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Editorial on the Research Topic

The long-lasting quest for nuclear interactions: the past, the present and the future

As it was stated when this Research Topic was launched, despite many years of intense research, our
understanding of the force that holds the atomic nuclei together is still far from complete, and
numerous crucial questions are yet to be answered. The theory of nuclear forces has a long and
glorious history, as recently summarized in 1. In a nutshell, in the 1990s, meson-theoretic and pure
phenomenological approaches were used to describe the nuclear interaction, with models which were
able to reproduce the large set of two-nucleon (2N) experimental data available at that time (or more
properly the phase-shifts arising from a partial wave analysis of these data) with a χ2/datum close to
unity [2, 3]. However, all these models were relegated in the world of phenomenology and no
connection with the underlying theory of Quantum Chromodynamics (QCD) could be found.

At the beginning of the 1990s, we entered in a new still-ongoing phase: nuclear physicists
“discovered” QCD and, more importantly, effective field theory (EFT). Following a seminal idea of
Weinberg [4, 5], several groups developed nuclear interaction models within the so-called chiral EFT
(χEFT), an EFT where the spontaneous breaking of QCD chiral symmetry plays a crucial role. The
χEFT approach is reviewed and discussed at length in essentially all contributions to this Research
Topic, as we will outline below. Due to lack of space, here we only mention that the accuracy nowadays
reached by the chiral models for nuclear interactions is comparable to, if not even better than, the one
reached by the “old” phenomenological models.

Let us quickly review the different contributions to this Research Topic. Four of themost active groups
working to derive nuclear force within the χEFT approach are among the contributors to this Research
Topic. In particular, Epelbaum et al. review themost recent achievements of the so-called Bochum group,
focusing on a new generation of nuclear chiral forces derived using the recently proposed semi-local
regularization method. The authors also describe the ongoing efforts by the Low-Energy Nuclear Physics
International Collaboration (LENPIC) toward developing consistent two- and many-body forces, and
discuss selected applications. The contribution of Entem et al. is a clear and thorough review of the latest
work of the so-called Idaho group, which has developed χEFT-based potentials, from leading order up to
next-to-next-to-next-to-next-to leading order (N4LO). The authors present also a discussion of the most
recently developed N5LO contributions, and their effects on 2N scattering. In the contribution of
Ekström we can find a discussion of the importance of careful model calibration and uncertainty
quantification of theoretical predictions. To this aim, the author reviews how statistical computing and
methods, such as Bayesian inference methods, can be used in conjunction with ab-initio methods for
atomic nuclei, in order to construct χEFT-based nuclear potentials. Finally, Piarulli et al. review the efforts
made by two different groups in applying the χEFT approach in coordinate space. This allows to derive
chiral potential models which are local and suitable to be used in studies of nuclear structure with the
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ab-initio methods based on Quantum Monte Carlo techniques.
Selected results, ranging from light nuclei up to 16O, as well as
neutron matter, are also presented.

Two essential aspects of χEFT are also reviewed in the Research
Topic. The first one is the problem of renormalization of chiral
nuclear forces. In his contribution, Van Kolck summarizes the
huge body of work done on this subject and describes alternative
approaches which can be used to achieve renormalization order by
order. The second essential aspect is the proper quantification of
uncertainties on 2N phase shifts analysis and, consequently, on the
2N interactions. The work done in Granada in determining the 2N
scattering database is reviewed by Arriola et al., who also discuss
the impact of this database on the determination of the 2N force.

The χEFT approach can be suitably adapted to derive also more
general baryon-baryon interactions. For instance, Petschauer et al.
review the systematic derivation of hyperon-nuclear forces from the
symmetries of QCD within non-relativistic SU(3) χEFT, and also
discuss several applications, ranging from hyperon-nucleon scattering
up to hyperon-nuclear few- and many-body systems, including
hypernuclei and neutron star matter. The contribution of de Vries
et al., instead, is about the parity-violating but time-reversal conserving,
and the parity-violating and time-reversal-violating forces in nuclei.
These forces are a tiny component of the total interaction between
nucleons, but their study is extremely interesting, because they allow
one to obtain information on fundamental symmetries using nuclear
systems. In this contribution, the authors review how the above
mentioned interactions are derived in χEFT, and discuss the effects
of these forces on several few-nucleon observables.

Two papers are devoted to approaches alternative to χEFT used
to derive nuclear interaction models. In the first one, Fernández
et al. review the different quark models used to describe 2N and,
more in general, baryon-baryon interaction. Thesemodels are non-
perturbative QCD-inspired and retain quark and gluons as degrees
of freedom. Special attention is devoted to the constituent quark
model. This model has recently attracted large interest, because its
description of the 2N interaction at short distances is qualitatively
consistent with the lattice-QCD simulations near the physical
quark masses. An example of nuclear interaction models
derived from lattice-QCD simulations is presented by Aoki
et al., who discuss the so-called HAL QCD method, and review
the derivation of the central, tensor, and spin-orbit components
present in the 2N force, and of the three-nucleon (3N) interaction.

The nuclear interaction models derived in χEFT reproduce
with great accuracy 2N bound and scattering states. However, it is
essential to know how they perform in reproducing other nuclear
systems, starting from A> 2 light nuclei. In order to address this
question, very accurate ab-initio methods are fundamental. In
this Research Topic, the latest advances of two of these methods
are reviewed: Lazauskas et al. discuss the application of the
Faddeev-Yakubovsky equations in configuration space to the

four- and five-nucleon systems; Marcucci et al. review the
hyperspherical harmonics method and its latest results
obtained with both local and non-local chiral potentials for
three- and four-body nuclear bound and scattering systems.
Together with the method based on the Faddeev-Yakubovsky
equations in momentum space [6, 7], the presented methods are
among the most accurate ones for bound and scattering A � 3, 4
nuclear systems.

In order to use chiral forces in larger nuclei up to nuclear
matter, further work is necessary. Some issues related to the use of
nuclear forces in the medium are discussed by Sammarruca et al.
and Holt et al. In particular, Sammarruca et al. present a review of
their recent studies of the equation of state for symmetric nuclear
matter and pure neutron matter, using state-of-the-art chiral
interactions. Holt et al. discuss the implementation of 3N forces
in many-body nuclear structure and reaction studies, presenting
an approach which employs a medium-dependent 2N
interaction. The authors also discuss several applications.

We conclude this overview with the contribution of Richard,
which is devoted to the physics of low-energy antiprotons and, most
importantly in this context, its link with nuclear forces. In fact, a
good understanding of antinucleon-nucleon and antinucleon-
nucleus interactions is necessary in order to investigate important
phenomena in astrophysics, as high-energy cosmic rays, or the
matter-antimatter asymmetry in early Universe.

In conclusion, this Research Topic has collected the
contributions of the researchers most active in the development
and understanding of the nuclear interaction and some related
topics, as those outlined above. At the end, we hope that this article
collection will serve as a useful compendium for practitioners, who
everyday apply nuclear potentials in their work and wish to learn
about the most significant aspects in an efficient way.
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We review a new generation of nuclear forces derived in chiral effective field theory

using the recently proposed semilocal regularization method. We outline the conceptual

foundations of nuclear chiral effective field theory, discuss all steps needed to compute

nuclear observables starting from the effective chiral Lagrangian and consider selected

applications in the two- and few-nucleon sectors. We highlight key challenges in

developing high-precision three-body forces, such as the need to maintain consistency

between two- and many-body interactions and constraints placed by the chiral and

gauge symmetries after regularization.

Keywords: nuclear forces, effective field theory, chiral perturbation theory, regularization, few-body systems

1. INTRODUCTION

Almost 30 years ago, Weinberg put forward his groundbreaking idea to apply chiral perturbation
theory (ChPT), the low-energy effective field theory (EFT) of QCD, to the derivation of nuclear
interactions [1, 2]. This seminal work has revolutionized the whole field of nuclear physics by
providing a solid theoretical basis and offering a systematically improvable approach to low-energy
nuclear structure and reactions.

So where do we stand today in the implementation of the program initiated by Weinberg?
Much has been learned about specific features of the nuclear interactions and currents and about
the role of many-body forces from the point of view of the effective chiral Lagrangian, see
Epelbaum [3], Epelbaum et al. [4], Machleidt and Entem [5], and Hammer et al. [6] for review
articles covering different research areas, while some issues are still under debate [6, 7]. Meanwhile,
the interactions derived in chiral EFT, sometimes referred to as “chiral forces,” have largely replaced
phenomenological potentials developed in the nineties of the last century. They are nowadays
commonly used in ab initio nuclear structure calculations, see Epelbaum et al. [8], Piarulli et al. [9],
Lonardoni et al. [10], Hagen et al. [11], Gebrerufael et al. [12], and Cipollone et al. [13] for recent
examples using a variety of continuum ab initiomethods and Epelbaum et al. [14], Elhatisari et al.
[15], and Lähde andMeißner [16] for selected highlights from nuclear lattice simulations. With the
most recent chiral nucleon-nucleon (NN) potentials [17] providing a nearly perfect description of
the mutually consistent neutron-proton (np) and proton-proton (pp) scattering data below pion
production threshold from the Granada-2013 database [18], the two-nucleon sector is already in a
very good shape. On the other hand, three-nucleon forces (3NF) are much less understood at the
quantitative level [19] and constitute an important frontier in nuclear physics [20].

In this article we focus on the latest generation of chiral nuclear forces based on an improved
regularization approach [17, 21, 22], which allows one to maintain the long-range part of the
interaction as will be described in section 4.1. We review our recent work along these lines
in the two-nucleon sector, describe the ongoing efforts by the Low-Energy Nuclear Physics
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International Collaboration (LENPIC) toward developing
consistent1 many-body forces and solving the structure and
reactions of nuclei, and discuss selected applications. For selected
recent studies along these lines by other groups, see Entem et al.
[23], Gezerlis et al. [24], Piarulli et al. [25], Ekström et al. [26, 27],
Li et al. [28], Lynn et al. [29], and Girlanda et al. [30], and
references therein.

Our paper is organized as follows. In section 2, we outline the
foundations of the employed theoretical framework. Section 3
gives an overview of various methods to derive nuclear forces
and currents from the effective chiral Lagrangian. It also
summarizes the available results for nuclear potentials derived
using dimensional regularization (DR). In section 4, we present
the improved semilocal regularization approach, which is utilized
in the most accurate and precise NN potentials of Reinert
et al. [17].We also discuss the challenges that need to be addresses
to construct consistently regularized 3NFs and exchange current
operators beyond tree level, which are not restricted to any
particular type of cutoff regularization. Section 5 is devoted
to uncertainty quantification in chiral EFT. Selected results for
the NN system, three-nucleon scattering and light nuclei are
presented in section 6. We conclude with a short summary and
outlook in section 7.

2. THE FRAMEWORK IN A NUTSHELL

Throughout this work, we restrict ourselves to the two-flavor
case of the light up- and down-quarks and employ the simplest
version of the effective chiral Lagrangian with pions and nucleons
as the only active degrees of freedom. Contributions of the
1(1232) isobar to the nuclear potentials are discussed inOrdonez
et al. [31], Kaiser et al. [32], Krebs et al. [33], Epelbaum
et al. [34, 35], and Krebs et al. [36]. The effective Lagrangian
involves all possible interactions between pions and nucleons
compatible with the symmetries of QCD and is organized
in powers of derivatives and quark (or equivalently pion)
masses. Pions correspond to the (pseudo) Nambu-Goldstone
bosons of the spontaneously broken axial generators and thus
transform nonlinearly with respect to chiral SU(2)L×SU(2)R
transformations. The effective Lagrangian can be constructed in
a straightforward way using covariantly transforming building
blocks defined in terms of the pion fields [37, 38]. All applications
reviewed in this paper rely on a non-relativistic treatment of
the nucleon fields and make use of the heavy-baryon formalism
to eliminate the nucleon mass m from the leading-order
Lagrangian. The individual terms in the effective Lagrangian are
multiplied by the corresponding coupling constants, commonly
referred to as low-energy constants (LECs), which are not fixed
by the symmetry and typically need to be determined from
experimental data. The most accurate currently available nuclear
potentials at fifth order in the chiral expansion, i.e., at N4LO,
require input from the following effective Lagrangians (with each
line containing the contributions with a fixed number of the

1The precise meaning of consistency of many-body forces is defined in sections 2

and 4.2.

nucleon fields)

Leff = L(2)
π (Mπ , Fπ )+ L(4)

π (l1,...,7)

+ L
(1)
πN(gA)+ L

(2)
πN(m, c1,...,7)+ L

(3)
πN(d1,...,23)+ L

(4)
πN(e1,...,118)

+ L
(0)
NN(CS,CT)+ L

(2)
NN(C1,...,7)+ L

(4)
NN(D1,...,12)+ L

(1)
πNN(D)+ . . .

+ L
(0)
NNN(E)+ L

(2)
NNN(E1,...,10), (1)

whereMπ and Fπ are the pionmass and decay constant2, gA is the
nucleon axial-vector coupling while li, ci, di, ei, Ci, D, Di, E, and
Ei are further LECs. The superscript n ofL

(n) denotes the number
of derivatives and/or Mπ -insertions and is sometimes referred
to as the chiral dimension. Notice that we only show new LECs
that appear in the corresponding Lagrangians and suppress the
dependence on the LECs appearing at lower orders. The pionic
Lagrangian can be found in Gasser and Leutwyler [39], LπN

is given in Bernard et al. [40], and Fettes et al. [41], L
(0)
NN was

introduced in Weinberg [1, 2], L
(2)
NN can be found in Epelbaum

et al. [42], and Girlanda et al. [43], the minimal form of L
(4)
NN is

given in Reinert et al. [17], L
(1)
πNN and L

(0)
NNN are discussed in

Epelbaum et al. [44] while L
(2)
NNN was constructed in Girlanda

et al. [45]. Notice further that the chiral symmetry breaking
terms ∝ M2

π are not shown explicitly in LNN and LNNN. For
calculations at the physical value of the quark masses, their
contributions are absorbed into the LECs listed in Equation (1).
We have, furthermore, restricted ourselves in this equation to
isospin-invariant terms for the Lagrangians involving two and
three nucleons. The single-nucleon Lagrangian LπN does involve
isospin-breaking contributions due to the quark mass difference
and can be extended to include virtual photon effects [46, 47].
The ellipses in the second-to-last line of Equation (1) refer to
higher-order Lagrangians LπNN, which have not been worked
out yet and would be needed to finalize the derivation of the 3NF
at N4LO.

The long-range parts of the nuclear forces emerge from pion
exchange diagrams and can be derived from Lπ and LπN.
Fortunately, only a very restricted set of (linear combinations of)
LECs from these Lagrangians contributes to the πN → πN and
πN → ππN scattering amplitudes, which enter as subprocesses
when deriving the long-range nuclear interactions up to N4LO,

namely c1,...,4 from L
(2)
πN, d1 + d2, d3,5,18, and d14 − d15 from

L
(3)
πN and e14,...,18 from L

(4)
πN. Here, we made use of the fact that

the contributions from the LECs l3, e19,...,22, and e35,...,38 can be
absorbed into the appropriate shifts of the LECs ci [48]. All these
πN LECs can nowadays be reliably extracted by matching the
πN scattering amplitude from the recent Roy-Steiner equation
analysis [49] with ChPT at the subthreshold point [50], see
also Siemens et al. [51] for an alternative strategy. Thus, the
long-range nuclear interactions are completely determined by
the spontaneously broken approximate chiral symmetry of QCD
and experimental/empirical information on the πN system in a
parameter-free way. The two- and three-nucleon interactions

2Strictly speaking,Mπ is to be understood as the pion mass to leading order in the

chiral expansion while Fπ and other parameters in the effective Lagrangian refer

to the corresponding LECs in the chiral limit of vanishing light quark masses.
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in the last two lines of Equation (1) parameterize the short-
range part of the nuclear forces, and the corresponding LECs
have to be determined from NN scattering and three- or more-
nucleon observables.

In the single-nucleon sector, the effective Lagrangian Lπ +
LπN can be used to systematically compute the scattering
amplitude in perturbation theory by applying the chiral
expansion, a simultaneous expansion in particles’ external three-
momenta p ≡ |Ep | and around the chiral limit Mπ → 0.
The importance of every Feynman diagram is estimated by
counting powers of the soft scales and applying the rules of
naive dimensional analysis (NDA). The expansion parameterQ ∈
{p/3b, Mπ/3b} is determined by the breakdown scale3b, which
may (optimistically) be expected to be of the order of the ρ-
meson mass3. At every order in the chiral expansion only a finite
number of Feynman diagrams need to be evaluated. For more
details on ChPT in the 1N sector see the review article [53].

Contrary to the 1N case, the NN S-wave scattering amplitude
exhibits poles in the near-threshold region corresponding to the
bound state (deuteron) and the virtual state in the 1S0 channel,
which signal the breakdown of perturbation theory. In this
context, it was pointed out by Weinberg that the contributions
of multi-nucleon ladder diagrams are enhanced compared to
the estimation based on the chiral power counting due to the
appearance of pinch singularities (in the m → ∞ limit) [1,
2]. Weinberg also argued that the nucleon mass needs to be
counted as m ∼ 32

b
/Mπ ≫ 3b in order to formally justify the

need to perform a non-perturbative resummation of the ladder
contributions. Given that the ladder diagrams are automatically
resummed by solving the few-nucleon Schrödinger equation,
Weinberg’s chiral EFT approach to low-energy nuclear systems,
perhaps not surprisingly, resembles the quantum mechanical
A-body problem

[( A
∑

i=1

−1i

2m
+O

(

m−3
)

)

+V2N+V3N+V4N+ . . .

]

|9〉 = E|9〉,

(2)
where 1i is the Laplace operator acting on the nucleon i. The
nuclear potentials V2N, V3N, . . . receive contributions from
diagrams that cannot be reduced to ladder iterations and are
calculable in a systematically improvable way within ChPT.

Among the many attractive features, the approach outlined
above allows one to maintain consistency between nuclear
forces and exchange current operators which are scheme-
dependent quantities. To illustrate the meaning and importance
of consistency consider the Feynman diagram on the left-hand
side (l.h.s.) of the equality shown in Figure 1 as an example.
The corresponding (on-shell) contribution to the scattering
amplitude features both a reducible (i.e., of a ladder-type)
and irreducible pieces as visualized in the figure. Reducible
contributions to the amplitude are resummed up to an infinite
order when solving the Faddeev equation corresponding to
Equation (2). In doing so, the diagrams corresponding to its
zeroth and first iterations shown in the figure must match

3An upper bound for 3b is set by the scale 4πFπ emerging from pion loops [52].

FIGURE 1 | Representation of the on-shell scattering amplitude from the

one-pion-two-pion-exchange Feynman diagram (left) in terms of iterations of

the Faddeev equation (right). Gray-shaded rectangles visualize the

corresponding two- and three-nucleon potentials V1π
2N , V

2π , 1/m
3N , and V2π−1π

3N

while G0 denotes the free resolvent operator for non-relativistic nucleons.

the result obtained from the Feynman diagram when taken
on the energy shell. The iterative contribution from the first
graph on the right-hand side of the depicted equality, however,
involves NN and 3N potentials, whose off-shell behavior is
scheme dependent. Also the 3NF corresponding to the last
diagram is scheme dependent (even on the energy shell) [54],
and only a consistent choice of the involved two- and three-
nucleon potentials guarantees the validity of matching for the
scattering amplitude. This can indeed be verified explicitly using

the expressions for the 3NFs V
2π , 1/m
3N from Equations (4.9) to

(4.11) of Bernard et al. [55] and V2π−1π
3N from Equations (2.16)

to (2.20) of Bernard et al. [54] and employing DR to evaluate
loop integrals4.

Clearly, DR is impractical for a numerical solution of the A-
body problem and is usually replaced by cutoff regularization.
Renormalization of the Schrödinger equation in the context
of chiral EFT is a controversial and heavily debated topic,
see Lepage [56], Pavon Valderrama and Ruiz Arriola [57],
Nogga et al. [58], Birse [59], Epelbaum and Meißner, [60],
Epelbaum and Gegelia [61], Long and Yang [62], Valderrama
[63], Epelbaum et al. [7], and Hammer et al. [6] for a range
of opinions. The essence of the problem is related to the non-
renormalizable nature of the Lippmann-Schwinger (LS) equation
for NN potentials truncated at a finite order in the chiral
expansion. Except for a few cases, such as the leading-order
(LO) equation in pionless EFT and in chiral EFT in spin-singlet
channels, ultraviolet (UV) divergences emerging from the loop
expansion of the scattering amplitude cannot be absorbed into
redefinitions of parameters appearing in the truncated potentials
[7, 64]. The problem can be avoided by treating the one-pion
exchange (OPE) and higher-order contributions to the potential
in perturbation theory using e.g., the systematic power counting
scheme proposed by Kaplan et al. [65], but the resulting approach
unfortunately fails to converge (at least) in certain spin-triplet
channels [66, 67] (see also [68] for a recent discussion). A
renormalizable framework with the one-pion exchange potential
(OPEP) treated non-perturbatively was proposed in Epelbaum
and Gegelia [69] (see also [70]), based on a manifestly Lorentz
invariant form of the effective Lagrangian. This approach

4Notice that the contributions from diagrams shown in Figure 1 are finite in DR.
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requires a perturbative inclusion of higher-order contributions to
the potential in order to maintain renormalizability (which may
lead to convergence issues in some channels [71]) but has not
been systematically explored beyond LO yet.

Throughout this work we employ a finite-cutoff version of
nuclear chiral EFT in the formulation of Lepage [56], which is
utilized in most of the applications available today. This is so far
the only scheme, that has been advanced to high chiral orders and
successfully applied to a broad range of few- and many-nucleon
systems. Below, we briefly summarize the basic steps involved
in the calculation of nuclear observables within this framework.
In the following sections, all four steps outlined below will be
discussed in detail.

i. Derivation of nuclear forces and current operators from
the effective chiral Lagrangian. This can be achieved by
separating out irreducible contributions to the A-nucleon
scattering amplitude that cannot be generated by iterations
of the dynamical equation using various methods outlined
in section 3. The derivations are carried out in perturbation
theory using the standard chiral power counting. In contrast
to ChPT for the scattering amplitude, special efforts are
needed to arrive at renormalized nuclear potentials. This
requires that all UV divergences from irreducible loop
diagrams are canceled by the corresponding counter terms.
The renormalizability requirement imposes strong constraints
on the unitary ambiguity of nuclear forces and currents [48,
72–75].

ii. Introduction of a regulator for external (off-shell) momenta
of the nucleons in order to make the A-body Schrödinger
equation well-behaved. Given the lack of counter terms needed
to absorb all UV divergences from iterations of the dynamical
equation with a truncated potential, the (momentum-space)
cutoff 3 must not be set to arbitrarily high values but should
be kept of the order of the breakdown scale, 3 ∼ 3b

[7, 56, 61]. The accessible cutoff window is, in practice,
further restricted by the need to avoid the appearance
of spurious deeply bound states which provide a severe
complication for applications beyond the NN system [76]
and a preference for soft interactions in order to optimize
convergence of ab initiomany-bodymethods. Given the rather
restricted available cutoff window, it is important to employ
regulators that minimize the amount of finite-cutoff artifacts,
see section 4 for discussion. While the regulator choice for
V2N still features a high degree of ambiguity, maintaining the
relevant symmetries and consistency with regularized many-
body forces and exchange currents beyond tree level represents
a highly nontrivial task [77, 78] (see section 4 for an example
and discussion).

iii. Renormalization of the few-nucleon amplitude by fixing
the short-range multi-nucleon interactions from low-energy
experimental data (see section 6 for details). This allows
one to express the calculated scattering amplitude in terms
of observable quantities instead of the bare LECs CS,T(3),
Ci(3), Di(3), D(3), E(3), Ei(3), . . ., and amounts to implicit
renormalization of the amplitude. Notice that in the pion and
1N sectors of ChPT, renormalization is usually carried out

explicitly by splitting the bare LECs li, di, ei, . . ., into the (finite)
renormalized ones and counter terms, e.g., di = dri (µ)+Ri(µ).
Here, µ denotes the renormalization scale while Ri are the
corresponding counter terms, which diverge in the limit of a
removed regulator (i.e., 3 → ∞ in the cutoff regularization
or the number of dimensions d → 4 in DR). Such a
splitting is not unique as reflected by the scale µ, and the
appropriate choice of renormalization conditions is essential
to maintain the desired power counting, i.e., to ensure the
appropriate scaling behavior of renormalized contributions
to the amplitude leading to a systematic and self-consistent
scheme (see e.g., [79, 80]). In the few-nucleon sector, the
non-perturbative resummation of pion-exchange potentials
via Equation (2) can only be carried out numerically5, which
leaves the implicit renormalization outlined above as the only
available option. Notice that contrary to the renormalized
LECs lri (µ), d

r
i (µ), . . ., the bare LECs CS,T(3), Ci(3), . . ., must

be re-determined at every order in the expansion.
iv. Estimation of the truncation uncertainty and a-posteriori

consistency checks of the obtained results. These include, among
others, testing the naturalness of the extracted LECs [17],
making error plots for phase shifts as suggested in Lepage [56],
and Grießhammer [81], verifying a reduced residual 3-
dependence of observables (within a specified cutoff range)
upon including higher-order short-range interactions, see
e.g., Figure 4 of Epelbaum [82], and confronting the
contributions of many-body interactions and/or exchange
currents with estimations based on the assumed power
counting [83, 84]. Our approach to error analysis is outlined
in section 5, while selected consistency checks are discussed in
section 6.

Before closing this section, several remarks are in order. First,
we emphasize that the approach outlined above is applicable at
the physical quark masses. Quark mass dependence of nuclear
observables can be studied more efficiently in the renormalizable
chiral EFT framework of Epelbaum and Gegelia [69, 85],
see also Baru et al. [86, 87], and Lähde et al. [88] for an
alternative method. Secondly, the validity (in the EFT sense)
of the finite-cutoff EFT formulation outlined above has been
demonstrated numerically by means of the error plots [56, 89]
and analytically [61] for toy-models with long-range interactions.
It can also be easily verified in pionless EFT. For the case of
exactly known non-singular long-range potentials, the employed
approach reduces in the NN sector to the well-known modified
effective range expansion [90]. The relation between the choice
of renormalization conditions and power counting is discussed
within pionless EFT in Epelbaum et al. [91]6. That paper
provides an explicit example of the choice of subtraction
scheme (i.e., renormalization conditions), which leads to a
self-consistent EFT approach for two particles with both a
natural and unnaturally large scattering length, while respecting
the NDA scaling of renormalized LECs. Notice that in all

5See, however, Kaplan [68] for analytical results in the chiral limit.
6For pionless EFT or chiral EFT with perturbative pions, the NN amplitude can be

calculated analytically, and renormalization can be carried out explicitly.
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applications reviewed in this article, few-nucleon short-range
interactions are counted according to NDA. A number of authors
advocate alternative approaches, in particular by inferring the
importance of short-range operators from the requirement of
3-independence of the scattering amplitude at arbitrarily large
values of3 as articulated in detail in Hammer et al. [6]. However,
performing the loop expansion of the solution of the LS equation
in spin-triplet channels for the resummed OPEP shows that
the scattering amplitude is only partially renormalized in spite
of the fact that it admits, in some cases, a finite 3 → ∞
limit at a fixed energy [7]. The danger of choosing 3 ≫ 3b

in such partially renormalized non-perturbative expressions is
demonstrated using an exactly solvable model in Epelbaum and
Gegelia [61].

3. CHIRAL PERTURBATION THEORY FOR
NUCLEAR POTENTIALS

One method to decouple pion-nucleon and purely nucleonic
subspaces of the Fock space, thereby reducing a quantum field
theoretic problem to a quantum mechanical one, is the unitary
transformation (UT) technique. Let η and λ be the projection
operators onto the purely nucleonic subspace of the Fock space
and the rest, respectively. The time-independent Schrödinger
equation can be written in the form

(

ηH η ηH λ

λH η λH λ

) (

η |9〉
λ |9〉

)

= E

(

η |9〉
λ |9〉

)

, (3)

where E denotes the eigenenergy of the πN system. The idea
is to apply a UT to the Hamilton operator H in order to block
diagonalize the matrix on the l.h.s. of Equation (3) leading to

[

U†HU
]

U†|9〉 = EU†|9〉. (4)

The decoupling requirement is given by

ηU†HU λ = λU†HU η = 0. (5)

To construct the UT U we first introduce a Møller operator
� [92], which is defined by

|9〉 = �η|9〉 (6)

with the requirement

� = �η. (7)

Here, |9〉 refers to few-nucleon scattering states below pion
production threshold. See Lindgre [93] for a discussion of the
properties of the operator �. The Møller operator reproduces
the original low-energy state out of projected state. By projecting
Equation (6) onto the model space η one obtains the identity

η� = η. (8)

Using Equation (6), we can write the time-independent
Schrödinger equation in the form

(

E−H0

)

�η|9〉 = V|9〉, (9)

where H0 denotes a free Hamiltonian. On the other hand,
projecting the original Schrödinger equation Equation (3) onto
the model space and applying on the resulting equation the
operator �, we obtain

(

E� − �H0

)

η|9〉 = �ηV|9〉. (10)

Subtracting Equation (10) from Equation (9) leads to

[

�,H0

]

η|9〉 =
(

V − �ηV
)

|9〉 =
(

V − �ηV
)

�η|9〉.

This way we obtain a non-linear equation for the Møller
operator �

[

�,H0

]

− V� + �V� = 0. (11)

Defining the operatorA via� = : η+AwithA = λAη, as follows
from Equations (7) and (8), we rewrite Equation (11) in the form

λ
(

H +
[

H,A
]

− AVA
)

η = 0. (12)

The UT U was parameterized by Okubo [94] in terms of the
operator A via

U =
(

η (1+ A†A)−1/2 −A†(1+ AA†)−1/2

A(1+ A†A)−1/2 λ(1+ AA†)−1/2

)

. (13)

The resulting transformed Hamiltonian

ηU†HUη = (�†�)1/2ηH �(�†�)−1/2, (14)

leads to the effective potential defined via

VUT
eff

: = ηU†HUη −H0. (15)

Obviously, the Okubo transformation in Equation (13) is not
the only possibility to obtain a block-diagonalized Hamiltonian.
On top of the transformation U one can always apply e.g., a
UT acting nontrivially on the η-space, thus leaving the
Hamiltonian block-diagonal. This freedom has been exploited
in a systematic manner to construct renormalizable/factorizable
3NFs and four-nucleon forces (4NFs) in chiral EFT
in Epelbaum [72], Bernard et al. [54, 55], and
Krebs et al. [48, 95].

To derive the potential VUT
eff

from the effective chiral
Lagrangian in Equation (1) one needs to solve the non-linear
decoupling Equation (12) for the operator A. This can be done
perturbatively using NDA [3] to count powers of three-momenta
and pion masses, denoted collectively by Q. For the sake of
definiteness, we restrict ourselves in the following to nuclear
potentials in the absence of external sources. The extension
to the current operators is straightforward and discussed in
details in Krebs et al. [75]. The irreducible contributions of
any connected Feynman diagram scale as Qν with ν = −2 +
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∑

i Viκi, where Vi denotes the number of vertices of type i
and κi is the inverse mass dimension of the corresponding
coupling constant, κi = di + 3

2ni + pi − 4. Here, di is the
number of derivatives and/or Mπ -insertions, while ni and pi
denote the number of nucleon and pion fields, respectively7. This
particular form of the power counting allows one to formulate
the chiral expansion in the form that is completely analogous
to the expansion in powers of coupling constants. It is thus
particularly well suited for algebraic approaches such as the
method of UT. Once the operator A is available, one can perform
the chiral expansion of Equation (14) to construct the effective
potential order-by-order.

The chiral expansion of the nuclear forces is visualized
in Figure 2. Below, we briefly discuss isospin symmetric
contributions starting from the leading order (LO) Q0. The
only contributions at this order emerge from the OPEP and
two contact interactions ∝ CS,T [1, 2]. The first corrections
at order Q2 (NLO) involve the leading two-pion exchange
potential (TPEP) [31, 96, 97] and 7 short range interactions
∝ Ci. At order Q3 (N2LO), further corrections to the TPEP
∝ ci need to be taken into account [96]. At the same order
one has the first non-vanishing contributions to the 3NF. They
are given by the two-pion exchange diagram involving the
LECs ci and two shorter-range tree-level diagrams involving
the LECs D and E [44, 98]. At order Q4 (N3LO), the NN
potential receives the contributions from the leading three-
pion exchange [99–101], further corrections to the TPEP [102,
103] and 12 new short-range interactions ∝ Di [17]. At the
same order, there are various one-loop corrections to the 3NF
[54, 55, 104] and the first contributions to the 4NFs [72, 73],
which do not involve unknown parameters. Finally, at order
Q5 (N4LO), the NN potential receives corrections to the three-
pion exchange ∝ ci [101] and further contributions to the
TPEP [105]. No additional unknown parameters appear in
the isospin-conserving part of the NN force at this order.
The 3NF also receives corrections at N4LO, most of which
have already been worked out using DR [45, 48, 95]. Notice
that the 3NF involves at this order a number of new short-
range operators. Work is still in progress to derive the
remaining 3NF and 4NF at N4LO. We further emphasize that
all calculations mentioned above are carried out using DR or
equivalent schemes.

The effective potential VUT
eff

leads, by construction, to the
same spectrum and on-shell scattering matrix as the original
untransformed potential V [106, 107]. There are, however, other
possibilities to define the effective potential without changing on-
shell physics. One example is an energy-independent potential
defined by

VEI
eff = ηV �η. (16)

7Alternatively (but equivalently), the chiral order ν of a connected, N-nucleon

irreducible diagram with L loops can be expressed as ν = −4+2N+2L+∑

i Vi1i

with 1i = di + ni/2− 2.

The proof that VEI
eff

of Equation (16) leads to the same spectrum
is trivial:

(

ηH0 η + ηV η + ηV λ
)

|9〉 = E η|9〉,
(

ηH0 η + ηV η + ηV λ�
)

η|9〉 = E η|9〉,
(

ηH0 η + ηV �η
)

η|9〉 = E η|9〉, (17)

where we used Equations (6) and (8) in the first and second
lines, respectively. Note that the potential VEI

eff
is manifestly non-

hermitian. However, due to its simplicity, it is widely used in the
literature [92]. This example shows that there is a considerable
freedom to define nuclear potentials. Nuclear forces and current
operators constructed by the Bochum-Bonn group (see e.g., [17,
21, 22, 48, 54, 55, 73–75, 95, 97]), are obtained using the method
of UT. The JLab-Pisa group utilizes a different approach by
starting with the on-shell transfer matrix T and “inverting” it
to obtain the effective potential (see e.g., [108–111]). This is
carried out in perturbation theory by counting the nucleon
mass viam ∼ 3b

T = T(0) + T(1) + T(2) + . . . , (18)

where the superscripts indicate the chiral order Qn. The same
counting scheme is used to organize the contributions to
effective potential:

v = v(0) + v(1) + v(2) + . . . . (19)

The inversion of the LS equation is carried out iteratively to yield

v(0) = T(0) , v(1) = T(1) − v(0)G0v
(0) , . . . . (20)

Obviously, the knowledge of the on-shell transfer matrix is
insufficient to perform the inversion, and one needs to specify its
off-shell extension. Notice that the potentials constructed in this
way are not necessarily hermitian, and thus there is no guarantee
that they are unitarily equivalent to the ones derived using the
UT technique. It should, however, always be possible to find a
similarity transformation that relates one potential to another.

This is exemplified with the potential v
(3)
2π (ν = 1) in Equation (20)

of Pastore et al. [109], where ν is an arbitrary phase, which is
manifestly non-hermitian. Using the similarity transformation
in Equation (28) of that paper8, it can be transformed to the

hermitian potential v
(3)
2π (ν = 0), that is actually employed in the

current version of the interactions developed by the JLab-Pisa
group. With this choice, their potentials are unitarily equivalent
to the ones of the Bochum-Bonn group.

4. REGULARIZATION

4.1. Semilocal Momentum-Space
Regularization of the NN Potential
In this review article we focus on the semilocal regularization
approach of the chiral nuclear potentials carried out in

8The claim in Pastore et al. [109] that the transformation eiU in Equation (28) of

that paper is unitary is incorrect since the operator iU(1)(ν) from Equation (28) is

not antihermitian.

Frontiers in Physics | www.frontiersin.org 6 April 2020 | Volume 8 | Article 9812

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Epelbaum et al. High-Precision Nuclear Forces From Chiral EFT

FIGURE 2 | Hierarchy of nuclear forces at increasing orders in chiral expansion in the Weinberg scheme. Solid and dashed lines refer to nucleons and pions,

respectively. Solid dots, filled circles, filled squares, filled diamonds, and open squares refer to vertices from the Lagrangian in Equation (1) of dimension 1 = 0, 1, 2, 3,

and 4, respectively.

momentum space [17]. For the purpose of regularization we will
consider the two-nucleon interaction consisting of two distinct
parts: the short-range contact interaction part and the long-range
pion-exchange part. In this context, the term “semilocal” refers
to the application of a nonlocal regulator for the former and
a local regulator for the latter. In particular, the momentum-
space matrix elements of the contact potential are multiplied by a
simple nonlocal Gaussian regulator

〈Ep ′|Vcont|Ep 〉reg = 〈Ep ′|Vcont|Ep 〉 e−
p′2+p2

32 . (21)

Here and in what follows, p ≡ |Ep | and p′ ≡ |Ep ′|. Such kinds
of nonlocal regulators (albeit with different powers of p, p′, and
3) have been and still are employed as the main method of
regularization for the entire potential including the long-range
interactions (see e.g., [23, 27, 112–115])9.

However, in Epelbaum et al. [21, 22] it was shown that
the amount of long-range cutoff artifacts can be significantly
reduced by employing a local regulator for pion-exchange
potentials. Notice that pion-exchange contributions, except for

9Notice that the aforementioned potentials (except the one of [112]) additionally

employ spectral function regularization (SFR) [116, 117] of the TPEP in the

form of a sharply cut-off spectral integral in order to suppress its remaining

unphysical short-distance behavior. Notice, however, that the application of a

nonlocal regulator exp(−(p2n + p′2n)/32n) with suitably chosen n is sufficient to

arrive at UV-finite iterations of the potential.

some relativistic corrections, give rise to local potentials. We
require the regulator to preserve the long-range part of the
interaction, which is unambiguously determined in chiral EFT.
More precisely, for3≫Mπ , the regulator is required not to affect
the large-distance behavior of the n-pion exchange potential
Vnπ (r) ∼ exp(−nMπ r) f (r), with f (r) being an irrational
function, up to exponentially small corrections that vanish in
the limit 3 → ∞. Inspired by Rijken [118], this is achieved
in our momentum-space approach by regularizing the static
propagators of pions exchanged between different nucleons with
a local Gaussian cutoff via

1

l2 +M2
π

→ 1

l2 +M2
π

e
− l2+M2

π

32 , (22)

with l = |El| and El denoting the three-momentum of the
exchanged pion. The introduction of the Gaussian form factor
in the pion propagators leads to properly regularized long-
range potentials that are finite at short distances in coordinate
space. In order to have a clean separation of the long-
range pion-exchange potential from the short-range contact
interactions, we made use of the available contact interactions
to subtract out the remaining (finite) admixtures of short-range
interactions [17]. The fixed coefficients of these subtractions
are determined from the requirement that the corresponding
coordinate-space potential and as many derivatives thereof as
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allowed by power counting vanish at the origin. This convention
leads to a qualitatively similar regularization as the coordinate-
space regulator previously employed in Epelbaum et al. [21, 22].

Application of these ideas to the OPEP is straightforward and
leads, in the limit of exact isospin symmetry, to

V1π
2N,3(Mπ ) = − g2A

4F2π
τ 1 · τ 2

( Eσ1 · Eq Eσ2 · Eq
q2 +M2

π

+ C(Mπ ) Eσ1 · Eσ2
)

e
− q2+M2

π

32 , (23)

where q ≡ |Eq | ≡ |Ep ′ − Ep | and Eσi (τ i) are the Pauli spin (isospin)
matrices of the i-th nucleon. Here, the static pion propagator
has been regularized according to Equation (22) and a likewise-
regularized LO contact interaction has been added to the OPEP.
Its coefficient C(Mπ ),

C(Mπ ) = −
3

(

32 − 2M2
π

)

+ 2
√

πM3
π e

M2
π

32 erfc
(

Mπ

3

)

333
, (24)

with erfc(z) denoting the complementary error function, is fixed
by the requirement that the spin-spin part of the OPEP in
coordinate space vanishes at the origin. For the regularization of
the TPEP, we start with a generic three-dimensional loop integral
I(Eq ) arising in the derivation of the TPEP using e.g., the method
of unitary transformation as detailed in the previous section or
comparable approaches like time-ordered perturbation theory
or S-matrix-based methods [96]. As discussed in Rijken [118],
the pion energy denominators in the corresponding 1-loop
expressions can always be rewritten into an integral over a mass
parameter λ involving a product of two static pion propagators
with mass

√

M2
π + λ2

I(Eq ) =
∫ ∞

0
dλ

∫

d3l1

(2π)3
d3l2

(2π)3
(2π)3δ(Eq−El1 −El2)

1

(l21 +M2
π + λ2)(l22 +M2

π + λ2)
× . . . , (25)

where El1 and El2 denote the three-momenta of the exchanged
pions and the ellipses refer to additionalmomentum-spin-isospin
structures arising from the vertices of a particular diagram. With
the pion propagators factorized in this a way, we can regularize
them by applying the prescription specified in Equation (22)
to each of them. Although the introduction of the regulator
obviously affects the resulting expression for the TPEP, there is
no need to rederive them explicitly. Indeed, the scalar functions
accompanying the spin-isospin operators in the unregularized
TPEP can be expressed using the dispersive representation

V2π
2N(q) =

2

π

∫ ∞

2Mπ

µ dµ
ρ(µ)

q2 + µ2
, (26)

with the spectral functions ρ(µ) = ℑ(V2π (q))|q=0+−iµ which

are readily available up to N4LO. For the explicit expressions
of the TPEP, additional subtractions of short-range terms have
to be performed to arrive at a convergent spectral integral in

Equation (26) whose number depends on the chiral order of the
contribution at hand. Introducing the pion propagator regulators
in Equation (25), the regularized generic spectral integral of
Equation (26) is replaced by

V2π
2N,3(q) = e

− q2

232
2

π

∫ ∞

2Mπ

µ dµ
ρ(µ)

q2 + µ2
e
− µ2

232 , (27)

see Reinert et al. [17] for more details. The resulting potential
V2π
2N,3(q) coinsides with the one obtained by explicitly evaluating

the loop integral with regularized pion propagators up to a
short-range function.

Expanding the exponentials in inverse powers of the cutoff
in either Equation (23) or Equation (27), one observes that
the regulator indeed does not affect the long-range part of the
potential to any order, but generates an infinite series of short-
range terms polynomial in q2. Since an increasing number of
contact interactions of this form with freely adjustable LECs
become available with increasing chiral order, the perturbative
restoration of cutoff-independence is also obvious in this scheme.

The expressions of the regularized and subtracted TPEP can
be found in Reinert et al. [17]. Here we restrict ourselves to the
example of the isospin-independent central part of the leading
TPEP at NLO which is given by

W
(2)
C,3(q) = e

− q2

232
2

π

∫ ∞

2Mπ

dµ

µ3
ρ
(2)
C (µ)

(

q4

µ2 + q2
+ C2

C,1(µ)+ C2
C,2(µ) q

2

)

e
− µ2

232 , (28)

with the spectral function

ρ
(2)
C (µ) =

√

µ2 − 4M2
π

768πF4πµ

(

4M2
π (5g

4
A − 4g2A − 1)

−µ2(23g4A − 10g2A − 1)+ 48g4AM
4
π

4M2
π − µ2

)

. (29)

Two subtractions have been performed in order to render the
unregularized spectral integral in Equation (28) convergent and
according to our convention, we have additionally fixed the
subtraction coefficients C2

C,1(µ) and C2
C,2(µ) by the requirement

that W
(2)
C,3(r)

∣

∣

∣

r=0
= d2

dr2
W

(2)
C,3(r)

∣

∣

∣

r=0
= 0. [The first

derivative of W
(2)
C,3(r) vanishes at the origin regardless of

the subtraction coefficients]. Figure 3 shows the ratio of the
regularized and unregularized expressions in Equation (28) in
coordinate space. As one can see, the behavior of the regularized
potential is smoother when fixing the subtraction coefficients by
the convention explained above. Also note that the potential with
C2
C,1(µ) = C2

C,2(µ) = 0 does not vanish at the origin10.

4.2. Regularization and Consistency of
Nuclear Forces
Having defined the regularization scheme in the NN sector, we
now turn to regularization of the 3NF. The expressions for the

10This is not visible in Figure 3 since the unregularized potential WC,∞(r) is

singular at r = 0.
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FIGURE 3 | Ratio of the regularized and unregularized central part of the

leading TPEP in coordinate space for C2
C,1(µ), C

2
C,2(µ) fixed as discussed in the

text and C2
C,1(µ) = C2

C,2(µ) = 0.

3NFs described in section 3 have been worked out completely
through N3LO using DR. They are off-shell consistent with the
unregularized NN interactions reviewed in that section in the
way explained in section 2. To arrive at regularized 3NFs, it is
tempting to apply some kind of multiplicative regulators to the
expressions of the 3NF derived using DR. Such a naive approach,
however, leads to a violation of the chiral symmetry at N3LO and
destroys the consistency between two- and three-nucleon forces
after regularization.

To illustrate the problem consider the diagrams shown in
Figure 1, which have already been discussed in section 2. The
3NF entering the first graph on the right-hand side (r.h.s.) is given
by Bernard et al. [55]

V
2π , 1/m
3N = i

g2A
32mF4π

Eσ1 · Eq1 Eσ3 · Eq3
(q21 +M2

π )(q
2
3 +M2

π )
τ 1 · (τ 2 × τ 3)

(2Ek1 · Eq3 + 4Ek3 · Eq3 + i [Eq1 × Eq3] · Eσ2) , (30)

with Eqi = Ep ′
i − Epi, Eki = 1/2

(Ep ′
i − Epi

)

, and Epi, (Ep ′
i ) the initial

(final) momenta of the i-th nucleon. The complete expression for
the relativistic corrections to the 3NF at N3LO can be found in
Bernard et al. [55]. We now consider the first iteration ofV

2π , 1/m
3N

with the static OPEP

V1π
2N = −

(

gA

2Fπ

)2

τ 1 · τ 2
Eσ1 · Eq Eσ2 · Eq
q2 +M2

π

(31)

as shown by the first diagram on the r.h.s. of Figure 1. By simply
counting the powers of momenta in the loop integration one
observes that the loop integral is linearly divergent, which leads to
a finite result in DR. As already pointed out in section 2, adding
the DR expression for the 3NF V2π−1π

3N from Equations (2.16)
to (2.20) of Bernard et al. [54] yields (on-shell) the same result
as obtained from calculating the Feynman diagram on the

l.h.s. of Figure 1 as expected for consistent two- and three-
nucleon forces.

We now repeat this exercise using the semilocally regularized
nuclear potentials

V
2π , 1/m
3N,3 = V

2π , 1/m
3N e

− q21+M2
π

32 e
− q23+M2

π

32 ,

V1π
2N,3 = V1π

2N e
− q2+M2

π

32 , (32)

in the calculation of the first diagram on the r.h.s. of Figure 2.
This leads to

V
2π , 1/m
3N,3 G0 V

1π
2N,3 + V1π

2N,3 G0 V
2π , 1/m
3N,3

= 3
g4A

128
√
2π3/2F6π

(τ 2 · τ 3 − τ 1 · τ 3)
Eq2 · Eσ2Eq3 · Eσ3
q23 +M2

π

− 3
g4A

96
√
2π3/2F6π

Eq3 · Eσ3Eq3 · Eσ1 τ 1 · τ 3

q23 +M2
π

+ . . . , (33)

where the ellipses refer to all permutations of the nucleon labels
and terms finite in the 3 → ∞-limit. The linear divergence ∝
Eq3 · Eσ3Eq3 · Eσ1 is canceled by theD counter term in the second 3NF
diagram at N2LO in Figure 2. To cancel the linearly divergent
contribution ∝ Eq2 · Eσ2 one would, however, need to introduce

a vertex in L
(1)
πNN corresponding to a derivative-less coupling

of the pion to the NN systems. Such vertices violate the chiral
symmetry and, being suppressed by powers ofM2

π , cannot appear

in L
(1)
πNN. As a consequence, this linear divergence can not be

absorbed into redefinition of the LECs, and the amplitude on the
r.h.s. of Figure 1 can seemingly not be renormalized (i.e., made
finite in the 3 → ∞ limit). The r.h.s. of the shown equation,
therefore, apparently cannot match the (renormalizable) on-
shell scattering amplitude from the Feynman diagram on the
l.h.s.. The problem can be traced back to mixing the DR when
calculating the 3NF V2π−1π

3N with a cutoff regularization for
the iterative contributions in Equation (33), see Krebs [77] for
another example with the NN axial vector current operator at
N3LO. Indeed, recalculating the loop integral in V2π−1π

3N using
the cutoff-regularized pion propagators leads to

V2π−1π
3N,3 = −3

g4A

128
√
2π3/2F6π

(τ 2 · τ 3 − τ 1 · τ 3)
Eq2 · Eσ2Eq3 · Eσ3
q23 +M2

π

−3
g4A

32
√
2π3/2F6π

Eq3 · Eσ3Eq3 · Eσ1 τ 1 · τ 3

q23 +M2
π

+ . . . , (34)

where the ellipses refer to the finite terms in the 3 →
∞-limit. The problematic linear divergence cancels exactly
and the agreement with the on-shell amplitude from the
Feynman diagram is restored when both consistently regularized
contributions on the r.h.s. of Figure 1 are added together.

One may worry whether the regularization issues discussed
above could also be relevant for NN interactions. Fortunately,
this is not the case since the momentum structure of the NN
contact interactions is not restricted by the chiral symmetry. UV
divergences emerging from iterations of the LS equation can,
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therefore, always be absorbed into redefinition of the bare LECs
CS,T(3), Ci (3), . . ..

In the considered example with the 3N amplitude, the
consistently regularized 3NF could be obtained by simply
recalculating V2π−1π

3N with all pion propagators being regularized
according to Equation (22). This would indeed solve the problem
with the cancelation of linear divergencies at N3LO, but it would
still lead to a violation of the chiral symmetry in diagrams
involving three- and four-pion vertices, which depend on the
parametrization of the pion field. For vertices involving up to four
pion fields, this freedom is represented by a single real parameter
α. In the effective chiral Lagrangian, all pion fields are collected in
an SU(2) matrixU(π), whose most general expression, expanded
in powers of the pion fields, takes the form

U(π) = 1+ i

F
π · τ − 1

2F2
(π · τ )2 − α

i

F3
(π · τ )3

+
(

α − 1

8

)

1

F4
(π · τ )4 + O(π5) . (35)

Clearly, the on-shell amplitude must be independent of the
arbitrary parameter α. Evaluating the 3NF and 4NF with the
regularized pion propagators, however, leads to α-dependent
expressions (for finite values of 3). This shows, perhaps not
surprisingly, that the simplistic approach by regularizing all pion
propagators as described above violates the chiral symmetry. A
possible solution of this problem is provided by the symmetry
preserving higher derivative regularization method introduced
by Slavnov [119], see also Djukanovic et al. [120] and Long and
Mei [121] for recent applications in chiral EFT.

To summarize, we have shown that a naive regularization
of the three- and more-nucleon forces by multiplying the
expressions derived in DR with regulator functions leads to
inconsistencies starting from N3LO, see Krebs [77] for the
same conclusion for two- and more-nucleon charge and current
operators. This problem is by no means restricted to semilocal
cutoffs. To derive many-body forces and currents regularized
consistently with the NN potentials of Reinert et al. [17], the
expressions for the 3NF of Bernard et al. [54, 55] and Krebs et al.
[48], 4NF of Epelbaum [73], and exchange charge and current
operators of Kölling et al. [74, 122] and Krebs et al. [75, 123]
need to be recalculated using e.g., an appropriately chosen higher
derivative regulator at the level of the effective Lagrangian.

5. TRUNCATION ERROR ANALYSIS

Estimating the uncertainty associated with truncations of the
EFT expansion, which typically dominates the error budget (see
section 6), is an important task – in particular since chiral EFT
is being developed into a precision tool. In the past, truncation
errors were often estimated in few-nucleon calculations from a
residual cutoff dependence. This approach, however, suffers from
several drawbacks and does not allow for a reliable estimation
of truncation errors [113]. In Epelbaum et al. [21], we have
formulated a simple algorithm to estimate the size of neglected
higher-order terms based on the available information about the
EFT expansion pattern for any given observable. To be specific,

consider an arbitrary NN scattering observable X at the center
of mass momentum p, which is calculated in chiral EFT up to
the order Qk

X(p) = X(0) + 1X(2) + 1X(3) + . . . + 1X(k) + 1X(k+1) + . . .

≡ X(k) + δX(k). (36)

The corrections 1X(i), 1X(i) = O
(

X(0)Qi
)

, are assumed to be
known explicitly up to the order i = k. The goal is to estimate the
size of neglected higher-order terms δX(k) = ∑

n>k 1X(n). We,
furthermore, assume that the expansion parameter Q is given by

Q = max

(

Meff
π

3b
,

p

3b

)

. (37)

This simple ansatz is motivated by the expectation that at very
low energies, the errors are dominated by the expansion around
the chiral limit. The scale Meff

π , which will be specified below, is
related to the pion mass and controls the convergence rate of
the expansion around the chiral limit. At higher energies one
would, on the other hand, expect the expansion to be dominated
by powers of momenta. This simple picture is in qualitative
agreement with the error plots for NN phase shifts [21], which
show clearly the two different regimes mentioned above, see
Epelbaum [82] for a discussion. It is less clear how to estimate
the relevant momentum scale in bound-state observables.

The algorithm proposed by Epelbaum, Krebs and Meißner
(EKM) in Epelbaum et al. [21] employs Meff

π = Mπ and 3b =
600 MeV based on the estimation from the error plots. It also
assumes the truncation error δX(k) to be dominated by the first
neglected term. The truncation errors at orders Qi, 0 ≤ i ≤ k, are
then estimated via

δX(0) = Q2|X(0)|,
δX(i) = max

2≤j≤i

(

Qi+1|X(0)|, Qi+1−j|1X(j)|
)

for i ≥ 2 , (38)

subject to the additional constraint

δX(i) ≥ max
j,m=i,...,k

(

|X(j) − X(m)|
)

, (39)

which ensures that the estimated errors cannot be smaller
than the known actual higher-order contributions. Notice that
this relation leads, per construction, to overlapping errors at
different orders. In Binder et al. [83], the method was adjusted
to make it applicable to incomplete calculations of few-body
observables based on NN interactions only. The EKM approach
was applied to a broad range of low-energy reactions in the
single-baryon [51, 124–126] as well as few- and many-nucleon
[8, 22, 127–129] sectors. The robustness of this method and some
alternative algorithms are discussed in Binder et al. [130]. The
obvious drawback of the EKM approach is that the estimated
uncertainties do not offer a statistical interpretation.

In Furnstahl et al. [131] andMelendez et al. [132, 133], a more
general and statistically well-founded Bayesian approach was
developed to calculate the probability distribution function (pdf)
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for truncation errors in chiral EFT. The EKM approach was then
shown to correspond to one particular choice of prior probability
distribution for the coefficients in the chiral expansion of X(p). In
Furnstahl et al. [131], the EKMuncertainties for the np total cross
section were found to be consistent with 68% degree-of-belief
(DoB) intervals. The authors of that paper, furthermore, found
using the semilocal coordinate-space regularized (SCS) potentials
of Epelbaum et al. [21, 22] the assumed value of the breakdown
scale of 3b = 600 MeV to be statistically consistent for not too
soft regulator values, see also Melendez et al. [132] for a related
discussion. Recently, a slightly modified version of the Bayesian
approach developed in Furnstahl et al. [131] and Melendez et
al. [132] was applied by the LENPIC Collaboration to study NN
and 3N scattering [84]. Below, we briefly outline the Bayesian
model C̄650

0.5−10 proposed in that paper, which will be employed
throughout section 6. For more details on the Bayesian approach
the reader is referred to the original publications [131, 132].

We begin with rewriting Equation (36) in terms of
dimensionless expansion coefficients ci by introducing a
(generally dimensionfull) scale Xref via

X = Xref

(

c0 + c2Q
2 + c3Q

3 + c4Q
4 + . . .

)

, (40)

where11

Xref =











Xref = max
(

|X(0)|, Q−2|1X(2)|
)

for k = 2 ,

Xref = max
(

|X(0)|, Q−2|1X(2)|, Q−3|1X(3)|
)

for k ≥ 3 .

(41)
This choice of the reference scale was found in Epelbaum
et al. [84] to be more robust for observables that depend on
continuously varying parameters, as compared with the choice
of Xref = |X(0)| adopted in Melendez et al. [132]. Alternatively,
correlations between observables (and thus the coefficients ci)
evaluated at different values of continuously varying parameters
can be taken into account using Gaussian processes [133]. Except
for the coefficient cm = 1, m ∈ {0, 2, 3}, used to set the scale
Xref, the expansion coefficients ci are assumed to be distributed
according to some common pdf pr(ci|c̄) with a hyperparameter c̄.
Performing marginalization over h chiral orders k + 1, . . . , k +
h, which are assumed to dominate the truncation error, the
probability distribution for the dimensionless residual 1k ≡
∑∞

n=k+1 cnQ
n ≃ ∑k+h

n=k+1 cnQ
n to take a value 1k = 1, given

the knowledge of {ci≤k}, is given by Melendez et al. [132]

prh(1|{ci≤k}) =
∫ ∞
0 dc̄ prh(1|c̄) pr(c̄)∏i∈A pr(ci|c̄)

∫ ∞
0 dc̄ pr(c̄)

∏

i∈A pr(ci|c̄)
, (42)

where the set A is defined as A = {n ∈ N0 | n ≤ k ∧ n 6= 1 ∧ n 6=
m} and

prh(1|c̄) ≡





k+h
∏

i=k+1

∫ ∞

−∞
dci pr(ci|c̄)



 δ

(

1−
k+h
∑

j=k+1

cjQ
j

)

. (43)

11No meaningful uncertainty estimation can be carried out within the Bayesian

approach at LO.

The model C̄650
0.5−10 utilizes the Gaussian prior of “set C” from

Melendez et al. [132],

pr(ci|c̄) =
1√
2π c̄

e−c2i /(2c̄
2),

pr(c̄) = 1

ln(c̄>/c̄<)

1

c̄
θ(c̄− c̄<) θ(c̄> − c̄) , (44)

for which the integrals in Equation (42) can be performed
analytically [132], and uses the values of h = 10, c̄< = 0.5 and
c̄> = 10. Following Epelbaum [134], the scales that control the
expansion parameter are set to Meff

π = 200 MeV and 3b =
650 MeV. The sensitivity of the estimated uncertainties to the
choice of prior pdf is discussed in Epelbaum et al. [84], Furnstahl
et al. [131], and Melendez et al. [132]. One generally finds minor
dependence on the prior pdf if a sufficient amount of information
on the coefficients ci is available.

6. SELECTED RESULTS

6.1. The Two-Nucleon System
We now turn to the calculation of phase shifts and observables in
the two-nucleon system. While the derivation and regularization
of the nuclear forces have been outlined in the previous sections,
we also need to specify the numerical values of all relevant
physical quantities and LECs to perform actual calculations. For
pion-exchange contributions to the potential, all LECs can be
extracted from processes involving at most one nucleon, making
it parameter-free. In the TPEP, we use the values of the πN
LECs as determined recently by matching the πN scattering
amplitude from chiral perturbation theory to a Roy-Steiner
equations analysis of πN scattering data at the subthreshold
point [50].

We account for the isospin-breaking effects due to the
different pion masses in the OPEP and employ the physical
masses of the charged and neutral pions Mπ± = 139.57 MeV
and Mπ0 = 134.98 MeV, while we use the isospin-averaged
value of Mπ = 138.03 MeV in the TPEP. We adopt an effective
value of gA = 1.29 for the nucleon axial coupling constant
which is slightly larger than the current experimental average
value of gA = 1.2723(23) [135] because it already accounts
for the Goldberger-Treiman discrepancy (see [136] for a related
discussion). The employed value of the pion decay constant is
Fπ = 92.4 MeV.

In contrast to the parameter-free long-range potential, the
short-range contact interactions in the two-nucleon force have
to be determined from experimental NN data. In order to
achieve a proper reproduction of pp and, to a lesser extent,
np scattering data, it is crucial to also include electromagnetic
interactions between the nucleons. Although these interactions
are accompanied by powers of a numerically small coupling
constant α ∼ 1/137, they are enhanced at low energies and/or
forward angles due to the infrared singularity of the photon
propagator or, equivalently, due to their long-range nature. Here,
we follow the treatment of the Nijmegen group [137] and include
the so-called improved Coulomb potential [138], the magnetic-
moment interaction [139] as well as the vacuum-polarization
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potential [140] in the calculation of proton-proton observables.
The magnetic moment interaction is also taken into account in
neutron-proton scattering. To the best of our knowledge, these
effects have been included in every partial-wave analysis (PWA)
of or fit of a high-quality potential model from NN data since
the Nijmegen PWA of Stoks et al. [137], so that differences in
their predictions stem from modeling the strong interaction, the
experimental input and/or details of the fitting procedure itself.

For scattering data we use the Granada-2013 database [18]
which consists of experimental data for NN elastic scattering
up to Elab = 350 MeV from 1950 up to 201312. The database
contains the data that have been found to be mutually compatible
by means of a 3σ rejection criterion in the corresponding phase
shift analysis of Navarro Pérez et al. [18]. The presence of very
precisely measured proton-proton data in the database, such as
those of Cox et al. [142], motivated us to introduce the N4LO+

version of the potential. As the proper description of these data
requires a precise reproduction of F-waves, the N4LO+ potential
adds the four leading F-wave contact interactions

〈SFj, p′|Vcont|SFj, p〉 = ESFj p
3p′3 , (45)

formally appearing at N5LO and entering the 3F2,
1F3,

3F3, and
3F4 partial waves, to the N

4LO potential.
The fits have been performed for all cutoffs3 = 400, 450, 500,

and 550 MeV as well as for all orders from LO up to N4LO+13.
When determining the values of the contact LECs, one has to
decide up to which energy Elab the experimental data should be
taken into account. One is faced with the two competing features:
on the one hand, the inclusion of as many data as possible is
desirable from a data fitting point of view. On the other hand, the
truncation errors for the chiral interactions become larger at high
energies. We therefore chose the maximum energy Elab of data to
be included to be Emax = 260 MeV for N4LO and N4LO+, while
we reduced the energy to Emax = 25, 100, 125, and 200 MeV
at the orders LO, NLO, N2LO, and N3LO, respectively. Notice
that balancing the tradeoff between these two competing features
can be handled using Bayesian methods (see e.g., [143]). From
N3LO on, we also adjust the deuteron binding energy Bd and
the coherent neutron-proton scattering length bnp to reproduce
their experimental values of Bd = 2.224575(9) MeV [144] and
bnp = −3.7405(9) fm [145].

Table 1 shows the reproduction of neutron-proton and
proton-proton scattering data in terms of χ2/datum values at all
considered orders for the cutoff 3 = 450 MeV14. We employ a
standard definition of the objective function in terms of a sum of
squared residuals as detailed in Reinert et al. [17]. As expected,
a clear order-by-order improvement in the description of the
scattering data can be seen. Table 1 also gives the number of

12Strictly speaking, our database differs from the one of Navarro Pérez [18] by the

omission of the data set from Daub et al. [141] (see [17] for more details).
13In our paper Reinert et al. [17], also the cutoff 3 = 350 MeV was considered.

Given the sizable finite-3 artifacts for this very soft cutoff choice, we do not

consider this case in the following discussion.
14We have corrected the last figures in the values for χ2/datum for np data in

the Elab bins of 0–100 and 0–200 MeV at N3LO and N4LO+ quoted in Table 3 of

Reinert et al. [17].

TABLE 1 | χ2/datum for the description of the neutron-proton and proton-proton

scattering data at various orders in the chiral expansion for 3 = 450 MeV.

Elab bin LO(3) NLO(10) N2LO(10) N3LO(22) N4LO(23) N4LO+
(27)

Neutron–proton scattering data

0–100 73 2.2 1.2 1.07 1.07 1.07

0–200 62 5.4 1.7 1.09 1.08 1.06

0–300 75 14 4.2 2.01 1.16 1.06

Proton-proton scattering data

0–100 2290 10 2.2 0.90 0.88 0.86

0–200 1770 90 37 1.99 1.42 0.95

0–300 1380 90 41 3.43 1.67 1.00

The numbers in brackets after the order indicate the number of parameters entering the

neutron-proton and proton-proton potentials.

adjustable parameters at each order which also includes isospin-
breaking LECs contributing to the 1S0 partial wave. It should be
noted that no new contact interactions are added when going
from NLO to N2LO and that the observed improvement of the
χ2/datum values is entirely due to the N2LO contributions to
the parameter-free TPEP. A similar situation occurs when going
from N3LO to N4LO, although here we also allow for additional
isospin-breaking of the C1S0 contact LEC splitting it into two
independently adjustable parameters for the neutron-proton and
proton-proton/neutron-neutron systems. These improvements
demonstrate both the importance of the chiral TPEP in the
nuclear force and the predictive power of chiral perturbation
theory, which allows to use LECs extracted in one process for
making parameter-free predictions for (parts of) another.

Starting from N3LO, a satisfactory description of the neutron-
proton data in the energy range of Elab = 0 − 200 MeV and the
proton-proton data for Elab = 0−100MeV is achieved. Although
the N4LO potential improves on this, especially at intermediate
and higher energies, it does not achieve a χ2/datum ∼ 1
description of the proton-proton data for Elab ≥ 100 MeV. In
the intermediate region, this value is significantly affected by
the already mentioned high-precision data which requires an
accurate description of F-waves. At N4LO the differential cross
section data set of Cox et al. [142] at Elab = 144.1 MeV, although
well described within the Bayesian truncation errors, yields a
χ2/datum value of 27.88.

The situation is much improved once we switch to the
N4LO+ potential and short-range interactions in F-waves are
added. The description of scattering data at higher energies is
generally improved and also the high-precision proton-proton
data at intermediate energies is accurately reproduced leading
to a χ2/datum ∼ 1 description of the complete scattering
database. Throughout the orders LO − N4LO the χ2/datum
value for proton-proton scattering up to 200 or 300 MeV has
been larger than the one for neutron-proton scattering. This
is plausible as proton-proton data is in general more precise
than neutron-proton data and because only isovector partial
waves contribute to it and hence only roughly half of the total
number of parameters. However, at N4LO+, the reproduction
of proton-proton data becomes very accurate while the slightly
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larger χ2/datum values for the neutron-proton data as compared
to proton-proton data reflect the larger statistical fluctuations
among different data sets. This can be seen as an indication for
reaching the threshold where the model accuracy approaches the
precision of the data. In fact, the description of the scattering
data at N4LO+ and 3 = 450 MeV is comparable to or exceeds
that of the high-quality semi-phenomenological potentials such
as CD-Bonn [146], Nijm I, II [147], and Reid93 [147]. Thanks to
the parameter-free effects of the TPEP this is achieved with only
27 adjustable short-range parameters instead of the ∼ 40 − 50
parameters used in those potentials.

Indeed, due to the excellent description of the data, the
obtained results at 3 = 450 MeV qualify to be considered
a partial-wave analysis. In Figures 4, 5, we show the obtained
N4LO+ neutron-proton and proton-proton phase shifts for 3 =
450 MeV, respectively. We compare them to the 2013 Granada
analysis [18] and in the case of neutron-proton scattering also
to the corresponding 2008 analysis by Gross and Stadler [148].
Furthermore, we also show the predictions from the N4LO+

potential of Entem et al. [23] at the intermediate cutoff 3 =
500 MeV.

In general, there is good agreement between the shown
N4LO+ phase shifts and the results obtained by the considered
phase shift analyses. This is especially true for the case of
proton-proton phase shifts which are more strongly constrained
by the precise experimental data. Some discrepancies among
the different results remain e.g., around the maximum of the
3P0 phase shift where the N4LO+ prediction for the proton-
proton phase is slightly larger than the ones of the Nijmegen
and Granada PWAs, resulting in a ∼ 3σ deviation from the
former at Elab = 50 MeV. On the other hand, our neutron-
proton phase shifts fall in between the results of the two PWAs.
The study of isospin-breaking effects in P-waves beyond the
ones included in the two PWAs and the current version of
the semilocal momentum-space regularized (SMS) interaction of
Reinert et al. [17] is expected to shed some light on this issue.
We can also compare our results at N4LO+ to the ones of Entem
et al. [23]. Similar to the comparison with the PWAs, agreement
with proton-proton phases is better than with neutron-proton
ones. There are, however, notable differences in the 3P0,

3P2, and
3D2 waves starting at low or intermediate energies. At higher
energies around Elab = 250 − 300 MeV, a change in curvature
of the phase shift as a function of energy is visible e.g., in the
1P1 and

3P1 waves, which is presumably caused by the regulator
employed in Entem et al. [23]. The effects of regulator artifacts
can be observed particularly well in the 1G4,

3H4, and ǫ4 phase
shifts and mixing angle shown in Figure 5 since they do not
involve any adjustable short-range parameters at N4LO+ but are
solely determined by the long-range pion-exchange potential.
Here, the local regulator of Equation (22) leads to an undistorted
reproduction of the peripheral phase shifts.

Selected proton-proton scattering observables and their
estimated truncation error at various orders are shown in
Figure 6 for Elab around ∼ 143 MeV. In particular, we show
our predictions for the differential cross section at Elab =
144.1 MeV and compare them with two high-precision data sets,
most notably the one of Cox et al. [142], which motivated the

introduction of the N4LO+ potential as discussed above. The
data are well described within the given truncation error for all
considered orders, but the N4LO+ clearly allows for a proper
quantitative description. Likewise, the reproduction of the spin
observables in Figure 6 is excellent already at N3LO with a good
convergence pattern. Notice however, that the error bands at
lower orders for D (A) at the minimum (maximum) around
2CM = 150◦ do not overlap with the ones for N≥3LO and are
indeed underestimating the uncertainty. Here we find that the
value of the observable in that particular angular region is notably
shifted starting at N3LO while lower-order corrections are small,
such that the overall scale in Equation (41) is still underestimated.
Using a more sophisticated Bayesian approach of Melendez
et al. [133] would likely allow for a more reliable estimation of
the truncation errors at LO-N2LO in these particular cases.

There are various a posteriori checks that can be performed
to test the self-consistency and quality of the fit. First, the values
of the LECs have to be of natural size assuming the cutoff is
kept below the hard scale. The expected sizes of the spectroscopic
contact LECs can be estimated to be [21]

|C̃i| ∼
4π

F2π
, |Ci| ∼

4π

F2π32
b

, |Di| ∼
4π

F2π34
b

, |Ei| ∼
4π

F2π36
b

,

(46)
where the LECs C̃i, Ci, Di, and Ei start to contribute at order
Q0, Q2, Q4, and Q6, respectively. 3b is the breakdown scale of
the chiral expansion discussed in section 5. Furthermore, the
factor of 4π emerges from the angular integration of the partial-
wave decomposition and has been included in the definition
of the spectroscopic LECs. If we now divide the contact LECs
obtained in the fit by their expected sizes in Equation (46), we
consequently should obtain values of unit magnitude. Figure 7
shows the absolute values of the LECs at N4LO+ in these natural
units for all considered values of the cutoff 3 using 3b =
650 MeV. As can be seen, all LECs are indeed of natural size
with D1S0 and D3S1 being among the largest in magnitude. This
is especially true for the softest cutoff 3 = 400 MeV, for
which also most of the other-Q4 LECs turn out to be slightly
larger than at higher values of the cutoff. This indicates that at
3 = 400 MeV and below, finite-cutoff artifacts start to increase,
leading to a lower effective breakdown scale compared to the
other considered cutoffs. Notice further that the values for the
Q6 LECs Ei included at N4LO+ turn out to be of a perfectly
natural size. Therefore, even though we have emphasized their
importance in describing some high-precision proton-proton
data and achieving a χ2/datum ∼ 1 description of the database,
their actual contributions agree with the expectations from naive
dimensional analysis (i.e., Weinberg) power counting, and there
is no need to promote them to a lower order.

In addition to the absolute of the central values, Figure 7
also shows the statistical uncertainties of the contact LECs as
determined from the covariance matrix of the fit (expressed
in their natural units). When going from C̃i, Ci, Di to Ei the
statistical relative errors tend to increase. This is in accordance
with the decreasing importance of higher-order contributions
as predicted by power counting. One also notices that errors
are smaller for LECs entering isovector partial waves, because
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FIGURE 4 | Neutron-proton phase shifts with respect to Riccati-Bessel functions in comparison with the Nijmegen [137] (solid dots), the Granada [149] (blue open

triangles), and Gross-Stadler [148] (green open squares) PWA. Red solid lines and peach-colored bands denote the central results and 68% DoB truncation errors at

the order N4LO+ for the cutoff 3 = 450 MeV. Black dashed lines denote the result of the nonlocal N4LO+ potential of Entem et al. [23] for the cutoff 3 = 500 MeV.

The shown uncertainties of the Nijmegen PWA correspond to systematic errors defined in Equation (32) of Epelbaum et al. [21].

these parameters are mainly constrained by the more precise
proton-proton data. Since we perform a combined fit of neutron-
proton and proton-proton data, the isovector partial waves are
not only constrained by more precise data but also by more data
in general compared to the isoscalar partial waves which have
to be extracted from neutron-proton data alone. The covariance
matrix also gives access to the correlations among the LECs. As to
be expected, correlations mostly occur among LECs entering the
same partial waves with the largest ones arising in the channels
with the most parameters, namely in the 1S0 and 3S1 − 3D1

channels. Nevertheless, all LECs are well-constrained as can
already be seen by looking at the errors in Figure 7. We can
further look at the largest eigenvalue of the covariance matrix
of the natural LECs as a measure of how well-determined the
parameters are. Throughout the considered range of the cutoff
3 = 400 − 550 MeV, the largest eigenvalue of the covariance
matrix does not exceed 0.1 and is∼ 0.08 for 3 = 450 MeV.

From the point of view of data fitting, another check concerns
the statistical assumptions underlying a χ2 fit. One usually
assumes that the residuals ri = (O

exp
i − Oth

i )/1Oi follow a
normal distribution N (0, 1) with zero mean and unit standard

deviation. Here O
exp
i and 1Oi are the experimental value and its

error of an observable andOth
i is its calculated “theoretical” value.

If the assumptions on the normally-distributed residuals can be
verified, this confirms that the data are described sufficiently well
by the theoretical model. An easy and often employed check is
the value of χ2 per degree of freedom. For the N4LO+ fit with
3 = 450 MeV we get χ2 = 4708.65 in the fitting range of
Elab = 0 − 260 MeV with the number of data Ndat = 4616
and the number of parameters Npar = 27. Consequently, we
obtain χ2/ν = 1.026 with ν = Ndat − Npar. If the residuals
are indeed normal-distributed then χ2/ν should follow the χ2-
distribution and yields χ2/ν = 1±√

2/ν = 1±0.021 as the 68%
confidence interval.

We can go one step beyond this simple check and plot the
quantiles of the empirical distribution of residuals ri that we
obtain against the quantiles of the assumed normal distribution
N (0, 1). If they are the same, they should lie on the diagonal
line x = y. In order to statistically quantify deviations from
the diagonal, confidence bands have been derived with one of
the most recent and most sensitive being the ones of the “tail-
sensitive test” by Aldor-Noiman et al. [154]. This graphical
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FIGURE 5 | Proton-proton phase shifts with respect to Coulomb wave functions in comparison with the Nijmegen [137] (solid dots) and the Granada [149] (blue open

triangles) PWA. Red solid lines and peach-colored bands denote the central result and 68% DoB truncation errors at the order N4LO+ for the cutoff 3 = 450 MeV.

Black dashed lines denote the result of the nonlocal N4LO+ potential of Entem et al. [23] for the cutoff 3 = 500 MeV. The shown uncertainties of the Nijmegen PWA

correspond to systematic errors defined in Equation (32) of Epelbaum et al. [21].

test for normal-distributed residuals has been first applied to
the analysis of nucleon-nucleon scattering by Navarro Pérez
et al. [155]. Figure 8 shows a rotated quantile-quantile plot for
the N4LO+ residuals at 3 = 450 MeV where the theoretical
quantiles have been subtracted from the empirical ones on the
y-axis, turning the diagonal line into a horizontal one. As evident
from the figure, the empirical distribution of residuals lies within
the 68% confidence region of the tail-sensitive test signaling
that the residuals are indeed normal-distributed. The quantile-
quantile plot for the other values of the cutoff turn out to be
overall similar, but perform slightly worse. For3 = 500MeV and
3 = 550 MeV the quantiles that are already close to the edge of
the 68% confidence region in Figure 8 cross these limits but still
stay well within the 95% confidence region. The increased cutoff-
artifacts at 3 = 400 MeV manifest themselves in a stronger
deviation from normality as the plotted quantiles also cross the
95% confidence limits at the spike at Qth = 2 in Figure 8.

We now turn to the extended error analysis for observable
predictions. While the truncation of the chiral expansion is
clearly the dominant source of uncertainty at higher energies,
other sources of uncertainty can become relevant at N4LO+. In
particular we account for the following sources of uncertainty:

• Statistical uncertainties of NN LECs: As already mentioned,
Figure 7 shows the statistical errors of the contact LECs
as determined from the covariance matrix of the fit. The
uncertainties of the parameters can then be propagated from
the covariance matrix to the observable of interest. While it is

always possible to do this via a Monte Carlo sampling of the
corresponding multivariate Gaussian probability distribution,
it is computationally much more convenient to do a Taylor
expansion of the desired observable with respect to the LECs
and evaluate the moments of the LECs analytically. While a
linear expansion is commonly employed, it has been argued
in Carlsson et al. [114], that some observables require a

second order expansion for an accurate reproduction of their

uncertainties. In the case of large second-order contributions,

the error bars become asymmetric and we usually give both
the upper and lower error to accommodate for this possibility.
Notice that in such a case, the probability density of the
observable is not Gaussian and the quoted uncertainties do not
necessarily correspond to a 68% degree-of-belief.

• Statistical uncertainties of πN LECs: In addition to the central
values, the authors of Hoferichter et al. [50] also give the
covariance matrix as determined from πN scattering data.

Propagation of these uncertainties to NN observables is,

however, less straightforward, because the values of the NN
contact interactions depend on the values of πN LECs. We

thus resort to some Monte Carlo sampling of the multivariate

Gaussian probability distribution of the πN LECs given by

their central values and their covariance matrix. For each

of the sampled sets of LECs, we refit the NN contact LECs
before calculating any observables. The uncertainty of a given
observable can then be estimated in a standard way from
the variance of the results calculated with different πN LEC
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FIGURE 6 | Selected proton-proton observables around Elab = 143 MeV: Differential cross section dσ/d� at Elab = 144.1 MeV with experimental data taken from

Cox et al. [142] and Jarvis et al. [150]. The data sets have been corrected for their estimated norms of 0.988 and 1.001, respectively. Analyzing power P at

Elab = 142 MeV with experimental data taken from Taylor et al. [151]. The data have been floated and multiplied by an estimated norm of 0.942. Depolarization D,

rotation parameter A, polarization transfer coefficient Dt, and spin-correlation parameter Ckp at Elab = 143 MeV with experimental data taken from Bird et al. [152] and

Jarvis et al. [153]. The light- (dark-) shaded green, blue, and red bands depict the 68% (95%) DoB truncation errors at N2LO, N3LO, and N4LO+, respectively. Open
circles show the predictions of the Nijmegen partial-wave analysis [137].

FIGURE 7 | Absolute values of the contact interaction LECs in natural units at the order N4LO+ for all considered cutoffs. Error bars represent the statistical errors of

the LECs.

sets. Due to the need to refit the contact interactions for each
sampled set of πN LECs and the computational overhead
related to it, we have restricted the total number of such sets
to 50. Although this is a quite low statistics for a Monte Carlo
approach, it should give an idea of the order of magnitude
of the uncertainty. It indeed turns out that the uncertainty
related to the statistical error of the πN LECs is small
compared to the other sources of uncertainty. However, the

aforementioned approach does not probe the systematic errors
in the determination of the πN LECs emerging from the
truncation of the chiral expansion and thus does not represent
the full uncertainty related to these LECs.

• Uncertainty due to the choice of the maximum fit energy:
The extracted values of the contact LECs also depend on
details of the fitting protocol. In particular, we probe the
impact of the choice for the maximum laboratory energy
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FIGURE 8 | Rotated Quantile–Quantile plot of the empirical quantiles at

N4LO+ and 3 = 450 MeV vs. the quantiles of the normal distribution N (0, 1)

Dotted (solid) red bands denote the 68% (95%) confidence bands of the

tail-sensitive test by Aldor-Noiman et al. [154].

Emax = 260 MeV up to which scattering data is included
in the N4LO+ fit. This is achieved by performing additional
fits with Emax = 220 MeV and Emax = 300 MeV and
determining the maximum deviation of the observables from
the Emax = 260 MeV predictions. Unlike the aforementioned
uncertainties, the error estimated via this simple procedure
does not reflect any particular degree-of-belief.

As an example, Figure 9 shows the neutron-proton total cross
section and the corresponding uncertainties in the energy range
Elab = 0 − 300 MeV. The plot on the left in Figure 9 shows
the ratio of our predictions using the N4LO+ potential at 3 =
450 MeV and the result of the Nijmegen partial-wave analysis
[137]. In the right panel, the different relative errors stemming
from the various sources discussed above are shown. For the
case of the statistical errors of the NN contact interactions,
second order effects and resulting asymmetries in the error
bands turn out to be small for the total cross section, and the
plotted uncertainty corresponds to the average of upper and
lower statistical errors. As expected, the dominant contribution
to the uncertainty at higher energies (Elab > 100 MeV) arises
from the truncation of the chiral expansion. At lower energies,
however, other sources of uncertainty become relevant and
indeed both the statistical errors of the NN contact LECs and
the uncertainty due to the maximum fitting energy are larger
than the truncation error in the range of Elab = 30 − 100 MeV.
When quantitatively comparing the different errors, one has
to keep in mind that the uncertainty due to the maximum
fitting energy does not correspond to a particular degree-of-
belief. The uncertainty arising from the statistical errors of the
πN LECs is found to be significantly smaller throughout the
whole considered energy range and is negligible for the total
cross section. Finally, we would like to comment on the origin
of the existing kinks in the right-hand-side plot of Figure 9. In

particular, the kink in the Emax-error at around 200 MeV arises
because of the maximum operation. Below 200 MeV, the error is
dominated by the deviation of the Emax = 220 MeV fit while
it is given by the deviation of the Emax = 300 MeV fit above
200 MeV. The second kink present in the truncation error, on
the other hand, is caused by the transition of Q from Meff

π /3b

to p/3b.
Table 2 shows the deuteron properties as predicted by various

high-quality potentials. Clearly, the error analysis can also be
applied to the bound state properties of Table 2. However,
the obtained uncertainties are only meaningful for a complete
calculation of an unconstrained observable. This excludes the
deuteron binding energy Bd (as it is a fitted quantity), the
quadrupole moment Q and deuteron radius rd (as meson
exchange currents and relativistic corrections are not taken into
account) as well as the D-state probability PD (which is not
observable). On the other hand, we can perform the uncertainty
quantification for the asymptotic S-state normalization AS and
the asymptotic D/S-state ratio η for which we obtain at N4LO+

and for3 = 450MeV the values of As = 0.8847
(+3)
(−3)

(5)(0)(1) and

η = 0.02553
(+11)
(−9)

(4)(3)(8), respectively. Here the first, second,

third, and fourth error refer to the NN statistical, truncation,
πN statistical, and Emax uncertainty, respectively. Notice that the
quoted truncation errors estimated using the Bayesian model of
section 5 are fairly similar to the ones given in Reinert et al. [17],
which were obtained using the EKM method. On the other
hand, the πN statistical uncertainties are much smaller than
the corresponding errors quoted in Reinert et al. [17], where
an attempt was made to also include systematic effects by using
the values of these LECs determined in the physical region of
πN scattering.

Finally, let us discuss the treatment of isospin-breaking effects
in the two-nucleon interaction. Like all modern high-precision
potentials, the SMS interactions include isospin-breaking in
the OPEP due to the different physical pion masses Mπ±

and Mπ0 and charge dependence of the short-range potential
in the 1S0 partial wave. These are the dominant and well-
understood isospin-breaking effects necessary to arrive at e.g.
a correct description of the charge-dependence of the 1S0
scattering length. For the calculation of scattering observables
in the two-nucleon system, the isospin-breaking due to long-
range electromagnetic interactions is taken into account as
discussed at the beginning of this section. This treatment of
strong and electromagnetic isospin-breaking effects is identical
to the Nijmegen PWA [137]. On the other hand, chiral EFT
allows for a systematic inclusion of isospin-breaking effects
beyond the ones previously considered. In fact, expressions for
the leading isospin-breaking TPEP [161, 162], the subleading
isospin-breaking TPEP [163], and irreducible πγ exchange
[164], which are (mostly) parameter-free in the two-nucleon
system, have been available for some time. The long-standing
question regarding the charge-dependence of the πNN coupling
constant also re-emerges in a systematic treatment of isospin-
breaking effects in the framework of chiral EFT. While the
Nijmegen group did not find evidence for charge-dependence,
the issue does not seem to be settled (see [165] for a recent
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FIGURE 9 | Neutron-proton total cross section in the range of Elab = 0− 300 MeV. The plot on the left shows the results divided by the predictions of the Nijmegen

PWA. The red line and peach-colored band show the central values and truncation errors (the 68% DoB interval) at the order N4LO+ and for 3 = 450 MeV. The

experimental data are taken from Lisowski et al. [156] and have been corrected for their estimated norm of 0.999. The plot on the right shows the relative uncertainties

as discussed in the text.

determination). Last but not least, charge-dependence in the
short-range potential entering P-waves should also be taken into
account starting from N4LO [163].

6.2. Three-Nucleon Scattering
As discussed in the previous subsection, the N4LO+ SMS
potentials of Reinert et al. [17] lead to excellent and in fact a
nearly perfect description of np and pp scattering data below pion
production threshold. Moreover, an order-by-order comparison
of the results for various observables along with the Bayesian
error analysis indicate a generally good convergence of the
chiral expansion in the NN sector. On the other hand, a
description of nucleon-deuteron elastic and breakup scattering
data at a comparable level of accuracy is not available yet.
Extensive calculations performed in the last decades using high-
precision phenomenological NN potentials and 3NF models in
the framework of the Faddeev equations [166] and using other ab
initiomethods [167] have revealed the following picture (see [19]
and references therein):

– Calculations based on high-precision NN potentials alone
(including the N4LO+ ones of [17]) tend to underestimate the
3H and 3He binding energy by ∼ 0.5 MeV and generally lead
to similar predictions in Nd scattering observables.

– At low energies, the resulting description of Nd data appears
to be rather good apart from a few exceptions such as the
underprediction of the nucleon analyzing power Ay, known as
the Ay puzzle [168], and the discrepancy for the cross section
for the symmetric space star deuteron breakup configuration
[169]. 3NF effects in this energy range are found to be small
in agreement with qualitative arguments based on the chiral
power counting as explained below.

– Starting from Elab ∼ 50 MeV, discrepancies between theory
and experimental data set in and become large at Elab ∼
200MeV and above. Except for the cross section, the inclusion
of the phenomenological 3NFs like the Tucson-Melbourne

TABLE 2 | Deuteron binding energy Bd, asymptotic S-state normalization AS,

asymptotic D/S-state ratio η, radius rd , quadrupole moment Q, and D-state

probability PD as predicted by various high-quality potentials.

Granada CD Bonn EMN

N4LO+ [23]

SMS N4LO+ [17] Empirical

[149] [146] 3 = 500 MeV 3 = 450 MeV

Bd (MeV) 2.2246⋆ 2.2246⋆ 2.2246⋆ 2.2246⋆ 2.224575(9) [144]

AS (fm−1/2) 0.8829 0.8846 0.8852 0.8847 0.8846(8) [157]

η 0.0249 0.0256 0.0258 0.0255 0.0256(4) [158]

rd (fm) 1.965 1.966 1.973 1.966 1.97535(85)† [159]

Q (fm2) 0.268 0.270 0.273 0.270 0.2859(3) [160]

PD (%) 5.62 4.85 4.10 4.59 —

The binding energy has been calculated with the non-relativistic energy-momentum

relation for the potentials of Entem et al. [23] and with the relativistic relation for the SMS

potential of Reinert et al. [17] and the CD Bonn potential [146].
⋆The deuteron binding energy has been taken as input in the fit.
†
This value corresponds to the so-called deuteron structure radius, which is defined

as a square root of the difference of the deuteron, proton and neutron mean square

charge radii.

(TM99) [170] and Urbana-IX [171] models does not globally
reduce the discrepancies between theory and data [19].
Relativistic effects have also been studied, seeWitała et al. [172]
and references therein, and found to be small at energies below
the pion production threshold.

Assuming that the discrepancies between theory and
experimental data in the 3N system are to be resolved by
3NFs, these findings demonstrate that the currently available
phenomenological models do not provide an appropriate
description of the 3NF. This should not come as a surprise given
the enormously rich and complex spin-isospin-momentum
structure of a most general 3NF [95, 173–175]. Here, chiral
EFT offers a decisive advantage over more phenomenological
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approaches by predicting the long-range part of the 3NF in
a model-independent way, establishing a clear importance
hierarchy of short-range terms and providing a solid theoretical
framework for maintaining consistency between two- and
three-nucleon forces and ensuring scheme independence of the
calculated observables.

As already mentioned in section 3, three-body contributions
to the nuclear Hamiltonian first appear at N2LO in the chiral
expansion and are, therefore, suppressed by Q3 relative to the
dominant pairwise NN interaction. It is instructive to estimate
the expected magnitude of 3NF effects for various observables
solely on the basis of the chiral power counting (i.e., using
NDA). For 3H and 4He, one can use the typical expectation
values of the NN potential energy of 〈VNN〉3H ∼ 50 MeV
and 〈VNN〉4He ∼ 100 MeV [83], along with the estimation
of the expansion parameter Q ∼ Meff

π /3b with Meff
π =

200 MeV and 3b = 650 MeV, in order to estimate the expected
3NF contributions to the binding energy to be 〈V3N〉3H ∼
Q3〈VNN〉3H ∼ 1.5 MeV and 〈V3N〉4He ∼ Q3〈VNN〉4He ∼
3 MeV. These qualitative estimations agree well with the actual
underprediction of the 3H and 4He by the NN interactions alone
which, using the AV18 [176], CD Bonn [146], N2LO [113],
and Idaho N3LO [112] potentials as representative examples,
amounts to 0.5 . . . 0.9 MeV and 2.1 . . . 4.1 MeV, respectively.
The shallow nature of few-nucleon bound states indicates that
there are large cancelations between the kinetic and potential
energies. Because of this fine tuning, 3NF contributions to the
binding energies are enhanced beyond the naive estimation of
Q3 ∼ 3% and actually reach 10 . . . 15%. On the other hand,
there is generally no reason to expect a similar enhancement
for Nd scattering observables at low energy except for some
fine-tuned polarization observables such as Ay. It is well known
that tiny changes of the NN interaction in the triplet P-waves
amount to large relative changes in the Nd Ay [168]. On the other
hand, starting from EN ∼ 60 MeV, the expansion parameter
Q in Equation (37) is dominated by the momentum scale p =√
2/3mEN [84]. At e.g. the energies of EN ∼ 100 MeV and

EN ∼ 200 MeV, the expansion parameter becomes Q ∼ 0.40
and Q ∼ 0.55, and the relative contributions of the 3NF to
a generic scattering observable are expected to increase to ∼
6 and ∼ 16%, respectively. Clearly, these simplistic back-of-
envelope estimations only yield qualitative insights into the role
of the 3NF. Nevertheless, they agree remarkably well with the
observed trend of discrepancies between theoretical predictions
based solely on the NN interactions and experimental data, which
tend to increase with energy. For further examples and a more
quantitative analysis along this line of Nd scattering, selected
properties of light and medium-mass nuclei and the equation
of state of nuclear matter (see [83, 127, 130, 177]). We further
emphasize that it is not entirely clear how to estimate the relevant
momentum scale, that determines the expansion parameter in
heavy nuclei, and how to quantify truncation errors for excited
states (see [130] for an extended discussion).

As discussed in section 3 and visualized in Figure 2,
the leading contributions to the 3NF at N2LO emerge
from the two-pion exchange, one-pion-exchange-contact and
purely contact tree-level diagrams, leading to the well-known

expressions [44, 98]

V3N = g2A
8F4π

Eσ1 · Eq1 Eσ3 · Eq3
(Eq 2

1 +M2
π ) (Eq 2

3 +M2
π )

[

τ 1 · τ 3

(

− 4c1M
2
π + 2c3 Eq1 · Eq3

)

+ c4τ 1 × τ 3 · τ 2 Eq1 × Eq3 · Eσ2
]

− gA D

8F2π

Eσ3 · Eq3
Eq 2
3 +M2

π

τ 1 · τ 3 Eσ1 · Eq3 + 1

2
E τ 1 · τ 2 + 5 permutations ,

(47)

where Eqi = Epi ′ − Epi with Epi ′ and Epi being the final and
initial momenta of the nucleon i. The LECs D and E are
usually expressed in terms of the corresponding dimensionless
coefficients cD and cE via D = cD/(F2π3χ ) and E =
cE/(F

4
π3χ ) [44]. In Epelbaum et al. [8] and [84], semilocal

coordinate- and momentum-space regularized 3NF expressions
in combination with the corresponding chiral NN potentials
from Epelbaum et al. [21, 22] and Reinert et al. [17], respectively,
were employed by the LENPIC Collaboration to analyze Nd
scattering observables at N2LO. The numerical implementation
of the 3NF in the Faddeev equations is carried out in the partial
wave basis. Partial wave decomposition (PWD) of a general 3NF
can be carried out numerically using the machinery developed
in Golak et al. [178] by performing five-dimensional angular
integrations. Given the required number of partial waves and grid
points for the four Jacobi momenta to reach converged results
for Nd scattering observables, such a numerical PWD requires
substantial computational resources. In Hebeler et al. [179], a
more efficient approach was introduced, that exploits the local
nature of the bulk of the 3NF.

To make predictions for few-nucleon observables, one first
needs to determine the LECs cD and cE entering the 3NF.
A broad range of few- and many-body observables including
the binding energies and radii of 3H, 4He, and heavier nuclei,
nucleon-deuteron doublet scattering length 2a, n-α scattering,
triton β-decay, and the saturation properties of nuclear matter
have been proposed and employed in the past to determine these
two LECs [9, 27, 29, 44, 180, 181]. A reliable determination
of cD, cE is complicated by the existence of strong correlations
between some of the low-energy observables (see e.g.,[182]),
which originate from the large S-wave scattering lengths in
the NN system. Furthermore, going beyond the 3N system
may require, depending on the observable and the chiral order,
the inclusion of 4NF and exchange current contributions. In
Epelbaum et al. [8], we therefore, restricted ourselves to 3N
observables in the determination of cD, cE. Specifically, we
employed the 3H binding energy of B3H = 8.482 MeV to fix
the LECs cE for a given value of cD. The remaining LEC cD was
determined by considering a number of observables including
2a = 0.645 ± 0.008 fm [145], nd total cross section data from
[183] and precisely measured pd differential cross section in the
minimum region at EN = 70 MeV [184], 108 MeV [185], and
135 MeV [184]. In the left panel of Figure 10, we show the
extracted values of cD for the SCS interactions with the cutoff R =
0.9 fm. It is reassuring to see that the considered 3N observables
lead to consistent values of cD. In addition, these results show
that the strongest constraint on cD, given the experimental
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and the estimated truncation uncertainty, is imposed by the pd
differential cross section data at EN = 70 MeV from Sekiguchi
et al. [184] as visualized in the right panel of Figure 10. We
also found no correlations between this observable and the 3H
binding energy. In particular, the resulting value of the LEC cD
is largely determined by the differential cross section and almost
insensitive to a variation of the triton binding energy.

In Epelbaum et al. [84], we have analyzed Nd scattering
observables using the most recent SMS NN potentials from
Reinert et al. [17] in combination with the N2LO 3NF regularized
in the same way. Motivated by the experience with the SCS
interactions [8], the LECs cD and cE were determined from the
3H binding energy and the pd cross section minimum at EN =
70 MeV. In Figure 11, we show, as a representative example, our
N2LO predictions for selected Nd scattering observables at EN =
135 MeV, along with the experimental data and calculations
based on the CD Bonn NN potential with and without the TM99
3NF model. As an important internal consistency check of the
calculations, we have verified that the predictions obtained using
different cutoff values are consistent with each other (within
errors) (see Figure 5 of [84]).

It is reassuring to see that the experimental data are generally
well described by the theory. On the other hand, while accurate,
our predictions at N2LO have obviously rather low precision at
this energy. In fact, the N2LO truncation errors are comparable
with or even larger than the observed deviations between
experimental data and calculations based on phenomenological
high-precision NN and 3NF models, see the dotted and dashed-
dotted lines in Figure 11. Based on the experience in the NN
sector as discussed in section 6.1, it is conceivable that a
high-precision description of Nd scattering data will require the
chiral expansion of the 3NF to be pushed to (at least) N4LO. At
the energy of EN = 135 MeV, the uncertainty bands at N4LO are
expected to become 4-5 times more narrow as compared with the
N2LO ones shown in Figure 11.

So where do we stand in terms of efforts to include 3NF
corrections beyond N2LO? As explained in section 4.2, the main
obstacle for the inclusion of higher order contributions to the
3NF is the lack of their consistently regularized expressions.
Starting from N3LO, it is not sufficient anymore to naively
regularize the available expressions for the 3NF from Bernard
and Epelbaum [54, 55] and Krebs et al. [48, 95] derived using
DR, since such an approach violates constraints imposed by the
chiral symmetry. Rather, the N3LO and N4LO corrections to
the 3NF need to be re-derived using the consistent finite-cutoff
regularization approach. Work along these lines is in progress.
Another challenge, that will have to be addressed at N4LO, is the
determination of the LECs appearing in the 3NF at this order.
While the N3LO contributions do not involve free parameters,
the short-range part of the 3NF at N4LO depends on 10 unknown
LECs [45], from which 9 contribute to the isospin-1/2 channel
and thus can, in principle, be determined in Nd scattering.
Furthermore, the yet-to-be-derived one-pion-exchange-contact
contributions to the 3NF at N4LO will also involve unknown
LECs. Given the still rather significant computational cost
of solving the Faddeev equations in the 3N continuum, the
complicated treatment of the Coulomb interaction [186] and the

lack of partial wave analyses in the 3N sector, the determination
of these LECs from 3N scattering data will certainly be a
challenging task.

While a complete analysis of Nd scattering is currently not
available beyond N2LO, it is instructive to explore the role of
subleading short-range 3NF interactions. In Girlanda et al. [30],
it was shown within a hybrid phenomenological approach that
the 3N contact operators at N4LO can be tuned to reproduce
the 3H binding energy, nd scattering lengths, cross section and
polarization observables of pd scattering at 2 MeV center-of-
mass energy. The resulting models were shown to lead to a
satisfactory description of pd polarization observables below the
deuteron breakup. On the other hand, 3NF effects are expected
to be much more visible at intermediate and higher energies. In
Epelbaum et al. [84], we explored the impact of the short-range
3NF operators of the central and spin-orbit types proportional to
the LECs E1 and E7, respectively,

V3N = E1 Eq 2
1 + iE7 Eq1×(EK1− EK2) ·(Eσ1+ Eσ2) + 5 permutations ,

(48)
where EKi = (Epi ′+Epi)/2. Parameterizing the dimension-full LECs
E1, E7 in terms of the corresponding dimensionless parameters
via Ei = cEi/(F

4
π33

χ ) with 3χ = 700 MeV, we studied the impact

of these N4LO terms on selected Nd scattering observables for
the fixed values of the LECs of cEi = ±2. Based on the experience
in the NN sector and with the N2LO 3NF, we expect the actual
values of these LECs to lie well within this range. The expectation
values of various contributions to the 3NF in the triton state
indicate that the employed values cE7 = ±2 may already
overestimate the expected natural range of this LEC.

In order to compute the contributions of the cEi-terms to
3N observables in a meaningful way, one needs to perform
(implicit) renormalization as explained in section 2. This was
achieved in Epelbaum et al. [84] by simultaneously adjusting
the values of the N2LO LECs cD, cE to the triton binding
energy and the cross section minimum at EN = 70 MeV for
all considered values of the LECs cEi . The calculations have
been performed using the N4LO+ SMS NN potential from
Reinert et al. [17] in combination with the SMS N2LO 3NF.
In Figure 12, we show the resulting predictions at the lowest
considered energy of EN = 10 MeV. The blue bands show
the estimated truncation error at N3LO, obtained by rescaling
the N2LO Bayesian truncation uncertainty with the expansion
parameterQ15, and visualize the expected impact of N4LO terms.
In agreement with the expectations, 3NF effects generally appear
to be rather small at such low energies. This figure also provides a
nice illustration of the fine tuned nature of the nucleon vector
analyzing power Ay, which shows a strong sensitivity to small
changes in the Hamiltonian. What has been traditionally referred
to as the Ay-puzzle thus appears to be just a consequence of
the fine-tuned nature of this observable, and the “puzzle” may
be expected to be resolved by 3NF contributions beyond N2LO
(see also [30, 45] for a similar conclusion). While the Ay is

15We cannot estimate the N3LO truncation error using the Bayesian approach

described in section 5 since no complete N3LO results are available for

Nd scattering.
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FIGURE 10 | (Left) Determination of the LEC cD at N2LO from selected Nd scattering observables. The smaller (blue) error bars correspond to the experimental

uncertainty while the larger (orange) error bars also take into account the truncation error at N2LO estimated using the EKM approach of Epelbaum et al. [21]. The

green (violet) bands show standard error intervals of cD resulting from a combined least squares single-parameter fit to all observables (to observables up to

EN = 108 MeV) using the orange error bars. (Right) Nd cross section in the minimum region (θ = 130◦) at EN = 70 MeV as function of the LEC cD. For each cD value,

the LEC cE is adjusted to the 3H binding energy. Dotted lines show the statistical uncertainty of the experimental data from Sekiguchi et al. [184], while the yellow

band also takes into account the quoted systematic uncertainty of 2%. All results are obtained using the N2LO SCS NN potential from Epelbaum et al. [21] in

combination with the N2LO SCS 3NF for the coordinate-space cutoff R = 0.9 fm.

FIGURE 11 | Predictions for the differential cross section, nucleon and deuteron analyzing powers Any and Ady , deuteron tensor analyzing powers Ayy , Axz , Axx ,

polarization transfer coefficients K
y
xx , K

y
y , K

y
yy , K

y
xz , K

y
xx − K

y
yy , and the induced polarization Py in elastic Nd scattering at laboratory energy of EN = 135 MeV at NLO

(yellow bands) and N2LO (green bands). The light- (dark-) shaded bands indicate 95% (68%) DoB intervals using the Bayesian model C̄650
0.5−10 introduced in section 5.

Open circles are proton-deuteron data from Sekiguchi et al. [184]. The dotted (dashed-dotted) lines show the results based on the CD Bonn NN potential [146] (CD

Bonn NN potential in combination with the Tucson-Melbourne 3NF [170]). All results are obtained using the N2LO SMS NN potential from Reinert et al. [17] in

combination with the N2LO SMS 3NF for the momentum-space cutoff 3 = 500 MeV.
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FIGURE 12 | Results for the differential cross section, nucleon analyzing powers Any as well as deuteron tensor analyzing powers Axx and Axx in elastic

nucleon-deuteron scattering at laboratory energy of ENlab = 10 MeV based on the SMS NN potentials of Reinert et al. [17] at N4LO+ in combination with the SMS 3NF

at N2LO using 3 = 450 MeV. Blue light- (dark-) shaded bands show the expected truncation uncertainty for a complete N3LO calculation and are obtained by

multiplying the N2LO truncation error corresponding to 95% (68%) DoB intervals for the model C̄650
0.5−10 with the corresponding value of the expansion parameter Q.

Short-dashed-dotted and long-dashed-dotted red lines show the impact of the N4LO central short-range 3NF ∝ cE1 with cE1 = −2 and cE1 = 2, respectively.

Similarly, short-dashed and long-dashed blue lines show the impact of the N4LO spin-orbit short-range 3NF ∝ cE7 with cE7 = −2 and cE7 = 2, respectively. Open

circles are neutron-deuteron data from Howell et al. [187] and proton-deuteron data from Sagara et al. [188], Rauprich et al. [189], and Sperisen et al. [190], corrected

for the Coulomb effects (see [44] for details).

well-known to be particularly sensitive to spin-orbit types of
3NFs [191] such as the one proportional to cE7 , our results also
show an unexpectedly strong sensitivity to the subleading central
interaction of the cE1-type.

At higher energies, the effects of the considered N4LO 3NF
terms become more significant as visualized in Figure 13 for
the case of selected spin-correlation parameters. More results
for the cross section, vector and tensor analyzing powers and
polarization transfer coefficients at EN = 135 MeV can be
found in Epelbaum et al. [84]. It is comforting to see that
the impact of the cEi-terms on Nd scattering observables is, in
general, consistent with the estimated N3LO truncation errors.
One should, however, keep in mind that the employed Bayesian
approach may, under certain circumstances, become unreliable.
This is, in particular, the case for observables that depend on a
continuously varying parameter in the kinematical regions where
the LO results and higher-order corrections change sign (see
[84] for a detailed discussion). One such failure of the Bayesian
model is shown in Figure 13 for the spin-correlation coefficient
Cx,z at EN = 200 MeV around θ = 120◦. In such problematic
cases, the approach proposed in Melendez et al. [133] and based
on Gaussian processes is expected to provide more reliable
estimations of the truncation uncertainty.

6.3. Light Nuclei
While no results for light nuclei using SMS chiral interactions
are available yet, we briefly review here some recent highlights
obtained by the LENPIC Collaboration using the SCS NN
potentials of Epelbaum et al. [21, 22] with and without the
corresponding 3NFs at N2LO. In Binder et al. [83, 130], we have
calculated the ground state energies and selected properties of
light and medium-mass nuclei up to 48Ca using the SCS NN
interactions at various chiral orders. Specifically, A = 3, 4 nuclei
were analyzed in the framework of the Faddeev-Yakubovsky
equations while light p-shell nuclei were calculated using

the No-Core Configuration Interaction (NCCI) method [193–
195] and employing Similarity Renormalization Group (SRG)
transformed interactions [196–199] to improve the convergence.
The results for 16,24O and 40,48Ca were obtained within
the coupled cluster and in-medium SRG group frameworks
(see [12, 200–203] and references therein). A qualitatively similar
convergence pattern was observed in all considered cases, namely
a significant overbinding at LO, results close to the experimental
values at NLO and N2LO and underbinding at N3LO and
N4LO. Notice that the strongly repulsive nature of the N3LO
contributions to the SCS NN interactions of Epelbaum et al. [21,
22] was shown to be caused by the employed unnaturally large
values of the redundant short-range operators [17]. The SMS
interactions of Reinert et al. [17] utilize a soft choice for these
contact terms, which leads to more perturbative interactions at
and beyond N3LO. No large gap between the N2LO and N3LO
results for the ground state energies is, therefore, expected for
the new SMS NN interactions. The calculated charge radii of the
consideredmedium-mass nuclei were found to show a systematic
improvement with the chiral order, but remain underestimated
using the NN interaction at the highest available order N4LO+.

In Epelbaum et al. [8], a complete N2LO analysis of p-shell
nuclei was presented by the LENPIC Collaboration using the
SCS NN and 3N interactions. In Figure 14, we show the NLO
and N2LO results from that paper for nuclei up to A = 16.
We emphasize that since the Hamiltonian has been completely

determined in the NN and 3N system as described in sections

6.1 and 6.2, the ground-state energies shown in that figure are
parameter-free predictions. In Figure 14, we have updated the
corresponding figure from Epelbaum et al. [8] by replacing the
truncation errors, that have been estimated in that paper using
the EKM approach of Epelbaum et al. [21] and Binder et al.
[130], with the Bayesian uncertainties calculated as described in
section 5. The 68% DoB Bayesian truncation errors are similar
to those quoted in Epelbaum et al. [8] at N2LO but appear
to be significantly larger at NLO. We also calculated in that
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FIGURE 13 | Same as Figure 12 but for the deuteron-nucleon spin-correlation parameters Cz,x , Cy,y , Cz,z , and Cx,z for Nd elastic scattering at EN = 135 MeV (left)

and EN = 200 MeV (right). Open circles are proton-deuteron data from von Przewoski et al. [192].

FIGURE 14 | Calculated ground state energies in MeV using chiral SCS NN interactions from Epelbaum et al. [8] in combination with the SCS 3NF at R = 1.0 fm

(open and solid dots) in comparison with experimental values (red levels). For each nucleus the NLO and N2LO results are the left and right symbols and bars,

respectively. The open blue symbols correspond to incomplete calculations at N2LO using NN-only interactions. Blue and green error bars indicate the NCCI

extrapolation uncertainty and, where applicable, an estimate of the SRG dependence. The shaded bars indicate the truncation error at each chiral order

corresponding to 68% DoB intervals using the Bayesian model C̄650
0.5−10 with the expansion parameter Q = Meff

π /3b.

paper the excitation energies for selected states of A = 6 −
12 nuclei and the point-proton radius of 4He. For almost all
considered cases, adding the 3NF to the NN interaction was
found to lead to a significant improvement in the description of
experimental data. The predicted ground state energies of p-shell
nuclei show a good agreement with the data except for 16O, which

appears to be overbound. Notice that the deviation between the
predicted and experimental values of the 16O binding energy
is comparable to the 95% DoB Bayesian error at N2LO. It will
be very interesting to repeat the calculations for the newest
SMS interactions and to extend them to higher orders and
heavier nuclei.
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7. SUMMARY AND OUTLOOK

In this review article we have presented a snapshot of the current
state-of-the-art in low-energy nuclear theory with a focus on the
latest generation of semilocal nuclear potentials from chiral EFT.
We now summarize some of the key conclusions of our paper.

• We have presented a concise and self-contained introduction
to the conceptual foundations of chiral effective field theory in
the few-nucleon sector and described in some detail all steps
needed to compute low-energy observables from the effective
chiral Lagrangians (including error analysis). Special emphasis

was given to clarify the notion of consistency of nuclear forces

and current operators in terms of a perturbative matching
to the unambiguously defined on-shell scattering amplitude.

In particular, few-nucleon potentials from Epelbaum [73],
Bernard et al. [54, 55], Krebs et al. [48, 95] and electroweak
current operators from Kölling et al. [74, 122] and Krebs
et al. [75, 123] at N3LO and beyond, derived using DR,
are off-shell consistent with each other provided DR is also
used to compute loop integrals arising from iterations of the
dynamical equations.

• We have reviewed the semilocal momentum-space regularized
potentials of Reinert et al. [17], which are currently the
most precise chiral EFT NN forces on the market. These
are the only NN interactions derived in chiral EFT, which—
from the statistical point of view—qualify to be regarded
as PWA of NN data below pion production threshold (see
section 6.1 for details). At the highest considered order
N4LO+, these interactions describe the np and pp data from
the self-consistent Granada-2013 database with a precision
that is at least comparable to the one reached by modern
phenomenological potentials with a much larger number of
adjustable parameters. The significantly better description
of the scattering data by the SMS N4LO+ interactions of
Reinert et al. [17] as compared to the nonlocal potentials of
Entem et al. [23] at the same chiral order, and their much
smaller residual cutoff dependence (see Figure 17 of Reinert
et al. [17]), can presumably be traced back to the improved
semilocal regulator, whichmaintains the long-range part of the
interaction as described in section 4.1. We also addressed in
detail the issue of uncertainty quantification in the NN sector.
In particular, we discussed statistical uncertainties of NN and
πN LECs and their propagation to selected observables as well
as uncertainty introduced by fixing the maximum fit energy
in the determination of the NN LECs. We also estimated
truncation errors at various chiral orders using the Bayesian
model specified in section 5.

• Beyond the NN sector, calculations based on the SMS
interactions have so far been carried out up to N2LO [84].
The LECs cD and cE, which enter the 3NF at this order,
have been determined from the 3H binding energy and the
very precise pd cross section data at EN

lab
= 70 MeV from

Sekiguchi et al. [184]. Using the employed Bayesian model
to estimate truncation uncertainties, the predicted ground
state energies of p-shell nuclei up to A = 16 are generally
in a good agreement with the data. Also the predicted Nd

scattering observables including the vector analyzing power
Ay are consistent with experimental data within errors. We
performed an additional test of the employed Bayesian model
for truncation errors by exploring the impact of selected
short-range 3NF terms at N4LO on observables in Nd
elastic scattering. Our results suggest that a high-precision
description of Nd scattering data will likely require the chiral
expansion of the 3NF to be pushed to N4LO.

• The novel semilocal nuclear forces, derived in the finite-
cutoff formulation of chiral EFT with short-range interactions
counted according to NDA (i.e., the Weinberg scheme), have
already been successfully confronted with few-nucleon data
and passed a number of a-posteriori consistency checks as
briefly summarized below:

– Using the minimal basis of the order-Q4 NN contact
interactions as detailed in section 6, the LECs determined
from the np and pp scattering data come out of a natural
size (see Figure 7). The same is true for the LECs cD and
cE entering the leading 3NF, as can be seen e.g., from the
corresponding expectation values in the 3H state [84].

– The residual cutoff-dependence of NN phase shifts is
strongly reduced at N3,4LO as compared to N1,2LO within
the considered 3-range (see e.g., Figure 4 of [82]).

– There is a clear systematic improvement in the description
of np and pp data with increasing chiral orders (see
Table 1). At order Q3 (i.e., N2LO), this improvement
results solely from taking into account the parameter-
free subleading TPEP contributions. Notice that certain
alternative power counting schemes suggest that some
of the contact interactions that appear at order Q4 in
the Weinberg scheme are enhanced and should yield
contributions to observables larger than the order-Q3 TPEP
(see e.g., Table 1 of [81]). The clear evidence of the chiral
TPEP at orders Q3 and Q5 observed in Epelbaum et al. [21,
22] and Reinert et al. [17] does, however, not support such
alternative scenarios.

– The resulting convergence pattern of the EFT expansion
for selected NN observables was scrutinized using Bayesian
statistical methods (see section 5 for details). For not
too soft cutoffs, the assumed breakdown scale of the
EFT expansion of 3b ∼ 600 MeV [21] was found to
be statistically consistent [131] (see also [84, 132] for a

related discussion).
– Scheme-dependence of nuclear potentials offers yet another

way to perform nontrivial consistency checks of the
theoretical framework by explicitly verifying (approximate)

scheme-independence of observables. In the formulation

we employ, scheme dependence of the nuclear forces first

appears at N3LO andmanifests itself in their dependence on
arbitrary real phases β̄8, β̄9, which parameterize the unitary
ambiguity of the leading relativistic corrections [21, 74],
and the appearance of three off-shell short-range operators
in the 1S0 and 3S1-

3D1 channels proportional to the LECs
Doff
1S0, D

off
3S1, and Doff

ǫ1 [17, 204, 205]. The SMS potentials of
Reinert et al. [17] make use of the standard choice for β̄8,9

namely β̄8 = −β̄9 = 1/4, which minimizes the amount
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of 1/m2-corrections to the OPEP, and employ Doff
1S0 =

Doff
3S1 = Doff

ǫ1 = 0. Different choices of these parameters
lead to different off-shell behaviors of the potential. They
are related to each other by unitary transformations which,
however, also induce an infinite tower of higher-order terms
beyond the order one is working. The residual dependence
of observables on β̄8,9 andD

off
i , therefore, probes the impact

of neglected higher-order terms and should lie within the
estimated truncation errors. We have redone the fits at
N4LO+ for 3 = 450 MeV using alternative choices of
Doff
i [17] and also developed a version of the potential with

β̄8 = β̄9 = 1/2 [206]. The letter choice is motivated by
the vanishing isoscalar exchange charge density operator at
N3LO. In all considered cases, we found negligibly small
changes in observables in spite of strong changes at the
interaction level.

– Calculations of three- and more-nucleon observables
based on solely NN interactions are incomplete beyond
second order. They do, however, provide information
about the magnitude of the missing 3NF contributions
by assessing the spread in results at different orders Q≥3

and via a comparison of such incomplete predictions
with experimental data. In Binder et al. [83], such an
analysis was performed for Nd scattering observables
and selected properties of light nuclei using the SCS
NN interactions of Epelbaum et al. [21, 22]. The
sizes of the 3NF contributions required to bring such
incomplete results in agreement with experimental
data were found to agree well with expectations based
on Weinberg’s power counting. Furthermore, recent
calculations by the LENPIC Collaboration which include
the leading 3NF [8, 84] show that the resulting N2LO
predictions for observables that have not been used in the
determination of the LECs cD, cE are generally in a good
agreement with the data (see section 6). No indications
are found for enhanced contributions of the 3NF in
general and of the cD-term in particular as suggested in
Birse [207].

To summarize, major progress has been achieved in recent

years toward developing chiral EFT into a precision tool

for low-energy nuclear physics. In the NN sector, the

latest SMS interactions at fifth chiral order have already
reached the accuracy at or even below permille level for
low-energy observables such as e.g., the deuteron asymptotic
S-state normalization AS (see section 6.1 for details and
further examples). The only essential missing step in the
NN sector concerns the inclusion of isospin-breaking
interactions up to fifth chiral order. Work along this line is
in progress.

Pushing the precision frontier beyond the NN system opens

exciting perspectives for low-energy nuclear theory and will
allow one to confront chiral EFT with currently unsolved
problems, such as a quantitative description of 3N scattering
observables [19]. This, however, will require to address the two
core challenges:

(i) Derivation of consistent regularized three- and four-nucleon
forces and exchange charge and current operators at and
beyond N3LO as detailed in section 4.2. This issue has not
been paid attention to in the recent calculations involving
the 3NFs [208–211] and exchange electroweak currents [110,
212, 213] at N3LO. As explained in section 4.2, using ad hoc
regularization approaches at N3LO and beyond generally leads
to incorrect results for the scattering amplitude and other
observables due to the appearance of uncontrolled short-range
artifacts, which violate chiral symmetry and are not suppressed
by inverse powers of 3. This puts the findings of these studies
into question.

(ii) Determination of the LECs in the 3NF at N4LO. While
the N3LO contributions to the 3NF and 4NF do not involve
unknown parameters, the N4LO corrections to the 3NF
involve 10 LEC accompanying purely short-range operators
[45] and one or more LECs entering the one-pion-exchange-
contact topology, which has not been worked out yet. As
discussed in section 6.2, the determination of these LECs from
3N data will require a computationally challenging analysis.

As a first example of a precision calculation not restricted
to NN scattering, we have recently determined the deuteron
structure radius with an accuracy below the permille level,
rstr = 1.9731+0.0013

−0.0018 fm, by pushing the chiral expansion of

the electromagnetic exchange charge density beyond N3LO and
performing a thorough analysis of various types of uncertainty
[206]. By combining the predicted value for rstr with the
very accurate atomic data from isotope shift measurements, it
was, for the first time, possible to extract the neutron charge
radius from experimental data on light nuclei. This study was
facilitated by the absence of loop contributions in the isoscalar
exchange charge density at N3LO [74, 122], which allowed
for a trivial construction of the corresponding consistently
regularized expressions for the charge operator. Rederivation
of the contributions to 3NFs, 4NFs and exchange currents
at and beyond N3LO using a regulator, consistent with the
one employed in Reinert et al. [17], would open the way for
performing similar precision calculations for a broad class of
low-energy few-nucleon reactions.
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During the past few decades a large effort has been made toward describing the NN

interaction in the framework of chiral Effective Field Theory (EFT). The main idea is to

exploit the symmetries of QCD to obtain an effective theory for low energy nuclear

systems. In 2003, the first accurate charge-dependent NN potential in this scheme was

developed and it has been applied to many ab-initio calculations, opening the possibility

to study nuclear systems in a systematic and accurate way. It was shown that the fourth

order (N3LO) was necessary and sufficient to describe the NN scattering data with a

χ2/d.o.f on the order of so-called high precision potentials. However the systematics

of chiral EFT also allow to relate two- and many-body interactions in a well-defined

way. Since many-body forces make their first appearance at higher order, they are

substantially smaller than their two-body counterparts, but may never-the-less be crucial

for some processes. Thus, there are observables where they can have a big impact and,

for example, there are indications that they solve the long standing Ay puzzle of N-d

scattering. The last few years, have also seen substantial progress toward higher orders

of chiral EFT which was motivated by the fact that only three-body forces of rather high

order may solve some outstanding issues in microscopic nuclear structure and reactions.

In this chapter we will review the latest contributions of the authors to development of

chiral EFT based potentials up to N4LO as well as first calculations conducted for NN

scattering at N5LO.

Keywords: nucleon-nucleon scattering, chiral effective field theory, EFT, nucleon-nucleon interaction, nucleon-

nucleon potential

1. INTRODUCTION

The modern view of the NN interaction is given in the framework of Chiral Effective Field Theory
(χEFT). The concept of an Effective Field Theory (EFT) is not a new one. The main idea is to
identify the relevant degrees of freedom and symmetries for a certain system at a certain scale, and
use this to find a Quantum Field Theory that is able to describe the system. However the traditional
renormalization condition used to build theories like QCD is not required and a renormalization
order by order is used instead. Nowadays, this approach is widely applied in different areas
of physics.

In the case of strong interactions, we know that the fundamental theory is given by Quantum
Chromodynamics (QCD). However for nuclear systems, the relevant degrees of freedom are not
quarks and gluons, but nucleons and pions. Applying the EFT concept to nuclear systems allows
to build theories for nucleons and pions that are consistent with the symmetries of the underlying
theory. In the case of QCD, a very important property for low energy dynamics is that the original
approximate chiral symmetry is broken spontaneously. This effect makes the pion come into play
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as the pseudo-Goldstone boson of the theory, which naturally
explains the low mass of the pion as compared to other scales
in nuclear systems.

Chiral Perturbation Theory (ChPT) uses these ideas to
determine observables making a perturbative expansion in
the pion mass or some low energy external momenta.
The Goldstone-boson character of the pion allows for this
perturbative expansion, having always derivative couplings.
ChPT was first applied to ππ systems [1] and πN systems [2]
with quite some success. Chiral EFT is essentially based on ChPT,
however in the case of the NN interaction this perturbative
expansion is inadequate and non-perturbative resummations are
needed. The complicate structure of the amplitudes makes it
difficult to resum these contributions using the techniques of
Unitarized ChPT that are applied in two-meson systems [3].
However first attempts to use similar techniques using the so
called N/D method have been made [4].

The use of χEFT for the two-nucleon system was introduced
byWeinberg in two seminal papers [5, 6]. Weinberg realized that
reducible diagrams violate the chiral expansion and, therefore,
proposed to determine the potential using the rules of ChPT and
then insert it into a Schrödinger-like equation to conduct the
non-perturbative resummation.

Soon after, the first nuclear potentials were obtained by
Ordoñez and van Kolck [7–9]. These position-space potentials
were developed up to next-to-next-to-leading order (N2LO) and
regularized by a cutoff function. Momentum-space potentials up
to N2LO using dimensional regularization were derived by the
Bochum group [10, 11]. The simple and transparent momentum-
space expressions obtained in this type of derivation [12] made
chiral potentials more popular. However it was not until 2003
that χEFT reached high precision when the first chiral potential
at N3LOwas developed by Entem andMachleidt [13, 14] that was
able to describe the NN scattering data with a χ2/d.o.f similar
to what the high-precision potentials of the 90’s had achieved
[15–18].

Since then, many applications of N3LO NN potentials
together with chiral three-nucleon forces (3NFs) have been
reported. These investigations include few-nucleon reactions
[19–22], structure of light- and medium-mass nuclei [23–27]
and infinite matter [28–33]. Although satisfactory predictions
have been obtained in many cases, persistent problems continue
to pose serious challenges, as the overbinding in medium mass
nuclei [25] or the descriptions of charge and matter radii [34].
There is also the well-known Ay puzzle of nucleon-deuteron
scattering [35]. In this case recent calculations including contact
3NFs at N4LO have been shown to be able to solve the puzzle [36].
This suggests that one may have to proceed to the next higher
order, namely, N4LO, for the two-nucleon force.

Thus, during the past few years, chiral potentials up to N4LO
have been developed by the Idaho-Salamanca group [37] as well
as the Bochum group [38].

In the whole chapter we will be referring to the so called
1-less EFT, where 1 degrees of freedom have been integrated
out. There are recent advances in the 1-full theory [39, 40]. We
refer the interested reader to contributions on this topic in the
present monograph.

The chapter is organized as follows. In section 2 we review the
most important aspects of χEFT for the two-nucleon system. In
section 3 we apply the perturbative amplitude obtained to study
peripheral NN scattering up to N5LO. In section 4 we review NN
potentials up toN4LO.We conclude with a summary in section 5.

2. CHIRAL EFT FOR THE NN SYSTEM

2.1. Power Counting
In order to build an EFT for the two nucleon system, the
Lagrangians for the involved degrees of freedom have to be
constructed. However, there is an infinite number of terms in
the Lagrangian compatible with the allowed symmetries. For this
reason, it is necessary to order all terms by what we call power
counting. Following power counting, the terms in the Lagrangian
are arranged by order. Moreover, the diagrams representing an
amplitude calculated from the Lagrangian are also of a well
defined order. Since higher orders include loop diagrams that
diverge, the power counting also needs to be such that all the
infinities generated at a certain order can be reabsorbed into
redefinitions of the coupling constants of the Lagrangian at the
same order. With these ideas in mind Weinberg, proposed the
so called Weinberg power counting which is based on naive
dimensional analysis.

Following naive dimensional analysis, a nucleon propagator
counts as Q−1, where Q stands for a low momentum or pion
mass, a pion propagator as Q−2, each derivative or pion mass
insertion counts as Q and each four momentum integration as
Q4. The power of a diagram is then given by the simple formula
[5, 6, 14]

ν = −2+ 2A− 2C + 2L+
∑

i

1i , (1)

where A is the number of nucleons involved, C the number of
connected pieces, L the number of loops, and the sum runs over
all vertexes i with 1i the index of the vertex given by

1i ≡ di +
ni

2
− 2 (2)

with di the number of derivatives or pion mass insertions (chiral
dimension) and ni the number of nucleon legs. In this way
the contribution of a diagram goes as (Q/3b)

ν with 3b the
breakdown scale.

In the heavy-baryon formalism, an expansion in terms of
Q/MN is performed, with MN denoting the nucleon mass. It is
used for low energy nucleon systems and we will count these
contributions as Q/MN ∼ (Q/3b)

2 for reasons explained in
Weinberg [5, 6].

An important property of chiral symmetry is that the index
of the vertexes is always zero or positive 1i ≥ 0. This fact
implies that for a fixed number of nucleons with A ≥ 2 and
considering diagrams with one connected piece, the power of a
diagram is always bounded from below. This fact is crucial for
the convergence of the chiral expansion.

A very important aspect of the EFT is that it relates two-body
forces with many-body forces. We know that two-body forces
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are the main contribution to nuclear forces, however, many-body
forces should exist. If we consider lowest order diagrams with
L = 0 and 1i = 0, for an m-body force in an A-nucleon system,
the number of separately connected pieces is C = A−m+1, and
so the power of the diagram is given by ν = 2m− 4. This means
that two-body forces (m = 2) appear at ν = 0, three-body forces
(m = 3) at ν = 2, four-body (m = 4) at ν = 4 and so on. So the
power counting explains in a simple way the hierarchy of nuclear
forces. In Figure 1 we summarize this hierarchy up to N5LO or
sixth order of the chiral expansion.

2.2. The Lagrangian
We will limit ourselves to the 1-less version of χEFT, and so the
relevant degrees of freedom are pions and nucleons. The effective
Lagrangian, subdivided in terms of the number of nucleon legs,
is given by

Leff = Lππ + LπN + LNN + . . . , (3)

where Lππ stands for the Lagrangian that deals with pion
dynamics, LπN the interaction between pions and a nucleon, and
LNN contains four nucleon legs and no pion fields. The ellipsis
stands for terms that involve two nucleons plus pions and three
or more nucleons with or without pions, not relevant for the two
nucleon sector.

All the pieces in the Lagrangian are then organized in
terms of the chiral dimension (number of derivatives/pion mass
insertions) of increasing order

Lππ = L
(2)
ππ + L

(4)
ππ + . . . , (4)

LπN = L
(1)
πN + L

(2)
πN + L

(3)
πN + L

(4)
πN + L

(5)
πN + . . . , (5)

LNN = L
(0)
NN + L

(2)
NN + L

(4)
NN + . . . , (6)

where the superscript refers to the chiral dimension and the
ellipsis refers to terms of higher dimensions. We use the heavy-
baryon formulation of the Lagrangians, the explicit expressions
of which can be found in Machleidt and Entem [14] and Krebs
et al. [41]. Notice that only in theNN case the chiral dimension is
the same as the index 1i.

2.3. The Scattering Amplitude
Having the Lagrangian, we can now calculate the NN scattering
amplitude. TheNN amplitude has contributions from irreducible
as well as reducible diagrams. The reducible diagrams are those
that we can separate into two diagrams by cutting only nucleon
lines. In covariant perturbation theory the separation is well
defined, however when we apply a three-dimensional reduction
of the Bethe-Salpeter equation it depends on the way this
reduction is performed. See Machleidt and Entem [14] for a
discussion on this point. We will come back to this when we
define the potential.

The amplitude for diagrams involving pions is organized in
terms of the number of pions exchanged by the two nucleons

Vπ = V1π + V2π + V3π + . . . (7)

Then each piece is divided in terms of the power counting
described previously as

V1π = V
(0)
1π + V

(2)
1π + V

(3)
1π + V

(4)
1π + V

(5)
1π + V

(6)
1π + . . . , (8)

V2π = V
(2)
2π + V

(3)
2π + V

(4)
2π + V

(5)
2π + V

(6)
2π + . . . , (9)

V3π = V
(4)
3π + V

(5)
3π + V

(6)
3π + . . . , (10)

where the superscript denotes the order ν.
Besides these diagrams, contributions coming from

Lagrangian LNN are also present. These contributions are
contact-like contributions and take into account the unknown
short-distance dynamics. They are again organized using the
power counting

Vct = V
(0)
ct + V

(2)
ct + V

(4)
ct + V

(6)
ct + . . . , (11)

where the superscript is the order ν. Due to symmetry
requirements these contributions come only in even powers.

Then the order by order contributions are given by

VLO ≡ V(0)
π + V

(0)
ct = V

(0)
ct + V

(0)
1π , (12)

VNLO ≡ VLO + V(2)
π + V

(2)
ct = VLO + V

(2)
ct + V

(2)
1π + V

(2)
2π ,(13)

VNNLO ≡ VNLO + V(3)
π = VNLO + V

(3)
1π + V

(3)
2π , (14)

VN3LO ≡ VNNLO + V(4)
π + V

(4)
ct = VNNLO + V

(4)
ct + V

(4)
1π

+ V
(4)
2π + V

(4)
3π , (15)

VN4LO ≡ VN3LO + V(5)
π = VN3LO + V

(5)
1π + V

(5)
2π

+ V
(5)
3π , (16)

VN5LO ≡ VN4LO + V(6)
π + V

(6)
ct = VN4LO + V

(6)
ct + V

(6)
1π

+ V
(6)
2π + V

(6)
3π , (17)

where LO stands for leading order, NLO next-to-leading
order, etc.

For the presentation of amplitudes we will use the following
decomposition

V(Ep ′, Ep) = VC + Eτ1 · Eτ2 WC

+
[

VS + Eτ1 · Eτ2WS

]

Eσ1 · Eσ2
+

[

VLS + Eτ1 · Eτ2 WLS

]

(

−iES · (Eq× Ek)
)

+
[

VT + Eτ1 · Eτ2WT

]

Eσ1 · Eq Eσ2 · Eq
+

[

VσL + Eτ1 · Eτ2WσL

]

Eσ1 · (Eq× Ek ) Eσ2 · (Eq× Ek ) , (18)

where Ep ′ and Ep denote the final and initial nucleon momenta in
the center-of-mass system (CMS), respectively. Moreover, Eq =
Ep ′ − Ep is the momentum transfer, Ek = (Ep ′ + Ep)/2 the average
momentum, and ES = (Eσ1+ Eσ2)/2 the total spin, with Eσ1,2 and Eτ1,2
the spin and isospin operators, of nucleon 1 and 2, respectively.
For on-shell scattering, Vα and Wα (α = C, S, LS,T, σL) can be
expressed as functions of q = |Eq | and p = |Ep ′| = |Ep |, only.
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FIGURE 1 | Hierarchy of nuclear forces up to N5LO or sixth order of the chiral expansion. Only some representative diagrams are included. Small dots, large solid

dots, solid squares, triangles, diamonds, and stars denote vertexes of index 1i = 0, 1, 2, 3, 4, and 6, respectively. Reprinted figure with permission from Entem et al.

[37], copyright (2017) by the American Physical Society.

2.4. Pion-Exchange Contributions
We now specify the contributions coming from pion exchanges
which provide the long-range interactions. Contributions at LO,
NLO, and NNLO are diagrammatically given by the graphs
in Figure 2.

2.4.1. Leading Order
The leading order (LO) is just the charge-independent one-pion-
exchange (OPE). The expression is given by

V
(0)
1π = − g2A

4f 2π
Eτ1 · Eτ2

Eσ1 · Eq Eσ2 · Eq
q2 +m2

π

, (19)

where gA, fπ , andmπ denoted the axial-vector coupling constant,
pion-decay constant, and the pion mass, respectively. There
are corrections at higher orders that renormalize the coupling

constant. They are taken into account by using gA/fπ =
gπN/MN , with gπN the πNN coupling constant. Numerical
values are given in Table 1. Note that, on-shell, there are no
relativistic corrections.

Charge dependence is taken into account using

V
(np)
1π (Ep′, Ep) = −V1π (mπ0)+ (−1)I+12V1π (mπ± ) , (20)

V
(pp/nn)
1π (Ep′, Ep) = V1π (mπ0 ) , (21)

with I the isospin of the two-nucleon system and

V1π (mπ ) = − g2A
4f 2π

Eσ1 · Eq Eσ2 · Eq
q2 +m2

π

; (22)

mπ0 denotes the mass of the neutral pion andmπ± the one of the
charged pion. The charge dependence is an NLO effect [14], but
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FIGURE 2 | LO, NLO, and NNLO contributions to the NN interaction. Solid lines represent nucleons and dashed lines pions. Small dots and large solid dots represent

vertices with index 1i = 0 and 1, respectively. Reprinted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society.

we include it already at leading order to make comparison with
phase-shifts more meaningful.

2.4.2. Next-to-Leading Order
The NLO contributions appear at order ν = 2. Symmetry
requirements make the contributions at ν = 1 vanish. In
the past, the expressions for these diagrams as obtained in
dimensional regularization were used [14]. Here, we apply the so-
called spectral-function regularization (SFR) [42]. The potentials
are obtained using dispersion relations from the imaginary part
of the amplitude in the left-hand cut. However a cut-off 3̃ is
used in the dispersion relation to constrain the potentials to the
low-energy region where χEFT is applicable.

The contribution is given by

WC = L(3̃; q)
384π2f 4π

[

4m2
π (1+ 4g2A − 5g4A)+ q2(1+ 10g2A − 23g4A)

−48g4Am
4
π

w2

]

, (23)

VT = − 1

q2
VS = − 3g4A

64π2f 4π
L(3̃; q), (24)

with

w =
√

4m2
π + q2 , (25)

L(3̃; q) = w

2q
ln

3̃2(2m2
π + q2)− 2m2

πq
2 + 3̃

√

3̃2 − 4m2
π qw

2m2
π (3̃

2 + q2)
,

(26)

which agrees with the dimensional regularization expressions
[14] when replacing L(3̃; q) by L(q). In fact,

lim
3̃→∞

L(3̃; q) = L(q). (27)

2.4.3. Next-to-Next-to-Leading Order
Here the diagrams that contribute include a vertex with 1i = 1
which is represented by a large solid dot in Figure 2. The NNLO
contribution is

VC = 3g2A
16π f 4π

[

2m2
π (c3 − 2c1)+ c3q

2
]

(2m2
π + q2)A(3̃; q),(28)

WT = − 1

q2
WS = − g2A

32π f 4π
c4w

2A(3̃; q) , (29)

with

A(3̃; q) = 1

2q
arctan

q(3̃ − 2mπ )

q2 + 23̃mπ

. (30)

As in the case of the NLO contribution, dimensional
regularization is recovered when using

lim
3̃→∞

A(3̃; q) = 1

2q
arctan

q

2mπ

. (31)

Notice that, here, we demote the relativistic corrections of the
NLO diagrams to N3LO, while in Machleidt and Entem [14] they
were counted NNLO.

2.4.4. N3LO Contributions
At this order the first 3π exchange contributions appear.
However it was shown in Kaiser [43, 44] that they give negligible
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TABLE 1 | Basic constants used throughout this review article.

Quantity Value

Axial-vector coupling constant gA 1.29

Pion-decay constant fπ 92.4 MeV

Charged-pion mass mπ± 139.5702 MeV

Neutral-pion mass mπ0 134.9766 MeV

Average pion-mass mπ 138.0390 MeV

Proton mass Mp 938.2720 MeV

Neutron mass Mn 939.5654 MeV

Average nucleon-mass MN 938.9183 MeV

contributions for peripheral waves and, therefore, we leave
them out.

There are three types of contributions given by the three
classes represented in Figure 3. The first one is the football
diagram (a). The contribution is [45],

VC = 3

16π2f 4π

[

( c2

6
w2 + c3(2m

2
π + q2)− 4c1m

2
π

)2

+ c22
45

w4

]

L(3̃; q) , (32)

WT = − 1

q2
WS =

c24
96π2f 4π

w2L(3̃; q) . (33)

The second class (b) corresponds to the 2π-exchange
two-loop diagrams.

Here as well as for the N4LO expressions (see below), we state
contributions in terms of their spectral functions, from which the
momentum-space amplitudes Vα(q) andWα(q) are obtained via
the subtracted dispersion integrals:

VC,S(q) = −2q6

π

∫ 3̃

nmπ

dµ
ImVC,S(iµ)

µ5(µ2 + q2)
,

VT(q) = 2q4

π

∫ 3̃

nmπ

dµ
ImVT(iµ)

µ3(µ2 + q2)
, (34)

and similarly for WC,S,T . The thresholds are given by n = 2
for two-pion exchange and n = 3 for three-pion exchange.
For 3̃ → ∞ the above dispersion integrals yield the finite
parts of loop-functions as in dimensional regularization, while
for finite 3̃ >> nmπ we employ the method known as spectral-
function regularization (SFR). The purpose of the finite scale 3̃

is to constrain the imaginary parts to the low-momentum region
where chiral effective field theory is applicable.

The spectral functions for class (b) are given by [45, 46]

ImVC = 3g4A(2m
2
π − µ2)

πµ(4fπ )6

[

(m2
π − 2µ2)

(

2mπ + 2m2
π − µ2

2µ
ln

µ + 2mπ

µ − 2mπ

)

+4g2Amπ (2m
2
π − µ2)

]

, (35)

ImVS = µ2 ImVT = g2Aµκ3

8π f 4π

(

d̄15 − d̄14

)

+2g6Aµκ3

(8π f 2π )
3

∫ 1

0
dx(1− x2)

[

1

6
− m2

π

κ2x2
(36)

+
(

1+ m2
π

κ2x2

)3/2

ln
κx+

√

m2
π + κ2x2

mπ

]

,

ImWC = 2κ

3µ(8π f 2π )
3

∫ 1

0
dx

[

g2A(µ
2 − 2m2

π )+ 2(1− g2A)κ
2x2

]

×
{

96π2f 2π

[

(2m2
π − µ2)(d̄1 + d̄2)− 2κ2x2d̄3

+4m2
π d̄5

]

+
[

4m2
π (1+ 2g2A)− µ2(1+ 5g2A)

] κ

µ

ln
µ + 2κ

2mπ

+ µ2

12
(5+ 13g2A)− 2m2

π (1+ 2g2A)

+g4A
(

µ2 − 2κ2x2 − 2m2
π

)

[

5

6
+ m2

π

κ2x2

−
(

1+ m2
π

κ2x2

)3/2

ln
κx+

√

m2
π + κ2x2

mπ

]

(37)

− 3κ2x2 + 6κx
√

m2
π + κ2x2 ln

κx+
√

m2
π + κ2x2

mπ

}

,

ImWS = µ2 ImWT(iµ)

= g4A(4m
2
π − µ2)

π(4fπ )6

[(

m2
π − µ2

4

)

ln
µ + 2mπ

µ − 2mπ

+(1+ 2g2A)µmπ

]

, (38)

where κ =
√

µ2/4−m2
π . Here and below all imaginary parts

are evaluated at iµ, because that is where they are needed for the
calculation of the SFR integrals.

Finally the relativistic corrections of the NLO diagrams
corresponding to class (c) are given by [14]

VC = 3g4A
128π f 4πMN

[

m5
π

2w2
+ (2m2

π + q2)(q2 −m2
π )A(3̃; q)

]

, (39)

WC = g2A
64π f 4πMN

{

3g2Am
5
π

2ω2
+

[

g2A(3m
2
π + 2q2)− 2m2

π − q2
]

(2m2
π − q2)A(3̃; q)

}

, (40)

VT = − 1

q2
VS =

3g4A
256π f 4πMN

(5m2
π + 2q2)A(3̃; q) , (41)

WT = − 1

q2
WS =

g2A
128π f 4πMN

[

g2A(3m
2
π + q2)− w2

]

A(3̃; q), (42)

VLS = 3g4A
32π f 4πMN

(2m2
π + q2)A(3̃; q) , (43)

WLS = g2A(1− g2A)

32π f 4πMN
w2A(3̃; q) . (44)

2.4.5. N4LO Contributions
The 2π-exchange contributions at N4LO have three different
classes of diagrams shown in Figure 4. The contributions of
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FIGURE 3 | N3LO 2π-exchange contributions to the NN interaction. The same notation as in Figure 2 is use. Solid squares represent vertices with index 1i = 2.

Open circles and open circles with a dot inside are relativistic 1/MN corrections to propagators and the vertex with one derivative, respectively. The leading one-loop

πN amplitude is represented by a shaded oval. Adapted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society. (A) Football

diagram, (B) two-loop diagrams, and (C) relativistic corrections to one loop diagrams.

FIGURE 4 | N4LO 2π-exchange contributions to the NN interaction. The same notation as in Figure 3 is used. Open circles with a large solid dot inside refers to the

1/MN corrections to vertexes with two derivatives. Solid triangles represent vertices with index 1i = 3. The subleading one-loop πN amplitude is represented by a

dark-shaded oval. Adapted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society. (A,B) Two-loop diagrams, and (C)

relativistic corrections to one loop diagrams.

class (a) and (b) are given in terms of spectral functions and
Equation (34).

The spectral functions for class (a) are obtained by integrating
the product of the leading one-loop πN amplitude and the
subleading chiral ππNN vertex proportional to ci over the
Lorentz-invariant 2π-phase space. The result for the non-
vanishing amplitudes is given by [46]

ImVC = − m5
π

(4fπ )6π2

{

g2A

√

u2 − 4

(

5− 2u2 − 2

u2

)

[

24c1 + c2(u
2 − 4)+ 6c3(u

2 − 2)
]

ln
u+ 2

u− 2

+ 8

u

[

3
(

4c1 + c3(u
2 − 2)

)

(4g4Au
2 − 10g4A + 1)

+c2(6g
4
Au

2 − 10g4A − 3)
]

B(u)

+
√

u2 − 4

[

3(2− u2)
(

4c1 + c3(u
2 − 2)

)

+c2(7u
2 − 6− u4)+ 4g2A

u
(2u2 − 1)

×
[

4(6c1 − c2 − 3c3)+ (c2 + 6c3)u
2
]

+4g4A

(

32

u+ 2
(2c1 + c3)+

64

3u
(6c1 + c2 − 3c3)
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+14c3 − 5c2 − 92c1 +
8u

3
(18c3 − 5c2)

+u2

6
(36c1 + 13c2 − 156c3)+

u4

6
(2c2 + 9c3)

)]

}

,(45)

ImWS = µ2 ImWT = c4 g
2
Am

5
π

(4fπ )6π2

{

8g2Au(5− u2)B(u)+

1

3
(u2 − 4)5/2 ln

u+ 2

u− 2

+u

3

√

u2 − 4
[

g2A(30u− u3 − 64)− 4u2 + 16
]

}

, (46)

with the dimensionless variable u = µ/mπ > 2 and the
logarithmic function

B(u) = ln
u+

√
u2 − 4

2
. (47)

Class (b) is obtained in the same way but multiplying the one-
loop πN amplitude proportional to ci (see [41] for details) and
the leading-order chiral πN amplitude. The result is [46]

ImVS = µ2 ImVT = g4Am
5
π (c3 − c4)u

(4fπ )6π2

{
√

u2 − 4 (u3 − 30u+ 64)+ 24(u2 − 5)B(u)
}

, (48)

ImWS = µ2 ImWT = g2Am
5
π

(4fπ )6π2
(4− u2)

{

c4

3

[

√

u2 − 4 (2u2 − 8)B(u)

+4u(2+ 9g2A)−
5u3

3

]

+ 2ē17(8π fπ )
2(u3 − 2u)

}

(49)

ImVC = g2Am
5
π

(4fπ )6π2
(u2 − 2)

(

1

u2
− 2

)

{

2
√

u2 − 4

[

24c1 + c2(u
2 − 4)+ 6c3(u

2 − 2)
]

B(u)

+u

[

c2

(

8− 5u2

3

)

+ 6c3(2− u2)− 24c1

]

}

+ 3g2Am
5
π

(2fπ )4u
(2− u2)3 ē14, (50)

ImWC = − c1m
5
π

(2fπ )6π2

{

3g2A + 1

8

√

u2 − 4 (2− u2)

+
(

3g2A + 1

u
− 2g2A u

)

B(u)

}

− c2m
5
π

(2fπ )6π2

{

1

96

√

u2 − 4
[

7u2 − 6− u4 + g2A(5u
2 − 6− 2u4)

]

+ 1

4u
(g2Au

2 − 1− g2A)B(u)

}

− c3m
5
π

(4fπ )6π2

{

2

9

√

u2 − 4

[

3(7u2 − 6− u4)

+4g2A

(

32

u
− 12− 20u+ 7u2 − u4

)

+g4A

(

114− 512

u
+ 368u− 169u2 + 7u4 + 192

u+ 2

)]

+ 16

3u

[

g4A(6u
4 − 30u2 + 35)+ g2A(6u

2 − 8)− 3
]

B(u)

}

− c4g
2
Am

5
π

(4fπ )6π2

{

2

9

√

u2 − 4

[

30− 128

u
+ 80u− 13u2

−2u4 + g2A

(

512

u
− 114− 368u+ 169u2 − 7u4

− 192

u+ 2

)]

+ 16

3u

[

5− 3u2

+g2A(30u
2 − 35− 6u4)

]

B(u)

}

. (51)

where the only two independent LEC’s ē14 and ē17 have been used
to give the final result.

Finally class (c) consists of the relativistic corrections of
the NNLO 2π-exchange. The contributions are proportional to
ci/MN . They read [45]

WC = − c4

192π2MN f 4π

[

g2A(8m
2
π + 5q2)+ w2

]

q2 L(3̃; q) , (52)

VC = g2A L(3̃; q)
32π2MN f 4π

[

(6c3 − c2)q
4 + 4(3c3 − c2 − 6c1)q

2m2
π

+6(2c3 − c2)m
4
π − 24(2c1 + c3)m

6
πw

−2
]

, (53)

WT = − 1

q2
WS =

c4

192π2MN f 4π
[

w2 − g2A(16m
2
π + 7q2)

]

L(3̃; q) , (54)

VLS = c2 g
2
A

8π2MN f 4π
w2L(3̃; q) , (55)

WLS = − c4

48π2MN f 4π

[

g2A(8m
2
π + 5q2)+ w2

]

L(3̃; q) , (56)

The 3π-exchange contributions at order N4LO are shown in
Figure 5. The spectral functions have been calculated first in
Kaiser [47] where the classification scheme applied in Figure 5

was introduced. Class XI vanishes while class X and part of
class XIV give negligible contributions. Thus, we include in our
calculations only class XII and XIII, and the VS contribution of
class XIV. In Kaiser [47], the spectral functions were presented in
terms of integrals over the invariant mass of a pion pair. These
integrals have been solved analytically in Entem et al. [46], and
the spectral functions are given by

ImV
(XII)
S = − g2Ac4m

5
π

(4fπ )6π2u3

[

y

12
(u− 1)

(100u3 − 27− 50u− 151u2 + 185u4 − 14u5 − 7u6)

+4D(u) (2+ 10u2 − 9u4)

]

, (57)

ImV
(XII)
T = 1

µ2
ImV

(XII)
S − g2Ac4m

3
π

(4fπ )6π2u5

[

y

6
(u− 1)
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(u6 + 2u5 − 39u4 − 12u3 + 65u2 − 50u− 27)

+8D(u) (3u4 − 10u2 + 2)

]

, (58)

ImW
(XII)
S = − g2Am

5
π

(4fπ )6π2u3

{

y (u− 1)

[

4c1u

3

(

u3 + 2u2 − u+ 4

)

+ c2

72

(

u6 + 2u5 − 39u4 − 12u3 + 65u2 − 50u− 27

)

+ c3

12

(

u6 + 2u5 − 31u4 + 4u3 + 57u2 − 18u− 27

)

+ c4

72

(

7u6 + 14u5 − 185u4 − 100u3 + 151u2 + 50u+ 27

)]

+D(u)

[

16c1(4u
2 − 1− u4)+ 2c2

3

(

2− 10u2 + 3u4
)

+4c3u
2(u2 − 2)+ 2c4

3

(

9u4 − 10u2 − 2

)]}

, (59)

ImW
(XII)
T = 1

µ2
ImW

(XII)
S − g2Am

3
π

(4fπ )6π2u5

{

y (u− 1)

[

16c1u

3
(

2+ u− 2u2 − u3
)

+ c2

36

(

73u4 − 6u5 − 3u6 + 44u3

−43u2 − 50u− 27

)

+ c3

2

(

19u4 − 2u5 − u6

+4u3 − 9u2 − 6u− 9

)

+ c4

36

(

39u4 − 2u5 − u6

+12u3 − 65u2 + 50u+ 27

)]

+ 4D(u)

[

8c1(u
4 − 1)

+c2

(

2

3
− u4

)

− 2c3u
4 + c4

3

(

10u2 − 2− 3u4
)]}

, (60)

ImW
(XIII)
C = − g4Ac4m

5
π

(4fπ )6π2

[

8y

3
(u− 1)(u− 4− 2u2 − u3)

+32D(u)

(

u3 − 4u+ 1

u

)]

, (61)

ImV
(XIII)
S = − g4Ac4m

5
π

(4fπ )6π2u3

[

y

24
(u− 1)(37u6 + 74u5

−251u4 − 268u3 + 349u2 − 58u− 135)

+2D(u) (39u4 − 2− 52u2 − 6u6)

]

, (62)

ImV
(XIII)
T = 1

µ2
ImV

(XIII)
S − g4Ac4m

3
π

(4fπ )6π2u5

[

y

12
(u− 1)(5u6

+10u5 − 3u4 − 252u3

−443u2 − 58u− 135)+ 4D(u) (3u4 + 22u2 − 2)

]

, (63)

ImW
(XIII)
S = − g4Am

5
π

(4fπ )6π2u3

{

y (u− 1)

[

2c1u(5u
3 + 10u2 − 5u− 4)

+ c2

48

(

135+ 58u− 277u2 − 36u3 + 147u4 − 10u5 − 5u6
)

+ c3

8

(

7u6 + 14u5 − 145u4 − 20u3 + 111u2 + 18u+ 27

)

+ c4

6

(

44u3 + 37u4 − 14u5 − 7u6 − 3u2 − 18u− 27

)]

+D(u)

[

24c1(1+ 4u2 − 3u4)+ c2(2+ 2u2 − 3u4)

+6c3u
2(3u2 − 2)+ 8c4u

2(u4 − 5u2 + 5)

]}

, (64)

ImW
(XIII)
T = 1

µ2
ImW

(XIII)
S − g4Am

3
π

(4fπ )6π2u5

{

y (u− 1)

[

4c1u(5u
3 + 10u2 + 7u− 4)+ c2

24

(

135+ 58u

+227u2 + 204u3 + 27u4 − 10u5 − 5u6
)

+ c3

4

(

27+ 18u− 9u2 − 68u3 − 121u4 + 14u5 + 7u6
)

+c4(4u
3 + 19u4 − 2u5 − u6 − 9u2 − 6u− 9)

]

+2D(u)

[

24c1(1− 3u4)+ c2(2− 10u2 − 3u4)

+6c3u
2(3u2 + 2)− 8c4u

4

]}

, (65)

ImV
(XIV)
S = − g4Ac4m

5
π

(4fπ )6π2u3

[

y

24
(u− 1)(637u2 − 58u− 135+ 116u3

−491u4 − 22u5 − 11u6)

+2D(u) (6u6 − 9u4 + 8u2 − 2)

]

, (66)

where y = √
(u− 3)(u+ 1) and D(u) = ln[(u − 1 + y)/2] with

u = µ/mπ > 3.

2.4.6. Going Beyond N4LO
The next order is N5LO or sixth order. At this order, no
complete calculation exists; however, the presumed dominant
contributions have been evaluated in Entem et al. [48].

As before, we will state contributions in terms of their spectral
functions, from which the momentum-space amplitudes Vα(q)
and Wα(q) are obtained via subtracted dispersion integrals
which, for N5LO read:

VC,S(q) = 2q8

π

∫ 3̃

nmπ

dµ
ImVC,S(iµ)

µ7(µ2 + q2)
,

VT(q) = −2q6

π

∫ 3̃

nmπ

dµ
ImVT(iµ)

µ5(µ2 + q2)
, (67)

and similarly for WC,S,T . The thresholds are given by n = 2 for
two-pion exchange and n = 3 for three-pion exchange.

The 2π-exchange at N5LO is given by the diagrams of
Figure 6. There are three different classes. Class (a) is obtained
from the subleading one loop πN amplitude folded with the
subleading ππNN vertex proportional to ci. The results for the
non-vanishing spectral functions are

ImVC=
m6

π

√
u2 − 4

(8π f 2π )
3

(

1

u2
− 2

)

[

(c2 + 6c3)u
2 + 4(6c1 − c2 − 3c3)

]

{

2c1u+ c2u

36
(5u2 − 24)+ c3u

2
(u2 − 2)+

[

c3(2− u2)

+ c2

6
(4− u2)− 4c1

]

√

u2 − 4B(u)

}

+m6
π

√
u2 − 4

8π f 4πu

{

[

4c1 + c3(u
2 − 2)

]

[

ē15(u
4 − 6u2 + 8)+ 6ē14(u

2 − 2)2 + 3ē16

10
(u2 − 4)2

]
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FIGURE 5 | N4LO 3π-exchange contributions to the NN interaction. The classification scheme of Kaiser [47] is applied. The same notation as in Figure 2 is use.

Reprinted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society.

+c2(u
2 − 4)

[

3ē15

10
(u4 − 6u2 + 8)+ ē14(u

2 − 2)2

+3ē16

28
(u2 − 4)2

]

}

, (68)

ImWS=
c24m

6
π (u

2 − 4)

9(8π f 2π )
3

{

u
√

u2 − 4

[

5u2

6
− 4+ 2g2A

15
(2u2 − 23)

]

−(u2 − 4)2B(u)

+6g2Au

∫ 1

0
dx

(

x− 1

x

)

[

4+ (u2 − 4)x2
]3/2

ln
x
√
u2 − 4+

√

4+ (u2 − 4)x2

2

}

+ c4m
6
πu(u

2 − 4)3/2

240π f 4π

[

10ē17(2− u2)+ ē18(4− u2)
]

= µ2 ImWT , (69)

with the dimensionless variable u = µ/mπ > 2 and the
logarithmic function B(u) defined in Equation (47). We give the
result in terms of the independent pion LEC’s ē14 and ē18.

Class (b) is obtained from the leading one-loop πN amplitude
folded by itself. The result is

ImVC=
m6

π

√
u2 − 4

(4fπ )8π3u

{

− 3

70
(5u2 + 8)(u2 − 4)2

+3g2A(1− 2u2)

[

1+ 2− u2

4u
ln

u+ 2

u− 2

]

×
[

u− u3

2
+ 4B(u)√

u2 − 4

]

+ g4A

[

32(3− 2u2)√
u2 − 4

B(u)

+3(2u2 − 1)2
(

u2 − 2

u
ln

u+ 2

u− 2
+ (u2 − 2)2

8u2
(

π2 − ln2
u+ 2

u− 2

))

− 2258

35
+ 24u

+5336u2

105
− 12u3 − 2216u4

105
+ 18u6

35

]

+g6A(2u
2 − 1)

(

1+ 2− u2

4u
ln

u+ 2

u− 2

)

[

46u− 3u3 − 96+ 64

u+ 2
+ 24(5− 2u2)√

u2 − 4
B(u)

]

+64g8A
9

[

3119u2

70
− 71u6

1120
− 197u4

70
− 85u3

8
+ 97u

4

−582

7
− 16

u+ 2
+ 8

(u+ 2)2
+ 6u4 − 60u2 + 105√

u2 − 4
B(u)

]

}

,(70)

ImWS=
g4Am

6
π

√
u2 − 4

(4fπ )8π3u

{

u2 − 4

48

[

4u+ (4− u2) ln
u+ 2

u− 2

]2

−π2

48
(u2 − 4)3 + g2Au

[

(u2 − 4) ln
u+ 2

u− 2
− 4u

]

[

5u

4
− u3

24
− 8

3
+ 5− u2√

u2 − 4
B(u)

]

+ 32g4Au
2

27

[

u4

40

+13u2

10
+ 11u

2
− 118

5
− 8

u+ 2
+ 3(10− u2)√

u2 − 4
B(u)

]

}

= µ2ImWT , (71)

ImVS=
g8Am

6
πu

√
u2 − 4

3(4fπ )8π5

∫ 1

0
dx (x2 − 1)

{

(u2 − 4)x

[

48π2f 2π
g4A

(d̄14 − d̄15)−
1

6

]

+ 4

x

−
[

4+ (u2 − 4)x2
]3/2

x2
√
u2 − 4

ln
x
√
u2 − 4+

√

4+ (u2 − 4)x2

2

}2

= µ2ImVT , (72)

ImWC=−m6
π (u

2 − 4)5/2

(4fπ )8(3πu)3

[

2+ 4g2A − u2

2
(1+ 5g2A)

]2

+

m6
π (u

2 − 4)3/2

9(4fπ )8π5u

∫ 1

0
dx x2

{

3x2

2
(4− u2)

+3x
√

u2 − 4
√

4+ (u2 − 4)x2

ln
x
√
u2 − 4+

√

4+ (u2 − 4)x2

2
+ g4A

[

(4− u2)x2

+2u2 − 4
]

[

5

6
+ 4

(u2 − 4)x2
−

(

1+ 4

(u2 − 4)x2

)3/2
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ln
x
√
u2 − 4+

√

4+ (u2 − 4)x2

2

]

+
[

4(1+ 2g2A)− u2(1+ 5g2A)
]
√

u2 − 4
B(u)

u
+ u2

6

(5+ 13g2A)− 4(1+ 2g2A)+ 96π2f 2π

[

(4− 2u2)(d̄1 + d̄2)

+(4− u2)x2d̄3 + 8d̄5

]

}2

. (73)

Class (c) is obtained from the leading two-loop πN amplitude
with the tree-level πN amplitude. The two-loop πN amplitude
has not been evaluated and we omit this class of diagrams.

The next contribution is the 1/M2
N correction to the

leading one-loop chiral 2π-exchange diagrams. They were
given in Kaiser [49] and are shown in Figure 7. The explicit
expressions are

VC = g4A
32π2M2

N f
4
π

[

L(3̃; q)
(

2m4
π + q4 − 8m6

πw
−2

−2m8
πw

−4
)

− m6
π

2w2

]

, (74)

WC = 1

192π2M2
N f

4
π

{

L(3̃; q)
[

g2A

(

2k2(8m2
π + 5q2)

+12m6
πw

−2 − 3q4 − 6m2
πq

2 − 6m4
π

)

+g4A

(

k2(16m4
πw

−2 − 20m2
π − 7q2)− 16m8

πw
−4

−12m6
πw

−2 + 4m4
πq

2w−2 + 5q4 + 6m2
πq

2 + 6m4
π

)

+k2w2

]

− 4g4Am
6
π

w2

}

, (75)

VT = − 1

q2
VS = g4A L(3̃; q)

32π2M2
N f

4
π

(

k2 + 5

8
q2 +m4

πw
−2

)

, (76)

WT = − 1

q2
WS = L(3̃; q)

1536π2M2
N f

4
π

[

g4A

(

28m2
π + 17q2

+16m4
πw

−2
)

− 2g2A(16m
2
π + 7q2)+ w2

]

, (77)

VLS = g4A L(3̃; q)
128π2M2

N f
4
π

(

11q2 + 32m4
πw

−2
)

, (78)

WLS = L(3̃; q)
256π2M2

N f
4
π

[

2g2A(8m
2
π + 3q2)

+ g4A
3

(

16m4
πw

−2 − 11q2 − 36m2
π

)

− w2

]

, (79)

VσL = g4A L(3̃; q)
32π2M2

N f
4
π

, (80)

The next contribution is given by 3π-exchange contributions.
There are several classes of diagrams as shown in Figure 8.
The class (a) diagrams are proportional to c2i . We use the same
notation as in Kaiser [47] and Entem et al. [46].

Class XIa:

ImWC = g2Ac
2
4m

6
π

6(4π f 2π )
3

u−1
∫

2

dw (w2 − 4)3/2
√

λ(w) , (81)

ImVS = g2Ac
2
4m

6
π

6(8π f 2π )
3

u−1
∫

2

dw
(w2 − 4)3/2

u4
√

λ(w)

[

w8 − 4(1+ u2)w6 + 2w4(3+ 5u2)

+4w2(2u6 − 5u4 − 2u2 − 1)− (u2 − 1)3

(5u2 + 1)
]

, (82)

Im(µ2VT − VS) = g2Ac
2
4m

6
π

6(8π f 2π )
3

u−1
∫

2

dw (w2 − 4)3/2
√

λ(w)

[

(w2 − 1)2

u4
+ 1− 2

u2
(7w2 + 1)

]

, (83)

with the kinematical function λ(w) = w4 + u4 + 1 − 2(w2u2 +
w2+u2). The dimensionless integration variablew is the invariant
mass of a pion-pair divided bymπ .

Class XIIa:

ImVC = g2Ac
2
4m

6
π

8960π f 6π
(u− 3)3

[

u3 + 9u2 + 12u− 3− 3

u

]

, (84)

ImWC = 2g2Ac
2
4m

6
πu

2

(4π f 2π )
3

∫∫

z2<1

dω1dω2 k1k2
√

1− z2 arcsin(z), (85)

ImVS = g2Ac
2
4m

6
π

(4π f 2π )
3

∫∫

z2<1

dω1dω2

{

2ω2
1(ω

2
2 − 9ω2u+ 9u2 + 1)

+3ω1

[

ω2(1+ 8u2)− 6u− 6u3
]

+1

4
(9u4 + 18u2 + 5)+ 2zk2

k1

[

ω3
1(4u− ω2)

+ω2
1(7ω2u− 2− 2u2)− 2ω1(2u+ ω2)

+2+ 2u2 − 4ω2u
]

+ 3 arcsin(z)

k1k2
√
1− z2

[

2ω3
1u(u

2 + 1− 2ω2u)+ ω2
1

(

ω2u(7+ 11u2)

−5ω2
2u

2 − 1− 4u2 − 3u4
)

+ ω1

4
(

6u5 + 12u3 − 2u− ω2(5+ 16u2 + 15u4)
)

+ (1− u4)(u2 + 3)

8

]}

, (86)

Im(µ2VT − VS) = g2Ac
2
4m

6
π

(4π f 2π )
3

∫∫

z2<1

dω1dω2

{

4ω2
1(ω

2
2 + 6u2 + 2− 10ω2u)+ 6u2(1+ u2)

+2ω1

[

3ω2(1+ 7u2)− 18u3 − 10u
]

+2zk2

k1

[

ω3
1(7u− 2ω2)+ u2 − ω2u

+ω2
1(13ω2u− 3− 10u2)+ ω1(2+ 3u2)(u− 2ω2)

]
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FIGURE 6 | N5LO 2π-exchange contributions to the NN interaction. There are three classes of diagrams. Class (A) is obtained from the subleading one loop πN

amplitude folded with the subleading ππNN vertex proportional to ci . Class (B) is obtained from the leading one-loop πN amplitude folded by itself. Class (C) is

obtained from the leading two-loop πN amplitude (represented by a black oval) with the tree-level πN amplitude. Other notation as in Figure 6. Adapted figure with

permission from Entem et al. [48], copyright (2015) by the American Physical Society.

FIGURE 7 | N5LO 2π exchange contributions to the NN interaction coming from 1/M2
N corrections to the NLO chiral 2π-exchange diagrams. Notation as in Figure 3.

Two open circles refers to 1/M2
N corrections to propagators and vertices as in the case of one open circle. Reprinted figure with permission from Entem et al. [48],

copyright (2015) by the American Physical Society.

+ 3 arcsin(z)

k1k2
√
1− z2

× (u2 − 2ω1u+ 1)(u2 − 2ω2u+ 1)

[

ω1

2
(6u− 5ω2)−

u2

2
− 2ω2

1

]}

, (87)

with the magnitudes of pion-momenta divided bymπ , and their
scalar-product given by:

k1 =
√

ω2
1 − 1 , k2 =

√

ω2
2 − 1 ,

z k1k2 = ω1ω2 − u(ω1 + ω2)+
u2 + 1

2
. (88)

The upper/lower limits of the ω2-integration are ω±
2 = 1

2 (u −
ω1 ± k1

√

u2 − 2ω1u− 3/
√

u2 − 2ω1u+ 1 ) with ω1 in the range
1 < ω1 < (u2 − 3)/2u.

The contributions to ImWS and Im(µ2WT − WS) are
split into three pieces according to their dependence on the
isoscalar/isovector low-energy constants c1,3 and c4:
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FIGURE 8 | N5LO 3π-exchange contributions to the NN interaction. (A) Diagrams proportional to c2i . (B) Diagrams involving the one-loop πN amplitude. Notation as

in Figure 3. Reprinted figure with permission from Entem et al. [48], copyright (2015) by the American Physical Society.

ImWS = g2Am
6
π (u− 3)2

2240π f 6π

{

7c21

(

4

3
+ 3

u
− 2

3u2
− 1

u3

)

+c1c3

(

2u2

3
+ 4u− 2

3
− 5

u
− 2

3u2
− 1

u3

)

+c23

(

3u2

4
+ u

8
− 5

2
− 3

u
+ 19

12u2
+ 19

8u3

)

}

, (89)

Im(µ2WT −WS) = g2Am
6
π (u− 3)

1120π f 6π

{

7c21

(

1

3u
+ 1

u2
+ 3

u3
− 2u− 1

)

+c1c3

(

13u+ 4− 5u2 − 5u3

3
+ 1

3u
+ 1

u2
+ 3

u3

)

+ c23
8

(

23u2 − u5

3
− u4 − 4u3 − 8u− 3+

8

3u
− 19

u2
− 57

u3

)

}

, (90)

ImWS = g2Ac4m
6
π

1120π f 6π
(u− 3)2

{

c1

(

u2 + 6u

−1− 15

2u
− 1

u2
− 3

2u3

)

+ c3

4

(

2u4

9
+ 4u3

3
+

u2

3
− 25u

6
+ 6

u
+ 1

u2
+ 3

2u3

)

}

, (91)

Im(µ2WT −WS) = g2Ac4m
6
π

1120π f 6π
(u− 3)3

{

c1

(

1

u2
+ 1

u3
− u

3
− 3− 4

u

)

+ c3

4

(

u3

9
+ u2 + 5u

3
+ 8

3
+ 11

3u
− 1

u2
− 1

u3

)

}

,(92)

ImWS = g2Ac
2
4m

6
π

8960π f 6π
(u− 3)2

(

25u

12
− u4

9
− 2u3

3

−u2

6
− 3

u
− 1

2u2
− 3

4u3

)

, (93)

Im(µ2WT −WS) = g2Ac
2
4m

6
π

8960π f 6π
(u− 3)3

(

1

2u2
+ 1

2u3
− u3

18

−u2

2
− 5u

6
− 4

3
− 11

6u

)

. (94)

The next contribution is given by class (b). Each diagram
includes the one-loop πN amplitude. Not all the contributions
could be treated; only those contributions that are independent
of the pion-nucleon CMS energy in the loop or linearly
dependent could be included. The contributions are in general
small. The omitted contributions are typically an order of
magnitude smaller.

Class Xb:

ImWS =
g2Am

6
π

(4fπ )8π5

∫ u−1

2
dw

4G(w)

27w2u4

[

(w2 − 4)λ(w)
]3/2

, (95)

Im(µ2WT −WS) =
g2Am

6
π

(4fπ )8π5

∫ u−1

2
dw

4G(w)

9w2u4
(w2 − 4)3/2

√

λ(w)
3u2 + 1

u2 − 1

[

u4 − (w2 − 1)2
]

. (96)

Class XIb:

ImWS =
g2Am

6
π

(4fπ )8π5

∫ u−1

2
dw

8G(w)

27w2u4
(w2 − 4)3/2
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√

λ(w)
[

2u2(1+ 7w2)− u4 − (w2 − 1)2
]

, (97)

Im(µ2WT −WS) =
g2Am

6
π

(4fπ )8π5

∫ u−1

2
dw

8G(w)

9w2u4
(w2 − 4)3/2√

λ(w)

(u2 + 1− w2)2
[

2w2(1+ 3u2)− w4 − (u2 − 1)2
]

. (98)

Class XIIb:

ImWS =
g2Am

6
π

9f 8π (4π)
5

∫∫

z2<1

dω1dω2 G(w)
[

(ω2
1 + ω2

2 − 2)

(1− 3z2)− 5k1k2z
]

, (99)

Im(µ2WT −WS) = − g2Am
6
π

3f 8π (4π)
5

∫∫

z2<1

dω1dω2 G(w)ω1ω2

[

5+ 2z

(

k1

k2
+ k2

k1

)]

, (100)

setting w =
√

1+ u2 − 2uω1.
Class XIIIb:

ImVS = g4Am
6
π

(4fπ )8π3u3

∫ u−1

2
dw 2G(w)λ(w)(2− w2), (101)

Im(µ2VT − VS) = g4Am
6
π

(4fπ )8π3u3

∫ u−1

2
dw 4G(w)(2− w2)

(1+ u2 − w2)2 , (102)

ImWS = g4Am
6
π

3f 8π (4π)
5

∫∫

z2<1

dω1dω2 G(w)

{

u(ω1 + 4ω2)−

2− ω2
1 + 8ω2

2

3
+ z2(ω2

1 + 4ω2
2 − 5) (103)

+ zk2

k1
(4uω1 + ω2

1 − 5)+ zk1

k2
(uω2 + ω2

2 − 2)

+ arcsin(z)√
1− z2

[

k1

k2
(1− uω2)+ z(1− uω1)

]}

,

Im(µ2WT −WS) = g4Am
6
π

f 8π (4π)
5

∫∫

z2<1

dω1dω2
2ω1

3
G(w)

{

2ω2

k21

[

ω1(u− ω2)− 1
]

+ u+ 2ω2

+ zk1ω2

k2
+ zk2

k1
(4u+ ω1)+ ω1

(2zk2

k1

)2
(104)

+ arcsin(z)

k1k2
√
1− z2

[

(1+ u2)
(

ω1 + ω2 −
u

2

)

−2uω1ω2

]}

,

setting again w =
√

1+ u2 − 2uω1.
Class XIVb:

ImVS = g4Am
6
π

(4fπ )8π3u3

∫ u−1

2
dw

G(w)

2
λ(w)

[

u2 + w2 + 4(u2 − 1)w−2 − 5
]

, (105)

Im(µ2VT − VS) = g4Am
6
π

(4fπ )8π3u3

∫ u−1

2
dwG(w)(w2 − 1− u2)

[

w4 − 2w2(3+ u2)+ (u2 − 1)2(1+ 4w−2)
]

.

