± 1.975 35.506± 0.461 54.691± 0.502

A D

B

E

C

F

FIGURE 3 | Impact of adaptive timescales in processing crossmodal input and phonetic output sequences on a representative example: “scoot heavy green

car.” Hidden activations of all AMTRNN layers (stacked for each modality and sorted by timescale value) are shown together with the respective input or production.

For the visual input, six frames are shown for selected time steps. (A) Auditory adaptive MTRNN and input. (B) Sensorimotor adaptive MTRNN and input. (C) Visual

adaptive MTRNN. (D) Phonetic production adaptive MTRNN. (E) Timescale development during training. (F) Visual input (exemplary frames).

the AMTRNNs during processing the data. In Figure 3, we
show a representative example for an interaction labeled
“scoot heavy green car.” This sample is not producing the

description (entirely) correct but shows characteristics that
we found regularly in many cases. In Figures 3A–C, we
compare the neural activation in all neurons with the raw
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input data, for auditory input shown as a spectrogram
in the frequency domain, for sensorimotor as the plain
measurements, and for visual as selected frames during the
interaction (Figure 3F).

For both sensorimotor and visual activation we observe an
increasing activity in the neurons with the highest timescales (in
the graphs around a timescale of 660), showing that information
is accumulated for the neurons that are part of the cell assemblies.
For the auditory activation, this occurs on a much weaker level.
We can also see that in the sensorimotor activation, neurons
activate after some remarkable events, such as the spikes in the
motor current around the first and second third of the sequence.
This shows that, across the spectrum of timescales, neurons
begin to reverberate when the current input seems different
from sensory input in other interactions. Interestingly, in both
sensorimotor and visual activations, neurons on timescales
between 4 and 25 maintain their activation until the end of the
sequence once positively or negatively activated. For the auditory
activations, we can not easily spot a similar behavior but rather
observe strong fluctuations for the neurons with small timescales
until 80% of the sequence. Semantically plausible reverberations
are rare, thus it seems the auditory information is much noisier
and less decisive compared to the other modalities.

In the production of verbal utterances (Figure 3D) we spot
patterns that are typical for MTRNNs: some neurons on lower
timescale fluctuate according to specific phonetic output and
neurons around timescales 4 − 6 activate and maintain their
activation for some time spans. In notable cases, these activations
coincide with the production of words representing semantically
meaningful phoneme chains. The neurons with lower timescales
of around 42, however, keep their activations over time with
some leakage. These timescales correspond to the IO, Cf, and Cs
layers and indicate a hierarchical decomposition. Notable is that
the correspondence of activity in the Cf layer, with a produced
word, is less pronounced than expected, while the activations
of specific phonemes fade quickly. Correct phonemes are still
produced, but at some point only SILs are activated. This clearly
shows that this model has not ideally learned the production
of the utterance, although the network structure induces the
mentioned decomposition.

Regarding the learning of individual timescales, we see in
Figure 3E that all AMTRNNs tend toward more fine-grained
timescales in all layers. For the sensory input AMTRNNs, these
changes are most notable for the neurons in the Cs layers, as
they tend to result in smaller timescales (around 650) instead
of the layer-wise optimized value of 700 of the MTRNN model.
For the production AMTRNN, individual timescales also result
in smaller values in some cases and a strong differentiation of
the neurons in all layers. This indicates that, in addition to the
predefined hierarchical structure, the AMTRNNs further adapted
to the specific scales of relevant events in the sequences.

Overall it is notable that the timescale mechanism, w.r.t. the
leakage of information, has its limit for covering events that
occur on different timescales but are not particularly regular. In
many cases, the multi-sensory perception is abstracted in terms
of neurons accumulating information relatively independent of
the timescales. The input data from the EMIL data set does not

consist of chains of events that need to be composed, but they
do show key events, such as grasping the objects or perceiving a
difference in inertia through different current values in cases of
rapidly moving an object. These key events seem to be captured,
but neurons activate as a memory rather than a shortly active
detector of features on a mid-level timescale. The production of
verbal utterances, in many cases, illustrates shortcomings toward
the end of the utterances, with the tendency of producing the
overall most frequent phoneme (SIL).

