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Editorial on the Research Topic

APPNING: Animal Population Imaging

This editorial review of the Research Topic Appning describes several solutions to support the
sharing of animal imaging data and processing tools. Appning promotes the federation of multiple
sources of information, processing tools and shows how this contributes to the diffusion of
knowledge distributed in various preclinical imaging centers.

ANIMAL DATA SHARING

Some large data repositories (e.g., for brain studies, The MJ Fox Parkinson’s database or the
Human Connectome project) and specific architectures (e.g., COINS, LONI) are now available
for human population imaging. The animal imaging community has also growing requirements
for multicenter studies, for example to allow the comparison of academic results as in brain
connectivity studies (Grandjean et al., 2020) or to characterize the effects of drugs (Bruns et al.,
2015). To share preclinical imaging data and data analysis pipelines, only few tools are available
that take into account the specificities of animal studies (Liu et al., 2020; Messinger et al., 2020),
and few studies aim at standardization of acquisition and post-processing techniques.

Kain et al. describe a solution, Small Animal Shanoir (SAS), for the management of imaging data
andmetadata. SAS is a preclinical extension of a cloud-based solution dedicated to themanagement
of human brain imaging repositories, Shanoir (Barillot et al., 2016). The main feature of this
working solution is to rely on a core ontology, OntoNeurolog, which allows for the federation
of different local databases via the mapping of their corresponding data models to the ontology,
and facilitates its extension, for instance for managing preclinical studies. Additionally, to reinforce
its extensibility capacity, SAS is designed as a set of independent micro-services. Then, a specific
micro-service,Dicomifier, is dedicated to the transformation to Nifti format, widely used by several
neuroimaging pipelines, of raw files in Bruker format, Bruker being a manufacturer of preclinical
MR scanners, or of Dicom files. Associated data acquisition parameters are kept under a json file
associated to each Nifti file stored in SAS. The web-oriented architecture allows for querying and
retrieving stored images and processing pipelines. A data transfer module can interface the data
management system to computing platforms for pipelines execution and the storage of image
processing results. Specific authentication mechanisms allow for the fine control of data access,
from an access restricted to a specific user’s community to a publicly access for promoting open
science. SAS was used for the project described by Deruelle et al. in this Research Topic.

Mandino et al. review the efforts done by the animal MRI community toward the
standardization of data acquisition and analysis procedures in the context of whole brain functional
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MRI; a key aspect for animal population imaging via multi-
center studies. Based on their 868 research papers analysis,
they showed that animal studies (mainly on rats and Sprague
Dawley strain, in general carried out on 10 subjects at 7T and
9.4T) were underpowered and the false-positive rate incorrectly
controlled, similarly to human studies (Button et al., 2013;
Eklund et al., 2016). Several sources of variations among
studies, from animal preparation and anesthesia to the use
of ad-hoc pipelines or/and ad-hoc templates, hamper the
comparison of published results. The authors propose guidelines
to improve data sharing and reproducibility. They emphasize
the importance of raw datasets sharing for data re-analysis
with other processing pipelines allowing results comparison
between studies, the adoption of standard templates for the
reporting of results (e.g., coordinates of activation clusters)
similarly to human neuroimaging studies (Fox et al., 2014),
and the availability of open-source validated pipelines to unify
data processing.

PIPELINES COMPOSITION AND PIPELINE

SHARING

As shown by Mandino et al. in their review of the small animal
literature, a source of difficulty for comparing results in animal
studies is the absence of a core of validated solutions for data
processing and analysis, similarly to what is available for human
neuroimaging. Four papers address this point. To facilitate the
sharing of raw MR brain imaging data, Ioanas et al. present a
tool to transform files in a proprietary format (Bruker files) to
Bids format that has been proposed for human neuroimaging
studies (Gorgolewski et al., 2016). The workflow is implemented
as a function, bru2bids, written in Python. In the same vein,
Celestine et al. propose the Python package Samba-MRI to
preprocess, register to templates, perform functional analysis,
and perfusion measures from raw MR brain imaging datasets.
It reuses several neuroimaging python libraries (e.g., Nipype,
Nibabel or Nilearn) and incorporates additional features for
group-wise registration or inter-modality registration. The code
is available via the open GitHub platform. One can mention
here the recent work of Brossard et al. (2020) who introduce
a package to design pipelines and obtain multiparametric MRI
maps that was extensively evaluated at the preclinical level. The
papers from Groeneboom et al. and Yates et al. propose software
for analyzing histological rodent brain images. Indeed, the recent
in vitro imaging systems provide large collections of high-
resolution images that raise specific computational problems
for memory management and time execution. The former,
Nutil, allows to automatize image processing and analysis of 2D
brain histological sections. Standard image transformations are
proposed to the user and their execution has been optimized
to deal with large datasets. Nutil can be used independently or
conjointly with the Quint workflow. Quint is a suite of tools that
allows for the quantification and the spatial analysis of selected
features in series of histological section images of rodent brain
within a known atlas space. It combines several pre-existing
tools for pre-processing, registration to 3D reference atlas

(mouse and rat) and object segmentation, for the quantification
of specific parameters in regions defined by the atlas. The
Quint suite allows the user to perform in a convenient way, a
quantitative analysis at different levels of granularity on large
imaging datasets.

APPLICATIONS OF EXISTING DATA

SHARING AND DATA ANALYSIS

SOLUTIONS

MR imaging is a non-invasive versatile technique that allows
to assess to various anatomical, functional or physiological
parameters. Then, the T1 and T2 relaxation times are tissue
and region-dependent parameters that may reflect structural
alterations and may be used as biomarkers for various
pathologies. The goal of Deruelle et al. was to define maps
of T1 and T2 values for specific rat brain regions. To
serve as reference, such maps should be defined based on a
sufficient number of healthy animals reflecting inter-individual
variability. They designed a multi-center study which included
two data provider centers and three image processing pipeline
provider centers. They used the SAS architecture (Kain et al.)
and showed first, that MR data from 40 rats acquired in
two centers could be successfully combined; second, that a
good reproducibility could be obtained when using different
processing solutions. Their study demonstrates the feasibility
of a multi-center animal study if an appropriate architecture
for data management and pipelines composition and execution
is available. Raw data and reference T1 and T2 relaxometry
maps, as well as processing pipelines are freely available
via SAS.

Badea et al. use genetically modified mouse models to
relate genotype with brain aging trajectory for Alzheimer’s
disease. They use diffusion tensor imaging to compare
structural connectomes, and region volumes for two gene
modified mouse groups associated with genetic risk for
Alzheimer disease. Additionally, behavioral tests provide
information about learning and memory function deficits.
They show that behavioral and imaging markers allow to
identify vulnerable brain networks induced by the genetic risk
factor. Their findings contribute to a better understanding
of the physio-pathological mechanisms triggering the
onset of the Alzheimer’s disease. All generated datasets
generated are available to the scientific community and
may be pooled with new data to reinforce the robustness of
the findings.

Interestingly, all the papers of the RT Appning concern
the investigation of the rodent brain with both in vivo,
MR imaging, and in vitro, histological imaging. Indeed,
neuroimaging is the domain for which scientists have
developed to date several solutions for sharing data and
process large data repositories. This is certainly due to the
impressive quantity of neuroimaging studies performed in
the recent years, generating large-scale databases. This is also
stimulated by publications showing the poor replicability
and reproducibility of the results obtained (Carp, 2012;
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Button et al., 2013; Nichols et al., 2017; Poldrack et al., 2017).
Because these caveats are not restricted to brain studies, but
concern many areas of life science (Ioannidis, 2005), new
solutions for dealing with other organs and species will for
sure emerge.
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Transgenic animal models are invaluable research tools for elucidating the pathways and
mechanisms involved in the development of neurodegenerative diseases. Mechanistic
clues can be revealed by applying labelling techniques such as immunohistochemistry
or in situ hybridisation to brain tissue sections. Precision in both assigning anatomical
location to the sections and quantifying labelled features is crucial for output validity, with
a stereological approach or image-based feature extraction typically used. However,
both approaches are restricted by the need to manually delineate anatomical regions.
To circumvent this limitation, we present the QUINT workflow for quantification and
spatial analysis of labelling in series of rodent brain section images based on available
3D reference atlases. The workflow is semi-automated, combining three open source
software that can be operated without scripting knowledge, making it accessible to most
researchers. As an example, a brain region-specific quantification of amyloid plaques
across whole transgenic Tg2576 mouse brain series, immunohistochemically labelled for
three amyloid-related antigens is demonstrated. First, the whole brain image series were
registered to the Allen Mouse Brain Atlas to produce customised atlas maps adapted to
match the cutting plan and proportions of the sections (QuickNII software). Second, the
labelling was segmented from the original images by the Random Forest Algorithm for
supervised classification (ilastik software). Finally, the segmented images and atlas maps
were used to generate plaque quantifications for each region in the reference atlas (Nutil
software). The method yielded comparable results to manual delineations and to the
output of a stereological method. While the use case demonstrates the QUINT workflow
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for quantification of amyloid plaques only, the workflow is suited to all mouse or rat brain
series with labelling that is visually distinct from the background, for example for the
quantification of cells or labelled proteins.