(106)

where the auxiliary function G(w) is defined as

G(w) =
[

1+ 2g2A − w2

4
(1+ 5g2A)

]

√
w2 − 4

w
ln

w+
√
w2 − 4

2

+w2

24
(5+ 13g2A)− 1− 2g2A + 48π2f 2π

[

(2− w2)(d̄1 + d̄2)+ 4d̄5

]

. (107)

Finally 4π-exchange diagrams occur for the first time at N5LO.
These diagrams are three loop diagrams with only leading
vertices. As mentioned before, three-pion exchanges with just
leading order vertices turned out to be negligible. For that reason,
we expect the leading four-pion exchanges to be even smaller, and
we leave them out.

2.5. NN Contact Terms
Contact terms are given by the NN piece of the Lagrangian
Equation (6). They start at order ν = 0 with non-derivatives
terms given by [5]

V
(0)
ct (

Ep′, Ep) = CS + CT Eσ1 · Eσ2 . (108)

They contribute to S waves, only.
The next order is ν = 2 (NNLO), which introduces seven new

contact terms, given by [11]

V
(2)
ct (

Ep′, Ep) = C1 q
2 + C2 k

2

+
(

C3 q
2 + C4 k

2
)

Eσ1 · Eσ2
+ C5

(

−iES · (Eq× Ek)
)

+ C6 (Eσ1 · Eq) (Eσ2 · Eq)
+ C7 (Eσ1 · Ek) (Eσ2 · Ek) . (109)

The next order is ν = 4 (N3LO) which has 15 contributions given
by

V
(4)
ct (

Ep′, Ep) = D1 q
4 + D2 k

4 + D3 q
2k2 + D4 (Eq× Ek)2

+
(

D5 q
4 + D6 k

4 + D7 q
2k2 + D8 (Eq× Ek)2

)

Eσ1 · Eσ2

+
(

D9 q
2 + D10 k

2
)

(

−iES · (Eq× Ek)
)

+
(

D11 q
2 + D12 k

2
)

(Eσ1 · Eq) (Eσ2 · Eq)
+

(

D13 q
2 + D14 k

2
)

(Eσ1 · Ek) (Eσ2 · Ek)
+ D15

(

Eσ1 · (Eq× Ek) Eσ2 · (Eq× Ek)
)

, (110)

We note that, on shell, there are only 12 independent operators.
The redundancy on-shell has been shown to generate large
correlations. Reinert et al. [38] and Wesolowski et al. [50]
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claim that removal of the three (on-shell) redundant operators
improves the fit.

The partial wave decomposition of all these terms can be
found in Machleidt and Entem [14]. Contact contributions
are polynomials in external momenta and they only give
contributions to partial waves with L ≤ ν/2.

3. PERIPHERAL NN SCATTERING

Peripheral NN scattering is of special interest since it is less
sensitive to the short distance dynamics. A way to study it is to
consider partial waves with high angular momentum, since the
centrifugal barrier prevents sensitivity to short distance forces.

In the framework of EFT, the short distance physics is
mimicked by the contact terms. In momentum space, they are
given by polynomial terms in external momenta. This has the
property that they don’t give contributions to all partial waves,
but only to angular momenta L ≤ ν

2 . This means that, for
example at N5LO, there are only contributions up to F-waves.

Peripheral NN scattering was already considered at NNLO
[12], N3LO [51], N4LO [46], and N5LO [48]. Here, we will review
the most important results.

One important aspect of peripheral waves is that the
interaction is weaker and perturbative calculations can be
performed, so avoiding all the problems posed by singular
interactions in the Lippmann-Schwinger equation. For these
reasons, it can be viewed as a clean probe of chiral dynamics in
the NN sector.

The calculation is conducted by using the K matrix
perturbatively as

K(Ep ′, Ep) = Vπ (Ep ′, Ep)+ V2π ,it(Ep ′, Ep) (111)

with Vπ (Ep ′, Ep) the χEFT amplitude where the iteration of OPE
has been subtracted, and V2π ,it(Ep ′, Ep) representing the once
iterated OPE given by

V2π ,it(Ep′, Ep) = P

∫

d3p′′
M2

N

Ep′′

V1π (Ep′, Ep′′)V1π (Ep′′, Ep)
p2 − p′′2

, (112)

where P denotes the principal value integral and Ep′′ =
√

M2
N + p′′2.
There is no unique way to subtract the iterative part of OPE.

The prescription given by Equation (112) is slightly different
from the one used in Kaiser et al. [12]. The difference between
them is reabsorbed in a redefinition of the irreducible part. See
Appendix C of Machleidt and Entem [14] for more details.

Now the order by order calculation is conducted as follows. At
LO only OPE is included in Vπ and no iteration is included. At
NLO Vπ up to order ν = 2 is included and V2π ,it is included.
Higher orders (NNLO, N3LO, etc) include Vπ up to this order
and the once iterated OPE. N3LO and higher orders should
also include the twice iterated OPE contribution. However the
difference between the once iterated OPE and the infinitely
iterated OPE is very small and can not be identified on the scale
of the figures. For this reason, we omit iterations of OPE beyond
what is contained in V2π ,it.

3.1. Fifth-Order (N4LO) Results
The contributions at NNLO [12] and N3LO [51] are in general
too attractive, especially when the ci LEC’s obtained from πN
scattering are used.

We analyze now the contributions at N4LO. In Figure 9 we
show results for selected F and G waves. Curve (1) gives the
results for the N3LO calculation. Curve (2) adds the relativistic
corrections (proportional to ci/MN) of the NNLO terms. In
curve (3), the 2π-exchange two-loop contributions of class (a)
(Figure 4 and section 2.4.5) are added. Curve (4) adds the two-
loop contribution of class (b). Finally curve (5) adds 3π-exchange
contributions giving the final result at N4LO. In all calculations a
SFR cutoff 3̃ = 1.5 GeV is used.

One can see that 3π-exchange contributions are significantly
smaller than 2π-exchanges which can be interpreted as a
convergence in regard to the number of pions exchanged. The
3π contribution is the sum of individual contributions that can
be sizable but they add up to a small final result.

The ci/MN and two-loop contributions are mainly repulsive
which helps to overcome the excess of attraction at N3LO. An
exception is the 1F3 partial wave where the two-loop contribution
of class (b) gives attraction, resulting in too much attraction for
the whole N4LO contribution at higher energies.

For F and Gwaves (except 1F3) the final N
4LO result is in very

good agreement with the empirical phase-shifts. An interesting
case is the 3G5 that is a problem at N3LO [51]; however, the
final result at N4LO is in almost perfect agreement with the
phase-shift analysis.

Here we have used 3̃ = 1.5 GeV. It is interesting to note that
other potentials constructed from dispersion relations like the
Stony Brook [52] and the Paris [53] potentials cut the dispersion
integral at µ2 = 50m2

π which is equivalent to a SFR cut-off of
3̃ ∼ 1 GeV. In Figures 10, 11 we show the impact of the SFR
cutoff on the results at different orders. In general the variations
for N3LO are large and always too attractive while at N4LO
variations are smaller and close to the data. We also include
lower orders to compare the relative size of the order-by-order
contributions. One would expect a convergence pattern going
from NNLO to N3LO and further to N4LO; however, this is not
the case as seen in Figures 10, 11.

Concerning the LECs used, note that in the calculations of this
subsection, the “KH” set of LECs shown in Table 2 was applied,
while in the calculations of the next subsection the “GW” set
is employed.

3.2. Going Beyond Fifth Order
As mentioned before there is no complete calculation at sixth
order (N5LO). However a study of peripheral NN scattering with
the expected dominant contributions was performed in Entem
et al. [48]. We present here the results at this order.

For N5LO we consider G and higher waves, since they are not
affected by contact terms at this order. In Figure 12, we show
how individual groups of diagrams contribute to two G waves.
Curve (1) represents the N4LO result. Curve (2) adds the N5LO
2π-exchange contributions of class (a) and curve (3) adds also
class (b) (Figure 6 and Section 2.4.6). 3π-exchange (Figure 8) of
class (a) are included in curve (4) and class (b) is contained in
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FIGURE 9 | Effect of individual fifth-order contributions to the neutron-proton phase shifts of some selected peripheral partial waves. The individual contributions are

added up successively in the order given in parentheses next to each curve. In all cases an SFR cut-off 3̃ = 1.5 GeV is used. Curve (1) is N3LO and curve (5) the

complete N4LO. The filled and open circles represent the results from the Nijmegen multi-energy np phase-shift analysis [93] and the VPI-GWU single-energy np

analysis SM99 [91], respectively. Reprinted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society.

curve (5). The final result at N5LO is given by curve (6) which
includes the 1/M2

N corrections. In all cases a SFR cutoff 3̃ = 800
MeV is used.

The two-loop 2π-exchange class (a) (Figure 6) generates a
strong repulsive central force, while the spin-spin and tensor

forces provided by this class are negligible. The fact that this
class produces a relatively large contribution is not unexpected,
since it is proportional to c2i . The 2π-exchange contribution
class (b) creates a moderately repulsive central force and a
noticeable tensor force, as the impact on 3G5 demonstrates.
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FIGURE 10 | Phase-shifts of neutron-proton scattering at various orders as denoted. The shaded bands show the sensitivity of the contributions to the SFR cut-off 3̃

which is varied over the range 0.7–1.5 GeV. Filled and open circles as in Figure 9. Reprinted figure with permission from Entem et al. [46], copyright (2015) by the

American Physical Society.
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FIGURE 11 | Same as Figure 10, but for G waves. Reprinted figure with permission from Entem et al. [46], copyright (2015) by the American Physical Society.
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TABLE 2 | Low-energy constants as determined in Krebs et al. [41].

GW KH

c1 –1.13 –0.75

c2 3.69 3.49

c3 –5.51 –4.77

c4 3.71 3.34

d̄1 + d̄2 5.57 6.21

d̄3 –5.35 –6.83

d̄5 0.02 0.78

d̄14 − d̄15 –10.26 –12.02

ē14 1.75 1.52

ē15 –5.80 –10.41

ē16 1.76 6.08

ē17 –0.58 –0.37

ē18 0.96 3.26

The ci , d̄i , and ēi are the LECs of the second, third, and fourth order πN Lagrangian given

in Krebs et al. [41] and are in units of GeV−1, GeV−2, and GeV−3, respectively. GW refers

to the LECs obtained fitting to the George Washington University partial wave analysis

from Arndt et al. [54], while KH refers to the Karlsruhe-Helsinki analysis from Koch [55].

The 3π-exchange class (a) (Figure 8) is negligible in 1G4, but
noticeable in 3G5 and, therefore, it should not be neglected.
This contribution is proportional to c2i , which suggests a non-
negligible size but it is typically smaller than the corresponding
2π-exchange contribution class (a). The 3π-exchange class (b)
contribution turns out to be negligible [see the difference between
curve (4) and (5) in Figure 12]. This may not be unexpected
since it is a three-loop contribution with only leading-order
vertexes. Finally the relativistic 1/M2

N corrections to the leading
2π-exchange have a small but non-negligible impact, particularly
in 3G5.

The predictions for G and H waves are shown in Figure 13,
with shaded bands corresponding to a variation of the SFR cut-off
3̃ over the range 700–900 MeV. The N5LO contribution shows a
moderately repulsive effect, reducing further the excess attraction
at N3LO. The N5LO result is, in general, substantially smaller
than the N4LO one, indicating a signature of convergence. At
N5LO, there is excellent agreement with the data.

Concerning the values for the LECs, let us note again that, in
this subsection, the “GW” set of LECs shown in Table 2was used,
while in the calculations of the previous subsection the “KH” set
was applied.

Figure 13 includes only the three highest orders. However,
a comparison between all orders is also of interest. Therefore,
we show in Figure 14 the contributions to phase shifts through
all six chiral orders from LO to N5LO. Note that the difference
between the LO prediction (one-pion-exchange) and the data
(filled and open circles) is to be provided by two- and three-pion
exchanges, i.e., the intermediate-range part of the nuclear force.
How well that is accomplished is a crucial test for any theory
of nuclear forces. NLO produces only a small contribution,
but NNLO (denoted by N2LO in the figure) creates substantial
intermediate-range attraction (most clearly seen in 1G4,

3G5, and
3H6). In fact, NNLO is the largest contribution among all orders.

This is due to the one-loop 2π-exchange (2PE) triangle diagram
which involves one ππNN-contact vertex proportional to ci. This
vertex represents correlated 2PE as well as intermediate1(1232)-
isobar excitation. It is well-known from the traditional meson
theory of nuclear forces that these two features are crucial for
a realistic and quantitative 2PE model. Consequently, the one-
loop 2π-exchange at NNLO is attractive and assumes a realistic
size describing the intermediate-range attraction of the nuclear
force about right. At N3LO, more one-loop 2PE is added by
the bubble diagram with two ci-vertices, a contribution that
seemingly is overestimating the attraction. This attractive surplus
is then compensated by the prevailingly repulsive two-loop 2π-
and 3π-exchanges that occur at N4LO and N5LO.

In this context, it is worth to note that also in conventional
meson theory the one-loop models for the 2PE contribution
always show some excess of attraction. In conventional meson
theory, the surplus attraction is reduced by heavy-meson
exchange (ρ- and ω-exchange) which, however, has no place
in chiral effective field theory (as a finite-range contribution).
Instead, in the latter approach, two-loop 2π- and 3π-exchanges
provide the corrective action.

4. NN POTENTIALS UP TO N4LO

The starting point of all ab-initio calculations of nuclear systems
is the NN potential. For that reason, it is necessary to define
a potential.

We define the NN potential as the sum of the irreducible
NN diagrams discussed in previous sections, which are
calculated perturbatively. However, in reality, the NN system
is characterized by the presence of a shallow bound state (the
deuteron) and large (S-wave) scattering lengths that cannot be
obtained perturbatively. Therefore, the potential has to be applied
in a scattering equation to obtain the NN amplitude. Since
our approach is in principal covariant (with relativity taken
into account perturbatively), a proper equation would be the
Bethe-Salpeter equation. However, it is more convenient, to use
one of the three-dimensional reductions of that equation. We
use the Blankenbeclar-Sugar (BbS) version of the equation [56]
which reads

T(Ep′, Ep) = V(Ep′, Ep)+
∫

d3p′′

(2π)3
V(Ep′, Ep′′)M

2
N

Ep′′

1

p2 − p′′2 + iǫ
T(Ep′′, Ep) ,

(113)

where V is the potential and Ep′′ =
√

M2
N + p′′2. Since this

is a relativistic equation, it includes relativistic kinematical
corrections to all orders.

If we now define

V̂(Ep′, Ep) = 1

(2π)3

√

MN

Ep′
V(Ep′, Ep)

√

MN

Ep
(114)

T̂(Ep′, Ep) = 1

(2π)3

√

MN

Ep′
T(Ep′, Ep)

√

MN

Ep
, (115)
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TABLE 3 | The πN LECs as determined in the Roy-Steiner-equation analysis of

πN scattering conducted in Hoferichter et al. [86].

NNLO N3LO N4LO

c1 −0.74 (2) −1.07 (2) −1.10 (3)

c2 – 3.20 (3) 3.57 (4)

c3 −3.61 (5) −5.32 (5) −5.54 (6)

c4 2.44 (3) 3.56 (3) 4.17 (4)

d̄1 + d̄2 – 1.04 (6) 6.18 (8)

d̄3 – −0.48 (2) −8.91 (9)

d̄5 – 0.14 (5) 0.86 (5)

d̄14 − d̄15 – −1.90 (6) −12.18 (12)

ē14 – – 1.18 (4)

ē17 – – −0.18 (6)

The ci , d̄i , and ēi are the LECs of the second, third, and fourth order πN Lagrangian Krebs

et al. [41] and are in units of GeV−1, GeV−2, and GeV−3, respectively. The uncertainties

in the last digits are given in parentheses after the values.

the BbS equation becomes

T̂(Ep′, Ep) = V̂(Ep′, Ep)+
∫

d3p′′V̂(Ep′, Ep′′) 1

p2 − p′′2 + iǫ
T̂(Ep′′, Ep) ,

(116)
which is the Lippmann-Schwinger equation and V̂ can be used
like a non-relativistic potential. All the technical details to solve
the Lippmann-Schwinger equation, including the case where the
Coulomb interaction is included, can be found in Machleidt [18].

The amplitude V and the potential V̂ are built order-by-
order following the Equations (12–16) with two exceptions. We
add to VN3LO the 1/MN corrections of the NNLO 2π-exchange
proportional to ci. This ci/MN correction is formally an N4LO
contribution, however, in Entem et al. [46] it was shown that the
football diagram proportional to c2i at N3LO was unrealistically
attractive, while the ci/MN correction is large and repulsive.
Therefore, it makes sense to group these diagrams together to
arrive at a more realistic intermediate-range attraction at N3LO.

The other exception is to include, at N4LO, the four F-wave
contacts that formally appear at N5LO, cf. Equation (17). This
ensures an optimal fit of the NN data for the potential of the
highest order to be constructed.

4.1. Regularization
The potential V̂ obtained previously is in most cases singular.
Singular potentials are those that diverges in momentum space
when the momentum goes to infinity, being more singular
than 1/r2 in coordinate space. For this reason they cannot be
included in a Lippmann-Schwinger equation without further
manipulation. The practical way to solve this problem is to cut
the potential at a certain scale 3 by multiplying with a regulator
function f (p′, p)

V̂(Ep′, Ep) → f (p′, p)V̂(Ep′, Ep) (117)

where the function f (p′, p) can be taken to be

f (p′, p) = exp[−(p′/3)2n − (p/3)2n]. (118)

This regularization allows to obtain finite results, however
renormalization requires to have regularization independent
results. The implicit assumption in Weinberg’s proposal [5, 6]
was that the same contact interactions that renormalize loop
diagrams would also renormalize the iterative loops of the
(infinite) resummation in the Lippmann-Schwinger equation.
This is not necessarily true and has given rise to a comprehensive
discussion about non-perturbative renormalization. This is one
of the key issues where the EFT community is divided, mainly, in
two different points of view, one with the cut-off scale below the
hard-scale of the EFT, and the other with a value above (let’s say,
infinity). This topic has been discussed by many authors [4, 57–
76], and we refer the interested reader to contributions about
this topic in the monograph. However, using cutoffs in the order
of 450 − 550 MeV (first point of view) has been shown to give
mild regularization dependence and to be phenomenologically
successful at N3LO [77], although renormalization is not so clear.

The parameter n is usually chosen in such a way that the
corrections induced by the regulator are of an order that is higher
than the given order. We choose n = 2 for 3PE and 2PE and
n = 4 for OPE (except in LO and NLO, where we use n = 2 for
OPE). For contacts of order ν, we choose 2n > ν.

4.2. Charge Dependence
In order to fit the np and pp databases, charge dependence
has to be included. All orders include the charge dependence
due to pion mass splitting in the one-pion exchange as was
already discussed. Charge dependence is most important in the
1S0 partial wave at low energies, particularly in the scattering
lengths. The charge dependence from OPE cannot explain it all.
The remainder is accounted for by treating the 1S0 LO contact
term parameter C̃1S0 ≡ 4π(Cs−3CT) in a charge-dependent way.

So, we distinguish between C̃
(pp)
1S0

, C̃
(np)
1S0

and C̃
(nn)
1S0

. For pp at any

order, the relativistic Coulomb interaction is included [78, 79].
Finally at N3LO and N4LO, we take into account irreducible π-
γ exchange [80], which affects only the np potential. Also, the
charge-dependent effects from n-p mass splitting are taking into
account by using the correct values for the nucleon masses.

For a detailed discussion of possible sources for charge
dependence of theNN interaction, seeMachleidt and Entem [14].

4.3. Fitting Procedure
Potentials from LO to N4LO were constructed by Entem et al.
[37]. [For alternative chiral potential constructions (see [38, 81–
85]). Three cutoff values were considered, namely 3 = 450, 500,
and 550 MeV. Taking charge dependence into account, each
potential comes in three versions: pp, np, and nn.

The pion exchange contribution, Vπ , is fixed by the πN LECs
for which we use the values from the very accurate analysis by
Hoferichter et al. [86], Table 3. However, the short-range part
given by Vct has to be determined from NN scattering. This
was done by fitting the NN potentials to the NN database. The
database includes all NN data below 350 MeV laboratory energy
published in refereed physics journals between January 1955
and December 2016 that are not discarded when applying the
Nijmegen rejection criteria [79]. There are alternative criteria
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FIGURE 12 | Effect of individual N5LO contributions to the neutron-proton phase-shifts of two G waves. Contributions are added up successively starting from the

N4LO result (1) to the final N5LO result (6). A SFR cutoff 3̃ = 800 MeV is used. The filled and open circles represent the results from the Nijmegen multienergy np

phase-shift analysis [93] and the GWU np analysis SP07 [94], respectively. Reprinted figure with permission from Entem et al. [48], copyright (2015) by the American

Physical Society.

FIGURE 13 | Phase-shifts of np scattering in G and H waves at various orders as denoted. The shaded bands show the variations of the predictions when the SFR

cut-off 3̃ is changed over the range 700 to 900 MeV. Empirical phase-shifts as in Figure 12. Reprinted figure with permission from Entem et al. [48], copyright (2015)

by the American Physical Society.
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FIGURE 14 | Phase-shifts of np scattering in G and H waves at all orders from LO to N5LO. A SFR cut-off 3̃ = 800 MeV is used. Empirical phase-shifts as in

Figure 12. Reprinted figure with permission from Entem et al. [48], copyright (2015) by the American Physical Society.

[87] which have been applied, e.g., in the Granada database [88],
however we continue to use the Nijmegen criteria to be consistent
with the pre-2000 part of our database.

The database finally consists of 3072 pp scattering data and
3569 np data. The 2013 Granada NN database [88] consists of
2996 pp and 3717 np data. The larger number of pp data in our
base ismainly due to the inclusion of 140 pp data fromThe EDDA
Collaboration [89] which are left out in the Granada base. On
the other hand, the Granada base contains 148 more np data,
which is a consequence of the modified rejection criteria applied
by the Granada group, which allows for the survival of a fewmore
np data.

In the fitting procedure, only data below 290 MeV were taken
into account. One starts with the pp potential, since the pp data
are more accurate than the np data. First, a fit to the pp phase-
shifts is made, and then a rough minimization of the χ2 is
performed by using the Nijmegen error matrix [90]. In the end,
the potential is fitted directly to the scattering data. For this
the SAID software package [91] that includes all electromagnetic
contributions necessary for the calculation of NN observables at
low energy is used.

Then the I = 1 np potential is fixed by starting from the pp
potential and applying charge dependence. For the 1S0 part of the

np potential, the C̃
(np)
1S0

LEC is adjusted to the np scattering length.

The I = 0 part is then fitted in a similar way as the I = 1 part.
After the I = 0 fit, some small variations of the I = 1 parameters
were allowed to obtain a minimal over-all χ2.

The nn potential is obtained from the pp one by
leaving out Coulomb, replacing the proton mass by the

neutron mass, and fitting the C̃
(nn)
1S0

LEC to the 1S0 nn

scattering length.
The above procedure is basically the same as used in the

construction of the so called high-precision potentials of the
1990s [15, 16, 18], which all have χ2/datum ≈ 1. This differs
from the procedure applied in the recent construction of the
NNLOsat potential [83] where NN data up to 35 MeV and the
ground-state energies and radii of nuclei up to 16O are taken
into account to fix simultaneously the two- and three-nucleon
forces. Our procedure also differs from the construction of some
recent chiral NN potentials by the Bochum group [81, 82],
where only phase-shifts are fitted. However, in their most recent
potential constructions, the Bochum group [38] does apply a
procedure where the fitted potentials are directly confronted with
the NN data.

4.4. Results for NN Scattering
The χ2/datum for the reproduction of the NN data is given in
Table 4. For the close to 5000 pp plus np data below 290 MeV
(pion-production threshold), the χ2/datum is 51.4 at NLO and
6.3 at NNLO, which is of special relevance since the number of
NN contact terms is the same for both orders. The improvement
comes entirely from a better description of the 2PE at NNLO. At
N3LO, the χ2/datum further improves to 1.63. It, finally, reaches
1.15 at N4LO, in acordance with high precision potentials,
showing a great convergence pattern.

np phase shifts are displayed in Figure 15, which reflect
the same features as the χ2, namely, an excellent convergence
when going from NNLO to N3LO and, finally, to N4LO.
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TABLE 4 | χ2/datum for the fit of the 2016 NN data base by NN potentials at various orders of chiral EFT (3 = 500 MeV in all cases).

Tlab bin (MeV) No. of data LO NLO NNLO N3LO N4LO

Proton-proton

0–100 795 520 18.9 2.28 1.18 1.09

0–190 1206 430 43.6 4.64 1.69 1.12

0–290 2132 360 70.8 7.60 2.09 1.21

Neutron-proton

0–100 1180 114 7.2 1.38 0.93 0.94

0–190 1697 96 23.1 2.29 1.10 1.06

0–290 2721 94 36.7 5.28 1.27 1.10

pp plus np

0–100 1975 283 11.9 1.74 1.03 1.00

0–190 2903 235 31.6 3.27 1.35 1.08

0–290 4853 206 51.5 6.30 1.63 1.15

From Entem et al. [37].

FIGURE 15 | Chiral expansion of neutron-proton scattering as represented by the phase shifts in S, P, and D waves and mixing parameters ǫ1 and ǫ2. Five orders

ranging from LO to N4LO are shown as denoted. A cutoff 3 = 500 MeV is applied in all cases. The filled and open circles represent the results from the Nijmegen

multi-energy np phase-shift analysis [93] and the GWU single-energy np analysis SP07 [95], respectively. Reprinted figure with permission from Entem et al. [37],

copyright (2017) by the American Physical Society.

However, at LO and NLO there are large discrepancies between
the predictions and the empirical phase shifts as to be
expected from the corresponding χ2 values. This fact renders
applications of the LO and NLO nuclear forces useless for any
realistic calculation (but they could be used to demonstrate
truncation errors).

It is important to be aware of the regulator dependence
of the NN phase shifts and scattering observables. For this
reason, potentials with cutoffs 3 = 450, 500, and 550
MeV were constructed. We show in Figure 16 the phase
shifts at NNLO (green curves, left panel) and N4LO (purple
curves, right panel) for potentials with varying cutoffs. As
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FIGURE 16 | Cutoff variations of the np phase shifts at NNLO (left side, green lines) and N4LO (right side, purple lines). Dotted, dashed, and solid lines represent the

results obtained with cutoff parameter 3 = 450, 500, and 550 MeV, respectively, as also indicated by the curve labels. Note that, at N4LO, the cases 500 and 550

MeV cannot be distinguished on the scale of the figures for most partial waves. Filled and open circles as in Figure 15. Reprinted figure with permission from Entem

et al. [37], copyright (2017) by the American Physical Society.
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TABLE 5 | Two- and three-nucleon bound-state properties as predicted by NN potentials at various orders of chiral EFT (3 = 500 MeV in all cases).

LO NLO NNLO N3LO N4LO Empiricala

Deuteron

Bd (MeV) 2.224575 2.224575 2.224575 2.224575 2.224575 2.224575(9)

AS (fm−1/2) 0.8526 0.8828 0.8844 0.8853 0.8852 0.8846(9)

η 0.0302 0.0262 0.0257 0.0257 0.0258 0.0256(4)

rstr (fm) 1.911 1.971 1.968 1.970 1.973 1.97507(78)

Q (fm2) 0.310 0.273 0.273 0.271 0.273 0.2859(3)

PD (%) 7.29 3.40 4.49 4.15 4.10 –

Triton

Bt (MeV) 11.09 8.31 8.21 8.09 8.08 8.48

(Deuteron: Binding energy Bd , asymptotic S state AS, asymptotic D/S state η, structure radius rstr , quadrupole moment Q, D-state probability PD; the predicted rstr and Q are without

meson-exchange current contributions and relativistic corrections. Triton: Binding energy Bt.) Bd is fitted, all other quantities are predictions.
aSee Table XVIII of Machleidt [18] for references; the empirical value for rstr is from Jentschura et al. [92].

TABLE 6 | χ2/datum for the fit of the pp plus np data up to 190 MeV and two- and three-nucleon bound-state properties as produced by NN potentials at NNLO and

N4LO applying different values for the cutoff parameter 3.

NNLO N4LO

3(MeV) 450 500 550 450 500 550

χ
2/datum pp & np

0–190 MeV (2903 data) 4.12 3.27 3.32 1.17 1.08 1.25

Deuteron

Bd (MeV) 2.224575 2.224575 2.224575 2.224575 2.224575 2.224575

AS (fm−1/2) 0.8847 0.8844 0.8843 0.8852 0.8852 0.8851

η 0.0255 0.0257 0.0258 0.0254 0.0258 0.0257

rstr (fm) 1.967 1.968 1.968 1.966 1.973 1.971

Q (fm2) 0.269 0.273 0.275 0.269 0.273 0.271

PD (%) 3.95 4.49 4.87 4.38 4.10 4.13

Triton

Bt (MeV) 8.35 8.21 8.10 8.04 8.08 8.12

For some of the notation, see Table 5, where also empirical information on the deuteron and triton can be found.

expected, the cutoff dependence diminishes with increasing
order, being very small at N4LO. The cutoff window we
selected is motivated by the fact that for values 3 ≤ 450
MeV cutoff artifacts start to appear above 200 MeV as seen
in the 1D2 and 3D2 partial waves. The upper limit is given
by the fact that the breakdown scale occurs around 3b ∼
600 MeV [82].

4.5. Deuteron and Triton
The deuteron binding energy is fitted at all orders to the empirical
value of 2.224575 MeV using the nonderivative contact term in
the 3S1 partial wave. Different observables of the deuteron and
triton are given at all orders in Table 5. Notice that only the
deuteron binding energy is fitted while all other observables are
predictions. It is interesting to notice that already at NNLO all
properties are close to the empirical values and vary little when
going to higher orders, as one would expect, since they are low
energy observables.

The triton binding energy is also given. A 34-channel charge
dependent Faddeev calculation using only two-nucleon forces is

used. The results show a smooth and steady convergence order
by order toward a value around 8.1 MeV, giving some space to
three-nucleon forces. The low deuteron D-state probabilities and
the high triton binding energy predictions are due to the softness
of the potentials.

In Table 6, we demonstrate, for order NNLO and N4LO, the
cutoff dependence of the χ2/datum, the deuteron properties,
and the triton binding energy. One observes a mild regulator
dependence for most quantities. The exception is the deuteron
D-state probability which, however, is not an observable. Linked
to this (via the strength of tensor force) is the triton binding
energy. This is due to the off-shell behavior of the two-nucleon
force. This can be compensated by corresponding changes in the
three-nucleon force.

5. SUMMARY

The past 25 years have seen great progress in our understanding
of nuclear forces in terms of low-energy QCD. Key to
this development was the realization that low-energy QCD

Frontiers in Physics | www.frontiersin.org 25 March 2020 | Volume 8 | Article 5761

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rodriguez Entem et al. NN Scattering Up to N5LO

is equivalent to an effective field theory which allows for
a perturbative expansion that has become known as chiral
perturbation theory. In this framework, two- and many-body
forces emerge together and the empirical fact that nuclear many-
body forces are substantially weaker than the two-nucleon force
is explained naturally.

The main focus of this review, was on the two-nucleon
force. We presented the order-by-order development from LO
(∼ Q0) to N5LO (∼ Q6). Using low-energy constants (LECs)
determined from πN scattering, our predictions for peripheral
partial waves are parameter-free, except for the spectral function
cutoff that regularizes the dispersion integrals which determine
theNN amplitudes. This spectral-function regularization ensures
that the calculated contributions are restricted to the long-
and intermediate range, where chiral effective field theory is
applicable. Specifically, we have calculated perturbative NN
scattering in peripheral partial-waves, which is dominated by
one-, two-, and three-pion exchanges ruled by chiral symmetry.
The order-by-order convergence is slow, but is ultimately

achieved at N5LO, where predictions are in perfect agreement
with empirical phase shifts.

Besides this, we have also discussed the construction of
complete (i.e., including the lower partial waves) chiral NN
potentials through all orders up to N4LO. The construction
may be perceived as consistent, because the same power
counting scheme as well as the same cutoff procedures are
applied in all orders. The potential of the highest order (N4LO)
reproduces the NN data below pion-production threshold with

a χ2/datum of 1.15. This is among the highest precisions ever
accomplished with any chiral NN potential to date. The NN
potentials presented may serve as a solid basis for systematic
ab initio calculations of nuclear structure and reactions that
allow for a comprehensive error analysis. In particular, the
order by order development of the potentials will make
possible a reliable determination of the truncation error at
each order.

In summary, this review presents the most comprehensive
investigation of the implications of chiral symmetry
for the NN system. The results provide the ultimate
confirmation that chiral EFT is an adequate theory for
nuclear forces.
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Andreas Ekström*
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This review presents some of the challenges in constructing models of atomic nuclei

starting from theoretical descriptions of the strong interaction between nucleons. The

focus is on statistical computing and methods for analyzing the link between bulk

properties of atomic nuclei, such as radii and binding energies, and the underlying

microscopic description of the nuclear interaction. The importance of careful model

calibration and uncertainty quantification of theoretical predictions is highlighted.

Keywords: nuclear interactions, chiral effective field theory, model calibration, uncertainty quantification,

optimization, Bayesian parameter estimation

1. INTRODUCTION

The ab initio approach to describe atomic nuclei and nuclear matter is grounded in a theoretical
description of the interaction between the constituent protons and neutrons. The long-term goal
with this course of action is to construct models to describe and analyze the properties of nuclear
systems with maximum predictive power. It is of course well-known that the elementary particles
of the strongly interacting sector of the Standard Model are quarks and gluons, not protons and
neutrons. However, since the relevant momentum scales of typical nuclear structure phenomena
are low enough to not resolve the internal degrees of freedoms of nucleons, it is reasonable
to model the nucleus as a collection of strongly interacting and point-like nucleons. This idea
has inspired significant efforts aimed at developing algorithms and mathematical approaches
for solving the many-nucleon Schrödinger equation in a bottom-up fashion and with as few
uncontrolled approximations as possible (see e.g., references [1–10]), as well as a multitude of
theoretical descriptions of the interaction between nucleons, at various levels of phenomenology
(see e.g., references [11, 12], and references [13–15]) for comprehensive reviews on (chiral) effective
field theory (EFT) methods. Reference [16] also offers a historical account of various approaches to
understand the nuclear interaction.

Currently, ab initiomodeling of atomic nuclei faces two main challenges:

• We have limited knowledge about the details of the interaction between nucleons, which in turn
limits our ability to predict nuclear properties.

• Given a microscopic description of the interaction between nucleons inside a nucleus, a
quantum-mechanical solution of the nuclear many-body problem is exacerbated by the curse
of dimensionality.

There is however continuous progress on both frontiers, and attempts at quantifying
the uncertainty of model predictions are beginning to emerge in the community. Rapid
algorithmic advances in combination with a dramatic increase in available computational
resources make it possible to employ several complementary mathematical methods for
solving the nuclear Schrödinger equation. We can nowadays generate numerical representations
of microscopic many-nucleon wavefunctions, for selected medium-mass and heavy-mass
nuclei, with a rather impressive precision. Although several observables remain beyond the
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reach of state-of-the-art models, e.g., most properties associated
with highly collective states, we can still describe certain classes
of observables rather well, such as total ground-state binding
energies and radii, and sometimes low-energy excitation spectra.
We are thus capable of analyzing experimentally relevant nuclei
directly in terms of a quantum mechanical description of the
interaction between its constituent nucleons. Indeed, the list of,
sometimes glaring, discrepancies between theory and experiment
furnish some of the most interesting nuclear physics questions at
the moment (see e.g., references [17–23]). Many of these efforts
are aimed at understanding the nuclear binding mechanism, the
location of the neutron dripline, the existence of shell-closures
and magic numbers in exotic systems, and the emergence of
nuclear saturation.

State-of-the-art theoretical analyses of experimental data
indicate a large and non-negligible systematic uncertainty in the
description of bulk nuclear observables (see e.g., reference [24]).
Given the high-precision of modern many-body methods, much
of this uncertainty can be traced to the description of the
interaction potential. Although there exists ab initio models
that describe nuclei rather well, albeit in a limited domain,
it is less clear why other models sometimes fail. Indeed,
the NNLOsat interaction potential [25] reproduces several key
experimental binding energies and charge radii for nuclei up
to mass A ∼ 50 [23, 26–28], while the so-called 1.8/2.0
(EM) interaction potential [29, 30] reproduces binding energies
and low-energy spectra up to mass A ∼ 100 [26, 31–35]
while radii are underestimated. The origin of the differences
between these potentials is unknown. It is of course the role of
nuclear theory to close the gap between theory and experiment
by developing and refining the theoretical underpinnings of
the model. But given the complex nature of atomic nuclei,
there is significant value in trying to quantify, or estimate,
the detailed structure of the observed theoretical uncertainty.
This might provide important clues about where we should
focus our efforts. There exists well-defined statistical inference
methods that can provide additional guidance, and several
ongoing projects are currently focused on applying statistical
computing methods in the field of ab initio modeling. The
topic of uncertainty quantification in nuclear physics has
been discussed at a series of workshops on Information and
Statistics in Nuclear Experiment and Theory (ISNET). Recent
developments in this field are documented in the associated
focus issue published in Journal of Physics G [36]. A second
focus issue has just been announced, and the first few papers are
already published.

In sections 2 and 3 of this paper I will review a selection
of recent results and often applied methods for calibrating
ab initio models. In sections 4 and 5 I will discuss some
of the recently emerging strategies for making progress using
statistical computing and Bayesian inference methods. The
aim is to provide an overview of selected accomplishments
in the field of statistical inference and statistical computing
with ab initio models of atomic nuclei. Hopefully, this
paper can serve as a brief introduction to practitioners
who wish to learn about ongoing developments and possible
future directions.

As a final remark, in this paper I will try to consistently
use the word model when referring to any current method
for theoretically describing the properties of atomic nuclei,
including descriptions that claim to be building on more
fundamental underpinnings, such as EFT. One can certainly
make a finer distinction between models, EFTs, and theories. As
outlined in reference [37]; theories provide a unified framework,
categorization, and the joint language used for discussions; EFTs
capture physics at a given momentum scale; and models can be
used to study aspects of a theory, increase understanding, and
provide intuition.

2. AB INITIO MODELS OF NUCLEAR
MANY-BODY SYSTEMS

An ab initio model is here defined as a description that is based
on a state |9〉 that solve the many-nucleon Schrödinger equation

[T̂ + V̂(Eα)]|9〉 = E|9〉. (1)

In this schematic representation, T̂ is the total kinetic energy
operator for the A-nucleon system, V̂(Eα) is the potential energy
operator for the interaction between the nucleons, and E is
the total energy of the system in the state represented by |9〉.
The potential operator term depends on a set of parameters
Eα that governs the strengths of the various interaction pieces
in the potential. In the context of EFT, these parameters are
often referred to as low-energy constants (LECs). Given a
particular expression for the potential V̂ , with numerical values
for the parameter vector Eα, and a mathematical method to solve
Equation (1) for e.g., the state |9〉 with lowest energy, it is
in principle possible to quantitatively compute the expectation
value for any observable Ô with respect to this state, e.g., its
charge radius. Of course the trustworthiness of the result and its
level of agreement with experimental data can vary dramatically
between different models, i.e., combinations of potentials and
many-body methods.

I will denote an ab initio model with M(Eα, Ex). It is defined as
the combination of a definite expression for the potential V̂(Eα),
and a method for solving the Schrödinger equation. The vector
Ex is a set of control inputs that specify all necessary settings,
such as nucleon numbers, which observable to compute, values
of the fundamental physical constants, and algorithmic settings
for the mathematical method used for solving Equation (1). Once
a set of numerical values for Eα has been determined, a subset of
the control inputs Ex of the model can be varied to make model
predictions, preferably at some physical setting, for e.g., exotic
nuclei where we cannot easily make measurements. Provided
that the form of the potential operator V̂ and relevant physical
constants remain the same, and the model parameters Eα were
calibrated carefully, it is of course possible to transfer the vector Eα
between ab initio models based on different methods for solving
the many-nucleon Schrödinger equation. This is also in line with
a physical interpretation of the parameters Eα that elevate them
to a status beyond being simple tunable parameters inherent to
a specific model with the sole purpose of achieving a good fit to
calibration data. This will be discussed further in section 3.
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One of the most exciting developments in nuclear theory
is that we nowadays have access to a range of methods for
solving Equation (1) with very high numerical precision for
selected isotopes and observables. This gives us the opportunity
to compare model predictions with experimental data to
learn more about the elusive structure of the interaction
between nucleons. However, such an analyses require careful
statistical interpretation of the theoretical results. In particular a
sensible estimate of the uncertainty associated with a theoretical
prediction. Indeed, only with reliable theoretical errors is it
possible to infer the significance of a disagreement between
experiment and theory, which in turn may hint at new physics.

2.1. Chiral Potentials and the Strong
Interaction Between Nucleons
On a fundamental level, the atomic nucleus is a quantum
mechanical and self-bound system of interacting nucleons. In
turn these particles are composed of three quarks whose mutual
interactions are described well by the Standard Model of particle
physics. As such, starting from the Standard Model it should
be possible to account for all observed phenomena also in
atomic nuclei, besides possible signals of beyond Standard Model
physics. However, to theoretically understand the emergence
of nuclei from the Standard Model is an open problem, and
linking the quantitative predictions of atomic nuclei to the
dynamics of quarks and gluons is a central challenge in low-
energy nuclear theory. Although, viewing the atomic nucleus
as a (color-singlet) composite multi-quark system is not the
most economical choice. Indeed, the strong interaction, which
is the most important component for nuclear binding and
well-described by quantum chromodynamics (QCD), is non-
perturbative in the low-energy region inhabited by atomic nuclei.
Non-perturbative Monte Carlo sampling of the quantum fields
of QCD amounts to a computational problem of tremendous
proportions. This strategy, referred to as lattice QCD, is
expected to require at least exascale resources for a realistic
analysis of even the lightest multi-nucleon systems. Without
any unforeseen disruptive technology, this approach will not
provide an operational method for routine analyses of nuclei.
For the cases where numerically converged results can be
obtained, lattice QCD offers a unique computational laboratory
for theoretical studies of QCD in a low-energy setting (see e.g.,
references [38, 39]).

The description of nuclei should nevertheless build on
QCD, or the Standard Model in general. A turning point in
the development of QCD-based descriptions of the nuclear
interaction came when EFTs of QCD [40] arrived also to many-
nucleon physics [41]. An EFT formulates the dynamics between
low-energy degrees of freedom, e.g., nucleons and pions, in
harmony with some assumed symmetries of an underlying
theory, e.g., QCD, and any high-energy dynamics, e.g., quark-
gluon interactions, are integrated out of the theory. The resulting
chiral effective Lagrangian models the low-energy interactions
between two or more nucleons in terms of pion exchanges
between nucleons and the high-energy dynamics is incorporated
as zero-ranged contact interactions. This approach introduces

several model parameters referred to as low energy constants
(LECs). They were denoted with Eα above, and play a central
role during the model calibration discussed below. The notion
of high- and low-energy scales in EFT requires the presence of
at least two scales in the physical system under study. An EFT
formally exploits this scale separation to expand observables in
powers of the low-energy (soft) scale over the high-energy (hard)
scale, and in chiral EFT the resulting ratio is often denoted

Q = max[mπ , k]

3b
(2)

where, in the case of chiral EFT, the soft scales are mπ and k, the
pion mass and a typical external momentum scale, respectively.
The hard scale is denoted 3b and is set by the e.g., the nucleon
massMN . Depending on the system under study, one can always
try to exploit existing scale separations to construct other kinds
of EFTs in nuclear physics, e.g., pion-less EFT [42], vibrational
EFT [43], or chiral perturbation theory (the prototypical EFT of
QCD) [44]. In the following, I will only discuss results from ab
initiomodels based on chiral EFT, i.e., a pion-full EFT, but many
of the methods can be generally applied.

In chiral EFT, the nuclear interaction potential V is analyzed
as an order-by-order expansion in terms of Qν and organized
following the principles of an underlying power counting (PC).
Terms at a higher chiral expansion-orders ν should be less
important than terms at a lower orders. Potentials expanded to
higher orders are expected to describe data better. Higher chiral
orders contain more involved pion exchanges and polynomial
nucleon-contacts of increasing exponential dimension, and
therefore more undetermined model parameters Eα to handle
during the calibration stage. To provide some detail about the
chiral potentials: the leading-order (LO) typically consists of the
familiar one-pion exchange interaction plus a nucleonic contact-
potential. The structure of the contact potential, and the exact
treatment of sub-leading orders vary depending on the PC.
Still, typical chiral potentials include at most contributions up
to a handful of chiral orders, e.g., next-to-next-leading order
(NNLO) and next-to-next-to-next-to-leading order (N3LO), and
the total number of LECs, i.e., undetermined model parameters,
range between ∼10 and 20, sometimes a few more, at such
chiral orders. Several important contributions to the two-, three-,
and four-nucleon interactions at higher orders in the chiral
expansion have also been worked out [45–50]. At N5LO, a new
set of 26 contact LECs appear, bringing the total number of
contacts to 50. Some of the unique advantages of chiral EFT
descriptions of the nuclear interaction are the natural emergence
of two-, three-, and many-nucleon interactions [51–55], the
consistent formulation of quantum currents, e.g., with respect to
electroweak operators [56–62], and a clear connection with the
pion-nucleon Lagrangian which makes it possible to link nuclei
with low-energy pion-nucleon scattering processes [63]. For a
detailed account of chiral EFT potentials (see references [13–15]).

To ensure steady progress toward a realistic ab initio model
for atomic nuclei, we need to critically examine and evaluate the
quality and predictive power of different theoretical approaches
and model predictions. To this end it is crucial to equip all
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quantitative theoretical results with uncertainties, and this is
where another advantageous aspect of EFT comes into play. It
promises to deliver a handle on the systematic uncertainty of a
theoretical prediction. Indeed, on a high level the EFT expansion
for an observableO can be written

O = O0

∞
∑

ν=0

cνQ
ν , (3)

where O0 is the first term in the above expansion, and cν are
dimensionless expansion coefficients. Here, and in the following,
the LO result (O0) was pulled out in front of the sum to set
the overall scale. One could equally well use the experimental
value forO or the highest-order calculation to set the scale of the
observable expansion. If we are dealing with an EFT, one should
expect the expansion coefficients to be of natural size such that
predictions at successive chiral orders are smaller by a factor of
Q. See also references [64, 65] for discussions on how to assess
the convergence of data. In an actual calculation, the order-by-
order description of O is truncated at some finite order k, which
induces a truncation error δk in the prediction. The underlying
EFT description then, in principle, allows us to determine the
formal structure of the truncation error

δk = O0

∞
∑

ν=k+1

cνQ
ν . (4)

This type of handle on the theoretical uncertainty in
a prediction is not present in purely phenomenological
descriptions of the nuclear interaction, such as the Argonne
V18 potential [11] or the CD-Bonn potential [12]. Despite all
of the promised advantages of chiral EFT, it should be pointed
out that much work remains to be done regarding the analysis
and theoretical underpinnings of chiral EFT, in particular the
formulation of a PC that, arguably, fulfills the field theoretic
requirements for an EFT of QCD (see e.g., references [66–
73]), for various views on this topic. Indeed, one cannot yet
confidently claim that the uncertainty estimates in ab initio
predictions of nuclear observables based on proposed chiral
EFT interactions are linked to missing physics at the level of
the effective Lagrangian. The details of the PC, regularization
approach, and chosen maximum chiral order k in Equation (3),
are some of many possible choices that give rise to the rich
landscape of different chiral interactions in nuclear theory.
Although there is a flurry of activity, and far from clear which is
the best way to proceed, there is tremendous overarching value
to organize the model analysis according to the fundamental
ideas and expectations of EFT, most importantly the promise of
order-by-order improvement.

3. MODEL CALIBRATION

The goal of model calibration is to learn about the parameter of
the model using a pool of calibration data. This can mean many
different things depending on the situation, and in this section I
will discuss a few representative model calibration examples from
ab initio nuclear theory.

Assume that we have a model M(Eα; Ex) that consists of
a method for solving the Schrödinger equation and some
theoretical description of the nuclear interaction, e.g., a particular
interaction potential from chiral EFT, and we do not know the
permissible values for Eα. The vector Eα = [α1,α2, . . . ,αN] denotes
the N physically relevant and adjustable calibration parameters
of model M, and the vector Ex denotes the set of control inputs.
The adjustable parameters of interest will typically correspond
to the LECs of the nuclear interaction potential, and the vector
Ex will contain e.g., proton- and neutron-numbers, observable
type, or some kinematical setting. In principle the model might
contain additional adjustable parameters that for some reasons
can be considered as constants. For instance, we typically do
not consider the pion mass as a calibration parameter, although
the variation of such fundamental properties can also play an
important role (see e.g., references [74, 75]). The choice of
many-body method will depend on which class of observables
is targeted, either during prediction or calibration. For instance,
coupled-cluster theory will perform very well for nuclei in the
vicinity of closed shells and Faddeev integration will be able
to access the positive energy spectrum of the three-nucleon
Hamiltonian. Throughout, I will implicitly assume that themodel
is realized only on a computer, i.e., M is defined through some
computer code, and there is no stochastic element present in the
output. This means that each time themodel is evaluated with the
same input and settings, we will basically get the same result.

To calibrate the parameters, suppose that we have a set
of n experimental observations compiled in a data vector
D = [z1, z2, . . . , zn]. They correspond to particular settings
Ex1, Ex2, . . . , Exn of the control variables, to produce model outputs
for e.g., ground-state energies for light nuclei or scattering cross
sections at selected scattering momenta. We can link the data
points to the model outputs via the following relation

zi = M(Eα, Exi)+ δ(Exi)+ εi. (5)

This expression relates the reality of measurement with our
model, and includes a so-called model discrepancy term δ, that
depends on the control variable Exi. The measurement error is
denoted with εi. In cases where the measurement is accompanied
with zero uncertainty, something that is highly unlikely of course,
the model discrepancy term represents the entire difference
between the model and reality. The theoretical discrepancy δ is
not physics per se, but should rather be interpreted as a random
variable of statistical origin, informed via domain knowledge.

The model discrepancy term can be partitioned into at least
three terms

δ(Exi) = δinteraction(Exi)+ δmany−body(Exi)+ δnumerical(Exi), (6)

and they represent the neglected or missing physics in the
theoretical description of the nuclear interaction, neglected or
missing many-body correlations in the mathematical solution of
the many-body Schrödinger equation, and any numerical errors
arising due to algorithmic approximations in the implementation
of the computer model, respectively. We are currently most
interested in understanding δinteraction in situations where we,

Frontiers in Physics | www.frontiersin.org 4 February 2020 | Volume 8 | Article 2968

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ekström Challenges and New Ideas

to a good approximation, can neglect δmany−body and δnumerical.
Thus, in most of the literature, the dominant part of the
model discrepancy originates from the chiral EFT description
of the nuclear interaction. It should be pointed out that the
discrepancy term of the many-body method can be quite large
for many types of observables. However, ab initio methods
are often applied wisely, and there exists plenty of domain
knowledge regarding which many-body methods that are best
suited for different kinds of observables. Yet, it is not easy to
set bounds on this discrepancy a priori. Comparison between
several complementary ab initio models provides important
validation [76–78]. Although challenging, it would be of great
value to quantify the many-body discrepancy more carefully.
Finally, the last term in Equation (6) is currently not the
dominant part of the discrepancy, provided that the computer
code has been benchmarked.

Two related questions immediately arise: (i) what is the impact
of the discrepancy term δ(Exi) on the inference about the model
parameters Eα? and (ii) what happens if we neglect all sources of
model discrepancy during model calibration?

Let us consider the second question, since it is easier and also
sheds light on the first one. Ignoring δ(Exi) in Equation (5) leaves
us with the following expression

zi = M(Eα, Exi)+ εi. (7)

This is the conventional starting point in nuclear model
calibration. If one also assumes that the measurement errors εi
have finite variance, then the principle of maximum entropy
dictates that the likelihood of the data is normally distributed.
For independent errors, this leads to the canonical expression for
the likelihood

P(D|Eα,M, σ ) =
n

∏

i=1

1√
2πσi

exp

{

− (zi −M(Eα, Exi))2
2σ 2

i

}

=
[

n
∏

i=1

1√
2πσi

]

exp







−1

2

n
∑

j=1

(zj −M(Eα, xj))2
σ 2
j







=
[

n
∏

i=1

1√
2πσi

]

exp

{

−1

2
χ2(Eα)

}

.

(8)

Here, the notation P(X|Y) denotes the probability density
function (pdf) of X conditioned on Y . The structure of the
likelihood remains the same for correlated measurement errors,
although one must employ the full covariance matrix instead
of only the diagonal terms σ 2

j to represent the variance of the

data. Model calibration in ab initio nuclear theory is typically
formulated as amaximum likelihood problem. This boils down to
finding the optimal, or best-fitting, parameters Eα⋆ that minimize
the exponent in Equation (8). We are thus facing a mathematical
optimization (minimization) problem

Eα⋆ = arg min
Eα∈�

, χ2(Eα), (9)

of finding the point that fulfills χ2(Eα⋆) ≤ χ2(Eα) for all Eα ∈ �,
where � represents the parameter domain. In general, this is an
intractable problem unless we have detailed information about
Eα or that the parameter domain is discrete and contains a finite
number of points. In reality, we are trying to find localminimizers
to χ2(Eα), i.e., points Eα⋆ for which χ2(Eα⋆) ≤ χ2(Eα) for all Eα ∈ �

close to Eα⋆.
For ab initio models, optimization of the likelihood function

typically proceeds in several steps [11, 12, 79–82]. First, the
parameters, i.e., the LECs in chiral EFT, are calibrated such
that the model optimally reproduces nucleon-nucleon scattering
phase-shifts from published partial-wave analyses [83, 84]. This
typically yield model parameters confined to some narrow
range of values. Although each scattering phase-shift only
depends on a limited subset of the entire vector of model
parameters Eα, this stage still benefits from using mathematical
optimization algorithms, such as the derivate-free algorithm
called pounders [85, 86]. In a next step, the results from the
phase-shift optimization serves as the starting point for a second
round of parameter optimization where all model parameters
are varied to best reproduce thousands of nucleon-nucleon
scattering cross sections up to scattering energies in the vicinity
of the pion-production threshold.

Minimizing the χ2 in Equation (8) for nucleon-nucleon
interaction potentials with respect to nucleon-nucleon scattering
data1 has been the workhorse of model calibration in nuclear
theory for decades2. Since long, the figure of merit for a nuclear
interaction potential has been the χ2-per-datum value. If this
value is close to unity for some particular parameterization
Eα⋆, then the corresponding potential is dubbed to be “high-
precision.” This is beginning to change. Only for models M,
where the model-discrepancy is in fact negligible this approach
can be justified. Otherwise, chasing a low χ2 leads down the
path of significant over-fitting, with unreliable predictions as a
consequence. For the calculation of nucleon-nucleon scattering
phase shifts and cross sections it is valid to ignore δmany−body and
δnumerical since the corresponding equations are can be solved
more or less numerically exactly. However, since we clearly
cannot claim to have a zero-valued δinteraction term, the χ2-per-
datum with respect to nucleon-nucleon scattering data is not the
optimal measure to guide future efforts in nuclear theory. Before
and during the development of ab initiomany-bodymethods and
EFT principles, when it was very unclear how to understand the
concept of model discrepancy in nuclear theory, it was certainly
more warranted to benchmark nuclear potentials based solely on
a straightforward χ2 value.

State-of-the-art interaction potentials also contain three-
nucleon force terms. Although some of the parameters in
chiral EFT are shared between two- and three-nucleon terms,
there exists a subset of parameters inherent only to the three-
nucleon interaction. Such parameters must be determined using
observables from A > 2 systems. Arguably, all parameters

1A recent compilation of scattering data that is typically employed for this is

provided in reference [84].
2The χ2 function employed for nucleon-nucleon scattering data is slightly more

involved to encompass partially correlated measurements (see e.g., [87]).
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of a chiral potential should be optimized simultaneously to
a joint dataset D. The easiest approach is to employ also
e.g., the binding energies and charge radii of 3,4He and 3H.
Unfortunately, there exists a universal correlation between the
binding energies of 3H and 4He, the so-called Tjon line [88].
Also the radii and binding energies exhibit a strong correlation.
Altogether, this reduces the information content of this data.
Fortunately, it was demonstrated in reference [89] that the beta
decay of 3H can add valuable, although limited [90], information
about the parameters in the three-nucleon interaction, and
this has been employed in several works, as indicated by the
long list of citations of reference [89]. Recently, selected three-
nucleon scattering observables have been added to the pool of
calibration data [91, 92], however not routinely since it is still
computationally quite costly to evaluate the ab initio models for
such observables. There are indications that it is necessary to
include also data from nuclei heavier than 4He to learn about the
parameters in ab initiomodels. This is discussed in section 3.2.

Ignoring the δinteraction discrepancy terms during model
calibration can have serious consequences. Most importantly,
this reduces the LECs to tuning parameters without any physical
meaning. Indeed, in the strive to replicate the data at any cost,
the numerical values can be driven far away from the true
values of the model. At some point, continued tuning of the
parameters induces over-fitting and the model will pick up on the
noise in the data. Naturally, this leads to poor predictive power.
With increasing amounts of data, the optimization process will
converge with increasing certainty to false values for Eα. A
pedagogical introduction to the statistics of model discrepancies
and a physics example is provided in reference [93].

A total model discrepancy, according to Equation (6), was
included in ab initio model calibration for the first time in
reference [80]. The parameters in a set of chiral interactions at
LO, NLO, and NNLO were optimized using nucleon-nucleon,
and pion-nucleon scattering data. The terms in the three-nucleon
interaction were simultaneously informed using bound-state
observables from A = 2, 3 nuclei. The details of the analysis and
results can be found in the original paper. The discrepancy terms
were interpreted as uncorrelated errors and added in quadrature
with the data uncertainties, leading to a slight modification of the
corresponding χ2 function

χ2 =
n

∑

j=1

(zj −M(Eα, xj))2
σ 2
data, J

+ σ 2
interaction,j + σ 2

many−body,j
+ σ 2

numerical,j

.

(10)
The interaction discrepancy was constructed from the EFT

assumption that the external momenta flowing through the
interaction diagrams scale as some power corresponding to
the truncation of the chiral expansion, in accordance with
Equation (4). The intrinsic scale of this error was solved for self-
consistently by requiring that the χ2-per-datum should approach
unity providing that the model error is correctly estimated. This
implicitly assumes a correct estimate of the number of statistical
degrees of freedom. Something that cannot be easily estimated
for non-linear χ2 functions [94].

To summarize, although the inclusion of model discrepancies
is preferred, it is not without problems. To blindly include a term
δ(Exi) to capture model discrepancies in the process of model
calibration can lead to statistical confounding between Eα and a
general discrepancy function δ(·) [93]. This means that the model
parameters and the discrepancy term are not identifiable and we
only recover a some joint pdf for the two components. Indeed,
for any Eα there is a δ(·) given by the difference between model
and reality. To make progress requires us to specify some a priori
ranges for Eα and/or δ(·). Or in the language of Bayesian inference,
we need to specify the prior pdf for the model parameters and the
theory uncertainties. This is partly related to approaches where
one augments the χ2 function with a penalty term to constrain
the values of the model parameters (see e.g., reference [95]). For
EFT descriptions of the nuclear interaction one can argue that
the LECs should maintain values of order unity, if expressed
in units of the breakdown scale, and the discrepancy could
follow the pattern of Equation (4). To adequately represent the
discrepancy term in nuclear models is ongoing research, and
it appears advantageous to reformulate model calibration as a
Bayesian inference problem, see section 4.

3.1. Hessian Error Analysis
At the optimum parameter point Eα⋆, a Taylor expansion of the χ2

function to second order gives

χ2(Eα⋆ + 1Eα) ≈ χ2(Eα⋆)+
1

2
(1Eα)TH(1Eα),

where Hij =
∂2χ2(Eα)
∂αi∂αj

∣

∣

∣

∣

Eα=Eα⋆

,
(11)

where H denotes a Hessian matrix, the inverse of which
is proportional to the covariance matrix for the model
parameters [96]. Contracting the parameter-Jacobian of any
model prediction with this covariance matrix yields the standard
error propagation result of the parameter uncertainties. For
the conventional χ2 function, the parameter covariances reflect
the impact of the experimental uncertainties on the precision
of the optimum and predicted observables. Sometimes, this is
referred to as statistical uncertainties, which is a bit confusing
since all uncertainties are statistical in nature. See Figure 1

for an example result of applying a parameter covariance
matrix to obtain the joint pdf for the 4He ground-state energy
and the 2H point-proton radius, two important few-nucleon
observables. This particular result is taken from reference [80],
where in fact a model discrepancy term δ(·) was incorporated
during the optimization, thus in this particular case the
covariances reflect more than just the measurement noise. See
e.g., references [97–102] for details about statistical error analysis
and illuminating examples of forward error propagation in ab
initio nuclear theory.

To extract the covariance matrix requires computation of
the second-order derivatives of the χ2 function with respect
to the model parameters. The general process of numerically
differentiating an ab initiomodel with respect to Eα is significantly
simplified, and numerically much more precise, with the
use of automatic differentiation (AD) [80]. This corresponds
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FIGURE 1 | Joint distribution for the ground-state energy of 4He (x-axis) and

the point-proton radius of 2H (y-axis) for (A) the chiral potential NNLOsim and

(B) the chiral potential NNLOsep (see reference [80]). Contour lines for the

distributions are shown as black solid lines, while blue dotted (red dashed)

contours are obtained assuming a linear (quadratic) dependence on the LECs

for the observables.

to applying the chain rule of differentiation on a function
represented as a computer code. It relies on the principle that
any computer code, no matter how complicated always executes
a set of elementary arithmetic operations on a finite set of
elementary functions (exponentiation, logarithmization, etc). To
implement AD requires modification of the original computer
code, e.g., operator overloading via third-party libraries. Once
implemented, AD also enables application of more advanced
derivative-based optimization algorithms and Markov chain
Monte Carlo methods [103] with the computer model M.
An alternative, and derivative-free approach, to computing the
Hessian matrix for forward error propagation is to employ
Lagrange multipliers [104]. This method is more robust, but also
more computationally demanding to carry out. From a practical
and computational perspective, if one considers to use Lagrange
multipliers, one should also look into performing a Bayesian
analysis (see section 4).

3.2. Selecting Calibration Data
It is preferable to use data corresponding to observables that are
computationally cheap to evaluate, and if possible with model
settings corresponding to low δ(Ex)many−body discrepancies. One
should also strive to include data with highly complementary
information content that constrain a maximum amount of
linearly independent combinations of model parameters.

The conventional approach to calibrate ab initio models is to
use only data from A . 4 nuclei, as was discussed above. It
was observed in reference [25] that the additional inclusion of
ground-state energies and charge radii of selected carbon and
oxygen isotopes dramatically increases the predictive power of
models for bulk properties of nuclei up to the medium-mass
nickel region (see Figure 2). This calibration strategy led to the
construction of the so-called NNLOsat interaction. The strategy
to include data from selected A > 4 nuclei was also used in
the construction of the Illinois 3NF presented in reference [105].

FIGURE 2 | Ground-state energies per nucleon (top) and differences between

theoretical and experimental charge radii (bottom) for selected light and

medium-mass nuclei and results from ab initio computations. The red

diamonds mark results based on the chiral interaction NNLOsat. The blue

columns indicate which nuclei where included in the optimization of the LECs

in NNLOsat, while the white columns are predictions. Gray symbols indicate

other chiral interactions.

From a quantitative perspective, the advent of models capable of
accurate predictions is of course an important step forward and
has proven very useful [26, 27, 106, 107].

The major drawback of any model based on the NNLOsat

interaction is the lack of quantified theoretical uncertainties.
This is quite common also for ab initio models based on other
interaction potentials. At the moment, the best we can do
is to estimate the truncation error using Equation (4). This
requires additional and sub-leading chiral-order potentials using
the same optimization protocol, e.g., LOsat and NLOsat, which
do not exist. The calibration of such models require an even
more careful inclusion of model discrepancies. This is discussed
more in section 4. One can certainly argue that it becomes
even more important to quantify the theory errors for models
that we strongly believe will make accurate predictions, like
the ones based on the NNLOsat interaction. Otherwise we are
limited in our ability to assess discrepancies with respect to
experiment. This argument applies equally well to models based
on e.g., the 1.8/2.0 interaction from reference [29, 30] which
typically yield good predictions for binding energies and low-
energy spectra. In reference [26], the prediction from ab initio
models based on different interactions, NNLOsat and the 1.8/2.0
interactions amongst other, were compared to estimate the
overall theoretical uncertainty.

It is difficult to judge the degree of over-fitting to finite nuclei
in NNLOsat. It was noted during calibration that this interaction
fails to reproduce experimental nucleon-nucleon scattering cross
sections for scattering momenta larger than ∼ mπ . Enforcing
a good reproduction of all scattering data up to e.g., the pion-
production threshold most likely corresponds to over-fitting in
the A = 2 sector. It is the role of the model discrepancy term,
with appropriate priors, to balance this.
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One clearly gains predictive power regarding saturation
properties by including additional medium-mass data during
the calibration stage. This was also observed in a lattice EFT
analysis of the nuclear binding mechanism [108]. The related
topic of possibly emergent nuclear phenomena like saturation,
binding, and deformation of atomic nuclei is discussed further in
reference [109]. Although the inclusion of a model discrepancy
term while calibrating to heavier-mass data will be important, it
does not solve the underlying problem of having a systematically
uncertain model. It was noted in references [110–112] that the
explicit inclusion of the 1 isobar in the chiral description of
the nuclear interaction dramatically improves the description of
nuclei while also reproducing nucleon-nucleon scattering data. A
possibly fruitful way forward is to employ improved models, i.e.,
with explicit inclusion of the 1 isobar, that are calibrated using
also data from selected heavy-mass nuclei, while systematically
accounting for model discrepancies. Furthermore, it will be
interesting to se how much additional information is contained
in three-nucleon scattering data [91, 92, 113].

4. BAYESIAN INFERENCE

The previous section introduced the concept of model calibration
and the fundamental expression in Equation (5) that relates a
model with measured data. In this section I will outline the
Bayesian strategy for learning about the model parameters and
some existing estimates of the discrepancy term. The overarching
goal is still to calibrate an ab initio model M(Eα, Ex), and reliably
predict properties of atomic nuclei. However, instead of finding a
single point Eα⋆ in parameter space that maximizes the likelihood
for the data, we can use Bayes’ theorem to relate the data
likelihood to a pdf for the model parameters themselves

P(Eα|D,M, I) = P(D|Eα,M, I)P(Eα|M, I)

P(D|M, I)
, (12)

where P(Eα|M, I) denotes the prior pdf for the parameters,
P(D|Eα,M, I) denotes the likelihood of the data, the denominator
P(D|M, I) denotes the marginal likelihood of the data, and
P(Eα|D,M, I) denotes the sought-after posterior pdf of the model
parameters. The additional I represents any other information
at hand.

The Bayesian reformulation of the inference problem can at
first sight appear as a subtle point, and it is easy to overlook
the fundamental difference between computing the pdf for
the parameters and maximizing the likelihood, i.e., frequentist
inference. From a practical perspective, it is clearly advantageous
to obtain a pdf for the model parameters P(Eα|D,M). This
quantity is also intuitively straightforward to interpret compared
to frequentist interval estimates that might contain the true value
of the unknown model parameters, e.g., confidence intervals.
The prior pdf P(Eα|M, I) for the parameters Eα given a model M
offers up front possibility to incorporate any prior knowledge (or
belief) about the parameters, before we look at the data. In the
case of ab initio modeling, an underlying EFT-description of the
nuclear interaction embodies substantial prior knowledge, such
as the typical magnitude of the model parameters as well as a

handle on the systematic uncertainty. The Bayesian requirement
of prior specification also ensures full transparency regarding the
assumptions that goes into the analysis.

The existence of priors in Bayesian inference is sometimes
criticized and one can argue that the scientific method should
let the data speak for itself, without the explicit insertion of
subjective prior belief. Inference about model parameters in
terms of hypothesis tests or confidence intervals, derived from
the frequency of the data, is referred to as frequentist inference.
Note however that the likelihood rests on initial subjective
choice(s) regarding the data model. In this review, I will maintain
a practical perspective, and just recognize the usefulness of
the Bayesian approach to encode prior information about the
model parameters and the model discrepancy terms. Which is
also required in order to handle possible confounding between
the discrepancy and the model parameters [93]. Either way,
it is difficult to avoid subjective choices in statistical inference
involving uncertainties and limited data. In fact, one can even
argue that only subjective probabilities exist [114].

Bayesian model calibration, sometimes called Bayesian
parameter estimation, is currently emerging in ab initio
modeling [115–117]. To get some intuition about this topic, let us
look at Bayesian parameter estimation in its most simple version.
This amounts to assuming a (bounded) uniform prior pdf for the
model parameters Eα, i.e.,

P(Eα|M, I) ∼ U(Ea, Eb) (13)

and adopting a data likelihood as in Equation (8). In
practice, what remains is to explicitly evaluate P(Eα|D,M, I) in
Equation (12) by computing the product of the two terms in the
numerator. The denominator can be neglected since it does not
explicitly depend on Eα. This marginal likelihood does however
matter for absolute normalization of the posterior pdf. The
evaluation of the posterior can be done via brute force evaluation
in some simple cases, but for computationally expensive models
and/or high-dimensional parameter space typically more clever
strategies are required, such as Markov chain Monte Carlo. With
uniform priors, the point for the maximum posterior coincides
exactly with the point obtained using maximum likelihood
methods, which for normal likelihood distributions is nothing
but least-squares.

The advantages of Bayesian parameter estimations becomes
apparent once we include non-uniform prior knowledge, and in
most cases we know a bit more about the parameters than what a
simple uniform pdf reflects. The general strategies for application
of Bayesian methods to calibrate EFTs are pedagogically outlined
in reference [116]. To exemplify the use of priors and some of the
related techniques, let us assume a Gaussian prior with zeromean
for the model parameters Eα = [α1,α2, . . . ,αN], i.e.,

P(Eα|ā,M, I) =
(

1√
2πEa

)N

exp

(

− Eα2

2ā2

)

, (14)

where the parameter ā2 denotes the prior variance. This is not an
unreasonable prior for the model parameters in chiral EFT. The
impact of this parameter prior is to penalize model parameters
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that are too large, which would typically signal over-fitting. For
situations where there exist a large amount of precise data, the
prior specification for the parameters matter less. Nevertheless,
the question remains, what value should we pick for ā? This can
be dealt with straightforwardly by marginalizing over ā, i.e., we
express the prior for the parameters as

P(Eα|M, I) =
∫

dā P(Eα|ā,M, I)P(ā|M, I), (15)

which only forces us to specify a prior for the variance for our
belief about the model parameters, here we could choose a rather
broad range if we like. With appropriate analytical form for the
prior on ā, it is even possible to carry out this marginalization
step analytically. See reference [117] for illuminating examples
about the impact of different priors in model calibration with
scattering-phase shifts.

4.1. Prediction and Calibration Including
Model Discrepancies
Observables computed with potentials from chiral EFT should
exhibit a pattern where contributions from successive orders
ν = 0, 1, 2, 3, . . . are smaller by factors Qν . This is reflected in
Equation (3). Therefore, the expansion coefficients {cν} should
remain of natural size, a clear example of a situation where we
have prior knowledge3. Given a series of model calculations of the
observable O, up to the chiral order ν = k, i.e., O0,O1, . . . ,Ok,
and an estimate of the factor Q, it is straightforward to extract
the coefficients [c0, c1, . . . , ck]. It was shown in references [118,
119] how to extract a pdf for the EFT truncation error δk in
Equation (4) using this information. First, we factor out the
overall scale, and define

δ̃k = δk/O0 (16)

as the overall dimensionless truncation error. We now seek an
expression for P(δ̃k|c0, c1, . . . , ck) given the known values for
the first k + 1 coefficients. It turns out that for independent,
bounded, and uniform prior pdfs for the expansion coefficients,
the integrals can be solved analytically if one also approximates
δ̃k with the leading term. Thus, we assume

δ̃k ≈ δ̃
(1)
k

= ck+1Q
k+1, (17)

The posterior pdf P(δ̃
(1)
k
|c0, c1, . . . , ck) is given in reference [119]

(Equation 22), and explicitly derived in the appendix of
reference [118]. This posterior pdf is the complete inference

about δ̃
(1)
k
. If the pdf is multi-modal or otherwise non-trivial one

should use it in its entirety in forward analyses. However, we
can sometimes use a so-called degree of belief (DOB) value to
quantify the width of a pdf. This is the probability p%, expressed
in percent, that the value of an uncertain variable η, distributed
according to the pdf P(η), falls within an interval [a, b]. This

3The wording; prior knowledge vs. prior expectation, or even prior belief, signals

the level of subjective certainty or source for the prior.

interval is then referred to as a credible interval with p% DOB,
where

p% =
∫ b

a
P(η) dη. (18)

The posterior pdf for δ̃
(1)
k

is not Gaussian, however it is
symmetric and have zero mean. Therefore, we can define

a smallest interval [−d
(p)

k
,+d

(p)

k
] that captures p% of the

probability mass

p% =
∫ +d

(p)

k

−d
(p)

k

P(δ̃1k |c0, c1, . . . , ck) dδ̃
(1)
k
, (19)

and solve for d
(p)

k
. This will define the width of the credible

interval within which the next term in the EFT expansion will
fall with p% DOB, i.e., an estimate of the truncation error. The
expression is derived in references [118, 119], and given by

d
(p)

k
=max(|c0|, |c1|, . . . , |ck|)Qk+1 nc + 1

nc
p%, if p% ≤ nc/(nc+1),

(20)
where nc denotes the number of available coefficients. Thus,
with nc/(nc + 1) × 100% DOB, the EFT truncation error for
the observable O, in dimensionful units, is straightforwardly
estimated byO0×max(|c0|, |c1|, . . . , |ck|)Qk+1. This estimate also
corresponds to the prescription employed in reference [120]. This
a posteriori truncation error estimate essentially boils down to
guessing the largest number that one can expect based on a series
of numbers drawn from the same underlying distribution. For
example, given only one (nc = 1) expansion parameter c0, we
have a 50% DOB that we have encountered the largest coefficient
in the series. This procedure has been applied to estimate the
truncation error in several ab initio model calculations, see the
long list of papers that are citing references [119, 120].

The procedure for estimating the EFT truncation error, i.e.,
part of the model discrepancy, requires an estimate of the
high-energy scale 3b of the underlying EFT. For the models
discussed here, the results are based on chiral EFT, for which
the naive estimate of 3b is roughly MN ∼1 GeV. This was
analyzed more carefully for semi-local chiral potentials [45, 120]
in reference [121]. The posterior pdf for 3b indicated that a
more probable value is 3b ≈ 500 MeV. This value was also
used for the breakdown scale in the truncation error analysis of
nucleon-nucleon scattering phase shifts from the 1-full models
at LO,NLO, and NNLO chiral orders in reference [110]. The
results are presented in Figure 3. This result also strengthens the
observation made earlier, that the inclusion of the 1 degree of
freedom tend to improve model descriptions of nuclear systems.
This is more clearly seen when employing the same potentials to
makemodel predictions for the ground-state-energies and charge
radii of selected finite nuclei (see Figure 4), and the energy per
nucleon in symmetric nuclear matter (see Figure 5).

The model predictions for the nuclear matter indicate that
the 1-full models on average agree better with experimental
energies and radii. The uncertainty bands for the predictions
were extracted under the additional assumption that the relevant
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FIGURE 3 | Neutron-proton scattering phase shifts computed with models based on 1-full and 1-less chiral interaction potentials. The bands indicate the limits of

the expected DOB intervals at each chiral order ν. The black dots represent the values from the Granada partial wave analysis [84].

FIGURE 4 | Ground-state energy (negative of binding energy) per nucleon and

charge radii for selected nuclei computed with coupled cluster theory and the

1-full potential 1NNLO(450). For each nucleus, from left to right as follows:

LO (red triangle), NLO (green square), and NNLO (blue circle). The black

horizontal bars are data. Vertical bars estimate uncertainties from the

order-by-order EFT truncation errors.

soft-scales for finite and infinite nuclear systems are given by
the pion mass and the Fermi momentum, respectively. Although
these are rough estimates of the soft scales, it is important
to note that the the truncation error in Equation (20) only
holds up to factors of order unity. A comparison of theoretical

FIGURE 5 | Coupled-cluster based model prediction of the energy per

nucleon (in MeV) in symmetric nuclear matter using an NNLO potential with

(solid line) and without (dashed line) the 1 isobar. Both interactions employ a

momentum regulator-cutoff 3 = 450 MeV. The shaded areas indicate the

estimated EFT-truncation errors. The diamonds mark the saturation point and

the black rectangle indicates the region E/A = −16 ± 0.5 MeV and ρ = 0.16

± 0.01 fm−3.

error estimates based on different statistical methods provide
additional validation. The Bayesian method for estimating the
truncation error and the model errors estimated using the
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modified χ2-function in Equation (10) are quite different in
nature. Nevertheless, a comparison of the theoretical errors in
nucleon-nucleon cross sections at high scattering-energies agree
very well for these methods [80, 119]. The link between the two
approaches for estimating the model uncertainties is discussed
further in reference [117]. A complete Bayesian parameter
estimation including model discrepancy will hopefully reveal
more details about the structure of the chiral EFT error.

At the moment, most model discrepancies in ab initio
modeling based on chiral EFT are extracted a posteriori using
predictions based on calibrated models. This is possible based
on the expectation that the predictions might follow an EFT
pattern. This of course remains to be validated on theoretical
grounds. However, under the assumption that the interaction
potential actually gives rise to an EFT pattern for the observable,
we can build on Equation (4) to include a discrepancy term in
the likelihood for calibrating ab initiomodels. See reference [122]
for a discussion about correlated truncation errors in nucleon-
nucleon scattering observables following this line of thought,
where it is also observed that the expansion parameters behave
largely as expected.

5. SUMMARY AND OUTLOOK

Statistical representation of a sound model discrepancy term
is certainly challenging. Still, the assumption of zero model
discrepancy is a rather extreme position. Almost any reasonable
guess is better than nothing in order to avoid false values for the
model parameters and to minimize over-fitting.

The importance of acknowledging model discrepancies is
neatly summarized in the famous quote of George E. P. Box:
“Essentially, all models are wrong, but some are useful” [123],
with the additional comment in reference [93]: “But a model that
is wrong can only be useful if we acknowledge the fact that it is
wrong.”

Fortunately, most of the ab initio models of atomic nuclei
are built on methods from EFT, which by construction promises
extra information about the expected impact of the neglected
or missing physics in theoretical predictions. Bayesian inference
is a natural choice for accounting for model discrepancies and
prior knowledge, especially when the priors have a physical basis.
Indeed, extracting the posterior pdf for the model parameters
via Bayesian inference methods makes it possible to abandon
the notion of having a single parameterization of a particular
interaction potential and instead build models based on a
continuous pdf of parameters. Developments along these lines
are already taking place in e.g., density functional theory for
atomic nuclei [124].

At the moment, most theoretical analyses of atomic nuclei
proceed in the following fashion. Given a potential V(Eα⋆),
optimized to reproduce some set of calibration data D, we
setup a model M(Eα⋆, Ex) to analyze an experimental result
corresponding to the control setting Exi, i.e., we evaluateM(Eα⋆, Exi).
In a few cases we propagate uncertainties originating from
the measurement errors present in the data vector D, and
sometimes we estimate the EFT truncation error using a series

of models at different chiral orders. This takes a lot of effort.
Indeed, ab initio nuclear models are represented by complex
computer codes, implemented via years of dedicated work by
several people, and computationally expensive to evaluate. On
top of that, to understand the underlying nuclear interaction is,
arguably, one of the most difficult problems in all physics. Still,
we would like to answer questions like: how much should we
trust a model prediction? is the model M over-fitted? why is it
not agreeing with observed data, and how do we understand
this discrepancy?

We should strive to use Bayesian methods for calibrating
our models M(Eα, Ex) to obtain posterior pdfs P(Eα|M,D, I) for
the parameters. Subsequent evaluations of an observable Oi,
corresponding to setting the model control variable to Exi, should
be marginalized over the parameter posterior pdf to produce a
posterior predictive pdf

P(Oi|M, Exi,D) =
∫

dEα P(Oi|Eα,M, Exi,D)P(Eα|M,D). (21)

This quantity will best reflect our state of knowledge, and is quite
meaningful to compare with data. Various marginalizations with
respect to subsets of the parameters can provide better insights
into the qualities of the ab initio model. Bayesian inference
also allows us to compare different models via the computation
of Bayes factors [125], which in turn enables us to address
questions like: which PC in chiral EFT has the strongest support
by data? It is also theoretically straightforward to compute
the posterior predictive pdf averaged over a set of different
models M = [M1,M2, . . . ,M3] [126], each weighted by their
probability of being true, in the finite space spanned by M,
given data D.

5.1. The Computational Challenge
There are several challenges connected with the outlook
presented above: working out the theoretical underpinnings of
chiral EFT, specifying prior information, formulating model
discrepancy terms, and performing challenging Markov Chain
Monte Carlo evaluation of complicated posterior pdfs. From a
practical point of view, handling, the computational complexity
is the most difficult one. Indeed, evaluating models of
medium- and heavy-mass atomic nuclei typically requires vast
high-performance computing resources. This clearly puts the
feasibility of the Bayesian scenario presented above into question.
Without any unforeseen disruptive computer technologies or
dramatic algorithmic advances, it will be necessary to employ,
where possible, fast emulators that accurately mimic the response
of the original ab initio models. This is where we can draw
from advances in machine learning. Possibly useful methods are
e.g., Gaussian process regression and artificial neural networks.
Both of these approaches can be challenging since they introduce
hyperparameters that require additional optimization. Although
it can be difficult to assess how well such methods will work,
there exist several examples of useful surrogate interpolation and
extrapolation in nuclear modeling (see e.g., references [122, 124,
127–131]). A new method called eigenvector continuation [132]
turns out to be a promising tool for accurate extrapolation
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and fast emulation of nuclear properties [133]. In a recent
paper [134], this method proved capable of emulating (with a
root mean squared error of 1%) more than one million solutions
of an ab initio model for the ground-state energy and radius
of 16O in one hour on a standard laptop. An equivalent set
of exact ab initio coupled-cluster computations would require
20 years.
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To obtain an understanding of the structure and reactions of nuclear systems from first

principles has been a long-standing goal of nuclear physics. In this respect, few- and

many-body systems provide a unique laboratory for studying nuclear interactions. During

the past decades, the development of accurate representations of the nuclear force has

undergone substantial progress. Particular emphasis has been devoted to chiral effective

field theory (EFT), a low-energy effective representation of quantum chromodynamics

(QCD). Within chiral EFT, many studies have been carried out dealing with the

construction of both the nucleon-nucleon (NN) and three-nucleon (3N) interactions. The

aim of the present article is to give a detailed overview of the chiral interaction models that

are local in configuration space, and show recent results for nuclear systems obtained

by employing these local chiral forces.

Keywords: nuclear interactions, chiral effective field theory, local interactions, three-body forces, ab-initio

calculations

1. INTRODUCTION

The last few decades have marked the emergence of the basic model of nuclear theory in which
nuclear systems—particularly atomic nuclei and infinite nucleonic matter—can be described as a
collection of point-like particles, the nucleons, interacting with each other in terms of two- and
many-body effective interactions, and with external electroweak probes via effective current
operators. This approach, in conjunction with a computational method of choice to solve the
many-body Schrödinger equation, can then be used to study the structure and dynamics of nuclear
systems in a fully microscopic way, which is commonly referred to as ab-initio calculations.
Examples of such calculations are based on the no-core shell model (NCSM) [1, 2], the coupled
cluster (CC) [3, 4] or hyperspherical harmonics (HH) [5] expansions, similarity renormalization
group (SRG) approaches [6, 7], self-consistent Green’s function techniques [8, 9], quantum Monte
Carlo (QMC) methods [10], and nuclear lattice effective field theory (NLEFT) [11]. Although
significant progress has been made in recent years, these ab-initio techniques remain challenging
and their domain of applicability is, at present, limited to provide quantitative description of light
andmedium-mass nuclei [1, 4, 7–10, 12] and their reactions [13–16]. A special but related challenge
is the development of microscopic models that include continuum couplings which are mandatory
to describe, for instance, weakly bound nuclear systems [17, 18].

One might argue that nucleons are not the fundamental building blocks of the nuclear systems
at hand, and that one should instead start from Quantum Chromodynamics (QCD). QCD
provides the theoretical framework to describe strong interactions which governs the dynamics
and properties of quarks and gluons. However, while strong interactions are weak and perturbative
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at high energies, i.e., short distances (asymptotic freedom),
quarks are strongly interacting at low energies or long distances,
of relevance for nuclear physics, which makes a non-perturbative
treatment necessary. In addition, at these energies quarks
are confined into colorless objects called hadrons (baryons,
consisting of three quarks, e.g., the nucleon, and mesons
consisting of a quark and an anti-quark, e.g., the pion). Hence,
while QCD is responsible for the complex inter-nucleon forces in
nuclear systems, which can be thought of as residual interactions
among quarks, a description in terms of nucleon degrees of
freedom is particularly valid at sufficiently low energies.

How the interactions among nucleons emerge from the
fundamental theory, QCD, has kept nuclear theorists occupied
for many decades. Since QCD is non-perturbative at low energies
of interest in nuclear systems, one may try to solve QCD with
brute computing power on a discretized Euclidean space-time
lattice (known as lattice QCD) However, in spite of many
advances [19–22], lattice QCD calculations are still limited to
small nucleon numbers and/or large pion masses, and hence, at
the present time, can only be used to address a limited set of
representative key-issues.

As a consequence, most theoretical studies of nuclear systems
have to resort to using the basic model of nuclear theory,
i.e., assuming pointlike nucleons to be the relevant degrees
of freedom instead of quarks. In this review, we will briefly
introduce this basic model and discuss the current state-of-the-
art for nuclear interactions, chiral effective field theory (EFT).
We will then focus on a particular subclass of chiral EFT
interactions, local chiral EFT interactions, intended for the use
in QMCmethods.

The review is structured as follows. In section 2, we discuss
the general features of nuclear interactions starting with the
phenomenological ones and moving to those obtained in chiral
EFT. In section 3, we provide many details about the theoretical
derivation of local interactions in both delta-full and delta-less
chiral EFT, i.e., when explicitly including the delta resonance or
not. In section 4, we briefly discuss finite cutoff and regulator
artifacts that can appear in calculations with local interactions.
Finally, in section 5, we report selected results for light and
medium-mass nuclei and the equation of state of pure neutron
matter using QMCmethods.

2. NUCLEAR HAMILTONIANS

The basic model of nuclear theory assumes that a nuclear
system can be described by a non-relativistic Hamiltonian that
contains interactions among nucleons, i.e., protons and neutrons.
The individual nucleons mostly interact via two-body (NN)
interactions. However, nucleons can also interact via three-
body (3N) and higher many-body interactions. The way these
many-body interactions appear is 2-fold. First, nucleons are
compound particles and, hence, treating them as point-like
particles induces effective many-body interactions even if only
two-quark interactions were to be considered. This is similar to
describing tides on Earth, where the three-body system given by
Earth, Moon, and Sun is relevant, even though gravity is only a

two-body force. Second, since quarks themselves can have multi-
quark interactions, this immediately leads to the appearance of
“true” 3N forces among nucleons, where, for example, single
quarks in each of the three nucleons interact with each other.

The resulting Hamiltonian can then be written as a sum of
the non-relativistic one-body kinetic energy (Ti),NN interactions
between particle i and j (Vij), 3N interactions between particle
i, j, and k (Vijk), and additional many-body interactions, and
provides a good approximation for interacting nucleons in a
given nuclear system:

H =
∑

i

Ti +
∑

i<j

Vij +
∑

i<j<k

Vijk + · · · . (1)

There are indications that four-body interactions may contribute
at the level of only ∼100 keV in 4He [23] or pure neutron
matter [24], and therefore are negligible compared toNN and 3N
interactions. Hence, current formulations of the basic model do
not typically include them (see e.g., [10]).

In order to derive two- and three-body nuclear forces, one
has to take into account some general considerations, specify the
theoretical framework in which such interactions are formulated,
and the experimental inputs necessary to determine possible
unknown parameters of the theory.

2.1. General Considerations for Nuclear
Interactions
To accurately describe nuclear systems that are governed
by QCD, nuclear interactions need to obey all the relevant
symmetries of QCD. Hence, nuclear potentials need to have the
following properties (we will focus on NN forces here, but the
statements remain true for all parts of the interaction):

• V is hermitian, because the Hamiltonian is hermitian,
• V is symmetric under the permutation of identical particles,

i.e., Vij = Vji,
• V is translationally and rotationally invariant,
• V is invariant under translations in time, i.e., time-

independent,
• V is Lorentz invariant (for non-relativistic interactions this

reduces to Galilean invariance),
• V is invariant under parity transformations and time reversal,
• V has to conserve baryon and lepton number,
• V has to be approximately isospin symmetric and charge

independent,
• and V has to include the properties of spontaneously and

explicitly broken chiral symmetry.

Chiral symmetry is a symmetry of the QCD Lagrangian with
massless quarks under independent rotations of left- and right-
handed quarks. Considering only u and d quarks, this symmetry
can be written as SU(2)L×SU(2)R. This expression contains two
symmetries: the first (vector) one represents isospin symmetry,
i.e., symmetry under the exchange of u and d quarks, and the
second (axial) one is the so-called chiral symmetry. These two
symmetries imply degenerate fermions under isospin and spin-
parity transformations.While isospin symmetry is approximately
fulfilled in nature, i.e., the neutron and proton have similar
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masses, nucleons with spin 1/2+ and 1/2− have very different
masses (940 vs. 1,535 MeV). This signals that chiral symmetry is
broken in nature.

In fact, chiral symmetry is broken 2-fold. First, it is broken
spontaneously, leading to the formation of Goldstone bosons,
that can be identified with the pions. Second, chiral symmetry
is also explicitly broken by the finite quark masses, which leads
to the pion being pseudo-Goldstone bosons with finite but small
mass. In contrast, isospin symmetry remains a good symmetry,
because the ratio (md−mu)/3QCD is very small, wheremu ≃ 2.4
MeV andmd ≃ 4.8 MeV.

These symmetries only allow certain operator structures for
nuclear interactions. Galilean invariance, for instance, implies
that nuclear interactions depend only on relative momenta
between two nucleons, p = pi − pj, while symmetry under
parity transformations implies that nuclear interactions cannot
be linear in p, and charge independence requires that the nuclear
interactions can be written as

V = V1 · 1+ Vτ τ i · τ j , (2)

and so on. In addition, the spin dependencies are included
through operators like 1, σ i · σ j, spin-orbit interactions given by
L · S with L = r × p, where r = ri − rj, or tensor interactions
with the tensor operator Sij(r) = σ i · r̂ σ j · r̂ − σ i · σ j. As a
consequence, interactions typically have a spin-isospin operator
structure given by

OV = {1, σ i · σ j, L · S, Sij} × {1, τ i · τ j} , (3)

where the individual operators carry momentum-dependent
functions consistent with all required symmetries.

2.2. Phenomenological Interactions
Historically, NN interactions were derived using
phenomenological insight. They were characterized by a
long-range component characterizing the interaction for inter-
nucleon separations r & 1/mπ , due to one-pion exchange
(OPE) [25], and intermediate- and short-range components
describing the interactions at 1 fm . r . 2 fm and r . 1 fm,
respectively. The intermediate- and short-range components
were included to simulate intermediate-range attraction as well
as short-range repulsion.

Up to the mid-1990’s, nuclear interactions were based almost
exclusively on meson-exchange phenomenology. Interactions of
the mid-1990’s [26–28] were constrained by fitting nucleon-
nucleon (NN) elastic scattering data up to laboratory energies of
350 MeV, with χ2/datum ≃ 1 relative to the database available
at the time [29]. Two well-known and still widely used examples
in this class are the Argonne v18 (AV18) [27] and CD-Bonn [28]
interactions. These are so-called phenomenological interactions.

Already in the 1980’s, accurate three-body calculations showed
that contemporary NN interactions alone did not provide
sufficient binding to reproduce experimental numbers for nuclei
with nucleon number A = 3, 3H and 3He [30]. This realization
was later on extended to the spectra (ground and low-lying
excited states) of light p-shell nuclei, for instance, in calculations

based on quantumMonte Carlo (QMC) methods [31] and in no-
core shell-model (NCSM) studies [32]. Consequently, the basic
model with only NN interactions fit to scattering data, without
the inclusion of a three-nucleon (3N) interaction, was found
to be unsatisfactory. However, because of the composite nature
of the nucleon and, in particular, the dominant role of the 1

resonance, a spin-3/2, isospin-3/2 nucleon resonance, in pion-
nucleon scattering, many-body interactions arise quite naturally
in meson-exchange phenomenology.

For example, the Illinois 3N interaction [33] consists of
a dominant two-pion exchange (TPE)—the Fujita-Miyazawa
interaction [34]—and smaller multi-pion exchange components
resulting from the excitation of intermediate1’s. Themost recent
version, Illinois-7 (IL7) [35], also contains phenomenological
isospin-dependent central terms. The parameters characterizing
this 3N potential have been determined by fitting the low-lying
spectra of nuclei in the mass range A= 3–10. The resulting
AV18+IL7 Hamiltonian, generally utilized with QMC methods,
then leads to predictions of 100 ground- and excited-state
energies up to A= 12, including the 12C ground- and Hoyle-
state energies, in good agreement with the corresponding
experimental values [10]. However, when used to compute
the neutron-star equation of state, these interactions do not
provide sufficient repulsion to guarantee the stability of the
observed neutron stars with masses larger than two solar
masses against gravitational collapse [36]. Thus, in the context
of the phenomenological nuclear interactions, we do not
have a Hamiltonian that can predict the properties of all
nuclear systems, from NN scattering to dense nuclear and
neutron matter.

Furthermore, high-precision phenomenological potentials
suffer from several limitations, most notably the missing
connection with the low-energy QCD, and hence, the absence
of a guiding principle for the construction of interactions. As
a consequence, phenomenological interactions do not provide
rigorous schemes to consistently derive two- and three-body
forces and compatible electroweak currents. In addition, there
is no clear way to properly assess the theoretical uncertainty
associated with the nuclear potentials and currents.

2.3. Chiral Effective Field Theory
These drawbacks were addressed when a new phase in the
evolution of the basic model began in the early 1990’s with the
emergence of chiral effective field theory (EFT) [37–39].

Chiral EFT is a low-energy effective theory of QCD based
on the choice of baryons as effective degrees of freedom: in
chiral EFT one chooses pions and nucleons. At typical momenta
in nuclei, p ∼ mπ ∼ O(100MeV), this choice is accurate,
because shorter-range structures, e.g., the quark substructure, or
heavier meson exchanges, e.g., exchanges of the ρ-meson, are not
resolved, and can be absorbed in short-range nucleon contact
interactions. This separation of scales between typical momenta
p and scales of the same order, i.e., the pion mass mπ ∼ 140
MeV, and larger scales, e.g., the mass of the ρ, mρ ∼ 770 MeV,
can then be used to systematically derive an effective and most
general scheme accommodating all possible interactions among
the relevant degrees of freedom consistent with the symmetries
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of QCD. In some modern approaches, the choice of degrees
of freedom also includes the 1 isobar (delta-full chiral EFT),
because the 1-nucleon mass splitting is only 300 MeV∼ 2mπ .

The starting point in chiral EFT is themost general Lagrangian
in terms of the chosen degrees of freedom, which contains
all allowed interaction mechanisms in accordance with the
considerations in section 2.1. As a consequence, this Lagrangian
contains an infinite number of terms and needs to be truncated
using a given power-counting scheme. Most chiral interactions
used in nuclear structure calculations are based on Weinberg
power counting, which itself is based on naive dimensional
analysis of interaction contributions. Within Weinberg power
counting, the interactions are expanded in powers of the typical
momentum p over the breakdown scale 3b, Q = p/3b,
where the breakdown scale denotes momenta at which the short
distance structure becomes important and cannot be neglected
and absorbed into contact interactions anymore (see [40–43]
for recent review articles). It is worthwhile mentioning that
alternative power-counting schemes have been also suggested as
in Kaplan et al. [44, 45], Nogga et al. [46], Pavon Valderrama and
Ruiz Arriola [47], Long and Yang [48], and van Kolck [49].

This expansion defines an order by order scheme, defined
by the power ν of the expansion scale Q in each interaction
contribution: leading order (LO) for ν = 0, next-to-leading order
(NLO) for ν = 2, next-to-next-to-leading order (N2LO) for ν =
3 and so on. Similarly as for nuclear interactions, such a scheme
can also be developed for electroweak currents. Therefore, chiral
EFT provides a rigorous scheme to systematically construct
many-body forces and consistent electroweak currents, and tools
to estimate their uncertainties [50–55]. From this perspective,
it can be justifiably argued that chiral EFT has put the basic
model on a more fundamental basis, by providing a link between
QCD with all its symmetries, and the strong and electroweak
interactions in nuclei.

Figure 1 shows the state of the art of chiral contributions
to the NN and 3N interactions in the delta-less and delta-full
chiral EFT. Higher many-body forces, such as four-nucleon (4N)
or five-nucleon (5N) interactions, can naturally also be derived
within this framework [42], but they will not be discussed here.
Nuclear forces in chiral EFT are separated into pion-exchange
contributions and contact terms. Pion-exchange contributions
represent the long- and intermediate-range parts of nuclear
interactions and contain all chiral physics. Contact terms, on the
other hand, encode the unresolved short-range physics and their
strength is specified by unknown low-energy constants (LECs),
that need to be adjusted to experimental data.

At LO, besides the already mentioned OPE potential, there
are two NN contact terms with no momentum dependence
that contribute only to the S-wave. They are identified by the
four-nucleon-leg diagramwith amomentum-independent vertex
denoted by a small dot in the first row of Figure 1. The interaction
at LO is a very simple approximation, but already takes into
account some of the important features of the NN force. For
instance, the OPE generates the tensor component of the nuclear
force known to be crucial to properly describe the two-nucleon
bound state (deuteron).

The leading NN two-pion-exchange (TPE) contributions
appear at NLO. Diagrams involving virtual excitations of the

1-isobars [56–59] also appear at NLO in the delta-full chiral-EFT
approach. Most importantly, seven new momentum-dependent
contact terms can be constructed at this order, which are denoted
by the four-nucleon-leg graph with a solid square in the second
row of Figure 1. These additional contact terms are important
to correctly describe NN scattering in the S- and P-waves.
More details about these contributions are presented in the next
sections. Another important contribution at NLO is the leading
3N force, which can be described by the well-known Fujita-
Miyazawa diagram [34], which involves intermediate excitation
of the1-isobars between three nucleons. While this contribution
has to be considered in the 1-full approach, it can be shown that
the net contribution of 3N forces vanishes in the delta-less chiral
EFT [39, 49] at this order.

At next order, N2LO, the sub-leading NN TPE diagrams
contain vertices (large solid dots) proportional to the so-called
ci coefficients. The values of these parameters can be obtained
by pion-nucleon (πN) [60–67] or NN scattering data [41]. In
the delta-less chiral EFT, these coefficients mimic the effect
of the 1-isobar (or some other meson resonances) through
a mechanism known as resonance saturation. Hence, they
are enhanced in magnitude and found to be “unnaturally”
large. The explicit inclusion of the 1 isobar in the delta-
full theory reduces the strength of the ci’s and promotes
the corresponding contributions to a lower order (see gray
arrows in Figure 1). As a consequence, the convergence of the
expansion in the delta-full theory improves considerably at these
orders. In the delta-full approach, additional sub-leading TPE
contributions appear that have also been worked out at this
order [60].

In addition to the NN sector, additional 3N diagrams appear
at N2LO in both approaches. They involve a 3N TPE, a OPE-
contact interaction, and a true 3N contact diagram. The 3N TPE
potential also involves the ci parameters already present in the
TPE NN force. As in the case of the NN force, these contributions
absorb the presence of the 1-isobar in the delta-less approach,
while some of their strength is promoted to lower order in the
form of the already discussed Fujita-Miyazawa diagram in the
delta-full approach. The OPE-contact and 3N contact diagrams
include two purely three-body LECs that have to be adjusted to
A ≥ 3 data. Finally, the are no additional diagrams due to 1

contributions to the 3N force at N2LO [68].
At higher orders, the number of contributions to the NN

force dramatically increases. In Figure 1 only a few representative
diagrams are displayed. For instance, at N3LO more TPE
contributions occur—in both delta-less and delta-full chiral
EFT—involving leading two-loop and relativistic corrections. In
addition, leading three-pion (3π) exchange contributions arise
at this order but they are found to be negligible. The main
feature at N3LO is the presence of additional contact interactions
represented by the four-nucleon-leg with a solid diamond. Since
these interactions are ∼ p4, p′4, they have a relevant impact up
to the D waves. Their full operator structure will be discussed in
the next section. Additional complicated 3N diagrams appear at
N3LO, as well as the first contributions to four-nucleon forces
(4N).Wewill not discuss these diagrams here and refer the reader
to Bernard et al. [69, 70] and Epelbaum [71, 72]. For additional
contributions at N4LO and N5LO, we refer the interested reader
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FIGURE 1 | Chiral contributions to the NN and 3N interactions in the delta-less and delta-full chiral EFT based on Weinberg power counting. Solid lines represent

nucleons, dashed lines represent pions, and double lines represent the 1 isobar. Gray arrows indicate the shift of individual contributions within the two

power-counting schemes when explicit 1’s are accounted for. Figure adapted from Machleidt and Entem [41] and Machleidt and Sammarruca [42] under the Creative

Commons CCBY license.

to Entem et al. [73], Epelbaum et al. [74], Reinert et al. [75], and
Entem et al. [76].

An important aspect of nuclear interactions (and currents)
in the basic model is that they suffer from ultraviolet
(UV) divergences which need to be removed by a proper
regularization and renormalization procedure. There are two
sources of UV divergences that require regularization: first,
UV divergences appear in loop corrections, and second when
solving the Schrödinger or Lippmann-Schwinger equations or
when calculating matrix elements involving nuclear currents.
Loop divergences can be treated via dimensional regularization
(DR) or spectral-function regularization (SFR), where the
latter is implemented through the inclusion of a finite
cutoff in the spectral functions. To cure divergences when
solving the Schrödinger or Lippmann-Schwinger equations,
the nuclear potential is multiplied by regulator functions
that remove large-momentum contributions above a chosen
cutoff scale. The regularization of the potential (and current)
operators is followed by a renormalization procedure, i.e.,
dependencies on the regularization scheme and cutoff are
reabsorbed, order by order, by the LECs entering the potential
(and currents).

Nucleon-nucleon scattering has been extensively studied in
chiral EFT in the past two decades following the pioneering work

by Weinberg [37–39] and Ordonez et al. [58]. In particular, NN
potentials at N3LO in the chiral expansion are available since the
early 2000’s [77, 78] and have served as a basis for numerous ab
initio calculations of nuclear structure and reactions. Recently,
accurate and precise chiral EFT potentials up to fifth order in the
chiral expansion, i.e., N4LO, have been developed [73–76], and
provide an extremely accurate description of NN data bases up
to laboratory energies of 300 MeV with a χ2 per datum close
to one. These databases have been provided by the Nijmegen
group [26, 29], the VPI/GWU group [79], and more recently the
Granada group [80–82]. In the standard optimization procedure,
the NN potentials are first constrained through fits to neutron-
proton (np) and proton-proton (pp) phase shifts, and then refined
by minimizing the total χ2 obtained from a direct comparison
with theNN scattering data. However, new optimization schemes
are being explored in Carlsson et al. [83] and Ekström et al.
[84]. For instance, the optimization strategy of the N2LOsat

interaction of Ekström et al. [84] is based on a simultaneous
fit of the two- and three-nucleon forces to low-energy NN
data, the deuteron binding energy, and binding energies and
charge radii of hydrogen, helium, carbon, and oxygen isotopes
using consistent NN and 3N interactions at N2LO. However,
despite the good description of properties of 16O and 40Ca,
the NN component of this interaction shows deficiencies in
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reproducing the pp and np scattering data even at very
low energy.

Three-nucleon forces and their impact on nuclear structure
and reactions has become an important frontier in nuclear
physics, see Kalantar-Nayestanaki et al. [85] and Hammer
et al. [86] for review articles. As shown in Figure 1, chiral
contributions to the 3N interaction have been derived up
to N4LO in the chiral expansion [69, 70, 87–89]. However,
few- and many-nucleon calculations are, with very few
exceptions, still limited to chiral 3N forces at N2LO. At
this order, as we have mentioned above, 3N forces are
characterized by the presence of two unknown LECs that
have to be determined. The two LECs—namely cD in the
OPE-contact and cE in the 3N contact interaction– have
been constrained either by fitting exclusively strong-interaction
observables [90–93] or by relying on a combination of strong-
and weak-interaction observables [94–96]. This last approach
is made possible by the relation between cD in the OPE-
contact interaction and the LEC in the NN contact axial
current [94, 95, Schiavilla, private communication], established
in chiral EFT [97]. This connection allows one to use nuclear
properties governed by either strong or weak interactions
to constrain simultaneously the 3N interaction and NN
axial current.

As chiral EFT is a low-momentum expansion of nuclear
interactions, many of the chiral interactions available in the
literature are formulated in momentum space and have the
feature of being strongly non-local in coordinate space. This
makes them not well-suited for certain numerical algorithms, for
example QMC methods. In this context, an interaction is local if
it depends solely on the momentum transfer q = p − p′, which
Fourier transforms to dependencies on r. However, interactions
in momentum-space can also depend on the momentum scale
k = (p′ + p)/2, which Fourier transform to derivatives in
coordinate space. These k dependencies, and thus non-localities,
come about because of (i) the specific functional choice made to
regularize the momentum space potentials in terms of the two
momentum scales p and p′, and (ii) contact interactions that
explicitly depend on k.

QMC methods, for example variational (VMC) and Green’s
Function Monte Carlo (GFMC) [10, 98] techniques, provide
reliable solutions of the many-body Schrödinger equation—
presently for up to A= 12 nucleons—with full account of the
complexity of the many-body, spin- and isospin-dependent
correlations induced by nuclear interactions. The sampling of
configuration space in VMC and GFMC simulations gives access
to many important properties of light nuclei, such as spectra,
form factors, transitions, low-energy scattering, and response
functions. Auxiliary Field Diffusion Monte Carlo (AFDMC) [10,
98] uses Monte Carlo techniques to additionally sample the spin-
isospin degrees of freedom, enabling studies of, for example,
nuclei up to A= 16 [99, 100] and neutron matter [90, 91, 101–
103, Piarulli et al., private communication] that is so critical to
determining the structure of neutron stars. QMC simulations
have surely proved to be very valuable in attacking many nuclear-
structure problems over the last three decades but require
local chiral interactions as input. Therefore, there is a need to

develop local chiral interactions for the use in QMC methods
in order combine these accurate many-body methods with
systematic nuclear interactions and to test to what extent the
chiral EFT framework impacts our knowledge of few- and many-
body systems.

3. LOCAL HAMILTONIANS

3.1. Local Two-Nucleon Interactions
Amajor thrust of our work is based on the theoretical derivation,
optimization, and implementation of chiral interactions suitable
for QMC methods. In recent years, local configuration-space
chiral NN interactions have been derived by two groups [104–
107]. In this section, we will introduce these two families of
interactions, that are either derived in the delta-less [104, 105] or
delta-full [106, 107] approach. We begin by introducing general
features of both approaches and then describe the specifics.
We will be stating general considerations in momentum-space,
where q dependencies indicate local parts of interactions and
k dependencies indicate non-localities, and then switch to
coordinate-space where interactions are local if they only depend
on the relative distance r = ri − rj. Fourier transformations
connect interactions in momentum- and coordinate-space, with
q and r being associated variables, while k leads to appearances of
gradient terms.

As discussed before, nuclear interactions can generally be
separated into different interaction channels depending on their
operator structure. Obviously, chiral interactions can also be
separated into long-range physics, mediated by pion-exchange
interactions, and short-range physics, which is described by a set
of operators consistent with all symmetries and accompanied by
LECs adjusted to reproduce experimental data:

V(q, k) = Vcont(q, k)+ Vπ (q, k) . (4)

Each of these components can then be expanded in chiral order
ν as discussed before:

Vi =
∑

ν

V
(ν)
i = V

(0)
i + V

(2)
i + V

(3)
i + V

(4)
i + . . . . (5)

At LO, ν = 0, both delta-less and delta-full chiral EFT have the
same operator structure. At this order, only the leading contact
interactions as well as the one-pion exchange (OPE) interaction
contribute (see Figure 1). Generally, pion-exchange interaction
can be written as

Vπ = VC,π + τ i · τ jWC +
(

VS + τ i · τ jWS

)

σ i · σ j

+
(

VT + τ i · τ jWT

)

σ i · q σ j · q
+

(

VLS + τ i · τ jWLS

)

i(σ i + σ j) · q× k

+
(

VσL + τ i · τ jWσL

)

σ i · q× k σ j · q× k , (6)

with central, spin, tensor, spin-orbit and quadratic spin-
orbit components, respectively. In the local chiral interactions
discussed in this review, the spin-orbit and quadratic spin-orbit

Frontiers in Physics | www.frontiersin.org 6 January 2020 | Volume 7 | Article 24585

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Piarulli and Tews Local Chiral Interactions

terms are not included as they are of higher order. The one-pion
exchange interaction is given in momentum space as

V
(0)
OPE(q) = − g2A

4f 2π

σ i · qσ j · q
q2 +m2

π

τ i · τ j , (7)

where gA, fπ = 92.4 MeV, and mπ denote the axial-vector
coupling constant of the nucleon, the pion decay constant,
and the pion mass, respectively. As a consequence, the OPE
contributes to theWT channel.

Including isospin-symmetry breaking effects induced by the
mass difference between charged and neutral pions, the OPE
interaction can be rewritten as

V
(0)
OPE(q) =

[

vπ ,LO
στ (q) σ i · σ j + vπ ,LO

tτ (q) Sij(q)
]

τ i · τ j

+
[

vπ ,LO
σT (q) σ i · σ j + vπ ,LO

tT (q) Sij(q)
]

Tij , (8)

with the tensor operator Sij(q) in momentum space, Sij(q) =
3 σ i ·q σ j ·q−q2 σ i ·σ j, and the isotensor operator Tij = 3 τizτjz−
τ i · τ j. Hence, when including isospin-symmetry breaking, the
OPE adds to theWS andWT parts of Equation (6). The functions,

vπ ,LO
στ (q), vπ ,LO

tτ (q), vπ ,LO
σT (q), and vπ ,LO

tT (q) are defined as

vπ ,LO
στ (q) = Y0(q)+ 2Y+(q)

3
, vπ ,LO

tτ (q) = T0(q)+ 2T+(q)
3

,(9)

vπ ,LO
σT (q) = Y0(q)− Y+(q)

3
, vπ ,LO

tT (q) = T0(q)− T+(q)
3

,

with Yα(q) and Tα(q) given by

Yα(q) = − g2A
3 (2fπ )2

q2

q2 +m2
πα

,Tα(q) = − g2A
3 (2fπ )2

1

q2 +m2
πα

.

(10)
Here, mπα

denotes the neutral (mπ0 ) and charged (mπ± ) pion
masses. When Fourier-transformed, the coordinate-space OPE is
given by

vπ ,LO(r) =
[

vπ ,LO
στ (r) σ i · σ j + vπ ,LO

tτ (r) Sij(r)
]

τ i · τ j

+
[

vπ ,LO
σT (r) σ i · σ j + vπ ,LO

tT (r) Sij

]

Tij (11)

where the individual functions can be obtained fromEquation (9)
with q → r and with the functions Yα(r) and Tα(r) given by

Yα(r) =
g2A
12π

m3
πα

(2 fπ )2
e−xα

xα

, Tα(r) = Yα(r)

(

1+ 3

xα

+ 3

x2α

)

.

(12)
Here, xα = mπα

r. Note that Equation (11) only holds in the case
r > 0. In addition, upon Fourier transformation a δ-function
appears, which has been dropped from Equation (11), because it
can be reabsorbed in the short-range contact terms at LO, which
we will discuss next.

The LO contact interactions are momentum-independent and
can be described by the most general operator set allowed by
all symmetries:

VLO
cont(q, k) = VLO

cont = α11+ α2 σ i · σ j + α3 τ i · τ j

+ α4 σ i · σ j τ i · τ j . (13)

As these terms describe the interactions of nucleons, i.e.,
fermions, these interactions are used between anti-symmetrized
wave functions. One can define the anti-symmetrized interaction
Vas = 1/2 (V −A[V]) by applying the anti-symmetrizer,
given by

A[V(q, k)] = 1

4
(1+ σ i · σ j)(1+ τ i · τ j)

× V

(

q → −2k, k → −1

2
q

)

. (14)

One then finds

V
(0)
cont,as = 1

2

(

1− 1

4
(1+ σ i · σ j)(1+ τ i · τ j)

)

V
(0)
cont

=
(

3

8
α1 −

3

8
α2 −

3

8
α3 −

9

8
α4

)

+
(

−1

8
α1 +

5

8
α2 −

3

8
α3 +

3

8
α4

)

σ i · σ j

+
(

−1

8
α1 −

3

8
α2 +

5

8
α3 +

3

8
α4

)

τ i · τ j

+
(

−1

8
α1 +

1

8
α2 +

1

8
α3 +

3

8
α4

)

σ i · σ j τ i · τ j

= C̃S + C̃T σ i · σ j +
(

−2

3
C̃S − C̃T

)

τ i · τ j

+
(

−1

3
C̃S

)

σ i · σ j τ i · τ j . (15)

It follows immediately that only two out of these four couplings
are linearly independent, describing the two possible S-wave
scattering channels. The two commonly chosen LO contact
operators are

V
(0)
cont = CS + CTσ i · σ j , (16)

but in principle any different two of the four contact interactions
can be chosen and lead to the same physical description for
fermionic systems. This is analogous to Fierz ambiguities and in
the following we will call this freedom to choose operators Fierz
rearrangement freedom.

Additionally, there are isospin breaking corrections to the LO
contact interactions that have to be taken into account. These
are due to different masses of u and d quarks, and account
for differences in neutron-neutron (nn), np, and pp S-wave
scattering lengths:

Vcont, CIB(r) = CCIB

1+ 4τ 3
i τ

3
j

2

1− σ i · σ k

4
, (17)

Vcont, CSB(r) = CCSB(τ
3
i + τ

3
j )
1− σ i · σ k

4
. (18)

At higher orders, the description of the potential changes
depending on the choice of delta-less or delta-full approach. In
the following, we will describe both approaches as pursued by
individual research groups.
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3.1.1. Without Delta Isobars

At NLO in chiral EFT, additional momentum-dependent contact
interactions as well as TPE interactions appear. For the TPE, we
give the expressions within the spectral-function representation
(SFR) as detailed in Epelbaum et al. [108], with spectral functions
ρi and ηi:

VC,π (r) =
1

2π2r

∫ 3̃

2Mπ

dµµ e−µr ρC(µ) , (19)

VS(r) = − 1

6π2r

∫ 3̃

2Mπ

dµµ e−µr
(

µ2ρT(µ)− 3ρS(µ)
)

, (20)

VT(r) = − 1

6π2r3

∫ 3̃

2Mπ

dµµ e−µr ρT(µ) (3+ 3µr + µ2r2) .

(21)

Here, 3̃ is the SFR cutoff. Similar expressions are valid for WC,
WS, and WT in terms of ηC, ηS, and ηT . The TPE spectral
functions at NLO are given by Kaiser et al. [109]

ρ
(2)
T (µ) = 1

µ2
ρ
(2)
S (µ) = 3g4A

128π f 4π

√

µ2 − 4m2
π

µ
, (22)

η
(2)
C (µ) = 1

768π f 4π

√

µ2 − 4m2
π

µ

(

4m2
π (5g

4
A − 4g2A − 1)

− µ2(23g4A − 10g2A − 1)+ 48g4Am
4
π

4m2
π − µ2

)

. (23)

For the NLO contact interactions, the most general set of
operators is given by

VNLO
cont (q, k) = γ1 q

2 + γ2 q
2
σ i · σ j + γ3 q

2
τ i · τ j + γ4 q

2
σ i · σ jτ i · τ j

+ γ5 k
2 + γ6 k

2
σ i · σ j + γ7 k

2
τ i · τ j + γ8 k

2
σ i · σ jτ i · τ j

+ γ9 (σ i + σ j)(q× k)+ γ10 (σ i + σ j)(q× k)τ i · τ j

+ γ11(σ i · q)(σ j · q)+ γ12(σ i · q)(σ j · q)τ i · τ j

+ γ13(σ i · k)(σ j · k)+ γ14(σ i · k)(σ j · k)τ i · τ j . (24)

Using the same arguments as for the LO contact interactions, only
7 out of these 14 operators are linearly independent. To construct
local interactions, one typically chooses the 6 local operators
(proportional to γ1-γ4, γ11, and γ12) as well as the spin-orbit
operator (proportional to γ9):

V
(2)
cont = C1 q

2 + C2 q
2
τ i · τ j +

(

C3 q
2 + C4 q

2
τ i · τ j

)

σ i · σ j+

+ i
C5

2
(σ iσ j) · (q× k)+ C6 (σ i · q)(σ j · q)

+ C7 (σ i · q)(σ j · q) τ i · τ j . (25)

In coordinate space, this translates to

V
(2)
cont(r) = −(C1 + C2 τ i · τ j)1δ(r)− (C3 + C4 τ i · τ j) σ i · σ j1δ(r)

+ C5

2

∂rδ(r)

r
L · S+ (C6 + C7 τ i · τ j)

×
[

(σ i · r̂)(σ j · r̂)
(

∂rδ(r)

r
− ∂2r δ(r)

)

− σ i · σ j
∂rδ(r)

r

]

.

(26)

At N2LO, the subleading TPE interactions appear. The spectral
functions for these at N2LO read

ρ
(3)
C (µ) = − 3g2A

64µf 4π
(2m2

π − µ2)
(

2m2
π (2c1 − c3)+ c3µ

2
)

,

(27)

η
(3)
T (µ) = 1

µ2
η
(3)
S (µ) = − g2A

128µf 4π
c4(4m

2
π − µ2) , (28)

where the ci denote the previously mentioned LECs of the
subleading pion-nucleon vertices. For the N2LO TPE, one can
solve Equations (19–21):

W
(3)
S (r) = g2A

48π2f 4π

e−2x

r6
c4 (1+ x)(3+ 3x+ 2x2)

− g2A
384π2f 4π

e−y

r6
c4

(

24+ 24y+ 12y2 + 4y3 + y4

− 4x2(2+ 2y+ y2)
)

, (29)

W
(3)
T (r) = − g2A

48π2f 4π

e−2x

r6
c4 (1+ x)(3+ 3x+ x2)

+ g2A
768π2f 4π

e−y

r6
c4

(

48+ 48y+ 24y2 + 7y3 + y4

− 4x2(8+ 5y+ y2)
)

, (30)

and

V
(3)
C,π (r) =

3g2A
32π2f 4π

e−2x

r6

[

2c1 x
2(1+ x)2 + c3(6+ 12x+ 10x2

+ 4x3 + x4)

]

− 3g2A
128π2f 4π

e−y

r6

[

4c1x
2
(

2+ y(2+ y)− 2x2
)

+ c3

(

24+ y(24+ 12y+ 4y2 + y3)− 4x2(2+ 2y

+ y2)+ 4x4
)

]

, (31)

where x ≡ mπ r and y ≡ 3̃r.
The relativistic 1/mN corrections, with mN being the nucleon

mass, have been omitted here since, in the counting employed
here, they would appear at N3LO, provided the nucleon mass
is counted according to Q/mN ∼ Q2/32

b
as suggested in

Weinberg [38].
The delta-less chiral EFT approach has been used to construct

local interactions up to N2LO. At next higher order, N3LO,
contact interactions cannot be written down in a purely local
fashion, as only 8 out of 30 possible operators are local. A
possible way forward is the definition of “maximally local” N3LO
potentials, which has been pursued in the delta-full approach and
will be discussed in the next section.
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FIGURE 2 | Local delta-less chiral potential in the 1S0 partial wave at N2LO.

The smaller the coordinate-space cutoff R0, the smaller is the short-range

repulsive core. Figure taken from Gezerlis et al. [105] under the Creative

Commons CCBY license.

Finally, it is necessary to specify a regulator scheme. For
the delta-less local interactions of Gezerlis et al. [104, 105], the
following long- and short-range regulators are used:

flong(r) =
(

1− e
−

(

r
R0

)n1
)n2

, fshort(r) =
n

4π R30 Ŵ
(

3
n

) e
−

(

r
R0

)n

.

(32)

The long-range regulator multiplies each function Y(r), while
the short-range regulator replaces all δ functions. The regulator
functions depend on the cutoff scale R0, that determines how
long- and short-range physics are separated. For a smaller cutoff
R0 (i.e., for a larger momentum-space cutoff), the interactions is
probed at shorter distances, and typically shows stronger short-
range repulsion. We show the delta-less local chiral interactions
in the 1S0 channel in Figure 2 for different values of the cutoff.
Introducing a local regulator function leads to the appearance of
regulator artifacts that brake Fierz-rearrangement freedom. We
will address this topic in detail in section 4.1.

3.1.2. With Delta Isobars

In the delta-full local chiral interactions, coordinate-space
expressions for the TPE terms at NLO and N2LO are obtained
by using the spectral function representation [108, 109] but
with dimensional regularization (DR) [59]. This implies taking
the cutoff 3̃ in Equations (19–21) to infinity (3̃ → ∞).
Consequently, the terms depending on the variable y in
Equations (29–31) vanish. For the relevant radial functions
involved in the one- and two-delta diagrams up toN2LO, we refer
the interested reader to Appendix A (Supplementary Material).

The singularities at the origin of the OPE and TPE components
are regularized by cutoff functions of the form

f1long(r) = 1− 1

(r/RL)6 e(r−RL)/aL + 1
, (33)

where three values for the radius RL are considered: RL =
(0.8, 1.0, 1.2) fm with the diffuseness aL fixed at aL = RL/2 in
each case.

Another difference between the delta-less and delta-full
coordinate-space interactions lies in the operator structure
of their short-range components. In the delta-full potentials,
selected contact terms at N3LO are also retained in addition to
the LO and NLO contributions given in Equations (16) and (26).

The contact potential at order N3LO,VN3LO
cont (q, k), which involves

four gradients acting on the nucleon fields, is expressed in terms
of 15 independent operators [41] after considering the Fierz
rearrangement freedom. Its standard parametrization, adopted in
momentum-space potentials, is given by

VN3LO
cont (q, k) = D̃1 q

4 + D̃2 k
4 + D̃3 q

2 k2 + D̃4 (k× q)2

+
[

D̃5 q
4 + D̃6 k

4 + D̃7 q
2k2

+ D̃8 (k× q)2
]

σ i · σ j + i (D̃9 q
2 + D̃10 k

2) S ·
(

k× q
)

+ (D̃11 q
2 + D̃12 k

2) Sij(k)+ (D̃13 q
2 + D̃14 k

2) Sij(k)

+ D̃15 [σ i · (k× q) σ j · (k× q)] . (34)

However terms proportional to k2 and k4 in those expressions,
upon Fourier transformation, would lead to gradient operators
in coordinate-space (p −→ −i∇ is the relative momentum
operator), making the NN potential strongly non-local.

The number of non-localities can be reduced by reconsidering
the Fierz rearrangement freedom. However, some of these non-
local terms still persist at N3LO leading to the definition of
“minimally non-local” contact interactions:

VN3LO
cont (q, k) = D1 q

4 + D2 q
4
τ i · τ j + D3 q

4
σ i · σ j + D4 q

4
σ i · σ j τ i · τ j

+ D5 q
2 Sij(q)+ D6 q

2 Sij(q) τ i · τ j + iD7 q
2 S ·

(

k× q
)

+ i D8 q
2 S ·

(

k × q
)

τ i · τ j + D9

[

S ·
(

k× q
)]2 + D10

(

k× q
)2

+ D11

(

k× q
)2

σ i · σ j + D12 q
2k2 + D13 q

2k2σ i · σ j

+ D14 k
2 Sij(q)+ D15 k

2 Sij(q) τ i · τ j . (35)

In coordinate space, this reads as

V
(3)
cont(r) =

[

11
∑

l=1

vlS(r)O
l
ij

]

+ { vpS(r)+ v
pσ
S (r) σ i · σ j

+ v
pt
S (r) Sij(r)+ v

ptτ
S (r) Sij(r) τ i · τ j , p

2 } , (36)

where

Ol=1,...,11
ij = {1 , τ i · τ j , σ i · σ j , σ i · σ j τ i · τ j , Sij , Sij τ i · τ j ,

L · S , L · S τ i · τ j , (L · S)2 , L2 , L2 σ i · σ j} , (37)
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referred to as c, τ , σ , στ , t, tτ for the first six operators, and b, bτ ,
bb, q, qσ for the remaining five operators. The four additional
terms, denoted as p, pσ , pt, and ptτ , in the anti-commutator of
Equation (36) are p2-dependent. For the definition of the radial
functions vlS(r) as well as those multiplying the p2-terms, we refer
the reader to Appendix A.

A comment is now in order. The strict adherence to power
counting would require the inclusion of additional one-loop as
well as two-loop TPE and three-pion exchange contributions
at N3LO. For the time being, these contributions have been
neglected, since part of their strength is promoted at lower
orders due to the inclusion of the 1 resonance, and some of
the remaining diagrams are also known to be small (see e.g.,
[41]). Furthermore, it is the Di LEC’s at N

3LO that are critical
for a good reproduction of phase shifts in lower partial waves,
particularlyD-waves, and a good fit to theNN database. However,
the consistency between the long- and short-range part at higher
orders in the delta-full chiral EFT is work in progress.

The local versions of these “minimally non-local” NN
potentials have been defined by dropping the terms proportional
to p2 in the anti-commutator when the optimization procedure
for estimating the LECs is carried out [107]. In Piarulli et al. [107]
we observed that the inclusion of the p2-dependent terms would
have improved the fits to the database in the laboratory energy
range up to 200 MeV only marginally. However, apart from the
small improvement that the p2-dependent terms would bring to
the total χ2 in the fit to the NN scattering data, the effect of these
terms on nuclear observables has not been studied.

Lastly, the delta-full local interactions contain additional
isospin breaking terms at NLO. They are parameterized by the
following operators

Ol=12,...,16
ij = {τ zi + τ zj , Tij, σ i · σ jTij, Sij Tij, L · STij} , (38)

referred to as τz, T, σT, tT, bT. The radial functions multiplying
these operators are also reported in Appendix A.

The short-range part of these potentials involve the local
regulator given in Equation (32) with n = 2,

f1short(r) =
1

π3/2R3S
e−(r/RS)

2
, (39)

where we consider, in combination with RL = (0.8, 1.0, 1.2) fm,
RS = (0.6, 0.7, 0.8) fm, corresponding to typical momentum-
space cutoffs 3S = 2/RS ranging from about 660 MeV down
to 500 MeV. Hereafter, we will denote the potential with cutoffs
(RL,RS) = (1.2, 0.8) fm as model a, that with (1.0, 0.7) fm as
model b, and that with (0.8, 0.6) fm as model c.

There are 26 LECs in the definition of the delta-full local
interactions. Of these, 20 LECs describe the charge-independent
part of the interaction: 2 at LO (Q0), 7 at NLO (Q2), and 11 at
N3LO (Q4). The remaining 6 LECs describe its charge-dependent
part: 2 at LO (one each from CIB and CSB), and 4 at NLO
from CIB. The optimization procedure to fix these 26 LECs
uses pp and np scattering data (including normalizations), as
assembled in the Granada database [80], theNN scattering length,
and the deuteron binding energy. The minimization of the χ2

objective function with respect to the LECs is carried out with
the Practical Optimization Using no Derivatives (for Squares)
routine, POUNDerS [110]. For each of three different sets of
cutoff radii (RS,RL), two classes of local interactions have been
developed, which only differ in the range of laboratory energy
over which the fits were carried out, either 0–125 MeV in class
I or 0–200 MeV in class II. The χ2/datum achieved by the fits in
class I (II) was. 1.1(. 1.4) for a total of about 2,700 (3,700) data
points. In the literature, we are referring to these NN interactions
generically as the Norfolk potentials (NV2s), and designate those
in class I as NV2-Ia, NV2-Ib, and NV2-Ic, and those in class II as
NV2-IIa, NV2-IIb, and NV2-IIc.

The NV2 interactions were found to provide insufficient
attraction in calculations of the ground-state energies of nuclei
with A= 3–6 [107]. To remedy this and similar shortcomings,
3N interactions at N2LO have to be included in both approaches.
This will be described in the next section.

3.2. Local Three-Nucleon Interactions
Three-nucleon forces are very important ingredients for the
correct description of physical systems. They naturally appear
within chiral EFT and are consistent with the NN sector. The
exact description of the 3N interactions depends on the choice
of delta-less vs. delta-full approach. In the following, we review
3N forces in both approaches.

3.2.1. Without Delta Isobars

In the delta-less chiral EFT approach, the leading 3N
contributions appear at N2LO in the power counting. They
an be separated into three topologies: (i) a long-range TPE
interaction named VC depending on the pion-nucleon LECs c1,
c3, and c4, that already appear in the NN sector, (ii) a one-pion-
exchange–contact interaction VD dependent on a new LEC cD,
and (iii) a 3N contact interaction VE dependent in a new LEC cE.
The LECs cD and cE solely describe 3N physics and need to be
adjusted to properties of A ≥ 3 systems. In momentum space,
these interactions are defined as

VC = 1

2

(

gA

2fπ

)2
∑

π(ijk)

σ i · qi σ k · qk
(q2i +m2

π )(q
2
k
+m2

π )
F

αβ

ijk
τ

α
i τ

β

k
, (40)

VD = − gA

8f 2π

cD

f 2π3χ

∑

π(ijk)

σ k · qk
q2
k
+m2

π

σ i · qk τ i · τ k , (41)

VE = cE

2f 4π3χ

∑

π(ijk)

τ i · τ k , (42)

where we sum over all permutations of the particles i, j, and k,
where the first pion carries a momentum qi from nucleon i to j,

while the second pion carries qk from j to k, and where F
αβ

ijk
is

given by

F
αβ

ijk
= δαβ

[

−4c1m
2
π

f 2π
+ 2c3

f 2π
qi · qk

]

(43)

+
∑

γ

c4

f 2π
εαβγ

τ
γ
j σ j · (qi × qk) .
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As one can easily see, all of these interactions are local, as long
as local regulator functions are applied. To obtain expressions
in coordinate space, these interactions have to be Fourier
transformed. For the part of VC proportional to c1, we find

V
ijk
C,c1

= − c1m
2
π g

2
A

2f 4π

∑

π(ijk)

τ i · τ k

∫

d3qi

(2π)3
σ i · qi

q2i +m2
π

eiqi·rij

∫

d3qk

(2π)3
σ k · qk
q2
k
+m2

π

eiqk·rkj . (44)

This results in

V
ijk
C,c1

= c1m
6
π g

2
A

2f 4π (4π)
2

∑

π(ijk)

τ i · τ k σ i · r̂ij σ k · r̂kj U(rij)Y(rij)U(rkj)Y(rkj) ,

(45)

where we have used

∫

d3qi

(2π)3
σ i · qi

q2i +m2
π

eiqi·rij = −i σ α
i ∂α e−mπ rij

4πrij

= i
m2

π

4π
σ α
i r̂αij U(rij)Y(rij) , (46)

and

Y(r) = exp(−mπ · r)
mπ r

, U(r) = 1+ 1

mπ r
. (47)

For the other parts of VC we find

VC,c3 =
g2Am

6
π c3

2304π2f 4π

∑

π(ijk)

{τ i · τ k, τ k · τ j}{Xik(rik),Xkj(rkj)} ,

(48)

VC,c4 = − g2Am
6
π c4

4608π2f 4π

∑

π(ijk)

[τ i · τ k, τ k · τ j][Xik(rik),Xkj(rkj)] ,

(49)

where

Xij(r) = Xij(r)−
4π

m3
π

δ(r)σ i · σ j ,

Xij(r) =
(

Sij(r)T(r)+ σ i · σ jY(r)
)

, (50)

and

T(r) =
(

1+ 3

mπ r
+ 3

m2
π r2

)

Y(r) . (51)

For the one-pion-exchange–contact part VD we find

V
ijk
D = gA

24f 2π

cD

f 2π3χ

∑

π(ijk)

τ i · τ k

[

m3
π

4π
δ(rij)Xik(rkj)

− σ i · σ k δ(rij)δ(rkj)

]

, (52)

and for the three-nucleon–contact interaction VE we find

VE = cE

2f 4π3χ

∑

π(ijk)

τ i · τ kδ(rij)δ(rkj) . (53)

To regularize these 3N topologies, we choose consistent
regulators with the NN sector, i.e., we replace δ functions by
fshort(r) and multiply Yukawa functions with flong(r). The cutoff
scale for 3N interactions does not necessarily have to be the same
as for the NN sector, and we call it R3N in the following.

To adjust the appearing 3N couplings to experimental data,
one should select few-body observables that are uncorrelated.
In the delta-less approach, these observables have been chosen
to be the 4He binding energy and n-α scattering P wave phase
shifts (see Figure 3), where we show parameter curves for the
3N LECs for different 3N cutoffs R3N, chosen similar to R0, and
for different parameterizations that we will discuss in the next
section. Stars in the parameter curves mark fits that also describe
neutron-alpha scattering, shown in the right panel. For more
details, see Lynn et al. [91].

3.2.2. With Delta Isobars

In the delta-full chiral EFT approach, the structure of the 3N force
at N2LO is similar to the 3N force in the delta-less approach.
We still have the three topologies VC, VD, and VE at N2LO but,
in addition, the well-known Fujita-Miyazawa interaction [34]
(V1), which in the delta-less approach is absorbed byVC, appears
already at NLO in the power counting. In momentum space, it
reads as

V
ijk
1 = − g2A h2A

16 f 4π

1

m1N (q2i +m2
π )(q

2
k
+m2

π )
[

σ k · qk S
†
j · qk Sj · qi σ i · qi τ k · T†

j Tj · τ i (54)

−σ i · qi S†
j · qi Sj · qk σ k · qk τ i · T†

j Tj · τ k

]

, (55)

where S, S† and T, T† are the transition spin and isospin
operators: The operator S (T) converts a spin (isospin) 1/2 into
a spin (isospin) 3/2 particle.

The configuration-space expression follows from

V
ijk
1 = − g2A h2A

16 · 144π2

m6
π

m1N f 4π
[

XII †
jk

XII
ji T

†
j · τ k Tj · τ i + XII †

ji XII
jk T

†
j · τ i Tj · τ k

]

, (56)

where the following definitions have been introduced:

XII
ij = T(rij) S

II
ij + Y(rij) Si · σ j , SIIij = 3 Si · r̂ij σ j · r̂ij − Si · σ j (57)

and the dimensionless functions Y(r) and T(r) defined before.
The term [ · · · ] in Equation (56) can be written as

[· · · ] = 1

2

[ (

XII †
jk

XII
ji + h.c.

) (

T
†
j · τ k Tj · τ i + h.c.

)

+
(

XII†
jk

XII
ji − h.c.

) (

T
†
j · τ k Tj · τ i − h.c.

) ]

, (58)
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FIGURE 3 | (Left) Parameter curves for the LECs cD and cE for the binding energy of 4He for different cutoffs and 3N parameterizations discussed in section 4.

(Right) Reproduction of n-α P wave phase shifts at NLO and at N2LO for the parameter combinations marked by a star in the left panel. Figures taken from Lynn et al.

[91] under the Creative Commons CCBY license.

and the transition-spin and transition-isospin operators can be
eliminated using the identities

XII†
jk

XII
ji + h.c. = 2

3

{

Xjk , Xji

}

, (59)

XII†
jk

XII
ji − h.c. = −1

3

[

Xjk , Xji

]

, (60)

T
†
j · τ k Tj · τ i + h.c. = 2

3

{

τ j · τ k , τ j · τ i

}

, (61)

T
†
j · τ k Tj · τ i − h.c. = −1

3

[

τ j · τ k , τ j · τ i

]

, (62)

to obtain

V
ijk
1 = − g2Ah

2
A

72 · 144π2

m6
π

m1N f 4π

[

{

Xij , Xjk

}{

τ i · τ j , τ j · τ k

}

+1

4

[

Xij , Xjk

][

τ i · τ j , τ j · τ k

]

]

, (63)

where the function Xij was defined in the previous section. In the
definitions above, the δ(r)-function terms have been dropped.

In analogy to the 3N delta-less chiral EFT, we regularize the
3N contributions in the delta-full chiral EFT by replacing the
δ functions with f1

short
(r) and multiplying the Yukawa functions

with f1
long

(r). Note that the implementation of VC and VD in

the delta-full chiral EFT does not retain the terms proportional
to σ i · σ j in the definition of Xik, in Equations (50) and (52).
They can be reabsorbed in the redefinition of the short-range
contact terms.

In the delta-full chiral EFT, two different sets for the
values of cD and cE were obtained, leading to two different
parametrization of the 3N interaction [93, 96]. In the first,
these LECs were determined by simultaneously reproducing
the experimental trinucleon ground-state energies and neutron-
deuteron (nd) doublet scattering length, as shown in the left

panel of Figure 4. In the second set, these cD and cE were
constrained by fitting, in addition to the trinucleon energies,
the empirical value of the Gamow-Teller matrix element in
tritium β decay [96], see right panel of Figure 4. Because of the
much reduced correlation between binding energies and the GT
matrix element, the second fit procedure leads to a more robust
determination of cD and cE then attained in the first one. Note
that these observables have been calculated with hyperspherical-
harmonics (HH) expansion methods [5] as described in Piarulli
et al. [93], Gazit et al. [94], Marcucci et al. [95], and Baroni
et al. [96].

4. FINITE CUTOFF AND REGULATOR
ARTIFACTS

The derivations of local interactions in the last sections did
not include any of the local regulator functions that necessarily
have to be applied to the interactions to make them suitable
for the use in nuclear many-body methods. Generally, when
introducing a regulator function, terms beyond the order at
which one is working are affected. Hence, the use of such
regulator functions with finite values for the cutoff leads to
the appearance of regulator artifacts, that might influence
calculations of many-body observables. In this section, we will
address the different regulator artifacts that can appear in
calculations with local interactions.

4.1. Violation of Fierz-Rearrangement
Freedom

The first regulator artifact for local interactions affects
short-range operators. In previous sections we had
shown how only half of the operators at each order
are linearly independent due to their insertion between
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FIGURE 4 | (Left) The cD-cE trajectories obtained by fitting the experimental trinucleon binding energies (solid line) and nd doublet scattering length (dashed line) (the

intercept of these two lines gives the cD and cE values that reproduce these two observables simultaneously). Figure taken from Piarulli et al. [93] under the Creative

Commons CCBY license. (Right) The calculated ratio GTth/GTexp as function of cD (solid line; each point on his line reproduces the trinucleon binding energies).

Figure taken from Baroni et al. [96] under the Creative Commons CCBY license.

FIGURE 5 | (Left) Ground-state energies of 4He at LO and NLO for different LO operator choices. Figure taken from Huth et al. [111] under the Creative Commons

CCBY license. (Right) Regulator artifacts in pure neutron matter due to the violation of the Fierz rearrangement freedom for the 3N contact interactions. The three

different bands correspond to three different operator choices, where the green band projects the 3N interaction on triples with S = 1/2 and T = 1/2. Figure taken

from Lynn et al. [91] under the Creative Commons CCBY license.

antisymmetric fermionic states (see e.g., Equation 15).
However, this argument changes when a regulator function
is applied. The discussion in this section will follow Huth
et al. [111].

In general, a regulator function can depend on two
momentum scales, fR(q, k). Local regulators, on the other hand,
only depend on q, fR,loc(q). The derivation of Equation (15)
remains valid if the regulator function commutes with the
anti-symmetrizer and, hence, reduces to a simple pre-factor in

Equation (15), i.e., when

fR(q, k) = fR

(

−2k,−1

2
q

)

. (64)

We can immediately see, that a purely local regulator can never
fulfill this condition while typical non-local regulators of the
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form [76–78, 83, 84]

fR(p, p
′) = exp

[

−
(

p

3

)2n
]

exp

[

−
(

p′

3

)2n
]

, (65)

do. As a consequence,

V
(0,loc)
cont,as =

1

2

(

1− Pm

4
(1+ σ i · σ j)(1+ τ i · τ j)

)

V
(0)
contfR(q)

= 1

(

C1
2

fR(q)−
1

8

(

C1 + 3Cσ + 3Cτ + 9Cστ

)

fR(2k)

)

+ σ i · σ j

(

Cσ

2
fR(q)−

1

8

(

C1 − Cσ + 3Cτ − 3Cστ

)

fR(2k)

)

+ τ i · τ j

(

Cτ

2
fR(q)−

1

8

(

C1 + 3Cσ − Cτ − 3Cστ

)

fR(2k)

)

+ σ i · σ jτ i · τ j

(

Cστ

2
fR(q)−

1

8

(

C1 − Cσ − Cτ + Cστ

)

fR(2k)

)

,

(66)

and the Fierz-rearrangement freedom is violated. For general
regulator functions as defined in the previous sections, this
leads to

V
(0,loc)
cont,as =

(

C̃S + C̃Tσ i · σ j +
(

−2

3
C̃S − C̃T

)

τ i · τ j

+
(

−1

3
C̃S

)

σ i · σ jτ i · τ j

)

fR(q)+ V
f
corr(p · p′) , (67)

where V
f
corr(p · p′) captures all the regulator artifacts that

are of higher-order in the EFT. It depends on the functional
form of the regulator and the cutoff value. One can also see,
that the corrections can be angle-dependent, which leads to
a mixing of different partial waves. As a consequence, when
applying these regulators to a three-neutron system, for example,
pure contact interactions, that otherwise would vanish due to
the Pauli principle, start to contribute. This mixing of partial
waves complicates the fitting procedure, increases theoretical
uncertainties, and makes calculated observables dependent on
the operator structure that was chosen.

In Figure 5 we show results for the 4He ground-state energy
for different LO operator choices. As one can see, the ground-
state energies can vary by ∼10 MeV at LO, depending on
the operator choice. However, when going to higher order
and including subleading contact operators, regulator artifacts
get partially absorbed and corrected. Then, only higher-order
artifacts remain, which improves the situation considerably,
as can be seen for the NLO results. In this case, the spread
originating from different choices of LO operators reduces
to∼4 MeV.

A similar effect appears in the 3N sector, where the VE contact
interaction suffers from a similar violation of the Fierz freedom
when local regulators are applied. While 3N forces are typically
fit to symmetric systems where this dependence can then be
approximately accounted for, in triples with S = 3/2 or T = 3/2
(where typically no 3N contact force can contribute due to the
Pauli principle) regulator artifacts appear, and lead to a finite

contribution from 3N contact interactions that depend on the
operator choice. We show this behavior in Figure 5 in the right
panel in the case of pure neutron matter, where all triples have T
= 3/2. The three different bands explore three choices for the 3N
contact operators. At nuclear saturation density, we find that the
regulator artifacts introduce a spread of∼5 MeV. Unfortunately,
higher-order correction terms only appear at N4LO and, to date,
are not systematically included in any calculation.

Finally, we mention that the finite cutoff also introduces an
ambiguity in theVD term, that depends on the choice of the initial
spin-isospin structure when Fourier transforming:

V
ijk
D,1 =

gA

24f 2π

cD

f 2π3χ

∑

π(ijk)

τ i · τ k

[

m3
π

4π
δ(rij)Xik(rkj)

− σ i · σ k δ(rij)δ(rkj)

]

, (68)

V
ijk
D,2 =

gA

24f 2π

cD

f 2π3χ

∑

π(ijk)

τ i · τ k

[

m3
π

4π
δ(rij)Xik(rik)

− σ i · σ k δ(rij)δ(rik)

]

.

Both expressions are identical for true δ functions (infinite cutoff)
but differ when a finite cutoff is applied.

4.2. Weaker Pion Exchanges
A second regulator artifact for local regulators affects the pion
exchanges. In Tews et al. [90] it was shown that locally regulated
pion exchanges lead to less 3N repulsion than non-locally
regulated pion exchanges. At the Hartree-Fock level, for a typical
cutoff of 2.5fm−1, when applying non-local regulators ≈ 97% of
the infinite cutoff result is recovered, while local regulators only
recover ≈ 60%. To reproduce the momentum-space results, the
cutoff has to be considerably increased.

Local regulators for pion exchanges have been investigated in
detail in Dyhdalo et al. [112] in both the NN and 3N sector. The
fact that the contribution due to pion exchanges is weaker for
local than for non-local regulator functions is easy to understand
in the Hartree-Fock approximation. At the Hartree-Fock level,
there are both a direct and an exchange term. The momentum
transfer q = p − p′ vanishes in the direct term because p = p′,
but it is q = 2p in the exchange term because p = −p′. A
typical local regulator of the form exp

(

−
( q

3

)n)
, thus, evaluates

to 1 in the direct term, but to exp
(

−
(

p
3/2

)n)

in the exchange

term. Therefore, compared to non-local regulators for which

both terms are identical, exp
(

−
( p

3

)n
)

, local regulators have a

very different behavior. In particular, local regulators have an
effectively lower cutoff in the exchange channel. In the Hartree-
Fock approximation, where the direct term vanishes for spin-
dependent interactions like pion exchanges, only the exchange
term contributes and, hence, is weaker for local than for non-
local regulators.

While the situation is more complicated when abandoning
the Hartree-Fock approximation, this reasoning qualitatively
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FIGURE 6 | (Left) Spectra of light nuclei up to 12C obtained with GFMC with chiral interactions obtained in the delta-full approach (red) compared to experimental

data (green) and GFMC calculations with phenomenological interactions (blue). Figure taken from Piarulli et al. [93] under the Creative Commons CCBY license.

(Right) Ground-state energies for nuclei up to 16O at different orders in the chiral expansion for AFDMC calculations with local interactions in the delta-less approach.

Reprinted from Lonardoni et al. [99] with permission from the American Physical Society.

remains valid and locally regulated pion exchanges are weaker
than non-locally regulated pion exchanges.

5. SELECTED RESULTS

In this section, we will briefly show the successes of Quantum
Monte Carlo calculations with local chiral interactions for light
atomic nuclei and infinite matter.

5.1. Light Nuclei
Local chiral interactions, both in the delta-less and delta-full
approach, have been used to successfully describe properties
of light nuclei using QMC methods. In Figure 6, we show
GFMC results for ground- and excited states for nuclei up to
12C within the delta-full approach compared to experimental
data. In addition, the results obtained with chiral EFT are
compared to results with phenomenological interactions. The
results clearly show that chiral interactions describe spectra of
light nuclei with great success and are compatible to the accuracy
of phenomenological interaction in these systems. In addition,
we also show ground-state energies obtained in the AFDMC
method for nuclei up to 16O for delta-less chiral interactions.
Results are given at LO, NLO, and N2LO for two different 3N
parameterizations to explore regulator artifacts. Again, chiral
interactions agree well with experimental results, which are
shown as green points.

In addition to energies, local chiral interactions describe
charge radii well. In Figure 7, we present order-by-order
AFDMC results for the charge radii of nuclei up to 16O,
compared to experiment. Again, the description is accurate.
In addition, as mentioned before, delta-less chiral interactions
have been adjusted to reproduce neutron-alpha scattering phase
shifts (see Figure 3). While NN interactions alone cannot
reproduce the P wave splitting in this system (NLO calculations
in Figure 3), chiral Hamiltonians at N2LO, including 3N

FIGURE 7 | Same as Figure 6 (right) but for radii of nuclei up to 16O.

Reprinted from Lonardoni et al. [99] with permission from the American

Physical Society.

interactions, reproduce the neutron-α P wave scattering phase
shifts accurately.

5.2. Infinite Matter
In addition to properties of atomic nuclei, local chiral
interactions have been used to study infinite matter, and in
particular, pure neutron matter. In the right panel of Figure 3,
we have already shown results for the energy per particle of
pure neutron matter. Results are shown for three Hamiltonians
at N2LO, that explore the uncertainty due to regulator artifacts
and the truncation of the chiral series. While uncertainties in
pure neutron matter are enhanced due to the local regulator
artifacts discussed before, indicated by the differences between
the three bands, the resulting neutron-matter equation of
state (EOS) is consistent with other ab initio determinations
within uncertainties.
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These calculations have been successfully used to study the
EOS of neutron stars, and it has been found that the resulting
equations of state are consistent with astrophysical observations
of pulsar masses. The EOS have also been used to study
gravitational waves from neutron-star mergers [102, 113, 114].

6. CONCLUSION AND OUTLOOK

The quest to understand properties of nuclear systems in terms
of forces acting between the nucleons has been considered
one of the most challenging efforts of nuclear theory. During
the past quarter century, particular emphasis has been devoted
to the systematic framework provided by chiral EFT. This
approach allows for a consistent description of the two- and
many-body interactions and ensuing many-body currents, and a
quantification of the theoretical uncertainty due to the truncation
error in the chiral expansion.

In this review, we have presented a comprehensive description
of the two families of local chiral interactions that have been
developed for the use in QMC methods: one within the delta-
less and one within the delta-full approach. We provided many
details about the theoretical derivation and optimization of these
nuclear models addressing their similarities and differences.
For completeness, we also presented selected QMC results for
light nuclei and neutron matter. These results show that the
combination of local chiral EFT interactions with powerful
QMC many-body methods can accurately describe ground-
and excited-state energies, radii of nuclei up to 16O, and n-α
scattering, as well as the equation of state of neutron matter.

These local chiral interactions have also been used to calculate
the distribution of nucleons in a nucleus in both momentum
and coordinate space which are related to experimental
observations [99, 100, 115, 116], in benchmark calculations of the
energy per particle of pure neutron matter as a function of the
baryon density [103] and in studies of neutrinoless double-beta
decays [117].

In future, local chiral interactions will continue to serve as
input for precise QMC methods to systematically study, for
example, electroweak reactions, along the lines of Pastore et al.
[118], Marcucci et al. [119], Lovato et al. [120, 121], Pastore et al.
[122], Schiavilla et al. [123], and Pastore et al. [124] and infinite
matter also at finite proton fractions.

Improvements to the interactions that reduce uncertainties
due to the scheme and scale dependence of the interactions, e.g.,
the inclusion of higher orders in the chiral expansion in both the
NN and 3N sectors, will provide exciting prospects and permit
precision studies of many nuclear systems.
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Ever since quantum field theory was first applied to the derivation of nuclear forces in

the mid-twentieth century, the renormalization of pion exchange with realistic couplings

has presented a challenge. The implementation of effective field theories (EFTs) in

the 1990s promised a solution to this problem but unexpected obstacles were

encountered. The response of the nuclear community has been to focus on “chiral

potentials” with regulators chosen to produce a good description of data. Meanwhile,

a successful EFT without explicit pion exchange—Pionless EFT—has been formulated

where renormalization is achieved order by order in a systematic expansion of low-energy

nuclear observables. I describe how lessons from Pionless EFT are being applied to the

construction of a properly renormalized Chiral EFT.

Keywords: effective field theory, renormalization, nuclear physics, singular potentials, pion exchange

1. INTRODUCTION

In the aftermath of the solution of the “problem of infinities” in Quantum Electrodynamics
(QED), an intense quest set in to renormalize nuclear forces, where pion exchange replaced
the photon exchange responsible for atomic forces. (For an early example, see reference [1].) It
was quickly understood that the only relativistic pion-nucleon coupling that is renormalizable is
pseudoscalar [2]. However, pseudoscalar coupling differs from pseudovector coupling by a large
nucleon-pair term, which was found to be in conflict with pion phenomenology [3]. For the favored
pseudovector coupling, the description of two-nucleon data depended sensitively on the high-
momentum (or short-distance) cutoff (see, for example, reference [4]). Efforts moved toward the
investigation of various prescriptions for handling short-range effects, including specific cocktails
of (usually single-)heavier-meson exchange, form factors with ad hoc shapes, and/or boundary
conditions at some finite distance. Nuclear theory acquired an increasingly phenomenological
character. Typically, the non-relativistic Schrödinger equation was solved with a two-nucleon (2N)
potential including one-pion exchange, some approximation to two-pion exchange, and a more
or less arbitrary short-range form, with sufficiently many parameters to fit data to the desired
accuracy. The end result was that potentials including quite different physics could produce very
good parameterizations of 2N data up to around the pion-production threshold, while typically
underpredicting three- and more-nucleon binding by more than 10%. A serious difficulty was to
infer a satisfactory form of three-nucleon (3N) forces and, for reactions, 2N currents. Reference [5]
recounts some of this history.

In contrast, by the mid-1970s renormalizable quantum field theories had won the day in particle
physics, leading to the formulation of Quantum Chromodynamics (QCD) as the theory of strong
interactions. Out of the attempts to make predictions for QCD at low energies and to understand
how the Standard Model (SM) can arise from a more fundamental theory, the concept of effective
field theory (EFT) was born [6]. An EFT comprises all the interactions among relevant degrees of
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freedom that are allowed by symmetries, including an arbitrary
number of fields and derivatives. For predictions, contributions
to observables must be ordered according to their expected size.
This “power counting” allows for an a priori error estimate
from neglected higher-order contributions. At each order in
the expansion, only a finite number of “low-energy constants”
(LECs)—the interaction strengths—appear. In a consistent
power counting, they are sufficient to ensure that any dependence
on the regulator can be made arbitrarily small by taking the
cutoff large. Thus, EFTs are renormalizable in the modern sense
that at each order a finite number of parameters generate results
for observables that are independent of details of the arbitrary
regularization procedure.

A successful EFT, Chiral Perturbation Theory (ChPT), was
developed in the 1980s to handle interactions among pions and
one nucleon below the characteristic QCD scaleMQCD ∼ 1 GeV
[7, 8]. Requiring renormalization in a perturbative expansion,
a consistent power counting was developed based on “naive
dimensional analysis” (NDA) [9]. Taking the typical external
momentum in a reaction to be of the order of the pion mass,
Q ∼ mπ ≪ MQCD, observables are expanded in a series of
powers of Q/MQCD times calculable functions of Q/mπ . When
Weinberg remarked [10, 11] that ChPT, now generalized as
“Chiral EFT” (ChEFT), could be used to derive nuclear forces,
he identified an infrared enhancement in nuclear amplitudes
by the nucleon mass mN = O(MQCD), which can lead to the
failure of perturbation theory—a good thing since nuclei are
bound states and resonances. He proposed that the ChPT power
counting could still be applied to the nuclear potential, defined as
the sum of diagrams lacking an explicit enhancement. Then, the
Lippmann-Schwinger equation, or equivalently the Schrödinger
equation, would be solved with a truncated “chiral potential.”

The potential defined by Weinberg contains pion exchange
diagrams where all LECs are fixed, at least in principle, from
ChPT. But it also includes shorter-range interactions with LECs
that can only be determined in nuclear systems. Implicit in
Weinberg’s proposal was that the short-range LECs would not
contain an implicit enhancement. This would be the case if the
solution of the dynamical equation does not generate cutoff
dependence beyond that which can be compensated by the LECs
already present up to that order according to NDA.

Whether this assumption is true was not immediately clear.
NDA says that the potential at leading order (LO) consists
of two non-derivative, chirally symmetric contact interactions
together with one-pion exchange (OPE). More-pion exchange
should come at higher orders together with more-derivative
contact interactions. Non-perturbative pion exchange prevents
an analytical solution even at the 2N level. The first numerical
solution of a chiral potential in the 2N system [12, 13] tested
renormalizability of the amplitude: a variation from 0.5 to 1
GeV in the cutoff of a local Gaussian regulator seemed to
be compensated by a refitting of the LECs at hand. However,
the fitting procedure was cumbersome as an over-complete
set of interactions was used and the local regulator mixed
different partial waves, limiting the range of cutoffs that could
be explored. Since then a large variety of chiral potentials have
been developed (for reviews, see for example references [14, 15]).

A landmark was a 2N potential [16] that was perceived to
match the accuracy of phenomenological potentials (for a recent
comparison between chiral 2N potentials and data, see reference
[17]). Chiral potentials have become the favorite input to “ab
initio” methods, which provide numerically controlled solutions
of the Schrödinger equation for multi-nucleon systems.

Unfortunately, pretty early on the first evidence appeared
[18] that Weinberg’s prescription does not provide amplitudes,
and thus observables, that are renormalized order by order.
In the 2N 1S0 channel at LO, a semi-analytical argument
shows that there remains a logarithmic dependence on the
cutoff proportional to the average quark mass. The only way
to eliminate it, at least with a momentum- or coordinate-space
cutoff, is to include at LO a non-derivative, chirally breaking
contact interaction, which according to NDA should appear two
orders down the expansion, that is, at next-to-next-to-leading
order (N2LO)1. More dramatically, it was later shown [20, 21]
that oscillatory cutoff dependence appears at LO in waves where
OPE is attractive, singular, and accounted for non-perturbatively.
A chirally symmetric LEC is needed for renormalization in each
wave, but again NDA assigns those in partial waves beyond S
to higher orders. Similar problems afflict processes with external
probes [22].

As I describe in section 3, the origin of these problems is the
renormalization of attractive singular potentials [23, 24]. NDA
might fail because exact solutions of the Schrödinger equation
depend on the cutoff differently than perturbative solutions.
The LECs needed for the renormalization of the amplitude are
enhanced by implicit powers ofMQCD.

How to account for this? In response to the renormalization
failure of Weinberg’s power counting a simpler nuclear EFT
[25–27] was developed in the late 1990s. In this “Pionless EFT”
pions are integrated out and only contact interactions remain.
The effects of loops in the Lippmann-Schwinger equation are
much easier to see, including the mN enhancement and a
further enhancement of 4π [26, 27] that was not pointed out
by Weinberg. The lessons of Pionless EFT for ChEFT are
summarized in section 2.

The first attempt to fix power counting using the insights
from Pionless EFT was initiated [28, 29] at the same time
as the main elements of the power counting of Pionless EFT
were being understood. Valid for sufficiently small values of
the pion mass and external momenta, this version of ChEFT
treats pion exchange in perturbation theory, removing the
renormalization problems mentioned above. Unfortunately, in
the 2N system at physical pion mass one cannot go in this
way to momenta much beyond those of Pionless EFT [30].
The alternative is partly perturbative pions: OPE is iterated
only in the low partial waves where it is sufficiently strong,
together with the contact interactions whose LECs are necessary

1A note on notation: It has become usual in the nuclear community to refer to a

subleading chiral potential of order n ≥ 2 as “Nn−1LO,” because with Weinberg’s

power counting the parity- and time-reversal-invariant potential of order n = 1

vanishes [19]. However, this usage is too provincial to accommodate experience

with other observables and power countings in ChEFT or other EFTs. Here, a

correction of order n in the expansion is denoted as NnLO, whether it is non-zero

or not.
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for LO renormalization [20]. All subleading pion exchanges,
together with the remaining contact interactions, are treated in
perturbation theory [31]. This approach is discussed in section 4,
including what little has been done to confront it with data.

Section 5 offers the conclusion that this approach solves the
renormalization woes of nuclear forces while accounting for
the long-range interactions from pion exchange systematically.
Although they differ in detail from the field-theoretical
renormalization described below, renormalization-group
analyses of the Schrödinger equation [22, 32–34] support
this picture. How it can meet the accuracy requirements of
the nuclear community remains to be seen. My emphasis
here is on the internal consistency of ChEFT. I expand on the
renormalization issues summarized in reference [35], but I refer
the reader to the latter for a more complete review of ChEFT and
its relation to other nuclear EFTs.

2. SAY WHAT?

As reviewed in reference [35], defining the nuclear potential
as the sum of “irreducible” diagrams without the mN infrared
(IR) enhancement does indeed ensure that the cutoff-independent
parts of pion-exchange diagrams can be ordered according
to ChPT power counting. These components of the pion-
exchange potentials are in general non-analytic functions of
momenta and pion mass that can be calculated in terms of
pion-baryon interactions.

The ChPT power counting is designed for processes where
the typical external momentum is comparable to the pion
mass, Q ∼ mπ . A (relativistic) pion propagator scales as
Q−2. In contrast, a nucleon is heavy compared to Q and
thus non-relativistic. Moreover, energies and three-momenta
being comparable, nucleon recoil is suppressed by one power
of Q/mN = O(Q/MQCD)—that is, the nucleon is static, its
propagator scaling as Q−1. Because the Delta-nucleon mass
difference is (at physical quark masses) only about twice the pion
mass, a Delta propagator scales in the same way. In integrals from
the loops that make up the potential one picks poles from the
pion propagators, typically resulting in factors of (4π)−2. They
combine with factors of the pion decay constant fπ ≃ 92 MeV
from the pion-baryon interactions to produce inverse factors of
4π fπ = O(MQCD). The power counting explicitly relies on an
estimate, NDA [9], of the factors of 4π that distinguish between
fπ and the breakdown scaleMQCD, which appears in interactions
with derivatives and powers of the pion mass. In summary, the
ChPT rules (in momentum space) are:

(pion) loop integral ∼ (4π)−2Q4 , (1)

baryon, pion propagator ∼ Q−1,Q−2 , (2)

vertex ∼ Qdf
2−b−f
π M

2−d−f /2
QCD , (3)

where d, b, and f are the numbers of derivatives/pion masses,
pion fields, and baryon fields, respectively, in an interaction.

The expected size of any diagram can be found using the
identities I = L − 1 + ∑

i Vi and 2I + E = ∑

i Vi(bi + fi)
involving the number of loops (L), internal (external) lines I (E),

and vertices (Vi) having a set of values d = di, b = bi, and f = fi.
In particular,

2N potential ∼ 4πm−1
N M−1

NN

(

QM−1
QCD

)µ

, (4)

where [28, 29]

MNN ≡ 16π f 2π
g2AmN

= O(fπ ) (5)

in terms of the pion-nucleon axial-vector coupling gA ≃ 1.27
and [11]

µ ≡ 2L+
∑

i

Vi(di + fi/2− 2) . (6)

Because every additional loop (without increase in the number
of derivatives/pion masses at vertices) leads to a relative factor
O(Q2/M2

QCD), one gets the well-known ordering where p-pion
exchange starts at µ = 2(p − 1). Note that the NLO correction
vanishes due to parity and time-reversal symmetries [19].

This power counting applies to diagrams that make up the
long-range potential. Yet physics, as opposed to metaphysics,
is about observables. The meaning of Equation (4) is that
it indirectly orders the contributions to amplitudes. For the
direct link, we need to consider as well “reducible” diagrams
where intermediate states contain only nucleons. One picks
poles from the non-relativistic nucleon propagators, for which
energies are of the order of recoil—in those diagrams, one cannot
approximate nucleons as static. (This of course has nothing to
do with relativistic corrections, as sometimes misstated in the
literature.) These poles lead not only to anmN enhancement [10,
11], but typically also to different powers of (4π)−1. Experience
with Pionless EFT [35, 36], where these are all the loops one needs
to deal with, shows that the factors associated with reducible
loops are

nucleon propagator ∼ mNQ
−2 , (7)

reducible loop integral ∼ (4πmN)
−1Q5 . (8)

When one inserts the order-µ potential into a 2N diagram
we need one extra reducible loop with two nucleon
propagators (compare Figures 1A,B), leading to a relative factor
(Q/MNN)(Q/MQCD)

µ. This amount to an IR enhancement of
4πmN/Q over the factor that arises from Equations (1) and (2).
As a consequence, the series in the LO potential fails to converge
for Q ∼ MNN . This is what makes ChEFT different for A ≥ 2
nucleons compared to ChPT for A ≤ 1.

The factor of 4π in the IR enhancement had not been
recognized before Pionless EFT was developed, but it is
important to understand the failure of perturbation theory for
pions. The exact solution of the LO potential for Q ∼ MNN can
give rise to a binding energy per nucleon

BA

A
∼ M2

NN

MQCD
∼ fπ

4π
∼ 10 MeV . (9)

This is somewhat larger than observed for light nuclei, indicating
a certain amount of fine tuning in the 2N interactions. But it is on

Frontiers in Physics | www.frontiersin.org 3 May 2020 | Volume 8 | Article 79101

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


van Kolck Renormalization of Chiral Nuclear Forces

FIGURE 1 | Some diagrams discussed in the text. Inside a diagram, (A) two nucleons (solid lines) propagate; (B) two nucleons interact through the 2N potential

(blob); (C) a nucleons interact through the aN potential (blob), while another nucleon propagates; and (D) a+ 1 nucleons interact through the (a+ 1)N potential formed

from the aN potential and the exchange of a pion (dashed line).

the right ballpark for heavier nuclei, so chiral symmetry together
with the IR enhancement provides a natural explanation [36] for
the shallowness of nuclei compared to MQCD, BA/A ≪ MQCD,
long considered a mystery.

The same factor of 4π has implications for the natural size
of few-body forces, which were recognized by Friar [37]. To
see this, consider connecting a nucleon with OPE to an aN
potential to make an (a + 1)N potential, without changing
the number of derivatives, pion masses, and loops in the aN
potential. (See Figures 1C,D. For example, take the crossed-
box two-pion exchange 2N potential and connect one of the
intermediate nucleons to the third nucleon.) The additional
nucleon propagator inside the aN potential and the additional
OPE combine for a factor of 4πm−1

N M−1
NNQ

−1. At the same
time, at the amplitude level we are adding a reducible loop and
one propagator for the extra nucleon, that is, another factor
(4π)−1Q3. The contribution of the (a + 1)N potential to the
amplitude is, overall, of O(Q2m−1

N M−1
NN) compared to that of

its “parent” aN potential. For Q ∼ MNN , the suppression
from connecting a nucleon is thus of O(Q/MQCD), or one
order in the expansion of the potential [37]. In contrast,
missing the 4π in the IR enhancement would give an additional
(4π)−1 = O(MNN/MQCD), or a suppression of (Q/MQCD)

2

[11, 19, 38, 39]. In either case a hierarchy of many-body forces
arises, with perturbative 3N forces coming after the leading 2N
forces. Unfortunately, existing calculations do not question the
additional suppression of (4π)−1.

Note that when connecting the additional nucleon we might
not be able to maintain the number of derivatives or pion masses.
In particular, for the leading aN force, this can only be done
with an intermediate Delta isobar—for 3N, that is the Fujita-
Myiazawa force [40], which has been argued to be important for
convergence of the chiral expansion [41]. Keeping this in mind, a
contribution to the (connected) aN potential scales as

aN potential ∼ (4πm−1
N M−1

NN)
a−1Q2−a

(

QM−1
QCD

)µ

. (10)

To estimate the respective contributions to the AN amplitude,
one can first consider the LO (µ = 0), 2N potential: to produce a
connected diagram, we need at least A− 1 2N interactions linked
by A − 2 propagators. Next, one insertion of a subleading aN

potential between two LO amplitudes comes with A + a − 2
propagators and A + a loops. Another insertion of the same
subleading potential takes a additional propagators and a − 1
additional loops, and so on. The rules (7), (8) imply that an aN
potential of index µ gives, at Q ∼ MNN ,

AN amplitude ∼ (4π)A−1m−1
N M5−3A

NN

(

QM−1
QCD

)nν
, (11)

where

ν ≡ µ+ a− 2 (12)

and n is the order in perturbation theory. While ν is the
perturbative cost of one insertion of a subleading potential
characterized by µ (6) and a, n insertions cost nν as indicated by
the power of Q/MQCD in Equation (11). The presence of a − 2
[instead of 2(a − 2)] in ν reflects the suppression by (4π)−1

[instead of (4π)−2] in more-nucleon forces. A sample of pion-
range diagrams that contributes at various values of ν is shown in
Figure 2 (see reference [35] for more details).

The n in Equation (11) encodes the perturbative character of
any subleading interaction. A common fallacy is that the mere
definition of a potential means that the corresponding dynamical
(Lippmann-Schwinger or Schrödinger) equation must be solved
exactly. On the contrary, if there is a sense in which a subleading
potential can be treated non-perturbatively, then it should also
be possible to include it in distorted-wave perturbation theory,
where the distortion is caused by the LO potential. If that is not
the case, then at least part of that “subleading” potential is not
subleading. Such a consistency test is almost completely ignored
in the community. The one exception I am aware of is reference
[42], where it is shown that this test is not met by most available
chiral potentials.

“But surely,” you might be reasoning, “a subleading potential
can be treated non-perturbatively.” That is certainly the case
for a regular subleading potential, but not necessarily for a
singular potential, for which neither the perturbative series nor
the exact solution of the dynamical equation are well-defined
without (potentially distinct) counterterms. So far I have been
glossing over the cutoff dependence that usually arises in loops
and is, of course, present in the LECs. A regulator is nothing
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FIGURE 2 | Sample of pion-range diagrams in the aN nuclear potential ordered according to the expected size of their contributions to the amplitude (Equation 12).

NνLO denotes relative O(Qν/Mν
QCD). A solid (double) line stands for a nucleon (nucleon excitation), while a dashed line, for a pion. A circle (circled circle) represents an

interaction with d + f/2− 2 = 0 (= 1).

but a way to split short-range physics between loops and LECs.
If we increase a momentum cutoff 3 (or decrease a coordinate
cutoff R ∼ 3−1), we account, correctly or incorrectly, for
more short-range physics through the loops of the Lippmann-
Schwinger equation. As long as 3>∼MQCD, we can compensate
by changing the LECs present at the same order, without
increasing the relative truncation error of O(Q/MQCD). The
crucial point is that only the combination of the two effects
matter, and physics enters through the fitting of as many
observables as LECs—observables which are either calculated
in the underlying theory (when we speak of “matching” the
EFT to the underlying theory) or measured experimentally. This
process of renormalization is essential for amplitudes to be free of
detailed assumptions about short-range physics, and in general
only the sum of all contributions at a given order—loops and
LECs ensuring renormalization—can be said to be perturbative
or not.

