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Alzheimer’s disease (AD) and dementia are the 
most common neurodegenerative disorder. Since 
the number of individuals with AD and demen-
tia is expected to increase considerably in the 
near future, reliable treatment and diagnosis are 
critical. EEG and neurophysiological technique 
could be used as a cost-effective screening tool 
for early detection and diagnosis in the Mild 
Cognitive Impairment (MCI) stage. 

The aim in neurophysiology research is to develop 
signal processing methods that improve the spec-
ificity for diagnosing dementia; we wish to dis-
cover signal features that not only significantly 
differ in AD patients, but also allow us to reliably 
separate AD patients and control subjects. This 

approach is valuable for clinical purposes (as diagnostic tool for dementia), and it also more 
fundamentally contributes to a better understanding of brain dynamics of MCI patients. Finally, 
the development of neurophysiological biomarker could be useful in monitoring pharmaco-
logical treatments.

The main focus of this special issue will be on the most recent developments and ideas in the 
field of EEG and neurophysiology which will enable us to extract features that improve the 
specificity for diagnosing AD and dementia.
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The Editorial on the Research Topic

Neurophysiology in Alzheimer’s Disease and Dementia

The aging of the nervous system is often associated with chronic diseases typical of old age,
which can offer in their pathogenesis, and in their susceptibility to particular therapies, the key
to understanding the determinants of senescence. In recent years, the need to distinguish normal
from pathological aging and the obligation to execute the diagnosis as early as possible, addressed
dementia research to the field of biomarkers. The biomarkers are easily recognizable, quantifiable,
and reproducible, biological entities, that can identify in a timely manner different profiles of
disease. It is widely believed in the scientific community that the diagnosis of Alzheimer’s disease
(AD) can be made early in the integrated analysis of structural, biological, clinical, and functional
biomarkers.

Neurophysiology, and in particular electroencephalography (EEG), has proved a reliable tool
in the biomarkers research of dementias. The ability to highlight the state of the underlying brain
network, even with very advance, the ease of application, the widespread reproducibility and, not
least, the low cost of operation, makes this method very suitable for studies of with a large number
of subjects.

In this special issue dedicated to the neurophysiology of dementia, contributions of different
cultural origins are presented, contributing to the general richness, and the scientific significance of
the issue.

Raymundo Cassani addressed the methodological aspect of removal of artifact from EEG,
demonstrating that a wavelet enhanced independent component analysis (wICA) algorithm alone
outperforms other methodics, thus opening the doors for fully-automated systems that can assist
clinicians with early detection of AD, as well as disease severity progression assessment.

Francesco Di Lorenzo, addressed the basic neurophysiological aspect of the cholinergic system
in AD through the theta burst stimulation (TBS) that modulate central cholinergic function using
the neurophysiological determination of Short-Latency Afferent Inhibition (SLAI). The SLAI was
decreased in AD patients compared to healthy controls (HS). Cerebellar TBS partially restored
SLAI in AD patients but did not modify SLAI in healthy subjects. These results demonstrate that
cerebellar magnetic stimulation affects cortical cholinergic activity and suggests that the cerebellum
could have a direct influence on the cholinergic damage in AD.

A lot of studies addressed the clinical aspect of the early diagnosis in AD.
Christos A. Frantzidis demonstrated an impaired organization of brain networks even in the

prodromal phase of Alzheimer’s disease (AD) due, in hypothesis, to compensation mechanisms.
Zhijie Bian proposed that the theta/alpha EEG power band ratio recorded in the frontal and

temporal region of the left hemisphere could be a diagnostic tool in patients with amnesic mild
cognitive impairment (aMCI) affected by diabetes.
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Simon-Shlomo Poil showed that EEG activity in the beta
frequency range (13–30 Hz) could be a helpful prognostic marker
to predict the conversion from the MCI state to the overt AD
condition. Of note, the authors found that the prediction power
is higher (sensitivity of 88% and specificity of 82%) when EEG
biomarkers are considered in an integrated way.

Davide V. Moretti demonstrated that the increase of EEG
alpha3/alpha2 power ratio is related with prodromal phase of AD.
The association with hippocampal atrophy, cortical thickness
and reduction of brain regional cerebral perfusion suggests that
alpha3/alpha2 power ratio could detect theMCI subjects who will
convert to AD.

Very interestingly, Natalya Ponomareva confirmed the
reliability of the increase of the EEG alpha3 spectral power
investigating the age-related influence of the polymorphism of
clusterin (CLU) genotype, associated with AD. In particular, the
homozygous variant of CLU C allele is related with the increase
of EEG alpha3 power, suggesting a possible susceptibility of this
genetic variant carriers to hippocampal atrophy.

Monica Lindin explored the field of event-related potentials
demonstrating that the Mismatch Negativity (MMN) amplitude
was significantly smaller in aMCI subjects than in healthy
controls.

Beyond EEG, also magnetoencephalography (MEG) could be
a useful research tool. Pilar Garcés found a pathological alpha
slowing in MCI patients when compared to healthy controls
investigating the changes in the spatial distribution of the
frequency and amplitude values of MEG alpha peak.

Finally, besides AD, Davide V. Moretti found that EEG
frequency rhythms are sensible also to different stage of
Fronto-Temporal-Dementia (FTD) and could detect changes
in brain oscillatory activity affected by progranulin (GRN)
mutations.

It is commonly thought that research in neuroscience is the
researcher’s effort to understand his own brain. If it is true, I
want to thank all the authors for helping me to understand also
something more of myself.

Somewhere, something incredible is waiting to be discovered (Cari

Sagan)
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Over the last decade, electroencephalography (EEG) has emerged as a reliable tool
for the diagnosis of cortical disorders such as Alzheimer’s disease (AD). EEG signals,
however, are susceptible to several artifacts, such as ocular, muscular, movement,
and environmental. To overcome this limitation, existing diagnostic systems commonly
depend on experienced clinicians to manually select artifact-free epochs from the collected
multi-channel EEG data. Manual selection, however, is a tedious and time-consuming
process, rendering the diagnostic system “semi-automated.” Notwithstanding, a number
of EEG artifact removal algorithms have been proposed in the literature. The
(dis)advantages of using such algorithms in automated AD diagnostic systems, however,
have not been documented; this paper aims to fill this gap. Here, we investigate
the effects of three state-of-the-art automated artifact removal (AAR) algorithms (both
alone and in combination with each other) on AD diagnostic systems based on four
different classes of EEG features, namely, spectral, amplitude modulation rate of change,
coherence, and phase. The three AAR algorithms tested are statistical artifact rejection
(SAR), blind source separation based on second order blind identification and canonical
correlation analysis (BSS-SOBI-CCA), and wavelet enhanced independent component
analysis (wICA). Experimental results based on 20-channel resting-awake EEG data
collected from 59 participants (20 patients with mild AD, 15 with moderate-to-severe AD,
and 24 age-matched healthy controls) showed the wICA algorithm alone outperforming
other enhancement algorithm combinations across three tasks: diagnosis (control vs.
mild vs. moderate), early detection (control vs. mild), and disease progression (mild vs.
moderate), thus opening the doors for fully-automated systems that can assist clinicians
with early detection of AD, as well as disease severity progression assessment.

Keywords: Alzheimer’s disease, automatic diagnosis, electroencephalogram, amplitude modulation, EEG artifacts,

SVM

1. INTRODUCTION
Alzheimer’s disease (AD) is a chronic neuro-degenerative disor-
der that has recently been ranked as the third most expensive
disease and the sixth leading cause of death in the United States
(Leifer, 2003; Alzheimer Association, 2013). In 2012, the World
Health Organization (WHO) stated that between 60–70% of
dementia cases around the world were due to AD, making it the
most common form of dementia. As such, it called for improved
(early) diagnosis, as well as better care and support for patients,
their families, and caregivers (WHO and Alzheimer’s Disease
International, 2012). With regards to the former, today diagnosis
is commonly carried out using laboratory tests, medical history,
mental status examinations, and more recently, neuroimaging
tools such as functional magnetic resonance imaging (fMRI).
These clinical assessment methods, however, commonly require
experienced clinicians and lengthy sessions, thus can be regarded
as non-specific and costly, as well as suffer from long wait times

to access an fMRI scanner. In medium- and low-income coun-
tries, as well as in rural and remote regions (e.g., the Canadian
Arctic), these limitations are further exacerbated, thus hinder-
ing the effectiveness of very early disease diagnosis (Sarazin et al.,
2012).

Driven by these limitations, quantitative electroencephalogra-
phy (qEEG, henceforth referred to as “EEG") has emerged as a
promising tool capable of assisting physicians in the diagnosis
of AD (e.g., Jeong, 2004; Babiloni et al., 2010; Falk et al., 2012).
Since the EEG signal reflects functional changes in the cerebral
cortex, it can be used to reveal neuronal degeneration and func-
tional impairment long before actual tissue loss can be detected
by fMRI (Alzheimer Association, 2013). Over the last decade, sev-
eral works have demonstrated a neuromodularity deficit with AD
via EEG signal analysis (e.g., Jeong, 2004; Dauwels et al., 2011;
Moretti et al., 2012). For example, apparent changes in the EEG
power spectrum (e.g., slowing of the EEG) have been documented
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(Coben et al., 1983, 1985; Brenner et al., 1986; Giaquinto and
Nolfe, 1986), as well as reduced spectral coherence between the
left and right hemispheres (Leuchter et al., 1987; Besthorn et al.,
1994; Dunkin et al., 1994; Sloan et al., 1994; Locatelli et al., 1998).
Moreover, EEG signal complexity measures have shown decreased
levels with AD, likely due to the reduction in non-linear con-
nections between cortical regions or even neuronal death (Jeong,
2004). More recently, EEG amplitude modulation analysis has
also shown to be a powerful tool in EEG diagnosis (Falk et al.,
2012; Fraga et al., 2013b). Many such measures have been shown
to be related (Dauwels et al., 2011) and to provide diagnostic sen-
sitivity and specificity in line with more complex neuroimaging
techniques (Adeli et al., 2005).

Notwithstanding, EEG signals are inherently noisy and sus-
ceptible to blink, eye movement, heartbeats, and cranial muscle
artifacts, all of which are detrimental to AD diagnosis perfor-
mance. To overcome this limitation, the majority of the published
works have resorted to using artifact-free EEG segments (called
epochs) which have been selected by expert clinicians via metic-
ulous visual inspection. Such dependence on human experts,
however, hinders the benefits of automated low-cost analysis,
as well as introduces possible human biases/errors (Daly et al.,
2013). As an alternative, artifact removal algorithms could be
employed. Artifact removal algorithms can be classified as ‘semi-
automated’ or ‘automated’, depending on the need for human
intervention, or not, respectively. Component-based methods,
such as independent component analysis (ICA), can be regarded
as semi-automated methods, as signal components associated
with artifacts still need to be manually identified by humans
and removed prior to signal reconstruction (Jung et al., 2000;
James and Hesse, 2005). On the other hand, wavelet denoising
(Zikov et al., 2002; Krishnaveni et al., 2006), blind source sepa-
ration (De Clercq et al., 2006; Gómez-Herrero et al., 2006), or
even simple feature averaging (Fraga et al., 2013b), are fully auto-
mated methods that do not require human intervention. Within
the scope of EEG-based AD diagnosis, the potential benefits and
drawbacks of using automated artifact removal (AAR) algorithms
are still unknown. For example, certain algorithms may remove
important neurological phenomena needed for accurate diag-
nosis. The aim of this paper is to fill this gap and explore the
(dis)advantages of utilizing AAR for EEG-based AD diagnosis.

Here, three AAR algorithms have been selected after careful
screening of the literature for available state-of-the-art meth-
ods applicable to our data. The first method, termed statistical
artifact rejection (SAR), utilizes statistical characteristics of the
signals to make accept/reject decisions over EEG epochs (Delorme
et al., 2007). The second method belongs to the widely-used
class of blind source separation (BSS) algorithms based on the
autocorrelation of independent components (De Clercq et al.,
2006; Gómez-Herrero et al., 2006). Lastly, a combined inde-
pendent components analysis and wavelet denoising algorithm,
termed wavelet enhanced ICA (wICA), is used which applies a
wavelet thresholding algorithm to replace the human interven-
tion step required with ICA (Castellanos and Makarov, 2006).
The three algorithms are tested alone and in combination with
each other, as well as in combination with the simple feature
averaging approach described by Fraga et al. (2013b). The AAR

algorithms are applied to raw EEG data collected from 59 par-
ticipants (20 patients with mild AD, 15 with moderate-to-severe
AD, and 24 age-matched healthy controls). Their effects on four
classes of EEG features, namely spectral-, coherence-, phase-, and
amplitude modulation-based features are tested and compared to
a gold-standard method, which relies on expert human inspection
of artifact-free epochs. The ultimate goal of the present paper is
to describe the best AAR-feature set combination, thus resulting
in a reliable system that can be used to assist clinicians in diag-
nosis and very early detection of AD, as well to monitor disease
progression.

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
Fifty-nine participants were recruited from the Behavioral and
Cognitive Neurology Unit of the Department of Neurology and
the Reference Center for Cognitive Disorders at the Hospital das
Clinicas in São Paulo, Brazil (Kanda et al., 2013). AD diagnosis
was made by experienced neurologists according to NINCDS-
ADRDA criteria (McKhann et al., 1984) and classified based
on the Brazilian version of the Mini-Mental State Examination
(MMSE) (Brucki et al., 2003). Participants were divided in three
groups. The first group (N) consisted of 24 cognitively healthy
controls (12 males; mean age 66.3 years, 8.8 sd); the second group
(AD1) comprised 20 mild-AD patients (9 males, mean age 74.8
years, 6.3 sd); the third group (AD2) consisted of 15 patients
with moderate-to-severe AD symptoms (6 males; mean age 75
years, 11.8 sd). Inclusion criteria for the N group included a CDR
score = 0 and MMSE score ≥ 25 (mean 28.5, 1.7 sd), as well as no
indication of functional cognitive decline. Inclusion criteria for
the AD1 group, in turn, included 0.5 ≤ CDR ≤ 1 and MMSE ≤ 24
(mean 19.2, 5.2 sd); lastly, inclusion criteria for the AD2 group
were CDR score = 2 and MMSE ≤ 20 (mean 12.8, 5 sd). For
inclusion to the two AD groups, an additional criterion used was
the presence of functional and cognitive decline over the previ-
ous 12 months based on detailed interviews with knowledgeable
informants. Patients from the AD cohorts were also screened for
diabetes mellitus, kidney disease, thyroid disease, alcoholism, liver
disease, lung disease or vitamin B12 deficiency, as these can also
cause cognitive decline. Ethics approval was obtained from the
Research Ethics Office and participants consented to participate
in the study.

2.2. EEG DATA ACQUISITION AND PRE-PROCESSING
Twenty-channel EEG signals were acquired with the participants
awake, relaxed, and with their eyes closed for at least 8 min. The
Braintech 3.0 instrumentation (EMSA Equipamentos Médicos
INC., Brazil) was used with 12-bit resolution and 200 Hz sam-
ple rate parameters. Impedance was maintained below 10 k� and
scalp electrodes were placed according to the international 10–20
system. Bi-auricular referential electrodes were attached, as rec-
ommended by the Brazilian Society of Clinical Neurophysiology
and the American EEG Society. An infinite impulse response
low-pass elliptic filter with a zero at 60 Hz was applied to
eliminate power grid interference. Moreover, based on evidence
of an interhemispheric disconnection with AD (Jeong, 2004;
Trambaiolli et al., 2011b,c; Falk et al., 2012; Fraga et al., 2013b),
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we also explore the use of virtual interhemispheric bipolar signals.
Interhemispheric bipolar signals refer to the electric potential
difference measured between a pair of electrodes symmetrically
located in each hemisphere. Moreover, the term “virtual” is used
because these signals are mathematically computed as the dif-
ference of two recorded unipolar signals rather than directly
recorded from the scalp (Nunez, 2006). The eight virtual bipo-
lar signals explored in this work were the interhemispheric signals
Fp1-Fp2, F7-F8, F3-F4, T3-T4, C3-C4, T5-T6, P3-P4, and O1-O2.

Unprocessed signals (both per-electrode and bipolar) consti-
tute what will, henceforth, be referred to as the “raw” EEG. The
enhanced signals, in turn, will constitute the raw signals processed
by the different AAR algorithms described in the next subsec-
tion. Lastly, the raw signals have also been visually inspected by
two experienced clinicians to obtain several 8-s epochs free of eye
blinking, drowsiness, muscle movements, or equipment-related
artifacts. This manually-selected data will be used to develop a
gold-standard diagnostic system with which the AAR algorithms
will be benchmarked against.

2.3. AUTOMATED ARTIFACT REMOVAL (AAR) ALGORITHMS
As mentioned previously, three AAR algorithms are explored
within this work and were chosen based on characteristics of our
dataset; more specifically, on the electrode layout (international
10–20 system), relatively small number of electrodes (20), absence
of electrooculographic (EOG) reference channels, and lack of data
from alternate modalities (e.g., accelerometers or gyroscopes).
In the subsections to follow, a brief summary of the three AAR
algorithms is given, as well as a description of their implementa-
tions. References to literature with more detailed descriptions of
the algorithms are provided, where appropriate, for the interested
reader.

2.3.1. Statistical artifact rejection (SAR)
The SAR method utilizes thresholding on the statistical char-
acteristics of the EEG signals to select epochs that appear to
contain artifacts. The implementation of this method was done
using the well-known EEGLAB toolbox for Matlab (Delorme and
Makeig, 2004). The criteria used to reject epochs included finding:
extreme values caused by gross artifacts and amplifier saturation
(i.e., greater than +/− 100 μV), abnormally distributed data (i.e.,
5 standard deviations from average kurtosis, suggesting peaky
or flat distributions) and “improbable data” computed via an
online probability-of-occurrence metric. The interested reader is
referred to (Delorme et al., 2007) for more details on the SAR
algorithm.

2.3.2. Blind source separation (BSS)
The BSS algorithm utilizes spatial filtering to remove ocular and
muscular artifacts from EEG data without external references
(e.g., EOG or accelerometer signals) (De Clercq et al., 2006;
Gómez-Herrero et al., 2006). The basic principle behind BSS is
to decompose the EEG signal into different spatial components
and then reconstruct the signal based only on the non-artifactual
spatial components, which have been found via a suitable auto-
matic criterion. For ocular and muscular artifacts, the EEG signal
is decomposed by the so-called second order blind identifica-
tion (SOBI) and canonical correlation analysis (CCA) methods,

respectively. In the SOBI technique (Belouchrani et al., 1997;
Gómez-Herrero et al., 2006; Romero et al., 2008), second order
statistics are used to find spatial components that have non-
zero time-delayed autocorrelations and zero time-delayed cross-
correlations. Such approach has been shown to preserve more
brain activity relative to other ocular artifact removal methods
(Romero et al., 2008). In our simulations, a fractal dimension-
based criterion was used to decide which components to use for
reconstruction, with the basic premise that EEG artifacts are char-
acterized by higher fractal dimensions (Gómez-Herrero et al.,
2006). With CCA, in turn, EEG data is expressed as a combi-
nation of maximally autocorrelated and mutually uncorrelated
spatial components (De Clercq et al., 2006). Using CCA, spatial
components with the lowest autocorrelation values are assumed
to be related to muscular artifacts, as muscular activity has been
shown to be of wider bandwidth than EEG, thus have more white
noise-like properties (De Clercq et al., 2006). For this experiment,
BSS AAR refers to the use of the SOBI technique, followed by
CCA to remove ocular and muscular artifacts, respectively. The
widely-utilized AAR plug-in for EEGLAB was used in our exper-
iments with the following default parameters: for EOG removal,
eigenratio = 106, range = 2 − 4, and the no-EOG reference option
selected; for EMG removal, emg − psd − ratio = 10, and femg =
15. More details about these parameters and the plug-in can
be found in (Gómez-Herrero, 2007). For illustration purposes,
Figure 1 depicts a 10-s segment of raw (gray) EEG along with its
BSS-processed (green) counterpart for four electrodes affected by
eye artifacts: Fp1, Fp2, F7, and F8.

2.3.3. Wavelet-enhanced independent components analysis (wICA)
Wavelet analysis has been used in the past for EEG artifact
detection (e.g., Achanccaray and Meggiolaro, 2008) and removal
(e.g., Labate et al., 2011) and has recently been combined with
ICA for improved artifact removal performance (Castellanos
and Makarov, 2006; Akhtar et al., 2012). The so-called wavelet
enhanced ICA, or wICA, applies a wavelet thresholding step to
the demixed independent components in an attempt to recover
any residual neural activity that may be present in components
labeled as artifactual (Castellanos and Makarov, 2006). The wICA
method can be summarized in five steps: (1) the EEG data is
decomposed into independent components (IC); (2) the wavelet
transform is applied to the ICs; (3) thresholding of the wavelet
coefficients is performed to differentiate between neural and arti-
factual coefficients; (4) the inverse wavelet transform is applied
to the thresholded coefficients, retrieving ICs with only neu-
ral activity; and lastly, (5) wavelet-corrected ICs are projected
to obtain the artifact-free EEG data. A complete description, as
well as a comparative analysis between ICA and wICA is given
by Castellanos and Makarov (2006); improved performance and
better preservation of EEG spectral and phase coherence prop-
erties with wICA are shown. In our experiments, the wICA
toolbox described by Makarov (2012) was used with the following
parameters: cleaning artifact tolerance = 1.25 and an IC artifact
detection threshold = 4. Figure 1 also shows the 10-s noisy EEG
segment processed by wICA (black). As can be seen from the
highlighted areas, wICA suppresses eye blink/movement artifacts
more efficiently than BSS.
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FIGURE 1 | Plots of raw (gray), BSS- (green), and wICA-processed (black) EEG segments for four channels corrupted by eye blinks and movement.

2.3.4. AAR Algorithm Combination
Here, we have tested the three above-mentioned AAR algorithms
alone, as well as in cascade; more specifically, we have tested the
SAR-BSS and SAR-wICA combinations. Overall, experimental
results will be presented using the “raw” data (this will be hence-
forth refereed to as the “baseline”), the manually-selected artifact-
free EEG data (henceforth referred to as the “gold-standard”),
and the five “enhanced” EEG datasets (i.e., SAR, BSS, wICA, SAR-
BSS, SAR-wICA). To maintain consistency with the gold-standard
system, all datasets are segmented into several 8-s epochs.

2.4. EEG FEATURE EXTRACTION AND PROCESSING
Several EEG features have been proposed in the literature over
the last decade and shown to accurately discriminate between
healthy controls and AD patients. The effects of EEG artifacts
on these features, however, are unknown, as are their effects on
overall diagnostic performance. Here, we will pursue such an
investigation and focus will be placed on four traditional EEG fea-
ture categories, namely, spectral power, magnitude square coher-
ence, phase coherence/synchrony, and the recently-proposed EEG
amplitude modulation rate-of-change. In the subsections to fol-
low, a brief description of the features will be given. References
to literature with more detailed descriptions of the features are
provided, where appropriate, for the interested reader.

2.4.1. EEG subband spectral power
The pivotal process to quantify the frequency-domain properties
of the EEG signal lies in the estimation of its power spectral den-
sity (PSD) function, which is commonly achieved via a discrete
Fourier transform (Sörnmo and Laguna, 2005). As the name sug-
gests, spectral power based features measure the power present in
the five conventional EEG frequency bands: 0.1–4 Hz (delta), 4–
8 Hz (theta), 8–12 Hz (alpha), 12–30 Hz (beta) and, 30–100+ Hz
(gamma) (Sörnmo and Laguna, 2005), with some studies further
partitioning a band into low (e.g., alpha1: 8–10 Hz) and high (e.g.,
alpha2: 10–12 Hz) parts. Several studies have shown that changes
in EEG power spectra due to AD are reflected as an increase in
delta and theta band powers, together with a decrease in alpha
and beta band powers, thus suggesting a “slowing” of the EEG
signal (Coben et al., 1983, 1985; Penttilä et al., 1985; Soininen
et al., 1989; Czigler et al., 2008; Moretti et al., 2009; Babiloni et al.,
2010). More recently, other features have been proposed, such as
the subband spectral peaks (the most prominent peak inside a
frequency band) (Raicher et al., 2008) and the ratio of different
bands (e.g., theta/gamma by Moretti et al., 2009, 2011). In this
experiment, we compute the so-called relative band power for
the five bands for each of the 28 EEG signals (20 electrodes +
8 virtual bipolar signals). The relative band power corresponds to
the power of an individual band normalized by the fullband EEG
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power. A total of 140 (28 × 5) spectral-based features are thus
computed per epoch.

2.4.2. Magnitude square and phase coherence
The magnitude square coherence (MSC), frequently referred to
as “coherence,” is a measure of co-variance between two power
spectra. In EEG studies, the MSC is used as a metric of synchrony
in neural activity, which is an indicator of cortical connectiv-
ity (Thatcher et al., 1986; Locatelli et al., 1998; Srinivasan et al.,
2007). Studies have shown reduced EEG coherence within all EEG
subbands during AD (Thatcher et al., 1986; Besthorn et al., 1994;
Knott et al., 2000; Adler et al., 2003). The computation of the
MSC between signals x(t) and y(t) with X(f ) and Y(f ) spectra,
respectively, for any given frequency band is defined as:

MSC(f ) =
∣∣〈X

(
f
)

Y∗(f )
〉∣∣2

∣∣〈X(f )
〉∣∣ ∣∣〈Y(f )

〉∣∣ , (1)

where Y∗(f ) is the complex conjugate of Y(f ), 〈 〉 corresponds to
the average operator, and the numerator 〈X(f )Y∗(f )〉 corresponds
to the cross-spectral density between signal x(t) and y(t), also
called the complex coherence. The imaginary part of the complex
coherence, also known as phase coherence, has also been pro-
posed as metric to study brain interactions (Nolte et al., 2004).
The phase coherence is given by:

φ(f ) = arg
〈
X(f )Y∗(f )

〉
. (2)

In our experiments, we compute both metrics for each of the five
EEG frequency bands. Following the recent evidence of an inter-
hemispheric disconnection with AD (Jeong, 2004; Trambaiolli
et al., 2011c,b; Falk et al., 2012; Fraga et al., 2013b), the magni-
tude square and phase coherence measures are computed only for
the eight interhemispheric electrodes, namely: Fp1-Fp2, F7-F8,
F3-F4, T3-T4, C3-C4, T5-T6, P3-P4, and O1-O2.

2.4.3. Phase synchrony
Global field synchrony (GFS) measures the phase synchrony in
a given frequency (or frequency band) for a set of N elec-
trodes. It was first introduced to estimate the functional disorder
within the brain for patients with schizophrenia (Koenig et al.,
2001). Since AD has also been characterized by a loss of EEG
synchrony resultant from the functional interhemispheric discon-
nection (Jeong, 2004), GFS has been explored as a diagnostic
feature (Koenig et al., 2005; Park et al., 2008). Assuming xi(k),
i = 1, . . . , N, are the EEG time-domain signals from electrode
‘i’ and Xi(f ) are their respective frequency responses (obtained
via e.g., Fourier transform), the GFS feature is based on the dis-
tribution of the real (XR(f )) and imaginary (XI(f )) parts of the
frequency-domain representation of all electrode signals. More
specifically, it is computed as the difference between the two nor-
malized eigenvalues of the 2×2 auto-correlation matrix between
the vectors XR(f ) = [Re(X1(f )), . . . , Re(XN(f ))] and XI(f ) =
[Img(X1(f )), . . . , Img(XN(f ))]. More details about the GFS fea-
ture can be found in (Koenig et al., 2001). In our experiments,
the GFS feature was computed over the 20 electrode signals for
each of the five frequency bands, totaling five GFS features per
EEG epoch.

2.4.4. EEG amplitude modulation rate-of-change
Amplitude modulation analysis has shown to be a valuable tool
for bio-signal processing and analysis (Atlas and Shamma, 2003;
Malyska et al., 2005; Falk and Chan, 2008; Falk et al., 2010).
For AD analysis, it is particularly useful, as recent experimental
evidence has suggested a neuromodulatory deficit with the dis-
ease (Moore and Cao, 2008; Laxton et al., 2010). Here, we utilize
the EEG amplitude modulation rate-of-change features recently
shown to accurately discriminate between different stages of AD
(Trambaiolli et al., 2011b; Falk et al., 2012; Fraga et al., 2013a,b).
In order to compute the features, three steps are required. First,
the fullband EEG is frequency-decomposed into the five bands
mentioned above. Second, a Hilbert transform is applied to
extract the amplitude modulations of each band. Lastly, in order
to characterize the dynamics of the amplitude modulations, a
second frequency decomposition is performed on the band enve-
lope signals. To characterize the cross-frequency interactions, this
second decomposition utilizes five so-called “modulation bands”
that have been designed to coincide with the frequency ranges of
the five traditional subbands. To distinguish between frequency
and modulation bands, the latter are referred to as m-delta, m-
theta, m-alpha, m-beta and, m-gamma. The normalized energy
in each frequency-modulation band is used as a feature. It is
important to emphasize, however, that due to properties of the
Hilbert transform [e.g., Bedrosian’s theorem (Bedrosian, 1963)],
not all frequency-modulation band combinations make sense. If
we use the notation “E(frequency band; modulation band)” to
denote the normalized energy in a given frequency and modu-
lation band, only the following scenarios are relevant: E(delta;
m-delta), E(theta; m-delta,m-theta), E(alpha; m-delta, m-theta),
E(beta; m-delta, m-theta, m-alpha, m-beta) and, E(gamma; m-
delta, m-theta, m-alpha, m-beta, m-gamma). In our experiments,
these 14 features are computed for each of the 28 signals (20
electrodes + 8 virtual bipolar signals). The interested reader is
referred to (Trambaiolli et al., 2011b; Falk et al., 2012; Fraga et al.,
2013a,b) for complete details of the EEG amplitude modulation
rate-of-change features.

2.4.5. Feature sets and set combination
Computed features were grouped into four feature sets: spec-
tral, modulation, coherence (MSC), and phase (phase coherence
and phase synchrony). To explore the complementarity of the
extracted features, combined feature sets were also investigated.
Henceforth, we will refer to the “All” feature set as the set that
combines all the extracted features and the “Spec-Mod” set as
the set that combines the spectral and amplitude-modulation
based features. This latter combined set is motivated by the recent
results suggesting the complementary of the two feature domains
for AD characterization (Fraga et al., 2013a).

2.4.6. Epoch averaging in the feature domain
As an additional EEG “cleaning” tool, we use epoch averaging
in the feature domain as a way of improving the signal-to-noise
ratio (SNR) of the extracted features. This procedure was recently
shown to improve the clustering of amplitude modulation rate-
of-change features, thus leading to higher diagnostic accuracies
(Fraga et al., 2013b). This procedure is akin to the epoch averag-
ing step commonly performed in event related potential studies
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(Luck, 2005), but differs in the sense that it is performed in the
(non-linear) feature domain and not in the time domain. In our
experiments, averaging is performed over features extracted from
five consecutive epochs, as motivated by Fraga et al. (2013b).

2.5. AUTOMATED SALIENT FEATURE SELECTION AND AD
CLASSIFICATION

The machine learning and pattern recognition literature has pre-
sented a plethora of possible feature selection and classification
algorithms which can be fine-tuned to specific applications and
feature sets. For the experiments herein, however, we are inter-
ested in understanding the effects of AAR algorithms on different
EEG feature sets and on overall diagnostic performance, and not
the effects of different selection/classification algorithms and their
internal parameters. As such, our experiments are based on a
support vector machine (SVM) feature selection and classifica-
tion algorithm that is widely used in the EEG-based AD diagnosis
literature (Lehmann et al., 2007; Trambaiolli et al., 2011a; Falk
et al., 2012; Fraga et al., 2013b). The open-source Weka SVM
implementation was used in our experiments; default parame-
ters included a polynomial kernel, regularization coefficient C =
1, and hyperplane shaping coefficient γ = 0.01. A description
of the SVM-based feature selection and classification algorithm
is beyond the scope of this paper, and the interested reader is
referred to (e.g., Cristianini and Shawe-Taylor, 2000; Hall et al.,
2009) for more details.

In our experiments, 25% of the available data was randomly
set aside for feature selection and the remaining 75% was used
for classifier training/testing using 10-fold cross validation. Using
disjoint sets for feature selection and classifier training reduces
any unwanted biases in the reported performance figures. To
remain inline with the existing EEG-based AD diagnostic liter-
ature, feature selection was used to sift out the 24 most relevant
features for AD diagnosis. In this study, we investigate the effects
of AAR on AD diagnostic performance using three classification
tasks, namely, (a) Task 1: N vs. AD1 vs. AD2; (b) Task 2: N vs.
AD1; and (c) Task 3: AD1 vs. AD2. The first task explores the
impact of AAR on a more challenging 3-class problem discrim-
inating between mild-AD, moderate-AD, and healthy controls.
The second, in turn, explores the impact on discrimination capa-
bilities between healthy aging and mild-AD, thus exemplifies the
case of early detection. Lastly, the third assesses the impact of AAR
on EEG-based disease progression monitoring (i.e., from mild to
moderate).

2.6. PERFORMANCE METRICS AND THE “GOLD STANDARD” SYSTEM
In order to assess diagnosis performance, classification accuracy
is used as a performance metric. Moreover, for the two 2-class
problems described above, diagnosis sensitivity and specificity are
also used. Throughout the remainder of this paper we will assess
the impact of AAR on AD classification by measuring the perfor-
mance gains obtained relative to the baseline (i.e., using the “raw"
EEG data). The relative performance gain is given by:

Gain = PerfAAR − Perfbase

Perfbase
× 100%, (3)

where “PerfAAR” and “Perfbase” refer to the obtained performances
(i.e., accuracy, sensitivity, or specificity) after artifact removal and
before, respectively. For comparison purposes, we use a so-called
gold-standard system to benchmark the results; the system is
based on the manually selected artifact-free EEG dataset and the
“All-feature” set with 5-epoch feature averaging. On the 3-class
task, the gold standard achieves an accuracy of 83.8%. For the N
vs. AD1 and AD1 vs. AD2 tasks, in turn, accuracies of 93.2% and
92.8% are obtained, respectively.

3. EXPERIMENTAL RESULTS
Table 1 reports the accuracies achieved with the baseline sys-
tem in the top row, followed by the relative gains (Equation 3)
achieved with the different AAR algorithms for the four feature
sets and two combined feature sets (i.e., “All” and “Spec-Mod”)
for the 3-class task. Table 2 presents the accuracy, sensitivity,
and specificity of the baseline system for all feature sets for the
two 2-class tasks. In turn, Tables 3, 4 report the relative gains
for all AAR-feature set combinations for the N vs. AD1 and
AD1 vs. AD2 tasks, respectively. Careful analysis of the Tables
suggests that for all three tasks, the wICA AAR algorithm com-
bined with the top 24 features selected from the “All-feature”
set resulted in the best classification performance. Tables 5, 6
show the top-24 selected features for each of the three tasks, for
the wICA-AAR and gold standard scenarios, respectively. Feature
names are reported as “ELECTRODE_BAND_FEATURE” where
“ELECTRODE” represents either the 10–20 electrode posi-
tions (e.g., PZ) or the virtual bipolar signal (e.g., P3-P4),
“BAND” represents the EEG frequency band (e.g., delta), and
“FEATURE” provides a descriptive indication of the feature
representation (e.g., “pwr” corresponds to spectral power; “m-
alpha” to modulation rate; “cohe_mag/pha” to magnitude/phase
coherence).

4. DISCUSSION
4.1. SALIENT FEATURES
The list of top-selected features shown in Table 5, 6 show that
power spectral and amplitude modulation features are the most
salient. Combined, they correspond to 92, 83, and 79% of the top-
24 selected features in Tasks 1–3, respectively, for the wICA-AAR

Table 1 | Baseline accuracy per feature set and relative gains obtained

after AAR for the 3-class “N vs. AD1 vs. AD2” task.

AAR Feature sets

Spectrum Modulation Coherence Phase All Spec-mod

Baseline
(%)

73.2 68.4 60.1 45.7 72.3 73.5

RELATIVE GAINS

SAR 1.3 −3.6 0.2 1.8 2.5 −0.8

SAR-BSS −5.9 −10.6 −6.2 −12.2 −1.0 −3.7

SAR-wICA −0.8 −3.0 7.6 2.6 4.5 2.5

BSS −4.0 −4.6 −6.5 −12.2 −6.6 −7.4

wICA 3.3 2.9 11.5 5.5 8.4 3.8
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Table 2 | Baseline performance values for the two, 2-class tasks.

Task # Spectrum Modulation Coherence Phase All Spec-mod

A S Sp A S Sp A S Sp A S Sp A S Sp A S Sp

2 83.6 86.3 80.5 79.6 82.9 75.7 73.3 76.1 70.0 64.9 78.4 48.7 83.0 84.3 81.3 82.6 85.4 79.2

3 89.4 91.3 86.8 85.1 89.5 79.3 78.5 81.9 74.0 69.4 84.9 48.6 89.2 92.2 85.2 88.6 90.9 85.5

Columns labeled “A, S, and Sp” correspond to accuracy, sensitivity, and specificity, respectively.

Table 3 | Relative gains obtained after AAR for the 2-class “N vs. AD1” task.

AAR Spectrum Modulation Coherence Phase All Spec-mod

A S Sp A S Sp A S Sp A S Sp A S Sp A S Sp

SAR −0.3 −3.0 2.9 3.4 1.9 5.2 2.8 3.3 2.2 3.7 −0.9 11.6 2.2 1.8 2.7 2.5 −1.0 6.7

SAR-BSS −2.1 −5.5 2.0 −2.9 −1.8 −4.5 −0.3 1.6 −3.0 −2.3 −0.4 −6.3 −2.3 −2.9 −1.5 −0.6 −1.3 0.3

SAR-wICA 4.3 3.2 5.7 −2.0 −3.2 −0.3 1.9 3.8 −0.8 −1.5 0.6 −5.6 4.6 4.1 5.1 3.6 2.8 4.5

BSS −4.6 −7.2 −1.3 −6.2 −5.4 −7.3 −2.2 0.9 −6.4 −4.7 0.2 −15.7 −4.0 −3.6 −4.6 −1.9 −4.8 1.7

wICA 6.7 5.1 8.8 3.2 3.7 2.4 0.9 4.3 −3.9 4.5 −1.8 14.6 8.7 8.8 8.5 7.7 4.8 11.2

Columns labeled “A, S, and Sp” correspond to accuracy, sensitivity, and specificity, respectively.

Table 4 | Relative gains obtained after AAR for the 2-class “AD1 vs. AD2” task.

AAR Spectrum Modulation Coherence Phase All Spec-mod

A S Sp A S Sp A S Sp A S Sp A S Sp A S Sp

SAR 3.1 2.9 3.3 1.5 1.0 2.3 −1.5 −2.1 −0.6 2.6 0.6 6.9 2.2 −0.4 5.7 2.7 2.2 3.4

SAR-BSS −3.8 −2.3 −6.0 −5.8 −6.0 −5.5 −2.7 −1.1 −5.2 −2.8 5.3 −28.2 −0.9 −2.4 1.2 −2.2 −1.0 −3.9

SAR-wICA 1.0 1.9 −0.3 0.0 0.7 −1.2 4.3 0.5 9.4 2.2 0.3 6.3 3.2 2.0 5.0 3.9 2.6 5.6

BSS −5.2 −4.8 −5.8 −7.4 −5.1 −11.0 −2.1 3.7 −12.0 −4.8 3.7 −32.1 −8.1 −8.4 −7.7 −3.9 −3.8 −4.0

wICA 2.1 3.4 0.2 3.8 4.2 3.1 9.3 7.5 11.8 5.0 2.4 10.4 7.4 4.8 10.8 4.7 4.5 4.9

Columns labeled “A, S, and Sp” correspond to accuracy, sensitivity, and specificity, respectively.

scenario. For the gold standard benchmark, such features corre-
spond to 96, 79, and 70% of the entire feature pool for Tasks 1–3,
respectively. This corroborates recent findings showing the com-
plementarity of the two modalities for AD diagnosis (Fraga et al.,
2013a). Phase features, in turn, were seldom selected in both the
wICA-AAR and gold standard scenarios, thus suggesting they play
a small role in EEG-based AD diagnosis. The global field syn-
chrony measure, in fact, did not show up in the top-24 feature
subsets for any of the three Tasks.

Moreover, when discriminating between the three classes,
features from the temporal and parietal regions showed to be
important across the two scenarios. For the N vs. AD1 task, in
turn, frontal and temporal regions stood out. For Task 3, features
from the temporal and frontal regions were most salient for the
wICA-AAR scenario, whereas the temporal and parietal regions
stood out for the gold standard. Frontal region data may be cor-
rupted by eye blinks/movement artifacts, thus are likely rejected
by human experts. By automatically removing the artifacts from
the data, useful discriminatory information may remain in such
electrodes, thus assisting in AD diagnosis.

As for frequency bands, in the wICA scenario, delta and beta
band features corresponded to roughly 70% of the selected fea-
tures for each of the three tasks, followed by alpha band features

(15%), thus corroborating previous studies that show the slow-
ing of the EEG with AD (e.g., Coben et al., 1983; Elmståhl et al.,
1994; Sankari et al., 2012; Waser et al., 2013). In the gold standard
scenario, the delta, theta and beta features were most prevalent,
amounting to about 80% of the selected features. Theta band
features were particularly useful for Task 3, a finding previously
reported in the AD severity monitoring literature (Coben et al.,
1985). It is important to emphasize that none of the features
extracted from the gamma bands were selected. It is hypothe-
sized that this may be due to the fact that such higher frequencies
are most sensitive to EEG artifacts, thus are (i) often discarded
by human experts and (ii) may be severely distorted by the
enhancement algorithms to a point of removing any existing
discriminatory information. Lastly, it was observed that of the
24 selected features, roughly 40% corresponded to information
extracted from interhemispheric/virtual bipolar signals, thus cor-
roborating evidence of an interhemispheric disconnection with
AD (Jeong, 2004).

4.2. EFFECTS OF AAR ON FEATURE DISTRIBUTIONS
In order to characterize the effects of the wICA algorithm on the
distribution and statistics of the salient features, we utilize a so-
called distribution overlap metric which measures the amount
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Table 5 | Selected features used with the wICA-AAR automated system.

Ranking Tasks

N vs. AD1 vs. AD2 N vs. AD1 AD1 vs. AD2

1 PZ_alpha_pwr* PZ_alpha_pwr* P3_P4_delta_pwr

2 C3_C4_delta_pwr P3_alpha_pwr* O1_O2_theta_cohe_pha

3 P3_P4_delta_pwr O1_O2_theta_pwr* C3_alpha_pwr

4 P3_alpha_pwr* T3_T4_delta_pwr F4_delta_pwr

5 P3_P4_delta_m-delta F7_delta_pwr T4_delta_pwr

6 FP1_FP2_beta_cohe_mag* C3_C4_beta_m-beta T3_T4_beta_pwr*

7 P3_P4_delta_cohe_mag* F3_delta_pwr T5_beta_pwr*

8 T3_T4_delta_pwr O1_O2_delta_m-delta OZ_beta_pwr

9 P3_delta_pwr O1_O2_beta_cohe_mag* FP1_FP2_beta_cohe_mag*

10 O1_alpha_pwr* FP1_FP2_delta_cohe_mag* FZ_beta_m-alpha

11 T4_theta_pwr* FP1_delta_pwr F3_beta_m-beta

12 T3_delta_pwr T3_delta_m-delta T5_theta_pwr*

13 T5_beta_pwr* C3_delta_m-delta T3_alpha_pwr*

14 O1_O2_theta_pwr* P4_alpha_pwr* T5_T6_delta_cohe_mag*

15 F8_beta_pwr O1_alpha_pwr* C4_delta_pwr

16 CZ_beta_pwr T5_beta_pwr* C3_C4_delta_cohe_mag*

17 T4_theta_m-theta* CZ_beta_pwr O1_O2_beta_m-theta

18 C3_C4_beta_m-beta F8_beta_pwr P3_P4_delta_m-delta

19 F7_beta_pwr T3_T4_beta_m-alpha F3_F4_beta_m-beta

20 C3_beta_pwr T3_T4_beta_cohe_mag* T3_T4_delta_cohe_mag*

21 F3_delta_pwr F7_F8_beta_cohe_mag* P4_beta_m-alpha

22 OZ_delta_pwr FZ_beta_m-alpha F3_F4_alpha_pwr

23 FZ_beta_m-alpha T5_T6_theta_pwr* FP1_theta_pwr*

24 C3_alpha_pwr* F3_alpha_pwr* O1_alpha_pwr

NUMBER OF FEATURES PER FEATURE SET

Spectral power 18 (7) 14 (8) 13 (5)

Modulation 4 (1) 6 (0) 6 (0)

Coherence 2 (2) 4 (4) 4 (4)

Phase 0 (0) 0 (0) 1 (0)

NUMBER OF FEATURES PER BRAIN REGION

Frontal 5 (1) 8 (3) 7 (2)

Central 5 (1) 3 (0) 3 (1)

Temporal 5 (3) 6 (3) 7 (6)

Parietal 6 (3) 3 (3) 3 (0)

Occipital 3 (2) 4 (3) 4 (0)

NUMBER OF FEATURES PER FREQUENCY BAND

Delta 9 (1) 8 (1) 8 (3)

Theta 3 (3) 2 (2) 3 (2)

Alpha 4 (4) 5 (5) 4 (1)

Beta 8 (2) 9 (4) 9 (3)

NUMBER OF FEATURES FROM VIRTUAL CHANNELS

Interhemispheric 8 (3) 9 (6) 11 (5)

Features with an asterisk represent those with an overlap in histograms between pre- and post-AAR ≥ 80%. Last four sections show, from top to bottom, the

number of features that belong to each of the four feature sets, brain regions, frequency band, and montage, respectively. Values reported between parentheses

represent those with pre-post AAR histogram overlap ≥ 80%.
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Table 6 | Selected features used with the gold standard system.