3.3. Latent Representations in Cell
Assemblies
Finally, we are interested in how cell assemblies form, based on
the sensory input and description output. Specifically, we aim to
inspect whether latent representations in the Csc spaces reflect
the meaning of the utterances. We hypothesize that in cases
of “good” models, the semantic components (action and object
characteristics) that are exactly identical (e.g., the same action)
or similar (e.g., a rectangular toy shape and a rectangular tissue
shape) are represented similarly as well.

To analyse this, we compare setups where we trained
AMTRNNs with all three modalities (auditory, sensorimotor,
and visual), combinations of two modalities, or only on a
single modality as input. The overview of the performance
(accuracy results and standard errors) for these setups is
presented in Table 2. For the trained networks we obtained
the neural activations of the Csc units for the respective
input AMTRNN and verbal description output AMTRNN and
reduced the dimensionality of the representation to two Principal
Components (PC) using PCA. For typical results and selected
combinations of modalities, the reduced representations are
plotted in Figure 4. Since the Csc from the sensory inputs
map to the Csc for the verbal description we would expect
that the plots for the verbal utterances show similarities most
clearly. Note, however, that although two PCs usually explain
> 60% of the variability, they are only one perspective on the
representation among others. Nevertheless, we selected cases that
are representative for our observations across the results and
avoided using t-Distributed Stochastic Neighbor Embedding (t-
SNE) instead of PCA in order to not introduce additional biases.

Surprisingly, the results indicate that the setup that only uses
visual input data performs best, compared to setups that process
multimodal input data (notable but not significant, with p >

0.05). Overall, the setups that have access to the visual modality
perform better (significant for all combinations, with p < 0.05),
whereas the auditory modality leads to worse results (significant
for combinations with an auditory input vs a visual input, with
p < 0.05). When inspecting representations of the cell assemblies
we can identify an explanation in the emerging representations.
The semantic components are best distributed in the visual
modality, indicating clusters for most of the characteristics, e.g.,
the object shape and action. To see this, compare all panels
for the visual modality in Figure 4. Even though we do not
visualize this here, we found similar clusterings for the color
semantic component. In the sensorimotor modality the clusters
are particularly obvious for action but strongly overlap for
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TABLE 2 | Test accuracy (%) for training on restricted sensory input.

Sensory input au + sm + vi au + sm au + vi sm + vi

EMILv1 data 43.327± 1.025 35.709± 1.004 41.831± 0.958 44.252± 0.979

EMILv1 + Teacher 35.506± 0.461 33.672± 0.540 34.974± 0.376 34.557± 0.326

Sensory input au sm vi

EMILv1 data 35.945± 0.895 38.957± 0.695 44.409± 1.097

EMILv1 + Teacher 31.623± 0.439 29.734± 0.412 33.815± 0.455

the shape component (not shown: it also overlaps for color
components as well as weight and softness). In the auditory
modality, all semantic components overlap for the case of full
multimodal input (Figure 4A) and unimodal input (Figure 4D).
However, in case of the auditory representation being presented
together with sensorimotor or visual information only, we found
a slight tendency of clustering toward the clusters that emerged
within the other input modality (compare Figure 4B for auditory
and sensorimotor and Figure 4C for auditory and visual). In
most cases, the representation in the Csc of the verbal utterance
production showed a mixture of the representations in the
input Csc.

Overall it seems that (a) the characteristics of the raw
data have a large influence, and (b) the end-to-end learning
slightly favors a merging of the input modalities that is not
directly beneficial. For (a), inspecting the raw data confirms our
observation and expectation. In our raw data, we observe that
the input streams are usually both quite noisy but also distinctive
for some aspects. For example, the proprioception information
from the motors (motor current) shows large deviations but
for the human inspector it is easy to discriminate the different
actions, while distinguishing between heavy and light objects
(stronger vs. lower current) or hard and soft objects (stronger
squishing and thus different finger motions) is extremely hard.
In the auditory recordings, it is not possible to discriminate
most object characteristics except for different friction sounds of
heavy and light objects. However, distinguishing the actions by
the motor sound is sometimes possible. For (b), we hypothesize
that the amount of data in the EMILv1 data set is insufficient
w.r.t. the complexity of the architecture, whereas the larger
number of examples in the EMILv1 + Teacher set leads to
a slightly different convergence. When comparing both data
sets in Table 2 we find a tendency of modality selection for
the smaller data set and a tendency of superadditivity for the
larger one.