If all we needed was to eliminate the cutoff-dependent parts
of pion exchange in the potential, the LECs for the job would be
given by NDA, by construction [9]. It is crucial to realize, though,

that reducible loops introduce further cutoff dependence, which
we need eliminate as well. The potential itself has to depend on
the cutoff so that observables do not. The LECs that renormalize

this part of the A ≥ 2 problem will not in general satisfy NDA.
We examine this aspect of renormalization next.

3. RENORMALIZATION OF SINGULAR
POTENTIALS

The difficulty we face is that EFT potentials are singular and,
because of additional derivatives and loops, they get more and
more singular as the order of the EFT expansion increases.
Singularities are apparent already in the LO (µ = 0, a = 2)
pion-range potential, OPE: labeling the two nucleons 1 and 2,

VOPE(Er) =
τ 1 · τ 2

mNMNN

[

e−mπ r

r3

(

1+mπ r +
m2
π r

2

3

)

S12(r̂)

+
(

m2
π

e−mπ r

r
− 4πδ(Er)

) Eσ1 · Eσ2
3

]

, (13)

where Er = rr̂ is the relative position, Eσi (τ i) is the spin (isospin)
Pauli matrix for nucleon i, and

S12(r̂) = 3 Eσ1 · r̂ Eσ2 · r̂ − Eσ1 · Eσ2 (14)

is the spin-tensor operator. While the delta function contributes
only to S waves, the tensor potential is non-vanishing for total
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spin s = 1 and can mix waves with orbital angular momentum
l = j ± 1. It is attractive in some uncoupled waves like 3P0
and 3D2, and in one of the eigenchannels of each coupled wave.
The regular Yukawa potential is attractive in isovector (isoscalar)
channels for s = 0 (s = 1). More-pion exchange leads to more
singular terms, p-pion exchange containing for example terms
∝ r−(2p+1) in addition to delta functions and their derivatives.

For Q ∼ MNN OPE is expected to be non-perturbative by
the argument of the previous section. It has been known for
a long time (see e.g., the review [43]) that attractive singular
potentials, treated exactly, do not fully determine the solution
of the Schrödinger equation [44]. This is a manifestation that
renormalization of a singular potential requires contact terms
that naturally exist in EFT [23, 24]. In contrast, pion-range
corrections to OPE are expected to be perturbative according to
the power counting embodied in Equations (11) and (12). From
an EFT perspective, additional contact interactions are needed to
make these corrections well-defined [31].

The issue I address in this section is how many, and which,
contact interactions must be present for the renormalization
of specific singular potentials. For simplicity, I consider central
potentials; we return to the nuclear potential in section 4.

3.1. Non-perturbative Renormalization
Renormalization is usually discussed at the level of loops in
Feynman diagrams for the Lippmann-Schwinger equation in
momentum space, but it can also be formulated in terms of the
Schrödinger equation in coordinate space. In the latter, which is
more familiar to many, renormalization deals with distances on
the order of those where the EFT breaks down, which I will call
Rund. The fall off of the potential at much larger distances is not
important, as it affects instead the near-threshold behavior. For
definiteness, let us take a central two-body potential

VL(r) = − α

2µrn
(15)

in the center-of-mass frame, where µ is the reduced mass, α is a
constant with mass dimension 2 − n, and n > 0 is an integer.
The long-range potential is characterized by an intrinsic distance
scale r0 ≡ |α|1/(n−2). For n = 2 the action is scale invariant.

In the radial Schrödinger equation the potential is
supplemented by the centrifugal barrier with orbital angular
momentum l, l(l + 1)/(2µr2). The uncertainty principle implies
the kinetic term scales similarly, as 1/(2µr2). For 0 < n < 2
the potential is relatively small at small distances and the
corresponding behavior of the wavefunction is determined by l:
we find ourselves in the familiar situation where one solution,
labeled regular, behaves as rl for small r, while the other, labeled
irregular and discarded, as r−(l+1). In contrast, for n = 2 and
|α| is sufficiently large, or for n ≥ 3, VL(r) dominates at small
distances. If α < 0, the strong repulsion prevents any short-range
approach; one can again keep just the regular solution, from
which the scattering amplitude can be calculated. But when
the potential is attractive, α > 0, observables are sensitive to
short-distance physics and renormalization is needed.

To see this in detail, consider first n ≥ 3 at zero energy. For
r<∼ [l(l + 1)]−1/(n−2)r0, where VL(r) dominates, the Schrödinger

equation becomes an ordinary Bessel equation, and the solution
is a combination of spherical Bessel functions. Both solutions are
equally irregular as r → 0 [44]. One can write the wavefunction
in the l wave at small distances as

ψl(r) ∝ rn/4−1 cos

(√
α r1−n/2

n/2− 1
+ φl

)

+ . . . , (16)

where φl is a phase that determines the relative importance of
the two irregular solutions and is not fixed by the long-range
potential VL. This is in strong contrast with the repulsive case,
where the solutions are regular and irregular modified Bessel
functions, which respectively decrease and increase exponentially
as r decreases.

The case n = 2 is borderline singular, the character of the
solution depending on the relative size of α and a combination of
l(l + 1) with a number O(1) coming from the kinetic repulsion.
It turns out that the critical value is αl = (l + 1/2)2. For
l ≥ lα ≡ √

α − 1/2, repulsion wins; one solution is more
singular than the other and can again be discarded [45]. For
l < lα the situation is similar to n ≥ 3: Equation (16) holds
with

√
α r1−n/2/(n/2 − 1) → √

α − αl ln(r/r0), where r0 is
an arbitrary dimensionful parameter and φl = φl(r0). This is
an example of an anomaly [46, 47] where the scale invariance
of the classical system is broken by the renormalization of the
quantum system.

Equation (16) is the quantum version of the “fall to the center”
in a classical singular potential [45, 48]. The phases φl determine
the asymptotic behavior of the wavefunction, from which the
zero-energy scattering amplitude is extracted. For example, the S-
wave scattering length is well-defined for a pure n ≥ 4 potential
[48] and given for n = 4 by

a0 =
√
α tanφ0 . (17)

If one imposes a particular value on ψl(R) at a chosen distance
R—for example, that the wavefunction ψl(R) = 0—the phases
are fixed. However, a different value of R leads to different
phases. In EFT, this arbitrariness is replaced by the values of
LECs. The minimal set of contact interactions is determined by
demanding renormalizability.

3.1.1. S Wave
Let us look into the S wave first. Choosing a sharp cutoff in
coordinate space at R, we replace the potential (15) by [23]

V(r) = VS(R) θ(R− r)+ VL(r) θ(r − R) . (18)

The depth VS(R) of the spherical well is related to the LEC C0 of
a contact interaction,

C0 δ(Er) =
C0

4πr2
δ(r) → 3C0(R)

4πR3
θ(R−r) ≡ VS(R) θ(R−r) . (19)

A solution of the Schrödinger equation for the augmented
potential requires the matching of the logarithmic derivatives of
outside and regular spherical-well wavefunctions at r = R,

√

−2µR2VS(R) cot
√

−2µR2VS(R) = r
∂

∂r
ln

(

rψ0(r)
)

∣

∣

∣

∣

r=R

.

(20)
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FIGURE 3 | Dependence of H4 ≡
√

−2µR2VS (R) for n = 4 on R (in units of r0).

Two analytical approximations, Equation (21) (solid lines) and Equation (22)

(dashed lines), are shown together with a numerical solution of Equation (20)

(bold lines) that interpolates between them. Reprinted figure with permission

from reference [23]. Copyright (2001) by the American Physical Society.

When n = 2 and α ≤ α0, or n = 1, we can solve this
equation with VS(R) = 0 if the admixture of the most singular
external solution tends to zero as R → 0. Thus the amplitude
is renormalized properly without a contact interaction as long
as we retain only the least singular wavefunction behavior, the
prescription offered in reference [45].

For n = 2 and α > α0, or for n ≥ 3, because the two
external solutions differ only by a phase, the contact interaction is
necessary. Substituting the wavefunction (16) into Equation (20),
yields a transcendental equation linking φ0 to VS(R) [23]. Two
approximate solutions are

√

−2µR2VS(R) ≃ mπ

{

1−
[

1− n

4
+√

α R1−n/2

tan

(

2
√
α

n− 2
R1−n/2 + φ0

)]−1}

, (21)

when the right-hand side of Equation (20) is large, and

√

−2µR2VS(R) ≃
(1+ 2m)π

2
− 2

(1+ 2m)π

[

n

4
−√

αR1−n/2

tan

(

2
√
α

n− 2
R1−n/2 + φ0

)]

,

(22)

when it is small, where in both cases m is an integer. Now one
can keep the scattering amplitude at zero energy fixed at its
experimental value by adjusting 2µR2VS(R), which displays an
periodic dependence on a power of the cutoff [23, 24, 49–54]. For
n = 2, the dependence is periodic in lnR, characteristic of a limit
cycle and a remaining discrete scale invariance. (For discussions
of limit cycles, see references [55, 56].) The n ≥ 3 oscillation
indicates a generalized limit cycle. The case n = 4 is displayed
in Figure 3 [23].

Having renormalized zero-energy scattering, an important
question is whether the problem is well-defined also at finite
energy E ≡ k2/(2µ). That this is the case can be shown [23]
with the WKB approximation, which applies to the region where
the wavelength is small compared to the characteristic distance
over which the potential varies appreciably. For distances where
|VL(r)| ≫ E, one recovers Equation (16) for the wavefunction,
up to energy-dependent corrections that are determined by
Equation (16) itself. In the absence of a short-range interaction,
decrease in R would lead to the repeated appearance of low-
energy bound states due to the unstoppable growth in attraction,
a phenomenon reflected in the never-ending oscillations of the
wavefunction [48]. With VS(R) preventing this collapse and
ensuring the description of one low-energy datum, bound states
can accrete only from negative energies, converging to finite
values as R decreases. How many of the bound states are within
the region of validity of the EFT depends, of course, on the
scales in the problem: the very low-energy spectrum will be
affected by the long-distance tail of the potential while states with
binding energies >∼ (2µR2

und
)−1 are irrelevant for the distances

of interest. For n = 2 and α > α0, which is equivalent [57] to
the three-boson systemwith short-range interactions at unitarity,
the bound states form a geometric tower (“Efimov states” [58])
that signals the remaining discrete scale invariance stemming
from the limit cycle in the contact interaction [59, 60]. While
the existence of the tower is a consequence of the symmetry, its
position is fixed by the LEC. It is remarkable that it is the proper
renormalization of the EFT that underlies the “Efimov physics”
intensely explored with cold atoms [61].

A particularly simple example of singular potential is the delta
function itself. In this case the external potential vanishes and the
external zero-energy wavefunction is replaced by

ψ0(r) ∝ r−1

(

1− r

a0
+ . . .

)

, (23)

where a0 determines the ratio between irregular and regular
solutions and is nothing but the scattering length. The solution
for Equation (20) can be written explicitly,

VS(R) = − 1

2µR2

[

(1+ 2m)2
π2

4
+ 2R

a0
+ . . .

]

, (24)

where m is an integer. It is apparent how a cutoff-dependent
C0(R) ∝ R softens the delta function. The scattering length enters
in the smaller R2 term. Of course, a similar result is obtained for
a momentum cutoff3 ∼ R−1 [27].

A subtlety arises when a regular potential with n = 1 in
Equation (15) is present together with the delta function, as is
the case for OPE. By itself, the long-range potential needs no
regularization; with the delta function, a new cutoff dependence
emerges in the irregular solution [24, 62]:

ψ0(r) ∝ r−1

{

1− r

[

1

a0
+ α

(

ln
r

R⋆
− 1

)]

+ . . .
}

, (25)
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where a0 and R⋆ are length scales that enter the zero-energy
scattering amplitude. Instead of Equation (24),

VS(R) = − 1

2µR2

[

(1+ 2m)2
π2

4
+ 2R

(

1

a0
+ α ln

R

R⋆

)

+ . . .
]

.

(26)
The main difference is the appearance of the lnR with a
coefficient∝ α.

In both these cases, where the outside potential is not singular,
it is easy to see that the amplitude at finite energy is well-defined.
The energy enters both internal and external wavefunctions as
(kr)2 and can only affect the depth of the spherical well by a term
of O(R0), an effect that disappears as R decreases. The multiple
branches in Equations (24) and (26) are a consequence of the
fact that a spherical well can have multiple bound states. The
zero-energy amplitude is essentially determined by the shallowest
state, and we can choose different well depths to place any
one state at the desired position. Deeper states have energies
∝ (2µR2)−1 and, again, are beyond the regime of the EFT for
R<∼ Rund. Differently from long-range singular potentials, the
three-dimensional delta function supports a single bound or
virtual state.

3.1.2. Higher Partial Waves
We can now look at higher partial waves. Amplitudes in these
waves have additional powers of Ep ′ · Ep, where Ep (Ep ′) is the relative
incoming (outgoing) nucleon momentum. Just as for k2 in the
S wave, in the absence of a long-range potential, dimensional
analysis implies that Ep ′ · Ep must come together with R2: the no-
derivative contact interaction contributes in the small-R limit
only to the S wave. For the n = 1 external potential, the l ≥ 1
phase shifts then converge as R → 0. A long-range singular
potential of the type (15) contains an intrinsic scale r0 and Ep ′ · Ep
comes in general with a factor r20 and does not disappear as
R → 0. There is a phase φl in Equation (16) for every l, which
can only be fixed by higher-derivative interactions.

To see this, let us first stick to the potential (18). The k = 0
matching equation that generalizes Equation (20) is

Rl(R) ≡
√

−2µR2VS(R)
jl+1(

√

−2µR2VS(R))

jl(
√

−2µR2VS(R))

= l+ 1− r
∂

∂r
ln

(

rψl(r)
)

∣

∣

∣

∣

r=R

, (27)

where jl is the spherical Bessel function of the first kind. Using the
recurrence relation for Bessel functions,

Rl(R) = 2l+ 1+ 2µR2VS(R)

Rl−1(R)
. (28)

In the absence of an external potential, the external wavefunction
is a combination of the regular jl and the irregular yl, the spherical
Bessel function of the second kind. By direct calculation we find
that at small R

Rl(R) = 2l+ 1+O(R2l+1/al) , (29)

where al is the l-wave scattering “length” (e.g., volume for l = 1),
the zero-energy limit of the ratio of the yl and jl coefficients. Using
R0(0) = 1 in Equation (28) gives

R1(0) = 3−
[

(2n+ 1)
π

2

]2
. (30)

which implies, together with Equation (29), that a1 = O(R3). The
argument repeats for l ≥ 2 with different finite pieces, leading
to al = O(R2l+1). As anticipated by dimensional analysis, the
effect of the non-derivative contact interaction disappears from
l ≥ 1 waves as R → 0. A similar argument for a regular outside
potential leads to the same conclusion. For the argument with a
delta-shell regularization, see reference [63].

In contrast, when the external potential is attractive and
singular with n ≥ 3,

Rl(R) = l+ 1− n

4
+√

α R1−n/2 tan

( √
α

n/2− 1
R1−n/2 + φl

)

.

(31)
Matching in the S wave makes φ0 R-independent. Since
2µR2VS(R) is approximately cutoff independent as can be seen
from either of the two approximate solutions (21) and (22),
Equation (28) gives

R1(R) = 3−11(R) , (32)

where11(R≪ r0) is finite. Comparison with Equation (31) then
shows that φ1 ∝ R1−n/2. Continuing to larger l we find

φl(R≪ r0) = −
√
α

n/2− 1
R1−n/2 . (33)

The phases are thus angular-momentum and energy independent
[63] in this limit, but cutoff dependent [48].

What is needed for renormalization is a single contact
interaction with a minimum number of derivatives in each wave,
with LECsC′

2l
. The interaction is non-local, for example for l = 1,

C′
2

4πr2

(

∂δ(r)

∂r

)

∂

∂r′

∣

∣

∣

∣

r′=0

→ C′
2(R)

4πR3

[

2

r
θ(R− r)− δ(r − R)

]

∂

∂r′

∣

∣

∣

∣

r′=R

,

(34)
where C′

2(R) is determined so as to keep the phase φ1, and thus
one P-wave low-energy datum, fixed. The contact interactions
are all determined by the underlying interactions, but without
additional dynamical assumptions we do not know how they
relate to each other. Model independence requires we keep
them free.

3.1.3. Implications
Much of the above had been understood without EFT. The use
of boundary conditions, for example, goes back at least to the
work of Breit [64]. In EFT, a boundary condition corresponds
to a specific regulator. At the two-body level, in the S wave
we have simply traded the dependence in R by that of VS(R).
Renormalization means that, as far as observables are concerned,
the regulator choice is irrelevant (within the error of the
truncation); only the unobservable cutoff dependence of the
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LECs depends on the regulator. What matters is that a LEC
encodes one parameter. The LO EFT in coordinate space is in the
spirit of atomic Quantum-Defect Theory, where the interaction
of far-away electrons with an ionic core or molecule is solved for
exactly and a few parameters (“defects”) account for short-range
interactions [65].

The model independence of the EFT is manifest in the fact
that the same two-body contact interactions that renormalize the
two-body problem contribute to other processes. For example,
the three-boson system was considered in reference [54], where
binding energies and the particle-dimer scattering length were
calculated. Convergence was observed in a range of cutoffs, with
asymptotic values representing model-independent predictions.
The role of D and higher waves in these results was, however,
not discussed.

The contact interactions can also be seen as providing a self-
adjoint extension of the Hamiltonian. As stressed in reference
[66], the so-called deficiency index for a singular potential is
(∞,∞), i.e., an infinite number of parameters—the phases φl in
Equation (16) for all values of l—are needed to determine the
self-adjoint extension uniquely. In the EFT this translates into the
existence of an infinite number of contact interactions, one with
the minimal number of derivatives for each wave (of course, the
EFT contains also contact interactions with an arbitrary number
of derivatives).

While mathematically the problem looks hopeless, on physical
grounds this is clearly a red herring. As remarked in reference
[20], increasing l strengthens the centrifugal barrier and shrinks
the distances r<∼ [l(l + 1)]−1/(n−2)r0 where the attractive n ≥
3 potential takes over. The distance of closest approach at
momentum k can be estimated from the point where the energy
is comparable to the centrifugal barrier, or r>∼ [l(l + 1)]1/2k−1.
For k<∼Mund, the breakdown scale, we are only interested in

distances r>∼ Rund ∼ [l(l + 1)]1/2M−1
und

. We might then expect
that only in waves with l<∼ lcr does a singular potential need to be
treated exactly and Equation (16) apply, where [32]

lcr
(

lcr + 1
)

∼ r0

Rund
. (35)

A more precise semi-analytical estimate comes from the
investigation of the critical strength α where a Bessel series
solution of the Schrödinger equation exhibits a square-root
branch point characteristic of non-perturbative behavior. For
n = 3 [32], it is described pretty well for large l by the estimates
above. For n = 2, consideration of the first two orders in the
perturbative expansion suggests lcr = (π |α| − 2)/4 [31]. An
attractive singular potential defined with a step function at lcr has
a finite deficiency index (lcr, lcr).

The situation is different in the case of n = 1. The potential
is larger than both centrifugal barrier and kinetic repulsion for
r>∼ n2(l) r0, where n(l) is O(1) for l = 0 and grows as l for
large l. Balance among these terms leads to bound states of sizes
rn ∼ 2n2r0 and binding energies Bn ∼ α2/(8µn2). (Taking as
an example the Coulomb interaction, where α = 2µαe in terms
of the fine-structure constant αe, we get the proper result B ∼
µα2e/(2n

2) if we interpret n as the principal quantum number.)

These estimates are in any case affected by the long-range tail of
the potential, which we are not considering in this section. But at
distances Rund <∼ r<∼ r0, we expect lcr ≈ 1: while the Swavemight
be non-perturbative and perhaps require a short-range potential
(26) to generate a bound state at the observed location, higher
waves should be perturbative.

3.2. Perturbative Corrections
EFT provides a framework where we can systematically
incorporate corrections to the leading interactions, which can
be checked with the method developed in reference [67]. We
pair subleading long-range interactions with the subleading
short-range interactions needed for renormalization order by
order. As stressed in reference [68], renormalization at a given
order contains clues about the relative importance of higher
corrections. Just as a negative power of R indicates at least one
missing LEC, so positive powers of R point to the order before at
least one new LEC should appear. If the error in an observable
not used in the fit of LECs at NiLO (with some integer i) scales
as a positive power of the coordinate cutoff, say Rx, then we
may expect that corrections appear at Ni+jLO, where j ≤ x is
an integer (not necessarily the largest integer). This constraint
comes from the demand that the regulator error should not
exceed the truncation error when R<∼ Rund. (It does not exclude
the presence of a LEC at a lower order than that estimated by the
cutoff dependence, corresponding to boundary conditions of the
RG equation [22].) We will see examples below.

The next renormalization challenge arises from the more-
singular corrections to the long-range potential. An almost
automatic reflex is to simply add the correction to the LO
potential, as Weinberg prescribed, and solve the Schrödinger
equation. For a regular potential, adding a regular correction that
is small everywhere can be done in perturbation theory, but it
can also be done by solving the Schrödinger equation exactly.
For amore-singular correction, however, the perturbing potential
will be larger than the LO potential at sufficiently small r. One
risks destroying the systematic character of the EFT unless one
keeps R relatively large. Whether this risk materializes needs to
be checked explicitly. As we will see, renormalization requires
distorted-wave perturbation theory around the LO solution
[20, 31]. Implications for nuclear interactions are discussed
in section 4.1.

3.2.1. Distorted-Wave Perturbation
A pedagogical toy model that nicely illustrates the need for
perturbation theory on singular corrections was presented in
reference [69]. The model consists of two separable, regular
potentials, one of range m−1

L , the other of range m−1
S ≪ m−1

L .
Because the potentials are separable, exact answers can be found
for the effective-range parameters. The potential parameters are
fine-tuned so that each potential separately produces a natural
scattering length, that is, a0 ∼ m−1

L (a0 ∼ m−1
S ) in the absence

of the short-range (long-range) potential. Next, the short-range
potential is expanded in powers of k/mS, creating a series of
singular interactions. While for k ∼ mL the long-range potential
is non-perturbative, the singular corrections should be treated in
distorted-wave perturbation theory. Lo and behold, the results up
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to N2LO obtained with a standard subtraction scheme are found
to reproduce the exact results. In contrast, when a truncation of
the expanded short-range potential is solved exactly, similar to
the “peratization” of Fermi theory [70, 71], one can no longer
take a large momentum cutoff. Reference [69] concludes that
removing the cutoff dependence is impossible, which is indeed
true when one insists on iterating subleading corrections.

The situation is not significantly different for the case of
interest in nuclear physics where not only corrections, but
also the LO potential is singular. Again, the simplest example
is provided by the delta function without external potential,
VL(R) = 0 in Equation (18). As discussed above, the energy
dependence first affects the matching between internal and
external wavefunctions at relativeO(k2R2). The ratio of irregular
and regular solutions, which determines k cot δ0(k) where δ0(k) is
the S-wave phase shift, starts atO(R). Thus, at LO

k cot δ0(k) = − 1

a0

(

1+O(Ra0k2)
)

, (36)

which means that the fractional error in δ0 is

1δ0(k)

δ0(k)
= O(Ra0k2) . (37)

For example, the effective range r0 ∼ R. This again can be easily
obtained with a momentum regulator [27]. In ChEFT, where
away from the chiral limit the delta function is accompanied in
the singlet S wave by the Yukawa potential, the situation is not
substantially different [24]. Aside the O(αR lnR) dependence in
Equation (26), the argument does not change and Equation (37)
still holds with a0 → a0. Despite the presence of pions, the error
is still ∝ R. It can be removed in first-order perturbation theory
by a two-derivative contact interaction

δVS = C2

{

[

∇2δ(Er)
]

+ 2
[

E∇δ(Er)
]

· E∇ + 2δ(Er)∇2
}

, (38)

whose LEC C2(R) ∝ R2 fixes r0 ∼ Rund. For R<∼ Rund, this
contact interaction is an NLO correction to the LO interaction
with LEC C0. This is in fact one of the elements in the power
counting in Pionless EFT [35]. Note that, if we were to impose
that C2/C0 scaled with R2

und
as implied by NDA, we would

obtain an effective range that scaled the same way, in contrast
to what one obtains for typical short-range potentials [27]. Once
again, renormalization automatically enforces a general property
of short-range interactions.

But what if we solved the Schrödinger equation exactly
following Weinberg’s prescription? In the simpler case without
a long-range potential, it has been shown explicitly [72–74] that
this can be done in a renormalized way only if r0 <∼ R, which
is arbitrarily small. In other words, the two-derivative contact
interaction is non-perturbatively renormalizable only if the
theory satisfies a “Wigner bound” [75] r0 ≥ 0. In contrast, when
the two-derivative contact interaction is treated in perturbation
theory, at second order and higher, which contain loops
involving two or more powers of C2, four- and higher-derivative
contact interactions appear to guarantee renormalization. When

we resum the two-derivative contact interaction we generate
diagrams with an arbitrary number of loops, but lack the
counterterms to remove the cutoff dependence. A calculator
committed to exact solutions might be tempted to eschew
renormalization (and thus model independence) and live with
a relatively large R. Still, such stubbornness in resumming what
needs no resummation might be rewarded by results that are
worse than those of the perturbative expansion. An example is
provided by a calculation [76] of the S-wave scattering phase
shifts for a harmonically trapped unitary system, where the
regulator was implemented in the form of a maximum number
of shells. One can see explicitly how in first-order perturbation
theory the derivatives in Equation (38) give a contribution to
the NLO energy which is proportional to the LO energy, apart
from a shift in the LO LEC. The result of resumming the NLO
interaction is not only cutoff dependent but also gives rise to a
larger violation of unitarity than even NLO.

Note that one can introduce an auxiliary “dimeron” field in
the EFT Lagrangian [77] whose kinetic term provides an energy-
dependent correction to the potential. Exploiting the redundancy
of interactions in the enlarged Lagrangian, one can remove
the momentum-dependent corrections (38). Renormalization
changes with an energy-dependent potential and, in particular,
a resummation does not restrict r0. However, unless there is
evidence for r0 ≫ Rund, this is still an NLO correction and
the resummation does not affect observables up to higher-order
terms [27].

Resummation of subleading interactions can lead to an even
more paradoxical situation. The problem is that subleading
singular potentials are not in general attractive in all the same
waves as OPE. If the corrections are iterated together with OPE,
the cutoff behavior of the amplitude will change completely:
channels that required a counterterm at LO may not require, or
even tolerate, one at subleading order [24]. Take a wave where
the LO potential is singular with a power n and attractive, thus
requiring a counterterm, but the subleading potential is repulsive
(strength α′) with a power n′ > n. The exact solution of
the Schrödinger equation for the sum of the external potentials
is now dominated at short distances by the irregular solution
of the subleading potential, which grows exponentially as r
decreases. Matching to the short-range potential VS will force
a non-vanishing irregular solution, which in turn leads to an
exponentially increasing dependence of the fractional phase shift

error in R, ∝ R1+n′/2 exp[2
√
−α′ R1−n′/2/(n′/2 − 1)] [24]. The

only solution is to remove the LO LEC at subleading order! There
is hardly a way to keep the systematic expansion of the EFT.

Another toy model [78] illustrates this paradox. This time
the underlying potential consists of a repulsive r−3 component
associated with a mass mL together with an attractive r−3 from
a heavier mS ≫ mL, as well as less singular terms. Its exact
S-wave results are compared to those of a potential consisting
of the repulsive r−3 potential plus a delta-function interaction.
Parameters are chosen so that the repulsive potential is non-
perturbative. Despite the fact that the phase shifts of the
repulsive component are well-defined by themselves, reference
[78] includes the delta function non-perturbatively, fixing it to
reproduce the scattering length of the underlying potential. For
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R−1 <∼mS the phase shifts are in reasonably good agreement
with those of the underlying potential. However, agreement
deteriorates as R decreases. Disregarding conceptual differences
in renormalization of attractive and repulsive singular potentials
[23, 24], reference [78] concludes that cutoff dependence cannot
be removed in general, rather than in the particular case of
resumming the subleading delta function. In response, reference
[79] included the 2n-derivative delta functions, which account for
the short-range potential, at N2(n+1)LO in perturbation theory.
Calculations up to N8LO show convergence to the exact phase
shifts up to at least k ∼ 2mL without significant restriction on
R. (Reference [80] nevertheless points to some ambiguity in the
values of the NLO phase shifts, apparently implying that it is
suffcient reason to abandon renormalization.)

Thus the singular nature of the potentials that we want
to treat in an EFT expansion of the amplitude requires the
use of perturbation theory on corrections, as implied by the
power counting of section 2. This in fact ensures small changes
in amplitudes after renormalization [31]. But then one might
wonder to which extent the singular nature of the LO potential
affects the order of the corrections. As we have seen, when the
only singular part of the LO potential is a delta function, the first
correction comes at NLO. When the outside potential is singular
and attractive, the situation is different. For an LO singular
attraction, one finds [24] that after fixing the phase φ0 the S-wave
phase shifts scale as

1δ0(k)

δ0(k)
∝ R1+n/2 . (39)

This means that corrections are expected at (or before) N2LO for
n = 2, 3, N3LO for n = 4, 5, etc.. It is unclear why the results
reported in reference [54] indicate higher sensitivity to R than
given by Equation (39).

Now, the power counting for nuclear interactions in section
2 says that at N2LO there are corrections to the long-range
potential with an r−(n+2) singularity. The additional singularity
can be removed in first-order perturbation theory by additional
contact interactions with two derivatives. This can be shown
relatively simply in a toy model where a ±r−4 potential is added
to an n = 2 attractive LO potential [31]. The analysis was carried
out in momentum space with a sharp cutoff 3. At N2LO, where
the ±r−4 potential is considered as a first-order perturbation,
two forms of additional, oscillating cutoff dependence appear:
one proportional to 32, reflecting the stronger singularity of
the perturbing potential, the other proportional to k2. In the
S-wave, a two-derivative potential (38) is sufficient, together
with an N2LO shift in the C0 of Equation (19), to remove the
two additional divergences. This argument can presumably be
continued at higher orders and repeated for l ≥ 1 waves by
considering interactions of type (34) with two more derivatives.
One tentatively concludes that NDA holds in distorted-wave
perturbation once it has been corrected at LO.

3.2.2. Simple Perturbation
In partial waves l>∼ lcr where the LO potential is perturbative
and particles are free in zeroth approximation, corrections are

included in simple perturbation theory. The first task in this
case is to quantify the angular-momentum suppression for the
long-range potentials so as to establish the orders they come
in. The second need is to find the orders the associated contact
interactions appear at.

For the µ = 0 long-range potential, rules (7) and (8) indicate
that a contact interaction is needed for renormalization at nth
order in perturbation theory, where n ≥ 2l+ 1. This is consistent
with the inference from the residual cutoff dependence of the
non-derivative contact interaction. As we saw in section 3.1.2,
l-wave scattering “lengths” al are induced through matching at
finite R. Just as for the S-wave effective range, they can be made
arbitrarily small by taking R → 0. However, the higher power of
R, R2l+1, suggests that contact interactions in higher waves enter
in perturbation theory at N2l+1LO or lower, another element of
Pionless EFT power counting [35].

The increased singularity of subleading potentials asks for
counterterms at lower orders in perturbation theory. The
first-order perturbative correction due to subleading potentials
involving pion loops is renormalized with LECs assigned by
NDA. Making further general statements about the order contact
interactions are needed is cumbersome without an explicit
angular-momentum suppression factor.

If one were to solve the Schrödinger equation exactly in one
of these waves, renormalization would require a LEC, which
then determines the asymptotic properties of the wavefunction.
The tail of the non-perturbative wavefunction can be reproduced
with increasing accuracy as the order of perturbation theory
increases [23]. Being a series in α, the perturbative expansion
cannot reproduce the oscillations found in Equation (16), which
are tied to the non-analytic dependence

√
α. This is no problem

because, by definition of lcr, these oscillations take place at
distances smaller than those probed by the EFT. Their effects
can be “averaged out” and appear through contact interactions
at subleading orders. If one wants to save all the perturbative
work by sticking to a non-perturbative solution, one loses
some predictive power at LO but, because it is a single LEC
(in one wave), this is perhaps acceptable. Alternatively, one
could simply not include the LEC if l is sufficiently high
for oscillations to happen below R, which might be limited
in numerical calculations anyway. In this case R is in the
region where perturbation theory works and the result will be
relatively insensitive to R. Unnecessary iteration in high waves
is thus relatively harmless, other than obscuring the systematic
EFT expansion.

4. RENORMALIZATION OF CHIRAL EFT

By this point in the manuscript it should be clear how to
proceed with ChEFT in the nuclear sector. The power counting
of ChPT is based on NDA, which comes from demanding
that the EFT expansion be renormalized order by order so as
to ensure model independence. In the more general ChEFT
we continue to insist on model independence, but now LO is
non-perturbative. The results of the previous section apply to
pion-exchange potentials, where the spin-isospin factors and

Frontiers in Physics | www.frontiersin.org 11 May 2020 | Volume 8 | Article 79109

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


van Kolck Renormalization of Chiral Nuclear Forces

the exponential fall-off at large mπ r do not substantially affect
renormalization. Perhaps not surprisingly in hindsight, NDA
is violated.

Since the OPE tensor force is singular and attractive in
an infinite number of channels, the first task (section 4.1)
is to estimate up to which relative angular momentum l
OPE needs to be considered at LO. In sections 4.2 and 4.3
renormalized results for, respectively, two and more nucleons
are described.

4.1. Partly Perturbative Pions
The simple power counting of Equations (7) and (8) does not
capture factors of l−1, just as it misses other dimensionless
factors. More realistically, OPE in the radial Schrödinger

equation is an expansion in Q/M
(l,s)
NN , where M

(0,s)
NN ∼ MNN but

M
(l,s)
NN increases with l depending in general also on the spin s.

Once M
(l
(s)
cr ,s)

NN ∼ MQCD, OPE is perturbative. What do we know

aboutM
(l,s)
NN and l

(s)
cr ?

The bold suggestion was made in references [28, 29] that

l
(s)
cr ≈ 0, so that pion exchange would be amenable to
perturbation theory in all waves. The estimate in Equation (5)
assumed NDA for the one-nucleon quantities mN = O(MQCD),
fπ = O(MQCD/(4π)), and gA = O(1), plus neglected any
dimensionless factors. Numerically, MNN ≃ 290 MeV. What
if the various spin/isospin factors and other numbers floating
around, each of O(1), conspire to make OPE more perturbative,
so thatMNN is effectively comparable toMQCD?

In that case, at LO ChEFT would be formally the same as
Pionless EFT [35, 36], where the binding of light nuclei rests on
the shoulders of non-derivative 2N and 3N contact interactions
[81, 82]. But because pions are explicit, the range of validity of the
EFT is enlarged—at least near the chiral limit where integrating
out pions becomes a very restrictive condition. An attractive
feature of this proposal is that it could potentially explain why
Pionless EFT works better than expected, for example for binding
energies [35].

This proposal also neatly solves the renormalization issues
of the last section. OPE is now an NLO effect of relative
O(Q/MNN), so no problems associated with its singularity
emerge. Being perturbative, it brings NLO cutoff dependence
only to S waves. Because at LO the external potential vanishes,
Equation (36) requires at NLO one chirally symmetric two-
derivative contact interaction in each S wave. Then Q ∼ mπ
implies the concomitant presence of a chiral-symmetry-breaking
non-derivative interaction with LEC proportional to the quark
masses, m2

πD2. In the background of an LO wavefunction of the
type (23), OPE generates an m2

π ln3 cutoff dependence which
can be absorbed in D2. The 2N amplitude is renormalized and
in good agreement [28, 29, 83] with the Nijmegen partial-wave
analysis (PWA) [84] up to Q ∼ mπ .

Alas, calculations at O(Q2/M2
NN) have shown [30, 85] that in

the low, spin-triplet partial waves, where the OPE tensor force is
attractive, the expansion fails for Q ∼ 100 MeV. In partial waves
with l = j≫1, where counterterms are needed only at a very large
number of loops L ≥ 2l, the breakdown of perturbation theory

FIGURE 4 | Two-nucleon 3P0 phase shift δ as function of the center-of-mass

momentum kc.m.. The NLO (blue), N2LO (green), N3LO (orange), and N4LO

(red) bands from a perturbative treatment of pion exchange correspond to

cutoff variation from 0.8 to 2.4 GeV. (LO in a perturbative expansion vanishes

for this channel.) The empirical phase shifts from the SAID program [88] (solid

circles) are shown for comparison. Reprinted figure with permission from

reference [87]. Copyright (2019) by the American Physical Society.

was estimated in the chiral limit to be at a critical momentum [86]

pcr ≈
l3√

27|2(−1)l + 1|
MNN . (40)

If we impose pcr ∼ MQCD, we get l
(1)
cr ≈ 2.5. The radius of

convergence of the perturbative series is not as large in waves
with l = j ± 1. In both cases the first few orders were found
[86] not to be representative of the large-order convergence. For
low partial waves counterterms enter already at low orders.When
they were assigned arbitrary but natural values, all waves except
3S1-

3D1,
3P0, and perhaps 3P1 were found to converge up to

pcr ≈ MNN . An example of failure, 3P0, is given in Figure 4

[87], where OPE is NLO, n-iterated OPENnLO, leading two-pion
exchange (TPE) N3LO, and subleading TPE N4LO. The LECs are
assumed to be given by NDA instead of being introduced only at
the order where they are first needed for renormalization. These
signs of the breakdown of perturbative pions are consistent with

an expansion inQ/M
(l,1)
NN withM

(l≈1,1)
NN ∼ fπ as indicated byNDA.

It seems inevitable that pions must be treated non-
perturbatively in the low partial waves if we want to go beyond
Pionless EFT at physical quark masses. Still, based on the general
arguments of section 3.1.3 we expect pions to be perturbative
for sufficiently high partial waves. The n = 3 tensor force, for
which r0 ∼ M−1

NN , does not vanish for spin s = 1. Equation (35)

with Rund ∼ [l(l + 1)]1/2M−1
QCD provides an estimate l

(1)
cr ≈ 2

for the critical angular momentum in attractive triplet waves.
This conclusion is made firmer by a generalization to the tensor
potential of the analysis of the onset of square-root branch points
in the Bessel series solution of the Schrödinger equation [32].
Given that the strength of OPE is fixed by MNN , it translates
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TABLE 1 | Estimate of the critical values pcr of the relative momentum in the

lowest 2N triplet channels above which the OPE tensor force cannot be treated

perturbatively [32].

Partial wave pcr/MeV

3S1-
3D1 66

3P0 182

3P1 365

3P2-
3F2 470

3D2 403

3D3-
3G3 382

3F3 2860

3F4-
3H4 2330

3G4 1870

into an upper bound on the critical momentum pcr, including
repulsive waves. The results, listed in Table 1, are obtained in
the chiral limit; a realistic pion mass could affect the smaller
values by factors of O(1) but is not expected to be important
for the larger values. They indicate that OPE in 3S1-

3D1 and
3P0

likely fails to converge already below MNN . In contrast, OPE in
high waves, such as F and higher, converges beyond MQCD. The
gray zone is the D and P waves other than 3P0. Given the low
values of pcr on the scale set by MQCD, one might conclude that

l
(1)
cr ≈ 3. An analysis of spin-triplet phase shifts where OPE and
TPE are removed in distorted-wave perturbation [89] supports
this conclusion.

A different but closely related estimate for l
(1)
cr comes from

the cutoff values where the first bound state crosses threshold
in the absence of contact interactions. The very early work
on ChEFT and much of its phenomenological improvements,
which continue to this day, have used Weinberg’s prescription.
Unfortunately this prescription assigns to triplet waves a single
non-derivative contact interaction at LO, which is incapable to
determine more than one phase in a model-independent way.
In particular, for a separable regulator the contact interaction
contributes only to the S wave. Spurious low-energy bound states
can be kept at bay at LO in the 3S1-

3D1 coupled channel [62, 90–
93], but only in this channel [20, 21]. In triplet waves where OPE
is repulsive there is no need for counterterms at LO [20, 94],
but without them bound states repeatedly cross threshold in
attractive waves and lead to wild variations in the phase shifts
at energies within the realm of ChEFT [20, 21, 93, 95]. With a
super-Gaussian separable regulator, bound states first emerge at,
roughly, 3 ∼ 0.5, 1, 2, 4, and 6 GeV in respectively 3S1-

3D1,
3P0,

3D2,
3P2-

3F2, and
3D3-

3G3 channels [20, 93]. Except for
3D3-

3G3, this sequence is similar to that of the attractive channels in
Table 1. The lowest two channels would display shallow states
when 3 ∼ MQCD, indicating that OPE is non-perturbative,
while the higher waves are less clear—numerical experimentation
suggested [20] their effects were not negligible, which can be
understood from the results of reference [32].

Perhaps even more seriously, in Weinberg’s scheme more-
pion exchange and other contact interactions, which should be
treated perturbatively, are not. This leads to the pathologies

discussed in section 3.2. Indeed, renormalization problems
have been reported [21, 96–100] within Weinberg’s prescription
also for higher-order potentials. These renormalization failures
prevent taking a momentum-space cutoff at the breakdown scale
MQCD or higher. A “physical cutoff” 3phys

<∼ 1 GeV, before
3P0 would develop a bound state [20], is needed, and results
are sensitive to the choice of regulator. No wonder then that
much effort in phenomenology with chiral potentials has been
dedicated to finding the “best” regulator. The limitation to
small cutoffs leads to startling dependence on what should
be equivalent forms of interactions in the Lagrangian, see for
example reference [101].

One concludes that, while it seems well-established that to
handle triplet waves beyond MNN pions are non-perturbative in
at least 3S1-

3D1 and 3P0, there is some uncertainty as to the
partial wave up to which this is so. Part of the uncertainty comes
from the presence of LECs in lowest orders of the amplitude,
which require a closer comparison with data (section 4.2). What
is clear is that there is an angular-momentum suppression. The
perturbative expressions in reference [86] suggest

M
(l,1)
NN ∼ l2MNN , (41)

apart from an overall suppression of l2. In contrast, the analyses
of reference [32] leads to l2 → [l(l+ 1)]3/2.

Singlet channels are somewhat simpler, but not devoid of
subtleties. Since the tensor force vanishes for s = 0, OPE has
n = 1 and r0 ∼ MNN/m

2
π . The general argument from section

3.1.3 indicates that only in the S wave should we expect non-

perturbative effects, l
(0)
cr ≈ 1. In higher waves, the OPE potential

dominates over kinetic and centrifugal repulsion only at large
distances, and there the exponential fall-off of OPE leads to
further suppression.

The perturbative convergence of the l ≥ 1 channels was
studied in reference [102]. This is particularly easy because the
Yukawa potential is well-defined for an arbitrary number of
loops. The phase shifts are seen to converge quickly already for
1P1, and faster as l increases. The suppression factor M

(l,0)
NN can

be estimated from the critical strengthM−1
NNcr needed to generate

a zero-energy bound state in the corresponding l wave, shown
in Table 2. There are two sequences of channels that alternate
because of the factor of −3 in the ratio between isospin singlet
and triplet: if we multiply the isosinglet entries in Table 2 the
results form a single monotonous sequence. Assuming Q ∼ mπ ,
we find that in each sequence increasing l by 2 roughly suppresses
OPE by one order in the expansion, starting with 1P1 at NLO and
1D2 at N

2LO. Moreover,

M
(l,0)
NN ∼

[

l(l+ 1)+ 1
]

MNN , (42)

in the isosinglet waves, with a factor 3 larger in isotriplets.
If one insists on the full solution for the Yukawa potential

in higher partial waves, there are no renormalization problems
[20, 94], as the potential is regular. In the S wave, however,
interference with the delta function leads to an unexpected
violation of NDA. As first noticed in reference [18] and
confirmed many times since—for example, references [62,
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TABLE 2 | Estimate of the critical strength M−1
NNcr of the Yukawa potential in the

lowest 2N singlet channels above which OPE cannot be treated

perturbatively [102].

Partial wave MNN/MNNcr

1P1 −6.4

1D2 45.8

1F3 −27.9

1G4 133.1

1H5 −64.6

1 I6 265.9

1J7 −116.4

1K8 440.0

1L9 −183.3

1M10 667.4

1N11 −265.4

96, 103]— cutoff dependence proportional to m2
π emerges

through the lnR term in Equation (26). Renormalization
therefore requires the non-derivative chiral-symmetry-breaking
interaction with LEC m2

πD2. With Weinberg’s prescription,
where this LEC is missed at LO, the cutoff dependence
can be seen in the 2N system only if quark masses are
varied, as one does to match lattice QCD results. From the
perspective of phenomenology, the main effect of the absence
of the m2

πD2 contact interaction is in processes sensitive to its
associated pion interactions, which are generated by the way
chiral symmetry is broken explicitly in QCD. Regardless of its
phenomenological (ir)relevance, this is the simplest example
where the renormalization of observables in ChEFT is not
guaranteed by NDA.

Clearly, dimensionless factors stemming from spin
and isospin make the transition from non-perturbative to
perturbative OPE somewhat fuzzy. Moreover, virtually nothing
has been done to estimate the angular-momentum suppression
for multiple-pion exchange. Multiple-pion exchange is amenable
to perturbation theory in all waves, but presumably further
suppressed in higher waves. That is sufficient to start comparing
with data.

4.2. Two Nucleons
Let us now take a closer look at how a renormalized approach
works at the 2N level. I continue to consider Q ∼ mπ ∼ MNN .
Since the OPE tensor force survives in the chiral limit, if we take
mπ <∼MNN we can perform an additional expansion around the
chiral limit [62], but such an expansion inmπ/MNN has not been
fully explored.

Leading order at the 2N level consists of the exact solution of

the Schrödinger equation up to l
(s)
cr with OPE and the required

counterterms, not all of which were accounted for by NDA:

• Two non-derivative, chirally symmetric contact interactions
with LECs C0(s), one for each S wave (s = 0, 1). They are
needed to renormalize OPE even in the chiral limit, and were
anticipated [10, 11] to appear at LO already on the basis of
NDA, which estimates C0(s) ∼ 4π/(mNMNN).

• A non-derivative, chiral-symmetry-breaking contact
interaction with LEC m2

πD2(0) if OPE is treated
non-perturbatively in the 1S0 channel. This LEC is
D2(0) ∼ C0(0)/M

2
QCD on the basis of NDA, and thus

N2LO. Renormalization of non-perturbative OPE instead
requires D2(0) ∼ C0(0)/M

2
NN [18].

• One chirally symmetric contact interaction with the minimum
number of derivatives for each wave where attractive tensor
OPE is iterated. The most dramatic effect is in 3P0,
where a contact interaction C′

2(1)
Ep ′ · Ep with C′

2(1)
∼

C0(1)/M
2
NN is needed [20]. NDA would give instead C′

2(1)
∼

C0(1)/M
2
QCD. The two-order enhancement comes from the

running of pion exchange, and similar enhancements apply
for the LECs in other attractive, singular waves where OPE
is non-perturbative.

These counterterms are schematically displayed in Table 3,

assuming l
(1)
cr = 3.

Results can be found in references [20, 62, 93, 95] for cutoff
values as high as 10 GeV in super-Gaussian separable regulators.
In comparison with the Nijmegen PWA, one finds:

• In the 3S1-
3D1 coupled channels, where Weinberg’s

prescription is consistent with renormalization, phase
shifts come out well with one fitted LEC. Results improve
for 3>∼MQCD; even the mixing angle, which is somewhat
overpredicted with a small 3 ∼ 500 MeV, agrees with the
Nijmegen PWA to within 1◦ up to a laboratory energy
Elab ≃ 200 MeV for3>∼ 4 GeV. When the scattering length is
used to fix the LEC, the deuteron binding energy is BLO2 ≃ 2.0
MeV, which is essentially the same as for lower cutoffs [106].

• For low uncoupled, attractive triplet channels (3P0,
3D2)

iterating pions with one fitted LEC works equally well. As
an example, Figure 5 [20] shows 3P0, which comes out much
better than in Weinberg’s prescription with 3 ∼ 500 MeV
(compare this also with Figure 4 where pions are treated
perturbatively). The vanishing of the amplitude beyond Elab ≃
200 MeV can be described, because attraction from OPE is
compensated by the contact interaction. Again, agreement
improves with increasing cutoff.

• For low coupled triplet channels (3P2-
3F2,

3D3-
3G3)—see

Figure 5 [20] again for an example—iterated pions with the
associated LEC do not improve significantly over Weinberg’s
prescription with 3 ∼ 500 MeV. While 3D3 is much
better, changing from repulsion to attraction, 3P2 goes from
underprediction to considerable overprediction.

• In triplet channels without free parameters (3P1,
3F3,

3F4-
3H4,

3G4) iterated pions tend to work well, whether they are
expected to be perturbative or not. In these channels results
are the same as in Weinberg’s prescription; there is not much
change as3>∼MQCD.

• In l ≥ 1 singlet channels (1P1,
1D2,

1F3,
1G4), iterated pions

undershoot data except in 1F3. Again results essentially agree
with Weinberg’s prescription at small3 ∼ 500 MeV.

• In 1S0, the phase shifts resemble those of Pionless EFT,
where after the fast rise due to the existence of a virtual
state, they remain essentially flat as Elab increases. Weinberg’s
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TABLE 3 | Schematic momentum dependence of the lowest-order contact interactions in the 2N system up to D waves, according to references

[20, 31, 62, 68, 104, 105].

1S0
3S1 ǫ1

3P0,
3P2

1P1,
3P1 ǫ2

3D2,
3D3

LO 1 1 p′p p′2p2

NLO p′2 + p2

N2LO p′4 + p4 p′2 + p2 p2 p′p
(

p′2 + p2
)

p′p p′pp2 p′2p2
(

p′2 + p2
)

N3LO p′6 + p6

FIGURE 5 | Two-nucleon 3P0 and 3P2-
3F2 phase shifts (δ) and mixing angle (ε2) as functions of the laboratory energy TL. The LO results (solid lines) at a cutoff

3 = 3.94 GeV are compared with the Nijmegen PWA [84] (dashed lines). Reprinted figure with permission from reference [20]. Copyright (2005) by the American

Physical Society.

prescription applies, and renormalization allows us to increase
the cutoff beyond MQCD, but agreement with the Nijmegen
PWA deteriorates as we do so.

Thus, a renormalized approach where the regulator is
unimportant gives a qualitative guide to 2N data at LO, which
is slightly better than Weinberg’s prescription with specific
regulators and small momentum-cutoff parameters. It has been
shown recently [107] that, with a non-separable regulator, a
specific combination of the four possible spin-isospin non-
derivative contact interactions that yields only one 3S1-

3D1

bound state simultaneously prevents bound states in other
channels. While this is not true for an arbitrary regulator, it
does allow to extend LO results with Weinberg’s prescription to
higher cutoff values, in general improving agreement with the
Nijmegen PWA. However, results are not clearly better than the
renormalized approach, particularly in the 3P0 channel which
lacks the repulsion to produce the amplitude zero.

In addition to simple perturbative corrections in higher partial
waves, one needs to account in subleading orders for potential
corrections via distorted-wave perturbation theory in the lowest

partial waves. The residual3−1 dependence of the LO amplitude
means that at NLO—relativeO(Q/MQCD)—there is also:

• A two-derivative, chirally symmetric contact interaction
with LEC C2(0) in the 1S0 channel. In order to render
cutoff effects on the effective range no larger than N2LO,
C2(0) ∼ C0(0)/(MNNMQCD) [68]. NDA gives instead
C2(0) ∼ C0(0)/M

2
QCD, or N2LO (confusingly denoted NLO

in the nuclear community), which produces a short-range
contribution to the effective range smaller than pion’s by two
powers of the expansion parameter. Yet, only about half of the
1S0 effective range comes from OPE.

The cutoff dependence in other channels is milder, in
agreement with the discussion of section 3.2. The NLO
interaction is shown in the second line of Table 3. At NLO in the
amplitude, the NLO interaction should be included in first order
in the distorted-wave expansion.

At higher orders, corrections to the long-range potential
enter according to the power counting of section 2. Barring

unforeseen renormalization issues, at O(Qµ/M
µ

QCD) we need
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FIGURE 6 | Two-nucleon 3P0 phase shift δ(3P0 ) as function of the laboratory

energy Tlab. The N2LO (red dashed line) and N3LO (blue solid line) results at a

cutoff 3 = 1.5 GeV are compared with the Nijmegen PWA [84] (black points).

Reprinted figure with permission from reference [104]. Copyright (2011) by the

American Physical Society.

to include LECs with up to µ derivatives more than the LECs
appearing at LO [31], except in the 1S0 channel where the
Yukawa/delta-function interference takes place. The momentum
structures of the LECs up to N3LO are shown in Table 3, again

under the assumption l
(1)
cr = 3. They are:

• In each triplet channel where attractive OPE is iterated at LO
(3S1-

3D1,
3P0, etc.), a contact interaction with two derivatives

more than the contact interaction at LO [104, 105]. While for
3S1-

3D1 this coincides with NDA, for other channels NDA
would say these contact interactions only appear at N4LO
or higher.

• Contact interactions with two derivatives [68] for singlet (1P1)
and triplet P waves where OPE is repulsive (3P1). This is the
NDA scaling.

• Four- and six-derivative contact interactions in the 1S0
channel at N2LO and N3LO, respectively [68]. Again, NDA
would have these contact interactions at N4LO or higher.

Up to N3LO in the amplitude, their contributions are
included in first order in the distorted-wave expansion.
Meanwhile, the NLO interaction must be included in
second and third orders, either by itself or with one
N2LO interaction.

The phase shifts have been calculated up to N3LO along these
lines in references [68, 104, 105], together with Deltaless TPE:

• In the 3S1-
3D1 coupled channels, where LO already yielded

very good results at LO, results improve only marginally
at N2,3LO.

• In 3P0, which was also relatively well-described at LO, results
improve quite a bit around the maximum phase shift at N2LO.
Not much improvement, if any, is seen at N3LO. Results from
reference [104] are shown in Figure 6, to be compared with LO

in Figure 5. Other uncoupled, attractive triplet channels (3D2

etc.) were not calculated.
• The coupled 3P2-

3F2 wave with OPE iterated at LO shows no
real improvement at N2LO, and only mildly better agreement
with the Nijmegen PWA at N3LO. No results are available for
higher coupled triplet channels (3D3-

3G3 etc.).
• In 3P1, which works well at LO with no free parameter, results

deteriorate at N2,3LO. Higher repulsive triplet channels (3F3
etc.) were not considered.

• In 1P1, agreement with the Nijmegen PWA improves at
N2,3LO, although results are very sensitive to the pion-nucleon
parameters that enter the µ = 3 TPE. Higher singlet partial
waves were not studied.

• The 1S0 phase shift improves considerably at NLO but is still
not very close to the Nijmegen PWA. N2LO improves further,
but the zero of the amplitude is still poorly described.

Overall, there is some improvement at N2LO but not much at
N3LO. This is perhaps an indication that a better description
of the pion-nucleon subamplitude with an explicit Delta isobar
is needed.

Note that subleading corrections have also been calculated
in references [108, 109] with a slightly different accounting of
higher orders. For example, TPE is taken to start three orders
higher than OPE, which is contrary to the power counting of
section 2 and difficult to conciliate with the power counting
used in ChPT. Still, results are generically not much different
from those described above. A third power-counting variant
has been proposed [32] with similar features. It has not been
tested in detail, perhaps because no clear prescription is given for
handling the LO cutoff dependence in a channel like 3P0 where a

counterterm is assigned relative O(Q1/2/M
1/2
QCD). Reference [67]

discusses these alternatives.
The main phenomenological shortcomings of the

renormalized approach are 3P1,
3P2 and singlet partial waves. For

most of these channels, subsequent work indicates OPE might be
perturbative. Equation (42) shows that OPE should be included
in 1P1 at NLO, in

1D2 at N
2LO, and so on. On the basis of NDA,

contact interactions with the minimal number of derivatives
are expected at respectively N2LO, N4LO, and so on. Under the
assumption that the angular-momentum suppression of TPE
is the same as OPE, reference [87] provided evidence that the
perturbative expansion converges for singlet waves up to k ≈ 300
MeV and N4LO without explicit Delta isobars. Reference [87]
goes further by showing that under NDA for the LECs also triplet
waves converge in the same range, except for 3P0 and possibly
3D3. For illustration, results for the

3P2-
3F2 coupled channels are

shown in Figure 7 [87], which should be compared to Figure 5

where OPE was treated non-perturbatively at LO. The maximum
momentum k ≈ 300 MeV seems tied to the absence of an
explicit Delta isobar [87] but no similar calculation is available in
Deltaful ChEFT. Earlier studies [110–112], which indicated that
pions are perturbative in high waves, sometimes included Deltas
but did not take into account the IR enhancement in iterated
pion exchange. Clearly a more comprehensive study of higher
orders with Deltas is needed to confront this renormalized
approach with phenomenology.
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FIGURE 7 | Two-nucleon 3P2-
3F2 phase shifts (δ) and mixing angle (ε2) as functions of the center-of-mass momentum kc.m.. The NLO (blue), N2LO (green), N3LO

(orange), and N4LO (red) bands from a perturbative treatment of pion exchange correspond to cutoff variation from 0.8 to 4.8 GeV. N2LO results for 3→ ∞ are also

shown (triangles) (LO in a perturbative expansion vanishes for these channels.) The empirical phase shifts from the SAID program [88] (solid circles) are shown for

comparison. Reprinted figure with permission from reference [87]. Copyright (2019) by the American Physical Society.

The situation is particularly unsatisfactory in the 1S0 channel,
where LO—same as in Weinberg’s prescription at fixed pion
mass—is far off, just as in Pionless EFT [35]. In particular, the
Nijmegen PWA displays a zero at a relative low momentum
k0 ≃ 340 MeV, which is absent at LO. It is possible that the
inclusion of an explicit Delta isobar (separated in mass from
the nucleon by ∼300 MeV) improves the convergence in this
region, as a large part of the central potential moves from N3LO
to N2LO. However, the expansion will in any case converge
at best very slowly for k>∼ k0, as all subleading orders have to
conspire to cancel against LO. Since numerically k0 ∼ MNN ,
only for a fully perturbative-pion approach is this of no concern.
Note that also 3S1 and 3P0 have amplitude zeros at relatively
low energies, but in both cases they arise at LO from the
combination of non-perturbative OPE and contact interactions
need for renormalization.

The 1S0 channel is special also for the presence of an
unnaturally shallow virtual state that requires a fine-tuning of
the short-range interaction. It is the interference between the
non-derivative contact interaction and the Yukawa potential that
causes a violation of NDA in this channel. It also leads to the
piling up of higher-order counterterms seen in Table 3. Given
the uniqueness of this channel, it is perhaps not surprising that
power counting might require refinement. In reference [113]
it was shown that short-range interactions show strong energy
dependence. To ameliorate the expansion in 1S0, it was suggested
in references [62, 114] that the chirally symmetric two-derivative
interaction with LEC C2(0) should be promoted from NLO to
LO, following an earlier suggestions for Pionless EFT [115]
and ChEFT with purely perturbative pions [116]. To avoid the
Wigner bound, this is done through a dibaryon field [77] whose
kinetic term is taken to be LO together with its residual mass. This
promotion induces promotions at higher orders of the contact
interactions with more derivatives. Results of course improve at
LO and further at NLO, but not at N2LO, in particular near k0.
In reference [117] it was then proposed—similarly to an earlier
attempt [118]—that the zero be included at LO by a combination
of dibaryon field and contact interaction (or alternatively two
dibaryon fields, the kinetic term of one of which is higher order).
Again this induces the promotion of contact interactions with
more derivatives at higher orders. Phase shifts come out great

FIGURE 8 | Two-nucleon 1S0 phase shift δ as function of the laboratory

energy Tlab in an expansion that incorporates the amplitude zero at LO. The

LO (green) and NLO (blue) bands correspond to cutoff variation from 0.6 to 2

GeV. The results from the Nijm93 potential [119] (black squares) are shown for

comparison. Reprinted figure with permission from reference [117]. Copyright

(2018) by the American Physical Society.

at LO and essentially on the nose at NLO, even beyond k0 (see
Figure 8). Unfortunately these reorganizations of the expansion
produce energy-dependent potentials at LO, which complicate
few-body calculations.

A further proposed reorganization of ChEFT arises from
treating selected relativistic corrections, which are small for
the momenta of interest, as LO—see, for example, reference
[120]. A modified nucleon propagator ensures less dependence
on the regulator, but a 3P0 LEC still has to be promoted
compared to NDA, as in the purely non-relativistic context [20].
By resumming higher-order terms into LO whether they
are relativistic corrections or not, one can soften the large-
momentum behavior of loops and alter the cutoff dependence.
This is no different than picking a regulator, which effectively
includes an infinite number of higher-derivative interactions.
Results then depend on the corresponding cutoff parameter 3.
Renormalization exchanges this dependence for the minimal
number of parameters allowed without dynamical assumptions.
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FIGURE 9 | Triton binding energy E3H and doublet neutron-deuteron scattering length 2and as functions of the cutoff 3. Results at LO (solid lines) and NLO (dashed

and dotted lines) for various 2N fitting procedures are compared with experiment (horizontal red lines). Reprinted figure with permission from reference [93]. Copyright

(2019) by the American Physical Society.

Achieving cutoff independence with a resummation of a
selected interaction merely replaces 3 by the mass parameter
characterizing this interaction, call itM′. IfM′≪MQCD is inferred
from data, this resummation is justified because the interaction
is not of higher order. However, when resumming relativistic
corrections M′ >∼mN : it corresponds to one fixed cutoff value
and convergence cannot be used to demote interactions that are
needed for renormalization without resummation. As long as no
LECs are promoted or demoted, a resummation of higher-order
corrections is safe. There is growing interest in the development
of a covariant version of ChEFT, which could perhaps be
used as input to relativistic formulations of nuclear physics
[121, 122].

4.3. More Nucleons
There is not much known about renormalized ChEFT beyond
2N. The power counting of section 2 shows that the 3N force is
expected to start at NLO from two-pion exchange when Delta
isobars are included explicitly, and at N2LO when they are
not. The crucial issue is whether shorter-range interactions are
enhanced as in the 2N system. Such an enhancement does take
place in Pionless EFT [81] and it has been suggested for ChEFT
on phenomenological grounds in reference [123].

In calculations for more than two nucleons in the
renormalized approach, one needs to truncate the LO 2N

potential for l<∼ l
(s)
cr , which is reminiscent of the truncation in

total 2N angular momentum typically invoked in solutions of
the Faddeev and Faddeev-Yakubovski equations for 3N and 4N
systems with phenomenological potentials. As we have seen

the optimal values for l
(0,1)
cr are uncertain and the l dependence

of M
(l,s)
NN is not fully determined. Of course, as in the 2N

system, subleading orders should be treated in distorted-wave
perturbation theory.

Existing calculations are limited to the 3N system and took

l
(0,1)
cr = 3. At LO [20, 93] and, without explicit Deltas, also
at NLO [93], observables converge as the cutoff increases to
at least 10 GeV without 3N forces (see Figure 9) [93]. The
triton binding energy is BLO3 ≃ 4 MeV and BNLO3 ≃ 6
MeV, quite different from results for a low cutoff in Weinberg’s
prescription, ≃ 11 MeV (≃ 6.5 MeV) at LO (N2LO) [106].
Results were shown not to change significantly when waves
beyond lcr = 3 were included. Conversely, if it turns out that

l
(0,1)
cr < 3, results might change quantitatively, but qualitative
statements should stand. In particular, one concludes there is no
renormalization justification in ChEFT to take the non-derivative
3N contact interaction as LO. Most likely the same conclusion
holds for higher-body forces, but no calculations have been
carried out.

The tendency for underbinding at LO seen in the deuteron and
triton seems to persist for symmetric nuclear matter. In a cutoff-
converged Brueckner pair approximation [124], nuclear matter
was found to saturate, but with significant underbinding. This
is in contrast to Weinberg’s prescription, where Deltaless [125]
or Deltaful [126] potentials of O(1) and O(Q2/M2

QCD) do not
yield saturation within the EFT domain. Yet higher potentials
do lead to saturation with this prescription [125–127]. Although
usually presented as a success, the emperor has no clothes: it
means that, if nuclear matter is within the regime of ChEFT,
interactions that are formally of higher order according to NDA
must actually be LO to balance against other LO interactions.
Presumably it is the extra repulsion from 3P0 in a renormalized
approach that saturates nuclear matter. It is not clear how
saturation in Chiral EFT would relate, if it can be related at all,
to the proposal of reference [128] where saturation arises from
the 3N parameter that appears at LO in Pionless EFT. What
is clear is, more EFT calculations beyond the 2N system are
sorely needed!
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5. CONCLUSION

The longstanding problem of renormalization of chiral nuclear
forces has been solved at the 2N and 3N levels. Perhaps not
surprising in hindsight, this solution is a middle ground between
Weinberg’s original prescription and Kaplan, Savage, and Wise’s
suggestion of fully perturbative pions. One-pion exchange is
iterated in lower waves together with the necessary contact
interactions, while all corrections are included in distorted-wave
perturbation theory.

That is not to say that the best solution has been found. Issues
remain regarding exactly how strong the angular-momentum
suppression is and where the non-perturbative/perturbative
boundary lies. Whether the ordering of few-body forces holds
similar surprises is also unknown. A high-quality fit to 2N data
is missing, and there are very few studies of heavier systems.
The extent to which Weinberg’s phenomenologically successful
prescription with a low cutoff can be reproduced remains an

open question, although the first step in grounding it on a
renormalized approach has been made [42]. Fortunately, there
is still plenty to learn.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

I thank Manolo Pavón Valderrama for useful discussions and
Jaber Balal Habashi for comments on the manuscript. This
material was based upon work supported in part by the U.S.
Department of Energy, Office of Science, Office of Nuclear
Physics, under award DE-FG02-04ER41338 and by the European
Union Research and Innovation program Horizon 2020 under
grant No. 654002.

REFERENCES

1. Watson KM, Lepore JV. Radiative corrections to nuclear forces

in the pseudoscalar meson theory. Phys Rev. (1949) 76:1157.

doi: 10.1103/PhysRev.76.1157

2. Matthews PT, Salam A. The renormalization of meson theories. Rev Mod

Phys. (1951) 23:311. doi: 10.1103/RevModPhys.23.311

3. Marshak RE.Meson Physics. New York, NY: Dover (1952).

4. Gartenhaus S. Two-nucleon potential from the cut-off Yukawa theory. Phys

Rev. (1955) 100:900. doi: 10.1103/PhysRev.100.900

5. Machleidt R. Historical perspective and future prospects for

nuclear interactions. Int J Mod Phys E. (2017) 26:1730005.

doi: 10.1142/S0218301317300053

6. Weinberg S. What is quantum field theory, and what did we think it was? In:

Cao T, editor. Conceptual Foundations of Quantum Field Theory. Cambridge:

Cambridge University Press (1999). doi: 10.1017/CBO9780511470813.020

7. Weinberg S. Phenomenological Lagrangians. Physica A. (1979) 96:327.

doi: 10.1016/0378-4371(79)90223-1

8. Gasser J, Leutwyler H. Chiral perturbation theory to one loop. Ann Phys.

(1984) 158:142. doi: 10.1016/0003-4916(84)90242-2

9. Manohar A, Georgi H. Chiral quarks and the nonrelativistic quark model.

Nucl Phys B. (1984) 234:189. doi: 10.1016/0550-3213(84)90231-1

10. Weinberg S. Nuclear forces from chiral Lagrangians. Phys Lett B. (1990)

251:288. doi: 10.1016/0370-2693(90)90938-3

11. Weinberg S. Effective chiral Lagrangians for nucleon pion

interactions and nuclear forces. Nucl Phys B. (1991) 363:3.

doi: 10.1016/0550-3213(91)90231-L

12. Ordóñez C, Ray L, van Kolck U. Nucleon-nucleon potential from

an effective chiral Lagrangian. Phys Rev Lett. (1994) 72:1982.

doi: 10.1103/PhysRevLett.72.1982

13. Ordóñez C, Ray L, van Kolck U. The two nucleon potential from chiral

Lagrangians. Phys Rev C. (1996) 53:2086. doi: 10.1103/PhysRevC.53.2086

14. Epelbaum E, Hammer HW, Meißner UG. Modern theory of nuclear forces.

Rev Mod Phys. (2009) 81:1773. doi: 10.1103/RevModPhys.81.1773

15. Machleidt R, EntemDR. Chiral effective field theory and nuclear forces. Phys

Rept. (2011) 503:1. doi: 10.1016/j.physrep.2011.02.001

16. Entem DR, Machleidt R. Accurate charge dependent nucleon nucleon

potential at fourth order of chiral perturbation theory. Phys Rev C. (2003)

68:041001. doi: 10.1103/PhysRevC.68.041001

17. Navarro Pérez R, Ruiz Arriola E. Uncertainty quantification and falsification

of chiral nuclear potentials. arXiv. 1907.04032.

18. Kaplan DB, Savage MJ, Wise MB. Nucleon nucleon scattering

from effective field theory. Nucl Phys B. (1996) 478:629.

doi: 10.1016/0550-3213(96)00357-4

19. Ordóñez C, van Kolck U. Chiral Lagrangians and nuclear forces. Phys Lett B.

(1992) 291:459. doi: 10.1016/0370-2693(92)91404-W

20. Nogga A, Timmermans RGE, van Kolck U. Renormalization of one-

pion exchange and power counting. Phys Rev C. (2005) 72:054006.

doi: 10.1103/PhysRevC.72.054006

21. Pavón Valderrama M, Ruiz Arriola E. Renormalization of NN

interaction with chiral two pion exchange potential: non-central

phases. Phys Rev C. (2006) 74:064004. doi: 10.1103/PhysRevC.74.0

64004

22. Pavón Valderrama M, Phillips DR. Power counting of contact-range

currents in effective field theory. Phys Rev Lett. (2015) 114:082502.

doi: 10.1103/PhysRevLett.114.082502

23. Beane SR, Bedaque PF, Childress L, Kryjevski A, McGuire J, van Kolck

U. Singular potentials and limit cycles. Phys Rev A. (2001) 64:042103.

doi: 10.1103/PhysRevA.64.042103

24. Pavón Valderrama M, Ruiz Arriola E. Renormalization group analysis of

boundary conditions in potential scattering. Ann Phys. (2008) 323:1037.

doi: 10.1016/j.aop.2007.08.003

25. Bedaque PF, van Kolck U. Nucleon deuteron scattering from an effective field

theory. Phys Lett B. (1998) 428:221. doi: 10.1016/S0370-2693(98)00430-4

26. van Kolck U. Nucleon-nucleon interaction and isospin violation. Lect Notes

Phys. (1998) 513:62. doi: 10.1007/BFb0104898

27. van Kolck U. Effective field theory of short-range forces. Nucl Phys A. (1999)

645:273. doi: 10.1016/S0375-9474(98)00612-5

28. Kaplan DB, Savage MJ, Wise MB. A new expansion for

nucleon-nucleon interactions. Phys Lett B. (1998) 424:390.

doi: 10.1016/S0370-2693(98)00210-X

29. Kaplan DB, Savage MJ, Wise MB. Two nucleon systems from effective field

theory. Nucl Phys B. (1998) 534:329. doi: 10.1016/S0550-3213(98)00440-4

30. Fleming S, Mehen T, Stewart IW. NNLO corrections to nucleon-

nucleon scattering and perturbative pions. Nucl Phys A. (2000) 677:313.

doi: 10.1016/S0375-9474(00)00221-9

31. Long B, van Kolck U. Renormalization of singular potentials and power

counting. Ann Phys. (2008) 323:1304. doi: 10.1016/j.aop.2008.01.003

32. Birse MC. Power counting with one-pion exchange. Phys Rev C. (2006)

74:014003. doi: 10.1103/PhysRevC.74.014003

33. Birse MC. The renormalisation group and nuclear forces. Phil Trans R Soc

Lond A. (2011) 369:2662. doi: 10.1098/rsta.2010.0381

Frontiers in Physics | www.frontiersin.org 19 May 2020 | Volume 8 | Article 79117

https://doi.org/10.1103/PhysRev.76.1157
https://doi.org/10.1103/RevModPhys.23.311
https://doi.org/10.1103/PhysRev.100.900
https://doi.org/10.1142/S0218301317300053
https://doi.org/10.1017/CBO9780511470813.020
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0550-3213(84)90231-1
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1103/PhysRevLett.72.1982
https://doi.org/10.1103/PhysRevC.53.2086
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1016/0550-3213(96)00357-4
https://doi.org/10.1016/0370-2693(92)91404-W
https://doi.org/10.1103/PhysRevC.72.054006
https://doi.org/10.1103/PhysRevC.74.064004
https://doi.org/10.1103/PhysRevLett.114.082502
https://doi.org/10.1103/PhysRevA.64.042103
https://doi.org/10.1016/j.aop.2007.08.003
https://doi.org/10.1016/S0370-2693(98)00430-4
https://doi.org/10.1007/BFb0104898
https://doi.org/10.1016/S0375-9474(98)00612-5
https://doi.org/10.1016/S0370-2693(98)00210-X
https://doi.org/10.1016/S0550-3213(98)00440-4
https://doi.org/10.1016/S0375-9474(00)00221-9
https://doi.org/10.1016/j.aop.2008.01.003
https://doi.org/10.1103/PhysRevC.74.014003
https://doi.org/10.1098/rsta.2010.0381
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


van Kolck Renormalization of Chiral Nuclear Forces

34. Pavón Valderrama M. Power counting and wilsonian renormalization

in nuclear effective field theory. Int J Mod Phys E. (2016) 25:1641007.

doi: 10.1142/S021830131641007X

35. Hammer HW, König S, van Kolck U. Nuclear effective field theory: status

and perspectives. arXiv. 1906.12122.

36. Bedaque PF, van Kolck U. Effective field theory for few

nucleon systems. Ann Rev Nucl Part Sci. (2002) 52:339.

doi: 10.1146/annurev.nucl.52.050102.090637

37. Friar JL. Dimensional power counting in nuclei. Few Body Syst. (1997)

22:161. doi: 10.1007/s006010050059

38. Weinberg S. Three body interactions among nucleons and pions. Phys Lett

B. (1992) 295:114. doi: 10.1016/0370-2693(92)90099-P

39. van Kolck U. Few nucleon forces from chiral Lagrangians. Phys Rev C. (1994)

49:2932. doi: 10.1103/PhysRevC.49.2932

40. Fujita J, Miyazawa H. Pion theory of three-body forces. Prog Theor Phys.

(1957) 17:360. doi: 10.1143/PTP.17.360

41. Pandharipande VR, Phillips DR, van Kolck U. Delta effects in pion-

nucleon scattering and the strength of the two-pion-exchange three-nucleon

interaction. Phys Rev C. (2005) 71:064002. doi: 10.1103/PhysRevC.71.064002

42. Pavón Valderrama M. Scattering amplitudes versus potentials in nuclear

effective field theory: is there a potential compromise? arXiv. 1902.08172.

43. Frank W, Land DJ, Spector RM. Singular potentials. Rev Mod Phys. (1971)

43:36. doi: 10.1103/RevModPhys.43.36

44. Case KM. Singular potentials. Phys Rev. (1950) 80:797.

doi: 10.1103/PhysRev.80.797

45. Landau LD, Lifshitz EM. Quantum Mechanics. London: Pergamon Press

(1965).

46. Camblong HE, Ordóñez CR. Anomaly in conformal quantum mechanics:

from molecular physics to black holes. Phys Rev D. (2003) 68:125013.

doi: 10.1103/PhysRevD.68.125013

47. Camblong HE, Ordóñez CR. Renormalization in conformal quantum

mechanics. Phys Lett A. (2005) 345:22. doi: 10.1016/j.physleta.2005.06.110

48. Perelomov AM, Popov VS. Collapse onto scattering centre in quantum

mechanics. Teor Mat Fiz. (1970) 4:48. doi: 10.1007/BF01246666

49. Bawin M, Coon SA. The singular inverse square potential, limit

cycles and selfadjoint extensions. Phys Rev A. (2003) 67:042712.

doi: 10.1103/PhysRevA.67.042712

50. Braaten E, Phillips D. The renormalization group limit cycle for the 1/r2

potential. Phys Rev A. (2004) 70:052111. doi: 10.1103/PhysRevA.70.052111

51. Alberg M, Bawin M, Brau F. Renormalization of the singular attractive 1/r4

potential. Phys Rev A. (2005) 71:022108. doi: 10.1103/PhysRevA.71.022108

52. Hammer HW, Swingle BG. On the limit cycle for the 1/r2 potential in

momentum space. Ann Phys. (2006) 321:306. doi: 10.1016/j.aop.2005.04.017

53. Bouaziz D, Bawin M. Singular inverse-square potential: renormalization and

self-adjoint extensions for medium to weak coupling. Phys Rev A. (2014)

89:022113. doi: 10.1103/PhysRevA.89.022113

54. Odell D, Deltuva A, Bonilla J, Platter L. Renormalization of a

finite range inverse cube potential. Phys Rev C. (2019) 100:054001.

doi: 10.1103/PhysRevC.100.054001

55. Hammer HW, Platter L. Efimov physics from a renormalization

group perspective. Phil Trans R Soc Lond A. (2011) 369:2679.

doi: 10.1098/rsta.2011.0001

56. Bulycheva KM, Gorsky AS. Limit cycles in renormalization group dynamics.

Phys Usp. (2014) 57:171. doi: 10.3367/UFNe.0184.201402g.0182

57. Efimov VN. Weakly-bound states of 3 resonantly-interacting particles. Sov J

Nucl Phys. (1971) 12:589.

58. Efimov V. Energy levels arising form the resonant two-body forces in a

three-body system. Phys Lett B. (1970) 33:563. doi: 10.1016/0370-2693(70)

90349-7

59. Bedaque PF, Hammer HW, van Kolck U. Renormalization of the three-

body system with short range interactions. Phys Rev Lett. (1999) 82:463.

doi: 10.1103/PhysRevLett.82.463

60. Bedaque PF, Hammer HW, van Kolck U. The three boson system

with short range interactions. Nucl Phys A. (1999) 646:444.

doi: 10.1016/S0375-9474(98)00650-2

61. Braaten E, Hammer HW. Universality in few-body systems

with large scattering length. Phys Rept. (2006) 428:259.

doi: 10.1016/j.physrep.2006.03.001

62. Beane SR, Bedaque PF, Savage MJ, van Kolck U. Towards a

perturbative theory of nuclear forces. Nucl Phys A. (2002) 700:377.

doi: 10.1016/S0375-9474(01)01324-0

63. Pavón Valderrama M, Ruiz Arriola E. Renormalization of chiral two

pion exchange NN interactions with Delta-excitations: correlations

in the partial wave expansion. Phys Rev C. (2011) 83:044002.

doi: 10.1103/PhysRevC.83.044002

64. Breit G. The scattering of slow neutrons by bound protons. 1. Methods of

calculation. Phys Rev. (1947) 71:215. doi: 10.1103/PhysRev.71.215

65. Greene CH, Rau ARP, Fano U. General form of quantum-defect theory. II.

Phys Rev A. (1982) 26:2441. doi: 10.1103/PhysRevA.26.2441

66. Behncke H. Some remarks on singular attractive potentials. Nuovo Cim A.

(1968) 55:780. doi: 10.1007/BF02819574

67. Grießhammer HW. Assessing theory uncertainties in EFT power

countings from residual cutoff dependence. PoS CD. (2016) 15:104.

doi: 10.22323/1.253.0104

68. Long B, Yang CJ. Short-range nuclear forces in singlet channels. Phys Rev C.

(2012) 86:024001. doi: 10.1103/PhysRevC.86.024001

69. Epelbaum E, Gegelia J. Regularization, renormalization and ‘peratization’

in effective field theory for two nucleons. Eur Phys J A. (2009) 41:341.

doi: 10.1140/epja/i2009-10833-3

70. Feinberg G, Pais A. A field theory of weak interactions. I. Phys Rev. (1963)

131:2724. doi: 10.1103/PhysRev.131.2724

71. Feinberg G, Pais A. A field theory of weak interactions. II. Phys Rev. (1964)

133:B477. doi: 10.1103/PhysRev.133.B477

72. Phillips DR, Cohen TD. How short is too short? Constraining contact

interactions in nucleon-nucleon scattering. Phys Lett B. (1997) 390:7.

doi: 10.1016/S0370-2693(96)01411-6

73. Phillips DR, Beane SR, Cohen TD. Nonperturbative regularization and

renormalization: simple examples from nonrelativistic quantum mechanics.

Ann Phys. (1998) 263:255. doi: 10.1006/aphy.1997.5771

74. Beane SR, Cohen TD, Phillips DR. The potential of effective

field theory in NN scattering. Nucl Phys A. (1998) 632:445.

doi: 10.1016/S0375-9474(98)00007-4

75. Wigner EP. Lower limit for the energy derivative of the scattering phase shift.

Phys Rev. (1955) 98:145. doi: 10.1103/PhysRev.98.145

76. Stetcu I, Rotureau J, Barrett BR, van Kolck U. An effective field

theory approach to two trapped particles. Ann Phys. (2010) 325:1644.

doi: 10.1016/j.aop.2010.02.008

77. Kaplan DB. More effective field theory for nonrelativistic scattering. Nucl

Phys B. (1997) 494:471. doi: 10.1016/S0550-3213(97)00178-8

78. Epelbaum E, Gasparyan AM, Gegelia J, Meißner UG. How (not) to

renormalize integral equations with singular potentials in effective field

theory. Eur Phys J A. (2018) 54:186. doi: 10.1140/epja/i2018-12632-1

79. Pavón Valderrama M. Comment on “How (not) to renormalize integral

equations with singular potentials in effective field theory”. Eur Phys J A.

(2019) 55:55. doi: 10.1140/epja/i2019-12703-9

80. Epelbaum E, Gasparyan AM, Gegelia J, Meißner UG. Reply to

Comment on “How (not) to renormalize integral equations with

singular potentials in effective field theory”. Eur Phys J A. (2019) 55:56.

doi: 10.1140/epja/i2019-12751-1

81. Bedaque PF, Hammer HW, van Kolck U. Effective theory of the triton. Nucl

Phys A. (2000) 676:357. doi: 10.1016/S0375-9474(00)00205-0

82. König S, Grießhammer HW, Hammer HW, van Kolck U. Nuclear

physics around the unitarity limit. Phys Rev Lett. (2017) 118:202501.

doi: 10.1103/PhysRevLett.118.202501

83. Soto J, Tarrús J. Effective field theory with dibaryon degrees of freedom. Phys

Rev C. (2008) 78:024003. doi: 10.1103/PhysRevC.78.024003

84. Stoks VGJ, Klomp RAM, Rentmeester MCM, de Swart JJ. Partial wave

analysis of all nucleon-nucleon scattering data below 350-MeV. Phys Rev C.

(1993) 48:792. doi: 10.1103/PhysRevC.48.792

85. Cohen TD, Hansen JM. The predictive power of effective field theory in

NN scattering: 3S1-3D1 mixing at next-to-next-to leading order. nucl-

th/9908049.

86. Kaplan DB. On the convergence of nuclear effective field theory with

perturbative pions. arXiv. 1905.07485

87. Wu S, Long B. PerturbativeNN scattering in chiral effective field theory. Phys

Rev C. (2019) 99:024003. doi: 10.1103/PhysRevC.99.024003

Frontiers in Physics | www.frontiersin.org 20 May 2020 | Volume 8 | Article 79118

https://doi.org/10.1142/S021830131641007X
https://doi.org/10.1146/annurev.nucl.52.050102.090637
https://doi.org/10.1007/s006010050059
https://doi.org/10.1016/0370-2693(92)90099-P
https://doi.org/10.1103/PhysRevC.49.2932
https://doi.org/10.1143/PTP.17.360
https://doi.org/10.1103/PhysRevC.71.064002
https://doi.org/10.1103/RevModPhys.43.36
https://doi.org/10.1103/PhysRev.80.797
https://doi.org/10.1103/PhysRevD.68.125013
https://doi.org/10.1016/j.physleta.2005.06.110
https://doi.org/10.1007/BF01246666
https://doi.org/10.1103/PhysRevA.67.042712
https://doi.org/10.1103/PhysRevA.70.052111
https://doi.org/10.1103/PhysRevA.71.022108
https://doi.org/10.1016/j.aop.2005.04.017
https://doi.org/10.1103/PhysRevA.89.022113
https://doi.org/10.1103/PhysRevC.100.054001
https://doi.org/10.1098/rsta.2011.0001
https://doi.org/10.3367/UFNe.0184.201402g.0182
https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1103/PhysRevLett.82.463
https://doi.org/10.1016/S0375-9474(98)00650-2
https://doi.org/10.1016/j.physrep.2006.03.001
https://doi.org/10.1016/S0375-9474(01)01324-0
https://doi.org/10.1103/PhysRevC.83.044002
https://doi.org/10.1103/PhysRev.71.215
https://doi.org/10.1103/PhysRevA.26.2441
https://doi.org/10.1007/BF02819574
https://doi.org/10.22323/1.253.0104
https://doi.org/10.1103/PhysRevC.86.024001
https://doi.org/10.1140/epja/i2009-10833-3
https://doi.org/10.1103/PhysRev.131.2724
https://doi.org/10.1103/PhysRev.133.B477
https://doi.org/10.1016/S0370-2693(96)01411-6
https://doi.org/10.1006/aphy.1997.5771
https://doi.org/10.1016/S0375-9474(98)00007-4
https://doi.org/10.1103/PhysRev.98.145
https://doi.org/10.1016/j.aop.2010.02.008
https://doi.org/10.1016/S0550-3213(97)00178-8
https://doi.org/10.1140/epja/i2018-12632-1
https://doi.org/10.1140/epja/i2019-12703-9
https://doi.org/10.1140/epja/i2019-12751-1
https://doi.org/10.1016/S0375-9474(00)00205-0
https://doi.org/10.1103/PhysRevLett.118.202501
https://doi.org/10.1103/PhysRevC.78.024003
https://doi.org/10.1103/PhysRevC.48.792
https://doi.org/10.1103/PhysRevC.99.024003
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


van Kolck Renormalization of Chiral Nuclear Forces

88. The SAID Program at the George Washington University. Available online at:

http://gwdac.phys.gwu.edu/

89. Birse MC. Deconstructing triplet nucleon-nucleon scattering. Phys Rev C.

(2007) 76:034002. doi: 10.1103/PhysRevC.76.034002

90. Frederico T, Timóteo VS, Tomio L. Renormalization of the

one pion exchange interaction. Nucl Phys A. (1999) 653:209.

doi: 10.1016/S0375-9474(99)00234-1

91. Pavón Valderrama M, Ruiz Arriola E. Renormalization of the

deuteron with one pion exchange. Phys Rev C. (2005) 72:054002.

doi: 10.1103/PhysRevC.72.054002

92. Yang CJ, Elster C, Phillips DR. Subtractive renormalization of the NN

scattering amplitude at leading order in chiral effective theory. Phys Rev C.

(2008) 77:014002. doi: 10.1103/PhysRevC.77.014002

93. Song YH, Lazauskas R, van Kolck U. Triton binding energy and neutron-

deuteron scattering up to next-to-leading order in chiral effective field

theory. Phys Rev C. (2017) 96:024002. doi: 10.1103/PhysRevC.96.024002

94. Eiras D, Soto J. Renormalizing the Lippmann-Schwinger equation

for the one pion exchange potential. Eur Phys J A. (2003) 17:89.

doi: 10.1140/epja/i2002-10138-1

95. Epelbaum E,Meißner UG. On the renormalization of the one-pion exchange

potential and the consistency of Weinberg’s power counting. Few Body Syst.

(2013) 54:2175. doi: 10.1007/s00601-012-0492-1

96. Pavón Valderrama M, Ruiz Arriola E. Renormalization of NN interaction

with chiral two pion exchange potential. central phases and the deuteron.

Phys Rev C. (2006) 74:054001. doi: 10.1103/PhysRevC.74.054001

97. Entem DR, Ruiz Arriola E, Pavón Valderrama M, Machleidt R.

Renormalization of chiral two-pion exchange NN interactions.

Momentum versus coordinate space. Phys Rev C. (2008) 77:044006.

doi: 10.1103/PhysRevC.77.044006

98. Yang CJ, Elster C, Phillips DR. Subtractive renormalization of the chiral

potentials up to next-to-next-to-leading order in higher NN partial waves.

Phys Rev C. (2009) 80:034002. doi: 10.1103/PhysRevC.80.034002

99. Yang CJ, Elster C, Phillips DR. Subtractive renormalization of the NN

interaction in chiral effective theory up to next-to-next-to-leading order: S

waves. Phys Rev C. (2009) 80:044002. doi: 10.1103/PhysRevC.80.044002

100. Zeoli C, Machleidt R, Entem DR. Infinite-cutoff renormalization of the

chiral nucleon-nucleon interaction at N3LO. Few Body Syst. (2013) 54:2191.

doi: 10.1007/s00601-012-0481-4

101. Lynn JE, Tews I, Carlson J, Gandolfi S, Gezerlis A, Schmidt KE,

et al. Chiral three-nucleon interactions in light nuclei, neutron-α

scattering, and neutron matter. Phys Rev Lett. (2016) 116:062501.

doi: 10.1103/PhysRevLett.116.062501

102. Pavón Valderrama M, Sánchez Sánchez M, Yang CJ, Long B, Carbonell J, van

Kolck U. Power counting in peripheral partial waves: the singlet channels.

Phys Rev C. (2017) 95:054001. doi: 10.1103/PhysRevC.95.054001

103. Pavón Valderrama M, Ruiz Arriola E. Renormalization of singlet NN

scattering with one pion exchange and boundary conditions. Phys Lett B.

(2004) 580:149. doi: 10.1016/j.physletb.2003.11.037

104. Long B, Yang CJ. Renormalizing chiral nuclear forces: a case study of 3P0.

Phys Rev C. (2011) 84:057001. doi: 10.1103/PhysRevC.84.057001

105. Long B, Yang CJ. Renormalizing chiral nuclear forces: triplet channels. Phys

Rev C. (2012) 85:034002. doi: 10.1103/PhysRevC.85.034002

106. Lynn JE, Tews I, Carlson J, Gandolfi S, Gezerlis A, Schmidt KE, et al.

Quantum Monte Carlo calculations of light nuclei with local chiral

two- and three-nucleon interactions. Phys Rev C. (2017) 96:054007.

doi: 10.1103/PhysRevC.96.054007

107. Tews I, Huth L, Schwenk A. Large-cutoff behavior of local chiral

effective field theory interactions. Phys Rev C. (2018) 98:024001.

doi: 10.1103/PhysRevC.98.024001

108. Pavón Valderrama M. Perturbative renormalizability of chiral two pion

exchange in nucleon-nucleon scattering. Phys Rev C. (2011) 83:024003.

doi: 10.1103/PhysRevC.83.024003

109. Pavón Valderrama M. Perturbative renormalizability of chiral two pion

exchange in nucleon-nucleon scattering: P- and D-waves. Phys Rev C. (2011)

84:064002. doi: 10.1103/PhysRevC.84.064002

110. Kaiser N, Brockmann R, Weise W. Peripheral nucleon-nucleon

phase shifts and chiral symmetry. Nucl Phys A. (1997) 625:758.

doi: 10.1016/S0375-9474(97)00586-1

111. Ballot JL, Robilotta MR, da Rocha CA. NN scattering: chiral

predictions for asymptotic observables. Phys Rev C. (1998) 57:1574.

doi: 10.1103/PhysRevC.57.1574

112. Kaiser N, Gerstendorfer S, Weise W. Peripheral NN scattering: role of delta

excitation, correlated two pion and vector meson exchange. Nucl Phys A.

(1998) 637:395. doi: 10.1016/S0375-9474(98)00234-6

113. Birse MC. Deconstructing 1S0 nucleon-nucleon scattering. Eur Phys J A.

(2010) 46:231. doi: 10.1140/epja/i2010-11034-9

114. Long B. Improved convergence of chiral effective field theory for 1S0 of

NN scattering. Phys Rev C. (2013) 88:014002. doi: 10.1103/PhysRevC.88.0

14002

115. Beane SR, Savage MJ. Rearranging pionless effective field theory. Nucl Phys

A. (2001) 694:511. doi: 10.1016/S0375-9474(01)01088-0

116. Ando SI, Hyun CH. Effective range corrections from effective field theory

with di-baryon fields and perturbative pions. Phys Rev C. (2012) 86:024002.

doi: 10.1103/PhysRevC.86.024002

117. Sánchez Sánchez M, Yang CJ, Long B, van Kolck U. Two-nucleon 1S0
amplitude zero in chiral effective field theory. Phys Rev C. (2018) 97:024001.

doi: 10.1103/PhysRevC.97.024001

118. Lutz M. Effective chiral theory of nucleon-nucleon scattering. Nucl Phys A.

(2000) 677:241. doi: 10.1016/S0375-9474(00)00206-2

119. Stoks VGJ, Klomp RAM, Terheggen CPF, de Swart JJ. Construction

of high quality N N potential models. Phys Rev C. (1994) 49:2950.

doi: 10.1103/PhysRevC.49.2950

120. Behrendt J, Epelbaum E, Gegelia J, Meißner UG, Nogga A. Two-nucleon

scattering in a modified Weinberg approach with a symmetry-preserving

regularization. Eur Phys J A. (2016) 52:296. doi: 10.1140/epja/i2016-16296-5

121. Ren XL, Li KW, Geng LS, Long BW, Ring P,Meng J. Leading order relativistic

chiral nucleon-nucleon interaction. Chin Phys C. (2018) 42:014103.

doi: 10.1088/1674-1137/42/1/014103

122. Ren XL, Li KW, Geng LS, Meng J. Relativistic chiral description of the 1S0
nucleon-nucleon scattering. arXiv. 1712.10083

123. Kievsky A, Viviani M, Gattobigio M, Girlanda L. Implications of Efimov

physics for the description of three and four nucleons in chiral effective

field theory. Phys Rev C. (2017) 95:024001. doi: 10.1103/PhysRevC.95.

024001

124. Machleidt R, Liu P, Entem DR, Ruiz Arriola E. Renormalization

of the leading-order chiral nucleon-nucleon interaction and bulk

properties of nuclear matter. Phys Rev C. (2010) 81:024001.

doi: 10.1103/PhysRevC.81.024001

125. Sammarruca F, Marcucci LE, Coraggio L, Holt JW, Itaco N, Machleidt R.

Nuclear and neutron matter equations of state from high-quality potentials

up to fifth order of the chiral expansion. arXiv. 1807.06640

126. Ekström A, Hagen G, Morris TD, Papenbrock T, Schwartz PD.

1 isobars and nuclear saturation. Phys Rev C. (2018) 97:024332.

doi: 10.1103/PhysRevC.97.024332

127. Drischler C, Hebeler K, Schwenk A. Chiral interactions up to next-to-

next-to-next-to-leading order and nuclear saturation. Phys Rev Lett. (2019)

122:042501. doi: 10.1103/PhysRevLett.122.042501

128. van Kolck U. Unitarity and discrete scale invariance. Few Body Syst. (2017)

58:112. doi: 10.1007/s00601-017-1271-9

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 van Kolck. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 21 May 2020 | Volume 8 | Article 79119

http://gwdac.phys.gwu.edu/
https://doi.org/10.1103/PhysRevC.76.034002
https://doi.org/10.1016/S0375-9474(99)00234-1
https://doi.org/10.1103/PhysRevC.72.054002
https://doi.org/10.1103/PhysRevC.77.014002
https://doi.org/10.1103/PhysRevC.96.024002
https://doi.org/10.1140/epja/i2002-10138-1
https://doi.org/10.1007/s00601-012-0492-1
https://doi.org/10.1103/PhysRevC.74.054001
https://doi.org/10.1103/PhysRevC.77.044006
https://doi.org/10.1103/PhysRevC.80.034002
https://doi.org/10.1103/PhysRevC.80.044002
https://doi.org/10.1007/s00601-012-0481-4
https://doi.org/10.1103/PhysRevLett.116.062501
https://doi.org/10.1103/PhysRevC.95.054001
https://doi.org/10.1016/j.physletb.2003.11.037
https://doi.org/10.1103/PhysRevC.84.057001
https://doi.org/10.1103/PhysRevC.85.034002
https://doi.org/10.1103/PhysRevC.96.054007
https://doi.org/10.1103/PhysRevC.98.024001
https://doi.org/10.1103/PhysRevC.83.024003
https://doi.org/10.1103/PhysRevC.84.064002
https://doi.org/10.1016/S0375-9474(97)00586-1
https://doi.org/10.1103/PhysRevC.57.1574
https://doi.org/10.1016/S0375-9474(98)00234-6
https://doi.org/10.1140/epja/i2010-11034-9
https://doi.org/10.1103/PhysRevC.88.014002
https://doi.org/10.1016/S0375-9474(01)01088-0
https://doi.org/10.1103/PhysRevC.86.024002
https://doi.org/10.1103/PhysRevC.97.024001
https://doi.org/10.1016/S0375-9474(00)00206-2
https://doi.org/10.1103/PhysRevC.49.2950
https://doi.org/10.1140/epja/i2016-16296-5
https://doi.org/10.1088/1674-1137/42/1/014103
https://doi.org/10.1103/PhysRevC.95.024001
https://doi.org/10.1103/PhysRevC.81.024001
https://doi.org/10.1103/PhysRevC.97.024332
https://doi.org/10.1103/PhysRevLett.122.042501
https://doi.org/10.1007/s00601-017-1271-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


REVIEW
published: 28 January 2020

doi: 10.3389/fphy.2020.00001

Frontiers in Physics | www.frontiersin.org 1 January 2020 | Volume 8 | Article 1

Edited by:

Ruprecht Machleidt,

University of Idaho, United States

Reviewed by:

Victor Mokeev,

Thomas Jefferson National

Accelerator Facility, United States

Roelof Bijker,

National Autonomous University of

Mexico, Mexico

*Correspondence:

Enrique Ruiz Arriola

earriola@ugr.es

Jose Enrique Amaro

amaro@ugr.es

Specialty section:

This article was submitted to

Nuclear Physics,

a section of the journal

Frontiers in Physics

Received: 21 November 2019

Accepted: 06 January 2020

Published: 28 January 2020

Citation:

Ruiz Arriola E, Amaro JE and Navarro

Pérez R (2020) NN Scattering and

Nuclear Uncertainties.

Front. Phys. 8:1.

doi: 10.3389/fphy.2020.00001

NN Scattering and Nuclear
Uncertainties
Enrique Ruiz Arriola 1*, Jose Enrique Amaro 1* and Rodrigo Navarro Pérez 2

1Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad

de Granada, Granada, Spain, 2Department of Physics, San Diego State University, San Diego, CA, United States

Ab initio calculations in Nuclear physics for atomic nuclei require a specific knowledge

of the interactions among their constituents, protons and neutrons. In particular, NN

interactions can be constrained down to scale resolutions of 1r ∼ 0.6 fm from the study

of phase shifts below the pion production threshold. However, this allows for ambiguities

and uncertainties which have an impact on finite nuclei, nuclear- and neutron-matter

properties. On the other hand the nuclear many body problem is intrinsically difficult

and the computational cost increases with numerical precision and number of nucleons.

However, it is unclear what the physical precision should be for these calculations. In

this contribution we review much of the work done in Granada to encompass both the

uncertainties stemming from the NN scattering database in light nuclei such as triton and

alpha particle and the numerical precision required by the solution method.

Keywords: nucleon-nucleon interaction, scattering data, uncertainty quantification, nuclear binding, effective

interactions, statistical analysis

1. INTRODUCTION

One of the main goals in Theoretical Nuclear Physics for many years has been to achieve a
sufficiently accurate ab initio solution of the Nuclear Many Body Problem from a reductionist
perspective. Within the present context this means starting with the forces among the hadronic
constituents, protons and neutrons, and solving the corresponding quantum mechanical problem.
While this has been widely and openly recognized as an extremely difficult problem, it already
represents a simplification as compared to the fundamental problem where the constituents are
quarks and gluons building the nucleons and the interactions are deduced from the gauge principle
in QCD. The nuclear problem schematically comprises two main steps (i) the determination of the
basic interactions from spectroscopy and reactions at the few body level and (ii) a precise method
of solution of the inferred interactions for the many body problem. The predictive power of the
theory corresponds therefore to the relation between the input (nuclear two-, three-, four-body,
and so on, forces) and the output nuclear binding energies, form factors and nuclear reactions, and
the corresponding uncertainties.

The seminal paper of Yukawa [1] established the first theoretical evidence that the nuclear force
has a finite range by the particle exchange mechanism. The first determination of the tensor force
and its consequences for the deuteron were analyzed by Bethe [2, 3]. The first χ2 statistical analyzes
of NN scattering data below pion production threshold started in the mid fifties [4] (an account up
to 1966 can be traced from Arndt and Macgregor [5]). A modified χ2 method was introduced [6]
in order to include data without absolute normalization. The steady increase along the years in
the number of scattering data with better precision generated incompatibilities and hence different
criteria had to be introduced [7–9] to discard inconsistent data. For a comprehensive review up to
1977 see [10–13]. For a historical presentation before 1989 we recommend Machleidt [14].
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Error analysis of NN phase-shifts for several partial waves
became first possible when the Nijmegen group [15] carried out
a partial wave analysis (PWA) fitting about 4,000 experimental
np and pp data, after rejecting about 1,000 inconsistent data
with a 3σ criterion. The analysis resulted in a value χ2/dof ∼
1. In the fit the potential was an energy dependent square
well of radius 1.4 fm, plus one-pion-exchange (OPE) and
charge-dependent (CD) contributions starting at 1.4 fm, and
a one-boson-exchange (OBE) piece operating below 2–2.5 fm.
Unfortunately, the required energy dependence becomes messy
for nuclear structure calculations. In the next decade a variety of
NN (energy independent) potentials appeared in the literature
fitting a large body of scattering data with χ2/dof ∼ 1 [15–
19], but surprisingly error estimates on potential parameters
were not made. While all these modern potentials share the
local OPE and CD tail and include electromagnetic effects, the
unknown short range components of these potentials display
a variety of forms and shapes: local potentials [16], non-
local ones with angular momentum dependence [17], energy
dependence [15], or momentum dependence [16, 18, 19]. While
in principle p−, L−, and E−non-localities are equivalent on-
shell (see e.g., Amghar and Desplanques [20] for a proof in a
1/MN expansion) they reflect truly different physical effects and
generally one should consider them as independent quantities.
Any specific choice results in a bias and hence becomes a source
of systematic errors.

Error propagation from nucleon-nucleon data to three-
and four-nucleon binding energies was pioneered in Adam
et al. [21]. A rudimentary method based on coarse grained
NN interactions was proposed [22, 23] providing a first guess
for error on bindings in nuclei and neutron and nuclear
matter. The Granada analysis of the triton using hyper-spherical
harmonics method was performed in Navarro Perez et al. [24].
The triton and the alpha particle were analyzed by solving
the Faddeev equations for 3H and the Yakubovsky equations
for 4He in [25], and in ab initio no-core full configuration
calculations [26]. Theoretical uncertainties in the elastic nucleon-
deuteron scattering observables were calculated in Skibinski
et al. [27].

While the history of the NN force and its applications to
nuclear physics is rather long, uncertainty quantification has
not been addressed seriously until recently (see e.g., [28] for
a review prefacing a full volume of the ISNET community).
There are several reasons why we think that stressing this
aspect of the theory may be particularly useful and fruitful.
One obvious one is to provide sensible error estimates in the
theoretical calculations. The traditional way was to try out several
schemes and compare the different results. Another, less obvious
reason, is to address the many body nuclear problem within
the realistic physical accuracy, rather than the computational
accuracy as it has been the customary approach up to now. This
applies in particular to the a priori accuracy of the solution
of the nuclear many body problem, which may eventually
be relaxed as to facilitate calculations not addressed before.
However, this may occur at a high price; it is not unthinkable
that any realistic attempt to quantify the theoretical uncertainties
may end up with a lack of predictive power on the side of
the theory.

We distinguish as usual in error analyses two sources
of uncertainties: statistical errors stemming from the data
uncertainties for a fixed form of the potential, and systematic
errors arising from the different most-likely forms of the
potentials. Assuming they are independent, the total uncertainty
corresponds to adding both uncertainties in quadrature. In what
follows it is advantageous to take the viewpoint of considering
any of the different potentials as an independent but possibly
biased way to determine the scattering amplitudes and/or phase-
shifts. Because the biases introduced in all single potential are
independent on each other, a randomization of systematic errors
makes sense.

A prerequisite for such an analysis is to discern as much
as possible between statistical and systematic uncertainties. The
former correspond to the proper propagation of the experimental
input while the latter is concerned with the model or scheme
dependence of the calculation procedure. Systematic errors may
include the genuine bias to describe the physics and truncation
errors which are related to the approximate way the calculation
is carried out. At the present stage, the model bias is the largest
source of uncertainty.

After many years of tremendous efforts and steady progress,
state of the art calculations suggest that considerable success can
be expected if one includes the current knowledge of the two-,
three-body forces and a variety of many body techniques are
applied. Going beyond four-body forces has never been tried
out, partly because of technical difficulties but also because of
the appearance of α−clustering, based on the large stability and
compactness of the 4He nucleus, suggests that five body forces
are marginal1.

As already said, a credible quantification of the accuracy of the
theory requires a judicious determination of all sources of error
in the final results, including both the experimental information
needed to pin down the interactions as well as the convergence of
the numerical procedure used to solve the many body problem.
Given the formidable computational effort needed to implement
accurately many body calculations—even for light nuclei—an a
priori determination of the errors induced from input data would
very helpful. This would set an useful accuracy goal and a limit
beyond which all refinements in the numerics would not improve
the theoretical accuracy of the output. The purpose of the present
work is to review estimates on such limiting accuracy based on
the imperfect knowledge of the basic two body interactions.

Unfortunately, the situation we face in strong interactions
in general and in nuclear physics in particular is to compare
and validate inaccurate theories on the basis of accurate
data. No theoretical predictions outperforming experimental
measurements in accuracy are easily found. To make our point
and concern more clear let us take for instance the case of nuclear
binding energies from a semi-empirical point of view, where a
direct reference to nuclear forces is mostly avoided. Bindings are
experimentally known to high accuracy, 1B = 0.01 − 10 KeV,
whereas liquid-drop model inspired mass fit formulas yield a
lower theoretical accuracy 1B = 0.6 MeV (see e.g., Toivanen
et al. [29] and references therein). This suggests that already

1Actually there are no purely contact interactions beyond four body ones for fields

with (n, p,↑,↓) degrees of freedom.

Frontiers in Physics | www.frontiersin.org 2 January 2020 | Volume 8 | Article 1121

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ruiz Arriola et al. NN Scattering and Nuclear Uncertainties

within such a simple picture the phenomenological theory is
generally not expected to be more accurate in its predictions than
experiment. Actually, according to the standard χ2/dof ∼ 1
criterion the previous results show that the theory is literally
incompatible with data, and thus not even an error analysis based
on uncertainty propagation may be undertaken. The situation
is presumably less optimistic for the ab initio approach based
entirely on the knowledge of (multiparticle) nuclear forces and a
skillful solution of the nuclear many body problem. This provides
a motivation to quantify the accuracy needed to solve the many
body problem.

2. STATEMENT OF THE PROBLEM

Let us be more specific on the meaning of uncertainty
quantification in nuclear physics. From aHamiltonian describing
A-nucleons, HA, with kinetic energy T = ∑A

i=1 p
2
i /2M and

multi-nucleon forces VnN ,

HA = T + V2N + V3N + V4N + . . . , (1)

where

V2N =
∑

i<j

Vij , V3N =
∑

i<j<k

Vijk , V4N =
∑

i<j<k<l

Vijkl . . .

(2)
one proceeds to solve the Schrödinger equation

HA9n = En,A9n. (3)

In the absence of useful and accurate QCD-ab initio
determinations, phenomenological V2N interactions are
adjusted to NN scattering data and the deuteron, 2H (A = 2),
binding energy, while V3N enter into the 3H and 3He (A = 3),
bindings, V4N in 4He (A = 4), and so on. Thus, the theoretical
predictive power flow is expected to be from light to heavy nuclei.
For instance, in the case of the binding energy the problem of
error propagation based on NN force variations corresponds to

VNN = V̄NN ± 1VNN → En(A) = Ēn(A)± 1En(A) (4)

The meaning of the variation 1VNN is a bit subtle, since there
are variations which are (scattering) equivalent and hence do not
change the scattering observables.

We are interested firstly in the NN scattering problem [30].
Quite generally we will consider non-relativistic scattering of two
particles with masses m1 and m2 where H = H0 + V and
H0 = p2/2µ is the kinetic energy and µ = m1m2/(m1 + m2)
the reduced mass (we drop “NN” for simplicity). The S-matrix is
defined as a boundary condition problem for E ≥ 0

S(E+ iǫ) = 1− 2π iδ(E−H0)T(E+ iǫ) (5)

where we have introduced the T-matrix which satisfies the
scattering equation in operator form,

T(E) = V + VG0(E)T(E)

= V + VG0(E)V + · · · = V(1− G0(E)V)
−1 (6)

where in the second equality we write the exact summation of the
perturbative series. Other (complex) energy values are defined
by analytical continuation. The T-matrix satisfies the reflection
property T(E + iǫ)† = T(E − iǫ) if V = V† in Equation (6) and
hence the unitarity condition, S(E + iǫ)S(E + iǫ)† = 1, follows
also from V = V† in Equation (6). The phase-shift is defined in
terms of the eigenvalues of the S-matrix, so that Sϕα = e2iδαϕα

and for rotational invariant interactions (we neglect spin to ease
the notation) the scattering amplitudeM(p′, p) is given by

M(p′, p) =
∑

lm

4πYlm(p)Ylm(p
′)
eiδl(p) sin δl(p)

p

= −2µ

4π
〈Ep′|T(E+ iǫ)|Ep〉

∣

∣

∣

Ep=Ep′=E
(7)

with Ylm(p) the spherical harmonics and in our convention
dσ/d� = |M(p′, p)|2 the differential cross section. Any NN
unitary transformation, U, transforms the Hamiltonian and
hence the potential as V → Ṽ = UHU† − H0. For an
infinitesimal transformation U = 1 + iη + . . . , where η is a
small self-adjoint two-body operator, the scattering equivalent
variation corresponds to the change 1V = i[η,H]. To see the
effect on scattering, start with the LS equation in the form T−1 =
V−1 − G0 which upon a variation of the potential produces a
variation of the T-matrix 1T = TV−11VV−1T and after some
manipulation one gets

− i1T = (1+ TG0)ηG
−1
0 − G−1

0 η(1+ G0T) (8)

so that sandwiching this expression between plane waves gives

1〈Ek′|T(E+ iǫ)|Ek〉 = −i(E− Ek′ + iǫ)〈k′|η(1+ G0T)|k〉
+i(E− Ek + iǫ)〈k′|(1+ TG0)η|k〉 (9)

which vanishes in the on-shell limit Ek = Ek′ = E and ǫ → 0.
Thus,

1V = i[η,H] H⇒ 1〈Ek′|T(E+ iǫ)|Ek〉
∣

∣

∣

Ek=Ek′=E
= 0 (10)

or equivalently for finite unitary transformations, using
Equation (7), δl,H(p) = δl,UHU†(p).

Given this general ambiguity the long lasting problem has
been to decide which is the proper representation of the NN
interaction based on NN scattering data. This is in essence the
so-called inverse scattering problem which has been studied
extensively in the past (see e.g., Chadan and Sabatier [31]
and Newton [32] for reviews)] and requires additional strong
assumptions to fix the particular form of the potential. For
instance, assuming a local potential and complete knowledge of
the phase-shifts in each partial wave it is possible to determine
the solution uniquely provided the binding energies and long
distance behavior of the corresponding bound states wave
functions allocated by the potential are known. Clearly, these
inverse scattering ambiguities have an impact on the solution of
the many body problem, as was documented long time ago in
nuclear matter [33] and in the triton and alpha particles [34],
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just to mention two prominent examples (see Srivastava and
Sprung [35] for a review).

Much of the arbitrariness is reduced by invoking an
underlying theoretical description in terms of hadronic degrees
of freedom, which allows to compute VNN(Ex) in terms of one-,
two-,. . . , pion exchanges. which in turn may be related to the
πN scattering process, involving coupling constants for vertex
interactions. At present such a picture seems to hold down to
NN separations of about the elementary radius, rc = 1.8 fm,
below which composite and finite size effects start playing a role
That means that, essentially, variations of the NN potential of are
restricted at least to 1VNN(Ex) = 0 for r ≥ rc ≈ 1.8 fm.

3. THE NN POTENTIAL

3.1. The Concept of a Potential
In order to properly formulate the uncertainties of the potentials
it would be adequate to review first the meaning of a potential in
nuclear physics. This is of utmost importance but also intriguing.
On the one hand the potential is not an observable but on the
other hand to our knowledge it is not practical to carry out
ab initio calculations in Nuclear Physics at the hadronic level
without potentials. Ultimately, one hopes to be able to provide
a direct link between the uncertainties in the input data and
propagate them to the output of the many body problem. As said,
this is only possible by using non-observable nuclear potentials as
intermediate steps.

From a classical (and macroscopic) point of view, potential
and force can be measured directly by just determining the
separation static energy between two infinitely heavy sources.
Such a definition admits a direct extension to the quantum
mechanical microscopic case and specifically to the NN
interaction assuming interpolating composite local nucleon fields
made out of three quarks. In essence, this is the approach
followed in recent years in lattice QCD where many of the
traditionally assumed features of the NN interaction seem to
be confirmed [36–38]. A major drawback of this approach is
that such a calculation determines the static NN energy which
would become a physical observable if nucleons were infinitely
heavy. The quantum mechanical problem needs adding kinetic
energy contributions. Moreover, the fact that low energy NN
scattering provides unnaturally large cross sections corresponds
to an extreme fine tuning which is beyond the present
lattice capabilities.

3.2. The Tensorial Structure
Assuming isospin invariance for the moment, the most general
form of the NN interaction can be written as Okubo et al. [39]

V(p ′, p) = VC + Eτ1 · Eτ2WC +
[

VS + Eτ1 · Eτ2WS

]

Eσ1 · Eσ2
− iES · (q× P)

[

VLS + Eτ1 · Eτ2WLS

]

+
[

VT + Eτ1 · Eτ2 WT

]

Eσ1 · q Eσ2 · q
+
[

VQ + Eτ1 · Eτ2 WQ

]

Eσ1 · (q× P ) Eσ2 · (q× P )

+
[

VP + Eτ1 · Eτ2WP

]

Eσ1 · P Eσ2 · P , (11)

where p ′ and p denote the final and initial nucleon momenta in
the CMS, respectively. Moreover, q = p ′ − p is the momentum
transfer, P = (p ′ + p)/2 the average momentum, and ES =
(Eσ1 + Eσ2)/2 the total spin, with Eσ1,2 and Eτ1,2 the spin and isospin
operators, of nucleon 1 and 2, respectively.

The scalar functions appearing in the potential, Equation (11),
depend on both initial and final momentum p and p′ respectively.
Because of rotational invariance we may thus form three
independent invariants, such as p, p′ and also q·P (which vanishes
on-shell). Transforming to coordinate space in the variable r,
conjugate to q, we have

V(r,P) =
∫

d3q

(2π)3
eiq·r〈P+ 1

2q|V|P− 1
2q〉, (12)

where we take 〈P + 1
2q|V|P − 1

2q〉 ≡ V(p′, p). The case
where these functions depend only on the momentum transfer
q = p′ − p corresponds in coordinate space to a local
potential, V(r,P) = V(r). Local potentials are appealing because
they provide physical insight besides being directly manageable
by means of a Schrödinger equation in configuration space.
Moreover, attaching a field theoretical interpretation to the
interaction, locality must be satisfied by heavy and point-like
elementary nucleons which act as static sources, so that in this
case the potential becomes the static energy between nucleons
which is an unique observable defined by

ENN(r) = VNN(r)+ 2MN +O(M−1
N ), (13)

where we assume MN ≫ mπ ,E. Non-localities are expected
to be weak because P/MN ≪ 1, and should have a larger
influence at short distances (see e.g., Piarulli et al. [40] for an
explicit implementation). The finite mass effects generate some
ambiguity in the definition of the potential and, as we will see,
are the largest source of uncertainties in nuclear physics. In any
case, there is some freedom that can be used advantageously to
choose—by means of suitable unitary transformations [41]—a
convenient form of the potential to simplify the solution of the
two-body problem, and to simplify a particular scheme of the
many body problem. We remind, however, that this choice may
be a source of bias and hence of systematic uncertainty.

3.3. Operator Basis
In our analysis we will be using potentials which become local
in the partial wave basis. While the use of local potentials is very
appealing since the whole analysis simplifies tremendously, the
truth is that their use at all distances is questionable for extended
particles. However, the range of non-locality is determined by the
interaction and our analysis (see below) supports that on a scale
1r ∼ 0.6 fm non-locality is not essential.

The potential is written as a sum of functions multiplied by
each operator

V(r) =
∑

n=1,23

Vn(r)O
n (14)
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The first 14 operators are charge independent and correspond to
the ones used in the Argonne v14 potential

On=1,14 =1, τ1 ·τ2, σ1 ·σ2, (σ1 ·σ2)(τ1 ·τ2), S12, S12(τ1 ·τ2),
L·S, L·S(τ1 ·τ2), L2, L2(τ1 ·τ2), L2(σ1 ·σ2),
L2(σ1 ·σ2)(τ1 ·τ2), (L·S)2, (L·S)2(τ1 ·τ2). (15)

These 14 components are denoted by c, τ , σ , στ , t, tτ , ls, lsτ , l2,
l2τ , l2σ , l2στ , ls2, and ls2τ . The remaining CD operators are

On=15,21 =T12, (σ1 ·σ2)T12, S12T12, (τz1 + τz2) ,

(σ1 ·σ2)(τz1 + τz2) , L
2T12, L

2(σ1 ·σ2)T12.

L·ST12, (L·S)2T12 (16)

and are labeled as T, σT,tT, τz,στz, l2T, l2σT, lsT, and ls2T. The
first five were introduced by Wiringa et al. [17]; the following
two were included in Navarro Pérez et al. [42] to restrict CD
to the 1S0 partial wave by following certain linear dependence
relations between VT , VσT , Vl2T , and Vl2σT . The last two terms
are required for the CD on the 3P0,

3P1, and
3P2 partial waves. To

incorporate CD on P waves two more operators need to be added
to the basis we used previously getting a total of 23 operators On.

As in our previous analysis we set VtT = Vτz = Vστz = 0
to exclude CD on the tensor terms and charge asymmetries.
To restrict CD to the S and P waves parameters the remaining
potential functions must follow

48Vl2T = −5VT + 3VσT + 12VlsT − 48Vls2T (17)

48Vσ l2T = VT − 7VσT + 4VlsT − 16Vls2T (18)

The algebraic relation between the operator basis in momentum
space and in configuration space is explicitly given in Navarro
Perez and Ruiz Arriola [43] and several examples are displayed.

3.4. The Long Range Contributions
As mentioned above, the potential becomes an observable within
a QFT setup for infinitely heavy hadronic sources. For the
finite mass case one may use instead a perturbative matching
procedure between a QFT with hadronic (and electro-magnetic
fields) fields and the quantummechanical problem, which should
work at sufficiently long distances. The hadronic QFT calculable
contribution is separated into two pieces, the strong (pion
exchange) piece and the purely EM piece,

VQFT = Vπ (r)+ VEM(r) . (19)

The CD-OPE potential in the long range part of the interaction
is the same as the one used by the Nijmegen group on their 1993
PWA [15] and reads

Vm,OPE(r) = f 2
(

m

mπ±

)2 1

3
m
[

Ym(r)σ1 · σ2 + Tm(r)S1,2
]

(20)

being f the pion coupling constant, σ1 and σ2 the single nucleon
Pauli matrices, S1,2 the tensor operator, Ym(r) and Tm(r) the usual
Yukawa and tensor functions,

Ym(r) =
e−mr

mr
,

Tm(r) =
(

1+ 3

mr
+ 3

(mr)2

)

e−mr

mr
. (21)

CD is introduced by the difference between the chargedmπ± and
neutralmπ0 pion mass by setting

VOPE,pp(r) = Vm
π0 ,OPE

(r),

VOPE,np(r) = −Vm
π0 ,OPE

(r)+ (−)(T+1)2Vmπ± ,OPE(r). (22)

The neutron-proton electromagnetic potential includes only a
magnetic moment interaction

VEM,np(r) = VMM,np(r) = − αµn

2Mnr3

(

µpS1,2

2Mp
+ L·S

µnp

)

, (23)

whereµn andµp are the neutron and proton magnetic moments,
Mn the neutron mass, Mp the proton one and L · S is the spin
orbit operator. The EM terms in the proton-proton channel
include one and two photon exchange, vacuum polarization and
magnetic moment,

VEM,pp(r) = VC1(r)+ VC2(r)+ VVP(r)+ VMM,pp(r) (24)

where

VC1(r) = α′

r
, (25)

VC2(r) = − αα′

Mpr2
, (26)

VVP(r) = 2αα′

3πr

∫ ∞

1
e−2merx

(

1+ 1

2x2

)

√
x2 − 1

x2
dx,

(27)

VMM,pp(r) = − α

4M2
pr

3

[

µ2
pS1,2 + 2(4µp − 1)L·S

]

. (28)

Note that these potentials are only used above rc = 3 fm and thus
form factors accounting for the finite size of the nucleon can be
set to one. Energy dependence is present through the parameter

α′ = α
1+ 2k2/M2

p
√

1+ k2/M2
p

, (29)

where k is the center of mass momentum and α the fine structure
constant. Table 1 lists the values used for the fundamental
constants in our calculations and typically used since the
benchmarking Nijmegen analysis.

3.5. Short Range Contributions
The short range contributions are fundamentally unknown and,
despite some lattice QCD efforts [36–38, 44], can only be
determined indirectly and phenomenologically, mostly from NN
scattering. Along the years some experience has been gathered
about the size, shape, and range of the potentials in the bulk, at
least in configuration space, so that refinements are made by a χ2

minimization to pp and np scattering data (see below). Besides,
the analysis of scattering data allows to obtain information on
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TABLE 1 | Values of fundamental constants used.

Constant Value Units

h-c 197.327053 MeV fm

mπ0 134.9739 MeV/c2

mπ± 139.5675 MeV/c2

Mp 938.27231 MeV/c2

Mn 939.56563 MeV/c2

me 0.510999 MeV/c2

α−1 137.035989

f2 0.075

µp 2.7928474 µ0

µn −1.9130427 µ0

the lowest distance where the long range contributions can be
trusted. We anticipate that they may be assumed to be valid for
rc ≥ 1.8 fm when OPE and TPE contributions are included.
This coincides a fortiori with the distance above which protons
interact by Coulomb force as point-like particles, and also with
the typical distance between nucleons in nuclear matter, d =
ρ−1/3 = 1.8 fm for ρ = 0.17 fm−3.

Finally, there is the issue on which and how many parameters
are needed to describe the short range force in a satisfactory
manner. The primary 2013 Granada analysis has been carried
out in terms of the so-called coarse grained potentials [45]. The
coarse grain procedure samples the interaction with an optimal
grain size, corresponding roughly to the reduced de Broglie
wavelength 1r = h̄/p. For the maximum LAB energy, 350 MeV,
this corresponds to1r = 0.6 fm. Thus, we do not need to sample
the potential functions Vi(r) at all points, but rather in a grid of
points, Vi(rn) given by rn = n1r. We consider the Vi(rn) values
as fitting parameters. The particular interpolations between these
points are not physically relevant, because shorter scales than
1r cannot be probed by the scattering process below a maximal
p = √

TLABMN/2 ∼ 2 fm−1.
The number of grid points depends on the cut distance, rc,

above which the functional form of the potential is known and
corresponds to N = rc/1r. Thus, the simplest case corresponds
to rc = 1.8 fm and N = 3 grid points for any radial component,
Vi(rn), in the operator basis. In the partial wave basis some
refinements can be incorporated since the centrifugal barrier
limits the sampling points below the barrier in the classically
forbidden region, so that the estimate is Fernandez-Soler and
Ruiz Arriola [46] and Ruiz Arriola and Ruiz de Elvira [47],

NPar ∼
1

2
(pmax

CM rc)
2 gS gT , (30)

where gS and gT are spin and isospin degeneracy factors. The
counting of parameters for pp and np [48] yields about 40
“grained” points rn in the fit carried up to a maximum energy
TLAB ≤ 350 MeV. This a priori estimate coincides in the
bulk with the number of parameters which have traditionally
been needed to fit data satisfactorily in the past. The previous
argument suggests that including more parameters is not
expected to improve significantly the fits to scattering data, but
rather increase the correlations among the Vi(rn) parameters.

There are many possible ways to describe the interaction at the
“grained” points. The simplest is to consider Dirac delta-shells
located at the sampled points [49, 50]

V(r)|Short = 1r
∑

i,n

OiVi(rn)δ(r − rn) r ≤ rc (31)

We refer to Navarro Perez et al. [51] for a pedagogical
presentation of coarse grained interactions which solve the
Schrödinger equation by a discretized form [49, 50] of the
variable phase approach of Calogero [52]. This delta-shells
decomposition implies a similar one at the partial waves level,
so that one may use the partial wave strengths V JS

LL′ (rn) as
fitting parameters. This choice is rather convenient for least
squares minimization as the low angular momentum partial
wave components of the potential are largely uncorrelated,
substantially speeding up the minimum search [53, 54]. The

transformation matrix from the Vi(rn) to the V JS
LL′ (rn) basis can

be found in Navarro Pérez et al. [42].

4. PARTIAL WAVE ANALYSIS

The NN scattering amplitude has five independent complex
components which are a function of energy and scattering
angle [55],

M =a+m(σ1 · n)(σ2 · n)+ (g − h)(σ1 ·m)(σ2 ·m)

+(g + h)(σ1 · l)(σ2 · l)+ c(σ1 + σ2) · n. (32)

We use the three unit vectors (kf and ki are relative final and
initial momenta),

l = kf + ki

|kf + ki|
, m = kf − ki

|kf − ki|
, n = kf ∧ ki

|kf ∧ ki|
. (33)

For this amplitude the total spin S is conserved and in this case
the partial wave expansion reads,

Ms
m′
s ,ms

(θ) = 1

2ik

∑

J,l′ ,l

√

4π(2l+ 1)Y l′
m′
s−ms

(θ , 0)

×C
l′ ,S,J
ms−m′

s ,m
′
s ,ms

il−l′ (SJ,S
l,l′ − δl′ ,l)C

l,S,J
0,ms,ms

, (34)

where S is the unitary coupled channel S-matrix, and the C′s
are Clebsch-Gordan coefficients, Cl,S,J

m,ms ,M
= 〈lmSMs|JM〉. The

spins of the nucleon pair can be coupled to total spin S =
0, 1 and hence J = L ± 1 for unnatural parity, (−1)L+1

states and J = L for natural parity states. This amplitudes
contains all measurable physical information and the relation
to observable quantities such as differential cross sections and
polarization asymmetries can be found in Hoshizaki [56] and
Bystricky et al. [57].

In the Stapp-Ypsilantis-Metropolis (SYM) representation [4]
the S-matrix is written in terms of the nuclear-bar phase shifts
δ̄j±1 and ǭj. Dropping the bars for simplicity and denoting the

phase shifts as δ
J,s
l,l′ , for the singlet (s = 0, l = l′ = J) and triplet

uncoupled (s = 1, l = l′ = J) channels the S matrix is simply
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e
2iδ

J,s
l,l , in the triplet coupled channel (s = 1, l = J ± 1, l′ = J ± 1)

it reads

SJ =
(

e2iδ
J,1
J−1 cos 2ǫJ iei(δ

J,1
J−1+δ

J,1
J+1) sin 2ǫJ

iei(δ
J,1
J−1+δ

J,1
J+1) sin 2ǫJ e2iδ

J,1
J+1 cos 2ǫJ

)

, (35)

with ǫJ the mixing angle.
The partial wave expansion provides an indirect way to find

out the range of nuclear forces by truncating the expansion.
According to the standard semi-classical argument (see e.g.,
[58]), for an impact parameter b = (J + 1/2)/p (p is the CM
momentum) the no-scattering condition corresponds to b ≥ a,
so that |δJmax | ≤ 1δJmax where maximal angular momentum is
provided by Jmax ≈ pa with a the range of the force. For the
Yukawa OPE interaction the exponential fall-off of the potential
alsomeans a similar behavior for the phase-shifts, so typically one
takes S, P,D, and F waves as active if the condition is J+1/2 ≈ prc
with rc the separation distance.

We will review briefly the basics of scattering from a NN
potential for completeness and to provide our notation. Details
may be found in standard textbooks on scattering theory
(see e.g., [59]). The generalization of the well-known Rayleigh
expansion for spin S is

eik·xχSMs
= 4π

∑

l,m

iljl(kr)Y
∗
l,m(k̂)

∑

J,M

〈lmSMs|JM〉YlSJM(x̂), (36)

where χSMs
is an eigenspinor with spin quantum numbers

(S,Ms), and the functions YlSJM(x̂) are the couplings of the
spherical harmonics with the spinors χSMs

to total angular
momentum J,

YlSJM(x̂) =
∑

m′,M′
s

〈lm′SM′
s|JM〉Yl,m′ (x̂)χ

SM′
s
. (37)

The local (but angular momentum dependent) NN potential
described in the previous section conserves spin S and total
angular momentum J, but not the orbital angular momentum L.
Therefore, the scattering wave function for spin S is expanded as

9k,SMs (x) = 4π
∑

lmJM

ilY∗
l,m(k̂)〈lmSMs|JM〉

∑

l′

u
SJ
l′l (r)

kr
Yl′SJM(x̂) .

(38)
where the reduced radial wave functions u

SJ
l′l (r) satisfy the

coupled channel differential equations

[

− d2

dr2
+ l′(l′ + 1)

r2
− k2

]

u
SJ
l′l +

∑

l′′
U

SJ
l′ ,l′′ (r)u

SJ
l′′l = 0 (39)

and the reduced potential is defined as U(r) = 2µV(r). For
regular potentials the boundary condition at the origin reads

u
SJ
l′l(r) ∼ rl

′+1 (r → 0) (40)

The integration of the equations can advantageously be done
using the delta shell representation of the NN potential taking

1r = 0.6 fm for r ≤ rc (the coarse-grained and unknown part)
and1r = 0.1 fm for r ≥ rc (the known field theoretical part). The
complete set of equations including Coulomb forces is provided
in Navarro Pérez et al. [42]. The scattering boundary condition

9S,ms (Ex) → ei
Ek·ExχS,ms +

eikr

r

S
∑

ms′=−S

MmS ,mS′ χS,m′
s

(41)

implies a similar asymptotic condition for the reduced radial
wave functions. For the uncoupled case, l = J, one has for
r ∼ R≫ 1/mπ

uJ(r) ≡ uJJ(r) → ĵJ(kr)− cot δJ(k)ŷJ(kr) (42)

where ĵJ(x) = xjJ(x) and ŷJ(x) = xyJ(x) are the reduced spherical

Bessel functions of order J and δJ = δ
1J
J , δ0JJ . In the coupled triplet

case, S = 1, the four wave functions ul′l(r), with l
′, l = J−1, J+1,

are coupled in pairs. The pair

vαJ = uJ−1,J−1 wαJ = uJ+1,J−1 (43)

verifies the coupled equations

[

− d2

dr2
+ J(J − 1)

r2
− k2

]

vαJ + U
SJ
J−1,J−1(r)vαJ

+ U
SJ
J−1,J+1(r)wαJ = 0 (44)

[

− d2

dr2
+ (J + 1)(J + 2)

r2
− k2

]

wαJ

+ USJ
J+1,J+1(r)wαJ + USJ

J+1,J−1(r)vαJ = 0 (45)

On the other hand the pair

wβJ = uJ+1,J+1 vβJ = uJ−1,J+1 (46)

verifies the same coupled equations by changing α → β . This
is equivalent to say that the system (44, 45) has two linearly
independent solutions that we label as α and β solutions. Their
asymptotic behavior can be expressed in terms of the eigen phase
shifts as,

vαJ(r) →ĵJ−1(kr) cot δ
1J
J−1 − ŷj−1(kr) (47)

wαJ(r) → tan ǫJ

[

ĵj+1(kr) cot δ
1J
J−1 − ŷj+1(kr)

]

(48)

vβJ(r) →− tan ǫ

[

ĵj−1(kr) cot δ
1J
J+1 − ŷj−1(kr)

]

(49)

wβJ(r) →ĵj+1(kr) cot δ
1J
J+1 − ŷj+1(kr) (50)

This is known as the Blatt-Biedenharn (BB) parameterization in

terms of the eigen phase shifts δ
1j
j±1 and ǫj. These are related to the

nuclear-bar phase shifts by the following equations

δ
1J
J−1 + δ

1J
J+1 =δ̄

1J
J−1 + δ̄

1J
J+1 (51)

sin(δ̄1JJ−1 − δ̄
1J
J+1) =

tan 2ǭJ

tan 2ǫJ
(52)
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sin(δ1JJ−1 − δ
1J
J+1) =

sin 2ǭJ

sin 2ǫJ
(53)

Unless otherwise stated, in this work the phase shifts will always
be assumed to be the nuclear-bar ones. The Coulomb force is
included exactly by replacing in the previous formulas the Bessel
functions jl and yl by Coulomb functions Fl and Gl [59]. The
inclusion ofmagneticmoments effect is complicated by their 1/r3

behavior requiring about 1,000 partial waves [42].

5. STATISTICS

The statistical treatment we follow here is quite standard, and we
list for the benefit of the newcomer to the field the main steps
to be discussed in the following subsections. We first address the
existing scattering data and then we formulate the nature of the
problem and the standard χ2 approach searching for the most
likely potential. This requires discriminating between consistent
and inconsistent data, something which can be formulated
in terms of a self-consistent selection problem. After this, a
direct statistically satisfactory result can be deduced and, more
importantly, error propagation may legitimately be carried out
in terms of the corresponding covariance matrix implementing
statistical correlations. This allows in particular to determine
the scattering phase-shifts with error bars reflecting directly
the experimental uncertainties. More generally, it allows to
transport these experimental errors to any observable based
on the nucleon-nucleon potential. We will call these the
statistical errors.

5.1. Scattering Data
Once we have defined the potential model and the scattering
formalismwemay proceed to determine the potential parameters
Vi(rn) from the available np and pp scattering data and from the
corresponding scattering observables which are obtained from
the scattering amplitude [56, 57] (see also Tables 2, 3 below
for the notation). The compilation of the existing published
data since 1950 till 2013 is described in detail in Navarro Pérez
et al. [42] and comprises 8,124 fitting data including 7,709
experimental measurements and 415 normalizations provided by
the experimentalists.

5.2. Statement of the Problem
The finite amount, precision and limited energy range of the data
as well as the many different observables calls for a standard
statistical χ2-fit analysis [62, 63]. This approach is subjected
to assumptions and applicability conditions that can only be
checked a posteriori in order to guarantee the self-consistency of
the analysis. Indeed, scattering experiments deal with counting
Poisson statistics and for moderately large number of counts
a normal distribution is expected. Thus, one hopes that a
satisfactory theoretical description Oth

i can predict a set of N
independent observed dataOi given an experimental uncertainty
1Oi as

Oi = Oth
i + ξi1Oi (54)

TABLE 2 | Contributions to the total χ2 for different pp observables [60, 61].

Observable Code Npp χ
2
pp χ

2
pp/Npp

dσ/d� DSG 935 903.5 0.97

Ayy AYY 312 339.0 1.09

D D 104 135.1 1.30

P P 807 832.4 1.03

Azz AZZ 51 47.4 0.93

R R 110 112.8 1.03

A A 79 70.5 0.89

Axx AXX 271 250.7 0.92

Ckp CKP 2 3.1 1.57

R′ RP 29 11.9 0.41

Ms′0sn MSSN 18 13.1 0.73

Ns′0kn MSKN 18 8.5 0.47

Azx AZX 264 250.6 0.95

A′ AP 6 0.8 0.14

We use the notation of Hoshizaki [56] and Bystricky et al. [57].

TABLE 3 | Contributions to the total χ2 for different np observables [60, 61].

Observable Code Nnp χ
2
np χ

2
np/Nnp

dσ/d� DSG 1712 1803.4 1.05

Dt DT 88 83.7 0.95

Ayy AYY 119 96.0 0.81

D D 29 37.1 1.28

P P 977 941.7 0.96

Azz AZZ 89 108.1 1.21

R R 5 4.5 0.91

Rt RT 76 72.2 0.95

R′
t RPT 4 1.4 0.35

At AT 75 77.0 1.03

D0s′′0k D0SK 29 44.0 1.52

N0s′′kn NSKN 29 25.5 0.88

N0s′′sn NSSN 30 20.3 0.68

N0nkk NNKK 18 13.5 0.75

A A 6 2.9 0.49

σ SGT 411 500.2 1.22

1σT SGTT 20 26.3 1.31

1σL SGTL 16 18.4 1.15

We use the notation of Hoshizaki [56] and Bystricky et al. [57].

with i = 1, . . .,N and ξi are independent random normal
variables with vanishing mean value 〈ξi〉 = 0 and unit variance
〈ξiξj〉 = δij, implying that 〈Oi〉 = Oth

i . Establishing the validity
of Equation (54) is of utmost importance since it provides a basis
for the statistical interpretation of the error analysis.

5.3. The Least Squares Minimization
If the ξi are independent normal variables,then

∑ν
i=1 ξ 2i

represents a χ2 distribution with ν degrees of freedom. Thus,
under this hypothesis we may consider the standard χ2 method,
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which in our case is defined as

χ2[Vk(rn)] =
NDat
∑

i=1

[

O
exp
i − Oth

i (Vk(rn))

1O
exp
i

]2

(55)

where O
exp
i is the experimental observable, 1O

exp
i its estimated

uncertainty and Oth
i (Vk(rn)) are the theoretical results which

depend on the fitting parameters Vk(rn), the values of
the potentials at the sampled points rn. The least squares
minimization has always a solution which may be a global or a
local minimum, namely

χ2
min = min

Vk(rn)
χ2[Vk(rn)] ≡ χ2[V̄k(rn)] (56)

where V̄k(rn) the minimizing parameters. Basically, this
minimization eliminates NPar parameters from the NDat data
and we are left with ν = NDat − NPar degrees of freedom.
The important aspect here is the statistical significance of the
procedure. This can be checked a posteriori by looking at
the residuals

Ri =
O
exp
i − Oth

i |min

1O
exp
i

(57)

where Oth
i |min = Oth

i (V̄k(rn)). According to the assumption
underlying the χ2-method, the set of variables R1, . . .,RNpar

should be distributed as normal variables, i.e., they should look
as NPar variables extracted from a normal distribution N(0, 1).
For a finite sample the veracity of this hypothesis can only be
established in probabilistic terms, so that we may estimate how
likely or unlikely would it be to accept of reject the starting
normality assumption. Technically, this can be done in a variety
of ways (see e.g., [53, 54, 64]), but the most popular measure
of goodness of a fit is the χ2-test which requires that the fit is
accepted if

χ2
min

ν
= 1±

√

2

ν
(58)

with ν = NDat − NPar. More elaborate tests may be applied
and we refer to Navarro Perez et al. [53, 54, 64] for further
details. In practice this means that for NDat = 8000 and NPar =
50 we should get χ2

min/ν = 1 ± 0.016 in order to validate
Equation (54). Note that this is very different than the loose
claims in the literature where χ2/ν ≈ 1 qualifies for a good
fit, complemented with a visual inspection of the phase shifts.
We emphasize that looking similar is not the same as statistical
consistency. In fact, a direct fit to the full database with our model
gives χ2

min/ν = 1.41 which is 25σ away from the expected value.
This clearly indicates either a bad model, inconsistent data, or
both. A statistical measure of the probability that the theory is
plausible is given by the p-value; assuming that the normality of
residuals is correct it corresponds to the probability of obtaining
results at least as extreme as the results actually observed [62, 63].
Thus, the probability of having χ2

min/ν = 1.41 for ν ∼ 7000 is
p = 10−20, which clearly rules out that the theory describes the
data within fluctuations.

5.4. Inconsistent vs. Consistent Data
The determination of theoretical uncertainties requires as a
prerequisite the compatibility or consistency of all data. This
is a strong condition which is not always fulfilled, particularly
when the number of data becomes large. Most often, different
experiments have different sources of errors and are mutually
incompatible. Thus, while any statistical analysis benefits from
a large amount of data, a side effect is the proliferation of
inconsistent data. In that case it is obvious that no model
will be able to simultaneously describe all the data in a
satisfactory manner. To appreciate this point more clearly,
assume two experiments which yield the measurements Oexp1 ±
1Oexp1 and Oexp2 ± 1Oexp2. If the theoretical estimate is Oth,
we have

χ2 =
[

Oexp1 − Oth

1Oexp1

]2

+
[

Oexp2 − Oth

1Oexp2

]2

(59)

Minimizing respect to Oth we get

χ2
min = (Oexp1 − Oexp2)

2

1O2
exp1 + 1O2

exp2

(60)

which becomes larger than 1 for |Oexp1 − Oexp2| ≥
√

1O2
exp1 + 1O2

exp2, in which case we have two inconsistent

measurements. The important question is whether both
measurements are wrong or just only one. The term wrong here
does not necessarily mean an incorrect measurement; it suffices
if one or both errors 1Oexp1 and 1Oexp2 are unrealistically small.
In case of a discrepancy one may re-analyze the experiment or
simply ask the experts, an unfeasible strategy for the experiments
performed in the time span 1950–2013 comprising the analysis.
The advantage of the statistical method is that, for a large number
of experiments, the systematic errors are also randomized and
one may rule out some experiments in a kind of majority
vote argument.

The case discussed previously corresponds to two different
measurements of the same observable, say the differential cross
section at the same energy and angle, and the generalization
to any number of experiments is straightforward. However,
in the case of experiments with close kinematics there is
no simple way to decide between inconsistent data unless
some continuity and smooth behavior is assumed in order to
intertwine the two measurements. Here is where the model
enters and statistical methods will never tell us if a given
model is correct but rather if the model is inconsistent with
the data. This is a kind of circular argument which can
only be avoided by looking for models which congregate
as many data as possible in a consistent way. Clearly,
following this criterion, once one finds a good model, any
improvement of the model should describe more data in a
statistically significant fashion. The great advantage is that
if there are reasons to intertwine theoretically the different
measurements of all possible observables one may discuss the
data consistency in a generalized way and be able to select
between different observables.
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5.5. Self-Consistent Data Selection
The self-consistent criterion for data selection was proposed by
Gross and Stadler [19] and implemented in Navarro Pérez et al.
[45]. The way data have been selected proceeds according to the
following procedure:

1. Fit the model to all data. If χ2/ν < 1 you can stop. If not
proceed further.

2. Remove data sets with improbably high or low χ2

(3σ criterion).
3. Refit parameters for the remaining data.
4. Re-apply 3σ criterion to all data.
5. Repeat until no more data are excluded or recovered.

The effect of the selection criterion with our model is to go
from χ2/ν|all = 1.41 to χ2/ν|selected = 1.05 with a reduction
in the number of data from NData = 8173 to NData = 6713.
While this seems a drastic rejection it is the largest self-consistent
fit to date below 350 MeV. For this number of data this is
not a minor improvement; in terms of a normality test, it
makes the difference in p-value between having p = 10−20

or p = 0.68.

5.6. Fitting Results
The set of 32 scattering observables which we use for the fits
comprises a total of about 7000 selected measurements. It is
interesting to decompose the contributions to the total χ2 both
in terms of the fitted observables as well as in different energy
bins. The separation is carried out explicitly in Tables 2, 3 for pp
and np scattering observables respectively and for the latest fit
which includes also the pion-nucleon coupling constants [60, 61]
(see below). As we can see the size of the contributions χ2/N are
at similar levels for most observables. Note that observables with
a considerable larger or smaller χ2/N are also observables with a
small number of data and therefore larger statistical fluctuations
are expected (we remind that for N independent data we expect
χ2/N ≈ 1±√

2/N.
Likewise, we can also break up the contributions in order to

see the significance of different energy intervals, see Table 4. We
find that, in agreement with the Nijmegen analysis (see [65, 66]
for comparisons with previous potentials), there is a relatively
large degree of uniformity in describing data at different energy
bins. We note also that the fit in the low energy region below 2
MeV gives the largest values for χ2/N.

From the optimal fitting parameters Vα(rn) with α =1

S0,
3 P0,

3 S1,
3 D1,E1, . . . being the different partial waves in a

given pp or np channel, we define (λn)
α = 2µabV

α(rn)1r
which has units of fm−1 and ab = pp, np. In Table 5

we show the corresponding numerical values. It would be
nice to see whether something can be said about the nn
interaction. However, one remarkable feature of this and similar
analyses is the fact that with the exception of S-waves the
short distance parameters can be chosen to coincide in the
pp and np systems with common partial waves. The fact that
to this date it is not possible to do it for S-waves precludes
to predict the nn interaction from the combined np and
pp fit (see however a theoretical discussion in Calle Cordon
et al. [67]).

TABLE 4 | The χ2 results of the main combined pp and np partial-wave analysis

[60, 61] for the 10 single-energy bins in the range 0 < TLAB < 350 MeV.

Bin

(MeV)

Npp χ
2
pp χ

2
pp/Npp Nnp χ

2
np χ

2
np/Nnp N χ

2
χ
2
/N|fit χ

2
/N|th

0.0–0.5 103 107.2 1.04 46 88.2 1.92 149 195.4 1.31 1 ± 0.11

0.5–2 82 58.8 0.72 50 92.8 1.86 132 151.5 1.15 1 ± 0.12

2–8 92 80.1 0.87 122 151.0 1.24 214 231.0 1.08 1 ± 0.10

8–17 124 100.3 0.81 229 183.9 0.80 353 284.1 0.80 1 ± 0.08

17–35 111 85.5 0.77 346 324.2 0.94 457 409.7 0.90 1 ± 0.07

35–75 261 231.2 0.89 513 559.7 1.09 774 790.9 1.02 1 ± 0.05

75–125 152 154.8 1.02 399 445.2 1.12 551 600.0 1.09 1 ± 0.06

125–183 301 300.5 1.00 372 381.7 1.03 673 682.2 1.01 1 ± 0.05

183–290 882 905.0 1.03 858 841.4 0.98 1740 1746.4 1.00 1 ± 0.03

290–350 898 956.1 1.06 798 808.1 1.01 1696 1764.1 1.04 1 ± 0.03

We compare the fit χ2/N|fit with the theoretical expectation χ2/N|th = 1±
√

2/N.

TABLE 5 | Fitting delta-shell parameters (λn)
JS
l,l′ (in fm−1) with their errors for all

states in the JS channel for a fit with isospin symmetry breaking on the 1S0 partial

wave parameters only and the pion-nucleon coupling constants f20 , f
2
p , and f2c as

fitting parameters We take N = 5 equidistant points with 1r = 0.6 fm.

Wave λ1 λ2 λ3 λ4 λ5

1S0np 1.16(6) -0.77(2) -0.15(1) − -0.024(1)

1S0pp 1.31(2) -0.716(5) -0.192(2) − -0.0205(4)

3P0 − 0.94(2) -0.319(7) -0.062(3) -0.023(1)

1P1 − 1.20(2) − 0.075(2) −
3P1 − 1.354(5) − 0.0570(5) −
3S1 1.79(7) -0.47(1) − -0.072(2) −
ε1 − -1.65(2) -0.33(2) -0.233(7) -0.018(3)

3D1 − − 0.40(1) 0.070(9) 0.021(3)

1D2 − -0.20(1) -0.206(3) − -0.0187(3)

3D2 − -1.01(3) -0.17(2) -0.237(6) -0.016(2)

3P2 − -0.482(1) − -0.0289(7) -0.0037(4)

ε2 − 0.32(2) 0.190(4) 0.050(2) 0.0127(6)

3F2 − 3.50(6) -0.229(5) − -0.0140(5)

1F3 − − 0.12(2) 0.089(8) −
3D3 − 0.54(2) − − −

f2p f20 f2c

0.0764(4) 0.0779(8) 0.0758(4)

− indicates that the corresponding fitting (λn )
JS
l,l′ = 0. The lowest part of the table shows

the resulting OPE coupling constants with errors.

5.7. Covariance Matrix Error Analysis and
Statistical Correlations
After the data selection and fitting, error propagation becomes
applicable. Here we show the results for the conventional
covariance error analysis which assumes small errors and where
one first determines the uncertainty in the fitting parameters
Vi(rn) which will be labeled generically as λi for ease of notation

2.

2The bootstrap approach based on the MonteCarlo method [45, 68] will be

discussed below.
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Expanding around the minimum values, λ̄i has

χ2 = χ2
min +

NP
∑

ij=1

(λi − λ̄i)(λj − λ̄j)E
−1
ij + · · · (61)

where the NP × NP error matrix is defined as the inverse of the
Hessian matrix evaluated at the minimum

E
−1
ij = 1

2

∂2χ2

∂λi∂λj

∣

∣

∣

λi=λ̄i
(62)

The correlation matrix between the fitting parameters λi and λj
is given by

Cij =
Eij

√

EiiEjj
(63)

We compute the error of the parameter λi as

1λi ≡
√

Eii. (64)

Error propagation of an observable depending on the fitting
parameters G = G(λ1, . . ., λP) is computed as

(1G)2 =
∑

ij

∂G

∂λi

∂G

∂λj

∣

∣

∣

λk=λk,0

Eij. (65)

The correlation matrix, Equation (63), has been evaluated in
Navarro Perez et al. [53, 54] where it has been found that for
the potentials in the partial wave basis V JS

l,l′ (rn) the different
points rn are largely correlated within a given partial wave,
whereas different partial waves are largely uncorrelated. This
information allows to substantially speed up the minimum
search as movements in the multidimensional space are thus
independent and the approaching path to the minimum operates
stepwise [53, 54].

5.8. Phase-Shifts
The first useful application of error propagation regards
scattering amplitudes and phase shifts. Extensive tables for the
selected values TLAB = 1, 5, 10, 25, 50, 100, 150, 200, 250, 300, 350
MeV have traditionally been presented since the Nijmegen
analysis as representative of the fits. These energy values
corresponds to a grid of almost equidistant CM momenta p =√
TLABMN/2 between 0 and 2 fm−1.
For illustration, Figure 1 compares, for low angular

momentum, the phase shifts of the primary PWA in Navarro
Pérez et al. [42] from a fit with fixed pion coupling constant, f 2

(blue bands), and the most recent ones [60] (red band) from a fit
with charge symmetry breaking on the 3P0,

3P1, and
3P2 partial

waves and in the pion coupling constants f 20 , f
2
p , and f 2c .

6. DETERMINATION OF YUKAWA
COUPLING CONSTANTS

The first determination of the coupling constant was carried
out in 1940 by Bethe who obtained the value f 2 = 0.077 −

0.080 from the study of deuteron properties [3] and very
close to the currently accepted value (see Table 1). Subsequent
determinations based on a variety of processes can be traced
from recent compilations [69, 70]. A recent historical account has
been given by Matsinos [71] where some newer determinations
can be consulted according to his own eligibility criterium.
For completeness we also quote recent studies based on pion-
deuteron scattering [72, 73] or on the analysis of Roy equations
for πN [74] where an upgrade of the corresponding scattering
data is considered.

We note that what follows is a brief summary of the results
presented in our previous papers where many more details
may be found regarding the most influential observables, the
dependence on the cut-off radius rc, the inclusion of two-pion
exchange contributions or the energy range used in the fit or
the evolution with the numerical values and precision along the
years [60, 61].

The πNN coupling constant is defined as the pion-nucleon-
nucleon vertex when the three particles are on the mass shell. The
corresponding potentials would be

Vpp→pp(r) =f 2
π0pp

Vm
π0
(r), (66)

Vnp→np(r) = Vpn→pn(r) =− fπ0nnfπ0ppVm
π0
(r) (67)

Vpn→np(r) = Vnp→pn(r) =fπ−pnfπ+np Vmπ± (r) (68)

Vnn→nn(r) =f 2
π0nn

Vm
π0
(r), (69)

There exist four pion nucleon coupling constants, fπ0pp, −fπ0nn,

fπ+pn/
√
2, and fπ−np/

√
2 which coincide with f when up and

down quark masses are identical and the electron charge is zero.
In NN interactions we have access to the combinations,

f 2n = fπ0nnfπ0nn,

f 2p = fπ0ppfπ0pp,

f 20 = −fπ0nnfπ0pp,

2f 2c = fπ−pnfπ+np. (70)

While there is no reason why the pion-nucleon-nucleon coupling
constants should be identical in the real world, one expects that
the small differences might be pinned down from a sufficiently
large number of independent and mutually consistent data. Note
that from np and pp analysis we would obtain f 2p , f

2
0 , and f 2c we

may deduce the nn coupling using the previous equations fn =
−f 20 /fp. We try to find out how many data would be needed by
recalling that electroweak corrections scale with the fine structure
constant α = 1/137 and the light quark mass differences. Thus,

δg

g
= O

(

α,
mu −md

3QCD

)

= O

(

α,
Mp −Mn

3QCD

)

(71)

for the relative change around a mean value. These are naturally
at the 1 − 2% level, a small effect. The question is on how
many independent measurements N are needed to achieve this
desired accuracy. According to the central limit theorem, for N
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FIGURE 1 | (Color online) Phase shifts obtained from a partial waves analysis to pp and np data and statistical uncertainties. Blue band from Navarro Pérez et al. [42]

from a fit with fixed f2 and orange band [60] from a fit with charge symmetry breaking on the 3P0,
3P1, and

3P2 partial waves and in the coupling constants f20 , f
2
p ,

and f2c .

direct independent measurements the relative standard deviation
scales as

1g

g
= O

(

1√
N

)

and δg ∼ 1g for N = 7000 − 10000. We cannot carry out
these direct measurements of g but we can proceed indirectly
by considering a set of mutually consistent NN scattering
measurements The most recent analysis [60, 61] based on the
Granada-2013 database comprises 6713 published data. This

allows: (i) to reduce the error bars, as expected and (ii) to
discriminate between the three coupling constants (see Table 6).
When charge dependence in 1S0, P waves is allowed one has

f 2p = 0.0761(4), f 20 = 0.0790(9), f 2c = 0.0772(5), (72)

The most remarkable consequence is that from the point of
view of the strong interaction neutrons interact more strongly
than protons.
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7. SYSTEMATIC VS. STATISTICAL
ERRORS: THE 6 GRANADA POTENTIALS

Within the phenomenological approach the estimation
of systematic errors can be addressed by using different
representations of the mid-range function below the separation
distance rc while keeping the long range potential and the NN
database. To this end we have analyzed 6 different potentials
in Navarro Pérez et al. [75] which have been fitted to the
same Granada 2013 database and have the same long distance
components of the potential. First we have checked that the 6
Granada potentials are statistically acceptable. In fact, as it has
been stressed in our previous works [53, 54] one can globally
slightly enlarge the experimental uncertainties by the so-called
Birge factor [76] provided the residuals verify a normality test.
After this re-scaling the p-value becomes 0.68 for a 1σ confidence
level and hence all potentials become statistically equivalent.
The results are summarized in Table 7. Thus, the overall spread
between the various phenomenological models with χ2/dof ∼ 1
provides an estimate of the scale of the systematic uncertainty.
A direct way of illustrating quantitatively the situation is by
analyzing the corresponding phase shifts in the different analyses.

Thus, for each energy and partial wave, one evaluates the
phaseshifts δ(1), . . ., δ(N) for a representative set of high-precision
NN potentials V(1), . . .,V(N), and computes the average δ and
standard deviation

1δ = Std δ =

√

√

√

√

1

N − 1

N
∑

i=1

(

δ(i) − δ
)2

(73)

as a measure of the systematic uncertainty of the phaseshifts.
In Figure 2 we show the results for four different situations.
To provide some historical perspective, we show in the upper

left panel the averaged phase shifts, i.e., the absolute (mean-
square) errors for np partial wave phase shifts due to the different
potentials fitting scattering data with χ2/dof ∼ 1 [15–19] as a
function of the LAB energy, namely (CD Bonn) [78], Nijmegen
(Nijm-I and Nijm-II) [15], Argonne AV18 [17], Reid (Reid93)
[79], and the covariant spectator model [19]. As one naturally
expects the average uncertainties grow with energy and decrease
with the relative angular momentum which semi-classically
corresponds to probing an impact parameter

b = L+ 1/2

p
(74)

where p is the CM momentum, p = √
MNELAB/2, making

peripheral waves to be mostly determined from OPE. These
analyses stop at the pion production threshold so that one probes
distances larger than

bmin ∼ 1/3 = 0.5fm, 3 =
√

mπMN . (75)

Note that the bumps or bulges at low energy in 1S0 and 3S1
channels in the top left panel are due to a unique potential which
is an outlier at low energies. In particular, the authors believe
that the outlier behavior is due to the use of an interpolating
function used to approximate the potential between the values
of laboratory energy at which phaseshifts are usually tabulated.

In the upper right panel of Figure 2 we show the errors
obtained via the standard covariance-matrix method explained
above and including correlations in the fitting parameters for
the primary Granada 2013 analysis [45] which corresponds
to the DS-OPE potential. Thirdly, in the lower left panel
we show the case of the np phase shifts for the 6 Granada
potentials [45, 75, 77]. Finally, in lower right panel we present
the uncertainties for all the 7 pre-Granada potentials and the 6
Granada potentials simultaneously.

TABLE 6 | The pion-nucleon coupling constants f2p , f
2
0 , and f2c determined from different fits to the Granada-2013 database and their characteristics.

f2p f20 f2c CD-waves χ
2
pp χ

2
np χ

2 NDat NPar χ
2
/ν

0.075 Idem Idem 1S0 2997.29 3957.57 6954.86 6720 46 1.042

0.0763(1) Idem Idem 1S0 2995.20 3952.85 6947.05 6720 47 1.041

0.0764(4) 0.0779(8) 0.0758(4) 1S0 2994.41 3950.42 6944.83 6720 49 1.041

0.0761(4) 0.0790(9) 0.0772(5) 1S0, P 2979.37 3876.13 6855.50 6741 55 1.025

We indicate the partial waves where charge dependence is allowed.

TABLE 7 | Granada potentials summary.

Potential NPar Nnp Npp χ
2
np χ

2
pp χ

2
/d.o.f. p-value Normality Birge factor

DS-OPE 46 2996 3717 3051.64 3958.08 1.05 0.32 Yes 1.03

DS-χTPE 33 2996 3716 3177.43 4058.28 1.08 0.50 Yes 1.04

DS-1BO 31 3001 3718 3396.67 4076.43 1.12 0.24 Yes 1.06

Gauss-OPE 42 2995 3717 3115.16 4048.35 1.07 0.33 Yes 1.04

Gauss-χTPE 31 2995 3717 3177.22 4135.02 1.09 0.23 Yes 1.05

Gauss-1BO 30 2995 3717 3349.89 4277.58 1.14 0.20 Yes 1.07
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FIGURE 2 | Uncertainties (in degrees, right axis) for partial wave np phase shifts with J ≤ 4 (left axis) for different potentials fitting scattering data with χ2/dof ∼ 1 as a

function of the LAB energy (in MeV). (Upper left) Averaged errors for pre-Granada potentials [15–19]. (Upper right) Statistical errors for the primary Granada 2013 χ2

analysis [45]. (Lower left) The averaged errors for the 6 Granada potentials [45, 75, 77]. (Lower right) Averaged errors for all 13=7 pre-Granada and the 6 Granada

potentials.

In Navarro Pérez et al. [75] we found similar statistical errors
in all the Granada potentials, which are statistically validated
with the same Granada-2013 database, i.e., if the phase-shift for

potential V(i) in a given partial wave is δ(i) ± 1δ
(i)
stat, then

1δ
(1)
stat ∼ · · · ∼ 1δ

(6)
stat , (76)
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However, we also found that the standard deviation of systematic
errors obeys

1δsys ≡ Std(δ(1), . . . , δ(6))≫ 1δ
(i)
stat . (77)

In all the potentials, the tails above r = 3 fm (including CD-
OPE and all electromagnetic effects) are the same, thus the
discrepancies between the potentials at short distances dominate
the uncertainties, rather than the np and pp experimental data
themselves. This conclusion holds also when all high quality
potentials are considered [75]. This counter-intuitive result relies
not only on the specific forms of potentials which treat the mid–
and short-range behavior of the interaction differently but also
on the fact that the fits are mainly done to scattering amplitudes
rather than to the phase-shifts themselves.

8. LOW ENERGY BEHAVIOR

8.1. Low Energy Parameters
The effective range expansion was proposed by Bethe [80] in
order to provide a model independent characterization of the
scattering at low energies where the shape of the potential is
largely irrelevant. The extension to higher partial waves reads (see
e.g., [81])

k2l+1Ml(k) ≡ k2l+1 cot δl(k) = − 1

αl
+ 1

2
rlk

2+v2,lk
4+v3,lk

6+· · ·
(78)

where αl is the scattering length, rl the effective range and vi,l
the curvature parameters. In the case of coupled channels due
to the tensor force one has that SJS = (MJS − i1)(MJS + i1)−1

with (MJS)† = MJS a hermitian coupled channel matrix (also
known as the K-matrix). At the level of partial waves the multi-
pion exchange diagrams generate left hand cuts in the complex
s-plane, which arise in addition to the NN elastic right cut and
the πNN, 2πNN etc., pion production cuts. At low energies for
|p| ≤ mπ/2 we have [82]

pl+l′+1M
JS
l,l′ (p) = −(α−1)JS

l,l′ +
1

2
(r)JS

l,l′p
2 + (v)JS

l,l′p
4 + . . . (79)

which is the coupled channels effective range expansion. While
at lowest orders explicit formulas where available in terms of
wave functions, larger order and partial waves become rather
cumbersome and no practical formula exists.

Fortunately, the variable S-matrix approach of Calogero [52]
offers a unique way to extract low-energy threshold parameters
for a given NN potential which was extended to coupled
channels [82] and applied to the Reid93 and NijmII potentials
up to J ≤ 5. For the 6 Granada potentials these have also been
extracted and we have found that the systematic uncertainties
are generally at least an order of magnitude larger than statistical
uncertainties [75]. In Table 8 where we provide the low energy
parameters for (J ≤ 2).

8.2. Low Energy Constants
Alternatively, one may use effective interactions derived from
a low momentum interaction where the coefficients can be

TABLE 8 | Low energy threshold np parameters for all partial waves with j ≤ 2.

Wave α r0 v2 v3 v4

1S0 −23.735(6) 2.673(9) −0.50(1) 3.87(2) −19.6(1)

−23.735(16) 2.68(3) −0.48(2) 3.9(1) −19.6(5)

3P0 −2.531(6) 3.71(2) 0.93(1) 3.99(3) −8.11(5)

−2.5(1) 3.7(4) 0.9(5) 3.9(1) −8.2(9)

1P1 2.759(6) −6.54(2) −1.84(5) 0.41(2) 8.39(9)

2.78(3) −6.46(9) −1.7(2) 0.5(2) 8.0(3)

3P1 1.536(1) −8.50(1) 0.02(1) −1.05(2) 0.56(1)

1.52(1) −8.6(1) −0.06(7) −0.9(2) 0.1(5)

3S1 5.435(2) 1.852(2) −0.122(3) 1.429(7) −7.60(3)

5.42(1) 1.84(1) −0.14(1) 1.46(3) −7.7(2)

ǫ1 1.630(6) 0.400(3) −0.266(5) 1.47(1) −7.28(2)

1.61(2) 0.39(2) −0.29(3) 1.47(2) −7.35(9)

3D1 6.46(1) −3.540(8) −3.70(2) 1.14(2) −2.77(2)

6.43(4) −3.57(2) −3.77(4) 1.11(5) −2.7(1)

1D2 −1.376 15.04(2) 16.68(6) −13.5(1) 35.4(1)

−1.379(6) 15.00(9) 16.7(2) −12.9(4) 36.2(14)

3D2 −7.400(4) 2.858(3) 2.382(9) −1.04(2) 1.74(2)

−7.39(1) 2.87(1) 2.41(3) −0.96(5) 1.75(8)

3P2 −0.290(2) −8.19(1) −6.57(5) −5.5(2) −12.2(3)

−0.288(5) −8.3(2) −6.8(7) −6.1(19) −12.7(26)

ǫ2 1.609(1) −15.68(2) −24.91(8) −21.9(3) −64.1(7)

1.604(6) −15.8(2) −25.2(7) −23.0(29) −66.2(69)

3F2 −0.971 −5.74(2) −23.26(8) −79.5(4) −113.0(16)

−0.971(5) −5.7(1) −23.3(6) −80.1(33) −117.2(121)

The central value and statistical error bars are given on the first line of each partial wave

and correspond to the mean and standard deviation of a population of 1020 parameters

calculated with the Monte Carlo family of potential parameters described in Navarro Pérez

et al. [83] using the DS-OPE potential [42, 45]. The second line quotes the systematic

uncertainties, the central value and error bars correspond to the mean and standard

deviation of the 9 realistic potentials NijmII [16], Reid93 [16], AV18 [17], DS-OPE [42, 45],

DS-χTPE [48, 77], Gauss-OPE [53], Gauss-χTPE, DS-1BO, and Gauss-1BO. For each

partial wave we show the scattering length α and the effective range r0, both in fm
l+l′+1,

as well as the curvature parameters v2 in fm
l+l′+3, v3 in fml+l′+5, and v4 in fm

l+l′+5. For

the coupled channels we use the nuclear bar representation of the S matrix. Uncertainties

smaller than 10−3 are not quoted.

identified with the phenomenological counter-terms of chiral
effective field theory. To obtain such counter-terms we express
the momentum space NN potential in the partial wave basis

vJS
l′ ,l(p

′, p) = (4π)2
∫ ∞

0
dr r2 jl′ (p

′r)jl(pr)V
JS
l′l (r) (80)

and use the Taylor expansion of the spherical Bessel function to
get an expansion for the potential in each partial wave. Keeping
terms up to fourth order O(p4, p′4, p3p′, pp′3, p2p′2) corresponds
to keeping only S-, P-, and D-waves along with S-D and P-F
mixing parameters. Using the normalization and spectroscopic
notation of Epelbaum et al. [84] one gets

v
JS
00(p

′, p) =˜CJS
00 + C

JS
00(p

2+ p′2)+ D1
00

JS(p4+ p′4)+ D2
00

JSp2p′2+· · ·
vJS11(p

′, p) =pp′CJS
11 + pp′(p2 + p′2)DJS

11 + · · ·
v
JS
22(p

′, p) =p2p′2DJS
22 + · · ·
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v
JS
20(p

′, p) =p′2CJS
20 + p′2p2D1

20
JS + p′4D2

20
JS + . . .

vJS31(p
′, p) =p′3pDJS

31 + · · · (81)

and each counter-term can be expressed as a radial momentum
of the NN potential in a specific partial wave. Different methods
have been proposed to quantify some of the uncertainties in these
quantities [85, 86]. Using the statistical uncertainties method and
the corresponding systematic error estimates [87], the results are
summarized in Table 9 for the 6 Granada potentials.

8.3. Scale Dependence and Correlations
While one normally uses a fixed value for the maximum energy
in the fits (which in most NN studies has been 350 MeV), one
may analyze the consequences of varying this fitting energy [88].
Denoting 3 as the (running) maximal momentum it is clear that
the fitting potential will change as 3 is varied. Actually, these
parameters may be mapped [54] into the so-called counter-terms
which characterize the effective theories at small momenta [89].
We determined the two-body Skyrme force parameters arising
from theNN interaction as a function of themaximalmomentum
in the fit. We found general agreement with the so-called Vlowk

interactions based on high quality potentials after high energy
components have been integrated out [90, 91].

In line with our remarks in section 5.7 let us note that,
one major outcome of Navarro Pérez et al. [54] has been the
fact that the counter-terms corresponding to volume integrals
including OPE above 3 fm are weakly correlated, whereas those
including OPE+TPE above 1.8 fm have larger but still moderate
correlations. Thus, counter-terms in the partial waves basis would
be efficient fitting parameters, unlike in the cartesian basis. As
we have already discussed, using uncorrelated fitting parameters
has the practical consequence of reducing the computational
determination of the least squares minimization.

9. CHIRAL VS. NON-CHIRAL POTENTIALS

In common with the analysis presented in the previous sections,
much of the early work on phase-shift analysis was undertaken
long before the advent of QCD, so the NN potentials were at
most considered to be derivable from Quantum Field Theory in
purely hadronic terms. This implies in particular the One-Pion-
Exchange potential, which has survived over the years, and the
Two-Pion-Exchange which has been changing depending on the
computational scheme since the first attempts in the early 50’s
(see e.g., Machleidt [14] for a historical review, in particular about
the meson exchange picture).

TABLE 9 | Potential integrals in different partial waves.

DqS-OPE DS-χTPE DS-Born Gauss-OPE Gauss-χTPE Gauss-Born Compilation

˜C1S0
–0.141(1) –0.135(2) –0.128(2) –0.121(5) –0.113(9) –0.133(3) –0.13(1)

C1S0
4.17(2) 4.12(2) 4.04(1) 4.20(2) 4.16(2) 4.18(1) 4.15(6)

D1
1S0

–448.8(11) 443.7(5) –441.5(3) –447.0(10) –446.7(2) –446.3(2) –445.7(26)

D2
1S0

–134.6(3) –133.1(1) –132.46(4) –134.1(3) –134.02(7) –133.90(7) –133.7(8)

˜C3S1
–0.064(2) –0.038(1) –0.039(1) –0.070(2) –0.019(6) –0.038(4) –0.045(19)

C3S1
3.79(1) 3.55(1) 3.52(1) 4.09(2) 3.785(9) 3.724(9) 3.7(2)

D1
3S1

–510.7(3) –504.7(4) –504.1(2) –516.7(6) –509.7(1) –508.2(1) –509.0(46)

D2
3S1

–153.2(1) –151.4(1) –151.22(6) –155.0(2) –152.90(3) –152.47(3) –152.7(14)

C1P1
6.44(2) 6.54(1) 6.464(6) 6.37(2) 6.529(7) 6.488(7) 6.47(6)

D1P1
–594.9(2) –592.1(2) –590.21(6) –594.5(2) -597.83(7) -596.25(7) -594.3(28)

C3P1
3.738(2) 3.659(3) 3.633(3) 3.762(6) 3.677(3) 3.599(1) 3.68(6)

D3P1
–253.29(5) –249.8(2) –249.62(7) –254.23(9) -251.0(2) -251.06(2) -251.5(19)

C3P0
–4.911(8) –4.882(5) –4.897(3) –4.944(6) –4.802(8) –4.883(2) –4.89(5)

D3P0
347.0(2) 343.6(2) 344.62(6) 345.8(1) 345.02(3) 346.25(2) 345.4(12)

C3P2
–0.445(2) –0.434(3) –0.426(2) –0.426(2) –0.448(1) –0.427(1) –0.43(1)

D3P2
–10.62(7) –9.7(2) -9.45(6) –11.55(4) –9.939(8) –9.631(7) –10.1(8)

D1D2
–70.92(3) –70.66(6) –70.52(3) –70.58(3) -7-1.109(7) –71.074(5) –70.8(3)

D3D2
–367.8(2) –364.39(7) –364.54(4) –367.19(8) –367.10(2) –366.99(1) -366.3(15)

D3D1
205.8(2) 204.25(7) 204.26(4) 204.4(1) 205.17(3) 205.21(3) 204.9(6)

D3D3
0.55(1) 0.87(6) 0.90(4) –0.32(9) 0.26(3) 0.51(3) 0.46(45)

Cǫ1 –8.36(2) –8.500(4) –8.492(4) –8.35(1) –8.404(4) –8.399(5) –8.42(7)

D1
ǫ1

1012.6(6) 1005.5(1) 1006.23(6) 1010.5(3) 1011.83(5) 1012.71(6) 1009.9(32)

D2
ǫ1

434.0(3) 430.94(4) 431.24(3) 433.1(1) 433.64(2) 434.02(2) 432.8(14)

Dǫ2 84.18(4) 83.29(1) 83.398(7) 84.25(3) 83.660(5) 83.818(8) 83.8(4)

Errors quoted for each potential are statistical; errors in the last column are systematic and correspond to the sample standard deviation of the six previous columns. See main text for

details on the calculation of systematic errors. Units are: ˜C’s are in 104 GeV−2, C’s are in 104 GeV−4, and D’s are in 104 GeV−6.
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After the appearance of QCD as a fundamental theory of
strong interactions there emerged dedicated studies on the
underlying quark dynamics in terms of quark cluster models,
particularly concerning the origin of the nuclear core (see
e.g., [92–94] and references therein). Despite the numerous
attempts it is fair to say that these investigations did provide some
microscopic and quantitative understanding of the short range
components of the interaction but did not offer an alternative to
the conventional partial wave analysis. Current QCD potentials
determined on the lattice [36–38, 44], are still less precise than
phenomenological ones.