Ranking Tasks

N vs. AD1 vs. AD2 N vs. AD1 AD1 vs. AD2

1 O1_O2_theta_pwr O1_O2_theta_pwr CZ_beta_pwr

2 P3_P4_theta_pwr PZ_delta_pwr P4_alpha_m-theta

3 T5_theta_m-theta CZ_beta_m-theta P3_P4_delta_pwr

4 F7_F8_alpha_cohe_pha FP2_beta_pwr F7_alpha_m-delta

5 T3_theta_m-delta FP1_beta_m-beta O1_O2_theta_cohe_pha

6 P3_P4_delta_pwr O1_O2_alpha_pwr T3_theta_pwr

7 PZ_alpha_pwr O1_O2_beta_cohe_pha OZ_beta_m-alpha

8 O1_O2_alpha_pwr F7_F8_alpha_cohe_pha P3_P4_theta_m-theta

9 C4_alpha_m-delta T6_delta_m-delta P3_P4_beta_m-alpha

10 FP2_beta_pwr FP1_delta_pwr O1_O2_theta_m-theta

11 T3_T4_alpha_m-theta OZ_beta_m-beta T4_theta_pwr

12 T5_T6_beta_m-delta O1_O2_beta_m-theta T6_theta_m-theta

13 T6_beta_m-delta T3_T4_beta_m-alpha P3_P4_beta_m-beta

14 T4_theta_pwr F7_F8_beta_m-beta C3_C4_alpha_cohe_mag

15 O1_O2_alpha_m-theta PZ_alpha_pwr P3_P4_beta_pwr

16 O1_delta_pwr OZ_beta_pwr P3_P4_theta_m-delta

17 P3_P4_beta_m-theta C4_delta_m-delta T5_T6_alpha_cohe_mag

18 T3_theta_pwr CZ_beta_m-alpha F7_F8_alpha_cohe_mag

19 OZ_beta_pwr F4_theta_m-delta P4_beta_m-beta

20 F3_F4_theta_pwr F3_F4_delta_cohe_mag T5_T6_delta_cohe_mag

21 T6_delta_pwr FP1_FP2_beta_cohe_mag T3_T4_theta_cohe_mag

22 C4_delta_m-delta P3_P4_delta_cohe_mag FP1_theta_m-delta

23 T3_T4_beta_m-beta T5_beta_pwr T3_theta_m-delta

24 PZ_delta_pwr FZ_delta_pwr C3_C4_delta_cohe_pha

NUMBER OF FEATURES PER FEATURE SET

Spectral power 13 9 5

Modulation 10 10 12

Coherence 0 3 5

Phase 1 2 2

NUMBER OF FEATURES PER BRAIN REGION

Frontal 3 9 3

Central 2 3 3

Temporal 9 3 7

Parietal 5 3 8

Occipital 5 6 3

NUMBER OF FEATURES PER FREQUENCY BAND

Delta 5 7 3

Theta 7 2 10

Alpha 6 3 5

Beta 6 12 6

NUMBER OF FEATURES FROM VIRTUAL CHANNELS

Interhemispheric 11 10 14

Last four sections show, from top to bottom, the number of features that belong to each of the four feature sets, brain regions, frequency band, and montage,

respectively.
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of overlap between the histogram of a particular feature before
and after wICA AAR. The metric is normalized to lie between
0 − 100% with 0 and 100% overlap values suggesting complete
change and no change in feature statistics post-AAR, respectively.
For simplicity, Table 5 highlights features which resulted in an
overlap greater than 80%, thus can be considered as irrelevant
statistical changes. For illustration purposes, Figure 2 presents
the pre- and post-AAR histograms for two features. Subplot (A)
is for a feature with an overlap of 83% (FZ_beta_m-alpha) and
subplot (B) for a feature with 49% overlap (FZ_beta_m-alpha).
As can be seen from Table 5, roughly half of the top-24 features
did not present relevant modifications in their distributions post
wICA-AAR processing. Moreover, coherence features were found
to be the least affected, whereas the amplitude modulation ones
were most affected. For Tasks 1 and 2, alpha and theta bands fea-
tures were least affected; however, features from such frequency
bands only correspond to roughly 30% of the top-24 selected
features. Interestingly, features from such band correspond to
55% and 63% of the features selected manually for Tasks 1 and
3, respectively (see Table 6), thus suggesting their robustness to
artifacts.

4.3. AUTOMATED vs. HUMAN EXPERT ARTIFACT REMOVAL
From Tables 1–4, it can be seen that wICA-AAR combined with
classifiers trained on the top-24 features found from the “All-
features" pool (see Tables 5, 6) resulted in the best classification
performance. For the three-class task, such automated system
resulted in an overall classification accuracy of 78.9%, which
is significantly higher than chance and inline with what was
achieved with the gold standard (i.e., 83.8%). For Task 2, in turn,
accuracy, sensitivity, and specificity of 90.8, 92.5, and 88.8% could
be achieved, respectively with the automated system. This also
compares favorably with the gold standard, which attained per-
formance levels of 93.2, 95, and 91%, respectively. Moreover,
the wICA and SAR-wICA combination resulted in substantial
improvements for the coherence features, thus corroborating
findings from Castellanos and Makarov (2006).

Interestingly, for Task 3 involving AD1 and AD2 patients,
the wICA-AAR system outperformed the gold standard, achiev-
ing accuracy, sensitivity, and specificity values of 96.3, 96.9, and
95.5%, respectively. The gold standard, in turn, obtained val-
ues 92.8, 97.3, and 86.7%, respectively. It is suspected that this
improved performance was obtained due to information har-
nessed from the frontal electrodes, which were often selected by
the wICA-processed data and not from the manually-selected
data. Frontal electrodes are susceptible to eye-related artifacts and
are likely often discarded by human experts. Notwithstanding, the
frontal region has been shown in classical studies to be severely
affected by disease progression (Mann et al., 1988; DeKosky and
Scheff, 1990). These findings show the relevance of an automated
system in assisting clinicians with diagnosis.

Moreover, from Tables 1–4 it can be seen that the BSS algo-
rithm and its combination with SAR resulted in performance
decreases relative to the baseline system trained on raw noisy data
for all tested feature sets and tasks. This suggests that while BSS
can be used to reliably remove ocular artifacts (Gómez-Herrero
et al., 2006), its processing also removes important discriminatory
information from the raw EEG data. Hence, it is suggested that
BSS be avoided in EEG-based AD diagnosis systems.

Lastly, we explored the gains obtained with feature averaging
as a simple SNR improvement tool. For Task 1, the accuracy gains
relative to the baseline obtained with only feature averaging (i.e.,
raw EEG data without AAR) were of 3.3, 4.9, 3.4, and 1.9% for
the spectral, amplitude modulation, coherence, and phase fea-
ture sets, respectively. For Task 2, in turn, these relative accuracy
gains were of 1.5, 1.1, 2.6, 2.2%, respectively. Lastly, for Task 3
the relative gains were 3, 0.8, 2.4, and 2% respectively. As can be
seen, simple feature averaging (Fraga et al., 2013b) can be used
as an effective tool that can be combined with AAR algorithms to
further improve diagnostic performance.

4.4. LIMITATIONS
The three enhancement algorithms explored here represented
the state-of-the-art applicable to the constraints imposed by

FIGURE 2 | Histograms for features (A) PZ_alpha_pwr and (B) FZ_beta_m-alpha.
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our available database, such as small number of channels (20),
limited amount of data per participant, and lack of EOG ref-
erence channels. For future studies without these limitations,
alternate AAR algorithms can be explored. For example, for
studies involving EEG with over 64 channels and EOG, the
ADJUST (Automatic EEG artifact Detection based on the Joint
Use of Spatial and Temporal features) (Mognon et al., 2011) and
FASTER (Fully Automated Statistical Thresholding for EEG arti-
fact Rejection) (Nolan et al., 2010) algorithms can be used. On
our 20-channel dataset, we found the use of these two algorithms
to lead to over rejection of components deemed artifactual,
thus negatively impacting diagnostic performance. Alternately,
if larger amounts of EEG data are collected per participant,
other data-driven methods may be used, such as the weighted
support vector machine-based AAR method proposed by Shao
et al. (2009). Lastly, if auxiliary signals are recorded simultane-
ously with EEG data, other multi-channel AAR methods may be
applied. Representative examples include the use of EOG or sig-
nals from optical eye tracking systems to develop adaptive filtering
schemes (e.g., Joyce et al., 2004; Schlögl et al., 2007; Samadi and
Cooke, 2013), or even the use of gyroscopes in ambulatory EEG
systems to flag EEG segments collected during head movements
(ORegan and Marnane, 2013).

5. CONCLUSION
The last decade has seen a rise in the development of EEG-
based tools to assist clinicians with AD diagnosis. This paper has
evaluated the effects of different state-of-the-art AAR algorithms
on diagnosis performance; AAR algorithms were tested both
alone and in tandem. Experimental results showed the wavelet
enhanced ICA (wICA) AAR algorithm outperforming all other
algorithms across four investigated feature sets (spectral, ampli-
tude modulate rate-of-change, coherence, phase), as well as two
combined feature sets (“All” and “Spectral-modulation”). In a
disease progression monitoring task (Task 3), the automated sys-
tem was shown to outperform a diagnostic system trained on
artifact-free data processed by human experts. Such findings sug-
gest that the discard of useful discriminatory information can be
avoided if AAR algorithms are used. Ultimately, it is hoped that
such fully-automated diagnostic tools be used to assist clinicians
not only with early diagnostics, but also with disease progression
monitoring and assessment.
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Objective: Diabetes is a risk factor for dementia and mild cognitive impairment. The aim of
this study was to investigate whether some features of resting-state EEG (rsEEG) could be
applied as a biomarker to distinguish the subjects with amnestic mild cognitive impairment
(aMCI) from normal cognitive function in type 2 diabetes.

Materials and Methods: In this study, 28 patients with type 2 diabetes (16 aMCI patients
and 12 controls) were investigated. Recording of the rsEEG series and neuropsychological
assessments were performed. The rsEEG signal was first decomposed into delta, theta,
alpha, beta, gamma frequency bands. The relative power of each given band/sum of power
and the coherence of waves from different brain areas were calculated. The extracted
features from rsEEG and neuropsychological assessments were analyzed as well.

Results: The main findings of this study were that: (1) compared with the control
group, the ratios of power in theta band [P(theta)] vs. power in alpha band [P(alpha)]
[P(theta)/P(alpha)] in the frontal region and left temporal region were significantly higher
for aMCI, and (2) for aMCI, the alpha coherences in posterior, fronto-right temporal,
fronto-posterior, right temporo-posterior were decreased; the theta coherences in left
central-right central (LC-RC) and left posterior-right posterior (LP-RP) regions were also
decreased; but the delta coherences in left temporal-right temporal (LT-RT) region were
increased.

Conclusion: The proposed indexes from rsEEG recordings could be employed to track
cognitive function of diabetic patients and also to help in the diagnosis of those who
develop aMCI.

Keywords: resting-state EEG, amnestic mild cognitive impairment, diabetes, relative power, coherence

INTRODUCTION
That diabetes affects cognitive function was first reported by Mile
and Root in the 1920s (Miles and Root, 1922). Diabetes patients
were found to have neuronal death and axonal degeneration, a
concept of “diabetic encephalopathy” was thus raised in Gispen
and Biessels (2000). Epidemiological data showed that the dia-
betic patients was associated with a 1.5–2.5-fold increased risk of
dementia (Strachan et al., 2011).

The MCI is defined as impairment in cognitive functions, par-
ticularly memory, with otherwise normal performance of activ-
ities of daily living. The MCI lies between and overlaps normal
aging and Alzheimer’s disease (AD) and is now recognized to be
a risk factor for AD (Levey et al., 2006) or an early manifestation
of the disease (Morris, 2005). The MCI includes two subtypes:
amnestic mild cognitive impairment (aMCI) and non-amnestic
MCI (na-MCI). The aMCI patients are the high-risk groups of
AD. The percent change of conversion from aMCI to AD was
54% and the conversion duration from initial diagnosis of aMCI
to dementia was 28 ± 12 months (Seo et al., 2012).

Type 2 diabetes, is characterized by high blood glucose in
the context of insulin resistance and relative insulin deficiency

(Kumar et al., 2005). Cognitive impairment such as learning
and memory deficiency was seen in type 2 diabetes (Peila et al.,
2002). The diabetes may be associated with increased risk of both
aMCI and na-MCI (Shimada et al., 2010; Roberts et al., 2014).
Therefore, it is critical to explore methods to detect the aMCI of
diabetes patients, so that the early interventions to these patients
can be provided.

Petersen described the MCI based on clinical criteria (Petersen,
2004), however current proposals also include biomarkers (Albert
et al., 2011). By using the ligand-based positron emission tomog-
raphy (PET), abnormal dosages of the beta amyloid to tau ratio
in cerebrospinal fluid (CSF) and deposition of beta amyloid
in the brain can be used to diagnose the prodromal stages of
AD in MCI subjects; moreover, the neurodegeneration such as
atrophy of the hippocampus on magnetic resonance imaging
(MRI) and hypometabolism of the posterior cingulate/precuneus,
parietal and temporal regions revealed by fluorodeoxyglucose
(FDG)-PET are all useful biomarkers for diagnosis of prodro-
mal stages of AD (Albert et al., 2011). However, the sensitivity
and specificity of these biomarkers were different for the different
international databases (Toussaint et al., 2012; Takahashi et al.,
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2013). Moreover, the CSF markers are invasive, the PET markers
are costly and expose patients to radiation, and the MRI mark-
ers of hippocampus volume are relatively expensive for serial
screening of large elderly populations at risk for AD; therefore,
a non-invasive and cost-effective tool is needed. It was demon-
strated that the cerebral EEG rhythms can reflect the underlying
brain network activity (Steriade, 2006), and the resting-state EEG
(rsEEG) can be used to perform serial examinations for neurolog-
ical evolution (Rossini et al., 2007; Schmidt et al., 2013). Recent
studies have investigated the rsEEG rhythms in MCI and AD sub-
jects, which may be a promising approach to assess MCI subjects
(Babiloni et al., 2014). This technique is low-cost, easy to use,
presents a high temporal resolution and is non-invasive.

Spectral power of EEG series and their correlations with neu-
ropsychological tests can provide valuable information in distin-
guishing normal and diseased brain function (Roh et al., 2011).
The theta and delta spectral power tended to increase in the
selected brain regions according to cognitive impairment from
normal through aMCI to AD, whereas alpha and beta2 power
showed a decreasing tendency (Roh et al., 2011). In particular,
relative power has been used as a feature to classify the MCI and
mild AD patients from age-matched controls (Jelic et al., 1996;
Dauwels et al., 2011). In addition, the EEG coherence has been
used to evaluate the functionality of cortical connections and to
provide information about the synchronization of the regional
cortical activity in AD. In Sankari et al. (2011), it was found that
decreased coherence indicates a decline in cortical connectivity
in AD, which suggests that the coherence of EEG signals have
potentials in differentiation of healthy elderly from AD patients.
Power and coherence were considered as features for the clas-
sification of the AD and control groups, since the classification
accuracy reached to 89% (Strijers et al., 1997; Stevens et al., 2001).
Therefore, rsEEG indexes may have the potential as a biomarker
to distinct the aMCI or AD from controls. In order to seek a bet-
ter early diagnosis method of aMCI for patients with diabetes,
rsEEG indexes (relative power and coherence in different regions
and frequencies) were investigated in this study.

MATERIALS AND METHODS
PARTICIPANTS
In this study the participants were 28 right-handed type 2 dia-
betes patients who satisfied the diagnosis criteria for diabetes
(American Diabetes Association, 2013), and they were all volun-
tary and more than 50 years old. These participants were divided
into 2 groups: aMCIs and controls. The aMCI group consisted
of 16 patients (5 males and 11 females; mean age 69.7 ± 8.4
years, range from 52 to 84 years; mean years of diabetes 9.3 ± 2.4
years, range from 1 to 20 years; mean years of education 12.9 ±
1.8 years, range from 6 to 16 years), and the control group con-
sisted of 12 patients (6 males and 6 females; mean age 73.3 ± 4.6
years, range from 63 to 80 years; mean years of diabetes 14.0 ± 3.1
years, range from 1 to 30 years; mean years of education 13.8 ±
3.0 years, range from 9 to 19 years). Both groups were matched in
age, diabetes duration and education level, but not in gender.

The study was approved by the local ethics committee and
all patients gave written informed consent. The experiment
was conducted in accordance with the Declaration of Helsinki

(1964) and was approved by the Beijing Normal University ethics
committee.

NEUROPSYCHOLOGICAL TESTS AND INCLUSION CRITERIA
Based on traditional MMSE (Folstein et al., 1975), and consid-
ering the China National State, a modified MMSE proposed by
Shanghai Mental Health Center in China (Jia, 2010) was per-
formed to all diabetic participants in this study. The cut-off score
for absence of dementia was 24 points for high school and above,
20 points for the primary, and 17 for the illiteracy participants, so
the scores of the two groups were all more than 24 points, which
included MCI and normal function participants. The MoCA uses
a cut-off score 26 points for MCI (Nasreddine et al., 2005).
Compared with MMSE, the MoCA appears to be a better screen-
ing tool for MCI in the diabetic population because it possesses
higher sensitivity (67%) (Alagiakrishnan et al., 2013). Therefore,
in this study cognitive disorders were further screened by using
MoCA after the preliminary screening of MMSE, which was only
used to rule out AD preliminarily.

In this study, besides MMSE and MoCA, Auditory Verbal
Learning Test (AVLT) (AVLT-Immediate recall, AVLT-Delayed
recall, AVLT-Delayed recognition) (Carlesimo et al., 1996),
Wechsler Adult Intelligence Scale Digit Span Test (WAIS-DST)
(Orsini et al., 1987), Boston Naming Test (BNT), Trail Making
Test (Reitan, 1958), Verbal Fluency Test (Novelli, 1986), Daily
Living Test (Lawton and Brody, 1969) were performed to each
subject.

The participants were all type 2 diabetes patients, whose vision
and hearing were able to complete clinical trials. They under-
went MRI examination to rule out the organic brain disease.
The depression that can cause cognitive impairment was ruled
out using DSM IV criteria for depression (American Psychiatric
Association, 1994). No patients in either group reported a history
of mental illness, systemic disease (such as liver and kidney dys-
function, heart disease and thyroid disease) and nervous system
disease (such as cerebrovascular disease, traumatic brain injury,
epilepsy, encephalitis, hydrocephalus, brain tumors, multiple scle-
rosis, radiation injury) that resulting to cognitive impairment.

The diabetic aMCI patients satisfied the criteria (Petersen,
2004) for the study diagnosis of aMCI. The inclusion criteria
were as follows: (1) memory complaint usually coming from
the patients or their family; (2) objective memory impairment
for age defined by performances ≥1.5 standard deviation below
the mean value of age- and education-matched controls for the
Auditory Verbal Learning Test (Carlesimo et al., 1996); (3) essen-
tially preserved general cognitive function tested using MMSE
and MoCA; (4) normal activities of daily living evidenced by
Activity of Daily Living Scale (Lawton and Brody, 1969); (5) not
demented [the dementia was ruled out by DSM IV criteria for
dementia (American Psychiatric Association, 1994)].

EEG RECORDING
The experiment was performed in the Department of Neurology,
General Hospital of Second Artillery Corps of PLA, Beijing,
China. The participants were asked to wash and brush their hair
before the application of the Geodesic Sensor Net (GSN) to their
head. During recordings, they were asked to close their eyes and
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sit in a comfortable armchair, keeping relaxed and awake for
5 min in a quiet-dim room, with room temperature keeping at
23 ± 2◦C.

The EEG data recording was performed with a high-density
128-channel EGI system of Net Amps 300 amplifiers (Electrical
Geodesics Inc. [EGI], Eugene, OR). The EEG was recorded
continuously with a 128-channel GSN using the vertex sen-
sor (Cz) as the reference electrode. Direct current acquisi-
tion was used and the data were sampled at 1000 Hz during
recording. The impedances of all electrodes were kept below
50 k�, as recommended for this type of amplifiers by EGI
guidelines.

EEG PREPROCESSING
The recorded EEG data were analyzed off-line using NetStation
4.5 software (Electrical Geodesics). First, a band-pass filter of
1–45 Hz was applied; then the data were re-referenced to the aver-
age of 57 (left mastoid process) and 100 (right mastoid process)
sensors, and the data were re-sampled to 500 Hz. The artifacts
(such as ocular and muscular) were removed by visual inspec-
tion of the raw EEG data. Finally EEG recordings of 3 min were
segmented for further analysis.

The data was recorded using the 128-channel GSN, but in this
study, the interested electrodes were circled inside the dashed line
(see Figure 1), which can throughout the whole brain area. In
order to detect EEG power in different regions and inter-/intra-
regions coherence, the brain were divided into five regions: frontal

FIGURE 1 | The electrodes distribution of 128-channel Geodesic

Sensor Net interested electrodes’ partition. The interested electrodes
were those inside the black dotted line. Thick solid lines divided the
interested electrodes into 5 regions: the number 1, 2, 3, 4, and 5 denote
the frontal, left temporal, central, right temporal and posterior regions,
respectively. Vertical dotted line divided the brain into left and right
hemispheres (LH and RH), left frontal (LF) and right frontal (RF), left central
(LC) and right central (RC), and left posterior (LP) and right posterior (RP).

(F), left temporal (LT), central (C), right temporal (RT), and
posterior (P). For the aim to estimate the left and right hemi-
spheres paired-electrodes coherence, the vertical dashed line (see
Figure 1) divided the brain into left and right hemispheres (LH
and RH) and the frontal region was divided into left frontal (LF)
and right frontal (RF), the central region into left central (LC) and
right central (RC), the posterior into left posterior (LP) and right
posterior (RP).

EEG DATA ANALYSIS
In this study, power and coherence were calculated at the five fre-
quency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
beta (13–30 Hz), gamma (30–45 Hz). For each band, the relative
power and the coherence were obtained. The EEG data of 10 s
were divided into overlapping segments using periodic 2-s ham-
ming windows with 50% overlap, then the power spectral density
(PSD) and the coherence of were computed using pwelch method
(Welch, 1967). Outliers rejection was performed by means of a
generalized extreme studentized deviate (GESD) (Seem, 2007) for
all epochs.

Relative power
The relative power of each given band/sum of power from 1 to
45 Hz was calculated by

RP
(
f1, f2

) = P
(
f1, f2

)

P(1, 45)
× 100%

where P(·) indicates the power, RP(·) indicates the relative power,
and f1, f2 indicate the low and high frequency, respectively.

The ratios of power for different frequency bands in each elec-
trode was computed for possible pairs of frequency bands, such
as P(delta)/P(theta) [or /P(alpha), or /P(beta), or /P(gamma)],
P(theta)/P(alpha) [or /P(beta), or /P(gamma)], P(alpha)/P(beta)
[or /P(gamma)] and P(beta)/P(gamma).

The relative power for each band and the ratios of power for
different frequency bands were averaged in each region.

Coherence
In this study, the magnitude squared coherence Cxy of signals x
and y was estimated by using the PSD (Pxx and Pyy) and the cross
PSD (Pxy), it is

Cxy(f ) =
∣∣Pxy(f )

∣∣2

Pxx(f )∗Pyy(f )

where f is the frequency. In this study, Welch’s averaged (a mod-
ified period-gram method) (Welch, 1967) was used to compute
the coherence. Compared with other power spectra estimating
methods, it is better to against noise. In the calculation, the fre-
quency resolution was 0.1, and a coherence matrix

{
Cxy
}

for the
whole frequency band (1–45 Hz) was obtained. Then the average
coherence values for each pair of electrodes over each EEG band
were computed by

Axy = 1

U − L

∫ U

L
Cxy(f )df
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where U and L were the upper and the lower bound frequencies
for each band. The coherence of each pair of electrodes over the
five frequency bands for each subject was calculated. After outlier
rejection, the remained epochs were averaged. From this point,
we called the averaged coherence as coherence.

Table 1 | Neuropsychological assessment scores (mean ± s.e.m.) and

p values for the tested items in the diabetic aMCI and control groups.

Items aMCI (n = 16) Control (n = 12) P values

MMSE 27.9 ± 0.5 28.8 ± 0.2 0.529

MoCA 22.4 ± 0.5 27.0 ± 0.3 p < 0.0001***

AVLT-Immediate recall 5.4 ± 0.4 7.6 ± 0.5 0.002*

AVLT- Delayed recall 4.3 ± 0.9 8.8 ± 1.0 0.005**

AVLT- Delayed recognition 10.9 ± 0.9 13.8 ± 0.3 0.008**

BNT 18.7 ± 0.4 19.8 ± 0.1 0.048*

WAIS-DST 11.5 ± 0.7 14.6 ± 0.6 0.002**

Trail Making Test1 65.4 ± 5.3 58.8 ± 4.9 0.354

Trail Making Test2 112.3 ± 14.3 99.9 ± 10.0 0.699

Verbal Fluency Test 15.6 ± 0.8 18.0 ± 0.1 0.099

Activity of Daily Living Scale 14 14 —

Key: MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive

Assessment; AVLT, Auditory Verbal Learning Test; BNT, Boston Naming Test;

WAIS-DST, Wechsler Adult Intelligence Scale Digit Span Test; aMCI, amnestic

mild cognitive impairment; MCI, mild cognitive impairment; s.e.m., Standard

Error of the Mean. *p < 0.05; **p < 0.01; ***p < 0.001.

The intra-/inter-coherence in the five different regions and the
paired-electrodes coherence (e.g., 22-9, 26-2, 45-108 and so on)
over the left and right hemispheres were calculated.

STATISTICAL ANALYSIS
In this study, Wilcoxon rank sum test was conducted at the 5%
significance level including the EEG relative power of each brain
area, the inter hemispheric coherence along with the intra-/inter-
coherence in the five regions and the neuropsychological scores
between aMCI and controls.

In order to determine whether rsEEG can be biomarkers to
detect aMCI in diabetes, the correlations between the significantly
different neuropsychological items and the EEG indexes over sig-
nificantly different regions in significantly different bands were
analyzed in the diabetic aMCI and control groups. Pearson’s linear
correlation was employed in this study.

RESULTS
NEUROPSYCHOLOGICAL TESTS
The neuropsychological assessment scores of the aMCIs and con-
trols (the p values for the tested items) were shown in Table 1.
There were significant differences in scores of MoCA, AVLT-
Immediate recall, AVLT-Delayed recall, AVLT-Delayed recogni-
tion, BNT, WAIS-DST. The scores of MMSE, Trail Making Test,
Verbal Fluency Test, and Daily Living Skills Test were lower in
aMCI patients than in controls, but these differences were not
statistically significant.

FIGURE 2 | The ratios of P(theta)/P(alpha) in frontal and left temporal

regions and the correlations between the ratios of P(theta)/P(alpha) and

scores of MMSE and MoCA. (A) The ratios of P(theta)/P(alpha) in frontal

region (left panel) and in left temporal region (right panel). (B) The correlation
between ratios of P(theta)/P(alpha) and scores of MMSE in frontal region (left
panel) and in left temporal region (right panel). ∗p < 0.05.
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RELATIVE POWER
The relative power for all frequency bands were not significantly
different in diabetes between the aMCI and control groups, but
the ratios of P(theta)/P(alpha) in the frontal and temporal regions
showed statistically significant differences. Compared to the con-
trol group, the ratios of P(theta)/P(alpha) in the frontal region
(aMCI: 0.78 ± 0.16, control: 0.31 ± 0.07; p < 0.05) and the
left temporal region (aMCI: 0.61 ± 0.09, control: 0.28 ± 0.05;
p < 0.05) were significantly higher in the subjects with aMCI (see
Figure 2A). For the ratios obtained in other regions and at other
frequency bands there are no differences between both groups, the
significant ratios of relative power obtained were then correlated
with those neuropsychological measures in which there were dif-
ferences between controls and aMCI subjects. Figure 2B showed
that the ratios of P(theta)/P(alpha) were negatively correlated
to the scores of MoCA in the frontal (r = −0.485, p = 0.014)
and left temporal (r = −0.518, p = 0.007) regions. There were
no significant correlations between ratios of relative power and
neuropsychological tests.

COHERENCE
In posterior region (intra-region), alpha coherence was lower
for subjects with aMCI (0.54 ± 0.02; p < 0.05) compared to
the controls (0.62 ± 0.02) (see Figure 3A). There were no sig-
nificant differences for coherence at other frequency bands or
regions. Then the correlations between significant different intra-
region coherence and neuropsychological tests were analyzed. No
significant correlation between the alpha coherence and neu-
ropsychological tests was found, including the scores of MoCA
(r = 0.335, p = 0.09) (see Figure 3B).

In inter-regions, alpha coherences in fronto-posterior (control:
0.30 ± 0.02, aMCI: 0.24 ± 0.01; p < 0.01), right temporo-
posterior (aMCI: 0.29 ± 0.01, control: 0.36 ± 0.01; p < 0.01)
were significantly lower for subjects with aMCI than that with
normal cognitive function (Figure 4A). No significant differences
in inter-regions coherence were found between both groups. The
significant different inter-region coherence obtained was then
correlated with those neuropsychological measures in which there
were differences between controls and aMCI subjects. The alpha
coherences in fronto-posterior (r = 0.496, p = 0.009) and right
temporal-posterior (r = 0.691, p = 0.0002) regions were posi-
tively correlated to the scores of MoCA (see Figure 4B). There was
no significant correlation between alpha coherences and other
neuropsychological tests (data not shown).

In inter-hemispheric coherence, aMCI patients showed higher
coherence values in delta between LT and RT regions (aMCI:
0.24 ± 0.01, control: 0.20 ± 0.01; p < 0.05), and a lower coher-
ence in the theta band in left central-right central (LC-RC) areas
(aMCI: 0.66 ± 0.02, control: 0.72 ± 0.02; p < 0.05)and in left
posterior-right posterior (LP-RP) regions (aMCI: 0.43 ± 0.02,
control: 0.54 ± 0.03; p < 0.05), than the controls (see Figure 5A).
There were no significant differences in other inter-hemispheric
regions and frequency bands in both groups. The correlation’s
results between the significant inter-hemispheric coherence and
neuropsychological tests which were different in aMCI and con-
trols showed that the delta coherences of left temporal-right
temporal (LT-RT) region were negatively correlated to the MoCA

FIGURE 3 | The alpha coherence in posterior region and the

correlations between the alpha coherence and the scores of MoCA.

(A) Alpha coherence in posterior region. (B) The correlations between the
alpha coherences and the scores of MoCA. ∗p < 0.05.

scores (r = −0.474, p = 0.019), and the theta coherences of LC-
RC region (r = 0.441, p = 0.024) and LP-RP region (r = 0.434,
p = 0.028) were positively correlated to the MoCA scores (see
Figure 5B).

DISCUSSION
Type 2 diabetes or impairment of glucose metabolism may
increase the risk of cognitive impairment and accelerate the
progress from MCI to dementia, and it is up to 80% of patients
with AD (Ganguli et al., 2004; Busse et al., 2006; Yaffe et al., 2006;
Hussain, 2007; Xu et al., 2010; Tuma, 2012; Roberts et al., 2014).

The present study examined whether the ratios of power and
the values of coherence of rsEEG data can be used to distin-
guish aMCI from controls with diabetes. Our findings showed
that the ratios of power in theta band vs. power in alpha band
[P(theta)/P(alpha)] in the frontal region and left temporal region
were significantly higher in aMCI subjects. Besides this, the aMCI
group showed lower values of coherence in the alpha band in
posterior, fronto-right temporal/fronto-posterior/right temporo-
posterior regions and in the theta band in LC-RC and LP-RP
regions than the control group. Finally, the aMCI patients exhib-
ited an increase in coherence in delta band in LT-RT regions,
compared to the control subjects.

In previous studies, rsEEG absolute power were directly used
to evaluate cognitive status of MCI subjects (Luckhaus et al.,
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FIGURE 4 | The alpha coherences in fronto-posterior and right

temporal-posterior regions and the correlations between the

alpha coherences and the scores of MoCA. (A) The alpha
coherences in fronto-posterior (left panel) and right

temporal-posterior (right panel) regions. (B) The correlation
between alpha coherences and scores of MoCA in
fronto-posterior (left panel) and right temporal-posterior (right
panel) regions. ∗∗p < 0.01.

FIGURE 5 | The delta coherences in LT-RT region and theta coherences in

LC-RC and LP-RP regions, and the correlations for the delta coherences

or (and) theta coherences with the scores of MoCA. (A) The delta
coherences in LT-RT region (left panel) and the theta coherences in LC-RC

(middle panel) and LP-RP (right panel) regions. (B) The correlation between
the delta coherences and the scores of MoCA in LT-RT region (left panel), and
the correlations between the theta coherences and the scores of MoCA in
LC-RC (middle panel) and LP-RP (right panel) regions. ∗p < 0.05.
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2008), and specially could reflect neurodegenerative processes in
aMCI (Huang et al., 2000; Jelic et al., 2000; Koenig et al., 2005;
Babiloni et al., 2006). There were decreased alpha (8–10.5 Hz)
power in the parieto-occipital regions (Jelic et al., 1996; Babiloni
et al., 2000, 2006; Jelic et al., 2000), significantly increased theta
power in the frontal and temporo-parietal regions (Johnson,
2006) and increased delta power widespread over the brain for
MCI patients (Babiloni et al., 2006). And the significant corre-
lations between power and neuropsychological assessment scores
indicated that aMCI was associated with disruptions in the opera-
tion of neuro-cognitive networks (Cummins et al., 2008). Brismar
(2007) suggested that the theta rhythm increased in frontal and
left central regions, and alpha, beta, and gamma power decreased
in temporal region. And it was found that the alpha and beta
power was lower in MCI (Rodriguez et al., 2011). The increased
slow rhythm power and the reduced fast rhythm power in type
2 diabetic may be associated with cortical damage. However, in
this study the absolute power of rsEEG at the different frequency
bands was not significantly different between the diabetic aMCI
and controls (not shown in the Results section). The possible rea-
son is the rsEEG absolute power was sensitive to non-diabetic’s
brain performances. The relative power and coherence of rsEEG
could be better to indicate aMCI in diabetes.

The relative power of theta and alpha bands was reported as
an important predictor for MCI, which correctly classified MCI
subjects of 85% (Jelic et al., 2000). However, in this study the rela-
tive power for each frequency band was not significantly different
between the diabetic aMCI and control groups. Because of the
complex structure and richest connections with the hippocampus
(Johnson, 2006; Moretti et al., 2007b), the frontal and temporal
regions were more sensitive than other regions. Moreover, it has
been reported that significant increase in the theta/alpha1 ratio
was indicative of cerebrovascular damage (CVD) (Moretti et al.,
2007a,b). Our subjects were all diabetic and may be affected by
CVD. This may be the reason to support the difference between
this study and previous studies. The effects of diabetes on degen-
erative and CVD may accelerate onset of MCI (Roberts et al.,
2014), as insulin-related effects may affect cognitive function
(Craft, 2007). Insulin resistance and hyperinsulinemia increased
brain intra-neuronal β-amyloid deposition and hyperphosphory-
lation of tau (Craft, 2005). And the dysregulation of brain insulin
signaling may lead to impaired central glucose homeostasis and
neurodegeneration. Vascular damage of the brain resulted from
diabetes (Craft, 2005; Debette et al., 2011) may contribute to the
risk of aMCI (Arvanitakis et al., 2006; Knopman and Roberts,
2010; Roberts et al., 2011). It has been demonstrated that vascular
lesions interrupt the cortical cholinergic pathways which may lead
to depletion of acetylcholine, resulting in cognitive impairment
(Mitrushina et al., 1999). Therefore, this study suggested that the
ratios of power at some brain areas can be used as a sensitive
index to distinguish aMCI from subjects with normal cognitive
function.

Coherence can reflect functional interactions between neu-
ral networks (Hogan et al., 2003). In Gomez et al. (2009), it
was reported that coherence was lower in all frequency bands in
MCI group, and has been used to detect the brain dysfunction
thus discriminating MCI patients from controls. In this study, we

found that: the alpha coherence decreased in posterior region,
fronto-posterior and right temporo-posterior regions; the theta
coherence decreased in left and right central and left and right
posterior region; and the delta coherence increased in left and
right temporal regions in aMCI subjects compared with con-
trols. There are some differences between these findings and the
reports in Moretti et al. (2008). The decreased alpha coherence
in fronto-posterior and temporo-posterior regions and increased
delta in left and right temporal regions have been also reported
in previous MCI’s studies (Jelic et al., 1996; Jeong, 2004; Babiloni
et al., 2008; Moretti et al., 2008). The coherence changes in the
alpha and delta bands were associated with aMCI and CVD
(Moretti et al., 2008), and authors suggested that the increase of
inter-hemispheric coherence in the temporal region was linked
to hippocampal atrophy, whereas the decrease of coherence in
fronto-parietal regions was linked to subcortical CVD (Moretti
et al., 2008). But for other frequency bands, there was regional
difference or has no difference between our and their studies
(Jeong, 2004; Moretti et al., 2008). In conclusion, this study sug-
gested that the decreased theta, alpha coherence and increased
delta coherence in corresponding regions may distinguish aMCI
from controls in diabetic.

The results of correlations between scores of MoCA and rsEEG
biomarkers indicated that MoCA scores and rsEEG biomark-
ers among frontal, temporal, and posterior regions are well-
correlated. The correlations between other significantly different
neuropsychological items and rsEEG biomarkers were not signif-
icant. It is worth mentioning that the correlation between the
scores of MoCA and alpha coherence was not significant neither.
These results suggested that intra-posterior functional connec-
tions in alpha band may be relatively preserved in diabetic aMCI.
These correlations confirmed the feasibility and value of our
studies aimed at detecting aMCI in diabetes by rsEEG biomark-
ers. And our results evidenced that the sensitivity of MoCA
and its utility in diabetic population were better than MMSE
(Alagiakrishnan et al., 2013) since this test was usually correlated
with the EEG power/coherence.

This study shows the rsEEG may provide efficient methods
to monitor the cortical dysfunction associated with the cogni-
tive decline of diabetic patients. The rsEEG measures may be
eventually assumed a role in early detecting aMCI or in guiding
diagnosis of aMCI in diabetes. Thus, early intervention can be
carried out to slow the development pace of aMCI to AD.

However, these results may still be limited, larger prospective
studies are necessary to verify the findings in this study.
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Alzheimer’s disease (AD) is a devastating disorder of increasing prevalence in modern
society. Mild cognitive impairment (MCI) is considered a transitional stage between
normal aging and AD; however, not all subjects with MCI progress to AD. Prediction of
conversion to AD at an early stage would enable an earlier, and potentially more effective,
treatment of AD. Electroencephalography (EEG) biomarkers would provide a non-invasive
and relatively cheap screening tool to predict conversion to AD; however, traditional EEG
biomarkers have not been considered accurate enough to be useful in clinical practice.
Here, we aim to combine the information from multiple EEG biomarkers into a diagnostic
classification index in order to improve the accuracy of predicting conversion from MCI
to AD within a 2-year period. We followed 86 patients initially diagnosed with MCI for 2
years during which 25 patients converted to AD. We show that multiple EEG biomarkers
mainly related to activity in the beta-frequency range (13–30 Hz) can predict conversion
from MCI to AD. Importantly, by integrating six EEG biomarkers into a diagnostic index
using logistic regression the prediction improved compared with the classification using
the individual biomarkers, with a sensitivity of 88% and specificity of 82%, compared
with a sensitivity of 64% and specificity of 62% of the best individual biomarker in this
index. In order to identify this diagnostic index we developed a data mining approach
implemented in the Neurophysiological Biomarker Toolbox (http://www.nbtwiki.net/). We
suggest that this approach can be used to identify optimal combinations of biomarkers
(integrative biomarkers) also in other modalities. Potentially, these integrative biomarkers
could be more sensitive to disease progression and response to therapeutic intervention.

Keywords: Neurophysiological Biomarkers, Alzheimer’s disease, mild cognitive impairment (MCI),

electroencephalography, predictive analysis, time series analysis, eyes closed resting state

INTRODUCTION
Caused by an increasing average age of the population in the
developed world, dementia is becoming a major healthcare prob-
lem. Alzheimer’s disease is the most common form of dementia
and the golden standard for diagnosis is the post-mortem iden-
tification of Amyloid Beta 42 depositions and tangles (Blennow
et al., 2006; Herrup, 2010). It has been suggested that Alzheimer’s
disease begins years, maybe even decades before actual cognitive
symptoms appear (Sperling et al., 2011). However, normal age-
ing is also characterized by a slow decline of cognitive functions,
which means it can be difficult to disentangle normal ageing from
Alzheimer at a very early stage.

Patients with mild cognitive impairment (MCI) are at high
risk of developing Alzheimer’s disease. The label MCI is given
when there is a cognitive complaint (mostly memory), which can
also be demonstrated on formal testing, while general cognitive
functioning is relatively intact and a patient is still living inde-
pendently (Flicker et al., 1991; Gauthier et al., 2006; Albert et al.,
2011). Therapies that stop the conversion to Alzheimer’s disease
unfortunately remain to be developed, but it is likely that these

drugs or therapies will appear in the future (Prins et al., 2010;
Huang and Mucke, 2012). It is plausible that these therapies will
be most effective before major brain damage has occurred and
it is, therefore, important to develop biomarkers sensitive of this
very early stage (Sperling et al., 2011). Early-stage identification
may also help the development of new treatments that are more
effective at this stage as it can facilitate monitoring of the response
to the intervention.

We here focus on biomarkers obtained from electroen-
cephalography (EEG) recordings in the eyes-closed resting state
(ECR). EEG biomarkers are optimal for screening purposes
because the EEG recording can be obtained using relative cheap
and non-invasive equipment, which is widely available and fast to
use. Several previous EEG studies of conversion from mild cog-
nitive impairment to Alzheimer’s disease have been conducted
(Jelic et al., 1996, 2000; Huang et al., 2000; Stam et al., 2003;
Schoonenboom et al., 2004; Rombouts et al., 2005; Babiloni et al.,
2006, 2011; Kwak, 2006; Rossini et al., 2006, 2008; Lehmann
et al., 2007; Moretti et al., 2007a,b, 2008, 2011; Luckhaus et al.,
2008) mainly using biomarkers such as spectral measures and
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synchronization between brain regions. Machine-learning tech-
niques have been used to explore differences between MCI and
AD with varying success (Huang et al., 2000; Bennys et al., 2001;
Prichep et al., 2006; Buscema et al., 2007; Lehmann et al., 2007;
Prichep, 2007; Rossini et al., 2008), however, only few studies have
tried to predict the conversion from MCI to AD (Prichep et al.,
2006; Prichep, 2007; Antila et al., 2013). Many studies typically
focus on a small number of biomarkers (on the order of 15 marker
values), and some do not have adequate validation of their results
on independent groups. We perform large-scale data mining of
multiple biomarkers (Figure 1A) and validate our results on an
independent group of subjects.

Our focus is on the EEG measured as part of the initial hospi-
tal intake test, combined with longitudinal recordings measured 1
year after the initial intake test. We have mapped several classical
EEG biomarkers, such as frequency and power, but also non-
classical biomarkers such as detrended fluctuation analysis and
oscillation burst analysis (Poil et al., 2008; Montez et al., 2009).
By combining several biomarkers, it is often possible to find better
separation boundaries between two groups (Figure 1C), because

FIGURE 1 | An integrative approach toward improved prediction of

mild cognitive impairment to Alzheimer’s disease conversion. (A)

Diagram of processing flow. We calculate biomarkers on the second year
EEG recording; hereafter we mapped all potential differences between MCI
and AD using Student’s t-test (Difference map). Next, we performed logistic
regression on each single biomarker. Biomarkers with best
single-classification power were seeded to a genetic search algorithm; this
algorithm further optimized the combined biomarker set. This biomarker set
was then used to predict MCI to AD conversion based on the first-year EEG
recording. To evaluate the lower bound on the classification, half-split
cross-validation was performed. Finally, the outcome performance was
evaluated on the 1st EEG recording. (B) Overview of how the MCI patient
cohort splits into AD, another diagnosis, or remain MCI one or 2 years after
the in-take. (C) The integration of multiple biomarkers can reveal hidden
separation boundaries. Here, we show two simulated biomarkers where
the red and blue groups are overlapping if we only consider the single
biomarkers. By combining the biomarkers, we see a clear separation
boundary at the diagonal. Classification algorithms aim to identify this
boundary, and use it to predict group association for new data.

each biomarker gives additional information (Lehmann et al.,
2007). In this longitudinal study we show that EEG biomarkers
from the initial hospital in-take test retrospectively can be used
in a classifier algorithm to predict the diagnosis that the patient
obtained within the subsequent 2 years.