Keywords: rodent brain analysis, Alzheimer’s disease, quantification, workflow, APP—amyloid precursor protein,
beta-amyloid

INTRODUCTION

Transgenic rodent models are useful tools in the study of
neurodegenerative disorders, providing clues to the origins and
mechanisms of the protein aggregates that accumulate and
harm neurons and synapses in these conditions (Dawson et al.,
2018). A common study approach is to section the brains and
apply immunohistochemical or other histological techniques to
reveal features that can be explored by microscopy. Qualitative
assessments of such features can reveal vulnerable brain regions,
while understanding the connectivity of affected regions may
provide insight into disease mechanisms (Thal et al., 2002;
Hurtado et al., 2010). The ability to accurately assign anatomical
location to the data is of crucial importance to the validity of
the conclusions drawn, and is a limiting factor in these studies.
Present resources for assigning anatomical location to whole
brain rodent data are not easily applicable to 2D histological
series, especially if cutting angles deviate even marginally from
the coronal, sagittal or horizontal planes. Even with diligent
sectioning, small deviations of a few degrees are common.
Our recent registration tool, QuickNII, allows users to perform
that correction (Puchades et al., 2019). For users with coding
expertise, other tools for registration of image series to reference
atlases are also available (Kopec et al., 2011; Fürth et al., 2018;
Xiong et al., 2018). Furthermore, combining datasets from
different sources or comparison of data from different animal
models is difficult unless the data are linked to the same atlas
reference system (Simmons and Swanson, 2009; Kim et al., 2017;
Bjerke et al., 2018).

The gold standard for quantification of features in 2D image
series is stereological analysis applied to anatomical regions that
have been manually delineated by an expert in the field (Schmitz
and Hof, 2005). However, in practical terms, this method is
difficult to apply optimally due to a shortage of anatomical
expertise, the significant numbers of sections for analysis, and
limited availability of time. Large scale projects and multi-
centre collaborations would benefit from the automation of
both the extraction and spatial analysis steps. The introduction
of the machine learning concept has opened up possibilities
for semi-automated extraction of features based on supervised
machine learning algorithms (Berg et al., 2019). Furthermore,
the new generation of three-dimensional digital brain atlases
developed for murine brains (Lein et al., 2007; Hawrylycz et al.,
2011; Oh et al., 2014; Papp et al., 2014; Kjonigsen et al., 2015)
serve as spatial frameworks for data sharing and integration
(Boline et al., 2008; Zaslavsky et al., 2014), while also providing
possibilities for automation of spatial analysis.

To this end, we have developed the QUINT workflow based
on image analysis using a series of neuroinformatic tools.

The workflow entails three steps. In the first step, images are
registered to a 3D reference atlas. This step utilises a three-
dimensional brain atlasing tool, QuickNII (Puchades et al.,
2019) that supports arbitrary cutting angles, and is used to
generate atlas maps that are customised specifically to match
each section. In the second step, segmentation of distinct features
such as labelled cells or aggregates is performed with ilastik.
The ilastik software benefits from a supervised machine learning
approach (Berg et al., 2019) allowing a combination of many
parameters for segmentation as is demonstrated in the use cases
here. However, the workflow is compatible with segmentations
produced by other means, such as NIH ImageJ (Schneider
et al., 2012), or with another image analysis tool provided that
it supports segmented image export. As illustrated by Pallast
et al. (2019), different types of features may require different
segmentation tools. In the third step, the Nutil software draws
on the atlas maps and segmentations to quantify segmented
objects in relation to the delineated brain regions contained in
the atlas. Nutil also extracts the xyz position of the segmented
objects for viewing in reference atlas space. As an example, we
present the quantification of human amyloid precursor protein
(hAPP) and β-amyloid deposits across a whole mouse brain
series immunohistochemically labelled For the human APP
N-Terminus (rat monoclonal antibody; Höfling et al., 2016),
Aβ (4G8 mouse monoclonal antibody) and pyro-glutamate
modified Aβ [pE-Aβ; J8 mouse monoclonal antibody (Hartlage-
Rübsamen et al., 2018)]. The results are validated by comparing
the workflow output with ground truth data manually segmented
with the NIH ImageJ tool (Schneider et al., 2012), and by
comparing to stereological counts with the MBF Bioscience
Stereo Investigator Area Fraction Fractionator probe. A second
example is shared to demonstrate the use of the workflow for
quantification of another type of labelling (parvalbumin positive
cells in an Allen Mouse Brain series).

MATERIALS AND METHODS

The workflow for serial brain section image analysis comprises
several parts (Figure 1): namely, image pre-processing (Nutil
using the Transform feature); registration of images to a reference
atlas (QuickNII); segmentation of labelled features (ilastik); and
quantification of features per atlas region (Nutil using the
Quantifier feature).

Use Case Material: Animal,
Immunohistochemical Labelling and Image
Acquisition
An 18-month-old male Tg2576 mouse (Hsiao et al., 1996)
mimicking the amyloid pathology of Alzheimer’s disease
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FIGURE 1 | Workflow for automated quantification and spatial analysis. Diagram showing key steps of the workflow (blue frames). After sectioning and labelling,
brain sections are digitalised. Serial section images are pre-processed, and then registered to a 3-D reference atlas space using the QuickNII tool. The same images
are segmented using the ilastik tool. Exported custom atlas maps and segmented images are then combined in the Nutil tool in order to extract quantification of
objects in atlas brain regions as well as 3D coordinates of the objects.

supplied thematerial for the first use case (plaque quantification).
This study was carried out in accordance with the principles
of the Basel Declaration and recommendations of the ARRIVE
guidelines, National Centre for the Replacement, Refinement
and Reduction of Animals in Research, UK. The protocol used
was approved by the responsible authority Landesdirektion
Sachsen, Germany, license number T28/16. The mouse was
sacrificed by CO2 inhalation and the brain was fixed using
the transcardial perfusion fixation method. First, the brain
was perfused with 30 mL of PBS, followed by 30 mL
of 4% paraformaldehyde (PFA) solution and post-fixed at
4◦C overnight. The brain was cryoprotected by immersion
in 30% sucrose for 3 days and sectioned using a freezing
microtome in 30 µm thick coronal sections. Every 4th section
(60 sections) was used for immunolabelling of hAPP using
the species-specific monoclonal rat antibody 1D1 (dilution
1:2; Höfling et al., 2016). Neighbouring sections with the
same sampling frequency were labelled with the 4G8 antibody
detecting pan-Aβ (BioLegend RRID:AB_2734548, 1:8,000) and
with the J8 antibody detecting pE-Aβ (1:2,000; Hartlage-
Rübsamen et al., 2018). After incubation with biotinylated
secondary antibodies (1:1,000; Dianova; Hamburg, Germany)
in TBS with 2% bovine serum albumin for 60 min at room
temperature, the ABC method was applied, which comprised
incubation with complexed streptavidin–horseradish peroxidase
(1:1,000; Sigma; Deisenhofen, Germany). Incubations were
separated by washing steps (3-times, 5 min). Binding of
peroxidase was visualised by incubation with 4 mg 3,3′-
diaminobenzidine and 2.5 µl H2O2 per 5 ml Tris buffer
(0.05 M; pH 7.6) for 1–2 min. Stained brain sections were
extensively washed and mounted onto microscope slides.
All brain sections were scanned using a Zeiss Axioscan
Z1 slide scanner running Zeiss Zen Software (Carl Zeiss
MicroImaging, Jena, Germany) with a 20× objective. Images
were exported in Tagged Information File Format (TIFF).

The background in the raw images was adjusted within the
Zen software in order to optimise the signal to noise ratio,
with the same parameters for all images, thereby allowing
comparative results. The resolution of the exported Tiff
images was constant within each series (0.284 µm/pixel for
the antibody 1D1 and 0.265 µm/pixel for the antibodies
4G8 and J8).

Use Case: Allen Mouse Brain Series
To demonstrate quantification of another type of labelling, the
QUINT workflow was applied to parvalbumin positive cells in
an image series exported from the Allen Mouse Brain Atlas
Data Portal. The image series encompassed 20 sagittal mouse
brain sections from the left hemisphere labelled for parvalbumin
by in situ hybridisation, available at http://mouse.brain-
map.org/experiment/show/75457579 (© 2004 Allen Institute
for Brain Science. Allen Mouse Brain Atlas. Available from:
mouse.brain-map.org). All the analysis parameters and workflow
output files for this dataset are published on the human brain
project (HBP) Platform (DOI: 10.25493/6DYS-M3W; Yates and
Puchades, 2019), and so are not described here in full.

Image Pre-processing Steps: Nutil
Transform
The Transform feature in the Nutil software enables image
rotation, renaming, resizing and mirroring and was used to
prepare the image series for QuickNII alignment and ilastik
segmentation. Several sets of images were prepared as the
input size requirements for the QuickNII and ilastik software
differ. For QuickNII, the input requirements are described in
Puchades et al. (2019). For ilastik the resizing was performed
in order to enable efficient processing and to comply with the
pixel scale restriction of the features imposed by the ilastik
software. To clarify, the pixel classification algorithm relies on
input from manual user annotations of training images, and

Frontiers in Neuroinformatics | www.frontiersin.org 3 December 2019 | Volume 13 | Article 759

https://scicrunch.org/resolver/RRID:AB_2734548
http://mouse.brain-map.org/experiment/show/75457579
http://mouse.brain-map.org/experiment/show/75457579
http://mouse.brain-map.org
https://doi.org/10.25493/6DYS-M3W
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Yates et al. QUINT Quantification and Spatial Analysis Workflow

the features–intensity, edge and/or texture–of the image pixels.
The features at different scales are computed as filters with
pre-smoothing by a Gaussian with a sigma ranging from 0.3 to
10. For each pixel, the algorithm thus considers the values of the
filters in a small sphere around the pixel (the maximal sphere
radius is approximately 35 pixels) in the annotated regions, on
a scale of 0.3 to 10 pixels. This means that the pixel features
must fall within a maximum 10 × 10 pixel window for detection
(for example, a repeating textural pattern). The resize factor
was selected with reference to this maximum pixel scale to
bring the labelled objects within the detection range for all
the features, hence achieving a better segmentation (see the
ilastik manual for more information). In practise, a test run was
performed with ilastik on images of different sizes to find the
optimal resolution for segmentation, with a final resize factor of
0.1 selected for the pE-Aβ series, and a factor of 0.05 for the hAPP
and pan-Aβ series.