In the early 90’s Weinberg [95] (see e.g., [96–98] for
comprehensive reviews and references therein) proposed an
Effective Field Theory (EFT) approach to NN scattering based
on chiral symmetry directly inspired by QCD features, where
the spontaneous breakdown of chiral symmetry underlies the
would-be Goldstone boson nature of the pion. As compared to
the phenomenological approaches, the attractive pattern of such
an EFT was also the natural hierarchy of n-body forces and
the possibility of making an a priori estimate of the systematic
uncertainties in terms of a power counting to different orders.
This happened at about the time when the phenomenological
approach harvested its great success when the Nijmegen group
obtained for the first time a statistically acceptable χ2/ν ∼ 1 by
fitting and selecting np+pp scattering data. Comprehensive fits
to data with chiral interactions have been made using the N2LO
chiral potentials [99] to the Nijmegen database [15] for pp [100]
and for pp+np [101] and the N3LO chiral potential [102] to the
enlarged database [18] for np [103]. The newest generation of
chiral potentials have already provided fits to the Granada-2013
database [40, 48, 77, 104–108].

9.1. Statistical Issues
Very recently chiral potentials to sixth order in the chiral
expansion have been been claimed by the Bochum group to
outperform the non-chiral potentials on the basis of the Granada-
2013 database [107]. This was a major achievement of the chiral
approach (see also [108] for a momentum space approach of the
Idaho-Salamanca group). Another great advantage of the chiral
approach is that the number of fitting parameters is substantially
smaller than in the phenomenological approach. In no case,
however, have the authors taken seriously the available statistical
tests to verify a posteriori the normality of residuals.

Within the uncertainty quantification context, a critical
analysis with an eye on the future developments has been put
forward in Ruiz Arriola et al. [109] and Navarro Perez and Ruiz
Arriola [43]. It has been suggested that a further order in the
expansion, namely N5LO, might quite likely achieve the desired
statistical consistency. At the present state, however, there are
still some pending, hopefully manageable, issues which need to
be resolved before the validation of the chiral approach to NN
scattering can be declared without reservations.

9.2. The Chiral Tensorial Structure
For instance, the tensorial structure of the force requires
phenomenologically that all allowed NN components should
contribute to some extent to the total NN potential. Chiral

perturbation theory proposes a hierarchy among the different
components so that the chiral WQ component vanishes to
N4LO, unlike all the phenomenological analyses so far [43]. In
addition, the number of independent parameters in a scheme
where WQ would be non-vanishing becomes comparable to the
phenomenological potentials.

9.3. Peripheral Waves
One of the reasons why the coupling constants discussed in
section 6 can be pinned down so accurately [60, 61] is given
by the fact that long distant physics is rather well-determined.
From that point of view one expects that peripheral waves are
rather sensitive to the shape of the potential and hence become
independent of the short range components. This also provides
a method to validate other analyses and in particular chiral
potentials. A very vivid way of presenting the discrepancy is by
comparing the phase-shifts in terms of the impact parameter
variable [110] (see Equation 74) for every partial wave

ξN4LO(b) = δN4LO
l

−Mean(δl)

Std(δl)

∣

∣

∣

l+1/2=bp
, (82)

which provides a measure of the discrepancy with respect to a
set of phase-shifts (see Figure 2 for a plot of different sets). The
conclusion of Simo et al. [110] is quite unequivocal: In the range
2 fm ≤ b ≤ 5 fm the δN4LO differ by more than 3σ when
compared to the primary Granada 2013 analysis for F, G, and H
waves, and become 1σ compatible with the spread of the 13 high
quality potentials.

9.4. Perturbation Theory for Higher Partial
Waves
The long distance character of chiral potentials suggests that one
may determine the high peripheral partial waves in perturbation
theory, as done explicitly in Entem et al. [111]. Actually, the
low energy parameters discussed above in section 8.1 probe the
longest distance features of a given partial wave. Going to N2LO
one sees that, while there is some rough agreement between the
perturbative and the full low energy parameters, the detailed
comparison including both statistical and systematic errors do
not agree. Using the perturbative version of the variable phase
approach, a perturbative evaluation [43] in the context of chiral
TPE (N2LO in the chiral expansion) was also undertaken and
shown not to converge to the exact result within uncertainties,
even at the largest angular momenta and hence for the most
peripheral waves.

9.5. Coarse Graining Chiral Potentials
Chiral potentials can be combined with coarse graining in a
statistically consistent way [48, 48, 77, 104]. This allows for a
reduction of parameters to about 30 since the separation distance
can bemade as small as rc = 1.8 fmwithout spoiling the statistical
analysis. This approach assumes the chiral power counting for
the potential above rc but not in the coarse grained region so
that the all the potential components (including the chirally
missing WQ) are non-vanishing, and taking f 2 = 0.0075 has
provided natural values for the chiral constants (c1, c3, c4) =
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(−0.41 ± 1.08,−4.66 ± 0.60, 4.31 ± 0.17)GeV−1 for TLAB ≤
350MeV [48, 77].

In contrast, the canonical (Weinberg) power counting scheme
applies to the full potential and only to at least N5LO provides
all non-vanishing tensorial components (WQ = 0 at N4LO),
in which case the number of parameters becomes comparable
with the phenomenological approach. As emphasized in Navarro
Perez and Ruiz Arriola [43], the end of the chiral road-
map in NN scattering based on the power counting will
definitely occur when such a scheme becomes reliable enough
to select and fit scattering data, without explicit reference to the
phenomenological approach.

10. BINDING IN LIGHT NUCLEI: ERROR
PROPAGATION

Much of the previous analysis may be used to analyze the impact
of NN scattering uncertainties to binding energies. A precursor
of this type of calculations was carried out in Adam et al. [21]
where estimates on binding uncertainties were carried out using
a statistical regularization of phases and a direct solution of the
inverse scattering problem.

10.1. On-Shell vs. Off-Shell
NN Scattering data describe only the behavior of nucleons
on-shell, i.e., with Ep =

√

p2 +M2 in the relativistic case.
However, nuclear structure calculations usually need also the
corresponding off-shell components so that when going from the
NN scattering data to the binding energy calculation some extra
information would be needed [35]. This ambiguity can be used
in fact to our benefit, since ideally one would determine the off-
shellness from the determination of the finite nuclei properties.
The successful attempts by Vary et al. are a good demonstration
of that [112, 113]

10.2. Computational vs. Physical Precision
Let us review the sources of numerical precision in the solution
of the quantum-mechanical problem. In the simplest NN case,
where we usually solve numerically the two-body Schrödinger
equation, the precision is fixed by the precision in the wave
function. In the positive energy situation corresponding to a
scattering state we are rather interested in the determination of
the scattering phase-shifts.

Within the few-body community there has been a trend to
determine the quantum mechanical solution with an increasing
pre-defined precision, say, a 1%. This is a pure conventional
precision which has been a goal per se and, of course, good
precision is not disturbing provided the computational cost does
not scale up to an unbearable limit where the calculation becomes
unfeasible. However, this does not correspond to the physical
precision where all necessary effects are taken into account and
which determines in fact the predictive power of the theory.

10.3. Monte Carlo Method
The normality property of the residuals has been exploited to
extract the effective interaction parameters and corresponding
counter-terms [54] and to replicate via Monte Carlo bootstrap

simulation as a mean to gather more robust information on the
uncertainty characteristics of fitting parameters [83]. We stress
that the verification of normality, Equation (54), is essential
for a meaningful propagation of the statistical error, since the
uncertainty inherited from the fitted scattering data 1O

exp
i

corresponds to a genuine statistical fluctuation. This allows to
determine the 1σ error of the parameters p = p0 ± 1pstat and
hence the error in the potential

VNN = VNN(p0)± 1Vstat
NN (83)

which generates in turn the error in the NN phase-shifs δ =
δ(p0) ± 1δstat and mixing angles. Once the NN-potential
is determined the few body problem can be solved for the
binding energy,





∑

i

Ti +
∑

i<j

VNN(ij)



9 = EA9 (84)

where

EA = EA(p0)± 1EstatA . (85)

Direct methods to determine 1pstat, 1Vstat
NN and 1EstatA proceed

either by the standard error matrix or Monte Carlo methods
(see e.g., [68]). In Navarro Pérez et al. [83] we have shown that
the latter method is more convenient for large number of fitting
parameters (typically NP = 40 − 60), and consists of generating
a sufficiently large sample drawn from a multivariate normal
probability distribution

P(p1, p2, . . . , pP) =
1

√

(2π)NP det E
e−

1
2 (p−p0)

TE−1(p−p0), (86)

where Eij = (∂2χ/∂pi∂pj)
−1 is the error matrix. We generate

M samples pα ∈ P with α = 1, . . .,M, and compute
VNN(pα) from which the corresponding scattering phase shifts
δ(pα) and binding energies EA(pα) can be determined. Of
course, one drawback of the MonteCarlo propagation method
is that the object function, in this case the energy, needs to
be evaluated a sufficiently large number of times which may
be unduly time consuming. An analysis of statistical errors at
the phase shift level shows that M = 25 may be sufficient to
reproduce consistently the covariance matrix uncertainties from
the MonteCarlo method.

10.4. The Deuteron
The deuteron is the simplest bound nuclear np system for which
the theory has long been developed [114]. Its quantum numbers
JP = 1+ correspond to the coupled 3S1 −3 D1 channel with
reduced wave functions u(r) and w(r) respectively, so that we
solve the bound state problem with Ed = −Bd = −γ 2/2µnp,
i.e., with p = iγ . At long distances

u(r) → ASe
−γ r , w(r) → ηASe

−γ r

[

1+ 3

γ r
+ 3

(γ r)2

]

(87)
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For normalized states we list in Table 10 the asymptotic D/S
ratio η, asymptotic S-wave amplitude AS, mean squared matter
radius rm, quadrupole moment QD, D-wave probability PD and
inverse matter radius 〈r−1〉 for some high quality potentials
compared with two Granada potentials, DS-OPE [45], DS-
TPE [77]. The PWA analysis indeed uses its binding energy
as a fitting parameter, so that the quoted uncertainties are
purely statistical. Unlike rm, QD, or PD which require (small)
meson exchange currents corrections before being compared
to experimental data, AS and η are purely hadronic. As we
see, both the DS-OPE [77] DS-TPE [77] provide smaller
uncertainties than the experimental/recommended values for
AS and η. To our knowledge, this is an unprecedented
situation in Nuclear Physics. Similar trends are also observed for
the corresponding deuteron charge, magnetic and quadrupole
form factors (see e.g., [121] for a review) where DS-
OPE [45] and DS-TPE [77, 122] generate tiny uncertainties
and offer an opportunity to discriminate meson exchange
currents contributions.

10.5. Binding Energies for A = 3,4 Systems
The primary Granada DS-OPE potential which was used to fit
and select np+pp scattering data uses Dirac delta-shells which are
too singular in configuration space or have too long momentum
tails, for instance in the deuteron [26], to be handled in few body
calculations. Actually, this was the reason to design smooth SOG
(Sum of Gaussian) potentials [53, 75] referenced in section 7.

In Navarro Perez et al. [24] the triton binding energy was
evaluated for the SOG-OPE Granada potential using the hyper-
spherical harmonics method withM ∼ 200MonteCarlo replicas,
and statistical distributions where also obtained yielding 1Et =
12 KeV. One motivation for such a calculation was to determine
if the computational accuracy was unnecessarily better than the
statistical accuracy inherited from the NN scattering data. Our
points are illustrated in Table 11 from Navarro Perez et al. [24]
where the numerical convergence regarding the number of
partial waves is displayed. The error estimate clearly marks where
the accuracy of the numerical calculation is larger than the
physical accuracy.

The statistical uncertainty of experimental NN scattering data
have also been propagated into the binding energy of 3H and 4He
using the no-core full configuration method in a sufficiently large

harmonic oscillator basis. The error analysis [26] yields1Bt = 15
KeV and 1Bα = 55 KeV.

Similar patterns occur when solving the Faddeev equations
for 3H and the Yakubovsky equations for 4He respectively [25].
We check that in practice about M = 30 samples prove
enough for a reliable error estimate within the MonteCarlo
method, giving 1Bt = 12 KeV and 1Bα = 50 KeV whereas,
again, the computational accuracy is better, 1Bnumt = 1 KeV
and 1Bnumα = 20 KeV.

Results for the 3N and 4N binding energies for various
NN potentials using the Faddeev equations for 3H and the
Yakubovsky equations for 4He are listed in Table 12 where we
see a systematic underbinding with respect to the experimental
values. A popular interpretation of this disagreement suggests
that the influence of three- and four-body forces has been
neglected. However, the contribution of three body forces
depends on the definition of two body forces as we will
discuss next.

10.6. The Tjon Line
Much of the error analysis which can and has been carried out in
Nuclear Physics is probably best exemplified by the so called Tjon

TABLE 11 | Triton binding energy convergence for the hyper-spherical harmonics

method [24] in the number of channels, Nc, classified according to the orbital

angular momentum of the pair LPair and the spectator lspectator in the triton as the

number of total accumulated channels, NTotal, is increased.

Nc LPair lSpectator NTotal Energy (MeV)

3 Ss 3 Unbound

+2 Sd+Ds 5 –7.0117

+10 Pp 15 –6.4377

+8 Dd 23 –7.4109

+4 Pf+Fp 27 –7.4956

+10 Ff 37 –7.5654

+2 Dg+Gd 39 –7.6178

+8 Gg 47 –7.6502

+4 Fh+Hf 51 –7.6508

+10 Hh 61 –7.6510

The potential usedwasMonte Carlo generated. A horizontal line is drawnwhen the change

in Et is smaller than the statistical uncertainty 1Bt = 15(1) keV.

TABLE 10 | Deuteron static properties compared with empirical/recommended values [115–120] and high-quality potentials calculations, DS-OPE [45], DS-TPE [77],

Nijm I [16], Nijm II [16], Reid93 [16], AV18 [17], CD-Bonn [18].

Emp./Rec. DS-OPE DS-TPE Nijm I Nijm II Reid93 AV18 CD-Bonn

Ed (MeV) 2.224575(9) Input Input Input Input Input Input Input

η 0.0256(5) 0.02493(8) 0.02473(4) 0.02534 0.02521 0.02514 0.0250 0.0256

AS (fm
1/2) 0.8845(8) 0.8829(4) 0.8854(2) 0.8841 0.8845 0.8853 0.8850 0.8846

rm(fm) 1.971(6) 1.9645(9) 1.9689(4) 1.9666 1.9675 1.9686 1.967 1.966

QD(fm
2) 0.2859(3) 0.2679(9) 0.2658(5) 0.2719 0.2707 0.2703 0.270 0.270

PD 5.67(4) 5.62(5) 5.30(3) 5.664 5.635 5.699 5.76 4.85

〈r−1〉(fm−1) 0.4540(5) 0.4542(2) 0.4502 0.4515

We list binding energy Ed , asymptotic D/S ratio η, asymptotic S-wave amplitude AS, mean squared matter radius rm, quadrupole moment QD, D-wave probability PD, and inverse matter

radius 〈r-1〉.
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TABLE 12 | 3N and 4N binding energies for various NN potentials using the

Faddeev equations for 3H and the Yakubovsky equations for 4He

respectively [25, 123].

Potential Exp. SOG-OPE CD Bonn AV18 Nijm I Nijm II Nijm93

3H [MeV] –8.4820(1) –7.660(12) –8.012 –7.623 –7.736 –7.654 –7.668

4He [MeV] –28.2957(1) –24.760(47) –26.26 –24.28 –24.98 –24.56 –24.53

Errors in SOG-OPE are statistical.

line [34], a linear but empirical correlation between the triton and
α-particle binding energies of the form

Bα = aBt + c (88)

where a, c depend on a family of NN potentials which have the
same NN scattering phase shifts and deuteron properties. Thus,
the slope may be schematically be written as a = (∂Bα/∂Bt)|Bd .
This empirical feature [124, 125] comparing between phase-
equivalent potentials has been corroborated bymany calculations
ever since [123, 126, 127]. It is remarkable that such a simple
property has no obvious explanation. One clue would be the
fact that the deuteron binding energy, Bd = 2.2 MeV, is small
compared to the triton and alpha bindings [128]. For small Bd
the alpha binding energy then would scale as Bα = aBt +
bBd + O(B2

d
). The points along this line in the plane (Bt ,Bα)

correspond to potentials with the same phase-shifts, verifying
1Bα = a1Bt The points along a perpendicular line, 1Bα =
−1/a1Bt should correspond to potentials with very different
phase-shifts. In particular the difference may be generated by a
unitary transformation of the NN potential, V2 → UV2U

†, so
that the bindings depend on U but the coefficients a and b do not
depend on U [123]. On the other hand, a unitary transformation
of the two-body potential implies a change in multi-nucleon
forces, V3, V4, etc. and, one may actually fit Et with a suitable
V3 and Eα with a suitable V4 yielding for V4 = 0 in the so-
called on-shell limit the formula Bα = 4Bt − 3Bd which works
well [129, 130].

Phase equivalent interactions produce a Tjon slope which
is typically about 1Bα/1Bt ∼ 5 − 6 both in the Faddeev-
Yakubovsky [126] and in the no-core shell model [131]. For the
Faddeev-Yakubovsky solutions of 3H-4He the results from five
high quality potentials, i.e., with χ2/ν ∼ 1 at their time and
the Granada SOG-OPE, in Table 12 give Bα = 4.73Bt − 5.26Bd.
For a sample of SOG-OPE potentials the statistical bootstrap
analysis with M = 30 gives Bα = 4.8(1)Bt − 5.4(3)Bd,
where the central values reflect the actual scattering data and
the uncertainties reflect the truly phase-inequivalent fluctuations.
The extrapolation predicts the experimental binding of the alpha
particle within uncertainties [25], since

1B2α|stat = (1a)2B2t + (1b)2B2d (89)

so that 1Bα|stat ∼ 1MeV. Interestingly, this suggests a marginal
effect of four body forces, for which independent estimates
using approximate wave functions [132] give similar numbers,
Bα|4N ∼ −100 KeV (see also Epelbaum [133] for a chiral
scheme where this is argued to overestimate the result). Thus,

we see that since Bα|4N ∼ 1Bstatα the four-body force might
be unobservable. While this is good news from the theoretical
point of view, more detailed calculations might be needed to
confirm this feature. Finally, let us also mention that along these
lines, theoretical uncertainties of the elastic nucleon-deuteron
scattering observables have been undertaken [27].

11. EFFECTIVE NUCLEAR INTERACTIONS

11.1. Moshinsky-Skyrme Parameters
Power expansions in momentum space of effective interactions
were introduced by Moshinsky [134] and Skyrme [135] to
provide significant simplifications to the nuclear many body
problem in comparison with the ab initio approach, in which it
is customary to employ phenomenological interactions fitted to
NN scattering data to solve the nuclear many body problem. As
a consequence of such simplifications effective interactions, also
called Skyrme forces, have been extensively used in mean field
calculations [136–139]. Within this framework the effective force
is deduced from the elementary NN interaction and encodes the
relevant physical properties in terms of a small set of parameters.
However, there is not a unique determination of the Skyrme
force and different fitting strategies result in different effective
potentials (see e.g., [140] and [141]). This diversity of effective
interactions within the various available schemes signals a source
of statistical and systematic uncertainties that remain to be
quantified. Fortunately the parameters determining a Skyrme
force can be extracted from phenomenological interactions [88,
142] and uncertainties can be propagated accordingly [54]. At the
two body level the Moshinsky-Skyrme potential in momentum
representation reads

V3(p
′, p) =

∫

d3xe−ix·(p′−p)V̂(x)

= t0(1+ x0Pσ )+
t1

2
(1+ x1Pσ )(p

′2 + p2)

+ t2(1+ x2Pσ )p
′ · p+ 2iW0S · (p′ × p)

+ tT

2

[

σ1 · p σ2 · p+ σ1 · p′ σ2 · p′

−1

3
σ1 · σ2(p′2 + p2)

]

+ tU

2

[

σ1 · p σ2 · p′ + σ1 · p′ σ2 · p− 2

3
σ1 · σ2p′ · p

]

+O(p4) (90)

where Pσ = (1 + σ1 · σ2)/2 is the spin exchange operator with
Pσ = −1 for spin singlet S = 0 and Pσ = 1 for spin triplet
S = 1 states. These parameters correspond to radial moments
of volume integrals of the potentials

∫∞
0 d3xrnVi(r) which are

increasingly insensitive to short distances.
As mentioned above different nuclear data can be used

to constrain the Skyrme potential. The usual approach is to
fit parameters of Equation (90) to doubly closed shell nuclei
and nuclear matter saturation properties [136–139]. In Ruiz
Arriola [142] the parameters were determined from just NN
threshold properties such as scattering lengths, effective ranges
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and volumes without explicitly taking into account the finite
range of the NN interaction; while in Navarro Perez et al. [88]
the parameters were computed directly from a local interaction
in coordinate space that reproduces NN elastic scattering data.
In Navarro Pérez et al. [54] the latter approach was used to
propagate statistical uncertainties into the Skyrme parameters.
The quantification of the systematic uncertainties, which arise
from the different representations of the NN interaction was
discussed in Navarro Perez et al. [87]. The results, summarized
in Table 13 clearly show, again, the dominance of systematic vs
statistical errors.

11.2. Error Estimates for Heavy Nuclei and
Nuclear Matter
Within the Skyrme effective interactions approach one can find
a simple estimate of systematic errors due to the two body
interaction uncertainty using (for a review see [139])

1B

A
= 3

8A
1t0

∫

d3x ρ(x)2, (91)

For nuclear matter at saturation, ρ0 = 0.17fm−3, our 1t0 =
75MeV fm3 implies

1B

A
= 3

8
1t0ρ0 = 2.4MeV. (92)

We may implement finite size effects in light-heavy nuclei by
using a Fermi-type shape for the matter density

ρ(r) = C/(1+ e(r−R)/a) (93)

with R = r0A
1
3 , r0 = 1.1 fm and a = 0.7 fm, Normalizing to

the total number of particles A =
∫

d3xρ(x) we get values in
the range

1BA/A = 0.4− 1.6MeV, (94)

depending on the value of A for 4 ≤ A ≤ 208.

12. COARSE GRAINED POTENTIAL
RESULTS

Besides the aspect of uncertainty quantification which is
the focus of the present work, we believe that the very
idea of coarse graining proves useful in nuclear physics.
This requires that special methods have to be developed
for delta–shells interaction, which in our view are the most
flexible ones which allow for selecting and fitting the largest
NN database to date, but cannot be plugged directly in
conventional computing codes dealing with nuclear structure
and reactions, and hence smooth potentials (such as the
SOG-Granada type potentials) need to be defined after the
data selection process. This is similar to what happened
with the energy dependence needed by the Nijmegen group
which also led to subsequent high quality interactions. We
discuss here some simple examples where delta-shells may be
used directly.

12.1. Repulsive vs. Structural Core
Besides the well-accepted OPE mechanism for long distances
and the mid-range attraction which is needed for nuclear
binding, one of the traditional and well-accepted properties
of the nuclear potential is the existence of a nuclear strongly
repulsive core at about 0.5 fm. While this feature guarantees
the stability of nuclei and nuclear matter against collapse it
also complicates the solution of the many body problem, since
the relative NN wave function must vanish below the core,
therefore introducing a very strong short range correlation. At
a practical level the existence of the core implies a vanishing of
the wave function at about the core location, but something else
is needed to determine the wave function below the core radius.
The question is whether the repulsive core is indispensable
from the analysis of collision experiments. However, in order
to resolve the core in NN elastic scattering one needs a
wavelength which corresponds to energies where there is a
substantial in-elasticity and hence a complex optical potential
is needed in order to deal with the absorption due to inelastic
processes such as NN → NNπ . This point has been analyzed
in Fernandez-Soler and Ruiz Arriola [46] and it has been

TABLE 13 | Moshinsky-Skyrme parameters for the renormalization scale 3 = 400 MeV.

DS-OPE DS-χTPE DS-Born Gauss-OPE Gauss-χTPE Gauss-Born Compilation

t0 –626.8(64) –529.6(53) –509.0(55) –584.4(157) –406.1(289) –521.8(152) -529.6(751)

x0 –0.38(2) –0.56(1) –0.54(1) –0.26(2) –0.71(8) –0.55(4) –0.50(16)

t1 948.1(30) 913.6(22) 900.1(17) 987.4(29) 945.5(18) 941.3(16) 939.3(304)

x1 –0.048(3) –0.074(3) –0.068(3) –0.013(3) –0.047(3) –0.058(2) –0.051(22)

t2 2462.6(56) 2490.0(39) 2462.1(25) 2441.3(56) 2490.1(24) 2466.8(26) 2468.8(187)

x2 –0.8686(6) –0.8750(8) –0.8753(6) –0.8630(8) –0.8729(6) –0.8785(3) –0.872(6)

W0 107.7(4) 100.8(3) 96.2(3) 105.0(5) 109.3(7) 94.3(2) 102.2(61)

tU 1278.6(12) 1260.3(5) 1257.0(4) 1285.6(12) 1254.9(9) 1249.3(3) 1264.3(144)

tT –4220.9(87) –4292.8(23) –4289.0(21) –4385.6(99) –4271.8(51) –4319.5(58) –4296.6(545)

Errors quoted for each potential are statistical; errors in the last column are systematic and correspond to the sample standard deviation of the six previous columns. See main text for

details on the calculation of systematic errors. Units are: t0 in MeVfm
3, t1, t2,W0, tU, tT in MeVfm5, and x0, x1, x2 are dimensionless.
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found that there exist two solutions, one corresponding to
the usual repulsive core and the other one related to the so-
called structural core, reminiscent of the composite character of
the nucleon.

12.2. Coarse Graining Short Range
Correlations
The Bethe-Goldstone equation [143, 144] has been a way to
describe short range correlations between nucleons inside the
nucleus. In the nuclear medium the interaction produces no
scattering due to the Pauli principle. Instead the relative wave
function of a pair is modified in presence of the two-body
interaction, generating high-momentum components above the
Fermi momentum, p > pF . Using the delta-shell potential allows
to simplify the problem of computing these high momentum
components arising in an interacting nucleon pair in nuclear
matter. This coarse graining of the Bethe-Goldstone equation has
been explored in Ruiz Simo et al. [145, 146] for back-to-back
nucleons, with total center of mass momentum equal to zero. The
formalism still has to be extended to other values of the center
of mass.

12.3. Error Analysis of Nuclear Matrix
Elements
The expected errors of harmonic oscillator nuclear matrix
elements coming from the uncertainty on the NN interaction
have been estimated in Amaro et al. [147] for the coarse grained
(GR) interaction fitted to NN scattering data, with several
prescriptions for the long-part of the interaction, including one
pion exchange and chiral two-pion exchange interactions.

12.4. Shell Model Estimates
In a previous calculation [51], we showed how our approach is
competitive not only as a way of determining the phase shifts
but also compared to more sophisticated approaches to Nuclear
Structure [148]. We computed the ground state energy of several
closed-shell nuclei by using oscillator wave functions. In the case
of 4He, 16O, and 40Ca nuclei, our calculation reproduces the
experiment at the 20 − 30%-level provided the phase-shifts are
fitted up to energy E ≤ 100MeV [51]. This is a tolerable accuracy
as we just intend to make a first estimate on the systematic
uncertainties and then compute the change in the binding energy.
For the A = 3, 4 nuclei we use the simple formulas,

1B(3H) =〈1V2〉3H = 3〈1s|1
2

(

1V1S0 + 1V3S1

)

|1s〉, (95)

1B(4He) =〈1V2〉4He = 6〈1s|1
2

(

1V1S0 + 1V3S1

)

|1s〉, (96)

where |1s〉 is the Harmonic oscillator relative wave function
with the corresponding oscillator parameter b fixed to reproduce
the physical charge radius. The factors in front of the matrix
elements are Talmi-Moshinsky coefficients corresponding in
this particular case to the number of pairs interacting through
a relative s-wave. Errors in the potential 1V are computed

by adding individual contributions (1λn)
JS
l,l′ in quadrature. By

propagating the potential errors to Equation (95) we find

1B(3)

3
= 0.07− 0.085MeV (97)

depending on the fitting cut-off LAB energy, 100–350 MeV
respectively, overestimating the Faddeev estimates given above.
For the α−particle Equation (96) yields

1B(4)

4
= 0.10− 0.13MeV. (98)

More generally, for heavier double-closed shell nuclei one has
along the lines of Navarro Perez et al. [51]

1B(A) =
∑

nlSJ

gnlJS〈nl|1V JST |nl〉 (99)

where gnlJS depends on the Talmi-Moshinsky brackets. For 16O
and 40Ca, we find

1B(16O)

16
= 0.26MeV

1B(40Ca)

40
= 0.32MeV. (100)

These systematic estimates using shell model are of the same
order to the ones obtained above in the Skyrme interaction.

13. OUTLOOK

Despite the many years elapsed since the first NN partial wave
analysis in 1957 and the huge theoretical and experimental efforts
carried out, the nuclear force is poorly known still where it is
most needed, namely in the mid-range regime which is relevant
for ab initio calculation of nuclear binding energies. This is the
explanation behind the relatively large uncertainties found in
large scale calculations. During many years there has been a
conformist attitude regarding these uncertainties, and in most
papers a purely computational approach has prevailed, validating
theoretical frameworks just on their numerical performance.
Only in recent years the issue of uncertainties has been taken
seriously, as it is actually the key to establish the predictive
power of the theory. Clearly, the level of ambiguity we are
dealing with in the evaluation of nuclear uncertainties of all sorts,
statistical, systematic, and computational requires a rigorous
treatment. In this work we have reviewed this topic from the
perspective of the impact of the Granada NN database on
the determination of the NN force and its consequences on
nuclear binding.

The main theoretical obstacle has to do with the great
difficulty in providing a unique definition of the nuclear potential
just from data. Quantum field theory at the hadronic level
implies the existence of a long range interaction dominated
by pion exchanges as the lightest particles and reduces the
ambiguity. Lattice calculations of potentials may identify them
with static energies assuming heavy quark-composite sources but
their accuracy is at present not satisfactory. Chiral perturbation
theory provides in addition several schemes based on a power
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counting which, while not fully satisfactory, may be and have
been implemented in the NN sector and extended to multi-
nucleon forces. The consistency among chiral multi-nucleon
forces is theoretically very appealing and the use of potentials is
possibly the only practical path toward a satisfactory solution of
the nuclear many body problem. It should be stressed that the
EFT point of view is the most suitable one since in principle
one gets rid of the model dependence with a priori uncertainty
estimates. However, a more detailed analysis reveals that there are
issues regarding the necessary regularization of the theory, which
effectively model the mid-range regime of the NN interaction.
Moreover, the indispensability of the chiral scheme for NN
scattering data remains to be proven, not to speak about its
suitability for fitting and selecting a NN database itself. At a
phenomenological level at the present stage the determination of
the NN interaction below 1.8 fm (up to a phase equivalent unitary
transformation) remains so far connected to a combination of an
abundance of data in a variety of kinematics and observables with
the corresponding experimental errors.

In our view, this unfortunate situation on the side of the
hadronic theory will likely not necessarily improve neither
with more and better experimental measurements nor with

larger computational facilities, but with a better understanding
on the essence of hadronic interactions and their range
of applicability.
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The interaction between hyperons and nucleons has a wide range of applications in

strangeness nuclear physics and is a topic of continuing great interest. These interactions

are not only important for hyperon-nucleon scattering but also essential as basic input

to studies of hyperon-nuclear few- and many-body systems including hypernuclei and

neutron star matter. We review the systematic derivation and construction of such

baryonic forces from the symmetries of quantum chromodynamics within non-relativistic

SU(3) chiral effective field theory. Several applications of the resulting potentials are

presented for topics of current interest in strangeness nuclear physics.

Keywords: chiral Lagrangian, effective field theory, hyperon-nucleon interaction, flavor SU(3) symmetry,

strangeness nuclear physics

1. INTRODUCTION

Strangeness nuclear physics is an important topic of ongoing research, addressing for example
scattering of baryons including strangeness, properties of hypernuclei, or strangeness in infinite
nuclear matter and in neutron star matter. The theoretical foundation for such investigations are
interaction potentials between nucleons and strange baryons such as the 3 hyperon.

Nuclear many-body systems are (mainly) governed by the strong interaction, described at the
fundamental level by quantum chromodynamics (QCD). The elementary degrees of freedom of
QCD are quarks and gluons. However, in the low-energy regime of QCD quarks and gluons are
confined into colorless hadrons. This is the region where (hyper-)nuclear systems are formed. In
this region QCD cannot be solved in a perturbative way. Lattice QCD is approaching this problem
via large-scale numerical simulations: the (Euclidean) space-time is discretized and QCD is solved
on a finite grid [1–4]. Since the seminal work of Weinberg [5, 6] chiral effective field theory (χEFT)
has become a powerful tool for calculating systematically the strong interaction dynamics for low-
energy hadronic processes [7–9]. Chiral EFT employs the same symmetries and symmetry breaking
patterns at low-energies as QCD, but it uses the proper degrees of freedom, namely hadrons instead
of quarks and gluons. In combination with an appropriate expansion in small external momenta,
the results can be improved systematically, by going to higher order in the power counting, and
at the same time theoretical errors can be estimated. Furthermore, two- and three-baryon forces
can be constructed in a consistent fashion. The unresolved short-distance dynamics is encoded in
χEFT in contact terms, with a priori unknown low-energy constants (LECs).

The NN interaction is empirically known to very high precision. Corresponding two-nucleon
potentials have been derived to high accuracy in phenomenological approaches [10–12]. Nowadays
the systematic theory to construct nuclear forces is χEFT [13, 14]. (Note however that there are still
debates about the Weinberg power counting schemes and how it is employed in practice [15–17]).
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In contrast, the YN interaction is presently not known in such
detail. The scarce experimental data (about 35 data points for
low-energy total cross sections) do not allow for a unique
determination of the hyperon-nucleon interaction. The limited
accuracy of the YN scattering data does not permit a unique
phase shift analysis. However, at experimental facilities such as J-
PARC in Japan or later at FAIR in Germany, a significant amount
of beam time will be devoted to strangeness nuclear physics.
Various phenomenological approaches have been employed
to describe the YN interaction, in particular boson-exchange
models [18–23] or quark models [24–26]. However, given
the poor experimental data base, these interactions differ
considerably from each other. Obviously there is a need for a
more systematic investigation based on the underlying theory
of the strong interaction, QCD. Some aspects of YN scattering
and hyperon mass shifts in nuclear matter using EFT methods
have been covered in Savage and Wise [27] and Korpa et al.
[28]. The YN interaction has been investigated at leading
order (LO) in SU(3) χEFT [29–31] by extending the very
successful χEFT framework for the nucleonic sector [13, 14]
to the strangeness sector. This work has been extended to
next-to-leading order (NLO) in Petschauer and Kaiser [32],
Haidenbauer et al. [33, 34] where an excellent description of
the strangeness −1 sector has been achieved, comparable to
most advanced phenomenological hyperon-nucleon interaction
models. An extension to systems with more strangeness has
been done in Haidenbauer et al. [35, 36] and Haidenbauer and
Meißner [37]. Systems including decuplet baryons have been
investigated in Haidenbauer et al. [38] at leading order in non-
relativistic χEFT. Recently calculations within leading order
covariant χEFT have been performed for YN interactions in
the strangeness sector [39–43] with comparable results (see also
[44]). It is worth to briefly discuss the differences between the
covariant and the heavy-baryon approach. In the latter, due to the
expansion in the inverse of the baryon masses, some terms are
relegated to higher orders. Also, it can happen that the analytic
structure is distorted in the strict heavy-baryon limit. This can
easily be remedied by including the kinetic energy term in the
baryon propagator [45]. In what follows, we will present results
based on the heavy-baryon approach.

Numerous advanced few- and many-body techniques have
been developed to employ such phenomenological or chiral
interactions, in order to calculate the properties of nuclear
systems with and without strangeness. For example, systems
with three or four particles can be reliably treated by Faddeev-
Yakubovsky theory [46–49], somewhat heavier (hyper)nuclei
with approaches like the no-core-shell model [50–55]. In the
nucleonic sector many-body approaches such as Quantum
Monte Carlo calculations [56–58], or nuclear lattice simulations
[59–61] have been successfully applied and can be extended
to the strangeness sector. Furthermore, nuclear matter is
well described by many-body perturbation theory with chiral
low-momentum interactions [62–64]. Concerning 3 and 6

hyperons in nuclear matter, specific long-range processes
related to two-pion exchange between hyperons and nucleons
in the nuclear medium have been studied in Kaiser and
Weise [65] and Kaiser [66]. Conventional Brueckner theory

[67–69] at first order in the hole-line expansion, the so-called
Bruecker-Hartree-Fock approximation, has been widely applied
to calculations of hypernuclear matter [20, 24, 70, 71] employing
phenomenological two-body potentials. This approach is also
used in investigations of neutron star matter [72–74]. Recently,
corresponding calculations of the properties of hyperons in
nuclear matter have been also performed with chiral YN
interaction potentials [37, 75, 76].

Employing the high precision NN interactions described
above, even “simple” nuclear systems such as triton cannot
be described satisfactorily with two-body interactions alone.
The introduction of three-nucleon forces (3NF) substantially
improves this situation [77–80] and also in the context of infinite
nuclear matter 3NF are essential to achieve saturation of nuclear
matter. These 3NF are introduced either phenomenologically,
such as the families of Tuscon-Melbourne [81, 82], Brazilian
[83], or Urbana-Illinois [84, 85] 3NF, or constructed according
to the basic principles of χEFT [78, 86–94]. Within an EFT
approach, 3NF arise naturally and consistently together with
two-nucleon forces. Chiral three-nucleon forces are important
in order to get saturation of nuclear matter from chiral
low-momentum two-body interactions treated in many-body
perturbation theory [63]. In the strangeness sectors the situation
is similar: Three-baryon forces (3BF), especially the 3NN
interaction, seem to be important for a satisfactorily description
of hypernuclei and hypernuclear matter [58, 95–103]. Especially
in the context of neutron stars, 3BF are frequently discussed.
The observation of two-solar-mass neutron stars [104, 105] sets
strong constraints on the stiffness of the equation-of-state (EoS)
of dense baryonic matter [106–110]. The analysis of recently
observed gravitational wave signals from a two merging neutron
stars [111, 112] provides further conditions, by constraining the
tidal deformability of neutron star matter.

A naive introduction of 3-hyperons as an additional baryonic
degree of freedomwould soften the EoS such that it is not possible
to stabilize a two-solar-mass neutron star against gravitational
collapse [113]. To solve this so-called hyperon puzzle, several ad-
hoc mechanisms have so far been invoked, e.g., through vector
meson exchange [114, 115], multi-Pomeron exchange [116] or
a suitably adjusted repulsive 3NN three-body interaction [117–
119]. Clearly, a more systematic approach to the three-baryon
interaction within χEFT is needed, to estimate whether the 3BF
can provide the necessary repulsion and thus keep the equation-
of-state sufficiently stiff. A first step in this direction was done in
Petschauer et al. [120], where the leading 3BFs have been derived
within SU(3) χEFT. The corresponding low-energy constants
have been estimated by decuplet saturation in Petschauer et al.
[121]. The effect of these estimated 3BF has been investigated in
Petschauer et al. [121] and Kohno [122].

In this review article we present, on a basic level, the
emergence of nuclear interactions in the strangeness sector
from the perspective of (heavy-baryon) chiral effective field
theory. After a brief introduction to SU(3) χEFT in section
2, we present how the interaction between hyperons and
nucleons is derived at NLO from these basic principles for two-
baryon interactions (section 3) and for three-baryon interactions
(section 4). In section 5, applications of these potentials are briefly
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reviewed for YN scattering, infinite nuclear matter, hypernuclei,
and neutron star matter.

2. SU(3) CHIRAL EFFECTIVE FIELD
THEORY

An effective field theory (EFT) is a low-energy approximation to
a more fundamental theory. Physical quantities can be calculated
in terms of a low-energy expansion in powers of small energies
and momenta over some characteristic large scale. The basic idea
of an EFT is to include the relevant degrees of freedom explicitly,
while heavier (frozen) degrees of freedom are integrated out.
An effective Lagrangian is obtained by constructing the most
general Lagrangian including the active degrees of freedom, that
is consistent with the symmetries of the underlying fundamental
theory [6]. At a given order in the expansion, the theory is
characterized by a finite number of coupling constants, called
low-energy constants (LECs). The LECs encode the unresolved
short-distance dynamics and furthermore allow for an order-by-
order renormalization of the theory. These constants are a priori
unknown, but once determined from one experiment or from
the underlying theory, predictions for physical observables can
be made. However, due to the low-energy expansion and the
truncation of degrees of freedom, an EFT has only a limited range
of validity.

The underlying theory of chiral effective field theory is
quantum chromodynamics. QCD is characterized by two
important properties. For high energies the (running) coupling
strength of QCDbecomes weak, hence a perturbative approach in
the high-energy regime of QCD is possible. This famous feature
is called asymptotic freedom of QCD and originates from the
non-Abelian structure of QCD. However, at low energies and
momenta the coupling strength of QCD is of order one, and a
perturbative approach is no longer possible. This is the region
of non-perturbative QCD, in which we are interested in. Several
strategies to approach this regime have been developed, such
as lattice simulations, Dyson-Schwinger equations, QCD sum
rules or chiral perturbation theory. The second important feature
of QCD is the so-called color confinement: isolated quarks and
gluons are not observed in nature, but only color-singlet objects.
These color-neutral particles, the hadrons, are the active degrees
of freedom in χEFT.

But already before QCD was established, the ideas of
an effective field theory were used in the context of the
strong interaction. In the 60’s the Ward identities related to
spontaneously broken chiral symmetry were explored by using
current algebra methods (e.g., [123]). The group-theoretical
foundations for constructing phenomenological Lagrangians in
the presence of spontaneous symmetry breaking have been
developed byWeinberg [5], Coleman et al. [124], and Callan et al.
[125]. With Weinberg’s seminal paper [6] it became clear how
to systematically construct an EFT and generate loop corrections
to tree level results. This method was improved later by Gasser
and Leutwyler [7, 126]. A systematic introduction of nucleons as
degrees of freedom was done by Gasser et al. [8]. They showed
that a fully relativistic treatment of nucleons is problematic, as

the nucleon mass does not vanish in the chiral limit and thus
adds an extra scale. A solution for this problem was proposed
by Jenkins and Manohar [127] by considering baryons as heavy
static sources. This approach was further developed using a
systematic path-integral framework in Bernard et al. [128]. The
nucleon-nucleon interaction and related topics were considered
by Weinberg [86]. Nowadays χEFT is used as a powerful tool
for calculating systematically the strong interaction dynamics of
hadronic processes, such as the accurate description of nuclear
forces [13, 14].

In this section, we give a short introduction to the underlying
symmetries of QCD and their breaking pattern. The basic
concepts of χEFT are explained, especially the explicit degrees
of freedom and the connection to the symmetries of QCD.
We state in more detail how the chiral Lagrangian can be
constructed from basic principles. However, it is beyond the
scope of this work to give a detailed introduction to χEFT and
QCD. Rather we will introduce only the concepts necessary for
the derivation of hyperon-nuclear forces. We follow [9, 13, 14,
129–131] and refer the reader for more details to these references
(and references therein).

2.1. Low-Energy Quantum
Chromodynamics
Let us start the discussion with the QCD Lagrangian

LQCD =
∑

f=u,d,s,c,b,t

q̄f
(

i /D−mf

)

qf −
1

4
Gµν,aG

µν
a , (1)

with the six quark flavors f and the gluonic field-strength
tensor Gµν,a(x). The gauge covariant derivative is defined by

Dµ = 1∂µ − igAa
µ

λa
2 , where Aa

µ(x) are the gluon fields and
λa the Gell-Mann matrices. The QCD Lagrangian is symmetric
under the local color gauge symmetry, under global Lorentz
transformations, and the discrete symmetries parity, charge
conjugation, and time reversal. In the following we will introduce
the so-called chiral symmetry, an approximate global continuous
symmetry of the QCD Lagrangian. The chiral symmetry is
essential for chiral effective field theory. In view of the application
to low energies, we divide the quarks into three light quarks u, d, s
and three heavy quarks c, b, t, since the quark masses fulfill a
hierarchical ordering:

mu,md,ms ≪ 1 GeV ≤ mc,mb,mt . (2)

At energies andmomenta well below 1GeV, the heavy quarks can
be treated effectively as static. Therefore, the light quarks are the
only active degrees of freedom of QCD for the low-energy region
we are interested in. In the following we approximate the QCD
Lagrangian by using only the three light quarks. Compared to
characteristic hadronic scales, such as the nucleon mass (MN ≈
939 MeV), the light quark masses are small. Therefore, a good
starting point for our discussion of low-energy QCD are massless
quarks mu = md = ms = 0, which is referred to as the chiral
limit. The QCD Lagrangian becomes in the chiral limit

L
0
QCD =

∑

f=u,d,s

q̄f i /Dqf −
1

4
Gµν,aG

µν
a . (3)
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Now each quark field qf (x) is decomposed into its
chiral components

qf ,L = PL qf , qf ,R = PR qf . (4)

using the left- and right-handed projection operators

PL = 1

2
(1− γ5) , PR = 1

2
(1+ γ5) , (5)

with the chirality matrix γ5. These projectors are called left- and
right-handed since in the chiral limit they project the free quark

fields on helicity eigenstates, ĥ qL,R = ± qL,R, with ĥ = Eσ · Ep /
∣

∣Ep
∣

∣.
For massless free fermions helicity is equal to chirality.

Collecting the three quark-flavor fields q = (qu, qd, qs) and
equivalently for the left and right handed components, we can
express the QCD Lagrangian in the chiral limit as

L
0
QCD = q̄Ri /DqR + q̄Li /DqL −

1

4
Gµν,aG

µν
a . (6)

Obviously the right- and left-handed components of the massless
quarks are separated. The Lagrangian is invariant under a
global transformation

qL → L qL , qR → R qR , (7)

with independent unitary 3 × 3 matrices L and R acting in
flavor space. This means that L

0
QCD possesses (at the classical,

unquantized level) a global U(3)L×U(3)R symmetry, isomorphic
to a global SU(3)L×U(1)L×SU(3)R×U(1)R symmetry.U(1)L×
U(1)R are often rewritten into a vector and an axial-vector part
U(1)V × U(1)A, named after the transformation behavior of the
corresponding conserved currents under parity transformation.
The flavor-singlet vector current originates from rotations of
the left- and right-handed quark fields with the same phase
(“V = L + R ”) and the corresponding conserved charge is
the baryon number. After quantization, the conservation of the
flavor-singlet axial vector current, with transformations of left-
an right-handed quark fields with opposite phase (“A = L−R ”),
gets broken due to the so-called Adler-Bell-Jackiw anomaly [132,
133]. The symmetry group SU(3)L × SU(3)R refers to the chiral
symmetry. Similarly the conserved currents can be rewritten into
flavor-octet vector and flavor-octet axial-vector currents, where
the vector currents correspond to the diagonal subgroup SU(3)V
of SU(3)L × SU(3)R with L = R.

After the introduction of small non-vanishing quark masses,
the quark mass term of the QCD Lagrangian Equation (1) can be
expressed as

LM = −q̄Mq = −
(

q̄RMqL + q̄LMqR
)

, (8)

with the diagonal quark mass matrix M = diag(mu,md,ms).
Left- and right-handed quark fields are mixed in LM and
the chiral symmetry is explicitly broken. The baryon number
is still conserved, but the flavor-octet vector and axial-vector
currents are no longer conserved. The axial-vector current is not
conserved for any small quark masses. However, the flavor-octet

vector current remains conserved, if the quark masses are equal,
mu = md = ms, referred to as the (flavor) SU(3) limit.

Another crucial aspect of QCD is the so-called spontaneous
chiral symmetry breaking. The chiral symmetry of the Lagrangian
is not a symmetry of the ground state of the system, the
QCD vacuum. The structure of the hadron spectrum allows
to conclude that the chiral symmetry SU(3)L × SU(3)R is
spontaneously broken to its vectorial subgroup SU(3)V, the so-
called Nambu-Goldstone realization of the chiral symmetry. The
spontaneous breaking of chiral symmetry can be characterized
by a non-vanishing chiral quark condensate 〈q̄q〉 6= 0,
i.e., the vacuum involves strong correlations of scalar quark-
antiquark pairs.

The eight Goldstone bosons corresponding to the
spontaneous symmetry breaking of the chiral symmetry are
identified with the eight lightest hadrons, the pseudoscalar
mesons (π±,π0,K±,K0, K̄0, η). They are pseudoscalar particles,
due to the parity transformation behavior of the flavor-octet
axial-vector currents. The explicit chiral symmetry breaking due
to non-vanishing quark masses leads to non-zero masses of the
pseudoscalar mesons. However, there is a substantial mass gap,
between the masses of the pseudoscalar mesons and the lightest
hadrons of the remaining hadronic spectrum. For non-vanishing
but equal quark masses, SU(3)V remains a symmetry of the
ground state. In this context SU(3)V is often called the flavor
group SU(3), which provides the basis for the classification of
low-lying hadrons in multiplets. In the following we will consider
the so-called isospin symmetric limit, with mu = md 6= ms. The
remaining symmetry is the SU(2) isospin symmetry. An essential
feature of low-energy QCD is, that the pseudoscalar mesons
interact weakly at low energies. This is a direct consequence
of their Goldstone-boson nature. This feature allows for the
construction of a low-energy effective field theory enabling a
systematic expansion in small momenta and quark masses.

Let us introduce onemore tool for the systematic development
of χEFT called the external-field method. The chiral symmetry
gives rise to so-called chiral Ward identities: relations between
the divergence of Green functions that include a symmetry
current (vector or axial-vector currents) to linear combinations
of Green functions. Even if the symmetry is explicitly broken,
Ward identities related to the symmetry breaking term exist. The
chiral Ward identities do not rely on perturbation theory, but are
also valid in the non-perturbative region of QCD. The external-
field method is an elegant way to formally combine all chiral
Ward identities in terms of invariance properties of a generating
functional. Following the procedure of Gasser and Leutwyler
[7, 126] we introduce (color neutral) external fields, s(x), p(x),
vµ(x), aµ(x), of the form of Hermitian 3 × 3 matrices that
couple to scalar, pseudoscalar, vector, and axial-vector currents
of quarks:

L = L
0
QCD + Lext

= L
0
QCD + q̄γ µ(vµ + γ5aµ)q− q̄(s− iγ5p)q . (9)

All chiral Ward identities are encoded in the corresponding
generating functional, if the global chiral symmetry SU(3)L ×
SU(3)R of L

0
QCD is promoted to a local gauge symmetry of
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TABLE 1 | Transformation properties of the external fields under parity and charge

conjugation.

vµ aµ s p

P Pµ
ν v

ν - Pµ
νa

ν s -p

C -vµ⊤ aµ⊤ s⊤ p⊤

For P a change of the spatial arguments (t, Ex ) → (t,−Ex ) is implied and we defined the

matrix P
µ
ν = diag(+1,−1,−1,−1).

L [134]. Since L
0
QCD is only invariant under the global

chiral symmetry, the external fields have to fulfill a suitable
transformation behavior:

vµ + aµ → R(vµ + aµ)R
† + iR∂µR

† ,

vµ − aµ → L(vµ − aµ)L
† + i L∂µL

† ,

s+ i p → R
(

s+ i p
)

L† ,

s− i p → L
(

s− i p
)

R† , (10)

where L(x) and R(x) are (independent) space-time-dependent
elements of SU(3)L and SU(3)R.

Furthermore, we still require the full Lagrangian L to be
invariant under P, C, and T. As the transformation properties of
the quarks are well-known, the transformation behavior of the
external fields can be determined and is displayed in Table 1.
Time reversal symmetry is not considered explicitly, since it is
automatically fulfilled due to the CPT theorem.

Another central aspect of the external-field method is the
addition of terms to the three-flavor QCD Lagrangian in the
chiral limit, L

0
QCD. Non-vanishing current quark masses and

therefore the explicit breaking of chiral symmetry can be included
by setting the scalar field equal to the quark mass matrix, s(x) =
M = diag (mu,md,ms). Similarly electroweak interactions can be
introduced through appropriate external vector and axial vector
fields. This feature is important, to systematically include explicit
chiral symmetry breaking or couplings to electroweak gauge
fields into the chiral effective Lagrangian.

2.2. Explicit Degrees of Freedom
In the low-energy regime of QCD, hadrons are the observable
states. The active degrees of freedom of χEFT are identified as
the pseudoscalar Goldstone-boson octet. The soft scale of the
low-energy expansion is given by the small external momenta
and the small masses of the pseudo-Goldstone bosons, while the
large scale is a typical hadronic scale of about 1 GeV. The effective
Lagrangian has to fulfill the same symmetry properties as QCD:
invariance under Lorentz and parity transformations, charge
conjugation and time reversal symmetry. Especially the chiral
symmetry and its spontaneous symmetry breaking has to be
incorporated. Using the external-field method, the same external
fields v, a, s, p as in Equation (9), with the same transformation
behavior, are included in the effective Lagrangian.

As the QCD vacuum is approximately invariant under the
flavor symmetry group SU(3), one expects the hadrons to
organize themselves in multiplets of irreducible representations
of SU(3). The pseudoscalar mesons form an octet (cf. Figure 1).

FIGURE 1 | Pseudoscalar meson octet (JP = 0−), baryon octet (JP = 1/2+),
and baryon decuplet (JP = 3/2+).

The members of the octet are characterized by the strangeness
quantum number S and the third component I3 of the isospin.
The symbol η stands for the octet component (η8). As an
approximation we identify η8 with the physical η, ignoring
possible mixing with the singlet state η1. For the lowest-lying
baryons one finds an octet and a decuplet (see also Figure 1).
In the following we summarize how these explicit degrees of
freedom are included in the chiral Lagrangian in the standard
non-linear realization of chiral symmetry [124, 125].

The chiral symmetry group SU(3)L×SU(3)R is spontaneously
broken to its diagonal subgroup SU(3)V. Therefore, the
Goldstone-boson octet should transform under SU(3)L × SU(3)R
such that an irreducible 8-representation results for SU(3)V. A
convenient choice to describe the pseudoscalar mesons under
these conditions is a unitary 3 × 3 matrix U(x) in flavor space,
which fulfills

U†U = 1 , detU = 1 . (11)

The transformation behavior under chiral symmetry reads

U → RUL† , (12)

where L(x), R(x) are elements of SU(3)L,R. An explicit
parametrization of U(x) in terms of the pseudoscalar mesons is
given by

U(x) = exp
[

iφ(x)/f0
]

, (13)

with the traceless Hermitian matrix

φ(x) =
8
∑

a=1

φa(x)λa
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=







π0 + 1√
3
η

√
2π+ √

2K+
√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η






. (14)

The constant f0 is the decay constant of the pseudoscalar
Goldstone bosons in the chiral limit. For a transformation of
the subgroup SU(3)V with L = R = V , the meson matrix U
transforms as

U → VUV† , (15)

i.e., the mesons φa(x) transform in the adjoint (irreducible)
8-representation of SU(3). The parity transformation behavior

of the pseudoscalar mesons is φa(t, Ex ) P→ −φa(t,−Ex ) or,

equivalently, U(t, Ex ) P→ U†(t,−Ex ). Under charge conjugation
the particle fields are mapped to antiparticle fields, leading to

U
C→ U⊤.
The octet baryons are described by Dirac spinor fields and

represented in a traceless 3× 3 matrix B(x) in flavor space,

B =
8
∑

a=1

Baλa√
2

=







1√
2
60 + 1√

6
3 6+ p

6− − 1√
2
60 + 1√

6
3 n

4− 40 − 2√
6
3






. (16)

We use the convenient [135] non-linear realization of chiral
symmetry for the baryons, which lifts the well-known
flavor transformations to the chiral symmetry group. The
matrix B(x) transforms under the chiral symmetry group
SU(3)L × SU(3)R as

B → KBK† , (17)

with the SU(3)-valued compensator field

K (L,R,U) =
√

LU†R†R
√
U . (18)

Note that K (L,R,U) also depends on the meson matrix U. The
square root of the meson matrix,

u =
√
U , (19)

transforms as u →
√
RUL† = RuK† = KuL†.

For transformations under the subgroup SU(3)V the baryons
transform as an octet, i.e., the adjoint representation of SU(3):

B → VBV† . (20)

The octet-baryon fields transform under parity and charge

conjugation as Ba (t, Ex )
P→ γ0Ba (t,−Ex ) and Bα,a

C→ Cαβ B̄β ,a

with the Dirac-spinor indices α,β , and with C = iγ2γ0.

A natural choice to represent the decuplet baryons is a totally
symmetric three-index tensor T. It transforms under the chiral
symmetry SU(3)L × SU(3)R as

Tabc → KadKbeKcfTdef , (21)

with the compensator field K(L,R,U) of Equation (18). For
an SU(3)V transformation the decuplet fields transform as an
irreducible representation of SU(3):

Tabc → VadVbeVcfTdef . (22)

The physical fields are assigned to the following components of
the totally antisymmetric tensor:

T111 = 1++ ,T112 = 1√
3
1+ ,T122 = 1√

3
10 ,T222 = 1− ,

T113 = 1√
3
6∗+ , T123 = 1√

6
6∗0 , T223 = 1√

3
6∗− ,

T133 = 1√
3
4∗0 , T233 = 1√

3
4∗− ,

T333 = �− . (23)

Since decuplet baryons are spin-3/2 particles, each component is
expressed through Rarita-Schwinger fields. Within the scope of
this article, decuplet baryons are only used for estimating LECs
via decuplet resonance saturation. In that case it is sufficient to
treat them in their non-relativistic form, where no complications
with the Rarita-Schwinger formalism arise.

Now the representation of the explicit degrees of freedom and
their transformation behavior are established. Together with the
external fields the construction of the chiral effective Lagrangian
is straightforward.

2.3. Construction of the Chiral Lagrangian
The chiral Lagrangian can be ordered according to the number of
baryon fields:

Leff = Lφ + LB + LBB + LBBB + . . . , (24)

where Lφ denotes the purely mesonic part of the Lagrangian.
Each part is organized in the number of small momenta (i.e.,
derivatives) or small meson masses, e.g.,

Lφ = L
(2)
φ + L

(4)
φ + L

(6)
φ + . . . . (25)

Lφ has been constructed to O(q6) in Fearing and Scherer [136]
and Bijnens et al. [137]. The chiral Lagrangian for the baryon-
number-one sector has been investigated in various works.
The chiral effective pion-nucleon Lagrangian of order O(q4)
has been constructed in Fettes et al. [138]. The three-flavor
Lorentz invariant chiral meson-baryon Lagrangians LB at order
O(q2) and O(q3) have been first formulated in Krause [139]
and were later completed in Oller et al. [140] and Frink and
Meißner [141]. Concerning the nucleon-nucleon contact terms,
the relativistically invariant contact Lagrangian at orderO(q2) for
two flavors (without any external fields) has been constructed in
Girlanda et al. [142]. The baryon-baryon interaction Lagrangian
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LBB has been considered up to NLO in Savage and Wise [27],
Polinder et al. [29], and Petschauer and Kaiser [32]. Furthermore
the leading three-baryon contact interaction Lagrangian LBBB

has been derived in Petschauer et al. [120].
We follow closely Petschauer and Kaiser [32] to summarize

the basic procedure for constructing systematically the three-
flavor chiral effective Lagrangian [124, 125] with the inclusion
of external fields [7, 126]. The effective chiral Lagrangian has
to fulfill all discrete and continuous symmetries of the strong
interaction. Therefore, it has to be invariant under parity (P),
charge conjugation (C), Hermitian conjugation (H), and the
proper, orthochronous Lorentz transformations. Time reversal
symmetry is then automatically fulfilled via the CPT theorem.
Especially local chiral symmetry has to be fulfilled. A common
way to construct the chiral Lagrangian is to define so-called
building blocks, from which the effective Lagrangian can be
determined as an invariant polynomial. Considering the chiral
transformation properties, a convenient choice for the building
blocks is

uµ = i
[

u† (∂µ − i rµ
)

u− u
(

∂µ − i lµ
)

u†
]

,

χ± = u†χu† ± uχ†u ,

f±µν = uf Lµνu
† ± u†f Rµνu , (26)

with the combination

χ = 2B0
(

s+ i p
)

, (27)

containing the new parameter B0 and the external scalar and
pseudoscalar fields. One defines external field strength tensors by

f Rµν = ∂µrν − ∂νrµ − i
[

rµ, rν
]

,

f Lµν = ∂µlν − ∂ν lµ − i
[

lµ, lν
]

, (28)

where the fields

rµ = vµ + aµ , lµ = vµ − aµ , (29)

describe right handed and left handed external vector fields. In
the absence of flavor singlet couplings one can assume 〈aµ〉 =
〈vµ〉 = 0, where 〈. . . 〉 denotes the flavor trace. Therefore, the
fields uµ and f±µν in Equation (26) are all traceless.

Using the transformation behavior of the pseudoscalar mesons
and octet baryons in Equations (12) and (17), and the
transformation properties of the external fields in Equation (10),
one can determine the transformation behavior of the building
blocks. All building blocks A, and therefore all products of
these, transform according to the adjoint (octet) representation
of SU(3), i.e., A → KAK†. Note that traces of products of such
building blocks are invariant under local chiral symmetry, since
K†K = 1. The chiral covariant derivative of such a building block
A is given by

DµA = ∂µA+
[

Ŵµ,A
]

, (30)

with the chiral connection

Ŵµ = 1

2

[

u† (∂µ − i rµ
)

u+ u
(

∂µ − i lµ
)

u†
]

. (31)

The covariant derivative transforms homogeneously under the
chiral group as DµA → K

(

DµA
)

K†. The chiral covariant
derivative of the baryon field B is given by Equation (30) as well.

A Lorentz-covariant power counting scheme has been
introduced by Krause [139]. Due to the large baryon mass M0

in the chiral limit, a time-derivative acting on a baryon field B
cannot be counted as small. Only baryon three-momenta are
small on typical chiral scales. This leads to the following counting
rules for baryon fields and their covariant derivatives,

B , B̄ , DµB ∼ O
(

q0
)

,
(

i /D−M0

)

B ∼ O
(

q
)

. (32)

The chiral dimension of the chiral building blocks and baryon
bilinears B̄ŴB are given in Table 2. A covariant derivative acting
on a building block (but not on B) raises the chiral dimension
by one.

A building block A transforms under parity, charge
conjugation and Hermitian conjugation as

AP = (−1)pA , AC = (−1)cA⊤ , A† = (−1)hA , (33)

with the exponents (modulo two) p, c, h ∈ {0, 1} given in
Table 2A, and ⊤ denotes the transpose of a (flavor) matrix.
A sign change of the spatial argument, (t, Ex) → (t,−Ex), is
implied in the fields in case of parity transformation P. Lorentz
indices transform with the matrix Pµ

ν = diag(+1,−1,−1,−1)
under parity transformation, e.g., (uµ)P = (−1)pPµ

νu
ν . The

transformation behavior of commutators and anticommutators
of two building blocks A1, A2 is the same as for building block
and should therefore be used instead of simple products, e.g.,

[A1,A2]
C
± = (−1)c1+c2 (A⊤

1 A
⊤
2 ± A⊤

2 A
⊤
1 )

= ±(−1)c1+c2 [A1,A2]
⊤
± . (34)

The behavior under Hermitian conjugation is the same.
The basis elements of the Dirac algebra forming the baryon

bilinears transform as

γ0Ŵγ0 = (−1)pŴŴ , C−1ŴC = (−1)cŴŴ⊤ ,

γ0Ŵ
†γ0 = (−1)hŴŴ , (35)

where the exponents pŴ , cŴ , hŴ ∈ {0, 1} can be found inTable 2B.
As before, Lorentz indices of baryon bilinears transform with the
matrix Pµ

ν under parity.
Due to the identity

[

Dµ,Dν

]

A = 1

4

[[

uµ, uν

]

,A
]

− i

2

[

f+µν ,A
]

(36)

it is sufficient to use only totally symmetrized products of
covariant derivatives, Dαβγ ...A, for any building block A (or
baryon field B). Moreover, because of the relation

Dνuµ − Dµuν = f−µν , (37)

only the symmetrized covariant derivative acting on uµ need to
be taken into account,

hµν = Dµuν + Dνuµ . (38)
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TABLE 2 | Behavior under parity, charge conjugation, and Hermitian conjugation

as well as the chiral dimensions of chiral building blocks and baryon bilinears

B̄ŴB [140].

(A) Chiral building blocks

p c h O

uµ 1 0 0 O
(

q1
)

f+µν 0 1 0 O
(

q2
)

f−µν 1 0 0 O
(

q2
)

χ+ 0 0 0 O
(

q2
)

χ− 1 0 1 O
(

q2
)

(B) Baryon bilinears B̄ŴB

Ŵ p c h O

1 0 0 0 O
(

q0
)

γ5 1 0 1 O
(

q1
)

γµ 0 1 0 O
(

q0
)

γ5γµ 1 0 0 O
(

q0
)

σµν 0 1 0 O
(

q0
)

Finally, the chiral effective Lagrangian can be constructed
by taking traces (and products of traces) of different
polynomials in the building blocks, so that they are
invariant under chiral symmetry, Lorentz transformations,
C and P.

2.3.1. Leading-Order Meson Lagrangian
As a first example, we show the leading-order purely
mesonic Lagrangian. From the general construction
principles discussed above, one obtains for the leading-order
effective Lagrangian

L
(2)
φ = f 20

4
〈uµu

µ + χ+〉 . (39)

Note that there is no contribution of order O(q0). This is
consistent with the vanishing interaction of the Goldstone bosons
in the chiral limit at zero momenta.

Before we continue with the meson-baryon interaction
Lagrangian, let us elaborate on the leading chiral Lagrangian in
the purely mesonic sector without external fields, but with non-
vanishing quark masses in the isospin limit: vµ(x) = aµ(x) =
p(x) = 0 and s(x) = M = diag (m,m,ms). Inserting the
definitions of the building blocks, Equation (39) becomes with
these restrictions:

L
(2)
φ = f 20

4
〈∂µU∂µU†〉 + 1

2
B0f

2
0 〈MU† + UM〉 . (40)

The physical decay constants fπ 6= fK 6= fη differ from the
decay constant of the pseudoscalar Goldstone bosons in the chiral
limit f0 in terms of order (m,ms): fφ = f0 {1+O (m,ms)}. The
constant B0 is related to the chiral quark condensate. Already

from this leading-order Lagrangian famous relations such as the
(reformulated) Gell-Mann–Oakes–Renner relations

m2
π = 2mB0 +O(m2

q) ,

m2
K = (m+ms)B0 +O(m2

q) ,

m2
η = 2

3
(m+ 2ms)B0 +O(m2

q) , (41)

or the Gell-Mann–Okubo mass formula, 4m2
K = 3m2

η +m2
π , can

be derived systematically.

2.3.2. Leading-Order Meson-Baryon Interaction

Lagrangian

The leading-order meson-baryon interaction Lagrangian L
(1)
B is

of orderO(q) and reads1

L
(1)
B =〈B̄

(

i /D−MB

)

B〉 + D

2
〈B̄γµγ5{uµ,B}〉

+ F

2
〈B̄γµγ5

[

uµ,B
]

〉 . (42)

The constant MB is the mass of the baryon octet in the chiral
limit. The two new constants D and F are called axial-vector
coupling constants. Their values can be obtained from semi-
leptonic hyperon decays and are roughly D ≈ 0.8 and F ≈
0.5 [143]. The sum of the two constants is related to the axial-
vector coupling constant of nucleons, gA = D + F = 1.27,
obtained from neutron beta decay. At lowest order the pion-
nucleon coupling constant gπN is connected to the axial-vector
coupling constant by the Goldberger-Treiman relation, gπN fπ =
gAMN . The covariant derivative in Equation (42) includes the
field Ŵµ, which leads to a vertex between two octet baryons
and two mesons, whereas the terms containing uµ lead to a
vertex between two octet baryons and one meson. Different

octet-baryon masses appear first in L
(2)
B due to explicit chiral

symmetry breaking and renormalization and lead to corrections
linear in the quark masses:

Mi = MB +O(m,ms) . (43)

2.4. Weinberg Power Counting Scheme
As stated before, an effective field theory has an infinite number
of terms in the effective Lagrangian and for a fixed process an
infinite number of diagrams contribute. Therefore, it is crucial
to have a power counting scheme, to assign the importance of a
term. Then, to a certain order in the power counting, only a finite
number of terms contribute and the observables can be calculated
to a given accuracy.

First, let us discuss the power counting scheme of χEFT in the
pure meson sector, i.e., only the pseudoscalar Goldstone bosons
are explicit degrees of freedom. The chiral dimension ν of a
Feynman diagram represents the order in the low-momentum
expansion, (q/3χ )

ν . The symbol q is generic for a small external
meson momentum or a small meson mass. The scale of chiral

1Note that an overall plus sign in front of the constants D and F is chosen,

consistent with the conventions in SU(2) χEFT [13].
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FIGURE 2 | Graphical representation of the Lippmann-Schwinger equation.

FIGURE 3 | Example of a planar box diagram. It contains an reducible part

equivalent to the iteration of two one-meson exchange diagrams, as

generated by the Lippmann-Schwinger equation. Additionally it contains a

genuine irreducible contribution that is part of the effective potential.

symmetry breaking 3χ is often estimated as 4π fπ ≈ 1 GeV or
as the mass of the lowest-lying resonance, Mρ ≈ 770 MeV. A
simple dimensional analysis leads to the following expression for
the chiral dimension of a connected Feynman diagram [6]:

ν = 2+ 2L+
∑

i

vi1i , 1i = di − 2 . (44)

The number of Goldstone boson loops is denoted by L and vi is
the number of vertices with vertex dimension 1i. The symbol di
stands for the number of derivatives or meson mass insertions at
the vertex, i.e., the vertex originates from a term of the Lagrangian
of the orderO(qdi ).

With the introduction of baryons in the chiral effective
Lagrangian, the power counting is more complicated. The large
baryon mass comes as an extra scale and destroys the one-to-
one correspondence between the loop and the small momentum
expansion. Jenkins and Manohar used methods from heavy-
quark effective field theory to solve this problem [127]. Basically
they considered baryons as heavy, static sources. This leads to a
description of the baryons in the extreme non-relativistic limit
with an expansion in powers of the inverse baryon mass, called
heavy-baryon chiral perturbation theory.

Furthermore, in the two-baryon sector, additional features
arise. Reducible Feynman diagrams are enhanced due to the
presence of small kinetic energy denominators resulting from
purely baryonic intermediate states. These graphs hint at the non-
perturbative aspects in few-body problems, such as the existence
of shallow bound states, and must be summed up to all orders. As
suggested by Weinberg [86, 87], the baryons can be treated non-
relativistically and the power counting scheme can be applied to
an effective potential V , that contains only irreducible Feynman
diagrams. Terms with the inverse baryon mass M−1

B may be

FIGURE 4 | Examples for reducible (left) and irreducible (right) three-baryon

interactions for 3NN. The thick dashed line cuts the reducible diagram in two

two-body interaction parts.

counted as

q

MB
∝
( q

3χ

)2
. (45)

The resulting effective potential is the input for quantum
mechanical few-body calculations. In case of the baryon-baryon
interaction the effective potential is inserted into the Lippmann-
Schwinger equation and solved for bound and scattering states.
This is graphically shown in Figures 2, 3. The T-matrix is
obtained from the infinite series of ladder diagrams with
the effective potential V . In this way the omitted reducible
diagrams are regained. In the many-body sector, e.g., Faddeev
(or Yakubovsky) equations are typically solved within a coupled-
channel approach. In a similar way reducible diagrams such as
on the left-hand side of Figure 4, are generated automatically and
are not part of the effective potential. One should distinguish such
iterated two-body interactions, from irreducible three-baryon
forces, as shown on the right-hand side of Figure 4.

After these considerations, a consistent power counting
scheme for the effective potential V is possible. The soft scale q
in the low-momentum expansion (q/3χ )

ν denotes now small
external meson four-momenta, small external baryon three-
momenta or the small meson masses. Naive dimensional analysis
leads to the generalization of Equation (44):

ν = 2− B+ 2L+
∑

i

vi1i , 1i = di +
1

2
bi − 2 , (46)

where B is the number of external baryons and bi is the number of
internal baryon lines at the considered vertex. However, Equation
(46) has an unwanted dependence on the baryon number, due to
the normalization of baryon states. Such an effect can be avoided
by assigning the chiral dimension to the transition operator
instead of thematrix elements. This leads to the addition of 3B−6
to the formula for the chiral dimension, which leaves the B = 2
case unaltered, and one obtains (see for example [9, 13, 14, 130])

ν = −4+ 2B+ 2L+
∑

i

vi1i , 1i = di +
1

2
bi − 2 . (47)

Following this scheme one arrives at the hierarchy of baryonic
forces shown in Figure 5. The leading-order (ν = 0) potential
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FIGURE 5 | Hierarchy of baryonic forces. Solid lines are baryons, dashed lines are pseudoscalar mesons. Solid dots, filled circles, and squares denote vertices with

1i = 0, 1, and 2, respectively.

is given by one-meson-exchange diagrams and non-derivative
four-baryon contact terms. At next-to-leading order (ν = 2)
higher order contact terms and two-meson-exchange diagrams
with intermediate octet baryons contribute. Finally, at next-to-
next-to-leading order (ν = 3) the three-baryon forces start to
contribute. Diagrams that lead to mass and coupling constant
renormalization are not shown.

3. BARYON-BARYON INTERACTION
POTENTIALS

This section is devoted to the baryon-baryon interaction
potentials up to next-to-leading order, constructed from the
diagrams shown in Figure 5. Contributions arise from contact
interaction, one- and two-Goldstone-boson exchange. The
constructed potentials serve not only as input for the description
of baryon-baryon scattering, but are also basis for few- and
many-body calculations. We give also a brief introduction
to common meson-exchange models and the difference to
interaction potentials from χEFT.

3.1. Baryon-Baryon Contact Terms
The chiral Lagrangian necessary for the contact vertices shown
in Figure 6 can be constructed straightforwardly according to
the principles outlined in section 2. For pure baryon-baryon
scattering processes, no pseudoscalar mesons are involved in the
contact vertices and almost all external fields can be dropped.
Covariant derivatives Dµ reduce to ordinary derivatives ∂µ. The
only surviving external field is χ+, which is responsible for the
inclusion of quark masses into the chiral Lagrangian:

FIGURE 6 | Leading-order and next-to-leading-order baryon-baryon contact

vertices.

χ+
2

= χ = 2B0





mu 0 0
0 md 0
0 0 ms





≈





m2
π 0 0
0 m2

π 0

0 0 2m2
K −m2

π



 , (48)

where in the last step the Gell-Mann–Oakes–Renner relations,
Equation (41), have been used. In flavor space the possible terms
are of the schematic form

〈B̄BB̄B〉 , 〈B̄B̄BB〉 , 〈B̄B〉〈B̄B〉 , 〈B̄B̄〉〈BB〉 , (49)

and terms where the field χ is inserted such as

〈B̄χBB̄B〉 , 〈B̄Bχ B̄B〉 , 〈B̄χB〉〈B̄B〉 , . . . (50)

where in both cases appropriate structures in Dirac space have to
be inserted. For the case of the non-relativistic power counting
it would also be sufficient, to insert the corresponding structures
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in spin-momentum space. The terms involving χ lead to explicit
SU(3) symmetry breaking at NLO linear in the quark masses. A
set of linearly independent Lagrangian terms up toO(q2) for pure
baryon-baryon interaction in non-relativistic power counting
can be found in Petschauer and Kaiser [32].

After a non-relativistic expansion up toO(q2) the four-baryon
contact Lagrangian leads to potentials in spin and momentum
space. A convenient operator basis is given by [29]:

P1 = 1 ,

P2 = Eσ1 · Eσ2 ,

P3 = (Eσ1 · Eq )(Eσ2 · Eq )−
1

3
(Eσ1 · Eσ2)Eq 2 ,

P4 =
i

2
(Eσ1 + Eσ2) · En ,

P5 = (Eσ1 · En )(Eσ2 · En ) ,

P6 =
i

2
(Eσ1 − Eσ2) · En ,

P7 = (Eσ1 · Ek )(Eσ2 · Eq )+ (Eσ1 · Eq )(Eσ2 · Ek ) ,
P8 = (Eσ1 · Ek )(Eσ2 · Eq )− (Eσ1 · Eq )(Eσ2 · Ek ) , (51)

with Eσ1,2 the Pauli spin matrices and with the vectors

Ek = 1

2
(Epf + Epi) , Eq = Epf − Epi , En = Epi × Epf . (52)

The momenta Epf and Epi are the initial and final state momenta
in the center-of-mass frame. In order to obtain the minimal
set of Lagrangian terms in the non-relativistic power counting
of Petschauer and Kaiser [32], the potentials have been
decomposed into partial waves. The formulas for the partial
wave projection of a general interaction V = ∑8

j=1 VjPj
can be found in the appendix of Polinder et al. [29]. For
each partial wave one produces a non-square matrix which
connects the Lagrangian constants with the different baryon-
baryon channels. Lagrangian terms are considered as redundant
if their omission does not lower the rank of this matrix. For
the determination of the potential not only direct contributions
have to be considered, but also additional structures from
exchanged final state baryons, where the negative spin-exchange
operator −P(σ ) = − 1

2 (1+ Eσ1 · Eσ2) is applied. In the end
6 momentum-independent terms at LO contribute, and are
therefore only visible in 1S0 and 3S1 partial waves. At NLO 22
terms contribute that contain only baryon fields and derivatives,
and are therefore SU(3) symmetric. The other 12 terms at
NLO include the diagonal matrix χ and produce explicit SU(3)
symmetry breaking.

In Table 3, the non-vanishing transitions projected onto
partial waves in the isospin basis are shown (cf. [29–32]).
The pertinent constants are redefined according to the relevant
irreducible SU(3) representations. This comes about in the
following way. Baryons form a flavor octet and the tensor product
of two baryons decomposes into irreducible representations
as follows:

8⊗ 8 = 27s ⊕ 10a ⊕ 10∗a ⊕ 8s ⊕ 8a ⊕ 1s , (53)

where the irreducible representations 27s, 8s, 1s are symmetric
and 10a, 10∗a , 8a are antisymmetric with respect to the
exchange of both baryons. Due to the generalized Pauli
principle, the symmetric flavor representations 27s, 8s, 1s have
to combine with the space-spin antisymmetric partial waves
1S0,

3P0,
3P1,

3P2, . . . (L + S even). The antisymmetric
flavor representations 10a, 10∗a , 8a combine with the space-
spin symmetric partial waves 3S1,

1P1,
3D1 ↔ 3S1, . . .

(L + S odd). Transitions can only occur between equal
irreducible representations. Hence, transitions between space-
spin antisymmetric partial waves up to O(q2) involve the 15
constants c̃27,8s,11S0

, c27,8s,11S0
, c27,8s,13P0

, c27,8s,13P1
, and c27,8s,13P2

, whereas

transitions between space-spin symmetric partial waves involve

the 12 constants c̃8a,10,10
∗

3S1
, c8a,10,10

∗
3S1

, c8a,10,10
∗

1P1
, and c8a,10,10

∗
3D1-3S1

. The

constants with a tilde denote leading-order constants, whereas
the ones without tilde are at NLO. The spin singlet-triplet
transitions 1P1 ↔ 3P1 is perfectly allowed by SU(3) symmetry
since it is related to transitions between the irreducible
representations 8a and 8s. Such a transition originated from the
antisymmetric spin-orbit operator P6 and its Fierz-transformed
counterpart P8 and the single corresponding low-energy constant
is denoted by c8as. In case of the NN interaction such transitions
are forbidden by isospin symmetry. The constants c̃27,8s,11S0

and

c̃8a,10,10
∗

3S1
fulfill the same SU(3) relations as the constants c27,8s,11S0

and c8a,10,10
∗

3S1
in Table 3. SU(3) breaking terms linear in the

quark masses appears only in the S-waves, 1S0,
3S1, and are

proportional m2
K − m2

π . The corresponding 12 constants are
c1,...,12χ . The SU(3) symmetry relations in Table 3 can also
be derived by group theoretical considerations [29, 144–146].
Clearly, for the SU(3)-breaking part this is not possible and these
contributions have to be derived from the chiral Lagrangian.

In order to obtain the complete partial-wave projected
potentials, some entries in Table 3 have to be multiplied with
additional momentum factors. The leading order constants c̃ ij
receive no further factor. For the next-to-leading-order constants
(without tilde and without χ) the contributions to the partial
waves 1S0,

3S1 have to be multiplied with a factor p2i + p2
f
.

The contribution to the partial waves 1S0,
3S1 from constants

c
j
χ has to be multiplied with (m2

K − m2
π ). The partial waves

3P0,
3P1,

3P2,
1P1,

1P1 ↔ 3P1 getmultiplied with the factor pipf .

The entries for 3S1 → 3D1 and
3D1 → 3S1 have to be multiplied

with p2i and p
2
f
, respectively. For example, one obtains for theNN

interaction in the 1S0 partial wave:

〈NN, 1S0|V̂|NN, 1S0〉

= c̃271S0
+ c271S0

(p2i + p2f )+
1

2
c1χ (m

2
K −m2

π ) , (54)

or for the 4N → 66 interaction with total isospin I = 0 in the
1P1 → 3P1 partial wave:

〈66, 3P1|V̂|4N, 1P1〉 = 2
√
3c8aspipf . (55)

When restricting to the NN channel the well-known two
leading and seven next-to-leading order low-energy constants
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TABLE 3 | SU(3) relations of pure baryon-baryon contact terms for non-vanishing partial waves up to O(q2) in non-relativistic power counting for channels described by strangeness S and total isospin I [32].

S I Transition j ∈ {
1S0,

3P0,
3P1,

3P2} j ∈ {
3S1,

1P1,
3S1 ↔

3D1}
1P1 →

3P1
3P1 →

1P1
1S0 χ

3S1 χ

0 0 NN→ NN 0 c10
∗

j 0 0 0
c7χ
2

1 NN→ NN c27j 0 0 0
c1χ
2 0

-1 1
2 3N → 3N 1

10 (9c
27
j + c8sj ) 1

2 (c
10∗
j + c8aj ) −c8as −c8as c2χ c8χ

1
2 3N → 6N − 3

10 (c
27
j − c8sj ) 1

2 (c
10∗
j − c8aj ) −3c8as c8as −c3χ −c9χ

1
2 6N → 6N 1

10 (c
27
j + 9c8sj ) 1

2 (c
10∗
j + c8aj ) 3c8as 3c8as c4χ c10χ

3
2 6N → 6N c27j c10j 0 0

c1χ
4 − c7χ

4

-2 0 33 → 33 1
40 (5c

1
j + 27c27j + 8c8sj ) 0 0 0

c5χ
2 0

0 33 → 4N 1
20 (5c

1
j − 9c27j + 4c8sj ) 0 0 2c8as

3c1χ
4 − 3c2χ − c3χ + 3c5χ

4 0

0 33 → 66 −
√
3

40 (5c
1
j + 3c27j − 8c8sj ) 0 0 0 0 0

0 4N → 4N 1
10 (5c

1
j + 3c27j + 2c8sj ) c8aj 2c8as 2c8as

2c1χ
3 − 3c2χ + c4χ

3 + 9c5χ
8 c11χ

0 4N → 66
√
3

20 (−5c1j + c27j + 4c8sj ) 0 2
√
3c8as 0 − c1χ

4
√
3
+

√
3c3χ + c4χ√

3
0

0 66 → 66 1
40 (15c

1
j + c27j + 24c8sj ) 0 0 0 0 0

1 4N → 4N 1
5 (2c

27
j + 3c8sj ) 1

3 (c
10
j + c10

∗
j + c8aj ) −2c8as −2c8as c6χ c12χ

1 4N → 66 0 1

3
√
2
(c10j + c10

∗
j − 2c8aj ) 0 2

√
2c8as 0

√
2c10χ − c7χ

2
√
2
−

√
2c9χ

1 4N → 63
√
6
5 (c27j − c8sj ) 1√

6
(c10j − c10

∗
j ) 2

√

2
3 c

8as 0 − 1
3

√

2
3 c

1
χ +

√

3
2 c

2
χ − c4χ

3
√
6
−
√

2
3 c

6
χ

c10χ√
6
+
√

2
3 c

12
χ + c7χ

2
√
6
−
√

3
2 c

8
χ +

√

2
3 c

9
χ

1 63 → 63 1
5 (3c

27
j + 2c8sj ) 1

2 (c
10
j + c10

∗
j ) 0 0 − c1χ

9 + 4c3χ
3 + 4c4χ

9 + 2c6χ
3

4c10χ

3 + 2c12χ

3 − c7χ
3 − 4c9χ

3

1 63 → 66 0 1

2
√
3
(c10j − c10

∗
j ) 0 4√

3
c8as 0 0

1 66 → 66 0 1
6 (c

10
j + c10

∗
j + 4c8aj ) 0 0 0 0

2 66 → 66 c27j 0 0 0 0 0

-3 1
2 43 → 43 1

10 (9c
27
j + c8sj ) 1

2 (c
10
j + c8aj ) −c8as −c8as − 55c1χ

72 + 2c2χ + 7c3χ
6 + c4χ

18 + 3c5χ
32 + c6χ

12

11c10χ

12 + 3c11χ

4 + 25c12χ

12 + 5c7χ
24 − 7c8χ

4 − c9χ
6

1
2 43 → 46 − 3

10 (c
27
j − c8sj ) 1

2 (c
10
j − c8aj ) −3c8as c8as

11c1χ
24 − 3c2χ

2 − c3χ
2 − c4χ

3 + 9c5χ
32 + c6χ

4

9c10χ

4 − 3c11χ

4 + 5c12χ

4 − c7χ
8 − 3c8χ

4 − c9χ
2

1
2 46 → 46 1

10 (c
27
j + 9c8sj ) 1

2 (c
10
j + c8aj ) 3c8as 3c8as

11c1χ
24 − 3c2χ + 5c3χ

2 + c4χ
6 + 27c5χ

32 + 3c6χ
4

5c10χ

4 + 3c11χ

4 + 3c12χ

4 − c7χ
8 − 3c8χ

4 − 3c9χ
2

3
2 46 → 46 c27j c10

∗
j 0 0 − 2c1χ

3 + 3c2χ
2 + c3χ + c4χ

6

3c10χ

2 − c7χ + 3c8χ
2 − 3c9χ

-4 0 44 → 44 0 c10j 0 0 0 5c10χ + 4c12χ − 3c8χ − 2c9χ

1 44 → 44 c27j 0 0 0 − 4c1χ
3 + 3c2χ + 2c3χ + c4χ
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of Epelbaum et al. [147] are recovered, which contribute to the
partial waves 1S0,

3S1,
1P1,

3P0,
3P1,

3P2,
3S1 ↔ 3D1.

Note, that the SU(3) relations in Table 3 are general relations
that have to be fulfilled by the baryon-baryon potential in
the SU(3) limit, i.e., mπ = mK = mη. This feature can
be used as a check for the inclusion of the loop diagrams.
Another feature is, that the SU(3) relations contain only a
few constants in each partial wave. For example, in the 1S0
partial wave only the constants c̃271S0

, c̃8s1S0
, c̃11S0

are present. If

these constants are fixed in some of the baryons channels,
predictions for other channels can be made. This has, for
instance, been used in Haidenbauer et al. [35], where the
existence of 66, 64 and 44 bound states has been studied
within SU(3) χEFT.

3.2. One- and Two-Meson-Exchange
Contributions
In the last section, we have addressed the short-range part
of the baryon-baryon interaction via contact terms. Let us
now analyze the long- and mid-range part of the interaction,
generated by one- and two-meson-exchange as determined
in Haidenbauer et al. [33]. The contributing diagrams up to
NLO are shown in Figure 5, which displays the hierarchy of
baryonic forces.

The vertices, necessary for the construction of these
diagrams stem from the leading-order meson-baryon interaction

Lagrangian L
(1)
B in Equation (42). The vertex between two

baryons and one meson emerges from the part

D

2
〈B̄γ µγ5{uµ,B}〉 +

F

2
〈B̄γ µγ5

[

uµ,B
]

〉

= − 1

2f0

8
∑

i,j,k=1

NBiBjφk
(B̄iγ

µγ5Bj)(∂µφk)+O(φ3) , (56)

where we have used uµ = − 1
f0

∂µφ+O(φ3) and have rewritten the

pertinent part of the Lagrangian in terms of the physical meson
and baryon fields

φi ∈
{

π0,π+,π−,K+,K−,K0, K̄0, η
}

,

Bi ∈
{

n, p,60,6+,6−,3,40,4−} . (57)

The factors NBiBjφk
are linear combinations of the axial vector

coupling constantsD and F with certain SU(3) coefficients. These
factors vary for different combinations of the involved baryons
and mesons and can be obtained easily by multiplying out the
baryon and meson flavor matrices. In a similar way, we obtain
the (Weinberg-Tomozawa) vertex between two baryons and two

mesons from the covariant derivative in L
(1)
B , leading to

〈B̄iγ µ
[

Ŵµ,B
]

〉

= i

8f 20

8
∑

i,j,k,l=1

NBiφkBjφl
(B̄iγ

µBj)(φk∂µφl)+O(φ4) , (58)

where Ŵµ = 1
8f 20

[φ, ∂µφ]+O(φ4) was used.

The calculation of the baryon-baryon potentials is done
in the center-of-mass frame and in the isospin limit mu =
md. To obtain the contribution of the Feynman diagrams to
the non-relativistic potential, we perform an expansion in the
inverse baryon mass 1/MB. If loops are involved, the integrand
is expanded before integrating over the loop momenta. This
produces results that are equivalent to the usual heavy-baryon
formalism. In the case of the two-meson-exchange diagrams at
one-loop level, ultraviolet divergences are treated by dimensional
regularization, which introduces a scale λ. In dimensional
regularization divergences are isolated as terms proportional to

R = 2

d − 4
+ γE − 1− ln (4π) , (59)

with d 6= 4 the space-time dimension and the Euler-Mascheroni
constant γE ≈ 0.5772. These terms can be absorbed by the
contact terms.

According to Equations (56) and (58) the vertices have the
same form for different combinations of baryons and mesons,
just their prefactors change. Therefore, the one- and two-
pseudoscalar-meson exchange potentials can be given by amaster
formula, where the proper masses of the exchanged mesons
have to be inserted, and which has to be multiplied with an
appropriate SU(3) factor N. In the following we will present
the analytic formulas for the one- and two-meson-exchange
diagrams, introduced in Haidenbauer et al. [33]. The pertinent
SU(3) factors will be displayed next to the considered Feynman
diagram (cf. Figure 7). The results will be given in terms of a
central potential (VC), a spin-spin potential (Eσ1 · Eσ2 VS) and a
tensor-type potential (Eσ1 · Eq Eσ2 · Eq VT). The momentum transfer is
q =

∣

∣Epf − Epi
∣

∣, with Epi and Epf the initial and final state momenta
in the center-of-mass frame.

Note that the presented results apply only to direct diagrams.
This is for example the case for the leading-order one-eta

exchange in the 3n interaction, i.e., for 3(Epi)n(−Epi)
η−→

3(Epf )n(−Epf ). An example of a crossed diagram is the one-kaon

exchange in the process 3(Epi)n(−Epi) K−→ n(−Epf )3(Epf ), where the
nucleon and the hyperon in the final state are interchanged and
strangeness is exchanged. In such cases, Epf is replaced by−Epf and
the momentum transfer in the potentials is q =

∣

∣Epf + Epi
∣

∣. Due
to the exchange of fermions in the final states a minus sign arises,
and additionally the spin-exchange operator P(σ ) = 1

2 (1+Eσ1 · Eσ2)
has to be applied. The remaining structure of the potentials stays
the same (see also the discussion in section 4).

The leading-order contribution comes from the one-meson
exchange diagram in Figure 7A. It contributes only to the tensor-
type potential:

Vome
T (q) = − N

4f 20

1

q2 +m2 − iǫ
. (60)

The symbol M̄ in the SU(3) coefficient N denotes the charge-
conjugated meson of mesonM in particle basis (e.g., π+ ↔ π−).
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FIGURE 7 | One- and two-meson-exchange contributions and corresponding SU(3) factors. (A) One-meson exchange, (B) planar box, (C) crossed box, (D) left

triangle, (E) right triangle, and (F) football diagram.

At next-to-leading order the two-meson exchange diagrams
start to contribute. The planar box in Figure 7B contains an
irreducible part and a reducible part coming from the iteration of
the one-meson exchange to second order. Inserting the potential
into the Lippmann-Schwinger equation generates the reducible
part; it is therefore not part of the potential (see also section 2.4).
The irreducible part is obtained from the residues at the poles
of the meson propagators, disregarding the (far distant) poles of
the baryon propagators. With the masses of the two exchanged
mesons set tom1 andm2, the irreducible potentials can be written
in closed analytical form,

V
planar box
irr, C (q) = N

3072π2f 40

{

5

3
q2

+
(

m2
1 −m2

2

)2

q2
+ 16

(

m2
1 +m2

2

)

+
[

23q2 + 45
(

m2
1 +m2

2

)]

(

R+ 2 ln

√
m1m2

λ

)

+ m2
1 −m2

2

q4

[

12q4 +
(

m2
1 −m2

2

)2

− 9q2
(

m2
1 +m2

2

)

]

ln
m1

m2

+ 2

w2
(

q
)

[

23q4 −
(

m2
1 −m2

2

)4

q4
+ 56

(

m2
1 +m2

2

)

q2

+ 8
m2

1 +m2
2

q2

(

m2
1 −m2

2

)2

+ 2
(

21m4
1 + 22m2

1m
2
2 + 21m4

2

)

]

L
(

q
)

}

, (61)

V
planar box
irr, T

(

q
)

= − 1

q2
V
planar box
irr, S (q)

= − N

128π2f 40

[

L
(

q
)

− 1

2
− m2

1 −m2
2

2q2
ln

m1

m2

+ R

2
+ ln

√
m1m2

λ

]

(62)

where we have defined the functions

w
(

q
)

= 1

q

√

(

q2 + (m1 +m2)
2
) (

q2 + (m1 −m2)
2
)

,

L
(

q
)

= w
(

q
)

2q
ln

[

qw
(

q
)

+ q2
]2 −

(

m2
1 −m2

2

)2

4m1m2q2
. (63)

The relation between the spin-spin and tensor-type potential
follows from the identity (Eσ1 × Eq ) · (Eσ2 × Eq ) = q2 Eσ1 · Eσ2 − (Eσ1 ·
Eq ) (Eσ2 · Eq ).

One should note that all potentials shown above are finite
also in the limit q → 0. Terms proportional to 1/q2 or
1/q4 are canceled by opposite terms in the functions L(q) and
w(q) in the limit of small q. For numerical calculations it is
advantageous to perform an expansion of the potentials in a
power series for small q in order to implement directly this
cancellation. For equal meson masses the expressions for the
potentials reduce to the results in Kaiser et al. [148]. This is
the case for the NN interaction of Epelbaum et al. [147, 149,
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150] and Entem and Machleidt [151] based on χEFT, where
only contributions from two-pion exchange need to be taken
into account.

In actual applications of these potentials such as in
Haidenbauer et al. [33], only the non-polynomial part of
Equations (61) and (62) is taken into account, i.e., the
pieces proportional to L(q) and to 1/q2 and 1/q4. The
polynomial part is equivalent to the LO and NLO contact
terms and, therefore, does not need to be considered. The
contributions proportional to the divergence R are likewise
omitted. Their effect is absorbed by the contact terms or
a renormalization of the coupling constants, see, e.g., the
corresponding discussion in Appendix A of Epelbaum et al. [149]
for the NN case.

These statements above apply also to the other contributions
to the potential described below.

The crossed box diagrams in Figure 7C contribute to the
central, spin-spin, and tensor-type potentials. The similar
structure with some differences in the kinematics of the planar
and crossed box diagram leads to relations between them.
Obviously, the crossed box has no iterated part. The potentials
of the crossed box are equal to the potentials of the irreducible
part of the planar box, up to a sign in the central potential:

Vcrossed box
C (q) = −V

planar box
C, irr (q) ,

Vcrossed box
T (q) = − 1

q2
Vcrossed box
S (q) = V

planar box
T, irr (q) . (64)

The two triangle diagrams, Figures 7D,E, constitute potentials,
that are of equal form with different SU(3) factors N. The
corresponding central potential reads

V
triangle
C (q) = − N

3072π2f 40

{

− 2
(

m2
1 +m2

2

)

+
(

m2
1 −m2

2

)2

q2
− 13

3
q2

+
[

8
(

m2
1 +m2

2

)

− 2
(

m2
1 −m2

2

)2

q2
+ 10q2

]

L
(

q
)

+ m2
1 −m2

2

q4

[

(

m2
1 −m2

2

)2 − 3
(

m2
1 +m2

2

)

q2
]

ln
m1

m2

+
[

9
(

m2
1 +m2

2

)

+ 5q2
]

(

R+ 2 ln

√
m1m2

λ

)

}

. (65)

The football diagrams in Figure 7F also contributes only to the
central potential. One finds

V football
C (q) = N

3072π2f 40

{

− 2
(

m2
1 +m2

2

)

−
(

m2
1 −m2

2

)2

2q2
− 5

6
q2 + w2

(

q
)

L
(

q
)

+ 1

2

[

3
(

m2
1 +m2

2

)

+ q2
]

(

R+ 2 ln

√
m1m2

λ

)

− m2
1 −m2

2

2q4

[

(

m2
1 −m2

2

)2 + 3
(

m2
1 +m2

2

)

q2
]

ln
m1

m2

}

. (66)

3.3. Meson-Exchange Models
Earlier investigations of the baryon-baryon interactions has been
done within phenomenological meson-exchange potentials such
as the Jülich [18, 19, 21], Nijmegen [20, 22, 23], or Ehime
[152, 153] potentials. As we use two of them for comparison, we
give a brief introduction to these type of models.

Conventional meson-exchange models of the YN interaction
are usually also based on the assumption of SU(3) flavor
symmetry for the occurring coupling constants, and in some
cases even on the SU(6) symmetry of the quark model [18, 19]. In
the derivation of the meson-exchange contributions one follows
essentially the same procedure as outlined in section 3.2 for the
case of pseudoscalar mesons. Besides the lowest pseudoscalar-
meson multiplet also the exchanges of vector mesons (ρ, ω, K∗),
of scalar mesons (σ (f0(500)),...), or even of axial-vector mesons
(a1(1270),...) [22, 23] are included. The spin-space structure of
the corresponding Lagrangians that enter into Equation (42)
and subsequently into Equation (56) differ and, accordingly,
the final expressions for the corresponding contributions to the
YN interaction potentials differ too. Details can be found in
Holzenkamp et al. [18] and Rijken et al. [20, 22]. We want to
emphasize that even for pseudoscalar mesons the final result for
the interaction potentials differs, in general, from the expression
given in Equation (60). Contrary to the chiral EFT approach,
recoil, and relativistic corrections are often kept in meson-
exchange models because no power counting rules are applied.
Moreover, in case of the Jülich potential pseudoscalar coupling
is assumed for the meson-baryon interaction Lagrangian for
the pseudoscalar mesons instead of the pseudovector coupling
(Equation 42) dictated by chiral symmetry. Note that in some
YN potentials of the Jülich group [18, 19] contributions from
two-meson exchanges are included. The ESC08 and ESC16
potentials [22, 23] include likewise contributions from two-
meson exchange, in particular, so-called meson-pair diagrams
analog to the ones shown in Figures 7D–F.

The major conceptual difference between the various meson-
exchange models consists in the treatment of the scalar-meson
sector. This simply reflects the fact that, unlike for pseudoscalar
and vector mesons, so far there is no general agreement about
what are the actual members of the lowest lying scalar-meson
SU(3) multiplet. Therefore, besides the question of the masses
of the exchange particles it also remains unclear whether and
how the relations for the coupling constants should be specified.
As a consequence, different prescriptions for describing the
scalar sector, whose contributions play a crucial role in any
baryon-baryon interaction at intermediate ranges, were adopted
by the various authors who published meson-exchange models
of the YN interaction. For example, the Nijmegen group views
this interaction as being generated by genuine scalar-meson
exchange. In their models NSC97 [20] and ESC08 (ESC16) [22,
23] a scalar SU(3) nonet is exchanged—namely, two isospin-0
mesons [an ǫ(760) and the f0(980)] an isospin-1 meson (a0(980))
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FIGURE 8 | Leading three-baryon interactions: contact term, one-meson

exchange, and two-meson exchange. Filled circles and solid dots denote

vertices with 1i = 1 and 1i = 0, respectively.

and an isospin-1/2 strange meson κ with a mass of 1,000 MeV.
In the initial YN models of the Jülich group [18, 19] a σ (with
a mass of ≈ 550 MeV) is included which is viewed as arising
from correlated ππ exchange. In practice, however, the coupling
strength of this fictitious σ to the baryons is treated as a free
parameter and fitted to the data. In the latest meson-exchange
YN potential presented by the Jülich group [21] a microscopic
model of correlated ππ and KK̄ exchange [154] is utilized to fix
the contributions in the scalar-isoscalar (σ ) and vector-isovector
(ρ) channels.

Let us mention for completeness that meson-exchangemodels
are typically equipped with phenomenological form factors in
order to cut off the potential for large momenta (short distances).
For example, in case of the YN models of the Jülich group the
interaction is supplemented with form factors for each meson-
baryon-baryon vertex (cf. [18, 19] for details). Those form factors
are meant to take into account the extended hadron structure
and are parameterized in the conventional monopole or dipole
form. In case of the Nijmegen potentials a Gaussian form factor
is used. In addition there is some additional sophisticated short-
range phenomenology that controls the interaction at short
distances [22, 23].

4. THREE-BARYON INTERACTION
POTENTIALS

Three-nucleon forces are an essential ingredient for a proper
description of nuclei and nuclear matter with low-momentum
two-body interactions. Similarly, three-baryon forces, especially
the 3NN interaction, are expected to play an important
role in nuclear systems with strangeness. Their introduction
in calculations of light hypernuclei seems to be required.
Furthermore, the introduction of 3BF is traded as a possible
solution to the hyperon puzzle (see section 1). However, so far
only phenomenological 3BF have been employed. In this section
we present the leading irreducible three-baryon interactions
from SU(3) chiral effective field theory as derived in Petschauer
et al. [120]. We show the minimal effective Lagrangian required
for the pertinent vertices. Furthermore the estimation of the
corresponding LECs through decuplet saturation and an effective
density-dependent two-baryon potential will be covered [121].

According to the power counting in Equation (47) the 3BF
arise formally at NNLO in the chiral expansion, as can be
seen from the hierarchy of baryonic forces in Figure 5. Three

types of diagrams contribute: three-baryon contact terms, one-
meson and two-meson exchange diagrams (cf. Figure 8). Note
that a two-meson exchange diagram, such as in Figure 8, with
a (leading order) Weinberg-Tomozawa vertex in the middle,
would formally be a NLO contribution. However, as in the
nucleonic sector, this contribution is kinematically suppressed
due to the fact that the involved meson energies are differences
of baryon kinetic energies. Anyway, parts of these NNLO
contributions get promoted to NLO by the introduction of
intermediate decuplet baryons, so that it becomes appropriate
to use these three-body interactions together with the NLO two-
body interaction of section 3. As already stated, the irreducible
contributions to the chiral potential are presented. In contrast
to typical phenomenological calculations, diagrams as on the
left side of Figure 4 do not lead to a genuine three-body
potential, but are an iteration of the two-baryon potential.
Such diagrams will be incorporated automatically when solving,
e.g., the Faddeev (or Yakubovsky) equations within a coupled-
channel approach. The three-body potentials derived from SU(3)
χEFT are expected to shed light on the effect of 3BFs in
hypernuclear systems. Especially in calculations about light
hypernuclei these potentials can be implemented within reliable
few-body techniques [48, 49, 51, 52].

4.1. Contact Interaction
In the following we consider the leading three-baryon contact
interaction. Following the discussion in section 2.3 the
corresponding Lagrangian can be constructed. The inclusion of
external fields is not necessary, as we are interested in the purely
baryonic contact term. One ends up with the following possible
structures in flavor space [120]

〈B̄B̄B̄BBB〉 , 〈B̄B̄BB̄BB〉 , 〈B̄B̄BBB̄B〉 ,
〈B̄BB̄BB̄B〉 , 〈B̄B̄BB〉〈B̄B〉 , 〈B̄BB̄B〉〈B̄B〉 ,
〈B̄B̄B̄B〉〈BB〉 , 〈B̄B̄B̄〉〈BBB〉 , 〈B̄B̄B〉〈BB̄B〉 ,
〈B̄B〉〈B̄B〉〈B̄B〉 , 〈B̄B̄〉〈B̄B〉〈BB〉 , (67)

with possible Dirac structures

1⊗ 1⊗ 1 , 1⊗ γ5γ
µ ⊗ γ5γµ , γ5γ

µ ⊗ 1⊗ γ5γµ ,

γ5γ
µ ⊗ γ5γµ ⊗ 1 , γ5γµ ⊗ i σµν ⊗ γ5γν , (68)

leading to the following operators in the three-body spin space

1 , Eσ1 · Eσ2 , Eσ1 · Eσ3 , Eσ2 · Eσ3 , i Eσ1 · (Eσ2 × Eσ3) . (69)

All combinations of these possibilities leads to a (largely
overcomplete) set of terms for the leading covariant Lagrangian.
Note that in Petschauer et al. [120] the starting point
is a covariant Lagrangian, but the minimal non-relativistic
Lagrangian is the goal. Hence, only Dirac structures leading to
independent (non-relativistic) spin operators are relevant.

Let us consider the process B1B2B3 → B4B5B6,
where the Bi are baryons in the particle basis, Bi ∈
{n, p,3,6+,60,6−,40,4−}. The contact potential V has
to be derived within a threefold spin space for this process.
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The operators in spin-space 1 is defined to act between the
two-component Pauli spinors of B1 and B4. In the same way,
spin-space 2 belongs to B2 and B5, and spin-space 3 to B3
and B6. For a fixed spin configuration the potential can be
calculated from

χ
(1)
B4

†
χ
(2)
B5

†
χ
(3)
B6

†
V χ

(1)
B1

χ
(2)
B2

χ
(3)
B3

, (70)

where the superscript of a spinor denotes the spin space and
the subscript denotes the baryon to which the spinor belongs.
The potential is obtained as V = −〈B4B5B6| L |B1B2B3〉,
where the contact Lagrangian L has to be inserted, and the
36 Wick contractions need to be performed. The number
36 corresponds to the 3! × 3! possibilities to arrange the
three initial and three final baryons into Dirac bilinears. One
obtains six direct terms, where the baryon bilinears combine
the baryon pairs 1–4, 2–5, and 3–6, as shown in Equation
(70). For the other 30 Wick contractions, the resulting potential
is not fitting to the form of Equation (70), because the
wrong baryon pairs are connected in a separate spin space.
Hence, an appropriate exchange of the spin wave functions
in the final state has to be performed. This is achieved by
multiplying the potential with the well-known spin-exchange

operators P
(σ )
ij = 1

2 (1 + Eσi · Eσj). Furthermore, additional minus

signs arise from the interchange of anti-commuting baryon
fields. The full potential is then obtained by adding up all 36
contributions to the potential. One obtains a potential that fulfills
automatically the generalized Pauli principle and that is fully
anti-symmetrized.

In order to obtain a minimal set of Lagrangian terms
of the final potential matrix have been eliminated until the
rank of the final potential matrix (consisting of multiple
Lagrangian terms and the spin structures in Equation
69) matches the number of terms in the Lagrangian. The
minimal non-relativistic six-baryon contact Lagrangian
is [120]

L = −C1〈B̄aB̄bB̄cBaBbBc〉
+C2〈B̄aB̄bBaB̄cBbBc〉
−C3〈B̄aB̄bBaBbB̄cBc〉
+C4〈B̄aBaB̄bBbB̄cBc〉
−C5〈B̄aB̄bBaBb〉 〈B̄cBc〉
−C6

(

〈B̄aB̄bB̄cBa(σ iB)b(σ
iB)c〉

+ 〈B̄cB̄bB̄a(σ iB)c(σ
iB)bBa〉

)

+C7

(

〈B̄aB̄bBaB̄c(σ iB)b(σ
iB)c〉

+ 〈B̄cB̄b(σ iB)cB̄a(σ
iB)bBa〉

)

−C8

(

〈B̄aB̄bBa(σ iB)bB̄c(σ
iB)c〉

+ 〈B̄bB̄a(σ iB)bBaB̄c(σ
iB)c〉

)

+C9〈B̄aBaB̄b(σ iB)bB̄c(σ
iB)c〉

−C10

(

〈B̄aB̄bBa(σ iB)b〉 〈B̄c(σ iB)c〉

TABLE 4 | Irreducible representations for three-baryon states with strangeness S

and isospin I in partial waves |2S+1LJ〉, with the total spin S = 1
2 ,

3
2 , the angular

momentum L = 0, and the total angular momentum J = 1
2 ,

3
2 [120].

States (S,I) 2S1/2 4S3/2

NNN (0, 1
2 ) 35

3NN,6NN (−1,0) 10, 35 10a

3NN,6NN (−1,1) 27, 35 27a

6NN (−1,2) 35

33N,63N,66N,4NN (−2, 1
2 ) 8,10,27,35 8a, 10a, 27a

63N,66N,4NN (−2, 3
2 ) 10,27, 35, 35 10a, 27a

66N (−2, 5
2 ) 35

333,663,666,43N,46N (−3,0) 8,27 1a,8a,27a

633,663,666,43N,46N (−3,1) 8, 10, 10,27,35, 35 8a,10a,10a, 27a

663,666,46N (−3,2) 27,35, 35 27a

433,463,466,44N (−4, 1
2 ) 8,10,27,35 8a, 10a, 27a

463,466,44N (−4, 3
2 ) 10,27,35, 35 10a, 27a

466 (−4, 5
2 ) 35

443,446 (−5,0) 10, 35 10a

443,446 (−5,1) 27, 35 27a

446 (−5,2) 35

444 (−6, 1
2 ) 35

+ 〈B̄bB̄a(σ iB)bBa〉 〈B̄c(σ iB)c〉
)

−C11〈B̄aB̄bB̄c(σ iB)aBb(σ
iB)c〉

+C12〈B̄aB̄b(σ iB)aB̄cBb(σ
iB)c〉

−C13〈B̄aB̄b(σ iB)a(σ
iB)bB̄cBc〉

−C14〈B̄aB̄b(σ iB)a(σ
iB)b〉 〈B̄cBc〉

− i ǫijkC15〈B̄aB̄bB̄c(σ iB)a(σ
jB)b(σ

kB)c〉
+ i ǫijkC16〈B̄aB̄b(σ iB)aB̄c(σ

jB)b(σ
kB)c〉

− i ǫijkC17〈B̄aB̄b(σ iB)a(σ
jB)bB̄c(σ

kB)c〉
+ i ǫijkC18〈B̄a(σ iB)aB̄b(σ

jB)bB̄c(σ
kB)c〉 , (71)

with vector indices i, j, k and two-component spinor indices
a, b, c. In total 18 low-energy constants C1 . . .C18 are present.
The low-energy constant E of the six-nucleon contact
term (cf. [78]) can be expressed through these LECs by
E = 2(C4 − C9).

As in the two-body sector, group theoretical considerations
can deliver valuable constrains on the resulting potentials. In
flavor space the three octet baryons form the 512-dimensional
tensor product 8 ⊗ 8 ⊗ 8, which decomposes into the following
irreducible SU(3) representations

8⊗ 8⊗ 8 =
64⊕ (35⊕ 35)2 ⊕ 276 ⊕ (10⊕ 10)4 ⊕ 88 ⊕ 12 , (72)
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where the multiplicity of an irreducible representations is
denoted by subscripts. In spin space one obtain for the product
of three doublets

2⊗ 2⊗ 2 = 22 ⊕ 4 . (73)

Transitions are only allowed between irreducible representations
of the same type. Analogous to Dover and Feshbach [145] for
the two-baryon sector, the contributions of different irreducible
representations to three-baryon multiplets in Table 4 can be
established. At leading order only transitions between S-waves
are possible, since the potentials are momentum-independent.
Due to the Pauli principle the totally symmetric spin-quartet 4
must combine with the totally antisymmetric part of 8⊗ 8⊗ 8 in
flavor space,

Alt3(8) = 56a = 27a + 10a + 10a + 8a + 1a . (74)

It follows, that these totally antisymmetric irreducible
representations are present only in states with total spin
3/2. The totally symmetric part of 8⊗ 8⊗ 8 leads to

Sym3(8) = 120s = 64s + 27s + 10s + 10s + 8s + 1s . (75)

However, the totally symmetric flavor part has no totally
antisymmetric counterpart in spin space, hence these
representations do not contribute to the potential. In Table 4,
these restrictions obtained by the generalized Pauli principle
have already be incorporated. The potentials of Petschauer et al.
[120] (decomposed in isospin basis and partial waves) fulfill the
restrictions of Table 4. For example the combination of LECs
related to the representation 35 is present in theNNN interaction
as well as in the 446 (−5, 2) interaction.

4.2. One-Meson Exchange Component
The meson-baryon couplings in the one-meson exchange
diagram of Figure 8 emerges from the leading-order chiral

Lagrangian L
(1)
B (see Equation 56). The other vertex involves

four baryon fields and one pseudoscalar-meson field. In
Petschauer et al. [120], an overcomplete set of terms for the
corresponding Lagrangian has been constructed. In order to
obtain the complete minimal Lagrangian from the overcomplete
set of terms, the matrix elements of the process B1B2 → B3B4φ1

has been considered in Petschauer et al. [120]. The corresponding
spin operators in the potential are

Eσ1 · Eq , Eσ2 · Eq , i (Eσ1 × Eσ2) · Eq , (76)

where Eq denotes the momentum of the emitted meson.
Redundant term are removed until the rank of the potential
matrix formed by all transitions and spin operators matches
the number of terms in the Lagrangian. One ends up with the
minimal non-relativistic chiral Lagrangian

L = D1/f0〈B̄a(∇ iφ)BaB̄b(σ
iB)b〉

+ D2/f0

(

〈B̄aBa(∇ iφ)B̄b(σ
iB)b〉

+ 〈B̄aBaB̄b(σ iB)b(∇ iφ)〉
)

FIGURE 9 | Generic meson-exchange diagrams. The wiggly line symbolized

the four-baryon contact vertex, to illustrate the baryon bilinears. (A) Generic

one-meson exchange diagram. (B) Generic two-meson exchange diagram.

+ D3/f0〈B̄b(∇ iφ)(σ iB)bB̄aBa〉
− D4/f0

(

〈B̄a(∇ iφ)B̄bBa(σ
iB)b〉

+ 〈B̄bB̄a(σ iB)b(∇ iφ)Ba〉
)

− D5/f0

(

〈B̄aB̄b(∇ iφ)Ba(σ
iB)b〉

+ 〈B̄bB̄a(∇ iφ)(σ iB)bBa〉
)

− D6/f0

(

〈B̄b(∇ iφ)B̄a(σ
iB)bBa〉

+ 〈B̄aB̄bBa(∇ iφ)(σ iB)b〉
)

− D7/f0

(

〈B̄aB̄bBa(σ iB)b(∇ iφ)〉

+ 〈B̄bB̄a(σ iB)bBa(∇ iφ)〉
)

+ D8/f0〈B̄a(∇ iφ)Ba〉〈B̄b(σ iB)b〉
+ D9/f0〈B̄aBa(∇ iφ)〉〈B̄b(σ iB)b〉
+ D10/f0〈B̄b(∇ iφ)(σ iB)b〉〈B̄aBa〉
+ i ǫijkD11/f0〈B̄a(σ iB)a(∇kφ)B̄b(σ

jB)b〉
− i ǫijkD12/f0

(

〈B̄a(∇kφ)B̄b(σ
iB)a(σ

jB)b〉

− 〈B̄bB̄a(σ jB)b(∇kφ)(σ iB)a〉
)

− i ǫijkD13/f0〈B̄aB̄b(∇kφ)(σ iB)a(σ
jB)b〉

− i ǫijkD14/f0〈B̄aB̄b(σ iB)a(σ
jB)b(∇kφ)〉 , (77)

with two-component spinor indices a and b and 3-vector indices
i, j, and k. For all possible strangeness sectors S = −4 . . . 0 one
obtains in total 14 low-energy constants D1 . . .D14. The low-
energy constant of the corresponding vertex in the nucleonic
sector D is related to the LECs above by D = 4(D1 − D3 +
D8 − D10).

2

To obtain the 3BF one-meson-exchange diagram, the generic
one-meson-exchange diagram in Figure 9A can be investigated.

2This LEC D has not to be confused with the axial-vector coupling constant D in

Equation (56).
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It involves the baryons i, j, k in the initial state, the baryons l,m, n
in the final state and an exchanged meson φ. The contact vertex
on the right is pictorially separated into two parts to indicate that
baryon j–m and k–n are in the same bilinear. The spin spaces
corresponding to the baryon bilinears are denoted by A,B,C.

On obtains a generic potential of the form

V = 1

2f 20

EσA · Eqli
Eq 2
li
+m2

φ

(

N1 EσC · Eqli + N2i (EσB × EσC) · Eqli
)

, (78)

with the momentum transfer Eqli = Epl − Epi carried by
the exchanged meson. The constants N1 and N2 are linear
combinations of low-energy constants.

The complete one-meson exchange three-baryon potential
for the process B1B2B3 → B4B5B6 is finally obtained by
summing up the 36 permutations of initial-state and final-state
baryons for a fixed meson and by summing over all mesons
φ ∈

{

π0,π+,π−,K+,K−,K0, K̄0, η
}

. Additional minus signs
arise from interchanging fermions and some diagrams need
to be multiplied by spin exchange operators in order to be
consistent with the form set up in Equation (70). As defined
before, the baryons B1, B2, and B3 belong to the spin-spaces 1,
2, and 3, respectively.

4.3. Two-Meson Exchange Component
The two-meson exchange diagram of Figure 8 includes the vertex
arising from the Lagrangian in Equation (56). Furthermore the
well-known O(q2) meson-baryon Lagrangian [139] is necessary.
For the two-meson exchange diagram of Figure 8 we need in
addition to the Lagrangian in Equation (56) the well-known
O(q2) meson-baryon Lagrangian [139]. The relevant terms are
[140]

L = bD〈B̄{χ+,B}〉 + bF〈B̄[χ+,B]〉 + b0〈B̄B〉 〈χ+〉
+ b1〈B̄[uµ, [uµ,B]]〉 + b2〈B̄{uµ, {uµ,B}}〉
+ b3〈B̄{uµ, [uµ,B]}〉 + b4〈B̄B〉 〈uµuµ〉
+ id1〈B̄{[uµ, uν], σµνB}〉
+ id2〈B̄[[uµ, uν], σµνB]〉
+ id3〈B̄uµ〉〈uνσµνB〉 , (79)

with uµ = − 1
f0

∂µφ + O(φ3) and χ+ = 2χ − 1
4f 20

{φ, {φ,χ}}
+O(φ4), where

χ =





m2
π 0 0
0 m2

π 0

0 0 2m2
K −m2

π



 . (80)

The terms proportional to bD, bF , b0 break explicitly SU(3) flavor
symmetry, because of different meson masses mK 6= mπ . The
LECs of Equation (79) are related to the conventional LECs of
the nucleonic sector by [155, 156]

c1 =
1

2
(2b0 + bD + bF) ,

c3 = b1 + b2 + b3 + 2b4 ,

c4 = 4(d1 + d2) . (81)

To obtain the potential of the two-meson exchange diagram of
Figure 8, the generic diagram of Figure 9B can be considered.
It includes the baryons i, j, k in the initial state, the baryons
l,m, n in the final state, and two exchanged mesons φ1 and
φ2. The spin spaces corresponding to the baryon bilinears are
denoted by A,B,C and they are aligned with the three initial
baryons. The momentum transfers carried by the virtual mesons
are Eqli = Epl − Epi and Eqnk = Epn − Epk. One obtains the generic
transition amplitude

V = − 1

4f 40

EσA · Eqli EσC · Eqnk
(Eq 2

li
+m2

φ1
)(Eq 2

nk
+m2

φ2
)

×
(

N′
1 + N′

2 Eqli · Eqnk + N′
3 i (Eqli × Eqnk) · EσB

)

, (82)

with N′
i linear combinations of the low-energy constants of the

three involved vertices. The complete three-body potential for a
transition B1B2B3 → B4B5B6 can be calculated by summing up
the contributions of all 18 distinguable Feynman diagrams and
by summing over all possible exchanged mesons. If the baryon
lines are not in the configuration 1–4, 2–5, and 3–6 additional
(negative) spin-exchange operators have to be included.

4.4. 3NN Three-Baryon Potentials
In order to give a concrete example the explicit expression
for the 3NN three-body potentials in spin-, isospin-, and
momentum-space are presented for the contact interaction and
one- and two-pion exchange contributions [120]. The potentials
are calculated in the particle basis and afterwards rewritten into
isospin operators.

The 3NN contact interaction is described by the
following potential

V3NN
ct = C′

1 (1− Eσ2 · Eσ3)(3+ Eτ2 · Eτ3)
+ C′

2 Eσ1 · (Eσ2 + Eσ3) (1− Eτ2 · Eτ3)
+ C′

3 (3+ Eσ2 · Eσ3)(1− Eτ2 · Eτ3) , (83)

where the primed constants are linear combinations of C1 . . .C18

of Equation (71). The symbols Eσ and Eτ denote the usual Pauli
matrices in spin and isospin space. The constant C′

1 appears only
in the transition with total isospin I = 1. The constants C′

2 and
C′
3 contribute for total isospin I = 0.
For the 3NN one-pion exchange three-body potentials,

various diagrams are absent due to the vanishing 33π-vertex,
which is forbidden by isospin symmetry. One obtains the
following potential

V3NN
OPE =− gA

2f 20

×
( Eσ2 · Eq52
Eq 2
52 +m2

π

Eτ2 · Eτ3
[

(D′
1 Eσ1 + D′

2 Eσ3) · Eq52
]

+ Eσ3 · Eq63
Eq 2
63 +m2

π

Eτ2 · Eτ3
[

(D′
1 Eσ1 + D′

2 Eσ2) · Eq63
]

+ P
(σ )
23 P

(τ )
23 P

(σ )
13

Eσ2 · Eq62
Eq 2
62 +m2

π

Eτ2 · Eτ3
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×
[

− D′
1 + D′

2

2
(Eσ1 + Eσ3) · Eq62

+ D′
1 − D′

2

2
i (Eσ3 × Eσ1) · Eq62

]

+ P
(σ )
23 P

(τ )
23 P

(σ )
12

Eσ3 · Eq53
Eq 2
53 +m2

π

Eτ2 · Eτ3

×
[

− D′
1 + D′

2

2
(Eσ1 + Eσ2) · Eq53

− D′
1 − D′

2

2
i (Eσ1 × Eσ2) · Eq53

]

)

, (84)

with only two constants D′
1 and D′

2, which are linear
combinations of the constants D1 . . .D14. Exchange operators in

spin space P
(σ )
ij = 1

2 (1 + Eσi · Eσj) and in isospin space P
(τ )
ij =

1
2 (1+ Eτi · Eτj) have been introduced.

The 3NN three-body interaction generated by two-pion
exchange is given by

V3NN
TPE = g2A

3f 40

Eσ3 · Eq63 Eσ2 · Eq52
(Eq 2

63 +m2
π )(Eq 2

52 +m2
π )

Eτ2 · Eτ3

×
(

− (3b0 + bD)m
2
π + (2b2 + 3b4) Eq63 · Eq52

)

− P
(σ )
23 P

(τ )
23

g2A
3f 40

Eσ3 · Eq53 Eσ2 · Eq62
(Eq 2

53 +m2
π )(Eq 2

62 +m2
π )

Eτ2 · Eτ3

×
(

− (3b0 + bD)m
2
π + (2b2 + 3b4) Eq53 · Eq62

)

. (85)

Due to the vanishing of the33π vertex, only those two diagrams
contribute, where the (final and initial)3 hyperon are attached to
the central baryon line.

4.5. Three-Baryon Force Through Decuplet
Saturation
Low-energy two- and three-body interactions derived from
SU(2) χEFT are used consistently in combination with each
other in nuclear few- and many-body calculations. The a
priori unknown low-energy constants are fitted, for example,
to NN scattering data and 3N observables such as 3-body
binding energies [78]. Some of these LECs are, however, large
compared to their order of magnitude as expected from the
hierarchy of nuclear forces in Figure 5. This feature has its
physical origin in strong couplings of the πN-system to the
low-lying 1(1232)-resonance. It is therefore, natural to include
the 1(1232)-isobar as an explicit degree of freedom in the
chiral Lagrangian (cf. [157–159]). The small mass difference
between nucleons and deltas (293 MeV) introduces a small scale,
which can be included consistently in the chiral power counting
scheme and the hierarchy of nuclear forces. The dominant
parts of the three-nucleon interaction mediated by two-pion
exchange at NNLO are then promoted to NLO through the
delta contributions. The appearance of the inverse mass splitting
explains the large numerical values of the corresponding LECs
[13, 160].

In SU(3) χEFT the situation is similar. In systems with
strangeness S = −1 like 3NN, resonances such as the

spin-3/2 6∗(1385)-resonance play a similar role as the 1 in
the NNN system, as depicted in Figure 4 on the right side.
The small decuplet-octet mass splitting (in the chiral limit),
1 : = M10 − M8, is counted together with external momenta
and meson masses as O(q) and thus parts of the NNLO
three-baryon interaction are promoted to NLO by the explicit
inclusion of the baryon decuplet, as illustrated in Figure 10.
It is therefore likewise compelling to treat the three-baryon
interaction together with the NLO hyperon-nucleon interaction
of section 3. Note that in the nucleonic sector, only the
two-pion exchange diagram with an intermediate 1-isobar is
allowed. Other diagrams are forbidden due to the Pauli principle,
as we will show later. For three flavors more particles are
involved and, in general, also the other diagrams (contact and
one-meson exchange) with intermediate decuplet baryons in
Figure 10 appear.

The large number of unknown LECs presented in the previous
subsections is related to the multitude of three-baryonmultiplets,
with strangeness ranging from 0 to −6. For selected processes
only a small subset of these constants contributes as has been
exemplified for the 3NN three-body interaction. In this section
we present the estimation of these LECs by resonance saturation
as done in Petschauer et al. [121].

The leading-order non-relativistic interaction Lagrangian
between octet and decuplet baryons (see, e.g., [161]) is

L = C

f0

3
∑

a,b,c,d,e=1

ǫabc

(

T̄ade
ES† ·

(

E∇φdb

)

Bec

+ B̄ceES ·
(

E∇φbd

)

Tade

)

, (86)

where the decuplet baryons are represented by the totally
symmetric three-index tensor T (cf. Equation 23). At this order
only a single LEC C appears. Typically the (large-Nc) value
C = 3

4 gA ≈ 1 is used, as it leads to a decay width Ŵ(1 →
πN) = 110.6 MeV that is in good agreement with the empirical
value of Ŵ(1 → πN) = (115 ± 5) MeV [158]. The spin 1

2

to 3
2 transition operators ES connect the two-component spinors

of octet baryons with the four-component spinors of decuplet
baryons (see e.g., [162]). In their explicit form they are given as
2× 4 transition matrices

S1 =
(

− 1√
2

0 1√
6

0

0 − 1√
6

0 1√
2

)

,

S2 =
(

− i√
2

0 − i√
6

0

0 − i√
6

0 − i√
2

)

,

S3 =





0
√

2
3 0 0

0 0
√

2
3 0



 . (87)
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FIGURE 10 | Hierarchy of three-baryon forces with explicit introduction of the baryon decuplet (represented by double lines).

FIGURE 11 | Saturation via decuplet resonances. (A) Saturation of the six-baryon contact interaction. (B) Saturation of the BB → BBφ vertex. (C) Saturation of the

NLO baryon-meson vertex.

These operators fulfill the relation SiSj
† = 1

3 (2δij − iǫijkσk).
A non-relativistic B∗BBB Lagrangian with a minimal set of

terms is given by [121]:

L = H1

3
∑

a,b,c,
d,e,f=1

ǫabc
[

(

T̄ade
ES†Bdb

)

·
(

B̄fc EσBef
)

+
(

B̄bdES Tade

)

·
(

B̄fe EσBcf
) ]

+H2

3
∑

a,b,c,
d,e,f=1

ǫabc
[

(

T̄ade
ES†Bfb

)

·
(

B̄dc EσBef
)

+
(

B̄bf ES Tade

)

·
(

B̄fe EσBcd
) ]

, (88)

with the LECsH1 andH2. Again one can employ group theory to
justify the number of two constants for a transition BB → B∗B. In
flavor space the two initial octet baryons form the tensor product
8⊗8, and in spin space they form the product 2⊗2. These tensor
products can be decomposed into irreducible representations:

8⊗ 8 = 27⊕ 8s ⊕ 1
︸ ︷︷ ︸

symmetric

⊕ 10⊕ 10∗ ⊕ 8a
︸ ︷︷ ︸

antisymmetric

,

2⊗ 2 = 1a ⊕ 3s . (89)

In the final state, having a decuplet and an octet baryon, the
situation is similar:

10⊗ 8 = 35⊕ 27⊕ 10⊕ 8 ,

4⊗ 2 = 3⊕ 5 . (90)

As seen in the previous sections, at leading order only S-wave
transitions occur, as no momenta are involved. Transitions are
only allowed between the same types of irreducible (flavor and
spin) representations. Therefore, in spin space the representation
3 has to be chosen. Because of the Pauli principle in the
initial state, the symmetric 3 in spin space combines with the
antisymmetric representations 10, 10∗, 8a in flavor space. But
only 10 and 8a have a counterpart in the final state flavor space.
This number of two allowed transitions matches the number
of two LECs in the minimal Lagrangian. Another interesting
observation can be made from Equations (89) and (90). For NN
states only the representations 27 and 10∗ can contribute, as can
be seen, e.g., in Table 3. But these representations combine either
with the wrong spin, or have no counterpart in the final state.
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Therefore, NN → 1N transitions in S-waves are not allowed
because of the Pauli principle.

Having the above two interaction types at hand, one can
estimate the low-energy constants of the leading three-baryon
interaction by decuplet saturation using the diagrams shown in
Figure 10. At this order, where no loops are involved, one just
needs to evaluate the diagrams with an intermediate decuplet
baryon and the diagrams without decuplet baryons and compare
them with each other.

In order to estimate the LECs of the six-baryon contact
Lagrangian of Equation (71), one can consider the process
B1B2B3 → B4B5B6 as depicted in Figure 11A. The left side
of Figure 11A has already been introduced in the previous
subsection and can be obtained by performing all 36 Wick
contractions. For the diagrams on right side of Figure 11A

the procedure is similar. After summing over all intermediate
decuplet baryons B∗, the full three-body potential of all possible
combinations of baryons on the left side of Figure 11A can be
compared with the ones on the right side. In the end the 18 LECs
of the six-baryon contact Lagrangian C1, . . . ,C18 of Equation
(71) can be expressed as linear combinations of the combinations
H2
1 , H

2
2 and H1H2 and are proportional to the inverse average

decuplet-octet baryon mass splitting 1/1 [121].
Since we are at the leading order only tree-level diagrams

are involved and we can estimate the LECs of the one-meson-
exchange part of the three-baryon forces already on the level
of the vertices, as depicted in Figure 11B. We consider the
transition matrix elements of the process B1B2 → B3B4φ and
start with the left side of Figure 11B. After doing all possible
Wick contractions, summing over all intermediate decuplet
baryons, and comparing the left side of Figure 11B with the right
hand side for all combinations of baryons and mesons, the LECs
can be estimated. The LECs of the minimal non-relativistic chiral
Lagrangian for the four-baryon vertex including one meson of
Equation (77) D1, . . . ,D14 are then proportional to C/1 and to
linear combinations of H1 and H2 [121].

The last class of diagrams is the three-body interaction with
two-meson exchange. As done for the one-meson exchange, the
unknown LECs can be saturated directly on the level of the
vertex and one can consider the process B1φ1 → B2φ2 as
shown in Figure 11C. A direct comparison of the transition
matrix elements for all combinations of baryons and mesons
after summing over all intermediate decuplet baryons B∗ leads
to the following contributions to the LECs of the meson-baryon
Lagrangian in Equation (79):

bD = 0 , bF = 0 , b0 = 0 ,

b1 =
7C2

361
, b2 =

C2

41
, b3 = − C2

31
, b4 = − C2

21
,

d1 =
C2

121
, d2 =

C2

361
, d3 = − C2

61
, (91)

These findings are consistent with the 1(1232) contribution to
the LECs c1, c3, c4 (see Equation 81) in the nucleonic sector
[157, 160]:

c1 = 0 , c3 = −2c4 = − g2A
21

. (92)

FIGURE 12 | Effective two-baryon interaction from genuine three-baryon

forces. Contributions arise from two-pion exchange (1), (2a), (2b), (3), one-pion

exchange (4), (5a), (5b), and the contact interaction (6).

Employing the LECs obtained via decuplet saturation, the
constants of the 3NN interaction (contact interaction, one-pion
and two-pion exchange) of section 4.4 can be evaluated:

C′
1 = C′

3 =
(H1 + 3H2)

2

721
, C′

2 = 0 ,

D′
1 = 0 , D′

2 =
2C(H1 + 3H2)

91
,

3b0 + bD = 0 , 2b2 + 3b4 = − C2

1
. (93)

Obviously, the only unknown constant here is the combination
H′ = H1 + 3H2. It is also interesting to see, that the (positive)
sign of the constantsC′

i for the contact interaction is already fixed,
independently of the values of the two LECs H1 and H2.

4.6. Effective In-medium Two-Baryon
Interaction
In this subsection we summarize how the effect of three-
body force in the presence of a (hyper)nuclear medium can
be incorporated in an effective baryon-baryon potential. In
Holt et al. [163], the density-dependent corrections to the
NN interaction have been calculated from the leading chiral
three-nucleon forces. This work has been extended to the
strangeness sector in Petschauer et al. [121]. In order to obtain
an effective baryon-baryon interaction from the irreducible 3BFs
in Figure 8, two baryon lines have been closed, which represents
diagrammatically the sum over occupied states within the Fermi
sea. Such a “medium insertion” is symbolized by short double
lines on a baryon propagator. All types of diagrams arising this
way are shown in Figure 12.

In Petschauer et al. [121], the calculation is restricted to
the contact term and to the contributions from one- and two-
pion exchange processes, as they are expected to be dominant.
When computing the diagrams of Figure 8 the medium insertion

corresponds to a factor −2πδ(k0)θ(kf − |Ek|). Furthermore, an
additional minus sign comes from a closed fermion loop. The
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effective two-body interaction can also be calculated from the
expressions for the three-baryon potentials of Petschauer et al.
[120] via the relation

V12 =
∑

B

trσ3

∫

|Ek|≤kB
f

d3k

(2π)3
V123 , (94)

where trσ3 denotes the spin trace over the third particle and where
a summation over all baryon species B in the Fermi sea (with
Fermi momentum kB

f
) is done.

As an example of such an effective interaction, we display
the effective 3N interaction in nuclear matter (with ρp 6=
ρn) derived in Petschauer et al. [121]. It is determined from
two-pion-exchange, one-pion-exchange and contact3NN three-
body forces. Only the expressions for the 3n potential are shown
as the 3p potential can be obtained just by interchanging the
Fermi momenta k

p

f
with kn

f
(or the densities ρp with ρn) in the

expressions for 3n. In the following formulas the sum over the
contributions from the protons and neutrons in the Fermi sea
is already employed. Furthermore, the values of the LECs are
already estimated via decuplet saturation (see section 4.5). The
topologies (1), (2a), and (2b) vanish here because of the non-
existence of an isospin-symmetric 33π vertex. One obtains the
density-dependent 3n potential in a nuclear medium

Vmed,ππ
3n = C2g2A

12π2f 40 1

{

1

4

[8

3
(knf

3 + 2k
p

f

3
)− 4(q2 + 2m2)Ŵ̃0(p)− 2q2Ŵ̃1(p)

+ (q2 + 2m2)2G̃0(p, q)
]

+ i

2
(Eq× Ep ) · Eσ2

(

2Ŵ̃0(p)+ 2Ŵ̃1(p)

− (q2 + 2m2)(G̃0(p, q)+ 2G̃1(p, q))
)

}

, (95)

Vmed,π
3n = gACH

′

54π2f 20 1

(

2(knf
3 + 2k

p

f

3
)− 3m2Ŵ̃0(p)

)

, (96)

Vmed,ct
3n = H′2

181
(ρn + 2ρp) . (97)

The different topologies related to two-pion exchange [(1), (2a),
(2b), (3)] and one-pion exchange [(4), (5a), (5b)] have already
been combined in Vmed,ππ and Vmed,π , respectively. The density
and momentum dependent loop functions Ŵ̃i(p) and G̃i(p, q) can
be found in Petschauer et al. [121]. The only spin-dependent
term is the one proportional to Eσ2 = 1

2 (Eσ1 + Eσ2) − 1
2 (Eσ1 − Eσ2)

and therefore one recognizes a symmetric and an antisymmetric
spin-orbit potential of equal but opposite strength.

5. APPLICATIONS

5.1. Hyperon-Nucleon and
Hyperon-Hyperon Scattering
With the hyperon-nucleon potentials outlined in section 3
hyperon-nucleon scattering processes can be investigated. The
very successful approach to the nucleon-nucleon interaction
of Epelbaum et al. [147, 149, 150] within SU(2) χEFT, has
been extended to the leading-order baryon-baryon interaction in
Polinder et al. [29, 30] and Haidenbauer and Meißner [31] by
the Bonn-Jülich group. In Haidenbauer et al. [33, 35, 36], this
approach has been extended to next-to-leading order in SU(3)
chiral effective field theory. As mentioned in section 2.4, the
chiral power counting is applied to the potential, where only two-
particle irreducible diagrams contribute. These potentials are
then inserted into a regularized Lippmann-Schwinger equation
to obtain the reaction amplitude (or T-matrix). In contrast to
the NN interaction, the Lippmann-Schwinger equation for the
YN interaction involves not only coupled partial waves, but also
coupled two-baryon channels. The coupled-channel Lippmann-
Schwinger equation in the particle basis reads after partial-wave
decomposition (see also Figure 2)

T
ρ′′ρ′ ,J
ν′′ν′ (k′′, k′;√s) = V

ρ′′ρ′,J
ν′′ν′ (k′′, k′)

+
∑

ρ,ν

∫ ∞

0

dk k2

(2π)3
V

ρ′′ρ ,J
ν′′ν (k′′, k)

× 2µν

k2ν − k2 + iǫ
T

ρρ′,J
νν′ (k, k′;√s) , (98)

where J denotes the conserved total angular momentum. The
coupled two-particle channels (3p,6+n,60p,. . . ) are labeled
by ν, and the partial waves (1S0,

3P0, . . .) by ρ. Furthermore,
µν is the reduced baryon mass in channel ν. In Haidenbauer
et al. [33], a non-relativistic scattering equation has been chosen
to ensure that the potential can also be applied consistently
to Faddeev and Faddeev-Yakubovsky calculations in the few-
body sector, and to (hyper-) nuclear matter calculations within
the conventional Brueckner-Hartree-Fock formalism (see section
5.2). Nevertheless, the relativistic relation between the on-shell
momentum kν and the center-of-mass energy has been used,
√
s =

√

M2
B1,ν

+ k2ν +
√

M2
B2,ν

+ k2ν , in order to get the two-

particle thresholds at their correct positions. The physical baryon
masses have been used in the Lippmann-Schwinger equation,
which introduces some additional SU(3) symmetry breaking.
Relativistic kinematics has also been used to relate the laboratory
momentum plab of the hyperon to the center-of-mass energy√
s. The Coulomb interaction has been implemented by the

use of the Vincent-Phatak method [147, 164]. Similar to the
nucleonic sector at NLO [147], a regulator function of the form
fR(3) = exp[−(k′4 + k4)/34] is employed to cut off the high-
energy components of the potential. For higher orders in the
chiral power counting, higher powers than 4 in the exponent of
fR have to be used. This ensures that the regulator introduces
only contributions, that are beyond the given order. The cutoff
3 is varied in the range (500 . . . 700) MeV, i.e., comparable
to what was used for the NN interaction in Epelbaum et al.

Frontiers in Physics | www.frontiersin.org 23 February 2020 | Volume 8 | Article 12168

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Petschauer et al. Hyperon-Nuclear Interactions

FIGURE 13 | Total cross section σ as a function of plab. The red (dark) band shows the chiral EFT results to NLO for variations of the cutoff in the range

3 = (500 . . .650) MeV [33], while the green (light) band are results to LO for 3 = (550 . . . 700) MeV [29]. The dashed curves are the result of the Jülich ’04

meson-exchange potential [21], the dash-dotted curves of the Nijmegen NSC97f potential [20].

[147]. The resulting bands represent the cutoff dependence, after
readjusting the contact parameters, and thus could be viewed as a
lower bound on the theoretical uncertainty. Recently, improved
schemes to estimate the theoretical uncertainty were proposed
and applied to the NN interaction [165–168]. Some illustrative
results for YN scattering based on the method by Epelbaum
et al. [166, 168] have been included in Haidenbauer et al. [34].
However, such schemes require higher orders than NLO in the
chiral power counting if one wants to address questions like the
convergence of the expansion.

The partial-wave contributions of the meson-exchange
diagrams are obtained by employing the partial-wave
decomposition formulas of Polinder et al. [29]. For further
remarks on the employed approximations and the fitting strategy
we refer the reader to Haidenbauer et al. [33]. As can be seen
in Table 3, one gets for the YN contact terms five independent
LO constants, acting in the S-waves, eight additional constants
at NLO in the S-waves, and nine NLO constant acting in the
P-waves. The contact terms represent the unresolved short-
distance dynamics, and the corresponding low-energy constants
are fitted to the “standard” set of 36 YN empirical data points
[169–174]. The hypertriton (33H) binding energy has been
chosen as a further input. It determines the relative strength
of the spin-singlet and spin-triplet S-wave contributions of the
3p interaction. Due to the sparse and inaccurate experimental
data, the obtained fit of the low-energy constants is not unique.
For instance, the YN data can be described equally well with
a repulsive or an attractive interaction in the 3S1 partial wave
of the 6N interaction with isospin I = 3/2. However, recent
calculations from lattice QCD [3, 4] suggest a repulsive 3S1
phase shift in the 6N I = 3/2 channel, hence the repulsive
solution has been adopted. Furthermore, this is consistent
with empirical information from 6−-production on nuclei,

which point to a repulsive 6-nucleus potential (see also
section 5.2).

In the following we present some of the results of Haidenbauer
et al. [33]. For comparison, results of the Jülich ’04 [21] and
the Nijmegen [20] meson-exchange models are also shown in
the figures. In Figure 13, the total cross sections as functions of
plab for various YN interactions are presented. The experimental
data is well reproduced at NLO. Especially the results in the
3p channel are in line with the data points (also at higher
energies) and the energy dependence in the 6+p channel is
significantly improved at NLO. It is also interesting to note that
the NLO results are now closer to the phenomenological Jülich
’04model than at LO. One expects the theoretical uncertainties to
become smaller, when going to higher order in the chiral power
counting. This is reflected in the fact, that the bands at NLO are
considerably smaller than at LO. These bands represent only the
cutoff dependence and therefore constitute a lower bound on the
theoretical error.

In Table 5, the scattering lengths and effective range
parameters for the 3p and 6+p interactions in the 1S0 and
3S1 partial waves are given. Result for LO [29] and NLO
χEFT [33], for the Jülich ’04 model [21] and for the Nijmegen
NSC97f potential [20] are shown. The NLO 3p scattering
lengths are larger than for the LO calculation, and closer to
the values obtained by the meson-exchange models. The triplet
6+p scattering length is positive in the LO as well as the
NLO calculation, which indicates a repulsive interaction in this
channel. Also given in Table 5 is the hypertriton binding energy,
calculated with the corresponding chiral potentials. As stated
before, the hypertriton binding energy was part of the fitting
procedure and values close to the experimental value could be
achieved. The predictions for the 3

3H binding energy are based
on the Faddeev equations in momentum space, as described in
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TABLE 5 | The YN singlet (s) and triplet (t) scattering length a and effective range r

(in fm) and the hypertriton binding energy EB (in MeV) [33].

NLO LO Jül ’04 NSC97f

3 [MeV] 450 500 550 600 650 700 600

a
3p
s −2.90 −2.91 −2.91 −2.91 −2.90 −2.90 −1.91 −2.56 −2.60

r
3p
s 2.64 2.86 2.84 2.78 2.65 2.56 1.40 2.74 3.05

a
3p
t −1.70 −1.61 −1.52 −1.54 −1.51 −1.48 −1.23 −1.67 −1.72

r
3p
t 3.44 3.05 2.83 2.72 2.64 2.62 2.13 2.93 3.32

a
6+p
s −3.58 −3.59 −3.60 −3.56 −3.46 −3.49 −2.32 −3.60 −4.35

r
6+p
s 3.49 3.59 3.56 3.54 3.53 3.45 3.60 3.24 3.16

a
6+p
t 0.48 0.49 0.49 0.49 0.48 0.49 0.65 0.31 −0.25

r
6+p
t −4.98 −5.18 −5.03 −5.08 −5.41 −5.18 −2.78 −12.2 −28.9

(33H) EB −2.39 −2.33 −2.30 −2.30 −2.30 −2.32 −2.34 −2.27 −2.30

The binding energies for the hypertriton are calculated using the Idaho-N3LO NN potential

[151]. The experimental value for the 3
3H binding energy is −2.354(50) MeV.

Nogga [49, 175]. Note that genuine (irreducible) three-baryon
interactions were not included in this calculation. However, in the
employed coupled-channel formalism, effects like the important
3-6 conversion process are naturally included. It is important to
distinguish such iterated two-body interactions, from irreducible
three-baryon forces, as exemplified in Figure 4.

Predictions for S- and P-wave phase shifts δ as a function
of plab for 3p and 6+p scattering are shown in Figure 14. The
1S0 3p phase shift from the NLO χEFT calculation is closer
to the phenomenological Jülich ’04 model than the LO result.
It points to moderate attraction at low momenta and strong
repulsion at higher momenta. At NLO the phase shift has a
stronger downward bending at higher momenta compared to LO
or the Jülich ’04model. As stated before, more repulsion at higher
energies is a welcome feature in view of neutron star matter with
3-hyperons as additional baryonic degree of freedom. The 3S1
3p phase shift, part of the S-matrix for the coupled 3S1-

3D1

system, changes qualitatively from LO to NLO. The 3S1 phase
shift of the NLO interaction passes through 90◦ slightly below
the 6N threshold, which indicates the presence of an unstable
bound state in the 6N system. For the LO interaction and the
Jülich ’04 model no passing through 90◦ occurs and a cusp is
predicted, that is caused by an inelastic virtual state in the 6N
system. These effects are also reflected by a strong increase of
the 3p cross section close to the 6N threshold (see Figure 13).
The 3S1 6N phase shift for the NLO interaction is moderately
repulsive and comparable to the LO phase shift.

Recently an alternative NLO χEFT potential for YN scattering
has been presented [34]. In that work a different strategy for
fixing the low-energy constants that determine the strength
of the contact interactions is adopted. The objective of that
exploration was to reduce the number of LECs that need to
be fixed in a fit to the 3N and 6N data by inferring some of
them from the NN sector via the underlying SU(3) symmetry (cf.
section 3.1). Indeed, correlations between the LO and NLO LECs
of the S-waves, i.e., between the c̃’s and c’s, had been observed

already in the initial YN study [33] and indicated that a unique
determination of them by considering the existing 3N and 6N
data alone is not possible. It may be not unexpected in view of
those correlations, that the variant considered in Haidenbauer
et al. [34] yields practically equivalent results for 3N and
6N scattering observables. However, it differs considerable in
the strength of the 3N → 6N transition potential and
that becomes manifest in applications to few- and many-body
systems [34, 176].

There is very little empirical information about baryon-
baryon systems with S = −2, i.e., about the interaction in the
33, 66, 36, and 4N channels. Actually, all one can find in
the literature [36] are a few values and upper bounds for the
4−p elastic and inelastic cross sections [177, 178]. In addition
there are constraints on the strength of the 33 interaction
from the separation energy of the 6

33He hypernucleus [179].
Furthermore estimates for the 33 1S0 scattering length exist
from analyses of the33 invariant mass measured in the reaction
12C(K−,K+33X) [180] and of 33 correlations measured in
relativistic heavy-ion collisions [181].

Despite the rather poor experimental situation, it turned out
that SU(3)-symmetry breaking contact terms that arise at NLO
(see section 3.1), need to be taken into account when going from
strangeness S = −1 to S = −2 in order to achieve agreement
with the available measurements and upper bounds for the 33

and 4N cross sections [36]. This concerns, in particular, the LEC
c1χ that appears in the 1S0 partial wave (cf. Equation 54). Actually,

its value can be fixed by considering the pp and 6+p systems,
as shown in Haidenbauer et al. [35], and then employed in the
33 system.

Selected results for the strangeness S = −2 sector are
presented in Figure 15. Further results and a detailed description
of the interactions can be found in Polinder et al. [30],
Haidenbauer et al. [35, 36], and Haidenbauer and Meißner
[37]. Interestingly, the results based on the LO interaction from
Polinder et al. [30] (green/gray bands) are consistent with all
empirical constraints. The cross sections at LO are basically
genuine predictions that follow from SU(3) symmetry utilizing
LECs fixed from a fit to the 3N and 6N data on the LO level.
The 33 1S0 scattering length predicted by the NLO interaction
is a33 = −0.70 · · · −0.62 fm [36]. These values are well
within the range found in the aforementioned analyses which
are a33 = (−1.2 ± 0.6) fm [180] and −1.92 < a33 < −0.50
fm [181], respectively. The values for the 40p and 40n S-wave
scattering length are likewise small and typically in the order of
±0.3 ∼ ±0.6 fm [36] and indicate that the 4N interaction has to
be relatively weak in order to be in accordance with the available
empirical constraints. Indeed, the present results obtained in
chiral EFT up to NLO imply that the published values and upper
bounds for the 4−p elastic and inelastic cross sections [177, 178]
practically rule out a somewhat stronger attractive 4N force.

Also for 4N scattering an alternative NLO χEFT
potential has been presented recently [37]. Here the aim
is to explore the possibility to establish a 4N interaction
that is still in line with all the experimental constraints for
33 and 4N scattering, but at the same time is somewhat
more attractive. Recent experimental evidence for the
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FIGURE 14 | Various S- and P-wave phase shifts δ as a function of plab for the 3p and 6+p interaction [33]. Same description of curves as in Figure 13.

FIGURE 15 | 4−p induced cross sections. The bands represent results at NLO (red/black) [36] and LO (green/gray) [30]. Experiments are from Ahn et al. [178], Kim

et al. [unpublished data], and Aoki et al. [177]. Upper limits are indicated by arrows.

existence of 4-hypernuclei [182] suggests that the in-
medium interaction of the 4-hyperon should be moderately
attractive [183].

5.2. Hyperons in Nuclear Matter
Experimental investigations of nuclear many-body systems
including strange baryons, for instance, the spectroscopy of

hypernuclei, provide important constraints on the underlying
hyperon-nucleon interaction. The analysis of data for single 3-
hypernuclei over a wide range in mass number leads to the result,
that the attractive 3 single-particle potential is about half as
deep (≈ −28 MeV) as the one for nucleons [184, 185]. At the
same time the 3-nuclear spin-orbit interaction is found to be
exceptionally weak [186, 187]. Recently, the repulsive nature of
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the 6-nuclear potential has been experimentally established in
6−-formation reactions on heavy nuclei [188]. Baryon-baryon
potentials derived within χEFT as presented in section 3 are
consistent with these observations [75, 76]. In this section
we summarize results of hyperons in infinite homogeneous
nuclear matter of Petschauer et al. [76] obtained by employing
the interaction potentials from χEFT as microscopic input.
The many-body problem is solved within first-order Brueckner
theory. A detailed introduction can be found, e.g., in Day [69],
Baldo [189], and Fetter and Walecka [190].

Brueckner theory is founded on the so-called Goldstone
expansion, a linked-cluster perturbation series for the ground
state energy of a fermionic many-body system. Let us consider
a system of A identical fermions, described by the Hamiltonian

H = T + V , (99)

where T is the kinetic part and V corresponds to the two-body
interaction. The goal is to calculate the ground state energy of
this interacting A-body system. It is advantageous to introduced
a so-called auxiliary potential, or single-particle potential,U. The
Hamiltonian is then split into two parts

H = (T + U)+ (V − U) = H0 +H1 , (100)

the unperturbed part H0 and the perturbed part H1. One expects
the perturbed part to be small, if the single particle potential
describes well the averaged effect of the medium on the particle.
In fact, the proper introduction of the auxiliary potential is crucial
for the convergence of Brueckner theory.

Conventional nucleon-nucleon potentials exhibit a strong
short-range repulsion that leads to very large matrix elements.
Hence, the Goldstone expansion in the form described above will
not converge for such hard-core potentials. One way to approach
this problem is the introduction of the so-called Brueckner
reaction matrix, or G-matrix. The idea behind it is illustrated
in Figure 16A. Instead of only using the simple interaction,
an infinite number of diagrams with increasing number of
interactions is summed up. This defines theG-matrix interaction,
which is, in contrast to the bare potential, weak and of reasonable
range. In a mathematical way, the reaction matrix is defined by
the Bethe-Goldstone equation:

G(ω) = V + V
Q

ω −H0 + iǫ
G(ω) , (101)

with the so-called starting energy ω. The Pauli operator Q
ensures, that the intermediate states are from outside the
Fermi sea. As shown in Figure 16A, this equation represents a
resummation of the ladder diagrams to all orders. The arising
G-matrix interaction is an effective interaction of two particles
in the presence of the medium. The medium effects come in
solely through the Pauli operator and the energy denominator
via the single-particle potentials. If we set the single-particle
potentials to zero and omit the Pauli operator (Q = 1), we
recover the usual Lippmann-Schwinger equation for two-body
scattering in vacuum (see also Figure 2). This medium effect
on the intermediate states is denoted by horizontal double

lines in Figure 16A. An appropriate expansion using the G-
matrix interaction instead of the bare potential is the so-called
Brueckner-Bethe-Goldstone expansion, or hole-line expansion.

Finally, the form of the auxiliary potential U needs to be
chosen. This choice is important for the convergence of the hole-
line expansion. Bethe et al. [191] showed for nuclear matter
that important higher-order diagrams cancel each other if the
auxiliary potential is taken as

Um = Re
∑

n≤A

〈mn|G(ω = ωo.s.)|mn〉A , (102)

where the Brueckner reactionmatrix is evaluated on-shell, i.e., the
starting energy is equal to the energy of the two particles m, n in
the initial state:

ωo.s. = E1(k1)+ E2(k2) ,

EBi (ki) = Mi +
k2i
2Mi

+ ReUi(ki) . (103)

Pictorially Equation (102) means, that the single-particle
potential can be obtained by taking the on-shell G-matrix
interaction and by closing one of the baryon lines, as illustrated in
Figure 16B. Note that this implies a non-trivial self-consistency
problem. On the one hand, U is calculated from the G-matrix
elements via Equation (102), and on the other hand the starting
energy of the G-matrix elements depends on U through the
single-particle energies Ei in Equation (103).

At the (leading) level of two hole-lines, called Brueckner-
Hartree-Fock approximation (BHF), the total energy is given by

E =
∑

n≤A

〈n|T|n〉 + 1

2

∑

m,n≤A

〈mn|G|mn〉A

=
∑

n≤A

〈n|T|n〉 + 1

2

∑

n≤A

〈n|U|n〉 , (104)

i.e., the ground-state energy E can be calculated directly after the
single-particle potential has been determined.

The definition ofU in Equation (102) applies only to occupied
states within the Fermi sea. For intermediate-state energies
above the Fermi sea, typically two choices for the single-particle
potential are employed. In the so-called gap choice, the single-
particle potential is given by Equation (102) for k ≤ kF and
set to zero for k > kF , implying a “gap” (discontinuity) in
the single-particle potential. Then only the free particle energies
(M + Ep 2/2M) of the intermediate states appear in the energy
denominator of the Bethe-Goldstone equation (Equation 101)
since the Pauli-blocking operator is zero for momenta below the
Fermi momentum. In the so-called continuous choice Equation
(102) is used for the whole momentum range, hence the single-
particle potentials enter also into the energy denominator. In
Song et al. [192], the equation of state in symmetric nuclear
matter has been considered. It has been shown, that the
result including three hole-lines is almost independent of the
choice of the auxiliary potential. Furthermore, the two-hole
line result with the continuous choice comes out closer to
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FIGURE 16 | Graphical representation of the determination of the single-particle potential from the G-matrix interaction (B) and of the Bethe-Goldstone equation (A).

The symbol ωo.s denotes the on-shell starting energy.

the three hole-line result, than the two-hole line calculation
with the gap choice. Another advantage of the continuous
choice for intermediate spectra is that it allows for a reliable
determination of the single-particle potentials including their
imaginary parts [70]. The results presented here employ the
continuous choice.

In the following we present some results of Petschauer
et al. [76] for the in-medium properties of hyperons, based
on the YN interaction derived from SU(3) χEFT at NLO.
The same potential V as in the Lippmann-Schwinger equation
(Equation 98) for free scattering is used. However, as in
Haidenbauer and Meißner [75] the contact term c8as for
the antisymmetric spin-orbit force in the YN interaction,
allowing spin singlet-triplet transitions, has been fitted to the
weak 3-nuclear spin-orbit interaction [193, 194]. Additionally,
for the ease of comparison, the G-matrix results obtained
with two phenomenological YN potentials, namely of the
Jülich ’04 [21] and the Nijmegen NSC97f [20] meson-exchange
models, are given. Note that, like the EFT potentials, these
phenomenological YN interactions produce a bound hypertriton
[49]. For more details about derivation and the commonly
employed approximations, we refer the reader to Reuber et al.
[19], Rijken et al. [20], Kohno et al. [24], Schulze et al. [70],
Vidaña et al. [71].

Let us start with the properties of hyperons in symmetric
nuclear matter. Figure 17 shows the momentum dependence
of the real parts of the 3 single-particle potential. The values
for the depth of the 3 single-particle potential U3(k =
0) at saturation density, kF = 1.35 fm−1, at NLO are
between 27.0 and 28.3 MeV. In the Brueckner-Hartree-Fock
approximation the binding energy of a hyperon in infinite
nuclear matter is given by BY (∞) = −UY (k = 0). The
results of the LO and NLO calculation are consistent with the
empirical value of about U3(0) ≈ −28 MeV [184, 185]. The
phenomenological models (Jülich ’04, Nijmegen NSC97f) lead
to more attractive values of U3(0) = (−35 . . . − 50) MeV,
where the main difference is due to the contribution in the
3S1 partial wave. In contrast to LO, at NLO the 3 single-
particle potential at NLO turns to repulsion at fairly low
momenta around k ≈ 2 fm−1, which is also the case for the
NSC97f potential.

An important quantity of the interaction of hyperons with
heavy nuclei is the strength of the 3-nuclear spin-orbit coupling.

It is experimentally well established [186, 187] that the 3-
nucleus spin-orbit force is very small. For the YN interaction of
Haidenbauer and Meißner [75] it was indeed possible to tune
the strength of the antisymmetric spin-orbit contact interaction
(via the constant c8as), generating a spin singlet-triplet mixing
(1P1 ↔ 3P1), in a way to achieve such a small nuclear
spin-orbit potential.

Results for 6 hyperons in isospin-symmetric nuclear matter
at saturation density are also displayed in Figure 17. Analyses
of data on (π−,K+) spectra related to 6− formation in heavy
nuclei lead to the observation, that the 6-nuclear potential in
symmetric nuclear matter is moderately repulsive [188]. The LO
as well as the NLO results are consistent with this observation.
Meson-exchangemodels often fail to produce such a repulsive6-
nuclear potential. The imaginary part of the 6-nuclear potential
at saturation density is consistent with the empirical value of
−16 MeV as extracted from 6−-atom data [195]. The imaginary
potential is mainly induced by the 6N to 3N conversion in
nuclear matter. The bands representing the cutoff dependence of
the chiral potentials, become smaller when going to higher order
in the chiral expansion.

In Figure 18, the density dependence of the depth of the
nuclear mean-field of 3 or 6 hyperons at rest (k = 0). In order
to see the influence of the composition nuclear matter on the
single-particle potentials, results for isospin-symmetric nuclear
matter, asymmetric nuclear matter with ρp = 0.25ρ and pure
neutron matter are shown. The single-particle potential of the
3 hyperon is almost independent of the composition of the
nuclear medium, because of its isosinglet nature. Furthermore,
it is attractive over the whole considered range of density 0.5 ≤
ρ/ρ0 ≤ 1.5. In symmetric nuclear matter, the three 6 hyperons
behave almost identical (up to small differences from the mass
splittings). When introducing isospin asymmetry in the nuclear
medium a splitting of the single-particle potentials occurs due
to the strong isospin dependence of the 6N interaction. The
splittings among the 6+, 60, and 6− potentials have a non-
linear dependence on the isospin asymmetry which goes beyond
the usual (linear) parametrization in terms of an isovector Lane
potential [196].

Recently the in-medium properties of the 4 have been
investigated for 4N potentials from χEFT [37]. For a
more extensive discussion and further applications see
Kohno [197].
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FIGURE 17 | Momentum dependence of the real part of the single-particle potential of a 3 hyperon and of the real and imaginary parts of the single-particle potential

of a 6 hyperon in isospin-symmetric nuclear matter at saturation density, kF = 1.35 fm−1 [76]. The red band, green band, blue dashed curve, and red dash-dotted

curve are for χEFT NLO, χEFT LO, the Jülich ’04 model and the NSC97f model, respectively.

FIGURE 18 | Density dependence of the hyperon single-particle potentials at k = 0 with different compositions of the nuclear matter, calculated in χEFT at NLO with

a cutoff 3 = 600 MeV [76]. The green solid, red dashed and blue dash-dotted curves are for ρp = 0.5ρ, ρp = 0.25ρ, and ρp = 0, respectively.

5.3. Hypernuclei and Hyperons in Neutron
Stars
The density-dependent single-particle potentials of hyperons
interacting with nucleons in nuclear and neutron matter find
their applications in several areas of high current interest:
the physics of hypernuclei and the role played by hyperons
in dense baryonic matter as it is realized in the core of
neutron stars.

From hypernuclear spectroscopy, the deduced attractive
strength of the phenomenological 3-nuclear Woods-Saxon
potential is U0 ≃ −30 MeV at the nuclear center [183].
This provides an important constraint for U3(k = 0) at
ρ = ρ0. The non-existence of bound 6-hypernuclei, on
the other hand, is consistent with the repulsive nature of the
6-nuclear potential as shown in Figure 18. In this context

effects of YNN three-body forces are a key issue. While
their contributions at normal nuclear densities characteristic of
hypernuclei are significant but modest, they play an increasingly
important role when extrapolating to high baryon densities in
neutron stars.

First calculations of hyperon-nuclear potentials based on

chiral SU(3) EFT and using Brueckner theory have been

reported in Haidenbauer et al. [176] and Kohno [122].

Further investigations of (finite) 3 hypernuclei utilizing

the EFT interactions can be found in Haidenbauer and

Vidana [198], based on the formalism described in Vidaña
[199]. For even lighter hypernuclei, the interactions are also
currently studied [200, 201]. Examples of three- and four-
body results can be found in Haidenbauer et al. [34, 202] and
Nogga [49, 175].
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FIGURE 19 | The 3 single-particle potential U3(p3 = 0, ρ) as a function of ρ/ρ0 in symmetric nuclear matter (A) and in neutron matter (B). The solid (red) band shows

the chiral EFT results at NLO for cutoff variations 3 = 450−500 MeV. The dotted (blue) band includes the density-dependent 3N-interaction derived from the 3NN

three-body force. The dashed curve is the result of the Jülich ’04 meson-exchange model [21], the dash-dotted curve that of the Nijmegen NSC97f potential [20],

taken from Yamamoto et al. [204].

Here we give a brief survey of 3-nuclear interactions for
hypernuclei and extrapolations to high densities relevant to
neutron stars, with special focus on the role of the (a priori
unknown) contact terms of the 3NN three-body force. Details
can be found in Haidenbauer et al. [176]. Further extended work
including explicit 3-body coupled channels (3NN ↔ 6NN) in
the Brueckner-Bethe-Goldstone equation is proceeding [203].

Results for the density dependence of the 3 single-particle
potential are presented in Figure 19 for symmetric nuclear
matter (Figure 19A) and for neutron matter (Figure 19B).
Predictions from the chiral SU(3) EFT interactions (bands) are
shown in comparison with those for meson-exchange YN models
constructed by the Jülich [21] (dashed line) and Nijmegen [20]
(dash-dotted line) groups. One observes an onset of repulsive
effects around the saturation density of nuclear matter, i.e., ρ =
ρ0. The repulsion increases strongly as the density increases.
Already around ρ ≈ 2ρ0, U3(0, ρ) turns over to net repulsion.

Let us discuss possible implications for neutron stars. It should
be clear that it is mandatory to include the 3N–6N coupling
in the pertinent calculations. This represents a challenging task
since standard microscopic calculations without this coupling
are already quite complex. However, without the 3N–6N
coupling, which has such a strong influence on the in-medium
properties of hyperons, it will be difficult if not impossible to draw
reliable conclusions.

The majority of YN-interactions employed so far in
microscopic calculations of neutron stars have properties similar
to those of the Jülich ’04 model. In such calculations, hyperons
start appearing in the core of neutron stars typically at
relatively low densities around (2 − 3)ρ0 [113, 119]. This
causes the so-called hyperon puzzle: a strong softening of the
equation-of-state, such that the maximum neutron star mass falls

far below the constraint provided by the existence of several
neutron stars with masses around 2M⊙. Assume now that nature
favors a scenario with a weak diagonal 3N-interaction and a
strong 3N–6N coupling as predicted by SU(3) chiral EFT.
The present study demonstrates that, in this case, the 3 single-
particle potential U3(k = 0, ρ) based on chiral EFT two-body
interactions is already repulsive at densities ρ ∼ (2 − 3)ρ0. The
one of the 6-hyperon is likewise repulsive [35]. We thus expect
that the appearance of hyperons in neutron stars will be shifted
to much higher densities. In addition there is a repulsive density-
dependent effective 3N-interaction that arises within the same
chiral EFT framework from the leading chiral YNN three-baryon
forces. This enhances the aforementioned repulsive effect further.
It makes the appearance of 3-hyperons in neutron star matter
energetically unfavorable. In summary, all these aspects taken
together may well point to a solution of the hyperon puzzle in
neutron stars without resorting to exotic mechanisms.

6. CONCLUSIONS

In this review we have presented the basics to derive the forces
between octet baryons (N,3,6,4) at next-to-leading order in
SU(3) chiral effective field theory. The connection of SU(3) χEFT
to quantum chromodynamics via the chiral symmetry and its
symmetry breaking patterns, and the change of the degrees of
freedom has been shown. The construction principles of the
chiral effective Lagrangian and the external-field method have
been presented and the Weinberg power-counting scheme has
been introduced.

Within SU(3) χEFT the baryon-baryon interaction potentials
have been considered at NLO. The effective baryon-baryon
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potentials include contributions from pure four-baryon contact
terms, one-meson-exchange diagrams, and two-meson-exchange
diagrams at one-loop level. The leading three-baryon forces,
which formally start to contribute at NNLO, consist of a
three-baryon contact interaction, a one-meson exchange and a
two-meson exchange component. We have presented explicitly
potentials for the 3NN interaction in the spin and isospin
basis. The emerging low-energy constants can be estimated
via decuplet saturation, which leads to a promotion of some
parts of the three-baryon forces to NLO. The expressions of
the corresponding effective two-body potential in the nuclear
medium has been presented.

In the second part of this review we have presented selected
applications of these potentials. An excellent description of the
available YN data has been achieved with χEFT, comparable
to the most advanced phenomenological models. Furthermore,
in studies of the properties of hyperons in isospin symmetric
and asymmetric infinite nuclear matter, the chiral baryon-
baryon potentials at NLO are consistent with the empirical
knowledge about hyperon-nuclear single-particle potentials. The
exceptionally weak 3-nuclear spin-orbit force is found to be
related to the contact term responsible for an antisymmetric

spin-orbit interaction. Concerning hypernuclei and neutron stars
promising results have been obtained and could point to a
solution of the hyperon puzzle in neutron stars.

In summary, χEFT is an appropriate tool for constructing
the interaction among baryons in a systematic way. It sets the
framework for many promising applications in strangeness-
nuclear physics.
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Parity-violating and time-reversal conserving (PVTC) and parity-violating and

time-reversal-violating (PVTV) forces in nuclei form only a tiny component of the

total interaction between nucleons. The study of these tiny forces can nevertheless

be of extreme interest because they allow one to obtain information on fundamental

symmetries using nuclear systems. The PVTC interaction derives from the weak

interaction between the quarks inside nucleons and nuclei, therefore the study of PVTC

effects opens a window on the quark-quark weak interaction. The PVTV interaction is

sensitive to more exotic interactions at the fundamental level, in particular to strong CP

violation in the Standard Model Lagrangian, or even to exotic phenomena predicted

in various beyond-the-Standard-Model scenarios. The presence of these interactions

can be revealed either by studying various asymmetries in polarized scattering of

nuclear systems, or by measuring the presence of non-vanishing permanent electric

dipole moments of nucleons, nuclei and diamagnetic atoms and molecules. In this

contribution, we review the derivation of the nuclear PVTC and PVTV interactions within

various frameworks. We focus in particular on the application of chiral effective field

theory, which allows for a more strict connection with the fundamental interactions at

the quark level. We investigate PVTC and PVTV effects induced by these potentials on

several few-nucleon observables, such as the longitudinal asymmetries in proton-proton

scattering and the 3He(En,p)3H reaction, the radiative neutron-proton capture, and the

electric dipole moments of the deuteron and the trinucleon system.