METHODS AND MATERIALS
SUBJECTS
The study involved 86 mild cognitive impairment (MCI) subjects
who were referred to the Alzheimer Center at the VU University
Medical Center in Amsterdam, the Netherlands (Figure 1B).
Upon the first visit at the Alzheimer Center, all subjects under-
went a thorough 1-day examination consisting of history taking,
physical, and neurological assessment, neuropsychological testing
including the Mini Mental State Examination (MMSE) (Folstein
et al., 1975), laboratory tests, structural magnetic resonance imag-
ing (MRI), and a routine electroencephalogram (EEG). After
reviewing the clinical and ancillary imaging data, a multidisci-
plinary team established a consensus-based final diagnosis for
each patient. The initial diagnosis of MCI was based on the cri-
teria set by (Petersen et al., 1999), consisting of (a) objective
memory impairment as seen during neuropsychological evalua-
tion, defined by performances ≥ 1.5 standard deviation below the
mean value of education—and that of age matched controls, (b)
normal activities of daily living, and (c) a rating score of 0.5 in
clinical dementia (Hughes et al., 1982).

All MCI subjects were followed up clinically during an average
period of 709 ± [537:779] days (1.9 years) (median ± 95% con-
fidence interval). The clinical follow up included medical history
and functional status assessment re-examination in order to mea-
sure potential changes in the cognitive domain. MCI subjects who
showed steady or enhanced cognitive functioning (but still ful-
filled the criteria for MCI) during re-assessment were considered
as MCI-stable, while MCI subjects who showed impoverished
cognitive functioning, and fulfilled the NINDS-ADRDA criteria
(McKhann et al., 1984) to be diagnosed with Alzheimer’s disease,
were considered to belong to the AD-converter group. Exclusion
criteria were previous head trauma, history of neurological or
psychiatric disease or use of psychotropic medications. Patients
progressing from MCI to other disorders than Alzheimer’s disease
(n = 22) were excluded from the analyses reported here. These
patients progressed to; “Subjective complaints” (n = 9), possible
Alzheimer’s disease (n = 1), frontal lobe dementia (n = 1), vas-
cular dementia (n = 3), Lewy body dementia (n = 1), dementia
other (n = 2), psychiatric (n = 2), or another neurological dis-
order (n = 3). The measurements were approved by the Ethics
Committee of the VU University Medical Center, and were in
accordance to the Helsinki declaration. All subjects signed an
informed consent.

EEG RECORDINGS
Twenty-one channel EEGs were recorded in a sound attenuated,
electrically shielded, and dimly lit room. These recordings were
performed with OSG digital equipment (Brainlab®) at the follow-
ing locations of the international 10–20 system: Fp2, Fp1, FT9,
FT10, F8, F7, F4, F3, A2, A1, T4, T3, C4, C3, T6, T5, P4, P3, O2,
O1, Fz, Cz, and Pz. The recording was referenced to the common
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average of all electrodes, excluding Fp1 and Fp2. Sampling fre-
quency was 500 Hz and analogue-digital precision was 16 bit. The
impedance of all electrodes was less than 5 k�. Recordings were
made with a 70 Hz low-pass filter (time constant 1 s). Subjects sat
in a reclined chair for approximately 20 min. During this period
the subjects kept their eyes closed most of the time, however,
at irregular intervals, they were asked to open their eyes when
drowsiness was noticed. Approximately 15 min into the record-
ing a memory task, which consisted of remembering pictogram
images for 1 min was performed.

EEG CLEANING
The recordings during task and eyes-open were not analyzed.
The EEG was viewed in windows of 5 s, and sharp transient arti-
facts were cut out. On average 17.8 [range (12.4:24.1)] minutes
of eyes-closed rest EEG was left. The JADE ICA algorithm was
then used to separate the signal into 23 components (Cardoso
and Souloumiac, 1993). Eye movements, eye blinks, muscle arti-
facts, and heartbeat components were rejected, based on abnor-
mal topography, component activation, activity distribution, and
spectrum.

BIOMARKERS AND PROCESSING FLOW
The Neurophysiological Biomarker Toolbox (NBT) (http://www.

nbtwiki.net/) was used to organize, analyse, and calculate all
biomarkers in this study (Hardstone et al., 2012). An EEG
biomarker is a quantitative measure derived from the EEG, e.g.,
the dominant frequency of the beta frequency band (13–30 Hz),
to be used as a diagnostic or prognostic predictor of disease
(Figure 2).

We extracted 177 biomarkers from each EEG trace. We decided
to focus on biomarkers we have had good experiences with in
other studies, and acknowledge that many more biomarkers could
have been selected.

Based on the broadband signal, we computed 28 biomark-
ers, namely: Hjorth’s activity, mobility and complexity parame-
ters (Hjorth, 1970); Time domain Parameters (Goncharova and
Barlow, 1990), Wackermann’s global field strength, global fre-
quency, and spatial complexity (Wackermann, 1999), Barlow’s
amplitude, frequency and spectral purity (Goncharova and
Barlow, 1990). Alpha peak frequency, peak width, power cor-
rected for 1/f baseline (Poil et al., 2011), when applicable the
same parameters where found for double alpha peaks. Alpha-
theta transition point (Klimesch, 1999), Beta peak frequency
(Figure 2), width, power corrected for 1/f baseline (Van Aerde
et al., 2009), same for second beta peak if present; Frequency
stability was evaluated using different methods, by the standard
deviation and interquartile range of the central frequency and
maximum wavelet frequency calculated in windows, and by, the
distribution parameters of the phase values above zero, and of the
number of oscillation cycle peaks per window.

For each of the classical frequency bands—delta (1–3 Hz),
theta (4–7 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma
(30–45 Hz)—we computed 13 biomarkers; namely: The ampli-
tude envelope was extracted using Hilbert transform and char-
acterized extensively. We calculated the spearman correlations
of amplitude envelopes in different channels. The distribution

FIGURE 2 | An EEG biomarker is a quantitative measure derived from

the EEG. For example the Beta peak frequency. (A) Time-frequency
(TF-plot) plot of 6 s of an eyes-closed rest EEG signal (from Pz) (Wavelet).
The color shows the power. Low-amplitude bursts in the beta-frequency
band (13–30 Hz) not directly coupled with the strong alpha are observed.
(B) The raw EEG signal used to calculate the TF-plot in (A). Clear and strong
alpha (8–13 Hz) oscillations are observed. (C) Zooming in, we observe small
peaks in the space between the strong alpha oscillation peaks, which
correspond to the beta oscillations. (D) The power spectrum of the
full-length EEG signal reveals a beta peak (left). To find the beta peak we
first fit a 1/f baseline (right), next we fit a Gaussian to the small beta peak.
We now have four biomarkers; Beta peak frequency, Beta peak width, Beta
peak corrected power (i.e., minus 1/f baseline), and peak uncorrected
power.

of amplitude values was characterized by kurtosis, skewness,
interquartile range, median, range, and variance. Furthermore,
detrended fluctuation analysis characterizing long-range tempo-
ral correlations (Linkenkaer-Hansen et al., 2001; Hardstone et al.,
2012; Poil et al., 2012), multifractality spectral width (Kantelhardt
et al., 2002; Ihlen, 2012) and oscillation bursts 95th percentile
durations and sizes (Montez et al., 2009; Poil et al., 2011) were
calculated on the amplitude envelope. The instantaneous phase
was also extracted using Hilbert transform, and the 95th per-
centile duration and size of the stable phase bursts (a phase
bursts is defined as the period between phase slips) were cal-
culated. In addition, we computed for all frequency bands and
individualized frequency bands, defined as Alpha1 (APF = indi-
vidually defined Alpha peak frequency): (APF–4 to APF–2) Hz,
Alpha2: (APF–2 to APF) Hz, Alpha3: (APF to APF+2) Hz;
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Beta: (APF+2 to 30) Hz (Klimesch, 1999), 7 biomarkers: abso-
lute, relative power, and power ratios, furthermore, the central
frequency, power in central frequency, bandwidth and spec-
tral edge (Vural and Yildiz, 2010; O’Gorman et al., 2013). In
total, we extracted 177 biomarker values from each EEG trace
(Table 1).

Next, we performed data mining on these biomarkers based
on the second EEG recording (Figure 1A), to identify biomarkers
that reached a significance level of p < 0.05 (student’s t-test) for
the comparison of stable MCI vs. AD-converters (based on the
diagnosis after 2 years). We here use student’s t-test because this
test has best statistical power in most cases under the assumption
of normal distributed biomarker values. The biomarkers were
tested per channel, and a binomial multiple-comparison correc-
tion was performed (Poil et al., 2011). The binomial multiple-
comparison correction tests whether a significant number of
channels are found (i.e., 3 or more channels, p < 0.05). The per-
formance of two different classification algorithms (see below for
details) in integrating significant biomarkers into a diagnostic
index was then tested using their median values across significant
channels.

DEVELOPMENT OF A DIAGNOSTICS INDEX
To move beyond single-biomarker classification we aimed to inte-
grate several EEG biomarkers in a diagnostic index that would
classify the AD-converter group from the MCI-stable group better
than each individual biomarker. Using one dataset for develop-
ment and testing is not recommended, because it is theoretically
possible to find a perfect separation of two groups if enough
biomarkers are included (so-called over-fitting). To counteract
this issue we build our classification model based on the sec-
ond EEG recording (which was obtained in 34 out of a total of
64 subjects that were either MCI-stable or AD-converters), and
tested the classification accuracy retrospectively on the first EEG
recording. Thirty subjects were not included in the training (22
MCI-stable, 8 AD-converters), because these subjects did not have
any second-year recording. These subjects serve as our ultimate
classification test. We also used half-split cross-validation to
evaluate the stability and lower bound of the solution (see below).

STATISTICS: LOGISTIC REGRESSION WITH GENETIC SEARCH
Binary classification was performed using logistic regression.
In logistics regression the binary outcome either AD-converter
(1) or MCI-stable (0) is regressed with a linear combination
of biomarkers. More specifically we fit a function f (z) using
maximum likelihood.

f (z) = 1

1 + e−z

with

z = β0 +
k∑

i=1

βi xi, (1)

and x are the k biomarkers included in the regression (included
as medians across significant channels), and βi are the regres-
sion coefficients. The function f represents the probability
of Alzheimer’s disease. We use the 50% probability as our
classification threshold, i.e., if f ≥ 0.5, the patient belong to
the AD-converter group, otherwise the patient belongs to the
MCI-stable group. We used a genetic search method to identify
biomarkers that combined (using logistic regression) would
give the best classification of the outcome MCI-stable vs. AD-
converters. Genetic search is considered an efficient method
for searching large data sets, instead of the computationally
demanding alternative of testing all possible combinations (Koza
and Poli, 2005; Zviling et al., 2005). The genetic approach is
based around an evolutionary idea where the combined set of
biomarkers is “mutated” by different mutation rules; addition of
a random biomarker, removal of a biomarker, random selection
of a new set of four biomarkers, and random substitution of a
biomarker. Each rule was applied 5 times in each generation,
leading to 20 new sets of biomarkers. The classifications of these
new sets were then compared with the previous optimal set. Only
the best biomarker set survived and was used as the base for next
generation of mutations. We did not set limits on the maximum
or minimum number of biomarkers in each set.

The genetic algorithm was seeded with an initial set of five
biomarkers with the highest Matthew correlation coefficient (see
outcome evaluation below). The genetic algorithm ran for 100

Table 1 | Thirty-five biomarkers from different signal processing domains were extracted.

Spatial biomarkers Temporal biomarkers Spectral biomarkers

Spearman correlations of the amplitude
envelope across channels

Detrended fluctuation analysis

Multifractal spectral width

Oscillation bursts duration and size

Stable phase bursts duration and size
Frequency stability; standard deviation,
interquartile range of central frequency,
maximum wavelet frequency; distribution
parameters of the phase values above zero;
number of oscillation cycles per window

Amplitude envelope parameters; kurtosis,
skewness, interquartile range, median, range,
and variance

Absolute and relative power

Central frequency

Power in central frequency

Bandwidth and spectral edge

Hjorth’s activity, complexity, and mobility

Wackerman’s Global Field strength, global
frequency, and spatial complexity

Barlow’s amplitude, frequency, and spectral purity

Alpha peak frequency, peak width

Alpha peak power corrected for 1/f baseline

Beta peak frequency, peak width

Beta peak power corrected for 1/f baseline
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generations. At each generation the biomarker set with maximal
positive likelihood ratio (see outcome evaluation below) survived.
In all cases the logistic regression model was fitted using the sec-
ond EEG recording, and the classification outcome was measured
using the first EEG recording.

STATISTICS: ELASTIC NET LOGISTIC REGRESSION
As an alternative to genetic optimization of biomarkers included
in the logistic regression, we employed an elastic net logistic
regression algorithm (Zou and Hastie, 2005) as implemented in
the GLMnet package for Matlab (http://www-stat.stanford.edu/
~tibs/glmnet-matlab/) (Friedman et al., 2010). This algorithm
promises a build-in selection of features that optimally can per-
form much better than the less stable genetic optimization. The
elastic net optimizes the number of biomarkers included in the
diagnostic index by minimizing both the L1 and L2 norm of the
regression coefficients by minimizing the equation

L (λ1, λ2, β) = |z − Xβ|2 + λ1 |β| + λ2 |β|2

where the first term is similar to the logistic regression, and the
second and third are the penalizing terms (the elastic net) (Zou
and Hastie, 2005). The parameters λ1 and λ2 determines the
influence of either the L1 or L2 norm penalty. We define a new
combined parameter

α = λ2

λ1 + λ2

which we optimized in 5-split cross-validation based on the best
classification by training on second-year data, and testing on the
1/5 left-out subject group on first-year EEG (note that subjects
which did not have a second-year EEG were not included, and,
therefore, serve as our ultimate test group (see Results) (data not
shown). We found the best classification with α = 0.8.

STATISTICS: CLASSIFICATION OUTCOME EVALUATION
To evaluate the outcome of our classification we use five different
measures:

• Sensitivity (SE): defined as the (number of correctly classified
AD-converter patients)/(number of AD-converter patients).

• Specificity (SP): defined as the (number of correctly classified
MCI-stable subjects)/(number of MCI-stable subjects).

• Positive predictive value (PPV): defined as (number of cor-
rectly classified AD-converter patients)/(number of patients
classified as AD-converters).

• Positive likelihood ratio (PLR): defined as (Sensitivity)/
(1-Specificity).

• Matthew correlation coefficient (MCC): explains the correla-
tion between the outcome and the expected outcome (Baldi
et al., 2000).

A Matthew correlation coefficient higher than 0.20, sensitivity
higher than 65%, specificity higher than 65%, positive predictive
value higher than 65%, and a positive likelihood ratio higher than
1.6 means that the classification is significantly different from a
random classification (Monte Carlo simulation, 5000 iterations,

n = 65, note these results depends on the sample size making the
threshold levels lower for larger sample sizes, p < 0.05). Perfect
classification would give a Matthew correlation coefficient (MCC)
of 1, sensitivity of 100%, specificity of 100%, positive predictive
value of 100%, and an infinite positive likelihood ratio.

An issue with these outcome measures is that they only tell
how well the classification fits the given subgroup of subjects,
but not how well the classification generalizes to other subject
populations. We counteract this by three approaches; (1) classi-
fication was performed on the second EEG recording, whereas
the prediction was tested on the first EEG recording, (2) as the
ultimate test we evaluated the prediction on subjects not included
for classifier training (because not all subjects had a second EEG
recording), and (3) we performed a half-split cross-validation. In
the half-split cross-validation the sample was divided randomly
in half several times (1000 iterations); the classifier was then
trained on the first half, and the outcome was evaluated on the
second half. We report the median outcome measures over these
splits. Cross-validation gives an estimate of the classification
performance on an “unknown” sample (Witten et al., 2011).
However, cross-validation also suffers from lower n numbers,
which means their outcome should be viewed as a conservative
estimate of the average outcome.

STATISTICS: GROUP DIFFERENCES AND CORRELATIONS
We use non-parametric permutation tests based on median
(Box and Andersen, 1955; Ernst, 2004) to test for differences
between groups. Non-parametric tests are more robust toward
non-normal data, but also often have lower power than paramet-
ric such as student’s t-test. Confidence intervals (95%) were found
using non-parametric bias corrected and accelerated bootstrap
(n = 5000) (DiCiccio and Efron, 1996).

STATISTICS: 2 × 2 TABLE INDEPENDENCE TESTS
To test for dependence of genotype, gender, and patient group
we used Barnard’s exact test, which is appropriate for low sam-
ple statistics compared with Chi-square test, and has better power
compared with Fisher’s exact test (Barnard, 1947).

STATISTICS: MULTIPLE COMPARISONS
Because we do large-scale mapping of biomarkers, we employ a
lenient approach to multiple comparisons correction at the first
level of analysis. This means that in the initial mapping of poten-
tial difference between the stable MCI and AD-converter groups,
we only perform a binomial correction for the number of signif-
icant channels in each biomarker (Poil et al., 2011). We do not
correct the p-values across different biomarkers. This approach is
appropriate since this mapping of potential difference is only used
to identify candidate biomarkers for the genetic search algorithm.

RESULTS
PATIENT GROUPS—AGE AND GENDER
Initially 86 subjects (Age: 68.7 [66.5:71.3] years, median [95%
confidence interval], age at first EEG, 58 males) were diagnosed
with mild cognitive impairment (MCI). After 415 ± [393:478]
days, 17 patients (9 males) had converted to Alzheimer’s dis-
ease. After 709 ± [537:779] days (1.9 years) a total of 25 patients
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(14 males) had converted to AD (Age: 69 ± [67:72] years), 39
subjects (28 males) remained MCI (Age: 67 ± [65:71] years),
9 subjects (6 males) were diagnosed with subjective complaints
(Age: 67 ± [46:73] years), and 13 patients (10 males) with
other disorders (Age: 70 ± [61:74] years) (including frontal lobe
and Vascular dementia). No significant difference was found
in age and gender between stable MCI and AD-converters
(Gender: Barnard’s test, p = 0.16; Age: permutation test, p =
0.49) (Table 1). We only focus on the patients diagnosed with AD,
and subjects remaining stable MCI. In the following we use the
last diagnosis of the subjects for the definition of the MCI-stable
and AD-converters groups.

MMSE RESULTS
The MMSE score of the MCI-stable group (28 ± [27:29]) was not
significantly different from the score from AD-converter group
(27 ± [26:28]) at the intake test (permutation test, p = 0.8). At
the follow up approximately 1 year later the stable MCI subjects
remained at a stable MMSE score of 28 ± [26:29], whereas the
MMSE score of the AD-converter group changed to 24 ± [22:24]
(permutation test, p = 0.0044), which is also lower than the sta-
ble MCI group’s MMSE scores (permutation test, p = 0.0002)
(Table 1).

APOE STATUS
We observed a significantly higher frequency of E4 allele vs. no
E4 allele in AD-converter vs. stable MCI (Barnard test, p < 0.01).
Only 38% of MCI-stable compared to 64% of AD-converter
group had more than one E4 allele (Table 2).

SINGLE-BIOMARKER LOGISTIC REGRESSION MODEL OF
AD-CONVERTER vs. MCI-STABLE
To show the principle of logistic regression modeling on a
single biomarker, we chose the beta peak frequency, because
this biomarker showed significantly lower values in MCI (MCI:
17.6 ± [16.8:18.2] Hz, n = 39) compared with the AD-converter
group (AD: 19.6 ± [18.1:21.0] Hz, n = 25) (p < 0.0005) in the
first measurement (Figure 3A), and also significantly lower values
in MCI in the second measurement (MCI: 16.9 ± [16.0:17.8]
Hz, n = 17; AD: 19.3 ± [18.6:20.6] Hz, n = 17, p < 0.005)
(frequency values are averages across the significant channels)
(Figure 3A).

We fitted a logistic regression model to the second EEG mea-
surement (n = 17 in both groups, Figure 3B). The model clas-
sified the second measurements with a sensitivity (SE) of 76%,
76% specificity (SP), 76% positive predictive value (PPV), 0.5

Table 2 | Overview of patient groups.

Patient Age MMSE MMSE Number of

group [years] 1st year 2nd year APOE E4

MCI-stable 67 ± [65:71] 28 ± [27:29] 28 ± [26:29] 15 out of 39

AD-convert 69 ± [67:72] 27 ± [26:28] 24 ± [22:24] 16 out of 25

Difference p = 0.49 p = 0.8 p = 0.0002 p < 0.01

(p-value)

Matthew correlation coefficient (MCC), and a positive likelihood
ratio (PLR) of 3.3. Next, we used this logistic model to retro-
spectively classify the first EEG measurement (Figure 3C). The
classification had a SE of 72%, 59% SP, 53% PPV, 0.3 MCC and a
PLR of 1.8; thus, as expected, a worse classification power (MCI
n = 39, AD n = 25) (Figure 3D).

MULTIPLE-BIOMARKER LOGISTIC REGRESSION MODEL OF
AD-CONVERTER vs. MCI-STABLE
By combining several biomarkers it may be possible to obtain
better classification power than the individual biomarkers alone
(Schoonenboom et al., 2004; Buscema et al., 2007; Lehmann
et al., 2007). However, it is not trivial which combinations of
biomarkers are optimal, because of the high number of possi-
ble combinations. Here, we employ a genetic search approach
and elastic net penalization to assists us in finding these optimal
combinations (see Methods and Materials section).

The best set of biomarkers identified by the genetic search was
(six biomarkers): Amplitude correlations with Cz in Beta (13–
30 Hz), Bandwidth of subject-specific Beta frequency, Peak width
of dominant beta peak, range of amplitude values in Beta (13–
30 Hz), Ratio between theta and alpha power, and alpha relative
power (normalized with 1–45 Hz broadband). The logistic regres-
sion training on this biomarker set using the second EEG data
yielded a SE of 100%, 94% SP, 94% PPV, 0.94 MCC, and PLR of
17 (n = 17 in both groups).

The retrospective testing on first-year data using the classifier
model trained on the second-year data gave a SE of 92%, 85% SP,
79% PPV, 0.75 MCC, and PLR of 6 (MCI-stable, n = 39; AD-
convert, n = 25) (Figures 3F,G; Table 3), which indicates that
even at this very early stage differences between AD-converters
and MCI-stable can be identified. However, since second-year
and first-year data from the same subjects may be strongly cor-
related we also performed a classification test using only subjects
that were not used for training the model (i.e., the subjects
without a second EEG recording). We obtained a good classi-
fication with a SE of 88%, 82% SP, 64% PPV, 0.64 MCC and
a PLR of 4.8 (MCI-stable, n = 22; AD-convert, n = 8), sug-
gesting the diagnostic index can generally be used for these
patient groups. Furthermore, we performed a half-split cross-
validation (1000 iterations), with a SE of 75%, 63% SP, 52%
PPV, 0.37 MCC, and a PLR of 2, an indication of the aver-
age outcome. As expected, the classification powers decrease;
however, this is at least partly explained by the lower n num-
ber. However, the combined classification is still much better
than prediction obtained on the individual biomarkers in the
set (Figures 3E, 4). The best single biomarker in the biomarker
set (based on sensitivity and specificity) was the peak width of
the dominant Beta peak, with a SE of 64%, 62% SP, 52% PPV,
0.24 MCC, and a PLR of 1.7 (MCI-stable, n = 22; AD-convert,
n = 8) (Table 3). The logistic regression fitting coefficients for
the combined solution were; −2.9 for Amplitude correlations
with Cz in Beta, 0.5 for bandwidth of subject specific Beta,
3.4 for Peak width of dominant beta peak, −0.6 for range of
amplitude values in Beta, −2.3 for ratio between theta and
alpha power, and −0.2 for alpha relative power. This means
that the peak width of the dominant beta peak had the greatest
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FIGURE 3 | Integration of multiple biomarkers using logistic regression

improves the prediction of Alzheimer’s disease at the MCI stage. (A) A
significant higher Beta peak frequency is observed in Alzheimer’s disease
converter group (AD) (red) compared with mild cognitive impairment stable
group (MCI) (blue), in both first (left) and second (right) year EEG recording.
(permutation test on median, binomial corrected, ∗∗p < 0.005, ∗∗∗p < 0.0005)
(B) The logistic model is fitted to the second-year EEG recording. (C) The
logistic model is used to predict outcome on the first year EEG recording.
Separation plot of AD vs. MCI. (D) Outcome evaluation of beta peak
frequency using five measures of classification power (warmer is better). SE,
Sensitivity; SP, Specificity; PPV, Positive predictive value; MCC, Matthews
Correlation Coefficient; AUC, area under the receiver operator curve. (E)

Outcome evaluation as in (C), but for the “optimal” biomarker set found

using genetic search. The first six columns are for classification of the
individual biomarkers separately. The last column is the combined
classification outcome. We clearly see that the combined outcome is better
than the classification using the individual biomarkers. 1, Peak width of
dominant beta peak; 2, range of amplitude values in Beta (13–30 Hz); 3,
Bandwidth of subject-specific Beta frequency; 4, Ratio between theta and
alpha power; 5, alpha relative power (normalized with 1–45 Hz broadband); 6,
Amplitude correlations with Cz in Beta (13–30 Hz); (C) Combined logistic
classification using the biomarkers 1, 2, 3, 4, 5, and 6. (F) Logistic curve for
combined classification based on first-year EEG. (G) Separation plot of MCI
vs. AD in first EEG recording using combined classification based on
second-year logistic regression coefficients. Note that the recordings used
for training in F are different from those used for testing in (G).

Table 3 | Overview of classification results [classification based on testing subjects that were not used for training the classifier (MCI-stable,

n = 22; AD-convert, n = 8)].

Model Sensitivity Specificity Positive predictive Matthew correlation Positive likelihood

(%) (%) value (%) coefficient ratio

Genetic search 6 biomarkers 88 82 64 0.64 4.8

Single best biomarker 64 62 52 0.24 1.7

Elastic-net 12 biomarkers 75 86 67 0.59 5.5

influence on the outcome, followed by amplitude correlations
with Cz.

Taken together, our results show that it is possible to obtain
a substantial synergistic effect from the integration of several
biomarkers; however, they also show that it is not trivial to iden-
tify which combination of biomarkers is most optimal. The major
issue with our genetic search is that from run to run we do
not obtain the same solution, because the algorithm finds local
maxima. We, therefore, employed an elastic net penalized logis-
tic regression algorithm. This algorithm uses a penalization of

the weights to optimize the set of biomarkers used for classifi-
cation. The classification outcome from this algorithm is worse
than genetic search optimized logistic regression, with a SE of
75%, 86% SP, 67% PPV, 0.59 MCC, and a PLR of 5.5 (MCI-stable,
n = 22; AD-convert, n = 8) (Table 3) based on training on the
second-year EEG and testing on the first-year recording of sub-
jects (the test subjects were not used for training). The elastic net
logistic regression combined 12 biomarkers (non-zero weights),
namely; the amplitude correlations from Cz in Alpha (8–13 Hz)
and Beta (13–30 Hz), the range of the generalized multifractal
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FIGURE 4 | Most biomarkers in the diagnostic index have differences

between the MCI-stable (MCI) and AD-converter (AD) groups, and only

two have longitudinal changes. For each biomarker, a separation plot is
shown for 1st EEG and 2nd EEG. The values are median across channels
with significant differences between the MCI-stable (MCI) and
AD-converter (AD) groups (Binomial corrected). Topographical plots are of
2nd EEG median value across subjects and channels in 6 regions; Frontal,
left/right temporal, Central, Parietal, and Occipital. Asterisk indicates
significant differences (permutation test on median, binomial corrected,
∗p < 0.05, ∗∗p < 0.005).

hurst exponent of the Delta (1–3 Hz) amplitude envelope, the
Beta frequency, the power ratio between Gamma (30–45 Hz)
and Delta (1–4 Hz), Alpha 1 (Individual Alpha frequency-4:
Individual Alpha frequency-2) and Alpha (8–13), Alpha 1 and
Beta (13–30 Hz), the spectral edge of the individualized beta-
frequency range, the peak width of the beta peak, the second beta
peak frequency, the stability of the Delta (1–3 Hz) frequency mea-
sured in windows of 5 s, and the Hjorth mobility parameter. The
outcome evaluation still shows room for improvement, e.g., by
including biomarkers from other modalities.

DISCUSSION
We addressed the challenge of predicting whether an MCI sub-
ject would convert to AD within 2 years. To this end, we explored
the added value of integrating multiple EEG biomarkers into a
diagnostic index using logistic regression in combination with
either a genetic search or elastic-net penalization for biomarker
selection. From an initial cohort of 86 subjects with mild cog-
nitive impairment, 25 converted to Alzheimer’s disease within 2
years. We showed how data mining of 177 EEG biomarkers could
be used to identify a set of biomarkers that form a diagnostic
index. The analysis was performed using the Neurophysiological
Biomarker Toolbox (NBT, http://www.nbtwiki.net/) (Hardstone
et al., 2012), which is specifically developed to support data min-
ing and integration of large sets of biomarkers. We found that

particularly biomarkers sensitive to changes in the beta frequency
(13–30 Hz) band were optimal for classifying the very early EEG
recordings of yet to be diagnosed AD patients.

CLASSIFICATION BASED DIAGNOSTICS
Previous studies have shown promise in using machine-learning
algorithms to classify between MCI and AD based on EEG record-
ings (Huang et al., 2000; Bennys et al., 2001; Prichep et al., 2006;
Buscema et al., 2007; Lehmann et al., 2007; Prichep, 2007; Rossini
et al., 2008). A sensitivity of 89% and specificity of 95% were,
e.g., found using the so-called IFAST model (Buscema et al., 2007;
Rossini et al., 2008). However, these studies were based on train-
ing and testing on the same data, which makes it more difficult
to judge the performance. Uniquely to the present study, we per-
formed classification training on the second EEG recording, and
retrospectively used this to perform prediction based on the first
EEG recording from subjects not used for the training. We note,
however, that the drawback of the present procedure is the low
number of patients in the smallest patient group (i.e., the eight
patients converting to AD) produced a fairly high error margin to
the classification estimates (12.5%).

OSCILLATIONS ARE INVOLVED IN COGNITION
Empirical and theoretical evidence suggest that oscillations pro-
vide important systems-level mechanisms for normal brain func-
tion (Engel and Singer, 2001; Buzsáki and Draguhn, 2004;
Axmacher et al., 2006; Klimesch et al., 2007; Palva and Palva,
2007, 2012; Lisman, 2010). For example, oscillations are involved
in memory encoding (Raghavachari et al., 2001; Jensen et al.,
2002), and are thought to provide a timing mechanism for spike-
time dependent plasticity (Engel and Fries, 2010). It, therefore,
seem plausible that if oscillations are abnormal in disorders such
as MCI and AD, then cognition is also affected. Apart from rel-
ative Alpha power and the theta/alpha power ratio, which may
reflect early changes toward the well-known slowing of the EEG
in AD (Bennys et al., 2001; Rossini et al., 2006), our optimal set of
biomarkers is derived from the Beta frequency band (13–30 Hz).

Beta-band changes have previously been observed in
Alzheimer’s disease, e.g., by a more anterior distribution (Huang
et al., 2000). The larger width of the beta peak and bandwidth
could potentially be linked with a less stable beta frequency,
and, therefore, also a less efficient working memory (Kopell
et al., 2011). Beta oscillations are believed to maintain the
current sensorimotor and cognitive state (Engel and Fries, 2010).
Activity in the beta-frequency range has also traditionally been
linked with motor function. Interestingly, it has been found
that motor performance is impaired in early-stage Alzheimer’s
disease but not in mild cognitive impairment (Sheridan et al.,
2003; Pettersson et al., 2005), which is a potential explanation
of the prominent role of beta-frequency changes in our data.
Motor function, e.g., gait control, is a higher cognitive function
requiring integration of several cognitive functions, as attention,
planning (Hausdorff et al., 2005; Scherder et al., 2007), albeit
unrelated to performance in memory tests (Hausdorff et al.,
2005). Hyperexcitability of the motor cortex has also been
observed in AD (Di Lazzaro et al., 2004), which our finding of
higher beta frequency also suggests.

Frontiers in Aging Neuroscience www.frontiersin.org October 2013 | Volume 5 | Article 58 | 35

http://www.nbtwiki.net/
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Poil et al. Integrative biomarkers of Alzheimer’s disease

EEG BIOMARKERS AS POTENTIAL INDICATORS OF INFLAMMATION
The standard hypothesis of Alzheimer’s disease is the amyloid
cascade hypothesis stating that the cause of Alzheimer’s should
be found in the build up of amyloid and tangles (Hardy and
Selkoe, 2002; Huang and Mucke, 2012). It has been hypoth-
esized that Alzheimer’s disease is initiated by a micro injury,
presumable a vascular event, in the brain with subsequent acti-
vation of inflammatory responses that further leads to initiation
of the amyloid deposition cycle (De la Torre, 2004; Herrup,
2010).

The theta/(lower alpha) power ratio has previously been asso-
ciated with vascular damage in AD (Moretti et al., 2007b), and
the delta (2–4 Hz) power has been associated with inflammation
(Babiloni et al., 2009). EEG power and frequency in general has
also been correlated with cerebral perfusion (O’Gorman et al.,
2013), which is known to be reduced in Alzheimer’s disease (De la
Torre, 1999; Kogure et al., 2000; Murray et al., 2011). If we could
detect early-stage changes using EEG, we would have a power-
ful tool that could detect Alzheimer’s disease at a point where
a possible therapy would be most efficient. Mouse models, e.g.,
show that Aβ-42 modifying therapy has limited effect after neu-
rodegeneration has begun (Dubois et al., 2007; Sperling et al.,
2011). Thus, meaning that diagnosing a patient based on neu-
rodegeneration and cognitive decline may already be too late for
a good treatment outcome because the brain damage has already
occurred.

It has also been shown that the build-up of Aβ42 influences
synaptic transmission, and thus, potentially also give rise to fur-
ther effects in the EEG (Palop and Mucke, 2009; Verret et al.,
2012). Further hippocampal injections of amyloid β in rats have
been shown to induce impaired memory performance combined
with reduced hippocampal theta oscillations and less activity in
GABAergic neurons (GABA, gamma-aminobutyric acid) (Villette
et al., 2010). A recent suggestion for a potential improvement
of Alzheimer’s disease symptoms is transcranial direct current
stimulation (tDCS) (Hansen, 2012). This method increased theta
and alpha oscillations together with improved working mem-
ory performance (Zaehle et al., 2010). Interestingly, it has been
suggested these effects may be caused by altered GABA concen-
tration within the stimulated cortex, and potentially by an adjust-
ment of the excitatory/inhibitory balance, which is disturbed in
Alzheimer’s disease (Di Lazzaro et al., 2004; Rossini et al., 2007;
Stagg et al., 2009). This balance may be directly linked to EEG
biomarkers that have been shown sensitive to Alzheimer’s disease
(Montez et al., 2009; Poil et al., 2011, 2012). It thus seems that

EEG biomarkers may be sensitive to underlying pathophysiology
of AD.

OUTLOOK
We here showed that exploratory data mining and integration
of multiple biomarkers might yield many exciting results on the
large databases of neuroscience data build up over the years.
These studies may identify hidden structures (see schematic
Figure 1C) and be beneficial for both pre-clinical and clinical
research. With recent developments in automatic cleaning of
EEG this analysis may potentially be performed immediately after
the recording (Nolan et al., 2010; Mognon et al., 2011). This
together with the non-invasive character of EEG could make a
diagnostic index using EEG biomarkers a powerful tool to sup-
port the early-stage clinical assessment. EEG biomarkers, apart
from being non-invasive and relative inexpensive, have the advan-
tage of monitoring brain activity in real time, and thus potentially
able to identify tiny changes in ongoing cognition. However, we
believe the best diagnostic/prognostic performance is achieved
if EEG biomarkers are combined with information from other
modalities. Future studies should specifically study how the syn-
ergistic information of integrative biomarkers can be improved
further by the incorporation of different classes of biomark-
ers, which could range from cognitive markers (Tabert et al.,
2006), functional connectivity markers (Stam et al., 2006, 2007),
coherence, synchronization, and topographical location mark-
ers (Huang et al., 2000; Stam et al., 2005; Rossini et al., 2006)
to questionnaire data providing quantitative data on the mental
state of the patients during the resting-state EEG recording (Diaz
et al., 2013). Improvement in algorithms used for pre-selecting
biomarkers could, e.g., be based on measures of interrelatedness
between biomarkers or taking scalp topographies into account
as opposed to the averaged channel biomarker values used here.
We believe the Neurophysiological Biomarker toolbox provides
a promising framework for these studies. This could give rise to
a better integrative understanding of biomarkers involved with
Alzheimer’s disease and brain disorders in general (Searls, 2005;
Dubois et al., 2007; Schneider, 2010).
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The neurophysiological changes associated with Alzheimer’s Disease (AD) and Mild
Cognitive Impairment (MCI) include an increase in low frequency activity, as measured
with electroencephalography or magnetoencephalography (MEG). A relevant property of
spectral measures is the alpha peak, which corresponds to the dominant alpha rhythm.
Here we studied the spatial distribution of MEG resting state alpha peak frequency and
amplitude values in a sample of 27 MCI patients and 24 age-matched healthy controls.
Power spectra were reconstructed in source space with linearly constrained minimum
variance beamformer. Then, 88 Regions of Interest (ROIs) were defined and an alpha peak
per ROI and subject was identified. Statistical analyses were performed at every ROI,
accounting for age, sex and educational level. Peak frequency was significantly decreased
(p < 0.05) in MCIs in many posterior ROIs. The average peak frequency over all ROIs
was 9.68 ± 0.71 Hz for controls and 9.05 ± 0.90 Hz for MCIs and the average normalized
amplitude was (2.57 ± 0.59)·10−2 for controls and (2.70 ± 0.49)·10−2 for MCIs. Age and
gender were also found to play a role in the alpha peak, since its frequency was higher
in females than in males in posterior ROIs and correlated negatively with age in frontal
ROIs. Furthermore, we examined the dependence of peak parameters with hippocampal
volume, which is a commonly used marker of early structural AD-related damage. Peak
frequency was positively correlated with hippocampal volume in many posterior ROIs.
Overall, these findings indicate a pathological alpha slowing in MCI.

Keywords: mild cognitive impairment, magnetoencephalography, alpha peak, slowing, hippocampal volume

INTRODUCTION
Mild Cognitive Impairment (MCI) is often considered a prodro-
mal stage of Alzheimer’s Disease (AD). This is due to the fact that
some studies have found that around 10–15% of MCI patients
annually progress to AD while it only occurs at a 1–4% rate for the
healthy aged population (Petersen, 2001; Petersen and Negash,
2008). MCI patients show objective cognitive alterations but not
severe enough to meet the criteria for dementia. In the past years,
a great interest has been drawn to MCI, since this condition might
help to understand the neurological basis of the “predementia”
stages of AD and to maximize the effect of the current available
treatments.

Particularly, electrophysiological rhythms have been found rel-
evant in pathological aging. Electroencephalographic (EEG) and
magnetoencephalographic (MEG) studies have shown a slowing
of the oscillatory rhythms in AD (Berendse et al., 2000; Huang
et al., 2000). MCI patients exhibit a reduced mean frequency score

in MEG power spectra (Fernández et al., 2006), indicating that
the AD-related oscillatory slowing may have its onset in the pre-
dementia stage. Additionally, specific spectral profiles have been
considered as pathological biomarkers. For example, an increased
delta and a decreased alpha1 power were found to be related to
a lower cortical gray matter volume (Babiloni et al., 2013). It has
also been reported that changes in the high alpha/low alpha ratio
or in the theta/gamma ratio are associated with the cognitive sta-
tus, conversion to AD, hippocampal and amygdalar atrophy or
gray matter changes (Moretti et al., 2009a, 2011, 2012).

An essential property of the electrophysiological spectra is the
dominant alpha rhythm or alpha peak. Alpha oscillations have
been measured over wide regions of the exposed human cortex
(Jasper and Penfield, 1949). Sensor-level EEG studies have found
that their frequency rises from childhood to adolescence or young
adulthood, and then decreases slowly with age (Chiang et al.,
2011). Abnormally low alpha peak frequencies can be found in
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demented patients (Samson-Dollfus et al., 1997). Some studies
of MCI have used the posterior dominant frequency to perform
spectral analysis. For instance, (Moretti et al., 2009a, 2011, 2012)
used the individual alpha peak to define individual frequency
ranges for theta, alpha, and beta bands. Babiloni et al. (2009,
2013) considered the alpha peak frequency as a covariate when
performing statistical analysis. Nevertheless, although utilized as
an intermediate step in the analysis pipeline of many studies, the
importance of alpha peak amplitude and frequency values per
se to define neurophysiological characteristics in MCI has been
scarcely investigated.

In the present study we investigated the spatial distribution of
resting state alpha peak frequency and amplitude over the whole
brain for MCI patients and age-matched healthy controls. To this
aim, beamforming was used to estimate MEG spectral param-
eters for the alpha peak (frequency and amplitude) in source
space. Also, we analyzed how these parameters were modulated
by age and sex for each ROI. Finally, we examined the rela-
tion between peak parameters and hippocampal volume, which
is commonly used as a structural biomarker of AD (Dubois et al.,
2007).

MATERIALS AND METHODS
SUBJECTS
27 patients with a diagnosis of amnestic-MCI and 24 controls
were included in this study. Table 1 summarizes their char-
acteristics. MCI patients were recruited at the Geriatric and
Neurological Units of the “Hospital Universitario San Carlos,”
Madrid, Spain, where they were diagnosed by clinical experts. As
introduced in Grundman et al. (2004), inclusion criteria for MCI
comprised: (1) memory complaint confirmed by an informant,
(2) normal cognitive function, (3) no or minimal impairment
in activities of daily living, (4) abnormal memory function,
(5) not being sufficiently impaired to meet the criteria for
dementia.

Additionally, all subjects were in good health and had no his-
tory of psychiatric or neurological disorders. They underwent an
MRI brain scan to rule out infection, infarction or focal lesions.
Subjects meeting any of the following criteria were excluded from
the study: Hachinski score (Rosen et al., 1980) higher than 4,
Geriatric Depression Scale score (Yesavage et al., 1982) higher
than 14, alcoholism, chronic use of anxiolytics, neuroleptics,
narcotics, anticonvulsants, or sedative hypnotics. Additionally,
MCI patients underwent an exam to rule out possible causes of

cognitive decline such as B12 vitamin deficit, thyroid problems,
syphilis, or HIV. Drugs that could affect MEG measurements
such as cholinesterase inhibitors were removed 48 h before the
MEG scan. The investigation was approved by the local Ethics
Committee.

MEG RECORDINGS
Three-minute MEG resting state recordings were acquired at
the Center for Biomedical Technology (Madrid, Spain) with an
Elekta Vectorview system containing 306 sensors (102 magne-
tometers and 204 planar gradiometers), inside a magnetically
shielded room (Vacuumschmelze GmbH, Hanau, Germany).
During the measurements, subjects sat with their eyes closed
and were instructed to remain calm and move as little as pos-
sible. Each subject’s head was digitized in 3D with a Fastrak
Polhemus system and four coils were attached to the forehead
and mastoids, so that the head position with respect to the
MEG helmet was continuously determined. Activity in elec-
trooculogram channels was also recorded to keep track of ocular
artifacts.

Signals were sampled at 1000 Hz with an online filter of
bandwidth 0.1–300 Hz. Maxfilter software (version 2.2., Elekta
Neuromag) was used to remove external noise with the temporal
extension of the signal space separation method with movement
compensation (Taulu and Simola, 2006).

MRI ACQUISITION
3D T1 weighted anatomical brain MRI scans were collected
with a General Electric 1.5 T magnetic resonance scanner, using
a high-resolution antenna and a homogenization PURE filter
[Fast Spoiled Gradient Echo (FSPGR) sequence with parame-
ters: TR/TE/TI = 11.2/4.2/450 ms; flip angle 12◦; 1 mm slice
thickness, a 256 × 256 matrix and FOV 25 cm]. For volumetric
analysis, Freesurfer software package (version 5.1.0) and its auto-
mated sub-cortical segmentation tool (Fischl et al., 2002) were
employed. For the source analysis, the reference system of the T1
volumes was transformed manually using 3 fiducial points and
headshape, until a good match between MEG and T1 coordinates
was reached.

SOURCE ANALYSIS
Data analysis was done using both FieldTrip software (Oostenveld
et al., 2011) and in-house scripts.

Table 1 | Subjects characteristics.