TheNutil software is shared through the HBP1 and is available
for download at NITRC2 with an extensive user manual. See
also Github3.

Alignment of Sections to Atlas Space With
QuickNII
The three image series (hAPP, pan-Aβ and pE-Aβ) were aligned
to reference atlas space with theQuickNII atlasing tool (Figure 2;
Puchades et al., 2019). This open access software allows
assignment of spatial location to serial brain section images. The
reference atlases available in the tool are the Waxholm Space Rat
Atlas for rat data (Papp et al., 2014; Kjonigsen et al., 2015) and the
Allen Mouse Brain Atlas for mouse data (© 2004 Allen Institute
for Brain Science. Allen Mouse Brain Atlas. Available from:
http://download.alleninstitute.org/informatics-archive/current-
release/mouse_ccf/annotation/ccf_2015/) (Lein et al., 2007;
Oh et al., 2014).

Within QuickNII, the volumetric brain reference atlases are
used to generate customised atlas maps that match the spatial
orientation and proportions of the experimental sections. In the
software, the location is defined by superimposing the reference
atlas onto the section images in a process termed ‘‘anchoring.’’ In
‘‘anchoring’’ the cutting angle of the reference atlas is adjusted
to match the plane of the sections, with the position of each
section identified prior to a manual adaptation of each atlas
image to match the section images using affine transformations.
Anchoring of a series of, e.g., 100 sections from an animal,
typically takes 2–6 h, depending on the quality of the sections
in the series (distorted sections are more difficult to anchor).

The QuickNII software is available at NITRC4 through
the HBP1.

Image Segmentation With Ilastik
The ilastik software was used to segment the downscaled
section images for immunohistochemically labelled plaques
(60 images per series: hAPP, Aβ and pE-Aβ; Berg et al., 2019;

1www.humanbrainproject.eu
2https://www.nitrc.org/projects/nutil/
3https://github.com/leuat/nutil
4https://www.nitrc.org/projects/quicknii/

version 1.2.2. post2 for Windows, 64-bit). The segmentation
was performed in two steps. First using Pixel Classification
to differentiate the immunoreactivity from the background,
followed by Object Classification to differentiate the specific
immunoreactivity from labelled artefacts (Figure 3). For each
image series, only 10% of the images were used to train
the classifiers, which were then applied to the whole series
in a batch mode, saving considerable time compared to an
individual segmentation approach (segmentation of a whole
image series takes a few hours depending on the size and number
of images).

Ilastik Pixel Classification Workflow
The Pixel Classifiers were trained with the training images
selected for each series (approximately every 6th section
per series). All the available features (texture, edge, and
intensity) and feature scales (0.3–10 pixels) were included in
the classification algorithms. In the training phase, annotations
were placed on the first training image, a few pixels at a time,
with inspection of the predictions with each annotation. To
refine the classifier and increase its applicability to the whole
series, each training image was annotated in turn until the
predictions were of a good standard across all the training
images. The trained classifier was then applied to the series
in the batch mode, with probability maps exported for the
whole series.

Ilastik Object Classification Workflow
The object classifier differentiates objects based on features
such as size and shape, and was applied to the output of
the pixel classification to remove artefacts that could not be
removed by pixel classification alone (for example, the elongated
immunoreactivity around the edges of sections as opposed to
the typically circular plaques). The training approach was the
same as for the pixel classification, with the same subset of
training images used. The probability maps were thresholded at
a probability of 0.4 for all the series, with the object size filters
set to 8–10,00,000 pixels for the hAPP and pE-Aβ series, and
4–10,00,000 pixels for the pan-Aβ series (the pan-Aβ labelled
objects were smaller than the hAPP and pE-Aβ objects). All
the object features in the ilastik software, except the location
features, were included in the classifier (find more information
on this in the ilastik user manual). The trained classifier was
applied to the whole series in the batch mode, with the object
prediction maps exported in PNG format. NIH imageJ was
then used to apply colours to the predictions maps with the
glasbey lookup table, and the coloured versions used as input
for Nutil Quantifier.

Quantification of Labelling in the Different
Brain Regions With Nutil Quantifier
Once the section images were segmented (ilastik) and registered
to the relevant reference atlas (QuickNII), Nutil—a software
application developed in-house—was used to extract quantitative
data about the labelling in each region in the reference atlas
(Quantifier feature).

Nutil is a stand-alone application that allows for object
classification from arbitrary image input files. The code for
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FIGURE 2 | Registration to reference atlas by QuickNII. Following initial preprocessing steps where the sequence and orientation of the serial images is validated
and a configuration file generated, images are imported to QuickNII together with a 3-D reference atlas of the mouse brain. In QuickNII, an atlas overlay image which
is interactively manipulated to generate an image with position, scale, and orientation (rotation and tilt) that best matches the selected experimental images (DV: +13;
ML: −4). QuickNII automatically propagates information about position, scale, and tilt to the entire series. By iterative anchoring of selected key sections, the user
can optimize the automatically propagated parameters. The rotation and position of the overlay atlas image is validated and if needed adjusted by the user. Output
from QuickNII is a series of custom atlas plates matching each anchored experimental image, and an XML file describing a set of vectors (o, u, and v) that define the
position of each image relative to the technical origin of the reference atlas used.

Quantifier uses a standard recursive pixel filling algorithm in
order to scan for and separate individual objects in a 2D
segmented image. This means that for each pixel that is not
classified as a background pixel, the algorithm checks whether
there are neighbouring pixels that are also not part of the
background. If so, Nutil applies the same algorithm to these
neighbours, and repeats the process until all surrounding pixels
are background only. The cluster of collected pixels is considered
to be an object, which is added to a global list of objects
before being assigned a label ID that is matched with the
corresponding reference atlas. This is performed by selecting the
top left pixel from each identified object and using this position
as a lookup in the reference atlas image files. In addition, the
statistical properties of each cluster are calculated and stored
(position, width, height, area, size, et cetera). When the entire
batch process has completed, reports are produced, which are
based on user inputs such as individual colour assignment
for different label IDs, areas to exclude, areas to merge, et
cetera. Finally, a set of report files are generated, in addition to
customised atlas images superimposed with colour-coded (and
labelled) objects.

Nutil is available for download at NITRC with an extensive
user manual5. See also Github6. The Nutil Quantifier feature
is fast to run, taking seconds to minutes on a desktop
computer depending on the size and number of images
for analysis.

5https://www.nitrc.org/projects/nutil/
6https://github.com/leuat/nutil

Validation of the Image Segmentation
In order to validate the segmentations produced with the ilastik
software, their area outputs as determined with Nutil Quantifier
were compared to ground truth measurements obtained by
manual delineation of plaques for five sections (s14, s54,
s94, s134 and s174), and to stereological measurements on
30 sections (s6, s14, s22, s30, s38, s40, s54, s62, s70, s78,
s86, s94, s120, s110, s118, s126, s134, s142, s150, s158, s166,
s174, s182, s190, s198, s206, s214, s222, s230, s238). The
comparisons were performed on section images that were
immunohistochemically labelled for hAPP (1D1 antibody) and
restricted to clearly visible plaques (we excluded neuronal
hAPP labelling). For both the 5 and 30 section subsets, the
sections were regularly spaced and spanned the full volume
of the brain. The subsets represented 8% and 50% of the full
hAPP series, respectively. The section images that were used
to train the classifiers (training images) were not selected for
the validation.

The ground truth areameasurements were obtained for five of
the sections by manual delineation of the hAPP immunoreactive
plaques by an expert in the field, with the NIH ImageJ tool
(Analyse function) on images at 5% of the original size.
Immunolabelled plaques were delineated for individual objects
at the pixel level. For each image, the surface area occupied by
plaques was calculated with reference to the resize factor and the
pixel length in the original image.

Stereological analysis of hAPP immunoreactivity was
performed with the Area Fraction Fractionator probe in theMBF
Stereo Investigator software (version 2017.02.2; MBF Bioscience,
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FIGURE 3 | Segmentation of images with the ilastik software. An image of a
Tg2576 mouse brain section, immunohistochemically labelled for pan-Aβ

(4G8), processed with the pixel and object classification workflows in the
ilastik software (version 1.2.2. post2). Panels (A,C,E,G) show the whole
image, with (B,D,F,H) representing the area identified in the dashed box.
(C,D) show the output of the pixel classification workflow, with images
segmented into five classes based on differences in intensity, edge and
texture (red: specific immunohistochemical labelling, blue: unlabelled tissue,
purple: artefacts, black: non-specific labelling, yellow: background). The pixel
classification workflow is able to differentiate labelling and artefacts such as
marks on the coverslip and debris (see arrows). Panels (E,F) show the output
of the object classification workflow: the probability maps derived from the
pixel classification workflow were thresholded at 0.4 for the channel
representing the labelling, and classified into two classes based on
object-level features such as size and shape (red: β-amyloid plaques, blue:
non-specific labelling). Panels (G,H) show the object classification output with
the blue channel removed to visualize the β-amyloid plaques only. Images
(A,C,E,G) are displayed at the same magnification with the scale bar
representing 1 mm. The scale bar for figures (B,D,F,H) represents 500 µm.

Chicago, IL, USA) with a sampling grid of 300 µm × 300 µm,
a counting frame of 200 µm × 200 µm, and a 20 µm point
spacing. The settings were selected with reference to the literature
(Tucker et al., 2008; Liu et al., 2017; Wagner et al., 2017).
Points within the section contours that overlapped the hAPP
immunoreactive plaques were marked as positive; with all
remaining points marked as negative. hAPP plaque load was

calculated by the software with respect to the magnification. The
30 section subset included the five sections for which ground
truth measurements were available, allowing comparison of
three methods for the five section subset.