Keywords: fundamental symmetries in nuclei, nuclear forces, effective field theory, chiral perturbation theory,

few-body systems

1. INTRODUCTION

The interaction between nucleons is at the heart of nuclear physics and has been a subject
of great scientific interest for many decades. The strong nuclear forces have their origin in
the residual interaction between quarks and gluons inside colorless nucleons and are described
by quantum chromodynamics (QCD). The resulting parity-conserving, time-reversal-conserving
(PCTC) nuclear interactions are known to exhibit a complicated pattern, involving a delicate
interplay of strongly state-dependent repulsive and attractive pieces. While the nucleon-nucleon
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(NN) scattering data below the pion production threshold can
nowadays be accurately described by modern NN potentials,
the (weaker) three-nucleon (3N) forces and the electromagnetic
interactions (EM) between the nucleons, known to play an
important role in the nuclear structure and dynamics, are not
so well-understood and represent a subject of active research.
The current status of PCTC nuclear forces is reviewed in other
contributions to this topical issue.

In addition to the bulk PCTC interactions mentioned
above, nuclear forces also feature much tinier components,
which originate from the weak forces between quarks and/or
physics beyond the standard model (BSM) and whose strength
is smaller than that of the strong and EM interactions
by many orders of magnitude. These tiny components are,
nevertheless, extremely interesting since investigation of their
effects may shed new light on fundamental symmetries and
BSM physics. While effects of such exotic PCTC components
are, of course, completely overwhelmed by the strong and EM
nuclear forces, parity- (P) violating and/or time-reversal- (T)
violating nuclear interactions can be determined by measuring
specific observables which would vanish if these symmetries
were conserved. In this contribution, we review the theory of
parity-violating, time-reversal-conserving (PVTC) and parity-
violating, time-reversal-violating (PVTV) nuclear forces and
discuss selected applications.

Starting from 1950s, a wide variety of phenomenological
models have been developed to describe nuclear forces, the
most prominent utilizing the one-boson exchange picture,
see Machleidt [1] and references therein. More recently, the
development of chiral effective field theory (χEFT) [2] has given
a new impetus to the derivation of nuclear interactions [3–
5]. The χEFT approach utilizes the spontaneously broken
approximate SU(2)L×SU(2)R chiral symmetry of QCD1 in order
to describe the low-energy dynamics of pions, the (pseudo-)
Goldstone bosons of the spontaneously broken axial generators,
in a systematic and model-independent fashion within the
framework of the effective chiral Lagrangian [6–11], see [12–
14] for review articles. Owing to the derivative nature of
the Goldstone boson interactions, the scattering amplitude in
the pion- and single-baryon sectors can be calculated via a
perturbative expansion in powers of Q/3χ , where Q refers
to momenta of the order of the pion mass mπ and 3χ ∼
mρ ∼ 1 GeV denotes the chiral symmetry breaking scale, with
mρ the ρ-meson mass. The effective Lagrangian involves (an
infinite number of) all possible hadronic interactions compatible
with the symmetries of QCD, which are naturally organized
according to the number of derivatives and/or quark or pion
mass insertions2. Every term in the effective Lagrangian is
multiplied by a coefficient, whose strength is not fixed by the
symmetry. These so-called low-energy constants (LECs) can be
determined by fits to experimental data and/or obtained from

1Here and in what follows, we restrict ourselves to the two-flavor case of the light

up and down quarks unless specified otherwise.
2In the isospin limit, the quark and pion masses are related to each other via

m2
π = 2Bmq+O(m2

q), where B is a constant proportional to the quark condensate

〈0|ūu|0〉 = 〈0|d̄d|0〉.

lattice QCD simulations, see [13, 14] and references therein. At
every order in the Q/3χ -expansion, only a finite number of
terms from the effective Lagrangian contributes to the scattering
amplitude. The resulting framework, commonly referred to as
chiral perturbation theory (χPT), is nowadays widely applied
to analyze low-energy processes in the Goldstone boson and
single-nucleon sectors. It has also been generalized to study
few- and many-nucleon systems, where certain resummations
beyond perturbation theory are necessary in order to dynamically
generate the ultrasoft scale associated with nuclear binding.
According to Weinberg [2], the breakdown of the perturbative
expansion for the NN scattering amplitude is traced back
to enhanced contributions of ladder diagrams, i.e., Feynman
diagrams that become infrared divergent in the static limit
of infinitely heavy nucleons. The simplest and natural way
to resum enhanced ladder diagrams is provided by solving
the nuclear Schrödinger equation. The framework therefore
essentially reduces to the conventional quantum mechanical A-
body problem. The corresponding nuclear forces and current
operators are defined in terms of non-iterative parts of the
scattering amplitude, which are free from the above mentioned
enhancement. They can be derived from the effective chiral
Lagrangian in a systematically improvable way via a perturbative
expansion in powers of Q/3χ [4, 5]. Assuming the scaling of
few-nucleon contact operators according to naive dimensional
analysis3, the PCTC interactions are dominated by the pairwise
NN force, which receives its dominant contribution at order
(Q/3χ )

ν with ν = 0, defined to be the leading order (LO). Parity
conservation forbids the appearance of nuclear forces at order
ν = 1, so that the next-to-leading order (NLO) contribution to
the PCTC NN potential appears at order ν = 2. Next-to-next-
to-leading order (N2LO) has ν = 3 and so on. PCTC three-
and four-nucleon forces are suppressed and start contributing
at orders ν = 3 (N2LO) and ν = 4 (N3LO), respectively.
Presently, the chiral expansion of the PCTC NN force has been
pushed to order ν = 5 (N4LO) [16–19], while many-nucleon
interactions have been worked out up through N3LO, see [4, 5]
and references therein. We further emphasize that a number of
alternative formulations of χEFT for nuclear systems have been
proposed [20–25], see also [26–31] for a related discussion.

Another framework to analyze nuclear systems at very low
energies is based on the so-called pionless formulation of EFT,
see [31–33] for review articles. It is valid at momenta well
below the pion mass, at which the pionic degrees of freedom
can be integrated out. In the resulting picture, nucleons interact
with each other solely through short-range contact two- and
many-body forces. This formulation is considerably simpler than
χEFT both at the conceptual and practical levels, and has been
successfully applied to study e.g., Efimov physics and universality
in few-body systems near the unitary limit, low-energy properties

3Notice that for systems near the unitary limit corresponding to the infinitely large

scattering length (such as e.g., the NN systems in the S-waves), the scattering

amplitude exhibits a certain amount of fine tuning beyond naive dimensional

analysis. The expansion of the scattering amplitude does, therefore, not necessarily

coincide with the expansion of nuclear potentials [15].
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of halo-nuclei and reactions of astrophysical relevance, see [31–
33] and references therein.

In this paper we focus on the PVTC and PVTV interactions
in the frameworks of χEFT and pionless EFT. We also outline
various meson-exchange models frequently adopted to analyze
the results for some PVTC and PVTV observables. In the
subsections below, we briefly discuss the origin of the PVTC and
PVTV interactions and summarize the current experimental and
theoretical status of research along these lines.

1.1. The PVTC Interaction
The PVTC component of the nuclear force is governed by the
weak interaction between the quarks inside the nucleons (and
pions). Studying such effects, therefore, opens a window on the
so-called “pure” hadronic weak interaction (HWI) [34–38]. This
part of the weak interaction is far less known experimentally.

A number of experiments aimed at studying PVTC in
low-energy processes involving few-nucleon systems have been
completed/are being planned at cold-neutron facilities, such
as the Los Alamos Neutron Science Center (LANSCE), the
National Institute of Standards and Technology (NIST) Center
for Neutron Research, the Spallation Neutron Source (SNS) at
Oak Ridge National Laboratory, and the European Spallation
Source (ESS) in Lund. The primary objective of this experimental
program is to determine the LECs which appear in the PVTC
nuclear potentials. For a recent review of the current status of
experiments along this line and the impact of anticipated results,
see ([39]).

PVTC nuclear forces have already been analyzed in the
framework of χEFT [40–42]. The LO PVTC NN force is
driven by the one-pion-exchange term with ν = −1, while
the NLO terms with ν = 1 emerge from two-pion-exchange
diagrams and NN contact interactions4. In Girlanda [44], it
was shown that the PVTC NN potential involves only five
independent contact operators at this order corresponding to
five S-P transition amplitudes at low energies [45]. Including the
PVTC pion-nucleon coupling constant h1π , the NN potential at
NLO thus contains six LECs which need to be determined from
experimental data. At N2LO one has to take into account five
additional LECs, which determine the strength of the subleading
PVTC pion-nucleon interactions [46].

In pionless EFT, the LO PVTC NN potential is completely
described in terms of the already mentioned five contact
terms [36, 47]. The large-Nc scaling of PVTC NN contact
interactions was analyzed in Phillips et al. [48] and Schindler
et al. [47]. These studies suggest that three out of five PVTC
contact interactions are suppressed by a factor of (1/Nc)

2 or by
the factor (1/Nc) sin

2 θW ≈ 0.08, see also a related discussion
in Vanasse [49]. If the large-Nc scaling persists to the physically
relevant case of Nc = 3, the pionless potential at LO should
be dominated by only 2 LECs [39]. Unfortunately, the currently
available experimental data do not allow one to draw definitive
conclusions on whether the suggested large-Nc hierarchy of
PVTC contact interactions is indeed realized in Nature.

4Notice that PVTC hadronic interactions involve a typical suppression factor of

∼ GFM
2
π ∼ 10−7 as compared to PCTC vertices [43].

Regarding the various meson-exchange models developed to
describe the PVTC interaction, we will mainly discuss the model
proposed by Desplanques, Donoghue, and Holstein (DDH) [50]
which includes pion and vector-meson exchanges with seven
unknown meson-nucleon PVTC coupling constants.

1.2. The PVTV Interaction
PVTV nuclear forces originate from more exotic sources
at the fundamental level, which include the so-called θ-
term in the Standard Model (SM) Lagrangian [51], or even
BSM interactions [52]. Due to the CPT theorem, any PVTV
interaction also violates the CP symmetry, where C refers
to charge conjugation. CP violation is a key ingredient for
the dynamical generation of a matter-antimatter asymmetry in
the Universe [53]. The SM with three generations of quarks
has a natural source of CP-violation in the phase of the
Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. This
mechanism is however not sufficient to explain the observed
asymmetry [54].

The phase of the CKM matrix also does not contribute
sizably to the nuclear PVTV interaction. For example, let us
consider the electric dipole moment (EDM) of a system of
particles. A non-zero permanent EDM of a particle or a system
of particles necessarily involves the breaking of both parity
and time-reflection symmetries. EDMs of the electron, nucleons
and nuclei are mostly sensitive to P- and T-violating flavor-
diagonal interactions. To induce a non-zero EDM, on the other
hand, the phase of the CKM requires contributions from all
three generations of quarks, including heavy quarks, leading
to a large suppression [52, 55–57]. For example, the expected
size of the nucleon EDM based on the CKM mechanism in
the SM is |dCKMN | ∼ 10−18 e fm [58, 59]. Therefore, any
observed permanent EDM of an atomic or nuclear system larger
in magnitude than the expected size within the SM would
highlight PVTV effects beyond the CKM mixing matrix. The
present experimental upper bounds on the EDMs of neutron
and proton are |dn| < 1.2 · 10−13 e fm [60, 61] and |dp| <
2.0 · 10−12 e fm, where the proton EDM has been inferred from
a measurement of the diamagnetic 199Hg atom [62] using a
calculation of the nuclear Schiff moment [63]. For the electron,
the most recent upper bound is |de| < 1.1 · 10−16 e fm [64],
derived from the EDM of the ThO molecule. In all cases, the
current experimental sensitivities are orders of magnitude away
from the CKM predictions.
χEFT allows one to derive PVTV nuclear forces in a

systematic and model independent way. To this aim, the
PCTC effective chiral Lagrangian has to be extended to include
all possible PVTV terms classified according to their chiral
dimension. Some of these terms are induced, at the microscopic
level, by the SM mechanisms discussed above. The effective
chiral Lagrangian induced by the θ-term is discussed in
Mereghetti et al. [65] and Bsaisou et al. [66]. BSM theories such
as supersymmetry, multi-Higgs scenarios, left-right symmetric
models, etc. would give rise to additional PVTV sources of
dimension six (and higher) in the quark-gluon Lagrangian [67].
The χEFT Lagrangians originating from these sources were
derived in de Vries et al. [68] and Bsaisou et al. [69]. Various
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terms in the resulting effective chiral Lagrangian possess different
scaling with respect to the underlying microscopic PVTV
sources. χEFT can thus be used to establish relations between
the fundamental PVTV mechanisms and specific terms in the
nuclear potentials and, accordingly, specific patterns in the
corresponding nuclear observables [65, 68, 69]. In principle,
this offers the possibility of identifying the fundamental sources
of time-reversal violation and to shed light on some of the
BSM scenarios, provided the corresponding LECs in the effective
Lagrangian can be determined from Lattice QCD calculations or
experimental data [70, 71].

In the framework of χEFT, the PVTV NN potential was
derived up to N2LO including one- and two-pion exchange
contributions and the corresponding contact interactions [72,
73]. Subsequent works showed the presence in the PVTV
Lagrangian of a three-pion term [68], which was for the first time
included in the calculations in Bsaisou et al. [66]. This term also
generates a PVTV 3N force at NLO, which contributes to the 3H
and 3He EDM. The calculation reported in Bsaisou et al. [66] was
also the first one carried out using solely the interactions derived
in χEFT. More precisely, the PVTV potential at NLO was used
in combination with the N2LO PCTC potentials from Epelbaum
et al. [74]. Finally, in Gnech and Viviani [75], the EDMs of
deuteron and trinucleons were studied using the χEFT PVTV
potential up to N2LO along with the N4LO PCTC potential of
Entem et al. [18]. In this paper, it was also shown that the N2LO
contribution to the PVTV 3N force generated by the three-pion
interaction vanishes. The LO χEFT PVTV potential has also been
applied in combination with many-body methods to calculate
Schiff moments of heavy nuclei [76].

Currently, no direct limits on EDMs of light nuclei have been
established. However, experiments are planned to measure the
EDM of protons and light nuclei in dedicated storage rings [77–
82]. This new approach could reach a precision of ∼ 10−16 e
fm, although this goal has to be established in practice. If
successful, these experiments would lead to a great improvement
in the hadronic sector of EDM searches. A measurement of a
non-vanishing EDM of this magnitude would provide evidence
of a PVTV source beyond the CKM mechanism. However, a
single measurement would be insufficient to identify the specific
source of PVTV. For this reason, experiments with various light
nuclei such as 2H, 3H and 3He are planned. Such measurements
would provide the complementary information needed to impose
constraints on PVTV sources at the fundamental level.

A brief discussion of the PVTV potentials derived in the
framework of the one-meson exchange model and in the pionless
EFT approach will also be reported in this review.

1.3. Outline of the Article
Our paper is organized as follow. In section 2, we discuss the
origins of PVTC and PVTV interactions at the fundamental level
and list the relevant terms in the quark-gluon Lagrangian. In
section 3, we give the corresponding terms in the effective chiral
Lagrangian and discuss the derivation of the PVTC and PVTV
potentials in χEFT. In section 4, we specifically focus on the
contact few-nucleon interactions which enter the potentials in
both the chiral and pionless EFT formulations. We also discuss

the expected hierarchy of the corresponding LECs as suggested
by the large-Nc analysis. Next, in section 5, the various meson-
exchange models developed to describe the PVTC and PVTV
interactions will be summarized. Then, in section 6, we report on
a selected set of results for PVTC and PVTV observables in light
nuclei up to A = 4. Finally, the main conclusions of this paper
and future perspectives are summarized in section 7.

2. PARITY VIOLATION AND
TIME-REVERSAL VIOLATION AT THE
MICROSCOPIC LEVEL

Parity is violated in the SM of particle physics because of
the different gauge interactions of left- and right-handed
fermion fields. Only left-handed particles interact via SU(2)L
gauge interactions such that this part of the SM violates
parity maximally. The remaining color and electromagnetic
interactions conserve parity modulo the QCD vacuum angle
which is discussed below. Parity violation was first observed in
semileptonic charged current interactions in 1957 [83]. Twenty
years later, in the late ‘70s, PVTC was observed in neutral current
electron-nucleus scattering [84], providing a strong confirmation
of the SM. Subsequent PVTC electron scattering experiments
have quantitatively confirmed the SM picture [85]. In addition
to PVTC in β decays and semileptonic neutral current processes,
the SM predicts PVTC in weak interactions between quarks. At
energies smaller than the masses of the W and Z bosons, such
interactions can be represented by four-fermion operators. Just
below the electroweak (EW) scale, and limiting ourselves to the
lightest u and d quarks, the four-fermion Lagrangian is

LW = −
GF√
2

{(

1− 2

3
s2w

)

q̄Lγ
µτaqL q̄LγµτaqL

− 2s2w
3

q̄Lγ
µτ3qL (q̄LγµqL + q̄RγµqR)

− 2s2w
(

q̄Lγ
µτ3qL q̄Lγµτ3qL

− 1

3
q̄Lγ

µτaqL q̄LγµτaqL

)

+ . . .
}

, (1)

where GF is the Fermi coupling constant and s2w ≡ sin2 θW ≃
0.231, with θW the Weinberg mixing angle. qL and qR denote
the left-handed and right-handed doublets qTL = (uL, dL) and
qTR = (uR, dR), and the dots denote terms that conserve parity5.
Equation (1) was obtained assuming the CKM matrix to be the
identity, that is Vud = 1. The three operators in Equation (1)
all break parity, but have different transformation properties
under chiral symmetry and isospin. We note that the isovector
and isotensor terms (the second and third operators) given in
Equation (1) are suppressed by a factor s2w with respect to the
isoscalar one.

The operators in Equation (1) need to be evolved using
the renormalization group equations (RGE) from the EW scale
down to the QCD scale, and in this process they mix with

5Here u and d denote the u- and d-quark Dirac fields, respectively. Moreover

uR,L = 1±γ 5
2 u, etc.
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additional PVTC operators [86]. After the RGE evolution, the
PVTC Lagrangian assumes the form

L
SM
PVTC = −

GF√
2

{

CSM
1 q̄Lγ

µτaqL q̄LγµτaqL

+CSM
2 q̄Lγ

µqL q̄LγµqL + CSM
3 q̄Lγ

µτ3qL q̄LγµqL

+CSM
4

(

q̄Lγ
µτ3qL q̄RγµqR − q̄Lγ

µqL q̄Rγµτ3qR
)

+CSM
5

(

q̄αL γ
µτ3q

β
L q̄

β
R γµq

α
R − q̄αL γ

µq
β
L q̄

β
R γµτ3q

α
R

)

+CSM
6

(

q̄Lγ
µτ3qL q̄Lγµτ3qL −

1

3
q̄Lγ

µτaqL q̄LγµτaqL

)

−(L↔ R)

}

, (2)

where in the SM, the coefficients CSM
i are known functions of

SM parameters as sw, the strong coupling constant gs, etc. Greek
indices α and β appearing as superscripts in some of the quark
fields in Equation (2) specify color indices. They are only shown
for cases where the color contractions are not obvious. Notice
that the QCD evolution does not remedy the s2w suppression of
the isospin-one and -two operators [86]. BSM physics that arises
at scales well above the EW can be represented at the EW scale
via gauge-invariant higher-dimensional operators [67, 87]. This
framework is usually called the SM Effective Field Theory (SM-
EFT). SM-EFT operators can induce new PVTC couplings of the
W and Z bosons to left- and right-handed quarks, and new PVTC
four-fermion operators. After evolving the effective operators
from the EW to the QCD scale, the net effect of BSM PVTC
SM-EFT operators is to modify the coefficients CSM

i in Equation
(2) with respect to their SM values, namely in Equation (2)
one substitutes CSM

i → CSM+BSM
i . We have focused so far on

operators involving only the u and d quarks. Flavor-conserving
(1F = 0) operators involving the s quark can also generate
interesting contributions to hadronic P violation [86, 88], such
as contributions to isospin-one operators that are not suppressed
by s2w.

While P and C are maximally broken by the V − A structure
of the SM, the breaking of CP is much more delicate. In the SM
with three generations of quarks, CP is broken by the phase of
the CKM matrix, which explains all the observed CP violation
in the kaon [89–91], and B meson systems [92, 93]. Theoretical
uncertainties are at the moment too large to definitively conclude
whether the recently discovered CP violation in D decays [94]
is compatible with the SM. The phase of CKM gives, on the
other hand, unobservable contributions to flavor-diagonal CP
violation, in particular to the neutron [55, 59, 95] and electron
EDMs [96–98].

The second source of CP violation in the SM is the QCD θ

term [51, 99, 100]

L
θ
PVTV = −θ

g2s
64π2

εµναβ Ga
µνG

a
αβ , (3)

where gs is the strong coupling constant and Ga
µν the gluon field

tensors (a is a color index). The θ term is a total derivative, but

it contributes to physical processes through extended, spacetime-
dependent field configurations known as instantons. CP violation
from the QCD θ term is intimately related to the quark masses.
All phases of the quark mass matrix can be eliminated through
non-anomalous SU(2) vector and axial rotations, except for a
common phase ρ. The mass plus QCD θ terms which are left are

L
mass+θ
PVTV =−

(

eiρ q̄LMqR + e−iρ q̄RMqL
)

−θ g2s
64π2

εµναβ Ga
µνG

a
αβ ,

(4)
where M = diag(mu,md). The parameters ρ and θ are
not independent. In χEFT, it is convenient to rotate L

mass+θ
PVTV

into a complex mass term with an anomalous U(1)A rotation,
obtaining, after vacuum alignment [101],

L
mass+θ
PVTV = m∗θ̄ q̄iγ5q , (5)

where

θ̄ = θ + nf ρ , m∗ =
mumd

mu +md
= m̄(1− ǫ2)

2
. (6)

nf = 2 is the number of light flavors, and the combinations of
light quarks masses m̄ and ǫ are 2m̄ = mu + md, ǫ = (md −
mu)/(md+mu). Equations (5) and (6) can be easily generalized to
include strangeness. θ̄ is a free parameter in the QCD Lagrangian,
and one would expect θ̄ = O(1). This would however lead to a
large neutron EDM |dn| ∼ 10−3θ̄ e fm [102, 103], ten orders of
magnitude larger than the current limits, dn < 3.0 · 10−13 e fm
[61]. Therefore θ̄ . 10−10, which represents the so-called strong
CP problem.

The phase of the CKM matrix and the QCD θ̄ term are the
only CP-violating parameters in the SM Lagrangian. They are
however not sufficient to explain the observed matter-antimatter
asymmetry of the Universe [104–107], and it is therefore natural
to think about CP-violating sources induced by BSM physics. The
low-energy CP-violating operators relevant for EDMs have been
cataloged in several works (e.g., [52, 108–110]). de Vries et al.
[68] considered all the low-energy operators that are induced
by SM-EFT operators at tree level, retaining the two lightest
quarks. Generalization to three flavors are given, for example,
in Jenkins et al. [111] and Mereghetti [112]. The most relevant
SU(3)c×U(1)em-invariant purely hadronic operators induced by
dimension-six SM-EFT operators are

L
6,hadr
PVTV =

gsC̃G

6v2
f abcǫµναβGa

αβG
b
µρG

c ρ
ν

− 1

2v2

(

q̄
[

dE
]

iσµνγ5q eFµν + q̄[dCE]iσ
µν gsGµνγ5q

)

−4GF√
2

{

6
(ud)
1 (d̄LuRūLdR − ūLuRd̄LdR)

+6(ud)
2 (d̄αLu

β
R ū

β
Ld
α
R − ūαLu

β
R d̄

β
Ld

α
R)

}

(7)

− 4GF√
2

{

4
(ud)
1 d̄Lγ

µuL ūRγµdR +4(ud)
2 d̄αLγ

µu
β
L ū

β
Rγµd

α
R

}

,

where f abc are the structure constants of the Lie algebra of the
color SU(3) group, [dE] and [dCE] are matrices in flavor space,
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[dE] = diag(muc̃
(u)
γ ,md c̃

(d)
γ ) and [dCE] = diag(muc̃

(u)
g ,md c̃

(d)
g ).

The coefficients C̃G, c̃
(q)
γ ,g , 6

(ud)
1,2 and 4

(ud)
1,2 are dimensionless

and scale as (v/3X)
2, where v = 246 GeV is the Higgs

vacuum expectation value, and 3X is the scale of new physics.
The Weinberg three-gluon, the quark EDM (qEDM), and the
chromo-EDM (qCEDM) operators (the first, second, and third
term given in Equation (7), respectively) have received the most
attention in the literature [52, 113]. They can be written directly
in terms of SU(3)c × SU(2)L × U(1)Y -invariant operators at the
EW scale, and receive corrections by a variety of CP-violating
operators in the SM-EFT, involving heavy SM fields. The four-
quark operators, given in the third and fourth lines of (7), can
also be expressed in terms of gauge-invariant operators at the
EW scale, and they arise, for example, in leptoquark models,
see [114, 115]. The four-quark operators, given in the last line
of Equation (7), are on the other hand induced by right-handed
couplings of quarks to theW boson [68, 116], and are generated,
for example, in left-right symmetric models.

While all operators in Equations (5) and (7) violate P and
CP symmetry, they transform differently under isospin and
chiral rotations. As such, the operators induce different χEFT
Lagrangians at lower energies, and different hierarchies of CP-
violating hadronic and nuclear observables such as EDMs or
scattering observables.

3. PVTC AND PVTV CHIRAL POTENTIALS

In this section, we discuss the derivation of the PVTC and
PVTV NN and 3N potentials within the framework of χEFT.
In the first and second subsections we briefly review the
properties of the PVTC and PVTV chiral Lagrangians. In
section 3.3, we present briefly two methods used to derive
the potentials starting from a Lagrangian. Finally, in the last
two subsections, we present the PVTC and PVTV chiral
potentials, respectively.

In order to discuss hadronic observables such as nuclear
EDMs or PVTC asymmetries in pp scattering, the quark-
level PVTC and PVTV Lagrangians of Equations (2) and
(7) need to be matched onto nuclear EFTs, such as chiral
EFT and pionless EFT. Due to the non-perturbative nature
of QCD at low energy, this matching cannot be done
in perturbation theory. Nevertheless, the approximate chiral
and isospin symmetries of the QCD Lagrangian provide an
organizing principle for low-energy interactions, see [12–14] for
review articles.

Let us first introduce the nucleon and pion fields. The
(relativistic) nucleon field N(x) is considered to be an
isospin doublet

N(x) =
(

p(x)
n(x)

)

, (8)

where p(x) (n(x)) is the proton (neutron) field. The pion fields are
given in “Cartesian” coordinates πa, a = 1, 2, 3, where

π1(x) =
π (+)(x)+ π (−)(x)√

2
, π2(x) =

i
(

π (+)(x)− π (−)(x)
)

√
2

,

π3(x) = π (0)(x) , (9)

π (+)(x), π (−)(x), and π (0)(x) being the fields associated to the
three charge states of the pion. The pion fields in Cartesian
coordinates are collectively denoted by Eπ(x). We use the 2 × 2
matrices τa, a = 0, . . . , 3, where τ0 is the identity matrix, while τa,
a = 1, . . . , 3 are the Pauli matrices acting on the isospin degrees
of freedom (often indicated cumulatively as Eτ ). For example,
Eτ · Eπ(x) = ∑3

a=1 τaπa(x). Sometimes the a = 3 component
will be denoted as the “z” component, i.e., π3 ≡ πz , etc., in our
notation. Finally, we denote the nucleon (pion) mass byM (mπ ).

In some cases, we will perform a non-relativistic reduction of
the nucleon field N(x) and use Ns(x)

Ns(x) =
(

ps(x)
ns(x)

)

, (10)

where ps(x) (ns(x)) is the two component Pauli spinor
representing the static proton (neutron) field. Effects of the anti-
nucleon degrees of freedom are taken into account in the form
of 1/M relativistic corrections to the vertices. The coefficient of
the annihilation operator reduces to χm exp(ip · x), where χm is a
spinor describing a spin state with z-projectionm = ± 1

2 .
The main “building block” to construct the chiral Lagrangian

is the SU(2) pionic matrix field U(x), often written as (but its
definition is not unique) [12]

U(x) = e
i
fπ
Eπ(x)·Eτ

, (11)

where fπ ≈ 92.4 MeV is the pion decay constant. Another
low energy constant frequently entering the chiral Lagrangian
is the axial coupling constant gA ≈ 1.29. Following the
standard convention, we give here the effective value that
takes into account the Goldberger-Treiman discrepancy and is
extracted from the empirical value of the pion-nucleon coupling
constant. The effective chiral Lagrangian is constructed in
terms of N(x) and U(x) and therefore contains vertices with
arbitrary number of pion fields. In the following, we will retain
explicitly only relevant terms with the minimum number of
pion fields, obtained by expanding U(x) in powers of the pion
field. Additional terms with a larger number of pion fields will
only contribute to the PVTC and PVTV potential at higher
orders in the chiral expansion. For an introduction to the chiral
Lagrangians and their building blocks, the reader is referred to
Bernard et al. [12], Bernard [13], and Bijnens and Ecker [14] and
references therein.

Each term of the chiral Lagrangian will be classified by the
so-called “chiral order”. Each four-gradient of the pion matrix
field or a multiplication by a pion mass increases the order of
the term by one. Four-gradients acting on nucleon fields are
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more difficult to classify, since the time derivative brings down
a factor proportional to the nucleon mass. An easier counting
is obtained using the non-relativistic heavy baryon perturbation
theory [12, 117], which was used in the derivation of the PVTC
potential in de Vries et al. [46] and of the PVTV potential
in Maekawa et al. [72]. In the following, we will use both the
relativistic and non-relativistic nucleon fields.

For the sake of completeness, we report first of all the terms
of the PCTC Lagrangian that contribute to the PVTC and
PVTV potentials up to the order we are interested in. In SU(2)
χPT, the PCTC Lagrangian can be conveniently organized in
sectors with different numbers of pions and nucleons (below
we give the explict expression for the relevant terms in the πN
Lagrangian only).

LPCTC = LPCTC,πN + LPCTC,NN + LPCTC,ππ + · · · , (12)

LPCTC,πN = N

[

− 1

4 f 2π
(Eτ × Eπ) · ∂µ Eπ γ µ −

gA

2 fπ
(Eτ · ∂µ Eπ) γ µγ 5

+4 c1m2
π

(

1− Eπ
2

2 f 2π

)

+ c2

f 2π

(

∂0 Eπ · ∂0 Eπ+
1

M
∂0 Eπ · ∂i Eπγ 0 i

←→
∂ i

)

+ c3

f 2π
∂µ Eπ · ∂µ Eπ −

c4

2f 2π
(Eτ · ∂µ Eπ × ∂ν Eπ) σµν + · · ·

]

N (13)

where “· · · ” in the previous expression denotes terms of higher
order and/or more pions fields of no interest here. Above←→
∂ µ ≡ −→∂ µ − ←−∂ µ and σµν = i

2 [γ
µ, γ ν]. The parameters

ci=1−4 are LECs appearing in the Lagrangian of order Q2. They
have dimension of mass−1. For a complete discussion of the
terms appearing in the Lagrangians LPCTC,πN , LPCTC,NN , and
LPCTC,ππ , etc., see [12, 118].

3.1. The PVTC Chiral Lagrangian
The effective chiral Lagrangian that involves contributions from
the weak sector of the SMwas first discussed in the seminal paper
by Kaplan and Savage [88] and subsequently revisited in Kaplan
et al. [119], Zhu et al. [40], de Vries et al. [46], and Viviani et al.
[42]. Also the PVTC Lagrangian can be conveniently organized
in sectors with different numbers of pions and nucleons, explictly

LPVTC = LPVTC,πN+LPVTC,NN +LPVTC,πππ + · · · , (14)
LPVTC,πN = L

(0)
PVTC,πN + L

(1)
PVTC,πN + · · · , (15)

LPVTC,NN = L
(1)
PVTC,NN + L

(3)
PVTC,NN + · · · , (16)

LPVTC,πππ = L
(2)
PVTC,πππ + · · · , (17)

where the superscript (n) denotes the chiral order of each piece.
The pion-nucleon interaction terms are collected in LPVTC,πN

and those entering the PVTC potential up to Q1 are the

following [46, 88]

L
(0)
PVTC,πN =

h1π√
2
N(Eπ × Eτ )zN , (18)

L
(1)
PVTC,πN = −

h0V
2fπ

Nγ µ∂µ(Eτ · Eπ)N −
h1V
fπ

Nγ µN∂µπz

−2h2V
fπ

∑

a,b

Iab∂µπa Nγ
µτbN −

h1A
f 2π

Nγ µγ 5N(Eπ × ∂µ Eπ)z

+h2A
f 2π

3
∑

a,b=1
IabN

(

(Eπ × ∂µ Eπ)aτb + ∂µπa(Eπ × Eτ )b
)

γ µγ 5N ,

(19)

where

Iab =





−1 0 0
0 −1 0
0 0 +2



 . (20)

The parameters h1π and h1I
V ,A are unknown LECs. The superscript

1I labels the rank of the corresponding isospin tensor. The LECs
can be estimated by naive dimensional analysis (NDA) [40, 42,
46, 88]

h1π ∼ GFfπ3χ ∼ 10−6 , h1I
V ,A ∼

fπ

3χ
h1π ∼ 10−7 , (21)

where 3χ = 4π fπ ∼ 1.2 GeV is the typical scale of the
strong interaction. Equation (21) shows the order-of-magnitude
estimates of the PVTC interactions. These estimates do not take
into account factors of s2w and Nc that could modify the expected
scaling of the LECs.

The contact terms entering the Lagrangian LPVTC,NN are
products of a pair of bilinears of nucleon fields that are odd under
P and even under CP. The most general bilinear product reads

˜OAB =
3
∑

a,b=0
Fab(N τaŴA N) (N τbŴB N) , (22)

where ŴA and ŴB are elements of the Clifford algebra with
the possible addition of 4-gradients and Fab are unknown
parameters. To violate P but conserve CP, at least one 4-gradient
is required. We must build isoscalar, isovector and isotensor
terms as discussed in section 2. The operators moreover have
to conserve the electric charge and thus commute with the
third component of the isospin operator. The terms with only

one gradient operator are collected in L
(1)
PVTC,NN (i.e., of chiral

order 1). Only five independent terms can be written [44],
corresponding to the five possible S ↔ P transitions in NN
scattering [45]. It is more convenient to give the Lagrangian using
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the non-relativistic reduction of the nucleon fields Ns:

L
(1)
PVTC,NN =

1

32
χ fπ

[

C1

2
∇ × (N†

s σNs) · N†
s σNs

+ C2

2
∇ × (N†

s σ τaNs) · N†
s στaNs

+ C3ǫab3∇ · (N†
s στaNs)N

†
s τbNs

+ C4∇ × (N†
s στ3Ns) · N†

s σNs

+ C5

2
Iab∇ × (N†

s στaNs) · N†
s στbNs

]

. (23)

The factor 1
32
χ fπ

has been chosen to ensure that the Ci are

dimensionless and for convenience in the power counting.
The construction of Equation (23) and the elimination of
redundancies will be discussed in more details in section
4. The operators multiplying the LECs C1,2 are isoscalar,
those multiplying C3,4 change isospin by one unit, while that
multiplyingC5 is an isotensor. The scaling of the LECs from naive
dimensional analysis [120] is given by

Ci ∼ GF3χ fπ , (24)

which once again does not take into account the suppression by
s2w affecting, for example, the isovector operators. The operators
in Equation (23) contribute to the PVTC potential at NLO
(suppressed by (Q/3χ )

2 with respect to LO), and we will give
the potential derived from them in Equation (60). The terms

appearing in L
(3)
PVTC,NN contain two additional gradients and

contribute to the PVTC potential at higher order. They have not
been considered so far.

Finally, there are some terms with 3π vertices appearing in

L
(2)
PVTC,πππ as discussed in Viviani et al. [42]. These terms would

contribute to the Q2 PVTC potential, but their contributions at
the end vanishes as discussed in section 3.4.

3.1.1. Connection to the Underlying PVTC Sources
Attempts to estimate the values of the coupling constants were
performed mainly in the framework of the meson exchange
models (which will be discussed in section 5). However, since
in both χEFT and meson exchange frameworks the lowest
order pion-nucleon Lagrangian term is the same as given
in Equation (18), we can report here the values for h1π
estimated from the underlying fundamental theory also before
the advent of χEFT [121–127]. One of the most comprehensive
calculation including all previous results was performed in
1980 by Desplanques, Donoghue, and Holstein (DDH) [50]
using the valence quark model. Additional calculations have
been performed subsequently [128–130], using similar or
other methods and finding qualitatively similar results. These
estimates, however, are based on a series of rather uncertain
assumptions (see, for example, [131]). For example, DDH
presented not a single value for h1π but rather a range inside
of which it was extremely likely that this parameter would be
found [50]. In addition they presented also a single number called

the “best value” but this is described simply as an educated guess
in view of all the uncertainties. The values of h1π were [50]

DDH: h1π = 4.56× 10−7 (“best value”) ,

h1π = 0− 11.4× 10−7 (“reasonable range”) . (25)

Some years ago, a lattice QCD calculation of h1π was also
made [132], resulting in the estimate

Lattice: h1π = (1.1± 0.5)× 10−7 , (26)

where the theoretical uncertainty is related to the statistical
Monte Carlo error. While the systematic errors are expected to
be within the quoted statistical uncertainty [132], we stress that
the calculation was performed at a heavy pion mass and not
extrapolated to the physical point, disconnected diagrams were
not included, and operator renormalization was neglected.

Regarding the other LECs entering the contact Lagrangian
given in Equation (23), no direct estimates have been reported
in literature. These LECs were estimated by comparing the
expression of contact potential with the potential developed using
the exchanges of heavy mesons, as for example, in the DDH
potential [42, 46] (this issue will be considered in more detail
in section 5). However, since also the DDH estimates are rather
uncertain, we will not discuss this issue further.

3.2. The PVTV Lagrangian
The PVTV chiral Lagrangian taking into account the QCD θ̄

term was first considered in the seminal paper by Crewther, di
Vecchia, Veneziano andWitten [102], and consequently revisited
in Cheng [133], Pich and de Rafael [134], Cho [135], Borasoy
[136], and Ottnad et al. [137]. Subleading terms in the chiral
expansion were systematically constructed in Mereghetti et al.
[65] and Bsaisou et al. [69]. The chiral Lagrangian induced by
the dimension-six operators in Equation (7) were derived in de
Vries et al. [68] and Bsaisou et al. [69].

As before, in SU(2) χPT, the PVTV Lagrangian can
be organized in sectors with different numbers of pions
and nucleons

LPVTV=LPVTV ,πN+LPVTV ,NN+LPVTV ,πππ+ · · · , (27)
LPVTV ,πN = L

(0)
PVTV ,πN + L

(1)
PVTV ,πN + · · · , (28)

LPVTV ,NN = L
(1)
PVTV ,NN + L

(3)
PVTV ,NN + · · · , (29)

LPVTV ,πππ = L
(0)
PVTV ,πππ + · · · . (30)

As in the previous subsection, we report here only the most
important interactions for each sector, focusing on the terms
with the minimum number of pion fields entering in the final
expression of the potential. Terms with additional pions are not
universal for the different PVTV sources at the quark level, but
instead depend on their chiral-symmetry breaking pattern. These
differences only enter at higher order in the potentials than we
consider here.

In the PVTV case, the simultaneous violation of P, T, and
isospin symmetry allows for a pion tadpole linear in the pion field
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∼ π3 with a corresponding LEC proportional to the symmetry-
violating source terms at the quark level. Such tadpoles can
always be removed by appropriate field redefinitions of the pion
and nucleon fields [65, 68, 69]. At LO in the chiral expansion, the
tadpole removal is the same as the vacuum alignment procedure
at the quark level [101]. While tadpoles can be removed, the
corresponding field redefinitions affect other couplings in the
chiral Lagrangian. In particular, for chiral-symmetry-breaking
CP sources that do not transform as a quark mass term, a PVTV
three-pion vertex of chiral order Q0 is left behind [68, 69].

L
(0)
PVTV ,πππ = M1̄π3 Eπ2 , (31)

where 1̄ is a LEC. Other three-pion vertices will appear at N2LO,
but they will contribute to high orders of the PVTV potential.

Arguably the most important interactions appear in the
pion-nucleon sector. Simultaneous violation of P, T, and
chiral symmetry allows for non-derivative single-pion-nucleon
interactions, something which is not possible in the PCTC
Lagrangian. In principle, three different interactions can
be written

L
(0)
PVTV ,πN = ḡ0N Eπ · EτN + ḡ1Nπ3N + ḡ2Nπ3τ3N , (32)

corresponding, respectively, to an isospin singlet, vector, and
tensor interaction. As discussed below, the relative size of
the LECs ḡ0,1,2 strongly depends on the quark-level PVTV
source under consideration. In the case of CP-violation from
chiral invariant operators, such as the three gluon term, ḡi are
suppressed by powers of the pion masses, and the pion-nucleon
Lagrangian contains chiral-invariant, derivative couplings as
important as those in Equation (32) [68]. These can however
always be absorbed into a shift of ḡ0 and of the 1I = 0 NN
operators discussed below.

The NLO Lagrangian contains several two-pion two-nucleon
PVTV interactions [65, 68, 69, 75], but, for all CP-violating
sources, they contribute to the two- and three-body PVTV
potentials at N3LO and N2LO, respectively. We therefore
ignore these couplings. Isospin-breaking sources also generate
a single-pion-nucleon NLO coupling. The coupling involves a
time derivative of the pion field, thus inducing a relativistic
correction in the O(Q) PVTV potential. At N2LO the number of
interactions proliferates significantly and there are also new pure
pionic interactions. These contributions can either be absorbed
into LO LECs or appear at high orders in the PVTV potential
considered here.

Apart from pionic and pion-nucleon interactions, there
appear PVTV NN contact interactions. As in the PVTC case,
at least one gradient is required such that these operators start
at order Q. Terms with three or more gradients have not been
considered so far. At order Q, only five independent interactions
of this kind can be written, corresponding to the five possible
S ↔ P transitions (see section 4 for a general discussion of this
kind of interaction terms). Neglecting terms with multiple pions,
the Lagrangian reads (again, it is convenient to write it in terms

of the non-relativistic nucleon field Ns)

L
(1)
PVTV ,NN =

1

32
χ fπ

[

C̄1∇ · (N†
s σNs)N

†
s Ns

+ C̄2∇ · (N†
s στaNs)N

†
s τaNs

+ C̄3∇ · (N†
s στ3Ns)N

†
s Ns + C̄4∇ · (N†

s σNs)N
†
s τ3Ns

+ C̄5Iab∇ · (N†
s στaNs)N

†
s τbNs

]

. (33)

As suggested by the factor of 32
χ which we pulled out of the

definition of the LECs, in χEFT these operators contribute in
general at N2LO and are suppressed with respect to the PVTV
one-pion exchange (OPE) potential. The only exception, as
discussed in section 3.2.1, are quark-level operators that do not
break chiral symmetry, for which C̄1,2 are as important as the
contributions from ḡ0,1.

Finally, the calculation of EDMs or other PVTV
electromagnetic moments requires the inclusion of
electromagnetic currents. Nucleon EDMs are induced by

pion loops involving the interactions in L
(0,1)
PVTV ,πN . The

renormalization of these loops requires the inclusion of short-
distance counter terms contributing to the nucleon EDMs. Such
counter terms indeed appear in the chiral Lagrangian

LPVTV ,Nγ =
1

4
N
(

d̄0 + d̄1τ3

)

ǫµναβσµνN Fαβ , (34)

where Fαβ is the electromagnetic field strength and d̄0 and d̄1
are LECs related to the proton and neutron EDMs, respectively.
The above interactions are sufficient for calculations of hadronic
and nuclear PVTV scattering observables and EDMs up to NLO
in the chiral expansion. Calculations of higher PVTV moments,
such asmagnetic quadrupolemoments, can depend on additional
LECs [138].

3.2.1. Connection to the Underlying PVTV Sources
In the previous section we listed the PVTV hadronic interactions
relevant for observables of experimental interest. However, for a
given PVTV source at the quark-gluon level, a specific hierarchy
among the various interactions appear. The relative importance
of the LECs in Equations (31), (32), (33), and (34) for the different
microscopic sources of CP violation is summarized in Table 1.
These estimates are based on NDA [120]. NDA is valid in the
regime in which the strong coupling gs is non-perturbative,
and, as done for NDA estimates of the chiral-invariant PCTC
interactions, we will take gs ≃ 4π . In addition, for dimension-
six sources, we assumed that a Peccei-Quinn mechanism [139]
relaxes θ̄ to an induced θ̄ind, which depends on the coefficients
and vacuummatrix elements of the operators in Equation (7) [52,
140, 141]. The scaling of the couplings without this assumption
can be found in deVries et al. [68]. To make the power counting
explicit, we introduced three ratios of scales

ǫv ≡
32
χ

v2
, ǫmπ ≡

m2
π

32
χ

, ǫχ ≡
f 2π
32
χ

= 1

(4π)2
. (35)
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TABLE 1 | Scaling of the LECs in the chiral Lagrangian in dependence of the microscopic CP violation sources.

(4πǫmπ
) θ̄ (4πǫmπ

)ǫv c̃
(u,d)
g (4πǫmπ

) ǫv c̃
(u,d)
γ 4πǫvC̃G ǫv4

(ud)
1,2 /(4π ) ǫv6

(ud)
1,2 /(4π )

1̄ ǫmπ ǫmπ – εǫ2mπ 1 ǫmπ

ḡ0 1 1 – ǫmπ εǫmπ ǫmπ

ḡ1 εǫmπ 1 – εǫmπ 1 εǫmπ

ḡ2 ε2ǫ2mπ εǫmπ – ε2ǫ2mπ εǫmπ ε2ǫ2mπ

d̄0,1fπ e ǫχ e ǫχ e ǫχ e ǫχ e ǫχ e ǫχ

C̄1,2 1 1 – 1 εǫmπ 1

C̄3,4 εǫmπ 1 – εǫmπ 1 εǫmπ

C̄5 ε2ǫ2mπ εǫmπ – ε2ǫ2mπ εǫmπ ε2ǫ2mπ

We introduced the counting parameters ǫv ≡ 32
χ /v

2, ǫmπ ≡ m2
π /3

2
χ , ǫχ ≡ f2π /3

2
χ . With ǫmπ ∼ ǫχ , we introduced two different parameters to explicitly track insertions of the light

quark masses from the QCD Lagrangian. ε is the isospin breaking parameter ε = (md − mu )/(md + mu ) ≃ 1/3. The scaling of the LECs induced by dimension-six sources assume

a Peccei-Quinn mechanism. A “−” implies the interaction is only induced at higher order than considered here. The parameters C̄1,2, C̄3,4, and C̄5 are the LECs entering the contact

PVTV potential, respectively of isoscalar, isovector, and isotensor type.

Numerically, ǫχ ∼ ǫmπ , but we define two different parameters to
track the dependence of the LECs on the quark masses. To assess
the size of the contribution of different CP violating sources to
the nucleon and nuclear EDMs, the scaling of the LECs inTable 1
can be combinedwith a naive estimate of these observables. As we
will discuss in detail in sections 3.2.2 and 6.5, the nucleon EDM
receives tree level contributions from d̄0,1 and loop contributions
by ḡ0 and ḡ1, leading to

dn,p ∼
d̄0 ∓ d̄1

2
+ e

fπ
ǫχ
(

α0ḡ0 + α1ḡ1ǫ1/2mπ
+ . . .

)

, (36)

where e is the electric charge and the coefficients of the loops
α0,1 will be given explicitly in section 3.2.2. The additional
suppression of ḡ1 is due to the fact that this coupling only involves
neutral pions, which do not interact with a single photon at LO.
Nuclear EDMs, on the other hand, receive tree level contributions
from the single nucleon EDM, and from pion-nucleon and
nucleon-nucleon couplings,

dA = andn + apdp + e

(

a11̄+
2
∑

i=0
aiḡi + ǫχ

5
∑

i=1
AiC̄i

)

.(37)

The coefficients an,p, a1,0,1,2 and A1,...,5 depend on the nucleus
under consideration, and in section 6.5 we will present results
for their calculation in chiral EFT for the deuteron, 3H and 3He.
By power counting, they are expected to be O(1) (measured in
units of fm in the case of the dimensionful a1,0,1,2 and A1,...,5),
barring isospin selection rules, which for example suppress the
contributions of the isoscalar operators ḡ0 and C̄1,2 in nuclei with
N = Z, such as the deuteron [142, 143] 6.

The reader should be aware that the dimensionless Wilson
coefficients of the dimension-six operators, c̃

(u,d)
g , c̃

(u,d)
γ , C̃G,4

(ud)
1,2 ,

and 6
(ud)
1,2 also come with intrinsic suppression factors. These

arise from the typical loop and chiral factors that appear in

6 ḡ0 and C̄1,2 contribute to the deuteron EDM in conjunction with isospin breaking

in the strong interaction, or via the spin-orbit coupling of the photon to the

nucleons [143]. Both contributions are beyond the accuracy we work at in

this paper.

BSM models. For example, quark and gluon dipole operators
are typically induced at the one-loop level, and the quark EDM
and chromo-EDM coefficients come with explicit factors of the
quark mass (already included in Equation 7). This implies that

one can expect {c̃(u,d)g , c̃
(u,d)
γ , C̃G} = O(ǫ3/(4π)

2), where ǫ3 =
v2/32

X . Of course this is just an estimate and certainly models
exist where these operators appear only at the two- or higher-
loop level. On the other hand, the four-quark operators 4 and
6 can be induced at tree level, so that {4,6} = O(ǫ3). Once the
matching coefficients are calculated in a givenmodel, Table 1 and
Equations (36)-(37) allow identification of the dominant low-
energy operator and to get a rough idea of the EDM constraints.

Table 1 highlights the feature that the chiral and isospin
properties of the quark-level CP-violating sources induce very
specific hierarchies between different low-energy couplings.
These hierarchies in turn imply different relations between
the EDMs of the nucleon, deuteron, and three-nucleon
systems, which, if observed, would allow disentanglement of
the various CP-violating sources. From Table 1, we see that

chiral-symmetry-breaking sources, such as θ̄ , c̃
(u,d)
g , and 4

(u,d)
1,2 ,

induce relatively large PVTV pion-nucleon couplings. These
couplings appear in the table with entry 1, indicating no further
suppression. In particular, the isoscalar θ̄ term and isovector
4(u,d) predominantly induce, respectively, ḡ0 and ḡ1, while a
qCEDM would yield both couplings with similar strengths. The
consequence is that for these sources light nuclear EDMs are
enhanced with respect to the nucleon EDM. For these chiral-
symmetry-breaking sources, the contact nucleon interactions
proportional to C̄i are suppressed in the chiral expansion because

these operators involve an explicit derivative. The suppression

can be explicitly seen combining the scaling in Table 1 with the

explicit factor of ǫχ in Equations (33) and (37).
Chiral invariant sources such as the Weinberg operator

C̃G and the four-quark operators 6
(u,d)
1,2 , on the other hand,

require additional chiral-symmetry breaking to generate ḡ0,1, as

indicated by extra powers of ǫmπ . In this case, EDMs of light-

nuclei are expected to be of similar size as the nucleon EDM.

Furthermore, the contact nucleon operators proportional to C̄1,2

now contribute to the PVTV potential at the same order as ḡ0,1.

Frontiers in Physics | www.frontiersin.org 10 July 2020 | Volume 8 | Article 218190

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


de Vries et al. PV and TV Interactions

Finally, the qEDM mostly induces d̄0,1, all other couplings being
suppressed by O(αem), where αem is the fine structure constant
∼ 1/137. In this case one expects nuclear EDMs to be dominated
by the constituent nucleon EDMs.

While most statements are source-dependent, there is an
important general message hidden in Table 1. There is no PVTV
source for which the couplings ḡ2 and C̄3,4,5 appear at LO. For
all sources they appear with a relative suppression of εǫmπ or
ǫχ compared to other PVTV interactions. For most calculations
one can simply neglect the associated interactions, reducing
the number of LECs entering the expression of hadronic and
nuclear observables. The suppression of the LECs ḡ2 and C̄3,4,5

ultimately is a consequence of imposing gauge invariance on the
dimension-six PVTV sources.

Table 1 relies on NDA estimates for hadronic matrix elements
[120]. A more quantitative assessment of the discriminating
power of EDM experiments necessitates to replace the NDA
estimates in Table 1 with solid non-perturbative calculations of
the LECs. At the moment, there exist controlled estimates only
of a few LECs. The pion-nucleon couplings ḡ0 induced by the
QCD θ̄ term is related by chiral symmetry to modifications
in the baryon spectrum [102]. In particular, in SU(2) χPT ḡ0
is related to the quark mass contribution to the nucleon mass
splitting [65, 144], up to N2LO corrections. Using Lattice QCD
evaluations of the nucleon mass splitting [145, 146], one finds

ḡ0(θ̄) = (15.5± 2.6)× 10−3 θ̄ , (38)

where the 15% error includes both the Lattice QCD error onmn−
mp, and an estimate of the error from N2LO chiral corrections.
Unfortunately, chiral-symmetry-based relations do not allow
to extract ḡ1 and d̄0,1. ḡ1 has been estimated with resonance
saturation leading to ḡ1(θ̄)/ḡ0(θ̄) ≃ −0.2, somewhat larger than
expected from NDA [73]. The LECs d̄0,1 are usually estimated
by naturalness arguments and considered to be of similar size to
non-analytic contributions to the isoscalar and isovector nucleon
EDM, see the section 3.2.2.

The relation between PVTV pion-nucleon couplings and
corrections to the nucleon and pion masses is not specific to
the QCD θ̄ term, but can be generalized to all chiral-symmetry-
breaking sources, such as for example the qCEDM [68, 147] and

4
(ud)
1,2 [141, 148]. Since corrections to spectroscopic quantities

should be easier to compute on the lattice, these chiral relations
allow a calculation of ḡ0,1 in Lattice QCD. While promising, this
strategy has yet to lead to controlled results. The best estimate of
ḡ0,1 induced by the qCEDM comes fromQCD sum rules [52, 149]

ḡ0 = (0.1± 0.2)
(

0.7c̃(u)g − 1.5c̃(d)g

)

× 10−6,

ḡ1 =
(

0.4+0.8−0.2
)

(

0.7c̃(u)g − 1.5c̃(d)g

)

× 10−6 . (39)

These estimates agree with NDA, especially for ḡ1. However,
ḡ0 seems to be slightly suppressed, in agreement with large-Nc

expectations [150].

Only for the four quark operators proportional to 4
(ud)
1,2 of

Equation (7) does the three-pion vertex with LEC 1̄ appear at
LO in the chiral Lagrangian. For this case, the LEC 1̄ is related by

SU(3) symmetry to K → ππ matrix elements and K − K̄ matrix
elements that have been calculated on the lattice. We obtain

1̄ = fπ

Mv2

(

A1 LR Im4
(ud)
1 +A2 LR Im4

(ud)
2

)

, (40)

with

A1 LR(µ = 3GeV) = (2.2± 0.13) GeV2,

A2 LR(µ = 3GeV) = (10.1± 0.6)GeV2 . (41)

Thematrix elements in Equation (41) are in good agreement with
NDA. The value of 1̄ also determines the tadpole component of
ḡ1, which again is in line with NDA.

Most of the remaining LECs are undetermined at present.
The focus of the Lattice QCD community has been on the
matrix elements connecting the nucleon EDMs to the θ̄ term
[103, 151, 152], the qEDMs [153, 154], the qCEDMs [152, 155],
and the Weinberg operator [156]. Some results are given in
next subsection.

3.2.2. The Nucleon EDM in Chiral Perturbation Theory
The PVTV LECs defined in the previous section can be used to
calculate the nucleon PVTV electric dipole form factor (EDFF).
At zero momentum transfer, the EDFFs are identified with the
nucleon EDMs. In dimensional regularization with modified
minimal subtraction up to NLO in the chiral expansion, the
EDMs are given by [137, 157]

dn = d̄0(µ)− d̄1(µ)+
egAḡ0

(4π)2fπ

(

log
m2
π

µ2
− πmπ

2M

)

, (42)

dp = d̄0(µ)+ d̄1(µ)

− egAḡ0

(4π)2fπ

[(

log
m2
π

µ2
− 2πmπ

M

)

− ḡ1

ḡ0

πmπ

2M

]

, (43)

where µ is the dimensional regularization scale. The leading
loops proportional to ḡ0 are divergent and renormalized by the
µ-dependent LECs d̄0,1. The NLO corrections proportional to
mπ/M are finite. The LEC 1̄ does not contribute at this order
for any of the PVTV sources. As standard in χPT, the loops are
associated to inverse powers of (4π fπ )

2 = 32
χ . Combined with

the scaling of the LECs in Table 1, we conclude that for the θ̄
term and the qCEDMs the leading loop proportional to ḡ0 and
the counter terms d̄0,1 appear at the same order. For all other
PVTV sources, the short-range counter terms d̄0,1 are expected
to dominate the nucleon EDMs. In no scenario can the EDMs
be calculated solely from the pion-nucleon LECs ḡ0,1 as is often
assumed in the literature. Estimates for the nucleon EDMs are
often obtained by setting µ = M and d̄0,1(µ = M) = 0 such that
EDMs depend on the value of ḡ0,1, which for some PVTV sources
is better known.

The separation between the short-range and loop
contributions is scheme dependent and therefore not physical.
Lattice QCD calculations can therefore only calculate the total
nucleon EDMs dn and dp. In recent years, significant efforts have
been made toward calculating the nucleon EDMs in terms of
the underlying PVTV sources. Most efforts have focused on the
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QCD θ̄ term and the qEDM. The most recent results for the θ̄
term [103] give

dn = −(1.5± 0.7)× 10−3 θ̄ e fm ,

dp = (1.1± 1.0)× 10−3 θ̄ e fm , (44)

in good agreement, but with sizeable uncertainties, with
expectations from the chiral logarithm in Equation (42) using
Equation (38). In the case of the qEDM, the nucleon EDM is
related to the tensor charges, which have been computed with
good accuracy [153, 154]. Using the FLAG average [154], we get

dn = gdT
Qumu

v2
c̃(u)γ + guT

Qdmd

v2
c̃(d)γ

=
(

−(0.96± 0.22)c̃(u)γ − (4.0± 0.4)c̃(d)γ

)

× 10−9e fm ,

dp = guT
Qumu

v2
c̃(u)γ + gdT

Qdmd

v2
c̃(d)γ

=
(

(3.7± 0.8)c̃(u)γ + (1.0± 0.1)c̃(d)γ

)

× 10−9e fm , (45)

where Qu,d are the u and d-quark charges in units of the electric

charge, and gu,dT the u and d-quark tensor charges of the proton,
and the error on the r.h.s. of Equation(45) is dominated by the
uncertainty on the light quark masses.

On a longer time-scale, calculations of the qCEDMs and the
Weinberg operator are also targeted. For now, the best results
come from calculations using QCD sum rules [52, 158].

3.3. From the Lagrangian to the Potential
In this subsection, we briefly present two methods that have
been used to derive nucleon-nucleon potentials starting from a
Lagrangian. We first introduce the notation used here and in the
next subsections.

The process under consideration is the scattering of two
nucleons from an initial state |p1p2〉 to the final state |p′1p′2〉
(hereafter the dependence on the spin-isospin quantum numbers
is understood). It is convenient to define the momenta

K j =
p′j + pj

2
, kj = p′j − pj , (46)

where pj and p′j are the initial and the final momenta of the

nucleon j. Furthermore it is useful to define

σ j ≡ (σ )s′j ,sj ≡
〈

1

2
s′j|σ |

1

2
sj

〉

, Eτj ≡ (Eτ )t′j ,tj ≡
〈

1

2
t′j |Eτ |

1

2
tj

〉

,

(47)
which are the spin (isospin) matrix element between the final
state s′j (t

′
j) and the initial state sj (tj) of the nucleon j.

Because k1 = −k2 ≡ k from the overall momentum
conservation p1 + p2 = p′1 + p′2, the momentum-space potential
V is a function of the momentum variables k, K1 and K2, namely

〈p′1p′2|V|p1p2〉 = V(k,K1,K2)(2π)
3δ(p1 + p2 − p′1 − p′2) . (48)

Moreover, we can write in general

V(k,K1,K2) = V(CM)(k,K)+ V(P)(k,K) , (49)

where K = (K1 − K2)/2, P = p1 + p2 = K1 + K2, and the
term V(P)(k,K) represents a boost correction to V(CM)(k,K), the
potential in the center-of-mass frame (CM). Below we will ignore
the boost correction and provide expressions for V(CM)(k,K)
only. Note that in the CM we define also p1 = −p2 ≡ p and
p′1 = −p′2 ≡ p′. So we have k = p′ − p and K = (p′ + p)/2, so in

the following we also write V(CM) as V(CM)(p, p′). From now on,
we will suppress the superscript “(CM)” for simplicity.

In order to derive the potential, two methods have been
frequently used, the method of unitarity transformation (UT),
and themethod of the time-ordered perturbation theory (TOPT).
They are briefly introduced below.

The time-ordered perturbation theory method. Let us consider
the matrix element of the T-matrix, Tfi = 〈p′1p′2|T|p1p2〉, the
“amplitude” of a process of scattering of two nucleons. Its square
modulus |Tfi|2 is directly related to the cross section of the
process. The conventional perturbative expansion for this matrix
element is given as

Tfi = 〈p′1p′2 | HI

∞
∑

n=1

(

1

Ei −H0 + i ǫ
HI

)n−1
|p1p2〉 , (50)

where Ei is the energy of the initial state, H0 is the Hamiltonian
describing free pions and nucleons, and HI is the Hamiltonian
describing interactions among these particles. These operators
are defined to be in the Schrödinger picture and they can be
derived from the Lagrangian constructed in terms of pions and
nucleons as described, for example, in Epelbaum et al. [159] and
Baroni et al.[118]. The evaluation of Tfi is carried out in practice
by inserting complete sets of H0 eigenstates between successive
HI factors. Power counting is then used to organize the expansion
in powers of Q/3χ ≪ 1, where Q stands for either an external
momenta or the pion mass. We will use the “naive” Weinberg
counting rules [2], namely, we will count simply the powers of
both the external momenta and pion mass insertions (we will
consider low energy processes only). Each term will be of some
order (Q/3χ )

ν . The terms with the lowest power of ν will be the
LO, and so on.

In the perturbative series given in Equation (50), a generic
contribution will be characterized by a certain number of
vertices coming from the interaction HamiltonianHI and energy
denominators, and it can be visualized also as a diagram
(hereafter referred to as a TOPT diagram). Each vertex will give
a “vertex function” and a δ conservation of the momenta of
the particles involved in the vertex. The vertex functions are the
results of the matrix elements of terms appearing in HI and are
given as products of Dirac four-spinors, momenta, etc. A sum
over themomenta of the particles entering the intermediate states
is also present. When a diagram includes one or more loops, the
δ’s are not sufficient to eliminate all the sums over the momenta
of the intermediate states. The energy denominators come from
the factors 1/(Ei − Eα + iǫ), where Eα is the (kinetic) energy of
a specific intermediate state entering the calculation. The chiral
order of each diagram can be calculated as follows. One needs
to consider:
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1. The chiral order of the vertex functions, which can be
calculated from the non-relativistic (NR) expansion of the
nucleon Dirac four-spinors (1/M expansion), and from
various other factors. Typically, the powers of p/M coming
from the NR expansion of the nucleon Dirac four-spinors are
counted as∼ Q2 [2, 4, 160]. In other approaches however they
are considered to be of orderQ [20, 161, 162]. In this paper, we
will follow the first prescription.

2. The energy denominators. We note that typical momenta
p of the nucleons are much smaller than the mass of the
nucleons, so we can treat them non-relativistically. Namely
√

p2 +M2 ≃ M + p2

2M ∼ O(Q0) + O(Q2). Regarding the

pion energies, ωk =
√

m2
π + k2 ∼ O(Q). Usually in the

energy denominator all the nucleon masses M cancel out and
therefore we have two cases:

• If there are no pions in the intermediate state, the energy
denominator has only nucleon energy terms so it results of
order 1/Q2.
• If there are pions in the intermediate states, the energy

denominator reads

1

1E− ωk
∼ − 1

ωk

(

1+ 1E

ωk
+ · · ·

)

, (51)

where the term1E = E1 + E2 + · · · − Ei where E1, . . . are
the energies of the nucleons in the intermediate state and Ei
is the initial scattering energy. In the Taylor expansion the
first term is of order Q−1, while the other terms are usually
called “recoil corrections”. For the sake of consistency with
the choice discussed above regarding the NR expansion
of the Dirac 4-spinors, here we will count the p/M terms
coming from recoil corrections as Q2 as well.

3. The number of loops, or better the number of the sums over
the intermediate state momenta that remain after using the
conservation δ’s. Each loop at the end will give a contribution
of order Q3.

4. The number of disconnected parts of the diagram. For
each of these parts, a δ factor expressing the momentum
conservation of each part is present. Then, if there are
ND disconnected parts, one of the δ simply gives the total
momentum conservation, a factor common to all diagrams
and therefore not relevant. Each of the remainingND−1 δ’s at
the end will “block” a sum over an external three-momentum,
each one therefore reducing the chiral order by 3 units.

Once the T-matrix has been calculated, one would obtain
in general

Tfi =
∑

n=nmin

T
(n)
fi

, (52)

where T
(n)
fi
∼ Qn. In all cases the sum starts from a minimum

value nmin, nmin = 0 for the PCTC and nmin = −1 for the PVTC
and PVTV amplitudes. The idea now is to “define” the potential
acting between the two nucleons so that it can reproduce the same

amplitude Tfi, namely, so that (for more details, see [118])

TV = V + V
1

Ei −H
(NN)
0 + iǫ

TV ≡ Tfi , (53)

whereH
(NN)
0 is the non-interacting Hamiltonian of two nucleons.

Clearly, this procedure is not unique, since usually one imposes
the relation TV = Tfi to hold “on shell,” namely by requiring
the conservation of the energy between initial and final states.
This induces an ambiguity, as discussed for example in Pastore
et al. [162]. However, the obtained potentials are expected to
be equivalent by means of a unitary or at least a similarity
transformation [163].

Finally, to invert Equation (53), one assumes that V has the
same Q expansion as the T matrix,

V =
∑

n=nmin

V(n) , V(n) ∼ Qn , (54)

and Equation (53) can be solved for V(n) order-by-order (see, for
example, Baroni et al. [118] for more details). This procedure
can be generalized to the A = 3 case to define a three-nucleon
potential and so on.

The method of unitarity transformation. The method of
unitary transformation (MUT) has been pioneered in the
1950s to derive nuclear potentials in the framework of pion
field theory [164, 165]. In the context of chiral EFT, this
approach was formulated in Epelbaum et al. [166] and Epelbaum
[167]. Similarly to TOPT, the MUT is applied to the pion-
nucleon Hamiltonian which can be obtained from the effective
Lagrangian in a straightforward way using the standard canonical
formalism. Let η and λ denote the projection operators on
the purely nucleonic subspace and the rest of the Fock space
involving pion states with the usual properties η2 = η, λ2 = λ,
ηλ = λη = 0 and η + λ = 1. To derive nuclear forces
and/or current operators, the Hamiltonian needs to be brought
into block-diagonal form with no coupling between the η- and
λ-subspaces, which can be achieved via a suitably chosen unitary
transformation U. Following Okubo, a unitary operator can be
conveniently parametrized in terms of the operator A = λAη
that mixes the two subspaces via

U =
(

η(1+ A†A)−1/2 −A†(1+ AA†)−1/2

A(1+ A†A)−1/2 λ(1+ AA†)−1/2

)

. (55)

One then obtains the non-linear decoupling equation for the
operator A:

H̃ ≡ U†HU
!=
(

ηH̃η 0

0 λH̃λ

)

H⇒λ (H−[A, H]− AHA) η = 0 .

(56)
The solution of the decoupling equation together with the
calculation of the unitary operator U and the nuclear potential
ηH̃η is carried out in perturbation theory by employing the
standard chiral expansion. The resulting expressions for the
operators A, U and ηH̃η have a form of a sequence of vertices
from the pion-nucleon HamiltonianH and energy denominators
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involving the kinetic energies of particles in the intermediate
states with one or more virtual pions. They are thus similar
to the expressions emerging in the context of TOPT, see
e.g., the operator in Equation (50), and the corresponding matrix
elements can also be interpreted in terms of TOPT-like diagrams.
Notice that contrary to Equation (50), the expressions in the
MUT do, per construction, not involve energy denominators
that vanish in the static limit of infinitely heavy nucleons and
correspond to iterative contributions to the scattering amplitude.
As explained in Epelbaum [167], in order to implement the chiral
power counting in the algebraic approach outlined above it is
convenient to rewrite it in terms of different variables. Using
the rules given in the description of the TOPT approach and
counting the powers of the soft scale Q for a given irreducible
(i.e., of non-iterative type) connected N-nucleon TOPT-like
diagramwithout external sources, one obtains for the chiral order
n [2, 167]

n = −4+ 2N + 2L+
∑

i

Vi1i , (57)

where L is the number of loops, Vi is the number of vertices of
type i. Further, the vertex dimension 1i is given by 1i = di +
1/2ni − 2 with di and ni being the number of derivatives and/or
mπ -insertions and the number of nucleon fields, respectively.
The above expression is convenient to use for estimating the
chiral dimension of TOPT-like diagrams. For the MUT, it is,
however, advantageous to rewrite it in the equivalent form

n = −2+
∑

i

Viκi , κi = di +
3

2
ni + pi − 4 , (58)

where pi is the number of pionic fields. The parameter κi
obviously corresponds to the inverse overall mass dimension of
the coupling constant(s) accompanying a vertex of type i. In
this form, the chiral expansion becomes formally equivalent to
the expansion in powers of the coupling constants, and it is
straightforward to employ perturbation theory for solving the
decoupling equation (56) and deriving the nuclear potentials
ηH̃η.

One non-trivial issue that emerges when applying chiral EFT
to nuclear potentials concerns their renormalization. While on-
shell scattering amplitudes, calculated in chiral EFT, can always
be made finite by including the counterterms from the effective
Lagrangian (provided one uses a chiral-symmetry preserving
regularization scheme such as dimensional regularization),
nuclear potentials represent scheme-dependent quantities, which
correspond to non-iterative parts of the scattering amplitude.
There is no a priori reason to expect all ultraviolet divergences
emerging from TOPT-like diagrams, which give rise to nuclear
forces, to be absorbable into a redefinition of the LECs. Indeed, it
was found that the static PCTC three-nucleon force at order Q4

of the two-pion-one-pion exchange type cannot be renormalized
if one uses the unitary transformation given in Equation (55)
[168]. On the other hand, the employed parametrization of the
operatorU is clearly not the most general one and represents just
one possible choice. The freedom to change the off-shell behavior
of the nuclear potentials, already mentioned in the context of

TOPT, has been exploited in a systematic way in the PCTC
sector in order to enforce renormalizability of nuclear forces
(using dimensional regularization) [167, 169–172]. The MUT
has also been successfully applied to the effective Lagrangian
in the presence of external classical sources in order to derive
the corresponding nuclear current operators, see [160] and
references therein.

3.4. The PVTC Potential Up to Order Q2

In this subsection we will discuss in detail the derivation of
the PVTC potential up to N2LO using the TOPT approach.
We consider diagrams contributing to the T-matrix with one
vertex coming from the PVTC Lagrangian, with all other vertices
coming from the PCTC interaction. Diagrams with two or more
PVTC vertices can be safely neglected.

The TOPT diagrams contributing to the PVTC T-matrix up to
N2LO are shown in Figure 1.

The one pion exchange diagram (a) gives a contribution to
the T-matrix of order Q−1 (that will be our LO). The diagram
(b) represents a PVTC contact interaction of order Q; also the
diagrams (c) and (d) with the PCTC contact vertex and one
pion exchange are of order Q. The triangle diagram (e) with
a PCTC ππNN vertex is of order Q, while if we consider the
PVTC ππNN vertex as in panel (l) the diagram is of order Q2.
The box diagrams (f) and (g) includes contribution of order Q0

and Q; the contribution of order Q0 is exactly canceled when
inverting Equation (53). Finally, the “bubble” diagram (h), the
three-pion vertex diagram (i), the box diagram (j) with the πNN
vertex coming from the subleading PVTC Lagrangian terms
proportionals to the LECs hiV , and also the diagram (k) with
the ππNN vertex coming from the subleading PCTC Lagrangian
terms proportionals to the LECs ci, are of order Q

2. These latter
diagrams were considered for the first time in de Vries et al. [173]
using the MUT, and using TOPT in [174].

Contributions proportional to 1/M coming from the NR
expansion of the vertex functions or from recoil corrections in
this work are considered to be at least of order N3LO.

Other types of diagrams like those shown in Figure 2(1–3)
simply contribute to a renormalization of the coupling constants
and masses, see Viviani et al. [42] for more details. In the
following, we will disregard these diagrams, but it should be taken
into account that the formulas below are given in terms of the
renormalized (physical) LECs and masses. The contribution of
diagram (4) is canceled when inverting Equation (53).

Let us now consider each kind of diagram separately:

• One pion exchange (OPE) diagram. Diagram (a) of Figure 1
gives the LO contribution (Q−1) to the potential

V
(−1)
PVTC(a) =

gAh
1
π

2
√
2fπ

(Eτ1 × Eτ2)z
ik · (σ 1 + σ 2)

ω2
k

, (59)

where ωk =
√

k2 +m2
π and arises directly from the LO

expansion of the vertices and energy denominators. Derived
from the same diagram, there are terms coming from the NR
expansion of the vertices, the first correction being of order
(p/M)2. However, as discussed previously, they are counted
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FIGURE 1 | TOPT diagrams contributing up to N2LO to the PVTC amplitude. Nucleons and pions are denoted by solid and dashed lines, respectively. The open

(solid) circles represent LO PCTC (PVTC) vertices. The vertex depicted by a square sourrounding a solid circle denotes the contribution of the subleading PVTC πNN

terms coming from the Lagrangian given in Equation (19). The vertex depicted by a square surrounding an open circle denotes the contribution of the subleading

PCTC ππNN (PVTC πNN) terms coming from the Lagrangian given in Equation (13).

to be of order Q4, and thus the corresponding terms are
considered to be suppressed by four orders with respect to

V
(−1)
PVTC.

• Contact terms (CT) diagrams. The diagrams (b) depicted
in Figure 1 derive from the interaction terms appearing in

L
(1)
PVTC,NN . They give a contribution to the potential of order

Q1. As discussed in Chapter 4, this contribution can be written
in various equivalent forms due to the Fierz identities [44]. We
have chosen to write this part as follows [42]

V
(1)
PVTC(b) =

1

32
χ fπ

[C1i(σ 1 × σ 2) · k+ C2(Eτ1 · Eτ2)i(σ 1 × σ 2) · k

+C3(Eτ1 × Eτ2)zi(σ 1 + σ 2) · k
+C4(τ1z + τ2z)i(σ 1 × σ 2) · k
+C5Iabτ1aτ2bi(σ 1 × σ 2) · k] . (60)

where3χ = 4π fπ ≈ 1.2 GeV. The parameters Ci, i = 1, . . . , 5
are LECs. Different (but equivalent) forms of this part were
used in de Vries et al. [41] and de Vries et al. [173].
• Contact plus OPE diagrams. The diagrams (c) and (d) in

Figure 1 are representative of diagrams containing a contact
term and an OPE. However all these diagrams vanish after the
integration over the loop variable.
• NLO two pions exchange: triangle diagrams. There are 6

different time-orderings of diagrams (e) given in Figure 1.
After summing them, the total contribution from these
diagrams results to be [40, 175]

V
(1)
PVTC(e) =

gAh
1
π

8
√
2f 3π

(Eτ1 × Eτ2)zik · (σ 1 + σ 2)

∫

d3q

(2π)3
1

ω+ω−(ω+ + ω−)
, (61)

where ω± =
√

(q± k)2 + 4m2
π . The integral is singular and

must be somehow regularized. We will discuss this issue later.
• NLO two pions exchange: box diagrams. There are 48 diagrams

represented by the diagrams of type (f) and (g) of Figure 1
when we consider all possible time orderings. The final
contribution is [40, 175]

V
(1)
PVTC(f , g) =

h1π g
3
A

8
√
2f 3π

∫

d3q

(2π)3
ω2
+ + ω+ω− + ω2

−
ω3
+ω

3
− (ω+ + ω−)

{−2i (τ1z + τ2z) [q · σ 1(q× k) · σ 2 − q · σ 2(q× k) · σ 1]

−2i (τ1z − τ2z) [q · σ 2(q× k) · σ 1 + q · σ 1(q× k) · σ 2]

+i (Eτ1 × Eτ2)z
(

k2 − q2
)

k · (σ 1 + σ 2)} ,
(62)

and is of order Q1. Again the integral is singular. In this
case, in the amplitude Tfi there appears a term of order Q0

coming from diagram (g), but it cancels out when inverting
Equation (53).
• Bubble diagrams.We now turn to the diagrams contributing at

order Q2, that is at N2LO. The sum of “bubble” diagrams (h)
depicted in Figure 1 mutually cancel and these diagrams do
not give any contribution to the PVTC potential.
• Diagrams with three pion vertices. The expansion of the

PVTC Lagrangian in terms of pions gives rise to two terms
proportional to (Eπ)3 which would contribute to Tfi via the
diagram (i) depicted in Figure 1. However, after summing
over all possible time orderings, the corresponding final
contribution vanishes.
• N2LO two pion exchanges: box diagrams. The box diagrams (j)

contributes also at N2LO, where the PVTC vertex comes from
the subleading Lagrangian terms proportional to the LECs hV0 ,
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FIGURE 2 | Other diagrams that would contribute at NLO. These diagrams

contribute to the renormalization of the LECs (1–3) or give a vanishing

contribution to the potential (4) due to the inversion of Equation (53). Notation

as in Figure 1.

hV1 , and hV2 in Equation (19). We have [75, 173]

V
(2)
PVTC(j) =

g3A
32f 4π

[(

h0V (3+ 2Eτ2 · Eτ1)

−4

3
h2VIabτ1bτ2b

)

i

∫

d3q

(2π)3
1

ω2
+ω

2
−
[(q · σ 1(q× k) · σ 2)

−(q · σ 2(q× k) · σ 1)]

−2ih1V
∫

d3q

(2π)3
1

ω2
+ω

2
−
[(q · σ 1(q× k) · σ 2)τ1z

−(q · σ 2(q× k) · σ 1)τ2z]

+ih1V (Eτ1 × Eτ2)zk · (σ 1 + σ 2)

∫

d3q

(2π)3
q2 − k2

ω2
+ω

2
−

]

. (63)

• N2LO two pion exchanges: triangle diagrams. The diagram
depicted in panel (k) derives from subleading ππNN vertices
in the PCTC Lagrangians [75, 173], see Equation (13),

V
(2)
PVTC(k) = −i

c4h
1
π gA

2
√
2f 3π

∫

d3q

(2π)3
1

ω2
+ω

2
−
× (64)

[(q · σ 1(q× k) · σ 2)τ2z − (q · σ 2(q× k) · σ 1)τ1z] .

Note in Equation (64) the presence of the LEC c4, which belong
to the PCTC sector [12].

The expression for the diagrams (l) comes from the LO
PCTC and PVTC vertex functions. The final result is [75, 173]

V
(2)
PVTC(l) = −

g2A
8f 4π

∫

d3q

(2π)3
1

ω2
+ω

2
−

(65)

×{2h1A[(q · σ 1(q× k) · σ 2)τ2z − (q · σ 2(q× k) · σ 1)τ1z]

+h2AIabτ1aτ2b[(q · σ 1(q× k) · σ 2)− (q · σ 2(q× k) · σ 1)]} ,

where h1A and h2A are two of the LECs that appear in the
Lagrangian terms given in Equation (19).

Finally, we conclude this section by mentioning that at N2LO,
one should also include PVTC 3N forces. Examples of diagrams
contributing to this 3N force are shown in Figure 3. The chiral
order of diagrams with more than two nucleons is discussed in

detail in Epelbaum [167]. The diagram depicted in panel (a) with
a LO PCTC ππNN vertex would contribute at NLO, but vanishes
when summed over all time orderings. The other three diagrams
(the one in panel (b) has a subleading PCTC ππNN vertex
proportional to ci, i = 1, . . . , 4 [12]) are N2LO and therefore
they must be considered in order to perform fully consistent
calculations in A ≥ 3 systems. However, these kind of diagrams
have not yet been considered in literature. Note that diagrams
with a 3N PVTC contact vertex are highly suppressed, so no new
LEC needs to be introduced.

3.4.1. Regularization of the PVTC Potential
In this section we deal with the divergences in the loop
diagrams. We will briefly present three methods frequently
used in literature, namely the dimensional regularization (DR)
method used e.g., in [161], the spectral function regularization
(SFR) [176], and the novel (semi-)local momentum-space
regularization approach of Reinert et al. [19].

• Dimensional regularization method. This technique is well-
known for dealing with divergences of loop integrals present
in Feynman diagrams, where the integration is performed over
four-momenta. In case of time-ordered diagrams, the loops
involve integration over three-momenta. To deal with the
singularities, the integrals are re-defined in d dimensions and
successively one takes the limit d → 3. The singular part is
singled out by terms∼ 1/(3−d), which then can be reabsorbed
in some of the LECs. As usual, we define ǫ = 3 − d, and
we assume that ǫ → 0. When we use the DR, it is better to
“rescale” all the dimensional quantities with an energy scale µ.
Therefore we define q = q̃µ, m = m̃µ, etc., where the “tilde”
quantities are dimensionless. We can now go to d dimensions
and manipulate the integrals as discussed in detail in Pastore
et al. [161], see also Friar [177]. Here we limit ourselves to
listing the results needed to regularize the loop integrals we
have encountered. Regarding the loop integrals appearing at
NLO in Equations (61) and (62), we have

∫

d3q

(2π)3
1

ω+ ω− (ω+ + ω−)
= − 1

4π2

(

L(k)− dǫ + 2
)

,

(66)
∫

d3q

(2π)3
ω2
+ + ω+ ω− + ω2

−
ω3
+ ω

3
−(ω+ + ω−)

= 1

16π2

H(k)

m2
π

, (67)

where

L(k) = 1

2

s

k
ln

s+ k

s− k
, H(k) = 4m2

π

s2
L(k) ,

s =
√

4m2
π + k2 , (68)

and

dǫ =
2

ǫ
− γ + lnπ − ln

m2
π

µ2
, (69)

which contains the divergent part, where γ is the Euler–
Mascheroni constant.
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FIGURE 3 | TOPT diagrams that would contribute to the PVTC 3N force For the notation see Figure 1.

The loop integrals appearing in the N2LO diagrams as in
Equations (64) and (65) are of the form

∫

d3q

(2π)3
1

ω2
+ω

2
−
, (70)

∫

d3q

(2π)3
1

ω2
+ω

2
−
qiqj , (71)

The first integral is finite, but the second integrand diverges
linearly as q → ∞. The finite contribution can be obtained
using the DR method. Alternatively, one can impose an
ultraviolet cut-off3C on the integrals. The integrals then yield
divergent pieces as 3C → ∞, which can be again reabsorbed
in some LECs, finite parts independent on 3C that are exactly
the same as obtained using the DR method, and a number of
other terms which can be expressed in terms of a power series
of Q/3C, where Q is either k or mπ . Taking the limit 3C to
infinity these latter parts would disappear. Since, in general
we must fix 3C at a value greater than the typical energies
of the χEFT, then these additional terms carry at least an
additional power of Q which means they give contributions at
N3LO (or beyond) to the potential. Therefore, for the integral
in Equation (71), we have followed the prescription to absorb
the divergent parts in some LEC’s, to disregard the parts
depending on Q/3C, and to retain the finite parts as given by
the DR method. Explicitly, the two integrals are given by

∫

d3q

(2π)3
1

ω2
+ ω

2
−
= A(k)

4π
, (72)

∫

d3q

(2π)3
1

ω2
+ ω

2
−
qiqj ⇒

(

− s2A(k)

8π
− mπ

8π

)

δij

+
( s2A(k)

8π
− mπ

8π

)ki kj

k2
, (73)

where

A(k) = 1

2k
arctan

( k

2mπ

)

. (74)

• Spectral function regularization method. Pion loop integrals
appearing in the two-pion exchange contributions discussed
in the previous subsection can be generally expressed using
a dispersive representation. Writing the momentum-space
potentials in the general form V =∑i OiWi(k) with Oi being

spin-isospin-momentum operators andWi the corresponding
structure functions that depend only on the momentum
transfer k ≡ |k|, the unsubtracted dispersion relations for the
functionsWi(k) have the form [178]

Wi(k) =
2

π

∫ ∞

2mπ

dµµ
ρi(µ)

µ2 + k2
, (75)

where the spectral functions ρi(µ) are given by ρi =
ℑ
(

Wi(0
+ − iµ)

)

. Notice that the spectral integrals in
Equation (75) do not converge for potentials derived in chiral
EFT since ρi(µ) generally growwithµ, andmust be subtracted
the appropriate number of times. The subtractions introduce
terms which are polynomial in k2 and can be absorbed into the
corresponding contact interactions. It was shown in Epelbaum
et al. [176] that even at fairly large internucleon distances, the
potentials receive significant contributions from the spectral
function in the region of µ & 3χ , where the chiral expansion
cannot be trusted. It was, therefore, proposed in that paper to
employ an ultraviolet cutoff 3 in the spectral integrals. This
can be shown to be equivalent to introducing a particular
ultraviolet cutoff in the loop integrals over the momentum q.
Using a sharp cutoff3 in the spectral integrals over µ leads to
the followingmodification of the loop functions L(k) andA(k):

L3(k) = θ(3− 2mπ )
s

2k
ln
32s2 + k2l2 + 23ksl

4m2
π (3

2 + k2)
,

A3(k) = θ(3− 2mπ )
1

2k
arctan

k(3− 2mπ )

k2 + 23mπ
, (76)

where we have introduced l =
√

32 − 4m2
π . The resulting

approach is referred to as the spectral function regularization.
The limit of an infinitely large cutoff 3 corresponds to the
previously considered case of dimensional regularization with
L∞(k) = L(k) and A∞(k) = A(k). The spectral function
regularization approach with a finite value of3 was employed
in the PCTC potentials of Epelbaum et al. [74] and the more
recent work [18], as well as in the derivation of the N2LO
PVTC potential in de Vries et al. [46].
• Local regularization in momentum space. The previously

introduced spectral function regularization approach has the
unpleasant feature of inducing long-range finite-3 artifacts as
can be seen by expanding the functions L3(k) and A3(k) in
inverse powers of3. This featuremay affect the applicability of
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chiral EFT for softer cutoff choices. Recently, local regulators
in coordinate [17, 179] and momentum space [19] were
introduced, which do not affect the analytic structure of
the pion-exchange interactions and thus maintain the long-
range part of the nuclear force. The approach of Reinert
et al. [19] amounts to replacing the static propagators of pions
exchanged between different nucleons via

1

q2 +m2
π

−→ 1

q2 +m2
π

exp

(

−q2 +m2
π

32

)

, (77)

with q ≡ |q|. Such a regulator obviously does not induce
any long-range artifacts at any order in the 1/3-expansion.
This regularization approach can be easily implemented for
two-pion exchange NN potentials with no need to recalculate
the various loop integrals. Using the feature that the regulator
does not affect long-range interactions, it is easy to show that
the regularization of a generic two-pion exchange contribution
simply amounts to introducing a specific cutoff in the
dispersive representation (modulo short-range interactions),
namely [19]

2

π

∫ ∞

2mπ

dµµ
ρi(µ)

µ2 + k2

−→ 2

π

∫ ∞

2mπ

dµµ
ρi(µ)

µ2 + k2
exp

(

−µ
2 + k2

232

)

. (78)

In Reinert et al. [19], the regularized two-pion exchange
contributions were defined using the requirement (i.e., a
convention) that the corresponding potentials in coordinate
space and derivatives thereof vanish at the origin. This is
achieved by adding to the right-hand side of Equation (78)
a specific combination of (locally regularized) contact
interactions allowed by the power counting. For more details
and explicit expressions see Reinert et al. [19]. This local
regularization scheme has not been used for PVTC or PVTV
nuclear potentials.

3.4.2. The Regularized PVTC Potential
Once the loop integrals have been manipulated as discussed
previously, we can now write the PVTC potential up to N2LO
derived from χEFT. In the following, some of the LEC’s have
been further redefined to absorb the singular parts coming from
the loop integrals. If one has chosen to regularize the loop
integral using the SFR method, then the functions L(k) and A(k)
below have to be substituted with L3(k) and A3(k), the spectral
regularized functions, see Equation (76). In summary,

VPVTC = V
(−1)
PVTC(OPE)+ V

(1)
PVTC(CT)+ V

(1)
PVTC(TPE)

+ V
(2)
PVTC(TPE) , (79)

where

V
(−1)
PVTC(OPE) =

gAh
1
π

2
√
2fπ

(Eτ1 × Eτ2)z
ik · (σ 1 + σ 2)

ω2
k

, (80)

V
(1)
PVTC(CT) =

1

32
χ fπ

[C1i(σ 1 × σ 2) · k

+C2(Eτ1 · Eτ2)i(σ 1 × σ 2) · k
+C3(Eτ1 × Eτ2)zi(σ 1 + σ 2) · k
+C4(τ1z + τ2z)i(σ 1 × σ 2) · k
+C5Iabτ1aτ2bi(σ 1 × σ 2) · k] , (81)

V
(1)
PVTC(TPE) = −

gAh
1
π

2
√
2fπ

1

32
χ

(Eτ1 × Eτ2)zik · (σ 1 + σ 2)L(k)

− g3Ah
1
π

2
√
2fπ

1

32
χ

[

4(τ1z + τ2z) ik · (σ 1 × σ 2) L(k)

+ (Eτ1 × Eτ2)zik · (σ 1 + σ 2)
(

H(k)− 3L(k)
)

]

, (82)

V
(2)
PVTC(TPE) = −

c4h
1
π gA√
2fπ

π

32
χ

ik · (σ 1 × σ 2)(τ1z + τ2z)s2A(k)

+ g2A
2f 2π

π

32
χ

{[3gAh
0
V

4
+ gAh

0
V

2
Eτ1 · Eτ2

+
( gAh

1
V

4
− h1A

)

(τ1z + τ2z)

−
(

h2A +
gAh

2
V

3

)

Iabτ1bτ2b

]

ik · (σ 1 × σ 2)

− gAh
1
V

2
(Eτ1 × Eτ2)zik · (σ 1 + σ 2)

(

1−2m
2
π

s2

)}

s2A(k) .

(83)

The NLO term V
(1)
PVTC(TPE) derives from the regularized parts

of V
(1)
PVTC(e) and V

(1)
PVTC(f , g), while the N

2LO term V
(2)
PVTC(TPE)

from V
(1)
PVTC(j), V

(1)
PVTC(k), and V

(1)
PVTC(l). Let us note that we have

in total 11 LECs that must be determined from the experimental
data: one in the LO term, five in the subleading order and five
at N2LO. This potential is the same as the one derived using the
MUT in de Vries et al. [173].

Finally, the potential to be used in calculation of PVTC
observables has to be regularized for large values of p, p′. The
frequently used procedure is to multiply by a cutoff function
containing a parameter3C

VPVTC(p, p
′)→ f3C (p, p

′)VPVTC(p, p
′) . (84)

Typical choices for f3C are [74]

f3C (p, p
′) = exp

[

−
(

p

3C

)n

−
(

p′

3C

)n]

, (85)

where usually n = 6, adopted for example in de Vries
et al. [173], or

f3C (p, p
′) = exp

[

−
( |p− p′|

3C

)4
]

, (86)
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adopted in Viviani et al. [42]. The value of the cutoff3C is chosen
to be around 400–600 MeV, and consistent with the analogous
parameter used to regularize the PCTC potential.

The currently most accurate and precise PCTC NN potentials
of Reinert et al. [19] employ the local momentum-space
regularization approach for pion-exchange contributions as
described in section 3.4.1 in combination with a non-local
Gaussian regulator given in Equation (85) with n = 2 and
3C = 3 for contact interactions [3 is the cutoff used
in the local regulator in Equations (77), (78)]. The superior
performance of the momentum-space regulator in Equation (78),
as compared with both the spectral-function regularization and
a local multiplicative regularization as defined in Equation (86),
manifests itself in exponentially small distortions at large
distances as visualized in Figure 5 of [19].

Last but not least, we emphasize that using different regulators
when calculating loop integrals in the nuclear potentials/currents
and solving the Schrödinger equation to compute observables
is generally incorrect. This issue becomes relevant at the chiral
order, at which one encounters the first loop contributions to the
3N potentials and to the NN exchange current operators (i.e., at
order Q4 or N3LO in the PCTC sector) [180, 181], which is
beyond the accuracy of the calculations described in this review
article. For more details and a discussion of a possible solution to
this problem see [182].

3.4.3. Relevant PCTC and PVTC Electromagnetic

Currents
Electromagnetic currents can be calculated in the χEFT
expansion. For our purposes we require currents for the
longitudinal asymmetry in radiative neutron capture on a proton
target at thermal energies. As we deal with a real outgoing photon,
the LO PCTC current is induced by the nucleon magnetic
moment. At NLO there are contributions from the convection
currents and one-pion-exchange currents proportional to g2A. At
NLO the relevant currents become

JPCTC =
A
∑

j=1

e

4M

{

−
[

(1+ κ0)+ (1+ κ1)τjz
]

i(σ j × q)

+(1+ τjz)(pj + p ′j )
}

δpj−p ′j ,q

+ eg2A
4f 2π

A
∑

j<k

i
(

Eτj × Eτk
)

z

{

2k
σ j · (k+ q/2)

(k+ q/2)2 +m2
π

σ k · (k− q/2)

(k− q/2)2 +m2
π

−σ j
σ k · (k− q/2)

(k− q/2)2 +m2
π

− σ k

σ j · (k+ q/2)

(k+ q/2)2 +m2
π

}

, (87)

where κ0 = −0.12 and µv = 3.71 are the isoscalar and isovector
anomalous nucleon magnetic moments. pj and p ′j denote the

incoming and outgoing momenta of nucleon j interacting with a
photon of outgoing momentum q. The intermediate pions carry
momenta k + q/2 = pj − p ′j or k − q/2 = p ′

k
− pk. de

Vries et al. [173] used these currents in combination with N3LO
χEFT potentials from Epelbaum et al. [17] to calculate the total
np → dγ capture cross section. Using just the LO currents
gives a cross section of 305 ± 4 mb, which grows to 319 ± 5 at

NLO. The remaining 4% discrepancy to the experimental cross
section 334.2±0.5, indicates that N2LO currents should probably
be included.

A consistent calculation of PVTC observables such as the
photon asymmetry in the Enp → dγ radiative capture also
requires the inclusion of PVTC currents. There is no one-body
current in this case, as the anapole moment vanishes for on-shell
photons [183]. As such, the leading PVTC currents arises from
one-pion-exchange currents

JPVTC =
egAh

1
π

2
√
2fπ

A
∑

j<k

(

Eτj · Eτk − τjzτkz
)

{

2k
σ j · (k+ q/2)+ σ k · (k− q/2)

[(k+ q/2)2 +m2
π ][(k− q/2)2 +m2

π ]

− σ j

(k− q/2)2 +m2
π

− σ k

(k+ q/2)2 +m2
π

}

, (88)

where we stress the dependence on the PVTC pion-nucleon LEC
h1π . Higher-order PVTC currents have not been developed.

3.5. The PVTV Potential Up to Order Q
In this section, we discuss the derivation of the PVTVNN and 3N
potentials at N2LO. The final expressions are given in terms of a
sum of diagrams, which can be obtained either using theMUT [4,
166, 184], standard dimensional regularization [72] or the TOPT
method [75]. In the following, we briefly report the derivation of
the PVTV potential in the framework of TOPT approach.

The TOPT diagrams that give contribution to the NN PVTV
potential up to N2LO (order Q1) are shown in Figure 4. We
do not consider diagrams which give contributions only to the
renormalization of the LECs. In this section we write the final
expression of the NN PVTV potential VPVTV having already
taken into account the singular parts coming from loops. Note
that for the PVTV potential the LO term is of order Q−1 as for
the PVTC case. However, now there will be terms of order Q0,
which will be denoted as NLO terms, etc. We have

VPVTV (p, p
′) = V

(−1)
PVTV (OPE)+ V

(1)
PVTV (CT)+ V

(1)
PVTV (TPE)

+V(0)
PVTV (3π)+ V

(1)
PVTV (3π) , (89)

namely coming from OPE diagrams at LO, TPE at N2LO,
three-pion vertices (3π) at NLO and at N2LO, and contact
contributions (CT). From now on we define ḡ∗0 = ḡ0 + ḡ2/3. In
this case, we report here the final form of the potential, namely,
the LECs appearing in the expressions below are the physical
ones, having reabsorbed the various infinities generated by loops
and diagrams like those shown in Figure 2(1–3).

• One pion exchange diagram. The OPE term, depicted in
diagram (a) of Figure 4, gives a contribution at LO, namely
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FIGURE 4 | Time-ordered diagrams contributing to the PVTV potential (only a single time ordering is shown). Nucleons and pions are denoted by solid and dashed

lines, respectively. The open (solid) circle represents a PCTC (PVTV) vertex.

of order Q−1, coming from the NR expansion of the vertices

V
(−1)
PVTV (OPE)=

gAḡ
∗
0

2fπ
(Eτ1 · Eτ2)

ik · (σ 1 − σ 2)

ω2
k

+ gAḡ2

6fπ
(3τ1zτ2z − Eτ1 · Eτ2)

ik · (σ 1 − σ 2)

ω2
k

+ gAḡ1

4fπ

[

(τ1z + τ2z)
ik · (σ 1 − σ 2)

ω2
k

+(τz1 + τz2)
ik · (σ 1 + σ 2)

ω2
k

]

, (90)

where there are an isoscalar, an isovector and an isotensor
components. Contributions coming from the 1/M expansion
are considered to be suppressed at least by four orders with

respect to V
(−1)
PVTV (OPE).

• Contact term diagrams. The potential V
(1)
PVTV (CT), derived

from the NN contact diagrams (b) of Figure 4, reads

V
(1)
PVTV (CT) =

1

32
χ fπ

{

C̄1 ik · (σ 1 − σ 2)

+C̄2 ik · (σ 1 − σ 2) Eτ1 · Eτ2

+ C̄3

2

[

ik · (σ 1 − σ 2) (τ1z+τ2z)+ik · (σ 1+σ 2) (τ1z − τ2z)
]

+ C̄4

2

[

ik · (σ 1 − σ 2) (τ1z+τ2z)−ik · (σ 1+σ 2) (τ1z − τ2z)
]

+C̄5 ik · (σ 1−σ 2) (3τ1zτ2z−Eτ1 · Eτ2)
}

. (91)

Notice that the above LECs C̄1, C̄2, C̄3, C̄4, and C̄5 have been
redefined to absorb various singular terms coming from the
TPE and 3π diagrams. It is possible to write ten operators

which can enter V
(1)
PVTV (CT) at order Q but only five of them

are independent as discussed in Chapter 4. In this work we
have chosen to write the operators in terms of k, so that the

r-space version of V
(1)
PVTV (CT) will assume a simple local form

with no gradients.
• Contact terms with an OPE. Diagrams like (c) and (d) of

Figure 4 vanish directly due to the integration over the loop
momentum.
• Two pions exchange diagrams. The TPE term comes from the

non-singular contributions of diagrams (e-h) in Figure 4. This
term has no isovector component, as shown for the first time
in Bsaisou et al. [73]. It reads

V
(1)
PVTV (TPE) =

gAḡ
∗
0

fπ32
χ

Eτ1 · Eτ2 ik · (σ 1 − σ 2) L(k)

+ g3Aḡ
∗
0

fπ32
χ

Eτ1 · Eτ2 ik · (σ 1 − σ 2) (H(k)− 3L(k))

− gAḡ2

3fπ32
χ

(3τ1zτ2z − Eτ1 · Eτ2) ik · (σ 1 − σ 2) L(k) (92)

− g3Aḡ2

3fπ32
χ

(3τ1zτ2z − Eτ1 · Eτ2)ik · (σ 1 − σ 2) (H(k)− 3L(k)) ,

where the loop functions L(k) and H(k) are defined in
Equation (68).
• Diagrams with three pion vertices The 3π-exchange term gives

a NLO contribution through the diagram (i) of Figure 4,

V
(0)
PVTV (3π) = −

5g3A1̄M

4fπ32
χ

π

[

(τ1z + τ2z)
ik · (σ 1 − σ 2)

ω2
k

+ (τ1z − τ2z)
ik · (σ 1 + σ 2)

ω2
k

]

×
(

(

1− 2m2
π

s2

)

s2A(k)+mπ

)

, (93)

where A(k) is given in Equation (74). Additional contributions
coming from diagram (i) deriving from the 1/M expansion
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of the energy denominators and vertex functions are here
neglected since they are counted as N3LO.

The diagram (j) in Figure 4 contributes to V
(3π)
PVTV at N2LO,

V
(1)
PVTV (3π) =

5gA1̄Mc1

2fπ32
χ

[

(τ1z + τ2z)ik · (σ 1 − σ 2)

+ (τ1z − τ2z)ik · (σ 1 + σ 2)
]

4
m2
π

ω2
k

L(k)

− 5gA1̄Mc2

6fπ32
χ

[

(τ1z + τ2z)ik · (σ 1 − σ 2)

+ (τ1z − τ2z)ik · (σ 1 + σ 2)
](

2L(k)+ 6
m2
π

ω2
k

L(k)
)

− 5gA1̄Mc3

4fπ32
χ

[

(τ1z + τ2z)ik · (σ 1 − σ 2)

+ (τ1z − τ2z)ik · (σ 1 + σ 2)
](

3L(k)+ 5
m2
π

ω2
k

L(k)
)

.

(94)

Note in Equation (94) the presence of the c1, c2, and c3 LECs,
which belong to the PCTC Lagrangian given in Equation (13).
In Equations (93) and (94), 1̄ is a renormalized LEC.

The 3π PVTV vertex gives rise to a three body interaction
through the diagram (k) in Figure 4. The lowest contribution
appears at NLO while at N2LO the various time orderings
cancel out [75]. The final expression for the NLO of the 3N
PVTV potential is,

V
(0)
PVTV (3N) =

1̄g3AM

4f 3π
(Eτ1 · Eτ2 τ3z + Eτ1 · Eτ3 τ2z + Eτ2 · Eτ3 τ1z)

× (ik1 · σ 1) (ik2 · σ 2) (ik3 · σ 3)

ω2
k1
ω2
k2
ω2
k3

, (95)

where ki = p′i − p. This expression is in agreement with that
reported in deVries et al. [68] and Bsaisou et al. [69].

3.5.1. The PVTV Current
The PVTV current up to now has been considered to arise from
the LO one-body contribution

JPVTV = −
A
∑

j=1

[

dp
1+ τjz

2
+ dn

1− τjz
2

]

i(σ j · q) , (96)

where dp (dn) is the proton (neutron) EDM. In nuclear
physics applications, it is customary to consider dp and
dn as unknown parameters, although they in principle can
be estimated in terms of the LECs entering the χEFT, as
we have seen in section 3.2.2. The complete derivation of
PVTV two-body currents has not been completed, though
partial results have been given in de Vries et al. [143] and
Bsaisou et al. [73].

4. PVTC AND PVTV POTENTIALS IN
PIONLESS EFT

In this section, we specifically focus on the few-nucleon contact
interactions which enter the potentials in both chiral and pionless
EFT formulations. We also discuss the expected hierarchy of the
corresponding LECs as suggested by the large-Nc analysis.

4.1. Effective Lagrangians
At distances much larger than the range of the interactions
mediated by pions, the pionic degrees of freedom can be
integrated out of the effective theory, and the relevant effective
Lagrangian can be written in terms of nucleon fields only,
interacting through contact vertices.

At leading order these vertices involve a single spatial
derivative of fields, responsible for parity violation. Time
derivatives can be eliminated recursively, using the equations
of motion order by order in the low-energy expansion. This
reflects our freedom in choosing the nucleon interpolating field,
and amounts to a definite choice of the off-shell behavior
of amplitudes. The theory can be formulated in terms of
non-relativistic nucleon fields represented by two-component
Pauli spinors Ns(x). The relativistic 1/M corrections, which
can in principle be worked out (see e.g., [185]) will be
of no interest here. Relativistic covariance requires that the
interactions depend on the relative momenta only (momentum-
dependent “drift” corrections, which vanish in the center-of-
mass frame of two nucleon systems, are part of the above
mentioned relativistic corrections). Thus, gradients of nucleon
fields in two-nucleon contact operators may only enter in
the combinations

∇(N†
s O1Ns)N

†
s O2Ns,

[(N†
s i
←→
∇ O1Ns)N

†
s O2Ns − N†

s O1Ns(N
†
s i
←→
∇ O2Ns)] , (97)

where (ai
←→
∇ b) ≡ a(i∇b) − (i∇a)b and the factor i,

meant to ensure the hermiticity, makes it odd under
time-reversal.

Since the underlying mechanism of parity violation in the
SM may induce 1I = 0, 1, 2 transitions (at least to order
G2
F), the effective Lagrangian will contain contact operators

which transform as isoscalars or the neutral components
of isovector and isotensors. In the two-nucleon case all
these flavor structures are real, and therefore unaffected by
the time-reversal operation, except for (Eτ1 × Eτ2)z , which
changes sign.

4.2. PVTC Lagrangian
Following the general considerations outlined above, there
are ten possible structures entering the two-nucleon contact
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Lagrangian in the PVTC case,

1I = 0



























OPVTC
1 = ∇ × (N†

s σNs) · N†
s σNs ,

OPVTC
2 = ∇ × (N†

s σ τ
aNs) · N†

s σ τ
aNs ,

OPVTC
1′ = (N†

s i
←→
∇ · σNs)N

†
s Ns − N†

s σNs · (N†
s i
←→
∇ Ns) ,

OPVTC
2′ = (N†

s i
←→
∇ · σ τ aNs)N

†
s τ

aNs

−N†
s στ

aNs · (N†
s i
←→
∇ τ aNs) ,

1I = 1







































OPVTC
3 = ǫab3∇ · (N†

s στ
aNs)N

†
s τ

bNs ,

OPVTC
4 = ∇ × (N†

s σ τ
3Ns) · N†

s σNs ,

OPVTC
3′ = (N†

s i
←→
∇ · σ τ 3Ns)N

†
s Ns

−N†
s στ

3Ns · (N†
s i
←→
∇ Ns) ,

OPVTC
4′ = (N†

s i
←→
∇ · σNs)N

†
s τ

3Ns

−N†
s σNs · (N†

s i
←→
∇ τ 3Ns) ,

1I = 2















OPVTC
5 = Iab∇ × (N†

s στ
aNs) · N†

s στ
bNs ,

OPVTC
5′ = Iab

[

(N†
s i
←→
∇ · σ τ aNs)N

†
s τ

bNs

− N†
s στ

aNs · (N†
s i
←→
∇ τ bNs)

]

.

(98)
The Fermi statistics of nucleon fields, together with Fierz’s
reshuffling of spin-isospin indices allow to establish linear
relations between primed and unprimed operators,

OPVTC
1′ = 1

2

(

OPVTC
1 + OPVTC

2

)

,

OPVTC
2′ = 1

2

(

3OPVTC
1 − OPVTC

2

)

,

OPVTC
3′ = OPVTC

3 + OPVTC
4 ,

OPVTC
4′ = −OPVTC

3 + OPVTC
4 ,

OPVTC
5′ = OPVTC

5 ,

(99)

thus reducing the number of independent operators to five, so
that the effective Lagrangian can be written as

L
(1)
PVTC,NN =

1

32
χ fπ

[1

2
C1O

PVTC
1 + 1

2
C2O

PVTC
2 + C3O

PVTC
3

+ C4O
PVTC
4 + 1

2
C5O

PVTC
5

]

, (100)

where Ci are LECs. This Lagrangian is identical to that reported
in Equation (23). From this Lagrangian, one can derive the
potential given in Equation (60).

The five LECs are in a one-to-one correspondence with the
possible S-P transitions in two-nucleon systems [45], namely 1S0-
3P0 (1I = 0, 1, 2), 3S1-

1P1 (1I = 0) and 3S1-
3P1 (1I = 1).

This may be shown explicitly by using the spin-isospin projection
operators [45, 186–188]

P0,0 =
1√
8
σ2τ2 , P0,a =

1√
8
σ2τ2τa , Pi,0 =

1√
8
σ2σiτ2 ,

Pi,a =
1√
8
σ2σiτ2τa , (101)

normalized according to

TrPµ,αP
†
ν,β =

1

2
δµνδαβ , µ(ν) = 0, i(j) ,

α(β) = 0, a(b) , (102)

such that the operator (NT
s Pµ,αNs)

† creates a correctly
normalized two-nucleon state with the appropriate spin-isospin
quantum numbers. The relevant operators [188]

O
(1S0−3P0)
1I=0 = (NT

s σ
2τ 2τ aNs)

†(NT
s i
←→
∇ · σ 2

σ τ 2τ aNs)+ h.c. ,

O
(1S0−3P0)
1I=1 = −iǫab3(NT

s σ
2τ 2τ aNs)

†(NT
s i
←→
∇ · σ 2

στ 2τ bNs)+h.c. ,
O
(1S0−3P0)
1I=2 = Iab(N

T
s σ

2τ 2τ aNs)
†(NT

s i
←→
∇ · σ 2

στ 2τ bNs)+ h.c. ,

O
(3S1−1P1)
1I=0 = (NT

s σ
2
στ 2Ns)

† · (NT
s i
←→
∇ σ 2τ 2Ns)+ h.c. ,

O
(3S1−3P1)
1I=1 = (NT

s σ
2
στ 2Ns)

† · (NT
s

←→
∇ × σ 2

στ 2τ 3Ns)+ h.c. ,
(103)

are related to the original basis via Fierz’s transformations
as follows,

O
(1S0−3P0)
1I=0 = 3OPVTC

1 + OPVTC
2 ,

O
(1S0−3P0)
1I=1 = 4OPVTC

4 ,

O
(1S0−3P0)
1I=2 = −2OPVTC

5 ,

O
(3S1−1P1)
1I=0 = −OPVTC

1 + OPVTC
2 ,

O
(3S1−3P1)
1I=1 = −4OPVTC

3 ,

(104)

whence one can read the relation between the partial-waves
projected LECs and the Ci. The potential derived from the
operators given in Equation (103) has been often used in studies
of PVTC observables. It is given explicitly as [37, 39]

V
(1)
PVTC(GHH) = 1

2Mm2
ρ

{

3
(1S0−3P0)
1I=0

[

2(σ 1 − σ 2) · K

+ i(σ 1 × σ 2) · k
]

+ 3
(3S1−1P1)
1I=0

[

2(σ 1 − σ 2) · K − i(σ 1 × σ 2) · k
]

+ 3
(1S0−3P0)
1I=1 (τ1z + τ2z)2(σ 1 − σ 2) · K

+ 3
(3S1−3P1)
1I=1 (τ1z − τ2z)2(σ 1 + σ 2) · K

+ 3
(1S0−3P0)
1I=2 Iabτ1aτ2b

2√
6
(σ 1 − σ 2) · K

}

, (105)

where the five LECs3
(...)
1I are in one-to-one correspondence with

C1−5. Explicitly

3
(1S0−3P0)
1I=0 = κ

2
(C1 + C2) ,

3
(3S1−1P1)
1I=0 = κ

2
(3C2 − C1) ,

3
(1S0−3P0)
1I=1 = κC4 , (106)

3
(1S1−3P1)
1I=1 = κC3 ,

3
(1S0−3P0)
1I=2 =

√
6κC5 ,

where κ = 2Mm2
ρ/fπ3

2
χ .
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4.3. PVTV Lagrangian
The T-odd sector is very similar (see also [189]): one starts with
a list of 10 redundant operators,

1I = 0



















OPVTV
1 = ∇ · (N†

s σNs)N
†
s Ns ,

OPVTV
2 = ∇ · (N†

s στ
aNs)N

†
s τ

aNs ,

OPVTV
1′ = (N†

s i
←→
∇ × σNs) · N†

s σNs ,

OPVTV
2′ = (N†

s i
←→
∇ × στ aNs) · N†

s στ
aNs ,

1I = 1











































OPVTV
3 = ∇ · (N†

s στ
3Ns)N

†
s Ns ,

OPVTV
4 = ∇ · (N†

s σNs)N
†
s τ

3Ns ,

OPVTV
3′ = (N†

s i
←→
∇ × στ 3Ns) · N†

s σNs

+(N†
s i
←→
∇ × σNs) · N†

s στ
3Ns ,

OPVTV
4′ = ǫab3

[

(N†
s i
←→
∇ · στ aNs)N

†
s τ

bNs

+ (N†
s i
←→
∇ τ aNs) · N†

s σ τ
bNs

]

,

1I = 2

{

OPVTV
5 = Iab∇ · (N†

s στ
aNs)N

†
s τ

bNs ,

OPVTV
5′ = Iab(N

†
s i
←→
∇ × στ aNs) · N†

s στ
bNs ,

(107)
and uses Fierz’s identities to establish the linear relations,

OPVTV
1′ = −OPVTV

1 − OPVTV
2 ,

OPVTV
2′ = −3OPVTV

1 + OPVTV
2 ,

OPVTV
3′ = −2OPVTV

3 − 2OPVTV
4 , (108)

OPVTV
4′ = −2OPVTV

3 + 2OPVTV
4 ,

OPVTV
5′ = −2OPVTV

5 ,

so that the Lagrangian only depends on five LECs,

L
(1)
PVTV ,NN =

1

32
χ fπ

5
∑

i=1
C̄iO

PVTV
i , (109)

from which one can derive the potential given in Equation (91).
The five S-P transition operators only differ from the T-even

case by a factor i,

Ō
(1S0−3P0)
1I=0 = (NT

s σ
2τ 2τ aNs)

†(NT
s

←→
∇ · σ 2

σ τ 2τ aNs)+ h.c. ,

Ō
(1S0−3P0)
1I=1 = ǫab3(NT

s σ
2τ 2τ aNs)

†(NT
s i
←→
∇ · σ 2

σ τ 2τ bNs)+ h.c. ,

Ō
(1S0−3P0)
1I=2 = Iab(N

T
s σ

2τ 2τ aNs)
†(NT

s

←→
∇ · σ 2

στ 2τ bNs)+ h.c. ,

Ō
(3S1−1P1)
1I=0 = (NT

s σ
2
σ τ 2Ns)

† · (NT
s

←→
∇ σ 2τ 2Ns)+ h.c. ,

Ō
(3S1−3P1)
1I=1 = (NT

s σ
2
σ τ 2Ns)

† · (NT
s i
←→
∇ × σ 2

στ 2τ 3Ns)+ h.c. ,
(110)

related to the original basis as follows,

Ō
(1S0−3P0)
1I=0 = 6OPVTV

1 + 2OPVTV
2 ,

Ō
(1S0−3P0)
1I=1 = −4OPVTV

3 − 4OPVTV
4 ,

Ō
(1S0−3P0)
1I=2 = −4OPVTV

5 , (111)

Ō
(3S1−1P1)
1I=0 = 2OPVTV

1 − 2OPVTV
2 ,

Ō
(3S1−3P1)
1I=1 = 4OPVTV

3 − 4OPVTV
4 .

4.4. Constraints From the Large-Nc Limit
In 1974 ’t Hooft combined the large-Nc and the small coupling
limit, with g2s Nc fixed [190], and showed that QCD considerably
simplifies, while maintaining many of the features of the actual
theory, becoming a theory of stable hadrons. The baryons emerge
as dense systems of many quarks, subjected to a mean field
potential [191]. Nucleon-nucleon interactions exhibit in this
limit a spin-flavor symmetry [192–194]. Indeed, due to the fact
that nucleons carry definite spin and isospin ofO(1), interactions
inducing a change in either spin or isospin are suppressed
relative to the dominant O(Nc) ones, that are either spin-isospin
independent (∼ 1) or dependent on both (∼ στ ). The large-
Nc counting of momenta follows from the observation that the
nucleon-nucleon scattering amplitude is in this limit a sum of
meson exchange poles, each one depending only on the relative
momentum transfer. The average relative momenta can only
appear as relativistic corrections, which are suppressed by inverse
powers ofM ∼ O(Nc).

Apparently the resulting scaling laws do not conform with
the operator identities (99) and (108) and seem to imply a
dependence on the choice of operator basis. However, one can
start with the redundant set of operators, pertinent to a theory of
distinguishable nucleons, since the large-Nc arguments outlined
above are completely general and do not rely on the statistics of
the interacting baryons (the only assumption is that they both
carry spin and isospin of O(1)). As a result one obtains the
large-Nc scaling of the LECs in the PVTV contact potential,

C2 ∼ C5 ∼ O(1) ,
C3 ∼ C4 ∼ C3′ ∼ O(1/Nc) ,
C1 ∼ C1′ ∼ C2′ ∼ C5′ ∼ O(1/N2

c ) ,
C4′ ∼ O(1/N3

c ) ,

(112)

and in the PVTV one,

C̄3 ∼ O(1) ,
C̄1 ∼ C̄2 ∼ C̄2′ ∼ C̄5 ∼ C̄5′ ∼ O(1/Nc) ,
C̄4 ∼ C̄3′ ∼ C̄4′ ∼ O(1/N2

c ) ,
C̄1′ ∼ O(1/N3

c ).

(113)

Therefore we have only two leading LECs in the PVTC potential
(C2 and C5 corresponding to 1I = 0, 2 respectively) and only
one in the PVTV potential (C̄3 with 1I = 1) [47, 150]. This
feature largely increases the predictive power for low-energy
hadronic parity violation, and allows one to put more severe
constraints on the forthcoming experimental results. Notice
however that the above results are obtained by simply projecting
the Hartree Hamiltonian in the nucleon-nucleon sector. A
consistent treatment would require consideration of the induced
effect on NN contact vertices of 1 exchanges, since the latter are
enhanced, in the large-Nc limit, due to the degeneracy between
nucleon and delta masses implied by the spin-flavor symmetry.

Moreover, for the PVTV case, this picture is obscured by the
fact that the magnitude of the five contact LECs depends strongly
on the particular type of the CP-violating source at the quark
level. For example, the QCD θ̄ term conserves isospin symmetry
such that C̄3,4,5 are suppressed by powers of εǫmπ compared to
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C̄1,2 (see Table 1). Despite the possible 1/Nc suppression of C̄1,2

compared to C̄3 the former are still expected to dominate.

5. ONE-MESON EXCHANGE MODELS

In the past, a simple and rather efficient description of the strong
PCTC NN interaction was obtained in terms of a sum of single
meson exchanges [195, 196]. These models began to be popular
on account of the discovery of various meson resonances during
the sixties. The potentials were generally constructed taking into
account the exchanges of pions (JP = 0−, mπ = 138 MeV),
η-mesons (JP = 0−, mη = 550 MeV), and ρ- and ω-mesons
(JP = 1−, mρ,ω = 770, 780 MeV), but clearly, the number of
mesons to be included is somewhat arbitrary. This picture has
been extended also to describe PVTC and PVTV interactions,
simply considering single meson exchanges where one vertex is
strong and PCTC, while the other violates P and conserves T or
violates both P and T. Then, all the dynamics of such interactions
is contained in a number of PVTC and PVTC nucleon-nucleon-
meson (NNM) coupling constants.

One starts by writing the Lagrangian consistent of Yukawa-
like NNM vertices, invariant under the proper Lorentz
transformations, and either conserving or violating the discrete
P, C, T symmetries. The building blocks of the Lagrangian are
therefore nucleon bilinears multiplied by a meson field arranged
so that Lorentz symmetry is satisfied. For the construction of the
PCTC Lagrangian, one usually includes only isospin-conserving
terms. However, for the PVTC and PVTV Lagrangians, isospin-
changing terms must be included since the underlying operators
at the quark level are not necessarily isospin symmetric. A
summary of the transformation properties of nucleon bilinears
with different elements of the Clifford algebra and the various
meson fields under hermitian conjugation (H), parity P, and
charge conjugation C are reported in Table 2.

Using these properties it is not difficult to write the
Lagrangians. For example, the strong LPCTC Lagrangian
constructed with these mesons is given by (here we list only
isospin -conserving terms)

LPCTC = gπ N̄iγ5Eτ · EπN + gηN̄iγ5ηN

− gρN̄
(

γ µ − i
χV

2M
σµνqν

)

Eτ · EρµN

− gωN̄
(

γ µ − i
χS

2M
σµνqν

)

ωµN , (114)

where qµ is the mesonmomentum7, πa, ρ
µ
a , η, andω

µ are meson
fields and gπ , . . . PCTC coupling constants. Above, χV and χS
are the ratios of the tensor to vector coupling constant for ρ and
ω, respectively. Assuming vector-meson dominance [197], they
can be related to the iso-vector and iso-scalar magnetic moments
of a nucleon (χV = 3.70 and χS = −0.12). Note that the

7More appropriately, these Lagrangian terms should be written in terms of four-

gradients. For example

N̄i
χV

2M
σµνqν Eτ · EρµN →−N̄

χV

2M

[

∂ν , σ
µν Eτ · Eρµ

]

N .

where [, ] denotes the commutator.

pion and rho-meson are isospin triplets, therefore the fields have
the isospin index a = 1, . . . , 3. Moreover, the rho- and omega-
mesons have spin 1, and their fields correspondingly are vector
fields with index µ = 0, . . . , 3.

Let us now consider the PVTC Lagrangian constructed in
terms of the same mesons. In this case one has to take into
account Barton’s theorem [198], which asserts that exchange
of neutral and spinless mesons between on-shell nucleons is
forbidden by CP invariance, and therefore they cannot enter in
a PVTC Lagrangian. Therefore only π±, ρ, and ω vertices need
to be considered and the form of the PVTC effective Lagrangian
is [131]

LPVTC =
h1π√
2
N̄(Eπ × Eτ )3N

+N̄
(

h0ρ Eτ · ( Eρ)µ + h1ρρ
µ
3 +

h2ρ

2
√
6
(3τ3ρ

µ
3 − Eτ · ( Eρ)µ)

)

γµγ5N

+N̄(h0ωω
µ + h1ωτ3ω

µ)γµγ5N − h
′1
ρ N̄(Eτ × ( Eρ)µ)3

σµνq
ν

2M
γ5N ,

(115)

where h1π , . . . are PVTC coupling constants to be determined.
As discussed also in section 3, where we focused in particular
on the pion-nucleon PVTC constant h1π , attempts to estimate
the magnitude of these couplings from the fundamental theory
were reported in several papers [121–127]. In particular, in the
DDH paper [50], the authors presented reasonable ranges inside
of which these parameters were extremely likely to be found,
together with a set of “best values” (see Table 3). Clearly, these
values have to be considered as educated guesses in view of all
the uncertainties of their evaluation. Of the seven unknown weak
couplings h1π , h

0
ρ , . . ., there are estimates that indicate that h

′1
ρ is

quite small [199] and this term was generally omitted, leaving
PVTC observables to be described in terms of six constants.
Notice further that the DDH parameters were also considered
using a soliton description of the nucleon in [200] and [130].

In the same manner, we can write the PVTV Lagrangian
composed of NNM vertices [142, 201]

LPVTV = N̄[ḡ0π Eτ · Eπ + ḡ1ππ3 + ḡ2π (3τ3π3 − Eτ · Eπ)]N
+ N̄[ḡ0ηη + ḡ1ητ3η]N

+ N̄
1

2M
[ḡ0ρ Eτ · ( Eρ)µ + ḡ1ρρ

µ
3

+ ḡ2ρ(3τ3ρ
µ
3 − Eτ · ( Eρ)µ)]σµνqνγ5N

+ N̄
1

2M
[ḡ0ωωµ + ḡ1ωτ3ωµ]σ

µνqνγ5N , (116)

where ḡiα , i = 0, 1, 2, are PVTV meson-nucleon coupling
constants. In this case, there were no attempts to obtain the values
of these coupling constants from the fundamental theory, as also
the magnitude of the parameters entering the underlying theory
is unknown.

From these Lagrangians, the PVTC and PVTV interactions
are obtained as a sum of single-meson exchange diagrams.
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TABLE 2 | Transformation properties of fermion bilinears with different elements of the Clifford algebra and various meson fields under hermitian conjugation (H), parity (P),

and charge conjugation (C).

NN Ni γ5N NγµN Nγµγ5N NσµνN πa ρa η ω

H + + + + + + + + +

P + – + – + – + – +

C + + – + – (−)a+1 −(−)a+1 + –

Note that the pion and rho-meson fields are isospin triplets, a = 1, 2, 3.

TABLE 3 | Weak NNM couplings as estimated in Desplanques et al. [50].

DDH [50] DDH [50]

Coupling Reasonable

range

“Best” value

h1π 0→ 30 12

h0ρ 30→−81 −30
h1ρ −1→ 0 −0.5
h2ρ −20→−29 −25
h0ω 15→−27 −5
h1ω −5→−2 −3

All numbers are quoted in units of the value 3.8× 10−8.

Regarding PVTC, below we report the potential in the form
obtained by DDH [50]

VPVTC = −
gπh

1
π

2
√
2M

i(Eτ1 × Eτ2)z
(σ 1 + σ 2) · k
k2 +m2

π

− gρ

M

[

Eτ1 · Eτ2 h0ρ +
(τ1z + τ2z)

2
h1ρ +

3τ1zτ2z − Eτ1 · Eτ2
2
√
6

h2ρ

]

×
[

2(σ 1 − σ 2) · K + (1+ χV )i(σ 1 × σ 2) · k
k2 +m2

ρ

]

− gω

M

[

h0ω +
(τ1z + τ2z)

2
h1ω

]

×
[

2(σ 1 − σ 2) · K + (1+ χS)i(σ 1 × σ 2) · k
k2 +m2

ω

]

+
[

gρh
1
ρ

M

(τ1z − τ2z)(σ 1 + σ 2) · K
k2 +m2

ρ

]

−
[

gωh
1
ω

M

(τ1z − τ2z)(σ 1 + σ 2) · K
k2 +m2

ω

]

−
[

gρh
1 ′
ρ

2M

i(Eτ1 × Eτ2)z(σ 1 + σ 2) · k
k2 +m2

ρ

]

, (117)

where k and K are defined in Equation (46). Often the potential

is regularized for large values of k, modifying the meson

propagators so that 1/(k2 + m2
x) → f3x (k

2)/(k2 + m2
x), where

x = π , ρ, and ω. For example, in Schiavilla et al. [202] the

following regularization was chosen

1

k2 +m2
x

→ 1

k2 +m2
x

(

32
x −m2

x

32
x + k2

)2

, (118)

For example, the parameters 3π , 3ρ , and 3ω were chosen
to have the same value 2.4 GeV in Schiavilla et al. [203] and
Schiavilla et al. [202]. However, the cutoff functions f3x (k

2) were
not always applied and also their form can vary.

Several PVTC observables have been studied using the DDH
potential, with the aim to identify the values of the six or
seven coupling constants, see for example [34, 36, 37]. Up to
now the lack of accurate experimental values has prevented the
completion of this task.

Usually, the experiments are analyzed in terms of the DDH
parameters. In the next Section, we will present a discussion of
the experimental values within the χEFT framework. In order
to make contact between the two approaches, we briefly discuss
the relation between DDH and χEFT PVTC potentials. The
OPE term is clearly the same, while in the DDH approach all
the TPE terms are missing. They can be considered effectively
included via the heavy-meson exchanges, however the ρ and
ω masses are larger than 2mπ , which is the range of the TPE
contributions. More precisely, the heavy meson exchange terms
should be considered as equivalent to the five contact terms in the
chiral potential multiplied by the LECs Ci. Keeping this in mind,
we can match the components of the DDH potential mediated by

ρ and ω exchanges to those ofV
(1)
PVTC(CT), and obtain in the limit

k≪mρ ,mω [42, 46]

C
(DDH)
1 = −3

2
h0ρDρ − h0ω

(

3

2
+ χS

)

Dω , (119)

C
(DDH)
2 = −h0ρ

(

1

2
+ χV

)

Dρ −
1

2
h0ωDω , (120)

C
(DDH)
3 = −1

2
(h1
′
ρ − h1ρ)Dρ −

1

2
h1ωDω, (121)

C
(DDH)
4 = −1

2
h1ρ(2+ χV )Dρ −

1

2
h1ω(2+ χS)Dω , (122)

C
(DDH)
5 = − 1

2
√
6
h2ρ(2+ χV )Dρ , (123)

where

Dρ = gρ
32
χ

m2
ρ

fπ

M

(

1−
m2
ρ

32
ρ

)2

, (124)

Dω = gω
32
χ

m2
ω

fπ

M

(

1− m2
ω

32
ω

)2

. (125)
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Using the “best” values for the DDH parameters given in Table 3

(the other coupling constants and parameters have been taken
from Schiavilla et al. [203]), we obtain, for example, the following
estimates (in units of 10−7):

C
(DDH)
1 ≈ 17 , C

(DDH)
2 ≈ 30 , C

(DDH)
3 ≈ 1 ,

C
(DDH)
4 ≈ 5 , C

(DDH)
5 ≈ 7 . (126)

The large value of C
(DDH)
2 is due to the tensor coupling constant

χV ≃ 3.7 of the ρ-meson to the nucleon. Clearly, these
values should be taken only as indicative, since terms in the
DDH vector-meson potential implicitly also account for TPE
components, which in the χEFT PVTC potential are included
explicitly. Relations where the TPE contributions are subtracted
from the results above and the estimations of the LECs Ci within
the soliton picture of the nucleon are given in de Vries et al. [46].

The PVTV potential was derived in Haxton and Henley [204],
Gudkov et al. [205], Towner and Hayes [206], and Liu and
Timmermans [142]. The momentum space version reads

VPVTV = +
gπ

2M

[

ḡ0π Eτ1 · Eτ2 + ḡ1π
(τ1z + τ2z)

2

+ ḡ2π (3τ1zτ2z − Eτ1 · Eτ2)
]

i(σ 1 − σ 2) · k
m2
π + k2

− gρ

2M

[

ḡ0ρ Eτ1 · Eτ2 + ḡ1ρ
(τ1z + τ2z)

2

+ ḡ2ρ(3τ1zτ2z − Eτ1 · Eτ2)
]

i(σ 1 − σ 2) · k
m2
ρ + k2

+ gη

2M

[

ḡ0η + ḡ1η
(τ1z + τ2z)

2

]

i(σ 1 − σ 2) · k
m2
η + k2

− gω

2M

[

ḡ0ω + ḡ1ω
(τ1z + τ2z)

2

]

i(σ 1 − σ 2) · k
m2
ω + k2

+
[

gπ ḡ
1
π

4M

(τ1z − τ2z)i(σ 1 + σ 2) · k
k2 +m2

π

]

+
[

gρ ḡ
1
ρ

4M

(τ1z − τ2z)i(σ 1 + σ 2) · k
k2 +m2

ρ

]

−
[

gη ḡ
1
η

4M

(τ1z − τ2z)i(σ 1 + σ 2) · k
k2 +m2

η

]

−
[

gω ḡ
1
ω

4M

(τ1z − τ2z)i(σ 1 + σ 2) · k
k2 +m2

ω

]

. (127)

Also in this case, cut off functions can be applied in order to
regularize the large k behavior ofVPVTV. It is worthwhile to stress
that the PVTV meson-exchange potential involves significantly
more parameters than the LO PVTV chiral potential which
depends in principle only on 4 LECs ḡ0,1 and C̄1,2, with ḡ2, 1̄, and
C̄3,4,5 appearing at subleading orders. While the meson-exchange
potential can be mapped onto the short-distance C̄i operators,
the dynamics from the 3-pion 1̄ interaction is not captured in
this way.

6. SELECTED RESULTS FOR VARIOUS
PVTC AND PVTV OBSERVABLES

In this section we present a selection of results obtained with
the chiral EFT potentials and currents described in section 3 for
various PVTC and PVTV observables. We will discuss first in
the next four subsections the parity violation in (i) the radiative
neutron capture on the proton, (ii) the longitudinal asymmetry in
Epp scattering, (iii) the longitudinal asymmetry in the 3He(En, p)3H
reaction, and (iv) the En-p and En-d spin rotations, respectively.
Finally, in the last subsection, we present some results for the
EDM of light nuclei. Our motivation to include these results
in the review is mainly to establish benchmarks to help future
applications. We include also a “minimum” analysis how the
current experimental data constrain some of the values of the
LECs entering the χEFT interactions.

Results obtained using the pionless EFT can be found, for
example, in Schindler and Springer [36], Haxton and Holstein
[37], and Gardner et al. [39]. The meson-exchange potentials (in
particular the DDH model) were used to analyze the results of
several experiments of PVTC observables also in medium and
heavy nuclei. For a summary of the obtained results, see, for
example, [34, 39, 131]. Calculations of the EDM of light nuclei
using the meson exchange potential were performed in Liu and
Timmermans [142], Song et al. [207], and Yamanaka [208].

6.1. Parity Violation in Radiative Neutron
Capture on the Proton
The radiative neutron capture on the proton Enp → dγ , where d
denotes the deuteron and En a longitudinally polarized neutron,
represents a very interesting process wherein to study PVTC
effects in nuclear physics. The longitudinal analyzing power for
this process is defined as

Aγ (θ) =
dσ+(θ)− dσ−(θ)
dσ+(θ)+ dσ−(θ)

= aγ cos θ , (128)

where dσ±(θ) is the differential cross section for positive/negative
helicity neutrons, and θ is defined as the angle between the
neutron spin and the outgoing photon momentum. aγ has been
measured by several experiments during the past decades. The
first non-zero signal was reported last year for incoming neutrons
of thermal energies [209],

aγ = (−3.0± 1.4± 0.2) · 10−8 . (129)

although this number is only two standard deviations away from
a null result.

The theoretical asymmetry is given by

aγ =
(

−
√
2 Re

[

M∗1 (
1S0)E1(

3S1)+ E∗1(
1S0)M1(

3S1)
]

+Re
[

E∗1(
3S1)M1(

3S1)
]

)

×
(

|M1(
1S0)|2 + |E1(1S0)|2 + |M1(

3S1)|2 + |E1(3S1)|2
)−1

,

(130)
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where Xℓ(
2S+1SJ) are reduced matrix elements (RMEs) either of

electric (X = E) or magnetic (X = M) type, of multipolarity ℓ,
and describing the EM transition from the n − p system in the
scattering state 2S+1SJ [203].

Compared to the PVTC longitudinal analyzing power in
proton-proton scattering discussed later, aγ carries a significant
advantage. The initial neutron-proton system can be in the 3S1
state, so that the process is sensitive to the 3S1 ↔ 3P1 transition
and thus depends on the LO PVTC NN potential. In chiral
EFT, the LO potential depends only on the LEC h1π , meaning
that measurements of aγ provide a unique chance to pin down
the value of this LEC – something that is much more difficult
to achieve in proton-proton scattering, where the contribution
of the LO potential vanishes. The disadvantage is that Enp →
dγ is an electromagnetic process and therefore depends on
P-conserving and P-violating electromagnetic currents.

As can be seen from Equation (130), a non-zero value of
aγ requires interference between electric and magnetic dipole
currents. As such, including only the leading magnetic moment
current in the presence of the LO PVTC NN potential leads to a
vanishing result and NLO currents are necessary. There are then
three relevant contributions that consist of interference between
the isovector nucleon magnetic moment and

1. The one-body convection current in combination with the
PVTC NN potential,

2. The two-body PCTC currents in combination with the PVTC
NN potential,

3. The two-body PVTC currents.

Each of these contributions is sizeable: a1γ = (−0.27 ± 0.03)h1π ,

a2γ = (−0.53 ± 0.02)h1π , and a3γ = (0.72 ± 0.03)h1π where the
theoretical error bands are obtained from cut-off variations in the
strong NN potential and do not reflect uncertainties from higher-
order contributions [173]. While these uncertainties are small on
the individual contributions, they lead to a sizeable uncertainty
in the total analyzing power [173]

aγ = a1γ + a2γ + a3γ = (−0.11± 0.05)h1π . (131)

The cancellations between the different contributions are related
to gauge invariance [173, 203, 210] and this explains the relatively
large total theoretical uncertainty. While the electromagnetic
currents given above are explicitly gauge invariant as they
result from the gauge-invariant χEFT Lagrangian, explicit gauge
invariance is lost due to applied regulator when solving the NN
scattering and bound-state equations. Future calculations can
probably reduce the uncertainty by using regulators that do not
violate explicit gauge invariance, but such schemes have not been
applied to PVTC processes. Alternatively, it is possible to apply
the Siegert theorem to relate part of the electric dipole currents
to the one-body charge density. Schiavilla et al. [211] applied the
Siegert theorem in combination with phenomenological strong
potentials to calculate aγ finding a result in good agreement
with the central value in Equation (131). Such calculations
however do not include an uncertainty estimate, for instance
from missing transverse currents that are not included when
applying the Siegert theorem. In this light, Equation (131) can
be interpreted as a conservative result. It would be interesting to

redo the calculation of aγ in an updated framework to reduce the
theoretical uncertainty.

The contribution to aγ from the short range components of
the potential is considered to be negligible. For example, using
the meson-exchange model, the calculations have shown that
aγ is essentially unaffected by short-range contributions [203,
212–214], represented in this case by ρ and ω exchanges.
Within χEFT, a resonance saturation estimate of the short-
distance LECs contributing to the asymmetry led to short-
distance contributions to aγ of roughly 5 · 10−9 and is thus very
small [173]. Therefore, considering the theoretical expression
given in Equation (130) and the experimental value given in
Equation (129), we obtain an estimate for the LEC h1π

h1π = (2.7± 1.8)× 10−7 . (132)

Note that the large experimental error and the large theoretical
uncertainty only allow one to establish the positive sign and that
the magnitude of this LEC is consistent with the preliminary
Lattice QCD evaluation reported in Equation (26) [132].

6.2. Parity Violation in Epp Scattering
PVTC effects in proton-proton scattering can be studied by
looking at the longitudinal analyzing power Az(E, θ) defined as,

Az(E, θ) =
σ+(θ ,E)− σ−(θ ,E)
σ+(θ ,E)+ σ−(θ ,E)

, (133)

where θ is the scattering angle and E the energy of the protons
in the laboratory frame, and σ+(θ ,E)(σ−(θ ,E)) the cross section
when the polarization of the incoming proton is parallel (anti-
parallel) to the beam direction. Actually the experiments detect
the particles scattered in angular range [θ1, θ2] and the measured
quantity is an “average” of the asymmetry over the total cross-
section in this range, explicitly

Az(E) =
∫

θ1≤θ≤θ2 d cos θ Az(θ ,E)σ (θ ,E)
∫

θ1≤θ≤θ2 d cos θ σ (θ ,E)
, (134)

where

σ (θ ,E) = 1

2

(

σ+(θ ,E)+ σ−(θ ,E)
)

(135)

is the unpolarized differential cross-section for the process. There
exist several measurements of the angle-averaged Epp longitudinal
asymmetry Az(E), see Equation (134), obtained at different
laboratory energies E [215–218]. The measurements and the
angle ranges included in our analysis are reported in Table 4. The
other “non-zero” measurement reported in the literature but not
included in our analysis was performed at E = 15 MeV, with the
result Az = −1.7± 0.8 [216].

The isospin state of two proton system is |pp〉 ≡ |T = 1,Tz =
1〉, implying that the LO contribution that comes from the OPE
vanishes and the LEC h1π will contribute to the observable only via
the TPE box diagrams that appear at NLO andN2LO. Taking into
account the isospin selection rules, the longitudinal asymmetry
can be written as

Az = h1π a
(pp)
0 + C a

(pp)
1 + h̃ a

(pp)
2 , (136)
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TABLE 4 | Values of Az and angle ranges for the three measurements of the Epp
longitudinal analyzing power [215, 217, 218].

E (MeV) Az (10
−7) (θ1, θ2)

13.6 −0.97± 0.20 (20◦, 78◦)

45 −1.53± 0.21 (23◦, 52◦)

221 +0.84± 0.34 (5◦, 90◦)

TABLE 5 | Values of the coefficients a
(pp)
i calculated with the χEFT N2LO PVTC

potential described in section 3.4 and the N4LO PCTC potential derived in Entem

et al. [18] at three energies corresponding to the experimental data points.

E [MeV] a
(pp)
0 (NLO) a

(pp)
0 (N2LO) a

(pp)
0 (TOT) a

(pp)
1 a

(pp)
2

13.6 0.289 0.160 0.449 −0.044 −0.215
45 0.595 0.355 0.950 −0.084 −0.475
221 −0.281 −0.187 −0.468 0.036 0.251

The PVTC potential has been regularized as in Equation (86) adopting the value3C = 500

MeV for the cutoff parameter. The PCTC potential has been regularized with the same

value of the cutoff parameter. For the coefficient a
(pp)
0 we give separately the contributions

of the NLO and N2LO terms only and then their sum, see Equation (139).

where the first two terms are NLO contributions and the third
term enters at N2LO. We have defined

C = C1 + C2 + 2 (C4 + C5) , (137)

h̃ = 5gA

4
h0V + 2

( gA

4
h1V − h1A

)

− 2
(gA

3
h2V + h2A

)

, (138)

and a
(pp)
0 , a

(pp)
1 , a

(pp)
2 are numerical coefficients independent of

the LEC values (but depending on the energy). The values of the

coefficients a
(pp)
0 , a

(pp)
1 , and a

(pp)
2 calculated with the χEFT N2LO

PVTC potential described in section 3.4 and the N4LO PCTC
potential derived in Entem et al. [18] are reported in Table 5. The
only coefficient which receives contributions from both the NLO

and N2LO potentials is a
(pp)
0 . In the table, we report separately the

two contributions and also the total contribution, given simply as

a
(pp)
0 (TOT) = a

(pp)
0 (NLO)+ a

(pp)
0 (N2LO) ,

a
(pp)
0 (N2LO) = c4a

(pp)
0 (4) . (139)

The value of a
(pp)
0 (N2LO) has been obtained assuming a value

c4 = 3.56 GeV−1 [219]. This correction to a
(pp)
0 is of the order

of ∼ 50% with respect to the NLO value, somewhat larger than
expected. This is related by the unnaturally large value of the
πNN LEC c4 appearing in the PCTC Lagrangian (13). This value
has been obtained from the Roy-Steiner analysis of πN scattering
data at N2LO performed in Hoferichter et al. [219].

Unfortunately, of the performed measurements, the two at
the lowest energy do not give independent information. In fact,
the observable Az at low energy scales as

√
E, since its energy

dependence in this energy range is driven solely by that of the
S-wave (strong interaction) phase shift [220]. Because of this

FIGURE 5 | Region of C and h̃ values for which χ2 ≤ 2 for the Ep -p
longitudinal asymmetry. The calculation is based on the coefficients a

(pp)
0 , a

(pp)
1 ,

and a
(pp)
2 reported in Table 5 assuming the value h1π = 2.7× 10−7.

scaling, it is not possible to fit from these data all three LECs h1π ,

C, and h̃ at the same time. If we fix the value h1π = 2.7×10−7 from
the central value as extracted from the Enp → dγ observable, see
Equation (132), then we can perform a χ2 analysis of the three
data points listed in Table 4 in order to fix the values of C and

h̃. Note that this value of h1π was obtained from the Enp → dγ
calculation performed in de Vries et al. [173] using a different

PCTC potential than that one used compute the a
(pp)
i coefficients.

However, since the Enp → dγ experiment depends mainly on
the peripheral regions of the process, the value of aγ is not
very sensitive to the PCTC interaction (see also the calculations
reported in [221]).

First of all, if we restrict ourselves to an NLO analysis, using
h1π = 2.7 × 10−7 we would obtain C = (49 ± 2) · 10−7. If we
take into account also the N2LO LEC, we report in Figure 5 the

C and h̃ values for which χ2 ≤ 2, which form an elliptic region.
As can be seen, there appears to be a strong correlation between C

and h̃ and the range of allowed values of the LECs is rather large

5× 10−7 < C < 67× 10−7 and−1.5× 10−7 < h̃ < 2.5× 10−7.
Note that the ellipse is rather narrow and almost coincides with a
straight line. See also de Vries et al. [46], Viviani et al. [42] for a
similar analysis performed at NLO for the LECs h1π and C only.

The previous discussion did not take into account the large
uncertainty of the h1π coupling constant after the fit of the En -p
radiative capture asymmetry. In Table 6, we report representative

values of C and h̃ giving the minimum value of χ2 corresponding
to range of values for h1π as given in Equation (132). In the
fourth column we report values for C if we neglect the N2LO

contributions (setting h̃ = 0). We conclude that the combination
of the Epp and Enp→ dγ asymmetries allows for a rough extraction
of the LO and NLO LECs h1π and C, but is insufficient to also

pinpoint the N2LO LEC h̃. The uncertainty of the extractions
of h1π and C is dominated by theoretical and experimental
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TABLE 6 | Values for C and h̃ corresponding to different values of h1π (all LECs are

given in units of 10−7) giving the minimum value of the χ2 in the fit of the three

experimental Ep -p data points.

h1
π

C h̃ C(h̃ = 0)

0.9 27.7 0.11 28± 2

2.7 34.5 0.97 49± 2

4.5 41.2 1.84 69± 3

For example, for h1π = 2.7 × 10−7, the C, h̃ values are those lying in the center of the

elliptical contour shown in Figure 5. The fourth column corresponds to an analysis where

we ignore the N2LO contributions and thus set h̃ = 0.

uncertainties related to the PVTC asymmetry in the radiative
neutron capture process.

6.3. The 3He(En,p)3H Longitudinal
Asymmetry
Very recently, a measurement of the longitudinal asymmetry

A
(nh)
z for the reaction 3He(En, p)3H induced by ultracold neutrons

was successfully completed at ORNL [222]. This quantity is given

by A
(nh)
z = az cos θ [223], where θ is the angle between the

outgoing proton momentum and the neutron beam direction.
The measured value for az is given by az = (1.58 ± 0.97 (stat)
±0.24 (sys) )× 10−8 [224].

So far, this observable has been calculated using the NLO
χEFT PVTC potential [42] (and also the DDH potential
in [223]). The expression for the coefficient az is given as
usual as

az = h1πa
(nh)
0 +C1a

(nh)
1 +C2a

(nh)
2 +C3a

(nh)
3 +C4a

(nh)
4 +C5a

(nh)
5 ,
(140)

where the various coefficients a
(nh)
i are given as products of

T-matrix elements involving three PCTC and three PVTC
transitions [see [223] for details]. These T-matrix elements have
been calculated by means of the HHmethod [225]. The resulting

coefficients a
(nh)
i are listed in Table 7.

First of all, if we restrict ourselves to LO (namely, setting
all Ci = 0), using h1π = (2.7 ± 1.8) × 10−7, one obtains
az = −(3.2 ± 2.1) × 10−8, a value that is not compatible with
the reported experimental value. Therefore, large contributions

from NLO terms are expected. The values of a
(nh)
0 become more

negative at NLO. At present, we only have the combination
C1 + C2 + 2(C4 + C5) = (49 ± 2) · 10−7, therefore we
cannot proceed any further. Assuming, for example, C2 = 10 ×
10−7, we would obtain a contribution to az from this term of
≈ +2.26 × 10−8. Therefore, this observable is very sensitive
to the LECs Ci, and can be used to fit a linear combination
of Ci that is independent of the combination appearing in Epp
scattering. Calculations at N2LO are planned. However, we recall
that one should also include the PVTC 3N interaction terms
for completeness.

6.4. The En-p and En-d Spin Rotation
The spin rotation of neutron traversing a slab of matter in a plane
transverse to the beam direction induced by the PVTC potential

is given by

dφ(nX)

dz
(141)

= 2πρ

(2SX + 1) vrel
Re
∑

mnmX

ǫmn
(−)〈pẑ;mn,mX |VPVTC|pẑ;mn,mX〉(+) ,

where ρ is the density of hydrogen or deuterium nuclei for X = p
or d, |pẑ;mn,mX〉(±) are the n-X scattering states with outgoing-
wave (+) and incoming-wave (−) boundary conditions and
relative momentum p = p ẑ taken along the spin-quantization
axis (the ẑ-axis), SX is the X spin, and vrel = p/µ is the
magnitude of the relative velocity, µ being the n-X reduced mass.
The expression above is averaged over the spin projections mX ;
however, the phase factor ǫmn = (−)1/2−mn is ±1 depending
on whether the neutron has mn = ±1/2. We consider the n-
p and n-d spin rotations for vanishing incident neutron energy
(measurements of this observable are performed using ultracold
neutron beams). In the following, we assume ρ = 0.4 × 1023

cm−3. The rotation angle depends linearly on the PVTC LECs, as
higher-order weak corrections are negligible. We write

dφ(nX)

dz
= h1π a

(nX)
0 + C1 a

(nX)
1 + C2 a

(nX)
2 + C3 a

(nX)
3 + C4 a

(nX)
4

+C5 a
(nX)
5 + h0V b

(nX)
1 + h1V b

(nX)
2 + h2V b

(nX)
3

+h1A b
(nX)
4 + h2A b

(nX)
5 , (142)

where the a
(nX)
i for i = 0, . . . , 5 and b

(nX)
i for i =

1, . . . , 5 are numerical coefficients. The coefficient a
(nX)
0 receives

contributions from different chiral orders, in particular

a
(nX)
0 = a

(nX)
0 (LO)+ a

(nX)
0 (NLO)+ a

(nX)
0 (N2LO) . (143)

The values of these coefficients for the n-p case and the cut-
off value 3 = 500 MeV are listed in Table 8. From that
table, it is possible to appreciate the chiral convergence for the

coefficients a
(np)
0 . The NLO correction is ∼ 10% of the LO result.

In this case, the N2LO contribution vanishes since the LEC h1π
in V

(2)
PVTC(TPE) multiplies the operator (τ1z + τ2z). The En-p spin

rotation is sensitive to all the LECs except for the LECs C4 and h
1
A

multiplying again the isospin term (τ1z+ τ2z); in particular, there
is a large sensitivity to C5 and h2A, which multiply the isotensor
terms of the PVTC potential.

Regarding the En-d spin rotation, the coefficients, as reported
in Table 9, are calculated by using only the NLO PVTC potential.
We note the large sensitivity to h1π (this fact is well-known [202,
226]), and to the LEC’s C2 and C3.

At present there are no measurements of these quantities,
however their experimental knowledge could be very useful in
isolating certain combinations of LECs.

6.5. EDM of Light Nuclei
The EDM operator D̂ is composed by two parts,

D̂ = D̂PCTC + D̂PVTV. (144)

Frontiers in Physics | www.frontiersin.org 29 July 2020 | Volume 8 | Article 218209

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


de Vries et al. PV and TV Interactions

TABLE 7 | Values of the coefficients a
(nh)
i entering the 3He(En,p)3H longitudinal asymmetry calculated for the χEFT NLO PVTC potential described in section 3.4 and the

N3LO PCTC potential derived in Machleidt and Entem [5] at vanishing neutron beam energy.

a
(nh)
0 (LO) a

(nh)
0 (TOT) a

(nh)
1 a

(nh)
2 a

(nh)
3 a

(nh)
4 a

(nh)
5

−0.1178 −0.1444 0.0061 0.0226 −0.0199 −0.0174 −0.0005

The PVTC potential has been regularized as in Equation (86) adopting the value 3C = 500 MeV for the cutoff parameter. The PCTC potential has been regularized with the same value

of the cutoff parameter. For a
(nh)
0 we give explicitly its cumulative value at LO and at NLO in the first and second column, respectively.

TABLE 8 | Values of the coefficients entering the expression of the En -p spin rotation in units of Rad m−1 calculated for the χEFT N2LO PVTC potential described in

section 3.4 and the N4LO PCTC potential derived in Entem et al. [18] at vanishing neutron beam energy.

a
(np)
0 (LO) 1.227 a

(np)
1 0.257 b

(np)
1 1.653

a
(np)
0 (NLO) 0.137 a

(np)
2 0.178 b

(np)
2 −0.181

a
(np)
0 (N2LO) 0.000 a

(np)
3 0.106 b

(np)
3 1.882

a
(np)
0 (TOT ) 1.364 a

(np)
4 0.000 b

(np)
4 0.000

a
(np)
5 −0.949 b

(np)
5 4.456

The PVTC potential has been regularized as in Equation (86) adopting the value 3C = 500 MeV for the cutoff parameter. The PCTC potential has been regularized with the same value

of the cutoff parameter. For a
(np)
0 we give explicitly the contribution of the different orders, the sum of the three contributions is given in fourth row.

TABLE 9 | The same as in Table 8 but for the En -d spin rotation and using the

χEFT NLO PVTC potential and the N3LO PCTC potential derived in Machleidt and

Entem [5].

a
(nd)
0 2.179

a
(nd)
1 −0.010
a
(nd)
2 −0.160
a
(nd)
3 0.191

a
(nd)
4 0.064

a
(nd)
5 0.000

D̂PCTC is the electric dipole operator derived from the current
JPCTC given in Equation (87), after using the long wavelength
approximation and the continuity equation [227], explicitly

D̂PCTC = e
∑

i

1+ τz(i)
2

ri , (145)

where e > 0 is the electric unit charge, τz(i) and ri are the z
component of the isospin and the position of the i-th particle.
This operator implicitly takes into account also the main part
of the two-body PCTC currents. The D̂PVTV contribution comes
from the PVTV current at LO given in Equation (96) and it reads

D̂PVTV =
1

2

∑

i

[

(dp + dn)+ (dp − dn)τz(i)
]

σ i , (146)

where dp and dn are the EDM of proton and neutron, respectively
and σ i is the spin operator which act on the i-th particle.
As discussed in section 3.5.1 and in de Vries et al. [143] and
Bsaisou et al. [73] the D̂PVTV should also include contributions
from transition currents at N2LO. These are not considered in
this review.

The EDM of an A nucleus can be expressed as

dA = 〈ψA
+|D̂PVTV|ψA

+〉 + 2 〈ψA
+|D̂PCTC|ψA

−〉
≡ dAPVTV + e dAPCTC , (147)

where |ψA
+〉 (|ψA

−〉) is defined to be the even-parity (odd-parity)
component of the wave function. In general, due to the smallness
of the LECs, the EDM depends linearly on the PVTV LECs

dAPVTV = dpap + dnan (148)

dAPCTC = ḡ0a0 + ḡ1a1 + ḡ2a2

+ C̄1A1+C̄2A2+C̄3A3+C̄4A4+C̄5A5+1̄a1, (149)

where the ai for i = 0, 1, 2, Ai for i = 1, . . . , 5, a1, and ap, an
are coefficients independent on the LEC values (all coefficients
except ap and an have the unit of a length). For the deuteron,
d2PVTV is dominated by one-body components, proportional
to the neutron and proton EDM. The coefficients ap and an
multiplying the intrinsic neutron and proton EDM, as already
pointed out first in Yamanaka and Hiyama [228] and then in
Bsaisou et al. [66], are given by,

an = ap =
(

1− 3

2
PD

)

, (150)

where PD is the percentage of D-wave present in the deuteron
wave function. d2PCTC, in the case of the deuteron, receives
contribution only from the LECs ḡ1, 1̄, C̄3, and C̄4. The
coefficients calculated with the χEFT N2LO PVTV potential
described in section 3.5 and the N4LO PCTC potential derived
in Entem et al. [18] are reported in Table 10. The cutoff for
both the PCTC and PVTV potentials has been chosen to be
3C = 500 MeV. The coefficients a1, A3, and A4 agree well
with the power counting expectation in Equation (37). The
slight suppression of a1 compared with the naive estimate
a1 ∼ 1 is in very good agreement with the perturbative pion
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TABLE 10 | Values of the coefficients entering the expression of the deuteron

EDM calculated for the χEFT N2LO PVTV potential described in section 3.5 and

the N4LO PCTC potential derived in Entem et al. [18].

an(ap) 0.939

a1 [fm] 0.200

A3 [fm] 0.013

A4 [fm] −0.013
a1 (NLO) [fm] −0.894
a1 (N

2LO) [fm] +0.590
a1 (TOT) [fm] −0.304

The PVTC potential has been regularized as in Equation (86) adopting the value3C = 500

MeV for the cutoff parameter. The PCTC potential has been regularized with the same

value of the cutoff parameter. For a1 we give explicitly the contribution of the different

orders, the sum of the two contributions is given in the last row.

power counting [70]. The LO perturbative pion calculation of
a1 agrees with the value in Table 10 at the 20% level [70].
Results obtained in chiral EFT with N2LO PCTC potentials
[66], and with “hybrid” approaches [143, 228] based on chiral
PVTV and phenomenological PCTC potentials, also agree well
with the results reported in Table 10. The contribution of
the three-pion coupling a1 is a bit more problematic. We
find in this case that the contribution of the N2LO term
is of the order of ∼ 60% of the NLO term. We will
discuss the issue of these large N2LO corrections more in
detail below.

Depending on the source of CP violation at the quark level,
the deuteron EDM can be dominated by different LECs. For
sources such as quark chromo-EDMs and four-quark operators
4, for which ḡ1 is induced without any chiral suppression, the
pion-exchange contribution proportional to ḡ1 is expected to
dominate the deuteron EDM. For sources such as quark EDMs
or the Weinberg operator, however, the deuteron EDM is well-
approximated by the sum of the nucleon EDMs. For the θ-term,
the pion-exchange contributions are expected to be minor as
well. Given measurements of the deuteron and nucleon EDMs,
one can, therefore, identify the underlying source of CP violation
[70, 229].

As regarding the 3H and 3He EDMs, the results are
summarized in Table 11. The coefficients a0 and a1 are again
a bit smaller than the O(1) expectation. Note that the value
for a0 reported in Table 10 is approximately 50% smaller
than that reported in Bsaisou et al. [66]. This difference can
be traced back to the contribution of the TPE, which was
not included in that work. Performing the calculations at
LO, namely including only the OPE term, the a0 coefficient
results to agree with that reported in Bsaisou et al. [66].
The values of the numerical coefficients are mostly equal in
modulus between 3H and 3He except ap and an. The coefficients
associated to isovector terms have the same sign while all
the others are opposite. Again the contribution of the N2LO
potential term to a1 is significant, about 60%. This issue is
discussed below.

Let us now consider in more detail the issue of the NLO and
N2LO contributions to a1. We have seen that in all cases the
N2LO correction to a1 is of the order of 60%, a bit larger than

TABLE 11 | The same as in Table 10 but for the 3H and 3He EDM.

3H 3He

an −0.033 0.908

ap 0.909 −0.033
a0 [fm] −0.053 0.054

a1 [fm] 0.158 0.158

a2 [fm] −0.119 0.119

A1 [fm] 0.006 −0.006
A2 [fm] −0.010 0.010

A3 [fm] −0.008 −0.008
A4 [fm] 0.013 0.013

A5 [fm] −0.022 0.022

a1 (NLO) [fm] −0.941 −0.929
a1 (N

2LO) [fm] +0.598 +0.591
a1 (TOT) [fm] −0.343 −0.339

expected. Explicitly, the coefficient a1 can be written as [75]

a1 = a1(NLO)+ a1(N
2LO) , (151)

a1(NLO) = a1(0)+ a1(3N) , (152)

a1(N
2LO) = c1a1(1)+ c2a1(2)+ c3a1(3) , (153)

where a1(0) comes from the NLO potential V
(0)
PVTV (3π) given

in Equation (93) and a1(3N) from the 3N potential given in

Equation (95). The N2LO terms come from V
(1)
PVTV (3π), where

the LECs c1, c2 and c3 appear. The values for the various
components of coefficient a1 for different nuclei are reported in
Table 12. To calculate the values reported in Tables 10, 11, the
following values were adopted: c1 = −1.10 GeV−1, c2 = +3.57
GeV−1, and c3 = −5.54 GeV−1 as reported in Hoferichter et al.
[219] and Hoferichter et al. [230]. The large N2LO corrections
are caused by the large values of these LECs8. For more detail,
see [75]. For the trinucleon systems, the values of a1(3N) give
a correction to a1(NLO) of the order of ∼ 25%, which is in
line with the chiral perturbation theory prediction because these
contributions appear at the same order.

Similarly to the deuteron EDM, the trinucleon EDMs can
be dominated by different terms. As the isoscalar interaction
proportional to ḡ0 and C̄1,2 now gives a sizable contribution,
the trinucleon EDMs are noticeably different from the nucleon
EDMs for the QCD θ-term, the quark chromo-EDMs, the four-
quark operators 4, and potentially the Weinberg operator and
the four-quark operators 6. These EDMs therefore provide
complementary information to the deuteron and nucleon EDMs.
Combined measurements of all these EDMs would allow one to
unravel various BSM models of new CP violation [71].

8Notice that the values of the LECs ci obtained from the pion-nucleon amplitude

at NLO, which would be appropriate for V
(1)
PVTV , are considerably smaller in

magnitude. We, however, decided to adopt the larger values to be consistent with

the employed PCTC potential.
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TABLE 12 | Values of the various components of coefficient a1 as given in

Equation (151) in units of e fm for the different nuclei.

2H 3H 3He

a1 (0) [fm] −0.894 −0.751 −0.749
a1 (3N) [fm] − −0.190 −0.180
a1 (1) [fm GeV] 0.120 0.098 0.098

a1 (2) [fm GeV] −0.119 −0.110 −0.109
a1 (3) [fm GeV] −0.207 −0.198 −0.196

The coefficients have been evaluated using the N4LO PC potential derived in Entem

et al. [18] and using a cutoff parameter of value 3C = 500 MeV.

7. CONCLUSIONS AND PERSPECTIVES

In this paper we have discussed the current status of the PVTC
and PVTV nuclear interactions using the traditional approach
based on phenomenological boson exchange models and as well
as utilizing the modern frameworks of pionless and chiral EFT.
The study of PVTC signals in nuclei is interesting since it
derives from the non-leptonic weak interactions between quarks.
Furthermore, a solid understanding of the manifestation of
PVTC interactions at the nuclear level would give us confidence
in the analysis of the more exotic PVTV case and other BSM
nuclear observables. In fact, PVTV observables provide very
valuable information since they are sensitive to interactions
originating from the θ-term in the SM and even to more exotic
mechanisms appearing in BSM theories.

As discussed in this review, the theoretical understanding of
the PVTC and PVTV interactions is already rather advanced.
Interactions in χEFT have been developed up to N2LO. The
convergence of the χEFT appears to be problematic only for the
contributions proportional to the ππNN LECs ci, due to the large
values of those coefficients as measured in πN scattering [219].
Given that the LECs c2,3,4 are largely driven by the 1(1232)
[231], one may expect a better convergence in a formulation of
chiral EFT that includes the 1 as an explicit degree of freedom.
Furthermore, large Nc analysis may help in reducing the number
of contact LECs. Also Lattice QCD calculations start to give
valuable information [132, 232].

We have also reported the results of the theoretical
calculations of several observables performed using the potentials
derived within the χEFT framework. The PVTC observables
considered include (i) the longitudinal asymmetry in En-p
radiative capture, (ii) the longitudinal asymmetry in proton-
proton elastic scattering, (iii) the longitudinal asymmetry in
the 3He(En, p)3H reaction, and (iv) the spin rotation of a
neutron beam passing through a hydrogen and deuterium gas.
As an example of a PVTV observable, we have studied the
EDMs of some light nuclei. The main motivation to study
these observables is that for such light systems, the theoretical
analysis can be carried out without invoking any uncontrolled
approximations. Thus, comparison with the experimental data
can be performed unambiguously. The analyses of PVTC and
PVTV observables using meson exchange models can be found
in other review articles [34, 39, 131] and are not reported here.

As discussed previously, there exists a first measurement
of the parameter aγ of the radiative neutron capture on
the proton Enp → dγ . The large error derives from the
smallness of this parameter which makes this measurement
very challenging [209]. This observable is directly connected
to the LO pion-nucleon PVTC coupling constant aγ ∼ h1π .
However, as we have seen, the theoretical estimate of the
proportionality coefficient has been obtained with a relatively
large theoretical uncertainty due to sizeable cancellations
between different contributions. Therefore, to infer information
from this observable, it will be necessary to make progress in both
the experimental and theoretical analyses.

Other important information is brought forth by the three
measurements at different energies of the Ep-p longitudinal
asymmetry. This observable is sensitive to h1π via the TPE
component of the PVTC potential and also to other LECs.
In fact, owing to the isospin quantum numbers T = 1,
Tz = 1 of the p-p system, the LO contribution vanishes.
Moreover, at NLO (N2LO), this observable depends on two
(three) combinations of the LECs. Unfortunately, only two of the
performed measurements give independent information. These
two data have not been obtained with enough accuracy, so the
constraints to the (combinations of) LECs which can be obtained
are not so stringent [42, 46], as discussed in section 6.2. For this
observable the wave functions are easily obtained. However, the
vanishing of the LO contribution makes the χPT convergence
more uncertain. On the other hand, it would be very useful to
have more accurate experimental measurements.

Very recently, a measurement of the En-3He longitudinal
asymmetry at the SNS facility was reported [222]. For this
A = 4 system it is possible to perform accurate calculations
of the wave functions, and therefore this observable can
give valuable information in particular on the LECs Ci. A
complete calculation, however, should also include the PVTC 3N
interaction terms.

Regarding the spin rotation observables, no experiments to
measure the En-p and En-d spin rotation angles, which could
provide useful information on some of the contact term LECs,
are planned at present. The experimental detection of a non-
vanishing En-p spin rotation would be rather important for
two reasons: i) the theoretical treatment of the two-nucleon
system does not present any difficulty numerically, while ii) this
observable is sensitive to the LO term and therefore the chiral
expansion of the potential is well under control, as discussed
in section 6.4. Regarding the En-d spin rotation, the same is
not completely true since, as discussed in section 3.4 one has
to include also the PVTC 3N interaction terms which start to
appear at N2LO. This is an interesting extension of χEFT which
will be considered in the future. From the experimental point
of view, we note that there is an existing experiment trying to
measure the En-4He spin rotation at NIST [233]. Some years ago
there was a measurement of the longitudinal asymmetry in Ep-4He
scattering, but this experiment was performed at a rather high
energy of the proton beam (46 MeV) [234] and this makes the
theoretical treatment very difficult and impossible without some
approximations. From the theoretical point of view, recently
there has been a rapid progress in solving accurately the A = 5
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nuclear problem. In particular, the solution of A = 5 Faddeev-
Yakubovsky equations [235, 236] has allowed a first study of
the En-4He spin rotation [237]. Also accurate applications using
the so called “No-Core-Shell-Model with Continuum” technique
have been reported [238, 239]. Therefore, we expect that, once
the experimental value for the En-4He spin rotation becomes
available, it can be readily analyzed in the χEFT, pionless, and
DDH frameworks.

To have the possibility to pin down all the LECs (6 LECs
at NLO and 5 more at N2LO) more experimental information
will be necessary in any case. In particular, an interesting
possibility would be to measure PVTC observables in the
A = 3 system, such as the longitudinal asymmetry of Ep-d
elastic scattering and the photon asymmetry in En-d radiative
capture. For both reactions, the theoretical treatment would be
straightforward, once the PVTC 3N force has been taken into
account. Experimental activities for the A = 3 systems were
already attempted some years ago [240] (see also [39]). After
the success of the recent PVTC observable measurements in
A = 2 and A = 4 systems discussed previously, a successful
experimental investigation of A = 3 observables appears
to be possible. Actually, the measurement of the longitudinal
photon asymmetry in En-d radiative capture is currently being
planned [241]. Therefore, a new campaign of measurements
of PVTC observables in the A = 3 systems, in addition to
the measure of the En-4He spin rotation, would furnish enough
information to fix (at least, some of) the LECs of the potentials in
the different frameworks.

It would be clearly very interesting to take into account
also PVTC measurements in medium-mass and heavy-systems.
In particular, it is worth to mention that there exist fairly
accurate measurements of the gamma angular asymmetry in
19F gamma decay and the gamma circular polarization in 18F
gamma decay [242–244]. The mixing induced by the PVTC
interaction in the matrix elements can be calibrated by the
corresponding analog β decays of Ne isotopes [242]. Despite the
large number of nucleons involved, the theoretical analysis can
still be reliably performed. Calculations for these transitions have
been performed only using the DDH interaction [37, 245].

Regarding the PVTV observables, the measurement of EDMs
of particles is the most promising observable for studying
CP violation beyond CKM mixing matrix effects. Currently,
there are proposals for the direct measurement of EDMs of
electrons, single nucleons and light nuclei in dedicated storage
rings [77, 78, 81, 82, 246]. This new approach plans to reach
an accuracy of ∼ 10−16 e fm, improving the sensitivity in
particular in the hadronic sector. Any measurement of a non-
vanishing EDM of this magnitude would provide evidence of
PVTV beyond CKM effects [52, 55–57]. However, a single
measurement will be insufficient to identify the source of
PVTV, only the availability of the measurement of EDM of
various light nuclei such as 2H, 3H, and 3He can impose
constrains on all the LECs. Other light nuclear EDMs have
been discussed in Yamanaka [208] and Yamanaka et al. [247].
EDMs of heavy diamagnetic systems provide very important
information as well, but such systems are too large for chiral EFT
calculations.

Other observables sensitive to PVTV effects are the
transmission of polarized neutrons through a polarized
target [248, 249]. In particular, for heavy nuclei the
PVTV effects can be enhanced by factors as large as
106 [250, 251], see also [252]. In order to exploit this
enhancement, some experiments are being planned, such
as the NOPTREX experiment at RIKEN [253, 254]. Also
polarized nucleon—polarized deuteron scattering has been
proposed as a way to detect PVTV signals [226, 255]. Finally,
searching for large P- and T-violations in polarized β-decay of
8Li via measurement of the triple vector correlation is under
consideration [256]. Clearly, it would be important to be able to
detect a non-zero PVTV signal in all these experiments in order
to pin down the values of all the LECs.

From the theoretical point of view, calculations of the EDM
of 2H, 3H, and 3He can be performed very accurately, including
taking into account the contributions of the PVTV 3N force.
The robustness of the calculation has been checked by evaluating
the EDMs of the nuclei to different chiral orders in the PCTC
potential. The discrepancy between the use of the N2LO and
the N4LO PCTC potential has been found to be approximately
5% [75].

Currently, the only missing ingredient is the two-body PVTV
N2LO currents [73, 143]. Once this problem is solved, one
can achieve a fully consistent calculation of the EDM of light
nuclei up to N2LO. There are also plans to perform theoretical

studies of PVTV observables in En-Ep and En-Ed scattering in order
to have independent and complementary information about
PVTV effects.

The PVTV χEFT interaction developed in the previous
sections depends on 11 coupling constants that need to
be determined by comparing with experimental data. As
already pointed out by many authors [65, 68, 69] and
discussed in section 3.2.1, the LECs ḡ2, C̄3, C̄4, and C̄5 are
suppressed for all CP-violation sources. However, for certain
sources, this suppression is not too severe. For example,
in Bsaisou et al. [66], an analysis of the nuclear EDM in
the minimal left-right scenario is presented in which the
Lagrangian terms with LECs C̄3 and C̄4 appear at N2LO.
In any case, since the CP-violation sources are not known,
the only way to determine them is to fit all possible
LECs and compare the results with predictions for various
scenarios.