4. DISCUSSION

In this paper, we investigated an embodied neurocognitive model
to better understand the effects of adaptive multiple timescales
as well as multi-sensory fusion mechanisms in grounding a
temporal dynamic verbal description into temporal dynamic
perceptions. For the model, we adopt that the human brain
is reusing composition and decomposition as well as multiple

sensory modalities in grounding natural language (compare
section 2.1). Furthermore, in the model, we realize the merging
of senses in a higher stage and inherently assume that the
multiple timescales are in fact necessary (compare section 2.2).
In our results, we found that adaptive timescales help in
abstracting the information from temporally long and complex
perceptions. Preparing the layers in these AMTRNNs with
context abstractions toward an implicit hierarchy of multiple
timescales forces a composition of an overall meaning from the
crossmodal perception.

However, the concept of leakage in the AMTRNN
specifically and in the MTRNN generally seems to reach
its limit here. In previous studies, sequences were usually
limited to < 50 time steps and, as a consequence, easily
learned. In our experiments, perception inputs have ≈ 700
time steps for which MTRNNs hardly converge, even if a
large hierarchy of carefully optimized timescales is tested.
Consequently, meaningful abstractions emerge to some
extent but compared to other mechanisms in machine
learning, like gating or time-windowed CNNs, the resulting
representations and performance are limited (Chang et al.,
2017). Thus, although the decomposition through neural
processes, which operate on different timescales, seems to
contribute to the human abilities of language grounding, it
does not explain how we cope with the complexity of our daily
sensory input.

We also found that using end-to-end learning cell assemblies,
i.e., pairs of temporally static abstracted modal information and
production biases, show a tendency to organize w.r.t. similarities
of the semantic components (i.e., an action, object shape, object
softness, and so on). This is in line with previous studies
and general observations on gradient descent machine learning.
However, for our more natural and noisy interaction data,
it shows that a choice between superadditivity and modality-
specificity does not necessarily simply emerge but might involve
additional cognitive processes.

In the past, language acquisition and grounding models were

usually tested on synthetic toy examples or very constrained
and carefully designed scenarios (Cangelosi and Schlesinger,

2015). Crucially, aspects of language were omitted or robotic

interactions were designed particularly systematic. In contrast,
our current study uses the EMIL data collection which challenges
the model by introducing a wide range of variability in terms
of sensory noise, object characteristics, and skewed distributions
thereof. It seems, however, that by reducing these constraints and
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A
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D E

FIGURE 4 | Learned representations in the cell assemblies for training on different modalities (reduced by PCA to first the two principal components PC1 and PC2).

(A) Perception via auditory, sensorimotor, and visual modalities. (B) Perception via auditory and sensorimotor modalities. (C) Perception via auditory and visual

modalities. (D) Perception via auditory modality. (E) Perception via visual modality.
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capturing truly multimodal and natural interaction scenarios we
can reveal novel, potentially incompatible, effects.

5. CONCLUSIONS

Overall, our embodied neurocognitive model shows that
in an end-to-end learning architecture with hierarchical
concept abstraction and concept decomposition, language
grounding can emerge and generalize. Adaptive multiple
timescales and multi-sensory fusion on concept level are,
among others, effective components. Of similar importance
are the scenario characteristics of our more complex and
natural EMIL data collection, which introduces a larger range
of variability and noise. Through using more complex data
we observe novel effects such as limits in temporal abstraction
and contradicting observations concerning superadditivity vs.
modality-specificity.

For future research, when aiming to explain complex cognitive
functions, we need to take into account the full complexity
of the environmental context as well as of the computational
conditions. For language acquisition and grounding it seems
particularly crucial to capture the full details of the language
learning events, such as learners’ prior body of experiences, the
sensory richness of the context, and the input and thus influence
of caregivers that teach the language. In addition, future research
could further investigate the timescale mechanismwith respect to
hierarchically organized multiple timescales on mathematically
more defined tasks, like predicting temporally noisy Lissajous
curves with probabilistic transitions (compare Murata et al.,
2014) and consider time dilation or time gating, instead of

leakage (Chang et al., 2017). Increased understanding and better
control of temporal hierarchical composition in neural models,
as well as the development of more naturalistic training data and

schedules, are promising paths toward models of more human-
like language acquisition and learning.
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APPENDIX: EMIL COLLECTION