Subjects Age (years) Gender (M/F) Educational level MMSE Normalized hippocampal volume

Left Right

Control 24 71.8 ± 3.6 6/18 3.8 ± 1.3 29.3 ± 0.9 (2.62 ± 0.37)·10−3 (2.59 ± 0.28)·10−3

MCI 27 73.9 ± 6.3 14/13 2.7 ± 1.3 27.5 ± 2.2 (2.17 ± 0.41)·10−3 (2.08 ± 0.49)·10−3

Data are given as mean ± standard deviation.

M = males, F = females. Educational level was grouped into five levels: 1: Illiterate, 2: Primary studies, 3: Elemental studies, 4: High school studies, 5: University

studies.

MMSE = Mini Mental State Examination score. Hippocampal volume was normalized with the overall intracranial volume.
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MEG preprocessing
For the definition of artifact-free epochs, the continuous MEG
resting state recording was scanned in non-overlapping seg-
ments of 4 s. Segments with ocular, jump, or muscular arti-
facts were identified and discarded. Per subject, a minimum
of 20 artifact-free segments (80 s) remained [controls: (25.7 ±
4.8), MCI: (24.6 ± 6.6)]. After filtering of the continuous orig-
inal data using a finite impulse response filter of order 1000
and a bandwidth of 1–30 Hz, the artifact-free segments of the
data identified in the previous step were extracted for further
analysis.

Headmodels
First, a regular grid of 2459 points with 1 cm spacing was cre-
ated in the template Montreal Neurological Institute (MNI) brain.
This set of points was transformed to subject’s space using a lin-
ear normalization between the native T1 image and a standard
T1 in MNI space with 2 mm resolution. This grid constituted the
source locations. The forward model was solved with a realistic
single-shell model (Nolte, 2003).

Beamforming
Source reconstruction was performed with Linearly Constrained
Minimum Variance beamformer (Van Veen et al., 1997). For
each subject, the covariance matrix was averaged over all trials
to compute the spatial filter’s coefficients, and then these coef-
ficients were applied to individual trials, obtaining a time series
per segment and source location. This reconstruction was per-
formed for magnetometers and gradiometers separately, yielding
two different source estimates per subject.

SPECTRAL ANALYSIS
Power spectra were obtained from the time series via a multita-
per method with discrete prolate spheroidal sequences as tapers
and 1 Hz smoothing for frequencies between 2 and 30 Hz, with a
0.25 Hz step. These spectra were averaged over trials and normal-
ized with the sum of the spectral power in the range (2–30) Hz.
Then, an average power spectrum per Region of Interest (ROI)
and subject was obtained. Eighty-eight ROIs were used in this
study and they were defined in MNI space using the Harvard-
Oxford probabilistic atlas (Desikan et al., 2006), as implemented
in the fMRIb Software Library (FSL) (Jenkinson et al., 2012).
Thirty-seven cortical and 7 subcortical ROIs per hemisphere
were included (merging subdivisions within gyri in the Harvard-
Oxford atlas).

Then, to extract alpha peak parameters, experimental spectra
were fitted with a non-linear least-square procedure to:

log(P(f )) = B − C · log(f ) + A · exp

(
− (f − fp

)2

�2

)

where A,B,C, �, and fp are adjustable parameters and a wide
range (4–13) Hz is used for the fitting. Such a Gaussian peak
fit with power-law background has been proven useful for alpha
rhythm detection in EEG (Chiang et al., 2008; Lodder and van
Putten, 2011).

With this procedure, a peak per ROI was identified sep-
arately for the reconstructions based on magnetometers and
gradiometers. Then, magnetometer and gradiometer data were
combined. Thus, the final peak amplitude and frequency per ROI
and subject was calculated by averaging the peak values obtained
for both types of sensors. In order to optimize the reliability of
the alpha peak estimation, two criteria were considered: Peaks
with (1) high inter-trial amplitude variability for any sensor type
or (2) a frequency difference between the magnetometer and the
gradiometer fit bigger than 1 Hz, were considered spurious and
removed from the subsequent statistical analysis.

STATISTICAL ANALYSIS
Peak amplitudes and frequencies were compared with univari-
ate ANOVA tests, separately for each ROI. Shapiro-Wilk and
Levene tests were used to ensure normality of the data and equal
variances across groups. For the peak amplitude, the transforma-
tion x → log(x/(1 − x)) was applied prior to statistical analysis
to obtain values following a normal distribution. A four-way
ANOVA analysis was performed considering diagnosis, age, sex,
and educational level as factors to investigate differences between
controls and MCIs and the influence of age and sex on the alpha
peak. Finally, we examined whether peak parameters depend on
hippocampal volume (which was normalized with the overall
intracranial volume). For that, we computed the Pearson cor-
relation coefficient between peak amplitude or frequency and
hippocampal volume across all subjects, for every ROI separately.
To establish the statistical significance of these correlations, a
four-way ANOVA test with hippocampal volume, age, sex, and
educational level as factors was used, taking all subjects (Control
and MCI) as a single group.

The p-values of all ANOVA tests were corrected for multiple
comparisons with a procedure based on clustering and permu-
tations, as introduced by Maris and Oostenveld (2007). For that,
spatially adjacent ROIs with p < 0.05 were first grouped into clus-
ters. Then, the obtained peak values (frequency or amplitude)
were 2000 times randomly assigned to the original groups. The
sum of F-values over each cluster in the original dataset was com-
pared with the same measure in the randomized data. For each
cluster, the proportion of randomizations with F-values higher
than the ones in the original data corresponds to the final p-value.

RESULTS
PEAK FITTING
Peaks were successfully identified for most ROIs and subjects,
especially in posterior and temporal ROIs. Overall, the peak was
harder to find in anterior areas of the brain, since for around
10–15% of the subjects the criteria for robustness introduced
before were not fulfilled in frontal ROIs. On the whole, a peak
was fit in 80 ± 14 ROIs (given as mean ± std) for the control
group and in 85 ± 5 ROIs for the MCI group. For the following
ROIs, less than 85% of the subjects showed a robust peak: right
paracingulate gyrus, right frontal operculum cortex, right inferior
and middle frontal gyri, both superior frontal gyri, both sup-
plementary motor cortices and right pallidum. These ROIs were
not considered for statistical analysis. The average peak frequency
over all ROIs was 9.68 ± 0.71 Hz for controls and 9.05 ± 0.90 Hz
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FIGURE 1 | Peak distribution in controls and MCIs. Peak (A) frequency and
(B) amplitude grand averages for controls and MCIs. Clusters with significant
differences between controls and MCIs (p < 0.05) are enclosed with black

lines and scattered with black crosses. (C) Represents a scatter plot of the peak
parameters (frequency and amplitude) for every region and subject. Frequency
and amplitude histograms are projected into the y and x axis respectively.

FIGURE 2 | Influence of age and sex on peak frequency in controls and

MCIs. (A) Peak frequency difference of grand averages: females—males. (B)

Correlation coefficient between age and peak frequency. Clusters with
significant effect of age or sex upon peak frequencies (p < 0.05) are enclosed

with black lines and scattered with black crosses. Additionally, the p-value
specifies the transparency of the plotted intensities: a region with p-value of
0 shows a full opaque color, whereas a region with p-value of 1 will be
transparent.

for MCIs and the average normalized amplitude was (2.57 ±
0.59)·10−2 for controls and (2.70 ± 0.49)·10−2 for MCIs.

CONTROL vs. MCI
Both groups presented a similar spatial distribution of peak
parameters, with higher amplitude and frequency in posterior
ROIs, as shown in Figure 1. However, peak frequencies were
higher in controls than in MCIs, especially over parietal and tem-
poral ROIs, where differences were statistically significant (p <

0.05). Amplitudes were similar in controls and MCIs, although
values tended to be higher in MCIs, but this was significant only
for six temporal and medial ROIs. As amplitude and frequency
values are usually inversely related in electrophysiological power
spectra, the amplitude increase in MCIs could be just a conse-
quence of the frequency decrease. To investigate this effect, ampli-
tude values were plotted as a function of frequency (Figure 1C).
For controls, amplitudes were higher within the 9–11 Hz fre-
quency range, while for MCIs this range seemed to be broader,
with high magnitude alpha peaks from 7 to 11 Hz. On the

whole, this leads to the idea that alpha peak frequency is reduced
in MCI.

AGE AND SEX INFLUENCE
Sex and age did not exert a significant influence on peak ampli-
tude, while significant effects were found for the peak frequency.
Figure 2 displays sex differences and age correlations for peak
frequency in Controls and MCIs separately. Peak frequency was
higher for females than for males both in controls and MCIs. This
trend was present over the whole brain, although only statisti-
cally significant (p < 0.05) over some posterior and right frontal
ROIs. Additionally, peak frequency was found to correlate neg-
atively with age. This correlation was strongest in frontal ROIs,
where a significant effect (p < 0.05) was found.

HIPPOCAMPAL VOLUME
To further assess whether differences in peak parameters could
be considered as a pathological sign, the dependence of peak
amplitude and frequency values with hippocampal volume was
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FIGURE 3 | Peak frequency and amplitude correlations with

hippocampal volume. The distribution of correlation coefficient between
peak (A) frequency and (B) amplitude with hippocampal volume (normalized
with intracranial volume) for all subjects (Controls and MCIs) is shown.
Clusters with significant effect of hippocampal volume (p < 0.05) are marked

as in Figure 2. As an example, scatter plots of the average peak frequency
and amplitude over posterior ROIs as a function of hippocampal volume are
displayed in the right side. The included ROIs are plotted in green in the
upper right side of the figure. Controls are represented as blue circles and
MCIs as red crosses.

examined. Results are illustrated in Figure 3. Peak frequency
correlated positively with hippocampal volume, reaching cor-
relation values up to 0.6, which denote a strong association
between both measures. This trend was significant (p < 0.05)
over most of the postrolandic ROIs of the brain and implies
that a slowing in the main alpha rhythm is related with a
greater atrophy in the medial temporal lobe. The opposite effect
was found for the peak amplitude, which correlated negatively
with hippocampal volume over the whole brain, especially over
occipital and frontal ROIs, where the trend was significant
(p < 0.05).

DISCUSSION
In this paper the alpha peak parameters (frequency and ampli-
tude) were investigated in a sample of MCI patients and controls.
Differences between both groups were examined, as well as the
influence of age and sex, and the correlation between peak param-
eters and hippocampal volume. To attain such goal, a novel
method was introduced, that combined beamforming for recon-
struction of the power spectra in the source space, and a fitting
algorithm that has been successfully used for peak identification
with scalp EEG measures in sensor space (Chiang et al., 2011;
Lodder and van Putten, 2011).

The alpha peak was robustly identified in most regions and
subjects. This is not the first attempt to assess the alpha peak
spatial distribution of frequency and amplitude values in resting
state, since clusters of alpha peaks in EEG recordings within a
large sample of healthy population have been analyzed (Chiang
et al., 2011). However, in the present study the MEG source space
analysis allows a better understanding of the spatial distribu-
tion of this dominant alpha rhythm. Most studies of pathological
aging have only focused on the posterior alpha peak (Osipova
et al., 2006). Here we intentionally decided to consider sources of
alpha rhythm other than the posterior ones, since alpha rhythms
have been detected over wide regions of the brain [for a review,
see Nunez et al. (2001)].

One of the main findings of our study is that the alpha rhythm
of MCIs is slower when compared with a control population,
especially over posterior regions. This is not surprising, since
abnormally low alpha peak frequencies in AD have already been
described (Passero et al., 1995). In the MCI literature less atten-
tion has been drawn to the alpha peak, but a reduced mean
frequency score has been reported (Fernández et al., 2006). To
gain further insight into the meaning of these peak alterations,
their relationship with the hippocampal volume was considered.
In fact, atrophy in medial temporal structures such as the hip-
pocampus is a pathological marker of AD (Dubois et al., 2007;
Prestia et al., 2013). Some studies have related a lower hippocam-
pal volume to a higher delta and theta dipole density in AD
(Fernández et al., 2003), lower power in the 8–10.5 Hz range
(Babiloni et al., 2009), and an increase in the alpha3/alpha2
ratio (Moretti et al., 2009b). Our results show that hippocampal
volumes correlated positively with peak frequencies in temporo-
parieto-occipital regions of the brain and negatively with peak
amplitude in occipital and frontal regions. This contributes to the
idea that the peak frequency slowing is associated with a degen-
erative process, evolving in parallel with the loss of hippocampal
volume. Two different hypotheses have been introduced over the
past years to explain the increased low frequency power in AD and
MCI. It could be explained through either (1) a slowing down or
(2) a redistribution of the oscillatory sources in the theta-alpha
frequency range (Osipova et al., 2005, 2006). This study supports
the first hypothesis, although bigger samples and an analysis of
the possible spatial shift of the sources would be needed to make
stronger statements and investigate the second hypothesis.

The exact physiological origin of alpha rhythm remains
unclear. Some studies indicate a prominent role of the thala-
mus (Hughes and Crunelli, 2005; Lőrincz et al., 2009; Bollimunta
et al., 2011), while others point out the existence of cortical
generators (Flint and Connors, 1996; Bollimunta et al., 2008).
With a thalamo-cortical model of EEG generation, (Hindriks and
van Putten, 2013) established that the resonance properties of
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cortico-thalamo-cortical, intra-cortical, and feedforward circuits
determine alpha responses. They found that both a decreased fir-
ing of excitatory neuronal populations and an increased firing rate
in inhibitory neuronal populations related to a decrease in alpha
frequency. This modulation was particularly intense in the intra-
cortical circuit: a decreased delay in this circuit produced a strong
frequency slowing. Moreover, a decrease in the number of active
synapses in thalamic nuclei could also explain an alpha power
shift toward lower frequencies, as proved in a recent study with
a thalamico-cortical-thalamic neural mass model (Bhattacharya
et al., 2011). This model showed that the alpha frequency shift
is especially sensitive to damage in inhibitory interneurons in the
thalamus. Within this theory, the MCI alpha slowing found in this
study would suggest that a synaptic damage is already present in
the MCI stage. This in turn could be related with amyloid β, since
its deposition has been shown to contribute to synaptic loss in AD
(Reddy and Beal, 2008; Bate and Williams, 2011).

Additionally, the peak frequency is not determined exclusively
by the pathology, but also depends on other factors like age or
sex. In fact, we found a frequency decrease with age, and higher
frequency values in females than in males. Such trends have been
previously found in studies with large healthy samples (Chiang
et al., 2011). In our study, we report that this trend is maintained
in MCI patients. Most studies of sex differences in the alpha band
have focused on childhood and young age, with mixed outcomes,
some of them finding higher frequencies and earlier maturation
in girls than boys (Petersén and Eeg-Olofsson, 2008). Our results
also show higher frequencies in females than in males, although
within a completely different age profile. Dustman et al. (1993)
found that a slowing of alpha rhythms and an increase in delta,
theta and beta activity are common age-associated changes in
EEG spectra. This means that the alpha slowing is normal in
healthy aging, and suggests that the MCI disease speeds up the
natural aging process.

The methodological procedure followed here enabled the
examination of amplitude and frequency shifts of the alpha peak.
It combined beamforming of MEG resting state data, alpha peak
fitting and ANOVA tests for statistical analysis, corrected for
multiple comparisons with a procedure including clustering and
permutations. Although it was tested with a rather small sample
of subjects, it revealed a slowing of the alpha oscillatory sources in
MCI and established that age, sex and hippocampal volume affect
peak amplitude and frequency. However, larger samples would be
needed to confirm these effects and to evaluate others, such as an
interaction between age, sex, or educational level. Additionally,
longitudinal follow-up studies could provide insight into the evo-
lution of the slowing process and the onset of the AD-related
pathology.

CONCLUSION
In conclusion, we studied the spatial distribution of the alpha
peak frequency and amplitude in a sample of controls and
MCI patients using MEG resting state spectra in source space.
Variations across subjects were found, even at a healthy stage,
since peak frequency depended upon age and sex. The alpha
peak was altered in the MCI sample when compared to controls:
MCIs presented lower peak frequencies. This slowing of the alpha

oscillatory sources in MCI could be attributed to an impaired
thalamico-cortical circuit or a synaptic loss in thalamic popu-
lations. Furthermore, the peak frequency progression to lower
frequencies correlated with the degree of hippocampal atrophy,
highlighting its pathological meaning.
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Previous neuroscientific findings have linked Alzheimer’s Disease (AD) with less
efficient information processing and brain network disorganization. However, pathological
alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive
Impairment (aMCI) remain largely unknown. The present study aimed at comparing
patterns of the detection of functional disorganization in MCI relative to Mild Dementia
(MD). Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild
AD patients who underwent electroencephalographic (EEG) data acquisition during a
resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet
Transform (ODWT), and directional brain network analysis were applied on the EEG data.
This computational model was performed for networks that have the same number of
edges (N = 500, 600, 700, 800 edges) across all participants and groups (fixed density
values). All groups exhibited a small-world (SW) brain architecture. However, we found a
significant reduction in the SW brain architecture in both aMCI and MD patients relative to
the group of Healthy controls. This functional disorganization was also correlated with the
participant’s generic cognitive status. The deterioration of the network’s organization was
caused mainly by deficient local information processing as quantified by the mean cluster
coefficient value. Functional hubs were identified through the normalized betweenness
centrality metric. Analysis of the local characteristics showed relative hub preservation
even with statistically significant reduced strength. Compensatory phenomena were also
evident through the formation of additional hubs on left frontal and parietal regions. Our
results indicate a declined functional network organization even during the prodromal
phase. Degeneration is evident even in the preclinical phase and coexists with transient
network reorganization due to compensation.

Keywords: Alzheimer Disease, amnestic Mild Cognitive Impairment, electroencephalography, graph analysis,

Relative Wavelet Entropy

INTRODUCTION
Alzheimer’s Disease (AD) is regarded as a progressive, neu-
rodegenerative disease with a relatively long pre-morbid asymp-
tomatic period (Caselli et al., 2004). Although, no cognitive
symptoms may be obvious this pre-morbid period is character-
ized by abnormal protein (amyloid-β/Aβ and hyperphosphory-
lated) production which results gradually in the formation of
neurofibrillary tangles and neuritic plaques (Buerger et al., 2006).
These alterations are particularly evident in brain areas crucial for
the functional co-operation of distant brain regions (Delbeuck
et al., 2003; Drzezga et al., 2011). Once clinical detection of
AD is possible, based mostly on cognitive and daily function-
ing assessment, brain atrophy and thus functional impairments

can be hardly inverted (Citron, 2010). It is therefore reasonable
that research on Alzheimer’s has focused on the reliable detection
of early AD signs that precede functional and cognitive impair-
ment (Sperling et al., 2011). As a result of this research effort,
the term Mild Cognitive Impairment (MCI) (Petersen et al., 1999;
Albert et al., 2011) was introduced to define a transition state
between healthy aging and the clinical onset of dementia. It has
been proposed that approximately 7% of people diagnosed with
MCI eventually progress to Alzheimer’s dementia (Mitchell and
Shiri-Feshki, 2009). MCI is generally defined as memory impair-
ment, despite normal daily functioning (Petersen, 2004). It has
also been suggested that MCI is not a unitary disorder, but it
can be further divided into various subtypes, indicating mostly
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the etiology: vascular, metabolic, amnestic, etc. (Petersen, 2004).
Among them, the amnestic subtype it is considered to be a pre-
clinical stage of AD (Dubois and Albert, 2004; Petersen, 2004; Vos
et al., 2013).

The purpose of the present study is to investigate brain func-
tional alterations that may characterize the amnesic subtype of
MCI in order to aid to the early diagnosis of AD. Functional anal-
ysis can be performed by employing neurophysiological features
derived from electroencephalographic (EEG) rhythmic activity
(Moretti et al., 2011, 2012, 2013). During the last decade, a
new category of metrics, based on the topological architecture of
brain connectivity, has been introduced to estimate the organi-
zation characteristics of brain networks (Bassett and Bullmore,
2006). Connectomics may provide valuable information regard-
ing the quantification of the network properties (Van Dijk et al.,
2010). They employ either structural or functional connectiv-
ity to construct brain networks. Network properties are then
computed through graph theory analysis (Stam and Reijneveld,
2007). A major notion of graph theory is that of small-world,
which describes how efficient and cost-effective the network is.
Computation of the small-world value considers both the quality
of local information processing and the co-operation of distant
brain regions. Therefore, brain networks with large small-world
values are densely locally clustered, and at the same time employ
the optimal number of distant connections to process informa-
tion more efficiently and with lower information cost (Bassett and
Bullmore, 2006; Bullmore and Sporns, 2009).

During the last few years, several research efforts have pro-
vided evidence of loss of “small-worldness” and reorganization
of the brain networks due to neurodegeneration (Stam et al.,
2009; Sanz-Arigita et al., 2010; Zhao et al., 2012). The majority
of these studies have compared healthy adult participants with
dementia patients. To the best of our knowledge, only a cou-
ple of studies so far have analyzed small-world networks in MCI
patients using magnetoencephalography (MEG) (Buldú et al.,
2011) and functional MRI (Seo et al., 2013), respectively. Both
studies found abnormally increased and decreased synchroniza-
tion in (pre)frontal and parieto-occipital regions respectively in
the MCI patients compared to the healthy adults. More specifi-
cally, MCI patients showed an abnormal synchronization increase
in comparison to healthy controls during the execution of mem-
ory tasks. It was associated with high energy expenditure which
may be attributed to the existence of compensatory mechanisms
recruited by MCI patients toward the successful execution of cog-
nitive functioning (Buldú et al., 2011). Another study reported
loss of functional integration as quantified by the characteristic
path length (Seo et al., 2013). However, findings are quite con-
tradictory among studies, since some of them report either no
significant changes (Seo et al., 2013) or increased characteris-
tic path lengths for the patients suffering from Alzheimer’s (Yao
et al., 2010; Zhao et al., 2012). Seo et al. reported diminished
information transfer among brain regions for both MCI and MD
participants due to functional impairment of the hubs, which are
network nodes connecting local networks and facilitating global
information processing (Seo et al., 2013).

Binary brain networks are usually constructed by applying a
threshold to the metric quantifying the synchronization between

two network nodes. A pair of nodes is connected with a network
edge when the synchronization degree between these two nodes
exceeds the pre-defined threshold. The ratio of the number of
network connections (edges) to the number of possible edges is
defined as the network’s density. The threshold selection is impor-
tant for the network formation. Application of a fixed threshold
value is vulnerable to inter-participant variability, thereby result-
ing in networks with different density values. The latter influences
the network properties (characteristic path length, mean cluster
coefficient) and computation of small-worldness cannot be easily
performed. Aiming to face this methodological limitation, recent
studies adopted the adaptive threshold selection for each partic-
ipant in order to produce brain networks of fixed density. So, all
graphs may have the same number of edges; in this way, group
comparison is facilitated. However, there is not yet a gold standard
for selecting a fixed density-based threshold. Therefore, the full
network analysis is repeated over a density range. Adopting the
aforementioned methodological approach, a more recent study
recruited a large number of participants (94 controls, 183 MCI
patients and 216 MD patients) employing fluorodeoxyglucose
positron emission tomography (FDG-PET) (Seo et al., 2013). In
addition to the global network analysis through the small-world
property, this research investigated the vulnerability of the net-
work hubs. The results showed that both MCI and AD groups
had lower local clustering compared to healthy controls. Both
pathological groups demonstrated vulnerability of the nodes that
are crucial for the information transfer within the brain network
(functional hubs). These hubs were mainly associated with the
Default Mode Network (DMN).

It has been, therefore, suggested that brain networks are
altered in people with neurodegenerative brain disorders, and
this alteration is usually evidenced as diminished local processing
and disrupted co-operative activity among distant brain regions.
However, most focus has so far been placed on the clinical
AD phase, while research on functional network analysis during
the preclinical (aMCI) phase is scarce. Electroencephalographic
(EEG) analysis may provide a direct window of brain function-
ing. Its excellent temporal resolution could offer a reliable way
of quantifying brain co-operative activity during the resting-state
condition. Aiming to enhance the understanding of the disease
progression and to propose contemporary mathematical tools
able to identify early functional disorganization phenomena, this
piece of work employs EEG recordings and attempts to answer the
following research questions:

1. Is there any evidence of functional disorganization in aMCI,
which can be differentiated from healthy aging?

2. Is there a relationship between network architecture and gen-
eral cognitive state?

3. Are there any significant differences in the network disorga-
nization among aMCI and MD groups? If yes could we also
detect any recruitment of additional brain regions during the
prodromal phase?

According to previous evidence we expect that aMCI patients
will exhibit significant network deficiency as compared to healthy
older adults (Buldú et al., 2011; Seo et al., 2013). We also expect
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network disorganization in aMCI to result mostly from a reduced
local information processing capacity as expressed by the mean
cluster coefficient value (Seo et al., 2013). Since previous research
has shown that the characteristic path length, which quantifies
information integration and transmission, remains relatively sta-
ble across different neurodegenerative phases in AD (Seo et al.,
2013), we do not expect this parameter to be affected in the
groups of aMCI or MD, relative to the group of healthy controls.
The interplay among reduced local processing and relatively sta-
ble information transmission is hypothesized to affect the global
network functional organization. Since aMCI is regarded as the
earliest AD phase, we expect that aMCI individuals would exhibit
network deficiencies similar to those of patients suffering from
AD and these alterations would be mainly manifested as a dis-
rupted small-world property and abnormal local information
processing (Buldú et al., 2011; Seo et al., 2013). It is also expected
that the global network architecture would be correlated with
neuropsychological tests estimating the generic cognitive status.
Finally, the two pathological groups, aMCI and MD, would prob-
ably show a vulnerability of network nodes that are crucial for
information transfer and cognitive functioning (Seo et al., 2013).
These nodes are defined as network hubs and their robustness is
estimated by centrality metrics. However, since the aMCI patients
relatively preserve their cognitive and daily functioning, compen-
satory mechanisms may invoke a network reformation in that
stage. Therefore, we hypothesize that functional hubs occurred
in the healthy brain become less robust and additional hubs are
formed during the aMCI phase (Qi et al., 2010).

MATERIALS AND METHODS
PARTICIPANTS
Twenty-three cognitively healthy older adults, 17 aMCI and 24
mild demented (MD) individuals participated in the present
study. All of them went through a neuropsychological assess-
ment which was part of the screening process for the Long
Lasting Memories (LLM) project. LLM was a multi-centric,
European Commission-funded project that proposed a comput-
erized intervention of cognitive and physical exercise in order
to promote independent living of senior participants (www.

longlastingmemories.eu) (Bamidis et al., 2011; González-Palau
et al., 2014). Screening took place 1–14 days before the partici-
pants’ enrollment to the training (Frantzidis et al., 2014). Prior
to neurophysiological acquisition, all participants were informed
about the study and signed an informed consent form. The study
was approved by the ethics committee of the Greek Association of
Alzheimer’s Disease and Related Disorders.

The following Table (Table 1) reports information about the
participants’ age and generic cognitive status as estimated by
the Mini Mental State Examination (MMSE) and the Montreal
Cognitive Assessment (MoCA) test (mean values ± standard
deviation), and the number of participants per group. The groups
were matched on age and male-to female ratios (all ps > 0.05).

NEUROPSYCHOLOGICAL EXAMINATION
The neuropsychological examination included a complete set
of tests aiming to assess the participant’s generic cognitive sta-
tus as well as other specific cognitive domains (verbal memory,

Table 1 | Mean age, sex and cognitive status for the participants of

each group enrolled in the present study.

Group Age Number of MMSE MoCA

participants

Healthy 68.0 ± 5.5 23 (6 males) 28.0 ± 2.1 26.0 ± 2.4

aMCI 68.6 ± 2.7 17 (4 males) 25.6 ± 2.2 25.6 ± 2.2

MD 72.3 ± 6.3 24 (7 males) 22.3 ± 2.5 17.3 ± 4.3

executive functions, independent living, etc.) that are essential to
the diagnostic procedure and the group formation. A detailed list
may be found in Bamidis et al. (2012).

MEDICAL EXAMINATION
Medical examination consisted of a full blood count, biochemi-
cal tests and examination of various parameters such as thyroid
hormones, anti-thyroid auto-antibodies, homocysteine and folic
acid levels. The Erythrocyte Sedimentation Rate (ESR) was also
estimated. Neuroimaging examination either through MRI or
Computerized Tomography (CT) was adopted to exclude partic-
ipants suffering from various parameters that may influence the
study results (e.g., cancer of the central nervous system, hyper-
cholesterolemia, etc.). Finally, the participants visited a doctor
involved in the current study. Their medical and family history
as well as their current and past medication were recorded.

DIAGNOSTIC PROCEDURE
A dementia expert neurologist performed the diagnosis of
each participant considering the aforementioned examinations.
AD diagnosis was performed according to both the DSM-IV
and the criteria of the National Institute of Neurological and
Communicative Disorders and Alzheimer’s Disease and Related
Disorders (NINCDS-ADRDA) (McKhann et al., 1984). Patients
suffering from aMCI, met Petersen’s criteria (Petersen, 2004).
The study groups were matched according to the baseline demo-
graphic variables (age and sex). This study was focused on MCI
patients suffering from multiple domains and having as major
problem that of memory impairment (Petersen, 2004). This
group of patients would be referred as aMCI in the remaining of
the manuscript, but merely for briefness, as the most appropri-
ate term is that of multiple domain + amnestic MCI (Petersen,
2004).

EEG ANALYSIS
Data acquisition and pre-processing
Neurophysiological data acquisition was performed through a
Nihon Kohden JE-207A. The device was equipped with 57 active
electrodes attached on a cap fitted to the scalp (EASYCAP). There
were also 2 reference electrodes attached to the mastoids and a
ground electrode placed at a left anterior position. Both verti-
cal and horizontal electrooculograms (EOG) and electrocardio-
graphic (ECG) activity were recorded through bipolar electrodes.
Electrode impendances of brain signals, ground electrode and ref-
erences were kept lower than 2 K�s. The sampling rate was set
at 500 Hz. Participants were sitting in a comfortable armed chair
located in a quiet room with minimal ambient light. They were
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instructed to remain calm, with their eyes closed, for 5 min at
least.

The brain electrodes were re-referenced using the two refer-
ence electrodes located on the mastoids in a way described also in
Frantzidis et al. (2014). Then, Butterworth digital filtering of 3rd
order was performed through a high pass filter with cut-off fre-
quency at 1 Hz and a notch filter centered on 50 Hz. Independent
Component Analysis (ICA) was then employed to remove arti-
factual components. Finally, visual inspection was performed to
eliminate data segments contaminated with noise. The afore-
mentioned pre-processing procedure was performed through the
Matlab Signal Processing Toolbox and the EEGLAB graphic user
interface (Delorme and Makeig, 2004).

Synchronization analysis
The synchronization analysis involved 75 epochs of artifact-free,
continuous data of high quality (Figure 1; Step “A”). The dura-
tion of each epoch was set at 20 s, since it was demonstrated in
a previous work that this time interval is sufficient for extract-
ing the synchronization degree in a robust way (Gudmundsson
et al., 2007; Hsu et al., 2012; Frantzidis et al., 2014). Aiming to
avoid methodological and sampling errors, the epoch selection
was performed in a completely randomized way. More specifi-
cally, a random number generator output choices of continuous,
artifact-free epochs to be used for the unbiased synchronization
analysis.

Synchronization analysis (Figure 1; Steps “B-D”) aimed firstly
at the robust extraction of activity for each frequency band
for every electrode (Step “B”), its relative energy contribution
(Step “C”) and finally at the quantification of the co-operative
degree among pairs of electrodes (Step “D”) by employing wavelet
analysis through the Orthogonal Discrete Wavelet Transform
(ODWT). Wavelets were subjected to scaling and translation in
order to extract both frequency and time-dependent compo-
nents with optimal resolution. ODWT also involved an iterative
decomposition scheme through recursive low-pass filtering for
computing the wavelet coefficients of the five frequency bands
in a way that discarded redundant information, while allowing
the perfect reconstruction of the whole EEG. Wavelet coefficient
amplitudes indicated the degree of correlation among the wavelet
and the signal, while the sign of each coefficient represented the
type of correlation (positive/negative). All computations were
implemented through Matlab functions (Wavelet Toolbox).

The family of 5th order bi-orthogonal wavelets was selected as
the mother wavelet (Frantzidis et al., 2010, 2014). This specific
type of wavelets was selected due to its resemblance with com-
mon EEG waveforms and its attractive mathematical properties
(e.g., semi-orthogonality, symmetry, smoothness and maximum
time-frequency resolution). Therefore, phase distortion and dis-
continuity effects are avoided (Unser et al., 1992; Quian Quiroga
and Schürmann, 1999; Frantzidis et al., 2010). Each epoch was
divided in non-overlapping windows of 128 ms duration and
computations were performed for each window, in which the
first step was the computation of the wavelet coefficients using a
decomposition scheme of j = 1 . . . 5 levels. Multiple coefficients
(k = 1 . . . K) were calculated for each decomposition level, except
of the last one (j = 5). The energy of each frequency band (Ej)

FIGURE 1 | Visualization of the proposed analysis framework: there

are five main analysis steps (A–E). Firstly, a randomization, bootstrap
technique∗ is employed during step “A” to select (N = 75) multiple, artifact
free data epochs. This bootstrap technique is implemented through a
generator of random numbers which produces choices of data epochs.
Each epoch lasts for 20 s. For each data segment and for each electrode the
Orthogonal Discrete Wavelet Transform (ODWT) is applied through an
iterative, recursive decomposition scheme (Step “B”). The ODWT
framework results in the estimation of the wavelet coefficients for each
frequency band and for each epoch. The computations are performed on

(Continued)
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FIGURE 1 | Continued

128 ms intervals, resulting in one (1) wavelet coefficient for the slow (delta,
theta rhythms), two (2) coefficients for the alpha, four (4) for beta and eight
(8) for gamma (Step “C”). These coefficients are then squared in order to
express the rhythm’s energy. So, the relative energy contribution of each
frequency band is then computed by dividing the energy of each rhythm by
the total EEG energy during Step “D.” The Relative Wavelet Entropy (RWE)
is then computed for each electrode pair. The RWE provides a directed
metric of the co-operative degree among two electrodes. Then,
synchronization matrices based on the RWE values are formed. These
matrices are then thresholded and directed, non-weighted networks are
formed. These networks are employed toward the estimation of both global
(small-world, characteristic path length, mean cluster coefficient) and local
(relative betweenness centrality) characteristics.

was estimated by firstly squaring and then summing the wavelet
coefficients (Ck) corresponding to each rhythm:

Ej =
K∑

k = 1

∣∣C2
k

∣∣ , j = 1 . . . 5 (1)

A simple summation of all energies for each frequency band
provided the total EEG energy:

Etot =
5∑

j = 1

Ej (2)

Relative energies at each frequency band were estimated by divid-
ing each absolute energy value Ej with the total energy Etot.

These computations involved the 57 brain electrodes that
formed 3192 electrode pairs. The number of electrode pairs was
computed as follows: each one of the 57 electrodes was compared
with all the other electrodes. Since the metric is a directional one
the electrode pair (p, q) is different from the pair (q, p). Therefore,
we had 57 × 57 = 3249 comparisons. Among these there are
57 pairs that compare the same electrode (p, p). That elec-
trode pairs are not meaningful and were subtracted. Therefore,
the total number of electrode pairs is 3249−57 = 3192. The
mathematical framework resulted in a probabilistic energy dis-
tribution (Figure 1; Step “D”) for each one of the 57 electrodes
participating in the 3192 electrode pairs. The probabilistic energy
distribution of each electrode was consisting of contributions of
each frequency band (a positive number) to the total energy of
a specific electrode for a given time period (window duration).
Since, these numbers quantify the energy ratio of each frequency
band to the total EEG energy, their summation was equal to one
(Rosso et al., 2001; Frantzidis et al., 2010, 2014). Finally, the syn-
chronization degree among each electrode pair was computed
through the notion of the Relative Wavelet Entropy (RWE) which
represented the co-operation degree of the generalized rhyth-
mic activity among two distinct electrode sites (Figure 1; Step
“E”). Since there were N = 57 electrodes, the dimension of the
synchronization matrix is N × N = 57 × 57. In case of two elec-
trodes with energy distributions pj and qj, the synchronization
degree (RWE value) was given by the following formula (the
smaller the RWE value, the greater the synchronization):

RWE =
5∑

j = 1

pj × ln

(
pj

qj

)
(3)

Therefore, the main diagonal of the synchronization matrix con-
tained zero values (comparison of a signal with itself). As men-
tioned earlier, these 57 electrode pairs do not participate in the
computations.

NETWORK ANALYSIS
Synchronization matrix thresholding
Synchronization matrices were then passed through a threshold to
be transformed into binary, directed brain graphs (Figure 1; Step
“E”). Aiming to avoid the influence of methodological limitations
posed by brain networks of varying density, the selection of an
adaptive threshold was preferred. This choice ensured that the
brain network of each participant would have the same number of
edges. So, both global and local network properties (small-word
value, characteristic path length, mean cluster coefficient, global
efficiency and normalized relative betweenness) were quantified
for each participant and for four (4) fixed density ranges (500,
600, 700, 800 edges). The number of edges corresponded to 15.39,
18.47, 21.55, and 24.62% density values, respectively. Analysis,
over a wide density range was preferred since there is lack of
a golden standard for density selection. It was also unknown
whether the influence of neurodegeneration phenomena could
be detected in both low and high density networks. The fol-
lowing section provides a brief description of these network
characteristics.

Description of network parameters
A network is represented by a graph that consists of nodes and
edges. Each electrode represents a node, which is connected
with another one through an edge (Bassett and Bullmore, 2006).
These edges may be directed (directed graphs) or not (undi-
rected graphs). The size of a graph depends on the total number
of nodes, while its degree is the mean value of edges per node.
The distance between two nodes is computed by the total num-
ber of edges of the shortest path needed to reach from one
node to another. The characteristic path length (L) is computed
by the mean (or in some cases median) value of the shortest
paths among all pairs of nodes (Bassett and Bullmore, 2006; Stam
and Reijneveld, 2007; Bullmore and Sporns, 2009; Stam et al.,
2009).

To calculate the cluster coefficient, C, for each node, a 3-step
procedure is followed:

• Immediate neighbors of (those directly connected with) a given
node are identified.

• The number of connections among immediate neighbors is
computed (existing connections).

• C, for a given vertex/node, is then computed as the ratio of
the number of existing connections to the total number of all
possible connections in the immediate vertex neighborhood,
ranging from zero to one. Finally, the mean cluster coefficient
is computed as the mean value of all cluster coefficient values
(Lithari et al., 2012).
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The small-world property, introduced by Watts and Strogatz
(1998), is usually employed to characterize network architectures
by means of dense clustering of local connections, as well as,
short characteristic path lengths achieved by a few long-range
connections, thereby facilitating the fast and efficient information
transfer among all network nodes. Thus, small-network topolo-
gies offer an attractive model for brain network connectivity
quantification, since they combine strong local information pro-
cessing (high cluster coefficient value) with fast and efficient,
global information transfer through small characteristic path
length (Sanz-Arigita et al., 2010; Buldú et al., 2011; De Haan
et al., 2012; Lithari et al., 2012; Seo et al., 2013); estimating the
small-world property involves computation of the network char-
acteristic path length (L) and mean cluster coefficient (C), as well
as, the comparison with the corresponding properties (Lrand and
Crand) of a random graph containing the same number of nodes
(N), edges (K) and degree of distribution as shown by formulae
(4) and (5):

Lrand = ln(N)

ln
(

k
N − 1

) (4)

Crand =
(

k
N

)

N
(5)

Then the ratios λ = L/Lrand and γ = C/Crand are combined to
retrieve the small world property (sigma), sigma = γ/λ. Small-
world networks exhibit sigma values greater than one (Bassett and
Bullmore, 2006).

The local nodal metric of betweenness centrality, Bi (for each
node i = 1 . . . N), is also employed to investigate whether the
age-related neuro-degeneration affects nodes with a functionally
significant role (hubs) or not. Bi is defined as the number of short-
est paths from all nodes to all others that run through node i.
Therefore, it quantifies the amount of information transferred
through node i. To normalize raw Bi values, the value for each
node is divided by the mean Bi value of the whole network. In
this way, and when Bi is greater than 1.5, a node can be regarded
as a functional hub. This parameter setting was adopted from a
previous study (Seo et al., 2013). The threshold value, which was
a strict one, was the same.

RESULTS
GLOBAL CHARACTERISTICS AND THEIR ALTERATIONS IN AMCI
AND MD
All groups (Healthy, aMCI, MD) demonstrated small-world char-
acteristics (σ > 1) over the entire range of densities. Tables S1–S3
in Supplementary Material show means and standard deviation as
a function of group and density for each network characteristic.
Figure 2 illustrates the mean (grand average) brain networks for
each one of the three groups (Healthy, aMCI, MD) as well as the
networks with the strongest (1%) connections only. The visual-
ization is performed for the entire density range employed in the
study (N = 500, 600, 700, 800).

To analyze the data we conducted a 3 × 4 by (3) MANOVA
with group (Healthy, aMCI, and MD) as the between subject
factor, density (500, 600, 700, 800) as the within subject factor,

FIGURE 2 | (Top) Visualization of grand average brain graphs for each one of
the three study groups (Healthy, MCI, MD) and for each edge density value
(500, 600, 700, 800). (Bottom) visualization of the strongest (1%) network
connections and their (edge) strengths, depicted through a colorbar.

and the 3 interrelated dependent variables (small-world value,
C and L). Using Pillai’ trace, there were significant effects of
group [V = 0.44, F(6, 120) = 5.63, p < 0.0001], and density [V =
0.999, F(9, 53) = 8766.855, p < 0.0001], and a significant group
by density interaction [V = 0.541, F(18, 108) = 2.225, p = 0.006]
on small world property, Cluster Coefficient and Length path.
Separate 2 × 4 ANOVAs on the 3 outcomes variables revealed
a significant1 main effect of group for the small world prop-
erty, F(2, 61) = 17.92; p < 0.0001, and the Cluster Coefficient
F(2, 61) = 10.83; p < 0.0001. Also there was a main effect of
density for the three outcomes variables, small world property,
F(3, 183) = 4236.71, p < 0.0001; cluster coefficient, F(3, 183) =
524.28; p < 0.0001, and path length, F(3, 183) = 529.10; p <

0.0001. Tukey HSD post-hoc comparisons for the group factor
showed significant differences between the Healthy controls

1Notice: to correct for multiple analyses we adopted a stricter significance
criterion, p = 0.01 ∗Bootstrapping involves the resampling of an observed
dataset by randomly sampling it with replacement.
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group (2.217) and the aMCI (2.146) and MD groups (2.099)
for the Small World property, p = 0.005 and p = 0.0001, respec-
tively. There were no significant differences between the aMCI
and the MD groups. Similarly, for the Cluster Coefficient, there
were significant differences between the Healthy controls group
(0.549) and the aMCI (0.521), and MD groups (0.508), p = 0.01
and p = 0.0002, respectively. Again, there were no significant dif-
ferences between the aMCI and the MD groups. For the Small
World property, Tukey HSD post-hoc comparisons showed sig-
nificant differences between the four density values, 500 (2.609),
600 (2.245), 700 (1.977), and 800 (1.784), all ps < 0.0001. That
is, the Small World property value decreased as the density value
increased. The same pattern was observed for the Path length
(Mean500 = 2.357, Mean600 = 2.199187, Mean700 = 2.071634,
Mean800 = 1.962972). The Path Length value decreased as the
density value increased, all ps < 0.0001. Finally, for the Cluster
Coefficient, Tukey HSD post-hoc comparisons showed again sig-
nificant different between all density conditions (Mean500 =
0.489, Mean600 = 0.518, Mean700 = 0.539, Mean800 = 0.559),
all ps < 0.0001. However, the Cluster Coefficient value increased
as the density increased. The statistically significant results regard-
ing the graph parameter differences for the three groups are
visualized in Figure 3.

In order to test if there was a linear relationship between cog-
nitive status as measured with the MMSE and the MOCA, and
the small-world property value we computed Pearson’s corre-
lations. The analyses showed a significant positive correlation

between the MMSE scores and the Small World property,
r = 0.367, df = 63, p = 0.003, and between the MoCA scores
and the Small World property, r = 0.470, df = 63, p < 0.0001.
Figure 4 illustrates these correlations through scatter plots of
the MoCA/MMSE data distributions against the Small-World
data. More specifically, the horizontal axis (Small-World value)
was estimated as the mean of the four small-world values
of each edge density range (N = 500, 600, 700, 800). Since
this metric quantifies the linear correlation among two vari-
ables, the statistically significant results indicate a linear cor-
relation of medium strength among the network architecture
and the performance on the generic neuropsychological esti-
mation. This finding may demonstrate that the degree of net-
work performance may reflect deficiency in generic cognitive
processing.

FUNCTIONAL HUB IDENTIFICATION
Following the work of Seo et al. (2013), electrodes were iden-
tified as functional hubs based on their standardized Bi value
(Bi ≥ 1.5). The identification procedure was performed for each
one of the three groups (Healthy, aMCI, MD) for the density
condition N = 500 edges. Visualization of the functional hubs is
presented in Figure 5.