Most of the observables discussed so far were obtained (or
they are planned to be studied) at low energies, where also
the pionless EFT framework is valid. The advantage of this
framework is related to the fact that the resulting potentials
depends on only five LECs. Then, assuming the validity of
the large Nc analysis [47, 49], the number of dominant LECs
could be further reduced. This new paradigm is advocated
for the PVTC case in Gardner et al. [39]. For this case,
only two LECs are expected to be dominant, the other three
demoted to be subleading. Unfortunately, the photon asymmetry
of Enp → dγ depends on the subleading LECs (this could
explain its relative smallness) and therefore cannot be used to
give information on the two leading LECs. Moreover, only the
low energy Ep-p longitudinal asymmetry measurement may be
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used to test if this hierarchy is realized in Nature (the other
measurement is taken at too high energy to be used in the
pionless EFT framework). The other observable which can give
valuable information is the En-3He longitudinal asymmetry, for
which the experimental result was just published. However,
no theoretical calculations of this observable performed in the
framework of pionless EFT are available at present. Additional
information could be obtained by calculations of these LECs
using Lattice QCD, presently in progress. Regarding the PVTV
observables in pionless EFT, here the large Nc analysis predicts
that only one of the LECs should be dominant, the other four
being suppressed. However, this picture is partially obscured
by the fact that the magnitude of the five contact LECs would
depend very much on the particular type of the CP-violating
source.

In conclusions, the study of PVTC and PVTV observables is
an active area of research that provide important tests of the SM
and hopefully future evidence for BSM physics.
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The present paper aims to provide a review of the relevance of quark degrees of

freedom in the description of the nucleon-nucleon and, in general, of the baryon-baryon

interaction. After a historical introduction, the second section of the paper will be

dedicated to the first attempts to describe the short-range part of the NN potential in the

so-called quark potential models. Here the importance of the symmetries of the 6-quark

system will be emphasized. Then, we will discuss the concept of the constituent quark

mass as originated by the breakdown of the chiral symmetry, in line with the articles

of Manohar and Georgi [1] and the Instanton Liquid Model of Diakonov [2], and its

consequences on the quark-quark interaction due to the presence of the Goldstone

boson exchanges. Once the full quark-quark interaction is established, the description

of the bound states (deuteron), the scattering states of the NN system, and nuclear

matter in constituent quark models will be addressed. In this section, a discussion of

the influence of N1, 11 or NN∗ components will be included. The rest of the paper

will be devoted to the extension of the model to another baryon-baryon system, namely

the triton, hyperon-hyperon, and nucleon-antinucleon systems and references to other

possible descriptions of the NN interaction in terms of quark degrees of freedom (bag

models). The chapter will end with a concluding remark, and the success and limitations

of the model described above will be summarized.

Keywords: nucleon-nucleon interaction, nucleon-nucleon interactions (including antinucleons, deuterons, etc.),

quark model, quark model baryon-baryon interaction, constituent quark cluster model

1. A HISTORICAL INTERLUDE

Upon the discovery of the compound nature of the nucleon it was suspected that the quark degrees
of freedom had to be responsible for the properties of nucleon-nucleon interaction, at least of their
short-range parts. However, due to the complexity of QCD (the underlying theory of the quark
model), the implementation of these ideas was not straightforward. Although the deep inelastic
scattering suggests that quarks are massless particles confined within the nucleons, the magnetic
moments of the protons and neutrons could be explained by assuming an effective mass around
300 MeV for the quarks.

The apparent duality of the properties of the quarks gave rise to two types of models: the bags
model (relativistic massless quarks confined within a cavity) and the potential model (no relativistic
massive quarks confined within a potential). In both models, attempts were made to explain the
properties of the short range of nuclear forces.

In 1975, Fairley and Squires [3, 4] tried to describe the deuteron using the MIT bag model. In
the same year, Neudatchin et al. [5] proposed an explanation for the short-range repulsion due to
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the Pauli Exclusion Principle. Two years later, Neudatchin et al.
[6] gave an algebraic reasoning to explain the hard core of nuclear
forces in terms of six quarks states, assuming that the quark-
quark interaction mixes the [6] and the [42] symmetries of the
six-quark system, producing the node of the [42] state phase
shifts and showing “hard-core like” behavior. More quantitative
attempts were made by Liberman [7] (in a potential model) and
[8] (in a bag model), though both calculations based on the Born-
Oppenheimer approach [9] do not appear to be useful at the
present time.

In 1980, three calculations appeared that used a more
sophisticated scheme, the Resonant Group Method (RGM) [10,
11], which has been widely used in the treatment of the
interaction between composite particles. The method allows you
to make non-relativistic multichannel calculations and obtain
phase shifts in a simple way. Within this framework, Oka and
Yazaki [12] calculated the phase shifts for the 3S1 and

1S0 states
of two nucleons, including the 11 channel, thereby showing
the presence of a strong repulsive force at short distance. This
feature is due to an interplay between the Pauli principle and a
spin-spin interaction between quarks. Similar calculations were
performed by Ribeiro [13] and Toki [14], using, for the quark-
quark interaction, a quadratic confinement plus a spin-spin
force more or less related to the one-gluon exchange interaction
derived by De Rújula [15]. They found a rather soft core (Toki)
or hard core (Ribeiro) depending on the functional form of the
spin-spin interaction and the election of the parameters, which,
in these first stages of the calculation, are not clearly established.

The hope of being able to describe the short-range part of
the nuclear forces in terms of the degrees of freedom of quarks
suffered a heavy blow with the publication of the article of Harvey
[16]. Harvey performed a similar calculation of the Liberman
paper but did so using a quark-quark interaction similar to
the one-gluon exchange, taking into account, besides the 11
states, hidden color states, namely two three-quark color states
coupled to color singlet’s, in the two-nucleon system as required
by completeness. The inclusion of these new states had dramatic
effects: the repulsive core was transformed into a weak attraction.
Although the use of the Born-oppenheimer approximation may
be questionable, the need to include the configuration mixing
remained very much in force. The situation was restored by the
papers of Faessler et al. [17], which returned to the previous
results that showed that obtaining a hard core, even if the hidden
color states were included in the calculation provided, meant that
the different parameters appearing in the calculation were chosen
in a consistent way, as we will see later.

Once the question of the origin of the hard core was settled,
the next objective was to achieve a description consistent with
the quark degrees of freedom of all pieces of the nuclear forces.
Two different ways have been used in the past to address this
problem. The first one introduced an effective meson exchange
potential (EMEP) into the Resonating Group Method equation
[18–20]. The second one coupled the pion directly to the qq̄
pairs [21, 22]. The difference between the two approaches is that
the last one allowed for the study of the influence of the quark
antisymmetrization on the one-pion exchange potential, which
seems to be relevant in certain cases [23].

Although these methods succeeded to describe the NN
and NY phase shift or the properties of the deuteron, its
phenomenological nature leaves too many free parameters
unconstrained by the theory, and the interplay between mesonic
and quark degrees of freedom is worked out in a rather
inconsistent way.

These problems have been partially solved by the introduction
of the chiral (or constituent) quark models. These models are
founded on the idea that the constituent (dynamical) quark
mass is a consequence of the spontaneous breaking of the chiral
symmetry of the QCD lagrangian. This SU(3)L × SU(3)R chiral
symmetry is spontaneously broken to an SU(3)V symmetry at the
scale 3χSB, which is different from the confinement scale 3QCD.
The Goldstone theorem implies that there must exist an octet of
Goldstone bosons coupled to the quark fields. There is no reason
for these two scales to be the same. In fact, Manohar and Georgi
[1] argued that 3χSB is in fact greater than 3QCD, which allows
them to develop a field theory effective in the intermediate region,
which includes quarks, gluons, and Goldstone boson fields.

A realistic mechanism for the chiral symmetry breaking is
provided by instantons. Diakonov [2] showed that the light
quarks in the liquid instanton vacuum acquired a momentum-
dependent effective mass that breaks down the chiral symmetry
of QCD spontaneously. This author ended up with an effective
chiral Lagrangian, within which QCD was reduced at low
energy, with quarks and Goldstone bosons fields. Based on
this approach to QCD at low energy, in Fernandez et al. [24],
the authors developed an improved quark-quark interaction
that was suggested by instanton models that included π and
σ exchanges as non-perturbative components and the one-
gluon exchange as a perturbative one. The nucleon-nucleon
potential derived from this model presents short-range repulsion
and medium-range attraction besides the usual pion tail. The
authors used this interaction to calculate the nucleon-nucleon
phase shifts within the resonating group method, and a large
number of observables were related to the N-N interaction.
The results agreed reasonably well with experimental values. A
similar approach has been pursued by the group of Beijing [25].
Further references of this period can be found in Myhrer and
Wroldsen [26].

From the end of the twentieth century, the progress in the
description of the nucleon-nucleon interaction based on quark
degrees of freedom slowed down, and this was mainly due to the
appearance of the effective field theories applied to the nucleon-
nucleon interaction.

These theories are based on the Weinberg idea [27] that one
has to write down the most general Lagrangian consistent with
the symmetries of QCD, particularly the (spontaneously broken)
chiral symmetry. Thus, in this formulation, which is seen as more
fundamental than constituent quark models, the effective degrees
of freedom, rather than quarks and gluons, are the Goldstone
bosons of the broken symmetry and the nucleons. A detailed
description of the progress of these theories in the last years
can be found in the section dedicated to the nucleon-nucleon
description in the framework of the effective field theories.

In these last years, there has nevertheless been progress
in the field of the constituent quark models, which deserves
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a mention. Thus, several calculations have been done within
the framework of the extended quark-delocalization color-
screening model (QDCSM) [28], addressing problems with
the intermediate range attraction (σ -exchange) [29] and the
spin-orbit interaction [30]. On the other hand, Huang and
Wang performed a calculation using the chiral SU(3) model
in which the parameters of the nucleon-nucleon interaction
are chosen consistently with the mass of octet and decuplet
baryon ground states [31]. An improvement in the description
of the nucleon-nucleon-meson vertices is achieved through the
so-called Oxford potential [32], which uses the 3P0 model to
calculate the form factors of these vertices, thus achieving a good
description of the nucleon-nucleon phenomenology. Finally,
during these years there has been impressive experimental
progress in the discovery of the heavy baryons. This fact has
produced a revival of the previous hyperon-nucleon calculations,
thus extending the field to charmed and bottom baryon-nucleon
interaction [33, 34].

2. THE QUARK ANTISYMMETRY AND THE
HARD CORE OF THE N-N INTERACTION

By analogy with the short-range repulsion between two α

particles, the short-range repulsion in the nucleon-nucleon
interaction was naively expected to originate from the Pauli
principle between quarks. In the case of the α − α scattering,
the Pauli principle forbids eight particles to be in the 0S state.
Therefore, one must put at least four particles in the 1P state, so
the relative wave function between two α particles in a state with
zero relative angular momentum must have a radial node inside
the range of the nuclear forces. This node plays a role that is
equivalent to a hard core.

However, the situation in the case of the nucleon-nucleon
interaction is slightly different. Due to of the color degree of
freedom, it is possible to have the six quarks in the lowest 0S so
that the relative wave function between the two nucleons does not
necessarily exhibit a node in the wave function.

Neudatchin et al. [6] was the first study to point out that
the hard-core behavior can be still recovered in the quark
model provided that the quark-quark interaction mixed the
lowest 6-quark state with the first excited state. The relative
wave function between the two nucleons would then be strongly
suppressed in the inner region due to the node of the excited state,
and the corresponding phase shifts would show ’hard-core like’
behavior. In this sense, the validty of the analogy with the Pauli
principle effects on the α − α system would be totally dependent
on the character of the quark-quar interaction.

An interaction that can perform this task is the color magnetic
part −g(r)(λiλj)(σiσj) of the one-gluon exchange interaction, as
shown by De Rújula [15]. The expectation values of the operators
σiσj and λiλj are positive (negative) for spatially symmetric
(antisymmetric) qq pair states [15]. Then, the color magnetic part
is attractive (due to the global minus sign of the interaction) for
qq pairs, which are symmetric in color-spin space, and repulsive
for qq pairs, which are antisymmetric.

The product wave function of two nucleons, each with a
spatially symmetric three-quark state, gives the following S3 ⊗
S3 −→ S6 representations of the S6 symmetry group:

[3]X ⊗ [3]X = [6]X + [51]X + [42]X + [33]X (1)

The [6]X and [42]X ([51]X , and [33]X) are symmetric
(antisymmetric) for the whole exchange of the two nucleons. For
the different spatial symmetries of the two nucleon states with
l = 0 and isospin T = 0 ([33]T) or T = 1 ([42]T), the Pauli
Principle requests the following color-space symmetries:

[6]X × [23]CS × [33]T = 0 = [16], (3s, 6a)

[42]X × [42]CS × [33]T = 0 = [16], (7s, 2a)

[42]X × [321]CS × [33]T = 0 = [16], (4s, 4a)

[42]X × [23]CS × [33]T = 0 = [16], (3s, 6a)

[42]X × [313]CS × [33]T = 0 = [16], (3s, 6a)

[42]X × [214]CS × [33]T = 0 = [16], (1s, 10a)

(2)

[6]X × [2212]CS × [42]T = 1 = [16], (2s, 6a)

[42]X × [33]CS × [42]T = 1 = [16], (6s, 3a)

[42]X × [412]CS × [42]T = 1 = [16], (6s, 3a)

[42]X × [2212]CS × [42]T = 1 = [16], (2s, 6a)

[42]X × [16]CS × [42]T = 1 = [16], (0s, 14a)

(3)

From these two equations one can see that, in both isospin
cases, the state with spatial symmetry [6] have, in the color
spin state, more antisymmetric than symmetric pairs, and they
are therefore pushed up by the quark-quark color-magnetic
interaction. However, the state with spatial symmetry [42]X has,
in the color spin space, components with more symmetric than
antisymmetric states, namely the [42]CS for the isospin T = 0
and the [33]CS and [412]CS for the isospin T = 1. These states
must be lowered by the color-magnetic interaction and can be
mixed with the [6]X spatial symmetry.

Three important conclusions can be made from this kind of
analysis. The first one is that the hard-core part of the nucleon-
nucleon interaction is related to the node of the spatial [42]X
component of the six-quark system. The second one is that
the mixing of the [42]X and [6]X components is controlled
by the strength parameter of the color-magnetic interaction.
Finally, colorless objects, like nucleons, cannot exchange colored
particles, like gluons, unless a quark is also exchanged. Therefore,
the mechanism described above only works when the two
nucleons overlap through a genuine short-range mechanism.

The effect of quark antisymmetrization also appears in other
processes, such as the one-pion exchange process. Let assume
for a moment that we can couple pions to qq pairs (we will
come back to this point later on). The typical (σ · σ )(τ · τ )
spin-isospin dependence of the one-pion exchange potential gets
modified by the quark antisymmetrization operator A = 1 −
∑3

i = 1

∑6
j = 4 Pij, where Pij is the quark exchange operator, which
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is the product of the orbital exchange P
(0)
ij , the spin-isospin

exchange P
(στ )
ij , and the color exchange P

(c)
ij . As a consequence

of the application of the antisymmetrization, it results in as a
spin-isopin independent term, a (σ · σ ), and a (τ · τ ) term,
besides the original (σ ·σ )(τ ·τ ) term [22]. In the latter reference,
following the model of Tegen andWeise [35], the author assumes
that each nucleon consists of three massless quarks confined in
a scalar potential M(r) = cr2. The NN potential was generated
from a Born-Oppenheimer approximation using the quark wave
functions obtained as a solution for the Dirac equation. The
pions have been included in the model as a consequence of quark
confinement that necessarily implies a breaking of the original
chiral symmetry of the QCD Lagrangian of a free quark with
zero mass. In this situation, the axial current of massless quarks
confined byM(r) is not conserved.

∂µ[ψ̄(x)γµγ5

→
τ

2
ψ(x)] = M(r)ψ̄(x)iγ5

→
τ ψ(x) (4)

To restore the chiral symmetry, one introduces a pseudoscalar,
isovector field πλ(x) so that the generalized axial current:

A
µ
λ (x) = ψ̄(x)γ µγ5

τ

2
ψ(x)− C∂µπλ(x) (5)

is a conserved quantity.
Imposing PCAC, the later equation implies a Klein-Gordon

equation for the pion field:

(∂µ∂µ +m2
π )πλ(x) = i

∑

M(r)f−1
π ψ̄(x)γ5τψ(x) (6)

where fπ is the pion decay constant, and the summation runs over
all quarks.

This last equation tells us that the πqq coupling is given by:

Hπqq = iM(r)f−1
π ψ̄(x)γ5τψ(x)πλ(x) (7)

By employing this πqq one can calculate the one-pion exchange
potential between nucleons using the Born-Oppenheimer
approximation. The results of Shimizu [22] show that the effect
of the quark antisymetrization on the one-pion is very large
at short distances, producing a spin-isospin independent short-
range repulsion that can be as important as the one generated
by the color-magnetic piece of the one-gluon exchange potential.
Besides the usual, part of the one-pion exchange potential with
(σ ·σ )(τ ·τ ) dependence becomes very weak. These results can be
obtained with other models of the quark-pion coupling [21, 36].

The quark antisymmetrization can have an effect on the one-
pion exchange interaction that is an observable consequence of
the pion-dominated processes. One example is the confusing
situation that arises with the interpretation of the p(n, p)n and
p(p,1++)n charge-exchange reactions at intermediate energies
in the forward direction using a meson-exchange model. A
thorough study of the p(p,1++)n and p(n, p)n reactions has been
done by Jain and Santra [37] from threshold to 5.5 GeV/c beam
momentum. These authors use a one-boson exchange model for
the transition potential in the framework of the distorted wave

Born approximation (DWBA). The p(p,1++)n experimental
data for the forward cross section in the considered energy region
agree remarkably well with the theoretical results when only
the one-pion exchange is included in the calculation. However
the results for the p(n, p)n reaction greatly underestimate the
experimental data.

The situation changes completely if the ρ-exchange is
included in the transition potential. In this case, the p(n, p)n
calculated cross section comes close to the experimental values.
On the other hand, the inclusion of the ρ-exchange destroyed the
former agreement in the p(p,1++)n independently of the choice
of parameters.

These results can be understood in the following way.
The p(p,1++)n reaction is dominated by the tensor terms of
the transition potential due to the spin flip involved in the
reaction, whereas the p(n, p)n process is dominated by the central
potential. The central part of the OPE Born amplitude behaves
like t/(t − m) (t = −q2), which gives a vanishing cross section
in the forward direction. The finite value of the p(n, p)n cross
section appears due to the modification of this behavior by
the distortions in the DWBA treatment. The inclusion of the
ρ-exchange in the transition potential contributes to enhancing
the cross section in the p(n, p)n reaction but also reduces the
tensor potential and destroy the agreement in the case of the
p(p,1++)n reaction.

The solution to this conundrum can be found in the
modification of the (σ · σ )(τ · τ ) dependence of the one-pion
exchange potential by the quark antisymmetrization [38]. As
showed by Shimizu [22], quark antisymmetrization produces a
sizable modification of the behavior of the central piece of the
OPE potential but keeps the tensor piece almost unchanged. This
fact explains simultaneously the p(p,1++)n reaction and the
non-vanishing forward p(n, p)n cross section task that obviously
cannot be done by the meson exchange models because the
required modification of the central part of the interaction has,
as a consequence, inconvenient changes in the tensor interaction.

The same mechanism provides a natural justification for the
OPE-δ or poor’s mans absorption procedure used to explain
the behavior of the double-spin-flip helicity amplitudes for
elastic nucleon-nucleon scattering. More details can be found in
Fernández and Oset [39].

3. THE NUCLEON-NUCLEON
INTERACTION IN THE RESONATING
GROUP METHOD

Two different approaches have been used in the literature to
study the nucleon-nucleon interaction in the framework of the
quark model. We have already referred to the first, namely,
the Born-Oppenheimer approximation. In this approach, the
distance between two nucleons is taken as a parameter, and
one calculates the energy of the six-quark system from different
distances. If the relative kinetic energy between the nucleons is
subtracted, the remaining energy is identified with the nucleon-
nucleon potential. However, as mentioned before, because of the
color nature of the one-gluon exchange interaction, only those
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terms that include an additional quark exchange contribute to the
nucleon-nucleon potential because it is not possible to exchange
a colored object between two colorless objects. Then, the gluon
exchange is only possible when the two nucleons overlap. This
fact makes the potential highly non-local. Since the potential
produced by the Born-Oppenheimer approximation is essentially
local, it is difficult to admit that this potential is suitable to
describe the short-range part of the N-N interaction.

The second approach, which has been widely used to describe
the scattering problem of two composite objects and therefore
seems to be the most appropriate method to incorporate the
non-local effects, is the Resonating Group Method (RGM). This
method was originally formulated byWheeler [10] and applied to
nuclear physics byWildermuth and Tang [11]. The phase shifts of
the two-nucleon interaction are usually calculated in the scheme
developed by Kamimura [40].

The RGM assumes the wave function for two-nucleon (six
quark) system can be written as:

ψ(ξA, ξB,RAB) = A
{

[φA(ξA)× φB(ξB)]STχN(RAB)
}

(8)

The coordinates ξA = (ξ1, ξ2) and ξB = (ξ3, ξ4) are internal
coordinates of the 19 three-quark clusters A and B in the Jacobi
coordinate system [11]. RAB is the relative coordinate between the
two nucleons. The internal nucleon wave function φN includes
the color, spin, isospin, and orbital degrees of freedom. Once the
quark-quark interaction is fixed, one should get φN as a solution
of the three-body system. However, it is usually assumed that the
internal orbital function is the 0S harmonic oscillator function
with oscillator length b. The spin and isospin of each nucleon are
coupled to total S and T.

The relative wave function χN(RAB), which is the only
unknown of the problem, is calculated by solving the
RGM equation:

∫

φ(ξA, )
+φ(ξB)+(H − E)ψ(ξA, ξB,RAB)dξAdξB = 0 (9)

where H is the total Hamiltonian of the six-quark system. It
is usual to introduce the RGM Hamiltonian and normalization
kernels in the following way:

L(R′,R) =
∫

φ(ξA, )
+φ(ξB)+δ(R′ − RAB)(H − E)A

×
{

[φA(ξA)× φB(ξB)δ(R− RAB)]STdξAdξBdRAB
}

= H(R′,R)− EN(R′,R) (10)

Using this expression, Equation (9) can be written as:

∫

L(R′,R)χ(R′)dR′ = 0 (11)

which is usually referred to as the RGM equation.
From the asymptotic behavior of the relative wave function,

one can easily calculate the corresponding phase shifts [40]. In the

case of an S-wave, the phase shift can convert into an equivalent
hard-core radius parameter r0 through the equation:

δ0(k) = −r0k (12)

Another advantage of this formulation is that one can
incorporate the modification of the nucleon wave function over
short distances through standard coupling channel techniques. In
this case, Equation (11) becomes a coupled-channel equation:

∑

β

∫

L(R′,R)αβχβ (R)dR

=
∑

β

∫

{

Hαβ (R
′,R)− ENαβ (R

′,R)
}

χβ (R)dR = 0 (13)

Ribeiro [13], Toki [14], Oka and Yazaki [12] and Faessler
et al. [17] have employed the previous RGM method to
describe the dispersion of N-N in terms of quark degrees of
freedom using a coupled-channel calculation. However, for the
sake of clarity, we will first discuss the short-range part of
the N-N interaction in the channel approximation following
[17], although the conclusion of the other calculation is
very similar.

At short distances, the interaction between quarks is mediated
by the exchange of gluons. However, gluons can interact with
each other, which make the quark-quark interaction rather
complicated to describe in an exact way. Usually, one assumes
that the quark-quark potential V consist of two terms: the
one-gluon exchange potential VOGEP, which describes the
interaction at high momentum transfer, and the confining
potential VCONF , which modelizes the multigluon interaction. In
the one-channel approximation, VCONF does not contribute to
the N-N interaction because nucleons are color singlets; however
the stabilization of each nucleon should be taken into account, as
we will see later.

Then, a typical Hamiltonian used in this kind of calculation is
given by:

H =
∑

i

p2i
2mq

− KG + V

V =
∑

i > j

(VCONF
ij + VOGEP

ij ) (14)

where m is the quark mass, pi is a momentum of the ith quark,
and KG is the center of mass kinetic energy.

A detailed reduction for the OGE amplitude can be found
in several textbooks, e.g., Berestetskii et al. [41], and we shall
therefore only give the final expressions. One can start with the
quark-gluon interaction Lagrangian:

L = 1

2
gψ̄(x)λiγ

µψ(x)Gi
µ(x) (15)

where ψ(x) is the quark field, Gi
µ(x) (i = 1, . . . 8) are the eight

gluon fields, λi the SU(3) generators, and g the quark gluon
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coupling constant. From this Lagrangian, one arrives, in the one-
gluon approximation and the static limit, at a potential between
quarks of the form:

VOGEP
ij = 1

4
(λi · λj)αs

(

1

rij
− 2

3
π
σi · σj
m2

q

δ(rij)−
π

m2
q

δ(rij)

)

(16)

where αs = g/4π and σi is the spin operator of the i-th quark.
There are no prescriptions to obtain an expression for the

confining potential. Usually, this VCONF is chosen as:

VCONF
ij = −ac(λiλj)rij (17)

where ac is the strength of the confining potential, λi the color
SU(3) generator for the i-th quark, and, as before, rij is the
distance between the i-th and the j-th quarks.

The orbital part of the quark wave function is assumed to be
of Gaussian form:

ψ(ri) =
1√
πb

er
2
i /2b

2
(18)

where b is the size parameter related to the root mean square

charge radius (rms-radius) of the proton through
√

< r2 >p =
b [17]. The model described above contains four parameters a,
αs, mq, and b. In Faessler et al. [17], the parameter values are
chosen so that they give reasonable values for the rms-radius of
the proton, the magnetic moment of the proton, and the mass
difference between the nucleon and the 1. Although the rms-
radius of the proton is around 0.8 fm, b is chosen as b = 0.5−0.6,
taking into account the possible effect of the pion cloud. The
quark mass is fixed in this calculation as mq = 336 MeV/c2 to
be consistent with the observed proton and neutron magnetic
moments. Once the quark mass and size parameter are fixed, the
coupling constant αs is determined so that the nucleon and 1
mass difference comes out to be 294 MeV. However, this way of
choosing the value of the parameters does not guarantee that we
are describing the nucleon. In fact, one must satisfy the stability
condition of the nucleon mass in terms of the size parameter:

∂

∂b
〈N|H|N〉 = 0 (19)

This condition is used to determine the value of the remaining
unfixed parameter, namely the strength of the confining potential
a, to be 61.6 MeV/fm.

Figure 1 shows the result for the triplet S and the singlet
S phase shifts for a value b = 0.6 fm. The behavior of the
phase shifts corresponds with a hard-core potential of 0.45 fm
for the triplet case and 0.52 fm for the singlet one. As b is
actually a free parameter, Figure 2 shows the behavior of the
hard-core radius calculated for several potentials available in the
literature with different values of the parameter b. The common
feature of all these potentials is that the coupling constant αs is
readjusted for each value of b to reproduce the experimental N1
mass difference.

FIGURE 1 | Singlet S and triplet S phase shifts as a function of the

two-nucleon center of mas energy for the NN channel. The parameters of the

quark-quark interaction are given in the text.

FIGURE 2 | Hard-core radius r0 as a function of the oscillator length b for

different quark-quark forces. The potentials are from ref OGEP I and OGEP

II [17], Bender [42], Isgur-Karl I [43], Isgur-Karl II [44] Ellwanger [45],

Ribeiro [13], Oka-Yazaki [12], and Gromes [46].

The general trend for all these calculations is an increasing of
the hard-core radius with the oscillator length b. This fact agrees
with the previous conclusions that the size of the hard core is
related to the node at r = b in the [42] orbital configuration of
the six-quark system.

So far, one has implicitly assumed that the nucleons remain
unchangeable in their mutual interaction. However, this may
not be the reality as different six-quark structures can come up
when the two nucleons overlap. A possible candidate that might
appear is the 1(1232) resonance, which belongs together with
the nucleon to the lowest orbital configuration of the three-
quark system. The inclusion of the 11 channel in a coupled-
channel RGM calculation was done in Oka and Yazaki [12] and
Faessler et al. [17]. They conclude that the 11 channel does not
appreciably modify the results.
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More important could be the contribution of the so-called
hidden color channels (CC). These channels are those in which
the three-quark color wave function belongs to the color octet,
rather than to the color singlet as the physical nucleon, even
though the full six-quark system remains colorless. These three-
quarks clusters are now sensitive to the confining force, and
their dynamics are therefore different from the colorless cluster
dynamics. The first calculation in which hidden color states were
taken into account was made by Harvey [16] in the framework
of the Born-Oppenheimer approximation. Harvey found that
the three channels NN, 11, and CC coupled with each other
rather strongly, and, as a result of the configuration mixing, the
hard-core behavior of the NN potential disappeared. However,
Faessler et al. [17, 47] showed, in an RGM coupled-channel
calculation, that the inclusion of the CC channels does not
produce a significant modification of the behavior of the S-wave
phase shifts, the repulsion being only slightly weaker than in the
case of only NN and11 were included.

The reason for this disagreement must be sought after in the
treatment of the confinement parameter ac. The CC channel is
the only channel sensible to the confining force; therefore, the
election of the confinement strength is crucial to determining
the final results. As we mentioned before in the Faessler’s
calculation, the confinement strength is adjusted to theminimum
of the nucleon mass at a given rms-radius. Otherwise, Harvey
chose the oscillator length b (fitted to the proton rms-radius)
and the confinement strength (fitted to the baryon spectrum)
independently. If we release the condition dM/db = 0 and
allow the parameter ac to vary freely for a fixed value of b, the
configuration mixing increases dramatically and the hard core
even disappears when the value of ac is far enough from that
which corresponds to the minimum condition (see Figure 3).
This result is very understandable if one thinks of releasing the
dM/db = 0 condition; we are not describing the physical nucleon
anymore but some excited state of that couples strongly with
the CC channels. Therefore, it is very important to choose the
quark-quark interaction and the quark wave function in a self-
consistent way in order to avoid unphysical coupling with the
hidden color states.

The RGM calculations based on quark degrees of freedom that
showed until now allowed for the understanding of the origin
of the hard core of the nucleon-nucleon interaction, though it
they are too naive to provide a quantitative description of the
experimental phase shifts.

To go forward in the description of the experimental data
one needs to include, in the RGM, Hamiltonian terms, which
take care of the medium range attraction as well as the one-
pion tail. Obviously, these terms should be related with a
meson cloud surrounding the quark core and without any
explicit assumption made about the coupling of mesons with
the quark core. The most direct way is the introduction of
effective meson exchange potentials (EMEP) in the renormalized
RGM equations [18, 48, 49]. In this way, the so-called hybrid
models appear.

The RGM equation can be symbolically written as:

(EN̂ − Ĥ)χ = 0 (20)

FIGURE 3 | Triplet S hard-core radius r0 as a function of the confinement

parameter a for one channel NN (dashed line) and three channels NN, 11,

and CC (solid line) calculation. In the one channel case the hard-core radius is

independent of a. The dependence with a in the three-channel calculation

appears through the coupling with de hidden color states. The arrow shows

the value of a which minimize the nucleon mass with respect to b.

This equation differs from the usual Schrödinger-type equation
due to the presence of the normalization kernel N̂. This term can
be eliminated by the renormalization of χ , i.e.,

χr = N̂1/2χ (21)

The equation for χr now can be written as:

(E− N̂−1/2ĤN̂−1/2)χr = 0 (22)

This equation is called the renormalization RGM equation
and is adequate to introduce the effective meson exchange
potential VEMEP:

(E− N̂−1/2ĤN̂−1/2 − VEMEP)χr = 0 (23)

The description of the NN phase shifts with this modified RGM
equation depends on the shape and the number of parameters
included in the different VEMEP. Examples can be seen in the
literature cited above.

4. THE CONSTITUENT QUARK MASS AND
THE CONSTITUENT QUARK MODEL

In the last paragraph we argued that the chiral symmetry of
the massless QCD Lagrangian is spontaneously broken by the
bag surface in the bag model, thereby providing a scheme to
couple quarks and pions. However, the spontaneous breaking
of the chiral symmetry is not a characteristic of the bag model
but a more general property of the QCD Lagrangian. In fact, if
this symmetry were exact, we would observe degeneracy between
states with opposite parity but with the same quantum numbers.
For example, the ρ (1−, 775) meson would be degenerated with
the axial a1 (1+, 1260) meson, the nucleon (1/2+, 940) would
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be degenerated with the (1/2−, 1535) resonance, etc. Since it is
not the case, we conclude that the SU(3)L × SU(3)R symmetry is
spontaneously broken. In a seminal article, Manohar and Georgi
[1] argued that the chiral symmetry, spontaneously broken to
an SU(3)v symmetry at same 3χSB scale, does not necessarily
have to match with the confinement scale 3CONF . Therefore,
one can develop an effective field theory in the intermediate
region whose Lagrangian includes quarks and gluons fields and
Goldstone bosons coupled to the quarks.

How the spontaneous breaking of the chiral symmetry comes
about is still a topic of discussion. Diakonov and Petrov [50]
suggested a theory of the light quarks in the instanton vacuum,
which explained the spontaneous breakdown of chiral symmetry
as being due to the delocalization of the would-be zero fermion
modes in the field of individual instantons and allows for
an effective chiral Lagrangian. The rationale of the model is
that the quark propagator in the instanton vacuum develops a
momentum-dependent dynamical mass (which we prefer to call
constituent mass) that is related to the instanton density, N/V ,
and the average instanton size, ρ̄, as:

M(p2) =
√

π2Nρ̄2

VNc
F(pρ̄) (24)

so that the quark propagator has the form of a massive
propagator:

S(p) = γ µpµ + iM(p2)

p2 +M2(p2)
(25)

where F(z) is a combination of the modified Bessel functions,
which is equal to 1 at z = 0 and decreases rapidly with
the momentum measured in units of the inverse of instanton
size. Diakonov [51] estimated that the value of the dynamical
mass at zero momentum is around 350 MeV/c2, which is in
concordance with the values used in the non-relativistic quark
model. Starting from these ideas, Diakonov [51] deduced an
effective partition function:

Z =
∫

DπA

∫

Dψ+
Dψ exp

{

∫

d4xψ+(x)
[

iγ µ∂µ

+iMeiγ5 Eτ · Eφ/fπ
]

ψ(x)

}

(26)

from which an effective Lagrangian, invariant under chiral
rotations (meaning, therefore, that it must contain chiral fields),
can be expressed as:

L = ψ(i /∂ −M(q2)Uγ5 )ψ (27)

where ψ is the quark spinor, Uγ5 = e
i λa
fπ
φaγ5 is the Goldstone

boson fields matrix, and M(q2) is the dynamical (constituent)
mass that vanishes at large momenta and is frozen at low
momenta for a value around 300 MeV.

The appearance of the constituent quark mass (or dynamical
quark mass) related to the chiral symmetry justified, at least
qualitatively, the non-relativistic quark model. Moreover, the
Goldstone boson fields provide a natural coupling for quarks
and pions.

5. CONSTITUENT QUARK MODEL
DESCRIPTION OF THE
NUCLEON-NUCLEON INTERACTION

The conclusions of the former section open the door to
a complete description of the N-N interaction. They not
only provide a justification for the constituent quark mass,
as claimed by the phenomenology, but also explain how to
include an important piece of the N-N interaction, namely the
pion exchange.

Based on these ideas, a constituent quark model of the
nucleon-nucleon interaction has been developed by the groups
of Tubingen [24] and Salamanca [52, 53].

The starting point of the model is a non-relativistic reduction
of the Lagrangian of Equation (27). Although the momentum
dependence of the dynamical mass can be provided by the
theory, it is more practical to simulate this behavior by
parameterizing the dynamical mass as M(q2) = mqF(q

2),
wheremq ≃ 300 MeV, and

F(q2) =
[

32
χ

32
χ + q2

]
1
2

. (28)

The cut-off3χ fixes the chiral symmetry breaking scale.
The Goldstone boson field matrix Uγ5 can be expanded in

terms of boson fields,

Uγ5 = 1+ i

fπ
γ 5λaπa − 1

2f 2π
πaπa + ... (29)

The first term of the expansion generates the constituent
quark mass while the second one gives rise to a one-pion
exchange interaction between quarks. The main contribution of
the third term comes from the two-pion exchange, which, in
Fernandez et al. [24], has been simulated by means of a scalar
σ−exchange potential.

Now it is straightforward to write the non-relativistic
potentials generated in the static approximation in the
following way,

VPS
ij (Eq) = − 1

(2π)3
g2
ch

4m2
q

32
χSB

32
χSB + q2

(Eσi · Eq)(Eσj · Eq)
m2

PS + q2
(Eτi · Eτj)

(30)

VS
ij(Eq) = − g2

ch

(2π)3

32
χSB

32
χSB + q2

1

m2
S + q2

(31)

where Eq is the three-momentum transfer, the σ ’s (τ ’s) are the spin
(isospin) Pauli matrices, and mq, mPS, and mS are the masses
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of the quark, pseudoscalar, and scalar bosons, respectively. The
momentum states are normalized to 1.

It is well known that the long-range piece of the NN
interaction is due to the one-pion exchange. Therefore, to
reproduce accurately the long-range tail of the NN interaction,
one need to identify the mass of the pseudoscalar field with
the physical pion mass. Once the mass of the pseudoscalar field
is fixed, the mass of the scalar field is obtained by the chiral
relation [54].

m2
PS = m2

π

m2
S = m2

PS + 4m2
q (32)

In an early version of the model [24], the chiral Langrangian was
linearized using the definitions

π = Eφfπ sin(φ/fπ ), (33)

σ = fπ
[

cos(φ/fπ )− 1
]

(34)

giving rise to the Hamiltonian:

H = gchF(q
2)ψ(σ + iγ5

→
τ · →

π )ψ (35)

The results of the two formulations are equivalent.
Below the chiral symmetry breaking scale, quarks still interact

through gluon exchanges described by the Lagrangian:

Lgqq = i
√

4παs ψγµG
µ
c λcψ , (36)

where λc are the SU(3) color generators and G
µ
c the gluon field.

The corresponding non-relativistic reduction produces the
one-gluon exchange potential:

VOGE
ij (Eq) = 1

(2π)3
1

4
(Eλi · Eλj) 4παs

{

1

q2
− 1

4m2
q

(

1+ 2

3
(Eσi · Eσj)

)

+

+ 1

4m2
q

1

q2

[

Eq⊗ Eq
]2 ·

[

Eσi ⊗ Eσj
]2

}

(37)

where the λ’s are the color Gell-Mann matrices and αs is the
strong coupling constant.

Finally, the other QCD non-perturbative effect corresponds
to confinement. This effect does not contribute to the N-N
interaction because, taking into account the conclusion of the
former sections, the model only includes color singlet three-
quarks states.

As we will see below, the formulation of a realistic interaction
of NN in terms of quark degrees of freedom has the advantage
that nucleons and their resonances can be described in a
unified way; only the wave function changes and the underlying
interaction stays the same.

The works described above presented solutions of the RGM
equations in coordinate space. However, it is more convenient
to work in momentum space because, in this way, one avoids
the problem of the rapid oscillations that the relative wave
function exhibits in coordinate space at high energy. Moreover,

the parametrization of the width of nucleon resonances is
more naturally introduced, which simplified the equations in
multichannel calculations.

With this approach, the usual ansatz for the quark radial wave
function is:

ψ(Epi) =
3
∏

i = 1

[

b2

π

]

3
4

e−
b2p2i
2 (38)

where b fixes the size of the nucleon.
One could argue that the wave function of the three-quark

clusters should be obtained consistently with the quark-quark
interaction as the solution of the Schrödinger equation for
the three-quark system. This calculation was carried out in
Valcarce et al. [55] showing that the NN potential obtained in
the Born-Oppenheimer approximation using the wave function
coming from the full calculation were very similar to the one
obtained with a Gaussian wave function for a certain value of
the parameter b. This result legitimizes the use of Gaussian
wave function to calculate RGM kernels The baryon total wave
function, including the spin, isospin, and color degrees of
freedom, can be written as,

ψB = φB(Epξ1 , Epξ2 )χBξc[13];

φB(Epξ1 , Epξ2 ) =
[

2b2

π

]

3
4

e
−b2p2ξ1

[

3b2

2π

]

3
4

e
−
3b2

4
p2ξ2 (39)

where φB(Epξ1 , Epξ2 ) takes into account the internal spatial baryon
degrees of freedom and is obtained from Equation (38) by
removing the center of the mass wave function. Also, χB labels
the totally symmetric spin-isospin wave function coupled to the
quantum numbers of the baryon B, and ξc[1

3] is the color-singlet
wave function. Built in this way, ψB is totally antisymmetric in
quark exchanges.

From this expression, it easily to write the two-baryon
wave function:

ψB1B2 = A

[

χ(EP)ψST
B1B2

]

= A

[

φB1 (EpξB1 )φB2 (EpξB2 )χ(EP)χ
ST
B1B2

ξc[2
3]
]

(40)

where,A is the antisymmetrizer of the six-quark system, φBi (EpξBi )
is the internal spatial wave function defined in Equation (39),
χST
B1B2

denotes the spin-isospin wave function of baryons B1 and

B2 coupled to a total spin-isospin ST, and ξc[2
3] is the product of

the two color singlets.
The dynamics of the system is governed by the

projection equation:

(H− ET) |ψ 〉 = 0 ⇒ 〈 δψ | (H− ET) |ψ 〉 = 0 (41)

where,

H =
N
∑

i = 1

Ep 2
i

2mq
+
∑

i<j

Vij − TCM (42)
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with TCM being the center of mass kinetic energy, Vij the
interaction described in the previous section, and mq the
constituent quark mass.

In Equation (41) the variations are performed on the relative

wave function χ(
→
P ). Then, integrating all the internal degrees of

freedom, the projected Schrödinger equation for the relative wave
function adopts the expression:

(

EP′ 2

2µ
− E

)

χ(EP′
)

+
∫

(

RGMVD(EP
′
, EPi)+RGMK(EP′

, EPi)
)

χ(EPi)dEPi = 0 (43)

where E = ET − EA − EB is the relative energy of the clusters,

and RGMVD(EP′
, EPi) and RGMK(EP′

, EPi) are the direct potential and
the exchange kernel, respectively given by,

RGMVD(EP
′
, EPi)

=
∑

i∈A, j∈B

∫

φ∗A(Epξ ′A )φ
∗
B(Epξ ′B )Vij(EP

′
, EPi)φA(EpξA )φB(EpξB )dEpξ ′AdEpξ ′BdEpξAdEpξB

(44)

and

RGMK(EP′
, EPi) = RGMHE(EP

′
, EPi)− ET

RGMNE(EP
′
, EPi) (45)

with

RGMHE(EP
′
, EPi)

= −9

∫

dEp
ξ
′
A
dEp
ξ
′
B
dEpξAdEpξBdEP

φ∗A(Epξ ′A )φ
∗
B(Epξ ′B )H P36

[

φA(EpξA )φB(EpξB ) δ3(EP − EPi)
]

(46)

A similar expression can be found for the normalization exchange
kernel, replacing H with the identity operator. Equation (43) is
readily generalized to a coupled-channel equation, starting from
a sum of wave functions of the type of Equation (40) for the
different baryon channels considered.

The solution of coupled-channel RGM equations is derived
from Equation (43), a set of coupled Lippmann-Schwinger
equations of the form:

Tα
′
α (z; p′, p)

= Vα
′

α (p′, p)+
∑

α′′

∫

dp′′ p′′2 Vα
′

α′′ (p
′, p′′)

1

z − Eα′′ (p′′)
Tα

′′
α (z; p′′, p)

(47)

where α labels the group of quantum numbers B1B2JLST, which

defines a certain partial wave, Vα
′

α (p,′ p) is the projected potential
that contains the direct potential and the RGM exchange kernels,
and Eα′′ (p

′′) is the energy corresponding to a momentum p′′,
written as (in the non-relativistic case):

Eα(p) =
p2

2µα
+1Mα (48)

Here, µα is the reduced mass of the B1B2 system corresponding
to the channel α, and 1Mα is the difference between the
threshold of the B1B2 system and the one used as a reference,
the NN system. The mass difference 1Mα is obtained from the
interaction terms for quarks belonging to the same baryon, which
relate to the total energy of the system ET and to the relative
energy between clusters E.

The coupled-channel Lippmann-Schwinger equation is solved
by a generalized version of the matrix inversion method of
Machleidt [56] in order to include channels with different
thresholds. Once the T matrix is calculated, the scattering
matrix S is obtained for non-relativistic kinematics from
the relationship:

Sα
′
α = 1− 2π i

√

µαµα′kαkα′ T
α′
α (E+ i0+; kα′ , kα) (49)

with kα defined by:

k2α = 2µα(E−1Mα) (50)

so that, for channels above the threshold, k2α > 0.
For bound states, the integral equations do not have poles, and

the problem is simplified. In this case, a discretized Schrödinger
equation can be written in the form:

∑

j

[

Ei(pi)δij + Vij − Eδij
]

ψj = 0 (51)

where i and j label the discretization of the integral and the
quantum numbers of the different channels included in the
calculation, andψj is the value of the wave function in the channel
and momentum corresponding to the index j.

Details of the calculation of the RGMKernels and the solution
of the equations for both bound and scattering states can be
found in Entem et al. [52].

If the pseudoscalar field is to be identified with the one-
pion exchange (OPE), a way to obtain the value of the coupling
constant gch is to require that the pseudoscalar interaction
should reproduce at long range the well-established OPE Yukawa
potential. If the two nucleons are well separated, the central part
of the pseudoscalar interaction between quarks given by Equation
(30) generates an interaction between nucleons of the form,

VPS
c (r) = 1

3

g2
ch

4π

m2
π

4m2
q

ρ̃(imπ )
2 e−mπ r

r

(

5

3

)2

(EσN · EσN)(EτN · EτN)

(52)

where ρ̃(q) is the quark density Fourier transform of each
nucleon normalized to ρ̃(q = 0) = 1. Compared with the
standard OPE Yukawa potential,

VOPE
c (r) = 1

3

f 2πNN
4π

e−mπ r

r
(EσN · EσN)(EτN · EτN) (53)

and using ρ̃(q) = e−
b2q2

6 , one finally obtains:

g2
ch

4π
=
(

3

5

)2 f 2πNN
4π

4m2
q

m2
π

e
−
b2m2

π

3 (54)
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This gives the chiral coupling constant gch in terms of the πNN

coupling constant, taken to be
f 2πNN
4π = 0.0749 [57].

As discussed above, the parameter b describe the radius of
the nucleon quark content, which is different from the nucleon
charge radius and therefore cannot be directly measured. A value
for this Gaussian parameter is determined by comparing the N-N
potential obtained in a Born-Oppenheimer approximation using
the nucleon wave function solution of Schrödinger equation, with
the full quark-quark interaction and the one calculated with a
single Gaussian of parameter b [55].
3χSB acts in the model as a cut-off for the pion interaction.

Therefore, its value controls theNN tensor force, which is mainly
due to the one-pion exchange. Then, the more clear way to
determine the 3χSB value is to resort to processes dominated by
the one-pion tensor term. As discussed above, one such processes
is the p(p,1++)n reaction. Fitting the missing mass spectrum of
this reaction [58] estimated a value close to 4.2 fm −1 for3χSB.

Finally, the value of αs is estimated by means of the
N1 mass difference. It is worth noticing that, in this
model, the pseudoscalar piece of the interaction contributes
to approximately half of the total mass difference. The rest is
attributed to the OGE, and the value of αs is adjusted to this value.

TABLE 1 | Model parameters from Entem et al. [52].

b(fm) 0.518

mq(MeV) 313

3χSB(fm
−1) 4.2997

mPS (fm
−1) 0.7

g2ch 6.6608

αs 0.4977

mS (fm
−1) 3.513

The values of the parameters determined, as explained above, are
given in Table 1.

Once the model is completely defined, one can solve the
scattering problem, obtaining the NN phase shifts and the bound
state problem, namely the deuteron. The phase shifts calculation
will include couplings to a11 channel for the isosinglet (T = 0)
partial waves and to 11 and N1 channels for isotriplet (T = 1)
partial waves. One of the great advantages of the description in

FIGURE 5 | NN 1P1 phase-shift. Dashed and solid lines have the same

meanings as in Figure 4B. Dashed-dotted line shows the effect of

antisymmetry, corresponding to the result when all the exchange kernels are

removed. Reprinted figure with permission from Entem et al. [52] Copyright

(2000) by the American Physical Society.

FIGURE 4 | NN S wave phase-shifts for T = 1 (A) and T = 0 (B). Experimental points with and without error bars correspond to the energy independent and energy

dependent solutions of Arndt et al. [59], respectively. The phase shifts are shown and the analysis correspond to neutron-proton. (A) Dashed line represents the

calculation including NN channels only, dotted line includes also N1 components, and solid line is the full calculation with NN, N1, and 11 channels. (B) Dashed line

is the calculation with NN only, and the solid line is the full calculation including NN and 11 channels. Reprinted figure with permission from Entem et al. [52]

Copyright (2000) by the American Physical Society.
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FIGURE 6 | NN 3PJ phase-shifts. (A) Same meaning as in Figure 4A. (B,C) Dashed line corresponds to the result with NN channels only, and the solid line includes

NN and N1 channels. Reprinted figure with permission from Entem et al. [52] Copyright (2000) by the American Physical Society.

terms of quark degrees of freedom is that this scheme allows
us to treat the nucleon an its resonances 1, N∗ in a single
framework without having to increase the number of parameters.
In Figures 4–10, one can see the comparison between the results
of the model and the experimental data of Arndt et al. [59].

The first aspect that is interesting to remark upon is the result
for the 1SNN0 partial wave. This channel cannot be coupled to
other NN channels by angular momentum selection rules, and it
is therefore an ideal candidate to test the quark-quark interaction.
As seen in Figure 4, the one channel NN calculation does not
show enough attraction to reproduce the experimental data. A
possible solution is to increase the strength of the σ exchange.
However, in this model, the σ -quark coupling is related with
the π-quark coupling by chiral symmetry and, hence, there is
not freedom to fit the data. The required attraction is supplied
by the coupling to the 5DN1

0 channel (dotted line) [60]. A
complete agreement with the experimental data is obtained when
the coupling to 11 channels is included (solid line). For the
isotriplet 3SNN1 partial waves, the effect of the coupling to 11
channels is very small, as shown here and as will be also seen for
higher angular momentum partial waves.

The short-range repulsion of the potential is reproduced
very well and without introducing any additional parameters.
Although the presence of a pseudoscalar interaction reduces the

value of αs in the OGE (the interaction usually advocated an
explanation of the short-range repulsion of theNN potential), the
strong spin-isospin independent repulsion produced by the effect
of the quark antisymmetry on the one-pion exchange potential
compensates for the lack of the OGE repulsion.

Table 2 shows the result for the low-energy scattering
parameters. The agreement with the experimental results and
other theoretical calculations is good, with the exception of the
anp. One must be aware that the scattering length in the 1S0, due
to the existence of an almost bound state in this partial wave, is
extremely sensitive to small changes in the strength of the force.
Moreover, the results of Table 2 have been calculated with the
same set of parameters for the T = 0 and T = 1 channels. A
non-significant change of the scalar boson mass in the T = 1
channel will drive the results to the experimental value. Further
discussions of the scattering length problem in this model can be
found in Entem et al. [66].

The 1P1 wave is the only one that is not affected by the spin-
orbit term of the interaction. This partial wave provides another
example of the importance of the quark antisymmetrization
in the model. In Figure 5 one can see that, if one removes
the terms coming from the antisymmetrization, the interaction
is attractive and, consequently, the phase shifts are positive.
The one-gluon exchange interaction does not contribute due
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FIGURE 7 | NN 1D2 phase-shift. Solid, dashed, and dotted lines have the

same meanings as in Figure 4A. Dashed-dotted line represents the result

without exchange kernels. Reprinted figure with permission from Entem et al.

[52] Copyright (2000) by the American Physical Society.

to its δ-like character, and the direct pseudoscalar is attractive
for the 1P1 due to sign of the spin-isospin matrix elements.
Only the repulsion coming from the quark antisymmetrization
term of the one-pion exchange potential reproduces the correct
experimental behavior.

As a general trend, the agreement between theory and
experiment is reasonable for phase shifts with L > 1, although,
as explained in Entem et al. [52], the interaction shows a lack of
spin-orbit interaction.

The problem of the origin of the spin-orbit interaction in
the constituent quark model is a long-standing problem that is
rooted in the fact that the Galilei-invariant term of the spin-orbit
piece, which comes from the one-gluon exchange interaction and
is the best one founded for the description of the NN interaction,
severely disturbs the description of the negative parity baryon
spectrum [67].

Besides the one-gluon exchange, they are several possible
sources of the spin-orbit term of the quark-quark interaction.
Valcarce et al. [68] studied the spin-orbit terms generated by the
one sigma exchange together with the Galilei-invariant spin-orbit
terms coming from the one-gluon exchange. They found that
the combination of scalar-meson-exchange interaction between
quarks and the one-gluon exchange leads to a satisfactory
description of the P-wave NN phase shifts and the baryon
spectrum. A similar conclusion can be found in Takeuchi [69].
Another source of spin-orbit interaction is one arising as a
relativistic effect from the confinement potential (the so-called
Thomas term). In Koike [70], this interaction is studied using a
particular model of confinement (flip-flopmodel). The spin-orbit
force generated by one-gluon exchange and by a flip-flop model

for confinement gives results that are qualitatively similar to those
reported by Valcarce et al. [68].

Recent attempts to overcome this problem have been made
by Chen et al. using an extension of the quark delocalization
color screening model (QDCSM) [71], which includes a one-
pion exchange with a short-range cutoff in the QDCSM
Hamiltonian [28]. The quark delocalization is achieved by
writing the wave function of each nucleon as a linear combination
of left and right Gaussians in a two-center cluster model
approximation where the mixing parameter ǫ is determined
by the six quark dynamics. They obtain similar results as the
Salamanca version of the constituent quark model [52] but
replacing the σ -meson exchange by the quark delocalization and
color-screening mechanism [29]. However, this new mechanism
does not contribute to solving the spin-orbit problem [30].

One must conclude, therefore, that the situation of the spin-
orbit force in quark potential models is still quite controversial.
To remove the remaining uncertainties, a better understanding of
the quark confinement is clearly needed (see also the discussion
of this issue in Myhrer and Wroldsen [26]).

Besides the problem of the spin-orbit interaction, the
constituent quark model description of the nucleon-nucleon
interaction still has room for improvement. Although the
Gaussian ansatz for the wave function is a reasonable and
useful approximation, one may wonder what the result would
be if a more accurate wave function was used. This has been
done by Huang and Wang [31] in the framework of the
SU(3) chiral model [72]. The authors constrained the adjustable
parameters of the model by minimizing the masses of the
octet and decuplet baryon ground states. These masses were
calculated by using Gaussian trial wave functions where the
size parameters are determined by a variational method, which
guarantees that all baryons correspond to minimum states of
the Hamiltonian model. The NN scattering phase shifts are in
satisfactory agreement with the experimental data describing in
a consistently unified way the single baryon properties and the
baryon-baryon dynamics.

A still controversial and challenging problem is the inclusion
of the vector-meson exchanges into the model. In a schematic
model, Yazaki showed that the pseudo-scalar (π , η) and scalar
(σ ) meson exchange terms can be simply added to the quark
exchange term without the risk of double counting, but the
vector-meson (ρ,ω) exchange needs some care because it plays a
role similar to the one-gluon exchange [48]. The same conclusion
is obtained in Huang and Zhang [73]. These authors show, in
a kaon-nucleon interaction in the extended chiral SU(3) quark
model that includes vector-meson exchanges, that the role of
the gluon is now nearly replaced by the vector-meson exchange.
For heavy quarks, meson exchanges are questionable Because,
in this sector, the chiral symmetry is explicitly broken by the
quark masses. Hence, it seems that the one-gluon exchange
should be a piece of the quark-quark interaction. However, which
mechanism is the right one for describing the short-range quark-
quark interactions is still an open question.

The quark scheme is also very suited to describing the
nucleon-nucleon bound states and their possible baryon-baryon
components. The deuteron has been traditionally described as an
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FIGURE 8 | NN 3DJ phase-shifts. (A) Lines are labeled as in Figure 4B. (B,C) Solid line corresponds to the result with NN channels only. Reprinted figure with

permission from Entem et al. [52] Copyright (2000) by the American Physical Society.

isospin singlet Jπ = 1+ two-nucleon system in even partial waves
(i.e., 3S1 and

3D1). However, its structure could also be explained
as a linear combination of pairs of baryonic resonances, provided
they have the adequate total quantum numbers.

The usual way to treat the contribution of these resonances
is to include them explicitly in a coupled-channel calculation.
When this is done at the baryonic level, two problems
immediately arise. If one uses for the nucleon-nucleon channel
an effective potential that is fitted to the nucleon-nucleon
scattering, it will already include contributions from the
resonance intermediates N∗ or 1. Therefore, one has to modify
the normal nucleon-nucleon potential in order to account for
the additional attraction coming from the channel coupling. Such
procedures usually introduce an unwantedmodel dependence on
the results obtained and are sometimes not fully consistent.

Examples of these concerns are the calculation of Haapakoski
and Saarela [74] (11 components) and Rost [75] (NN∗

components). Both used a Reid Soft core potential for the
NN channel and one-pion exchange potential for the NN∗ or
11 channel. Rost realized that when NN∗ configurations are
included, the NN potential must be modified because part of
the attraction is produced by NN∗ components. It implicitly
appears in the fit to the experimental data, and, now that the
NN∗ are explicitly included in the coupled-channels calculation,

it must be subtracted out to avoid double counting. This is done
by modifying the values of the parameters responsible for the
intermediate range attraction in the Reid potential. A similar
problem appears in Haapakoski and Saarela [74] in their 11
calculation. A second problem is that there is no guidance to
construct the specific transition potential to the N∗ resonances,
and one thus resorts to scaling some pieces (for example the one-
pion exchange) of the nucleon-nucleon interaction, As shown
by Juliá-Díaz et al. [76], however, the NN∗ interaction, due
to quark antisymetrization, shows significant differences with
respect to those obtained by a direct scaling of the nucleon-
nucleon interaction.

These two difficulties are overcome in calculations based on
quark degrees of freedom as the one performed in Entem et al.
[52]. These authors assume that the deuteron can be described
as a combination of different configurations, with two clusters of
three quarks being the most important, in order of increasing
mass, N(939)N(939), N(939)N∗(1440), and 1(1232)1(1232).
Table 3 displays the different configurations and partial waves
included in the calculation. The results of the calculation are
shown in Table 4. In all cases, the deuteron binding energy is
correctly reproduced, being Ed = –2.2246 MeV. There are a
number of conclusions that can be drawn from this table. The
first one is that the probability of the NN∗(1440) components are
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FIGURE 9 | NN F phase-shifts. In the T = 0 sector (A), the solid line includes NN channels only. In the T = 1 sector (B,C,D), the dashed line corresponds to including

NN channels only, and the solid line considers also N1 channels. Reprinted figure with permission from Entem et al. [52] Copyright (2000) by the American

Physical Society.

significantly smaller than the 11 ones, which is in agreement
with the indirect estimations of Dorodnykh et al. [78]. As a
consequence, the influence of these components on the value
of the observables, such as the root mean square radius or AS,
is negligible. Finally, the probability of the 11 components
(around 0.25%) agree with the upper limit established by
Allasia et al. [79].

6. OTHER BARYONIC SYSTEMS

The nucleon-nucleon interaction described above can be applied
to other systems, in the same way that they do other nucleon-
nucleon potentials likes the ones based in boson exchanges. The
most obvious system to extend the application of the quark
model-based nucleon-nucleon interaction is the triton.

The interest of this calculation lies in the fact that the NN
potential derived from the quark-quark interaction is non-local.
This potential is generated using the Resonating Group Method
so that the non-localities resulting from the internal structure of
nucleons is persevered. These non-localities can produce off-shell
behavior different to the quark model-based potential.

In Juliá-Díaz et al. [76], the triton binding energy was obtained
from a Fadeev calculation, including only 1S0 and 3S1 − 3D1

NN partial waves, used for the NN interaction of the direct
and exchange potential obtained in a fully RGM-based nucleon-
nucleon calculation. The results for the triton observables are
shown in Table 5 together with those obtained for conventional

NN potentials. One can see that they are no significant differences

between the three calculations, and so the quarkmodel-basedNN
interaction can provide a realistic description of triton. A more

complete calculation, which includes up to 50 channels in the

Fadeev calculation and uses a different scheme for the quark-
quark interaction, was developed by Fujiwara et al. [83], and it
obtained a binding energy of Eb = −8.52 MeV.

Particularly attractive are those processes in which the quark
model description involves completely different physics from
the conventional one. One of these systems is the hyperon
production process pp̄ → 33̄.

The experimental data shows two characteristic features of this
production process. The first one is that the pp̄ → 33̄ process
that occurs predominately in a spin-triplet state. The second
feature refers to the energy dependence of the cross section
immediately after the threshold, which needs the inclusion of the
calculation of partial waves higher than L = 0.

In the quark level description, the 33̄ pair is produced from
the pp̄ state via the annihilation of a uū pair and the subsequent
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FIGURE 10 | NN G phase shifts in the T = 0 (B,C,D) and T = 1 (A) sectors. Lines have the same meanings as in Figure 9. Reprinted figure with permission from

Entem et al. [52] Copyright (2000) by the American Physical Society.

creation of an ss̄ pair by s-channel exchanges. In a conventional
description, meanwhile, this production relies on the t-channel
meson exchanges, where at least kaon exchanges are needed.
Examples of this different point of view can be found in Ortega
et al. [84], Haidenbauer et al. [85] and references therein.

The two types of models involve completely different
physics. Thus, the triplet-state dominance can easily be
understood in quark models because the ss̄ pair, which carry
the 33̄ spin, is produced by effective vector exchanges
(gluons and Goldstone bosons), which gives rise to a spin
1 for the 33̄ state. In meson exchange models, the tensor
pieces of the K and K∗ mesons must be combined to
produce the spin-triplet dominance, which may introduce a
model dependence.

For the real part of the pp̄ (33̄) interaction, both type

of models use a G-parity transformation of some nucleon-

nucleon (hyperon-nucleon) potential. Themodel of Haidenbauer

et al. [85] is based in the OBEPF version of the one-boson
exchange potential of Haidenbauer et al. [86] for the pp̄, whereas
the corresponding interaction for the 33̄ channel is derived
from the hyperon-nucleon potential of Holzenkamp et al. [87].
The transition potential pp̄ → 33̄ includes K and K∗

meson exchanges.

TABLE 2 | Low-energy scattering parameters from Entem et al. [52].

Quark OBEP Paris Exp.

anp (fm) –27.010 –23.750 –17.612 –23.748(10)

rnp (fm) 2.64 2.71 2.88 2.75(5)

at (fm) 5.437 5.424 5.427 5.419(7)

rt (fm) 1.779 1.761 1.766 1.754(8)

The result of the OBEP and Paris potential are from [61] and [62], respectively.

Experimental data are from [63–65].

TABLE 3 | Different channels and partial waves considered in the calculation of

the deuteron properties from Juliá-Díaz et al. [77].

NN 3S1 - 3D1

NN∗ 3S1 - 3D1

11 3S1 - 3D1 - 7D1 - 7G1

The quark-quark interaction used by Ortega et al. [84] is a
generalization of the quark-quark interaction of Entem et al. [52].
It includes the exchange of π ,K, η, σ , κ , and gluons in the t-
channel and π , κ , η, and gluons in the annihilation s-channel.
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TABLE 4 | Different components in (%) of the deuteron wave function.

NN NN∗
11

3S1
3D1

3S1
3D1

3S1
3D1

7D1
7G1 rm(fm) AS(fm

−1/2) η

95.38 4.62 – – – – – – 1.976 0.8895 0.0251

95.20 4.56 – – 0.11 0.0035 0.12 0.0063 1.985 0.8941 0.0250

95.17 4.53 0.0027 0.024 0.13 0.0036 0.12 0.0062 1.986 0.8944 0.0250

95.19 4.54 0.0022 0.015 0.12 0.0036 0.12 0.0063 1.985 0.8941 0.0250

TABLE 5 | Comparison of triton properties from Juliá-Díaz et al. [80].

Quark NijmII Bonn B

EB (MeV ) −7.72 −7.65 −8.17

PS (%) 91.49 90.33 91.35

PS′ (%) 1.430 1.339 1.368

PP (%) 0.044 0.064 0.049

PP (%) 7.033 8.267 7.235

The results of NijmII are from Stoks et al. [81], whereas the results of Bonn B are from

Schadow et al. [82].

Initial and final state interactions are automatically included by
the diagonal channel interactions.

Besides the interaction described above, both the pp̄ and 33̄
annihilate into mesons. These processes are very difficult to
describe, and they are usually parameterized in both models by a
complex potential, including spin- and isospin-dependent terms.
The parameters of this potential are fitted to the pp̄ → pp̄ cross
sections (total, elastic, and charge exchange) and pp̄ → 33̄

total cross section. Although bothmodels reproduce the total and
differential cross section with reasonable accuracy, completely
different patters appear in the description of polarization
observables, such as the depolarization observable Dnn, the
Knn spin transfer, and the Ci,j spin correlation coefficients.
The calculation of Haidenbauer et al. [85] concluded that the
quark model seemed to be in better agreement with the Ci,j

spin correlation coefficients data. There was no comparison
with experimental data of Dnn, and the Knn spin transfer was
performed, but the results show significant differences between
the prediction of the twomodels. In Ortega et al. [84], the authors
compared the results of the quark model calculation with a set of
data on a different energy, concluding that the model seemed to
show a reasonable agreement with the data. However, the scarcity
and inaccuracy of existing data prevents us from forming any
definitive conclusion.

The same scheme used to describe the nucleon-nucleon
interaction in terms of degrees of quark freedom can be used to
study the hyperon-nucleon interaction and the hyperon-hyperon
interaction. Technically, this means extending the SU(2) flavor
model to the SU(3) flavor model (or SU(6) spin flavor). Most
of the parameters of the extended model are obtained from the
nucleon-nucleon interaction and the rest from the low-energy
cross section data of the hyperon-nucleon interaction.

Among the different works done in this line [88], we will
refer to two of them, which use different approaches: the one

develop by the Beijing group [89] and the one developed by the
Kyoto group [49].

The model of Zhang et al. was an extension of the low-
momentum effective Lagrangian coming from the instanton
liquid picture of the QCD vacuum Equation (27) of Fernandez
et al. [24] to a SU(3) model by the inclusion of an s-quark in
the system. As a consequence, aside from the usual π and σ
exchanges, K, η, and η′ exchanges appeared in a natural way.
The 12 parameters of the model were fixed in the same way
of Fernandez et al. [24], but the oscillator parameter bs was
obtained by scaling the parameter bu as bs = √

mu/msbu, were
mu and ms are the constituent masses of the light and strange
quark, respectively. The one-gluon exchange coupling constant
for the light and strange quark were determined from the mass
splitting of 1N and 3N, respectively. Finally, the strength of
the confinements were obtained from the stability condition of
nucleon3 and4.

Using this interaction, Zhang et al. [72, 89] studied the binding
energy of the deuteron, the NN scattering phase shifts, and the
hyperon-nucleon cross section in the framework of the RGM,
obtaining results reasonably consistent with experiment.

The model of the Kyoto group follows the philosophy of the
hybrids models. The effective qq interaction of the model consist
of the one-gluon exchange Fermi-Breit interaction, a quark-
confining potential, and other terms generated effective meson-
exchange potentials (EMEP) from various meson-exchange
mechanisms. They are various version of the model depending
of the mesons included in the (EMEP). All of these versions can
be found in the extensive review of Fujiwara et al. [88]. We will
only mention the most recent version named fss2 [49], which,
besides the scalar and pseudo-scalar meson exchanges, includes
the vector meson exchanges as well. This potential reproduces
the existing data of the NN and YN interactions quite well and,
therefore, can predict all the interactions in the strangeness S =
–2, –3, and –4 sectors without adding any extra parameters.

In the last years, the experimental progress in the
phenomenology of heavy hadrons has increased the interest in
the hadron-hadron interaction involving heavy flavors as well
as the bound nuclear systems with heavy mesons. Due to the
lack of experimental results, most works are devoted to looking
for bound states or resonances or comparing phase shifts with
lattice calculations, e.g., Miyamoto et al. [90, 91]. Thus, Huang
et al. [33] the N3c, N3b, N6c, and N6b are investigated in the
quark delocalization color screening model. The authors have
shown that, although the interaction N3c is attractive, it is not
strong enough to form bound states. That is not the case of the
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N6c interaction, which is able to form bound sates that become
resonances with the coupling with the N3c. The corresponding
bottom states have similar properties.

A comparative study of charmed baryon-nucleon interaction
is performed in Garcilazo et al. [34] based on different
theoretical approaches and comparing them with a lattice
calculation, forming a general qualitative agreement among
the different approaches. However, more experimental
efforts are necessary in this field to be able to drawn
quantitative conclusions.

Finally, a NN interaction based on quark degrees of freedom
has been applied to the description of the nuclear matter
saturation point in Fukukawa et al. [92]. These authors derive
the equation of states (EOS) of nuclear matter in the framework
of the Bethe-Brueckner-Goldstone approach using the fss2
interaction of Fujiwara et al. [49]. The results showed that
the nuclear matter saturation curves can be reproduced at the
same level of the best NN interactions but without the need
of the introduction of three-body forces or parameters different
from the one used to reproduce the NN phase shifts and the
deuteron properties. These results may be an indication that
the effects of the three-body forces used in more traditional
interactions are, to a large extend, automatically included when
the quark degrees of freedom are explicitly introduced in
the calculation.

7. OTHER QUARK APPROACHES TO THE
NUCLEON-NUCLEON INTERACTION

Although the constituent quarks model, in its different versions,
has been the most popular model to use to study the nucleon-
nucleon interaction, there have been attempts to use othermodels
for the same purpose, as the bag model is the most important.
As we said in the introduction, the first attempts to describe this
interaction using degrees of freedom from quarks were made
by Fairley using the MIT bag model [93]. The ingredients of
the model are very simple: relativistic quarks of three colors
and two, three, or four flavors interacting through an octet
of colored vector gluons. Quarks and gluons are confined to
a finite volume by a uniform pressure. Non-strange quarks
are massless, satisfying all quarks the Dirac equation inside
the cavity.

The first serious effort to use the MIT bag model to describe
the nucleon-nucleon interaction was carried out by DeTar [8].
In this model, the nucleon-nucleon interaction is obtained from
the adiabatic deformation of a bag containing six quarks into
two color singlet bags containing three each. The energy of
the two three-quark bags is minimized with respect to two
collective variables: a parameter that measures the separation of
the three-quark subsystems and a second parameter related to
the baryonic quadrupole moment that, in certain ways, takes
into account the deformation of the three-quark bags in their
mutual interaction. The obtained potential shows a soft core
of about 300 MeV at short distances and it is attractive in the
intermediate range. The soft core can be easily understood, as
explained below.

In the MIT bag model, the color magnetic energy of n-quarks
coupled to a color singlet and located in the same orbit is
DeGrand et al. [94]:

En = 1

2
M00

[

n(n− 6)+ J(J + 1)+ 3I(I + 1)
]

(55)

where J is the angular momentum of the state and I the isospin.
M00 is a model parameter that take the value 50 MeV in order to
reproduce the 1(1230)-nucleon mass difference. In the case J =
1 and I = 0 (calculated by DeTar), the color magnetic interaction
when the two nucleons completely overlap was only 50 MeV,
whereas each nucleon had a color magnetic energy of 150 MeV.
This 250 MeV difference between the energy of two separated
and merged nucleons accounted for the repulsion found by
DeTar. The intermediate-range attraction obtained by DeTar
could not have been predicted without a quantitative calculation
and should be related with the strong color electrostatic attraction
within the quark triplets [8].

The calculations in this model are sufficiently complex not
to be able to advance much more in the calculation of the NN
interaction. Moreover, the center of mass energy of the two
bags is difficult to subtract, which can lead to double counting
problems when calculating the nucleon-nucleon phase shifts. In
order to solve the scattering problem of two bags, Jaffe and Low
proposed the use of the P-matrix formalism [95]. These authors
suggested that the energy of multiquarks states appears as poles
of the P matrix, that is the logarithmic derivative of the hadronic
wave function:

P(k, b) =
∣

∣

∣

∣

u′(k, r)
u(k, r)

∣

∣

∣

∣

r = b

(56)

provided that the matching radius b is chosen to be consistent
with that of the multiquark state. In this way, P-matrix poles are
obtained from the experimental phase sifts and compared with
the predictions of the bag model to form the multiquark states.

The Jaffe-Low hypothesis was tested for the NN system [96,
97], finding a qualitative explanation for the origin of the
repulsive core and an overall agreement with the experimental
data with an accuracy up to 10 − 15%. Possible improvements
to the model include a better determination of the relationship
between the bags parameter and the matching radius and
the possibility of allowing for deformed bag shapes. This last
point is technically complicated, although some advances have
been made by expanding the wave function in an harmonic
oscillator basis [98].

Bags models have also been used to generate boson-exchange
interactions through a Fierz transformation of the gluon
exchange between two bags, being that the form factors appearing
in the OBE are defined as matrix elements of the vertex invariants
with quark wave functions taken from the MIT bag model [99].

8. CONCLUDING REMARKS

Throughout this chapter we have presented the achievements of
the description of the nucleon-nucleon interaction in terms of
quark degrees of freedom. At the scale of nuclear phenomena or
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low-energy hadron physics, the QCD running coupling constant
is large, and, in this strong-coupling regime, non-perturbative
methods are indispensable. But, so far, not much success has
been achieved in this respect. Then, if one wants to explicitly
keep the fundamental constituents in QCD, i.e., quarks and
gluons, one is then led to the model non-perturbative QCD using
‘QCD-inspired’ models. One of these models, the constituent
quark model, is experiencing a resurgence because of the recent
studies of the NN interaction from first-principles lattice-QCD
simulations near the physical quark masses that indicate that
their behavior at short distances are qualitatively consistent with
the constituent quark model [100, 101]. In particular, when a
compact six-quark state is Pauli blocked, the baryon interaction
is highly repulsive. However, when the channel is Pauli allowed,
the interaction can be either attractive or repulsive, as predicted
by the constituent quark model [102].

Leaving aside the fact that these models are not derived from
the fundamental theory, the use of quark and gluon degrees of
freedom allows us to better understand the physics underlying
some phenomena, such as the hard core of the nuclear force or
the role played by the quark antisymmetry, which in othermodels
can be hidden in the parameters used. On the other hand, these
models represent a complexity added to the calculations that
make them less flexible in reproducing certain phenomenology.

The main advantages of these models is that they can
describe a huge variety of phenomena, baryon and meson
spectrum, baryon-baryon interactions, and few nucleons
system (deuteron, triton,. . . ), within an unified (and sometimes
reduced) set of parameters with a quality comparable with the
other models.

However, these models present the same caveats, such as
their non-relativistic character; the way to set the values of the
model parameters make it difficult to determine errors of the
calculated observables and impossible to improving the model
order by order.
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In this article, we review the HAL QCD method to investigate baryon-baryon interactions,

such as nuclear forces in lattice QCD. We first explain our strategy in detail to investigate

baryon-baryon interactions by defining potentials in field theories, such as QCD. We

introduce the Nambu-Bethe-Salpeter (NBS) wave functions in QCD for two baryons

below the inelastic threshold. We then define the potential from NBS wave functions

in terms of the derivative expansion, which is shown to reproduce the scattering phase

shifts correctly below the inelastic threshold. Using this definition, we formulate a method

to extract the potential in lattice QCD. Secondly, we discuss pros and cons of the HAL

QCD method, by comparing it with the conventional method, where one directly extracts

the scattering phase shifts from the finite volume energies through the Lüscher’s formula.

We give several theoretical and numerical evidences that the conventional method

combined with the naive plateau fitting for the finite volume energies in the literature so

far fails to work on baryon-baryon interactions due to contaminations of elastic excited

states. On the other hand, we show that such a serious problem can be avoided in

the HAL QCD method by defining the potential in an energy-independent way. We also

discuss systematics of the HAL QCD method, in particular errors associated with a

truncation of the derivative expansion. Thirdly, we present several results obtained from

the HAL QCD method, which include (central) nuclear force, tensor force, spin-orbital

force, and three nucleon force. We finally show the latest results calculated at the nearly

physical pion mass, mπ ≃ 146 MeV, including hyperon forces which lead to form ��

and N� dibaryons.

Keywords: lattice QCD, nuclear forces, baryon-baryon interactions, dibaryons, equation of state, neutron stars

1. INTRODUCTION

How do nuclear many-body systems emerge from the fundamental degrees of freedom,
quarks and gluons? It has been a long-standing problem to establish a connection between
nuclear physics and the fundamental theory of strong interaction, quantum chromodynamics
(QCD). In particular, nuclear forces serve as one of the most basic constituents in
nuclear physics, which are yet to be understood from QCD. While so-called realistic
nuclear forces [1–3] have been established with a good precision, they are constructed
phenomenologically based on scattering data experimentally obtained. Recent development
in effective field theory (EFT) provides a more systematic approach for nuclear forces
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from a viewpoint of chiral symmetry in QCD [4–8], whose
unknown low-energy constants, however, cannot be determined
within its framework but are obtained only by the fit to
the experimental data. Under these circumstances, it is most
desirable to determine nuclear forces as well as general
baryon-baryon interactions from first-principles calculations
of QCD, the lattice QCD method. Once baryon forces are
extracted from QCD, we can solve finite nuclei, hypernuclei
and nuclear/hyperonic matter by employing various many-
body techniques developed in nuclear physics. The outcome is
expected to make a significant impact on our understanding of
nuclear astrophysical phenomena, such as supernovae, binary
neutron star merges and nucleosynthesis.

In this paper, we review the HAL QCD method to determine
baryon-baryon interactions in lattice QCD. In this method,
integral kernels, or so-called “potentials,” are first extracted
from lattice QCD, and physical observables, such as scattering
phase shifts and binding energies are calculated by solving the
Schrödinger equation with obtained potentials in the infinite
volume. We show that the notion of potential can be rigorously
introduced as a representation of the S-matrix in quantum
field theories as QCD. The essential point is that the potentials
are defined through the Nambu-Bethe-Salpeter (NBS) wave
functions, in which the information of phase shifts are encoded in
their asymptotic behaviors. We employ a non-local and energy-
independent potential where the non-locality is defined through
the derivative expansion. In particular, energy-independence of
the potential is useful since one can extract the potential from
the ground state as well as elastic excited states simultaneously.
This enables us to avoid the notorious signal-to-noise issue
for multi-baryon systems in lattice QCD (or the ground state
saturation problem), and to make a reliable determination of
baryon-baryon interactions.

In lattice QCD, there also exists a conventional method, in
which phase shifts are obtained from finite volume energies
through the Lüscher’s formula. For meson-meson systems,
a number of works have been performed based on the
Lüscher’s formula [9], where finite volume energies are extracted
utilizing the variational method [10]. The Lüscher’s formula
has been generalized for various systems, such as boosted
systems [11], arbitrary spin/partial waves [12, 13], and three-
particle systems [14, 15]. While theoretical bases are well-
established for both conventional method and HAL QCD
method, numerical results for baryon-baryon systems at heavy
pion masses have shown inconsistencies with each other. In this
paper, we make a detailed comparison between two methods,
scrutinizing possible sources of systematic errors. In particular,
we examine whether the systematic errors associated with excited
state contaminations are controlled or not in the procedure of
the conventional method in the literature (“the direct method”),
namely, simple plateau fitting for the ground state at early
Euclidean times. We also examine systematic errors in the HAL
QCDmethod, in particular, the truncation error of the derivative
expansion. We show theoretical and numerical evidences that
the inconsistency between two methods originates from excited
state contaminations in the direct method. We also demonstrate
that the inconsistency can be actually resolved if and only if finite

energy spectra are properly obtained with an improved method
rather than the naive plateau fitting in the conventional method.

After establishing the reliability of the HAL QCD method,
we present the numerical results of nuclear forces from the
HAL QCD method at various lattice QCD setups. The results
at heavy pion masses for central and tensor forces are shown
and their quark mass dependence as well as physical implications
are discussed. The calculations of spin-orbit forces and three-
nucleon forces are also given. Once nuclear forces are obtained,
one can solve nuclear many-body systems with the obtained
potentials. We study finite nuclei, nuclear equation of state and
structure of neutron stars based on lattice nuclear forces at heavy
pion masses. Finally, the latest results of nuclear forces near the
physical pionmass are presented, as well as hyperon forces, which
are shown to generate�� and N� dibaryons.

This paper is organized as follows. In section 2, we discuss
methods to study baryon-baryon interactions from lattice QCD.
After briefly introducing the conventional method and its actual
practice, called the “direct method,” we describe the detailed
theoretical formulation as well as its practical demonstration
for the newly developed method, the HAL QCD method. In
section 3, we discuss pros and cons of these two methods, and
compare the numerical results at heavy pion masses. We present
evidences that the results from the direct method suffer from
uncontrolled systematic errors associated with the excited state
contaminations. In section 4, we summarize results on nuclear
potentials in the HAL QCD method. After reviewing the results
obtained at heavy pion masses for central and tensor forces in
the parity-even channel as well as spin-orbit forces and three-
nucleon forces, we present nuclear many-body calculations based
on lattice nuclear forces for double-magic nuclei, equation of
state and the structure of neutron stars. Latest results for nuclear
forces near the physical pion mass are also given. In section 5, we
present hyperon forces near the physical pion mass, which lead
to �� and N� dibaryons. Section 6 is devoted to the summary
and concluding remarks.

2. TWO BARYON SYSTEMS IN LATTICE
QCD

In lattice QCD, the 2-pt function for a hadron H, created by O†
H

and annihilated by OH , is expressed as

〈0|OH(Ep, t)O†
H(Ep, 0)|0〉 =

∞
∑

n=0

Zn(Ep)e−En(Ep)t + · · · ,

Zn(Ep) = |〈0|OH(Ep, 0)|n,En(Ep)〉|2, (1)

where |n,En(Ep)〉 is the n-th one-particle state with a mass mn, a
momentum Ep and an energy En(Ep) =

√

m2
n + Ep2, and ellipses

represent contributions from multi particle states. We here
assumem0 < mn>0, so thatm0 is the hadronmass for the ground
state, which can be extracted from the asymptotic behavior of the
2-pt function in the large t as

〈0|OH(Ep, t)O†
H(Ep, 0)|0〉 ≃ Z0(Ep)e−E0(Ep)t + O

(

e−En>0(Ep)t
)

,

t → ∞, (2)
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where finite volume artifact is exponentially suppressed and can
be eliminated by an infinite volume extrapolation.

So far, this method in lattice QCD (and the extension to
lattice QCD + QED) has successfully reproduced light hadron
spectra [16] including the proton–neutron mass splitting [17]. A
simple application of the method, however, does not work well
for an investigation of hadron interactions. For example, the 2-pt
function of two baryons in the center of mass system behaves in
the large t as

〈0|OBB(E0, t)OBB(E0, 0)†|0〉 ≃ ZBBe
−EBBt + · · · , (3)

where we obtain the lowest energy EBB. In the infinite volume
limit, EBB behaves as EBB = 2mB or EBB = 2mB − 1E
depending on an absence or presence of bound state. Here mB

is the corresponding baryon mass and 1E > 0 is the binding
energy of the lowest bound state. Only the binding energy of the
bound state can be extracted by this simple method and thus
more sophisticated methods are required. Currently there are
two methods to investigate hadron interactions in lattice QCD,
the direct method (or finite volume method) and the HAL QCD
method, which are explained in this section.

2.1. Direct Method
The method most widely used to investigate hadron interactions
in lattice QCD is to extract scattering phase shifts from energy
eigenvalues in 3-dimensional finite boxes through the Lüscher’s
finite volume formula [18]. For example, in the case of the S-wave
scattering phase shift, δ0(k), the formula reads

k cot δ0(k) =
1

πL

∑

En∈Z3

1

En2 − q2
, q = kL

2π
, (4)

where k is determined through EBB(L) = 2
√

k2 +m2
B with

EBB(L) being the energy of the two baryon measured in lattice
QCD on a finite box with the spatial extension L as in
Equation (3). We here neglect the partial wave mixing in the
cubic group and spin degrees of freedom, for simplicity. Only the
discrete sets of point (k2, k cot δ0(k)), which satisfies Equation (4),
are realized on a given volume L3. Thus, the scattering phase
shift δ0(k) at the corresponding k can be extracted in lattice
QCD, simply by measuring the finite volume energy, EBB(L).
Note that the formula assumes that the hadron interaction is
accommodated within the lattice box and is not distorted by
the finite volume artifact, which condition should be examined
numerically to be satisfied in actual calculations.

In Figure 1, we illustrate how scattering phase shifts and the
bound state energy can be extracted by this method in the case
of the NN scatterings. In the figure, the red solid line represents
the effective range expansion (ERE) for k cot δ0(k)/mπ at the
Next-to-Leading order (NLO) as

k

mπ
cot δ0(k) = 1

a0mπ
+ r0mπ

2

k2

m2
π

(5)

where the scattering length a0 and the effective range r0 are taken
to be a0mπ = 16.8, r0mπ = 1.9 for NN(1S0) (Left) or a0mπ =

−3.8, r0mπ = 1.3 for NN(3S1) (Right) with mπ = 140 MeV,
while colored dashed lines represent the Lüscher’s finite volume
formula, Equation (4) on L = 10, 12, 14, 18 fm. Discrete points
which satisfy both the Lüscher’s finite volume formula and the
ERE are realized on each volume, as shown by the open squares,
up/down triangles and diamonds.

A distribution of the allowed k2 for k2 > 0 becomes denser
as the volume increases, so as to be continuous in the infinite
volume limit, while a sequence of discrete points for k2 < 0 leads
to an accumulation point, which corresponds to the scattering
state at k2 = 0 in the left figure or the bound state pole, denoted
by the black solid circle in the right figure. It is noted here that
the bound state pole appears as the intersection between the ERE
and the bound state condition, −

√

−(k/mπ )2 (black solid line).
To see this, we first write

k cot δ0(k) = ik · S(k)+ 1

S(k)− 1
, S(k) = e2iδ0(k), (6)

where S(k) is the S-matrix for the NN elastic scattering. The
bound state energy κb can be extracted from the pole of this
S-matrix as

S(k ∼ iκb) ≃
−iβ2

b

k− iκb
, (7)

where β2
b
is real and positive for physical poles [20]. Thus at

k2 ≃ −κ2
b
, we have

k cot δ0(k)
∣

∣

k=iκb
= −κb = −

√

−k2
∣

∣

∣

k=iκb
, (8)

which means that the binding momentum k = iκb is given by an
intersection between k cot δ0(k) and−

√
−k2. Moreover, since

d

dk2

[

k cot δ0(k)− (−
√

−k2)
]

∣

∣

∣

∣

k2=−κ2
b

= − 1

β2
b

< 0, (9)

the slope of k cot δ0(k) must be smaller than that of −
√
−k2 as a

function of k2 at the bound state pole, as in the case of Figure 1
(right). The finite volume analysis thus provides not only an
infinite volume extrapolation of the binding energy but also a
novel way to examine the normality of the result in the direct
method [19].

2.2. HAL QCD Method
2.2.1. Formulation
The HAL QCD method, another method to investigate hadron
interactions in lattice QCD, employs the equal time Nambu-
Bethe-Salpeter (NBS) wave function, defined by

φk(r)e
−Wkt ≡ 〈0|N(x+ r, t)N(x, t)|NN,Wk〉, (10)

where |NN,Wk〉 is the NN eigenstate in QCD with the center

of mass energy Wk = 2
√

k2 +m2
N and the nucleon mass mN ,

and N(x, t) is a nucleon (annihilation) operator, made of quarks.
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FIGURE 1 | A determination of k cot δ0(k)/mπ from energies of the two nucleon state in the finite volume. Taken from Iritani et al. [19].

Other quantum numbers, such as spin/isospin of two nucleons
are suppressed for simplicity. We mainly use

Nα(x) = εabc
(

ua T(x)Cγ5d
b(x)

)

qcα(x), x ≡ (x, t), (11)

where C = γ2γ4 is the charge conjugation matrix, q = u(d)
for proton (neutron). Other choices, such as smeared quarks are
possible here, and such arbitrariness is considered to be a choice
of the scheme for the definition of the NBS wave function or
the potential (see [21] for such an example). Throughout this
paper, we consider the NN elastic scattering, so that Wk <

Wth ≡ 2mN + mπ , where mπ is the pion mass. Note that this
condition is also necessary for the finite volume method in the
previous subsection.

Since interactions among hadrons are all short-ranged in
QCD, there exists some length scale R, beyond which (i.e.,
r ≡ |r| > R) the NBS wave function satisfies the Helmholtz
equation as

(k2 +∇2)φk(r) ≃ 0, k = |k|. (12)

Furthermore, it behaves for large r > R as

φk(r) ≃
∑

l,m

Zl,m
sin(kr − lπ/2+ δl(k))

kr
Ylm(�r), (13)

where Ylm is the spherical harmonic function for the solid angle
�r of r, and we ignore spins of nucleon for simplicity1. Here
it is important to note that the NBS wave function contains
information of the phase δl(k) of the S-matrix for the orbital
angular momentum l, which is a consequence of the unitarity of
the S-matrix in QCD [24, 25].

1The formula becomes more complicated if the nucleon spins are

considered [22, 23].

In the HAL QCD method, the non-local but energy-
independent potential is defined from the NBS wave function
through the following equation,

(Ek −H0)φk(r) =
∫

d3 r′U(r, r′)φk(r′), Ek =
k2

2m
,

H0 = −∇2

2m
, m = mN

2
, (14)

forWk < Wth, and Equation (12) implies U(r, r′) = 0 for r > R.
While an existence of U(r, r′) has been shown in Ishii et al. [26]
and Aoki et al. [23, 27], the non-local potential which satisfies
Equation (14) is not unique. Thus we have to define the potential
uniquely, by specifying how to extract it. For this purpose, we
introduce the derivative expansion,U(r, r′) = V(r,∇)δ(3)(r−r′),
whose lowest few orders for the NN with a given isospin channel
are written as

V(r,∇) = V0(r)+ Vσ (r)(σ1 · σ2)+ VT(r)S12
︸ ︷︷ ︸

LO

+VLS(r)L · S
︸ ︷︷ ︸

NLO

+O(∇2), (15)

where V0(r) is the central potential, Vσ (r) is the spin dependent
potential with σi being the Pauli matrix acting on the spinor index
of the i-th nucleon, VT(r) is the tensor potential with the tensor
operator S12 = 3(r̂·σ1)(r̂·σ2)−(σ1·σ2) (r̂ ≡ r/r), andVLS(r) is the
spin-orbit (LS) potential with the angular momentum L = r× p

and the total spin S = (σ1 + σ2)/2. It is noted that an expansion
of the non-local potential is not unique. For example, we may
improve the convergence of the expansion by modifying the ∇
operator [28].

Once we obtain the approximated potential at lowest few
orders, we can calculate the scattering phase shifts or the binding
energies of possible bound states by solving the Schrödinger
equation with this potential in the infinite volume. As is the case
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for the finite volume method, it is necessary that the potential
is not distorted by the finite volume artifact, but this can be
checked easily since the potential itself is explicitly obtained.
We can also check how good the approximated potential is,
by increasing the order of the expansion. Needless to say, the
approximated potential depends on momenta of input wave
functions. As pointed out in Aoki et al. [29], these dependences
of the approximated potentials have been misidentified with
those of the non-local potential in the literature [30]. In
the next subsection, we will explicitly demonstrate how this
procedure works.

2.2.2. Demonstration
In order to see how the scattering phase shifts can be obtained by
the HAL QCD method, we consider the quantum mechanics for
a spinless system with a separable potential, defined by

U(r, r′) = ωv(r)v(r′), v(r) ≡ e−µr . (16)

The S-wave solution of the Schrödinger equation with this
potential is given exactly by

φ0k (r)

= eiδ0(k)

kr

[

sin{kr + δ0(k)} − sin δ0(k)e
−µr

(

1+ r(µ2 + k2)

2µ

)]

,

(17)

where

k cot δ0(k) = − 1

4µ2

[

2µ(µ2 − k2)− 3µ2 + k2

4µ3
(µ2 + k2)2

+ (µ2 + k2)4

8πmω

]

, (18)

which is the 4-th order polynomials in k2. In order to make
the scattering phase shift a more complicated function of k2, we
artificially modify the wave function from φ0

k
(r) to φk(r) which is

defined by

φk(r) =







φ0
k
(r) (r ≤ R)

C(k)
eiδR(k)

kr
sin{kr + δR(k)} (r > R),

(19)

where R is an infrared cutoff, and it is understood that the
potential is modified accordingly. The continuity of φk(r) and
φ′
k
(r) at r = R gives

k cot δR(k) = k
Y cot(kR)+ X

X cot(kR)− Y
, X = φ0k (R),

Y = d

dr
[rφ0k (r)]

∣

∣

∣

∣

r=R

, (20)

as well as C(k) = X/ sin(kR+ δR(k)). Hereafter, we study how the
scattering phase shifts are obtained in the HAL QCD method.

The derivative expansion for the S-wave scatterings leads to

V(r,∇) = V0(r)+ V1(r)∇2 + O(∇2), (21)

and we consider to determine the potential in each order
from φk(r).

The leading order (LO) potential is given by

VLO(r,∇) = VLO
0 (r; k) = (Ek −H0)φk(r)

φk(r)
, (22)

while the next-to-leading order (NLO) potential is extracted as

VNLO(r,∇) = VNLO
0 (r; k1, k2)+ VNLO

1 (r; k1, k2)∇2, (23)

where

(

VNLO
0 (r; k1, k2)

VNLO
1 (r; k1, k2)

)

= 1

D(r; k1, k2)

(

2m
[

VLO
0 (r; k2)Ek1 − VLO

0 (r; k1)Ek2
]

VLO
0 (r; k2)− VLO

0 (r; k1)

)

,

D(r; k1, k2) = 2m
[

VLO
0 (r; k2)− VLO

0 (r; k1)− (Ek2 − Ek1 )
]

.

(24)

Note that the potential in each order in the derivative expansion
{V0(r),V1(r), · · · } are defined to be k-independent, while the
potentials approximately obtained in each LO/NLO analysis,
{VLO

0 (r; k)} and {VNLO
0 (r; k1, k2),VNLO

1 (r; k1, k2)}, have implicit
k-dependence due to the truncation error in the derivative
expansion [29].

We calculate S-wave scattering phase shifts corresponding to
these approximated potentials, and compare them with the exact
phase shifts, δR(k). Considering µ as a typical inelastic threshold
energy in this model, we take k = 0 and/or k = µ for the
following analysis. Figure 2 shows the S-wave scattering phase
shift δ(k) (Left) and k cot δ(k) (Right) as a function of k2, where
all (dimensionful) quantities are measured in units of µ. In this
example, we take ω = −0.017µ4,m = 3.30µ, and R = 2.5/µ. In
the figures, the exact phase shift δR(k)(Left) or k cot δR(k) (Right)
is given by the blue solid line, while the LO approximations at
k = 0 or k = µ are represented by orange and green solid lines,
respectively. As seen from the figures, the LO approximation
at k = 0 (orange), exact at k2 = 0 by construction, gives a
reasonable approximation at low energies (k2 ≃ 0) but deviates
from the exact one at high energies near k2 ≃ µ2. On the other
hand, the LO approximation at k = µ (green) becomes accurate
at higher energies near k2 ≃ µ2 but inaccurate at low energies
near k2 ≃ 0. Combining two NBS wave functions, φk1=0(r) and
φk2=µ(r), one can determine the approximated potential at the

NLO, VNLO(r,∇), whose scattering phase shifts are represented
by the red solid lines in the figures. The phase shifts at the NLO
(red lines) gives reasonable approximations of the exact results
(blue solid lines) in the whole range (0 ≤ k2 ≤ µ2), as they are
exact at k2 = 0 and k2 = µ2 by construction. If we increase
the order of the expansion more and more, the approximation
becomes better and better2.

Using this model, let us compare the direct method and the
HAL QCD method. At the LO, the direct method gives either

2A similar attempt to represent an arbitrary potential in terms of a separable

potential is given in Ernst et al. [31, 32].
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FIGURE 2 | The scattering phase shifts δ(k) and k cot δ(k) as a function of k2. See the main text for more details.

FIGURE 3 | The NBS wave function for NN(1S0) at Ek ≃ 0 MeV with the PBC (left) and at Ek ≃ 45 MeV with the APBC (right). Both are normalized to unity at r = 1 fm.

Taken from Murano et al. [33].

k cot δ(k) at k2 = 0 or k2 = µ2 without any information about
the effective range, which only gives the LO ERE (an orange
dashed line or a green dashed line in the right figure). Thus the
LO potentials approximate the exact k cot δ(k) much better (the
orange solid line or the green solid line). In the direct method,
the ERE at NLO is obtained by combining the data at k2 = 0 and
k2 = µ2 as

k cot δ(k) = 1

a0
+ reff

2
k2,

1

a0
= lim

k→0
k cot δ(k),

reff

2
= cot δ(µ)

µ
− 1

µ2a0
, (25)

which is given by a red dashed line in the right figure. By
comparing the HAL QCD method with potentials at NLO (the
red solid line) and the direct method with NLO ERE (the red

dashed line), the former leads to a better approximation of the
exact result than the latter, since higher order effects in ERE
in terms of k2 are included in the former. Note, however, that
sufficiently precise data in the direct method can also evaluate
higher order ERE terms than NLO, in principle.

2.2.3. Dependence of the LO NN Potential on Energy

and Partial Waves
In this subsection, we consider effects of higher order terms in
the derivative expansion for the NN in QCD.

Figure 3 shows three dimensional plots of the NBS wave
functions φk(x, y, z = 0) for NN(1S0) with the periodic boundary
condition (PBC) at Ek ≃ 0 MeV (Left) and with the anti-
periodic boundary condition (APBC) at Ek ≃ 45 MeV (Right),
in quenched lattice QCD at a ≃ 0.137 fm on L ≃ 4.4 fm with
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FIGURE 4 | (Left) The LO potential for NN(1S0 ) as a function of r at Ek ≃ 45 MeV (red solid circles) and at Ek ≃ 0 MeV (blue open circles). (Right) The LO potential as a

function of r at Ek ≃ 45 MeV for NN(1S0 ) (red open circles) and for NN(1D2) (cyan solid circles). Taken from Murano et al. [33].

mπ ≃ 530 MeV [33]. As seen from the figure, two NBS wave
functions look very different from each other. In particular, the
right one vanishes on the boundary due to the APBC constraint.

Figure 4 (Left) compares the LO potentials for NN(1S0)
obtained from the corresponding NBS wave functions in
Figure 3. While the NBSwave functions at different energies have
different spatial structures, the potentials look very similar. This
suggests that the higher order terms in the derivative expansion
of the potential have negligible contributions at this energy
interval, 0 ≤ Ek ≤ 45 MeV.

Figure 4 (Right) compares the LO potential for NN(1S0) (red
open circles) with the one for NN(1D2) (cyan solid circles) at
Ek ≃ 45 MeV. Although statistical fluctuations are larger for
the latter, they look similar, suggesting that L2 dependence of
the potential is also small in this setup. If more accurate data
show a difference of potentials between NN(1S0) and NN(1D2),
one may determine the L2 dependent term of the potential in the
spin-singlet channel.

2.2.4. Time-Dependent HAL QCD Method
In order to extract the NBS wave functions on the finite volume
in lattice QCD, we consider the 4-pt function given by

FJ(r, t − t0) = 〈0|N(x+ r, t)N(x, t)J̄NN(t0)|0〉
=

∑

n

AJ
nφkn (r)e

−Wkn (t−t0) + · · · , (26)

where J̄NN(t0) is an operator which creates two nucleon states
at time t0, A

J
n ≡ 〈NN,Wkn |J̄NN(0)|0〉, and ellipses represent

inelastic contributions, which become negligible atWth(t− t0)≫
1. Like the direct method, one can extract the NBS wave function
for the ground state from the above 4-pt function as

FJ(r, t) ≃ A
J
0φk0 (r)e

−Wk0
t (27)

for (Wk1 − Wk0 )t ≫ 1, where Wk0 (Wk1 ) is the lowest (second-
lowest) energy on the finite volume. The LO potential from

the NBS wave function for the ground state is then extracted
from FJ(r, t) at large t. As will be discussed in the next section,
however, it is numerically very difficult to determine FJ(r, t)
for two nucleons at such large t due to the bad signal-to-noise
(S/N) ratio.

Fortunately, an alternative extraction is available for the HAL
QCD method [34]. Let us consider the ratio of 4-pt function to
the 2-pt function squared as

RJ(r, t) ≡ FJ(r, t)

GN(t)2
,

GN(t) =
∑

x

〈0|N(x, t)N(0, 0)|0〉 ≃ ZNe
−mN t + · · · , (28)

which behaves

RJ(r, t) =
∑

n

ÃJ
nφkn (r)e

−1Wkn t , ÃJ
n ≡ A

J
n

Z2
N

,

1Wk ≡ Wk − 2mN , (29)

for Wtht ≫ 1, where inelastic contributions can be neglected.
Noticing that

1Wk =
k2

mN
− (1Wk)

2

4mN
,

(

k2

mN
−H0

)

φk(r) = V(r,∇)φk(r), (30)

we obtain
{

−H0 −
∂

∂t
+ 1

4mN

∂2

∂t2

}

RJ(r, t) = V(r,∇)RJ(r, t). (31)

We can approximately extractV(r,∇) from RJ(r, t) for (different)
J’s, as long as t satisfies the condition thatWth t ≫ 1 (elastic state
saturation), which is much easier than to achieve (Wk1−Wk0 )t≫
1 (ground state saturation). We call this alternative extraction the
time-dependent HAL QCD method.
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3. A COMPARISON OF THE TWO
METHODS AT HEAVIER PION MASSES

It is interesting to ask whether the attractions of the nuclear
forces at low energies would become weaker or stronger if the
pion mass were larger than the value in Nature. In principle,
such a question can be answered by employing either the direct
method or the HAL QCD method in lattice QCD. There exists,
however, a qualitative discrepancy between the two methods
on the answer to this question. As summarized in Table 1, the
direct method tends to indicate that attractions between two
nucleons become stronger as the pionmass increases, so that both
deuteron and di-neutron form bound states, while the HALQCD
method suggests that the attractions become weaker and the
bound deuteron does not exist at heavier pion masses. Note that
the results from the direct method in the flavor SU(3) limit (Nf =
3 in the table), NPL2013/NPL2017, CalLat2017, and Mainz2018,
exhibit discrepancies with each other [19]. In addition, while both
methods lead to the bound H-dibaryon at heavier pion masses,
in particular, in the flavor SU(3) limit, the predicted binding
energies differ even within the direct method: NPL2013 [40] gives
75(5) MeV at mπ = 810 MeV, which is much larger than 19(10)
MeV at mπ = 960 MeV by Mainz2018 [43]. On the other hand,
HAL2012 [44] gives 38(5) MeV at mπ = 837 MeV from the
HAL QCD method. These deviations seem to be too large to be
explained by lattice artifacts.

In order to understand origins of these discrepancies, we
have performed extensive investigations, whose results have
been published in a series of papers [19, 46–48], which will be
explained in the following subsections.

3.1. Operator Dependence in the Direct
Method
In the direct method, reliable extractions of the two nucleon
ground state energies are crucially important. As long as (Wk1 −
Wk0 )t≫ 1, the two nucleon correlation function is dominated by
the ground state as

GNN(t) = 〈0|JNN(t)J̄′NN(0)|0〉 ≃ Z
J
k0
Z̄
J′
k0
e−Wk0

t ,

Z
J(J′)
k0

≡ 〈0|JNN(J′NN)|NN,Wk0〉, (32)

so that the extracted ground state energyWk0 depends neither the
source operator J̄′NN nor the sink operator JNN , while magnitudes
of contaminations from excited states are affected by the choices
of these operators. SinceWk1 −Wk0 ≃ (2π/L)2/mN on the finite
box with the spacial extension L, t≫4 fm is required, for example,
for L ≃ 4 fm and mN ≃ 2 GeV at heavier pion masses. Due to
the bad S/N ratio at such large t, however, authors in previous
literature extracted the ground state energies at much smaller t,
t ∼ 1 fm, by tuning the source operators J̄′NN in order to achieve

TABLE 1 | Summary of binding energies [MeV] for NN(1S0), NN(
3S1), and H-dibaryon in lattice QCD.

Collaboration References Nf mπ −1E(1S0) −1E(3S1) −1E(H)

The direct method

YKU2011 [35] 0 800 4.4 (1.2) 7.5 (1.0) —

YIKU2012 [36] 2+1 510 7.4 (1.4) 11.5 (1.3) —

NPL2015 [37] 2+1 450 12.5 (+3.0
−5.0) 14.4 (+3.2

−2.6) —

NPL2012 [38] 2+1 390 7.1 (9.0) 11 (13) 13.2 (4.4)

YIKU2015 [39] 2+1 300 8.5 (+1.7
−0.9) 14.5 (+2.5

−1.1) —

NPL2013 [40] 3 810 15.9 (3.8) 19.5 (4.8) 74.6 (4.7)

NPL2017 [41] 3 810 20.6 (+3.3
−2.9) 27.9 (+3.8

−2.7) —

CalLat2017 [42] 3 810 21.8 (+3.3
−5.8) 30.7 (+2.5

−3.0) —

3 8.35 (1.1)* 3.3 (+1.2
−0.9) —

Mainz2018 [43] 3† 960 0 — 19 (10)

2+1† 440 — — 18.8 (5.5)*

The HAL QCD method

IAH2007 [26] 0 530 0 0 —

AHI2009 [23] 0 380, 530, 730 0 0 —

HAL2012 [44] 3 1171 0 0 49.1(6.5)

3 1015 0 0 37.2(4.4)

3 837 0 0 37.8(5.2)

3 672 0 0 33.6(5.9)

3 469 0 0 26.0(6.5)

HAL2012a [34] 2+1 701 0 — —

HAL2013 [45] 2+1 411, 570, 701 0 — —

NPL2013, NPL2017, and CalLat2017 employed the same set of gauge configurations. CalLat2017 found two states in each channel. In Mainz2018, dynamical 2-flavor with quenched

strange quark configurations are employed and Nf in the table (with † symbol) denotes the information in the valence quark sector. All values of 1E correspond to those in the infinite

volume limit except ones with ∗, which are values on the finite volumes. The number 0 in 1E indicates the system is unbound in this channel.
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FIGURE 5 | (Left) The effective energy shift 1Eeff
NN (t) for NN(

1S0) from the wall source (red circles) and the smeared source (blue squares) on L = 48a ≃ 4.3 fm at

mπ = 0.51 GeV, mN = 1.32 GeV and m4 = 1.46 GeV [46]. (Right) The effective energy shift 1Eeff
44(t) for 44(

1S0) from the smeared source with different sink operators

on the same gauge configurations [46].

a plateau of the effective energy shift 1EeffNN(t) at such a small
t, where

1EeffNN(t) = −1

a
log

RNN(t + a)

RNN(t)
, RNN(t) ≡

GNN(t)

GN(t)2
, (33)

Unfortunately, such a naive plateau fitting at earlier t may not
be reliable due to contaminations from nearby excited states,
which may easily produce (incorrect) plateau-like behaviors in
effective energies. It was indeed demonstrated that plateau-like
behaviors in effective energy shifts at small t can depend not only
on the source operator but also on the sink operator: Plateaux
disagree between the wall source (red circle) and the smeared
source (blue square) in the left of Figure 5, while plateaux
depend on sink operators for the same smeared source in the
right figure.

In order to see how easily contaminations from elastic-excited
states can produce plateau-like behaviors at earlier t, let us
consider the effective energy shift from the mockup data for
RNN(t), given by

R
mockup
NN (t) = e−1ENN t

(

1+ b1e
−δEel.t + c0e

−δEinel.t) , (34)

where we take δEel. = 50 MeV for the typical lowest elastic
excitation energy on L ≃ 4 fm at mN ≃ 1.5 GeV, and δEinel. ≃
mπ ≃ 500 MeV for the lowest inelastic energy. Naively, it is
expected that the correct plateau at 1ENN for the ground state
appears at t≫1/δEel. ≃ 4 fm, which however is too large to
have good signals for two baryons, such as NN. By tuning the
source operator, one may reduce coefficients b1 and c0. Since
the NN operator does not strongly couple to NNπ state, we
expect small c0 and take c0 = 0.01. On the other hand, NN
operators easily couple to both ground and 1st elastic excited
states as they become almost identical to each other in the infinite
volume limit. We therefore take b1 = 0.01 (the highly tuned

operator), b1 = ±0.1 (the tuned ones) as well as b1 = 0.5
(the untuned one). Figure 6 (Left) shows 1EeffNN(t) for these 4
examples with c0 = 0.01, where random fluctuations and errors
whose magnitude increase exponentially in t are assigned to

R
mockup
NN (t). All examples show plateau-like behaviors at t ≃ 1

fm, but these four plateaux disagree with each other. As |b1|
increases, the deviation between the values of these “pseudo
plateaux” and the true value becomes larger. Contaminations
of the elastic excited states can easily produce the plateau-like
behavior at earlier t, and the t dependence of data alone cannot
tell us which plateau is correct, or in other words, cannot tell
which tuning is good.

Contaminations from inelastic states seem unimportant to
produce the plateau-like behavior, as shown in Figure 6 (Right),
where the effective energy shift for c0 = 0.01, 0.05, 0.1 with b1 =
−0.1 is plotted. All cases converge to almost the same pseudo
plateau, while a pseudo plateau starts at later t for larger c0. It is
noted that the multi-exponential fit does not work in this case at
t ≃ 1.0 fm, which is much smaller than the necessary t≫1/δEel..
The multi-exponential fit at such small t only separates the
pseudo plateau from the inelastic contributions but is difficult
to distinguish the ground state and the 1st excited state for the
elastic states.

3.2. Normality Check in the Direct Method
While the check through operator dependence is useful, it
requires extra calculations. We find that the finite volume
formula in Equation (4) provides a simpler test, which tells
us whether the ground state energies extracted by the plateau
fitting give a reasonable ERE or not without extra calculations.
We call this test a normality check [19]. Figure 7 (Left) shows
k cot δ0(k)/mπ in YIKU2012 [36] as a function of k2/m2

π for
NN(1S0), where the solid red line represents the NLO ERE fit
in Equation (5), and the light red bands shows statistical and
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FIGURE 6 | 1Eeff
NN (t)−1ENN from the mockup data R

mockup
NN (t) with fluctuations and errors as a function of t. (Left) b1 = 0.01,±0.1, 0.5 and c0 = 0.01. (Right)

c0 = 0.01, 0.05, 0.1 and b1 = −0.1.

FIGURE 7 | (Left) k cot δ0 (k)/mπ in YIKU2012 [36] for NN(1S0 ) as a function of (k/mπ )
2. The solid red line and light red band represent the ERE fit and the

corresponding error (statistical and systematic added in quadrature), respectively. The dashed lines are the finite volume formula for the corresponding volume. (Right)

k cot δ0(k)/mπ in NPL2015 [37] for NN(1S0) as a function of (k/mπ )
2. Two ERE fits are performed depending on the lattice data to be used for the fit. The red line with

the band represents the fit made by the authors in Iritani et al. [19], while the blue line with the band is plotted by the authors in Iritani et al. [19] using the fit result of

NPL2015. Both figures are taken from Iritani et al. [19].

systematic errors added in quadrature [19]. Contrary to a naive
expectation from non-singular ERE behaviors, data align almost
vertically, since 1ENN is almost independent of the volume.
In other words, according to the finite volume formula, the
claimed “binding energy” (open circle) is too shallow to have
such volume independent 1E. Not only the central value of the
NLO ERE fit gives singular parameters as ((a0mπ )

−1, r0mπ ) =
(5.27, 303.6) but also it violates the physical pole condition,
Equation (9), at the crossing point (open circle). The singular
and unphysical behaviors, in addition to the operator dependence

of these data, strongly indicate that the naive plateau fitting
employed in the direct method is unreliable. Another example
is shown in Figure 7 (Right) for NN(1S0) from NPL2015 [37].
In this case, two different NLO ERE fits (red line/band and blue
line/band) are performed depending on the lattice data to be
used for the fit. It turns out that two ERE are inconsistent with
each other, indicating that their lattice data themselves are “self-
inconsistent.” In addition, one of ERE (blue line/band) is found to
violate the physical pole condition, Equation (9), at the crossing
point (open circle). Similar symptoms are observed for all other
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FIGURE 8 | (Left) The LO potential, VLO
0 (r), for 44(1S0) from the wall source (red open circles) and the smeared source (blue open square). (Right) The second order

term, VN2LO
2 (r) (blue solid squares), in the N2LO potential VN2LO(r,∇) = VN2LO

0 (r)+ VN2LO
2 (r)∇2 for 44(1S0). Both are taken from Iritani et al. [47].

FIGURE 9 | (Left) k cot δ0 (k)/mπ as a function of (k/mπ )
2 at low energies, where δ0(k) is the scattering phase shift for 44(1S0), calculated from VN2LO(r,∇) (red solid

circles), VN2LO
0 (r) (blue solid squares) and V

LO(wall)
0 (r) (black open diamond). (Right) The corresponding δ0(k). Both are taken from Iritani et al. [47].

data in the direct method claiming the existence of NN bound
states at heavy quark masses [19]3.

3.3. The Source Dependence and the
Derivative Expansion in the HAL QCD
Method
The source operator dependence of the HAL QCD potential has
been investigated in Iritani et al. [47]. Figure 8 (Left) compares
the LO potentials, VLO

0 (r), for 44(1S0) between the wall source
(red open circles) and the smeared source (blue open squares).
We observe a small difference at short distances, from which one
can determine the N2LO potential, VN2LO(r,∇) = VN2LO

0 (r) +

3After these problems were pointed out in Iritani et al. [19], revised data of

NPL2013 have been presented inWagman et al. [41], whose EREs are still marginal

to satisfy/violate the physical pole condition.

VN2LO
2 (r)∇2. Note that the NLO term,VN2LO

1 (r)∇ = VN2LO
LS (r)L ·

S is absent in the 1S0 channel. Figure 8 (Right) shows VN2LO
2 (r),

which is non-zero only at r < 1.0 fm, where two LO potentials
differ. We then extract the scattering phase shifts, using this
N2LO potential.

The N2LO corrections turn out to be negligible at low
energies, as shown in Figure 9 (Left), where k cot δ0(k) is almost

identical between VN2LO(r,∇) (red solid circles) and VN2LO
0 (r)

(blue solid squares). Furthermore, even the LO analysis for the

wall source, V
LO(wall)
0 (r) (black open diamond), is sufficiently

good at low energies. As energy increases, the N2LO corrections
become visible as seen in Figure 9 (Right), where (k/mπ )

2 = 0.5
corresponds to 1E ≃ 90 MeV for the energy shift from the

threshold. It is noted that VN2LO
0 (r) (blue solid squares) gives

a little closer results to N2LO results (red solid circles) than

V
LO(wall)
0 (r) (black open diamond) does.
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FIGURE 10 | The reconstructed effective energy shift 1E
J

eff (t, t0 = 13a) for the wall source (red bands) and the smeared source (blue bands) on L = 48a, while the

effective energy shifts directly from RJ44(t) are shown for J = wall (red open circles) and J = smear (blue open squares). The black dashed lines are the energy shifts for

the ground state of H in the finite box. (Left) 0 ≤ t/a ≤ 24. (Right) 0 ≤ t/a ≤ 175. Taken from Iritani et al. [48].

3.4. Understanding Pseudo Plateaux
In this subsection, we explain why the wall source and the
smeared source give inconsistent plateau behaviors, in the case
of44 correlation functions as an example.

To this end, we consider the HamiltonianH = H0+V
LO(wall)
0 ,

where we employ V
LO(wall)
0 (r), the LO potential from the wall

source, since it works rather well at low energies as shown in

the previous subsection. We first decompose RJ44(r, t) for J =
wall/smear in terms of finite volume eigenfunctions of H as

R
J
44(r, t) =

∑

n

aJn(t)9n(r)e
−1Ent ,

aJn(t) =
∑

r

9†
n(r)R

J
44(r, t)e

1Ent . (35)

where 9n(r) and 1En are normalized-eigenfunction and

eigenenergy in the finite volume, respectively, and a
J
n(t) is the

overlapping coefficient extracted at t.
Then the correlation function for the source J in the direct

method is given by

RJ44(t) =
∑

r

RJ44(r, t) =
∑

n

bJn(t)e
−1Ent

bJn(t) = aJn(t)
∑

r

9n(r). (36)

Finally, approximating a sum over n by the lowest few orders, we
reconstruct the behavior of the effective energy shift as a function
of t as

1E
J
eff(t, t0) =

1

a
log

(

RJ(t, t0)

RJ(t + a, t0)

)

,

RJ(t, t0) =
nmax
∑

n=0

bJn(t0)e
−1Ent , (37)

where we fix the overlapping coefficient bJn(t0) at
t = t0, and nmax is a number of excited states used in
the approximation.

In Figure 10, we show reconstructed effective energy shift

1E
J
eff(t, t0 = 13a) on L = 48a with nmax = 4, together with the

effective energy shifts from R
J
44(t), for the wall source (red bands

and red open circles) and the smeared source (blue bands and
blue open squares). The black dashed line represents the energy

shift for the ground state of H = H0 + V
LO(wall)
0 on L = 48a.

We find that the plateau-like structures in the direct method

around t/a = 15 are well-reproduced by 1E
J
eff(t, t0 =

13a) for both sources in Figure 10 (Left). This indicates
that the plateau-like structures in the direct method at this
time interval are explained by the contributions from several
low-lying states.

These plateau-like structures of course do not necessarily
correspond to the true energy shift of the ground state.
The fate of these structures is shown in Figure 10 (Right),

where we plot 1E
J
eff(t, t0 = 13a) at asymptotically large

t. While the plateau-like structure for the wall source is

almost unchanged, 1E
J
eff(t, t0 = 13a) for the smeared

source gradually increases and reaches to the true value
at t/a ∼ 100.

The above results clearly reveal that the plateau-like structures
at t/a ∼ 15 for the smeared source are pseudo-plateaux
caused by the contaminations of the excited states. Large
contaminations from excited states in the case of the smeared
source are not caused by the smearing, but are indeed implied
by putting two baryon operators on the same space-time
point as

1

L3

∑

x

B(x, t)B(x, t) =
∑

p

B̃(p, t)B̃(−p, t),
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FIGURE 11 | The effective energy shift 1EJ,neff (t) from RJ,n44(t), the correlation function projected to the n-th eigenstate at the sink on L = 48a, for J = wall (black open

up-triangles) and J = smear (purple open down-triangle). Red bands represent the energy shifts from the eigenvalues of H in the finite box, while black lines denote

those of a free Hamiltonian H0. (Left) The projection to the ground state (n = 0), together with the effective energy shift in the direct method without projection for the

wall source (red open circles) and the smeared source (blue open squares). (Right) The projection to the 1st excited state (n = 1). Taken from Iritani et al. [48].

B̃(p, t) ≡
∑

x

B(x, t)e−ip·x, (38)

where the above source operator couples to all momentummodes
with almost equal weight. Since almost all previous studies onNN
interactions in the direct method employed this type of the source
operator, their conclusions on the existences of both deuteron
and di-neutron are not valid due to large contaminations4.

3.5. Consistency Between the Two
Methods
Once eigenmodes of H in the finite box are obtained, we can
construct an improved sink operator for a particular eigenstate,
whose correlation function with the J source is given by

R
J,n
BB(t) =

∑

r

9†
n(r)R

J
BB(r, t). (39)

Figure 11 shows the effective energy shift 1EJ,n
eff
(t) calculated

from R
J,n
44(t) on L = 48a with J = wall (black open up-triangles)

and J = smear (purple open down-triangle), for the ground state
(Left) and the 1st excited state (Right), together with1E0 or1E1,
eigenvalues of H in the finite box (red bands) as well as those
of H0 (black lines). For the ground state in Figure 11 (Left), the
effective energy shift in the direct method without projection are
also plotted for the wall source (red open circles) and the smeared
source (blue open squares).

After the sink projection, the effective energy shifts agree well
between wall and smeared sources around t/a ∼ 13, not only
for the ground state but also for the 1st excited state. while the
effective energy shifts for the ground state in the direct method
without projection disagree between two sources. In particular,

4Note that Mainz2018 employed a source operator as B̃(p = 0, t)B̃(−p = 0, t) and

they reported that “In the 27-plet (dineutron) sector, the finite volume analysis

suggests that the existence of a bound state is unlikely.”

an agreement between two sources with sink projection for the
1st excited state is rather remarkable, since variational methods,
usually mandatory for excited states in lattice QCD, are not used
here. Furthermore, the plateaux of the effective energy shifts after
the sink projection also agree with 1E0,1 of H (red bands). Note

that the effective energy shift for the 1st excited state,1Ewall,1
eff

(t),
has larger errors since the contribution of the 1st excited state in
Rwall44 (t) is much smaller.

Although the sink operator projection utilizes the information
of the HAL QCD potential to construct eigenfunctions,
agreements in the effective energy shifts for the ground state
as well as the 1st excited state provide a non-trivial consistency
check between the HAL QCD method and the Lüscher’s finite
volume formula (with proper projections to extract the finite
volume spectra). We thus conclude from Figure 11 not only that
the HAL QCD potential correctly describes the energy shifts of
two baryons in the finite box for both ground and excited states
but also that these energy shifts can be extracted even for baryon-
baryon systems if and only if the sink/source operators are highly
improved. We emphasize that improvement of operators has to
be performed not by the tuning of the plateau-like structures but
by a sophisticated method, such as the variational method [10]5

(or a method presented here). See Francis et al. [43] for a recent
study toward such a direction.

4. NUCLEAR POTENTIAL

In this section, we summarize results on nuclear potentials in the
HAL QCDmethod.

5In lattice QCD studies for the meson-meson scatterings [9], serious systematics

from the excited state contaminations in the simple plateau fitting have been widely

recognized and the variational method has been utilized to obtain the finite volume

spectra rather reliably, which can be combined with the Lüscher’s finite volume

formula to extract phase shifts.
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4.1. Parity-Even Channel With LO Analysis
at Heavy Pion Masses
We first show the results of nuclear forces in the parity-even
channel (1S0 and 3S1-

3D1 channels) at heavy quark masses
obtained by the LO analysis for the derivative expansion of the
potential. Since the statistical fluctuations are smaller at heavier
quark masses in lattice QCD, this study is a good starting point to
grasp the nature of lattice QCD nuclear forces. In addition, quark
mass dependence of nuclear forces is of fundamental importance
from a point of view of, e.g., anthropic principle, which cannot be
studied by experiments.

In the case of 1S0 channel, we obtain the LO central force
following Equation (31). In the case of 3S1-

3D1 channel, the LO
potentials consist of the central and tensor forces, which can be
obtained from the coupled channel analysis between the S- and
D-wave components as

{

−H0 −
∂

∂t
+ 1

4mN

∂2

∂t2

}

RJ(r, t)

=
[

VC(r)+ VT(r)S12 + · · ·
]

RJ(r, t), (40)

where ellipses represent higher order terms in the derivative
expansion. Using the projection to the A+

1 representation of the

cubic group (S-wave projection), PA+
1 , and the orthogonal one

(D wave projection), (1 − P
A+
1 ), the above equation reduces to

two independent equations, from which VC(r) and VT(r) can be
obtained [23]. Since the A+

1 representation couples to the angular
momentum l = 0, 4, 6, · · · , these projections are expected to
serve as the relevant partial wave decomposition at low energies.

We find that the NBS correlation functions after P
A+
1 and

(1 − P
A+
1 ) are dominated by S-wave and D-wave components,

respectively, indicating that the contaminations from l ≥ 4
components are indeed small. For a more advanced partial wave
decomposition, see Miyamoto et al. [49].

We perform the calculations in quenched [23, 26], dynamical
2-flavor [50], dynamical 3-flavor [44, 51, 52], and dynamical
(2+1)-flavor [34, 45, 47, 53] lattice QCD with various quark
masses. We here present the results obtained in 3-flavor lattice
QCD at (Mps,Moct)=(1171, 2274), (1015, 2031), (837, 1749),
(672, 1484), (469, 1161) MeV [44, 51, 52]6. In the case
of (Mps,Moct) = (837, 1749), the value of quark masses
mu = md = ms nearly correspond to the physical strange quark
mass. We generate gauge configurations with the RG-improved
Iwasaki gauge action and non-perturbatively O(a)-improved
Wilson quark action on a L3 × T = 323 × 32 lattice. The lattice
spacing is a = 0.121(2) fm and hence lattice size L is 3.87 fm.
In the calculation of the NBS correlation function, parity-even
states are created by a two-baryon operator with a wall quark
source, while a point operator is employed for each baryon at
the sink.

Shown in Figure 12 (Upper) are the lattice QCD results
for the potentials. We find that the results are insensitive to
the Euclidean time t, at which the NBS correlation function
is evaluated, indicating that the derivative expansion is well-
converged. The obtained potentials are found to reproduce

6Mps = mπ = mK andMoct = mN = m3 = m6 = m4 in 3-flavor QCD.

the qualitative features of the phenomenological NN potentials,
namely, attractive wells at long and medium distances, central
repulsive cores at short distance and strong tensor force with a
negative sign. We also find intriguing features in the quark mass
dependence of the potentials. At long distances, it is observed that
the ranges of the tail structures in the central and tensor forces
become longer at lighter quark masses. Such a behavior can be
understood from the viewpoint of one-boson-exchange potential.
At short distances, the repulsive cores in the central forces are
found to be enhanced at lighter quark masses. This could be
explained by the short-range repulsion due to the one-gluon-
exchange in the quark model, whose strength is proportional to
the inverse of the (constituent) quarkmass. In fact, our systematic
studies including hyperon forces with the same lattice setup
revealed that the nature of repulsive core is well-described by the
quark Pauli blocking effect together with the one-gluon-exchange
effect [44, 51, 54].

As noted before, the potentials themselves are not physical
observables and quantitative lattice QCD predictions shall be
given in terms of scattering observables. Shown in Figure 12

(Lower) are the scattering phase shifts (and mixing angles)
obtained from lattice nuclear forces. We find that NN systems
do not bound at these pseudoscalar masses as discussed in
section 3. Behaviors of phase shifts are qualitatively similar to
the experimental ones, while the strength of the attraction is
weaker due to the heavy quark masses in this calculation. It
is also observed that quark mass dependence of phase shifts
is quite non-trivial. In fact, if we decrease the quark masses,
there appear competing effects in the interaction: the long-
range attraction becomes stronger and the short-range repulsive
core also becomes stronger. We also note that lighter quark
masses correspond to lighter nucleon mass, which leads to larger
kinetic energies.

We also present the results obtained in (2+1)-flavor lattice
QCD at quark masses corresponding to (mπ ,mN) ≃(701, 1584),
(570, 1412), and (411, 1215) MeV [45]. Note that only up and
down quark masses are varied with a strange quark mass being
fixed to the physical value in this study. We employ the gauge
configurations generated by the PACS-CS Collaboration with
the RG-improved Iwasaki gauge action and non-perturbatively
O(a)-improved Wilson quark action on a L3 × T = 323 × 64
lattice. The lattice spacing is a ≃ 0.091 fm (a−1 = 2.16(31)GeV),
which leads to the spatial extension L ≃ 2.9 fm.

In Figure 13, we show the lattice QCD results for the
potentials in the 1S0 and 3S1-

3D1 channels, together with
the corresponding phase shifts in the 1S0 channel. Qualitative
features are similar to those in 3-flavor case: (i) the central forces
have repulsive cores at short distance and attractive wells at long
and medium distances, both of which are enhanced at lighter
quark masses (ii) the tensor force is strong with a negative sign,
which increases at lighter quark masses.

4.2. More Structures: Spin-Orbit Forces in
the Parity-Odd Channel and Three Nucleon
Forces
If we consider an interaction at higher order terms in the
derivative expansion, there appear more structures in the
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FIGURE 12 | (Upper) Nuclear forces obtained from 3-flavor lattice QCD at Mps = 469–1171 MeV. (Left) Central force in the 1S0 channel (27-plet in SU(3)f
representation). (Middle) Central force in the 3S1-

3D1 channel (10∗-plet in SU(3)f representation). (Right) Tensor force in the 3S1-
3D1 channel. (Lower) NN scattering

phase shifts as a function of energy in the laboratory frame (colored solid lines), obtained from 3-flavor lattice QCD at Mps = 469-1171 MeV, together with those from

experiments (black dashed lines). (Left) Results in the 1S0 channel. (Right) Results in the 3S1-
3D1 channel (with Stapp’s convention). Figures are taken from Inoue et al.

[44].

potentials. In particular, the extension from LO analysis to NLO
analysis enables us to determine the spin-orbit (LS) force. The LS
force is known to play an important role in the LS-splittings of
nuclear spectra and the nuclear magic numbers. In addition, the
LS force in the 3P2-

3F2 channel attracts great interest in nuclear
astrophysics, since it could lead to the P-wave superfluidity in the
neutron stars and affect the cooling process of neutron stars.

We here present the calculation in parity-odd channels (1P1,
3P0,

3P1,
3P2-

3F2 channels) at heavy quark masses and show the
results of LS forces as well as central/tensor forces [50]. In order to
construct the source operator which couples to parity-odd states,
we employ the two nucleon operators as

Jαβ (fi) ≡ Nα(f
(i))Nβ (f

(i) ∗) for i = ±1,±2,±3 (41)

where N denotes a nucleon operator with a momentum,

Nα(f
(i)) =

∑

Ex1 ,Ex2 ,Ex3
ǫabc

(

uTa (Ex1)Cγ5db(Ex2)
)

qc,α(Ex3)f (i)(Ex3) (42)

with f (±j)(Ex) ≡ exp
(

±2π ixj/L
)

. A cubic group analysis shows

that this source operator contains the orbital contribution T−
1 ⊕

A+
1 ⊕ E+, whose dominant components have l = 1, 0, 2,

respectively, and thus covers all the two-nucleon channels with
J ≤ 2. Combined with the spin degrees of freedom, we consider

the T−
1 representation in the spin singlet channel and the A−

1 ,
T−
1 , (E

− ⊕ T−
2 ) representations in the spin triplet channel.

At low energies, these representations correspond to the 1P1
channel and the 3P0,

3P1, and
3P2-

3F2 channels, respectively,
from which we extract the central force in the spin singlet
channel (VI=0

C,S=0(r)), and the central, tensor and LS forces

(VI=1
C,S=1(r),V

I=1
T (r),VI=1

LS (r)) in the spin triplet channel.
Calculations are performed in 2-flavor lattice QCD at quark

masses corresponding to (mπ ,mN) ≃ (1133, 2158) MeV [50].
We employ the gauge configurations generated by the CP-PACS
Collaboration with the RG-improved Iwasaki gauge action and
a mean field O(a)-improved Wilson quark action on a 163 × 32
lattice. The lattice spacing a = 0.156(2) fm leads to the spatial
extension L ≃ 2.5 fm.

Shown in Figure 14 (Upper-Left) are the lattice QCD results
for the potential, VI=0

C,S=0(r), V
I=1
C,S=1(r),V

I=1
T (r),VI=1

LS (r). We find

that (i) the central forces VI=0
C,S=0(r) and VI=1

C;S=1(r) are repulsive,

(ii) the tensor force VI=1
T (r) is positive and weak compared to

VI=1
C;S=1(r) and VI=1

LS (r), and (iii) the LS force VI=1
LS (r) is negative

and strong. These features are qualitatively in line well with
those of the phenomenological potential. One can also see these
properties in terms of the potential in each channel. In Figure 14

(Upper-Right), we plot the potentials in the 1P1,
3P0,

3P1 and
3P2 channels, which are defined by V(r; 1P1) = VI=0

C,S=0(r),
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FIGURE 13 | Nuclear forces obtained from (2+1)-flavor lattice QCD at mπ ≃ 411 (red), 570 (green), 701 (blue) MeV: (Upper-Left) Central forces in the 1S0 channel

(Lower) Central forces (left) and tensor forces (right) in the 3S1-
3D1 channel. (Upper-Right) The scattering phase shifts in the 1S0 channel at mπ ≃ 411 (blue), 570

(green), 701 (red) MeV. Figures are taken from Ishii [45].

V(r; 3P0) = VI=1
C,S=1(r) − 4VI=1

T (r) − 2VI=1
LS (r), V(r; 3P1) =

VI=1
C,S=1(r) + 2VI=1

T (r) − VI=1
LS (r), V(r; 3P2) = VI=1

C,S=1(r) −
2
5V

I=1
T (r)+ VI=1

LS (r).
To obtain the scattering observables, we fit the potentials

and solve the Schrödinger equation in the infinite volume. In
Figure 14 (Lower), we show the results for the scattering phase
shifts. Compared with the experimental phase shifts, we find that
behaviors of phase shifts are generally well-reproduced, while
the magnitudes are smaller due to the heavier pion mass in
lattice QCD calculations. In the 3P0 channel, we observe that the
attraction is missing compared with the experimental one, which
however is also likely due to the weak tensor force VT caused
by the heavier pion mass. Among others, the most interesting
feature is the attraction in the 3P2 channel as shown in Figure 14

(Lower-Right), originated from the strong (and negative) LS
forces. As noted before, it is this interaction which is relevant
to the paring correlation of the neutrons and possible P-wave
superfluidity in the neutron stars.

We now turn to the study of three-nucleon forces.
Determination of three-nucleon forces is one of the most

challenging problems in nuclear physics: Three-nucleon forces
are known to play important role in nuclear spectra/structures,
such as the binding energies of (light) nuclei and properties
of neutron-rich nuclei. They are also essential ingredients to
understand properties of nuclear matters, such as the equation
of state (EoS) at high density, which is relevant to the structures
of neutron stars and nucleosynthesis at the binary neutron star
mergers. While there have been many studies to construct three-
nucleon forces by phenomenological approaches [55, 56] or by
chiral EFT approaches [6–8, 57], it is most desirable to carry out
the direct determination from QCD.

To study three-nucleon forces in lattice QCD, we consider the
NBS wave function for a n(≥ 3)-particle system, |α〉,

9n
α([x])e

−Wα t = 〈0|N(x1, t)N(x2, t) · · ·N(xn, t)|α〉,
[x] = x1, x2, · · · , xn (43)

where Wα is the center of mass energy of the system and we
ignore the spins of nucleon for simplicity. In Aoki et al. [58, 59]
and Gongyo and Aoki [60], we show that the asymptotic behavior
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FIGURE 14 | (Upper-Left) Central (S = 0 and 1), tensor and spin-orbit potentials in parity-odd channels obtained by 2-flavor lattice QCD at mπ ≃ 1133 MeV.

(Upper-Right) The potentials for the 1P1,
3P0,

3P1, and
3P2 channels. (Lower-Left) Phase shifts in the 1P1,

3P0, and
3P1 channels, together with the experimental ones

for comparisons. (Lower-Right) Phase shifts and mixing parameter (with Stapp’s convention) in the 3P2–
3F2 channel, together with the experimental ones. Figures are

taken from Murano et al. [50].

of the NBSwave function with the non-relativistic approximation
can be written as

9n
[L],[K](R,Q)

∝
∑

[N]

U[L][N](Q)e
iδ[N](Q)

sin
(

QR−1L + δ[N](Q)
)

(QR)
D−1
2

U†
[N][K](Q)

(44)

whereD = 3(n−1) is the dimension of a n-particle system,1L =
(2L + D − 3)π/4, 9n

[L],[K](R,Q) is the radial component of the
NBS wave function inD-dimension with R andQ being the hyper
radius and momentum, respectively, and [L], [K] denotes the
quantum numbers of the angular momentum in D-dimension.
δ[N](Q) is the generalized “phase shift” for a n-particle system
and U[L][N](Q) is a unitary matrix, which parameterize the T-
matrix as

T[L][K](Q,Q) =
∑

[N]

U[L][N](Q)T[N](Q)U
†
[N][K](Q), (45)

T[N](Q) = − 2n3/2

mNQ3n−5
eiδ[N](Q) sin δ[N](Q). (46)

Therefore, as in the case of n = 2 system (see section 2.2.1), the
information of T-matrix is encoded in the asymptotic behavior
of the NBS wave function. Based on this property, we can define
the energy-independent non-local potential for a n-particle
system, which can be extracted from the (time-dependent) HAL
QCD method.

We calculate the six-point correlation function divided by
two-point correlation function cubed,

R3N(Er, Eρ, t − t0) ≡ G3N(Er, Eρ, t − t0)/{GN(t − t0)}3 (47)

G3N(Er, Eρ, t − t0) ≡ 1

L3

∑

ER
〈0|(N(Ex1)N(Ex2)N(Ex3))(t) (N′N′N′)(t0)|0〉

(48)

where ER ≡ (Ex1 + Ex2 + Ex3)/3, Er ≡ Ex1 − Ex2, Eρ ≡ Ex3 −
(Ex1 + Ex2)/2 are the Jacobi coordinates. In the time-dependent
HAL QCD method at the LO analysis for the derivative
expansion and with the non-relativistic approximation, we can
extract the three-nucleon forces V3NF(Er, Eρ) through the following
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Schrödinger equation,

[

− 1

2µr
∇2
r −

1

2µρ
∇2
ρ +

∑

i<j

V2N(Erij)+ V3NF(Er, Eρ)
]

R3N(Er, Eρ, t)

= − ∂

∂t
R3N(Er, Eρ, t), (49)

where V2N(Erij) with Erij ≡ Exi − Exj denotes two-nucleon
forces between (i, j)-pair, µr = mN/2, µρ = 2mN/3 the
reduced masses.

In our first study of three-nucleon forces, we consider the
total 3N quantum numbers of (I, JP) = (1/2, 1/2+), the triton
channel.We also consider a particular spacial geometry of the 3N,
i.e., the “linear setup” ( Eρ = E0), where 3N are aligned linearly with
equal spacing of r2 ≡ |Er|/2. This setup makes the analysis much
simpler. In addition, we consider the following channel, ψS ≡
1√
6

[

−p↑n↑n↓+p↑n↓n↑−n↑n↓p↑+n↓n↑p↑+n↑p↑n↓−n↓p↑n↑
]

,

and calculate the corresponding matrix element of V3NF , so that
we can suppress the statistical fluctuations in subtracting the
contribution from V2N .

One of the biggest challenges in the lattice QCD study of three-
nucleon forces is the enormous computational cost required for
the calculation of correlation functions. In fact, in terms of a
mass number A, the cost grows with the multiplication of two
factors, one of which scales factorially in A due to the Wick
contraction (permutation of quarks), and the other of which
scales exponentially in A due to the color/spinor contractions.
On this point, we have developed a novel computational
algorithm, called the unified contraction algorithm (UCA), in
which two contractions are unified and redundant calculations
are eliminated systematically [61]. In particular, the computation
becomes faster by a factor of 192 for a calculation of three-
nucleon forces.

We perform the calculation in 2-flavor lattice QCD at
(mπ ,mN) = (0.76, 1.81), (0.93, 1.85), (1.13, 2.15) GeV [62].
We employ the gauge configurations generated by CP-PACS
Collaboration with mean field O(a)-improved Wilson fermion
and RG-improved Iwasaki gauge action on a L3 × T = 163 × 32
lattice. The lattice spacing is a = 0.1555(17) fm and thus L = 2.5
fm. Shown in Figure 15 (Left) are the lattice QCD results for the
three-nucleon forces. We find a repulsive interaction at short-
distances, r2 ≃ 0.2–0.4 fm (results at r2 . 0.2 fm would suffer
from lattice discretization error). Note that a repulsive short-
range three-nucleon force is phenomenologically required to
explain the properties of high density matter. On the other hand,
three nucleon forces are found to be suppressed at long distances.
This is in accordance with the suppression of two-pion-exchange
due to the heavier pion masses.

Shown in Figure 15 (Right) is the latest preliminary result
obtained atmπ = 510MeV. In this calculation, we employ (2+1)-
flavor lattice QCD gauge configurations generated in Yamazaki
et al. [36] with the RG-improved Iwasaki gauge action and non-
perturbatively O(a)-improved Wilson quark action on a L3 ×
T = 643 × 64 lattice (work in progress). The lattice spacing is
a = 0.090 fm and L = 5.8 fm. Avoiding the very short-distance
region where lattice discretization error could affect the results,

we again find the short-range repulsive three-nucleon forces at
r2 ≃ 0.2–0.7 fm. We find that, while the pion mass dependence
of three-nucleon forces is not significant atmπ = 0.76–1.13 GeV,
the range of repulsive three-nucleon forces tend to be enlarged
at mπ = 0.51 GeV. It is important to pursue the study at lighter
pion masses toward the physical pion mass.

4.3. Applications to Nuclei, Nuclear
Equation of State, and Structure of
Neutron Stars
Once nuclear potentials are obtained by lattice QCD, we can
use them to study various phenomena in nuclear physics
and astrophysics. We here present the study of nuclear
spectra/structures and Equation of State (EoS) of dense matter
relevant to neutron star physics. Potentials used in this subsection
are of the leading order only, and therefore are all hermitian.
We can make non-hermitian higher order potentials in the
HAL QCD method hermitian in the derivative expansion [63],
which may be used for future applications in nuclear many
body calculations.

In McIlroy et al. [64], binding energies and structures of
doubly magic nuclei, 4He, 16O, 40Ca, are studied by an ab initio
nuclear many-body calculation based on lattice nuclear forces.
We employ the nuclear forces obtained in 3-flavor lattice QCD at
Mps = 469 MeV (see Figure 12). We consider two-body nuclear
forces in 1S0,

3S1, and
3D1 channels, while nuclear forces in

other channels and spin-orbit forces as well as three-nucleon
forces are neglected. For simplicity, the Coulomb force between
protons is not taken into account, either. As the ab initio many-
body calculation, we employ self-consistent Green’s function
(SCGF) method, in which the single-particle propagator (Green’s
function) and the self-energy is solved self-consistently in a non-
perturbative manner. In a practical calculation, the self-energy
is calculated by Algebraic Diagrammatic Construction (ADC)
formalism at third order for the so-called (low-momentum) P-
space and Bethe-Goldstone equation (BGE) for the Q = 1 − P
space. (see [64] for details.)

In Table 2, we summarize the results for the ground state
energies, together with the results from Brueckner Hartree-
Fock (BHF) calculation [65] and exact stochastic variational
calculation [66] using the same lattice nuclear forces. For
the results from SCGF, the first parentheses show the errors
associated with the infrared (IR) extrapolation in the SCGF
calculation. We also estimate the errors from many-body
truncations using 4He as a benchmark. Since the SCGF result
deviates from the exact solution by<10% for 4He, and the SCGF
approach is size extensive, we take a conservative estimate of
10% error for 16O and 40Ca, which are quoted in the second
parentheses. The BHF results are sensibly more bound than
the SCGF results, and we interpret this as a limitation of BHF
theory. For the results shown in Table 2, there exist additional
errors associated with the statistical fluctuations in the input
lattice nuclear forces, which are estimated to be∼10% [65]. Note
that statistical fluctuations are correlated among nuclei, so we
expect our observations described below are rather robust against
statistical errors.
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FIGURE 15 | Three-nucleon forces in the triton channel with the linear setup. (Left) Results from 2-flavor lattice QCD at mπ = 0.76–1.13 GeV. (Right) Results from

(2+1)-flavor lattice QCD at mπ = 0.51 GeV.

TABLE 2 | Ground state energies of 4He, 16O, and 40Ca calculated by

self-consistent Green’s function (SCGF) method using nuclear forces at MPS =

469 MeV obtained from 3-flavor lattice QCD with the HAL QCD method.

EA
0 [MeV] 4He 16O 40Ca

SCGF −4.80(0.03) −17.9 (0.3) (1.8) −75.4 (6.7) (7.5)

BHF −8.2 −34.7 −112.7

Exact calc. −5.09 – –

Experiment −28.3 −127.7 −342.0

Separation into 4He clusters −2.46 (0.3) (1.8) 24.5 (6.7) (7.5)

Comparison is given with those obtained with BHF [65] and the exact calculation [66].

The last line is the breakup energy for splitting the system in 4He clusters (of total energy

A/4×5.09 MeV). Taken from McIlroy et al. [64].

Wefind that atMps = 469MeV in the SU(3) limit of QCD, both
4He and 40Ca have bound ground states while the deuteron is
unbound. 16O is likely to decay into four separate alpha particles,
though it is already close to become bound. Moreover, we find
that asymmetric isotopes, like 28O, are strongly unbound systems.
These results suggest that, when lowering the pion mass toward
its physical value, closed shell isotopes are created at first around
the traditional magic numbers and the region ofMps ∼ 500 MeV
marks a transition between an unbound nuclear chart and the
emergence of bound isotopes.

We calculate the root mean square radii, which are given
in Table 3, where we show only the central values. Although
the total binding energies are 15–20% of the experimental value
(Table 2), the computed charge radii are about the same as the
experiment.We also find that the calculated one-nucleon spectral
distributions are qualitatively close to those of real nuclei even
for Mps = 469 MeV considered here. This is due to the fact that
the heavy nucleon mass (mN = 1161.1 MeV) used here reduces
the motion of the nucleons inside the nuclei and counterbalances
the effect of weak attraction of the lattice nuclear forces at this
pion mass.

TABLE 3 | Matter and charge radii of 4He, 16O, and 40Ca at MPS = 469 MeV

computed by the SCGF method, which are compared with those by BHF [65], by

Hartree-Fock (HF) and by experiments [67, 68].

4He 16O 40Ca

rpt−matter [fm]: SCGF 1.67 2.64 2.97

BHF 2.09 2.35 2.78

HF 1.62 2.39 2.78

rcharge [fm]: SCGF 1.89 2.79 3.10

Experiment 1.67 2.73 3.48

For charge radii, we assumed the physical charge distributions of the nucleons. Taken

from McIlroy et al. [64].

We next present the study of properties of dense matter,
namely, Equation of State (EoS) of nuclear matter. We again
employ the nuclear forces in 1S0,

3S1, and
3D1 channels obtained

in 3-flavor lattice QCD. To study the quark mass dependence,
we use lattice results for all five quark masses, at Mps = 469,
672, 837, 1015, 1171 MeV, which are shown in Figure 12. As a
method for a many-body calculation, we employ the Brueckner-
Hartree-Fock (BHF) theory [69], which is known to be
quantitative enough to give the essential underlying physics for
infinite matter.

In Figure 16 (Upper), we show the results of the ground
state energy per nucleon (E/A) as a function of the Fermi
momentum kF for the symmetric nuclear matter and the
pure neutron matter. Shown together are the so-called APR
EoS [70], which are obtained by the variational chain summation
method from phenomenological nuclear forces with (APR(Full))
and without (APR(AV18)) three-nucleon forces. In Figure 16

(Upper-Left), we find that the symmetric nuclear matter becomes
a self-bound system with a saturation point (kF ,E/A) ≃
(1.83(16) fm−1,−5.4(5) MeV) at the lightest quark mass (Mps =
469 MeV). This is the first time that the saturation in the
symmetric nuclear matter is obtained through first-principles
lattice QCD simulations. The saturation point, however, deviates
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FIGURE 16 | (Upper) Ground state energy per nucleon (E/A) as a function of the Fermi momentum kF by the BHF theory with nuclear forces from 3-flavor lattice QCD

at Mps = 469–1,171 MeV, together with that from APR [70] with and without phenomenological three-nucleon forces. (Left) Results for the symmetric nuclear matter.

filled square indicates the empirical saturation point. (Right) Results for the pure neutron matter. (Lower) Mass-radius relation of the neutron star based on EoS

obtained by the BHF theory with nuclear forces from 3-flavor lattice QCD at Mps = 469–1,171 MeV. Figures are taken from Inoue et al. [69].

from the empirical point primarily due to heavy pion (pseudo-
scalar meson) mass in lattice simulation and the lack of three-
nucleon forces in BHF calculation.

We also find a non-trivial Mps dependence of the EoS:
the saturation disappears at intermediate pion masses
(Mps = 672, 837 MeV) and possibly appears again at
the heavy pion mass region (Mps = 1015, 1171 MeV).

This implies that the saturation originates from a subtle
balance between short-range repulsion and the intermediate
attraction of the nuclear force, which have different mq

dependence [44]. A similar non-trivial Mps dependence
originated from the balance between repulsion and attraction is
also observed for NN scattering phase shifts, as was discussed
in section 4.1.
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FIGURE 17 | An illustration of the complementary role of lattice QCD and experiments in the determination of baryon forces.

In Figure 16 (Upper-Right), we find that neutron matter
is not self-bound due to large Fermi energy. If we decrease
the pion mass, EoS is found to become stiffer. To further
study the impact on phenomena in nuclear astrophysics,
we calculate the mass (M) vs. the radius (R) relation of
neutron stars at each pion mass. Here, we solve the Tolman-
Oppenheimer-Volkoff (TOV) equation by using the EoS of
the neutron-star matter with neutron, proton, electron and
muon under the charge neutrality and beta equilibrium, where
we use the standard parabolic approximation for asymmetric
nuclear matters.

Shown in Figure 16 (Lower) is theM-R relation of the neutron
star for different pion masses. As Mps decreases, the M-R curve
shifts to the upper right direction, due to the stiffening of the
EoS. While the maximum mass of the neutron star (Mmax) in
this calculation is much smaller than the recent observations,
Mmax ≃ 2M⊙, the deviation is most likely due to the heavy
pion masses and lack of interactions as three-nucleon forces. A
naive extrapolation of Mmax and the corresponding radius to
Mps = 137 MeV would give Mmax ∼ 2.2M⊙ and R ∼ 12 km,
which are encouraging for more quantitative studies in future.
Another hottest topic in the context of neutron star physics is the
effect of hyperon on the EoS at high density (so-called “hyperon
puzzle”). Lattice QCD can play an unique role to study this
effect by determining the hyperon forces which suffer from large
uncertainties in experiments to date. For the on-going study in
this direction, see Inoue [71].

4.4. Challenge: Nuclear Forces Near the
Physical Pion Mass
While the results of nuclear forces at heavy pion masses are very
intriguing and useful to extract the physical picture of nuclear
forces, the quantitative results require the study at the physical
pion mass. Note that the pion mass dependence of nuclear forces
is quite non-trivial as discussed in sections 4.1 and 4.3, so the
direct calculation near the physical point is desirable.

To this end, we have recently performed the first calculation
of nuclear forces near the physical up, down and strange quark
masses. Actually, our aim is to calculate not only nucleon forces
but also hyperon forces, hereby achieve the comprehensive
determination of two-baryon interactions from the strangeness
S = 0 to −6 in parity-even channels (S- and D-waves). As
mentioned before, the statistical fluctuations in lattice QCD are

smaller (larger) for larger (smaller) quark masses, and thus the
results have better precision in sectors involving more number
of strange quarks (larger strangeness |S|). On the other hand,
experiments in such larger |S| sectors are more difficult due to
the short life time of hyperons. Therefore, lattice QCD studies
and experiments are complementary with each other in the
determination of baryon forces (see Figure 17).

(2+1)-flavor gauge configurations are generated on a L3 ×
T = 963 × 96 lattice with the RG-improved Iwasaki gauge
action and non-perturbatively O(a)-improved Wilson quark
action and APE stout smearing. The lattice spacing is a ≃
0.0846 fm (a−1 ≃ 2.333 GeV), so that spatial extent, L =
8.1 fm, is sufficiently large to accommodate two baryons in
a box. Quark masses are tuned so as to be near the physical
point, and the hadron masses are found to be (mπ ,mK ,mN) ≃
(146, 525, 955) MeV. NBS correlation functions for two-baryon
systems are calculated for 55 channels in total and we extract
the central and tensor forces in parity-even channel at the LO
analysis for the derivative expansion (work in progress, and
see also [72]). In order to make this first calculation a reality,
“trinity” of state-of-the-art developments was crucial: (a) time-
dependent HAL QCD method (theory), (b) unified contraction
algorithm (software) and (c) K-computer, HOKUSAI and HA-
PACS supercomputers (hardware).

Shown in Figure 18 are the results for the central force in the
1S0 channel (Left), and the central force (Middle) and tensor force
(Right) in the 3S1-

3D1 channel. As noted above, nuclear forces
are the most challenging interactions in lattice QCD calculation,
and one can see that the results suffer from large statistical
fluctuations. Nevertheless, the obtained results exhibit several
interesting properties.

First of all, the repulsive core at short-range is clearly observed
in central forces. In order to clarify the physical picture for the
repulsive core, it is useful to compare them with hyperon forces
obtained in the same lattice setup. We find that the strength of
repulsive core (or attractive core) highly depends on the flavor
SU(3) (SU(3)f ) classification, in a consistent way with the quark
Pauli blocking effect. In addition, if we compare interactions
which belong to the same SU(3)f classification, such as NN(1S0)

and 44(1S0) both of which belong to 27-plet, we find that the
strength differs in a way which can be understood from the
viewpoint of one-gluon-exchange (e.g., repulsive core inNN(1S0)
is stronger than that in 44(1S0)). These observations confirm
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FIGURE 18 | Nuclear forces from (2+1)-flavor lattice QCD near the physical point, mπ = 146 MeV. The central force in the 1S0 channel (Left). The central force

(Middle) and the tensor force (Right) in the 3S1-
3D1 channel.

the physical picture for the repulsive core obtained in the 3-
flavor lattice QCD (section 4.1), the quark Pauli blocking effect
and the one-gluon-exchange, is relevant even at physical quark
masses. See also Park et al. [73] for a more detailed study on
this point.

At middle and long distances, while statistical errors are quite
large, we observe that the central force is attractive, resembling
the phenomenological potential as one-pion-exchange potential
(OPEP). The tensor force has relatively smaller statistical errors
than the central forces, showing that the tensor force becomes
stronger (with a negative sign) and has a longer tail, as compared
with the tensor forces at heavier pion masses (section 4.1). This
property can be understood by the picture of OPEP. These results
are encouraging and serve as the first step to establish a direct
connection between QCD and nuclear physics. At the same time,
statistical errors remain to be large and there also exist systematic
errors associated with inelastic state contaminations. The studies
to resolve these issues are in progress, and the second generation
calculation is planned on the forthcoming Exascale computer,
“Fugaku” (see https://postk-web.r-ccs.riken.jp/).

5. DIBARYONS

Before closing this review, we present our latest results on
dibaryon searches in lattice QCD near the physical pion
mass [72]. A dibaryon, a bound-state (or a resonance) with a
baryon number B = 2 in QCD, can be classified in the SU(3)f as

8⊗ 8 = 27⊕ 8s ⊕ 1⊕ 10⊕ 10⊕ 8a (50)

for the octet-octet system, where the deuteron, the only
stable dibaryon observed in nature so far, appears in the 10

representation while H dibaryon has been predicted in the 1

representation [74] and actively investigated in lattice QCD [43,
44, 51, 52, 75]. For the decuplet-octet system, the classification
leads to

10⊗ 8 = 35⊕ 8⊕ 10⊕ 27 (51)

and N� (N1) dibaryon has been predicted in the 8 (27)
representation [76–78], and

10⊗ 10 = 28⊕ 27⊕ 35⊕ 10 (52)

for the decuplet-decuplet system, where �� dibaryon
has been predicted in the 28 representation [79] while
11 has been predicted in the 10 [78, 80] and the
corresponding d∗(2380) was indeed observed [81]. Note
that among decuplet baryons, only � is stable against
strong decays.

5.1. The Most Strange Dibaryon
We first consider the �� system in the 28 representation of
SU(3)f in the 1S0 channel [82].

Figure 19 (Upper-Left) shows �� potentials at
t/a = 16, 17, 18, which has qualitative features similar to
the central potentials for NN but whose repulsion is weaker and
attraction is shorter-ranged. This potential predicts an existence
of one shallow bound state, whose binding energy is plotted in
Figure 19 (Upper-Right) as a function of the root-mean-square
distance, with (red) and without (blue) Coulomb repulsion
between��. We may call this�� bound state “the most strange
dibaryon.” Such a system can be best searched experimentally
by two-particle correlations in relativistic heavy-ion
collisions [84].

5.2. N� Dibaryon
We next consider the N� system with S = −3 in
the 8 representation in the 5S2 channel [83]. Near
the physical point, N�(5S2) may couple to D-wave
octet-octet channels below the N� threshold (34 and
64), but such couplings are assumed to be small in
this calculation.

Figure 19 (Lower-Left) shows the N� potential at t/a =
11–14, which is attractive at all distances without repulsive
core, so that one bound state appears in this channel. In
Figure 19 (Lower-Right), the binding energy (vertical) and
the the root-mean-square distance (horizontal) are plotted
for n�− with no Coulomb interaction (red) and p�− with
Coulomb attraction (blue). These binding energies are much
smaller than B = 18.9(5.0)(+12.1

−1.8 ) MeV at heavy pion
mass mπ = 875 MeV [85]. Such a N� state can be
searched through two-particle correlations in relativistic nucleus-
nucleus collisions [84] and an experimental indication was also
reported [86].
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FIGURE 19 | (Upper) The �� system in the 1S0 channel in 2+ 1 flavor QCD at mπ ≃ 146 MeV and a ≃ 0.0846 fm on a (8.1 fm)3 box. (Left) The �� potential V (r) at

t/a = 16, 17, 18. (Right) The binding energy of the �� system and the root-mean-square distance between two �’s are shown by blue solid diamond (red solid

triangle), calculated from the �� potential V (r) at t/a = 17 without (with) the Coulomb repulsion. Taken from Gongyo et al. [82]. (Lower) The N� system in the 5S2

channel with the same lattice setup for ��. (Left) The N� potential VC(r) at t/a = 11, 12, 13, 14. (Right) The binding energy and the root-mean-square distance for the

n�− (red open circle) and p�− (blue open square). Taken from Iritani et al. [83].

5.3. Comparison Among Dibaryons
Let us consider the scattering length a0 and the effective range
reff for ��(1S0) and N�(5S2). In Figure 20, the ratio reff/a0 as a
function of reff are plotted for ��(1S0) and N�(5S2) obtained
in lattice QCD near the physical pion mass, together with the
experimental values for NN(3S1) (deuteron) and NN(1S0) (di-
neutron). Small values of |reff/a0| in all cases indicate that these
systems are located close to the unitary limit.

6. CONCLUSIONS

In this paper, we have reviewed the recent progress in lattice
QCD study of baryon-baryon interactions by the HAL QCD
method. We first presented the detailed account on how to
define the potentials in quantum field theories, such as QCD.
The key observation is that the Nambu-Bethe-Salpeter (NBS)
wave functions contain the information of scattering phase shifts

below inelastic threshold in their asymptotic behaviors outside
the range of the interactions. The potentials at the interaction
region can then be defined through the NBS wave functions so as
to be faithful to the phase shifts by construction, where the non-
locality of the potential is defined by the derivative expansion. In
addition, by constructing the potentials in energy-independent
way, the potentials can be extracted from two-baryon correlation
functions without the requirement of the ground state saturation.

We then made a detailed comparison between the HAL
QCD method and the conventional method, in which phase
shifts are obtained from the finite volume energies through
the Lüscher’s formula. We pointed out that, while the validity
of the latter method relies on the ground state saturation
of the correlation function, its practical procedure for multi-
baryon systems (“direct method”) so far has utilized only the
plateau-like structures of the effective energies at Euclidean
times much earlier than the inverse of the lowest excitation
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FIGURE 20 | The ratio of the effective range and the scattering length reff/a0
as a function of reff for ��(

1S0) (blue open diamond) and N�(5S2 ) (red open

circle) obtained in lattice QCD, as well as for NN(3S1 ) (purple open up-triangle)

and NN(1S0) (green open down-triangle) in experiments. Taken from Iritani

et al. [83]. The sign convention for the scattering length is opposite to Eq. (5) in

this figure.

energy. We showed theoretical and numerical evidences that
such a procedure generally leads to unreliable results due to
the contaminations from the elastic excited states: For instance,
the results were found to be dependent on the operators and
unphysical behaviors were exposed by the normality check. This
invalidates the claim of the literature in the direct method
that NN bound states exist for pion masses heavier than
300 MeV.

On the other hand, HAL QCD method is free from
such a serious problem since the signal of potentials can be
extracted from not only the ground state but also elastic excited
states. While there instead exists the truncation error of the
derivative expansion of the potential, the calculation of the
higher order term in the derivative expansion showed that
the convergence of the expansion is sufficiently good at low
energies. Furthermore, utilizing the finite volume eigenmodes of
the HAL QCD Hamiltonian, the excited state contaminations
in the direct method were explicitly quantified. It turns
out that the plateau-like structures of effective energies at
early time slices are indeed pseudo-plateaux contaminated by
elastic excited states and that the plateau for the ground
state is realized only at a much larger time corresponding
to the inverse of the lowest excitation energy gap. We also
showed that, by employing an optimized operator utilizing
the finite volume eigenmodes, the effective energies from
the correlation functions give consistent results with those
from the HAL QCD potential. Thus the long-standing issue
on the consistency between the conventional method based
on the Lüscher’s formula and the HAL QCD method was
positively resolved.

After establishing the reliability of the HAL QCD method,
we presented the numerical results of nuclear forces from the

HAL QCD method at various lattice QCD setups. At heavy
pion masses, where good signal-to-noise ratio can be achieved
in lattice QCD, we observed that the obtained NN potentials in
the parity-even channel (1S0,

3S1-
3D1) reproduce the qualitative

features of the phenomenological potentials, namely, attractive
wells at long and medium distances, accompanied with repulsive
cores at short distance in the central potentials and the strong
tensor force. The net interactions were found to be attractive,
which however are not strong enough to form a bound NN
state, probably due to the heavy pion masses. We observed that
the tail structures are enhanced at lighter pion masses, which
can be understood from the viewpoint of one-pion exchange
contributions. We also found the repulsive cores are enhanced
at lighter pion masses. Combined with our systematic studies
including hyperon forces, the nature of repulsive cores was found
to be well-described by the quark Pauli blocking effect together
with the one-gluon-exchange contribution.

The HAL QCD method can be extended to determine
more complicated nuclear forces, such as spin-orbit forces
and three-nucleon forces. In this paper, we considered two-
nucleon systems in the parity-odd channels (1P1,

3P0,
3P1,

3P2-
3F2 channels) and calculated spin-orbit forces as well

as central and tensor forces. We found that qualitative
features of experimental results are generally well-reproduced,
while the magnitudes differ due to the heavy pion mass.
In particular, we observed the strong (and negative) spin-
orbit forces, which lead to the attraction in the 3P2 channel.
Three-nucleon forces were studied in the triton channel,
(I, JP) = (1/2, 1/2+), thank to the unified contraction
algorithm (UCA), which can enormously speed up calculations
of multi-baryon correlation functions. It was found that there
exists a repulsive three-nucleon forces at short distances.
These observations are of interest in the context of not
only the structures of nuclei but also those of neutron
stars, e.g., P-wave superfluidity and the maximum mass of
neutron stars.

We carried out the applications to nuclei, nuclear equation
of state (EoS) and structure of neutron stars based on lattice
nuclear forces at heavy quark masses. We performed ab initio
self-consistent Green’s function (SCGF) calculations for closed
shell nuclei with nuclear forces at Mps=469 MeV in the SU(3)
limit of QCD. We found that 4He, 40Ca nuclei are bound, and
16O is close to become bound, while asymmetric isotopes are
strongly unbound. The results suggest that, when lowering the
pion mass toward its physical value, islands of stability appear at
first around the traditional doubly magic numbers. The nuclear
EoS was also studied by the BHF theory with nuclear forces in
the flavor SU(3) limit. We found that the saturation property
appears in the symmetric nuclear matter at Mps = 469 MeV. A
mass-radius relation of the neutron star was also studied based
on the EoS obtained from lattice nuclear forces and we observed
a tendency that the maximummass of a neutron star increases as
the pion mass decreases.

Finally, we presented the first lattice QCD study of baryon
forces near the physical pion mass in the parity-even channel.
The computation is quite challenging particularly for nuclear
forces due to bad signal-to-noise ratio near the physical point.
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Nevertheless, we observed prominent characteristics of nuclear
forces, such as repulsive cores at short distances as well as
attractive interactions at mid and long distances in central
forces, and a strong (and negative) tensor force. We also
presented the results for the hyperon forces obtained near the
physical point. We found that both ��(1S0) and N�(5S2)
systems have strong attractions, and (quasi) bound dibaryons are
formed near the unitary limit. These systems could be searched
experimentally through two-particle correlations in relativistic
nucleus-nucleus collisions.

Present results shown in this paper already indicate a clear
pathway which connects nuclear physics with its underlying
theory of the strong interaction, QCD. While there remain
many challenges to accomplish researches in this direction, there
is no doubt that successive theoretical developments together
with next-generation supercomputers will further deepen the
connection between the two. The outcome is also expected
to play a crucial role to understand the nuclear astrophysical
phenomena, such as supernova explosions and mergers of binary
neutron stars, as well as the nucleosynthesis associated with these
explosive phenomena.
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The Faddeev-Yakubovsky equations constitute a rigorous formulation of the quantum

mechanical N-body problem in the framework of non-relativistic dynamics. They allow

the exact solutions of the Schrödinger equation for bound and scattering states to be

obtained. In this review, we will present the general formalism as well as the numerical

tools we use to solve Faddeev-Yakubovsky equations in configuration space. We will

consider in detail the description of the four- and five-nucleon systems based on modern

realistic nuclear Hamiltonians. Recent achievements in this domain will be summarized.

Some of the still controversial issues related with the nuclear Hamiltonians as well

as the numerical methods traditionally employed to solve few-nucleon problems will

be highlighted.

Keywords: Faddeev-Yakubovsky equations, four-nucleon system, five-nucleon systems, few-body collisions,

scattering observables

1. INTRODUCTION

The solution of the Faddeev-Yakubovsky (FY) equations is an extremely challenging task from both
the intellectual and technical points of view. The fast growth in the complexity of this problem
with the number of interacting nucleons (A) makes progress in solving these equations relatively
slow [1]. During the last twenty years, we have witnessed the emergence of the full solution—
bound and scattering states—of the four-nucleon problem [2, 3] and only very recently have the
first solutions for A= 5 [4–6] been published.

Although the four-boson bound problem was already formulated—and solved with S-wave
interaction—in [2], the first converged result employing realistic NN interactions for the A = 4
bound state (4He) took another 10 years to achieve [3].

The first solution of the scattering problem for the elastic 1+3, 2+2, and 1+3→ 2+3
rearrangement channels within the isospin approximation and S-wave interactions dated from
1998 [7], and it took twenty years more to obtain a full solution of the four-nucleon scattering
problem with (i) realistic interactions [8–10] (ii) including charge-dependent (CD) and non local
terms [11], (iii) Coulomb effects [12–15], (iv) three- and four-body breakup amplitudes [13, 16–18],
and (v) a proper ab-initio determination of the 4N resonant states (e.g., 4n or 4H) as S-matrix poles
in the complex energy plane [6, 19–23]. There remains only the computation and analysis of the
three- and four-body breakup differential cross-sections, since only the integrated cross-sections
are nowadays available.
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The A = 4 schematic chart is displayed in the left panel of
Figure 1. It comprises five different charge states (Z = 0, 1, 2, 3,
4), including a single bound state (4He) as well as five two-cluster
scattering channels (n-3H, n-3He, p-3H, 2H-2H, p-3He denoted
in an olive color), several three-body (in blue) and four-body (in
black) break-up thresholds, and numerous—well-identified or
questioned—low-energy resonances. The A = 4 sector presents
the simplest case, revealing in practice all the phenomena of the
theoretical nuclear physics: the presence of several thresholds and
resonances. As an example, the continuum of the 4He nucleus
contains almost degenerate n-3He and p-3H thresholds, with an
4He resonant state situated in between whose position must be
accurately determined since it strongly modifies the scattering
in both channels and thus constitutes a serious challenge for all
realistic NN interaction models [8, 26]. Although still far from
the intricacy of heavy nuclei, one can say that, in some sense, the
nuclear complexity really starts at A= 4.

Solving the A = 5 problem represents a redoubtable technical
and numerical difficulty with respect to the A= 4 case. However,
the A= 5 chart is simpler than the A= 4 one due to the absence of
the A= 5 bound state and of 3,5Li and/or 4Be targets: the number
of charge states effectively investigated is limited to three (Z =
1, 2, 3) since the experimentally inaccessible 5n and 4p states
raise less interest. There are four two-body scattering channels
(n-4He, 2H-3H, 2H-3He, and p-4He, also denoted in olive), some
of them, like the 2H+3H→ n+4He fusion reaction, of paramount
importance in nuclear physics and in the stellar nucleosynthesis
cycle. In contrast, the number of three- and four-body breakup
thresholds (in blue) is sensibly larger. This is illustrated in the
right panel of Figure 1, where the “nuclear chart” corresponding
to A = 5 is displayed. The FY solutions for A = 5 are at present
limited to low energy (S- and P-waves) n-4He elastic scattering
[4, 5] and in computing the lowest resonant states of 5H [6], in
both cases using realistic interactions. Some disagreements with
the R-matrix analysis were found in both systems. The fusion
reaction 2H+3H → n+4He has not yet been solved within the
FY framework, but a recent pioneering result has been achieved
within the NCSMC approach [27].

We would like to point out from the very beginning that other
rigorous schemes were proposed for solving the ab initioN-body
problem. One of the most relevant is that provided by the AGS
equations [28], which is strictly equivalent to the FY formalism
and has produced very accurate results for the three- and four-
nucleon problem, always in momentum space [29, 30]. We also
emphasize that such rigorous mathematical schemes are not
necessary when dealing with bound states or simple 1+ (N − 1)
elastic scattering processes and that the Schrödinger equation can
then be directly solved by several methods.

It is worth also mentioning that, aside from FY solutions
in configuration space, on which we report, there are several
competing approaches to solving the A = 4 and A = 5
problems that have produced very interesting and, in some cases,
pioneering results. Any attempt at an exhaustive reference list
is beyond our capabilities. However, we would like to point
out among them the GFMC [31, 32], variational approaches
with Hyperspherical Harmonics [33, 34] or a Gaussian basis
[35], RGM [36], NCSM and NCSMC [27, 37], and Lorentz

Integral Transform [38], which can produce very accurate
results, in some cases well beyond the technical capabilities
of the Faddev-Yakubovsky approach. However, the Faddeev-
Yakubovsky partition of the wave function is interesting for
increasing the numerical convergence of the results or is even
unavoidable for an appropriate implementation of the boundary
conditions [35, 39]. The interested reader can find a more
thorough bibliography in some devoted reviews [40].

In this contribution, we will concentrate on some particular
issues that our previous works had not treated with the required
detail. We will mostly present results related to the four-nucleon
scattering problem, obtained by solving the Faddeev-Yakubovsky
equations in configuration space, and will add some recent results
on the five-nucleon n-4He low-energy scattering. In section 2,
we will detail the theoretical aspects of the four-body equations.
section 3 is devoted to the discussion of 4N scattering results with
different realistic models. Some concluding remarks are collected
in the Conclusions.