Validation of the Atlas Delineations
To validate the atlas delineations derived from the QuickNII
software, we compared the plaque loads for five sections in three
anatomical brain regions delineated by two alternative methods.
The comparisons were performed on section images that were
immunohistochemically labelled for hAPP (1D1 antibody) and
restricted to clearly visible plaques (we excluded neuronal
hAPP labelling). For the first delineation method, five section
images were segmented to extract labelled plaques with the
ilastik method. The segmentations were then visualised on top
of the original images, and the cortex, olfactory region and
hippocampus manually delineated with the NIH ImageJ tool
with guidance from the Franklin and Paxinos mouse brain atlas
version 3 (Franklin and Paxinos, 2008). The Analyse function
in NIH ImageJ was used to quantify hAPP plaques in the
delineated regions for each brain section. Brain region-specific
hAPP load was calculated by dividing the area occupied by
hAPP labelling within the selected brain region by the total
area occupied by the brain region. For the second method,
the same five segmentations were processed with the QUINT
workflow with the delineations derived from the QuickNII
atlas maps. The hAPP loads were extracted for the cortex,
olfactory region and hippocampus for the five sections from the
output reports.

RESULTS

Workflow Description
We present the QUINT workflow for quantification and spatial
analysis of features in large series of labelled mouse or rat brain
sections (Figure 1). The different steps are indicated below:

1. Image pre-processing (change the contrast, resolution, file
type) with the Transform feature in the Nutil software

2. Registration of sections to reference atlas space using the
QuickNII software to generate atlas maps adapted to the
orientation of the images

3. Segmentation of the labelling with the ilastik image analysis
software using two classifiers

4. Data analysis with the Quantifier feature in the Nutil software
(combines the segmentation results with input from the atlas
maps to give a list of individual plaque features, region
level features and whole brain features, enabling quantitative
regional analysis).

The procedures used in all steps (a to d) are detailed in the
‘‘Materials and Methods’’ section. Image pre-processing: (a) is
necessary in order to produce copies of the images that are
suitable for each tool in the workflow. The registration of the
sections; (b) to the Allen Mouse Brain Atlas (© 2004 Allen
Institute for Brain Science. Allen Mouse Brain Atlas,
Available from: http://download.alleninstitute.org/informatics-
archive/current-release/mouse_ccf/annotation/ccf_2015/;
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Lein et al., 2007; Oh et al., 2014) is performed with the QuickNII
tool (Puchades et al., 2019). Briefly, as illustrated in Figure 2,
image series are uploaded to the software and visualised with
reference atlas overlays that have adjustable transparency. A few
sections with highly distinguishable landmarks are selected for
adjusting the dorso-ventral and the medio-lateral angles of the
atlas in order to match the cutting angles of the brain sections.
Once these sections are registered to the atlas, the software
automatically propagates the spatial information to the rest
of the image series. After a rapid overview of the registration
results and eventual minor positional adjustments, atlas maps
corresponding to each image are exported. These atlas maps are
used for the region-based analysis of the labelled features.

The next step (c) consists of segmentation of the labelled
features present in the brain sections (Figures 3A,B). In
the first ilastik step, a subset of the image series is used
to train the classifier with the pixel classification workflow
(Figures 3C,D). The user defines classes based on intensity,
edge and texture and annotates a few example pixels of each
class. The second ilastik step, object classification, is used for the
removal of artefacts (Figures 3E,F). The resulting segmentations
identify the plaques in a colour with a unique RGB colour
code (Figures 3G,H).

In the last step (d), the Quantifier feature in Nutil
enables quantitative regional analysis of labelling based on the
segmentations and corresponding atlas maps. The software is
simple to run, requiring no specialist computing or programming
knowledge. The user specifies the path to the input and output
directories in a simple Microsoft Excel template titled Quantifier
(the input directories should contain the segmentations and
the atlas maps), in addition to entering analysis parameters.
The necessary input parameters are the pixel scale (area
represented by one pixel in the segmentations), and the
minimum and maximum object size cut-offs. The template
is then uploaded to the Nutil software, which drawn on the
information in the template to perform the analysis. The
output files are automatically saved to the specified output
directory and consist of quantitative reports with variables
such as number of objects and surface area of objects
per region. Text files listing the xyz coordinates of each
segmented pixel in reference atlas space are also generated
for viewing with the Meshview atlas viewer (provided via the
MediaWiki link at https://www.nitrc.org/projects/meshview).
Nutil also generates customised atlas images with the segmented
objects superimposed providing an overview of the objects per
atlas region.

Validation of Object Segmentation
As accurate segmentation of the labelled objects is important
for a valid quantitative result, we decided to compare our
results with three different methods. The segmentations
generated with ilastik were compared to manual delineation
of labelled objects by an expert in the field (five sections),
and to measurements obtained with a stereological method
(30 sections). The hAPP labelled series was selected for
the validation. The ilastik segmentations gave hAPP load
estimates that were similar to the stereological estimates,

and that represented the outputs from manual object
delineations for the five sections for which manual object
delineations were available (error of ilastik estimates relative
to manual object delineations: mean −0.06% with a SD of
0.09%; error of stereological estimate relative to manual
object delineations: mean −0.05% with a SD of 0.11%;
see Figure 4A).

For the 30 sections, the mean error of the hAPP loads
from the ilastik method relative to the stereological method was
2.79× 10−3%with a SD of 0.16% (see Figure 4B). To summarise,
this means that for this image series, the ilastik method allows
the user to establish the plaque load (restricted to hAPP labelled
plaques) with 95% confidence to within an error of ±0.32%. As
described in the results, the plaque load variations detected from
section to section and between brain regions were of a much
greater magnitude than this error, indicating that the ilastik
method is suitable for detecting these differences.

Validation of Anatomical Delineations From
QuickNII
In a separate study, to validate the accuracy of the atlas
delineations from QuickNII, we compared the hAPP loads from
the QUINT workflow to loads calculated based on manual
delineations of three brain regions for five sections (cortex,
olfactory region and hippocampus; Figure 5). The QuickNII
delineations gave hAPP loads that were representative of the
loads from the manual delineations for all the sections and
brain regions that were investigated (Figures 5E–G). Overall,
the QUINT workflow slightly underestimated the hAPP loads
relative to the manual method for all the explored brain regions
(deviation of the workflow derived cortical hAPP load from the
manual method: mean of −0.11% with SD of 0.07%; deviation
of workflow derived olfactory hAPP load from manual method:
mean of −0.21% with SD of 0.23%; mean and SD are not
provided for the hippocampus as only two sections contained
this region).

Use Case Analysis
The QUINT workflow was used to analyse and compare three
consecutive series labelled for hAPP (1D1), pan-Aβ (4G8)
and pE-Aβ (J8) in one Tg2576 mouse model for Alzheimer’s
disease. Each series were composed of approximately 60 sections
extending from the olfactory lobes to the cerebrum (the
cerebellum was not included). All three series were registered
to the Allen Mouse Brain Atlas (© 2004 Allen Institute for
Brain Science. Allen Mouse Brain Atlas, Available from:
http://download.alleninstitute.org/informatics-archive/current-
release/mouse_ccf/annotation/ccf_2015/) using QuickNII. The
section images can be viewed with custom atlas overlays adjusted
for angle deviations (Supplementary Data Sheet 1).

Labelled plaques were segmented and quantified using the
QUINT workflow as represented in Figures 6, 7. Plaques
were found mainly in the olfactory regions (1.5–2.5%), the
neocortex (1–1.5%), the hippocampal region (1–1.5%) and
white matter tracts (0.5%; Figure 6G). The plaque burden
was lower in the striatum, thalamic regions and midbrain
(less than 0.5%). All Aβ and APP species co-localised in the
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FIGURE 4 | Comparison of whole section human amyloid precursor protein (hAPP) load outputs from three alternative quantitative methods. For all the methods,
the whole section hAPP load was calculated by dividing the area occupied by hAPP labelling by the total section area. Calculations were restricted to plaques that
were immuno-labelled with the hAPP antibody (1D1). Panel (A) compares hAPP load outputs from three alternative methods for five sections. The methods include
expert manual delineation of hAPP labelled objects (green), stereological estimate with the area fraction fractionator probe (blue), and quantification with NIH ImageJ
based on the ilastik segmentations (orange). Panel (B) compares hAPP load outputs from the stereological method and from the segmentations for thirty whole brain
sections that were regularly spaced and spanned the full volume of the brain.

same regions, with small differences, as seen in Figures 6A–C.
The customised atlas images superimposed with colour-coded
objects are found in the Supplementary Material. The size
of plaques and their distribution in the whole series is
illustrated in Figure 8. The pE-Aβ positive plaques were more
numerous but much smaller in size than plaques labelled for
hAPP or pan-Aβ labelled with 4G8 (Figure 7). As we were
interested to detect subregion expression differences in the
hippocampus, we refined the analysis to smaller brain regions.
As demonstrated in Figure 7, the subiculum showed more hAPP
and pan-Aβ labelling than the entorhinal cortex (EC), the cornu
ammonis (CA) region of the hippocampus and the dentate
gyrus (DG), whereas the subregion with highest pE-Aβ labelling
was the EC.

Our workflow is demonstrated here on brain section images
from one animal only, with analysis restricted to hAPP and Aβ

plaques. However, the QUINT workflow can also be applied
to other types of labelling like cell somas, as demonstrated by
the quantification and spatial analysis of parvalbumin positive

cells from an Allen mouse brain in situ hybridisation experiment
shared through the HBP platform: DOI: 10.25493/6DYS-M3W
(Yates and Puchades, 2019).