The mean normalized Bi value of the identified hubs of
the healthy group computed for all participants and all groups
(Table 2). These values were then submitted to One-Way ANOVA
with group as the between subject factor. Results showed

FIGURE 3 | Visualization of the statistically significant network

parameters results (Small-World, Characteristic Path Length,

Cluster Coefficient). Results refer to network differences among the
three groups (Healthy, aMCI, MD) and are dependent on the density
parameter (N = 500, 600, 700, 800). More specifically, statistical

analysis demonstrated a significant group by density interaction. Both
group and density main effects were further analyzed in order to
highlight how global network characteristics differ among the three
groups and how these parameters are affected by the density of
the graph.
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FIGURE 4 | Visualization of the linear correlation among the

network architecture (Small-World) with the generic

neuropsychological tests. The correlation degree was estimated
through the Pearson coefficient and was greater for the MoCA

(r = 0.470) and lower for the MMSE (r = 0.367). Both correlations
would be characterized of medium strength and may indicate that
deficient generic cognition may be attributed to disturbances of the
resting-state brain networks.

FIGURE 5 | Visualization of the functional hubs identified for each one

of the three groups (Healthy, aMCI and MD). The hub identification was
based on the normalized relative betweenness centrality value. According
to a previous study, a node is defined as a hub when its centrality value is
greater or equal to 1.5 (Seo et al., 2013). This threshold is a strict one.
Therefore, the analysis was performed on the lower density range
(N = 500). A small density value is more likely to result in a greater number
of functional hubs. The hubs (names and locations) are visualized in a
sensor level for each group. The hub strength is also reported through its
relative betweenness centrality (bi) value.

a significant main effect of group, F(2, 61) = 5.87; p = 0.005.
Tukey HSD post-hoc comparisons showed significant differences
between the Healthy Controls group (Mean = 1.849; SD = 0.463)
and the aMCI (Mean = 1.365; SD = 0.523) and MD groups
(Mean = 1.503; SD = 0.435), p = 0.006, and p = 0.037, respec-
tively. There were no significant differences between the aMCI
and the MD groups. That is, both aMCI and MD groups had sig-
nificantly lower nodal strength of functional hubs as compared to
healthy controls.

To investigate whether neurodegeneration induced the addi-
tional recruitment of anterior, bilateral regions we proposed the
computation of the Anterior Hub Ratio (AHR) as the ratio
of the nodal significance of left anterior/right anterior func-
tional hubs in terms of relative betweenness centrality. This

Table 2 | Description of the functional hubs identified in the three

(Healthy controls, aMCI, MD) groups.

Electrode Healthy aMCI MD

Relative betweenness centrality (Bi)

F3 1.9149 1.8843

Fz 1.5812 2.2090 1.7431

FC1 1.6167

POz 1.5173

F2 1.9143 2.1717 1.8704

P1 1.6265

P2 1.8004

P5 1.8483 2.0669 1.6949

P6 1.5940

F4 1.5521

CP1 1.5511

C1 1.7077

AF4 1.6829

AF3 1.7343

The functional hubs were identified in terms of their normalized relative

betweenness centrality value (Bi ). Nine (9) hubs covering mainly frontal and pari-

etal areas were identified in the healthy controls. Seven (7) hubs located mainly

on right frontal and left posterior areas were identified in the aMCI patients. Five

(5) hubs located mainly on frontal and on left parietal areas were identified in the

MD group.

AHR metric quantifies the functional interplay among anterior
hemispheres. It was based on the hub identification described
previously. So, the nominator included the left anterior hubs
(F3, FC1, AF3, F1, FC3) and the denominator included the
right anterior hubs (F2, F4, Fz, Afz, FCz, FC2, FC4). One-
Way ANOVA with group as the between subject factor showed
a significant main effect of group [F(2, 61) = 3.27, p = 0.045].
Tukey HSD post-hoc comparisons showed significant differences
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only between the group of Healthy controls (Mean = 0.517;
SD = 0.327) and the group of aMCI (Mean = 1.179, SD =
1.279), p = 0.0430. There were no significant differences between
the MD group (Mean = 0.943, SD = 0.868) and the other
groups.

DISCUSSION
To investigate functional network organization in aMCI and MD,
we employed graph analysis of resting-state electroencephalo-
graphic data. The results of the global characteristics indicated
that all three (3) groups demonstrated small-world character-
istics. However, both aMCI and MD patients showed reduced
global network properties (small-world value and mean cluster
coefficient) in comparison with the healthy controls. This result
is in agreement with previous studies that showed a loss of opti-
mal network organization in AD patients (Stam et al., 2007; He
et al., 2008; Supekar et al., 2008; Zhao et al., 2012) and the general
category of MCI (Yao et al., 2010; Seo et al., 2013).

Previous studies with MCI participants yielded contradictory
results. Specifically, Yao et al. performed cortical network anal-
ysis through gray matter volume characteristics obtained from
MRI (Yao et al., 2010). The study design included 98 healthy
controls, 113 MCI participants and 91 AD patients. The MCI
group exhibited intermediate small-world values. Further anal-
ysis, revealed that comparison of the MCI network characteristics
(cluster coefficient and characteristic path length) either with
the healthy or the AD group did not reach statistical signifi-
cance. Nevertheless, in a more recent study recruiting 94 healthy
controls, 183 MCI and 216 AD patients, graph analysis was per-
formed through FDG-PET data. It was found that both MCI and
AD patients demonstrated lower cluster coefficient than healthy
controls, while the characteristic path length was not affected.
The study also reported that MCI participants exhibited the lower
cluster coefficient values. (Seo et al., 2013). Aiming to avoid
the heterogeneity of the entire MCI spectrum, we tested only
patients suffering from the amnestic subtype which is consid-
ered to be a pre-stage of AD (Dubois and Albert, 2004; Petersen,
2004). Our results support that there are no differences between
aMCI and MD patients in terms of network function (small-
world, mean cluster coefficient and characteristic path length).
That is, both groups of patients showed the same pattern of
network property breakdown as compared to Healthy controls.
Since these two groups are diagnostically different, we consider
these results in terms of compensatory mechanisms. That is,
we propose that compensatory mechanisms are preserved in
aMCI, and that loss of these mechanisms may lead to progres-
sion to mild dementia. This hypothesis would be in agreement
with our finding of additional hub formations in the group of
aMCI.

However, absence of statistically significant findings regard-
ing the characteristic path length seems to be in contradiction
with the only other (prior) study that has investigated network
organization in a group of 37 aMCI patients (Wang et al., 2013).
That study employed fMRI recordings combined with frequency-
dependent wavelet based correlation analysis and reported abnor-
mally increased path length characteristic in the group of aMCI.
This contradiction may be attributed to the much smaller number

of participants that our study enrolled in both groups. Another
possible explanation may be that Wang et al. extracted frequency-
dependent brain networks, while our methodology received
the entire EEG range as input and computed the co-operative
degree in terms of frequency-based similarity of the probability
distribution among electrode pairs.

In addition, we found a statistically significant positive cor-
relations between small-worldness and cognitive status as mea-
sured with MMSE and MoCA. That is, the more cognitively
deteriorated (lower scores in MMSE and MoCA) the patients
are, the less optimal the network organization is (lower small
world values). This finding is also in agreement with a pre-
vious finding of a positive correlation between characteris-
tic path length values and MMSE scores in a group of AD
patients (De Haan et al., 2009). We deem our findings to
be important in this sense, as we extended those results to
small-world property which better quantifies the global net-
work performance. In addition we included a larger sam-
ple with healthy adults, aMCI and MD individuals. Overall,
these findings suggest network analysis may be used as a
tool for detecting age-related pathological disorders due to
neurodegeneration.

Local network analysis was performed through the identi-
fication of those nodes that were important for the network
organization. Those nodes were named functional hubs. The
hub definition was based on the amount of information flow
the nodes transfer. The normalized betweenness centrality was
previously proposed to be a robust metric of the hub strength
(Seo et al., 2013). The results demonstrated that healthy hubs
seem to be preserved to some extent during the aMCI and mild
dementia phase. However, they are functionally impaired, as it
is demonstrated by statistically significant decreases in terms
of betweenness centrality. This finding may be indicative of
deficiency due to neurodegeneration and impaired functional
connection of distant brain regions. Apart from hub strength
reductions, aMCI participants formed additional hubs espe-
cially in the left frontal and parietal regions. The hub forma-
tion may be attributed to compensatory mechanisms (Cabeza
et al., 2002; Hämäläinen et al., 2007; Qi et al., 2010); accord-
ing to these studies healthy elderly recruit additional frontal
and parietal regions during memory processes (Cabeza et al.,
2002), while increased frontal activation of MCI patients com-
pared to controls is observed through fMRI recordings even in
the resting state condition (Hämäläinen et al., 2007). A more
recent study employing aMCI patients and fMRI during rest-
ing state reported diminished anterior DMN symmetry due to
increased left frontal activation (Qi et al., 2010). The results
derived from the proposed local characteristic analysis (strength
of healthy hubs and additional hub formation in the pathologi-
cal groups) are in line with previous findings, thereby implying
a reorganization of the brain’s architecture during early neu-
rodegeneartion. The additional hubs are mainly evident in the
preclinical (aMCI) phase and attenuate during the onset of the
clinical AD phase. This temporal pattern seems to enhance the
compensatory hypothesis.

The current piece of research employed brain network analysis
on EEG recordings. Despite its excellent temporal resolution,
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which facilitates the understanding of functional interactions
among distant brain regions, EEG’s spatial resolution is extremely
low in comparison to other recording modalities (fMRI, PET,
MEG). Moreover, it faces the problem of volume conduction
especially, when analysis is not performed on the source level.
Therefore, the interpretation of results, especially in the case
of local characteristics analysis, should be supported by neu-
roimaging studies (Hämäläinen et al., 2007; Qi et al., 2010). To
this extent, any synergy between EEG and fMRI with simul-
taneous recordings may be able to reliably track transient
network alterations and their locations. However, the analysis
performed herein with regards to estimating the brain net-
work reorganization and the quantification of the underlying
compensatory mechanisms was based on the definition of a
Region of Interest (ROI). The ROI identification was based on
the previous analysis step (identification of functional hubs)
and on a priori hypothesis of an increased frontal symmetry
(Hämäläinen et al., 2007; Qi et al., 2010). Despite the posi-
tive results and validating previous neuroimaging evidence (Qi
et al., 2010), this point may be regarded as a current lim-
itation, since it introduces a methodological bias posed by
the study hypothesis. Finally, estimation of the disease pro-
gression was performed by forming three separate groups of
participants and analyzing their brain network characteristics.
However, longitudinal studies employing the same participants
and investigating their network alterations during different tem-
poral phases may estimate the disease progression much more
accurately.

To sum up, this piece of work proposed a mathematical
model consisting of both wavelet and brain network analysis
to study neuropathological alterations due to AD and the dis-
ease progression. It provided evidence that AD evolution from
its preclinical phase (aMCI) to the dementia phase is accom-
panied by a gradual loss of optimal brain network organiza-
tion as quantified by the small-world property. This mainly
occurs due to the reductions of local information processing, as
expressed by lower values of the mean cluster coefficient. The
degree of non-economical wiring was correlated with the amount
of cognitive decline as estimated by generic neuropsychologi-
cal testing (MMSE and MoCA). The functional disorganization
of the EEG-based brain network is apparent during the aMCI
phase. It often coexists with compensatory mechanisms involv-
ing the formation of additional hubs located mainly on left
frontal and parietal regions. However, these mechanisms are tran-
sient and attenuate when progressing to the clinical AD phase.
Then, the global brain network characteristics (small-world prop-
erty and cluster coefficient) deteriorate much more. This com-
putational framework seems to be a robust and reliable tool,
which may be used toward the identification of functional alter-
ations preceding structural isolation/atrophy in senior citizens
facing increased risk of future progression to the clinical AD
phase.
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Background: Temporo-parietal and medial temporal cortex atrophy are associated
with mild cognitive impairment (MCI) due to Alzheimer disease (AD) as well as the
reduction of regional cerebral blood perfusion in hippocampus. Moreover, the increase
of EEG alpha3/alpha2 power ratio has been associated with MCI due to AD and with
an increase in theta frequency power in a group of subjects with impaired cerebral
perfusion in hippocampus.

Methods: Seventy four adult subjects with MCI underwent clinical and
neuropsychological evaluation, electroencephalogram (EEG) recording and high
resolution 3D magnetic resonance imaging (MRI). Among the patients, a subset of
27 subjects underwent also perfusion single-photon emission computed tomography
and hippocampal atrophy evaluation. Alpha3/alpha2 power ratio as well as cortical
thickness was computed for each subject. Three MCI groups were detected according
to increasing tertile values of alpha3/alpha2 power ratio and difference of cortical
thickness among the groups estimated.

Results: Higher alpha3/alpha2 power ratio group had wider cortical thinning than other
groups, mapped to the Supramarginal and Precuneus bilaterally. Subjects with higher
alpha3/alpha2 frequency power ratio showed a constant trend to a lower perfusion
than lower alpha3/alpha2 group. Moreover, this group correlates with both a bigger
hippocampal atrophy and an increase of theta frequency power.

Conclusion: Higher EEG alpha3/alpha2 power ratio was associated with temporo-
parietal cortical thinning, hippocampal atrophy and reduction of regional cerebral
perfusion in medial temporal cortex. In this group an increase of theta frequency power
was detected inMCI subjects. The combination of higher EEG alpha3/alpha2 power
ratio, cortical thickness measure and regional cerebral perfusion reveals a complex
interplay between EEG cerebral rhythms, structural and functional brain modifications.

Keywords: theta, alpha, EEG, SPECT, MRI, midl cognitive impairment

Frontiers in Aging Neuroscience | www.frontiersin.org March 2015 | Volume 7 | Article 31 | 58

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnagi.2015.00031
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fnagi.2015.00031
http://www.frontiersin.org/Journal/10.3389/fnagi.2015.00031/abstract
http://community.frontiersin.org/people/u/17665
http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Moretti Theta, alpha, EEG, SPECT, MRI

Introduction

The MCI commonly represent the ‘at-risk’ state of devel-
oping dementia. In neurodegenerative disorders, like AD or
other dementias, the brain networks modifies many years before
clinical manifestations (Dubois et al., 2007; Hampel et al., 2007;
Albert et al., 2011; Galluzzi et al., 2013). Recent MRI studies have
demonstrated that a large neural network is altered in sub-
jects with prodromal AD, including precuneus, medial temporal,
parietal, and frontal cortices (Frisoni et al., 2006, 2007, 2008,
2009; Van Strien et al., 2009; Frisoni, 2012). In particular, sub-
jects with cognitive decline have shown early atrophy and loss
of gray matter in cortical specific brain areas (Frisoni et al., 2007,
2009), including hippocampal, medial temporal and parietal
lobes. In the conceptual frame of the integration of biomark-
ers for an early and highly predictive diagnosis, the EEG could
be a reliable tool (Missonnier et al., 2010). Indeed, it is widely
accepted that the cerebral EEG rhythms reflect the underly-
ing brain network activity (Steriade, 2006). As a consequence,
modifications in EEG rhythms could be an early sign of dis-
ease associated with AD-related structural and functional net-
works. In particular, the study of alpha rhythm seems to be a
very suitable tool to detect relationship between structural and
functional brain networks. Previous studies has convincingly
demonstrated that there are thalamo-cortical and cortico-cortical
components which interact in the generation of cortical alpha
rhythms (Lopes da Silva et al., 1980). According to the seminal
paper of Lopes Da Silva, the disrupture of long-range network,
inpinguing on low alpha frequency, is replaced by an increase in
higher frequency (upper alpha) synchronization, which is based
on narrower cell assemblies activity. Furthermore, the dynamic
behavior of alpha rhythm is apparently due to some combina-
tion of global and local processes. The global processes appear
to be analogous to large-scale coherent EEG observed in low
alpha frequency, whereas the local processes seem to be anal-
ogous to the smaller (mesoscopic) scale columnar dynamics,
observed in upper alpha frequency (Ingber and Nunez, 2011).
Given the well-known loss of brain network complexity in AD
pathology (Nunez, 1989; Stam et al., 2005), it is highly con-
ceivable an impairment of long-range connectivity pathways,
replaced by short-range, downsized, cell assemblies connections,
resulting in a decrease of low alpha and an increase of upper
alpha frequency power. Recent single-photon emission computed
tomography (SPECT) studies have demonstrated that a large
neural network is altered in subjects with prodromal AD, includ-
ing precuneus, medial temporal, parietal and frontal cortices
(Rodriguez et al., 1999). For instance, selective regional cerebral
blood perfusion (rCBF) reductions in the left hippocampus and
parahippocampal gyrus and in extended areas of cerebral asso-
ciation cortex were demonstrated in a 2-years follow-up clinical
study with rCBF-SPECT (Pupi et al., 2005). Cross-sectional stud-
ies have shown rCBF and regional metabolic rates of glucose
(rCMRgl) reductions in the resting state throughout the cortex
in AD, involving distinctive brain structures such as the poste-
rior cingulate/precuneus, temporoparietal, and frontal cortices
(Frisoni, 2012). A positive SPECT scan raised the likelihood of
diagnosing pathological AD from 84%, as defined by clinical

diagnosis, to 92% (Frisoni, 2012). Recent results show that there
is a hippocampal rCBF hypoperfusion in patients with mild AD
(Moretti et al., 2012b), as well as that baseline SPECT can sup-
port outcome prediction in subjects with MCI (Pupi et al., 2005).
Of note, rCBF (bilateral parietal perfusion) and qEEG (espe-
cially the slowest frequencies, i.e., 2–5.5 Hz) are confirmed to
be good descriptors of AD severity. It is especially noteworthy
that bilateral hippocampal rCBF reduction was the perfusional
index best correlated with both cognitive performance and qEEG
(Rodriguez et al., 1999). Recent studies confirms the relationship
of higher alpha3/alpha2 frequency power ratio with a smaller hip-
pocampal volume and a lower cerebral perfusion (Moretti et al.,
2013b). Recently, it has been demonstrated that temporo-parietal
andmedial temporal cortex atrophy are associated with mild cog-
nitive impairment (MCI) due to Alzheimer disease (AD) as well
as the reduction of regional cerebral perfusion in hippocampus.
Moreover, the increase of EEG alpha3/alpha2 power ratio has
been associated withMCI due to AD andwith an increase in theta
frequency power in a group of subjects with impaired cerebral
perfusion in hippocampus (Moretti et al., 2009, 2011a,b, 2012a,b,
2013a,b).

In this study, we investigated the possible interactions between
brain rhythms and their associations with data morphostructural
in an attempt to investigate the anatomical and pathophysiologi-
cal alterations at the base of the prodromal phase of AD.

Materials and Methods

Subjects
For the present study, 74 subjects with MCI were recruited
from the memory Clinic of the Scientific Institute for Research
and Care (IRCCS) of Alzheimer’s and psychiatric diseases
‘Fatebenefratelli’ in Brescia, Italy. All experimental protocols had
been approved by the local ethics committee. Informed consent
was obtained from all participants or their caregivers, accord-
ing to the Code of Ethics of the World Medical Association
(Declaration of Helsinki).

Diagnostic Criteria
Patients were selected from a prospective study on the natu-
ral history of cognitive impairment (the translational outpatient
memory clinic—TOMC study) carried out in the outpatient
facility of the National Institute for the Research and Care of
Alzheimer’s Disease (IRCCS Istituto Centro San Giovanni di Dio
Fatebenefratelli, Brescia, Italy). The diagnosis of prodromal AD
has been made according recent guidelines (Dubois et al., 2007;
Albert et al., 2011; Galluzzi et al., 2013).

The project was aimed to study the natural history of non-
demented persons with apparently primary cognitive deficits, i.e.,
deficits not due to psychic (anxiety, depression, etc.) or physical
(hypothyroidism, vitamin B12 and folate deficiency, uncontrolled
heart disease, uncontrolled conditions (diabetes, etc.) in the
absence of functional impairment. The selection criteria has the
aim to include as much as possible primary prodromal dementia
due to neurodegenerative disorders. Demographic and cognitive
features of the subjects in study are summarized in Table 1.
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TABLE 1 | Demographic and cognitive characteristics in the whole sample, according to increased levels of alpha3/alpha2 Numbers denote mean ± SD,
number, and [range].

Alpha3/alpha2

High Middle Low p

Demographic and clinical futures

Number of subjects 18 38 18 —

Age, years 70.4 ± 6.7 [60–85] 68.4 ± 8.2 [52–83] 70.4 ± 7.4 [57–80] 0.55

Sex, female 13 (%) 24 (%) 14 (%) 0.51

Education, years 6.6 ± 3.6 [4–18] 7.6 ± 3.7 [3–17] 8.3 ± 4.7 [3–18] 0.42

Mini Mental State Exam 27 ± 1.7 27.4 ± 1.3 26.9 ± 1.2 0.46

Alpha3/alpha2 1.29 ± 0.1 [1.17–1.52] 1.08 ± 0.0 [1–1.16] 0.9 ± 0.1 [0.77–0.98] 0.000

p denotes significance on ANOVA. Bold value indicates statistical significant results.

Patients were rated with a series of standardized diag-
nostic and severity instruments, including the Mini-Mental
State Examination (MMSE; Folstein et al., 1975), the Clinical
Dementia Rating Scale (CDRS; Hughes et al., 1982), the
Hachinski Ischemic Scale (HIS; Rosen et al., 1980) and the
Instrumental and Basic Activities of Daily Living (IADL, BADL;
Lawton and Brodie, 1969). In addition, patients underwent diag-
nostic neuroimaging procedures (magnetic resonance imaging,
MRI), and laboratory testing to rule out other causes of cognitive
impairment. These inclusion and exclusion criteria for MCI
were based on previous seminal studies (Petersen et al., 2001;
Portet et al., 2006; Dubois et al., 2007). Inclusion criteria of the
study were all of the following: (i) complaint by the patient, or
report by a relative or the general practitioner, of memory or
other cognitive disturbances; (ii) MMSE score of 24–27/30, or
MMSE of 28 and higher plus low performance (score of 2–6
or higher) on the clock drawing test (Lezak et al., 2004); (iii)
sparing of IADL, BADL or functional impairment steadily due
to causes other than cognitive impairment, such as physical
impairments, sensory loss, gait or balance disturbances, etc.
Exclusion criteria were any one of the following: (i) patients
aged 90 years and older (no minimum age to participate in the
study); (ii) history of depression (from mild to moderate or
major depression) or juvenile-onset psychosis; (iii) history or
neurological signs of major stroke; (iv) other psychiatric diseases,
overt dementia, epilepsy, drug addiction, alcohol dependence;
(v) use of psychoactive drugs, including acetylcholinesterase
inhibitors or other drugs enhancing brain cognitive functions or
biasing EEG activity; and (vi) current or previous uncontrolled
or complicated systemic diseases (including diabetes mellitus),
or traumatic brain injuries. All subjects were right-handed.

All patients underwent: (i) semi-structured interview and –
whenever possible – with another informant (usually, the
patient’s spouse or a child of the patient) by a geriatri-
cian or neurologist; (ii) physical and neurological examina-
tions; (iii) performance-based tests of physical function, gait
and balance; (iv) neuropsychological battery assessing memory
(Babcock Story Recall – Rey–Osterrieth Complex Figure, Recall –
Auditory-Verbal Learning Test, immediate and delayed recall;
Lezak et al., 2004) verbal and non-verbal memory, attention
and executive functions (Trail Making Test B, A and B-A;
Inverted Motor Learning-Clock Drawing Test; Lezak et al.,

2004), abstract reasoning thinking (Raven Colored Progressive
Matrices; Lezak et al., 2004), frontal functions (Inverted Motor
Learning); language (Phonological and Semantic fluency-Token
test; Lezak et al., 2004), and apraxia and visuo-constructional
abilities (Rey–Osterrieth Complex Figure, Rey figure copy, Clock
Drawing Test; Rosen et al., 1980); (v) assessment of depres-
sive symptoms by means of the Center for Epidemiologic
Studies Depression Scale (CES-D; Radloff, 1977). All the neu-
ropsychological tests were standardized on Italian popula-
tion, thus scores were compared to normative values with
age, education and gender corrections in an Italian popula-
tion.

EEG and MRI
EEG Recordings
The EEG activity was recorded, continuously from 19 sites by
using electrodes set in an elastic cap (Electro-Cap International,
Inc.) and positioned according to the 10–20 international sys-
tems (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,
P3, Pz, P4, T6, O1, and O2). The patients were instructed to
stay sit with closed eyes and relaxed. In order to keep con-
stant the level of vigilance, an operator controlled on-line the
subject and the EEG traces, alerting the subject any time there
were signs of behavioral and/or EEG drowsiness. The ground
electrode was placed in front of Fz. The left and right mas-
toids served as reference for all electrodes. The recordings were
used off-line to re-reference the scalp recordings to the com-
mon average. Re-referencing was done prior to the EEG arti-
fact detection and analysis. Data were recorded with a band-
pass filter of 0.3–70 Hz, and digitized at a sampling rate of
250 Hz (BrainAmp, BrainProducts, Germany). Electrodes-skin
impedance was set below 5�. Horizontal and vertical eye move-
ments were detected by recording the electrooculogram (EOG).
The recording lasted 5 min, with subjects with closed eyes.
Longer recordings would have reduced the variability of the data,
but they would also have increased the possibility of slowing
of EEG oscillations due to reduced vigilance and arousal. EEG
data were then analyzed and fragmented off-line in consecu-
tive epochs of 2 s, with a frequency resolution of 0.5 Hz. The
average number of epochs analyzed was 140, ranging from 130
to 150. The epochs with ocular, muscular and other types of

Frontiers in Aging Neuroscience | www.frontiersin.org March 2015 | Volume 7 | Article 31 | 60

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Moretti Theta, alpha, EEG, SPECT, MRI

artifacts were discarded by two skilled electroencephalographists
(Moretti et al., 2003).

Analysis of Individual Frequency Bands
All recordings were obtained in the morning with subjects
resting comfortably. Vigilance was continuously monitored in
order to avoid drowsiness. A digital FFT-based power spec-
trum analysis (Welch technique, Hanning windowing function,
no phase shift) computed – ranging from 2 to 45 Hz – the
power density of EEG rhythms with a 0.5 Hz frequency reso-
lution. Two anchor frequencies were selected according to the
literature guidelines (Klimesch, 1997; Moretti et al., 2004), that
is, the theta/alpha transition frequency (TF) and the individ-
ual alpha frequency (IAF) peak. IAF and TF were computed
for each subject in the study. These anchor frequencies were
computed on the power spectra averaged across all recording
electrodes. This “collapsed spectrum method” allows to identify
a robust and reliable IAF, being a normalized scalp spectrum.
The TF marks the TF between the theta and alpha bands, and
represents an estimate of the frequency at which the theta and
alpha spectra intersect. TF was computed as the minimum power
in the alpha frequency range, since our EEG recordings were
performed at rest. The IAF represents the frequency with the
maximum power peak within the extended alpha range (5–
14 Hz). Based on TF and IAF, we estimated the frequency band
range for each subject, as follows: delta from TF-4 to TF- 2,
theta from TF-2 to TF, low alpha band (alpha1 and alpha2)
from TF to IAF, and high alpha band (or alpha3) from IAF
to IAF + 2. The alpha1 and alpha2 bands were computed for
each subject as follows: alpha1 from TF to the middle point
of the TF-IAF range, and alpha2 from such middle point to
the IAF peak (Fischl et al., 1999; Bazanova and Vernon, 2013).
The mean frequency range computed in MCI subjects consid-
ered as a whole are: delta 2.9–4.9 Hz; theta 4.9–6.9 Hz; alpha1
6.9–8.9 Hz; alpha2 8.9–10.9 Hz; alpha3 10.9–12.9 Hz. Finally,
in the frequency bands determined on an individual basis, we
computed the relative power spectra for each subject. The rel-
ative power density for each frequency band was computed as
the ratio between the absolute power and the mean power spec-
tra from 2 to 45 Hz. The relative band power at each band
was defined as the mean of the relative band power for each
frequency bin within that band. The alpha3/alpha2 was com-
puted in all subjects and three groups were obtained according
to increasing tertiles values of alpha3/alpha2: low (a3/a2 < 1)
middle (1 ≤ a3/a2 ≤ 1.16) and high (a3/a2 ≥ 1.17). The three
groups of MCI has been demonstrated in previous studies to be
different in nature. In particular, the high alpha3/alpha2 EEG
power ratio MCI group is at major risk to convert to Alzheimer’s
disease (Frisoni, 2012), as well as to have different pattern of hip-
pocampal atrophy (Moretti et al., 2011b) and basal ganglia and
thalamus gray matter lesions (Moretti et al., 2009) as compared
to the other alpha3/alpha2 power ratio MCI groups. Moreover,
this group subdivision has been chosen for reason of homogene-
ity and comparability with the previous studies. As the aim of our
study was to evaluate the relationship only between functional
and morphostructural biomarkers in a group of MCI who has
major probability to develop AD, we did not consider the clinical

subtype of MCI, i.e., amnesic, or non-amnesic, single or multiple
domains.

MRI Scans
For each subject, a high-resolution sagittal T1 weighted vol-
umetric MR scan was acquired at the Neuroradiology Unit
of the ‘Citta` di Brescia’ Hospital, Brescia, by using a 1.0 T
Philips Gyroscan scanner, with a gradient echo 3D technique:
TR = 20 ms, TE = 5 ms, flip angle = 30, field of view = 220 mm,
acquisition matrix 256 · 256, slice thickness 1.3 mm.

Cortical Thickness Estimation Steps
Cortical thickness measurements for 74 MCI patients were
made using a fully automated MRI-based analysis technique:
FreeSurfer, a set of software tools for the study of cortical and
subcortical anatomy. Briefly, in the cortical surface stream, the
models of the boundary between white matter and cortical gray
matter as well as the pial surface were constructed. Once these
surfaces are known, an array of anatomical measures becomes
possible, including: cortical thickness, surface area, curvature,
and surface normal at each point on the cortex. In addition, a cor-
tical surface-based atlas has been defined based on average folding
patterns mapped to a sphere and surfaces from individuals can
be aligned with this atlas with a high-dimensional non-linear
registration algorithm. The surface-based pipeline consists of sev-
eral stages previous described in detail (Fischl and Dale, 2000;
Gronenschild et al., 2012).

Single Subject Analysis
For each subjects the T1-weighted, anatomical 3-D MRI dataset
were converted fromDicom format into .mgz format, then inten-
sity variations are corrected and a normalized intensity image
is created. The volume is registered with the Talairach atlas
through an affine registration. Next, the skull is stripped using a
deformable template model (Segonne et al., 2004) and extracere-
bral voxels are removed. The intensity normalized, skull-stripped
image is then operated on by a segmentation procedure based on
the geometric structure of the gray–white interface. Voxels are
classified as white or gray matter, cutting planes are chosen to
separate the hemispheres from each other. A white matter sur-
face is then generated for each hemisphere by tiling the outside
of the white matter mass for that hemisphere. This initial surface
is then refined to follow the intensity gradients between the white
and gray matter. The white surface is then nudged to follow the
intensity gradients between the gray matter and CSF, obtaining
the pial surface. Cortical thickness measurements were obtained
by calculating the distance between those surfaces (white and pial
surface) at each of ∼160,000 points per hemisphere across the
cortical mantle (Dale et al., 1999).

Group Analysis
In order to relate and compare anatomical features across sub-
jects, it is necessary to establish a mapping that specifies a unique
correspondence between each location in one brain and the cor-
responding location in another. Thus, the pial surface of an
individual subject is inflated to determine the large-scale fold-
ing patterns of the cortex and subsequently transformed into a
sphere to minimize metric distortion. The folding patterns of the
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individual are then aligned with an average folding pattern using
a high-resolution surface-based averaging. Thickness measures
were mapped to the inflated surface of each participant’s brain
reconstruction allowing visualization of data across the entire
cortical surface. Finally, cortical thickness was smoothed with a
20-mm full width at half height Gaussian kernel to reduce local
variations in the measurements for further analysis.

Test–Retest Reproducibility of Cortical Thickness
Analysis
Previous studies have investigated the reliability of the corti-
cal thickness measurements: some of these addressed the effect
of scanner-specific parameters, including field strength, pulse
sequence, scanner upgrade, and vendor. The use of a different
pulse sequence had a larger impact, as did different param-
eters employed in data processing. The within-scanner vari-
ability of global cortical thickness measurements reported in
previous studies was 0.03–0.07 in average (Rosas et al., 2002;
Kuperberg et al., 2003; Pennanen et al., 2005; Han et al., 2006).
Scanner upgrade did not increase variability nor introduce bias
while measurements across field strength were slightly biased
(thicker at 3 T). In the study by Han et al. (2006) the variability
was 0.15 and 0.17 mm in average, respectively, for cross-scanner
(Siemens/GE) and cross-field strength (1.5 T/3 T) comparisons.
The recent study by Gronenschild et al. (2012) also investigated
the effects of data processing conditions such as FreeSurfer ver-
sion, workstation, and Macintosh operating system version. The
authors reported significant differences between FreeSurfer ver-
sion (average: 2.8–3%) and a smaller differences between work-
station and operating system version. On the whole, the results
suggest that MRI-derived cortical thickness measures are highly
reliable, however it is important to keep consistent the MRI
parameters and data processing factors within any given struc-
tural neuroimaging study (DeCarli et al., 2005; Markesbery et al.,
2006; McKhann et al., 2011).

Radial Atrophy Mapping for Hippocampal Atrophy
Computation
The 3D parametric surface mesh models were created from
the manual tracings of hippocampal boundaries (DeCarli et al.,
2005). This procedure allows measurements to be made at cor-
responding surface locations in each subject, which are then
compared statistically in 3D (DeCarli et al., 2005). To assess hip-
pocampal morphology, a medial curve was automatically defined
as the 3D curve traced out by the centroid of the hippocam-
pal boundary in each image slice. The radial size of each hip-
pocampus at each boundary point was assessed by automatically
measuring the radial 3D distance from the surface points to the
medial curve defined for individual’s hippocampal surface model.

The analysis of variance ANOVA was performed in order to
verify the difference of hippocampal volume among groups.

EEG and SPECT
MCI Patients
Mild cognitive impairment patients were taken from a prospec-
tive project on MCI (“Mild Cognitive Impairment in Brescia,
MCIBs”), aimed to study the natural history of persons without

dementia with apparently primary cognitive deficits, i.e., not
due to psychic or physical conditions, the same of MRI-EEG
project. The study protocol was approved by the local ethics
committee and all participants signed an informed participa-
tion consent. Details on inclusion/exclusion criteria and on
physical and neurological examinations, performance-based tests
of physical function, gait and balance and performed neu-
ropsychological battery have been previously published and are
at disposal elsewhere (Caroli et al., 2007; Moretti et al., 2013b)
and described above. Among the 56 MCI patients who agreed
to undergo MRI and SPECT scan, all consecutive 27 who
agreed also to undergo EEG recording were further consid-
ered.

Normal Controls
We enrolled all 17 healthy subjects from a previous study
on cerebral perfusion correlates of conversion to AD with
both an MRI and a SPECT scan available (Caroli et al., 2007;
Moretti et al., 2013b). Briefly, subjects were consecutive normal
volunteers picked among those undergoing brain MRI scan at
the Neuroradiology Unit of the “Città di Brescia” Hospital in
Brescia from October 2004 to June 2006 for reasons unrelated
to cognition, or were healthy volunteers aged 65 years or older,
among MCI patients’ spouses, friends of them, and researchers’
acquaintances. All scans of enrolled subjects were normal on
visual assessment by a neuroradiologist. Subjects underwent mul-
tidimensional assessment including clinical, neurological, and
neuropsychological evaluations, and drawing of a blood sample
(not used for the purposes of the present study). Data coming
from normal controls were used only to compute W scores in
each selected perfusion Region of Interest (ROI).

SPECT Scan
Both patients and normal controls underwent SPECT scan in the
nuclear medicine department of the Ospedali Riuniti in Bergamo.
Each patient received an intravenous injection of 925 MBq of
technetium- 99 m ethylcysteinate dimer (99mTc-ECD) in rest-
ing conditions, lying supine with eyes closed in a quiet, dimly
lit room. Forty to sixty minutes after injection, brain SPECT
was performed using a dual-head rotating gamma camera (GE
Elscint Helix) equipped with low energy-high resolution, par-
allel hole collimators. A 128 × 128 pixel matrix, zoom = 1.5,
was used for image acquisition with 120 views over a 360◦ orbit
(in 3◦ steps) with a pixel size and slice thickness of 2.94 mm.
Butterworth filtered-back projection (order = 7, cut-off = 0.45
cycles/cm) was used for image reconstruction, and attenuation
correction was performed using Chang’s method (attenuation
coefficient = 0.11 cm-1). Images were exported in DICOM
format.

SPECT Processing Protocol
To achieve a precise normalization, we generated a study-
specific SPECT template using both SPECT and MRI scans
of all patients and normal controls under study, following
a procedure described in detail elsewhere (Caroli et al., 2007)
and schematically represented in Figure 1. Briefly, we cre-
ated a customized high-definition MRI template, we converted
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FIGURE 1 | Flow chart summarizing the whole MRI-SPECT processing protocol.

SPECT scans to Analyze format usingMRIcro (Rorden and Brett,
2000), and we coregistered them to their respective MRI
scans with SPM2 (SPM, Statistical Parametric Mapping, ver-
sion 2,2002. London: Functional Imaging Laboratory. Available
at: http://www.fil.ion.ucl.ac.uk/spm/software/spm2). We nor-
malized each MRI to the customized MRI template through
a non-linear transformation (cut-off 25 mm), and we applied
the normalization parameters to the coregistered SPECT. We
obtained the customized SPECT template as the mean of all the
latter normalized SPECT images. The creation of a study-specific
template allows for better normalization, since low uptake in
ventricular structures and cortical hypoperfusion effects are fre-
quently present in elderly patients. For each coregistered SPECT
scan, we set the origin to the anterior commissure, using the
respective MRI image as a reference, and we processed all
scans with SPM2 according to an optimized processing pro-
tocol described in detail elsewhere (Caroli et al., 2007). Brain
perfusion correlates of medial temporal lobe atrophy and white
matter hyperintensities in MCI were obtained as follows: (I) we
smoothed each scan with a 10 mm full width at half maximum
(FWHM) Gaussian, and spatially normalized it with an affine
deformation to the customized SPECT template; we applied the
same deformation to the unsmoothed images; (II) we masked the
unsmoothed normalized images from I to remove scalp activity
using SPM2’s “brainmask.” We smoothed with a 10 mm FWHM
Gaussian, and warped them to the customized template with
a non-linear transformation (cut-off 25 mm); we applied the
same transformation to the unsmoothed masked images; (III)
we smoothed the normalized unsmoothed images from II with
a 12 mm FWHM Gaussian. The following ROI were chosen
for perfusion analyses in each hemisphere from the Pick atlas
by a sub-routine implemented on SPM2: frontal, parietal and

temporal lobes, the thalamus and the hippocampal-amygdalar
complex (Maldjian et al., 2003). The choice of these regions was
based on previous SPECT and PET studies in subjects with MCI
(Staffen et al., 2009; Alegret et al., 2012; Yoon et al., 2012).

The whole cerebellum was chosen for normalization of ROI
counts. Since perfusion values in selected ROIs did not account
for age, pertinent age corrected perfusion values (hereafter called
W scores), were computed in each selected ROI, following a
previously published procedure (Alegret et al., 2012).

Statistical Analysis for MRI and EEG
Differences between groups in sociodemographic and neuropsy-
chological features were analyzed using SPSS version 13.0 (SPSS,
Chicago, IL, USA) performing an analysis of variance (ANOVA)
for continuous variables and paired χ2 test for dichotomous
variables. For continuous variables, post-hoc pairwise compar-
isons among groups were performed with the Games-Howell or
Bonferroni tests depending on homogeneity of variance tested
with Levene’s test.

Concerning the neuroimaging analysis, the Qdec interface in
Freesurfer software was used: a vertex-by-vertex analysis was
carried out performing a general linear model to analyze whether
any difference in mean cortical thickness existed between groups
(low a3/a2 < 1 μV2;) middle (1 ≤ a3/a2 ≤ 1.16 μV2 and high
(a3/a2≥ 1.17μV2). The following comparisons were carried out:
High vs. Low, High vs.Middle, andMiddle vs. Low. Age, sex, edu-
cation, global cognitive level (MMSE score) The value of cortical
thickness estimation in middle and low was averaged and com-
pared to the high alpha3/alpha2 power ratio. When a statistical
threshold at p ≤ 0.05 corrected was applied, there were no sig-
nificant results. So we choose to apply an uncorrected but more
restrictive significance threshold than 0.05 (p ≤ 0.001) and we
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FIGURE 2 | Brain regions with significant regional cortical
thickness differences in MCI with high a3/a2 ratio compared to
MCI with low averaged with middle a3/a2 ratio (p < 0.01
uncorrected). The color-coding for p values is on a logarithmic

scale. Warmer color represents cortical thinning, cooler color represents
cortical thickening. Results are presented on the pial cortical surface
of brain: dark gray regions represent sulci and light gray regions
represent gyri.

considered as significant only the clusters which also were wide
equal or major to 30 mm2. Finally a surface map was generated
to display the results on an average brain. For illustrative purpose
significance was set to a p-value of≤0.01 uncorrected for multiple
comparisons.

Statistical Analysis for SPECT AND EEG
All statistical analyses were performed using SPSS software ver-
sion 13.0. We investigated significance of the difference between
the two groups (MCI at low and at high risk to develop AD) in
socio-demographic, clinical and cognitive features using χ2 test
for categorical variables (sex, and ApoE carriers) and Student’s
independent t test for continuous variables (volumetric, per-
fusion features and EEG frequencies). In all cases we set the
significant threshold at p < 0.05. Since native SPECT scans
were coregistered to their respective MRI images, and the study-
specific SPECT template was coregistered to the high-definition
MRI template, all the normalized SPECT and MRI images used
for the statistical analysis were coregistered to the SPM stan-
dard anatomical space. Moreover, Pearson’s r correlations were
assessed between the selected perfusion ROIs (in terms of age
corrected W scores) and the acquired EEG frequencies in both
groups. Moreover, a correlation analysis was computed between
theta and alpha brain rhythms.

Results

MRI-EEG
Table 1 shows the sociodemographic and neuropsychological
characteristics of MCI subgroups defined by the tertile values of
alpha3/alpha2. The ANOVA analysis showed that there was not
statistically significant differences between groups which resulted
well paired for age, sex, education, and global cognitive level.
Anyway, age, sex, education, global cognitive level (MMSE score)
alpha3/alpha2 ratio levels were significant at Games-Howell post
hoc comparisons (p = 0.000).

Pattern of Cortical Thickness between Groups
High vs. Middle and Low averaged thickness (named low):
when compared to subjects with low a3/a2 ratios, patients with
high a3/a2 ratio show thinning in the right Supramarginal
and IPL and in the left Precuneus cortex, (Figure 2;
Table 2).

SPECT-EEG
Twenty seven MCI patients were enrolled for the present study
and they were classified as at high risk (when the a3/a2 EEG
rhythm median was above 1.17) or at low risk (when the a3/a2
EEG rhythm median was under 1.17) to develop AD. The two
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TABLE 2 | Brain regions with significant regional cortical thickness differences in MCI with high a3/a2 ratio compared to MCI with low averaged with
middle a3/a2 ratio.

High a3/a2<averaged middle and low a3/a2

Cluster
size (mm2)

Region Side Stereotaxc coordinate P Thickness (mm2)

x y z High Low+middle

55 Precuieus L −14 −48 58 0.00001 1.35 ± 0.14 2.57 ± 0.24

76 Supra marginal R 49 −29 27 00.01.00 1.53 ± 0.18 2.67 ± 0.56

93 Inferior parietal R 46 −75 10 0.001 1.54 ± 0.22 3.07 ± 0.35

Cluster size represents the extension of contiguous significant voxels in the cluster obtained at p < 0.01 uncorrected (cluster size > 30 mm2). Stereotaxic coordinates
reveal the position of the most significant voxel of the cluster, and side denotes its localization on the left (L) or right (R) brain hemisphere. Thickness denotes the average
cortical thickness and SD values within the cluster in high and low + middle a3/a2 groups. P denotes the significance level of the differences in thickness between groups.

TABLE 3 | Demographic and cognitive characteristics in the whole sample, disaggregated for increased levels of alpha3/alpha2 Numbers denote
mean ± SD, number, and [range].