The Embodied Multi-modal Interaction in Language learning
(EMIL) data collection is an ongoing series of data sets for
studying human cognitive functions on developmental robots
and was first introduced by us during the ICDL-Epirob’2018
workshop on active vision, attention, and learning (Heinrich
et al., 2018b). The main motivation is the theory that
humans develop cognitive functions from a body-rational
perspective. Particularly, infants develop representations through
sensorimotor environmental interactions and goal-directed
actions (Heinrich and Wermter, 2018). This embodiment plays
a major role in modeling cognitive functions from active
perception to natural language learning. Using the developmental
robotics paradigm, we can investigate specific hypotheses for
a range of research questions in-depth, since developmental
robotics allows to simulate human development scenarios
in a fairly simplified and reproducible way (Cangelosi and
Schlesinger, 2015). Thus, data sets that provide low-level multi-
modal perception during the environmental interactions are
interesting and needed.

With the EMIL data collections, we approach continuous
andmulti-modal recordings from developmental robot scenarios
that specifically focus on robot-object-interaction tasks. Since we
aim to utilize resources in tight collaboration with the research
community, we propose the first data set on object manipulation
in the context of natural language acquisition for closing a
gap in current related data sets and fostering discussions on
future directions and needs within the community. For the
future, we plan to obtain several versions of the EMIL data set
with increasing scenario complexity and amount of data. EMIL
version 1 is publicly available via:

https://www.inf.uni-hamburg.de/en/inst/ab/wtm/
research/corpora.html

Related Data Sets
In the last years, several labs put considerable efforts into
providing data sets on human development scenarios,
particularly using the developmental robotics approach.
The provided data sets are focusing on different research goals
while taking technical limitations into account (see Table A1).

As a first example, data sets cover the sensation during
human-environment interaction by measuring (mostly adult)
humans directly during performing specific tasks, such as
the KIT Motion-Language set for descriptions of whole-body
poses (Plappert et al., 2016), the Multimodal-HHRI set for
personality characterization (Celiktutan et al., 2017), and the
EASE set for precise motion capturing (Meier et al., 2018).
Secondly, data sets mimic the human perspective by holding
objects in front of a perception device, such as a camera, to
capture the diverse and complex but general characteristics of
an environment setting, e.g., Core50 (Lomonaco and Maltoni,
2017), EMMI (Wang et al., 2017), and HOD-40 (Sun et al., 2018).
And thirdly, humanoid robots are employed for establishing a
data set, where multiple modalities are recorded in covering
human-like action, i.e., including sensorimotor information,
such as the MOD165 set (Nakamura and Nagai, 2017) and the

Multimodal-HRI set (Azagra et al., 2017), or where multiple
modalities are gathered from both robot and human in turn-table
actions, like in the HARMONIC data set (Newman et al., 2018).

However, it is usually difficult to capture true continuous
multi-modal perception for interaction cases that are supposed
to mimic infant experiences or to capture interaction scenarios
from human infant learner perspectives. As a consequence, with
the EMIL data set collection, we aim to link such continuous
multi-modal recordings with body-rationale of a reproducible
developmental robot.

Dataset Characteristics
In this first set, the developmental robot NICO is mimicking an
infant that interacts with objects and receives a linguistic label
after an interaction. The interaction follows usual interaction
schemes of 12–24 month-old infants on toy-like objects.

Developmental Robot Setup
In developmental robotics, the goal is to study human
cognitive functions in conditions of human infants interacting in
natural environments (Cangelosi and Schlesinger, 2015). These
conditions include embodied interaction with natural motor and
sensing capabilities of an infant and multi-modal sensations
within active perception (Tani, 2016). For our data recording, we
developed a child-like humanoid robot and utilize it in scenarios
that resemble natural infant environments, such as in playing
with objects at a table while acquiring natural language from
a caregiver.