2. THEORETICAL DESCRIPTION

In what follows, we will present the general formalism as
well as the numerical methods relevant to the solution of the
four-body problem in configuration space. Some results related
with neutron scattering on 4He that we obtained by solving
five-body FY equations will also be discussed; however, and
due to its complexity, the five-body formalism will not be
presented here. For this particular case, a interested reader may
refer to Sasakawa [41], Lazauskas [4, 5], and Lazauskas and
Song [42].

2.1. The Four-Body FY Equations
The derivation of the four-body Faddeev-Yakubovsky equations
starts by defining the three-body-like Faddeev components
(FC) ψij, which are associated to each interacting pair of
particles (ij):

ψij = G0Vij9 (i < j). (1)

Here, G0 = (E − H0)
−1 denotes the free four-body Green’s

function, associated with the four-body kinetic energy operator
H0 and the four-body energy E, while Vij denotes the two-
body potential between the particles i and j. Naturally, for
a four-body system, there exist six different three-body-like
Faddeev components. In terms of these, one can define
two types of the so-called Faddeev-Yakubovsky component
(FYCs), denoted, respectively type-K and type-H components, by
the relations:

K
l
ij,k

= GijVij(ψjk + ψik) (i < j);
H

kl
ij = GijVijψkl (i < j; k < l).

(2)

In this equation, Gij = (E − H0 − Vij)
−1 denotes the interacting

four-body Green’s function associated with the interaction term
between particles i and j. By permuting particle indexes, one
may construct 12 independent components of type-K as well
as six independent components of type-H. The asymptotes
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FIGURE 1 | Schematic nuclear chart for A = 4 (left) and A = 5 (right) systems displaying the different thresholds (full lines). The two-cluster thresholds are depicted

in an olive color, many-cluster thresholds in blue and black. Some selected resonant states are depicted by dashed lines, indicating approximate positions of their

centroids, as predicted by R-matrix analysis by Tilley et al. [24] and Tilley et al. [25]. The widths of the resonant states are disregarded.

FIGURE 2 | Four-particle partitions K4
12,3 and H34

12, together with the

associated Jacobi coordinate sets.

of the components K
l
ij,k

and H
kl
ij incorporate all the possible

3+1 and the 2+2 particle channels, respectively, as illustrated
in Figure 2. Here, we are interested in nuclear problems,
involving protons and neutrons. Within the isospin formalism,
neutrons and protons are treated as isospin-degenerate states of
the same particle: the nucleon. Then, the FY components, which
differ by the order of the particle indexing, are related due to
the symmetry of particle permutation. There remain only two
independent FYCs, which are further denoted K ≡ K

4
12,3 and

H ≡ H
34
12 by omitting their particle indexes. For FY equations for

a case of four identical particles (see [11, 43]):

(E−H0 − V12)K = V12(P
+ + P−)

[

(1+ Q)K+H
]

,

(E−H0 − V12)H = V12P̃
[

(1+ Q)K+H
]

, (3)

Each FY component F = (K,H) has its natural expression
in its proper set of Jacobi coordinates, as depicted in Figure 2.
However, they may be as well-considered as a function of any set
of Jacobi coordinates and converted for one coordinate set into
another one by using the particle permutation operators, which
are summarized as follows:

P+ = (P−)−1 ≡ P23P12,
Q ≡ −P34,
P̃ ≡ P13P24 = P24P13,

where Pij indicates the operator permuting particles i and j.
In terms of the FYCs, the total wave function of an A = 4

system is given by:

9 =
[

1+ (1+ P+ + P−)Q
]

(1+ P+ + P−)K

+ (1+ P+ + P−)(1+ P̃)H. (4)

Each FY component F = (K,H) is considered as a function,
described in its proper set of Jacobi coordinates, as depicted
in Figure 2.

The angular, spin, and isospin dependence of these
components are described using the tripolar harmonics
Yα(x̂, ŷ, ẑ), i.e.,:

〈ExEyEz|F〉 =
∑

α

Fα(xyz)

xyz
Yα(x̂, ŷ, ẑ). (5)
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The quantities Fα(xyz) are called the regularized radial FY
amplitudes, where the label α holds for a set of 10 intermediate
quantum numbers describing a given four-nucleon quantum
state (Jπ ,T, Tz). By using the LS-coupling scheme, the tripolar
harmonics are defined for components of K and H type,
respectively, by

YαK ≡
{[

(

lxly
)

lxy
lz

]

L

[

(

(s1s2)sx s3
)

S3
s4

]

S

}

JπM

⊗
[

(

(t1t2)tx t3
)

T3
t4

]

TTz

, (6)

YαH ≡
{[

(

lxly
)

lxy
lz

]

L

[

(s1s2)sx (s3s4)sy

]

S

}

JπM

⊗
[

(t1t2)tx (t3t4)ty

]

TTz

. (7)

The FY equations were originally derived to treat systems
of particles interacting by pairwise short-range interactions.
Nevertheless, these equations can be modified with relative ease
to include three-body forces (3BF). This has been achieved
for the first time in the work of the Bochum group [44]. In
implementing three-nucleon forces, we have followed quite a
similar but nevertheless slightly optimized strategy [43]. It is
worth noticing a recent work by Kamada [45] presenting a
systematic derivation of the four-body FY equations by including
three-body forces.

2.2. Treatment of the Coulomb Interaction
One of the more delicate issues in solving few-particle scattering
problems is the proper treatment of the Coulomb interaction.
Due to the long-range nature of Coulomb potential in coordinate
space, or, equivalently, due to its singular behavior in momentum
space, the standard approach of the scattering theory based
on expansion in free waves in the asymptote region is not
appropriate. Indeed, the FY equations, as presented in the
previous section, are formulated for short-range interactions and
are not appropriate for handling scattering problems including
Coulomb interaction.

For a three-body system, the proper mathematical formalism
to include Coulomb interactions was proposed by Merkuriev
[46]. This formalism is valid both for attractive and for repulsive
Coulomb forces. The problem becomes considerably simpler if
only one repulsive Coulomb interaction is present (only two out
of three particles are charged by equal sign charges) like for a
proton-deuteron scattering. For this particular case, there are
several alternative prescriptions to handle Coulomb interaction
force [47–52]. They are based on inserting, fully or partially,
the Coulomb potential VC(x, y), in the left-hand side of the
Faddeev equation

[E−H0 − V(x)− VC(x, y)]9(x, y) = (V(x)− V l
c(x, y))(P

+

+ P−)9(x, y). (8)

In this way, the long-range part of the Coulomb interaction
V l
c(x, y) is subtracted on the right-hand side of the Faddeev

equation and is appropriately compensated by the term VC(x, y)
on the left-hand side, thus accounting for the Coulomb
asymptotic wave function in the scattering channel.

On the contrary, for an N>3 case, no such modifications of
FY equations existed prior to our work. Only in the work of
Filikhin and Yakovlev [53] has this problem been partly addressed
by being limited to S-wave approximation.

2.2.1. Formulation, à la Merkuriev [46]

In this work, we present two alternatives for how to treat
Coulomb interaction for N>3 systems: following the strategy
of Merkuriev, and following the method proposed by Sasakawa
and Sawada [48]. It is worth mentioning that many alternative
treatments of the repulsive Coulomb interaction, corresponding
to the three-body approaches of Noble [47] and Chen et al.
[50], may be formally spanned under Merkuriev’s approach by
considering different forms of splitting the Coulomb interaction
into short- and long-range parts.

In this section, we propose a generalization of the four-body
FY equations following Merkurievs approach to the three-body
system [46]. We start by splitting the Coulomb potential VC

ij

into two parts: short-range Vs
ij and long-range V l

ij, such that

VC
ij = Vs

ij + V l
ij. This is realized by means of appropriate cut-off

functions χ sa (xij, ya, za), depending on the radial parts of Jacobi
coordinates as they are depicted in Figure 2:

V
sa
ij = χ s

a(xij, ya, za)V
C(xij). (9)

We introduce three different forms of splitting

VC
ij (xij) = V lK

ij (xij, yij,k)+ VsK
ij (xij, yij,k), (10)

VC
ij (xij) = V lH

ij (xij, ylk)+ VsH
ij (xij, ylk), (11)

VC
ij (xij) = V

lρ
ij (xij, ρij)+ V

sρ
ij (xij, ρij), (12)

and, following the steps leading to three-body Merkuriev
equations, we reformulate the four-body equations as follows:

(E−H0 − V12 − V lK
13 − V

lK
23 − V

lρ
14 − V

lρ
24 − V

lρ
34)K

4
12,3

= VsK
12 (K

4
23,1 +K

4
31,2)+ V

sρ
12(K

1
23,4 + K

2
31,4 +H

14
23 +H

24
31),

(13)

(E−H0 − V12 − V lH
34 − V

lρ
13 − V

lρ
23 − V

lρ
14 − V

lρ
24)H

34
12

= VsH
12H

12
34 + V

sρ
12(K

2
34,1 + K

1
34,2). (14)

One may easily verify that, by summing these equations, one
obtains Schrödingers equation for the total wave function of
the system : 9 = ∑

K
l
ij,k

+ ∑

H
lk
ij . On the other hand, the

asymptotes of the different binary channels become perfectly
separated. To demonstrate this feature, let us investigate the FY
componentK4

12,3 associated with Equation (13). This component
is meant to incorporate the asymptote of the (123)+4 particle
channel and is directly coupled with the componentsK1

23,4,K
2
31,4,

H
14
23, and H

24
31, which are not proper to the (123)+4 particle

channel. Nevertheless, in Equation (13) this coupling is ensured
only by the short-range interaction V

sρ
12. It remains coupled with

the components K
4
23,1 and K

4
31,2 by the long-range interaction

terms, but all these components belong to the same (123)+4

Frontiers in Physics | www.frontiersin.org 4 February 2020 | Volume 7 | Article 251271

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lazauskas and Carbonell Four- and Five-Nucleon Systems

particle channel. Very similar behavior is preserved by the
componentH34

12, associated with Equation (14). This component
contributes to the asymptote of the (12)+(34) particle channel
and is coupled by a long-range interaction term only with the
componentH12

34 belonging to the same binary channel. Therefore,
the modified FY Equations (13)-(14) uncouple the asymptotes
belonging to different binary scattering channels even when the
Coulomb interaction is present. Their uncoupling properties are
in this way similar to the original FY equations involving only
short-range interactions.

2.2.2. Alternative Formulation, à la Sasakawa and

Sawada [48]

For each FYC, one introduces an auxiliary long-range potential
in their asymptote describing an effective Coulomb repulsion
between the fragments of the associated binary channel V l

zα
(zα),

such that:

V l
zα
(zα → ∞) = Cα

zα
, (15)

where, for a type-K component, defined by the particle ordering
α = (412,3) :

C4
12,3 ≡ C4 =

√

2m4(M −m4)

Mm
; (16)

and for type-H component with α = (3412),

C34
12 ≡ C12

34 =
√

2(m1 +m2)(m3 +m4)

Mm
. (17)

We denote by mi the mass of nucleon i, and by M = ∑

imi,
the total mass of the system. FY equations are reformulated
by subtracting this long-range potential in their left-hand side.
These auxiliary potential terms are compensated by introducing
appropriate terms in the right-hand side of FY equations:

(E−H0 − V12 − q4(q1 + q2 + q3)V
l
z4
)K4

12,3

= V12(K
4
23,1 +K

4
31,2 +K

1
23,4 +K

2
31,4 +H

1
23,4 +H

2
31,4),

−q1q2(V
l
z1
K
1
23,4 + V l

z2
K
2
31,4 + V l

z1423
H

14
23 + V l

z2413
H

24
13) (18)

(E−H0 − V12 − (q1 + q2)(q3 + q4)V
l
z412,3

)H34
12

= V12(K
12
34 +K

2
34,1 +K

1
34,2)− q1q2(V

l
z2
K
2
34,1 + V l

z1
K
1
34,2),(19)

where qi is the charge of particle i. The auxiliary potential terms
V l
zα
(zα) in the left- and right-hand sides of equations are balanced

in such a way that they compensate each other once all 18 FY
equations are added to recover Schrödingers equation.

Further, we are interested in uncoupling of the wave
components describing different two-cluster scattering channels.
To see how well these components uncouple in their asymptotes,
let us analyze the first equation associated with a component
K
4
12,3. In the right-hand side of this equation, components

K
1
23,4,K

2
31,4,H

14
23, and H

24
13 are present, which are not proper

to the (123) + 4 elastic channel of the component K
4
12,3. As

an example, component K
1
23,4, associated with the (234) + 1

scattering channel, is coupled with the K4
12,3 in this equation by

the potential term

V12 − q1q2V
l
z1
= q1q2





1

x12
−

√

2m1(M−m1)
Mm

z1



 , (20)

which behaves as O((z1)
−3) in the z1 >> max(x23, y

4
23) region,

which defines the asymptote of the (234) + 1 scattering channel.
One may reach the same conclusion relative to the coupling
between the components of typesK andH. Thus, the asymptotic
coupling between the components belonging to different binary
channels is realized by the effective potential terms decaying as
O((z1)

−3) and thus is strongly suppressed relative to the original
Coulomb potential. One should mention, however, that such
uncoupling is not ensured for the case when breakup in three (or
four) clusters is energetically allowed.

By comparing the approach of Equations (13)–(14) to the
one following Equations (18)–(19), one may readily conclude
that, in the first approach, the FY components are more
properly uncoupled by the exponentially decaying potential
terms. Nevertheless, the second formalism requires less effort
implement numerically. In the following section, we will present
some results demonstrating that these two approaches work
equally well for the nuclear problem, where only repulsive
Coulomb interactions are present.

3. RESULTS

3.1. Models
The results presented in this study are obtained using realistic
nuclear Hamiltonians. The realistic nucleon-nucleon (NN)
potentials contain several adjustable parameters, which are tuned
in order to reproduce experimental NN scattering data and
the properties of a deuteron with very high accuracy. Three
different NN potentials, Argonne v18 (AV18) [54], INOY04 [55],
and Idaho N3LO (I-N3LO) [56], are used in this work. The
AV18 model is a phenomenological potential, which is defined
in configuration space and is local. The longest-range part of
the AV18 potential is determined by one-pion exchange and
electromagnetic NN interaction terms, but its short-range part
is fully phenomenological.

The locality of the NN force assumed in the pioneering
high-accuracy NN interaction models was due to numerical
convenience. Nevertheless, it was soon realized that such models
suffer from the underbinding problem when describing A >

2 nuclei [57–59]. The inclusion of non-local interaction terms
allows the off-shell structure of the potential to change and may
strongly affect the description of the A > 2 sector. This feature
has been explored by Doleschall [55, 60, 61], who constructed
a set of phenomenological potentials. The internal parts of
these potentials are built by employing highly non-local form
factors (the INOY04 model non-locality range is approximately
2 fm), whereas their outside parts are local and are defined
by the Yukawa potential representing one-pion exchange. The
NN interaction models of Doleschall et al., and in particular
INOY04, were able to overcome the lack of binding energy in
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TABLE 1 | Parameters of the local N2LO 3BF employed in this work.

3 (MeV) cD cE c1 c3 c4 References

350 −0.2 0.205 −0.81 −3.2 5.4 [72]

400 −0.2 0.098 −0.81 −3.2 5.4 [72]

450 −0.2 −0.016 −0.81 −3.2 5.4 [72]

500 −0.0411 0.945 −0.81 −3.2 5.4 [71]

500 −0.2 −0.205 −0.81 −3.2 5.4 [70]

In the last column, a reference to the original work where the values of the parameters cD

and cE were established is provided.

the three-nucleon sector, namely 3H and 3He, without explicitly
using three-nucleon forces and still accurately reproduce NN
observables [11, 55].

From the early 2000s, inspired by the works of Weinberg [62],
a new generation of nuclear forces appeared based on chiral
effective field theory [63, 64]. Chiral effective field theory
provides a powerful framework with which to link the NN
potentials with the pion-nucleon ones but, at the same time,
construct systematically, order by order, an improvable scheme
to build consistent multinucleon forces as well as control the
uncertainties in their determination. The chiral NN interaction
model developed up to next-to-next-to-next-to-leading order by
the Idaho group [56], denoted here as I-N3LO, remains one of
the most successful descriptions of the NN interaction.

Realistic nucleon-nucleon interaction models are nowadays
able to describe all the available scattering data in the two nucleon
sector almost perfectly. Studies of heavier nuclei are therefore
required in order to test and validate these interaction models.
However, calculations of the trinucleon binding energies already
reveal an underbinding problem: most of the nucleon-nucleon
potentials fail to reproduce binding energies of triton and 3He.
A single exception is provided by the INOY potentials, which,
employing non-local form factors, are adjusted at NN level to also
reproduce the binding energy of 3H. Nevertheless, these models
turn out to be too soft, compressing, and overbinding 4He [11,
65], leading to high saturation density of the nuclear matter [66]
as well as severe overbinding of heavier nuclei [67]. The natural
remedy is the introduction of three-nucleon forces, which
appear in any theoretically motivated nuclear interaction model.
It should be noted that only models based on effective-field
theory provide a systematic hierarchy between two-nucleon and
multi-nucleon forces. Regardless of the three-nucleon interaction
model, these forces have some adjustable parameters.

There are several different three-nucleon force models that
can be used in conjunction with AV18 and the chiral effective
field potentials of Epelbaum et al. [63] or Machleidt and Entem
[64]. Notably, with AV18 NN potential, we will employ the
Urbanna IX (UIX) three-nucleon interaction model of Pudliner
et al. [68], adjusted in order to improve description of the
three-nucleon binding energies as well as the nuclear matter
saturation density.

In Navratil [69], a three-nucleon force employing local
momentum-space regulators, and developed up to next-to-
next-to-leading order was proposed. In Gazit et al. [70], two

TABLE 2 | Comparison of the p-3He singlet (Jπ=0) and triplet (Jπ= 1) scattering

lengths calculated by the approach of Equations (13)–(14) to those obtained by

solving Equations (18)–(19).

Jπ 0+ 1+

Equations (13)–(14) 11.92 9.346

Equations (18)–(19) 11.86 9.302

Scattering lengths are provided in units of fm.

unknown coupling constants, cD and cE, of this 3BF were
adjusted to reproduce triton binding energy and β-decay half-
life simultaneously. In a recent work [71], it was found that
the relation between the low-energy constants (LECs) cD and
cE, determining the three-nucleon contact interaction and the
two-nucleon contact axial current, was given erroneously. A new
parametrization of the last force was also provided. In our work,
we will essentially use the last parametrization of the force of
Marcucci et al. [71] using cutoff 3= 500 MeV (see Table 1). It
is worth mentioning that the two parameterizations, one of Gazit
et al. [70] and one of Marcucci et al. [71], provide almost identical
predictions for all the nuclear observables considered here.

An alternative strategy to fix cD and cE coupling constants was
followed by Roth et al. [72]. Those authors noticed that heavier
nuclei are overbound when 3BF of Gazit et al. [70] is used. A
new set of three-nucleon forces were proposed using lower cutoff
values, 3 = 350, 400, and 450 MeV, which describe the binding
energies of the medium mass nuclei along the dripline better.

For convenience, the different parameterizations of 3BF used
in what follows in conjunction with I-N3LO NN interaction will
be referred to by the cutoff value 3 regularizing this force. In
Table 1, we provide the parameters of the different 3BFs tested
in this work.

3.2. Coulomb Phaseshifts
As described in section 2.2, the implementation of the
Coulomb interactions represents a real challenge for the few-
nucleon scattering problem. Two different methods have been
proposed to implement the Coulomb force in nucleon-trinucleon
scattering. We present in Tables 2, 3 a comparison among
these two approaches. One may see that, regardless of the
fact that the method based on Equations (13)–(14) is formally
more appropriate, in Practice, the two methods provide almost
identical results. Even for p-3He scattering length calculations,
where the effect of Coulomb repulsion should be the most
appreciable, the two methods provide indistinguishable results
within the numerical accuracy. A small discrepancy might be
still observed in calculating negative parity phaseshifts (see
Table 3 corresponding to Ep= 2.25 MeV), which might be
related to the importance of the triton polarizations terms,
while these terms are partly screened in the approach based on
Equations (18)–(19).

3.3. Description of the Four-Nucleon
Scattering
The main goal of theoretical nuclear physics is to construct a
reliable model describing the nuclear structure and reactions.
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TABLE 3 | The same as in Table 2 but for the scattering phase shifts (2s+1LJ ) and

mixing angles (ǫJ
π
) at Ep =2.25 MeV, both presented in degrees.

1S0
3S1

3D1 ǫ
1+ 3P0

1P1
3P1 ǫ

1− 3P2

Equations (13)–(14) −41.57 −35.49 −0.28 −0.58 7.74 17.75 10.84 8.43 16.41

Equations (18)–(19) −41.50 −35.42 −0.28 −0.57 8.15 17.72 11.25 8.55 16.66

Realistic nucleon-nucleon interaction models are built to
reproduce available data in two-nucleon sectors. In addition,
three-nucleon forces are usually introduced and adjusted to
reproduce the ground state binding energies of triton (3H),
3He, and 4He. Nevertheless, the binding energies of the stable
nuclei, appearing along the dripline, are strongly correlated and
thus provide only limited insight into nuclear forces. Scattering
experiments, allowing unbound structures far from the stability
to be accessed, remain the richest tool to study the properties of
the underlying nuclear interaction.

Three-nucleon systems have been extensively studied
throughout the last two decades [73]. Realistic nuclear
Hamiltonians provide a satisfactory description of the uttermost
part of the trinucleon data. Still, there remain some discrepancies,
like in the description of the analyzing powers (Ay-puzzle) and
some breakup observables (space-star anomaly) [74, 75],
which have not yet been addressed by any NN+3BF model.
It is noteworthy that these problematic observables are
relatively small, representing only a few percentiles of the total
scattering cross-section.

Three-nucleon systems remain relatively simple, due to
the absence of any thresholds (apart from the three-particle
breakup one) or resonant structures in the continuum. The
two experimentally accessible systems, 3H and 3He, are mirror
systems and thus exhibit very similar properties. Four- and
five-nucleon systems, accommodating several resonant states
and a rich threshold structure in the continuum, therefore
present interesting theoretical laboratories for testing the
nuclear interactions.

The elastic neutron scattering on 3H, being a process free
from Coulomb interaction, is the simplest four-nucleon reaction
to describe theoretically. Unfortunately, due to nuclear safety
regulations, experiments with tritium are scarce. Nevertheless,
some successful measurements were realized in the 1970s. In
particular, very accurate measurement of the total neutron-
tritium cross-section was realized by Phillips et al. [76].

In Figure 3, we compare our calculated results with the ones
of this measurement. There are two important energy regions
for the elastic neutron scattering on 3H: the zero energy region
(S-waves) and the region of P-wave resonances.

At very low energies, the process is dominated by neutron
scattering in S-waves relative to the target. These waves are
governed by the Pauli repulsion between the neutron projectile
and those present in the tritium target. Due to this repulsion,
the scattering process is mostly peripheral, and therefore the
calculated scattering lengths strongly correlate with the size of
the target nucleus and consequently with the predicted tritium
binding energy. Thus, the nuclear interaction models that tend to
underbind the triton overestimate the n-3H cross-section at low
energy. By adjusting the triton binding energy, either by means

of three-nucleon force or by the presence of non-locality in NN
interaction (INOYmodels), the agreement with the experimental
n-3H cross-section significantly improves in the zero-energy
limit. It is worth noticing that some minor differences still
remain between the models, i.e., the predictions of INOY04 or
I-N3LO+3BF(3= 500 MeV) agree with a lower bound of the
zero-energy cross-section, whereas AV18+UIX agrees with an
upper one. These differences could be resolved by comparing
the calculated spin-dependent (a0 and a1) scattering lengths.
Unfortunately, there is quite a large discrepancy between the
measured coherent scattering lengths ac, defined as ac = a0

4 + 3a1
4 ,

and the inferred spin-dependent values. The measurement of the
coherent scattering length ac constrains the values of a1 and a0
to a linear band, while the measurement of the total n-3H cross-
section constrains them in an elliptic one. The spin-dependent
values ai result from the intersection of these two bands, but
their practical determination is not free of ambiguities due to
experimental errors. This is illustrated in Figure 4, together with
the predictions of the nuclear models considered.

The total neutron-triton cross-section peaks at around 3MeV.
This peak results from the interference of four broad negative
parity resonant states present in the 4H nucleus. The accurate
description of the n-3H cross-section in this resonance region
turns out to be a very challenging problem for nuclear interaction
models. Most of these models fail to provide sufficient attraction
for negative parity states (essentially P-waves), providing a very
flat structure. In this context, the role of 3BF is quite essential and
far from trivial. First, by adding a 3BF that reproduces the triton
binding energy, one automatically reduces the contribution of
the partial cross-sections in the positive parity states Jπ = 0+

and 1+. Then, the required increase in negative parity cross-
section should fill the existing gap in the resonance region
and compensate for the reduction from the positive parity
state contribution.

Among the models described in Figure 3, UIX fails to boost
the contribution from the negative parity states in the total cross-
section. Therefore, the net effect is a reduction of the total cross-
section in the resonance region. Of the three NN interaction
models considered, I-N3LO provides the most attraction in the
negative parity states. The three-nucleon interaction model with
a cutoff 3= 500 MeV further improves the agreement between
the calculated and measured cross-sections, describing almost
ideally the experimental data of Phillips et al. [76]. Notice,
however, that the parameterizations of the same 3BF employing
lower cutoff values from Roth et al. [72] are not so successful,
underpredicting the total cross-section. It is also worth noting
that the discrepancy in the resonance region is increased by
reducing the value of the cutoff 3. Very similar consequences
are observed when calculating the binding energies of the P-shell
nuclei [72].

The proton scattering on 3He is a nuclear mirror process to
neutron scattering on 3H. The presence of Coulomb interaction
makes the proton scattering on the 3He cross-section diverge
at small angles, so one is not able to study the cross-section
of this process with the same ease as for the n-3H case.
Nevertheless, experimental differential cross-sections are much
more abundant for the p-3He case since they are easier
to measure.

Frontiers in Physics | www.frontiersin.org 7 February 2020 | Volume 7 | Article 251274

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lazauskas and Carbonell Four- and Five-Nucleon Systems

FIGURE 3 | Elastic neutron-3H scattering cross-sections calculated using different combinations of NN and NNN interaction models. Theoretical results are compared

with the experimental values of Phillips et al. [76].

FIGURE 4 | (Left) Experimentally deduced singlet (a0), triplet (a1), and coherent (ac) n-
3H scattering lengths. Diamonds from Seagrave et al. [77], up-triangles from

Hammerschmied et al. [78], squares from Rauch et al. [79], and stars from Hale et al. [80]. (Right) Comparison of the spin-dependent scattering lengths ai , with some

theoretical predictions. The measurement of the total cross-section [76] constrains the allowed a1(a0) values to the elliptic band region between the doted curves. The

coherent scattering length measurements constrain a1 (a0) to a linear band region given by 4ac = a0 + 3a1. Notice that two coherent scattering length measurements,

the upper band [78] and the lower band [79], are incompatible within their error bars, whereas Hammerschmied et al. [78] is also incompatible with the cross-section

measurement of Phillips et al. [76].

We have displayed in Figure 5 the calculated p-3He scattering
observables for an incident energy of 4.05 MeV. The same
observables for protons of 5.54 MeV are displayed in Figure 6.
Calculated results arrived at by employing Equations (13)–(14)
to take Coulomb into account are compared with the available
experimental data fromMcDonald et al. [81], Alley and Knutson
[82], Fisher et al. [83], and Daniels et al. [84]. The energy
region considered is still marked by the important contribution
of the negative parity 4Li resonances. Notably, due to the
presence of the repulsive Coulomb interaction, these resonances
manifest at slightly higher energies for the p-3He case relative
to the n-3H one. In Figure 5, relevant for 4.05 MeV protons,
the theoretical values corresponding to all the aforementioned
nuclear interaction models are displayed.

By studying the angular differential cross-section, one may
observe quite similar properties as previously outlined for the n-
3H total cross-section at the resonance peak. The I-N3LO NN
interaction model provides the most accurate description of the

data if used in conjunction with a 3BF with a cut-off parameter of
3= 500MeV. Othermodels tend to underestimate the scattering
cross-section, while the net differences are quite small. The most
relevant observable for studying the model dependence remains
the analyzing power Ay0. At the maximum of Ay0, one observes
an up to 30% spread between the different model predictions.
Once again, I-N3LO+3BF(3= 500 MeV) turns to be the most
successful in describing experimental data and sits almost on
top of it. Nevertheless, the deviation relative to the experimental
data is approximately 2% of the absolute cross-section values,
which is comparable to the discrepancy present in the three-
nucleon sector (Ay-puzzle). The analyzing powers are simply
much weaker, in absolute values, in nucleon-deuteron scattering,
and therefore discrepancies seem to be much more substantial.

When comparing the effect of different the 3BFs employed
in conjunction with I-N3LO NN interaction in a similar way as
outlined for the n-3H cross-section case, the description of p-
3He deteriorates when the cutoff 3 is reduced from its original
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FIGURE 5 | Several differential observables calculated for proton scattering on 3He at 4.05 MeV.

value, 500 MeV. This feature does not seem to be related to
the importance of reproducing the tritium beta decay half-life,
as only the Marcucci et al. [71] model accounts for it. The 3BF
model of Gazit et al. [70] provides almost identical results to those
obtained using the 3BF from Marcucci et al. [71], both using
the value 3= 500 MeV. Another quite straightforward answer
would be the importance of maintaining consistency between the
regulators in NN and three-nucleon interaction. Nevertheless,
while the I-N3LO interaction is regulated by employing the same
cutoff value of 3= 500 MeV, the expressions of these regulators
are quite different for NN and 3BF.

In order to consider scattering at even higher energies—for
En &8 MeV neutrons or Ep &7 MeV protons—one should
take the presence of the three- (or/and even four-) particle
breakup channels into account. The description of such processes
is far beyond the reach of the standard techniques based on
imposing proper boundary conditions in configuration space (or
treating singularities in a multidimensional kernel of integral
equations formulated in momentum space). Nevertheless, one
may avoid these complications by employing complex scaling or

complex energy methods, as has been successfully demonstrated
in Carbonell et al. [85]. The scattering in n-3H and p-3He
systems has been accurately described above d+N+N and also
above 4N thresholds in recent work [17, 86, 87]. In particular,
it has been found that description of the analyzing power
improves in these systems once energy is increased. This fact
is clearly demonstrated in Figure 7. The interplay of the 3BF
has not yet been explored in studying four-nucleon scattering
above the three-particle breakup threshold. Nevertheless, some
indications are present that the calculated total elastic and
breakup cross-sections correlate with the predicted binding
energy of the target nucleus, as illustrated in Figure 8. This
feature is attributed to the importance of correctly positioning the
thresholds in describing low-energy scattering cross-sections. In
the vicinity of a threshold, and due to the kinematic form factor,
the breakup cross-section increases with the available kinetic
energy. Conversely, the elastic cross-sections tend to decrease
with energy. For the models reproducing tri-nucleon binding
energies properly, the obtained n-3H and p-3He cross-sections
are successfully described in the intermediate energy region.
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FIGURE 6 | Various differential observables calculated for proton scattering on 3He at 5.54 MeV.

When considering elastic differential cross-sections, some
discrepancies have been found when studying 22.1 MeV neutron
scattering on 3H, in particular at the cross-section minima (see
Figure 7). The theoretical values are sizeably larger than the
measured ones, and furthermore, this discrepancy is the largest
for the models describing tritium binding energy well. On the
other hand, as demonstrated in Deltuva and Fonseca [86], the
calculated cross-sections for 18 MeV neutrons lie in the middle
between the data sets of Seagrave et al. [88] and Debertin
et al. [89]. One might thus expect a lack of reliability for the data
from Seagrave et al. [88]. As this disagreement is only manifested
in the vicinity of the cross-section minima, one is tempted to
attribute the discrepancy to a simple underestimation of the
experimental error-bars. New precise measurements are required
to resolve this issue.

The description of the scattering in the continuum of
the 4He nucleus, involving three experimentally accessible
processes p-3H/n-3He/2H+2H, is the most complicated four-
nucleon problem. Nevertheless, an accurate description of this
system has been achieved by three different groups, successfully
benchmarking their results [15]. The Vilnius-Lisbon group
has studied this system extensively in a broad energy region,
as well as employing different interaction models [29, 30,
90–92]. One may single out two very challenging energy

regions in this system. The first is related to the presence
of a Jπ = 0+ resonant state embedded between the p-
3H and n-3He thresholds (see Figure 1). Small modifications
in the nuclear Hamiltonian affecting the position of this
resonant state have huge effects on the calculated cross-sections
between the two thresholds. As demonstrated in Lazauskas
[93], the majority of the nuclear Hamiltonians fail in this
enterprise. Another challenging case is the description of the
4He continuum just above the n+3He threshold. In this window,
not only the analyzing powers but also elastic n+3He as well
as transfer n +3 He → p +3 H cross-sections are purely
reproduced [29, 92]. This feature is determined by the difficulty
of describing two relatively narrow (Jπ = 0− and Jπ =
2−) resonant states (see Figure 1). One should still explore
whether the 3BF models may provide any improvement in
describing this region. When increasing energy and moving
above the three- and four-nucleon breakup thresholds, in close
similarity with p+3He and n+3H systems, description of the
scattering cross-sections but also the analyzing powers tends to
improve [30, 92].

3.4. Five-Nucleon Systems
As mentioned above, the description of a five-nucleon
system based on the solution of the Faddeev-Yakubovsky
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FIGURE 7 | Calculated n-3 H elastic differential cross-sections (left) and analyzing power Ay (right) for neutrons of laboratory energy 22.1 MeV compared with the

experimental results of Seagrave et al. [88].

FIGURE 8 | Dependence of the calculated n-3H total elastic and inelastic

(breakup) cross-sections on the triton binding energy for different nuclear

models. Calculations have been performed for neutrons with laboratory energy

of 22.1 MeV.

equations represents a considerable technical challenge.
Nevertheless, during the last few years, we have achieved
a converged solution of the elastic neutron scattering on
4He as well as being able to determine the 5H resonance
position in the complex energy plane. In both cases,
the results were based on realistic NN and three-nucleon
interaction models.

Our results on n-4He were in good agreement with some
previous calculations based on NCMC techniques [37]. Ideally,
one should compare the calculated observables directly with
the experimentally available data. However, due to the limited
accuracy of the calculations (of order 5% for the phase shifts)
and the fact that very accurate phase shift analysis has been
carried out on the experimental data for this system, it is
practical to analyze the obtained results by comparing the
phase shifts.

We present in Figure 9 our calculated S- and P-wave
phaseshifts in the energy region up to 8 MeV. One may see

quite a nice description of the scattering observables in the
relative S-wave, which also demonstrates a remarkable model
independence. In close analogy to the n-3H scattering case,
this partial wave is dominated by Pauli repulsion between
the neutron projectile and the ones present within the 4He
target. We would like to note, however, that some model
dependence is observed even in S-waves if one compares the
phase shifts at very low energy and, in particular, the calculated
scattering length. Significant differences are observed between
the different theoretical predictions [95] but also between the
experimentally measured [96–98] as well as adopted [25, 99, 100]
scattering length values. In particular, our calculated values are
in conflict with those obtained using GFMC techniques [32],
where a scattering length a(2S1/2)= 2.4 fm was found, the same
value for AV18 or AV18 supplemented with UIX (or IL2)
3N forces, while our calculations with AV18 give a(2S1/2)=
2.96(5) fm, whereas for AV18+UIX, we get a(2S1/2)= 2.71(7).
We believe that this difference may be attributable to the
lack of accuracy in Nollett et al. [32], as their calculations
are not able to reveal any difference in calculated scattering
length for AV18 and AV18+UIX Hamiltonians. In contrast,
our calculations indicate the presence of a strong correlation
between the calculated scattering length and 4He binding energy,
displayed in Figure 10. Therefore, it should be expected that
AV18 and AV18+UIX models sizeably differing in predicted
4He binding energies should also provide different n-4He
scattering lengths.

Even more problematic is description of the resonant n-
4He P-waves. Realistic NN interaction models fail to provide
sufficient splitting between the quartet and the doublet P-
waves. For the INOY04 model, the situation is even worse:
this model significantly lacks attraction in both P-waves. The
addition of the UIX 3BF to the AV18 model does not improve
description of the n-4He P-wave phaseshifts, as was the case
for the n-3H and p-3He systems. In contrast, the I-N3LO
model, when used in conjunction with the 3BF (3= 500 MeV)
from Marcucci et al. [71], turns out to be quite successful
in describing both P-waves. The phase shifts of the strongly
resonant 3/2P channel are reproduced quite well, with only
a slight lack of attraction, whereas the 1/2P phase shifts are
described ideally. The comparison of the results from different
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FIGURE 9 | Comparison between the theoretical predictions of the n-4He, S- and P-waves, phaseshifts, and the results of a partial wave analysis of the experimental

data by Hale [94]. In the left panel, the results corresponding to different NN interactions are indicated respectively by triangles (I-N3LO), × (AV18), or squares (INOY),

and the dotted curves correspond to R-matrix analysis. In the right panel, our calculated values for the I-N3LO model—with (empty symbols) and without (full symbols)

three-body forces (3BF)—are also compared with the results obtained by NCSMC calculations (solid lines) of Navrátil et al. [37].

FIGURE 10 | Apparent correlation between the calculated 4He binding

energies and n-4He scattering length. Calculated values are compared with

those adapted from the experiment by NIST [100], Atlas n-res [99], and

TUNL [25].

interaction models suggests the presence of strong similarities in
the n-3H and n-4He scattering. There is an apparent correlation
between the positions of P-wave resonant states in 4H and
5He nuclei.

The 5H resonance parameters were first computed
ab-initio in Lazauskas et al. [6] with phenomenological
and realistic NN interactions. We used two independent
methods to locate the resonance positions in the complex
energy plane: a variant of the smooth exterior complex
scaling method, and the analytic continuation on the
coupling constant. The results show remarkable stability
with respect to the different tested interactions and support
recent experimental findings [101, 102]. The resonance
parameters of the Jπ = 2−,0−,1− states in 4H, which dominate
the low-energy n-3H elastic cross-section, have also been
computed and found to be slightly wider than those for 5H

(Ŵ4H ≈ 4 MeV for Ŵ5H ≈ 2.5 MeV), advocating for the
presence of additional attraction of the 4n with respect to
the 3n system. In view of this, any attempt to reproduce the
experimental finding of a 7H narrow state would be of the
highest interest.

4. CONCLUSIONS

We have presented some recent results related to
the solutions of the Faddeev-Yakubovsky equations
in configuration space for nuclei with four or five
nucleons obtained with several modern realistic NN and
NNN interactions.

Two independent methods to include the Coulomb
interaction in the A = 4 scattering states, namely
in the p-3He low-energy elastic cross-section, have
been compared.

We have discussed in detail the n+3H elastic cross-section in
the resonance peak, which constitutes a stumbling block for all
realistic NN and 3BF models, even those that most successfully
describe the binding energy of A= 3, 4 nuclei.

The mirror reaction p+3He was also presented
by computing several observables such as
differential cross-sections and analyzing power at
Ep ≈ 5 MeV.

The first results for the five-nucleon system have been
considered. They concern the n-4He elastic scattering
at low energy and the resonance position of 5H in the
complex energy plane. The n-4H scattering displays
severe discrepancies in terms of scattering length, both
between models and with experimental data. The resonance
parameters of 5H show great stability with respect to the
NN interactions used and are compatible with some of the
experimental analyses.

The general conclusion concerning the nuclear interactions is
that the I-N3LO NN model used in conjunction with 3BF with
a cut-off parameter 3 = 500 MeV provides the most accurate
description of the data.
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The Hyperspherical Harmonics (HH) method is one of the most accurate techniques

to solve the quantum mechanical problem for nuclear systems with a number of

nucleons A ≤ 4. In particular, by applying the Rayleigh-Ritz or Kohn variational principle,

both bound and scattering states can be addressed, using either local or non-local

interactions. Thanks to this versatility, the method can be used to test the two- and

three-nucleon components of the nuclear interaction. In the present review we introduce

the formalism of the HH method, both for bound and scattering states. In particular, we

describe the implementation of themethod to study the A = 3 and 4 scattering problems.

Second, we present a selected choice of results of the last decade, most representative

of the latest achievements. Finally, we conclude with a discussion of what we believe will

be the most significant developments within the HH method for the next 5–10 years.

Keywords: hyperspherical harmonics method, ab initio methods, nuclear interactions, few-nucleon systems, light

nuclei, A = 3, 4 scattering

1. INTRODUCTION

The “standard” picture of a nucleus sees it as a system of A nucleons, protons or neutrons,
interacting among themselves and eventually with external electroweak probes. The interaction
between nucleons, i.e., the nuclear interaction, is the subject of the Research Topic of which this
contribution is part. Using the nucleon as the relevant degree of freedom, the system is described
by the nuclear Hamiltonian, written as

H =
A

∑

i=1

p2i
2mi

+
A

∑

j>i=1

Vij +
A

∑

k>j>i=1

Vijk + · · · , (1)

where the first term is the (non-relativistic) kinetic energy (in the center-of-mass reference
frame), mi being the ith nucleon mass, Vij and Vijk are, respectively, the two- and three-nucleon
interactions, i.e., the interaction between each ij pair or ijk triple. It has been shown in several
studies (for recent ones see references [1, 2]) that even the nuclear systems with medium-large
values of A can be at least qualitatively described including Vij and Vijk only: essentially, it seems
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to be little room [3] for four- or more-nucleon interactions [the
dots of Equation (1)]. Therefore, we will neglect from now on the
contributions beyond three-nucleon interaction.

There exists a large variety of realistic models for Vij and Vijk.
The most important ones are presented in this Research Topic.
These models are very different among themselves, as they can
be local, or minimally non-local and expressed in coordinate
space, or non-local and expressed in momentum space. Some
older models were derived phenomenologically or in a meson-
theoretical approach, as the Argonne v18 [4] or the CDBonn [5]
potentials, but, since the seminal work of Weinberg [6], the
preferred framework to derive the nuclear interaction is chiral
effective field theory. Since the presentation of the different
models is assigned to this Research Topic, here we only mention
that all the models have a common characteristic: the Vij

and Vijk interactions have an intricate operatorial structure. As
a consequence, the solution of the Schrödinger equation for
A > 2 becomes a challenging problem. The methods which
are able to solve the A-body quantum mechanical problem
without approximations, or with approximations which can be
maintained under control, are the so-called ab initio methods1.
They are clearly essential in order to test a given model for
the nuclear interaction against experiment. It is fundamental for
these methods to be sufficiently accurate to capture the small
details introduced by the complexity of the interaction. As an
example, we can quote the case of the triton binding energy. It is
nowadays well-known that the triton binding energy calculated
just retaining Vij in Equation (1) is underestimated by 0.5 − 1
MeV, depending of the considered model. It is straightforward
that the required accuracy of the ab initio method to catch
this disagreement must be better that 500 keV. Nowadays, the
methods for the A = 3 bound systems have reached a much
higher accuracy, of the order of 1 keV, or even better. And
therefore, the presence of Vijk is not anymore under discussion.
To be noted that (i) all models for the two-nucleon interaction
are phase-equivalent, and (ii) each model for Vijk is built in
conjunction with a given model for Vij, and therefore two- and
three-nucleon interactions are linked to each other and cannot
be uniquely defined.

There are several ab initio methods which can solve the A-
body quantum mechanical problem in different regions of the
nuclear chart. A recent review is given in reference [7]. Here we
limit ourselves to mention the methods based on Monte Carlo
techniques, as the variational Monte Carlo (VMC) or the Green’s
function Monte Carlo (GFMC) methods (see reference [8], and
references therein). There are then the methods linked to the
shell model, as the no-core shell model (NCSM) or the realistic
shell model (RSM) (see references [9–11]), respectively. All these
methods are quite powerful to study medium-mass nuclear
bound states, but less accurate, apart from the GFMC andNCSM,
for very light nuclei, as those with A = 3, 4. Furthermore, their
extension to the scattering systems is not so trivial, and, in some
cases, still not at reach.

1The expression “ab initio method” has been quite widely used in the literature,

with a somewhat less strict definition, than the one used here. Here we follow the

definition of reference [7].

Restricting ourselves to the A = 3, 4 nuclear systems, both
bound and scattering states, we have at hand very few accurate
ab initio methods, i.e., the Faddeev (Faddeev-Yakubovsky for
A = 4) equations (FE) technique, solved in coordinate- or in
momentum-space, the method based on the Alt-Grassberger-
Sandhas (AGS) equations solved in momentum space, and the
Hyperspherical Harmonics (HH) method presented here. We
refer the reader to references [12, 13] for the FE method in
coordinate space, to references [14, 15] for the FE method in
momentum space, to references [16, 17] for recent reviews on
the AGS method. Clearly, each method has advantages and
drawbacks. For instance, the FEmethod in momentum space can
be applied to A = 3, 4 bound and scattering states in a wide
energy range. However, the inclusion of the Coulomb interaction
for charged particle scattering states is quite problematic. The FE
method in coordinate space can handle the Coulomb interaction,
but it has not yet been applied to scattering problems at very
low-energy, and it has been applied only recently to study
systems with larger A values [18]. It is though a method with in
principle great possibilities of extension [13]. The AGS method,
although working in momentum space, can handle the Coulomb
interaction and can be applied to a large variety of A = 3, 4
scattering states, in a wide energy range. However, the very low
energy range, that of interest to nuclear astrophysics, i.e., below
about 100 keV, is still not accessible with the AGS method. The
method has also not been applied for A > 4 yet.

The HH method has a long history, summarized in the
introduction of reference [19]. We will concentrate here on the
latest developments, essentially those obtained since 2008, year
of publication of reference [19]. However, to fully appreciate
the major developments of this last decade, it is necessary to
briefly outline the state-of-the-art of the HHmethod at that time.
The HH method in 2008 was extensively used by two groups,
one formed by some of the present authors, and referred to
as the Pisa group, and the other one including, among others,
N. Barnea, W. Leidemann, and G. Orlandini. The latter has
developed over the years the so-called effective interaction HH
method (EIHH), which uses the Suzuki-Lee approach [20–22]
to significantly reduce the number of the basis functions needed
in the expansion. The method has been applied to study the
A ≤ 4 nuclear bound systems in references [23, 24] using
local realistic interactions, and had been pushed to work up to
A = 6 with central potential models [23]. In the last decade, the
EIHH method has been updated in order to work also with the
most recent non-local potential models [25]. Furthermore, the
EIHH method has been extensively used in testing the nuclear
interaction models, using reactions between light nuclei and
electromagnetic probes. For example, a test of the interaction
models has been performed studying the 0+ resonance of 4He
in 4He(e, e′), where a large potential model dependence has been
found [26, 27]. In this review, however, we have decided to leave
out the large body of results for the electromagnetic reactions
on light nuclei, which would deserve a review all by itself (see
reference [28]).

The HH method as developed by the Pisa group existed in
2008 in two flavors: the correlated HH method, including a
pair-correlation function (pair-correlated HH method—PHH)
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or with a Jastrow type factor (correlated HH method—
CHH), and the “pure” HH method. The correlation factor
was introduced to describe correlations induced by the strong
repulsion of the interaction at short range. The correlation factor
describes the particular configuration in which two particles
are close to each other and goes to unity for large pair
relative distances. Therefore the HH expansion has to take
care of reconstructing the wave function outside this range,
making the convergence of the expansion much faster. The
drawbacks of the PHH and CHH methods are (i) the necessity
of performing numerical integrations, which would be instead
analytical without correlation factors, reducing the accuracy of
the method in the A = 4 case; (ii) the not simple extension of
the PHH method to work in momentum space. Therefore, it is
difficult to apply the PHH method with the non-local potentials
mentioned above. This has motivated our group, together with
the continuous increasing of computing power, to return to the
“pure” HHmethod. Up to the year 2008, this had been developed
and applied to study with great accuracy the A = 3, 4 bound
states, with both local potentials, expressed in coordinate space,
or non-local ones, given in momentum-space. In fact, while
the local interactions had been at reach for the HH method
from the very beginning [29], the non-local ones were a recent
achievement at that time [30]. In 2008, the zero-energy A =
3, 4 scattering states were also calculated with both local and
non-local interactions [19]. The higher energy scattering states,
still below the breakup threshold of the target nucleus, had
been studied for both A = 3 and 4 systems only with local
interactions, in a variety of contributions extensively mentioned
in reference [19]. What was still missing in 2008 was the study
of the A = 3, 4 scattering states, still below the target breakup
threshold, with non-local potentials. This has been obtained in
references [31–35] for both A = 3 and 4, and it is in fact
one of the main achievements of the HH method in the last
decade. The HH method, in its PHH version, has been applied,
including the full electromagnetic interaction, to describe elastic
scattering observables in A = 3 above the deuteron breakup
threshold [36] and in wide energy region [37]. Preliminary
studies of the method to treat the breakup channels, as for
instance to the process n + d → n + n + p, can be found
in references [38–40]. The application of the method using the
Hamiltonian defined in Equation (1) is in progress. In progress is
also the further development of the method toward A > 4. This
has been performed within the so-called non-symmetrized HH
method [41] with central potentials, or, as mentioned above, by
the EIHH method. The first steps to use the HH method without
the Suzuki-Lee procedure have been shown in references [42,
43], and intense research activity is currently underway. The
formalism which is presented here is in fact quite general, and
can be applied also to the A = 5, 6 nuclear systems.

Before concluding this section with the outline of this
contribution, we would like to make few remarks: (i) the HH
method is extremely powerful, and its application to systems
up to A ∼ 7, 8 is limited essentially by computing power. (ii)
The accuracy of the HH method has been tested in a number of
benchmark calculations. In particular we quote the benchmark
on the A = 3 [44] and A = 4 [45] bound states, on the nd

and pd scattering phase shifts [46, 47], and, in the last decade,
on the A = 4 scattering states [34, 48]. (iii) Compared with the
other ab initio methods, the HH technique seems to be one of
the best choices to study low-energy scattering states, in order to
obtain accurate predictions for nuclear reactions of astrophysical
interest [49, 50].

The present review is organized as follows: in section 2 we
discuss the HH formalism, both for bound and scattering states.
We will try to keep a somewhat “pedagogical” level, in order
to allow the interested reader to perform his/her own algebraic
steps and eventually reproduce the already existing results. In
section 3 we discuss the most important results obtained within
the HH method since the year 2008. In particular, we will show
that the HH method has reached such a degree of accuracy for
both bound and scattering states, that it has been used in order
to construct an accurate model for the three-nucleon interaction,
with a procedure similar, in principle, to the one used to derive
the nowadays very accurate two-nucleon interaction models.
Finally, in section 4 we will give some concluding remarks and
an outlook.

2. THE HH FORMALISM

We review in this section the HH formalism, focusing in
particular on the three- and four-body systems, both bound
and scattering states. The approach described below can be
used in conjunction with both local and non-local two-nucleon
interactions. At present, the method works with only local three-
nucleon interactions, but its extension to the non-local case
presents no conceptual difficulties.

2.1. Hyperspherical Harmonic Functions
Let us consider a system of A particles with masses m1, . . . , mA

and spatial coordinates r1, . . . , rA, respectively. For separating
the internal and center-of-mass (c.m.) motion, it is convenient
to introduce another set of coordinates made of N = A − 1
internal Jacobi coordinates x1, . . . , xN and the c.m. coordinate X
defined by

X = 1

M

A
∑

i=1

miri (2)

where M = ∑A
i=1mi is the total mass of the system. There are

several definitions of the Jacobi coordinates, but a convenient one
which will be used through this work is the following

xN−j+1 =
√

2mj+1Mj

Mj+1m



rj+1 −
1

Mj

j
∑

i=1

miri



 , (3)

wherem is a reference mass,Mj =
∑j

i=1mi, and j = 1, . . . ,N. In
the case where all the particles have the same mass m, Equation
(3) reduces to

xN−j+1 =
√

2j

j+ 1



rj+1 −
1

j

j
∑

i=1

ri



 . (4)
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From a given choice of the Jacobi vectors, the hyperspherical
coordinates (ρ,�N) can be introduced. The hyperradius ρ is
defined by

ρ =

√

√

√

√

N
∑

i=1

x2i =

√

√

√

√

2

A

A
∑

j>i=1

(ri − rj)2 =

√

√

√

√2

A
∑

i=1

(ri − X)2, (5)

where xi is the modulus of the Jacobi vector xi. The hyperradius
ρ is symmetric with respect to particle exchanges and does not
depend on the particular choice of Jacobi coordinates. The set�N

of hyperangular coordinates,

�N = {x̂1, . . . , x̂N ,ϕ2, . . . ,ϕN}, (6)

is made of the angular parts x̂i = (θi,φi) of the spherical
components of the Jacobi vectors xi, with i = 1, . . .N, and of
the hyperangles ϕj, defined by

cosϕj =
xj

√

x21 + . . .+ x2j

, (7)

where 0 ≤ ϕj ≤ π/2 and j = 2, . . . ,N.
The advantage of using the hyperspherical coordinates can be

appreciated noting that the internal kinetic energy operator of the
A-body system can be decomposed as

T = − h̄2

m

N
∑

i=1

1xi =− h̄2

m

(

∂2

∂ρ2
+ 3N − 1

ρ

∂

∂ρ
− 32

N(�N)

ρ2

)

, (8)

where the operator 32
N(�N) is the so-called grand-angular

momentum operator. Its explicit expression can be found, for
instance, in references [19, 51], but it is not essential for
our purposes. More important are the eigenfunctions of the
grand-angularmomentum32

N(�N), the so-called hyperspherical
harmonics (HH). They can be defined as

Y
KLML
[K] (�N) = [[. . . [Yl1 (x̂1)Yl2 (x̂2)]L2 . . .YlN−1

(x̂N−1)]LN−1

YlN (x̂N)]LML

N
∏

j=2

(j)
P
Kj−1 ,lj
nj

(ϕj). (9)

Here Yli (x̂i) is a spherical harmonic function for i = 1, . . . ,N, L
is the total orbital angular momentum,ML its projection on the z
axis, and

Kj =
j

∑

i=1

(li + 2ni) (10)

with n1 = 0, j = 1, . . . ,N, and KN ≡ K is the so-called grand-
angular momentum. The notation [K] stands for the collection
of all the quantumnumbers [l1, . . . , lN , L2, . . . , LN−1, n2, . . . , nN].

The functions (j)P
Kj−1 ,lj
nj

(ϕj) in Equation (9) are defined by

(j)
P
Kj−1 ,lj
nj

= N
lj ,νj
nj (cosϕj)

lj (sinϕj)
Kj−1P

νj−1 ,lj+1/2
nj (cos 2ϕj), (11)

where P
νj−1 ,lj+1/2
nj (cos 2ϕj) are Jacobi polynomials [52], with

νj = Kj +
3

2
j− 1, (12)

and the normalization factorsN l,ν
n are given by

N
l,ν
n =

√

2νŴ(ν − n)Ŵ(n+ 1)

Ŵ(ν − n− l− 1/2)Ŵ(n+ l+ 3/2)
, (13)

with Ŵ indicating the standard Gamma function [52]. To be
noticed that for A = 3, j = 1, 2, and since n1 = 0, there is
only one index n2 ≡ n. In this case, K = l1 + l2 + 2n. For
the convergence on n or alternatively K, see the discussion in
section 3. With the definition of Equation (9), the HH functions
are eigenvectors of the grand-angular momentum operator
32

N(�N), the square of the total orbital angular momentum L, its
z component Lz , and the parity operator5. Therefore we have

32
N(�N)Y

KLML
[K] (�N) = K(K + 3N − 2)YKLML

[K] (�N), (14)

L2YKLML
[K] (�N) = h̄2L(L+ 1)YKLML

[K] (�N), (15)

LzY
KLML
[K] (�N) = h̄MLY

KLML
[K] (�N), (16)

5Y
KLML
[K] (�N) = (−1)KYKLML

[K] (�N). (17)

We remark here two useful properties of the HH functions. First
of all, the HH functions are orthonormal with respect to the
volume element d�N , i.e.,

∫

d�N [Y
K′L′M′

L
[K′] (�N)]

∗ YKLML
[K] (�N) = δ[K][K′]δKK′δLL′δMLM

′
L
,(18)

with

dx1 · · · dxN = ρ3N−1dρ d�N (19)

and

d�N = sin θ1dθ1dφ1

N
∏

j=2

sin θjdθjdφj (cosϕj)
2 (sinϕj)

3j−4dϕj. (20)

Therefore, the number of HH functions for a given K
increases fast with K, but is always finite. In fact, according
with Equation (10), K = ∑

i=1,N(li + 2ni). Furthermore,
independently of the specific choice of Jacobi coordinates used
to define the hyperspherical ones or of the order of the coupling
of the spherical harmonics in Equation (9), the HH functions
constitute a complete basis.

Secondly, in order to evaluate matrix elements of a given
many-body operator between HH functions, it is often useful
to determine the effect of a particles permutation on an HH
function. Since the grand-angular and the total orbital angular
momenta are fully symmetric, and since the HH functions
constitute a complete basis, the permuted HH functions
Y
KLML
[K] (�

p
N) can be written as linear combinations of unpermuted
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HH functions Y
KLML
[K′] (�N) with same K, L, and ML values.

Therefore, we can write

Y
KLML
[K] (�

p
N) =

∑

[K′]

a
KL,p
[K];[K′]Y

KLML
[K′] (�N). (21)

The transformation coefficients a
KL,p
[K];[K′] do not depend on

the quantum number ML. For A = 3, they are called the
Raynal-Revai coefficients [53]. To be remarked that [K ′] ≡
[l′1, . . . , l

′
N , L

′
2, . . . , L

′
N−1, n

′
2, . . . , n

′
N], but such that K ′ = K. Note

that L is conserved. For A > 3, see references [42, 54].
Let us consider more specifically a system of A nucleons

described within the isospin formalism. The A-nucleon wave
function contains spatial, spin, and isospin parts. We can define

the spin functions χ
SMS
[S] with total spin S and total spin projection

MS and the isospin functions ξ
TMT
[T] with total isospin T and total

isospin projection MT by coupling the individual spin functions
χ1/2,±1/2 or isospin functions ξ1/2,±1/2, respectively, of each
nucleon, as

χ
SMS
[S] = [[. . . [χ1/2(1)χ1/2(2)]S2 . . . χ1/2(N − 1)]SN−1χ1/2(N)]SMS , (22)

ξ
TMT
[T] = [[. . . [ξ1/2(1)ξ1/2(2)]T2 . . . ξ1/2(N − 1)]TN−1ξ1/2(N)]TMT . (23)

So now [S] stands for [S2, . . . , SN−1] and [T] for [T2, . . . ,TN−1].
Including the spin and isospin functions, the HH basis

functions read

Y
KLSJJzTMT
[KST] (�N) = [YKL

[K](�N)χ
S
[S]]JJzξ

TMT
[T] , (24)

where J is the total angular momentum, Jz its projection,
and [KST] stands for [K][S][T]. To be noticed that also the
spin-isospin part of Y

KLSJJzTMT
[KST] (�N) constructed with a given

ordering of the particles, can be rewritten in terms of a different
permutation, using the Wigner 6j coefficients [55].

We conclude by noting that the HH functions can also be
built in momentum space instead of configuration space. They
can be obtained by replacing the hyperspherical coordinates
(ρ,�N) associated with the Jacobi coordinates {xi}i=1,...,N by

the hyperspherical coordinates (Q,�
(q)
N ) associated with the N

Jacobi conjugate momenta {qi}i=1,...,N . The rest of the formalism
remains unchanged. For more details, see references [19, 30, 56].

2.2. The HH Method for A = 3 and 4
We discuss in some detail the method for systems with A =
3, 4 nucleons within the isospin formalism for both bound and
scattering states in sections 2.2.1 and 2.2.2, respectively. The
extension to A > 4 is straightforward, but leads to more
lengthy expressions.

2.2.1. The A = 3 and 4 Bound States
The wave function of an A-body bound state, with A = 3, 4,
having total angular momentum J, Jz and parity π , and third
component of the total isospinMT , can be decomposed as a sum
of Faddeev-like amplitudes as:

9A =
Np
∑

p=1

ψ(x
(p)
1 , · · · , x(p)N ). (25)

Here the sum on p runs up to Np = 3 or 12 even permutations
of the A particles, with A = 3 or 4, respectively, and the

coordinates x
(p)
1 , · · · , x(p)N are the Jacobi coordinates as defined

in Equation (3), but here we show explicitly the dependence on
the permutation p. To be noticed that, increasing the number
of particles, different arrangements of them in sub-clusters allow
for different definitions of the Jacobi coordinates. For example, in
A = 4 two different sets exist corresponding to have a 3+1 or a
2+2 asymptotic configuration. However in the sub-space defined
by the grand-angular momentum K, HH functions defined in
different sets of Jacobi coordinates result to be linearly dependent.
In the following we always refer to the set defined in Equation (3).

The coordinate-space hyperspherical coordinates are given
in Equations (5)–(7), and the hyperangular variables are ϕ2 for
A = 3 and ϕ2,ϕ3 for A = 4.

We rewrite here the HH basis of Equation (24) for the A = 3
and 4 cases. Historically, the angular, spin and isospin quantum
numbers have been collected in the so-called channels α, defined
explicitly by

[α] = [l1α , l2α , Lα , Saα , Sα ,Taα ,Tα]; A = 3 (26)

[α] = [l1α , l2α , l3α , L2α , Lα , Saα , Sbα , Sα ,Taα ,Tbα ,Tα]; A = 4 (27)

so that we can write

Y
K
[α]n2

(�N ) =
[

[Yl1α (x̂1)Yl2α (x̂2)]Lα

[

[χ1/2(1)χ1/2(2)]Saα χ1/2(3)
]

Sα

]

JJz
[

[ξ1/2(1) ξ1/2(2)]Taα ξ1/2(3)
]

TαMT

(2)
P

l1α ,l2α
n2

(ϕ2), (28)

for A = 3, and

Y
K
[α]n2n3

(�N) =
[

[

[Yl1α (x̂1)Yl2α (x̂2)]L2αYl3α (x̂3)
]

Lα

[[

[χ1/2(1)χ1/2(2)]Saα χ1/2(3)
]

Sbα
χ1/2(4)

]

Sα

]

JJz
[[

[ξ1/2(1) ξ1/2(2)]Taα ξ1/2(3)
]

Tbα
ξ1/2(4)

]

TαMT

(2)P l1α ,l2α
n2

(ϕ2)
(3)P2n2+l1α+l2α ,l3α

n3
(ϕ3), (29)

for A = 4. To be noticed that, in order to ensure the
antisymmetry of the wave function, the Faddeev-like amplitudes
have to change sign under exchange of particle 1 and 2. Therefore,
the sum l2α + Saα + Taα for A = 3 and l3α + Saα + Taα for
A = 4 must be odd. Furthermore, l1α + l2α for A = 3 and
l1α + l2α + l3α for A = 4 must be an even or odd number
in correspondence to a positive or negative parity state. Even
with these restrictions, there is an infinite number of channels.
However, the contributions of the channels with higher and
higher values for l1α + l2α for A = 3 and l1α + l2α + l3α for A = 4
should become less and less important, due to the centrifugal
barrier. Therefore, it is found that the number of channels with
a significant contribution is relatively small for bound and low-
energy scattering states. The most important ones for A = 3 and
for A = 4 are listed, respectively, in Tables 1, 2 of reference [19].
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By using Equations (28) and (29), the A-body wave function
9A of Equation (25) can be written in coordinate-space as

9A =
∑

α,n2

uαn2 (ρ)

Np
∑

p=1

Y
K
[α]n2

(�
(p)
2 ), (30)

for A = 3, and

9A =
∑

α,n2 ,n3

uαn2n3 (ρ)

Np
∑

p=1

Y
K
[α]n2n3

(�
(p)
3 ), (31)

for A = 4. The sum over n2 in Equation (30) and n2, n3
in Equation (31) is restricted to independent states, see below.
The hyperradial functions uαn2 (ρ) (uαn2n3 (ρ) for A = 4) are
themselves expanded in terms of known functions. It is common
to use Laguerre polynomials multiplied by an exponential
function, as they have been found to give a nice convergence of
this expansion. Therefore,

uαn2/αn2n3 (ρ) =
NL
∑

m=0

cαn2/αn2n3;m fm(ρ), (32)

where the sum is truncated at NL, and the functions fm(ρ) are
written as

fm(ρ) = γD/2

√

m!

(m+ D− 1)!
L(D−1)
m (γρ) e−γρ/2. (33)

Here D ≡ 3N− 1, L
(D−1)
m (γρ) is a Laguerre polynomial [52], and

γ is a non-linear parameter, to be variationally optimized. The
exponential factor e−γρ/2 ensures that fm(ρ) → 0 for ρ → ∞.
The optimal value of γ depends on the potential model, and it is
typically in the interval 2.5–4.5 fm−1 for local and 4–8 fm−1 for
non-local potentials. Also NL depends on the potential models,
but typically with NL ∼ 20 − 30 a convergence at the 1 keV (10
keV) level for the A = 3 (A = 4) binding energies is achieved.

When working in momentum space, the A-body wave
function 9A is written as in Equations (30) and (31), with
uαn2 (ρ) and uαn2n3 (ρ) replaced with wαn2 (Q) and wαn2n3 (Q), i.e.,
functions of the hypermomentum Q, while the HH functions
are expressed in terms of conjugate Jacobi momenta. The w-
functions are related to the u-functions as

wαn2/αn2n3 (Q) = (−i)K
∫ ∞

0
dρ

ρD−1

(Qρ)D/2−1
JK+ D

2 −1(Qρ) uαn2/αn2n3 (ρ),

(34)
where JK+D

2 −1(Qρ) are Bessel functions of the first kind [19], and

K is again the grand-angular momentum.
At the end, the A-body wave function of Equations (30)–(34)

can be cast in the form

9A =
∑

K,m

cK;m|K,m〉, (35)

where

|K,m〉 ≡ fm(ρ)

Np
∑

p=1

Y
K
[α]n2/[α]n2n3

(�
(p)
N ) (36)

in coordinate-space (a similar expression holds in momentum-
space). The decomposition proposed in Equation (25) ensures
the complete antisymmetrization of the state through the sum
on the permutations as indicated in Equation (36). Indeed,
the hyperangular-spin-isospin basis state |K,m〉 is completely
antisymmetric. However, the sum over the permutations for fixed
values of K produces linear dependent states that have to be
individuated and eliminated from the basis set [42, 54, 57]. This
procedure could be delicate from a numerical point of view as
the number of K increases. In such a case, one needs a robust
orthonormal procedure capable to deal with the presence of
large numerical cancellations. However, if one is successful in
this step, at the end one can work with a basis of independent
antisymmetrical states, whose number is noticeably less than
the degeneracy of the full HH basis. Attempts to use the HH
basis without symmetrization has been recently proposed [41].
The idea is then to use the complete HH basis in which all
symmetries are represented to describe a particular state. The
diagonalization of the Hamiltonian produces eigenvectors with
well-defined permutation properties reflecting the symmetries in
it. Different applications followed this procedure for bosons as
well as for fermions (see references [41, 58–61]). The advantage
of eliminating the orthonormalization of the states has to be
balanced by the fact that in this case one has to work with the
full basis of HH functions, whose degeneracy rapidly increases
with K and the number of particles A.

Once the antisymmetric state |K,m〉 is constructed, what is left
is to obtain the unknown coefficients cK;m of the expansion. In
order to do so, we apply the Rayleigh-Ritz variational principle,
which states that the quantity 〈9A|H − E|9A〉 is stationary with
respect to the variation of any unknown coefficient. Here H is
the nuclear Hamiltonian and E = −B the energy of the state,
which, in the case of a bound state, is negative and opposite to
the binding energy B.

When differentiating respect to cK;m we obtain the
following equation

∑

K′,m′
〈K,m|H|K ′,m′〉cK′;m′ = E

∑

K′,m′
〈K,m|11|K ′,m′〉cK′;m′ , (37)

where the matrix elements of the Hamiltonian H and of the
identity operator 11 can be calculated with standard numerical
techniques (see reference [19] for more details). Equation (37)
represents a generalized eigenvalue-eigenvector problem, which
can be solved with a variety of numerical algorithms.Widely used
within the HH method is the Lanczos algorithm [62], since the
HH basis can become quite large (up to about 10,000 terms for
A = 3 and about one order of magnitude larger for A = 4 are
used in practice).

The results obtained solving Equation (37) for a variety of
nuclear interaction models will be presented in section 3.

2.2.2. The A = 3 and 4 Scattering States
The HHmethod has been also applied to the scattering problem.
In particular, the method can study the elastic N + Y → N + Y
process, where N is a nucleon and Y a bound system (AY +
1 ≡ A = 3, 4), both below and above the Y nucleus breakup
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threshold. The extension of the HH method to the full breakup
problem, i.e., for A = 3 the process n + d → n + n + p, is
currently underway and will not be discussed here.

The wave function 9
LSJJz
NY describing the N + Y scattering

state with incoming orbital angular momentum L, channel spin

ES ≡ E1
2+ESY , parity π = (−1)L, and total angular momentum J, Jz ,

is written as

9
LSJJz
NY = 9

LSJJz
C +9LSJJz

A . (38)

Here we have introduced 9
LSJJz
C , which is the so-called “core”

wave function, describing the system in the region where all the
particles are close to each other and their mutual interaction

is strong, and 9
LSJJz
A , which is the so-called “asymptotic” wave

function, describing the relative motion between nucleon N and
nucleus Y in the asymptotic region, where the N − Y interaction
is negligible or reduces to the Coulomb interaction in the case of

N ≡ p. The core function 9
LSJJz
C has to vanish at large N − Y

distances, and can be expanded in terms of the HH basis as for
the bound state. Therefore, using Equation (35), we can write

9
LSJJz
C =

∑

K,m

cK;m|K,m〉. (39)

The asymptotic wave function 9
LSJJz
A is the solution of the

Schrödinger equation of the relative N + Y motion. It is written
as a linear combination of the following functions

�λLSJJz =
C

√

Np

Np
∑

p=1

[[χ1/2(N) φSY (Y)]S YL(ŷp)]JJzR
λ
L(yp). (40)

Here we have indicated with C a normalization factor [to be
explained below, see Equation (49)]. The sum runs over the Np

even permutations of theA nucleons necessary to antisymmetrize
the function �λLSJJz , χ1/2(N) and φSY (Y) are the nucleon N and
nucleus Y wave functions, respectively, and yp is the relative
distance betweenN and the c.m. of nucleus Y and is proportional
to xN−j+1 of Equation (3). Furthermore, YL(ŷp) is the standard

spherical harmonic function, and the functions RλL(yp) for λ =
R, I are respectively the regular and irregular solutions of the
two-body N + Y Schrödinger equation without the nuclear
interaction. They are explicitly written as [19, 31]

RRL(yp) = 1

(2L+ 1)!!qLCL(η)

FL(η, qyp)

qyp
, (41)

RIL(yp) = (2L+ 1)!!qL+1CL(η)f (b, yp)
GL(η, qyp)

qyp
, (42)

where q is the modulus of the N − Y relative momentum, such
that the total kinetic energy in the c.m. frame is Tc.m. = q2/2µ, µ
being the N − Y reduced mass, η = ZNZYµe

2/q is the Coulomb
parameter, where ZN and ZY are the charge numbers of N and
Y , and FL(η, qyp) and GL(η, qyp) are the regular and irregular
Coulomb functions defined in the standard way [52]. The factor
CL(η) is defined in reference [52] as

CL(η) =
2Le−

πη
2 |Ŵ(L+ 1+ iη)|
Ŵ(2L+ 2)

. (43)

The factor (2L + 1)!!qLCL(η) has been introduced so that the
functions RRL(yp) and R

I
L(yp) have a finite limit for q → 0. Finally,

the function f (b, yp) in Equation (42) is given by

f (b, yp) = [1− e−byp ]2L+1, (44)

so that the divergent behavior of GL(η, qyp) for small values of
yp is cured, and RIL(yp) is well-defined also in this limit. The
trial parameter b is determined by requiring f (b, yp) → 1 for
large values of yp, leaving therefore unchanged the asymptotic
behavior of the scattering wave function. A value of b ∼ 0.25
fm−1 has been found appropriate in all the considered cases.
The non-Coulomb case of Equations (41) and (42) is obtained
if either ZN or ZY = 0, so that the functions FL(η, qyp)/(qyp) and
GL(η, qyp)/(qyp) are replaced by the regular and irregular Riccati-
Bessel functions jL(qyp) and nL(qyp) as defined in reference [52],
and the factor (2L+ 1)!!CL(η) reduces to 1 for η→ 0 [52].

With these definitions,9
LSJJz
A can be cast in the form

9
LSJJz
A =

∑

L′S′

[

δLL′δSS′�
R
L′S′JJz +R

J
LS,L′S′ (q)�

I
L′S′JJz

]

, (45)

where the parametersRJ
LS,L′S′ (q) give the relative weight between

the regular and irregular components of the wave function. These
parameters can be written in terms of the reactance matrix
(K-matrix) elements as [19, 31]

K
J
LS,L′S′ (q) = (2L+ 1)!!(2L′ + 1)!!qL+L′+1CL(η)CL′ (η)R

J
LS,L′S′ (q). (46)

The K-matrix, by definition, is such that its eigenvalues are
tan δLSJ , δLSJ being the phase shifts. The sum over L′ and S′ in
Equation (45) is over all values compatible with a given J and
parity π , and therefore the sum over L′ is limited to include either

even or odd values since (−1)L
′ = π .

Using Equations (39) and (45), the full scattering wave
functions is written as

9
LSJJz
NY =

∑

K,m

cK;m|K,m〉 +
∑

L′S′

[

δLL′δSS′�
R
L′S′JJz

+R
J
LS,L′S′ (q)�

I
L′S′JJz

]

, (47)

where the unknown quantities are the coefficients cK;m and

R
J
LS,L′S′ (q). In order to determine their values, we use the Kohn

variational principle [63], which states that the functional

[RJ
LS,L′S′ (q)] = R

J
LS,L′S′ (q)−

〈

9
L′S′JJz
NY |H − E|9LSJJz

NY

〉

, (48)

has to be stationary with respect to variations of the trial

parameters cK;m and R
J
LS,L′S′ (q) in 9

LSJJz
NY . Here E is the total

energy of the system, and the normalization coefficients C of the
asymptotic functions�λLSJJz in Equation (40) are chosen so that

〈�R
LSJJz

|H − E|�I
LSJJz

〉 − 〈�I
LSJJz

|H − E|�R
LSJJz

〉 = 1. (49)
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The variation of the diagonal functionals of Equation (48) with
respect to the linear parameters cK;m leads to a system of linear
inhomogeneous equations,

∑

K′,m′
〈K,m|H − E|K ′,m′〉cλK′;m′ = −D

λ,LSJJz
K,m , (50)

where the two terms Dλ corresponding to λ ≡ R, I are defined as

D
λ,LSJJz
K,m = 〈K,m|H − E|�λLSJJz 〉. (51)

Therefore, two sets of the coefficients cλK;m are obtained,
depending on λ ≡ R, I, and consequently, we can introduce two
core functions, defined as

9
LSJJz ,λ
C =

∑

K,m

cλK;m|K,m〉. (52)

Thematrix elementsRJ
LS,L′S′ (q) are obtained varying the diagonal

functionals of Equation (48) with respect to them. This leads to
the following set of algebraic equations

∑

L′′S′′
R

J
LS,L′′S′′ (q)XL′S′ ,L′′S′′ = YLS,L′S′ , (53)

with the coefficients X and Y defined as

XLS,L′S′ = 〈�I
LSJJz

+9LSJJz ,I
C |H − E|�I

L′S′JJz 〉,
YLS,L′S′ = −〈�R

LSJJz
+9LSJJz ,R

C |H − E|�I
L′S′JJz 〉. (54)

The solution of Equation (53) provides a first-order estimate
of the matrix elements R

J
LS,L′S′ (q). A second-order estimate

of RJ
LS,L′S′ (q), and consequently of KJ

LS,L′S′ (q), is given by the

quantities [RJ
LS,L′S′ (q)], obtained by substituting in Equation (48)

the first order results of Equations (50) and (53). Such second-
order calculation provides then a symmetric K-matrix. This
condition is not imposed a priori, and therefore it is a useful test
of the numerical accuracy reached by the method.

The Kohn variational principle as explained so far is
particularly useful in the case of q = 0 (zero-energy scattering).
For q = 0 the scattering can occur only in the L = 0 channel, and
the observables of interest are the scattering lengths. Within the
present approach, they can be easily obtained from the relation

(2J+1)aNY = − lim
q→0

R
J
0J,0J(q), (55)

from which

9
0JJJz
A =

[

�R
0JJJz

− (2J+1)aNY�
I
0JJJz

]

. (56)

An alternative version of the Kohn variational principle is the
so-called complex Kohn variational principle for the S-matrix,
quite convenient when q 6= 0 and especially above the Y nucleus
breakup threshold, as explained in reference [64]. In this case, the
Kohn variational principle of Equation (48) becomes

[SJ
LS,L′S′ (q)] = S

J
LS,L′S′ (q)+ i〈9+,L′S′JJz

NY |H − E|9+,LSJJz
NY 〉, (57)

where

9
+,LSJJz
NY = 9

LSJJz
C +9+,LSJJz

A , (58)

9
LSJJz
C being expanded as in Equation (39) and

9
+,LSJJz
A = [ i�R

LSJJz
−�I

LSJJz
]

+
∑

L′S′
S
J
LS,L′S′ (q)[ i�

R
L′S′JJz +�

I
L′S′JJz ]. (59)

The functions�λLSJJz have been given in Equation (40). Note that,
with the above definition, the reactance K-matrix elements can
be related to the S-matrix elements as

K
J
LS,L′S′ (q) = (−i)[SJ

LS,L′S′ (q)− δLL′δSS′ ]
[SJ

LS,L′S′ (q)+ δLL′δSS′ ]−1. (60)

The differentiation of the complex Kohn variational principle of
Equation (57) leads to a set of equations for cK;m and S

J
LS,L′S′ (q)

similar to those given in Equations (50) and (53), where now λ
stands for λ = +,−.

We conclude this section with the following remarks: (i) the
calculation of the matrix elements between the core functions
9

LSJJz
C can be performed with the HH expansion either in

coordinate- or in momentum-space, depending on what is more
convenient. Therefore, regarding this part, we can apply the
method with any potential model, both local or non-local. (ii)
Some difficulties arise with the calculations of the potential
matrix elements which involve �λLSJJz , i.e., 〈K,m|V|�λLSJJz 〉
present in Equation (51), and 〈�λ′L′S′JJz + 9

L′S′JJZ ,λ′
C |V|�λLSJJz 〉 of

Equation (54), with λ, λ′ = R, I. In particular, we note that,
being �λLSJJz given in coordinate-space, which is particularly
suitable when the Coulomb interaction is considered, as for p −
d scattering, the non-local potential expressed in momentum-
space is Fourier transformed to work in coordinate-space. The
consequent integration on the momentum transfer are easily
performed for the recent chiral and Vlow−k potential models,
but not for the non-local meson-theoretic CDBonn potential
model, which has a high-momentum tail. Therefore, the CDBonn
potential model has not been used in the study of the scattering
processes presented here. We further refer to reference [31] for
all technical details. (iii) The three-nucleon interaction models
which at the moment have been implemented with the HH
method are only the local ones, like the Urbana IX potential
(UIX) of reference [65] and the N2LO model of reference [66].
The models used so far, besides being local, have a well-defined
operatorial structure. In this case, the projection procedure
as used for the two-nucleon interaction is not needed and
the approach follows well-established footsteps, as explained in
references [67, 68].

3. SELECTED RESULTS

We present in this section selected results obtained with the HH
method described above. The method has been applied widely
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since many years, and therefore a selection is mandatory. We
have followed these criteria: (i) we focus on the results obtained
after 2008, year of the publication of the review of reference [19]
on the same method. (ii) We restrict ourselves to the potential
models, mostly discussed in the Research Topic of which this
contribution is part. They are the most widely used models.
(iii) We concentrate on the results obtained for the A = 3, 4
elastic scattering observables, but we present briefly also the
corresponding bound state results.

The aim of this section is two-fold: first of all we wish to show
the effectiveness of the HH method for few-nucleon systems;
secondly, we want to emphasize that the HH method, as well as
any ab initiomethod, is an essential tool for testing and eventually
improving nuclear interaction models.

All the results presented here are obtained at convergence,
i.e., the HH expansion and the expansion on the Laguerre
polynomials [see Equations (32) and (33)] has been pushed
so that an accuracy of 1 keV (10 keV) is reached for the
A = 3 (A = 4) binding energies, and the numerical accuracy
on the scattering lengths is of the order of 0.001 fm. For a
discussion on the convergence of the expansion see, for instance,
references [30, 31].

The potentials which will appear in the following subsections
include both two- and three-nucleon interactions. They are
the phenomenological two-nucleon interaction Argonne v18
(AV18) [4], augmented by the three-nucleon Urbana IX (UIX)
model [65], the meson-theoretic CDBonn potential [5] (CDB),
together with the three-nucleon Tucson-Melbourne [69, 70]
(TM) model, and the Vlow−k potential [71], obtained from the
AV18 with 3 = 2.2 fm−1, so that the triton binding energy
is reproduced. We consider in addition also chiral potentials,
in particular the two-nucleon interaction models of the Idaho
group of reference [72], obtained at next-to-next-to-next-to-
leading order (N3LO), and here labeled with N3LO-I, and the
more recent models derived by the same group in reference [73],
here labeled according to the chiral order, i.e., from leading
order (LO) up to next-to-next-to-next-to-next-to leading order
(N4LO). All these two-nucleon models have been augmented
with a (local) three-nucleon interaction derived up to N2LO as
in reference [66]. The momentum-cutoff value is set equal to
3 = 500 MeV, unless differently specified. Note that the low-
energy constants (LECs) cD and cE are those of reference [66]
when the N2LO three-nucleon interaction is used in conjunction
with the N3LO-I two-nucleon potential, while the LECs are
those of reference [74] when the N2LO three-nucleon interaction
is used in conjunction with the N2LO, N3LO, and N4LO
two-nucleon interactions of reference [73] (no three-nucleon
interaction is present at lower chiral order). To be remarked
that the LECs cD and cE, and more generally the parameters
entering the three-nucleon interaction model, depend on which
two-nucleon interaction is used, as well as on which set of
observables is used for their determination. This is why, for
instance, the N2LO three-nucleon interaction in conjunction
with the N2LO two-nucleon interaction has different values for
the LECs compared to those present in the same three-nucleon
interaction considered together with the N3LO or N4LO two-
nucleon interaction. Finally, we will present results obtained also

with the minimally non-local chiral potentials of the Norfolk
group, as derived in reference [75] for the two-nucleon, and in
references [1, 76] for the three-nucleon interaction. The two-
nucleon models are labeled NVIa, NVIIa, NVIb, and NVIIb
depending on the cutoff value and the maximum laboratory
energy of the considered NN database. When the three-nucleon
interaction are included, we will refer to NV2+3/Ia, NV2+3/IIa,
and so on, corresponding to the fitting procedure of reference [1],
and NV2+3/Ia*, NV2+3/IIa*, and so on, corresponding to the
fitting procedure of reference [76]. We discuss in more details
these fitting procedures below, and we refer the reader to
the original references, or to the contributions present in this
Research Topic. To be noticed that when the HH method is

TABLE 1 | The binding energies in MeV for 3H, 3He, and 4He, calculated with the

HH technique using different Hamiltonian models.

Interaction 3H 3He 4He

AV18 7.624 6.925 24.21

AV18/UIX 8.479 7.750 28.46

CDB 7.998 7.263 26.13

CDB/TM 8.474 7.720 29.00

N3LO-I 7.854 7.128 25.38

N3LO-I/N2LO 8.474 7.733 28.36

LO 11.091 10.409 40.09

NLO 8.307 7.597 27.55

N2LO 8.206 7.460 27.23

N3LO 8.092 7.343 26.68

N4LO 8.080 7.337 26.58

N2LO/N2LO 8.474 7.729 27.92

N3LO/N2LO 8.477 7.728 27.97

N4LO/N2LO 8.477 7.728 28.15

NVIa 7.818 7.090 25.15

NVIIa 7.949 7.213 25.80

NVIb 7.599 6.885 23.96

NVIIb 7.866 7.133 25.28

NV2+3/Ia 8.475 7.735 28.33

NV2+3/IIa 8.475 7.730 28.16

NV2+3/Ib 8.475 7.737 28.30

NV2+3/IIb 8.475 7.727 28.15

NV2+3/Ia* 8.477 7.727 28.30

NV2+3/IIa* 8.474 7.725 28.18

NV2+3/Ib* 8.469 7.724 28.21

NV2+3/IIb* 8.474 7.724 28.11

Experiment 8.475 7.725 28.30

The underlined values are used in the LECs fitting procedure. In the last row, we show

the 3H (3He) experimental binding energy of 8.482 MeV (7.718 MeV), lowered (increased)

by 7 keV in order to take into account the n − p mass difference. See text for more

details. All the results presented here are in very good agreement with the values reported

in the literature. The experimental binding energies are taken from reference [78]. The

experimental uncertainty is well below the 1 keV level, and therefore it is not quoted in

the table.
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used to study the bound states, the local AV18, AV18/UIX,
NV, and NV2+3 potentials have been all augmented by the full
electromagnetic interaction, which includes corrections up to α2

(α is the fine-structure constant) [77]. On the other hand, the
non-local CDB, CDB/TM, and all the non-local chiral potentials
retain only the point-Coulomb interaction. The point-Coulomb
interaction, and not the full electromagnetic one, is also used
when studying the scattering states presented below.

3.1. A = 3, 4 Bound States
The results for the trinucleon and 4He binding energies,
obtained using all the above mentioned potentials, are given
in Table 1. To be noticed that in many cases, the experimental
trinucleon binding energy is used for the LECs fitting procedure
performed applying the HH method. When this occurs, the
corresponding HH results is underlined in the table. The results
not underlined are obtained using the “original” two- and three-
nucleon interactions, whose parameters are usually fitted to
the triton binding energy and other observables, applying ab
initio methods different than the HH method. The HH results
are therefore not necessarily in perfect agreement with the
experimental data.

We briefly outline the fitting procedure for the LECs cD
and cE in order to better understand the results, and we refer
to references [1, 76, 79] for more details. The 3H and 3He
ground state wave functions are calculated using a given two-
and three-nucleon potential, and the corresponding LECs cD and
cE are determined by fitting the A = 3 experimental binding
energies, corrected for a small contribution (+7 keV in 3H
and −7 keV in 3He), due to the n − p mass difference [44],
since in the present HH method this effect is neglected. This
procedure generates two trajectories, one for 3H and one for
3He, in the {cD, cE} plane, so that each point of the trajectory
corresponds to the correct binding energy. The two trajectories

TABLE 2 | n− d and p− d doublet and quartet scattering lengths in fm calculated

with the HH technique using different Hamiltonian models.

Interaction 2and
4and

2apd
4apd

AV18 1.275 6.325 1.185 13.588

AV18/UIX 0.610 6.323 -0.035 13.588

Vlow−k 0.572 6.321 -0.001 13.571

N3LO-I 1.099 6.342 0.876 13.646

N3LO-I/N2LO 0.675 6.342 0.072 13.647

NVIa 1.119 6.326 0.959 13.596

NVIb 1.307 6.327 1.294 13.597

NV2+3/Ia* 0.638 6.326 0.070 13.596

NV2+3/Ib* 0.650 6.327 0.070 13.597

Experiment 0.645±0.003± 0.007 6.35±0.02 −0.13± 0.04 14.7± 2.3

The experimental value for 2and is from reference [82], that for 4and is from reference [83],

while those for 2apd and
4apd are from reference [84].

are typically extremely close to each other and the average
can be safely considered, since the points of the average
trajectory typically lead to A = 3 binding energies within
10 keV of the experimental values. A second observable is
needed in the fitting procedure. In reference [1] the n − d
doublet scattering length 2and has been used, which leads in
the {cD, cE} plane to another trajectory, which is very close
to the one corresponding to the 3H binding energy, but not
exactly overlapping. This is a well-known fact, that the 3H
binding energy and 2and are correlated observables. However, it
is possible to find an intersection point of the two trajectories,
which allows to determine the LECs. This procedure has been
used for the NV2+3/Ia, NV2+3/Ib, NV2+3/IIa, and NV2+3/IIb
potential models. The corresponding {cD, cE} values, as given in
Table 1 of reference [1], are {3.666,−1.638}, {−2.061,−0.982},
{1.278,−1.029}, {−4.480,−0.412}, respectively. Alternatively we
can choose as the second observable the Gamow-Teller matrix
element of tritium β-decay, to take advantage of the fact that
the LEC cD enters also in the two-nucleon axial current operator
at N2LO [76, 79–81]. This second procedure has been used for

FIGURE 1 | The vector analyzing powers Ay and iT11 for p− d elastic

scattering at center-of-mass energy Ec.m. = 2 MeV, using models in the

AV18/TM class (cyan bands), AV18/UIX (violet bands), and AV18/N2LO (red

bands). The predictions of the original AV18/UIX model (solid lines) and the

experimental points from reference [86] are also shown.
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the N2LO/N2LO, N3LO/N2LO, and N4LO/N2LO potentials of
reference [74], and the NV2+3/Ia*, NV2+3/Ib*, NV2+3/IIa*, and
NV2+3/IIb* potential models of reference [76]. In this last case,
we report the corresponding {cD, cE} values for completeness,
which are {−0.635,−0.090}, {−4.710, 0.550}, {−0.610,−0.350},
{−5.250, 0.050}, respectively.

We can now proceed with some comments regarding the
binding energies results of Table 1. (i) The large variety of models
for the nuclear interaction which the HH method can handle
is an indication of how strong and reliable this method has
become. Furthermore, we should mention that the theoretical
uncertainty is of 1 keV (10 keV) for the A = 3 (4He) binding
energies. The HH method is therefore extremely accurate.
Furthermore, all the HH results are in very good agreement
with the values reported in the literature, when available. (ii)
In order to reproduce the experimental binding energies the
inclusion of three-nucleon force is essential. In all cases, the
triton binding energy is well-reproduced, within few keV. On
the other hand, the 4He binding energies can differ from the
experimental value of even up to 700 keV (in the CDB/TM
case). (iii) In the case of the NV2+3 potential models, when the
observables used to fit the LECs are the triton binding energy
and 2and, we notice a systematic overestimation of the 3He
binding energy. (iv) All the results for the A = 3 (A = 4)
binding energies obtained with any model for the two- and
three-nucleon interaction are within 10 (400) keV from the
experimental values. Therefore we can conclude that any of the
constructed model is essentially able to reproduce these very
light nuclei.

3.2. N − d Scattering
One of the remarkable features of the HH method resides in
its capability of dealing with local as well as with non-local
potentials, formulated in either coordinate or momentum space,
not only for the bound states, as we have seen above, but also
for N − d scattering observables. This has been demonstrated in
reference [31], in which the local AV18 and the non-local chiral
N3LO-I potential models were used to calculate the N − d elastic
scattering observables below the deuteron breakup threshold.
Here we present results with a subset of all the potential models
mentioned above, and in particular with the AV18, AV18/UIX,
the N3LO-I, N3LO-I/N2LO, and some of the NV and NV2+3

models. A further class of nuclear interactions that has been
tested using the HH method is represented by the so-called
Vlow−k potential obtained from the AV18 with 3 = 2.2 fm−1, so
chosen to reproduce the triton binding energy when the complete
electromagnetic interaction is used [71]. We do not report here
detailed investigations on the convergence of the HH expansion,
but we can mentioned that this convergence is faster for the non-
local potentials as compared to the local ones, due to the much
softer behavior at small distances. For instance, for N − d elastic
scattering in the channel Jπ = 1/2+, the HH basis can be of the
order of 12000 (7000) elements with the NV (N3LO-I) potential
to get convergence.

We first consider the converged results for the n − d and
p − d doublet and quartet scattering lengths, which are given
in Table 2, together with the very precise experimental result

TABLE 4 | χ2/datum of the two-parameter fit to p− d elastic scattering data at

Ec.m. = 2 MeV, obtained neglecting in Equation (61) all the subleading operators

except the leading contact term proportional to the LEC E0, and the tensor Sij and

spin-orbit (L · S)ij operators, proportional to the LECs E5 and E7, considered on top

of the AV18/UIX potential model.

3 (MeV) 200 300 400 500

χ2/datum 2.0 2.0 2.1 2.1

e0 −0.074 −0.037 0.053 0.451

e5 −0.212 −0.248 −0.403 −0.799

e7 1.104 1.195 1.686 2.598

〈AV18〉 (MeV) −7.353 −7.373 −7.394 −7.343

〈UIX〉 (MeV) −1.118 −1.095 −1.058 −1.031

〈E0〉 (MeV) −0.057 −0.069 0.125 0.841

〈E5Sij〉 (MeV) −0.032 −0.182 −0.609 −1.553

〈E7(L · S)ij〉 (MeV) 0.079 0.237 0.454 0.605

2and (fm) 0.611 0.618 0.626 0.638

4and (fm) 6.32 6.32 6.32 6.32

The LECs e0, e5, e7 are defined in terms of E0,E5,E7 as E0 = e0/(F
4
π3), Ei = ei (F

4
π3

3 ),

i = 5, 7, Fπ = 92.4 MeV being the pion decay constant, so that e0 ∼ ei ∼ O(1) if natural.

Also shown are the mean values in the triton state of the one- plus two-body Hamiltonian

(labeled as 〈AV18〉), of the UIX three-body potential (labeled as 〈UIX〉), and of individual

contributions from the short-distance three-body potential. The calculated values of 2and

and 4and are also given.

TABLE 3 | χ2/datum of the p− d elastic scattering observables at center-of-mass energies Ec.m. = 0.666, 1.33, 1.66 and 2.0 MeV, calculated with the N3LO-I or AV18

two-nucleon only, and the N3LO-I/N2LO or AV18/UIX two- and three-nucleon Hamiltonian models.

0.666 MeV 1.33 MeV 1.66 MeV 2.0 MeV

Ay iT11 T20 T21 T22 Ay Ay iT11 T20 T21 T22 Ay iT11 T20 T21 T22

N 7 8 24 24 24 38 44 50 50 50 50 38 51 51 51 51

AV18 283.3 113.4 6.9 4.7 2.8 186.0 267.6 121.3 1.9 3.2 6.6 237.1 148.8 3.7 5.1 12.5

AV18/UIX 205.2 67.0 3.2 3.5 1.1 112.4 264.7 110.1 4.2 7.2 2.1 202.4 115.0 6.4 14.3 2.2

N3LO-I 197.7 68.7 4.0 2.6 1.5 108.4 227.9 92.6 1.0 2.2 2.7 186.0 108.3 1.9 2.8 4.4

N3LO-I/N2LO 139.9 49.5 2.7 2.5 0.9 70.0 159.4 84.3 2.1 4.0 2.8 114.0 85.8 3.6 8.3 1.6

The different number N of experimental data is also indicated. The data are from references [89, 90] at Ec.m. = 0.666 MeV, and from reference [86] at Ec.m. = 1.33, 1.66, and 2.0 MeV.
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from reference [82] for 2and, and the older experimental results
from reference [83] for 4and. Though no experimental data
are available for 2apd and 4apd, the results of the energy-
dependent phase-shift analysis of reference [84], using very
low p − d data, is reported. All the results are obtained
using the pure Coulomb electromagnetic interaction. When
the full electromagnetic interaction is used, 4and remains
practically unchanged, while 2and becomes smaller. For the
NVIa and NVIb potentials, for instance, 2and = 1.103
fm and 1.293 fm, respectively, with the full electromagnetic
interaction. As it is clear from inspection of Table 2, while
4and is very little model-dependent and in good agreement
with experiment, the same is not true for 2and. In particular,
the inclusion of a three-nucleon force appears necessary to
bring the results closer to the experimental datum. However,

not every model agrees with the experiment. The disagreement
is more pronounced for the Vlow−k interaction, showing that
this observable cannot be simply reproduced by increasing
the attraction of the two-nucleon interaction, as is done in
this case by choosing the right value for 3 to describe
the triton; instead, a subtle balance between attraction and
repulsion in the three-nucleon system has to be reached. Indeed,
being the zero-energy n − d scattering state orthogonal to
the triton, the associated wave function presents a node in
the relative distance, whose precise position, which is related
to the scattering length, depends on the interplay between
attraction and repulsion. The results of the p − d phase-
shift analysis given in reference [84] are a first tentative to
determine the p − d scattering lengths from p − d data. Very
few experimental data exist for center-of-mass energies below

FIGURE 2 | Curves obtained including only the tensor and spin-orbit subleading contact operator on the top of the AV18/UIX interaction, fitted to a set of cross

section and polarization observables in p− d elastic scattering at 2 MeV center-of-mass energy [86], for 3 = 200− 500 MeV (red bands), are compared to the purely

two-body AV18 interaction (dashed black lines) and to the AV18/UIX two- and three-nucleon interaction (dashed-dotted blue lines).
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500 keV, introducing large uncertainties in the quartet case.
In the case of the doublet scattering length, difficulties arise
from the particular pole structure of the doublet p − d effective
range expansion close to threshold (see, for example, Figure 1 of
reference [84]).

With the purpose of investigating the capability of some
widely used models of three-nucleon interaction to reproduce
2and, a sensitivity study was conducted in reference [85]
taking the AV18 as the reference two-nucleon interaction.
Three different models of the three-nucleon interactions were
considered: the UIX, the TM and the chiral N2LO of
reference [66]. Their parameters were adjusted, constraining
them to reproduce simultaneously 2and and the triton binding
energy, and the resulting value for the 4He binding energy was
calculated. For the UIX model, a reasonable description of these
three observables was possible, at the cost of a sizable increase of

the repulsive term, as compared to the original parameterization.
A similar conclusion held for the TM model, where a repulsive
short-range term was found to be necessary. Finally, for the
N2LO three-nucleon interaction, the relative importance of
the parameters involving the P-wave pion rescattering had
to be changed. This is not surprising, due to the mismatch
between the physics underlying the adopted models for two-
and three-nucleon interactions. Also in this case, a repulsive
short-range interaction was preferred. Then, a set of polarization
observables on elastic p − d scattering were computed using the
AV18 augmented by the modified versions of the three-nucleon
interactions models as described above. These led to three
classes of interaction models. As an interesting result, all models
within a given class led to very similar predictions, but for
some observables, namely the proton Ay and the deuteron iT11.
These predictions were different from class to class, and all in

FIGURE 3 | Predictions obtained with the three-nucleon interaction models discussed in the text with 3 = 200− 500 MeV (red bands) for a set of cross section and

polarization p− d observables at 0.666 MeV center-of-mass energy, as compared to the purely two-body AV18 interaction (dashed black lines), to the AV18/UIX two-

and three-nucleon interaction (dashed-dotted blue lines), and to the experimental data of reference [90].
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disagreement with the data. This is shown in Figure 1. Since
the three classes of models mostly differ in their short-distance
behavior, it follows that an improvement in this component
of the three-nucleon interaction is needed to explain the data.
Indeed, no sensible improvement was obtained as compared to
the original AV18/UIX model.

In order to be more quantitative, as to the accuracy of the
existing models of two- and three-nucleon interaction, we show
inTable 2 the χ2/datum for all p−d elastic scattering observables

FIGURE 4 | n−3H total cross sections calculated with the AV18 (dashed black

line), AV18/UIX (solid black line), N3LO-I (dashed blue line), and the

N3LO-I/N2LO (solid red line) potential models as function of the incident

neutron laboratory energy En. The experimental data are from reference [91].

at different center-of-mass energies, as obtained with the AV18
and N3LO-I two-body interactions, without or with the inclusion
of the UIX and N2LO three-nucleon interaction models [31].
It is clear that all considered models fail to give a satisfactory
description of all polarization observables, especially for Ay and
iT11. From the previous discussion, there are strong hints that
the improvement should come from a more accurate modeling
of the short distance structure of the three-nucleon interaction.
Therefore, in reference [87] all the possible short-distance
(contact) structures for the three-nucleon interaction have been
classified up to the subleading order of a systematic low-energy
expansion. It has been found that the short-distance component
of the three-nucleon interaction can be parameterized by ten
LECs, denoted by Ei with i = 1, ..., 10. The corresponding
three-nucleon potential in configuration space can be written as

V3Ncont =
∑

i6=j6=k

E0Z0(rij;3)Z0(rik;3)

+(E1 + E2τ i · τ j + E3σ i · σ j + E4τ i · τ jσ i · σ j)
[

Z′′
0 (rij;3)+ 2

Z′
0(rij;3)
rij

]

Z0(rik;3)

+(E5 + E6τ i · τ j)Sij

[

Z′′
0 (rij;3)−

Z′
0(rij;3)
rij

]

Z0(rik;3)

+(E7 + E8τ i · τ k)(L · S)ij
Z′
0(rij;3)
rij

Z0(rik;3)

+(E9 + E10τ j · τ k)σ j · r̂ijσ k · r̂ikZ′
0(rij;3)Z′

0(rik;3), (61)

where σ i (τ i) are the Pauli spin (isospin) matrices of particle i, rij
is the relative distance between particles i and j, and Sij and (L·S)ij
are, respectively, the tensor and spin-orbit operators. The profile
functions Z0(r;3) are written as

Z0(r;3) =
∫

dk

(2π)3
eik·rF(k2;3), (62)

FIGURE 5 | n−3H differential cross sections calculated with the N3LO-I (dashed blue lines) and the N3LO-I/N2LO (solid red lines) interaction models for three different

incident neutron energies. The experimental data are from reference [92].
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with F(k2;3) a suitable cutoff function which suppresses the
momentum transfers k above a given short-distance cutoff 3. In
Equation (61), the basis of operators has been chosen so that most
terms in the potential can be viewed as an ordinary interaction
of particles ij with a further dependence on the coordinate of
the third particle k. In reference [88], elastic p − d scattering
data at Ec.m. = 2 MeV center-of-mass energy have been used
to fit the Ei LECs, when the subleading three-nucleon interaction
given in Equation (61) is considered in addition to the AV18/UIX
interaction. Also 2and and 4and and the triton binding energy
have been included in the fit.

The results of reference [88] can be summarized as follows.
First of all, we noticed that the operators which play a leading
role in reducing the large χ2/datum of Table 3 are the spin-orbit
and tensor interactions, which depend on the LECs E5 and E7.
We present in Table 4 the results of a fit where only the terms
proportional to E0, E5, and E7 are kept. The LEC E0 is used to
fix the triton binding energy. Then the experimental data for the
doublet and quartet n−d scattering lengths of references [82, 83],
and those of several p−d scattering observables at 2 MeV center-
of-mass energy of reference [86] are used for the determinations
of the LECs. As it is shown in Table 4, the χ2/datum is drastically
reduced to ∼ 2 for the short distance cutoff 3 of Equation (62)
between 200 and 500 MeV. More sophisticated fits, including all
the involved LECs, lead to only slightly better χ2/datum ∼ 1.6.
In Figure 2 we show the corresponding fitted curves compared
to the AV18 and AV18/UIX predictions. It is clear that a very
accurate description can be obtained with only the spin-orbit and
tensor subleading operators. We also note that the values of the
LECs e0, e5, e7, defined in terms of E0,E5,E7 as E0 = e0/(F

4
π3),

Ei = ei(F
4
π3

3), i = 5, 7, Fπ = 92.4 MeV being the pion decay
constant, are of order 1 as expected.

With the interaction fitted using the Ec.m. = 2 MeV data of
reference [86], we can perform a study at lower energies, where
experimental data exist. As a representative example we show in
Figure 3 the results corresponding to Ec.m. = 0.666 MeV, from
which we can observe that the adopted interaction captures quite
nicely the energy dependence of the data. In reference [88], a
fit including all the subleading operators of Equation (61) leads
to predictions in even better agreement with the data. However,
in order to obtain further improvements, a global fit at multiple
energies should be performed.

3.3. p−
3He and n−

3H Scattering
The study of N − d scattering to constrain the three-nucleon
force has the limitation of being mostly restricted to the isospin
T = 1/2 channel. From this perspective, A = 4 systems open
new possibilities, besides being of direct relevance for the role
they play in many reactions of astrophysical and cosmological
interest. The HHmethod has been used in this context to address
first of all the n−3H [32] and p−3He [33, 35] elastic scattering
at low energies. The HH method applied to these systems has
been benchmarked in reference [34] with the only two other
ab initio methods which can study low-energy scattering states,
with full inclusion of the Coulomb interaction. They are the
AGS equations solved in momentum space (see for a review
references [16, 17] and references therein), and the FE method
in configuration space (see reference [13]. This topic is also

covered in the present Research Topic). All these methods differ
by <1%, which is smaller than the experimental uncertainties of
the available data. The agreement found using softer potentials of
the Vlow−k-type is even better.

The n−3H elastic scattering total cross section is shown in
Figure 4. From inspection of the figure, we can see a sizable
dependence on the three-nucleon interaction, both in the very
low-energy region and in the peak region (for neutron laboratory
energy En ∼ 3.5 MeV). Indeed, at very low energies, it is crucial
to have a correct description of the triton binding energy in
order to reproduce the data, whereas in the peak region there is
more model dependence. The HH calculations of Figure 4 have
been performed using the non-local chiral N3LO-I two-nucleon
potential, also supplemented by the chiral N2LO three-nucleon
interaction of reference [66] with the LECs fixed to reproduce the
A = 3, 4 binding energies. This leads to a remarkable agreement
with the available experimental data in the low-energy region.
The chiral N3LO-I model seems to perform better than the AV18
one also in the peak region.

In Figure 5 we show the n−3H differential cross section
compared to the experimental data at three different neutron
laboratory energies. As it is clear from inspection of the figure,
the N3LO-I/N2LO results are in nice agreement with the data.
A further study of convergence with respect to chiral orders
and of cutoff dependence would be highly desirable, and it is
currently underway.

Much more accurate data are available for p−3He elastic
scattering, whose polarization observables have also been
accurately measured [93]. Similarly to the p − d case, there is
a strong discrepancy between theory and experiment for the
proton analyzing power Ay. In reference [35] the HHmethod has
been applied with the N3LO-I/N2LO chiral potential model, in
this case obtained with two different values of the momentum
cutoff 3 = 500, 600 MeV [94], and two different procedures
to fix the LECs entering the three-nucleon interaction, i.e.,
either reproducing the A = 3, 4 binding energies [66], or
reproducing the triton binding energy and Gamow-Teller matrix
element in tritium β-decay [79]. We show in Figure 6 the
corresponding results for proton laboratory energy of 5.54 MeV,
compared to experimental data. The two bands reflect the cutoff
dependence and the model dependence introduced by the LECs
determinations. As it is clear, the Ay discrepancy is largely
reduced down to the 8–10% level. Note that these asymmetries
are 10 times larger in the A = 4 systems than for p − d and
n − d. The remaining discrepancy, although it appears small, is
of the order of 0.05, the size of Ay for p− d. Therefore, we expect
that the subleading components of the three-nucleon interactions
discussed in section 3.2 could give a correction of the necessary
order of magnitude to solve the remaining discrepancy. Work is
in progress in this direction.

3.4. p−
3H and n−

3He Scattering
The treatment of p−3H and n−3He scattering, even below
the d + d threshold, is more challenging due to the coupling
between these two channels and to the presence of both isospin
0 and 1 states. Also in this case, recently, in reference [48],
a benchmark calculation has been performed with the HH,
AGS and FE methods, using the N3LO-I interaction. Good
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FIGURE 6 | p−3He differential cross section, analyzing powers and various spin correlation coefficients at proton laboratory energy Ep = 5.54 MeV, calculated with

only the two-nucleon N3LO-I (light cyan band) or with two- and three-nucleon interaction N3LO-I/N2LO (darker blue band). The experimental data are from

references [95–97]. See text for more details.

agreement among the three methods has been found, with
discrepancies smaller than the uncertainties in the experimental
data. In references [98, 99], we have studied with the HH
method the effect of the inclusion of the N2LO three-nucleon
interaction, with the LECs fixed from the triton binding
energy and the Gamow-Teller matrix element in the tritium
β-decay [79]. We show in Figure 7 the p−3H differential
cross section, for which, only at very low energies, below
the opening of the n−3He channel, some sizable effects are
visible. Otherwise, the three-nucleon interaction contributions
are found very small. The p−3H analyzing power at three
values of the laboratory beam energy are shown in Figure 8.
Also for this observable, the three-nucleon interaction effect is

found too small to improve the agreement with the available
experimental data.

We conclude showing in Figure 9 the HH results for the
differential cross section and proton analyzing power of the
charge-exchange reaction p+3H → n+3He at three different
proton laboratory energies, compared with the experimental
data. By inspection of the figure, we can see that also in this
case the effects of the three-nucleon interaction are quite small,
and sometimes go in the wrong direction as compared to the
experimental data, as for the analyzing power Ay0. It is important
to notice that this observable is mostly sensitive to the two-
nucleon interaction. Therefore, it could be used for a more
stringent test of the two-nucleon force.
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FIGURE 7 | p−3H differential cross section at several values of the proton laboratory beam energy Ep, calculated with the N3LO-I (dashed blue lines) and with the

N3LO-I/N2LO (solid red lines) interactions. The experimental data are from references [100–105].

FIGURE 8 | p−3H proton analyzing power at three values of the proton laboratory beam energy Ep calculated with the N3LO-I (dashed blue lines) and with the

N3LO-I/N2LO (solid red lines) interactions. The experimental data are from reference [105].

4. CONCLUSIONS AND OUTLOOK

In this work we have presented a review of the HH method,
focusing on themost significant achievements after the year 2008,

when the previous review on the HHmethod [19] was published.
We have also included a presentation of the HH formalism with
some detail, in order to make the reader appreciate the main
concepts of the method and to provide him/her the instruments
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FIGURE 9 | p+3H → n+3He differential cross section and proton analyzing power at three values of the proton laboratory beam energy Ep calculated with the N3LO-I

(dashed blue lines) and with the N3LO-I/N2LO (solid red lines) interactions. The experimental data are from references [106–110].

needed to implement the method by him/herself. We have then
focused on the latest results obtained within the HH method.
We can summarize the situation as follows: the HH method can
solve the three- and four-body bound-state problem with great
accuracy and with essentially any (local and non-local) model for
the two-nucleon interaction available in the literature. The three-
nucleon interaction models used so far are however only local.
The A = 3, 4 scattering states have been studied with several
local and non-local potentials below the target nucleus breakup
threshold. Using local potentials, also the elastic channel above
the breakup threshold have been investigated. The HH method
has then a wide range of applications: it has been used not only
to test the models for the two- and three-nucleon interactions,
but also to determine the parameters entering in the subleading
three-nucleon contact interaction, derived in reference [87]. This
has allowed one to construct a model for the three-nucleon
interaction able to solve, at least within the (preliminary) hybrid
framework of reference [88], some long-standing puzzles, as the
Ay-puzzle. Furthermore, the HHmethod has been widely used in
the study of nuclear reactions of astrophysical interest, as well as
the electroweak structure of light nuclei [50, 111, 112].

The HH method has still a lot of potentialities, which will
be explored in the near future. First of all, we will implement
the method to the case of a non-local three-nucleon interaction.
This is widely requested, in order to have consistency in the
two- and three-nucleon cutoff functions which appear in the

models derived within chiral effective field theory, for instance
in references [72, 73]. Once the LECs cD and cE will be
determined using the non-local three-nucleon interaction with
the same procedure outlined in section 3, they will be used
in fully consistent studies of other systems, as nuclear and
neutron matter.

Secondly, we can mention only preliminary applications of
the HH method to describe breakup reactions in A = 3 [40].
Work on the implementation of the HH method to the breakup
channels in A = 3, 4 is currently underway. It does not require
significant modifications of the method, but still it has not been
performed yet. Once done, the three- and four-body nuclear
systems will be completely covered by the method.

As mentioned above, the extension of the method to the A =
5, 6 nuclear systems has been investigated and the first results
obtained using a Vlow−k interaction will appear soon and are
indeed very promising. This is amajor step for theHHmethod, as
it will allow us to tackle a large number of interesting subjects, and
especially a large number of nuclear reactions of astrophysical
interest. From a first investigation, the further extension of the
method to even larger values of A, i.e., A = 7, 8, seems feasible.

Finally, in order to have access to higher mass nuclear systems,
both bound and scattering states, we could take advantage of the
strong clusterization present in some of them, as, for instance,
in 9Be, which can be studied as a α − α − n system. In order
to do so, the HH method must then be extended to the case of
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non-equal mass systems. And this, in turn, will allow to study
also more exotic systems, as hypernuclei, where one nucleon is
replaced with an hyperon. Works along this line have started in
reference [61], and are conducted also by other groups [113, 114].

In conclusion, the HH method has quite a “glorious” history,
and has fulfilled its service in the continuous test of the nuclear
interaction models. However, this service is not yet at an end, and
we expect to see the HH method playing a protagonist role also
in the next years.
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In this review, we concentrate on recent efforts of our group aimed at investigating the

nuclear equation of state of symmetric nuclear matter (equal concentrations of protons

and neutrons) and the one of pure neutron matter. Although idealized, these systems are

suitable “laboratories" to probe nuclear forces in the many-body system. The energy

per particle as a function of density can reveal rich information about the nature of

nuclear forces in the medium and how they impact observable properties. For instance,

the pressure in neutron-rich matter has been found to have profound impact on very

diverse systems, ranging from the thickness of the neutron skin in a heavy nucleus to the

properties of compact stars. The current trend in nuclear physics is to build few-nucleon

forces according to the prescription of chiral effective field theory. We open by reviewing

in depth how we develop equations of state based on state-of-the-art chiral interactions.

We then highlight some applications in neutron-rich nuclei and neutron stars.

Keywords: nuclear forces, chiral effective field theory, symmetry energy, neutron skin thickness, neutron stars

1. INTRODUCTION

Understanding the interaction of hadrons in nuclei is a most fundamental problem in nuclear
physics. Our present knowledge of the nuclear force in vacuum is still incomplete, although decades
of efforts have been devoted to this problem. The study of nuclear forces in many-body systems is,
of course, much more challenging because additional aspects are involved beyond those which can
be constrained by free-space nucleon-nucleon (NN) scattering. Predictive power with respect to
the properties of nuclei is the true test for a successful microscopic theory.

The system known as “nuclear matter" is a suitable, although idealized, theoretical “test bench”
for many-body theories. Nuclear matter is defined as an infinite system of nucleons interacting
via strong forces in the absence of electromagnetic interactions. Nuclear matter’s “signature” is
its energy per particle as a function of density and potentially additional “variables” (for instance,
isospin polarization or temperature). The nuclear matter equation of state (EoS) is precisely the
energy per particle as a function of density and other appropriate quantities. Naturally, the idealized
nature of this system, which implies translational invariance, simplifies theoretical calculations.
Furthermore, within the “local density approximation” (LDA), one can utilize the EoS directly in
calculations of actual nuclei. (We recall that LDA amounts to the assumption that the properties at
a point with density ρ in a nucleus are the same as they would be in infinite nuclear matter at the
same density).

When the densities of protons and neutrons are equal, we speak of isospin-symmetric nuclear
matter. The latter has been studied since the earlier works by Brueckner and others [1–4], who
introduced what became known as the Brueckner-Hartree-Fock (BHF) theory. The BHF theory
seeks to find the ground state energy of a many-body system [1–6] as a linked-cluster perturbation
expansion. The main point was the realization that regrouping the linked-cluster diagrams by the
number of hole lines allowed the series to converge.
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Other approaches to the development of the EoS were also
pursued, one of them being the variational method [7, 8]. The
latter yielded predictions in close agreement with those from
Brueckner theory if realistic NN potentials were adopted [9].

The BHF theory, or “conventional approach,” was followed
by the Dirac-Brueckner-Hartree-Fock (DBHF) approach [10–
13], developed during the 1980’s. The novel, and most striking
feature of the DBHF theory was its ability to describe the
saturation properties (both energy and density) of nuclear matter,
a fundamental aspect which reflects the saturating nature of the
nuclear force. The DBHF method contains important relativistic
features through the description of the nuclear mean field in
terms of a scalar and a vector components, strong and of opposite
sign. In their combination, they provide an explanation for the
binding of nucleons and the spin-orbit splitting in nuclear states.
The reader is referred to Muether et al. [14] for a relatively recent
review of the DBHF method and a variety of applications to both
nuclear matter and nuclei.

Irrespective of the many-body framework, a quantitative NN
potential must be part of its input. Presently, forces based on
nuclear chiral effective field theory (χEFT) [15–18] are the most
popular. Chiral effective field theory respects the symmetries of
quantum chromodynamics (QCD) but, at the same time, makes
use of the degrees of freedom typical of low-energy nuclear
physics, nucleons, and pions. Furthermore, it provides a clear
systematics to determine the few- and many-body diagrams
which must be present at each order of the perturbation.

Deriving nuclear forces directly from QCD is problematic.
For starters, each nucleon is, itself, a complicated many-body
system consisting of quarks, quark-antiquark pairs, and gluons,
thus rendering the two-nucleon problem an even more complex
many-body problem. Second, the interaction among quarks,
which is due to the exchange of gluons, is very strong at the
low energies involved in nuclear physics processes. For this
reason, it is difficult to find converging perturbative solutions.
Therefore, the first attempts to incorporate QCD in nuclear
physics consisted mostly of QCD-inspired quark models. On the
positive side, these models sought to explain nucleon structure
(which consists of three quarks) and nucleon-nucleon processes
(involving six-quarks) in an internally consistent manner. Some
global features of the two-nucleon force, like the “hard core,”
could be explained by these quark models. On the other hand,
quark-based approaches are, in fact, models rather than a theory.
From an entirely different point of view, one may confront the
six-quark problem by putting this system on a four dimensional
discrete lattice representing three dimensions in space and one in
time. This method is known as lattice QCD. Although progress in
lattice QCD goes on, such calculations are computationally very
demanding and thus the approach is not (currently) feasible as a
standard tool to make predictions of nuclear properties.

A new era for the theory of nuclear forces started when
Steven Weinberg worked out an effective field theory (EFT)
for low-energy QCD [16, 19]. He argued that all one needs
to do is to write the most general Lagrangian consistent with
all the properties of low-energy QCD, as this action would
render the theory equivalent to low-energy QCD. A crucially
important property for this discussion is SU(2)R × SU(2)L

symmetry, or chiral symmetry, which is “spontaneously” broken,
as briefly reviewed next. Massless spin- 12 fermions have their
spin and momentum either parallel to each other (“right-
handed”) or anti-parallel (“left-handed”), a property which is
referred to as having definite chirality. Since nucleons are made
of “up” and “down” quarks, which have nearly zero mass,
chiral symmetry holds approximately. As a consequence of
this symmetry, one might expect to find in nature mesons
of the same mass but opposite parity. However, such parity
“doublets” are not observed, which amounts to a “spontaneous”
breaking of the symmetry. According to a theorem first proven
by Goldstone, the spontaneous symmetry breaking implies the
existence of a pseudoscalar meson, the pion. Thus, the pion
plays an outstanding role in generating the nuclear force. Pions
and nucleons interact weakly at low energies as compared to
the gluons and quarks. Therefore, calculations of pion-nucleon
processes pose no problems. Moreover, in EFT one makes use of
expansions in powers of momentum over an appropriate “scale,”
which is the “chiral symmetry breaking scale,” close to 1 GeV. In
short, this is the essence chiral perturbation theory or ChPT, and
the reason why it allows to calculate the various contributions
to the potential systematically order by order, where each order
refers to a particular power of the momentum. Furthermore,
χEFT can generate not only the force between two nucleons, but
also many-nucleon forces in a consistent manner [17]. The χEFT
approach continues to gain popularity and is applied with great
success in contemporary theoretical nuclear physics [18, 20–22].

However, it is important to keep in mind that a low-
momentum expansion has a limited range of applicability. For
that reason, interactions derived from chiral perturbation theory
are not meant for applications to high energy processes or in
dense matter, where high Fermi momenta are involved, as is the
case in the interior of compact stars. In such situations, strategies
to extend chiral predictions must be adopted, and we will discuss
some instances where extensions become necessary.

Mean-field models, both relativistic and non-relativistic (see,
for instance [23, 24]) are still a popular, although non-
microscopic alternative to methods based on the in-medium
reaction matrix. They continue to be utilized frequently in the
development of the EoS and related predictions.

Describing the properties of (dense) systems from elementary
forces and including all required contributions is an extremely
challenging program, whose completion is not in sight. However,
χEFT provides a path on which to proceed systematically
toward that goal. We share the point of view that χEFT is
currently the most fundamental approach due to its strong
link with QCD. At the same time, the degrees of freedom
of the theory make calculations of low-energy observables a
manageable task.

Our main objective in this article is to provide a self-
contained review of the recent work with isospin symmetric
and asymmetric matter done systematically by our group and
based mainly on chiral interactions, comparing with empirical
constraints when available. We will place particular emphasis on
neutron-rich matter, which is currently the focus of numerous
empirical investigations both in terrestrial laboratories (especially
through experiments aimed at constraining the thickness of
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neutron skins), or through astrophysical observations of neutron
stars and related phenomena.

This article is organized as follows. After these opening
remarks, in section 2 we describe in detail the calculations of the
EoS, starting with the two-nucleon forces (2NF) and the three-
nucleon forces (3NF) which we apply (see sections 2.2.1 and
2.2.2, respectively). In section 2.3, we review and discuss some
of our results of the energy per particle in both symmetric and
neutron matter [25]. In section 3, we focus specifically on the
symmetry energy and the chief role its density dependence plays
for neutron-rich systems. We then develop a discussion on the
EoS in neutron stars (see section 4).We conclude with a summary
and an outlook in section 5.

2. NUCLEAR MATTER AND THE EQUATION
OF STATE

2.1. The G-Matrix and the Energy per
Particle
In the previous section, we mentioned the linked-cluster
perturbation series for the energy of a many-body system [1–6].
To facilitate convergence (otherwise problematic in view of
the strong repulsive core of the NN force), the linked-cluster
expansion for the energy per particle in nuclear matter [3] is
written in terms of the reaction matrix or “G-matrix,” which itself
is solution of the Bethe-Goldstone equation. Schematically, the
Bethe-Goldstone equation can be written as

G(E0) = V + V
Q

E− E0
G(E0) , (1)

where V is the NN potential, Q is the Pauli operator, and E0
the starting energy of the two nucleons. The second term on the
RHS of Equation (1) represents the infinite ladder sum which
builds short-range correlations (SRC) into the wave function. The
correlated (ψ) and the uncorrelated (φ) wave functions satisfy

Gφ = Vψ , (2)

from which one can write

ψ = φ + V
Q

E− E0
Gφ . (3)

At large distances, the correlated wave function is expected
to approach the uncorrelated one (a behavior known as the
“healing” property), whereas the two can be very different at
short range. Hence, the difference between the correlated and the
uncorrelated wave functions, or “defect function” f = ψ−φ, can
be associated to the degree of SRC.

Usually, its momentum-dependent Bessel transform is
considered instead, so as to bring out the dependence on
specific partial waves. For each angular momentum state [5], we
then have

f JSTLL′ (k) =
k Q̄(kF , k, P

c.m.
avg )G

JST
LL′ (P

c.m.
avg , k, k0)

E0 − E
, (4)

where the angle-averaging has been applied to the Pauli operator,
Q̄. Equation (4) is related to the probability of exciting two
nucleons having relative momentum k0 and relative orbital
angular momentum L to a state with relative momentum k
and relative orbital angular momentum L′. The integral of the
probability amplitude squared is known as the “wound integral”
and defined, for each partial wave at some density ρ, as

κ
JST
LL′ = ρ

∫ ∞

0
|f JSTLL′ (k)|2dk . (5)

Thus, both f and κ contain information on correlations present
in the wave function and the G-matrix. The degree of SRC
has been traditionally associated with the “strength” of a given
potential, as indicated, for instance, by the deuteron D-state
probability [26].

The topic of SRC deserves a review by itself and will not
be covered here. However, we have taken the opportunity
to recall how one may obtain, through Equations (4–5),

some information about SRC in nuclear matter. The latter is
complementary to studies of SRC in nuclei, which are currently

the object of intense experimental investigations through high
momentum-transfer (inclusive or exclusive) electron scattering

measurements. (For a review on this topic, see [27] and
references therein). Two-nucleon dynamics at short distances
is mostly determined by the presence of short-range repulsion
in the two-nucleon force, which is one of the reasons why

a mean-field picture of the nucleus has strong limitations.
Short-range correlations, particularly two-nucleon correlations,

are therefore fundamentally important and open intriguing
questions concerning momentum distributions in nuclei as a tool
to probe the off-shell nature of the NN potential. For a recent
work of our group on SRC in A=2,3 nuclei see [28].

Back to Equation (1), we solve it self-consistently to obtain
theG-matrix together with the single-particle potential, which we
define for (anti-symmetrized) states below and above the Fermi
level according to the so-called “continuous choice”:

U(p) = Re
∑

q≤kF

< pq|G(E0)|pq− qp > . (6)

The starting energy is written as

E0 = e(q)+ e(p) (7)

in terms of on-shell single-particle energies

e(p) = T(p)+ U(p) , (8)

where T is the kinetic energy. The average energy per particle in
nuclear matter is then obtained from

E/A = 1

A

∑

p≤kF

T(p)+ 1

2A

∑

p≤kF

U(p) . (9)

Equation (9) as a function of density is the nuclear EoS. Next,
we will address how the NN potential V in Equation (1)
is constructed.
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2.2. The Equation of State From Chiral
Forces
It is our philosophy that constructing the EoS microscopically
from state-of-the-art few-body interactions is the right way
to gain insight into effective nuclear forces in the medium.
High-precision meson-theoretic interactions [29–31] are
often utilized in contemporary calculations of nuclear matter,
structure, and reactions. However, in the meson-theoretic
approach it is difficult, if not impossible, to maintain a strong
connection between the 3NF, or more generally the A-nucleon
forces with A > 2, and the associated 2NF [32]. On the
other hand, χEFT [18, 20, 22] provides a systematic way to
construct nuclear many-body forces consistently [17] with
two-body forces, as well as to assess theoretical uncertainties
through a systematic expansion controlled by a counting
scheme [15]. Furthermore, and perhaps most importantly,
χEFT maintains consistency with the symmetries and
symmetry breaking pattern of the fundamental theory of strong
interactions, QCD.

Because of the strengths described above, χEFT has become
the authoritative approach for developing nuclear forces.
Applications include few-nucleon reactions [33–38], nuclear
structure, especially of light- and medium-mass nuclei [39–
55], cold infinite matter [22, 53, 56–64], infinite matter at
finite temperature [65, 66], and various aspects of nuclear
dynamics [67–73].

In regard to the connection between nuclear matter
properties and finite nuclei, it is interesting to point out
a persistent problem encountered in structure calculations
and related to the bulk properties of medium-mass nuclei.
Typically charge radii are underpredicted [74] while the
opposite is true for binding energies [75]. Including the
desired properties of medium-mass nuclei directly into the
fitting protocol for the low-energy constants (LECs) which
parametrize short-distance physics in chiral nuclear forces has
resulted in improved predictions [76]. However, for a truly
microscopic approach the 2NF should be constrained by two-
nucleon data and the 3NF by three-nucleon data, without
additional adjustments. Applications to A > 3 systems
would then be actual predictions, although they may carry
substantial uncertainties.

Two recent studies [54, 55] provide indications for how the
overbinding problem may be overcome. In these studies, a rather
soft nucleon-nucleon (NN) potential (due to renormalization
group evolution) along with 3NFs fitted to the binding energy
of 3H and the charge radius of 4He were employed to
calculate the ground-state properties of closed shell nuclei
from 4He to the light Tin isotopes [54, 55]. Predictions of
the ground-state energies were accurate, whereas the radii
were somewhat underpredicted, although still in fairly good
agreement with experiment. These features can be linked
to the good nuclear matter saturation properties of the
employed 2NF + 3NF combination [57]. In the above example,
the 2NF was soft and alone would lead to substantial
overbinding in nuclear matter, whereas the addition of a
repulsive 3NF contribution leads to a much better description
of the nuclear matter saturation point [57]. As we mentioned

earlier, the first quantitative explanation of nuclear matter
saturation was achieved in this way within the framework
of Dirac-Brueckner-Hartree-Fock theory [12, 14, 77–79]. As
an alternative, one could begin with a relatively repulsive
2NF and then add an attractive, density-dependent 3NF
contribution. An example of such combination is provided by
the Argonne v18 (AV18) 2NF [31] together with the Urbana
IX 3NF [80]. However, in this way satisfactory predictions for
both the nuclear matter saturation energy and density cannot
be obtained [81] and the binding energies of medium-mass
nuclei are seriously underpredicted [82]. A similar scenario
presents itself when the AV18 2NF is used in combination
with the Illinois-7 3NF [82, 83]. Efforts to treat the 3NF
microscopically were reported in Zuo et al. [84] and Li et al.
[85]. In Li et al. [85], in particular, a 3NF including the
1, Roper, and nucleon-antinucleon excitations was proposed,
based on the Bonn [86] and the Nijmegen [30] one-boson-
exchange potentials.

The predictions reviewed in this work are based on the high-
quality soft chiral NN potentials from leading order to fifth order
of the chiral expansion constructed in Entem et al. [87]. More
details are provided below.

2.2.1. Two-Nucleon Forces
The NN potentials used in this review go over five orders in
the χEFT series, from leading order (LO) to fifth order (N4LO).
This set of interactions is more internally consistent as compared
to earlier ones [88, 89], in that the same power counting and
regularization schemes are used for each order.

Furthermore, the long-range contributions are fixed by the
πN LECs provided by the recent analysis of Hoferichter et al.
[90, 91], which provided very accurate determinations. The errors
in those πN LECs are small enough to be safely ignored in the
process of uncertainty quantification. We also recall that, at the
fifth (and highest) order, the NN data below pion production
threshold are reproduced with the precision of a χ2/datum equal
to 1.15.

Prior to iterating the potential in the Lippmann-Schwinger
equation, one must remove high-momentum components,
in line with the low-momentum expansion concept of
chiral perturbation theory. For the interactions we use, this
step is carried out through the application of a non-local
regulator function:

f (p′, p) = exp[−(p′/3)2n − (p/3)2n] , (10)

where p′ ≡ |Ep ′| and p ≡ |Ep | are the final and initial nucleon
momenta in their center-of-mass system, respectively. We will
consider only values of the cutoff parameter 3 smaller than
or equal to 500 MeV, which have been found to have good
perturbative properties. The soft nature of the potentials has been
confirmed by the Weinberg eigenvalue analysis of Hoppe et al.
[92] and in the context of the perturbative calculations of infinite
matter of Drischler et al. [93].

2.2.2. Three-Nucleon Forces
Three-nucleon forces contribute for the first time at the third
order of the chiral expansion (N2LO), where they contain three
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FIGURE 1 | The 3NF at N2LO with (A) the 2PE, (B) the 1PE, and (C) the

contact terms.

parts [33]: the two-pion-exchange (2PE) term, which is of
long-range nature, the medium-range one-pion exchange (1PE)
contribution, and a short-range contact term. These diagrams
are shown in Figure 1. We apply these 3NFs in the form of
the density-dependent effective two-nucleon interactions [94,
95], which can be expressed in terms of the well-known non-
relativistic two-body nuclear force operators and thus easily
incorporated in the usual NN partial wave formalism and
subsequently in the computation of the EoS via the particle-
particle ladder approximation. We recall that the strategy of
including the 3NF as an effective density dependent 2NF was first
proposed in Baldo et al. [96] within the BHF theory.

The effective density-dependent two-nucleon interactions can
be regrouped into six topologies involving one loop. Three
of them originate from the 2PE graph of the chiral 3NF
(Figure 1A), and depend on the LECs c1,3,4, which already appear
in the 2PE part of the NN force. Two one-loop topologies
are derived from the 1PE diagram (Figure 1B), and contain
the LEC cD. Last, we have the one-loop topology related
to the 3NF contact diagram (Figure 1C), associated with the
LECs cE. Note that, in pure neutron matter, the contributions
proportional to the LECs c4, cD, and cE vanish [56]. In recent
nuclear matter calculations [63, 93], progress has been made
toward including N3LO three-body interactions in the two-
body normal-ordering approximation as well as including the
residual three-body normal-ordered force. Our group is in the
process of including effective density-dependent 3NF at N3LO
as from Kaiser et al. [97, 98]. We have preliminary evidence
that the contributions from the short-range terms [97] may be
negligibly small.

The LECs cD and cE which we use are determined via the
three-nucleon system. They are constrained to reproduce the
A = 3 binding energies and the Gamow-Teller matrix element
of tritium β-decay through the procedure described in Gardestig
and Phillips [99], Gazit et al. [100], and Marcucci et al. [101]. The
regulator function applied to the 3NF is

f (q) = exp[(−q/3)4] , (11)

as in Navrátil [102], with q = |Ep ′ − Ep | the momentum transfer.
Note that this choice makes the 3NF local in coordinate space,
which, in turn, facilitates the construction of the A = 3 wave
functions [103].

The complete 3NF at orders higher than the third (N2LO)
is very challenging, both in its development and applications,
and, therefore, it is frequently excluded from nuclear structure
studies. Note, though, that good progress is being made toward

TABLE 1 | Values of the LECs c1,3,4, cD, and cE for different orders of the 2NF in

the χEFT expansion, and the 3NF at N2LO, and different values of the

momentum-space cutoff 3.

3 (MeV) n c1 c3 c4 cD cE

N2LO 450 2 −0.74 −3.61 2.44 0.935 (0.215) 0.12 (0.04)

500 2 −0.74 −3.61 2.44 0.495 (0.195) −0.07 (0.04)

N3LO 450 2 −1.07 −5.32 3.56 0.675 (0.205) 0.31 (0.05)

500 2 −1.07 −5.32 3.56 −0.945 (0.215) −0.68 (0.04)

N4LO 450 2 −1.10 −5.54 4.17 1.245 (0.225) 0.28 (0.05)

500 2 −1.10 −5.54 4.17 −0.670 (0.230) −0.83 (0.03)

The LECs c1,3,4 are given in units of GeV−1, while cD and cE are dimensionless. The

numbers in parentheses indicate the error arising from the fitting procedure. In addition,

we also show the value for the exponent n that appears in the regulator function of

Equation (10).

TABLE 2 | Same as Table 1, but including the 2PE 3NF at N3LO and N4LO.

3 (MeV) n c1 c3 c4 cD cE

N2LO 450 2 −0.74 −3.61 2.44 0.935 (0.215) 0.12 (0.04)

500 2 −0.74 −3.61 2.44 0.495 (0.195) −0.07 (0.04)

N3LO 450 2 −1.20 −4.43 2.67 0.670 (0.210) 0.41 (0.05)

500 2 −1.20 −4.43 2.67 −0.750 (0.210) −0.41 (0.04)

N4LO 450 2 −0.73 −3.38 1.69 0.560 (0.220) 0.46 (0.05)

500 2 −0.73 −3.38 1.69 −0.745 (0.225) −0.15 (0.04)

That is, at each order, the 2PE term of the 3NF is included summing up all contributions

up to that order. (The N2LO numbers are the same as in Table 1).

the inclusion of the subleading 3NF at N3LO [63, 93, 97, 98,
104, 105]. However, in Krebs et al. [106] it was shown that the
2PE 3NF has nearly the same analytical structure at the third
(N2LO), fourth (N3LO), and fifth (N4LO) orders. Thus, one can
parametrize the sum of all the three orders of 3NF contributions
in terms of a set of effective LECs. Therefore, at least for this very
important component of the 3NF, complete calculations up to
N4LO are possible.

In the N4LO rows of Table 2 we give the effective LECs c1,3,4
obtained in Krebs et al. [106]. Concerning the 2PE 3NF at N3LO,
Equation (2.8) of Bernard et al. [107] provides the corrections
to the ci. (Note, though, that there is an error in the values
given below that equation. The correct values for δc3 and δc4 are
δc3 = −δc4 = 0.89 GeV−1.) With these corrections, we obtain
the values given in the N3LO rows of Table 2. Then, inserting the
ci of Table 2 in the expression for the N2LO 3NF, we are able to
include the 2PE parts of the 3NF up to N3LO and up to N4LO in
a straightforward way, with the LECs cD and cE refitted. Their
values, also listed in Table 2, are different from those listed in
Table 1 but of the same order and with the same sign.

We close this section by highlighting that, of all possible
3NF contributions, the 2PE 3NF is the first to have been
calculated [108]. The prescriptions outlined above allow to
include this very important 3NF up to the highest order we
consider at this time.
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FIGURE 2 | (Left) Ground state energy per particle of SNM as a function of density from the chiral two- and three-body forces with cutoff 3 = 450MeV. The three

dotted curves show predictions which include only two-body forces. For the 3NF contributions at N2LO and above, the LECs of Table 2 are used. The shaded box

locates the approximate empirical saturation energy and density. (Right) Ground state energy per particle of SNM as a function of density at the indicated orders and

with varying cutoff parameters. Other details as on the left.

2.3. Predictions for the Equation of State
2.3.1. Symmetric Matter Predictions
We begin with the symmetric nuclear matter (SNM) EoS. This is
displayed in Figure 2, where, on the left, the momentum-space
cutoff is fixed at 450 MeV but the chiral order of the two-body
force is varied from leading to fifth order. The 3NFs are chosen
with LECs in Table 2, which at N3LO and N4LO include the 2PE
3NF at fourth and fifth order, respectively. (We note that, in all
that follows, when we refer to predictions obtained with 3NF at
N3LO or at N4LO, we mean to say that the 2PE 3NF is included
up to those orders). The dashed lines indicate results at N2LO
and above with no three-body forces present, while the solid
lines include the 3NF when appropriate, that is, at N2LO and up.
Formally, we observe a good convergence pattern at the two-body
level with this family of NN potentials, but naturally we do not
expect realistic saturation behavior when soft two-body forces
alone are included in the calculation of the EoS. We see that the
inclusion of 3NFs is necessary beyond about half nuclear matter
saturation density and that for this set of nuclear potentials the
total 3NF contribution to the EoS decreases with the chiral order
from N2LO to N4LO.

We note that the uncertainty band obtained by varying the
chiral order from N2LO to N4LO while keeping 3 fixed to 450
MeV encloses the empirical saturation point. The saturation
energy varies in the range −14MeV . E0 . −18MeV while
the saturation density varies between 0.155 fm−3 . ρ0 .

0.195 fm−3. We stress that, once the two- and three-nucleon
forces are fixed by the NN data and the properties of the three-
nucleon system, no parameters are readjusted, making the many-
body calculation parameter-free. Since the predicted binding
energies and charge radii of intermediate-mass nuclei are closely

related to the corresponding saturation point in SNM, we see
the possibility that the new class of chiral potentials constructed
in Entem et al. [87] and used in this work may lead to more
reliable predictions in ab initio calculations of finite nuclei. For
densities larger than ρ & 0.20 fm−3, the predictions shown on the
LHS of Figure 2 display a trend that does not suggest satisfactory
convergence, since the three (saturating) solid curves are about
equally spaced. This is most likely due to the incompleteness of
the 3NF at orders above N2LO. It is natural to expect that such
trend will be a recurrent theme in later results. As discussed
in section 2.2.2, we believe that including the important 2PE
contribution consistently across all orders is important and
insightful. For instance, our results suggest that the missing 3NF
contributions at orders higher than N3LO can be expected to play
a substantial role toward a successful convergence.

On the RHS of Figure 2 we show the dependence of the
SNM EoS on the choice of momentum-space cutoff 3 in the
two- and three-body forces as well as the order in the chiral
expansion. In the present work we consider only the two cases
3 = 450, 500MeV, see comments in section 2.2.1. At orders
N2LO, N3LO, and N4LO, the cutoff dependence appears to be
comparable but generally smaller than the truncation errors.

In Figure 2, we show the impact of choosing at fourth (N3LO)
and fifth (N4LO) order in the chiral expansion either the N2LO
3NF coupling strengths shown in Table 1 (labeled “I” in the
figure) or those obtained by including the 2PE 3NF contributions
at higher order shown in Table 2 (labeled “II” in the figure). We
only show results for potentials with momentum-space cutoff
3 = 450MeV, but we expect similar results for the3 = 500MeV
cutoff potentials due to the identical change in the important ci
LECs (i = 1, 3, 4). We see that at N4LO the impact is rather
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FIGURE 3 | Energy per particle in SNM as a function of density at N3LO and

N4LO with a cutoff of 3 = 450MeV. For the 3NF contributions, the LECs of

either Table 1 or Table 2 are applied as indicated by labels “I” or “II”,

respectively. Case “II” is characterized by including the 2PE 3NF up to the

given order. The approximate empirical saturation energy and density are

indicated by the gray box.

large and roughly of the same size as variations in the chiral
order from N2LO to N4LO. However, the additional theoretical
uncertainty resulting from the choice of LECs entering into the
2PE 3NF would extend the overall error band inferred from the
RHS of Figure 2 only moderately and only at the largest densities
considered. In other words, Figure 3 shows that the truncation
error (compare N3LO II and N4LO II) can be much smaller
than the uncertainty arising from using different sets of LECs
(compare N4LO I and N4LO II), indicating the importance of
completeness in the 3NF at all orders.

Before closing this section, we summarize the saturation
properties of SNM at the various orders and cutoff values. In
Table 3, we show saturation density, saturation energy, and the
isoscalar incompressibility. For the latter, constraints can be
obtained from giant monopole resonance energies. In De et al.
[109], the authors obtain a range of 211.9 ± 24.5 MeV. Our
predictions at N3LO are consistent with this range, whereas
the larger values at N4LO reflect the larger saturation density
at that order.

Parameters which involve isospin asymmetry will be
discussed later.

2.3.2. Neutron Matter Predictions
We next consider the ground state energy of neutron matter
(NM) as a function of density, employing the same set of chiral
potentials and many-body methods discussed previously in the
case of symmetric nuclear matter. The EoS for both SNM and
NM are crucial to determine the density-dependent nuclear

TABLE 3 | Saturation properties from N2LO to N3LO and two values of the cutoff.

3 (MeV) ρ0 (fm−3) e0(ρ0) (MeV) K0 (MeV)

N2LO 450 0.155± 0.015 −14.2± 2.3 217.4± 3.6

500 0.170± 0.010 −14.9± 0.5 214.4± 8.0

N3LO 450 0.170± 0.025 −16.4± 1.7 221.2± 51.5

500 0.180± 0.023 −15.4± 2.2 206.4± 49.2

N4LO 450 0.195± 0.012 −18.1± 0.8 272.7± 24.3

500 0.203± 0.010 −17.6± 0.9 255.6± 21.2

symmetry energy and to better understand the properties of
neutron-rich nuclei and neutron stars, aspects which will be
addressed in later sections.

In Figure 4, on the LHS, we show the energy per particle of
NM as a function of density starting from chiral two- and three-
body forces with the same value of the momentum-space cutoff
3 = 450MeV but at different orders in the chiral expansion.
As in the case of symmetric nuclear matter, we observe good
convergence at the level of 2NF alone. When 3NFs are included,
we find somewhat smaller truncation errors compared to the
case of SNM. This may be due in part to the absence of large,
central isospin-0 partial waves in NM, which appear to be more
sensitive to differences among interactions. Clearly, the 3NF plays
an outstanding role in very neutron-rich systems at and beyond
nuclear saturation density, where its contribution to the EoS
growsmore strongly with the density than the 2NF contributions.

On the RHS of Figure 4 we display the energy per particle
of pure neutron matter as a function of density when varying
both the order in the chiral expansion and the momentum-space
cutoff 3 from 450 to 500 MeV. We see that, in comparison
to the analogous study in symmetric nuclear matter, the pure
neutron matter results display a much weaker cutoff dependence,
which may again be due to the absence of strong isospin-0
partial waves. Interestingly, even in the case of the relatively large
density ρ = 0.4 fm−3, corresponding to a Fermi momentum of
kF = 450MeV which lies at the effective breakdown scale of the
expansion, there is relatively little cutoff dependence.

Once again, we observe that the order-by-order pattern
is not satisfactory when moving from N3LO to N4LO. The
impact of including the 2PE 3NF up to fourth (N3LO)
and fifth (N4LO) order (consistent with the order of the
2NF), compared to including only the third-order (N2LO)
contributions, through the adoption of the LECs given inTable 2,
is demonstrated in Figure 5. As in the case of symmetric
nuclear matter, the effect at N4LO is much larger than at N3LO
due to the larger change 1c3 = 2.16GeV−1 vs. 1c3 =
0.89GeV−1, respectively, in the c3 LEC at these two orders in
the chiral expansion. Moreover, the choice of LECs entering
into the 2PE 3NF contributions again results in a moderate
systematic increase in the pure neutron matter energy per
particle at the highest densities considered. As we mentioned
earlier, the investigation of higher-order 3NF contributions is
in progress.

Before closing this section, we take the opportunity to
comment on how our SNM and NM EoS compare with those
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FIGURE 4 | (Left) Ground state energy per particle of NM as a function of density at the indicated orders in the chiral expansion. The three dotted curves show

predictions including only the 2NF. The cutoff parameter is fixed at 3 = 450MeV and the 3NF LECs from Table 2 are used. (Right) Ground state energy per particle

of NM as a function of density at the indicated chiral orders and with varying cutoff. The LECs of Table 2 are used.

from Drischler et al. [93]. There, chiral interactions including
full 3NF and 4NF at N3LO are applied to investigate nuclear
saturation. Judging from the RHS of Figure 4 in Drischler et al.
[93], where the EoS for both SNM and NM [63] are displayed, we
conclude that our EoS at N3LO are qualitatively comparable with
them within the density range covered in Figure 4 in Drischler
et al. [93], namely up to ρ=0.20 fm−3, with ours revealing more
attraction. We also point out that, in Drischler et al. [93], the 3NF
couplings are fit to triton and to saturation properties, whereas
we do not impose any constraints other than those from the
two- and the three-nucleon systems. Even so, we find (confirming
the conclusion from [93]) that realistic saturation properties are
possible at N3LO.

3. THE SYMMETRY ENERGY AND
RELATED ASPECTS

3.1. Review of Some Basic Concepts and
Definitions
The properties of isospin-polarized matter have relevance for
a number of open questions in nuclear physics and nuclear
astrophysics. For instance, the existance of the neutron drip
lines, the thickness of neutron skins, and the properties
of neutron stars all have in common a strong sensitivity
to the EoS of neutron-rich matter. The symmetry energy
determines to a good approximation the energy per particle
in homogeneous nuclear matter with any degree of isospin
asymmetry (cf. Equation 14 below). The symmetry energy
and its density dependence are therefore a key focus of
contemporary theoretical and experimental investigations, and
much effort has been devoted to identifying nuclear observables
which correlate with this important property of infinite
matter [25, 45, 53, 56–64, 110–120].

FIGURE 5 | Ground state energy per particle of NM as a function of density at

N3LO and N4LO with cutoff equal to 450 MeV. Similar to Figure 3, for the 3NF

contributions the LECs of either Table 1 or Table 2 are applied as indicated by

labels “I” or “II,” respectively.

The isospin asymmetry parameter is a measure of the relative
densities of neutrons and protons and is defined as

α = (ρn − ρp)
(ρn + ρp)

, (12)

where ρn and ρp are the neutron and proton densities. It is useful
to write the energy per particle in isospin asymmetric matter at
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FIGURE 6 | Energy per particle in isospin-asymmetric nuclear matter. In each

case, the isospin asymmetry parameter is given. Calculations conducted at

N3LO of the 2NF (and the 2PE 3NF included up to N3LO) with cutoff equal to

500 MeV.

some density as an expansion with respect to α:

e(ρ,α) = e(ρ,α = 0)+ 1

2

(

∂2e(ρ,α)

∂α2

)

α=0

α2 +O(α4) . (13)

Frequently, the expansion above is truncated at the term
quadratic in α, resulting in the popular parabolic approximation:

e(ρ,α) ≈ e0(ρ)+ esym(ρ) α
2 , (14)

where e0(ρ) = e(ρ,α = 0). [Equation (14) has been verified to be
valid up to fairly high densities [119].] Within the assumption
of Equation (14), the symmetry energy, esym, is the difference
between the energy per particle in neutron matter and the one
in symmetric matter. We can expand the symmetry energy about
the saturation density, ρ0,

esym(ρ) ≈ esym(ρ0)+
L

3

ρ − ρ0
ρ0

+ Ksym

18

(ρ − ρ0
ρ0

)2
+ ... . (15)

The slope parameter, L, is defined as

L = 3ρ0

(

∂esym(ρ)

∂ρ

)

ρ0

, (16)

and therefore is a measure of the density dependence of the
symmetry energy around saturation density. We recall that L is
an important quantity because of its significance for the skin
thickness in neutron-rich nuclei. Experiments which plan to
measure the neutron radius of 208Pb and 48Ca using electroweak
probes, such as PREX II [121] and CREX [122], respectively,

FIGURE 7 | The EoS of SNM at the three chiral orders considered here (cutoff

fixed at 450 MeV) compared with the phenomenological EoS of Alam et al.

[135].

are expected to provide accurate measurements of the neutron
skin. As a consequence, one hopes for reliable constraints on
the symmetry pressure, clearly related to the slope parameter (see
section 3.3.1 below). Also, the radius of the average-mass neutron
star is known to be sensitive to the pressure in neutron matter at
normal density, PNM0 , which is simply related to L (for fixed ρ0)
due to the vanishing of the density derivative of e(ρ,α = 0) at
saturation. That is:

PNM0 ≈ L ρ0/3 . (17)

The reader is referred, for instance, to Sammarruca and
Millerson [123] and the comprehensive list of citations therein.

The isovector incompressibility, Ksym, is associated with the
next higher-order derivative, that is, it measures the curvature of
the symmetry energy at saturation density. It is defined as:

Ksym = 9ρ20

(

∂2esym(ρ)

∂ρ2

)

ρ0

. (18)

Correlations between L and both Ksym and the symmetry
energy at saturation, esym(ρ0) [124–126] have been examined.
Predictions for the isovector incompressibility carry large
uncertainty, as is the case for the isoscalar one. Attempts to
constrain the second derivative of the symmetry energy (that is,
its curvature) are discussed in Vidaña et al. [127], Ducoin et al.
[128], and Santos et al. [129].

3.2. Predictions of Symmetry Energy and
Related Properties
Figure 6 displays the energy per particle in isospin asymmetric
matter as a function of density and for increasing degree

Frontiers in Physics | www.frontiersin.org 9 December 2019 | Volume 7 | Article 213312

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sammarruca and Millerson Nuclear Forces in the Medium

FIGURE 8 | The symmetry energy vs. density. The curves are obtained from

the various microscopic EoS for NM at the indicated chiral orders and cutoff

values, combined with the phenomenological EoS for SNM [135] as explained

in the text. The additional predictions and various constraints are from:

Danielewicz and Lee [136], dark green; Tsang et al. [137], magenta contour;

Russotto et al. [138, 139], yellow and brown shaded areas. (The data points

were extracted from the graphs assuming ρ0 = 0.16 fm−3 and using

WebPlotDigitizer opensource software, https://automeris.io/WebPlotDigitizer).

TABLE 4 | Predicted values of symmetry energy and related properties at three

orders of chiral perturbation theory and two values of the cutoff parameter

obtained as explained in the text.

3 (MeV) esym(ρ0) (MeV) L (MeV) Ksym (MeV)

N2LO 450 32.8± 0.4 52.2± 0.8 −117.6± 36.1

500 32.2± 0.5 50.2± 1.5 −106.3± 31.1

N3LO 450 32.4± 1.0 53.0± 7.2 −81.5± 32.8

500 31.7± 0.6 48.8± 4.6 −75.2± 32.8

N4LO 450 31.4± 0.5 45.8± 3.1 −114.3± 14.3

500 31.1± 0.2 44.2± 1.8 −108.0± 12.9

of asymmetry, cf. Equation (14), for one selected order and
cutoff [130].

As we already noted in conjunction with Figure 2, the
saturation properties of the chiral interactions we are considering
are different from one another, with the saturation density
varying between about 0.16 and 0.20 fm−3. Clearly, this will
impact the expansion parameters contained in Equation (15),
see definitions in Equations (16–18), differently than if the
derivative were evaluated, in all cases, at some common,
nominal saturation density ρ0. On the other hand, analyses of
correlations between the symmetry energy, its density slope, and
the neutron skin thickness are typically done utilizing families
of phenomenological models, such as large sets of Skyrme

interactions or relativistic mean-field (RMF) models [131].
These models are constructed so as to have in common
good saturation properties (usually by adjusting parameters to
empirical properties of nuclei) while differing in the slope of the
symmetry energy which, at saturation, is essentially a measure for
the pressure in pure neutron matter (see Equation 17). Already
almost two decades ago, Brown [132] considered a set of Skyrme
interactions whose predictions of the density slope of the NMEoS
around normal density differed dramatically and found a linear
relation between such derivative and the neutron skin thickness
in 208Pb. Similar investigations have been and continue to be
done with RMFmodels, with families of interactions constructed
so as to span a large range of L values. For instance, RMF models
such as NL3 [133] and IU-FSU [134] give values of L equal
to 118.2 and 47.2 MeV, respectively. (Not surprisingly, these
models span a large range of both neutron skin values and stellar
radii). In Roca-Maza et al. [24], the authors utilize a large set of
RMF models all of which describe accurately the nuclear binding
energies and charge radii across the periodic table (which should
constrain tightly the binding energy and saturation density of
SNM). On the other hand, the same models predict very different
neutron root-mean-squared (r.m.s.) radii, since the isovector
channel is poorly constrained [24].

Our EoS are microscopic and parameter-free and we are not
in the practice of constructing families of parameterized EoS
models to establish phenomenological correlations. Nevertheless,
for the purpose of demonstration, next we wish to perform a
study meant to highlight the role of neutron matter pressure
for the neutron skin thickness once the uncertainty associated
with the saturation point in SNM, cf. Figure 2, is removed.
To that end, we will construct “semi-microscopic” models of
asymmetric matter as follows: for the symmetric part, we will
use an established phenomenological EoS, such as the one from
Alam et al. [135]. For the neutron matter part, currently our
focal point, we will continue to use the chiral EoS presented in
section 2.3.2. We then proceed treating these six cases (three
chiral orders and two cutoffs) as six EoS models differing in
their NM components. Figure 7 shows the phenomenological
EoS of SNM in comparison with our chiral predictions with
cutoff equal to 450 MeV. Figure 8 displays the symmetry energy
obtained with ourmicroscopic NMEoS combined with SNMEoS
represented by the black curve in Figure 7. We also include in
the figures the results of several analyses and constraints [136–
139]. The predictions based on our microscopic NM EoS are
considerably softer than those constraints above normal density.
Table 4 contains values for the parameters defined previosly
through Equation (15), for the six EoS models which we have
constructed as described.

We now proceed to discuss the spread of our values for
the symmetry energy, the L parameter, and the isovector
incompressibility in the framework of chiral uncertainties of the
NM EoS. We recall that one of the strengths of χEFT is the
opportunity of order-by-order improvement of the predictions.
Naturally, the truncation error at a given order should be a
reasonablemeasure of the uncertainty which arises from omitting
the next order contributions. If the value of the observable X has
been calculated at order n+ 1, than the truncation error at order
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n can be estimated as the difference between the values at order
n+ 1 and n:

ǫn = |Xn+1 − Xn| , (19)

which is a reasonable way to estimate what one is missing by
retaining only terms up to order n. On the other hand, if Xn+1

is not known, then some alternative prescription must be used.
We use the definition [87]

ǫn ≈ |Xn − Xn−1|
Q

3
, (20)

where Q is a momentum characteristic for the observable under
consideration and 3 is the cutoff. For the fifth (and highest)
order, we use Equation (20) and we find it reasonable to
define Q as the r.m.s. value of the relative momentum of two
neutrons in neutron matter at the given density [see [123] and
references therein].

We wish to express our final results for the symmetry energy,
the slope parameter, and the isovector incompressibility at N3LO.
To that end, we average the predictions for the quantity X
obtained with the two values of the cutoff separately at N3LO
and N4LO, yielding X̄4 and X̄5, respectively. The truncation
uncertainty at N3LO can then be estimated as 1X = |X̄4 − X̄5|.
As an alternative, we choose to take the largest of the errors at the
two cutoff values.

Applying that prescription, we obtain for the symmetry
energy, the slope parameter, and the isovector incompressibility
at N3LO (all numbers in MeV):

esym = 32.1±1esym 1esym = 1.0 , (21)

L = 50.9±1L 1L = 7.2 , (22)

Ksym = −78.4±1Ksym 1Ksym = 32.8 . (23)

We see that Ksym shows large variations, which reflect the
extreme sensitivity of the second derivative to the details of the
interactions for each of the curves in Figure 8. We emphasize
that variations among those curves are due entirely to the
NM predictions.

A phenomenological study of the EoS based on Skyrme
density functionals [135] reports the slope parameter to be L =
65.4±13.5MeV, whereas the isovector incompressibility is found
to be within the range Ksym = −22.9 ± 73.2 MeV. Lattimer and
Lim [140] determined L to be between 40.5 and 61.9MeV. For the
isovector incompressibility, they suggest a linear relation between
Ksym and L, that is, Ksym ≈ aL − b, with a, b equal to 3.33 and
281 MeV, respecively [128], or 2.867 and 260 MeV [127]. More
recent constraints obtained from tidal deformabilitie inferred
from GW170817, report 30 < L < 86 MeV and−140 < Ksym <

16 MeV or 40 < L < 62 MeV and −112 < Ksym < −52
MeV [141].

Before closing this section, we take the opportunity to address
the pressure in neutron matter at saturation density, which,
for the EoS of SNM which we have chosen is equal to 0.155
fm−3. Using Equation (17) and the uncertainty on L, we find
(in MeV/fm3):

PNM0 = 2.66±1P 1P = 0.37 . (24)

3.3. Symmetry Energy Slope and Neutron
Skins
The neutron skin is defined as the difference between the r.m.s.
radii of the neutron and proton density distributions:

Sn = Rn − Rp , (25)

where

Ri =
√

1

Ti

∫ ∞

0
ρi(r) r2 d3r , (26)

i = n, p and Tn, Tp = N, Z respectively.
As mentioned before, the neutron skin thickness, particularly

for 208Pb, is of great contemporary interest due to the possibility
of constraining the slope of the symmetry energy through skin
measurements [24, 142–147].

3.3.1. The Experimental State-of-the-Art
While electron scattering has been very successful in providing
accurate information on the proton distributions within the
nucleus, mapping neutron densities is a much more challenging
task. In particular, measurements which make use of hadronic
probes carry large uncertainties due to the model dependence of
the nuclear interactions used in the analyses.

On the other hand, parity-violating electron scattering is in
principle capable of providing accurate information on the weak
charge distribution in the nucleus through the coupling of the
neutron to the Z-boson. The typical parity-violating electron
scattering experiment measures the difference between the cross
sections for scattering of right-handed and left-handed electrons,
that is

APV = σR − σL
σR + σL

, (27)

which is proportional to the ratio of the weak to the charge form
factor of the nucleus [110] and thus can be related to coordinate
space densities by Fourier transform. The challenging aspects of
measuring observables related to parity violation is that they can
be etremely small, in the case of APV between 10−4 to 10−7 [110].

The first PREX experiment [148, 149] provided a value of
0.33(+0.16, −0.18) fm for the skin of 208Pb, which carries a large
experimental error due to technical problems which resulted
into poor statistics. However, the planned PREX-II and CREX
experiments have a target uncertainty of±0.06 fm and±0.02 fm
for the neutron skin of 208Pb and 48Ca, respectively [121, 122].

Furthermore, additional constraints are expected from the
forthcoming MESA accelerator in Mainz [150], which promises
to constraint the neutron skin of 208Pb within ±0.03 fm and
the one of 48Ca within ±0.02 fm, same as the target uncertainty
of CREX. Note that these two nuclei are both stable, doubly-
magic, and with a relatively large neutron to proton asymmetry,
which is part of the reasons why investigations have concentrated
on them.

For an extensive review of correlation analyses based on a large
set of relativistic and non-relativistic nuclear density functionals
see [110].
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TABLE 5 | Predicted neutron skin of 208Pb and 48Ca.

Nucleus Order 3 = 450 MeV (fm) 3 = 500 MeV (fm)

208Pb N2LO 0.155 ± 0.005 0.147 ± 0.004

N3LO 0.150 ± 0.009 0.143 ± 0.004

N4LO 0.141 ± 0.004 0.139 ± 0.002

48Ca N2LO 0.150 ± 0.003 0.144 ± 0.002

N3LO 0.147 ± 0.005 0.142 ± 0.002

N4LO 0.141 ± 0.003 0.140 ± 0.001

3.3.2. Predictions
We now move to neutron skins, specifically for the 208Pb and
48Ca nuclei, as predicted by the EoS models based on the six
chiral interactions in NM as described previously. Using the
energy per particle in infinite isospin-asymmetric matter as given
in Equation (14), we can establish a simple but direct connection
with the energy per nucleon in a spherically symmetric nucleus
through the semi-empirical mass formula:

E(Z,A) =
∫

d3r ρ(r) e(ρ,α)+
∫

d3r f0 |∇ρ|2 + ECoul , (28)

where the Coulomb contribution is written as:

ECoul =
e2

ǫ0

∫ ∞

0
dr

′
[r

′
ρp(r

′
)

∫ r
′

0
d3r ρp(r)] . (29)

The parameter f0 is a fitted constant for which we used a value of
65 MeV fm5, consistent with the range determined in Oyamatsu
et al. [151].

We use the two-parameter Thomas-Fermi distribution
function to describe the nucleon density:

ρ(r) = ρa

1+ e(r−rb)/c
. (30)

The “radius” rb and the “diffuseness” c are themselves evaluated
through minimization of the energy per nucleon, while ρa is
easily obtained from normalization.

Table 5 shows the values of the neutron skin thickness
predictions along with the truncation error for 208Pb and 48Ca.
Proceeding as described previously, and taking the largest of the
errors at the two cutoff values, we state our final estimates for the
neutron skins of 208Pb and 48Ca as

Sn(
208Pb) = 0.147±1Sn 1Sn = 0.009 , (31)

Sn(
48Ca) = 0.145±1Sn 1Sn = 0.005 . (32)

Note that the skin depends considerably on the constant
f0 appearing in Equation (28). We have not included that
uncertainty in Equations (31–32) as we are focusing on chiral
truncation errors. We report, however, that varying f0 between 60
and 70 MeV fm5 introduces an uncertainty of 0.01 fm, essentially
independent of chiral order or cutoff.

FIGURE 9 | Correlation between the slope parameter (L) and the neutron skin

thickness of 208Pb obtained with RMF models. The error bars represent the

target precision for the future PREX-II [121] and MREX [150] experiments.

Reproduced from Physics Today 72, 7, 30 (2019) (https://doi.org/10.1063/PT.

3.4247) with the permission of the American Institute of Physics.

We close this section by showing in Figure 9 a typical
correlation between L and the thickness of the neutron skin in
208Pb obtained with a large set of successful RMF models. As
we discussed previously, the ranges we give in Equations (22)
and (31) are relatively small, which is, of course, desirable, since
they originate from chiral uncertainties in the NM rather than
variations of phenomenological parameterizations. We note that
our range of values seem to be located on the low end of the
correlation in Figure 9, with L approximately between 44 and 58
MeV and the skin between approximately 0.14 and 0.16 fm.

4. THE EQUATION OF STATE AND
NEUTRON STARS

4.1. Some General Aspects
It is remarkable that the relation between the mass and the radius
of neutron stars is uniquely determined by the EoS together
with the star’s self-gravity through the Tolman-Oppenheimer-
Volkoff (TOV) equations of General Relativity [152]. In fact,
although the detailed structure of a neutron star is complex
and varies as a function of density, the part of its core
mostly composed of a uniform liquid of neutrons, protons, and
leptons in β-equilibrium accounts for almost all the mass and
the volume. Therefore, these compact systems are intriguing
testing grounds for both nuclear physics [153–156] and General
Relativity. Extensive effort has been and continue to be devoted
to constraining properties of compact stars from astrophysical
observations see, for instance [156–160].
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The largest possible value for the mass of a neutron star was
estimated by Rhoades and Ruffini [161] based on the following
assumptions: (1) General Relativity is the appropriate theory
of gravitation; (2) the EoS obeys the Le Chatelier’s principle
(∂P/∂ǫ ≥ 0) and is consistent with causality, ∂P/∂ǫ ≤ c2;
and (3) the EoS is reliably known below some density. Subject
to these conditions, it was determined that the maximum mass
of a neutron star cannot exceed 3.2 solar masses. Note that,
releasing the causality constraint, the limit can be as high as 5
solar masses [162, 163] due to the increased stiffness of the EoS at
supernuclear densities.

While the maximum mass is mostly determined by the
stiffness of the EoS at densities greater than a few times saturation
density, the star radius is impacted mainly by the slope of the
symmetry energy. More precisely, it is closely connected to
the internal pressure (that is, the energy gradient) of matter at
densities between about 1.5ρ0 and 2-3ρ0 [157]. The mass and the
radius of the neutron star are predicted by the TOV equation as
we review next.

The equations for a perfect fluid in hydrostatic equilibrium
allow to determine the pressure and the total mass-energy density
as a function of the radial distance from the center of the star.
These coupled equations are

dP(r)

dr
= −G

c2
(P(r)+ ǫ(r))(M(r)+ 4πr3P(r)/c2)

r(r − 2GM(r)/c2)
, (33)

with

dM(r)

dr
= 4πr2ǫ(r)/c2 , (34)

where ǫ is the total mass-energy density. The star gravitational
mass is

M(R) =
∫ R

0
4πr2(ǫ(r)/c2)dr , (35)

with R the value of r where the pressure vanishes. It’s worth
recalling that no mass limit exists in Newtonian gravitation.

Recently, the LIGO/Virgo [164] detection of gravitational
waves originating from two neutron stars spiraling inward and
merging, the neutron star merger GW170817, has generated even
more interest and excitement around these highly exotic systems.

The dimensionless tidal deformability is related to the neutron
star response to the tidal field induced by the companion star and
is defined as

3 = 2

3
k2

( R

M

)5
, (36)

where the Love number k2 reflects the quadrupole component
of the gravitational potential induced by the companion star at
the surface [165]. It depends on the neutron star compactness,
M/R, and the energy density and pressure profile of the star. The
tidal deformability can be obtained by solving the appropriate
equations together with the TOV equations which yield the
M(R) relation [166]. Hence, the merger detection can provide
constraints on the star radius based on the tidal deformabilities
of the colliding system [167]. In fact, the August 2017 first

direct detection of a binary neutron star merger helped establish
new limits on the radius of a 1.4 M⊙ neutron star. Additional
references addressing the radius of a 1.4M⊙ neutron star include
[166, 168–172].

The correlation between the neutron skin thickness (discussed
in section 3.3) and the radius of a neutron star originates from
the sensitivity of the star radius to the pressure at normal density.
Note that such correlation weakens as the mass increases see,
for instance [110], which is why the radii of lighter stars are
good candidate to help constrain the neutron skin of 208Pb and,
in turn, the slope of the symmetry energy around saturation
density. Based on these considerations, an upper limit of 0.25 fm
was found for the neutron skin thickness of 208Pb. Additional
observations from the LIGO-Virgo collaboration scheduled for
2019 are likely to provide stronger constraints.

In the remainder of this section, after reviewing how the
EoS of β-stable matter is obtained from conditions of charge
neutrality and energy minimization (section 4.2), we will address
(spherical) neutron star properties, with emphasis on the radius
of a “typical” neutron star, namely one with amass approximately
equal to 1.4 M⊙. The reasons for this choice have been given in
the previous paragraph.

4.2. The EoS of β-Stable Matter
In this section, we review the basic equations which we use to
obtain the EoS for stellar matter in β-equilibrium.

The total energy per particle, etot , related to the total energy
density, ǫtot , by etot = ǫtot/ρ, for neutrons and protons in β
equilibrium with leptons (electrons and muons) is given by:

etot = e0 + esym(Yn − Yp)
2 +

∑

i=n,p

Yimi + ee + eµ , (37)

where Yi, i = n(p), stands for the neutron(proton) fraction.
On the right-hand side are the baryon contributions including
their rest energies (first three terms), and the relativistic electron
and the muon energies per baryon (last two terms). Note that,
in the equation above, e0 and esym are the EoS of symmetric
nuclear matter and the symmetry energy, respectively. All terms
are functions of density.

The relativistic energy density for particle species “i” having
Fermi momentum (kF)i is given by

ǫi =
γ

2π2

∫ (kF)i

0

√

k2 +m2
i k

2 dk , (38)

where γ is an appropriate degeneracy factor. The partial densities
are related to the respective Fermi momenta as

ρi =
γ

2π2

∫ (kF)i

0
k2 dk , (39)

which gives, for spin- 12 fermions (γ=2),

ρi =
(kF)

3
i

3π2
, (40)
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with the corresponding particle fractions given by

Yi =
ρi

ρ
. (41)

The chemical potential for species “i” is defined as

µi =
∂ǫi

∂ρi
= ∂ǫi

∂(kF)i

∂(kF)i

∂ρi
=

√

(kF)
2
i +m2

i , (42)

where we have used Equations (38–39) to perform the derivatives
with respect to the upper integration limit.

The standard procedure is to minimize the total energy per
particle with the constraints of fixed baryon density and global
charge neutrality:

ρp + ρn = ρ ⇒ Yp + Yn = 1 (43)

and

ρp = ρe + ρµ ⇒ Yp = Ye + Yµ . (44)

The resulting set of equations allow to solve for the various lepton
fractions from which one can easily obtain the corresponding
energy densities.

For the purpose of applying the Lagrange multipliers method,
we define the functional

F = etot + λ1η1 + λ2η2 , (45)

where

η1 = 1− Yn − Yp (46)

and

η2 = Yp − Ye − Yµ , (47)

and set

∂F

∂Yi
= 0 . (48)

Equations (45–48) then yield

∂F

∂Yp
= ∂etot

∂Yp
− λ1 + λ2 = 0 ⇒ µp = λ1 − λ2 (49)

∂F

∂Yn
= ∂etot

∂Yn
− λ1 = 0 ⇒ µn = λ1 (50)

∂F

∂Ye
= ∂etot

∂Ye
− λ2 = 0 ⇒ µe = λ2 (51)

∂F

∂Yµ
= ∂e

∂Yµ
− λ2 = 0 ⇒ µµ = λ2 . (52)

Thus,

µµ = µe (53)

FIGURE 10 | Fractions of neutrons, protons, electrons, and muons as a

function of density at the indicated orders for 3 = 450 MeV.

and

µp = µn − µe . (54)

The equations above allow to solve for the various lepton
fractions and, through Equation (38), the corresponding energies
are easily obtained. For electrons, we find the ultra-relativistic
approximation to be appropriate and set their rest energy to zero
in Equation (38).

In Figure 10, we show the predicted fractions for the various
species (neutrons, protons, and leptons) at the three highest
orders of χEFT which we consider. We note that the proton
fraction goes up to just above 10% at the highest densities being
considered. This is a rather low value, most likely related to
the relatively soft nature of the symmetry energy displayed in
Figure 8. It implies that neutron stars (with central densities up
to those included in the figure) will not cool down via direct
Urca processes.

One is now in the position to calculate the pressure in β-stable
matter. The pressure is related to the energy density through

P(ρ) = ρ2
d(etot)

dρ
. (55)

In order to continue the discussion started in section 3.2 and
extend it to neutron star radii in a consistent manner, in this
section we will use the same interactions constructed in section 3
in terms of an empirical SNMEoS and themicroscopic NM chiral
EoS. Note, from section 4.2, that the symmetry energy, and thus
the EoS of both SNM and NM are needed to obtain the various
particle fractions. As mentioned earlier, those fractions tend to
be rather small (see Figure 10), and thus the results shown in
this and the next sections are to a large extent determined by our
chiral predictions in NM.