At low-risk MCI At high-risk MCI P value

N 14 13

Age (years) [range] 69.1 ± 7.6 [57÷83] 70.6 ± 5.5 [62÷78] 0.555

Gender (females) 6 (43%) 9 (69%) 0.168

Education (years) [range] 8.2 ± 4.3 [4-18] 7.9 ± 4.5 [3÷18] 0.865

MMSE score [range] 27.9 ± 1.6 [25÷30] 27.2 ± 1.9 [24÷29] 0.309

3 Left hippocampal volume (mm3)[Range] 2,606 ± 353 [1,923÷3,017] 2,073 ± 412 [1,234÷2,641] 0.001

3 Right hippocampal volume (mm3)[range] 2,581 ± 473 [1,549÷3,150] 2,296 ± 501 [1,589÷3,086] 0.141

Wahlund total score [Range] 3.58 ± 3.29 [0.0÷10.0] 3.78 ± 2.63 [0.0÷7.0] 0.886

p denotes significance on ANOVA.

groups (AD high risk, N = 13, AD low risk, N = 14) were
similar for age (p = 0.56), education in years (p = 0.87),
gender (p = 0.17), ApoE genotype (p = 0.15), MMSE scores
(p = 0.31) and white matter lesions load (p = 0.88; Table 3).
Figure 1 shows the visual rating scale of the SPECT scans rep-
resentative of normal control, MCI with low and MCI with
high risk to convert in AD, respectively. ANOVA results show
that the selected cut-off was effective in detecting two different
groups: patients with high risk to develop AD show significantly
higher alpha3/alpha2 power ratio than patients with low risk
(p = 0.0001). Moreover, a control analysis was performed on
the single frequencies. The results show that the increase of
alpha3/alpha2 frequency power ratio was due to both increase
of alpha3 (p = 0.001) and decrease of alpha2 (p = 0.0001)
and not to the modification of a single frequency. This con-
trol analysis was performed because the change of only one
frequency could be due to the chance. But it was not the
case.

Although the mean perfusion in all the selected ROIs was
similar between groups (all p > 0.38), in the group with high
alpha3/alpha2 frequency ratio there is a constant trend to a
lower perfusion (see Figure 3). Moreover, left hippocampal vol-
umes were lower for AD-high risk patients respect to low risk
ones (p < 0.001; Table 3). Data coming from normal controls
were used only to compute W scores in each selected perfu-
sion ROI. In patients at low risk to develop AD, significant
Pearson’s R negative correlation was found between perfusion in
the hippocampal complex ROI and theta rhythm (r = −0.544,
p = 0.044).

In patients at high risk to develop AD otherwise, more
and dissimilar correlations were found: a positive correlation,
inverted respect to patients at low risk, between the perfusion
in the hippocampal complex ROI and theta rhythm (r = 0.729,
p = 0.005). No other significant correlations were found in
both groups between perfusion ROIs and other EEG rhythms
or hippocampal volumes. Moreover, no significant correla-
tions were found between hippocampal complex ROI and theta
rhythm pooling low and high risk patients together (r = 0.086,
p = 0.671). The correlation analysis between theta and alpha
rhythm showed a positive correlation between the ghigher
alpha3/alpha2 power ratio and the theta brain rhythms (r = 0.67,
p < 0.03).

Discussion

Association between EEG Markers and MRI
Changes
In the present study the relationship between an EEG marker
(the alpha3/alpha2 power ratio) and the cortical thickness in
subjects with MCI was investigated. The alpha3/alpha2 power
ratio has been chosen because in previous works it has been
demonstrated that MCI subjects with higher alpha3/alpha2 ratio
are at major risk to develop AD (Moretti et al., 2009, 2011b,
2013b; Frisoni, 2012). Our results show that the MCI group
with higher alpha3/alpha2 ratio has a greater global cortical atro-
phy than the other subgroups, thus confirming a large body of
literature (Frisoni et al., 2007; Frisoni, 2012). Furthermore, the
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FIGURE 3 | Single-photon emission computed tomography (SPECT) visual rating. The output shows a SPECT visual inspection of glucose uptake
metabolism: the white square denotes an area of mild-to-moderate (purple to blue) temporparietal hypometabolism in one of the 14 at low risk and in one of the 13
at high risk MCI patient respect to one of the 17 enrolled controls.

greater atrophy is significant in two specific brain areas: pre-
cuneus and supramarginal gyrus (a brain area belonging to the
inferior parietal lobule), both in left and right hemisphere. These
results was largely expected considering previous studies. Indeed,
structural and functional abnormalities of the precuneus were
observed in MCI (Ryu et al., 2010) as well a in Azheimer’s disease
(Sperling et al., 2010) so that the atrophy of precuneus has been
considered as a pathognomonic marker of early AD. Recent stud-
ies suggest that the pathophysiological process of AD exerts spe-
cific deleterious effects on distributedmemory circuits, even prior
to clinical manifestations of significant memory impairment.
Specific regions, namely the precuneus and posterior cingulate,
together with the medial temporal lobe, are selectively vulnera-
ble to early amyloid deposition in AD pathology (Sperling et al.,
2010; De Haan et al., 2012). Recent studies have demonstrated
that during the successful encoding of new items there is a
desynchronization in the temporo-parietal memory-related net-
works whereas a synchronization prevent a successful semantic
encoding (Ryu et al., 2010; Pievani et al., 2011). The deleterious
role of synchronization has been recently demonstrated by an
interesting study facing the intriguing relationship between func-
tional and structural degeneration in AD (Sperling et al., 2010).
The authors detected some hub regions (heteromodal associa-
tive regions) selectively vulnerable in AD pathology, due to the
damage of inhibitory interneurons providing a loss of inhibition
at cellular level. According to the authors, the disinhibition pro-
vokes an increasing amount of neural activity at network level,
giving as a final result an hypersynchronization of brain areas.
Of note, this overactivity is excitotoxic and determines cellu-
lar apoptosis and brain atrophy. Also, Palop and Mucke (2010)
emphasize the role of inhibitory interneuron dysfunction, lead-
ing to hypersynchronization (Jones et al., 2011; Brier et al., 2012;
Chatwal and Sperling, 2012). Our results are in line with these
previous influential studies. A possible integrative view of all the
results could be as follows: (1) the higher neuronal activity in
the hub regions starts from a disfunction of cellular inhibition;

(2) the consequent disinhibition drives neural network to an
oversynchronization; (3) this oversynchronization is peculiar of
the hub regions with higher amyloid burden; (4) these over-
activated regions are prone to degeneration and atrophy; (5)
a possible neurophysiologic sign of this oversynchronization is
the increase of the alpha3/alpha2 power ratio we have found
in typical hub regions (Stam et al., 2003; Rossini et al., 2008;
Bhattacharya et al., 2011; Wu et al., 2011). It is of great interest
that there is an overlapping between the brain regions associated
with increase of EEG alpha3/alpha2 power ratio (hypersynchro-
nization of upper alpha) in our study and the regions associ-
ated with higher amyloid burden related to memory processes
(Palop and Mucke, 2010; Chatwal and Sperling, 2012). Moreover,
in the present study, there is a very interesting result. The atro-
phy of precuneus is coupled with the atrophy in supramarginal
gyrus and, at lesser extent, with inferior parietal, insula and supe-
rior temporal gyrus. This atrophy pattern is clearly expressed
in the group of MCI subjects with higher alpha3/alpha2 power
ratio. This finding fits well with the results of a recent study
(Wonderlick et al., 2009), investigating the functional connec-
tivity of human precuneus by resting state fMRI. The authors
found that there is a preferential pathway of connectivity of the
dorsal precuneus with supramarginal gyrus, parietal cortex, supe-
rior temporal gyrus and insula. As a consequence, the atrophy
we detected in the MCI group with higher alpha3/alpha2 ratio
power could be hypothesized as the loss of GM in an entire
anatomo-functional network more than atrophy of isolated brain
areas. Of note, it is widely accepted that AD is the result of
a cortical network impairment more than the atrophy of sin-
gle cortical areas (Zhang and Li, 2012). In subjects with low or
middle alpha3/alpha2 power ratio the cognitive impairment is
possibly due to cerebro-vascular impairment or non-AD degen-
erative process. Although rigid selection criteria were adopted to
include in the study only patients with primary cognitive deficits,
in the clinical practice is not infrequent to have MCI subjects not
due to AD.
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Association between EEG Markers and
SPECT Changes
The EEG alpha3/alpha2 frequency ratio in previous studies has
proved useful in identifying a group at greater risk of con-
verting in AD (Stam et al., 2005). This group has the higher
alpha3/alpha2 EEG frequency power ratio, at an orientative cut-
off of about 1.17. The choice of a cut-off allows the individuation
of a particular population inside the group of patients with MCI.
It is a very important issue of the study and makes it differ-
ent from other works, usually distinguishing the MCI subjects
on clinical, structural or functional aspects but not on a neuro-
physiological marker. The particular group individuated by the
higher alpha3/alpha2 power ratio is at major risk to develop AD.
The possibility to detect this risk not only in a group but also
in the single patient through a cut-off is also an original con-
tribution of this study. To be validated this EEG marker needs
correlation study with morphostructural or functional milestones
peculiar of AD, like as rCBF. These present results confirm that
the relationship alpha3/alpha2 identifies two distinct groups: the
higher ratio characterizes a group with a smaller hippocampal
volume and a constant trend of lower cerebral perfusion, even
if it does not reach significance. These results confirm previous
studies which have shown that patients with high risk of devel-
oping AD have left hippocampal atrophy and reduced SPECT
perfusion (Frisoni, 2012). Actually, amyloid plaques deposition,
NFT formation, neuronal loss, decrease in dendritic extent, and
synaptic depletion are thought to disturb the communication
among various cortical areas, resulting in anatomic isolation and
decreased perfusion of many cortical zones (Golde, 2003). The
lack of a significant difference is an obvious limitation of the
work. One possible explanation is the relatively small sample
size of the two groups. Given that the trend is constant, a larger
sample in both groups could exploit a significant statistical differ-
ence. On the other side, it is possible that when considering two
groups of patients, both with a MCI, the rCBF is not so sensi-
ble to evidence little difference. On the contrary, previous studies
have demonstrated that metabolic, but not perfusional, patterns
were related to severity of cognitive impairment and were more
sensible in detecting prodromal MCI due to AD (Mielke et al.,
1994). Further studies, with larger sample size, are mandatory
to confirm these results. The present study shows a correla-
tion between cerebral perfusion and theta rhythm. Anyway, the
correlation emerges only when considering the different groups
individuated on the alpha3/alpha2 frequency power ratio. This
is confirmed by the finding that when the groups are merged,
no correlation could be found. This is the main aspect of the
study and the peculiar novelty of the results. The patients at
lower risk to develop AD, who have a constant trend toward a
higher brain regional blood perfusion, maintains low levels of
hippocampal theta power while in patients at higher risk, with a
basically lower cerebral blood perfusion, theta rhythm tends to be
higher. This latter finding is also confirmed by the increased ratio
of theta/gamma frequency power ratio in the temporal region,
adjacent to the hippocampus. A lot of previous studies have
shown an increase of theta rhythm in patients with mild AD
(Rodriguez et al., 2011), so that the increase of theta power is a
robust features of AD. Theta rhythms are usually not appreciated

in normal awakening EEG. However, a theta power increase is
observed over the frontal and temporal areas during learning
and memory tasks. The theta rhythms that are recorded dur-
ing these tasks are thought to be produced by the activation
of septal-hippocampal system. On the other hand, it should be
taken in mind that EEG measures electrical field variations, and
a number of clinical conditions can disturb the normal elec-
trical field of the brain. For instance, electrolyte changes may
alter the appearance and time variation of the brain-generated
electrical fields, and medications can slow the posterior domi-
nant rhythm. Moreover, in assessing the frequency of the theta
rhythm, cerebrovascular lesions should be considered as a possi-
ble cause of increase. By means of observations in patients with
ischemic lesions, it has been suggested that delays in cortico-
cortical fiber propagation may play a global role in determining
human EEG frequencies, increasing the amount of theta activity
(Thatcher et al., 1998). Increased T2 relaxation times in corti-
cal gray matter and white matter were correlated with a shift
in relative EEG power to lower frequencies in the theta range
(4–7 Hz) and reduced cognitive performance (Rodriguez et al.,
2011). Anyway, none of our patients suffered from acute ischemic
lesions and there was no difference in the cerebrovascular load
between the two groups. Moreover, the EEG frequency details
of patients with chronic cerebrovascular load has been recently
investigated (Moretti et al., 2004) and they are not compatible
with an high alpha3/alpha2 frequency ratio increase. So, we are
confident the our results are of neurodegenerative origin. On
the whole, it emerges a picture in which it is not the simple
cerebral blood perfusion rate nor a single brain rhythm that
reflect the complexity of functional alteration in AD. A previ-
ous work already found that none of the regions of interest of the
SPECT scans were significantly correlated with clinical severity
(Müller et al., 1997; Wenderoth et al., 2005).

Theta and Alpha Frequency Interplay in MCI
Due to AD
Klimesch et al. (1996) and Klimesch (1997, 1999) have convinc-
ingly demonstrated that that the upper alpha band (10–13 Hz)
specifically reflects encoding memory processes. Recent EEG
and magnetoencephalography (MEG) studies have confirmed
that a correct functioning of memory, both in encoding and
in retrieval, requires the high alpha rhythm desynchronization
(or power decrease; Kilner et al., 2005; Wyart and Tallon-Baudry,
2008; Spitzer et al., 2009; Staudigl et al., 2010; Moretti et al.,
2012b). From a neurophysiological point of view the synchro-
nization (or power increase) of EEG alpha power has been
associated with the inhibition timing hypothesis (Moretti et al.,
2012b) and with poor information transmission, according to he
entropy’s theory (Hanslmayr et al., 2010; Moretti et al., 2013b).
The increases in alpha amplitudes reflect inhibition of corti-
cal brain regions (Hanslmayr et al., 2012; Moretti et al., 2012a,
2013a). Similarly, the entropy’s theory stated that synchroniza-
tion is disadvantageous for storing information, as it reduces the
flow of information (Moretti et al., 2013b). Entropy is a mea-
sure of the richness of information encoded in a sequence of
events. Applying this concept to the neural networks, it has
been demonstrated (Wonderlick et al., 2009) that the degree of
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information that is encoded in neural assemblies increases as a
function of desynchronization and decreases as a function of syn-
chronized firing patterns (Jensen and Mazaheri, 2010; Norman,
2010). This hypothesis has been confirmed in clinical studies
in patients with memory deficits (Schneidman et al., 2011). as
well as during states where there is little cognitive processing
(e.g., epileptic seizures or slow wave sleep; Goard and Dan, 2009;
Wonderlick et al., 2009; Kurimoto et al., 2012) As regards cog-
nitive impairment due to AD, the typical synaptic loss could
prevent the physiological flexibility of brain neural assemblies,
impeding the desynchronizing downstream modulation of the
brain activity. As a consequence, it could be hypothesized that
the disruption of cortical network due to degenerative disease,
inducing cortical atrophy, could determine an oversynchroniza-
tion of the brain oscillatory activity. The synchronization state
of the high alpha power could prevent the creation of a seman-
tic sensory code and, consequently, of the episodic memory
trace (Barlow, 1961; Bialek et al., 1991; Bazanova and Aftanas,
2008; Chalk et al., 2010). In previous seminal studies, high alpha
frequency has been specifically related to semantic memory pro-
cesses (Craik, 2002; Moretti et al., 2003; Hanslmayr et al., 2009).
Of note, in subjects with early cognitive decline, the impairment
of the semantic features of memory has been recently accepted
as a hallmark for the early AD diagnosis. (Dubois et al., 2007;
Albert et al., 2011). Indeed, according to the new diagnostic crite-
ria of AD, the measurement of sensitivity to semantic cueing can
successfully differentiate patients with AD from healthy controls,
even when patients are equated to controls on MMSE scores or
when disease severity is verymild. Our results are generally in line
with this hypothesis, suggesting that increase in power of high
alpha brain oscillations reflects a block of information processes.
However, the present study goes one step further, linking the
increase of high alpha synchronization to the atrophy of a specific
brain network, correlated with impairment in memory perfor-
mances. Hippocampus has a cholinergic innervation originating
from basal forebrain, the medial septum, and the vertical limb
of the diagonal band of Broca. Populations of GABAergic and
glutamatergic neurons have also been described in several basal
forebrain structures. The synchronized depolarization of hip-
pocampal neurons produces field potentials that have a main fre-
quency of 3–12 Hz and are usually known as hippocampal theta
rhythm (Bland and Colom, 1993; Craik, 2002). A cholinergic–
glutamatergic hypothesis of AD, in which most symptoms may
be explained by cholinergic–glutamatergic deficits, has been
advanced. Neuronal injury/loss may include an excitotoxic com-
ponent that possibly contributes to the early cholinergic deficit.
This excitotoxic component may occur, at least in part, at the
septal level where somas of cholinergic neurons are found.
This insult may modify septal networks and contribute to the
abnormal information processing observed in AD brain, includ-
ing its hyperexcitability states. According to this theory, the
increased theta production in AD would derive from hyperex-
citability of the septal-hippocampal system (Bland and Colom,
1993; Colom, 2006; Moretti et al., 2007, 2008). Of note, such
pattern of decreased cerebral blood flow activity and increased
excitability was found even prior to the onset of cognitive impair-
ment and cortical atrophy (Moretti et al., 2012a).

A recent study, confirms the major role of the interplay of
theta and alpha frequency in the cognitive impairment evaluat-
ing the global field synchronization and power spectral analysis
(Abuhassan et al., 2014).

This study have investigated the interplay between vari-
ous synaptic degeneration and compensation mechanisms, and
abnormal cortical oscillations based on a large-scale network
model consisting of 100,000 neurons exhibiting several cortical
firing patterns, 8.5 million synapses, short-term plasticity, axonal
delays and receptor kinetics.

The structure of the model is inspired by the anatomy of
the cerebral cortex. The results of the modeling study sug-
gest that cortical oscillations respond differently to compen-
sation mechanisms. In particular, the local compensation pre-
serves the baseline activity of theta and alpha oscillations.
Deactivating local compensation mechanisms will result in rapid
decline (cognitive deficit) of the network dynamics at theta
and alpha bands. Therefore, methods which can enhance local
compensation could play a major role in the stimulation of
neural processes and cognitive functions that are associated
with these frequency bands. As compensating for synaptic
loss is speculated to differ from one cortical area to another,
the study suggests that activating an inappropriate compen-
sation mechanism in a particular area may fail to recover
the network dynamics and/or may induce secondary patho-
logical changes in the network. This speculation is supported
by the observation that local compensation fails at recover-
ing/maintaining the baseline delta and beta oscillations whilst
theta and alpha oscillations are least preserved with global com-
pensation.

Clinical Implications
The associations between neurophysiological, functional and
morphostructural biomarkers may open new perspectives in
terms of early diagnosis of Alzheimer’s disease. In addition,
the correlation of these biomarkers with peculiar cognitive per-
formance can be a valuable prognostic tool and a mean to
identify a particular group of subjects with MCI who may par-
ticipate in clinical trials in which new therapies are tested.
This would allow a more accurate diagnosis, better planning
for the future by the patient and his family, and optimiza-
tion of health care spending. Of course, the next step is
to move away from population studies to studies on single
subject.

Study Limitations
There are some limitations due to the obvious explorative nature
of the present study: (1) further studies are needed to confirm
our result on larger samples and applying an appropriate multi-
ple comparison correction; (2) the pattern of cortical thickness
should be investigated on the remaining EEG frequency mea-
sures; (3) finally the retrospective nature of the study prevented
a direct assessment of whether subjects with increase of a3/a2
EEG power ratio will convert to Alzheimer’s or other neurode-
generative disease; (4) the conservative p < 0.001 used here is not
necessarily sufficient given the number of comparisons. Anyway,
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given the explorative nature of the study it is plausible a per-
missive approach in order to avoid to reject possibly interesting
results.

It remains clear that further studies with less permissive statis-
tical approach are mandatory to confirm results.

Conclusion

The present results show that that synchronization (or increase
in power) of high alpha is associated with greater cortical atro-
phy. The greater cortical atrophy is present both the whole brain
volume and in a peculiar memory-related network, including
precuneus and temporo-parietal cortices. The combination of

EEG alpha3/alpha2 ratio and cortical thickness measure could be
useful for identifying individuals at risk for progression to AD
dementia and may be of value in clinical context.
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It has been suggested that changes in some event-related potential (ERP) parameters
associated with controlled processing of stimuli could be used as biomarkers of
amnestic mild cognitive impairment (aMCI). However, data regarding the suitability of
ERP components associated with automatic and involuntary processing of stimuli for this
purpose are not conclusive. In the present study, we studied the Mismatch Negativity
(MMN) component, a correlate of the automatic detection of changes in the acoustic
environment, in healthy adults and adults with aMCI (age range: 50–87 years). An
auditory-visual attention-distraction task, in two evaluations separated by an interval of
between 18 and 24 months, was used. In both evaluations, the MMN amplitude was
significantly smaller in the aMCI adults than in the control adults. In the first evaluation,
such differences were observed for the subgroup of adults between 50 and 64 years
of age, but not for the subgroup of 65 years and over. In the aMCI adults, the MMN
amplitude was significantly smaller in the second evaluation than in the first evaluation,
but no significant changes were observed in the control adult group. The MMN amplitude
was found to be a sensitive and specific biomarker of aMCI, in both the first and second
evaluation.

Keywords: amnestic mild cognitive impairment, Alzheimer’s disease, event-related potentials, mismatch

negativity, sensory memory, biomarkers

INTRODUCTION
Mild cognitive impairment (MCI) is a heterogeneous clinical
entity characterized by objective evidence of cognitive decline,
without any notable impairment in the performance of daily
activities. It is also considered as an intermediate stage between
the cognitive changes associated with healthy aging and early clin-
ical features of dementia (Petersen, 2004; Winblad et al., 2004).
Among the different subtypes of MCI, amnestic MCI (aMCI) is
the most likely to progress to Alzheimer’s disease (AD) (Petersen
et al., 2001, 2009; Petersen, 2004; Winblad et al., 2004; Albert
et al., 2011), which is the most prevalent form of dementia in the
elderly (Papaliagkas et al., 2009).

The establishment of aMCI biomarkers would be of benefit to
clinicians as the biomarkers could be used as objective diagnos-
tic tools, thus allowing early or pre-symptomatic identification of
AD, aiding treatment decisions, monitoring disease progress, and
providing opportunities for prevention by population screening
(Henry et al., 2012). The methods used to search for biomark-
ers of MCI include neuroimaging techniques (Small et al., 2006;
Hämäläinen et al., 2007), cerebrospinal fluid analysis (Perneczky
et al., 2011), genetic analysis (Zhang et al., 2012) and electroen-
cephalography (EEG), both quantitative EEG (see Jackson and
Snyder, 2008) and event-related potentials (ERPs; see Jackson and
Snyder, 2008 and Vecchio and Määttä, 2011).

The use of ERP technique in the search for aMCI biomarkers
is founded on three essential characteristics designated as ideal
(see Hampel et al., 2010): it is non-invasive, simple to measure

and inexpensive. Moreover, the technique has good temporal res-
olution and allows the study of neurophysiological correlates of
sensory-perceptive and pre-attentive processes, the integrity of
which are essential for the efficient functioning of higher-level
processes and thus the final performance.

Some ERP studies have shown a larger deficit in the controlled
processing of information (such as the evaluation of stimuli in
working memory) in adults with aMCI than in healthy adults
(Golob et al., 2001; Bennys et al., 2007; Missonnier et al., 2007; Lai
et al., 2010; Li et al., 2010; Parra et al., 2012). This deficit appears
to be more evident in aMCI adults that progress to AD than in
those who do not develop AD (Golob et al., 2007; Missonnier
et al., 2007). However, studies concerning ERP correlates of invol-
untary and automatic processing of stimuli in adults with MCI are
scarce and the results are inconclusive.

The mismatch negativity (MMN) component is probably the
most widely studied ERP component in healthy and clinical pop-
ulations, in relation to automatic and pre-attentive processing of
stimuli. Mismatch negativity was first described for the auditory
modality (Näätänen et al., 1978), but has also been reported for
other sensory modalities (for a review see Näätänen et al., 2007).

Auditory MMN is a negative wave commonly derived by
subtracting the ERP waveform evoked by the standard stimu-
lus from that evoked by the deviant stimulus in passive oddball
tasks (which do not require the participant’s attention). In young
adults, the MMN latency is between 100 and 200 ms, and the
amplitude is maximal at frontocentral sites (reversing polarity
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at mastoid electrodes). In fact, MMN is considered a correlate
of pre-attentive processes, which are triggered when the sen-
sory input does not match the echoic memory representation of
a prevalent standard stimulus. Therefore, auditory MMN is an
objective index of auditory discrimination (automatic detection
of changes in the acoustic environment) and an indirect measure
of the accuracy of the neural representation of a standard stimulus
(see Näätänen and Alho, 1997).

Among the neural generators of MMN, the bilateral supratem-
poral cortices and predominantly right frontal cortex have been
consistently identified (Näätänen et al., 2007). It has been sug-
gested that the supratemporal component is involved in the
automatic detection of auditory change and that the frontal com-
ponent is related to the involuntary attention switch caused by
auditory change (Giard et al., 1990; Rinne et al., 2000).

Some studies have shown that the MMN amplitude decreases
significantly with age in healthy adults. This has been observed
both when the deviant stimulus differs from the standard in
duration (Pekkonen et al., 1996; Cooper et al., 2006) or tonal
frequency (Czigler et al., 1992; Gaeta et al., 1998; Cooper et al.,
2006) and when novel stimuli are presented (Gaeta et al., 1998).
It has also been observed with long interstimulus intervals (ISIs)
(Czigler et al., 1992; Pekkonen et al., 1996), but not with short ISIs
(2.4 s. or less; Pekkonen et al., 1996; Amenedo and Díaz, 1998;
Raggi et al., 2013; but also see Czigler et al., 1992; Gaeta et al.,
1998; Cooper et al., 2006). In a rather less consistent manner,
the latency of MMN also increases with age (Gaeta et al., 1998;
Cooper et al., 2006).

Two possible explanations for age-related changes in MMN
parameters have been proposed: (i) the sensory memory trace
may be poorer or more degraded in older than in younger sub-
jects, reflecting an inaccurate representation of standard stimuli
by the brain, and/or (ii) a deficient comparator mechanism fails
to detect a mismatch between the representation of the standard
and the deviant stimuli (Gaeta et al., 1998).

In studies with AD patients, changes in MMN have been
observed under some task conditions. For ISIs of 1.3 s or less, no
significant differences between control adults and adults with AD
were observed in the MMN amplitude elicited by changes in tonal
frequency (Pekkonen et al., 1994; Kazmerski et al., 1997; Gaeta
et al., 1999; Brønnick et al., 2010) or by presentation of novel
stimuli (Kazmerski et al., 1997; Gaeta et al., 1999). However, in
AD patients the MMN amplitude was significantly smaller for an
ISI of 3 s than for the shorter ISI condition (1 s), while in control
adults the MMN amplitude was stable across both ISIs (Pekkonen
et al., 1994). These results suggest that sensory memory trace
decays faster in AD patients than in healthy controls, although
auditory discrimination was not affected (Pekkonen et al., 1994).

In the only published study to date evaluating the effect of MCI
on MMN parameters, Mowszowski et al. (2012) recorded ERPs in
a sample of 14 healthy adults and 28 adults with MCI, in a passive
oddball task in which the standard and deviant stimuli differed in
duration (standard: 50 ms, deviant: 100 ms). In the MCI group,
all participants showed impairment in several cognitive domains.
Of these, half were amnestic subtype (aMCI) Multiple Domain
and half non-amnestic subtype (naMCI) Multiple Domain. The
authors found no differences between the MCI and control

groups in MMN amplitude or latency, or between the aMCI
and naMCI subtypes at frontocentral locations. However, they
did observe that at mastoid locations, the MMN amplitude was
smaller in the MCI group than in the control group, which
the authors considered reflect of the inefficiency of processing
information in an early pre-attentional stage in the MCI group.

The recent study by Mowszowski et al. (2012) provided some
interesting results, but also presented some limitations. Thus, the
differences in MMN amplitude between MCI and control adults
were obtained at mastoid electrodes, but not at the frontocen-
tral locations, where MMN is typically identified and analyzed.
Moreover, the analysis did not take into account the possi-
ble effects of interactions between the Age and Group factors,
although previous studies have reported age effects on MMN
amplitude to changes of stimuli duration (Pekkonen et al., 1996;
Gaeta et al., 1998; Cooper et al., 2006). Moreover, the MCI
group was heterogeneous, as it included both amnestic and non-
amnestic multidomain MCI patients.

The aims of the present study were as follows: (1) to deter-
mine any differences in MMN parameters between healthy adults
and adults with aMCI; (2) to evaluate whether such differences
between healthy adults and adults with aMCI are affected by age,
by considering two age subgroups (50–64 years and 65 years and
over); (3) to determine whether the differences in MMN parame-
ters between healthy and aMCI adults are maintained in a second
evaluation, conducted 18–24 months after the first evaluation,
and (4) to evaluate whether MMN changes associated with aMCI
are sensitive and specific biomarkers of this syndrome.

We used an auditory-visual attention-distraction task [based
on the task designed by Escera et al. (1998), see Methods section].
This task was presented to a sample of healthy control adults and
adults with aMCI during two evaluations separated by an interval
of between 18 and 24 months. Auditory MMN was obtained by
subtracting the ERP waveform evoked by standard stimuli from
the waveform evoked by the deviant or novel stimuli (deviant
minus standard, and novel minus standard).

To our knowledge, this is the first study designed to determine
whether MMN parameters (amplitude and/or latency) are sensi-
tive and specific biomarkers of aMCI, whether their effectiveness
in identifying adults with this syndrome interacts with age, and
also whether the MMN parameters change over time in healthy
control and aMCI adults.

MATERIALS AND METHODS
PARTICIPANTS
Participants were 56 healthy adult volunteers (35 women, 21
men; age range: 50–87 years old; mean = 65.7 years, SD =
9.1), recruited from Primary Care Health Centres in Santiago
de Compostela and Vigo (Galicia, Spain) and referred to our
research group by their general practitioners (GPs). The partic-
ipants had no history of clinical stroke, traumatic brain injury,
motor-sensory defects, or alcohol or drug abuse/dependence, and
they were not diagnosed with any significant medical or psy-
chiatric illnesses. To control for the effects of depression, adults
with a score of more than 10 in depression screening (Geriatric
Depression Scale, GDS; Yesavage et al., 1983) were excluded from
the study. All participants had normal audition and normal or
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corrected-to-normal vision. Most of them were right-handed, as
assessed by the Edinburgh inventory (Oldfield, 1971), except for
one left-handed and one ambidextrous participant.

After giving their written informed consent, participants were
referred by their GPs to the Psychogerontology Group (see
Juncos-Rabadán et al., 2013) with whom we participate in a col-
laborative research project. They conducted the neuropsycholog-
ical evaluation and the clinical diagnosis of MCI. The participants
were then referred to our laboratory for psychophysiological
(ERP) evaluation.

The participants provided us with information about years of
education, as well as socioeconomic, medical and personal data,
received extensive psychological and neuropsychological evalu-
ations, and were diagnosed and classified as control or aMCI.
They underwent the following tests: (1) The Mini-Mental State
Examination (MMSE, Folstein et al., 1975; Spanish version, MEC
by Lobo et al., 1999), which assesses general cognitive func-
tioning; (2) The Californian Verbal Learning Test [CVLT, Delis
et al., 1987; Spanish version, TAVEC by Benedet and Alejandre
(1998)], which assesses short-delay free recall, short-delay recall
with semantic cues, and long-delay free recall; (3) The Spanish
version of the Cambridge Cognitive Examination (CAMCOG-R),
which assesses deterioration in specific domains such as lan-
guage, attention-calculation, praxis, perception, and executive
functioning (Huppert et al., 1996) and is sensitive to MCI detec-
tion (Gallagher et al., 2010); and (4) The Spanish version of the
vocabulary test of the Wechsler Adult Intelligence Scale (WAIS,
Wechsler, 1988).

Two evaluations, separated by an interval of between 18 and
24 months, were carried out. In the first evaluation, the Control
group (CG) comprised 30 adults aged between 50 and 84 years
(mean: 63.9 years, SD: 8.4) with normal cognitive and mem-
ory functioning, and the aMCI group comprised 26 adults aged
between 51 and 87 years (mean: 67.8 years, SD: 9.3). In the sec-
ond evaluation, only 27 (18 control and 9 aMCI) of the initial
sample of 56 participants agreed to participate in the ERP record-
ings. Two of the 18 control adults and 1 of the 9 aMCI adults
were excluded because of excessive artifacts in their recording,
and 1 aMCI adult died. Nine of the 16 control adults with valid
recordings were selected with the aim of matching their ages with
the aMCI group. Consequently, the final sample in the second
evaluation consisted of 16 adults: 9 control adults (range age:
59–73 years) and 7 aMCI adults (range age: 62–89 years), whose
diagnosis was maintained between evaluations.

In both evaluations, control adults scored higher than the
cut-off on memory, general cognitive functioning, and specific
cognitive domain tests. The aMCI subjects met the general cri-
teria for MCI outlined by Albert et al. (2011) and the criteria
for aMCI proposed by Petersen and colleagues (Petersen, 2004;
Dubois et al., 2007).

The aMCI adults fulfilled the following criteria: (1) mem-
ory complaints corroborated by an informant; (2) performance
of less than 1.5 SDs below age norms for the CVLT; (3) no
significant impact on daily living activities; and (4) without
dementia, according to the National Institute of Neurological
and Communicative Diseases and Stroke/Alzheimer’s Disease
and Related Disorders Association (NINCDS-ADRDA) and the

Diagnostic and Statistical Manual of Mental Disorders (DMS-
IV) criteria. The Lawton and Brody Index (Lawton and Brody,
1969) was used to evaluate instrumental activities of daily liv-
ing (IADL). Nine of the aMCI adults fulfilled criteria for multiple
domain amnestic MCI (mda-MCI), and 17 subjects fulfilled cri-
teria for single domain amnestic MCI (sda-MCI). With respect
to general cognitive functioning, the mda-MCI subjects scored
less than 1.5 SDs below age- and education-related norms in the
MEC and in at least two cognitive subscales of the CAMCOG-
R. For the analysis of the present study, the two subgroups of
aMCI were not differentiated, because they did not show any dif-
ferences in MMN parameters (see Results section), and they were
consequently regrouped into a single group of adults with aMCI.

The research project was approved by the Galician Clinical
Research Ethics Committee (CEIC) and performed in accordance
with the ethical standards established in the 1964 Declaration of
Helsinki (Lynöe et al., 1991).

STIMULI AND TASK
An auditory-visual attention-distraction task adapted from
Escera et al. (1998, 2001) was used. This included a passive audi-
tory oddball task and an active Go/NoGo three-stimuli visual
oddball task. Participants were presented with 500 auditory-visual
(A-V) stimuli pairs (divided in two blocks separated by a 2-min
rest interval). Each pair included an auditory stimulus (150 ms
duration) followed by a visual stimulus (200 ms duration), with
an interval of 300 ms (onset-to-onset) between them, and a 2-s
interval between each pair. Participants were asked to attend to
the visual stimuli and ignore the auditory stimuli.

Auditory stimuli were sounds, presented binaurally via head-
phones, with 75 dB SPL intensity. Three kinds of sounds were
presented: 70% were standard stimuli (tone bursts, 1000 Hz),
15% were deviant stimuli (tone bursts, 2000 Hz), and 15% were
novel stimuli (different each time: glass crashing, ringing, etc . . .).
Visual stimuli were numbers (2, 4, 6, or 8), letters (a, e, c, or u)
or triangles (pointing up, down, right, or left). Participants were
asked to respond to the numbers (33%) with one hand and to the
letters (33%) with the other hand, by pressing a different button
in each case (Go condition), and they were asked to inhibit their
responses to triangles (34%, NoGo condition). Response buttons
were counterbalanced among participants. For this task, each par-
ticipant underwent two evaluations separated by an interval of
between 18 and 24 months.

ELECTROENCEPHALOGRAPHIC (EEG) RECORDING
The participants were seated on a comfortable chair in a Faraday
chamber, with attenuated levels of light and noise, and were
instructed to move as little as possible during the recording.
Visual stimuli were presented with a subtended visual angle of
1.7◦ × 3.3◦ of arc, on a 19′′ flat screen monitor with a vertical
refresh rate of 120 Hz. The monitor was located one meter away
from the participant. The electroencephalogram was recorded
from 49 ring electrodes placed in an elastic cap (Easycap, GmbH),
according to the International 10-10 system. All electrodes were
referenced to an electrode attached to the tip of the nose, and
an electrode positioned at Fpz served as ground. The horizon-
tal electro-oculogram (EOG) was recorded from two electrodes
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placed at the outer canthi of both eyes, and the vertical EOG was
recorded from two electrodes placed supra and infra-orbitally on
the right eye. The EEG was continuously digitized at a rate of
500 Hz (bandpass 0.01–100 Hz), and electrode impedances were
kept below 10 k�.

Once the signal was stored, ocular artifacts were corrected and
the EEG was then segmented by extraction of -100 to 650 ms
epochs, synchronized with each auditory stimuli. These were then
classified a posteriori as Standard, Deviant and Novel, depending
on the type of auditory stimulus. The signal was passed through a
digital 0.1–30 Hz (24 dB/octave slope) bandpass filter and epochs
were corrected to the mean voltage of the 100-ms pre-stimulus
recoding period. EEG segments exceeding ±100 µV and the first
five epochs of each block were automatically excluded from the

averages. Finally, to identify and measure MMN, we obtained the
deviant minus standard (D-S) and novel minus standard (N-S)
difference waveforms.

DATA ANALYSES
The MMN component was identified as a negative wave in the
125–260 ms interval, and it was evaluated at the Cz electrode site
(where the amplitude was maximal). The polarity of the com-
ponent was reversed at temporal (TP9 and TP10) electrode sites
(see Figure 1).

In the first evaluation, the MMN component was identified
in the N-S and D-S difference waveforms, for the two groups
of participants (CG and aMCI group). In the second evaluation,
MMN was also identified in the N-S and D-S difference traces for

FIGURE 1 | Grand-average event-related potentials waveforms,

measured at Cz (top), during the 350 ms after the stimulus, and voltage

and current source density (CSD) maps for MMN maximum peak

(bottom), in the novel minus standard difference waveforms, for control

and aMCI adults, in the first (for the two age subgroups) and second

evaluations.
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the control adults; however, for the aMCI adults, MMN was only
identified in the N-S difference trace and it was absent in the D-S
difference trace.

The MMN amplitude (in microvolts, from the maximum peak
to the baseline) and latency (in milliseconds, from the auditory
stimulus onset to the maximum peak) were measured. Current
source density (CSD) and voltage maps were also obtained for
topographic analysis.

STATISTICAL ANALYSES
In the first evaluation, one-factor analysis of variance (ANOVA)
was used to investigate the effect of the Group factor on the
MMN amplitude and latency (measured at Cz) in the N-S and
D-S difference waveforms. The analysis considered a dependent
variable (MMN amplitude or latency) and an independent fac-
tor (Group, three levels: CG, sda-MCI, and mda-MCI groups).
As there were no significant differences between aMCI subgroups
for MMN parameters, both subgroups were regrouped as a single
aMCI group for the following analysis.

Two-factor ANOVAs was used to investigate the effect of
Group and Age factors on the MMN amplitude and latency (mea-
sured at Cz) in the N-S and D-S waveforms. The analysis included
a dependent variable (MMN amplitude or latency) and two inde-
pendent factors, Group (two levels: CG, and aMCI) and Age (two
levels: middle-aged adults: 50–64 years, and older adults: 65 years
and over).

In the second evaluation, a one-factor ANOVAs (Group) was
used to investigate the Group factor effect on the MMN amplitude
and latency (measured at Cz) in the N-S difference waveforms.
The Age factor was not evaluated because of the small number
of participants (9 in the CG and 7 in the aMCI group). In this
evaluation, the effect of the Group factor on MMN in the D-S
difference was not evaluated because no MMN component was
observed in this difference waveform in aMCI adults.

Finally, t-tests for related samples were used to evaluate the
changes in the MMN parameters (in the N-S difference wave-
form) between the first and the second evaluation, in each group
of participants (9 control adults and 7 aMCI adults).

When the ANOVAs revealed significant factor and interactions
effects, further comparisons of the mean values were carried out
by paired multiple comparisons (adjusted to Bonferroni correc-
tion). Differences were considered significant at p < 0.05.

The receiver-operating characteristics (ROC) method was
used to assess the capacity of MMN parameters to discriminate
aMCI adults from control adults. A line diagram was constructed
with the sensitivity (true positive rate) plotted on the vertical axis
and the false positive rate (1 minus specificity) on the horizontal
axis. The ROC curve was constructed by finding the sensitivity
and specificity for a range of values of the continuous variable
(MMN parameters). The tests were considered to be ideal when
the area under the curve (AUC) was higher than 0.7.

All statistical analyses were performed with IBM SPSS
Statistics package v.19 for Windows.

RESULTS
DEMOGRAPHIC AND NEUROPSYCHOLOGICAL DATA
In both evaluations, the groups were matched according to age
and level of education. The demographic and neuropsychological

Table 1 | Mean values and standard deviations (in parentheses) of the

demographic and neuropsychological measures, for control and

amnestic MCI (aMCI) adults.

Control aMCI p<

FIRST EVALUATION N = 30 N = 26

Age 63.9 (8.4) 67.8 (9.3) NS

Years of education 9.4 (4.4) 10.15 (4.7) NS

Gender (F/M) 21/9 14/12

WAIS, vocabulary 49.9 (11.7) 46.7 (13.4) NS

MMSE 28.5 (0.9) 25.8 (2.1) 0.001 Control > aMCI

CVLT (short-delay free
recall)

10.2 (2.3) 3.9 (1.8) 0.001 Control > aMCI

CVLT (short-delay cued
recall)

12 (2.3) 5.8 (2.2) 0.001 Control > aMCI

CVLT (long-delay free
recall)

11.4 (2.2) 4.5 (3) 0.001 Control > aMCI

Depression (GDS) 2.9 (2.1) 3.8 (3.1) NS

SECOND EVALUATION N = 9 N = 7

Age 66.6 (5.5) 74.4 (10.1) NS

Years of education 8.2 (4.3) 11.1 (4.5) NS

Gender (F/M) (7/2) (3/4)

WAIS, vocabulary 46.4 (9) 49 (16.7) NS

MMSE 28.1 (1.2) 23.3 (5.1) 0.01 Control > aMCI

CVLT (short-delay free
recall)

11.6 (2.9) 2.7 (2.6) 0.001 Control > aMCI

CVLT (short-delay cued
recall)

13 (1.9) 5 (2.5) 0.001 Control > aMCI

CVLT (long-delay free
recall)

12.3 (3.3) 4.7 (3.6) 0.001 Control > aMCI

Depression (GDS) 2.2 (0.9) 2.7 (1.1) NS

The ANOVA results for the Group factor are also shown.

measurements are summarized in Table 1, together with the
between-group differences calculated by the corresponding anal-
ysis. For an extensive description of the global samples, the
inclusion/exclusion criteria, the tests used, and the diagnosis and
classification criteria, see Juncos-Rabadán et al. (2013).

ERPs
The factors under consideration did not have any significant
effects on the MMN latency or amplitude in the D-S difference
waveforms. Therefore, we will report only the results obtained for
MMN in the N-S difference waveforms, for both the first and the
second evaluation.

The mean MMN amplitudes (µV) and latencies (ms) obtained
in both evaluations are shown in Table 2. The grand average ERP
waveforms of the N-S difference traces and the voltage and CSD
maps for MMN maximum amplitude peaks in the first and the
second evaluations are shown in Figure 1. Voltage maps for MMN
revealed larger amplitudes for the CG than for the aMCI group.
In both groups, the CSD maps showed bilateral sinks at tem-
poroparietal scalp regions and a right frontal source. However,
between-group topographical differences in CSD maps were also
observed. During the first evaluation, a widespread centroparietal
source was observed in control adults in the older age subgroup
(65 years and over) and in aMCI adults in the middle-aged
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Table 2 | Mean values and standard deviations (in parentheses) of the auditory MMN amplitudes (in µV) and latencies (in ms), measured at the

Cz electrode, in the novel minus standard (N-S) and deviant minus standard (D-S) difference waveforms, for the two diagnostic groups

(control and amnestic MCI adults).

Group Age N-S MMN D-S MMN

Amplitude Latency Amplitude Latency

FIRST EVALUATION

Control adults (N = 30) 50–64 (N = 15)
(M: 56.8 years, SD: 3.9)

−5.3 (3.3) 207 (27) −1.9 (2.0) 228 (25)

≥65 (N = 15)
(M: 71.1 years, SD: 4.9)

−2.6 (2.2) 202 (33) −1.1 (1.5) 207 (32)

aMCI adults (N = 26) 50–64 (N = 10)
(M: 58.8 years, SD: 4.3)

−2.1 (2.8) 187 (35) −1.2 (1.2) 208 (27)

≥65 (N = 16)
(M: 73.5 years, SD: 6.7)

−2.5 (2.2) 186 (34) −2.2 (2.1) 201 (33)

SECOND EVALUATION

Control adults (N = 9) 59–73
(M: 66.6 years, SD: 5.5)

−4.7 (3.5) 205 (56) −1.9 (1.2) 210 (35)

aMCI adults (N = 7) 62–89
(M: 74.4 years, SD: 10.1)

−1.1 (2.0) 192 (34) – –

In the first evaluation, the data for the two age subgroups (50–64 years and 65 years and over) in each group (control and aMCI) are shown.