DISCUSSION

In this report, we present a new workflow for analysis of labelling
in brain-wide image series. The QUINT workflow builds on
newly developed tools and resources for brain atlasing and
segmentation, and consists of three main steps. In the first step,
QuickNII (Puchades et al., 2019) is used to generate customised
atlas maps corresponding to experimental brain sections for
mice, using the Allen Mouse Brain Atlas (© 2004 Allen Institute
for Brain Science. Allen Mouse Brain Atlas, Available from:
http://download.alleninstitute.org/informatics-archive/current-
release/mouse_ccf/; Lein et al., 2007; Oh et al., 2014), and
for rats using the Waxholm rat brain atlas version 2.0 (Papp
et al., 2014; Kjonigsen et al., 2015). In the second step, the
machine learning-based image analysis tool, ilastik, is used
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FIGURE 5 | Comparison of hAPP load outputs in three anatomical brain
regions defined by two alternative anatomical delineation methods. Brain
region-specific hAPP load was calculated by dividing the area occupied by
hAPP labelling within the selected brain region, by the total area occupied by
the brain region. The calculations were restricted to plaques that were
immuno-labelled with the hAPP antibody (1D1). For the first method, five
brain section images were segmented with ilastik and visualised on top of the
sections to allow manual delineation of brain regions. The cortex, olfactory
region and hippocampus were delineated with NIH ImageJ with guidance
from the Franklin and Paxinos mouse brain atlas version 3 (panels A,C show
the cortex, olfactory region and hippocampus delineated in red, blue and
yellow in section s134 and s174 respectively). The analyse function in NIH
Image J was used to quantify hAPP load in the delineated regions. For the
second method, the five segmentations were processed with the QUINT
workflow with input from the QuickNII derived atlas maps (panels B,D show
examples for s134 and s174 respectively). hAPP loads were extracted for the
cortex, olfactory region and hippocampus from the output reports. Panels
(E–G) compare hAPP loads in the cortex, olfactory regions and hippocampus
respectively for the five sections, with the loads calculated by the two
alternative methods described.

to segment the objects of interest from the immunolabelled
images. In the final step, Nutil is used to combine the customised
atlas maps and segmented images and to extract and quantify
objects in each parcellated brain region for each section and
for the whole image series. The tools allow users to perform
analyses at different levels, and to customise the granularity of
such analyses. Furthermore, Nutil supports the extraction of

spatial coordinates for each segmented object for viewing in the
MeshView brain atlas viewer (AMBA version 3 2015, available
at www.nitrc.org/projects/meshview via the MediaWiki link).
The QUINT workflow is also compatible with segmentations
generated with other image analysis software, so users are not
restricted to using ilastik for segmentation.

As a proof of concept, and to further characterise the amyloid
expression in the Tg2576 Alzheimer mouse model, the workflow
was applied to three series labelled with antibodies against the
hAPP N-terminus (1D1), pan-Aβ (4G8) and pE-Aβ (J8). Our
results show a plaque load of 1–3% depending on the brain
region, and are in accordance with other studies (Schilling et al.,
2008; Liu et al., 2017). When analysing the plaque load in
more detailed brain regions, we were able to detect subregional
differences. This was particularly true of the hippocampal regions
where we detected the highest load for hAPP and pan-Aβ in
the subiculum, compared to pE-Aβ that had more prominent
labelling in the entorhinal cortex. This subregional difference
could be of relevance to the pathophysiology and may be related
to the expression of the enzyme that catalyses pE-Aβ formation
(Hartlage-Rübsamen et al., 2009). Studies indicate that this
protein might influence or even seed the aggregation of other
amyloid peptide species (Schilling et al., 2006; Schlenzig et al.,
2009; Nussbaum et al., 2012), and so it is interesting to observe
its localisation from a mechanistic point of view. Our workflow
allows comparison of the expression of different proteins across
brain regions for any region defined in the Allen Mouse Brain
Atlas, potentially highlighting associations that would otherwise
remain undetected.

We conducted a validation study of the workflow in two parts,
with the first exploring how well the outputs from the ilastik
segmentations corresponded to outputs from two alternative
quantitative methods. The alternative methods included manual
delineation of labelled objects, which was performed on five
sections that were regularly spaced thoughout the whole brain,
and a stereological method that was applied to thirty sections
(half of the full dataset).

For all the sections, the segmentations gave plaque load
estimates that were similar to the outputs from the other two
methods, with the ilastik method establishing the plaque load
with 95% confidence to within an error of ±0.32% of the
stereological output. In other words, the ilastik method was
as good at detecting the absolute plaque load per section as
the stereological method in this mouse. The absolute error rate
could be reduced further by introducing a manual adjustment
step to remove false-positive labelling from the segmentations.
However, even without this manual adjustment, the method
is sensitive enough to detect the significant differences in
plaque expression that are seen between different sections.
A known challenge for the stereological evaluation was the
sparse distribution of the plaques throughout the brain, and
the concentration of the plaques in the frontal regions, which
could at least partially account for the discrepancy between the
stereological outputs and the outputs from the manual object
delineations. As suggested by Boyce and Gundersen (Boyce
and Gundersen, 2018), the classic fractionator approaches that
rely on systematic random sampling are highly inefficient and
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FIGURE 6 | Whole brain comparative analysis of three series labelled for hAPP, pE-Aβ and pan-Aβ in a Tg 2576 Mouse. Examples of Nutil image output
(segmentations superimposed on the atlas maps) for the hAPP (A,D), pan-Aβ (B,E) and pE-Aβ series (C,F). The segmented object colours represent their
anatomical location: isocortex (red); hippocampus (yellow); white matter tracts (pink); olfactory regions (blue); caudate putamen (CPu; black). Panel (G) shows the
comparative quantification results for the whole brain for the three series (the blue, red and green bars represent hAPP, pan-Aβ and pE-Aβ labelling respectively). The
abbreviations in the graph represent the following brain regions: isocortex (Cx); white matter tracts (Wm); hippocampal region (HC); olfactory regions (Olf);
hypothalamus (Hyp); CPu; midbrain, hind brain and medulla (MHM); thalamus (Thal). Images (A–C) are displayed at the same magnification with the scale bar
representing 1 mm. The scale bar for figures (D–F) represents 500 µm. The asterisk in panel (G) indicates the region represented in Figure 7.

impractical for sparse labelling. However, by increasing the
sampling frequency in our stereological analysis, we obtained
results very close to the manual delineation of objects.

As demonstrated there are clear advantages to a segmentation
based workflow. However, segmentation also introduces some
limiting factors. One limitation is that it imposes restrictions

on the resolution of the images that can be used as input. In
the examples shown here, we segment relatively large objects
(plaques) and therefore had the option to downscale the raw
images to speed up the analysis, while still achieving good
quantification of labelling (ilastik has an upper image size limit).
However, when segmenting smaller protein aggregates, such as
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FIGURE 7 | Comparative analysis of hAPP, pE-Aβ and pan-Aβ labelling in the hippocampus of a Tg 2576 mouse. (A) The pie charts show the percentage of the
total labelling of hAPP (blue chart), pan-Aβ (red chart) and pE-Aβ (green chart) in the hippocampus expressed in the subiculum (Sub), dentate gyrus (DG), entorhinal
cortex (EC), cornu ammonis (CA) and fasciola cinereum (FC; B,C). The expression differences are visualised for the subiculum and the EC with the MeshView atlas
viewer (the regions are shown in pale green with the Nutil output from the three series covisualised, with objects labelled for hAPP, pan-Aβ and pE-Aβ in blue, red and
dark green respectively). Both the pie charts and the brain images reveal spatial expression differences for the three markers in the hippocampus.

nuclear Huntingtin (not shown), downsizing is not an option.
In this case, the images would first have to be split into high
resolution tiles, in order to perform the segmentation, and
then retiled prior to analysis. Furthermore, as explained in the
methods part, the size of the object (number of pixels) has an
impact on the segmentation quality as there are restrictions on
the pixel scales of the features that can be included in the ilastik
algorithm (scale up to 10 pixels for intensity, edge and texture in
the ilastik version used here). A test run with some representative
images of different sizes is therefore recommended to determine
the optimal image resolution for segmentation. Alternatively,
another software or analysis approach could be used to
generate the segmentations. The workflow is compatible with
segmentations from other image analysis software as long as they
comply with the Nutil input requirement (segmentations must
be 24-bit colour images in PNG format). Users are therefore not
restricted to ilastik for segmentation.

In the second part of the validation study, we tested the
accuracy of region-based quantification by comparing the plaque
load outputs from the QUINT workflow to loads determined by
atlas delineations that were manually applied for three regions
(cortex, olfactory region and hippocampus) on five sections. We
demonstrate that the QUINT workflow is able to detect the

regional expression differences seen at this level of granularity
for this image series. In this particular case, we found that the
workflow slightly underestimated the real plaque load. Closer
inspection of the QuickNII atlas maps for the selected sections
showed that the anatomical location of a minority of the
plaques were incorrectly assigned. For example, some of the
hippocampal plaques were incorrectly assigned to the corpus
callosum. Indeed, the accuracy of the workflow for region-based
quantification is entirely dependent on the accuracy of overlap
between the experimental section and the corresponding atlas
map. Currently, we have to adapt the image registration of the
QuickNII tool from a global fit (whole slide) to a more local
fit when we want to analyse specific regions of the brain more
precisely (this is particularly relevant for the analysis of smaller
regions). However, this limitation would be circumvented if
QuickNII supported non-linear registration of the image sections
to the atlas, and this is planned for implementation in a
future release.