We close this section by showing in Figure 11 the calculated
pressure in β-stable matter at the third, fourth, and fifth orders
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FIGURE 11 | (Left) pressure in β-equilibrated matter vs. density at the given chiral orders (of the NM chiral EoS). Predictions with both cutoffs are shown, revealing

that the two sets of curves are very similar. (Right) the corresponding energy per particle. These are the predictions which we retain up to 2ρ0.

of the 2NF together with the 3NF constructed as described
in section 2.2.2. Of course we are referring to the chiral 3NF
appropriate for NM, where the LECs c4, cD, and cE vanish [56].

The BHF approach to nuclear matter is appropriate for the
description of homogeneous matter, such as a homogeneous
fluid of nucleons. Below nuclear densities, the chiral EoS are
joined with the crustal equations of state from Harrison and
Wheeler [173] and Negele and Vautherin [174], performing a
smooth interpolation between the two EoS. The crust has crystal-
like composition, and contains light [173] or heavy [174] metals
together with a gas of electrons.

4.3. Predicting Neutron Star Masses and
Radii
We now proceed to discuss specifically neutron star predictions.
As mentioned above, we will focus on the radius of a star with
mass equal to 1.4 M⊙. We note, in passing, that the increased
population of neutron stars observed around the mass range of
1.4M⊙ may be related to the physics of white dwarfs, atomic stars
supported by electron (rather than neutron) degeneracy pressure.
Since the Chandrasekhar limit of white dwarfs is approximately
1.4 M⊙ [175], their collapse is likely to generate neutron stars in
that mass range.

As stated in section 1, χEFT is a low-energy theory and
thus limitations to its domain of applicability must be carefully
considered. To begin with, the chiral symmetry breaking scale,
3χ ≈ 1 GeV, imposes clear limitations on the momentum or
energy ranges where pions and nucleons can be taken as suitable
degrees of freedom [15, 17]. Furthermore, the cutoff parameter
3 appearing in the regulator function (cf. Equation 10), has the
purpose to remove high momentum components. Naturally, the
strength of the cutoff determines to which degree such high-
momentum components are suppressed. On the other hand,
central densities of compact astrophysical systems can reach as
high as several times the density of normal saturated matter,
resulting, of course, in the presence of Fermi momenta which

are beyond the reach of χEFT. Therefore, if one wishes to make
predictions based, to some extent, on χEFT, methods to extend
those predictions must be devised.

It has been observed that the pressure as a function of baryon
density (or mass density) for a very large number of existing EoS
can be fitted by piecewise polytropes, namely functions of the
form P(ρ) = αρŴ [176]. (Note that, in our definitions, ρ denotes
the baryon density). Guided by this observation, we find it
reasonable to extrapolate the pressure predictions obtained from
the EoS shown in Figure 11 using polytropes, as we have done
in Sammarruca and Millerson [123]. More precisely, we employ
our semi-microscopic predictions up to about 2ρ0, where ρ0 is
defined to be 0.16 fm−3, approximately the density of saturated
matter. The reason for choosing 2ρ0 as a matching density is
as follows: since we are dealing with a perturbative expansion
in the parameter Q/3, we base our arguments on the size of
the expansion parameter for typical momenta of the system
under consideration. The highest momentum for pure neutron
matter around twice normal density is approximately 420MeV, as

obtained from the usual relation ρ = k3F,n
3π2 , with kF,n the neutron

Fermi momentum. And of course, the highest momentum in
β-stable matter is slightly lower due to the presence of a small
proton fraction. In conclusion, we are still below (although
getting close to) 3 ∼ 450 − 500 MeV. Furthermore, the r.m.s.
value of the relative momentum for two nucleons in infinite
matter is lower than their maximum momentum, and in fact it
can be estimated to be about 60% of the Fermi momentum [177].
Thus, on statistical grounds, we should be safe from “cutoff
artifacts,” even in the presence of smooth regulators.

We then proceed to match polytropes with diverse adiabatic
indices, preserving continuity of the pressure. The range of the
polytropic index was taken to be between 1.5 and 4.5 [123] (based
on guidelines from the literature [176]), and these extensions
are calculated up to about 3ρ0. At this density, every polytrope
is again joined continuously with another set of polytropes
spanning the same range in values of Ŵ. In this way, we
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FIGURE 12 | (Top) Pressure in β-equilibrated matter vs. density at N3LO for 3=450 MeV (left) and 3=500 MeV (right) extended with polytropes as explained in the

text. The vertical axis and the vertical yellow line mark the two matching densities (see text for details). (Bottom) Vaues of the pressure as a function of density taken

from Table 5 of Hebeler et al. [178]. The lower (higher) values correspond to the “soft” (“stiff”) predictions shown in that table.

FIGURE 13 | The mass vs. radius relation at the given chiral order. (Left) 3=450 MeV; (Right) 3=500 MeV. The purple curves are the result of extending the

predictions at N4LO, while the red and the green curves are obtained extrapolating the predictions at N3LO and at N2LO, respectively. The horizontal yellow lines

marks the value of 1.4 M⊙. The shaded area in the background is the constraint taken from Steiner et al. [159].

are able to cover a large set of possible EoS continuations,
simulating scenarios where the EoS displays different degrees
of “softness” or “stiffness” in different density regions, and thus

we can estimate a realistic uncertainty. We stress again that
this procedure is a way to simulate the uncertainty arising
from reasonable parameterizations of the EoS as determined
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by phenomenological studies in the literature, and is not to
be understood as a replacement for a theoretical model. A
demonstration of this procedure is shown in Figure 12 (top row)
for the case of N3LO with3 = 450 MeV. (Note that cgs units are
adopted in Figure 12 as those are popular in astronomy and may
facilitate comparison by other authors).

In Hebeler et al. [178], the β-equilibrated EoS based on
microscopic chiral interactions in neutron matter, is extended
to high densities employing a general piecewise polytropic
extrapolation, which leads to a very large number of EoS.
Applying causality and the requirement that the EoS must be
able to support a mass of 1.97 M⊙, the author select a range of
possible EoS, ranging from “soft” to “stiff.”We show the resulting
uncertainty band in the bottom row of Figure 12, noting that our
uncertainty band from Figure 12 is consistent with it.

Having built up the EoS at all needed densities, we are now
in the position to solve the TOV [152] star structure equations
and obtain the mass as a function of the radius for a sequence
of stars differing in their central densities, up to several times
normal density. The M(R) relations we obtain are shown on
the bottom row of Figure 13. Note that only combinations of
polytropic indices which can support a maximum mass of at
least 1.97 M⊙ have been retained for the purpose of Figure 13,
to account for the observation of a pulsar with a mass of 2.01 ±
0.04M⊙ [179]. It is appropriate to point out here that most recent
observations [180] are consistent with the even higher value of
2.14M⊙. In future work, we will apply this new constraint, which
will result in a more limited set of acceptable EoS.

The causality constraint imposes limitations and those are
applied in Figure 13. That is, one must require that the speed
of sound in stellar matter is less than the speed of light, a

condition which can be expressed as dP
dǫ
< 1, where ǫ is the total

energy density.
Table 6 shows the the radius and the central density of

the 1.4 M⊙ neutron star when the pressure curves at the
fourth and fifth orders from Figure 11 are extrapolated via
piecewise polytropes with adiabatic indices Ŵ1 and Ŵ2 as
shown. The speed of sound at central density is also included.
Confirming what we found in Sammarruca and Millerson
[123], Table 6 demonstrates quite clearly that the radius is
practically insensitive to how the continuation is done. In
particular, no changes are observed due to variations of the
polytrope attached at 3ρ0, and changes by less that one
kilometer occurr in response to varying the first polytropic index.
Note that the central densities we predict for the canonical-
mass star are typically in the order of, and can exceed 3ρ0.
These densities are at or above those where the spreading
of the pressure can be quite large (see Figure 12). Evidently,
the radius of a star with this kind of mass responds to
pressures at much lower than central densities, in line with
earlier observations (see, for instance [178, 181]), where the
insensitivity of the radius to the higher densities was pointed
out. Tables similar to Table 6 with 3=500 MeV and at N4LO
with changing value of 3 are not included but do lead to very
similar observations.

At the same time, the very small spreading of the pressure
at normal to moderately high densities (see Figure 11), would

TABLE 6 | Adiabatic indices, Ŵ1 and Ŵ2, of the polytropes attached at the two

matching densities, followed by the radius and the central density of the 1.4 M⊙
neutron star.

Ŵ1 Ŵ2 R (km) ρ (fm−3) vs(c)

1.5 3.5 11.19 0.653 0.718

1.5 4.0 11.28 0.615 0.767

1.5 4.5 11.34 0.589 0.813

2.0 3.0 11.49 0.620 0.642

2.0 3.5 11.56 0.585 0.695

2.0 4.0 11.60 0.564 0.741

2.0 4.5 11.62 0.548 0.786

2.5 3.0 11.83 0.543 0.621

2.5 3.5 11.84 0.529 0.677

2.5 4.0 11.85 0.521 0.734

2.5 4.5 11.86 0.514 0.789

3.0 2.5 12.05 0.488 0.555

3.0 3.0 12.06 0.485 0.615

3.0 3.5 12.06 0.482 0.671

3.0 4.0 12.05 0.479 0.721

3.0 4.5 12.06 0.478 0.766

3.5 1.5 12.19 0.445 0.650

3.5 2.0 12.19 0.445 0.653

3.5 2.5 12.18 0.444 0.660

3.5 3.0 12.18 0.444 0.673

3.5 3.5 12.18 0.444 0.665

3.5 4.0 12.18 0.444 0.671

3.5 4.5 12.18 0.444 0.676

4.0 1.5 12.27 0.420 0.759

4.0 2.0 12.27 0.420 0.744

4.0 2.5 12.27 0.420 0.734

4.0 3.0 12.27 0.419 0.731

4.0 3.5 12.27 0.420 0.726

4.0 4.0 12.27 0.420 0.710

4.0 4.5 12.27 0.420 0.699

4.5 1.5 12.32 0.404 0.792

4.5 2.0 12.32 0.404 0.781

4.5 2.5 12.32 0.403 0.775

4.5 3.0 12.32 0.403 0.772

4.5 3.5 12.32 0.403 0.772

4.5 4.0 12.32 0.403 0.766

4.5 4.5 12.32 0.404 0.750

The speed of sound is also shown, in units of the speed of light. The microscopic part of

the NM predictions are obtained at N3LO with 3=450 MeV.

suggest similarity of the radius in all cases (differing in chiral
order and/or cutoff). This is in fact the case. Taking into
consideration both the truncation error and the uncertainty
from the polytropes, one may state, estimating the error
pessimistically, that RN3LO ≈ 11.8± 1 km forM=1.4M⊙.

For completeness, in Figure 13 the full M(R) relation is also
displayed. However, we stress that, at the high central densities
probed by the heaviest stars, it is not possible to make reliable
statements at this time. Predictions are no longer constrained by
the chiral theory and are mostly phenomenology.
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FIGURE 14 | (Left) Pressure in β-stable matter as a function of density obtained with the Bonn B meson-exchange potential and the DBHF approach to nuclear and

neutron matter. The blue and the red curves are obtained using the phenomenological EoS for SNM or the microscopic one, respectively. (Right) The mass vs. radius

relation for a neutron star obtained with the DBHF calculations as explained in the text. As before, the lavender shaded area is the constraint from Steiner et al. [159].

To broaden the scopes of this discussion, we will include
next a set of predictions obtained in a more “traditional” way
rather than with χEFT. In particular, we will use a meson-
exchange potential (the Bonn B potential [86]) and the DBHF
approach mentioned in the Introduction and used extensively
in the past by one of the authors of this review [14]. We recall
that the characteristic feature of the DBHFmethod is its ability to
effectively take into account an important class of 3NF generated
by the so-called “nucleon-antinucleon Z-diagrams” (see [14] and
references therein).

However, one of the problems with the traditional approaches
based either on meson-theoretic potentials (such as Bonn
B or CD-Bonn [29]) or entirely phenomenological ones
(such as AV18 [31]), is the absence of guidelines to select
the 3NF contributions to be included (among the infinitely
many possibilities). Typically, a particular diagram or
set of 3NF diagrams are chosen to accompany the 2NF,
but no well-defined link exists between the 2NF and the
associated 3NF. On the other hand, the chiral approach,
through the order-by-order scheme, prescribes exactly
which 2NF, 3NF, and higher-body force must be retained at
each order.

In Figure 14, we show the pressure in β-stable matter from
the DBHF EoS. Comparison between the blue and the red curves
demonstrate that choosing a phenomenological SNM EoS (red
curve) as compared to the microscopic one (blue curve) has
only a minor impact on the EoS for β-stable matter (which
is comprised mostly of neutrons), particularly from low to
medium densities.

We then proceed to compare the pressure predictions based
on the meson-exchange model with the predictions from
Figure 11. As to be expected, differences become larger with
increasing density, with the chiral EoS being substantially softer
at the higher densities.

Once again, we place our focus on the radius of the average-
mass star, which we find to be approximately equal to 12.5 km
for the DBHF calculations. This value is reasonably close to our
previous, chirally based predictions, which makes sense based
on our earlier discussions and the fact that the DBHF pressure
around normal density is not very different from the one in the
chirally-based models (see Figure 15).

Finally, we employ the DBHF EoS in the TOV equations
and calculate the M(R) relation, which is shown on the RHS
of Figure 14. The blue and red curves correspond to the blue
and red curves in Figure 14. Differences become noticible for
the heavier stars and are consistent with those seen in Figure 14.
In other words, the model with the larger pressure at the higher
densities generates the larger maximum mass.

We end this exercise with an important comment: even if
a theory (of nucleons and mesons) can be formally taken to
high densities, as we have done with the DBHF predictions,
the composition and thus the EoS of stellar matter in the inner
core is simply unknown. At densities as high as those typical of
compact stars, hyperons are expected to exist on simple energetic
grounds. Similarly, other non-nucleonic degrees of freedom, such
as quark degrees of freedom, can exist as the result of phase
transitions. These possibilities have been explored by several
groups (see, for instance [182–185]). Such investigations are
not within the scope or the reach of χEFT. The polytropic
extrapolations we have performed do indeed simulate a broad
set of possible EoS consistent with current constraints but whose
specific composition remains unknown.

Of course, we also take note of some other works aimed at
incorporating aspects of chiral dynamics in the development
of EoS suitable for astrophysical phenomena, such as Rapaj
et al. [186]. In the latter reference, the authors calculate
neutron star masses and radii with mean-field models whose
parameters are made consistent with a chiral EoS at low to
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FIGURE 15 | Pressure in β-stable matter from the red curve on the LHS of

Figure 14 compared with the predictions from the LHS of Figure 11.

moderate densities. Constraints from χEFT on neutron star tidal
deformabilities were investigated in Lim and Holt [166]. General
relativistic simulations of neutron star mergers based on the EoS
of Bombaci and Logoteta [111] have been reported in Endrizzi
et al. [187].

We close this section with a few final remarks addressing
predictions vs. constraints. Masses of neutron stars can be and
have been measured with high precision. However, simultaneous
measurements of radii are much more problematic. Some
techniques do exist, such as those based on photospheric radius
expansion [188]. Current observations have begun to determine
the M(R) relation. In Steiner et al. [159], the authors determine
the radius of a 1.4 M⊙ neutron star to be between 10.4 and
12.9 km. Furthermore, from their Bayesian analysis of several
EoS parameterized so as to be consistent with a baseline data
set (see [159] and references therein), they are able to determine
the M(R) relation within a range of masses. Our predictions
fall within those constraints, shown in Figure 13 as the shaded
purple area. Recent LIGO/Virgo measurements have constrained
the radius of a 1.4 M⊙ neutron star to be between 11.1 and 13.4
km [164, 167]. The predictions from our group are well within
these new constraints.

5. SUMMARY AND CONCLUSIONS

In this review, we have stressed the importance of the nuclear
EoS toward understanding of nuclear interactions in themedium.
First, we presented a detailed review of our most recent EoS
based on state-of-the-art chiralNN potentials. We operate within
the framework of chiral effective field theory. Our approach is

microscopic in that chiral two-nucleon forces are fitted to two-
nucleon data and never readjusted in the medium. To render
the nuclear matter calculations manageable, the leading chiral
3NF is included as an effectively two-body density-dependent
potential. The relevant LECs, cD and cE, are obtained from
accurate fittings within the three-nucleon sector. Actually, we go
beyond the leading 3NF by effectively including the 2PE 3NF up
to the highest order we consider at this time. This is possible
because the 2PE 3NF has essentially the same analytical structure
at N2LO, N3LO, and N4LO. Thus, one can add the three orders
of 3NF contributions and parameterize the result in terms of
effective LECs.

The contribution from the 3NF is remarkable, although
somewhat weaker in NM, due to the fact that some of the
leading 3NF contributions vanish in a system of only neutrons.
Therefore, the lack of full order consistency between the 2NF
and the 3NF sectors is likely to impact the EoS of NM to a
lesser degree as compared to the the case of SNM. In fact, we
find that the NM EoS is under better control with regard to the
order-by-order pattern.

In view of the considerations above, in discussions of some
observables sensitive to the EoS of neutron-rich matter, we have
chosen to emphasize the role of the NM EoS by constraining
the SNM EoS to be an empirical one. This allowed us to better
scrutinize the role of neutron matter pressure on the neutron
skin thickness.

A contemporary discussion of neutron-rich matter must
include some of the most exotic and intriguing (neutron-
rich) systems in the universe—neutron stars. We reviewed
the outstanding role of the EoS in calculations of neutron
star structure.

We discussed the limitations of χEFT as a low-
energy theory. The high Fermi momenta involved in
the core of neutron stars cannot be probed with χEFT.
This is also the case for average-mass stars, where
typical central densities can be as high as three times
normal nuclear density. Therefore, we extend our EoS
to high densities via polytropes with a broad range of
adiabatic indices.

Although extrapolation with polytropes, or any other
continuation method one may choose, should in no way be seen
as a replacement for true predictions, it gave us the opportunity
to explore the sensitivity of specific predictions to the behavior
of the EoS at the high densities unreachable to χEFT. In fact,
we were able to confirm what has been observed previously
with other methods. Namely, the radius of the typical-mass
neutron star is essentially insensitive to the pressure in the high-
density regime. Instead, it is mostly controlled by the pressure
in NM at normal densities. Therefore, we feel confident that
our χEFT-based predictions of neutron-rich matter are on solid
ground for lighter stars, including those with the “canonical”
mass of 1.4M⊙.

At this point, to broaden the scopes of the discussion,
we included a set of predictions based on a very different,
and more traditional philosophy. We calculated the NM EoS
from the Bonn B meson-theoretic potential and the DBHF
approach to neutron matter. The purpose of this comparison
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was, mostly, to highlight the different philosophy of the
“single-shot” calculation as compared to the chiral approach,
where order-by-order and other uncertainty considerations
play a major role in the extraction and interpretation of
the result.

In line with the observed sensitivity of the
radius to, mainly, the pressure in NM at normal
density, and the fact that the meson-theoretic and
the chiral EoS are similar up to moderate densities,
the value we obtained for the radius of the M =
1.4M⊙ neutron star was close to those from the
chirally-based calculations.

Of course, the complete chiral 3NF at N3LO must be
included, as done in Drischler et al. [93]. Our approach
to fitting the cD and cE LECs is different, as the authors
of Drischler et al. [93] include nuclear matter saturation
properties in their fitting protocol, whereas we fit those
constants within the three-nucleon sector. We are presently
calculating the various contributions of the 3NF at N3LO
in the form of density-dependent effective interactions [97,
98] and noticed that the short-range terms [97] tend to
be very small. It will be interesting to see how the full

contribution impacts our calculations of the NM EoS and
related observables.
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Three-nucleon (3N) forces are an indispensable ingredient for accurate few-body

and many-body nuclear structure and reaction theory calculations. While the direct

implementation of chiral 3N forces can be technically very challenging, a simpler

approach is given by employing instead a medium-dependent NN interaction Vmed that

reflects the physics of three-body forces at the two-body normal-ordered approximation.

We review the derivation and construction of Vmed from the chiral 3N interaction

at next-to-next-to-leading order (N2LO), consisting of a long-range 2π-exchange

term, a mid-range 1π-exchange component, and a short-range contact-term. Several

applications of Vmed to the equation of state of cold nuclear and neutron matter,

the nucleon single-particle potential in nuclear matter, and the nuclear quasiparticle

interaction are discussed. We also explore differences in using local vs. non-local

regulating functions on 3N forces and make direct comparisons to exact results at low

order in perturbation theory expansions for the equation of state and single-particle

potential. We end with a discussion and numerical calculation of the in-medium NN

potential Vmed from the next-to-next-to-next-to-leading order (N3LO) chiral 3N force,

which consists of a series of long-range and short-range terms.

Keywords: chiral effective field theory, three-body forces, nuclearmatter, equation of state, nuclear reaction theory

1. INTRODUCTION

Three-nucleon forces are essential to any microscopic description of nuclear many-body systems,
from the structure and reactions of finite nuclei [1–4] to the equation of state and transport
properties of dense matter encountered in core-collapse supernovae and neutron stars [2, 5–13].
Three-body forces have been shown to dramatically improve the saturation properties of nuclear
matter [6, 7, 14], though there are still large uncertainties compared to the empirical saturation
energy and density. Three-nucleon forces are now also routinely implemented in a number of ab
initio many-body methods such as the no-core shell model [15], coupled-cluster theory [16, 17],
self-consistent Green’s function theory [18], the similarity renormalization group [19, 20], and
quantum Monte Carlo [3] to study nuclear ground-state and excited states up to medium-mass
nuclei. In particular, three-body forces have been shown to be especially relevant for understanding
the properties of neutron-rich nuclei out to the drip line [16, 18, 21, 22].
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In the past, it has been challenging [5] to obtain nuclear
two- and three-body forces that simultaneously fit well the
properties of finite nuclei and nuclear matter, but in recent
years, much progress has been achieved within the framework
of chiral effective field theory [23–27] to construct three-body
forces consistent with the employed two-body force, all within
a systematic power series expansion involving the ratio of the
physical scale Q to the chiral symmetry breaking scale 3χ ∼
1 GeV. In chiral effective field theory with explicit nucleon
and pion degrees of freedom only, three-nucleon forces appear
first at third order in the chiral expansion (Q/3χ )

3, or next-
to-next-to-leading (N2LO) order. These leading contributions
to the chiral three-nucleon force (3NF) are now routinely
employed in nuclear structure and reaction theory calculations,
but many-body contributions at N3LO [28–31] are expected to
be important.

In the present work, we will review how to implement three-
nucleon forces via medium-dependent two-body interactions
[6, 7, 32] in nuclear many-body calculations of the equation of
state, single-particle potential, and quasiparticle interaction. We
will show that this approach provides an excellent approximation
at first order in many-body perturbation theory by comparing
to exact results from three-body forces. At higher orders
in perturbation theory, the use of medium-dependent NN
interactions fail to reproduce all topologies, however, residual
three-body interactions have been shown [33] to give relatively
small contributions (∼ 1MeV) to the nuclear equation of state
at saturation density up to second order in perturbation theory.
We also consider several commonly used high-momentum
regulating functions for three-body forces and study their impact
on the density-dependent interaction Vmed. In particular, we
find that local regulators introduce large artifacts compared to
nonlocal regulators when the same value of the cutoff scale 3 is
used in both cases.

2. FROM THREE-BODY FORCES TO
MEDIUM-DEPENDENT TWO-BODY
FORCES

2.1. Chiral Three-Body Force at
Next-to-Next-to-Leading Order
The nuclear Hamiltonian can generically be written in the form

H =
∑

i

Ep 2
i

2M
+ 1

2

∑

ij

Vij +
1

6

∑

ijk

Vijk + · · · , (1)

where Epi is the momentum of nucleon i, Vij represents the two-
body interaction between particles i and j, and Vijk represents the
three-body interaction between particles i, j, k. Three-body forces
emerge first at N2LO in the chiral expansion and comprise three
different topologies represented diagrammatically in Figure 1.
The two-pion-exchange three-body force (Figure 1A), consists of
three terms proportional to the low-energy constants c1, c3, and
c4:

V
(2π)
3N =

∑

i6=j6=k

g2A
8f 4π

Eσi · Eqi Eσj · Eqj
( Eqi2 +m2

π )( Eqj2 +m2
π )

F
αβ

ijk
τα
i τ

β
j , (2)

FIGURE 1 | Diagrammatic contributions to the chiral three-nucleon force at

next-to-next-to-leading order (N2LO) in the chiral expansion: (A)

two-pion-exchange interaction, (B) one-pion-exchange interaction, and (C)

contact interaction.

where gA = 1.29 is the axial coupling constant,mπ = 138MeV is
the average pion mass, fπ = 92.2MeV is the pion decay constant,

Eqi = Ek′i − Eki is the change in momentum of nucleon i (i.e., the

momentum transfer), and the isospin tensor F
αβ

ijk
is defined by

F
αβ

ijk
= δαβ

(

−4c1m2
π + 2c3 Eqi · Eqj

)

+c4 ǫαβγ τ
γ

k
Eσk·

(

Eqi × Eqj
)

. (3)

The three low-energy constants c1, c3, and c4 can be fitted to
empirical pion-nucleon [34, 35] or nucleon-nucleon [36, 37]
scattering data.

The one-pion exchange term (Figure 1B), proportional to the
low-energy constant cD, has the form

V
(1π)
3N = −

∑

i6=j6=k

gAcD

8f 4π 3χ

Eσj · Eqj
Eqj2 +m2

π

Eσi · Eqj Eτi · Eτj , (4)

where the high-momentum scale is typically taken as
3χ = 700MeV. The three-nucleon contact force (Figure 1C),
proportional to cE reads:

V
(ct)
3N =

∑

i6=j6=k

cE

2f 4π 3χ

Eτi · Eτj . (5)

There are several different experimental observables commonly
used for fitting the low-energy constants cD and cE. Most
approaches fit the binding energies of A = 3 nuclei together
with one of the following observables: (a) the neutron-deuteron
doublet scattering length [38, 39], (b) the radius of 4He [40], (c)
the properties of light and medium-mass nuclei [41, 42], and (d)
the triton lifetime [43, 44].

Since the three-nucleon force V3N is symmetric under the
interchange of particle labels, there are only three independent
terms from the i, j, k permutations, which allows us to write

V3N = W1 + W2 + W3. For instance, W
(ct)
1 = cE

f 4π 3
Eτ2 · Eτ3.

The antisymmetrized three-body interaction V̄3N can be written
in terms of two-body antisymmetrization operators Pij as follows:

V̄3N = (1− P12)(1− P13 − P23)V3N , (6)

where

Pij =
(

1+ Eσi · Eσj
2

) (

1+ Eτi · Eτj
2

)

, Eki ←→ Ekj· (7)
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2.2. Density-Dependent NN Interaction at
Order N2LO
In second quantization, a three-body force V3N can be written as

V3N =
1

36

∑

123456

〈123|V̄3N |456〉â†
1â

†
2â

†
3â6â5â4 (8)

where V̄3N denotes the antisymmetrized three-body matrix

element, and a†
i (ai) are the usual creation (annihilation)

operators associated with state |i〉. A medium-dependent two-
body interaction can then be constructed by normal ordering
the three-body force with respect to a convenient reference state,
such as the ground state of the noninteractingmany-body system,
rather than the true vacuum as in Equation (8). Normal ordering
with respect to the noninteracting ground state then produces a
three-body force of the form

V3N =
1

6

∑

ijk

〈ijk|V̄3N |ijk〉 +
1

2

∑

ij14

〈ij1|V̄3N |ij4〉 :â†
1â4:

+ 1

4

∑

i1245

〈i12|V̄3N |i45〉 :â†
1â

†
2â5â4:

+ 1

36

∑

123456

〈123|V̄3N |456〉 :â†
1â

†
2â

†
3â6â5â4:, (9)

where :Ô: denotes normal ordering of operator Ô. In practice the
construction of the medium-dependent two-body force

1

4

∑

i1245

〈i12|V̄3N |i45〉 :â†
1â

†
2â5â4: (10)

then amounts to summing the third particle over the filled
states in the noninteracting Fermi sea, involving spin and isospin
summations as well as momentum integration:

V̄med =
∑

s3t3

∫

d3k3

(2π)3
θ(kf − k3)(1− P13 − P23)V3N , (11)

where kf is the Fermi momentum and we have absorbed the
particle exchange operator (1 − P12) into the definition of
the antisymmetrized medium-dependent NN interaction V̄med.
In general, there are nine different diagrams that need to be
evaluated independently: (1−P13−P23)(W1+W2+W3), which
correspond to different closings of one incoming and outgoing
particle line.

As a simple example, we compute the density-dependent NN
interaction arising from the three-body contact term at N2LO
shown diagrammatically in Figure 2 (f ). We begin by evaluating
the spin and isospin traces in Equation (11):

Trσ3τ3
[

(1− P13 − P23)(Eτ2 · Eτ3 + Eτ1 · Eτ3 + Eτ1 · Eτ2)
]

(12)

= Trσ3τ3 (Eτ2 · Eτ3 + Eτ1 · Eτ3 + Eτ1 · Eτ2)− Trσ3τ3
[(

1+ Eσ1 · Eσ3
2

1+ Eτ1 · Eτ3
2

)

(Eτ2 · Eτ3 + Eτ1 · Eτ3 + Eτ1 · Eτ2)
]

− Trσ3τ3

[(

1+ Eσ2 · Eσ3
2

1+ Eτ2 · Eτ3
2

)

(Eτ2 · Eτ3 + Eτ1 · Eτ3 + Eτ1 · Eτ2)
]

= 4Eτ1 · Eτ2 −
1

4
Trσ3τ3 (Eτ1 · Eτ2 + (Eτ1 · Eτ3)(Eτ2 · Eτ3)+ (Eτ1 · Eτ3)(Eτ1 · Eτ3))

− 1

4
Trσ3τ3 (Eτ1 · Eτ2 + (Eτ2 · Eτ3)(Eτ2 · Eτ3)+ (Eτ2 · Eτ3)(Eτ1 · Eτ3))

= 2Eτ1 · Eτ2 −
1

2
(4Eτ1 · Eτ2 + 12) = −6,

where we have used the well known properties of Pauli matrices:
TrEσ = 0, Tr1 = 2, Tr3(Eτi · Eτ3)(Eτj · Eτ3) = 2Eτi · Eτj, and Eτi · Eτi = 3.
The integration over filled momentum states is trivial:

∫

d3k3

(2π)3
θ(kf − k3)

cE

f 4π3χ

= 1

2π2

k3
f

3

cE

f 4π3χ

, (13)

which gives a final result of

V
(ct)
med
= −

cEk
3
f

π2f 4π3χ

. (14)

This particularly simple three-body contact interaction gives
rise to a momentum-independent effective two-body interaction.
For the more complicated 1π- and 2π-exchange topologies,
it is convenient to consider the on-shell scattering (|Ep | =
|Ep ′|) of two nucleons in the center-of-mass frame: N1(Ep ) +
N2(−Ep ) → N1(Ep ′) + N2(−Ep ′). This assumption results in a
medium-dependent 2N interaction with the same isospin and
spin structures as the free-space 2N potential, which allows for a
simple decomposition of Vmed into partial-wave matrix elements
as we show in section 4.1. In the more general case N1(Ep1) +
N2(Ep2) → N1(Ep3) + N2(Ep4), the in-medium 2N interaction
will contain operator structures depending on the center-of-mass
momentum EP = Ep1 + Ep2 = Ep3 + Ep4. Such contributions have
been shown to be small in practice [45]. In the applications
discussed below, higher-order perturbative contributions to the
ground state energy and single-particle energies involve also
off-shell matrix elements of the interaction 〈Ep ′|V|Ep 〉, where
|Ep | 6= |Ep ′|. In such cases we use as an approximation the
substitution p2 → 1

2 (p
2+p′ 2) in the formulas derived below. The

resulting interaction can then be straightfowardly implemented
into modern nuclear structure codes. We will explicitly test some
of the approximations noted above by comparing exact results
at low order in perturbation theory using the full three-body
force to the results using instead the medium-dependent 2N
interaction.

Note that in the above derivation of the density-dependent

2N interaction associated with V
(ct)
3N , we have not applied a high-

momentum regulator, which would be necessary to eliminate
the components of the nuclear interaction that lie beyond the
breakdown scale of the effective field theory. In the case of
nucleon-nucleon potentials, the cutoff scale is typically chosen
3 . 700MeV, beyond which the introduction of a new
dynamical degree of freedom (the ρ meson with mass mρ =
770MeV) would be required. On the other hand, in order to
fit empirical nucleon-nucleon scattering phase shift data up to
laboratory energies of Elab = 350MeV, the cutoff is normally
chosen 3 & 414MeV (the relative momentum in the center-
of-mass frame corresponding to Elab = 350MeV). In practice,
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FIGURE 2 | Diagrammatic contributions to the density-dependent NN interaction derived from the N2LO chiral three-nucleon force: (A) one-pion-exchange

propagator correction, (B) one-pion-exchange vertex correction, (C) Pauli-blocked two-pion exchange correction, (D) short-range one-pion-exchange vertex

correction, (E) contact interaction vertex correction, and (F) two-body contact interaction.

it is found that relatively low values of the momentum-space
cutoff 3 . 500MeV lead to perturbative nucleon-nucleon
potentials, which are suitable for a wide range of methods to solve
the quantum many-body problem. Such low-cutoff potentials,
however, exhibit larger artifacts in calculations of the density-
dependent ground state energy of nuclear matter and single-
particle potential as we will discuss explicitly below. While the
choice of cutoff scale is well motivated, the regulating function
can take various forms. Traditionally, an exponential regulator in
the incoming and outgoing relative momenta is chosen:

f (p′, p) = exp[−(p′/3)2n − (p/3)2n], (15)

where Ep = 1
2 (Ep1 − Ep2) and Ep ′ = 1

2 (Ep3 − Ep4) for the general two-
body scattering process N(Ep1) + N(Ep2) → N(Ep3) + N(Ep4), and
n is an integer chosen such that the regulator affects only high
powers in the chiral expansion. More recently [27, 46], the pion-
exchange components of the nucleon-nucleon interaction have
been regularized in coordinate space according to

Vπ (Er )
[

1− e−r
2/R2

]

, (16)

where 0.8 fm ≤ R ≤ 1.2 fm, while the contact terms in
the nuclear potential were regularized according to Equation
(15) above. In previous calculations [47, 48] of the medium-
dependent 2N force Vmed, we have imposed the nonlocal
regulating function above only after the momentum-space
integration over k3 is performed. This choice led to simplified
analytical expressions for the density-dependent NN interaction
in cold nuclear matter. A three-body regulator that treats all
particles symmetrically can be defined by [49]

W3 −→W3F(q1, q2) =W3 exp[−(q1/3)4 − (q2/3)4], (17)

where Eq1 = Ep ′1−Ep1 and Eq2 = Ep ′2−Ep2 are themomentum transfers
for particles 1 and 2 in W3. Analogous expressions hold for the
contributions W1 −→ W1F(q2, q3) and W2 −→ W2F(q1, q3).
This choice of regulating function leads to more complicated
expressions for the density-dependent 2N interaction since now
the regulator in general can involve the momentum k3 over
which we integrate. More importantly, the local regulator in
Equation (17) leads to much stronger cutoff artifacts for the
same choice of scale (3loc = 3nonloc) as we will demonstrate in
the following. Additional discussion regarding the role of cutoff
artifacts on nuclear many-body calculations can be found in
Dyhdalo et al. [50].

To start, when we employ the local regulator in Equation
(17), we now find for the density-dependent NN interaction in
isospin-symmetric nuclear matter:

V
(ct)
med
= cE

2π2f 4π3χ

[4

3
k3f Eτ1 · Eτ2F2(q2,3)− 2Eτ1 · Eτ2F(q2,3)Ŵ̃4(p)

−3Ŵ′4(p, q)
]

, (18)

where

F(q2,3) = e−q
4/34

, (19)

Ŵ̃4(p) =
∫ kf

0
dk

∫ 1

−1
dx k2 F(p2 + k2 + 2pkx,3), (20)

Ŵ′4(p, q) =
∫ kf

0
dk

∫ 1

−1
dx

∫ 2π

0
dφ

k2

2π
F(p2 + k2

+kx
√

4p2 − q2 + qk
√

1− x2 cosφ,3)

×F(p2 + k2 + kx

√

4p2 − q2 − qk
√

1− x2 cosφ,3).

(21)

In the limit of large 3 we find that F(q2,3) → 1, Ŵ̃4(p) →
2k3

f

3 , and Ŵ′4(p, q) →
2k3

f

3 . Thus, in this limit we clearly recover
Equation (14).

Previously, for the in-medium pion self-energy correction
(Figure 2A), with no regulator we found

Vmed,1
NN =

g2Ak
3
f

3π2f 4π
Eτ1 · Eτ2

Eσ1 · Eq Eσ2 · Eq
(m2

π + q2)2

(

2c1m
2
π + c3q

2
)

. (22)

With the local regulator in Equation (17) we now find

Vmed,1
NN =

g2Ak
3
f

3π2f 4π
Eτ1 · Eτ2

Eσ1 · Eq Eσ2 · Eq
(m2

π + q2)2

(

2c1m
2
π + c3q

2
)

F2(q2,3).

(23)
Previously, for the Pauli-blocked vertex correction (Figure 2B),
we found

Vmed,2
NN = g2A

8π2f 4π
Eτ1 · Eτ2

Eσ1 · Eq Eσ2 · Eq
m2

π + q2
(

− 4c1m
2
π [Ŵ0 + Ŵ1]− (c3 + c4)[q

2(Ŵ0 + 2Ŵ1 + Ŵ3)+ 4Ŵ2]
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+4c4
[2

3
k3f −m2

πŴ0

])

. (24)

When the local regulators are employed, we now find that the
p-dependent auxiliary functions Ŵi must be replaced by

Ŵ̃0(p) =
∫ kf

0
dk

∫ 1

−1
dx

k2

m2
π + p2 + k2 + 2pkx

F(p2+k2+2pkx,3),

(25)

Ŵ̃1(p) =
∫ kf

0
dk

∫ 1

−1
dx

k3 x/p

m2
π + p2 + k2 + 2pkx

F(p2+k2+2pkx,3),

(26)

Ŵ̃2(p) =
∫ kf

0
dk

∫ 1

−1
dx

k4(1− x2)/2

m2
π + p2 + k2 + 2pkx

F(p2+k2+2pkx,3),

(27)

Ŵ̃3(p) =
∫ kf

0
dk

∫ 1

−1
dx

k4(3x2 − 1)/(2p2)

m2
π + p2 + k2 + 2pkx

F(p2+k2+2pkx,3),

(28)
where the versions of these functions without the superscript
tildes in Equation (24) can be obtained by setting 3 → ∞. In

addition, the term 4c4

[

2k3
f

3

]

in Vmed,2
NN must be replaced with

the quantity

4c4

[

2k3
f

3

]

−→ 4c4

∫ kf

0
dk

∫ 1

−1
dx k2 F(p2 + k2 + 2pkx,3)

≡ 4c4Ŵ̃4(p). (29)

Then the revised Pauli-blocked vertex correction has the form

Vmed,2
NN = g2A

8π2f 4π
Eτ1 · Eτ2

Eσ1 · Eq Eσ2 · Eq
m2

π + q2

(

−4c1m2
π [Ŵ̃0 + Ŵ̃1]

−(c3 + c4)[q
2(Ŵ̃0 + 2Ŵ̃1 + Ŵ̃3)+ 4Ŵ̃2]

+4c4
[

Ŵ̃4 −m2
π Ŵ̃0

])

F(q2,3). (30)

Previously, we found for the Pauli-blocked two-pion-exchange
interaction (Figure 2C),

Vmed,3
NN = g2A

16π2f 4π
{−12c1m2

π

[

2Ŵ0 − (2m2
π + q2)G0

]

− c3[8k
3
f − 12(2m2

π + q2)Ŵ0 − 6q2Ŵ1 + 3(2m2
π + q2)2G0]

+4c4Eτ1 · Eτ2(Eσ1 · Eσ2q2 − Eσ1 · Eq Eσ2 · Eq)G2

− (3c3 + c4Eτ1 · Eτ2)i(Eσ1 + Eσ2) · (Eq× Ep)
×[2Ŵ0 + 2Ŵ1 − (2m2

π + q2)(G0 + 2G1)]

−12c1m2
π i(Eσ1 + Eσ2) · (Eq× Ep)[G0 + 2G1]

+4c4Eτ1 · Eτ2 Eσ1 · (Eq× Ep)Eσ2 · (Eq× Ep)[G0 + 4G1 + 4G3]}.(31)

When substituting in the local regulator functions we obtain

Vmed,3
NN = g2A

16π2f 4π
{−12c1m2

π

[

2Ŵ′0 − (2m2
π + q2)G′0

]

−c3[12Ŵ′4 − 12(2m2
π + q2)Ŵ′0 − 6q2Ŵ′1

+3(2m2
π + q2)2G′0]+ 4c4Eτ1 · Eτ2(Eσ1 · Eσ2q2 − Eσ1 · Eq Eσ2 · Eq)G′2

−(3c3 + c4Eτ1 · Eτ2)i(Eσ1 + Eσ2) · (Eq× Ep)
[2Ŵ′0 + 2Ŵ′1 − (2m2

π + q2)(G′0 + 2G′1)]

−12c1m2
π i(Eσ1 + Eσ2) · (Eq× Ep)[G′0 + 2G′1]

+4c4Eτ1 · Eτ2 Eσ1 · (Eq× Ep)Eσ2 · (Eq× Ep)[G′0 + 4G′1 + 4G′3]}. (32)

In the above expressions we encounter the p- and
q-dependent functions

G′0,∗,∗∗(p, q) =
∫ kf

0
dk

∫ 1

−1
dx

∫ 2π

0
dφ
{k2, k4, k6}/(2π)
A2 − B2 cos2 φ

F(p2 + k2 + kx

√

4p2 − q2 + qk
√

1− x2 cosφ,3)

F(p2 + k2 + kx

√

4p2 − q2

− qk
√

1− x2 cosφ,3), (33)

where A = m2
π + p2 + k2 + kx

√

4p2 − q2 and B = qk
√
1− x2.

In Equation (33), the functions G0,∗,∗∗(p, q) are obtained from
Equation (33) by substituting 3→∞. In addition we encounter
the following p- and q-dependent functions

G′1(p, q) =
Ŵ′0 − (m2

π + p2)G′0 − G′∗
4p2 − q2

, (34)

G′1∗(p, q) =
3Ŵ′2 + p2Ŵ′3 − (m2

π + p2)G′∗ − G′∗∗
4p2 − q2

, (35)

G′2(p, q) = (m2
π + p2)G′1 + G′∗ + G′1∗, (36)

G′3(p, q) =
1
2Ŵ
′
1 − 2(m2

π + p2)G′1 − 2G′1∗ − G′∗
4p2 − q2

, (37)

where

Ŵ′0(p, q) =
∫ kf

0
dk

∫ 1

−1
dx

∫ 2π

0
dφ

k2/(2π)

m2
π + p2 + k2 + kx

√

4p2 − q2 + qk
√
1− x2 cosφ

×F(p2 + k2 + kx

√

4p2 − q2 + qk
√

1− x2 cosφ,3)

×F(p2 + k2 + kx

√

4p2 − q2 − qk
√

1− x2 cosφ,3), (38)

Ŵ′1(p, q) =
∫ kf

0
dk

∫ 1

−1
dx

∫ 2π

0
dφ

k3[x
√

4p2 − q2 + q
√
1− x2 cosφ]/(4πp2)

m2
π + p2 + k2 + kx

√

4p2 − q2 + qk
√
1− x2 cosφ

×F(p2 + k2 + kx

√

4p2 − q2 + qk
√

1− x2 cosφ,3)

×F(p2 + k2 + kx

√

4p2 − q2 − qk
√

1− x2 cosφ,3), (39)
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Ŵ′2(p, q) =
∫ kf

0
dk

∫ 1

−1
dx

∫ 2π

0
dφ

k4
[

4p2 −
(

x
√

4p2 − q2 + q
√
1− x2 cosφ

)2
]

/(16πp2)

m2
π + p2 + k2 + kx

√

4p2 − q2 + qk
√
1− x2 cosφ

×F(p2 + k2 + kx

√

4p2 − q2 + qk
√

1− x2 cosφ,3)

×F(p2 + k2 + kx

√

4p2 − q2 − qk
√

1− x2 cosφ,3), (40)

Ŵ′3(p, q) =
∫ kf

0
dk

∫ 1

−1
dx

∫ 2π

0
dφ

k4
[

3
(

x
√

4p2 − q2 + q
√
1− x2 cosφ

)2
− 4p2

]

/(16πp4)

m2
π + p2 + k2 + kx

√

4p2 − q2 + qk
√
1− x2 cosφ

×F(p2 + k2 + kx

√

4p2 − q2 + qk
√

1− x2 cosφ,3)

×F(p2 + k2 + kx

√

4p2 − q2 − qk
√

1− x2 cosφ,3), (41)

Additionally, we have replaced the quantity 8k3
f
in Equation (21)

with 12Ŵ′4 defined in Equation (31). The term 8k3
f
in Equation

(31) as well as all unprimed Ŵ and G functions can be obtained
by setting 3 → ∞. For the cD vertex correction to one-pion
exchange (Figure 2D), we previously had

Vmed,4
NN = −

gAcDk
3
f

12π2f 4π3χ

Eσ1 · Eq Eσ2 · Eq
m2

π + q2
Eτ1 · Eτ2. (42)

Including the local regulators we find

Vmed,4
NN = − gAcD

8π2f 4π3χ

Eσ1 · Eq Eσ2 · Eq
m2

π + q2
Eτ1 · Eτ2

(

4

3
k3f F(q

2,3)− Ŵ′4

)

.

(43)
For the cD vertex correction to the 2N contact term (Figure 2E),
we previously had

Vmed,5
NN = gAcD

16π2f 4π3χ

{

Eτ1 · Eτ2
[

2Eσ1 · Eσ2Ŵ2 +
(

Eσ1 · Eσ2
(

2p2 − q2

2

)

+Eσ1 · Eq Eσ2 · Eq
(

1− 2p2

q2

)

− 2

q2
Eσ1 · (Eq× Ep)Eσ2 · (Eq× Ep)

)

(Ŵ0 + 2Ŵ1 + Ŵ3)
]

+ 4k3f − 6m2
πŴ0

}

. (44)

Including the local regulators we obtain

Vmed,5
NN = gAcD

16π2f 4π3χ

{

Eτ1 · Eτ2
[

2Eσ1 · Eσ2Ŵ̃2

+
(

Eσ1 · Eσ2
(

2p2 − q2

2

)

+ Eσ1 · Eq Eσ2 · Eq
(

1− 2p2

q2

)

− 2

q2
Eσ1 · (Eq× Ep)Eσ2 · (Eq× Ep)

)

(Ŵ̃0 + 2Ŵ̃1 + Ŵ̃3)

]

+ 6Ŵ̃4 − 6m2
π Ŵ̃0

}

F(q2,3). (45)

We reiterate that the above expressions are obtained in
the center-of-mass frame assuming on-shell scattering
conditions. In all cases, the expressions for the in-medium
2N interaction above are well-behaved (no poles) and involve
only elementary integrations.

3. APPLICATIONS OF DENSITY-
DEPENDENT 2N INTERACTIONS TO
NUCLEAR MANY-BODY SYSTEMS

3.1. Equation of State of Cold Nuclear
Matter
The equation of state of nuclear matter gives important insights
into many properties of finite nuclei, including the volume and
symmetry energy contributions to the binding energy in the
semi-empirical mass formula, the saturated central density of
medium-mass and heavy nuclei, as well as nuclear collective
excitation modes and giant resonances. The equation of state
is also essential for modeling neutron stars [51–59], including
their birth in core-collapse supernovae, their radii as a function
of mass, their tidal deformabilities in the presence of compact
binary companions, and their moments of inertia. For relatively
soft equations of state, the central densities of typical neutron
stars with mass M ≃ 1.4M⊙ reach n ≃ 3n0 [60], where
n0 = 0.16 fm−3 is the nucleon number density in the saturated
interior of heavy nuclei. At such densities, three-body forces give
a large contribution to the pressure and are therefore critical for
understanding neutron star structure.

The first-order perturbative contribution (Hartree-Fock
approximation) to the ground state energy of isospin-symmetric
nuclear matter is given by

E
(1)
2N =

1

2

∑

12

〈12|V̄2N |12〉n1n2, (46)

for the antisymmetrized two-body force V̄2N and

E
(1)
3N =

1

6

∑

123

〈123|V̄3N |123〉n1n2n3, (47)

for the antisymmetrized three-body force V̄3N . In the above

equations, ni = θ(kf − |Eki|) is the zero-temperature Fermi-Dirac
distribution function with Fermi momentum kf , and the sum
is taken over the momentum, spin, and isospin of the occupied
states in the Fermi sea.

In Figure 3, we show the density-dependence of the Hartree-
Fock contribution to the ground state energy of isospin-
symmetric nuclear matter from the N2LO chiral three-nucleon
force in different approximations. As a representative example,
we consider the low-energy constants c1 = −0.81GeV−1,
c3 = −3.4GeV−1, c4 = 3.4GeV−1, cD = −0.24, and
cE = −0.106 obtained in Coraggio et al. [61] and associated
with the N3LO NN chiral interaction with cutoff scale 3 =
450MeV. We see that in all cases the first-order perturbative
contribution from three-body forces in isospin-symmetric matter
is strongly repulsive. The exact treatment of the Hartree-Fock
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contribution to the ground state energy arising from the N2LO
three-nucleon force is shown in Figure 3 as the thick black line
labeled “V3→∞

3N, exact.” Employing instead the density-dependent
NN interaction Vmed with 3 → ∞ we obtain the contribution
shown with the thin blue line and labeled “V3→∞

med
.” Note that

in order to avoid triple-counting when the density-dependent
NN interaction Vmed is used in Equation (46), we must replace
V̄2N → 1

3 V̄med. From Figure 3, we observe that at the Hartree-
Fock level the density-dependent NN interaction accurately
reflects the physics encoded in the full three-body force. This
is not a trivial observation since several approximations were
employed to derive the density-dependent NN interaction from
V3N . In Figure 3, we see that the largest deviation in the two
curves is only 1MeV (or≃ 3%) at n = 0.32 fm−3.

Imposing the nonlocal regulator in Equation (15) leads to
the red dot-dashed line labeled “V3

med, nonloc
.” As expected, the

presence of the momentum-space cutoff reduces the Hartree-
Fock contribution to the ground-state energy, particularly at
high densities. However, the cutoff artifacts introduced are rather
small and amount to only 0.8MeV (or≃ 2%) relative to the result
from V3→∞

med
at n = 0.32 fm−3. We note that since the Hartree-

Fock contribution to the ground state energy E/A is always
finite and probes only the characteristic physical energy scale of
the system, the differences between V3→∞

med
and V3

med, nonloc
are

true regulator artifacts. We next impose the local regulator in
Equation (17), which is shown as the dotted green line in Figure 3
and labeled “V3

med, loc
.” For this choice of regulator we find severe

cutoff artifacts, even at low densities where one would expect the
role of the regulating function to be minimal. For example, at
n = 0.10 fm−3, there is a 19% relative error between V3→∞

med

and V3
med, loc

. From Equation (17), we expect the regulator to

introduce corrections at order (Q/3)4 ∼ (kf /3)4. The Fermi
momentum at this density is kf = 225MeV, which for the

3 = 450MeV chiral potential implies an error of (kf /3)4 ≃ 6%.
One key difference between the non-local and local regulators of
Equations (15) and (17) is that the relative momentum ranges
from 0 < k < kf while the momentum transfer ranges from 0 <

q < 2kf . Therefore, one naturally expects larger cutoff artifacts
for the local regulating function in Equation (17). Indeed, when
the value of the momentum-space cutoff is increased to 23, as
can be seen from the dashed green curve of Figure 3, the results
from employing the local regulator are now comparable to those
using the non-local regulator.

In Figure 4, we show the density-dependence of the Hartree-
Fock contribution to the ground state energy of pure neutron
matter from the N2LO chiral three-nucleon force in different
approximations. Again we consider the low-energy constants
c1 = −0.81GeV−1, c3 = −3.4GeV−1, c4 = 3.4GeV−1,
cD = −0.24, and cE = −0.106 associated with the N3LO NN
chiral interaction with cutoff scale 3 = 450MeV. However, in
pure neutron matter the Hartree-Fock contribution from three-
body forces is independent of c4, cD, and cE. We show as the
thick black line labeled “V3→∞

3N, exact” in Figure 4, the Hartree-Fock
contribution to the ground-state energy of pure neutron matter.
Employing the density-dependent NN interaction Vmed with
3→∞we obtain the contribution shownwith the thin blue line

FIGURE 3 | Hartree-Fock contribution to the ground-state energy of

isospin-symmetric nuclear matter as a function of density due to the N2LO

chiral three-nucleon force with cutoff scale 3 = 450MeV.

labeled “V3→∞
med

.” Again, at the Hartree-Fock level the density-
dependent NN interaction very accurately reproduces the result
from the full three-body force.

Inserting the nonlocal regulator in Equation (15) we find
the red dot-dashed line labeled “V3

med, nonloc
.” The non-local

regulator preserves the property that none of the three-body
force terms proportional to c4, cD, and cE contribute to the
ground-state energy of pure neutron matter. We find that the
momentum-space cutoff reduces the Hartree-Fock contribution
to the ground-state energy even more than that in isospin-
symmetric nuclear matter. This is due to the larger neutron
Fermi momentum (compared to the nucleon Fermi momentum
in isospin-symmetric nuclear matter at the same density). The
cutoff artifacts introduced are nevertheless relatively small and
amount to 2MeV at n = 0.32 fm−3. Finally, we impose the local
regulator in Equation (17) to obtain the dotted green line labeled
“V3

med, loc
” in Figure 4. Again, the cutoff artifacts are very large.

For example, at n = 0.10 fm−3, there is now a 34% relative error
between V3→∞

med
and Vmed, loc. At this density, the maximum

momentum transfer is q = 2kf ≃ 570MeV, which is clearly
problematic for the chosen cutoff 3 = 450MeV. In addition
to larger artifacts, the local regulator also induces contributions
to the density-dependent NN interaction in pure neutron matter
that now depend on the low-energy constants c4, cD, and cE. In
the case of pure neutron matter, diagrams (d), (e), and (f ) in

Figure 2 produce Vmed,4
NN = Vmed,5

NN = Vmed,6
NN = 0 with either

the nonlocal regulator or no regulator at all. Instead, for the local
regulator we find

Vmed,4
NN = − gAcD

8π2f 4π3χ

Eσ1 · Eq Eσ2 · Eq
m2

π + q2

(

2

3
k3f F(q

2,3)− Ŵ′4

)

, (48)

which indeed vanishes when the local regulators are replaced by
1. For the cD vertex correction to the 2N contact term with local
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FIGURE 4 | Hartree-Fock contribution to the ground-state energy of pure

neutron matter as a function of density due to the N2LO chiral three-nucleon

force with cutoff scale 3 = 450MeV.

regulators we obtain

Vmed,5
NN = gAcD

16π2f 4π3χ

{

2Eσ1 · Eσ2Ŵ̃2 +
(

Eσ1 · Eσ2
(

2p2 − q2

2

)

+Eσ1 · Eq Eσ2 · Eq
(

1− 2p2

q2

)

− 2

q2
Eσ1 · (Eq× Ep)Eσ2 · (Eq× Ep)

)

(Ŵ̃0 + 2Ŵ̃1 + Ŵ̃3)

+2Ŵ̃4 − 2m2
π Ŵ̃0

}

F(q2,3), (49)

where Ŵ̃4(p) is defined in Equation (20). Finally, the three-body
contact term with the local regulator leads to

Vmed,6
NN = cE

2π2f 4π3χ

[

2

3
k3f F

2(q2,3)− 2F(q2,3)Ŵ̃4(p)

−Ŵ′4(p, q)+
4

3
k3f F(q

2,3)

]

. (50)

Again, this term vanishes when the regulating functions are set
to 1. These additional terms have been included in the present
calculation of the dotted green line in Figure 4. Substituting3→
23 into the nonlocal regulator again reduces the cutoff artifacts,
as seen in the dashed green curve of Figure 4.

The inclusion of three-body forces in the nuclear equation
of state beyond the Hartree-Fock approximation remains
challenging. While several recent works [33, 62] have computed
the exact second-order contribution to the equation of state from
three-body forces, the use of derived density-dependent two-
body interactions allows for an approximate treatment up to
third order in perturbation theory [61, 63]:

E(2) = −1

4

∑

1234

∣

∣〈12
∣

∣V̄eff

∣

∣ 34〉
∣

∣

2 n1n2n̄3n̄4

e3 + e4 − e1 − e2
, (51)

FIGURE 5 | Equation of state of isospin-symmetric nuclear matter from chiral

two- and three-body forces with different choices of the momentum-space

cutoff 3 and at different orders in many-body perturbation theory. The label E (i)

denotes the i-th order in perturbation theory, and 6(n) denotes the n-th order

treatment of the self-energy. The shaded region below n = 0.08 fm−3

represents the approximate location of the spinodal instability.

E
(3)
pp =

1

8

∑

123456

〈12
∣

∣V̄eff

∣

∣ 34〉〈34
∣

∣V̄eff

∣

∣ 56〉〈56
∣

∣V̄eff

∣

∣ 12〉

n1n2n̄3n̄4n̄5n̄6

(e3 + e4 − e1 − e2)(e5 + e6 − e1 − e2)
, (52)

E
(3)
hh
= 1

8

∑

123456

〈12
∣

∣V̄eff

∣

∣ 34〉〈34
∣

∣V̄eff

∣

∣ 56〉〈56
∣

∣V̄eff

∣

∣ 12〉

n̄1n̄2n3n4n5n6

(e1 + e2 − e3 − e4)(e1 + e2 − e5 − e6)
, (53)

E
(3)
ph
= −

∑

123456

〈12
∣

∣V̄eff

∣

∣ 34〉〈54
∣

∣V̄eff

∣

∣ 16〉〈36
∣

∣V̄eff

∣

∣ 52〉

n1n2n̄3n̄4n5n̄6

(e3 + e4 − e1 − e2)(e3 + e6 − e2 − e5)
, (54)

where n̄j = 1 − nj and Veff = V2N + Vmed. The intermediate-
state single-particle energies ei in Equations (51)−(54) can be
treated in several different approximations. In the simplest case,
they are taken as the free-space energies: e(k) = k2/2M. More
generally, they can be dressed with interaction lines [64] in
which case e(k) = k2/2M + ℜ6(e(k), k), where 6(e(k), k) is
the self-consistent energy- and momentum-dependent nucleon
self energy.

Third-order diagrams [61] and fourth-order diagrams [33]
are found to give rather small contributions (∼ 2MeV) to the
equation of state up to n = 1.5n0 for potentials with momentum-
space cutoffs 3 ≃ 400 − 500MeV. However, the intermediate-
state energies in Equations (51)−(54) should be treated at least
to second order [63] in a perturbative expansion of the self-
energy. In Figure 5, we plot the equation of state of isospin-
symmetric nuclear matter for several different choices of the
cutoff scale3 = 414, 450, 500MeV (represented by red, blue, and
green colors, respectively) and orders in many-body perturbation
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theory (denoted by the symbol). In all cases we employ an N3LO
chiral nucleon-nucleon interaction with only the N2LO chiral
three-body force with low-energy constants fitted to the binding
energies of 3H and 3He as well as the beta-decay lifetime of 3H.
For the density-dependent three-body force we use the nonlocal
regulator in Equation (15). From Figures 3, 4, we see that the
local regulator in Equation (17) would be highly constraining
and only allow for a meaningful calculation of the nuclear
equation of state below saturation density. In Figure 5, the
dotted lines denote the inclusion of second-order ground-state
energy diagrams (E(2)) with first-order self energies (6(1)) for
the intermediate-state propagators. The dashed lines denote the
inclusion of second-order ground-state energy diagrams (E(2))
with second-order self energies (6(2)) for the intermediate-state
propagators. From Figure 5, we see that the second-order self
energy diagrams contribute 2−3MeV to the ground state energy
per particle for densities n ≥ 0.16 fm−3. Finally, the solid lines
denote the inclusion of third-order ground-state energy diagrams
[E(3)] with second-order self energies [6(2)] for the intermediate-
state propagators. In general, the sum of all third-order diagrams
gives a relatively small contribution to the equation of state
around saturation density. However, below the critical density
for the spinodal instability (nc ≃ 0.08 fm−3) [65], denoted by
the blue shaded region in Figure 5, the third-order diagrams give
somewhat large effects due to the breakdown of perturbation
theory. Nevertheless, the saturation of nuclear matter is robust
and both the empirical saturation density and energy are within
the uncertainties predicted from chiral nuclear forces. We note
that the ground state energy from the N3LO-414 and N3LO-
450 chiral potentials are very similar in all approximations. Both
potentials are known to converge very rapidly in perturbation
theory compared to the N3LO-500 potential [63], which may
partly explain the similarity of their results.

3.2. Nucleon-Nucleus Optical Potentials
The theoretical description of nucleon-nucleus scattering and
reactions can be greatly simplified through the introduction of
optical model potentials, which replace the complicated two- and
many-body interactions between projectile and target with an
average one-body potential. In many-body perturbation theory,
the optical potential can be identified as the nucleon self-energy,
which in general is complex, non-local, and energy dependent:

V(Er, Er ′;E) = U(Er, Er ′;E)+ iW(Er, Er ′;E). (55)

While phenomenological optical potentials [66] are fitted to a
great amount of differential elastic scattering, total cross section,
and analyzing power data, microscopic optical potentials can be
constructed from high-precision two-nucleon and three-nucleon
forces [67–71]. In chiral effective field theory, three-nucleon
forces in particular have been shown [64, 72] to give rise to an
overall repulsive single-particle potential at all projectile energies
that increases strongly with the density of the medium. Three-
nucleon forces are therefore essential for an accurate description
of nucleon-nucleus scattering at moderate energies where the
projectile penetrates the target nucleus.

FIGURE 6 | Hartree-Fock contribution to the nucleon self energy in symmetric

nuclear matter at saturation density n0 from the N2LO chiral three-nucleon

force with cutoff scale 3 = 450MeV. Results are shown for an exact treatment

as well as from the density-dependent interaction Vmed with different choices

of regulating function (see text).

In the Hartree-Fock approximation, the contribution to
the non-local (but energy-independent) nucleon self energy is
given by

6
(1)
2N(q) =

∑

1

〈Eq Eh1ss1tt1|V̄2N |Eq Eh1ss1tt1〉n1, (56)

where V̄2N denotes the antisymmetrized NN potential, n1 =
θ(kf − |Eh1|) is the zero-temperature Fermi-Dirac distribution
function, and the sum is taken over the momentum, spin, and

isospin of the intermediate hole state |Eh1, s1, t1〉. The Hartree-
Fock contribution from three-body forces is given by

6
(1)
3N(q) =

1

2

∑

12

〈Eq Eh1Eh2; ss1s2; tt1t2|V̄3N |Eq Eh1Eh2; ss1s2; tt1t2〉n1n2,

(57)
where V̄3N is the fully-antisymmetrized three-body interaction.
We have computed the Hartree-Fock contribution to the single-
particle energy exactly [64] from Equation (57) as well as from
Equation (56) using the density-dependent NN interaction Vmed.
Note that in order to avoid double-counting we must replace
V̄2N → 1

2 V̄med in Equation (56).
In Figure 6, we demonstrate the accuracy of using the density-

dependent NN interaction in place of the full three-body force
when computing the Hartree-Fock contribution to the nucleon
self energy. Specifically, we plot the momentum-dependent
nucleon self-energy (note that both the 2N and 3N Hartree-
Fock contributions are real and energy independent) in isospin-
symmetric nuclear matter at saturation density n0. The thick
black curve labeled “V3

3N,exact” is the exact result without a high-

momentum regulator. The thin blue curve labeled “V3→∞
med

” is
obtained from the density-dependent NN interaction without
regulator.We see that there is a systematic difference of 1−2MeV
(or about 5%) between the two results across all momenta. This
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FIGURE 7 | Hartree-Fock contribution to the nucleon self energy at the Fermi

momentum (p = kf ) in symmetric nuclear matter as a function of density from

the N2LO chiral three-nucleon force with cutoff scale 3 = 450MeV. Results

are shown for an exact treatment as well as from the density-dependent

interaction Vmed with different choices of regulating function (see text).

difference represents the inherent error introduced through the
approximations employed in constructing the density-dependent
NN interaction. Except for this systematic reduction in the
nucleon self energy, we see that overallVmed faithfully reproduces
the exact Hartree-Fock self-energy across all momenta.

Introducing the non-local regulator in Equation (15) results
in the red dash-dotted line of Figure 6. The artifacts associated
with the nonlocal regulator grow rapidly for momenta beyond
p ≃ 400MeV and by p ≃ 600MeV the three-nucleon force
contribution to the self energy is reduced by ∼ 25%. This
corresponds to a lab energy of about Elab ≃ 175MeV [72]
beyond which a description of nucleon-nucleus scattering in
terms of chiral optical potentials becomes highly questionable.
Introducing the local regulator in Equation (17) leads to the
dotted green curve in Figure 6. We see that this regulator
generates artifacts (of at least 15%) even for low-momentum
particles in isospin-symmetric nuclear matter at saturation
density. This is due to the already large nucleon Fermi
momentum (kf ≃ 270MeV) in nuclear matter at this density.
Finally, if we double the value of the momentum-space cutoff
in the local regulating function, we find the results given by
the dashed green curve in Figure 6. Again, this choice of
cutoff leads to artifacts that are on par with those from the
nonlocal regulator but which are noticeably smaller at the largest
momenta considered.

In Figure 7, we plot the value of the Hartree-Fock single-
particle potential at the Fermi momentum (p = kf ) from
chiral three-body forces for densities up to n ≃ 2n0. This
contribution to the single-particle energy from the chiral 3NF
grows approximately quadratically with the density. Again we
find that the density-dependent NN interaction from the leading
chiral three-nucleon force reproduces well the exact Hartree-
Fock result. The artifacts introduced through the nonlocal

regulator in Equation (15), the local regulator in Equation (17),
and the local regulator with 3loc = 23nonloc follow the same
trends already observed in the Hartree-Fock contribution to the
equation of state.

Recently, several works [64, 72] have included the second-
order contributions to the nucleon self energy (both in isospin-
symmetric and asymmetric nuclear matter):

6
(2a)
2N (q,ω) = 1

2

∑

123

|〈Ep1Ep3s1s3t1t3|V̄eff|Eq Eh2ss2tt2〉|2
ω + e2 − e1 − e3 + iη

n̄1n2n̄3

(58)
and

6
(2b)
2N (q,ω) = 1

2

∑

123

|〈Eh1Eh3s1s3t1t3|V̄eff|Eq Ep2ss2tt2〉|2
ω + e2 − e1 − e3 − iη

n1n̄2n3,

(59)
with the antisymmetrized potential V̄eff = V̄2N + V̄med that
includes the density-dependent interaction from the N2LO chiral
three-body force. The single-particle energies in Equations (58)
and (59) are computed self-consistently according to

e(q) = q2

2M
+R6(e(q), q). (60)

Generically, Equations (58) and (59) give rise to complex and
energy-dependent single-particle potentials. This allows for the
construction of nucleon-nucleus optical potentials that have been
shown [73] to reproduce well differential elastic scattering cross
sections for proton projectiles on a range of calcium targets up to
about E = 150MeV.

The general form of phenomenological optical potentials for
nucleon-nucleus scattering is given by

U(r,E) = VV (r,E)+ iWV (r,E)+ iWD(r,E)+ VSO(r,E)Eℓ · Es
+iWSO(r,E)Eℓ · Es+ VC(r), (61)

consisting of a real volume term, an imaginary volume term,
an imaginary surface term, a real spin-orbit term, an imaginary
spin-orbit term, and finally a central Coulomb interaction. In
Equation (61), Eℓ and Es are the single-particle orbital angular
momentum and spin angular momentum, respectively. To
construct a microscopic nucleon-nucleus optical potential from
the nuclear matter approach, one can employ the local density
approximation (LDA):

V(E; r)+ iW(E; r) = V(E; kp
f
(r), knf (r))+ iW(E; kp

f
(r), knf (r)),

(62)
where k

p

f
(r) and kn

f
(r) are the local proton and neutron Fermi

momenta. This approach can be improved by taking account of
the finite range of the nuclear force through the improved local
density approximation (ILDA):

V(E; r)ILDA =
1

(t
√

π)3

∫

V(E; r′)e
−|Er−Er′ |2

t2 d3r′, (63)

which introduces an adjustable length scale t taken to be the
typical range of the nuclear force. In previous works [73, 74], this

Frontiers in Physics | www.frontiersin.org 10 April 2020 | Volume 8 | Article 100337

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Holt et al. Implementing Chiral Three-Body Forces

FIGURE 8 | Differential elastic scattering cross sections for proton projectiles on 40Ca and 48Ca targets at the energies E = 25, 35, 45MeV. The cross sections

computed from microscopic chiral optical potentials including two- and three-body forces are shown as the blue band. The cross sections from the Koning-Delaroche

“KD” phenomenological optical potential are given by the green dashed curves, and experimental data are shown by red circles.

Guassian smearing factor was chosen to be t ≃ 1.2 fm and varied
in order to estimate the introduced theoretical uncertainties.

The ILDA approach starts by defining the isoscalar and
isovector density distributions for a given target nucleus. In
our previous works [73, 75], we have employed for this
purpose Skyrme energy density functionals fitted to the equation
of state of isospin-asymmetric nuclear matter [76] calculated
from the same chiral two- and three-body forces used to
compute the nucleon self energy in Equations (56)−(59). The
Gaussian smearing factor t in the ILDA was chosen in the
range 1.15 fm ≤ t ≤ 1.25 fm. The real part of the optical
potential is found [73] to be in excellent agreement with that
from phenomenological optical potentials [66], however, the
microscopic imaginary part exhibits a surface peak that is too
small and a volume contribution that grows too strongly with

energy. This leads to larger total reaction cross sections [73]
compared to phenomenology and experiment. This is in fact
a general feature of the microscopic nuclear matter approach

[77, 78] independent of the choice of nuclear potential, and
previous works [74, 79] have attempted tomitigate this deficiency
by introducing scaling factors for the imaginary part.

In Figure 8, we plot the differential elastic scattering cross

sections for proton projectiles on 40Ca and 48Ca isotopes from
microscopic optical potentials derived in chiral effective field
theory. In this study we employ the N3LO nucleon-nucleon
potential with momentum-space cutoff 3 = 450MeV together
with the density-dependent NN interaction using the nonlocal
regulator in Equation (15). From Figure 8, we see that the

predictions from chiral effective field theory (shown in blue)
reproduce well the elastic scattering cross section data (red dots)
from E = 25 to 45MeV. The small uncertainty band associated
with the blue curve is due entirely to variations in the ILDA
Gaussian smearing factor. In some cases, the results from chiral
nuclear optical potentials give better agreement with experiment
than the Koning-Delaroche phenomenological optical potential
(shown as the green dashed line in Figure 8). In contrast to
semi-microscopic approaches [74, 79] that introduce energy-
dependent scaling factors for the real and imaginary parts of
the optical potential, our calculations are not fitted in any way
to scattering data. Qualitatively similar results have been found
[73] for proton energies as low as E ≃ 2MeV and as high as
E ≃ 160MeV. Moreover, the construction of neutron-nucleus
optical potentials is in progress [75] and preliminary results for
differential elastic scattering cross sections are found to be of
similar quality to the case of proton-nucleus scattering.

3.3. Quasiparticle Interaction in Nuclear
Matter
Landau’s theory of normal Fermi liquids [80, 81] remains a
valuable theoretical framework for understanding the excitations,
response, and transport coefficients of nuclear many-body
systems [82, 83]. Fermi liquid theory is based on the concept
of quasiparticles, i.e., dressed single-particle excitations of a
(potentially) strongly-interacting many-body system that retain
key properties of the bare particles in the analogous non-
interacting system. In this way, Fermi liquid theory allows for
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a convenient description of the low-energy excitations of the
interacting system and in the context of the nuclear many-
body problem helps justify the nuclear shell model and the
independent-particle description of nuclei and nuclear matter.
The theory is made quantitative through the introduction of
the quasiparticle interaction F , defined as the second functional
derivative of the energy with respect to the quasiparticle
distribution function n(Ep ):

E = E0+
∑

1

eEp1 δnEp1s1t1+
1

2�

∑

12

F(Ep1s1t1; Ep2s2t2)δnEp1s1t1δnEp2s2t2 ,

(64)
where E0 is the ground state energy, � is a normalization
volume, and δnEpisiti is the change in occupation number of
state i. In Equation (64), the quasiparticle interaction F in
momentum space has units fm2, si labels the spin quantum
number of quasiparticle i, and ti labels the isospin quantum
number. Enforcing the symmetries of the strong interaction and
assuming that the quasiparticles lie exactly on the Fermi surface
leads to the general form of the quasiparticle interaction:

F(Ep1, Ep2 ) = A(Ep1, Ep2 )+A
′(Ep1, Ep2 )Eτ1 · Eτ2, (65)

where [84]

A(Ep1, Ep2 ) = f (Ep1, Ep2 )+ g(Ep1, Ep2 )Eσ1 · Eσ2 + h(Ep1, Ep2 )S12(p̂)
+k(Ep1, Ep2 )S12(P̂)+ ℓ(Ep1, Ep2 )(Eσ1 × Eσ2) · (p̂× P̂), (66)

and likewise forA′ except with the replacement {f , g, h, k, ℓ} −→
{f ′, g′, h′, k′, ℓ′}. The relative momentum is given by Ep = Ep1 − Ep2,
the center-of-mass momentum is defined by EP = Ep1+Ep2, and the
tensor operator has the form S12(v̂) = 3Eσ1 · v̂ Eσ2 · v̂− Eσ1 · Eσ2.

For two quasiparticle momenta on the Fermi surface (|Ep1| =
|Ep2| = kf ), the scalar functions {f , g, h, k, ℓ, f ′, g′, h′, k′, ℓ′}
depend only the angle θ between and Ep1 and Ep2. The
quasiparticle interaction can therefore be written in terms of
Legendre polynomials:

f (Ep1, Ep2) =
∞
∑

L=0
fL(kf )PL(cos θ),

f ′(Ep1, Ep2) =
∞
∑

L=0
f ′L(kf )PL(cos θ),

. . . (67)

where cos θ = p̂1 · p̂2, q = 2kf sin (θ/2), and P = 2kf cos(θ/2).
The coefficients fL, f

′
L, . . . are referred to as the Fermi liquid

parameters. Dimensionless Fermi liquid parameters FL, F
′
L, . . .

can be defined by multiplying fL, f
′
L, . . . by the density of states,

e.g., for symmetric nuclear matter:

N0 = 2M∗kf /π2, (68)

whereM∗ the effective nucleon mass.
Originally, Fermi liquid theory was treated as a

phenomenological model [82] in which the lowest-order Fermi

liquid parameters would be constrained by select experimental
data. From the Brueckner-Goldstone linked diagram expansion
for the ground-state energy [see e.g., Equations (46)−(54)],
a diagrammatic expansion for the quasiparticle interaction
in terms of the nuclear potential can be obtained [85] by
performing functional derivatives with respect to the occupation
probabilities. Up to second order in perturbation theory one
obtains for a general two-body interaction V2N :

F
(1)
2N (Ep1s1t1; Ep2s2t2) = 〈12|V̄2N |12〉 (69)

F
(2pp)
2N (Ep1s1t1; Ep2s2t2) =

1

2

∑

mn

|〈12|V̄2N |mn〉|2n̄mn̄n
e1 + e2 − em − en

(70)

F
(2hh)
2N (Ep1s1t1; Ep2s2t2) =

1

2

∑

ij

|〈ij|V̄2N |12〉|2ninj
ei + ej − e1 − e2

(71)

F
(2ph)
2N (Ep1s1t1; Ep2s2t2) = −2

∑

jn

|〈1j|V̄2N |2n〉|2njn̄n
e1 + ej − e2 − en

, (72)

which correspond, respectively to Figures 9A–D. The first-order
contribution in Equation (69) is just the antisymmetrized two-
body potential for two nucleons restricted to the Fermi surface. It
contains only the four central terms f , f ′, g, g′ as well as the two
relative momentum tensor interactions h, h′. The second-order
contributions in Equations (70)−(72) give rise generically to the
center-of-mass tensor interactions k, k′, but only the particle-hole
term Equation (72) can generate the cross-vector interactions
l, l′ through the interference of a spin-orbit interaction with any
other nonspin-orbit component in the bare nucleon-nucleon
potential [86].

The expressions in Equations (69)−(72) can be decomposed
into partial wave matrix elements of the bare nucleon-nucleon
potential or the derived medium-dependent 2N interaction. In
section 4.1 below, we give explicit expressions for the partial-wave
matrix elements of the density-dependent 2N interaction derived
from the N2LO [47] and N3LO [87, 88] chiral three-body force.
To date, the contributions from the N2LO chiral three-body
force have been included [86, 89, 90] exactly in the calculation
of the quasiparticle interaction in isospin-symmetric nuclear
matter and pure neutron matter. At first order in perturbation
theory, the second functional derivative of Equation (47)
leads to

F
(1)
3N (Ep1s1t1, Ep2s2t2) =

∑

i

ni〈i12|V̄3N |i12〉, (73)

where V̄3N is the fully antisymmetrized three-body force.
This is equivalent to the definition of the density-dependent
NN interaction in Equation (11) but restricted by the
kinematics of quasiparticles lying on the Fermi surface.
Moreover, the use of the in-medium 2N interaction constructed
assuming on-shell scattering in the center-of-mass frame is
not appropriate [in particular, it would give no center-of-mass
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FIGURE 9 | Diagrammatic contributions to the quasiparticle interaction up to second order in perturbation theory: (A) first-order contribution, (B) second-order

particle-particle contribution, (C) second-order hole-hole contribution, and (D) second-order particle-hole contribution. Wavy lines denote the antisymmetrized nuclear

interaction.

dependence at leading order in Equation (73)]. Explicit and
exact expressions (in the absence of a momentum-space cutoff)
for the Landau Fermi liquid parameters in Equations (65)−(67)
from the N2LO chiral three-nucleon force have therefore been
derived in Holt and Kaiser [90]. Only the higher-order
perturbative contributions to the quasiparticle interaction (where
medium effects are included through normal Pauli blocking
of intermediate states) utilize the in-medium 2N interaction
derived in the center-of-mass frame. In the following we highlight
their qualitative significance on the different terms of the
quasiparticle interaction.

In Figure 10, we plot the dimensionless Fermi liquid
parameters associated with the L = 0, 1 Legendre polynomials
(black and red dotted lines, respectively) in isospin-symmetric
nuclear matter from the N2LO chiral three-body force as a
function of the nucleon density (up to n = 0.4 fm−3). Although
one may be skeptical of results from chiral effective field theory
beyond n ≃ 2n0, the Landau parameters must obey stability
inequalities, e.g.,

QL > −(2L+ 1), (74)

where Q ∈ {F, F′,G,G′}, for the central components of
the quasiparticle interaction. Therefore, we find it informative
to speculate on the high-density behavior of the Landau
parameters, since they might give hints toward possible
instability mechanisms in dense matter. We note that complete
stability conditions involving all spin-dependent interactions
H,K, L (and H′,K ′, L′) that couple to G (and G′) have not
yet been worked out. To date only the effect of the relative
tensor quasiparticle interaction has been considered [91].
We have found that in the presence of such Pomeranchuk
instabilities, perturbation theory itself can be poorly behaved. For
instance, in symmetric nuclear matter with density n . n0/2
(where F0 < −1 and nuclear matter is unstable to density
fluctuations), we have computed also the third-order particle-
particle contributions to the Fermi liquid parameters and found
that F0 is of comparable size to the second-order particle-particle
diagrams. For other Fermi liquid parameters, however, the
third-order particle-particle contributions are generally small at
low densities.

The dotted lines in Figure 10 are obtained from only the
leading contribution due to three-body forces in Equation (73).
The solid lines represent the Fermi liquid parameters obtained
from the sum of two- and three-body forces up to second order

in perturbation theory. For the second-order contributions in
Equations (70)−(72) we have replaced the two-body interaction
V2N with V2N +Vmed, where V2N is the N3LO-450 potential and
Vmed is the consistent density-dependent interaction constructed
from the N2LO three-body force with nonlocal regulator. For
several Fermi liquid parameters, we see that three-body forces
provide the dominant contribution at high density. For instance,
the strong increase in the F0 Landau parameter (top left panel of
Figure 10) as a function of density is a direct result of the first-
order contribution from three-body forces. The nuclear matter

incompressibilityK = 9∂P/∂ρ, where P = ρ2 ∂(E/A)
∂ρ

, is related to

the F0 Landau parameter through

K =
3k2

f

M∗
(1+ F0) , (75)

where M∗ is the nucleon effective mass, and therefore three-
body forces play a central role in the saturation mechanism [7]
of nuclear matter with chiral nuclear forces. On the other hand,
in some cases three-body forces play only a minor role, such as
for the Landau parameters F1 and F

′
0. The former is related to the

nucleon effective mass through

M∗

M
= 1+ F1

3
, (76)

and the latter is related to the nuclear isospin-asymmetry
energy through

S2 =
k2
f

6M∗
(

1+ F′0
)

, (77)

where S2 is defined as the first term in a power series
expansion of the nuclear equation of state about the isospin-
symmetric configuration:

E

A
(n, δnp) =

E

A
(n, 0)+ S2(n)δ

2
np + · · · (78)

with δnp = nn−np
nn+np .

In general, we see from Figure 10, that the noncentral
components K and L of the quasiparticle interaction that depend
explicitly on the center-of-mass momentum EP are small at
nuclear saturation density. However, several of the associated
Fermi liquid parameters, such as K ′0, L0, and L′1 begin to grow
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FIGURE 10 | Density-dependent dimensionless Fermi liquid parameters in isospin-symmetric nuclear matter. Dotted lines symbolize the first-order perturbative

contribution from three-body forces, while solid lines represent the sum of all second-order contributions including two- and three-body forces.

rapidly for higher densities. Therefore, even though there has
been little motivation to include such terms in modern energy
density functionals fitted to the properties of finite nuclei, such

novel interactions may become more relevant in applications
related to neutron star physics. The full quasiparticle interaction

in pure neutron matter has already been computed [86] with
modern chiral two- and three-nucleon forces. One finds again
an enhanced role of three-body forces on the incompressibility
of pure neutron matter and therefore the stability of neutron
stars against gravitational collapse. The more general case of the
quasiparticle interaction in nuclear matter at arbitrary isospin-
asymmetry is in progress.

4. CHIRAL THREE-NUCLEON FORCE AT
NEXT-TO-NEXT-TO-NEXT-TO-LEADING
ORDER

Up to now we have considered only the chiral three-body
force at N2LO. At order N3LO in the chiral power counting,
additional three- and four-nucleon forces arise without any
additional undetermined low-energy constants. However, except
in the case of pure neutron matter, the inclusion of the N3LO
three-body contributions requires a refitting of the three-body
low-energy constants cD and cE. The N3LO three-body force is
written schematically as
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FIGURE 11 | Schematic representation of the diagrammatic contributions to the chiral three-nucleon force at next-to-next-to-next-to-leading order (N3LO): (A)

1π-contact interaction, (B) 2π-contact interaction, (C) 2π interaction, (D) 2π-1π interaction, and (E) ring interaction.

V
(4)
3N = V

(4)
1π−cont. + V

(4)
2π−cont. + V

(4)
1/M + V

(4)
2π + V

(4)
2π−1π + V

(4)
ring,

(79)
corresponding to the 1π−contact, 2π−contact, relativistic 1/M,
2π , 2π − 1π , and ring topologies, respectively. All contributions
have been worked out and presented in Ishikawa and Robilotta
[28] and Bernard et al. [29, 30]. Although we will not consider
their specific effects in the present work, we note that the leading
four-nucleon forces have been calculated in Epelbaum [31]. In
deriving the density-dependent 2N interaction at N3LO, we take
the expressions from Bernard et al. [29, 30] based on the method
of unitary transformations.

The density-dependent 2N interaction from the short-range
terms and relativistic corrections, shown diagrammatically in
Figures 11A,B, was computed first in Kaiser and Niessner [87].
Results were derived in the absence of a regulating function
depending explicitly on the value of the intermediate-state
momentum k3 in Equation (11). The resulting expressions for
Vmed obtained from the N3LO 3N force could therefore be
simplified to analytical expressions involving at most a one-
dimensional integration. In Kaiser and Niessner [87], it was
found that the 1π-exchange contact topology proportional
to the 2N low-energy constant CT gives rise to a vanishing
contribution to Vmed in isospin-symmetric nuclear matter.
The density-dependent 2N interaction derived from the long-
range contributions to the N3LO three-body force, shown
diagrammatically in Figures 11C–E, was calculated in Kaiser and
Singh [88]. Again, the integration over the three-dimensional
filled Fermi sphere could be performed up to at most one
remaining integration. The formulas for the density-dependent
NN interaction from the N3LO three-body force are quite
lengthy, and we refer the reader to Kaiser and Niessner [87] and
Kaiser and Singh [88] for additional details.

4.1. Partial-Wave Decomposition
The analytical expressions for the medium-dependent 2N
potential Vmed obtained from the N3LO chiral three-body force
[87, 88] can be conveniently understood by examining their
attractive or repulsive effects in various partial waves. For
comparison we will show also the lowest-order partial-wave
contributions from the N2LO chiral three-body force, however,
we note that the values of the three-body contact terms will
need to be refitted in order to make a consistent comparison.
In all cases, we choose the values c1 = −0.81GeV−1, c3 =
−3.4GeV−1, c4 = 3.4GeV−1, cD = −0.24, and cE = −0.106,
which have been used in other calculations presented in this

work. We recall that the low-energy constants cD and cE of the
N2LO chiral 3N force are fitted (including the N3LO chiral 2N
interaction with cutoff scale 3 = 450MeV) to the binding
energies of 3H and 3He as well as the beta-decay lifetime of 3H.
Comparing to the values of cD and cE fitted in combination with
the N2LO two-body force [see Table II of [12]], we do not expect
qualitative differences in the results below coming from these
two different choices in the chiral order. For the leading-order
(LO) contact term CT that appears in the 1π- and 2π-contact
topologies, we use the value CT = −2.46491GeV−2 from the
N3LO-450 2N potential.

We follow the description in Erkelenz et al. [92] to obtain the
diagonal momentum-space partial-wave matrix elements of the
density-dependent NN interaction. With start with the form of a
general nucleon-nucleon potential:

V(Ep, Eq ) = VC + Eτ1 · Eτ2WC +
[

VS + Eτ1 · Eτ2 WS

]

Eσ1 · Eσ2
+

[

VT + Eτ1 · Eτ2 WT

]

Eσ1 · Eq Eσ2 · Eq
+

[

VSO + Eτ1 · Eτ2 WSO

]

i(Eσ1 + Eσ2) · (Eq× Ep )
+

[

VQ + Eτ1 · Eτ2WQ

]

Eσ1 · (Eq× Ep ) Eσ2 · (Eq× Ep ), (80)

where the subscripts refer to the central (C), spin-spin (S), tensor
(T), spin-orbit (SO), and quadratic spin orbit (Q) components,
each with an isoscalar (V) and isovector (W) version. The
diagonal (in momentum space) partial-wave matrix elements for
different spin and orbital angular momentum channels are then
given in terms of the functions UK = VK + (4I − 3)WK , where
K ∈ {C, S,T, SO,Q} and the total isospin quantum number takes
the values I = 0, 1. Explicit expressions can be found in Holt
et al. [47].

In Figure 12, we show the 1S0,
3S1,

3D1,
3S1 − 3D1 diagonal

momentum-space matrix elements of Vmed from the N2LO
(blue circles) and N3LO (red diamonds) chiral three-nucleon
force in isospin-symmetric nuclear matter at the density n =
n0. Note that we have multiplied the matrix elements by the
nucleon mass M to obtain dimensions of [fm]. Interestingly, we
observe that the total N3LO three-body force in these partial-
wave channels is roughly equal in magnitude but opposite in
sign compared to the N2LO three-body force. Whereas, the
N2LO three-body force is largely repulsive in symmetric nuclear
matter at saturation density, the N3LO three-body force is
strongly attractive, except in the case of the coupled 3S1 −
3D1 tensor channel. One should keep in mind, however, that
the low-energy constants cD and cE must be refitted after the
introduction of the N3LO three-body force. One might expect
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FIGURE 12 | Diagonal momentum-space matrix elements of Vmed associated with the total N2LO and N3LO three-body force in the 1S0 and 3S1 − 3D1 partial-wave

channels at n = n0 in isospin-symmetric nuclear matter.

FIGURE 13 | Diagonal momentum-space matrix elements of Vmed associated with the total N2LO and N3LO three-body force in the 1P1,
3P0,

3P1, and
3P2

partial-wave channels at n = n0 in isospin-symmetric nuclear matter.

from the above observations that the N2LO three-body force
would be enhanced in order to offset the opposite behavior
introduced from the N3LO three-body force in the lowest
partial-wave channels.

In Figure 13, we show the 1P1,
3P0,

3P1, and
3P2 diagonal

momentum-space matrix elements of Vmed from the N2LO (blue
circles) and N3LO (red diamonds) chiral three-nucleon force in
isospin-symmetric nuclear matter at the density n = n0. In both
the 1P1 and 3P0 channels, the N2LO and N3LO contributions

are approximately equal in magnitude but opposite in sign. In
the 3P1 channel, which is repulsive in the bare 2N potential,
we see that the combination of N2LO and N3LO contributions
enhances the repulsion. The 3P2 channel, which is attractive in
the free-space 2N potential, also receives repulsive contributions
from the N2LO and N3LO in-medium interaction Vmed. The
feature that N3LO loop corrections are not small compared to
N2LO tree contributions has been seen in several instances, e.g.,
in pion-nucleon scattering [93] as well as the three-nucleon force
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FIGURE 14 | Diagonal momentum-space matrix elements of the N3LO

three-body force for selected topologies in the 1S0 partial-wave channel at

saturation density n0 in isospin-symmetric nuclear matter.

FIGURE 15 | Diagonal momentum-space matrix elements of the N3LO

three-body force for selected topologies in the 3P0 partial-wave channel at

saturation density n0 in isospin-symmetric nuclear matter.

derivation [29] and its application [94]. The results presented
in Figures 12, 13 are state of the art and may change if the
effects of sub-sub-leading chiral 3N forces are included. For the
2π − 1π and ring topologies, the N4LO corrections are sizable
and dominate in most cases over the nominally leading N3LO
terms [95].

The long-range parts of the N3LO chiral three-body force
are expected [96] to give larger contributions to the equation of
state than the relativistic 1/M corrections and the 2π−contact
topologies. Due to the large number of contributions to
Vmed at N3LO, we only show selected results for individual
topologies. In Figure 14, we plot several of the dominant pion-
ring contributions to the 1S0 partial-wave matrix elements for
the density-dependent NN interaction derived from the N3LO
chiral three-body force. We see that individual long-range
contributions are large, but sizable cancelations lead to an overall

reduced attractive 1S0 partial-wave channel at low momenta. In
Figure 15, we plot several of the important 2π , 2π-1π , and ring
topology contributions to the 3P0 partial-wave matrix elements
of the density-dependent NN interaction derived from the N3LO
chiral three-body force. We again find large cancelations among
individual terms, but the sum produces significant attraction in
this partial-wave channel.

5. SUMMARY AND CONCLUSIONS

We have reviewed the construction and implementation of
density-dependent two-body interactions from three-body forces
at N2LO and N3LO in the chiral expansion. We showed that at
leading order in many-body perturbation theory, the in-medium
2N interaction reproduces very well the exact contributions to
the nuclear equation of state and nucleon self energy from
the complete three-body force. The standard nonlocal high-
momentum regulator used in our previous works leads to simpler
analytical expressions for the density-dependent 2N interaction,
consistency with the bare 2N potential, and relatively small
artifacts in both the equation of state up to twice saturation
density and the single-particle potential up to p ≃ 400−500MeV
at nuclear matter saturation density. Local 3N regulators with the
same value of the cutoff, 3loc = 3nonloc, have been commonly
used in previous studies of nuclear few-body systems, but these
are shown to produce very large artifacts, even in the nuclear
equation of state at saturation density. This could be remedied
by choosing a local regulating function with 3loc = 23nonloc,
which is well-motivated since the momentum transfer q can
reach values twice as large as the relative momentum for two
particles on the Fermi surface.

The use of medium-dependent two-body interactions has
been shown to facilitate the implementation of three-body forces
in higher-order perturbative calculations of the nuclear equation
of state, single-particle potential, and quasiparticle interaction. In
particular, nuclear matter was shown to saturate at the correct
binding energy and density within theoretical uncertainties when
computed up to third-order in perturbation theory. Moreover,
microscopic nucleon-nucleus optical potentials derived from
chiral two- and three-body forces have been shown to accurately
predict proton elastic scattering cross sections on calcium
isotopes up to projectile energies of E ≃ 150MeV. The use
of medium-dependent NN potentials derived from the N3LO
chiral three-body force for calculations of the nuclear equation
of state, single-particle potential, and quasiparticle interaction
remain a topic of future research. As a first step, we have
performed a partial-wave decomposition of Vmed at N3LO in
the chiral expansion and shown that the effective interaction is
expected to be attractive in symmetric nuclear matter around
saturation density.
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We review the physics of low-energy antiprotons, and its link with the nuclear forces.

This includes: antinucleon scattering on nucleons and nuclei, antiprotonic atoms, and

antinucleon-nucleon annihilation into mesons.

Keywords: antiproton, antimatter, strong interactions, fundamental symmetries, antinucleon-nucleus

1. A BRIEF HISTORY

In 1932, the positron, the antiparticle of the electron, was discovered in cosmic rays and confirmed
in the β+ decay of some radioactive nuclei (see e.g., the Nobel lecture by Anderson [1]). It was then
reasonably anticipated that the proton also has an antiparticle, the antiproton1. It was also suspected
that the antiproton would be more difficult to produce and detect than positrons in cosmic rays.
The Bevatron project (BeV, i.e., billion of electron-volts, was then a standard denomination for
what is nowGeV) was launched at Berkeley to reach an energy high-enough to produce antiprotons
through the reaction

p+ A → p+ A+ p̄+ p, (1)

where A denotes the target nucleus. For A = p, this is a standard exercise in relativistic kinematics
to demonstrate that the kinetic energy of the incoming proton should be higher than 6m, where
m is the proton mass, and c = 1. This threshold decreases if the target A is more massive. The
Bevatron was completed in 1954, and the antiproton was discovered in 1955 by a team lead by
Chamberlain and Segrè, who were awarded the Nobel prize in 19592.

Shortly after the antiproton, the antineutron, n̄, was also discovered at Berkeley, and up to now,
for any new elementary particle, the corresponding antiparticle has also been found. The discovery
of the first anti-atom was well-advertised [2], but this was not the case for the earlier observation
of the first antinucleus, antideuterium, because of a controversy between an European team [3]
and its US competitors [4]. In experiments at very high energy, in particular collisions of heavy
ions at STAR (Brookhaven) and ALICE (CERN), one routinely produces light antinuclei and even
anti-hypernuclei (in which an antinucleon is replaced by an antihyperon 3̄) [5–7].

The matter-antimatter symmetry is almost perfect, except for a slight violation in the sector
of weak interactions, which is nearly exactly compensated by a simultaneous violation of the left-
right symmetry, i.e., the product PC of parity P and charge-conjugation C is only very marginally
violated. Up to now, there is no indication of any violation of the product CPT, where T is the
time-reversal operator: this implies that the proton and antiproton have the same mass, a property
now checked to< 10−9 [8].

1The only doubt came from the magnetic moment of the proton, which is not what is expected for a particle obeying the

Dirac equation.
2The other collaborators were acknowledged in the Nobel lectures, but nevertheless Piccioni sued Chamberlain and Segrè in

a court of California, which dismissed the suit on procedural grounds.
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Richard Antiproton Physics

Many experiments have been carried out with low energy
antiprotons, in particular at Brookhaven and CERN in the 60s
and 70s, with interesting results, in particular for the physics
of the mesons produced by annihilation. However, in these
early experiments, the antiprotons were part of secondary beams
containing many negatively-charged pions and kaons, and with a
wide momentum spread.

In the 70s, Simon van der Meer, and his colleagues at CERN
and elsewhere imagined and developed the method of stochastic
cooling [9], which produces antiproton beams of high purity,
sharp momentum resolution, and much higher intensity than
in the previous devices. CERN transformed the fixed-target
accelerator SpS into a proton-antiproton collider, Spp̄S, with the
striking achievement of the discovery of the W± and Z0, the
intermediate bosons of the electro-weak interaction. A similar
scheme was later adopted at Fermilab with higher energy and
intensity, leading to many results, among which the discovery of
the top quark.

As a side product of the experiments at the Spp̄S program,
CERN built a low-energy facility, LEAR (Low-Energy Antiproton
Ring) which operated from 1982 to 1996, and hosted several
experiments on which we shall come back later. Today, the
antiproton source of CERN is mainly devoted to experiments
dealing with atomic physics and fundamental symmetries. In
spite of several interesting proposals, no low-energy extension of
the antiproton program was built at Fermilab.

As for the intermediate energies, at the beginning of the
CERN cooled-antiproton program, a p̄ beam was sent in the
ISR accelerator to hit a thin hydrogen target. The experiment
R704 got sharp peaks corresponding to some charmonium states,
and in particular a first indication of the—then missing—P-wave
singlet state hc [10]. But ISR was to be closed, and in spite
of a few more days of run, R704 was interrupted. The team
moved to Fermilab, and charmonium physics with antiprotons
was resumed with antiproton-proton collisions arranged in the
accumulation device (experiments E760-E835) [11].

Today, the techniques of production of sharp antiproton
beams is well-undercontrol. There are projects to perform
strong-interaction physics with antiprotons at FAIR (Darmstadt)
[12] and JPARC in Japan [13]. In the 80s, an ambitious extension
of LEAR at higher energies, SuperLEAR [14], was proposed by
Montanet et al., but was not approved by the CERNmanagement.
A major focus of SuperLEAR was charm physics. But more than
30 years later, this physics has been largely unveiled by beauty
factories and high-energy hadron colliders.

Presently, the only running source of cooled antiprotons is
the very low energy AD at CERN (Antiproton Decelerator)
and its extension ELENA (Extra Low ENergy Antiproton) with
the purpose of doing atomic-physics and high-precision tests
of fundamental symmetries. Some further decelerating devices
are envisaged for the gravitation experiments [15]. Of course,
standard secondary antiproton beams are routinely produced,
e.g., at KEK in Japan.

Note also that in devices making antiproton beams,
a non-negligible fraction of antideuterium is produced,
which could be cooled and stored. The intensity would be
sufficient to perform strong-interaction measurements, but

there is not yet any proposal for an experiment with an
antideuterium beam.

We shall discuss along this review many results obtained
at LEAR and elsewhere. Already the measurements made at
Berkeley during the weeks following the discovery of the
antiproton were remarkable. After more than 60 years, we realize
today that they gave keys to the modern understanding of
hadrons, but the correct interpretation was too far from the
current wisdom of the 50s. Indeed, from the work by Fermi and
Yang, on which more later, it was realized that one-pion exchange
constitutes the long-range part of the antinucleon-nucleon
interaction. The simplest model, just before the discovery of
the antiproton, would be one-pion exchange supplemented by a
very short-range annihilation. This would imply for the charge-
exchange (p̄p → n̄n), elastic (p̄p → p̄p) and annihilation (p̄p →
mesons) cross-sections a hierarchy

σce > σel > σan, (2)

the first inequality resulting from straightforward isospin algebra.
What was observed at Berkeley is just the opposite! And it
took us years to admit and understand this pattern, which
is a consequence of the composite character of the nucleon
and antinucleon.

The era of LEAR and Spp̄S at CERN, and then the large p̄p
collider of Fermilab will certainly be reminded as the culmination
of antiproton physics. At very high energy, the trend is now
more on pp rather than p̄p collision, due to the higher intensity
of proton beams. Certainly very-low energy experiments will
remain on the floor to probe the fundamental symmetries
with higher and higher precision. The question is open on
whether antiproton beams will be used for hadron physics, a
field where electron beams and flavor factories already provide
much information.

Of course, the role of antimatter in astrophysics is of the
highest importance. Antiprotons and even antinuclei are seen in
high-energy cosmic rays. The question is to estimate how many
antinuclei are expected to be produced by standard cosmic rays,
to estimate the rate of primary antinuclei (see e.g., [16, 17]).
Some years ago, cosmological models were built [18] in which
the same amount of matter and antimatter was created, with a
separation of zones of matter and zones of antimatter. In modern
cosmology, it is assumed that an asymmetry prevailed, so that,
after annihilation, some matter survived.

This review is mainly devoted to the low-energy experiments
with antinucleons. Needless to say that the literature is abundant,
starting with dedicated workshops [19–24] and schools [25–28].

Because of the lack of space, some important subjects will
not be discussed, in particular the ones related to fundamental
symmetry: the inertial mass of the antiproton, its charge and
magnetic moment, in comparison with the values for the
proton; the detailed comparison of hydrogen and antihydrogen
atoms; the gravitational properties of neutral atoms, such as
antihydrogen, etc. We will mention only very briefly, in the
section on antiprotonic atoms, the dramatically precise atomic
physics made with the antiprotonic Helium.
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2. FROM THE NUCLEON-NUCLEON TO
THE ANTINUCLEON-NUCLEON
INTERACTION

In this section we outline the general theoretical framework:
how to extrapolate our information on the nuclear forces to
the antinucleon-nucleon system. We present the basics of the
well-known G-parity rule, with a remark about the definition of
antiparticle states.

2.1. The G-Parity Rule
In QED, the e−e− → e−e− and e+e− → e+e− amplitudes
are related by crossing, but there is a long way from the region
{s > 4m2

e , t < 0} to the one with {s < 0, t > 4m2
e to attempt a

reliable analytic extrapolation. Here, me is the electron mass and
s and t the usual Mandelstam variables3. A more useful approach
consists of comparing both reactions for the same values of s and
t. The e−e− → e−e− amplitude can be decomposed into a even
and odd part according to the C-conjugation in the t-channel, say

M(e−e− → e−e−) = Meven +Modd, (3)

and the e+e− → e+e− amplitude for the same energy and
transfer is given by

M(e+e− → e+e−) = Meven −Modd. (4)

The first term contains the exchange of an even number of
photons, and the last one the exchange of an odd number. At
lowest order, one retrieves the sign flip of the Coulomb potential.
This rule remains valid to link pp → pp and p̄p → p̄p amplitudes:
the exchange of a π0 with charge conjugation C = +1, is the
same for both reactions, while the exchange of an ω meson (C =
−1) flips sign.

Fermi and Yang [29] astutely combined this C-conjugation
rule with isospin symmetry, allowing to include the exchange of
charged mesons, as in the charge-exchange processes. Instead of
comparing pp → pp to p̄p → p̄p or np → np to n̄p → n̄p, the G-
parity rule relates amplitudes of given isospin I. More precisely,
if the nucleon-nucleon amplitude is decomposed as

M
I(NN) = MG=+1 +MG=-1, (5)

according to the G-odd (pion, omega, . . . ) or G-even (ρ, . . . ) in
the t-channel, then its N̄N counterpart reads

M
I(N̄N) = MG=+1 −MG=-1. (6)

Note that there is sometimes some confusion between the C-
conjugation and the G-parity rules, especially because there are
two ways of defining the isospin doublet {n̄, p̄} (see Appendix:
Isospin Conventions).

In currentmodels ofNN, the pion-exchange tail, the attraction
due to isoscalar two-pion exchange, and the spin-dependent

3For a reaction 1 + 2 → 3 + 4, the Mandestam variables are given in terms of

the energy-momentum quadrivectors as s = (p̃1 + p̃2)
2, t = (p̃3 − p̃1)

2 and

u = (p̃4 − p̃1)
2.

part of the ρ exchange are rather well-identified, and thus can
be rather safely transcribed in the N̄N sector. Other terms,
such as the central repulsion attributed to ω-exchange, might
contain contributions carrying the opposite G-parity, hidden in
the effective adjustment of the couplings. Thus, the translation
toward N̄N might be biased.

2.2. Properties of the Long-Range
Interaction
Some important consequences of the G-parity rule have been
identified. First, the moderate attraction observed in NN, due
to a partial cancellation of σ (or, say, the scalar-isoscalar part
of two-pion exchange) and ω-exchanges, becomes a coherent
attraction once ω-exchange flips sign. This led Fermi and Yang to
questionwhether themesons could be interpreted as bound states
of a nucleon and an antinucleon. This idea has been regularly
revisited, in particular at the time of bootstrap [30]. As stressed,
e.g., in Ball et al. [31], this approach hardly accounts for the
observed degeneracy of I = 0 and I = 1 mesons (for instance
ω and ρ having about the same mass).

In the 70s, Shapiro et al., and others, suggested that baryon-
antibaryon bound states were associated with new types of
hadrons, with the name baryonium, or quasi-deuteron [32–34].
Similar speculations were made later for other hadron-hadron
systems, for instance DD̄∗, where D is a charmed meson (c̄q) of
spin 0 and D̄∗ an anticharmed meson (c̄q) of spin 1 [35]. Some
candidates for baryonium were found in the late 70s, interpreted
either as quasi-nuclear N̄N states à la Shapiro, or as exotic
states in the quark model, and motivated the construction of the
LEAR facility at CERN. Unfortunately, the baryonium states were
not confirmed.

Another consequence of theG-parity rule is a dramatic change
of the spin dependence of the interaction. At very low energy,
the nucleon-nucleon interaction is dominated by the spin-spin
and tensor contributions of the one-pion exchange. However,
when the energy increases, or, equivalently, when one explores
shorter distances, the main pattern is a pronounced spin-orbit
interaction. It results from a coherent sum of the contributions
of vector mesons and scalar mesons4. The tensor component
of the NN interaction is known to play a crucial role: in most
models, the 1S0 potential is stronger than the 3S1 one, but in this
latter partial wave5, the attraction is reinforced by S-D mixing.
However, the effect of the tensor force remains moderate, with a
percentage of D wave of about 5% for the deuteron.

In the case of the N̄N interaction, the most striking coherence
occurs in the tensor potential, especially in the case of isospin
I = 0 [36]. A scenario with dominant tensor forces is somewhat
unusual, and leads to unexpected consequences, in particular a
relaxation of the familiar hierarchy based on the hight of the
centrifugal barrier. For instance, if one calculates the spectrum
of bound states from the real part of the N̄N interaction, the

4The origin is different, for vector mesons, this is a genuine spin-orbit effect, for

scalar mesons, this is a consequence of Thomas precession, but the effect is the

same in practice.
5The notation is 2S+1LJ , as there is a single choice of isospin, and it will become
2I+1,2S+1LJ for N̄N.
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ground-state is 1,3P0, and next a coherent superposition of
1,3S1 and 1,3D1, and so on. In a scattering process, there is no
polarization if the tensor component is treated to first order, but
polarization shows up at higher order. Thus, one needsmore than
polarization measurements6 to distinguish the dynamics with a
moderate spin-orbit component from the dynamics with a very
strong tensor component.

2.3. Appendix: Isospin Conventions
There are two possible conventions for writing the isospin states
of antinucleons [37].

The natural choice is based on the charge conjugation
operator C, namely |p̄〉

c
= C |p〉 and |n̄〉

c
= C |n〉. However,

it transforms the two representation of SU(2) into a 2̄ which
does not couple with the usual Clebsch-Gordan coefficients. For
instance, the isospin I = 0 state of N̄N reads in this convention

|I = 0〉 =
|p̄p〉

c
+ |n̄n〉

c√
2

, (7)

which anticipates the formula for an SU(3) singlet,

|0〉 = |ūu〉 + |d̄d〉 + |s̄s〉√
3

, (8)

However, the 2̄ representation of SU(2) is equivalent to the 2
one, and it turns out convenient to perform the corresponding
rotation, that is to say, define the states by the G-parity operator,
namely (without subscript) |p̄〉 = G |n〉 and |n̄〉 = G |p〉. With
this convention, the isospin singlet is written as.

|I = 0〉 = |n̄n〉 − |p̄p〉√
2

, (9)

3. BARYONIUM

The occurrence of baryonium candidates in antiproton-induced
reactions was a major subject of discussion in the late 70s and in
the 80s and the main motivation to build new antiprotons beams
and new detectors. The name “baryonium” suggests a baryon-
antibaryon structure, as in the quasi-nuclear models. More
generally “baryonium” denotes mesons that are preferentially
coupled to the baryon-antibaryon channel, independently of any
prejudice about their internal structure.

Nowadays, baryonium is almost dead, but interestingly, some
of the innovative concepts and some unjustified approximations
developed for baryonium are re-used in the current discussions
about the new hidden-charm mesons XYZ and other exotic
hadrons [38].

3.1. Experimental Candidates for
Baryonium
For an early review on baryonium (see [39]). For an update, see
the Particle Data Group [40]. In short: peaks have been seen

6Actually more than spinmeasurements along the normal n̂ to the scattering plane,

such as the analyzing power An or the transfer Dnn or normal polarization.

in the integrated cross sections, or in the angular distribution
(differential cross section) at given angle, or in some specific
annihilation rates as a function of the energy. The most famous
candidate was the S(1932), seen in several experiments [39]. The
most striking candidate was the peak of mass 2.95GeV/c2 seen
in p̄pπ− [41], with some weaker evidence for peaks at 2.0 and
2.2GeV/c2 in the p̄p subsystem, suggesting a sequential decay
B− → B + π−, where B denotes a baryonium. Peaks were also
seen in the inclusive photon and pion spectra of the annihilations
p̄p → γX and p̄p → πX at rest.

None of the experiments carried out at LEAR confirmed
the existence of such peaks. However, some enhancements have
been seen more recently in the p̄p mass distribution of the
decay of heavy particles, such as J/ψ → γ p̄p, B → Kp̄p, or
B → Dp̄p, see Ablikim et al. [42] and the notice on non q̄q
mesons in Tanabashi et al. [40]. There is a debate about whether
they correspond a baryonium states or just reveal a strong p̄p
interaction in the final state (see e.g., the discussion in [43–45]).
Also, as stressed by Amsler [46], the f2(1565) is seen only in
annihilation experiments, and thus could be a type of baryonium,
1,3P2 − 1,3F2 in the quasi-nuclear models. See the review on
f2(1565) in Tanabashi et al. [40].

3.2. The Quasi-Nuclear Model
Today, it is named “molecular” approach. The observation that
the real part of the N̄N interaction is more attractive than its NN
counterpart led Shapiro et al. [32], Dover et al. [33], and others,
to predict the existence of deuteron-like N̄N bound states and
resonances. Due to the pronounced spin-isospin dependence of
the N̄N interaction, states with isospin I = 0 and natural parity
were privileged in the predictions. The least one should say is that
the role of annihilation was underestimated in most early studies.
Attempts to include annihilation in the spectral problem have
shown, indeed, that most structures created by the real potential
are washed out when the absorptive part is switched on [47].

3.3. Duality
Duality is a very interesting concept developed in the 60s. For
our purpose, the most important aspect is that in a hadronic
reaction a + b → c + d, there is an equivalence between the t-
channel dynamics, i.e., the exchanges schematically summarized
as

∑

i a + c̄ → Xi → b̄ + d, and the low-energy resonances
∑

j a + b → Yj → c + d. In practice, one approach is usually

more efficient than the other, but a warning was set by duality
against empirical superpositions of t-channel and s-channel
contributions. For instance, K̄N scattering with strangeness S =
−1 benefits the hyperons as s-channel resonances, and one also
observes a coherent effect of the exchanged mesons. On the
other hand, KN is exotic, and, indeed, has a much smaller cross-
section. In KN, there should be destructive interferences among
the t-channel exchanges.

Though invented before the quarkmodel, duality is now better
explained with the help of quark diagrams. Underneath is the
Zweig rule, that suppresses the disconnected diagrams. See e.g.,
[48, 49] for an introduction to the Zweig rule, and refs. there. The
case of K̄N, or any other non-exotic meson-baryon scattering
is shown in Figure 1. For the exotic KN channel the incoming
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FIGURE 1 | Duality diagram for non-exotic meson-baryon (left) and

baryon-antibaryon (right) scattering.

antiquark is s̄, and it cannot annihilate. So there is no possibility
of forming a quark-antiquarkmeson in the t channel, nor a three-
quark state in the s-channel. In a famous paper [50], Rosner
pointed out that as meson-exchanges are permitted in nucleon-
antinucleon scattering (or any baryon-antibaryon system with
at least one quark matching an antiquark), there should be
resonances in the s-channel: baryonium was born, and more
generally a new family of hadrons. The corresponding quark
diagram is shown in Figure 1. As stressed by Roy [49], duality
suggests higher exotics.

3.4. Baryonium in the Hadronic-String
Picture
This concept of duality is illustrated in the hadronic-string
picture, which, in turn, is supported by the strong-coupling
limit of QCD (see e.g., the contribution by Rossi and Veneziano
in [39]). A meson is described as a string linking a quark to
an antiquark. A baryon contains three strings linking each of
the three quarks to a junction, which acts as a sort of fourth
component and tags the baryon number. The baryonium has a
junction linked to the two quarks, and another junction linked to
the two antiquarks (see Figure 2). The decay happens by string
breaking and qq̄, leading either to another baryonium and a
meson, or to baryon-antibaryon pair. The decay into two mesons
proceeds via the internal annihilation of the two junctions, and
is suppressed.

The baryonium of Jaffe was somewhat similar, with the string
realized by the cigar-shape limit of the bag model [51]. Note that
the suppression of the decay into mesons is due in this model to
a centrifugal barrier, rather than to a topological selection rule.
The orbitally excited mesons consist of a quark and an antiquark
linked by a string, the excited baryons are the analogs with a
quark and a diquark, and the baryonia involve a diquark and
an antidiquark.

3.5. Color Chemistry
Chan et al. [52] pushed the speculations a little further in their
“color chemistry.” They have baryonia with color 3̄ diquarks,
which decay preferentially into a baryon-antibaryon pair rather
than into mesons, also more exotic baryonia in which the diquark
has color sextet. Then even the baryon-antibaryon decay is
suppressed, and the state is expected to be rather narrow. This
was a remarkable occurrence of the color degree of freedom
in spectroscopy. However, there was no indication on how and
why such diquark-antidiquark structure arises from the four-
body dynamics.

FIGURE 2 | String picture of a meson (left), a baryon (center), and a

baryonium (right).

3.6. Other Exotics?
The baryonium story is just an episode in the long saga of exotics,
which includes the strangeness S = +1 “Z” baryons in the
60s, their revival under the name “light pentaquark” [40]. The
so-called “molecular approach” hadrons was illustrated by the
picture of the 1 resonance as πN by Chew and Low [53], and
of the 3(1405) as K̄N by Dalitz and Yan [54], with many further
discussions and refinements.

As reminded, e.g., in Rossi and Veneziano [55], there is some
analogy between the baryonium of the 70s and 80s and the recent
XYZ spectroscopy. The XYZ are mesons with hidden heavy
flavor that do not fit in the ordinary quarkonium spectroscopy
[38]. One can replace “quasi-nuclear” by “molecular,” “baryon
number” by “heavy flavor,” etc., to translate the concepts
introduced for baryonium for use in the discussions about XYZ.
The diquark clustering in the light sector is now replaced by
an even more delicate assumption, namely cq or c̄q̄ clustering.
While the X(3872) is very well-established, some other states
either await confirmation or could be interpreted as mere
threshold effects. Before the XYZ wave, it was suggested that
baryon-antibaryon states could exist with strange or charmed
hyperons. This spectroscopy is regularly revisited (see e.g., [56]
and references therein).

4. ANTINUCLEON-NUCLEON SCATTERING

In this section, we give a brief survey of measurements of
antinucleon-nucleon scattering and their interpretation, for some
final states: N̄N, 3̄3, and two pseudoscalars. Some emphasis
is put on spin observables. It is stressed in other chapters
of this book how useful were the measurements done with
polarized targets and/or beams for our understanding of the NN
interaction, leading to an almost unambiguous reconstruction of
the NN amplitude. The interest in N̄N spin observables came at
workshops held to prepare the LEAR experiments [19, 20, 22],
and at the spin Conference held at Lausanne in 1980 [57].
A particular attention was paid to pp̄ → 3̄3, but all the
theoreticians failed in providing valuable guidance for the last
measurements using a polarized target, as discussed below in
section 4.7. However, Felix Culpa7, we learned how to better deal
with the relationships and constraints among spin observables.

7“For God judged it better to bring good out of evil than not to permit any evil to

exist,” Augustinus.
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4.1. Integrated Cross Sections
As already mentioned, the integrated cross sections have been
measured first at Berkeley, shortly after the discovery of the
antiproton. More data have been taken in many experiments,
mainly at the BrookhavenNational Laboratory (BNL) and CERN,
at various energies. The high-energy part, together with its
proton-proton counter part, probes the Pomerantchuk theorem,
Froissart bound and the possible onset of the odderon (see e.g.,
[58] and references therein).

As for the low-energy part, some values of the total cross
section are shown in Figure 3, as measured by the PS172
collaboration [59]. It can be contrasted to the annihilation cross
section of Figure 3, due to the PS173 collaboration [60]. When
one compares the values at the same energy, one sees that
annihilation is more than half the total cross section. Meanwhile,
the integrated charge-exchange cross section is rather small (just
a few mb).

Let us stress once more that the hierarchy σann > σel of
the annihilation and elastic cross-sections is remarkable. One
needs more than a full absorptive core. Somehow, the long-range
attraction pulls the wave function toward the inner regions where
annihilation takes place [61, 62].

4.2. Angular Distribution for Elastic and
Charge-Exchange Reactions
The elastic scattering has been studied in several experiments,
most recently at LEAR, in the experiments PS172, PS173, PS198,
. . .An example of differential distribution is shown in Figure 4.

The charge exchange scattering has been studied by the PS199-
206 collaboration at LEAR. As discussed in one of the workshops
on low-energy antiproton physics [19], charge exchange gives the
opportunity to study the interplay between the long-range and
short-range physics. An example of differential cross-section is
shown in Figure 5, published in Ahmidouch et al. [65]. Clearly
the distribution is far from flat. This illustrates the role of high
partial waves. The amplitude for charge exchange corresponds to
the isospin combination

M(p̄p → n̄n) ∝ M0 −M1, (10)

The smallness of the integrated charge-exchange cross-section is
due to a large cancellation in the low-partial waves. But in the

high partial waves, there is a coherent superposition. In particular
the one-pion exchange gets an isospin factor +1 for M1, and a
factor−3 forM0.

4.3. Antineutron Scattering
To access to pure isospin I = 1 scattering, data have been
taken with antiproton beams and deuterium targets, but the
subtraction of the p̄p contribution and accounting for the internal
motion and shadowing effects is somewhat delicate. The OBELIX
collaboration at CERN has done direct measurements with
antineutrons [66]. For instance, the total n̄p cross-section has
been measured between plab = 50 and 480MeV/c [67]. The data
are shown in Figure 6 together with a comparison with the p̄p
analogs. There is obviously no pronounced isospin dependence.
The same conclusion can be drawn for the p̄p and n̄p annihilation
cross sections [68].

4.4. Spin Effects in Elastic and
Charge-Exchange Scattering
A few measurements of spin effects in N̄N → N̄N were done
before LEAR, mainly dealing with the analyzing power. Some
further measurements were done at LEAR, with higher statistics
and a wider angular range. An example of measurement by
PS172 is shown in Figure 7: the analyzing power of p̄p → p̄p
at 679 MeV/c [69]. One can see that the value of An is sizable,

FIGURE 4 | Angular distribution in elastic p̄p → p̄p scattering at 0.697GeV/c,

as measured by the PS198 collaboration [63].

FIGURE 3 | (Left) Total p̄p cross section (in mb), as measured by the PS172 collaboration at LEAR.lation. (Right) Annihilation p̄p cross section (in mb), as measured

by the PS173 collaboration.
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FIGURE 5 | Angular distribution for the charge-exchange reaction p̄p → n̄n at incident momentum 0.601Gev/c (left) and 1.083GeV/c in the target frame [64]. Only

the statistical error is shown here. Large systematic errors have to be added.

FIGURE 6 | Total n̄p cross section (red), as measured by the PS201

collaboration, and comparison with the p̄p total cross-section (blue).

but not very large. It is compatible with either a moderate spin-
orbit component of the interaction, or a rather strong tensor force
acting at second order. PS172 also measured the depolarization
parameter Dnn in p̄p → p̄p. This parameter Dnn expresses
the fraction of recoiling-proton polarization along the normal
direction that is due to the polarization of the target. Thus,
Dnn = 1 in absence of spin forces. PS172 obtained the interesting
result Dnn = −0.169 ± 0.465 at cosϑ = −0.169 for the
momentum plab = 0.679GeV/c [70]. The effect persists at higher
momentum, as seen in Figure 8.

The charge-exchange reaction has been studied by the PS199-
206 collaborations at LEAR (see e.g., [71, 72]). In Figure 8 is
shown the depolarization parameter Dnn. The effect is clearly
large. It is predicted that Dℓℓ is even more pronounced, and
interestingly, also Kℓℓ, the transfer of polarization from the target
to the antineutron. This means that one can produce polarized
antineutrons by scattering antiprotons on a longitudinally
polarized proton target.

4.5. Amplitude Analysis?
Decades of efforts have been necessary to achieve a reliable
knowledge of theNN interaction at low energy, with experiments
involving both a polarized beam and a polarized target. In the
case of N̄N, the task is more delicate, as the phase-shifts are
complex even at very low energy, and there is no Pauli principle
to remove every second partial wave. So, as we have much
less observables available for N̄N than for NN, it is impossible

to reconstruct the phase-shifts or the amplitudes: there are
unavoidably several solutions with about the same χ2, and one
flips from one solution to another one when one adds or removes
a set of data. This is why the fits by Timmermans et al. [73, 74]
have been received with some skepticism [75, 76].

Clearly the measurements of analyzing power and
depolarization at LEAR should have been pursued, as was
proposed by some collaborations, but unfortunately not
approved by the CERN management. Now, we badly miss
the information that would be needed to reconstruct the N̄N
interaction unambiguously, and estimate the possible ways to
polarize antiprotons (spin filter, spin transfer).

4.6. Potential Models
For the use in studies of the protonium and antinucleon-nucleus
systems, it is convenient to summarize the information about
the “elementary” N̄N interaction in the form of an effective N̄N
potential. Early attempts were made by Gourdin et al. [77], Bryan
and Phillips [78] among others, and more recently by Kohno and
Weise [79], and the Bonn-Jülich group [80–82]. Dover, Richard,
and Sainio [62, 83, 84] used as long range potential VLR the G-
parity transformed of the Paris NN potential, regularized in a
square-well manner, i.e., VLR(r < r0) = VLR(r0) with r0 =
0.8 fm, supplemented by a complex core to account for unknown
short-range forces and for annihilation,

VSR(r) = − V0 + iW0

1+ exp(−(r − R)/a)
. (11)

The short-range interaction was taken as spin and isospin
independent, for simplicity. A good fit of the data was achieved
with two sets of parameters

model DR1 R = 0 fm, a = 0.2 fm, V0 = 21GeV,

W0 = 20GeV,

model DR2 R = 0.8 fm, a = 0.2 fm, V0 = 0.5GeV,

W0 = 0.5GeV.
(12)

In Timmers et al. [85], the annihilation part is not described by
an optical model, but by two effective meson-meson channels.
This probably gives a more realistic energy dependence. In some
othermodels, the core contains some spin and isospin-dependent
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FIGURE 7 | Analyzing power of p̄p → p̄p (left) at 672MeV/c, as measured at LEAR by the PS172 collaboration [69], (right) at 697MeV/c by the PS198

collaboration [63].

FIGURE 8 | Transfer of polarization Dnn, in elastic p̄p scattering at plab = 1.089GeV/c [70] (right) and in the charge exchange reaction at 0.875GeV/c [72].

terms, but there are not enough data to constrain the fit. Some
examples are given by the Paris group in El-Bennich et al.
[86], and earlier attempts cited there. In Klempt et al. [87], a
comparison is made of the successive versions of such a N̄N
potential: the parameters change dramatically when the fit is
adjusted to include a new measurement. The same pattern is
observed for the latest iteration [86].

More recent models will be mentioned in section 8 devoted
to the modern perspectives, namely an attempt to combine the
quark model and meson-exchanges, or potentials derived in the
framework of chiral effective theories.

4.7. Hyperon-Pair Production
The PS185 collaboration has measured in detail the reactions of
the type p̄p → ȲY ′, where Y or Y ′ is an hyperon. We shall
concentrate here on the 3̄3 channel, which was commented on
by many theorists (see e.g., [88]). In the last runs, a polarized
hydrogen target was used. Thus, p̄p → 3̄3 interaction at low
energy is known in great detail, and motivated new studies on
the correlations among the spin observables, which are briefly
summarized in Appendix: Constraints on Spin Observables.

The weak decay of the 3 (and 3̄) gives access to its
polarization in the final state, and thus many results came from
the first runs: the polarization P(3) and P(3̄) (which were
checked to be equal), and various spin correlations of the final
state Cij, where i or j denotes transverse, longitudinal, etc.8 In

8The data have been analyzed with the value of the decay parameter α of that

time. The parameter α is defined, e.g., in the note “Baryon decay parameters” of

Tanabashi et al. [40]. A recent measurement by the BESIII collaboration in Beijing

particular the combination of observables

F0 =
1

4
(1+ Cxx − Cnn + Cℓℓ), (13)

corresponds to the percentage of spin singlet, and was found to
be compatible with zero within the error bars. Unfortunately, at
least two explanations came:

• According to the quark model, the spin of 3 is carried by the
s quark, with the light pair ud being in a state spin and isospin
zero. The vanishing of the spin singlet fraction is due to the
creation of the ss̄ pair in a spin triplet to match the gluon
in perturbative QCD or the prescription of the 3P0 model,
in which the created quark-antiquark pair has the quantum
number 0++.

• In the nuclear-physics type of approach, the reaction is
mediated by K and K∗ exchanges. This produces a coherence
in some spin-triple amplitude, analogous to the strong tensor
force in the isospin I = 0 of N̄N. Hence, the triplet is favored.

It was then proposed to repeat the measurements on a polarized
hydrogen target. This suggestion got support and was approved.
In spite of a warning that longitudinal polarization might give
larger effect, a transverse polarization was considered as an
obvious choice, as it gives access to more observables. A detailed
analysis of the latest PS185 are published in Bassalleck et al. and
Paschke et al. [90, 91].

gives a larger value of α [89]. This means that the 3 polarization would be about

17% smaller.
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What retained attention was the somewhat emblematic Dnn

which measures the transfer of normal polarization from p to 3
(in absence of spin effects, Dnn = 1). It was claimed that the
transfer observable Dnn could distinguish among the different
scenarios for the dynamics [92], with quark models favoring Dnn

positive (except models making use of a polarized ss̄ sea [93]),
and meson-exchange Dnn < 0. When the result came with
Dnn ∼ 0, this was somewhat a disappointment. But in fact, it
was realized [94, 95] that Dnn ∼ 0 was a consequence of the
earlier data! As reminded briefly in Appendix: Constraints on
Spin Observables, there are indeed many constraints among the
various spin observables of a given reaction. For instance, one can
show that

C2
ℓℓ + D2

nn ≤ 1. (14)

This inequality, and other similar constraints, implied that Dnn

had be small, just from data taken with an unpolarized target,
while Dℓℓ had a wider permitted range.

A sample of the PS185 results can be found in Figure 9.

4.8. Spin Effects in Annihilation Into Two
Pseudoscalar Mesons
The reactions p̄p → π+π− (and to a lesser extent π0π0) and
K+K− were measured before LEAR. For instance, some results
can be read in the proceedings of the Strasbourg conference in
1978 [96]. However, some adventurous analyses concluded to
the existence of unnatural-parity broad resonances, the large-
width sector of baryonium. Needless to say that such analyses
with few or no spin observables, were flawed from the very
beginning. The same methods, and sometimes the same authors,
were responsible for the misleading indication in favor of the so-
called Z baryons with strangeness S = +1, the ancestor of the late
light pentaquark θ(1540).

The LEAR experiment PS172 remeasured these reactions with
a polarized target. This gives access to the analyzing power An,
the analog of the polarization in the crossed reactions, such as
π−p → π−p. Remarkably, An is very large, in some wide ranges
of energy and angle (see Figures 10, 11). There is a choice of
amplitudes, actually the transversity amplitudes, such that

An = |f ]2 − |g|2
|f ]2 + |g|2 , (15)

In this notation, |An| ∼ 1 requires one amplitude f or g to
be dominant. This was understood from the coupled channel
effects [97, 98]. Alternatively, one can argue that the initial state
is made of partial waves 3(J − 1)J and

3(J + 1)J coupled by tensor
forces. The amplitudes f and g correspond to the eigenstates of
the tensor operator S12 (see section 2), and the amplitude in
which the tensor operator is strongly attractive tends to become
dominant [99].

4.9. Appendix: Constraints on Spin
Observables
A typical spin observable X is usually normalized such that−1 ≤
X ≤ +1. But if one considers two normalized observables X and
Y of the same reaction, several scenarios can occur:

• The entire square −1 ≤ X, Y ≤ +1 is allowed. Then the
knowledge of X does not constrain Y .

• {X,Y} is restricted to a subdomain of the square. One often
encounters the unit circle X2 + Y2 ≤ 1. In such case a large
X implies a vanishing Y . This is what happens for Dnn vs.
some of Cij in p̄p → 3̄3. Another possibility is a triangle
(see Figure 12).

For instance, in the simplest case of πN → πN (or its cross
reaction as in Equation 15), there is a set of amplitudes such
that the polarization (or the analyzing power), and the two
independent transfer of polarization) are given by

X = |f ]2 − |g|2
|f ]2 + |g|2 , Y = 2 Re(f ∗ g)

|f ]2 + |g|2 , Z = 2 Im(f ∗ g)
|f ]2 + |g|2 , (16)

such that X2 + Y2 + Z2 = 1 and thus X2 + Y2 ≤ 1. For
reactions with two spin-1/2 particles, the algebra is somewhat
more intricate [95].

At about the same time as the analysis of the PS172 and
PS185 data, similar inequalities were derived for the spin-
dependent parton distributions, in particular by the late Jacques
Soffer, starting from the requirement of positivity. An unified
presentation of the inequalities in the hadron-hadron and quark
distribution sectors can be found in Artru et al. [95]. The domain
allowed for three normalized observables X, Y , Z can be found
in this reference, with sometimes rather amazing shapes for
the frontier.

Perhaps a new strategy could emerge. Instead of either
disregarding all spin measurements, or to cumulate all possible
spin measurements in view of an elusive full reconstruction,
one could advocate a stage by stage approach: measure first
a few observables and look for which of the remaining
are less constrained, i.e., keep the largest potential of non-
redundant information.

5. PROTONIUM

Exotic atoms provide a subtle investigation of the hadron-
nucleon and hadron-nucleus interaction at zero energy. For a
comprehensive review, see Deloff [100]. Let us consider (h−,A),
where h− is a negatively charged hadron, such as π− or K−, and
A a nucleus of charge+Z. One can calculate the energy levels E

(0)
n,ℓ

by standard QED techniques, including finite volume, vacuum
polarization, etc. The levels are shifted and broadened by the
strong interactions, and it can be shown (most simply in potential
models, but also in effective theories), that the complex shift is
given by

δEn,ℓ = En,ℓ − E
(0)
n,ℓ ≃ Cn,ℓ aℓ, (17)

where aℓ is the scattering length for ℓ = 0, volume for ℓ =
1, . . . of the strong hA interaction. Cn,ℓ is a know constant
involving the reduced mass and the ℓth derivative of the radial
wave function at the origin of the pure Coulomb problem.
Experiments on protonium have been carried out before and after
LEAR. For a summary, see e.g., Klempt et al. [68]. The latest
results are:
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FIGURE 9 | Some spin observables of the reaction p̄p → 3̄3. Reproduced from Artru et al. [95] with the permission from Physics Reports.

• For the 1S level, the average shift and width are [101] δE(1S) =
712.5±20.3 eV (to be compared with the Bohr energy E(1S) ≃
−12.5 keV), and Ŵ(1S) = 1054 ± 65 eV, with a tentative
separation of the hyperfine level as δE(3S1) = 785 ± 35 eV,
Ŵ(3S1) = 940 ± 80 eV, and δE(1S0) = 440 ± 75 eV, Ŵ(1S0) =
1200± 250 eV. The repulsive character is a consequence of the
strong annihilation.

• For the 2P level, one can not distinguish among 1P1, SLJ3P1
and 3P2, but this set of levels is clearly separated from the 3P0
which receives a larger attractive shift, as predicted in potential
models (see e.g., [84, 102]) and a larger width. More precisely
[103], δE[2(3P2,

31P1,
3P1)] ≃ 0, Ŵ[2(3P2,

31P1,
3P1)] =

38 ± 9meV, and δE[23P0] ≃ −139 ± 28mEV, Ŵ[23P0] =
489 ± 30meV. For the latter, the admixture of the n̄n
component is crucial in the calculation, and the wave function
at short distances is dominated by it isospin I = 0
component [104].

5.1. Quantum Mechanics of Exotic Atoms
Perturbation theory is valid if the energy shift is small as
compared to the level spacing. However, a small shift does not
mean that perturbation theory is applicable. For instance, a hard
core of radius a added to the Coulomb interaction gives a small
upward shift to the levels, as long as the core radius a remains

small as compared to the Bohr radius R, but a naive application
of ordinary perturbation theory will give an infinite correction!
For a long-range interaction modified by a strong short-range
term, the expansion parameters is the ratio of the ranges, instead
of the coupling constant. At leading order, the energy shift is
given by the formula of Deser et al. [105], and Trueman [106],
which reads

δE ≃ 4π |φnℓ(0)|2 a0, (18)

where a0 is the scattering length in the short-range
potential alone, and φnℓ(0) the unperturbed wave function
at zero separation. For a simple proof, see e.g., Klempt
et al. [68]. The formula (18) and its generalization
(17) look perturbative, because of the occurrence of
the unperturbed wavefunction, but it is not, as the
scattering length (volume, . . . ) aℓ implies iterations of the
short-range potential.

There are several improvements and generalizations to any
superposition of a short-range and a long-range potential, the
latter not necessarily Coulombic (see e.g., [107]). For instance,
in the physics of cold atoms, one often considers systems
experiencing some harmonic confinement and a short-range
pairwise interaction.
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FIGURE 10 | Some results on p̄p → ππ polarization at LEAR. Reproduced from Artru et al. [95] with the permission from Physics Reports.

5.2. Level Rearrangement
The approximation (18) implies that the scattering length
a remains small as compared to the Bohr radius (or, say,
the typical size of the unperturbed wave function). Zel’do-
vich [108], Shapiro [32], and others have studied what
happens, when the attractive short-range potential becomes
large enough to support a bound state on its own. Let the
short-range attractive interaction be λVSR, with λ > 0.
When λ approaches and passes the critical value λ0 for
the first occurrence of binding in this potential, the whole
Coulomb spectrum moves rapidly. The 1S state drops from
the keV to the MeV range, the 2S level decreases rapidly and
stabilizes in the region of the former 1S, etc. (see for instance,
Figure 13). Other examples are given in Deloff and Combescure
et al. [100, 107].

It was then suggested that a weakly bound quasi-nuclear N̄N
state will be revealed by large shifts in the atomic spectrum
of protonium [32]. However, this rearrangement scenario
holds for a single-channel real potential VSR. In practice, the
potential is complex, and the Coulomb spectrum is in the p̄p
channel, and the putative baryonium in a state of pure isospin
I = 0 or I = 1. Hence, the rearrangement pattern is
more intricate.

5.3. Isospin Mixing
In many experiments dealing with “annihilation at
rest,” protonium is the initial state before the transition
NN̄ →mesons. Hence the phenomenological analysis include

parameters describing the protonium: S-wave vs. P-wave
probability and isospin mixing. Consider, e.g., protonium
in the 1S0 state. In a potential model, its dynamics is
given by

−u′′(r)/m+ V11 u(r)+ V12 v(r)−
e2

r
u(r) = E1,0 u(r),

−v′′(r)/m+ V22 v(r)+ V21 u(r)+ 2 δmu(r) = E1,0 v(r),

(19)

where δm is the mass difference between the proton and
the neutron, and the strong (complex) potentials are the
isospin combinations

V11 = V22 =
1

2
(VI=0 + VI=1), V12 = V21 =

1

2
(VI=0 − VI=1).

(20)
The energy shift is well-approximated by neglecting the neutron-
antineutron component, i.e., v(r) = 0. But at short distance,
this component is crucial. In most current models, one isospin
component is dominant, so that the protonium wave function
is dominantly either I = 0 or I = 1 at short distances, where
annihilation takes place. This influences much the pattern of
branching ratios. For instance, Dover et al. [104] found in a
typical potential model that the 3P0 level consists of 95% of
isospin I = 0 in the annihilation region. For 3P1, the I = 1
dominates, with 87%. See references [104, 109, 110] for a detailed
study of the role of the n̄n channel on the protonium levels and
their annihilation.
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FIGURE 11 | Some results on p̄p → K̄K polarization at LEAR. Reproduced from Artru et al. [95] with the permission from Physics Reports.

FIGURE 12 | Examples of constraints among spin observables: only the colored area is permitted.

5.4. Day-Snow-Sucher Effect
When a low-energy antiproton is sent on a gaseous or liquid
hydrogen target, it is further slowed down by electromagnetic
interaction, and is captured in a high orbit of the antiproton-
proton system. The electrons are usually expelled during the
capture and the subsequent decay of the antiproton toward lower
orbits. The sequence favors circular orbits with ℓ = n − 1, in
the usual notation. Annihilation is negligible for the high orbits,
and becomes about 1% in 2P and, of course, 100% in 1S. This
was already predicted in the classic paper by Kaufmann and
Pilkuhn [111].

In a dense target, however, the compact p̄p atom travels
inside the orbits of the ordinary atoms constituting the target,

and experiences there an electric field which, by Stark effect,
mixes the (ℓ = n − 1, n) level with states of same
principal quantum number n and lower orbital momentum.
Annihilation occurs from the states with the lowest ℓ. This
is known as the Day-Snow-Sucher effect [112]. In practice, to
extract the branching ratios and distinguish S-wave from P-
wave annihilation, one studies the rates as a function of the
target density.

5.5. Protonium Ion and Protonium Molecule
So far, the physics of hadronic atoms has been restricted to 2-
body systems, such as p̄p or K−A. In fact, if one forgets about
the experimental feasibility, there are many other possibilities.
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FIGURE 13 | Rearrangement of levels: first three levels of the radial equation

−u′′(r)+ V (r) u(r) = E u(r) with V (r) = −1/r + λ a2 exp(−a r), here with a = 100

and λ variable.

If one takes only the long-range Coulomb interaction, without
electromagnetic annihilation nor strong interaction, many stable
configurations exist, such as p̄pp, the protonium ion, or p̄p̄pp,
the heavy analog of the positronium molecule. Identifying these
states andmeasuring the shift and width of the lowest level would
be most interesting. Today this looks as science fiction, as it was
the case when Ps2 = e+e+e−e− was suggested by Wheeler in
1945. But Ps2 was eventually detected, in 2007.

6. THE ANTINUCLEON-NUCLEUS
INTERACTION

6.1. Antinucleon-Nucleus Elastic Scattering
At the very beginning of LEAR, Garreta et al. [113, 114]measured
the angular distribution of p̄-A scattering, where A was 12C, 40Ca
or 208Pb. Some of their results are reproduced in Figure 149.
More energies and targets were later measured.

The results have been analyzed by Lemaire et al. in terms
of phenomenological optical models [115], which were in turn
derived by folding the elementary N̄N amplitudes with the
nuclear density (see e.g., [116–118]).

In particular, a comparison of 16O and 18O isotopes (see
Figure 14), reveals that there is very little isospin dependence of
the p̄N interaction, when averaged on spins.

Other interesting measurements of the antinucleon-nucleus
interaction have been carried out and analyzed by the PS179 and
OBELIX (PS201) collaborations, with more nuanced conclusions
about the isospin dependence of the interaction at very low
energy (see, for instance [119, 120]).

6.2. Inelastic Scattering
It has been stressed that the inelastic scattering p̄A → p̄A∗,
where A is a known excitation of the nucleus A, could provide
very valuable information on the spin-isospin dependence of the
elementary N̄N amplitude, as the transfer of quantum numbers

9I thank Matteo Vorabbi for making available his retrieving of the data in a

convenient electronic form.

is identified. One can also envisage the charge-exchange reaction
p̄A → n̄B(∗) (see, for instance [121]).

Some measurements were done by PS184, on 12C and 18O
[122]. The angular distribution for p̄+ 12C → p̄+ 12C

∗
is given

in Figure 15 for the case where 12C is the 3− level at 9.6MeV. In
their analysis, the authors were able to distinguish among models
that were equivalent for the N̄N data, but have some differences
in the treatment of the short-range part of the interaction. This is
confirmed by the analysis in references [121, 123]. Unfortunately,
this program of inelastic antiproton-nucleus scattering was not
thoroughly carried out.

6.3. Antiprotonic Atoms
The physics is nearly the same as for protonium. A low
energy antiproton sent toward a target consisting of atoms of
nucleus A

ZX, is decelerated by the electromagnetic interaction
and captured in a high atomic orbit, and cascades down toward
lower orbits. During this process, the electrons are expelled. The
difference is that annihilation occurs before reaching the S or P
levels, actually when the size of the orbit becomes comparable to
the size of the nucleus. Again, the Day-Snow-Sucher mechanism
can induce some Stark effect. Thus, precocious annihilation can
happen, depending on the density of the target.

A review of the experimental data is provided in Batty et
al. and Gotta [124, 125], where a comparison is made with
pionic and kaonic atoms. The models developed to describe
antiproton-nucleus scattering (see section 6.1) have been applied,
and account rather well for the observed shifts. As for the purely
phenomenological optical potentials Vopt, the most common
parametrization is of the form

2µVopt = −4π
(

1+ µ

m

)

(bR + i bI)̺(r), (21)

where µ is the reduced mass of p̄-A, m the mass of the nucleon,
̺(r) the nuclear density and bR+i bi an effective scattering length.

More refined models, aiming at describing simultaneously the
data on a variety of nuclei, are written as [124]

2µVopt = −4π
(

1+ µ

m

)

(

b0[̺n(r)+ ̺p(r)]

+b1[̺n(r)− ̺p(r)]
)

, (22)

where the complex b0,1 are the isospin-independent and isospin-
dependent effective scattering lengths, respectively. Further
refinements introduce in (22) a “P-wave” term∇.α(r)∇, or terms
proportional to the square of the density. Typical values are [124]

b0 = (2.7± 0.3)+ i (3.1±+0.4) fm,

b1 = (1.2± 1.6)+ i (1.6±+1.3) fm, (23)

so that there is no firm evidence for a strong isospin dependence.
It is important to stress that the potential Vopt

is probed mainly at the surface. Its value inside the
nucleus hardly matters. The same property is seen in
the low-energy heavy-ion collisions: what is important
is the interaction at the point where the two ions come
in contact.
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FIGURE 14 | Angular distribution for p̄ scattering on the nuclei 12C, 40Ca, and 208Pb at kinetic energy Tp̄ = 180MeV, and on the two isotopes 16O and 16O [113, 114].

FIGURE 15 | Angular distribution of the 12C(p̄, p̄)12C
∗
reaction for the 3−

excited state at 9.6MeV [122]. The incident p̄ has an energy of 179.7MeV.

6.4. Antiproton-Nucleus Dynamics
Modeling the antiproton-nucleus interaction has been
done with various degrees of sophistication. We have
seen in the last section that phenomenological (complex)
potentials proportional to the nuclear density account for
a wide body of data on antiprotonic atoms. A relativistic
mean-field approach was attempted years ago by Bouyssy
and Marcos [126] and revisited more recently [127].
Meanwhile, a Glauber approach has been formulated
[128] and applied to the elastic and inelastic scattering of
relativistic antiprotons.

There is a persisting interest in the domain of very low
energies and possible bound states. For instance, Friedman et
al. [129] analyzed the subtle interplay between the N̄N S- and

P-waves when constructing the antiproton-nucleus potential.
There has been also speculations about possible p̄ − A states,
in line with the studies on the molecular N̄N baryonium. For a
recent update, see e.g., Hrtánková and Mareš [130].

One could also envisage to use antiprotons to probe the
tail of the nuclear density for neutron-rich nuclei with a halo
structure. For early references, see Bradamante et al. [27].
Recently, the PUMA proposal suggests an investigation by
low-energy antiprotons of some unstable isotopes, for which the
conventional probes have limitations [131].

6.5. Neutron-Antineutron Oscillations
In some theories of grand unification, the proton decay is
suppressed, and one expects neutron-to-antineutron oscillations.
An experimental search using free neutrons has been performed
at Grenoble [132], with a limit of about τnn̄ & 10−8 s for
the oscillation period. Any new neutron source motivates new
proposals of the same vein (see e.g., [133]).

An alternative is to use the bound neutrons of nuclei. The
stability of, say, 16O, reflects as well the absence of decay of
its protons as the lack of n → n̄ conversion with subsequent
annihilation of the antineutron. It has been sometimes argued
[134] that the phenomenon could be obscured in nuclei by
uncontrolled medium corrections. However, the analysis shows
that the neutrons oscillate mainly outside the nucleus, and
the subsequent annihilation takes place at the surface, so that,
fortunately, the medium corrections are small.

The peripheral character of the nn̄ oscillations in nuclei
explains why a simple picture (sometimes called closure
approximation) does not work too well, with the neutron and the
antineutron in a box feeling an average potential 〈Vn〉 or 〈Vn̄〉,
resulting in a simple 2× 2 diagonalization. The true dynamics of
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nn̄ oscillations relies on the tail of the neutron distribution, where
n and n̄ are almost free.

There are several approaches, see for instance [135]. The
simplest is based on the Sternheimer equation, which gives the
first order correction to the wave function without summing
over unperturbed states. In a shell model with realistic neutron
(reduced) radial wave functions unℓJ(r) with shell energy EnℓJ , the
induced n̄ component is given by

−
w′′
nℓJ(r)

µ
+ ℓ(ℓ+ 1)

µ r2
+Vn̄(r)w

′
nℓJ(r)−EnℓJ w

′
nℓJ(r) = γ unℓJ(r),

(24)
with µ the reduced mass of the n̄-(A− 1) system, Vn̄ the complex
(optical) n̄-(A − 1) potential, and γ = 1/τnn̄ the strength of the
transition. Once wnℓJ is calculated, one can estimate the second-
order correction to the energy, and in particular the width ŴnℓJ
of this shell

ŴnℓJ = −2

∫ ∞

0
ImVn̄ |wnℓJ(r)|2 dr = −2 γ

∫ ∞

0
unℓJ(r) ImwnℓJ(r) dr, (25)

which scales as

ŴnℓJ ∝ γ 2. (26)

An averaging over the shells give a width per neutron Ŵ

associated with a lifetime T

T = Tr τ
2
nn̄, (27)

where Tr is named either the “reduced lifetime” (in s−1) or the
“nuclear suppression factor.” The spatial distribution of the wnℓJ

and the integrands in (25), the relative contribution to Ŵ clearly
indicate the peripheral character of the process. See e.g., Barrow
et al. [136] for an application to a simulation in the forthcoming
DUNE experiment, and refs. there to earlier estimates. Clearly,
DUNE will provide the best limit for this phenomenon.

For the deuteron, an early calculation by Dover et al. [137]
gave Tr ≃ 2.5 × 1022 s−1. Oosterhof et al. [138], in an approach
based on effective chiral theory (see section 8), found a value
significantly smaller, Tr ≃ 1.1 × 1022 s−1. However, their
calculation has been revisited by Haidenbauer and Meißner
[139], who got almost perfect agreement with Dover et al. For
40Ar relevant for the DUNE experiment, the result of [136] is
Tr ≃ 5.6× 1022 s−1.

7. ANTINUCLEON ANNIHILATION

7.1. General Considerations
NN̄ annihilation is a rather fascinating process, in which the
baryon and antibaryon structures disappear into mesons. The
kinematics is favorable, with an initial center-of-mass energy of
2GeV at rest and more in flight, allowing in principle up to more
than a dozen of pions. Of course, the low mass of the pion is a
special feature of light-quark physics. We notice, however, that
the quark model predicts that (QQQ) + (Q̄Q̄Q̄) > 3(QQ̄) [140],

so that annihilation at rest remains possible in the limit where all
quarks are heavy. The same quark models suggest that (Q̄Q̄Q̄) +
(qqq) < 3 (Q̄q) if the mass ratio Q/q becomes large, so that, for
instance, a triply-charmed antibaryon (c̄c̄c̄) would not annihilate
on an ordinary baryon.

One should acknowledge at the start of this section that there
is no theory, nor even any model, that accounts for the many
data accumulated on N̄N annihilation. Actually the literature is
scattered across various subtopics, such a the overall strength
and range of annihilation, the averagemultiplicity, the percentage
of events with hidden-strangeness, the explanation of specific
branching ratios, such as the one for p̄p → ρ π , the occurrence of
new meson resonances, etc. We shall briefly survey each of these
research themes.

7.2. Quantum Numbers
An initial N̄N state with isospin I, spin S, orbital momentum
L and total angular momentum J has parity P = −(−1)L and
G-parity G = (−1)I+L+S. If the system is neutral, its charge
conjugation is C = (−1)L+S. A summary of the quantum
numbers for the S and P states is given in Table 1.

So, for a given initial state, some transitions are forbidden
or allowed. The result for some important channels is shown
in Table 2. In particular, producing two identical scalars or
pseudoscalars requires an initial P-state.

The algebra of quantum numbers is not always trivial,
especially if identical mesons are produced. For instance, the
question was raised whether or not the 1S0 state of protonium
with JPC = 0−+ and IG = 0 can lead to a final state made of four
π0. An poll among colleagues gave an overwhelming majority of
negative answers. But a transition, such as 1S0 → 4π0 is actually
possible at the expense of several internal orbital excitations
among the pions. For an elementary proof, see Klempt et al. [87],
for a more mathematical analysis [141].

The best known case, already mentioned in section 1, deals
with ππ . An S-wave π+π− with a flat distribution, or a π0π0

system (necessarily with I = 0 and J even) requires an initial state
1,3P0. It has been observed to occur even in annihilation at rest on
a dilute hydrogen target [142]. This is confirmed by a study of the
J = 0 vs. J = 1 content of the ππ final state as a function of the
density of the target, as already mentioned in section 5.4.

7.3. Global Picture of Annihilation
As already stressed, the main feature of annihilation is its
large cross-section, which comes together with a suppression
of the charge-exchange process. This is reinforced by the
observation that even at rest, annihilation is not reduced to
an S-wave phenomenon. This is hardly accommodated with a
zero-range mechanism, such as baryon exchange. The baryon
exchange, for say, annihilation into two mesons is directly
inspired by electron exchange in e+ e− → γ γ (see Figure 16).
After iteration, the absorptive part of the N̄N interaction, in
this old-fashioned picture, would be driven by diagrams, such
as the one in Figure 16. Other contributions involve more than
two mesons and crossed diagrams. As analyzed (e.g., [143, 144]),
this corresponds to a very small range, practically a contact
interaction. Not surprisingly, it was impossible to follow this
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TABLE 1 | Quantum numbers of the S and P partial waves (PW) of the N̄N system. The notation is 2I+1,2S+1LJ.

PW 1,1S0
3,1S0

1,3S1
3,3S1

1,1P1
3,1P1

1,3P0
3,3P0

1,3P1
3,3P1

1,3P2
3,3P2

JPC 0−+ 0−+ 1−− 1−− 1+− 1+− 0++ 0++ 1++ 1++ 2++ 2++

IG 0+ 1− 0− 1+ 0− 1+ 0+ 1− 0+ 1− 0+ 1−

TABLE 2 | Allowed decays from S and P-states into some two-meson final states.

FS 1,1S0
3,1S0

1,3S1
3,3S1

1,1P1
3,1P1

1,3P0
3,3P0

1,3P1
3,3P1

1,3P2
3,3P2

π0π0 √ √

π−π+ √ √ √

π0η(′)
√ √

η(′)η(′)
√ √

K−K+ √ √ √ √ √ √

KsKl
√ √

KsKs
√ √ √ √

π0ω(φ)
√ √

η(′)ω(φ)
√ √

π0ρ0
√ √

η(′)ρ0
√ √

π±ρ∓
√ √ √ √ √

prescription when building optical models to fit the observed
cross-sections. Among the contributions, one may cite [62, 77–
79]. Claims, such as Côté et al. [145], that it is possible to fit
the cross sections with a short-range annihilation operator, are
somewhat flawed by the use of very large strengths, wide form
factors, and a momentum dependence of the optical potential
that reinforce annihilation in L > 0 partial waves.

In the 80s, another point of view started to prevail:
annihilation should be understood at the quark level10. This
picture was hardly accepted by a fraction of the community. An
anecdote illustrates how hot was the debate. After a talk at the
1988 Mainz conference on antiproton physics, where I presented
the quark rearrangement, Shapiro strongly objected. At this time,
the questions and answers were recorded and printed in the
proceedings. Here is the verbatim [148]: I.S. Shapiro (Lebedev)
: The value of the annihilation range . . . is not a question for
discussion. It is a general statement following from the analytical
properties of the amplitudes in quantum field theory . . . . It does
not matter how the annihilating objects are constructed from
their constituents. It is only important that, in the scattering
induced by annihilation, an energy of at least two baryons masses
is transferred. J.M. Richard: First of all, for me, this is an
important “question for discussion.” In fact, we agree completely
in the case of “total annihilation,” for instance N̄N → φφ. The
important point is that [baryons and] mesons are composite, so,
what we call “annihilation” is, in most cases, nothing but a soft
rearrangement of the constituents, which does not have to be
short range.

10Of course, the rearrangement was introducedmuch earlier, in particular by Stern,

Rubinstein, Caroll, . . . [146, 147], but simply to calculate ratios of branching ratios,

without any attempt to estimate the cross sections.

In the simplest quark scenario, the spatial dependence
of “annihilation” comes from that this is not an actual
annihilation similar to e+e− → photons, in which the
initial constituents disappear, but a mere rearrangement of
the quarks, similar to the rearrangement of the atoms in
some molecular collisions. This corresponds to the diagram
of Figure 17. The amplitude for this process is
〈9f |H|9i〉, where H is the 6-quark Hamiltonian, 9i

the nucleon-antinucleon initial state, and 9f the final
state made of three mesons. See, for instance [149–
151], for the details about the formalism. One gets
already a good insight on the spatial distribution of
annihilation within the quark-rearrangement model
by considering the mere overlap 〈9f |9i〉 using simple
oscillator wave functions. For the initial state, a set of
Jacobi coordinates (here normalized to correspond to an
unitary transformation)

x = r2 − r1√
2

, y = 2 r3 − r1 − r2√
6

, z = r1 + r2 + r3√
3

,

x′ = r5 − r4√
2

, y′ = 2 r6 − r4 − r5√
6

, z′ = r4 + r5 + r6√
3

,

(28)
with the further change

r = z′ − z√
2

, R = z + z′√
2

, (29)

which, to a factor, are the N̄N separation and the overall
center of mass. The initial-state wave function is thus of
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FIGURE 16 | e+e− annihilation into two photons (left), N̄N annihilation into two mesons (center) and its iteration contributing to the absorptive part of the N̄N amplitude.

the form

9i =
(

α

π

)3

exp
[

−(α/2)(x2 + y2 + x′2 + y′2)
]

ϕ(r), (30)

where ϕ denotes the N̄N wave function. Similarly
for the final state, one can introduce the normalized
Jacobi coordinates

u1 =
r4 − r1√

2
, u2 =

r5 − r2√
2

, u3 =
r6 − r3√

2
,

v1 =
r1 + r4√

2
, v2 =

r2 + r5√
2

, v3 =
r3 + r6√

2
,

X = v2 − v1√
2

, Y = 2 v3 − v1 − v2√
6

, R = v1 + v2 + v3√
3

,

(31)
and the wave function

9f =
(

β

π

)9/4

exp
[

−(β/2)(u21 + u22 + u23)
]

8(X,Y). (32)

Integrating for instance over x′ − x and y′ − y, one
ends with

8∗
f (X,Y) exp(−βr2/2) exp(−α(X2 + Y2)/2)ϕ(r), (33)

and after iteration, one gets a separable operator v(r) v(r′),
where v(r) is proportional to exp(−βr2/2) and contains
some energy-dependent factors [149, 151]. As expected,
the operator is not local. There is an amazing exchange
of roles: the size of the baryon, through the parameter
α, governs the spatial spread of the three mesons, while
the size the mesons becomes the range of the separable
potential. Schematically speaking, the range of “annihilation”
comes from the ability of the mesons to make a bridge,
to pick up a quark in the baryon and an antiquark in
the antibaryon.

Explicit calculations show that the rearrangement potential
has about the required strength to account for the observed
annihilation cross-sections. Of course, the model should be
improved to include the unavoidable distortion of the initial-
and final-state hadrons. Also one needs a certain amount of
intrinsic quark-antiquark annihilation and creation to explain
the production of strange mesons. This leads us to the discussion
about the branching ratios.

FIGURE 17 | Rearrangement of the quarks and antiquarks from a baryon and

an antibaryon to a set of three mesons.

7.4. Branching Ratios: Experimental
Results
Dozens of final states are available for N̄N annihilation,
even at rest. When the energy increases, some new channels
become open. For instance, the φφ channel was used to search
for glueballs in the PS202 experiment [152]. However, most
measurements have been performed at rest with essentially two
complementary motivations. The first one was to detect new
multi-pion resonances, and, indeed, several mesons have been
either discovered or confirmed thanks to the antiproton-induced
reactions. The second motivation was to identify some leading
mechanisms for annihilation, and one should confess that the
state of the art is not yet very convincing.

Several reviews contain a summary of the available branching
ratios and a discussion on their interpretation (see e.g., [87,
153]). We shall not list all available results, but, instead, restrict
ourselves to themain features or focus on some intriguing details.
For instance:

• The average multiplicity is about 4 or 5. But in many
cases, there is a formation of meson resonances, with their
subsequent decay. In a rough survey, one can estimate
that a very large fraction of the annihilation channels are
compatible with the primary formation of two mesons which
subsequently decay.

• In the case of a narrow resonance, one can distinguish
the formation of a resonance from a background made of
uncorrelated pions, e.g., ωπ from ππππ . In the case of broad
resonances, e.g., ρπ vs. πππ , this is much more ambiguous.

• The amount of strangeness, in channels, such as K̄+K, K̄+K∗,
K̄ + K + pions, is about 5%.

• Charged states, such as p̄n or n̄p are pure isospin I = 1
initial state. In the case of p̄p annihilation at rest, the isospin
is not known, except if deduced from the final state, like in the
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FIGURE 18 | Some quark diagrams describing annihilation.

case of πη. Indeed, p̄p is the combination (|I = 0〉 + |I =
1〉)/

√
2. But, at short distances, one of the components often

prevails, at least in model calculations. In the particle basis,
there is an admixture of n̄n component, which, depending on
its relative sign, tends to make either a dominant I = 0, or
I = 1. For instance, Kudryavtsev [154] analyzed the channels
involving two pseudoscalars, and concluded that if protonium
annihilation is assumed to originate from an equal mixture of
I = 0 and I = 1, then annihilation is suppressed in one of the
isospin channels, while a better understanding is achieved, if
p̄p− n̄n is accounted for.

7.5. Branching Ratios: Phenomenology
The simplest model, and most admired, is due to Vandermeulen
[155]. It assumes a dominance of 2-body modes, say N̄N →
a+ b, where a and b are mesons or meson resonances, produced
preferentially when the energy is slightly above the threshold

s
1/2
ab

= ma + mb. More precisely, the branching ratios are
parameterized as

f = Cab p(
√
s,ma,mb) exp[−A(s− sab)], (34)

where A is an universal parameter, p the center-of-mass
momentum and the constant Cab assume only two values: C0 for
non-strange and C1 for strange.

In the late 80s, following the work by Green and Niskanen
[149, 150], and others, there were attempts to provide a
detailed picture of the branching ratios, using quark-model wave
functions supplemented by operators to create or annihilate
quark-antiquark pairs. A precursor was the so-called 3P0 model
[156] introduced to describe decays, such as1→ N + π .

There has been attempts to understand the systematics of
branching ratios at the quark level. We already mentioned some
early papers [146, 147]. In the late 80s and in the 90s, several

papers were published, based on a zoo of quark diagrams.
Some of them are reproduced in Figure 18. The terminology
adopted is An or Rn for annihilation or rearrangement into n
mesons. Of course, they are not Feynman diagrams, but just a
guidance for a quark model calculation with several assumptions
to be specified. On the one had, the R3 diagram comes as
the most “natural,” as it does not involve any change of the
constituents. On the other hand, it was often advocated that
planar diagrams should be dominant (see e.g., [157]). This
opinion was, however, challenged by Pirner in his re-analysis
the 1/Nc expansion, where Nc is the number of colors in
QCD [158].

A key point is of course strangeness. The R3 diagram
hardly produces kaons, except if extended as to include
the sea quarks and antiquarks. On the other hand, the
An diagrams tend to produce too often kaons, unless a
controversial strangeness suppression factor is applied: at the
vertex where a quark-antiquark pair is created, a factor f =
1 is applied for q = u, d and f ≪ 1 for q = s.
This is an offending violation of the flavor SU(3)F symmetry.
For instance the decays J/ψ → pp̄ and J/ψ → 33̄

are nearly identical, especially once phase-space corrections
are applied. The truth is that at low-energy, strangeness
is dynamically suppressed by phase-space and a kind of
tunneling effect [159]. This could have been implemented
more properly in the analyses of the branching ratios. An
energy-independent strangeness suppression factor is probably
too crude.

Note that a simple phenomenology of quark diagrams is
probably elusive. A diagram involving two primary mesons can
lead to 4 or 5 pions after rescattering or the decay of a resonance.
Also the An diagrams require a better overlap of the initial
baryon and antibaryon, and thus are of shorter range than the
Rn diagrams. So the relative importance can vary with the impact
parameter and the incident energy.

7.6. Annihilation on Nuclei
There has been several studies of N̄-A annihilation. In a
typical scenario, a primary annihilation produces mesons, and
some of them penetrate the nucleus, giving rise to a variety
of phenomenons: pion production, nucleon emission, internal
excitation, etc. (see e.g., [160]). Some detailed properties have
been studied, for instance whether annihilation on nuclei
produces less or more strange particles than annihilation on
nucleons [161].

At very low energy, due to the large N̄N cross section,
the primary annihilation takes place near the surface. It
has been speculated that with medium-energy antiprotons,
thanks to the larger momentum and the smaller cross
section, the annihilation could sometimes take place near
the center of the nucleus. Such rare annihilations with a
high energy release (at least 2GeV) and little pressure,
would explore a sector of the properties of the nuclear
medium somewhat complementary to the heavy-ion collisions
(see e.g., [14, 162–164]).

Note the study of Pontecorvo reactions. In N̄N annihilation,
at least two mesons have to be produced, to conserve energy
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and momentum. On a nucleus, there is the possibility of primary
annihilation into n mesons, with n − 1 of them being absorbed
by the remaining nucleons. An example is p̄NN → πN or φn
[165, 166]. This is somewhat related to the pionless decay of3 in
hypernuclei [167].

7.7. Remarkable Channels
Some annihilation channels have retained the attention:

• pp̄ → e+e− led to a measurement of the proton form
factor in the time-like region. The reversed reaction
e+e− → pp̄ was studied elsewhere, in particular
at Frascati. For a general overview, see [168, 169],
and for the results of the PS170 collaboration at
CERN [170].

• We already mentioned the p̄p → charmonium → hadrons,
leading to a better measurement of the width of some
charmonium states, and the first indication for the hc, the
1P1 level of cc̄ [10, 171]. In principle, while e+e− →
charmonium is restricted to the JPC = 1−− states, p̄p
can match any partial wave. However, perturbative QCD
suggests that the production is suppressed for some quantum
numbers. It was thus a good surprise that ηc(1S) was
seen in p̄p, but the coupling turns out less favorable for
ηc(2S) [11, 172].

• The overall amount of hidden-strangeness is about 5% [87].
This is remarkably small and is hardly accommodated in
models where several incoming qq̄ pairs are annihilated
and several quark-antiquark pairs created. Note that the
branching ratio for K+K− is significantly larger for an
initial S-wave than for P-wave [46]. This confirms the idea
that annihilation diagrams are of shorter range than the
rearrangement ones.

• p̄p → K0K̄0 in the so-called CPLEAR experiment (PS195)
[173] gave the opportunity to measure new parameters of the
CP violation in the neutral K systems, a phenomenon first
discovered at BNL in 1964 by Christenson, Cronin, Fitch, and
Turlay11. The CPLEAR experiment found evidence for a direct
T-violation (time reversal).

• Precision measurements of the p̄p → γ + X and p̄p → π + X
in search of bound baryonium, of which some indications were
found before LEAR. The results of more intensive searches
at LEAR were unfortunately negative (see e.g., [174]). When
combined to the negative results of the scattering experiments,
this was seen as the death sentence of baryonium. But, as
mentioned in section 3, this opinion is now more mitigated,
because of the pp̄ enhancements observed in the decay of
heavy particles.

• p̄p → ρ π has intriguing properties. Amazingly, the same
decay channel is also puzzling in charmonium decay, as the
ratio of ψ(2S) → ρ π to J/ψ → ρ π differs significantly
from its value for the other channels (see e.g., [175] and
references therein). In the case of p̄p annihilation, the problem
(see e.g., [46]), is that the production from 1,3S1 is much larger

11Happy BNL director, as his laboratory also hosted the experiment in which the

�− was discovered, the same year 1964.

than from 1,3S0. Dover et al., for instance, concluded to the
dominance of the A2 type of diagram [176], once the quark-
antiquark creation operator is assumed to be given by the
3P0 model [156]. But the A2 diagram tends to produce too
often kaons!

• p̄N → K̄ + X, if occurring in a nucleus, monitors
the production of heavy hypernuclei. It was a remarkable
achievement of the LEAR experiment PS177 by Polikanov
et al. to measure the lifetime of heavy hypernuclei (see
e.g., [177]).

• pp̄ → π+π− and pp̄ → K+K− by PS172 revealed striking
spin effects (see section 4.8).

• pp̄ → φφ was used to search for glueballs (Experiment PS 202
“JETSET”) [152], with innovative detection techniques.

8. MODERN PERSPECTIVES

So far in this review, the phenomenological interpretation
was based either on the conventional meson-exchange picture
or on the quark model for annihilation. The former was
initiated in the 50s, and the latter in the 80s. Of course,
it is not fully satisfactory to combine two different pictures,
one for the short-range part, and another for the long-range,
as the results are very sensitive to the assumptions for the
matching of the two schemes. This is one of the many reasons
why the quark-model description of the short-range nucleon-
nucleon interaction has been abandoned, though it provided
an interesting key for a simultaneous calculation of all baryon-
baryon potentials. One way out that was explored consists of
exchanging the mesons between quarks. Then the quark wave
function generates a form factor. For NN̄, a attempt was made
by Entem and Fernández [102], with some phenomenological
applications. In this paper, the annihilation potential is due
to transition qq̄ → meson → qq̄ or qq̄ → gluon →
qq̄. But this remains a rather hybrid picture and it was not
further developed.

Somewhat earlier, in the 80s, interesting developments of the
bag model have been proposed, where the nucleon is given a pion
cloud that restores its interaction with other nucleons. This led
to a solitonic picture, e.g., Skyrme-type of models for low-energy
hadron physics [178]. A first application to N̄N was proposed by
Zahed and Brown [179].

As seen in other chapters of this book, a real breakthrough
was provided by the advent of effective chiral theories, with
many successes, for instance in the description of the ππ
interaction. For a general introduction, see e.g., the textbook
by Donnelly et al. [180]. This approach was adopted by
a large fraction of the nuclear-physics community, and, in
particular, it was applied to the study of nuclear forces
and nuclear structures. Chiral effective field theory led to
very realistic potentials for the NN interaction, including
the three-body forces and higher corrections in a consistent
manner [181, 182]. Thus, the meson-exchange have been
gradually forsaken.

In such modern NN potentials, one can identify the long-
range part due to one-, two- or three-pion exchange, and apply

Frontiers in Physics | www.frontiersin.org 19 January 2020 | Volume 8 | Article 6366

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Richard Antiproton Physics

FIGURE 19 | Differential cross-section for elastic p̄ scattering on 12C at

180MeV. The optical potential is computed from successive refinements in the

effective theory. Reproduced from Vorabbi et al. [186] with the permission of

the authors.

the G-parity rule, to derive the corresponding long-range part of
the N̄N potential. The short-range part of the NN interaction is
determined empirically, by fixing the strength of a some constant
terms which enter the interaction in this approach. This part
cannot be translated as such to the N̄N sector. There exists
for sure, analogous constant terms that describe the real part
of the interaction. As for the annihilation part, there are two
options. The first one consists of making the contact terms
complex. This is the choice made by Chen et al. [183]. Another
option that keeps unitarity more explicit is to introduce a few
effective meson channels Xi and iterate, i.e., N̄N → X →
N̄N, with the propagator of the mesonic channel Xi properly
inserted [184]. Then some empirical constant terms enter now
the transition potential V(N̄N → Xi). A fit of the available
data determines in principle the constants of the model [74].
The question remains whether the fit of the constant terms
is unique, given the sparsity of spin observables. For a recent
review on chiral effective theories applied to antiproton physics
(see [76, 185]). The phenomenology will certainly extent beyond
scattering data. One can already notice that the amplitude of
Dai et al. [184], when properly folded with the nuclear density,
provides with an optical potential that accounts fairly well

for the scattering data, as seen in Figure 19 borrowed from
Vorabbi et al. [186].

9. OUTLOOK

The physics of low-energy antiprotons covers a variety of topics:
fundamental symmetries, atomic physics, inter-hadronic forces,
annihilation mechanisms, nuclear physics, etc.

New experiments are welcome or even needed to refine
our understanding of this physics. For instance, a better
measurement of the shift and width of the antiprotonic lines,
and some more experiments on the scattering of antineutrons
off nucleons or nuclei. We also insisted on the need for
more measurements on p̄p scattering with a longitudinally or
transversally polarized target.

Selected annihilationmeasurements could also be useful, from
zero energy to well above the charm threshold, and again, the
interest is 2-fold: access to new sectors of hadron spectroscopy,
and test the mechanisms of annihilation. For this latter purpose,
a through comparison of N̄N- and ȲN-induced channels would
be most useful, where Y denotes a hyperon.

The hottest sectors remain these linked to astrophysics:
how antiprotons and light antinuclei are produced in
high-energy cosmic ray? Is there a possibility in the early
Universe of separating matter from antimatter before complete
annihilation? Studying these questions require beforehand
a good understanding of the antinucleon-nucleon and
antinucleon-nucleus interaction.
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