Interactive Robot NICO
Our developmental robot is the Neuro-Inspired COmpanion
NICO (Kerzel et al., 2017, 2020), created by the Knowledge
Technology group of the University of Hamburg. NICO
is a research platform that is developed toward research
on crossmodal perception, visuomotor learning, and multi-
modal human-robot interaction through the embodiment of
neurocognitive models. NICO stands about one meter tall with
a weight of less than 20 kg. Its proportions follow those of a
3.5-year-old child. Its head is adapted from the open design of
the iCub and resembles an abstracted child-like face. Overall,
NICO has 30 degrees of freedom that are distributed as follows:
each of the legs and arms have six acuted joints. In the
arms, three motors in the shoulder area mimic a human ball
joint, one motor actuates the elbow, and two motors rotate
and flex the hand. Two additional motors in each of NICO’s
three-fingered, tendon-driven SeedRrobotics hands bend the two
linked index fingers and the thumb. The hands allow grasping
child-appropriate objects as the tendon-mechanism enables the
three-jointed fingers to curl around various shapes without the
need for additional control. Finally, two motors enable jaw and
pitch motions of the head. For multi-modal sensing, NICO is
equipped with two parallel HD RGB cameras and two embedded
microphones in its pinnae for stereo auditory perception.
Furthermore, the position and current, which is proportional to
the applied torque of all motors, can be recorded, which mimics
human proprioception. In summary, NICO mimics many of the
interaction abilities of a 3.5-year-old child. NICO can handle and
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TABLE A1 | Related multimodal and/or developmental data sets.

Data set Modalities Acquisition # samples / classes∗ Purpose

CORe50 RGB-D vision Hand-held 50/10 Continuous object recognition

(Lomonaco and Maltoni, 2017)

EASE Vision, audio, motion, Human 100/- Studying everyday activities

(Meier et al., 2018) EEG, EMG, eye tracker for improving robot performance

EMMI Vision Hand-held 360/12 Small sample learning;

(Wang et al., 2017) hand object scene interaction

EMRE Vision, audio Simulation 1500/- Multimodal referring expressions

(Krishnaswamy and Pustejovsky, 2019)

HARMONIC Stereo vision, motion, Turn-table 480/- Intention prediction; human mental

(Newman et al., 2018) both robot and human state modeling; shared autonomy

HOD-40 RGB-D vision Hand-held 160/40 Hand-held object recognition;

(Sun et al., 2018) one-shot learning

KIT ML Human motion Human 3911/- Semantic activity representation

(Plappert et al., 2016) natural language

MHHRI Vision, audio, EDA, Human 746/- Studying personality

(Celiktutan et al., 2017) skin temp., 3D-accel. and engagement

MHRI RGB-D vision, audio Robot 300/22 Incremental object learning from HRI

(Azagra et al., 2017)

MOD165 RGB-D vision, audio, Robot 165/- Studying human-like concepts

(Nakamura and Nagai, 2017) tactile (ensemble-of-concept model)

∗classes identify distinct object or action categories, if specified.

explore physical objects with the imprecision and self-occlusion
in a way our infants show.

Recording
In our experiment, NICO is seated in a child-sized chair at
a table, interacting with the right hand and the head facing
downwards during the experiment, while a human places a
small object on the table at a fixed position (see Figure 2A).
For EMILv1, a predefined action is carried out on the object:
pushing, pulling, lifting it or scooting it across the table. The
30 objects contain toys from an infant environment: balls, toy
cars, sponges and tissues, fruits, small animals, and toy bricks,
of which some differ in softness during squeezing, weight, size,
and color. During the robot’s actions, a continuous multi-modal
recording encompasses continuous streams of visual information
from the left and right robot camera as well as from the external
experimenter, stereo audio information frommicrophones in the
robot’s head, and proprioceptive information from the robot’s
body, specifically position and current from eight motors (for
an example compare the input streams in Figure 3). Finally, the
experimenter provides a linguistic label.

Preprocessing
To provide the data in suitable formats for various research
questions, we added preprocessed versions of the raw data as
follows. For the auditory signals, we added streams of Mel-
Frequency Cepstral Coefficients (MFCC) transformation with 13
dimensions, a frame size of 33 ms, and input window 60 ms.
Using filters with Mel-scale is considered biologically-inspired
as this mimics the humans’ perception of frequencies and the

sensitivity of the cochlea, which can be seen as kind of a Fourier
transformation of auditory signals. The frame size is motivated
in the technical characteristics of the motor sensors and the
cameras and is supposed to allow for obtaining an aligned
frame rate. The MFCCs overlap with 50% because the Fourier
transformation creates border effects, which the window size of
60 ms is acceptable since we mostly record environmental noise.
Because of the volatile nature of the position and current sensors
in the motor we produced smoothed sensorimotor streams based
on 3, 5, 7, and 9 measurement points. We also normalized all
sensorimotor streams w.r.t. the minimal and maximal position
and current values per joint. For the visual streams, we offer
compressed videos with a cropped field of view (e.g., only the
table or only the interesting part of the table) for convenience.