One of the main advantages of the QUINT workflow for
quantification is that it uses a reference atlas to delineate the
regions, allowing studies on brain regions that are not usually
explored. As most stereological studies require the experimenter
to manually delineate the region of analysis, some regions with

Frontiers in Neuroinformatics | www.frontiersin.org 11 December 2019 | Volume 13 | Article 7517

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Yates et al. QUINT Quantification and Spatial Analysis Workflow

FIGURE 8 | Size distribution of objects labelled for hAPP (A), pan-Aβ (B)
and pE-Aβ (C) in a whole T2576 mouse brain series. Object size in µm2 is
represented on the x-axis on a common logarithmic scale with frequency on
the y-axis. To remove false positive objects, minimum object size cut-offs of
258 µm2, 112 µm2 and 56 µm2 were applied to the hAPP (A), pan-Aβ (B)
and pE-Aβ (C) series, respectively.

very few visible landmarks (i.e., thalamus or olfactory bulb) are
typically not included in these studies. More importantly, as
rodent reference atlas delineations are improved and extended,
scientists will be able to conduct even more targeted studies
enabling detailed mapping of subregional expression differences.
By registering many datasets to the same reference atlas, the
data are made more comparable and interoperable (Bjerke
et al., 2018), increasing the likelihood for reuse. Importantly,
our method relies on histological sections, without a need for
block-face images.

The whole workflow is rapid, user-friendly and does not
necessitate coding aptitudes as is often the case for similar
image analysis software (Vandenberghe et al., 2016; Fürth

et al., 2018; Xiong et al., 2018). The optimal dataset for the
workflow would include images of undistorted whole brain
tissue sections spanning the full volume and with clearly
distinguishable features. We do not recommend the workflow
for sections with major tissue distortions as no correction
in QuickNII can compensate for this. Sections representing
only one hemisphere will also lead to higher uncertainty, as
it is not possible to determine the mediolateral cutting angle
without assessing the appearance of landmarks in both the
right and left hemisphere. This is also true for incomplete
sections in which major parts of the brain are missing. There
are, however, other types of limitations that the workflow can
overcome. For example, non-specific labelling can be filtered
out with the Object Classification workflow, and sections with
tissue distortions may benefit from a local anchoring approach.
Introducing corrections for limitations of these kinds may,
however, increase the processing time or marginally increase the
error rate.

The workflow is intended to enable more efficient and
comprehensive analysis than is currently possible with traditional
tools, but does not compensate for a lack of anatomical or
biological expertise on the part of the researcher. Both the output
of the segmentation and registration steps should be validated
by visual inspection prior to quantification, and interpretations
must be made in light of limitations. A complete analysis of a set
of images such as those analysed here (approximately 60 images
of sections of average quality) takes less than 24 h. The atlas
registration can be done in 2–3 h, with the segmentation taking
from 1 to 2 h depending on the image size, and the analysis
with Nutil being very quick (less than 30 min). In conclusion, we
believe that this workflow will enable large scale studies and the
integration of results frommany studies in different laboratories.
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The major genetic risk for late onset Alzheimer’s disease has been associated with
the presence of APOE4 alleles. However, the impact of different APOE alleles on the
brain aging trajectory, and how they interact with the brain local environment in a sex
specific manner is not entirely clear. We sought to identify vulnerable brain circuits in
novel mouse models with homozygous targeted replacement of the mouse ApoE gene
with either human APOE3 or APOE4 gene alleles. These genes are expressed in mice
that also model the human immune response to age and disease-associated challenges
by expressing the human NOS2 gene in place of the mouse mNos2 gene. These mice
had impaired learning and memory when assessed with the Morris water maze (MWM)
and novel object recognition (NOR) tests. Ex vivo MRI-DTI analyses revealed global and
local atrophy, and areas of reduced fractional anisotropy (FA). Using tensor network
principal component analyses for structural connectomes, we inferred the pairwise
connections which best separate APOE4 from APOE3 carriers. These involved primarily
interhemispheric connections among regions of olfactory areas, the hippocampus, and
the cerebellum. Our results also suggest that pairwise connections may be subdivided
and clustered spatially to reveal local changes on a finer scale. These analyses revealed
not just genotype, but also sex specific differences. Identifying vulnerable networks may
provide targets for interventions, and a means to stratify patients.

Keywords: mouse model, Alzheimer’s disease, neurodegeneration, magnetic resonance imaging, tractography,
tract based analysis, morphometric, diffusion tensor (DT) MRI
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INTRODUCTION

The multifactorial nature of Alzheimer’s disease AD has led to
multiple hypotheses for disease onset and progression (Devanand
et al., 2007), yet its etiology is not known. While pathological
biomarkers have been well defined, cross-disciplinary approaches
are critical to integrate knowledge on the spatiotemporal
evolution of AD. Additionally, sensitive tools that permit early
detection and monitoring changes are critical to enable useful
interventions. Analyses of Aβ plaques and tau tangles are
considered to provide the “classical” biomarkers of AD. But
Aβ plaques and tau tangles are accompanied by neuronal
dystrophy and loss (Serrano-Pozo et al., 2011). For the small
percentage of individuals with the mutated forms of these
proteins, the onset and progression of these biomarkers are
clearly dependent on the genetic mutations. However, most
individuals afflicted with AD have a late onset form of AD
(LOAD). There is a long asymptomatic period that often
precedes the overt phases, and during this time other processes
besides those centered directly on Aβ plaque formation may be
activated to cause neurodegenerative diseases. These processes
may involve microglia, astrocytes, and the vasculature (De
Strooper and Karran, 2016). In particular, for LOAD, there
is a pressing need to better understand the role of non-
classical risk factors in AD including age, sex, and genes, and
how they interact to modulate the brain response to stressors
(Sala Frigerio et al., 2019).

One of the best known genetic risk factors for LOAD is
conferred by the APOE4 genotype (Schellenberg, 1995; Huynh
et al., 2017). The APOE4/4 genotype is associated with a 30–55%
risk of developing mild cognitive impairment (MCI) or AD by age
85, compared to a 10–15% risk for the APOE 3/3 genotype. Still,
the precise cause for increased risk, or resilience conferred by
the different APOE alleles, and the mechanisms mediating these
relationships are poorly understood. While these risk factors
may influence the brain levels of Aβ and hyperphosphorylated
tau, it is likely that their underlying mechanisms contributing to
AD onset, progression and overall pathology will vary. Besides
being recognized as a major genetic risk for AD, the presence
of APOE4 has been linked to other neurodegenerative diseases.
These include age related macular degeneration, age related
hearing loss, dementia with Lewy bodies and Parkinson’s disease.
APOE4 provides increased susceptibility to neuromuscular
conditions including diabetic neuropathy and immunodeficiency
viral neuropathy (Bedlack et al., 2000; Pankratz et al., 2006).
Moreover, APOE4 is as a risk factor for cardiovascular disease,
and stroke (Tudorache et al., 2017; Femminella et al., 2018;
Belloy et al., 2019). Due to its complex, not yet completely
understood role, we have examined in this work primarily
phenotypes relevant to AD.

MRI can provide such phenotypes, e.g., early regional atrophy
(Jack et al., 1999), and quantitative biomarkers that can be
analyzed as networks (Torok et al., 2018). This is important
because network connectivity integrates microstructural effects
e.g., neurodegeneration of gray and white matter, or toxicity
associated with Aß presence. We hypothesize that network
approaches are sensitive to subtle changes arising from the

interplay of several factors. While each effect may be small, the
summed effect due to individual biomarkers may be significant.
Here, we will generate a framework for integrating biomarkers
using multimodal approaches (Wiesmann et al., 2016), thereby
allowing us to better predict their pathological significance.

To help understand the mechanisms through which APOE
genes and their products differentially modulate the brain milieu
and circuits to switch from healthy to pathological aging, we
use novel mouse models for the APOE4 associated genetic
risk. We analyze behavioral and imaging markers including
structural connectomics based on high resolution diffusion
weighted imaging (DWI) to help understand the underpinnings
of network vulnerability in aging and AD (Fischer et al., 2015).

The animal models are homozygous targeted replacement
mice, expressing instead of the mouse protein the human
APOE3 and APOE4 isoforms. To model the human immune
response to age and disease associated challenges these double-
transgenic mice only express human NOS2 gene products. This
modification enables nitric oxide (NO) production and immune
activity regulated by NO to better mimic the human response.
Our study includes 12 months old male and female APOE3HN
(APOE3/3 + human NOS2 on a mouse Nos2−/− background),
and APOE4HN (APOE3/3+ human NOS2 on a mouse Nos2−/−

background). Mice were characterized with a behavioral battery
for memory function, and with MRI to determine selective
vulnerability using regional atrophy and DTI parameters. To
these tests we added connectopathy biomarkers extracted using
novel statistical approaches that map brain circuits associated
with selective vulnerability or resilience conferred by APOE
genotypes. While limited in sample size, our study revealed sex
specific differences were also present in the networks associated
with genotype differences. Our efforts will help identify potential
targets for interventions, and future efforts to build models that
explain the influence of APOE genotypes on age, sex, and AD
associated circuit vulnerability.

MATERIALS AND METHODS

Animals
Using mouse models, we sought to identify vulnerable brain
circuits associated with memory dysfunction typical of
pathological aging, and with the highest known genetic risk
for LOAD - the presence of APOE4 genotype relative to APOE3
genotype. To better model the APOE4 associated risk in humans
with AD we have used mouse models named huAPO3/HN and
huAPOE4/HN. In these mice, the human NOS2 gene replaced
the mouse Nos2 gene (HuNOS2+/+/mNos2−/−; abbreviated
HN). More similar to humans, HuNOS2+/+/mNos2−/− mice
show unique redox characteristics compared to mice expressing
either mNos2, or mNos2 knockouts. To “add-in” the impact
of APOE genotype on generation and expression of AD-like
pathology, these novel mouse strains co-express HuAPOE3 or
HuAPOE4 but on the HuNOS2 background described above.
The total number of mice used was 10 APOE3HN mice (4
females, 6 males), and 14 APOE4HN mice (7 males and 7
females), aged to 12 months.
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Behavior Testing
The Morris Water Maze
Mice were handled for 5 days prior to the beginning of
behavioral testing for the purpose of habituation to the
researchers performing the tests. Morris water maze (MWM)
was conducted for 5 days, followed by a novel object recognition
(NOR) test (2 days).