M: mean, SD: standard deviations.

subgroup (50–64 years); however, this source was not observed in
the middle-aged control adults or in the older adults with aMCI.

First evaluation
For MMN latency, the two-factor ANOVA (Group × Age) showed
significant effects of the Group factor [F(1, 52) = 4.1, p < 0.048],
as latency was significantly shorter in the aMCI group than in
the CG. For MMN amplitude, the two-factor ANOVA revealed
significant effects of the Group factor [F(1, 52) = 5.4, p < 0.023]
and the Group × Age interaction [F(1, 52) = 4.9, p < 0.031],
because the amplitude was significantly larger (p < 0.004) in the
CG than in the aMCI group, only for the middle-aged subgroup
(50–64 years). Furthermore, for the CG, the amplitude was sig-
nificantly larger (p < 0.008) in the middle-aged than in the older
adults.

Second evaluation
For MMN latency, the one-factor ANOVA revealed no significant
factor (Group) effect. For MMN amplitude, the ANOVA showed
significant effect of the Group factor [F(1, 14) = 5.66, p < 0.032],
as the amplitude was significantly larger for the CG than for the
aMCI group.

First vs. Second evaluation
The t-test for related samples did not show any significant differ-
ences for the MMN latency between the first and second evalu-
ations. However, for the MMN amplitude, the analysis revealed
significant differences within the aMCI group, as the MMN
amplitude was significantly smaller in the second evaluation
(−1.1 µV) than in the first evaluation (−2.8 µV) [t(6) = −2.9,
p < 0.027]. The MMN amplitude and latency in the control

FIGURE 2 | Means and standard deviations for MMN amplitudes (in

µV) in the novel minus standard difference, in the first and the second

evaluations, for control (N = 9) and aMCI (N = 7) adults.

group did not differ significantly between the first and second
evaluations (see Figure 2).

SENSITIVITY AND SPECIFICITY
The ROC curves for MMN amplitudes (N-S difference wave-
forms), in the first and second evaluations, for the aMCI group
and CG comparisons are shown in Figure 3.

In the first evaluation, MMN amplitude showed 0.7 sensitivity
and 0.66 specificity (AUC = 0.76) for the discrimination between
aMCI and control middle-aged adults. However, the MMN
latency showed very low sensitivity and specificity (AUC = 0.34).
In the second evaluation, the MMN amplitude was also sensitive
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FIGURE 3 | Receiver-operating characteristics (ROC) curves are

represented for MMN amplitudes in novel minus standard difference,

in the first and the second evaluations, for the aMCI and control adults

comparison. Left: MMN amplitude for the middle-aged subgroup in the
first evaluation. Right: MMN amplitude in the second evaluation.

and specific in discrimination between aMCI and control groups,
with 0.71 sensitivity and 0.78 specificity (AUC = 0.82).

DISCUSSION
Mismatch negativity (MMN) component was identified in both
groups of participants (control and aMCI). As expected, CSD
maps showed bilateral sinks at temporal scalp regions and a
right frontal source for this component, presumably reflecting the
MMN generator activity, located in the auditory supratemporal
cortices and the frontal cortex, respectively (see Näätänen et al.,
2007).

Control and aMCI adults showed differences for MMN com-
ponent of the N-S difference waveforms in two evaluations sep-
arated by an interval of between 18 and 24 months. In the first
evaluation, the MMN amplitude was significantly smaller in the
aMCI adults than in the control adults, though only for the
middle-aged subgroup (between 50 and 64 years of age). The
MMN latency was significantly shorter in the aMCI group than in
the CG. In the second evaluation, the MMN amplitude was also
significantly smaller in the aMCI group than in the CG, and the
aMCI group showed a decrease in MMN amplitude from the first
to the second evaluation, whereas the CG did not show significant
changes between evaluations.

MMN LATENCY
In the first evaluation, the MMN latency was significantly shorter
in the aMCI group than in the CG. In the second evaluation,
although the mean values and SD for both groups were similar
to those of the first evaluation, the Group factor was not statis-
tically significant, probably because the sample size was smaller
in the second evaluation. This result is intriguing because no
significant differences in MMN latencies were observed in other
MMN studies comparing AD patients and healthy control sub-
jects (Kazmerski et al., 1997; Gaeta et al., 1999; Brønnick et al.,
2010) or in the only previous study comparing a MCI group with
a control group (Mowszowski et al., 2012).

Although the shorter MMN latency in the aMCI group than
in the CG in the first evaluation of this study must be consid-
ered with caution. Interestingly, Mowszowski et al. (2012) also
observed slightly shorter (but non-significant) MMN latencies

(measured at Fz and Cz electrodes) in the MCI than in the
control group (see Table 2, page 214, of the cited study). We ten-
tatively speculate that in participants with aMCI, earlier closure
of the comparison (in echoic memory) of each novel stimu-
lus with the stored model of a standard stimulus may occur,
resulting in a mismatch. This early closure may be premature
and related to the deterioration of echoic memory. However,
this hypothesis must be addressed in greater detail in future
studies.

MMN AMPLITUDE
In the first evaluation, the MMN amplitude was significantly
larger in the CG than the aMCI group, only for the middle-
aged subgroup (50–64 years). This may indicate some impair-
ment, in the middle-age aMCI adults, of the automatic detection
mechanism of disparities when the novel stimuli are presented.
This mechanism depends on maintaining an echoic memory
trace of the standard stimulus, with which it automatically
compares each novel (or deviant) stimuli presented. Näätänen
et al. (2011, 2012) suggested that MMN deficits may be at least
partly explained by dysfunction of the N-methyl-D-aspartate
(NMDA) receptor system, which usually binds to the neuro-
transmitter glutamate. Consequently, reduced MMN in aMCI
adults may signify a more general functional deficiency involv-
ing glutamatergic dysfunction, as suggested by Mowszowski et al.
(2012).

The ROC analysis for the first evaluation showed that MMN
amplitude could be considered a biomarker of aMCI in middle-
aged adults, discriminating between the two groups with a sen-
sitivity of 0.70 and specificity of 0.66 (AUC = 0.76, in ROC
curves).

For adults 65 years old or more, there were no differences in
MMN amplitude between the control and aMCI groups. This is
probably due to a significant age-related decrease in MMN ampli-
tude in the CG, as also found by Gaeta et al. (1998). For the
aMCI group, the MMN amplitude did not differ between the two
age subgroups. Thus, in the older adults (65 years and over), the
lack of differences between the CG and the aMCI group may be
due to an age-related decline in the mechanism for echoic mem-
ory trace maintenance and/or the pre-attentional mechanisms
involved in the automatic detection of differences in the acous-
tic environment, which may mask the effects of aMCI on that
parameter.

The CSD maps for MMN showed similar sources and sinks
in control and aMCI adults. These maps also revealed differ-
ences in the first evaluation, which are consistent with the results
obtained for the MMN parameters in the present work. Thus,
they revealed a centroparietal source in middle-aged adults (50–
64 years) with aMCI, but not in the middle-aged control adults,
which is consistent with the significant between-group differences
(control and aMCI adults) for MMN amplitude. Moreover, in
accordance with the observed effects of aging on the MMN ampli-
tude in the control group, this source was also observed in the
older control adults (65 years and over). Within the framework of
the Scaffolding Theory of Aging and Cognition (STAC) proposed
by Park and Reuter-Lorenz (2009), we believe that the said source
may reflect a brain that is adapting, through neural scaffolding,
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to the functional and structural changes that appear, either due to
aMCI in middle–aged adults or to healthy aging.

The present ERP results are partly consistent with those
obtained by Mowszowski et al. (2012) for the MMN amplitude
evoked by deviant stimuli, which differed from the standard
stimuli in duration (100 and 50 ms, respectively). These authors
observed a larger MMN amplitude in healthy adults than in a
multi-domain MCI group (for an age range of 50–90 years in both
groups), although only at mastoid locations, where MMN shows
polarity reversal, but not at the frontocentral locations, where the
amplitude of this negative component is maximal.

Our results are also consistent with those reported by
Pekkonen et al. (1994) for AD patients and healthy controls. These
authors observed a significant decrease in MMN amplitude, in the
AD group, from an ISI of 1 s to an ISI of 3 s, which they inter-
preted as a weakening of echoic memory trace with increasing ISI
in people with AD. In the present study, the interval between audi-
tory stimuli was 2.35 s. We also presented visual stimuli between
the auditory stimuli, which required attention and often response.
The combination of both factors may have affected the main-
tenance of echoic memory trace of standard auditory stimuli in
aMCI participants, but not in CG participants.

In the second evaluation (conducted between 18 and 24
months after the first), comparison of the MMN parameters in
a subsample of participants again showed a significantly larger
MMN amplitude in control adults than in adults with aMCI.
As found in the first evaluation, the MMN amplitude may be
considered a biomarker of aMCI, discriminating between the
two groups with 0.71 sensitivity and 0.78 specificity (AUC =
0.82, in ROC curves). Moreover, the characteristics of the MMN
component make it an ideal biomarker: it is an automatic ERP
component, which is not dependent on the attention given by the
subject to the task and, moreover, it is obtained in a non-invasive
manner and is simple and inexpensive to measure.

The MMN amplitude was also significantly smaller in the sec-
ond evaluation than in the first in the group with aMCI, while it
did not differ between evaluations in the CG. This may indicate
a progressive deterioration, in aMCI adults, of the neural mech-
anisms involved in the maintenance of sensory trace and/or the
pre-attentive mechanisms for automatic detection of changes in
the acoustic environmental. The findings highlight the impor-
tance of longitudinal studies in determining the evolution of
deficits detected in a first assessment in participants with aMCI, as
well as the diagnostic and prognostic value of psychophysiological
markers.

This study is not without limitations, mainly due to the small
sample size in the second evaluation. Future studies, with a large
sample of participants in all follow-up evaluations, should (1)
confirm the effect of the interaction between age and diagnos-
tic group on MMN amplitude, and (2) determine any differences
in how the MMN amplitude decreases over time in adults with
MCI who progress to AD and in adults with MCI who do not
develop AD.

Despite these limitations, the present study showed that the
MMN amplitude was smaller in adults with aMCI than in control
adults (in the middle-aged subgroup in the first evaluation and
in the whole sample in the second evaluation, conducted between

18 and 24 months after the first). In addition, in participants with
aMCI, the MMN amplitude was smaller in the second evaluation
than in the first, whereas no difference was observed in the control
group. The results of this study suggest that MMN amplitude can
be a fairly sensitive and specific psychophysiological biomarker
for the identification of adults with aMCI.
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Polymorphism in the genomic region harboring the CLU gene (rs11136000) has been
associated with the risk for Alzheimer’s disease (AD). CLU C allele is assumed to
confer risk for AD and the allele T may have a protective effect. We investigated the
influence of the AD-associated CLU genotype on a common neurophysiological trait of
brain activity (resting-state alpha-rhythm activity) in non-demented adults and elucidated
whether this influence is modified over the course of aging. We examined quantitative
electroencephalography (EEG) in a cohort of non-demented individuals (age range 20–80)
divided into young (age range 20–50) and old (age range 51–80) cohorts and stratified
by CLU polymorphism. To rule out the effect of the apolipoprotein E (ApoE) genotype
on EEG characteristics, only subjects without the ApoE ε4 allele were included in the
study.The homozygous presence of the AD risk variant CLU CC in non-demented subjects
was associated with an increase of alpha3 absolute power. Moreover, the influence of
CLU genotype on alpha3 was found to be higher in the subjects older than 50 years of
age. The study also showed age-dependent alterations of alpha topographic distribution
that occur independently of the CLU genotype. The increase of upper alpha power has
been associated with hippocampal atrophy in patients with mild cognitive impairment
(Moretti et al., 2012a). In our study, the CLU CC-dependent increase in upper alpha rhythm,
particularly enhanced in elderly non-demented individuals, may imply that the genotype is
related to preclinical dysregulation of hippocampal neurophysiology in aging and that this
factor may contribute to the pathogenesis of AD.

Keywords: Alzheimer’s disease, aging, clusterin, genetic predisposition, EEG, alpha rhythm

INTRODUCTION
Alzheimer’s disease (AD) is the major cause of dementia in
the elderly. It is estimated that 35.6 million people world-
wide currently suffer from dementia, with the prevalence pro-
jected to increase to 65.7 million by 2030 and 115.4 million
by 2050. Two-thirds of these people will likely develop
AD (http://www.alz.co.uk/research/files/WorldAlzheimerReport-
ExecutiveSummary.pdf). The incidence and prevalence of AD
begins to rise as individuals reach the age of 65, so that by the
time they are in their 80s and 90s the risk of clinical dementia is
nearly 50%.

Alzheimer’s disease has a strong genetic basis with heritabil-
ity estimates of up to 80% (Gatz et al., 2006). Mutations in the
amyloid precursor protein gene (chr21), presenilin 1 (chr14), and
presenilin 2 (chr1) genes are causative factors for familial AD
(Goate et al., 1991; Levy-Lahad et al., 1995; Rogaev et al., 1995;
Sherrington et al., 1995). A common polymorphism in the
apolipoprotein E gene (ApoE), located on chromosome 19, has
been established as the most common genetic risk factor for AD
in Caucasian ethnic groups, including the Russian population

(Saunders et al., 1993; Schmechel et al., 1993; Farrer et al., 1997;
Rogaev, 1999).

Recent genome-wide association studies (GWAS) studies have
provided evidence that polymorphisms of the clusterin (CLU)
(chr8) and PICALM (chr11) genes are also associated with AD
risk (Harold et al., 2009; Lambert et al., 2009; Golenkina et al.,
2010). Carriers of the CLU rs1113600 C allele have 1.16 greater
odds of developing late-onset AD than carriers of the potentially
protective T allele. Although the AD-association with CLU poly-
morphism alone was not confirmed in some studied populations,
the putative epistatic interaction of the CLU genotype with APOE
ε4 in risk for AD has been demonstrated (Golenkina et al., 2010).
Approximately 36% of Caucasians carry two copies of the risk-
conferring allele (Bertram et al., 2007), which imply significance
of this gene for public health.

The CLU gene encodes glycoprotein clusterin, also known as
apolipoprotein J, which shares several properties with ApoE. Clus-
terin and ApoE both act as amyloid-β (Aβ) chaperones to alter Aβ

aggregation and/or clearance (Killick et al., 2012; Ling et al., 2012).
Clusterin and ApoE are involved in the transport of cholesterol
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and phospholipids, and modulate AD-related pathways such as
inflammation and apoptosis (Bettens et al., 2012; Ling et al., 2012).
Clusterin is upregulated during different physiological and patho-
logical states, such as senescence, type-2 diabetes mellitus, AD, and
in various neoplasms (Song et al., 2012; Tang et al., 2013).

In order to identify early preclinical markers for AD, it is vital
to find specific genotype–phenotype characteristics in individuals
with hereditary risk for AD at different stages of the pathological
process, including the preclinical period. Such biomarkers can be
helpful for estimating the effect of potential therapies for prevent-
ing or delaying onset of neurodegenerative diseases (Illarioshkin
et al., 2004; Feigin et al., 2007; Masdeu et al., 2012; Suslina, 2012).
At present, there is still a mismatch between the known genetic
factors of AD, and the biomarkers reflecting the development of
the pathological process.

Electroencephalography (EEG) patterns are considered to be
valuable as an endophenotype – a more basic biological trait that
more directly reflects the influence of the genome (Gottesman and
Gould, 2003). The heritability of EEG patterns has been shown to
be in the range 70–90% (van Beijsterveldt et al., 1996). Multiple
genes may modulate the alpha phenotype. Recent studies indicated
that the catechol-O-methyl transferase (COMP) genotype and the
gene encoding gamma-aminobutyric acid B (GABAB) receptor
both influence alpha voltage (Enoch et al., 2003; Winterer et al.,
2003; Bodenmann et al., 2009).

Testing the association of the AD risk alleles with EEG endophe-
notypes can help understand where in the brain, in which stage,
and during what type of information processing the genetic variant
has a role.

Quantitative EEG (qEEG) has been shown to be a reliable
diagnostic tool in dementia research (Stam et al., 2003; Jeong,
2004; Babiloni et al., 2006b, 2011a, 2014; Dauwels et al., 2010;
Moretti et al., 2012a). Slowing of EEG in AD is a uniform find-
ing. Patients with mild AD are characterized by higher delta and
theta, and lower alpha and beta power than normal elderly sub-
jects (Huang et al., 2000; Lizio et al., 2011). In patients with mild
cognitive impairment (MCI), which is considered to be a pro-
dromic stage of AD, EEG parameters have presented magnitudes
intermediate between those observed in normal subjects and in
AD patients (Babiloni et al., 2006b). Longitudinal studies have
revealed qEEG-based predictors of future decline in patients with
MCI and even in normal elderly subjects (Prichep et al., 2006; Van
der Hiele et al., 2008; Babiloni et al., 2011b).

Alterations of alpha rhythm in particular were found to be
related to AD development. In a resting-state condition, poste-
rior alpha rhythms showed a power decrement in patients with
MCI as compared with healthy elderly subjects (Huang et al., 2000;
Jelic et al., 2000; Koenig et al., 2005; Babiloni et al., 2006b, 2014).
It has been reported that, in contrast to the decrease of alpha1
(6.9–8.9 Hz) and alpha2 (8.9–10.9 Hz) relative power, the alpha3
(10.9–12.9 Hz) relative power increased in patients with MCI
(Moretti et al., 2007, 2011, 2012a,b).

Recent studies have demonstrated the association between the
AD genetic risk variant ApoE ε4 and EEG in patients with AD,
MCI, and healthy subjects (Jelic et al., 1997; Lehtovirta et al.,
2000; Babiloni et al., 2006b; Ponomareva et al., 2008, 2012; Lee
et al., 2012). It was shown that AD patients carrying the ApoE

ε4 genotype have lower alpha power and lower alpha coher-
ence as compared to non-carriers (Jelic et al., 1997; Lehtovirta
et al., 2000; Ponomareva et al., 2008). Similarly, alpha1 and alpha2
sources in occipital, temporal and limbic areas as examined by
LORETA was demonstrated to have lower amplitude in AD and
MCI patients with ApoE ε4 genotype compared with those non-
carrying ApoE ε4 (Babiloni et al., 2006b). The authors suggested
that these neurophysiological abnormalities might reflect greater
impairment of the cholinergic basal forebrain, hippocampal, and
thalamocortical networks. In young healthy women, Lee et al.
(2012) noticed a consistent trend across the brain, in which
ApoE ε4 carriers possessed lower regional power at the alpha
band.

The effect of CLU polymorphism on EEG characteristics has
not been previously investigated, although several morphofunc-
tional alterations associated with the CLU gene risk variant were
recently identified. Young healthy carriers of CLU C allele demon-
strated lower white matter integrity in multiple brain regions,
including several which are known to degenerate in AD (Braskie
et al., 2011). Elderly cognitively normal carriers of the CLU risk
allele showed significant dose-dependent longitudinal increases
in resting-state regional cerebral blood flow (rCBF) in the brain
regions intrinsic to memory processes, and faster rates of decline
in verbal memory performance scores (Thambisetty et al., 2013).
EEG activity and alpha rhythm in particular are closely related to
the rCBF (Jann et al., 2010).

The purpose of this study was to examine the possible effects of
the CLU genotype on resting-state alpha activity in non-demented
adults and to estimate whether this effect is modified over the
course of aging.

We tested the hypothesis that healthy adult carriers of the AD
risk variant CLU C (homozygous CLU CC genotype) would show
age-dependent alpha-rhythm alterations relative to carriers of the
protective T allele (heterozygous CLU CT and homozygous CLU
TT genotypes).

MATERIALS AND METHODS
PARTICIPANTS
The enrolled cohort included 87 non-demented individuals (33
men and 54 women, age range 20–80 years). All subjects were
of Russian origin from Moscow and the Moscow region. Par-
ticipants underwent a neurological examination and cognitive
screening. The recruited subjects were free of dementia and
other medical, psychiatric, and neurological conditions. Exclu-
sion criteria included a personal history of mental illness, signs
of clinical depression or anxiety, physical brain injury, neuro-
logical disorder, or other medical condition (e.g., hypertension,
diabetes, cardiac disease, and thyroid disease), and a per-
sonal history of drug or alcohol addiction. The Spielberger
state-trait anxiety inventory (Spielberger, 1983) and Hamil-
ton rating scale for depression (Hamilton, 1960) were used
to examine anxiety and depression. Subjects were evaluated
with the mini-mental state examination (MMSE) and Clini-
cal Dementia Rating (CDR) scale (Hughes et al., 1982). Only
subjects with MMSE scores of 28 and more and CDR scale
0 cases were included in the study. All subjects were right-
handed.
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Informed written consent was obtained from all participants.
The experimental protocol of this study was approved by the local
Ethics Committee.

ApoE genotyping was performed on all participants, and to
exclude the effect of the ApoE genotype on EEG characteristics,
only subjects without the ApoE ε4 allele were included in the study.

All subjects were divided into subgroups according to CLU
(CLU CC and CLUCT&TT) polymorphism. The homozygous
CLU CC group included subjects with two C alleles of CLU, and
the CLU CT&TT group consisted of subjects with heterozygous
CLU CT or homozygous CLU TT genotypes. The participants
with CLU CC as well as with CLU CT&TT genotypes were also
divided into cohorts of those younger and older than 50 years of
age.

EEG RECORDING
All recordings were obtained in the afternoon at 3–4 pm. During
the experiments, the subjects sat comfortably in a chair. They were
asked to close their eyes and to relax during the recording. The
technician watched the subject’s vigilance state continuously by
monitoring the EEG and observing the subject.

The registration and evaluation of EEG has been carried out in
accordance with the International Pharmaco-EEG Society (IPEG)
guidelines (Versavel et al., 1995; Jobert et al., 2012). EEGs were
recorded during resting with eyes closed on a Nihon Kohden 4217
G EEG using a time constant of 0.3 s. The 16 Ag/AgCl electrodes
were placed according to the international 10–20 system at O2, O1,
P4, P3, C4, C3, F4, F3, Fp2, Fp1, T6, T5, T4, T3, F8, and F7 posi-
tions. Linked ears served as the reference. Electrode impedance did
not exceed 10 k�. During the recording, 180 s of EEG in resting
conditions were simultaneously sampled at 256 Hz and stored on
a computer for further analysis off-line. The records were digitally
filtered with a band-pass filter of 1.0–45.0 Hz prior to analy-
sis. Periods of artifact were eliminated from subsequent analysis.
Identification and removal of artifacts (ocular, cardiac, muscular,
sweating and respiratory, electrode movements) were performed
by two expert electroencephalographists (P.N.V., M.D.D.) in accor-
dance with criteria thoroughly described elsewhere (Moretti et al.,
2003; Tatum et al., 2011; Jobert et al., 2012).

DATA ANALYSIS
Thirty-six to forty artifact-free 4-s epochs of resting EEG were
processed by fast Fourier transform. Absolute power for the
frequencies of interest: alpha1 (7.5–8.99), alpha2 (9.00–10.99),
alpha3 (11–12.99), and for the regions of interest (ROI): occipital
(O2, O1), frontal 1 (F4, F3), frontal 2 (Fp2, Fp1), temporal 1 (T6,
T5), and temporal 2 (T4, T3) were calculated.

These alpha band frequencies were chosen by averaging those
used in previous relevant EEG studies on aging, genetic influences,
and dementia (Babiloni et al., 2006a,b; Bodenmann et al., 2009;
Moretti et al., 2012a,b). This allowed better comparison of our
results with the previous literature on aging and genetics, but it
did not account for individual alpha frequencies peak (Klimesch,
1999).

Log transformations of the absolute power of the various band-
widths in each derivation were calculated in order to compensate
for data skewness, as recommended by John et al. (1980).

GENETIC ANALYSIS
Genomic DNA was isolated from peripheral venous blood by
the standard phenol–chloroform extraction methodology, or by
using a Qiagen kit for DNA isolation. Genotyping was performed
by polymerase chain reaction (PCR) and followed by restriction
fragment length polymorphism (RFLP) analysis. Amplification
was performed according to the manufacturer’s instructions
using both the Tercyc DNA amplifier (DNA technology, Russia)
and the GeneAmp PCR System 9700 Thermal Cycler (Applied
Biosystems).

To genotype the APOE gene locus, the following oligonucleo-
tide primers were used: 5′_CGGCTGGGCGCG_GACATGGAGGA
and 5′_TCGCGGGCCCCGGC_CTGGTACAC. The PCR proto-
col was as follows: preliminary denaturation at 95◦C for 4 min;
5 cycles: 95◦C for 45 s, 54◦C for 25 s, and 72◦C for 30 s; and 30
cycles: 95◦C for 5 s, 58◦C for 15 s, and 72◦C for 5 s; the last stage
was performed at 72◦C for 3 min. PCR products were then cleaved
by HhaI or BstHHI (SibEnzyme, Russia) and restriction products
were analyzed in 7.5% polyacrylamide gel.

The rs11136000 polymorphism in CLU gene was tested with the
following oligonucleotide primers: 5′_CTTTGTAATGATGTACC
ATCTACCC and 5′_AGGCTGCAGACTCCCTGAAT. The PCR
protocol was as follows: preliminary denaturation at 95◦C for
1 min and 35 cycles: 94◦C for 30 s, 57◦C for 30 s, and 72◦C
for 1 min. The last stage was performed at 72◦C. The 645 bp
PCR products were then cleaved by AcsI restriction endonuclease
(SibEnzyme, Russia) and restriction fragments were analyzed in
2% agarose gel.

STATISTICS
Differences in demographic scores between the groups (CLU CC
young, CLU CT&TT young, CLU CC old, CLU CT&TT old)
were tested using analysis of variance (ANOVA) for continuous
variables (age, education), and the Mann–Whitney U test for
categorical variables (sex).

Electroencephalography parameters from each group were
tested for the normal distribution by the Wilk–Shapiro test, and
in no cases were the data skewed. The significance of the differ-
ences between the log-transformed EEG parameters was estimated
using repeated measures of ANOVA in the general linear model
(GLM) separately for alpha1, alpha2, and alpha3 bands, with
Genotype (CLU CC vs CLU CT&TT) and Age cohort (old vs.
young) as between-subjects factors, and ROI: occipital (O2, O1),
frontal 1 (F4, F3), frontal 2 (Fp2, Fp1), temporal 1 (T6, T5),
temporal 2 (T4, T3), and hemisphere (right, left) as a within-
subject factor. Post hoc comparisons for between-subject effects
and within-subject effects were analyzed using the Duncan test,
and the level of significance was set to P < 0.05 for post hoc
comparisons.

RESULTS
Table 1 shows the demographic information for the participants.
There were no differences in age and sex between the CLU CC and
CLU CT&TTsubgroups in either the young or the old subgroups
and in the whole sample (P > 0.05). There were no significant
differences in sex between the young and the old subgroups with
the same CLU genotype.
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Table 1 | Demographic characteristics of participants.

Young cohort Age range: 20–50 Old cohort Age range: 51–80 All participants Age range: 20–80

CLU CC CLU CT&TT CLU CC CLU CT&TT CLU CC CLU CT&TT

N 17 24 15 31 32 55

Age, years 28.4 ± 1.7 32.7 ± 2.0 64.1 ±2.4 62.6 ± 1.3 45.1 ± 3.5 49.6 ± 2.3

Sex (men/women) 9/8 9/15 5/10 10/21 14/18 19/36

Education, years 14.9 ± 0.2 14.7 ± 0.1 15.1 ± 0.1 14.9 ± 0.2 15.0 ± 0.1 14.8 ± 0.1

Data are presented as means and standard errors.

INFLUENCE OF AGING ON TOPOGRAPHIC DISTRIBUTION AND
FREQUENCY OF ALPHA ACTIVITY IN HEALTHY ADULTS
The ANOVA revealed a significant effect of ROI on alpha1,
alpha2, and alpha3 absolute power (for alpha1, F[4,332] = 111.97,
P = 0.0000; for alpha2, F([4,332] = 195.96, P = 0.0000; for alpha3,
F[4,332] = 178.36, P = 0.0000). Post hoc comparisons showed that
in the entire sample, which included young and old cohorts, abso-
lute power was higher in occipital than in frontal and temporal
regions in the alpha1, alpha2, and alpha3 bands (P < 0.0001).
Moreover, the power of all alpha bands was higher in frontal as
compared to temporal areas (P < 0.0001).

There was no significant statistical Age × ROI interaction effect
on alpha1 power (Figure 1A), but such an effect was observed on
alpha2 and alpha3 bands (F[4,332] = 6.33, P = 0.00006 for alpha2;
F[4,332] = 15.30, P = 0.00000 for alpha3). In the old cohort,
the differences in alpha2 power between the ROI were reduced.
Whereas in the young cohort, alpha2 power was higher in frontal
Fp than in temporal posterior Tp areas (post hoc comparisons
P = 0.002), in the old cohort the differences in these areas were
not significant (P = 0.11). The differences between frontal Fp and
temporal posterior Tp areas were significantly smaller in the old
than in the young cohort (P = 0.02; Figure 1B).

Similarly, in the old cohort, the differences in alpha3 power
between ROI were reduced as compared to the young cohort. In the
young cohort, alpha3 power was higher in temporal posterior than
in temporal areas (P = 0.02); in the old cohort these differences
were not significant (P = 0.1), and age-related changes of these
regional differences were also not significant. Alpha3 power was
lower in the occipital ROI in the old cohort as compared to the
young (P < 0.01; Figure 1C).

A significant interaction effect between the factors Age and
Bands was observed (F[2,166] = 4.51, P = 0.01). In the young
subjects, alpha2 power was significantly higher than alpha1 and
alpha3 power (P = 0.00001), while in the old subjects the alpha1
power tended to increase and the differences between alpha1 and
alpha2 power were not significant (Figure 2).

STATISTICAL ANALYSIS OF CLU EFFECT ON ALPHA ACTIVITY
The results of ANOVA showed that the main effect of CLU Geno-
type was significant on alpha3 (F[1,83] = 5.57, P = 0.021), but not
on alpha1 (F[1,83] = 2.10, P = 0.15) or alpha2 (F[1,83] = 2.81,
P = 0.10) absolute power. Post hoc comparison revealed that in the
entire sample, which included old and young cohorts, alpha3 abso-
lute power in the subjects with homozygous CLU CC genotype was

significantly higher than in the subjects with heterozygous CLU CT
and homozygous CLU TT (CLU CT&TT) genotypes (P = 0.017).
Moreover, post hoc comparison showed that, in the old cohorts,
alpha3 power was significantly higher in the CLU CC than in the
CLU CT&TT carriers (P = 0.016), while in the young cohorts the
differences in alpha3 power between the CLU CC and CLU CT&TT
carriers did not reach a significant level (Figure 3C). There were
no significant differences in alpha1 and alpha2 power between the
young CLU CC and CLU CT&TT carriers (Figures 3A,B). In the
old cohorts, alpha1 power was higher in the CLU CC than in the
CLU CT&TT carriers (P = 0.04), while the differences of alpha2
power in the old CLU CC and CLU CT&TT carriers were not
significant (P = 0.1; Figures 3A,B).

Topographic analysis demonstrated that the most pronounced
differences between the homozygous CLU CC and CLU CT&TT
carriers were observed in alpha3 power in the old cohorts. In the
young cohorts, there were no significant differences in any ROI
in alpha1, alpha2, and alpha3 power between CLU CC and CLU
CT&TT carriers (Figures 4A–C). In the old cohort the differ-
ences between CLU CC and CLU CT&TT carriers were significant
for alpha1 power in occipital (P = 0.02) and temporal poste-
rior areas (P = 0.02), for alpha3 power – in frontal (P = 0.04),
frontal poles (P = 0.03), and temporal posterior (P = 0.02) areas
(Figures 4A,C).

A significant CLU × ROI interaction effect on the alpha1 power
in the entire sample was observed (F[4,332] = 3.43, P = 0.009).
In the CLU CC carriers alpha1 power was higher in occipital than
in frontal areas (P < 0.0001) and in temporal posterior than in
temporal areas (P = 0.001), while in the subjects with CLU CT&TT
genotypes the differences in alpha1 power between occipital and
frontal areas were smaller (P = 0.01), the differences between
the temporal posterior and temporal areas were not significant
(P = 0.3). There was a tendency toward higher alpha1 power in
all ROI in the subjects with CLU CC genotype as compared to the
subjects with CLU CT&TT genotype.

DISCUSSION
The main findings of this study show that the CLU genotype exerts
a significant effect on alpha absolute power in the resting-state
EEG of healthy adults. The homozygous presence of the AD risk
variant CLU CC in non-demented subjects was associated with
an increase of alpha3 and to a lesser, though significant, extent
of alpha1 power in the subjects older than 50 years of age. CLU
genotype-related differences were also found in the topographic

Frontiers in Aging Neuroscience www.frontiersin.org December 2013 | Volume 5 | Article 86 | 85

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


“fnagi-05-00086” — 2013/12/12 — 15:43 — page 5 — #5

Ponomareva et al. CLU effect on EEG in normal aging

FIGURE 1 | Absolute power (mean and SE) of alpha1 (A), alpha2 (B),

and alpha3 (C) bands in the young and old cohorts, for occipital (O),

frontal (F), frontal poles (Fp), temporal posterior (Tp), and temporal (T)

areas. Black asterisks (*) indicate a P < 0.01 significant difference in
absolute spectral power between two cohorts in the same region of
interest (ROI). The arrows labeled with green (for the young cohort) and
purple (for the old cohort) asterisks compare different ROI in the same
cohort. The ROI at the start of the arrow has either (+) P < 0.05 or (*)
P < 0.01 significant differences in absolute spectral power compared the
ROIs at the ends of the arrow.

FIGURE 2 | Alpha1, alpha2, and alpha3 absolute power (mean and SE)

in the healthy young and old cohorts. *P ≤ 0.01, significant differences
between the alpha bands in the young (green) and old (purple) cohorts.

distribution of alpha1 activity: in the subjects with homozygous
CLU CC genotype, alpha1 power was higher in occipital than
in frontal regions, while in the subjects with heterozygous CLU
CT and homozygous CLU TT (CLU CT&TT) genotypes the dif-
ferences in alpha1 power between occipital and frontal regions
were not significant. The present study also showed age-related
alterations of the topographic distribution of alpha2 and alpha3
activities, and an age-related increase in power of alpha1 relative
to alpha2, all of which occurred in the subjects with CLU CC as
well as with CLU CT&TT genotypes.

Alpha rhythm reflects the activity of dominant oscillatory neu-
ral networks in resting adults and represents a basic functional
feature of the working brain (Klimesch, 2012). Alpha oscillations
have been associated with essential cognitive functions, such as
memory, intelligence quotient, internal attention (Cooper et al.,
2006; Klimesch, 2012), and inhibitory control of motor programs
(Pfurtscheller et al., 2000; Başar, 2012).

Inhibitory processes underlie alpha synchronization (Klimesch,
2012). During the awake resting condition, the voltage of the
alpha rhythms is inversely correlated with the cortical activation.
Alpha rhythm is modulated by thalamocortical and corticocorti-
cal interactions playing role in the transmission of sensorimotor
information between subcortical and cortical pathways, and the
retrieval of semantic information from cortical regions (Steriade
and Llinás, 1988; Brunia, 1999; Pfurtscheller and Lopes da Silva,
1999).

According to prior research in this area, alpha rhythm is not a
unitary phenomenon. Upper alpha (11–13 Hz) is more involved in
cortical processes related to the semantic memory and low alpha
(8–11 Hz) is more involved in attentional demands (Klimesch,
1999). Different neural networks have been suggested as generat-
ing low alpha and high alpha frequency bands. The modulation
of the low alpha was proposed to be related to the corticosub-
cortical mechanisms, such as corticothalamic, corticostriatal, and
corticobasal, while the upper alpha band is affected to a greater
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FIGURE 3 |The average absolute power of alpha1 (A), alpha2 (B), and alpha3 (C) bands (mean and SE) in young and old subjects with CLU CC and

CLU CT &TT genotypes. Triangle indicates significant differences between the CLU CC and CLU CT &TT carriers P < 0.05.

extent by the hippocampus and other corticocortical interactions
(Moretti et al., 2012a,b).

Recent study has shown an increase of the upper alpha power
in patients with MCI and AD, when compared to normal elderly
subjects (Moretti et al., 2012a,b). The increase in alpha3/alpha2
ratio in frontal and temporoparietal areas was associated with hip-
pocampal atrophy in MCI (Moretti et al., 2007). The increase of
alpha3/alpha2 ratio in subjects with MCI was suggested to reflect
impairment of the anterior attentive mechanisms in subjects with
MCI, in spite of the absence of overt clinical deficit (Moretti et al.,
2012a,b). This increase was hypothesized to be due to a removal
of excitatory, synaptic cholinergic inputs in intracortical networks,
which would produce a decrease in synaptic efficacy and functional
disconnection of cortical circuits (Steriade, 2006).

Healthy carriers of AD risk variant CLU CC, especially old
subjects with this genotype, may have similar, though less pro-
nounced, alterations underlying the increase of upper alpha activ-
ity to those found in MCI subjects. These alterations may include
the dysregulation of excitatory synaptic inputs, especially cholin-
ergic ones, in hippocampus and frontal intracortical networks. In
the old CLU CC carriers we also found an increase in alpha1 power,
though less pronounced, than in alpha3 power. These finding sug-
gest that in the old CLU CC carriers the dysregulation may affect
other mechanisms, such as corticothalamic, corticostriatal, and
corticobasal ones, involved in low alpha generation (Moretti et al.,
2012a,b).

Even normal aging is accompanied by a gradual loss of
cholinergic function caused by dendritic, synaptic, and axonal
degeneration as well as a decrease in trophic support. As a con-
sequence, impairments in intracellular signaling and cytoskeletal
transport may mediate cholinergic cell atrophy, finally leading to
the known age-related functional decline in the brain, includ-
ing aging-associated cognitive impairments (Schliebs and Arendt,
2011).

In line with previous studies, our results also demonstrated that
in all individuals, independently of CLU genotype, aging is accom-
panied by changes in spectral power and topographic distribution
of alpha activity (Tsuno et al., 2002; Babiloni et al., 2006a; Chiang
et al., 2011). We found the decrease of alpha3 power in occipital
areas, the reduction of the differences of alpha2 and alpha3 activ-
ity between posterior and anterior areas (anteriorization of alpha)
and the trend toward the decrease of alpha2 power and increase of
alpha1 power in the old cohort as compared to the young. It has
been demonstrated that posterior cortical alpha rhythms decreases
in magnitude during physiological aging (Babiloni et al., 2006a).
A slowing of the alpha frequency peak in normal adults during
physiological aging has also been reported (Klimesch, 1999). The
anteriorization of alpha activity in elderly subjects was found to be
related to a decreased level of vigilance (Tsuno et al., 2002). It was
suggested that the anteriorization of alpha activity is related to the
alterations in activation of posterior and anterior default mode
networks (DMNs) and that these changes might be susceptible
to dopaminergic influences (Knyazev, 2012). Chronic excessive
neuronal activity during a resting-state condition in DMN can
lead to Aβ deposition (Bero et al., 2011; de Haan et al., 2012).
On the other hand, elevated level of Aβ elicits epileptiform activ-
ity, probably by enhancing synchrony among the glutamatergic
synapses (Palop and Mucke, 2009). The brain regions of the DMN
were shown to be preferentially vulnerable to neurodegenerative
processes (Vlassenko et al., 2010; Hsiao et al., 2013).

The effect of aging on EEG is modulated by genetic factors
(Babiloni et al., 2006b; Ponomareva et al., 2012). Several lines of
evidence imply that the effect of CLU genotype on brain func-
tion may be observed before the onset of cognitive impairment.
The CLU risk variant rs11136000 was found to be associated with
reduced integrity of broad white matter regions, as observed with
diffusion tensor imaging in young healthy adults (Braskie et al.,
2011). fMRI study showed aberrant activation in the frontal and
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FIGURE 4 |Topographic distribution of alpha1 (A), alpha2 (B), and

alpha3 (C) absolute power (mean and SE) in young and old carriers of

CLU CC and CLU CT &TT genotypes in occipital O, frontal F, frontal

poles Fp, temporal posteriorTp, and temporalT areas. Triangle indicates
significant differences between the CLU CC and CLU CT &TT carriers
P < 0.05.

posterior cingulate cortex and the hippocampus during working
memory performance in healthy young individuals carrying CLU
AD risk genotype (Lancaster et al., 2011).

Recently the robust changes in rCBF in cognitively normal
old individuals carrying the C-allele of the rs11136000 SNP were
revealed (Thambisetty et al., 2013). These changes consisted of sig-
nificant longitudinal increases in rCBF in the hippocampus and
anterior cingulated cortex. The authors suggested that the effect
of CLU CC genotype may be related to the deposition of beta
amyloid, and that affected regions are vulnerable to disruption by
deposition of beta amyloid, even in the non-demented elderly.

The effect of CLU genotype on resting EEG in healthy subjects
was not similar to the effect of ApoE genotype found in prior
studies (Babiloni et al., 2006b; Lee et al., 2012). The differences are
in line with the differing influence of CLU and ApoE genotype
on resting rCBF in normal aging (Thambisetty et al., 2013). The
authors reported longitudinal increase during aging of resting-
state rCBF in the hippocampus and anterior cingulate cortex in the
CLU CC carriers and the decrease in resting rCBF in the frontal,
parietal, and temporal cortices and its increases in the insular
cortex in the old ApoE ε4 carriers.

Alpha rhythm slowing was found to occur in aging, and the
alpha1 band of the young group might have some functional dif-
ferences from the alpha1 band in the old subjects (Chiang et al.,
2011). This is a potential limitation of our study. However, as
CLU genotype-related differences were found in the age-adjusted
groups, this possible confounding factor could not affect the results
concerning the influence of CLU genotype on alpha power.

CONCLUSION
Our results show that the presence of the homozygous CLU
CC, AD risk variant, is associated with increased absolute power
of alpha3 activity and changes in topographical distribution of
alpha1 activity and that this effect is more pronounced in the sub-
jects older than 50 years of age. The increased synchronization of
upper alpha activity may be related to the alterations in cholinergic
hippocampal and cortical networks. The effect of CLU genotype
on alpha activity can be superimposed to the other EEG alterations
that occur across physiological aging.
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The dysfunction of cholinergic neurons is a typical hallmark in Alzheimer’s disease (AD).
Previous findings demonstrated that high density of cholinergic receptors is found in the
thalamus and the cerebellum compared with the cerebral cortex and the hippocampus.
We aimed at investigating whether activation of the cerebello-thalamo-cortical pathway
by means of cerebellar theta burst stimulation (TBS) could modulate central cholinergic
functions evaluated in vivo by using the neurophysiological determination of Short-Latency
Afferent Inhibition (SLAI). We tested the SLAI circuit before and after administration
of cerebellar continuous TBS (cTBS) in 12 AD patients and in 12 healthy age-matched
control subjects (HS). We also investigated potential changes of intracortical circuits of the
contralateral primary motor cortex (M1) by assessing short intracortical inhibition (SICI)
and intracortical facilitation (ICF). SLAI was decreased in AD patients compared to HS.
Cerebellar cTBS partially restored SLAI in AD patients at later inter-stimulus intervals (ISIs),
but did not modify SLAI in HS. SICI and ICF did not differ in the two groups and were
not modulated by cerebellar cTBS. These results demonstrate that cerebellar magnetic
stimulation is likely to affect mechanisms of cortical cholinergic activity, suggesting that
the cerebellum may have a direct influence on the cholinergic dysfunction in AD.

Keywords: transcranial magnetic stimulation, cortical plasticity, cholinergic, cerebellum, Alzheimer’s disease

INTRODUCTION
Alzheimer’s disease (AD) pathophysiology is dominated by a dys-
function of the central cholinergic system. In AD patients, the
impairment of central cholinergic functions can be evaluated
in vivo by using a neurophysiological effect called Short-Latency
Afferent Inhibition (SLAI) (Tokimura et al., 2000). SLAI consists
in the inhibition of the Motor Evoked Potentials (MEPs) by affer-
ent sensory impulses. SLAI can be easily measured by applying an
electric conditioning pulse on the median nerve at wrist that pre-
cedes the TMS test pulse applied over the contralateral primary
motor cortex (M1) by 20–25 ms. SLAI is abolished by scopo-
lamine, a potent muscarinic antagonist (Di Lazzaro et al., 2002),
and it has therefore been suggested that the inhibitory effect of
peripheral stimulation is mediated by cholinergic projections over
the primary motor cortex. In AD patients, SLAI is reduced to var-
ious degrees depending on the severity of the disease, so that the
decreased inhibitory effect of peripheral stimulation is thought to
reflect the cholinergic dysfunction in AD (Di Lazzaro et al., 2002;
Martorana et al., 2009).