Labeling for Object Tracking
For supporting research questions related to object tracking we
added a complete ground-truth labeling for all visual streams
from the perspective of NICO’s right eye. The object labeling
describes the position of the interacted object in all frames
with accurate bounding boxes despite strong transformations
and occlusions.

Labeling for Language Learning
All interactions are labeled textually with words describing the
action and the object type, as well as particularly deviating object
characteristics (color, weight, softness, size). Depending on the
research question with relation to natural language processing,
different textual utterances or descriptions can be generated.
For instance, EMILv1 is provided with labels in the form of

Frontiers in Neurorobotics | www.frontiersin.org 16 October 2020 | Volume 14 | Article 52

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Heinrich et al. Crossmodal Language Grounding

holo-phrases with up to four words as well as additional labels
containing synonyms for the actions and object characteristics
(compare section 2.3).

Impact and Research Opportunities
Our continuous, multi-modal, and particularly body-rational
data allows for studying a large range of algorithms on
fundamental classification or prediction tasks. This includes
object recognition and tracking, action recognition, and question
answering. Moreover, the data set is aimed at research on a range
of state-of-the-art research topics.

Active Perception
The different actions and objects allow to build up a training
scheme within a model by selecting to experience a certain
interaction because the model estimates that this provides the
highest information gain or reduces uncertainty. In humans, we
find the tendencies that a perception choice or a specific action
is voluntary (Oudeyer, 2018). Thus, the data set is suited for
developing models that aim to explain how the sensory input
gathered from an object with different, multi-modal sensors
changes based on the robot’s actions.

Imitation Learning
Robotic visuomotor learning via interaction with the
environment often requires a large amount of training data
and, therefore, physical interactions (Lillicrap et al., 2016), which
are not feasible for most robotic platforms. However, one way
of accelerating the learning process is to utilize demonstrations
to speed up the initial learning phase. While the demonstrations
are usually provided by humans (Gupta et al., 2016), the precise
motor data in the EMIL data set can be utilized for this purpose
as well with the added benefit that this data is free of artifacts or
noise from an external recording setup.

Cross-Modal Representation Learning
Since the different recorded modalities include information
about the same object and interaction quite differently,

the data set is suited to study algorithms on multi-modal
and cross-channel representation learning. For some objects
and actions the data contains salient features in a certain
modality, while for others, all modalities are necessary for
disambiguation. This allows studying mechanisms on sensor
fusion, superadditivity, and hierarchical composition in addition
to embodied representation formation on the cortex-level (Bauer
et al., 2015).

Developmental Language Acquisition
A research question related to representation learning is
natural language acquisition since representations for language
production and language perception in the human brain seem
to form embodied and cross-modally integrated (Cangelosi and
Schlesinger, 2015; Heinrich and Wermter, 2018). The data set
is therefore particularly suited for research on the grounding
of language in sensorimotor perception because the recording
diligently followed the developmental robot approach (Lyon
et al., 2016). Mechanisms for representation formation and
bidirectional hierarchical composition and decomposition can
get tested in the biologically plausible setting.

As a second step, this allows extending this data set
by much larger parts of abstract and ungrounded linguistic
input, in a fashion that parents would provide verbally or
with the aid of a storybook to their infant (Heinrich et al.,
2016). Here, language acquisition models can get studied for
how they integrate additional knowledge into their grounded
representations, but also how a teaching application can provide
suitable teaching content.

Lifelong Learning
The data set is suited to provide evaluation data for (neural)
lifelong learning approaches (Parisi et al., 2018). An initial subset
of the training data can be selected that is limited to a few types of
objects, actions or just a low number of samples. Over the course
of time, lifelong learning experiences can be simulated by adding
more and more parts of the data-set to the learning.
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