The MWM tests a mouse’s spatial memory and learning
based on their preference for standing on solid ground, as
opposed to swimming. Mice are placed in a quadrant of a pool
with directional cues and are expected to find a clear platform
underneath the water, on which they may stand. Because of
their aversion to swimming and the consistent placement of the
platform, mice are expected to learn that the platform is located
in the same position relative to directional cues and locate it more
and more quickly over time. We assessed learning by measuring
the amount of time a mouse swam, the distance it swam in the
pool, and the percent of the swim time, and swim distance in the
target quadrant in which the platform is located (termed target
swim time and target swim distance, respectively). The MWM
apparatus was a circular pool with 122 cm diameter, and behavior
was tracked using with a ceiling-mounted Logitech camera, and
analyzed with the video analysis software ANY-maze (Stoelting,
Wood Dale, IL, United States). Black mice were allowed to swim
in transparent water and were expected to find a glass platform
(similar indices of refraction do not allow for easy visibility)
located in the south west (SW) quadrant of the pool. Mice were
trained for 5 days undergoing four trials each day. For each trial,
mice were placed in one quadrant of the maze and had to swim
to a 10 cm wide circular platform submerged 1.5 centimeters
below the surface of the water (not visible). Each trial consisted of
placing the mouse into the water at one of four different starting
positions, one in each quadrant and allowing them to swim freely
for 1 min. The time needed for the mice to find the hidden
platform was recorded as well as the swim path length. If they
were unable to locate the platform within the allotted time, they
were guided to the platform and allowed to remain there for 10 s.
Probe trials were conducted on days 3 and 5, 1 h after the last
training trial. During the probe trial the submerged platform was
removed and mice were given 1 min to swim in the pool. The
amount of time spent in the previous location of the target zone
was recorded.

Novel Object Recognition
The NOR test assesses a mouse’s memory through exploration.
Mice traditionally spend more time exploring novel stimuli, so
when they are faced with a stimulus that is novel and one that is
familiar, they are expected to remember the familiar object and
spend more time exploring and engaging with the more novel
object. The day before testing, mice were placed in a 40 cm square
open field arena for 5 min to habituate them to the apparatus and
the test room. 24 h after habituation, mice were acclimated in the
test room for 1 h before beginning trials. Mice first completed
an acquisition trial, in which they were placed in the apparatus
with two identical objects for 5 min. After a 90 min retention
period, mice were then placed in the arena again for 5 min
with two dissimilar objects - one that is familiar, and one that

is novel. 24 h later, the mice were placed in the arena again
for 5 min with a pair of dissimilar objects - one that is the
original familiar object, and one that is novel. After each trial,
the mouse was returned to its cage. Between trials, the apparatus
was cleaned with ethanol solution to eliminate animal clues. The
amount of time spent exploring the novel object and the amount
of time spent exploring both objects were measured. From this
we calculated a recognition index as the time exploring novel
object/(time exploring novel object + time exploring familiar
object)× 100%. The location preference was similarly calculated,
but for two identical objects.

Statistical analyses for behavior tasks was done in JMP (SAS,
Cary, NC, United States)1. Analysis for multiple measurements
acquired in the same animal over time was performed by
repeated measures two-way ANOVA using linear mixed models
fixed effects for genotype and time and random effects for
animals. Tukey HSD was used for post hoc corrections. 2-group
comparisons used a two-tailed t-test, while comparisons between
three or more trials were done using a one-way ANOVA. P < 0.05
was considered significant.

Imaging
Brain specimens were imaged on a 9.4 T, 8.9 cm vertical
bore Oxford magnet, with shielded coils, providing gradients
up to 2000 mT/m (Resonance Research, Inc., Billerica, MA,
United States), and controlled by an Agilent Direct Drive
Console (Agilent Technologies, Santa Clara, CA, United States).
In house made solenoid coils (13 mm diameter) were used
to image brain specimens within the skull, in order to avoid
tissue damage and distortions. To prepare actively stained brain
specimens the animals were anesthetized to a surgical plane and
perfused through the left cardiac ventricle, with outflow from
the right atrium. Saline (0.9%) was used to flush out the blood,
at a rate of 8 ml/min, for ∼5 min. For fixation we used a
10% solution of neutral buffered formalin phosphate containing
10% (50 mM) Gadoteridol (ProHance, Bracco Diagnostics Inc.,
Monroe Township, NJ, United States), at a rate of 8 ml/min for
∼5 min. Gadoteridol reduced the spin lattice relaxation time (T1)
of tissue to ∼100 ms. Mouse heads were stored in 10% formalin
for 12 h, then transferred to a 0.01 M solution of phosphate
buffered saline (PBS) containing 0.5% (2.5 mM) Gadoteridol,
at 4◦C for ∼30 days to rehydrate the tissue. Extraneous
tissue around the cranium was removed prior to imaging, and
specimens were placed in MRI-compatible tubes, immersed in
perfluoropolyether (Galden Pro, Solvay, NJ, United States) for
susceptibility matching.

We used a diffusion weighted MR imaging to derive
microstructural and connectivity information. Our protocol used
compressed sensing DWI with an acceleration factor of 4,
allowing for efficient sampling and reconstruction in a high
performance computing cluster environment (Anderson et al.,
2018b; Wang et al., 2018). The DWI protocol used 46 diffusion
weighted acquisitions, interwoven with 5 non-diffusion-weighted
scans, and the following parameters: TE 12 ms, TR 90 ms, BW
125 kHz, b≈ 4000 s/mm2, diffusion pulse width 4 ms, separation

1https://www.jmp.com
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6 ms, amplitude 130.67 G/cm. Images were acquired over a
22 × 11 × 11 mm field of view, with a matrix 368 × 184 × 184,
over 14 h, and reconstructed at 55 µm isotropic resolution.

Image and Network Analysis
Images were processed using a high-performance computing
pipeline (Anderson et al., 2017, 2018a,b), to perform
diffeomorphic mapping of a symmetric mouse brain atlas,
containing 332 regions, based originally of the one presented in
Calabrese et al. (2015). To perform these processes we employed
at the core of our pipeline advanced normalization tools (Avants
et al., 2008, 2011). Each brain was thus segmented in 332 regions.
Regional and voxel wise analyses were conducted as in Badea
et al. (2019). The Statistical Parametric Mapping SPM toolbox,
version 12 (Friston et al., 1994) was used with cluster false
discovery rate correction.

We have implemented code for tract based analyses2. The
tracts connecting pairs of atlas regions (Anderson et al., 2018a)
were used to build connectomes based on a constant solid angle
(Q-Ball method) method implemented in DIPY (Garyfallidis
et al., 2014). We used a relative peak ratio of 0.5, separation
angle 25◦, and 4 parallel compute threads. We used local tracking
with 1 seed per voxel in the whole brain mask, and 0.5 step size.
We saved 10% of the 3,000,000 tracks, in trk files of∼1.5 GB, and

2https://github.com/portokalh/wuconnectomes

their computations required about 20 min/brain using an iMac
Pro with 3 GHz Intel Xeon W, 10 cores, with 128 GB memory.
Tracts were visualized using DIPY.

Tracts from individual brains were clustered based on a
Euclidian distance metric minimization (Garyfallidis et al., 2012),
then registered (Garyfallidis et al., 2015, 2018) to a reference
brain, before being once more clustered in the space for each
specific population (APOE3HN, and APOE4HN).

We hypothesized that genotype and sex modulates network
properties, and that we can identify vulnerable circuits relevant to
AD. Subnetwork changes were derived using a recently proposed
method (Zhang et al., 2019), called tensor network PCA or
TNPCA, which is a semi-symmetric tensor generalization of
PCA. In short, this works with a tensor network X ∈ RP x P x N ,
given by the concatenation of the adjacency matrices Ai ∈
RP x P for i = 1, . . .N, where P is the number of nodes (atlas
regions), and N is the number of subjects. Zhang et al. (2019)
estimated a CP model for the semi-symmetric tensors (X ∈
RI1 x I2...I..N) by solving:

min
dk, vk, uk,

∣∣∣∣∣∣∣∣X − K∑
k=1

dkvk ◦ vk ◦ uk

∣∣∣∣∣∣∣∣2
2

subject to

uT
k uk = 1, vT

k vk = 1, vT
k vj = 0, j < k

FIGURE 1 | The main elements of our flowchart for characterizing differences between mouse models based on connectivity included image reconstructions and
coregistration of individual DWI acquisitions, brain parcelation in 332 regions, and connectome reconstruction based on a constant solid angle method. TNPCA was
used to derive subgraphs discriminating two genotypes and the resulting selected pairwise connections between nodes were analyzed for tract length and FA
differences. The hippocampus-piriform connections are shown as an example. Hc: hippocampus; Pir: piriform cortex.
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where vk are P sized vectors, constrained to have orthogonal
columns, uk are N sized vectors, and dk are CP scaling
parameters. In our context uk denotes the subject mode, and vT

k vk
the network mode.

The subject modes provides a low dimensional embedding
of the connectome for each subject, and can be associated with
traits (genotype/phenotypes). The weighted sum of network
modes dk ◦ vk ◦ uk provides a principal brain network which
captures the most variation across the population. Thus {vk ◦ vk}
can be seen as basis networks, uk(i) are the normalized
coefficients for each subject i, and dk are the scaling factors.
We are interested in how the connectome varies across levels
of the trait, and for discrete cases such as the genotype, the
problem can be approached using linear discriminant analysis,
while for continuous cases the problem can be approached
using canonical correlation. We used 15 principal components
identified from TNPCA, and the projection weights from a Fisher
linear discriminant to estimate the top 30 pairwise connections,
discriminating amongst our groups/genotypes. These were
further analyzed for differences in bundles length and fractional
anisotropy (FA). The overall process is detailed in Figure 1.