Although the cerebellum is not among the most renown brain
structures to be affected by the pathology, recent evidence sug-
gested that it undergoes degenerative changes in AD: the posterior
cerebellar lobes are significantly smaller in AD patients when
compared to HC, and atrophy of the posterior cerebellar regions
is associated with poorer cognitive performance (Thomann et al.,

2008). Moreover, the cerebellum is strongly involved in cholin-
ergic functions. A recent PET study demonstrated that intra-
venously administered [11C]-donepezil, an acetyl-cholinesterase
(AChE) inhibitor used in AD therapy, rapidly enters the brain
and mainly distributes to the striatum, thalamus, and cerebellum,
which are known to contain high densities of AChE compared
with the cerebral cortex and hippocampus (Okamura et al., 2008).
The regional distribution of [11C]-donepezil was consistent with
regional AChE activity determined in a human postmortem study
(Finkelstein et al., 1988). Moreover, nicotinic cholinergic recep-
tors (nAChRs) are widely distributed in the mammalian cerebel-
lum and are known to regulate synaptic efficacy at two major
classes of cerebellar neurons (Turner et al., 2011; D’Angelo and
Casali, 2012).

In humans, the neural activity of the cerebellum can be
explored in vivo by means of repetitive transcranial magnetic
stimulation (Ugawa et al., 1995; Del Olmo et al., 2007; Koch
et al., 2008). Therefore, in the current study, we sought to inves-
tigate whether cerebellar magnetic stimulation could modulate
the altered SLAI circuits described in AD patients. We reasoned
that given that the cerebellar activity is involved in the choliner-
gic system, cerebellar continuous TBS (cTBS) could provide novel
information regarding the interactions between the cerebello-
thalamo-cortical circuits and the central cholinergic functioning
in AD patients.
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MATERIALS AND METHODS
SUBJECTS
We examined 12 patients with a new diagnosis of probable
AD according to the NINCDS-ADRDA criteria (Varma et al.,
1999) and 12 neurologically healthy age-matched control sub-
jects (HS). The mean (±SD) age of the patients was 69.8 (±4.9)
years, whereas that of controls was 71.7 (±4.4) years. All patients
underwent a complete clinical investigation, including medical
history, neurological examination, mini mental state examination
(MMSE), a complete blood screening (including routine exams,
thyroid hormones, level of B12), neuropsychological examina-
tion, a complete neuropsychiatric evaluation, and morphological
magnetic resonance imaging (1.5 T MRI). Exclusion criteria were
the following: patients with isolated deficits and/or unmodified
MMSE (≥25/30) on revisit (6, 12, and 18 months follow-up),
patients with clinically manifest acute stroke in the last 6 months
showing Hachinsky scale score >4, and a radiological evidence of
sub-cortical lesions. None of patients revealed pyramidal and/or
extrapyramidal signs at the neurological examination. At the
time of enrolment, in the 30 days before participating in this
study, none of the patients had been treated with drugs that
might have modulated cerebral cortex excitability such as antide-
pressants, or any other neuroactive drugs (i.e., benzodiazepines,
anti-epileptic drugs, or neuroleptics), and they had not been
treated with cholinesterase inhibitors. All AD patients showed a
cognitive profile consistent with moderate dementia, as assessed
by a neuropsychological evaluation including the MMSE and a
standardized neuropsychological battery (Carlesimo et al., 1996).
On the MMSE, AD patients scored a mean of 21.08 (±3.9) and
Clinical Dementia Rating (CDR) was 1.21 (±1.1). All partic-
ipants or their legal guardian gave the written informed con-
sent after receiving an extensive disclosure of study. The study
was performed according to the Declaration of Helsinki and
approved by the ethics committee of the Tor Vergata University
in Rome.

EXPERIMENT 1: EFFECTS OF CEREBELLAR cTBS ON SLAI, SICI,
AND ICF CIRCUITS
SLAI
Magnetic stimulation was performed using an high power
Magstim 200 magnetic stimulator (Magstim Co, Whitland,
Dyfed, UK). The magnetic stimuli had a nearly monophasic
pulse configuration, with a rise time of 0.1 ms, decaying back
to zero over 0.8 ms. A figure of eight coil with external loop
diameters of 9 cm was held over the left motor cortex at the
optimum scalp position to elicit motor responses in the contralat-
eral first dorsal interosseous (FDI) muscle. The optimal position
was marked on the scalp with a felt pen to ensure identical
placement of the coil throughout the experiment. The handle
of the coil pointed backward and was perpendicular to the pre-
sumed direction of the central sulcus, about 45◦ to the midsagittal
line. The direction of the induced current was from posterior
to anterior and was optimal to activate the motor cortex trans-
synaptically. Surface muscle responses were recorded via two
9 mm diameter Ag–AgCl electrodes with the active electrode over
the motor point of the muscle and the reference on the metacar-
pophalangeal joint of the index finger. Muscle responses were

amplified and filtered (bandwidth 3–3000 Hz) by D150 ampli-
fiers (Digitimer, Welwyn Garden City, Hertfordshire, UK). Data
were collected on a computer with a sampling rate of 10 kHz per
channel and stored for later analysis using a CED 1401 A–D con-
verter (Cambridge Electronic Design, Cambridge, UK). All the
AD patients selected were able to understand and carry out the
simple task required for this electrophysiological study—that is,
to keep fully relaxed.

The resting motor threshold (RMT) was defined as the low-
est intensity that produced MEPs of >50 µV in at least five
out of 10 trials with the muscles relaxed (Rossini et al., 1994).
Determination of RMT was done in step width of 1% of maximal
stimulator output (MSO). Short latency inhibition was studied
using the technique that has been recently described (Tokimura
et al., 2000) (see Figure 1). Conditioning stimuli were single
pulses (200 µs) of electrical stimulation applied through bipo-
lar electrodes to the right median nerve at the wrist (cathode
proximal). The intensity of the conditioning stimulus was set
at just over motor threshold for evoking a visible twitch of
the thenar muscles. The intensity of the test cortical magnetic
stimulus was adjusted to evoke a muscle response in relaxed
right FDI with amplitude of approximately 1 mV peak to peak.
The conditioning stimulus to the peripheral nerve preceded
the magnetic test stimulus by different interstimulus intervals
(ISIs). ISIs were determined relative to the latency of the N20
component of the somatosensory evoked potential induced by
stimulation of the right median nerve. The active electrode
for recording the N20 potential was attached 3 cm posterior
to C3 (10–20 system) and the reference was 3 cm posterior
to C4. Five hundred responses were averaged to identify the
latency of the N20 peak. ISIs from N20 −4 ms to N20 +8 ms
were investigated in 4 ms steps. Ten stimuli were delivered at
each ISI. The subject was given audiovisual feedback at high
gain to assist in maintaining complete relaxation. The inter-
trial interval was set at 5 s (±10%), for a total duration of
approximately 5 min. Measurements were made on each individ-
ual trial. The mean peak-to peak amplitude of the conditioned
MEP at each ISI was expressed as a percentage of the mean
peak-to-peak amplitude size of the unconditioned test pulse in
that block.

SICI-ICF
We used a 7 cm figure-of-eight coil connected with two Magstim
200 stimulators to apply paired TMS over the motor cortex. In
order to investigate M1 intracortical circuits such as short intra-
cortical inhibition (SICI) and intracortical facilitation (ICF). The
magnetic stimuli had a nearly monophasic pulse configuration.
The coil was placed at the optimal position for eliciting MEPs
from the left contralateral FDI muscle. SICI and ICF were tested
using paired TMS with a conditioning stimulus (CS) preceding a
test stimulus (TS) by 1–15 ms (Kujirai et al., 1993; Ziemann et al.,
1996). CS was set at 80% AMT (Huang and Rothwell, 2004) while
the intensity of TS was adjusted to evoke a MEP of approximately
1 mV peak to peak in the relaxed FDI. The amplitude of the con-
ditioned MEP at each ISI was expressed as a percentage of the
mean peak-to-peak amplitude size of the unconditioned TS in
that block.
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FIGURE 1 | Schematic description of the experimental procedure.

Short-latency afferent inhibition (SLAI) was recorded by measuring the
inhibitory effects of the peripheral median nerve stimulation over the amplitude

of the MEP recorded from the right FDI at different interstimulus intervals in
AD patients and age matched healthy controls. SLAI was measured at baseline
and after a session of cTBS over the left lateral cerebellum in both groups.

cTBS
A MagStim Super Rapid magnetic stimulator (Magstim
Company, Whitland, Wales, UK), connected with a figure-of-
eight coil with a diameter of 70 mm was used to deliver cTBS.
Three-pulse bursts at 50 Hz repeated every 200 ms for 40 s were
delivered at 80% of the active motor threshold (AMT) over the
lateral cerebellum (600 pulses) (Huang et al., 2005). cTBS was
applied over the right lateral cerebellum using the same scalp
co-ordinates (1 cm inferior and 3 cm left/right to the inion)
adopted in previous MRI studies showing that this site target
the posterior and superior lobules of the lateral cerebellum (Del
Olmo et al., 2007). We used the figure-of-eight coil, since this
approach has been adopted in previous investigations in which
cerebellar rTMS was shown to be effective in modulating the
excitability of the contralateral motor cortex (Del Olmo et al.,
2007). The coil was positioned tangentially to the scalp, with the
handle pointing superiorly.

SLAI and SICI/ICF were tested before in two different blocks
and immediately after the application of cTBS over the right lat-
eral cerebellum. The order of presentation of the blocks before
and after cTBS was pseudo-randomized across subjects.

EXPERIMENT 2: EFFECTS OF CEREBELLAR cTBS ON SLAI
INPUT-OUTPUT CURVES IN HEALTHY SUBJECTS
SLAI is already different between groups (less in AD) at baseline.
Therefore, it is unclear how to interpret the effects of cerebellar
cTBS. From the reported data, the possibility cannot be excluded
that the modulating cTBS effect was not seen in the healthy con-
trols merely due to SLAI saturation (floor effect). To disentangle
this, we performed an experiment in which we studied SLAI

input-output curves by systematic variation of the intensity of the
peripheral nerve stimulus to compare the effects of cTBS at equiv-
alent SLAI levels as those obtained in the AD patients group. In a
group of eight healthy controls SLAI was tested as in Experiment
1, but three different blocks were applied. In each block the inten-
sity of the peripheral nerve stimulation was set at 100, 200, and
300% of the sensory threshold (ST) (note that an intensity of
300% is close to the one necessary for evoking a visible twitch of
the thenar muscles as in Experiment 1). SLAI blocks were tested
before and immediately after the application of cTBS over the
right lateral cerebellum. The order of presentation of the blocks
before and after cTBS was pseudo-randomized across subjects.

EXPERIMENT 3: EFFECTS OF OCCIPITAL cTBS ON SLAI, SICI, AND ICF
CIRCUITS
We performed an additional experiment in order to exclude that
the cTBS effects obtained in the AD patients could be non-
specific. Therefore, we performed the same experiment as in
Experiment 1 but we varied the site of application of cTBS, by
choosing the occipital cortex as a control area. The occipital TMS
site was 3 cm above the inion and 1 cm right of midline (Romei
et al., 2012). SLAI and SICI/ICF were tested before in two differ-
ent blocks and immediately after the application of cTBS over the
right lateral cerebellum. The order of presentation of the blocks
before and after cTBS was pseudo-randomized across subjects.

STATISTICAL ANALYSIS
In Experiment 1 SLAI parameters of AD patients were compared
with those of controls by means of repeated measures ANOVA
with GROUP (AD vs. healthy subjects) as between subjects factor
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and ISI (−4, 0, +4, and +8 ms plus the latency of the N20) and
PROTOCOL (pre vs. post cTBS) as within subjects factors. For
SICI we performed a repeated measures analysis ANOVA with
GROUP (AD vs. healthy subjects) as between subjects’ factor and
ISI (1, 2, 3, 5, 7, 10, and 15 ms) and PROTOCOL (pre vs. post
cTBS) as within subjects factors. In experiment 2 we performed
a repeated measures ANOVA with INTENSITY (100, 200, and
300% of ST), ISI (−4, 0, +4, and +8 ms plus the latency of the
N20) and PROTOCOL (pre vs. post cTBS) as within subjects
factors. In Experiment 3 SLAI parameters of AD patients were
analysed by means of repeated measures ANOVA with ISI (−4,
0, +4, and +8 ms plus the latency of the N20) and PROTOCOL
(pre vs. post cTBS) as within subjects factors. When a significant
main effect was reached, paired t-tests with Bonferroni correction
were employed to characterize the different effects of the specific
ISIs. For all statistical analyses, a p value of <0.05 was considered
to be significant. Mauchley’s test examined for sphericity. The
Greenhouse–Geisser correction was used for non-spherical data.

RESULTS
EXPERIMENT 1
The N20 latency and amplitude were within normal limits in
all AD patients and control subjects and did not differ between
the two groups (20.5 ± 3.2 ms vs. 20.8 ± 2.9 ms). The mean
(SD) RMT to TMS was significantly lower in AD patients than
in controls (45.9% ± 2.1 vs. 49.9 ± 1.1%) of MSO; t = 3.14;
p < 0.05 (see Table 1). RMT was not significantly modified fol-
lowing cerebellar cTBS (p = 0.48 at paired t-test analysis). For
unconditioned, TS MEPs amplitude pre and post cTBS did not
differ being, respectively, 1.08 ± 0.33 mV and 1.04 ± 0.31 mV in
AD and 1.13 ± 0.25 mV and 1.14 ± 0.34 mV in controls. Repeated
ANOVA performed on SLAI measures revealed significant main
effects of PROTOCOL (F = 5.66; p = 0.027) and ISI (F = 19.14;
p = 0.0001), as well significant GROUP × PROTOCOL (F =
4.26; p = 0.041) interaction. The triple interaction GROUP ×

Table 1 | Parameters of corticospinal excitability before and after

cTBS.

Measures AD HS

rMT (%) 45.9 ± 2.1 49.9 ± 1.1

aMT (%) 34 ± 1.3 37 ± 1.9

1mV (%) 52.41 ± 2.8 55.4 ± 2.2

PRE cTBS

ICI 2 ms (%) 42.85 ± 7.2 65 ± 10.6

ICF 15 ms (%) 99.22 ± 9.0 136.9 ± 9.1

SLAI 24 ms (%) 75.4 ± 13.5 57.7 ± 9.8

POST cTBS

ICI 2 ms (%) 41.77 ± 6.1 60.32 ± 9.6

ICF 15 ms (%) 118 ± 12.1 136.5 ± 27

SLAI 24 ms (%) 53.147 ± 4.9 63.4 ± 8.8

rMT, resting motor threshold; aMT, active motor threshold; 1mV, intensity of

magnetic stimulus adjusted to evoke 1 mV peak to peak MEP; ICI, intracorti-

cal inhibition; SLAI, short-latency afferent inhibition. For the threshold values,

“%” are related to the maximal stimulator output (MSO); for SICI, ICF and SLAI

values, “%” are related to the control MEP amplitude.

ISI × PROTOCOL was not significant. Post hoc analysis revealed
that at baseline the amount of SLAI inhibition was smaller in
AD patients than in normal controls at +4 and +8 ms (all p <

0.05) (Figure 2). The amount of SLAI inhibition increased in
AD patients following cTBS at 0 and +4 ms ISIs (all p < 0.05)
(Figure 3A). On the other hand when the same analysis was
performed in the HS group, no significant difference emerged
(Figure 3B). No effects were found for SICI and ICF in both
groups. (Figures 4A,B).

EXPERIMENT 2
Repeated ANOVA performed on SLAI measures revealed signif-
icant main effects of INTENSITY (F = 2.14; p = 0.036) and ISI
(F = 2.64; p = 0.04), but no a significant cTBS effect (Figure 5).
All the interactions were not significant. These data indicate
that the cTBS effects observed in Experiment 1 were specific for
the AD patients and did not depend on a different basal level
of SLAI.

FIGURE 2 | (A) Short-latency afferent inhibition (SLAI) at different
interstimulus intervals in AD patients (open squares) and control (black
diamonds) subjects. The interval between median nerve stimulation and
cortical stimuli was corrected for the latency of the N20 component of the
somatosensory evoked potential in each subject (see text). The size of
MEPs is expressed as a percentage of the MEP evoked by magnetic
stimulation alone. (B) Short intracortical inhibition (SICI) and intracortical
facilitation (ICF) at different interstimulus intervals in AD patients (open
squares) and control subjects (black diamonds). The size of MEPs is
expressed as a percentage of the MEP evoked by magnetic stimulation
alone. Error bars indicate mean standard errors. ∗p < 0.05.
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FIGURE 3 | Effects of cerebellar cTBS on SLAI (A) and SICI (B) in AD

patients. Error bars indicate standard deviations. The size of MEPs is
expressed as a percentage of the MEP evoked by magnetic stimulation
alone. Error bars indicate mean standard errors.

EXPERIMENT 3
Repeated ANOVA performed on SLAI measures revealed a signif-
icant main effect of ISI (F = 4.04; p = 0.023), but no effect for
cTBS main factor and for the cTBS × ISI interaction (Figure 6).

DISCUSSION
The current results confirmed previous studies showing that SLAI
of the motor cortex is significantly reduced in AD patients com-
pared to age matched normal subjects (i.e., Di Lazzaro et al.,
2002; Freitas et al., 2011). Notably, we found that such SLAI
dis-inhibition is restored following a single session of cerebellar
cTBS. Our results therefore seem to suggest that the activation of
cerebello-thalamo-cortical pathway by means of cerebellar cTBS
is able to modulate SLAI function in AD patients. Although
SLAI is considered a hallmark of central cholinergic function
that is thought to depend on the integrity of cortico-cortical
inhibitory circuits (Tokimura et al., 2000), its current interpre-
tation is still debated. Acetylcholine is thought to be involved
in modulation of intracortical circuits mediated by groups of
GABAergic interneurons, rather than directly acting on pyra-
midal cells (Di Lazzaro et al., 2002, 2004). At this regard, Di
Lazzaro and co-workers (Di Lazzaro et al., 2005) demonstrated
that different types of benzodiazepines such as diazepam and

FIGURE 4 | Effects of cerebellar cTBS on SLAI (A) and SICI and ICF (B)

in healthy subjects. Error bars indicate standard deviations. The size of
MEPs is expressed as a percentage of the MEP evoked by magnetic
stimulation alone. Error bars indicate mean standard errors. ∗p < 0.05.

lorazepam resulted in distinct effects on both SICI and SLAI.
In particular diazepam increased both SLAI and SICI, while
lorazepam reduced SLAI but increased SICI, suggesting that the
interactions between cholinergic and GABAergic circuits may
require the activation of a variety of different receptor sub-
types. Moreover we recently showed that dopamine also plays
a critical role in modulating cortical cholinergic activity, pre-
sumably interacting with such GABAergic intracortical circuits
(Martorana et al., 2009). SLAI starts only a few milliseconds after
the arrival of the somatosensory input at the cortex, and implies
a relatively direct pathway from sensory input to motor output
(Tokimura et al., 2000). The dorsomedial nucleus and intralam-
inar nuclei (thalamic paramedian structures) are under control
of excitatory projections from pontomesencephalic cholinergic
neurons (peduncolopontine and laterodorsal tegmental choliner-
gic nuclei) through muscarinic receptors (Jones, 2003; Steriade,
2004). These pontomesencephalic cholinergic neurons have no
direct projection to the cortex but they do have a prominent
indirect effect on the functional state (and excitability) of corti-
cal neurons as they activate thalamocortical neurons (Steriade,
2004). Consistently with these premises, Oliviero et al. (2005)
reported that, after a thalamic stroke that had destroyed the dor-
somedian and intralaminar nuclei, a patient showed a selective
attenuation of the SLAI in the ipsilesional M1.

Frontiers in Aging Neuroscience www.frontiersin.org February 2013 | Volume 5 | Article 2 | 96

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Di Lorenzo et al. AD cholinergic dysfunction cerebellar modulation

FIGURE 5 | Effects of cerebellar cTBS on SLAI applied with different

intensities of peripheral nerve stimulation in healthy subjects (A) =
100%; (B) = 200%; (C) = 300% of the sensory threshold. Error bars
indicate standard deviations. The size of MEPs is expressed as a
percentage of the MEP evoked by magnetic stimulation alone. Error bars
indicate mean standard errors.

Moreover, cerebellar cTBS is known to modulate the activation
of cerebello-thalamo-cortical circuits (Koch et al., 2008, 2009). A
recent PET study performed in order to detect the effects induced
by cerebellar cTBS revealed that metabolic changes occur not only
in the cerebellar cortex below the stimulated portion of the cortex
but also in the deep cerebellar nuclei reflecting the activation of
a pathway connecting these regions and likely projecting to the
thalamus (Brusa et al., 2012).

Therefore, one possibility is that cerebellar cTBS could have
increased SLAI efficacy by modulating the gating of the afferent
input at the level of the thalamic nuclei. In fact, the physiology
of the cerebellar-thalamo-cortical pathway activated by magnetic

FIGURE 6 | Effects of occipital cTBS on SLAI in AD patients. Error bars
indicate standard deviations. The size of MEPs is expressed as a
percentage of the MEP evoked by magnetic stimulation alone. Error bars
indicate mean standard errors.

stimulation has been recently clarified. It has been proposed that
cerebellar TMS activates the Purkinje cells of the superior cere-
bellum; such activation results in an inhibition of the dentate
nucleus, which is known to exert a background tonic facilitatory
drive onto the contralateral motor cortex (M1) through synap-
tic relay in the ventral lateral thalamus (Dum and Strick, 2003).
This in turn leads to an inhibition of the contralateral M1, due to
a reduction in dentato-thalamo-cortical facilitatory drive (Ugawa
et al., 1994, 1997; Pinto and Chen, 2001; Daskalakis et al., 2004).
Although apparently SLAI and the cerebello-thalamo-cortical
pathway activated by cerebellar TMS act on different thalamic
nuclei, it has to be considered that intrathalamic connections have
been recently described between thalamic nuclei such as the ven-
troposterior and the medial posterior nucleus (Crabtree et al.,
1998). At this regard, one could argue that the thalamus could
be a plausible site for the interaction occurring between these
two pathways. In alternative, it is possible that the effects that we
observe could depend on an interaction occurring at the level of
the primary motor cortex. Here, complex interactions of intra-
cortical circuits that mediate both the afferent volleys from the
thalamus could be responsible for the observed effects induced by
cerebellar cTBS on SLAI in AD patients.

Another final possibility is that the observed results could
depend on the modulation of cerebellar activity itself, not involv-
ing necessarily interconnected pathways. Notably, the effects of
cerebellar cTBS were evident at later delays (ISIs = +4 and
+8 ms). It has been proposed that sensory signals to the motor
cortex arriving at later delays around 25 ms (corresponding
approximately to the ISI = 4 ms in the current study) are trans-
mitted by a longer polysynaptic pathway which includes the
cerebellum. This view is supported by the literature showing that
the cerebellum receives sensory information (Dean et al., 2010),
and that patients with cerebellar degeneration have abnormal
sensory-motor integration (Tamburin et al., 2003). Accordingly,
recent studies performed in healthy subjects showed that both
transcranial direct stimulation (TDCS) and cTBS applied over
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the cerebellum interfered with the long lasting effects induced by
protocols of paired associative stimulation (PAS) using an electri-
cal stimulus to the median nerve with a TMS pulse given 25 ms
later to the motor cortex (Hamada et al., 2012a,b; Popa et al.,
2013). This would explain why in the current study the inter-
action of cerebellar stimulation with sensory-motor integration
is evident only for those stimuli that have longer delays. At this
regard, a large limitation of the current study is that we did not
investigate to which extent the observed SLAI modulation was
eventually associated by changes in cerebello-thalamo-cortical
inhibition (CBI). Thus, it remains to be clarified if there are any
physiological relationships among CBI and SLAI circuits in AD
patients. Moreover we did not even assess changes in MEP sizes
after cerebellar cTBS because our main aim was to study modu-
lation of cholinergic circuits. It has to be acknowledged that this
lack of systematic investigation of test MEP sizes as well as con-
ditioning stimulus intensities for SAI, SICI, and ICF limits the
scientific quality of this paper.

It is important to notice that we did not find the expected
modulation of some intracortical circuits such as SICI in the
primary motor cortex that we previously described following
cerebellar theta burst stimulation (TBS) (Koch et al., 2008). This
could possibly depend on the older age of the healthy controls.
Further experiments would be necessary to better clarify the inter-
play between cerebellar cTBS and cortical excitability. Moreover,
we did not find any difference for SICI and ICF measurements
at baseline between the two groups. This is consistent with the
data presented in a recent review that considers all the studies
evaluating SICI in AD (Freitas et al., 2011): some reductions of
SICI to paired-pulse TMS were found by some investigators, but

most (7 of 11) studies did not find differences in SICI between AD
patients and controls.

Indeed, the effects of cerebellar cTBS were evident only in AD
patients and not in healthy age matched controls. It could well be
that we detected any change in the healthy controls because SLAI
inhibition reached a floor level or, in alternative that such modu-
lation would occur only when a deficient cholinergic innervation
coexists such as in AD patients.

As expected, we found lower RMT in the AD patients group.
It is therefore likely that the I-wave component of the test MEP
sizes (Hamada et al., 2012a,b) would be different between AD
patients and healthy controls. This different amount of I-waves
could have been involved in determining the amount of SLAI and
hence affected the present results. Besides, the conditioning stim-
ulus intensity of SICI and ICF would also be different between
the two groups, and therefore this could be another potential
confounding factor.

Whatever the neurophysiological mechanisms underlying
these complex interactions, the current data suggest that cerebel-
lar magnetic stimulation could be effective in modulating central
cholinergic activity in AD patients. Further studies aimed to
investigate systematically the impact of this protocol on different
cognitive functions would be important to further understand the
potential clinical importance of the current findings.
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Background: Mild cognitive impairment (MCI) is a clinical stage indicating a prodromal
phase of dementia. This practical concept could be used also for fronto-temporal
dementia (FTD). Progranulin (PGRN) has been recently recognized as a useful diagnostic
biomarker for fronto-temporal lobe degeneration (FTLD) due to GRN null mutations.
Electroencephalography (EEG) is a reliable tool in detecting brain networks changes. The
working hypothesis of the present study is that EEG oscillations could detect different
modifications among FTLD stages (FTD-MCI versus overt FTD) as well as differences
between GRN mutation carriers versus non-carriers in patients with overt FTD.

Materials and Methods: EEG in all patients and PGRN dosage in patients with a clear
FTD were detected. The cognitive state has been investigated through mini mental state
examination (MMSE).

Results: MCI-FTD showed a significant lower spectral power in both alpha and theta
oscillations as compared to overt FTD. GRN mutations carriers affected by FTLD show
an increase in high alpha and decrease in theta oscillations as compared to non-carriers.

Conclusion: EEG frequency rhythms are sensible to different stage of FTD and could
detect changes in brain oscillatory activity affected by GRN mutations.

Keywords: EEG, FTD, PGRN positive, PGRN negative, MCI FTD

INTRODUCTION

Fronto-temporal lobar degeneration (FTLD) is a neurodegenerative disorder characterized by
behavioral abnormalities, language impairment, and deficits in executive functions as the most
typical clinical features (Seelaar et al., 2011). FTLD is clinically heterogeneous, as different clinical
variants have been carefully described. On the basis of presenting clinical symptoms, behavioural
variant FTD (bvFTD), agrammatic variant of Primary Progressive Aphasia (avPPA), and semantic
variant of PPA (svPPA) represent the most common phenotypes (Benussi et al., 2015). Each
one presents specific neuroimaging hallmarks; bvFTD is characterized by mesial and dorsolateral
frontal damage, prevalent on the right side, avPPA is defined by involvement of Broca’s area and
left insula, whilst svPPA usually presents left rostral temporal involvement (Lashley et al., 2015).

Moreover, FTD is chacterized also by early stages, usually named mild cognitive impairment
(MCI), that are still not completely characterized. Unfortunately, the diagnosis of FTD can be
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difficult because of its insidious and gradual onset and can also be
misdiagnosed as Alzheimer’s disease (AD) (Rankin et al., 2005;
Walker et al., 2005).

The discovery of mutations in GRN as a genetic determinant
for FTLD resulted in the rapid identification of a large number
of families carrying GRN mutations, inherited in an autosomal
dominant pattern. At present, 77 different mutations in more
than 240 unrelated families have been described (Ghidoni et al.,
2012a). Mutations in GRN have been associated with a broad
spectrum of clinical phenotypic variability (Benussi et al., 2008;
Rohrer et al., 2010a,b).

GRN null mutations cause protein haploinsufficiency, leading
to a significant decrease in progranulin (PGRN) levels that
can be detected in plasma, serum, and cerebrospinal fluid
of mutation carriers (Ghidoni et al., 2008, 2012b; Finch
et al., 2009; Sleegers et al., 2009). It has been reported that
PGRN promotes neuronal survival and neurite outgrowth in
cultured neurons (Van Damme et al., 2008) and enhances
neuronal survival under stress conditions (Kessenbrock et al.,
2008). Data from GRN knockout experimental models suggest
that PGRN deficiency leads to reduced synaptic connectivity
and impaired plasticity, which may be contributing factors
to FTLD pathology in human patients (Tapia et al., 2011;
Petkau et al., 2012). Brain activity could be widely and
variously affected in FTLD patients with GRN mutations.
Neuroimaging studies have shown that the topography of
brain atrophy is frequently asymmetric, and predominantly
involves the frontal, temporal, and parietal cortex (Whitwell
et al., 2012). Nevertheless, a recent study (Caroppo et al.,
2014) have demonstrated that a diffuse and bilateral white
matter involvement is common in patients with GRN mutations.
The presence of white matter lesions is not surprising since
expression of PGRN, not only in neurons but also in
activated microglia, in astrocytes and oligodendroglia, has been
previously ascertained (Ahmed et al., 2010). As a consequence,
cortical and subcortical loop are both implicated in the
disruption of intrinsic brain networks in GRN mutations
carriers.

Electroencephalography is a reliable and non-invasive tool for
the study of brain networks in dementia. Relationship of the
brain oscillations with intrinsic brain network like default mode
network (DMN) have been extensively studied (Nishida et al.,
2015). In particular, alpha and theta field potentials are deeply
involved in tuning the large and local scale networks interactions
in cognitive and psychiatric illnesses (Koenig et al., 2001; Tenke
et al., 2011). Previous EEG studies have demonstrated peculiar
modifications in brain oscillations in patients with MCI due
to AD as compared to non-AD converters (Moretti et al.,
2011a). Moreover, these changes in brain oscillations have
been correlated with temporo-parietal and hippocampal atrophy
(Moretti et al., 2007a, 2008a, 2009a,b, 2011a, 2012) as well as
to white matter lesions (Moretti et al., 2007b, 2008b). In the
present explorative study, we test the working hypothesis that
changes in EEG oscillations could specifically detect different
stages of FTLD, namely MCI-FTD versus overt FTD, as well as
differences between GRN mutation carriers versus non- carriers.
The search for new biomarkers is of great importance for an

early diagnosis and for monitoring the effectiveness of new
therapies.

MATERIALS AND METHODS

Subjects
Diagnostic Criteria
Clinical diagnosis of FTLD and LBD were made according
to international guidelines (McKeith et al., 1996; Neary et al.,
1998) as well as more recent revised criteria for the diagnosis
of frontotemporal dementia (Gorno-Tempini et al., 2011;
Rascovsky et al., 2011). MCI-FTD patients were recruited
with mini mental state examination (MMSE) score higher
than 24/30. Eleven patients with MCI-FTD, eight FTLD
patients carrying GRN mutations, and 20 FTLD patients
not carrying GRN mutations were included in the present
study (Table 1). The diagnosis of the enrolled subjects is
reported in Table 2. All patients underwent a series of
standardized diagnostic and severity instruments, including:
the MMSE (Folstein et al., 1975), the Clinical Dementia
Rating Scale (CDRS; Hughes et al., 1982), the Hachinski
Ischemic Scale (HIS; Rosen et al., 1980), the Instrumental
and Basic Activities of Daily Living (IADL, BADL; Lawton
and Brody, 1969) and a comprehensive neuropsychological
battery (Lezak et al., 2004). The patients were recruited only
with apparently primary cognitive deficits excluding psychic
comorbid conditions like anxiety, depression, psychosis etc.,
or physical comorbidities like hypothiroidism, uncontrolled
diabetes, vitamin B12, and folate deficiency, uncontrolled heart
disease or hypertension, drug addiction, or alcohol abuse.
Moreover, none of the patients was taking any drugs that
might affect the EEG, namely psychoactive drugs, including
acetylcholinesterase inhibitors or other drugs enhancing brain
cognitive functions. In addition, patients underwent diagnostic
neuroimaging procedures (magnetic resonance imaging, MRI),
and laboratory testing to rule out other causes of cognitive
impairment. In particular, MRI was able to exclude patients with
major cerebrovascular diseases or other diseases (like tumors)
that might influence EEG frequency rhythms. On the whole, 13
patients with primary progressive non-fluent aphasia (PNFA), 12
patients with the behavioral variant of FTD (FTD-bv), one patient
with the semantic variant of FTD (FTD-sv), and one patient
with Lewy Body Disease (LBD) were recruited. Demographic and
clinical features of the sample in study are reported in Table 2.
All experimental protocols had been approved by the local
ethics committee of Scientific Institute for Research and Care
(IRCCS) of Alzheimer’s and psychiatric diseases ‘Fatebenefratelli’
in Brescia, Italy (Protocol numbers: 26/2014; 50/2015). Written
informed consent was obtained from all participants or their
caregivers, according to the Code of Ethics of the World Medical
Association (Declaration of Helsinki).

EEG Recordings
The EEG activity was recorded continuously from 19 sites by
using electrodes set in an elastic cap (Electro-Cap International,
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TABLE 1 | ANOVA results of demographic variable (age, education) MMSE
score, and of PGRN dosage, high alpha, and theta EEG power of the study
sample.

GRN positive GRN negative MCI FTD p

Number of subjects 8 20 11 –

Age, years 65,7 ± 9,3 67,2 ± 9,2 64,8 ± 4,2 0,07

Education, years 7,4 ± 2,8 7,6 ± 4,2 7,6 ± 3,1 0,9

MMSE 21,3 ± 5,6 20,5 ± 4,3 26,2 ± 5,1 0,11

PGRN dosage 33,6 ± 18,5 142,4 ± 72,1 n.a. 0.001

High alpha EEG power 15,2 ± 3,5 10,6 ± 3,2 8,7 ± 2,8 0,003

Theta EEG power 13,8 ± 5,1 21,1 ± 2,1 4,3 ± 8,3 0,002

TABLE 2 | Clinical diagnosis of the patients recuited in the study.

DIAGNOSIS PGRN positive PGRN negative

FTD PPA 4 9

FTDbv 2 10

FTD 1 1

LBD 1

FTD, fronto-temporale dementia; PPA, primary progressive aphasia; bv, behavioral
variant; LBD, Lewy body dementia

Inc. Eaton, OH, USA) and positioned according to the 10–
20 international system (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3,
Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2). All recordings
were obtained in the morning with subjects resting comfortably.
The patients were instructed to sit with closed eyes and relax
and vigilance was continuously monitored in order to avoid
drowsiness by an operator. The ground electrode was placed in
front of Fz. The left and right mastoids served as the reference
points for all electrodes. The recordings were used off-line to
re-reference the scalp recordings to the common average. Re-
referencing was done prior to the EEG artifact detection and
analysis. Data were recorded with a band-pass filter of 0.3–
70 Hz and digitized at a sampling rate of 250 Hz (BrainAmp,
BrainProducts, Munich, Germany). Electrode-skin impedance
was set below 5 k�. Horizontal and vertical eye movements
were detected by electrooculogram (EOG). The recording lasted
5 min with the subjects’ eyes closed. EEG data were then analyzed
and fragmented off-line in consecutive epochs of 2 s with a
frequency resolution of 0.5 Hz. The average number of epochs
analyzed was 140, ranging from 130 to 150. The epochs with
ocular, muscular, and other types of artifacts were discarded
by two skilled electroencephalographists. The spectral power
we obtained is an estimation of a spectrum collapsed all over
the scalp electrodes. In this way, the eventual contribution of
the muscular or other artifacts is strongly reduced. Moreover,
two skilled electroencephalographists checked separately the EEG
traces (Moretti et al., 2003, 2004).

Analysis of Frequency Bands
A digital FFT-based power spectrum analysis (Welch technique,
Hanning windowing function, no phase shift) computed the
power density of EEG rhythms (ranging from 2 to 45 Hz) with
a 0.5 Hz frequency resolution. The frequency bands range was
computed on fixed limit as follows: (1) delta, 1–3 Hz; (2) theta,

4–7 Hz; (3) alpha 1 ore low alpha, 8–10,5 Hz; (4) alpha 2 ore
high alpha, 10.5–14 Hz. These frequencies were computed on
the power spectra averaged across all recording electrodes. This
“collapsed spectrum method,” being a normalized scalp spectrum,
determined a global field power (Moretti et al., 2003, 2004).

Genetic Analysis
GRN gene was analyzed in patients with FTLD and LBD by
direct sequencing of all exonic and flanking intronic regions as
previously described (Benussi et al., 2008). Plasma PGRN levels
were measured in duplicate using an ELISA kit (Human PGRN
ELISA Kit, AdipoGen Inc., Seoul, Korea) as previously reported
(Ghidoni et al., 2012b). GRN positive carriers belongs to different
families. This choice has been made to avoid that EEG patterns
could be due to familial relationships. Tables 2 and 3 shows the
clinical diagnosis and related genetic mutations of GRN positive
carriers.

Statistical Analysis
One-way analysis of variance (ANOVA) has been performed to
compute the differences between groups (independent variables)
in sociodemographic, MMSE score, PGRN dosage, and EEG
oscillations (dependent variables) and neuropsychological tests.
Age, education, and MMSE score have been used as covariates in
ANOVA of brain rhythms to avoid confounding factors.

RESULTS

Table 1 shows ANOVA significant results. As expected, the
PGRN dosage was significantly different, with an impressive
decrease in GRN null mutation carrier patients [F(19,77),
df = 1, p < 0.001], confirming previous results (Ghidoni
et al., 2012b). As about the EEG rhythms, results show: 1)
a significant increase of high alpha power in GRN positive
mutations carriers [F(4,22), df = 2, p = 0.003]; (2) a significant
increase of theta power in GRN negative patients [F(3,14), df = 2,
p= 0.002).

ANOVA analysis showed a decrease of the theta and alpha
spectral power in MCI-FTD as compared to both PGRN positive

TABLE 3 | Genetic mutations identified in the GRN mutations carriers
group and related clinical diagnosis.

PGRN identified mutations Diagnosis

1 PGRN Leu271LeufsX10 FTDsv

2 PGRN Leu271LeufsX10 (g.1977_1980delCACT) FTD-PPA

3 PGRN Leu271LeufsX10 FTD-PPA

4 PGRN Leu271LeufsX10 FTD-PPA

5 PGRN Thr276SerfsX7 FTD-PPA

6 PGRN Leu271LeufsX10 FTDbv

7 PGRN Leu271LeufsX10 FTDbv

8 PGRN Leu 271LeufsX10 LBD

FTDsv, fronto-temporal dementia semantic variant; FTDbv, fronto-temporal
dementia behavioral variant; FTD-PPA, fronto-temporal dementia primary
progressive aphasia; LBD, Lewy, body disease.
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and negative FTD patients. Given that the difference between
PGRN positive and negative FTD patients were limited to
theta and alpha power spectra, other frequency bands were not
considered in the analysis.

The only significant results about neuropsychological battery
were obtained in Token test, fluency for letters and working
memory test. The results showed a general better performance
in MCI-FTD patients as compared to both negative and positive
PGRN mutations carriers (p < 0.01). No significant differences
resulted between the comparison between negative and positive
mutations PGRN carriers.

DISCUSSION

Our results show that FTLD patients carrying GRN mutations
have different changes of EEG rhythms when compared
to patients negative for GRN mutations. Specifically, GRN
mutations carriers demonstrate an increment of the high alpha
and a decreased of the theta power spectra. In this view, the
presence of PGRN, which is a trophic factor for the nervous
system, would allow a reorganization of the neural networks in a
compensatory or adaptive way: accordingly, it has been reported
that PGRN promotes neuronal survival and neurite outgrowth
in cultured neurons (Van Damme et al., 2008) Likewise, under
stress conditions it has been exhibited that PGRN improves
neuronal survival (Kessenbrock et al., 2008). Data from GRN
knockout experimental models suggest that PGRN deficiency
leads to reduced synaptic connectivity and impaired plasticity,
which may be contributing factors to FTLD pathology in human
patients (Tapia et al., 2011; Xu et al., 2011). On the other
hand, the white matter impairment in GRN mutation carriers
has been directly proved in a recent study (Caroppo et al.,
2014). In this study, four patients carrying GRN mutation were
investigated and in all of them mostly confluent white matter
lesions, affecting the periventricular subcortical white matter and
U-fibers, were found mainly in the frontal and parietal lobes.
This trophic activity could be shown by the maintenance of
theta brain oscillations. Of note, fronto-parietal network are
well recognized potential generators of theta oscillations (Beck
et al., 2008; Ghetti et al., 2008; Whitwell et al., 2009), traveling
on long pathway bundles of the white matter of fronto-parietal
lobes and related subcortical structures like brainstem, and
corpus callosum systems (Rohrer et al., 2010a,b). In particular, a
recent study investigating the cortical generators of theta brain
rhythm, through intracranial electrode recordings, have found
that the higher percentage of cortical gated theta oscillations
is situated in parieto-occipital regions (Raghavachari et al.,
2006). So, a possible explanation of the spared maintenance
of theta power in FTLD patients negative for GRN mutations
as compared to GRN mutations carriers could be related to
the relative integrity of parieto-occipital areas, embedded in the
DMN.

Not surprisingly, in case of PGRN deficiency, the high alpha
frequency spectral power increments. The alpha oscillation is the
rhythm that mirrors the brain electrical signal of the parietal-
occipital default system, profoundly connoted with higher

cognitive abilities (Klimesch, 2012; Moretti, 2015a). Recent
studies have shown that mutations in GRN are correlated with
atrophy of the parietal lobes (Pickering-Brown et al., 2008;
Seeley, 2008; Van Swieten and Heutink, 2008). In particular,
a recent study investigating brain network connectivity with
functional resting state MRI (Premi et al., 2014) utilizing
three measures of both local and global connectivity (the
regional homogeneity, the fractional amplitude of low frequency
fluctuation and the degree centrality) has shown that parietal
lobes are affected very early in GRN mutation carriers, so
that the notion of fronto-parietal dementia for PGRN related
disease should be considered. The parietal lobes are well-
recognized core regions of the DMN (Sala-Llonch et al., 2015).
Previous studies have demonstrated that high alpha rhythm
synchronization (or increase) is a marker of loss of function
in the default system, as exhibited in patients with prodromal
or overt AD (Moretti et al., 2011b, 2013a,b, 2014a,b; Moretti,
2015b,c,d). The increase of high alpha oscillation in FTD patients,
characterized by the loss of PGRN, confirms the reliability of
this biomarker as a sign of DMN impairment. Moreover, the
lack of PGRN is confirmed to be connected to the disruptive of
the default system, determining real reverberations on cognitive
capacity.

As expected, MCI-FTD have better cognitive performance,
especially in frontal function assessment tests, as compare to
overt FTD patients both carriers and non-carriers of GRN
mutation. Moreover, in MCI-FTD the lower spectral power
of theta and alpha power could be explained with an initial
stage of the disease in which EEG changes are not still clear.
A possible fingerprint of this stage could be the ratio between
alpha and theta power spectra. The progression of disease could
modify the EEG oscillations, as observed in overt FTD and
more strongly in GRN mutation positive patients. Anyway, future
studies will clarify if the presence or absence of PGRN mutations
also in MCI-FTD could unveil more peculiar brain oscillations
changes.

Study Limitations
It should be remarked a main limitation of the study that is
the small sample size. We want to highlight that it should be
considered the exploratory nature of the study. In this view, the
choice criteria and statistical outcomes are sufficiently robust to
be confident in the overall reliability of the results. In particular,
the straight difference between MCI-FTD and overt FTD patients
confirm that results are not due to mere random chance
results. Despite this limitation, it provides important results for
future studies. Up to date, for the first time in this paper, the
particular aspect of a neurophysiological EEG biomarker in GRN
mutation carriers and non-carriers have been investigated. Most
important, the detection of a neuropshysiological biomarker,
related to functional, and structural changes, could open new
windows on integrated research strategy about the molecular
nexopathies shedding light on the way through which different
proteinopathies could differently affect neural networks (Warren
et al., 2013). Finally, the finding of a new biomarker could be
helpful for early diagnosis, to monitor the progression of disease
and to test disease-modifying drugs. Anyway, we are well aware
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of the need to correlate the results with a wider morphological
and neuropathological characterization as well as with other risk
factors.

CONCLUSION

GRN mutations affect brain oscillatory activity. A better
understanding of the complexity of PGRN biology in the brain
will help guide the development of PGRN-modulating therapies
for neurodegenerative disease. Further studies with a larger
number of subjects are needed to confirm the present results.
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