We used Quick bundles (Garyfallidis et al., 2012) for a more
spatially refined analysis based spatial clustering with a distance
of 2 mm, and focused on the top 6 subbundles, for comparing
along the tract properties between genotypes and sexes. Bundle
statistics were evaluated using R3.

RESULTS

We have phenotyped a novel mouse model of genetic
risk for LOAD using behavior, regional and voxel based
MRI analyses, and network connectopathies based on a
recently published dimensionality reduction method called
tensor network factorization. Regional and voxel based analyses
pointed to overlapping sets of regions affected by atrophy and
with lower FA indicative of different microstructural properties.
Our results indicated that even though qualitative differences
between representative animals of the two groups were subtle,
we could separate population groups by genotype based on the
lower dimensional representation relying on the tensor network

3www.r-project.org

FIGURE 2 | Main repeated measured ANOVA (RMANOVA) results for the memory testing based on acquisition performance and probe trial results (mean ± SEM) in
the Morris Water Maze indicate that both APOE3HN and APOE4HN mice learn but there is a significant effect of genotype for both swim time and swim distance. As
swim time and distance to hidden platform decreased, the percentage of time spent and distance swam in the target quadrant increased (A). The probe trials
indicated that both genotypes had a preference for the SW target quadrant, but APOE3HN mice spent more time swimming in the SW quadrant than APOE4HN
mice in the first probe trial (B). E = northeast, NW = northwest, SE = southeast, SW = southwest (target quadrant). N = 11 APOE3HN, N = 14 APOE4HN mice. (C) A
novel object recognition test revealed that animals had equal location preferences (LP), and object recognition indices (RI) 90 min later, however, after 24 h
APOE4HN mice had lower recognition indices relative to APOE3HN mice (t = –2.28, p = 0.04). N = 10 APOE3HN, N = 6 APOE4HN mice (some APOE4HN were not
be tested to preserve the matched ages for MRI). Data show mean values, and standard error bars.
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TABLE 1 | Volume atrophy was observed at the level of the whole brain (mm3) in APOE4HN mice relative to APOE3HN mice, and in select regions (volumes are reported
for one hemisphere, as % of total brain volume).

Structure APOE4HN APOE3HN pFDR CI[1] CI[2] t Cohen d Diff (%)
(mean ± SD) (mean ± SD)

Temporal_association
_cortex (%)

0.243 ± 0.028 0.274 ± 0.023 2.67E-02 −0.054 −0.009 −2.93 −1.21 −11.53

Cingulate_cortex _area_25
(%)

0.037 ± 0.002 0.042 ± 0.002 2.68E-04 −0.007 −0.003 −5.64 −2.34 −11.50

Cingulate_cortex _area_32
(%)

0.175 ± 0.011 0.195 ± 0.02 1.31E-02 −0.034 −0.008 −3.32 −1.37 −10.68

Cingulate_cortex
_area_29b

0.032 ± 0.003 0.035 ± 0.003 1.48E-02 −0.006 −0.001 −3.26 −1.35 −10.46

Ventral_intermediate
_entorhinal_cortex

0.096 ± 0.006 0.107 ± 0.003 3.20E-04 −0.015 −0.007 −5.51 −2.28 −10.30

Accumbens 0.434 ± 0.011 0.475 ± 0.011 2.43E-06 −0.051 −0.032 −9.04 −3.74 −8.67

Cingulate_cortex_area
_24b_prime

0.054 ± 0.003 0.058 ± 0.004 1.61E-02 −0.008 −0.002 −3.22 −1.33 −7.91

Secondary_visual_cortex
_mediomedial_area

0.192 ± 0.009 0.206 ± 0.016 3.26E-02 −0.024 −0.004 −2.82 −1.17 −6.85

Amygdalopiriform
_transition_area

0.026 ± 0.002 0.028 ± 0.001 3.05E-02 −0.003 −0.001 −2.86 −1.18 −6.83

Primary_visual_cortex
_monocular_area

0.409 ± 0.015 0.437 ± 0.032 2.38E-02 −0.049 −0.009 −3.01 −1.25 −6.60

Cingulate_cortex
_area_29c

0.181 ± 0.008 0.193 ± 0.008 7.49E-03 −0.019 −0.005 −3.64 −1.51 −6.35

Dorsal_tenia_tecta 0.056 ± 0.003 0.059 ± 0.003 1.38E-02 −0.006 −0.001 −3.29 −1.36 −6.03

Cerebellar_cortex 4.553 ± 0.157 4.805 ± 0.205 1.10E-02 −0.405 −0.100 −3.43 −1.42 −5.25

Pontine_nucleus 0.126 ± 0.004 0.132 ± 0.006 4.00E-02 −0.010 −0.001 −2.71 −1.12 −4.35

Basal lateral amygdala 0.139 ± 0.005 0.145 ± 0.004 2.29E-02 −0.011 −0.002 −3.04 −1.26 −4.35

Middle_cerebellar
_peduncle

0.159 ± 0.006 0.167 ± 0.005 1.79E-02 −0.012 −0.002 −3.17 −1.31 −4.31

Cingulate_cortex_area_30 0.294 ± 0.011 0.307 ± 0.009 1.90E-02 −0.022 −0.004 −3.14 −1.30 −4.24

Piriform_cortex 5.422 ± 0.077 5.554 ± 0.155 3.62E-02 −0.231 −0.033 −2.76 −1.14 −2.37

TotalBrain (mm3) 488.64 ± 11.21 522.44 ± 17.52 2.30E-04 −45.94 −21.66 −5.77 −2.39 −6.47

FIGURE 3 | Volume atrophy was detected in regions spanning from the rostral to the caudal aspects of the brain, and ranged from 10% for the temporal association
cortex, entorhinal and cingulate cortex, down to 2% for the piriform cortex. The visual cortex, accumbens and amygdalo-piriform transition areas were ∼7% smaller
and the cerebellum was ∼5% smaller in APOE4HN mice, FDR = 5%.
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FIGURE 4 | (A) Voxel based analyses indicated that volume atrophy occurred in vulnerable regions comprising olfactory/piriform (Olf, Pir) cingulate (A24,25,29, 32),
sensory (Ect: ectorhinal, Au: auditory, V1: primary visual cortex) and motor cortex (M1), and the entorhinal cortex (Ent). Deeper gray matter regions with atrophy in
APOE4 carriers included the accumbens (Acb), caudate putamen (CPu), hippocampal formation (Hc, subiculum: DS), amygdala (Amy), as well thalamic nuclei
(mediodorsal: MD) and the cerebellum (Cblm) and pontine nuclei (Pn). Among white matter tracts the anterior commissure (ac), and corpus callosum (cc) also had
areas of atrophy. Results are presented as t maps, FDR cluster-corrected for multiple comparisons, using an initial cluster forming threshold of 0.05 significance, and
the whole brain as a mask (blue color). (B) Voxel based analyses indicative of fractional anisotropy (FA) reductions suggested vulnerable brain networks. These
included the olfactory (Olf) and in particular the piriform cortex (Pir), cingulate cortex (A32), hippocampus (Hc), and the white matter of the corpus callosum (cc) and
cerebellum (Cblm wm). Results are presented as t maps, FDR cluster-corrected for multiple comparisons, using initial cluster forming threshold of 0.05 significance,
and the whole brain as a mask (blue color). The DWI minimum deformation average template serves as the background.

decomposition. Our results identified subgraphs of connected
vulnerable regions, and these included areas known to be
involved in memory function (e.g., hippocampus), as well as in
sensory motor functions (e.g., olfactory areas, and cerebellum).

Learning and Memory Deficits
Since memory is expected to be deficient in animal models of
AD, we tested both spatial and NOR memory in 14 APOE4HN
and 11 APOE3HN animals (one died before being imaged).
Spatial memory was examined through acquisition and probe
trials in the MWM (Figures 2A,B). Swim time (and distance)

to the hidden platform got shorter with time for both groups.
Repeated measures ANOVA (RMANOVA) detected a significant
effect of day F(4,92) = 26.1, p < 0.001 (Figure 2A), and genotype
[F(1,23) = 6.3, p < 0.02], while the interaction term of day by
genotype was F(4,92) = 2.0, p < 0.09. For swim distance there
was a significant main effect of day F(4,83.8) = 34.4, p < 0.0001,
and a significant day× genotype interaction with F(4,83.8) = 3.6,
p < 0.01. Within genotypes there was a significant difference after
Tukey HSD tests for swim distance for APOE3HN mice between
days 1 and 2 (t = 3.5, p < 0.02); 1 and 3 (t = 6.3, p < 0.0001); 1 and
4 (t = 7.3, p < 0.0001); 1 and 5 (t = 8.5, p < 0.0001); 2 and 4 (t = 4,
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TABLE 2 | The top connections for the subnetworks differentiating between APOE3HN and APOE4HN connectomes.

Connection Load Connection Load

1 Hippocampus_right—cerebellar_cortex_left 92.49 16 Cerebellar_cortex_right—corpus_callosum_left 73.48

2 Cerebellar_white_matter_left—cerebellar_cortex_left −91.78 17 Cerebellar_cortex_right—cerebellar_white_matter_left −73.3

3 Piriform_cortex_right—cerebellar_cortex_left 91.36 18 Cerebellar_cortex_left—piriform_cortex_left 72.87

4 Cerebellar_cortex_right—hippocampus_right 89.09 19 Cerebellar_white_matter_left—hippocampus_left 69.75

5 Cerebellar_cortex_right—piriform_cortex_left 89.04 20 Corpus_callosum_right—cerebellar_cortex_right 67.61

6 Cerebellar_white_matter_right—cerebellar_cortex_right −84.69 21 Corpus_callosum_right—cerebellar_white_matter_left 67.04

7 Cerebellar_white_matter_right—hippocampus_left 82.28 22 Gigantocellular_reticular_nucleus_right—piriform_cortex_left −64.24

8 Cerebellar_cortex_right—piriform_cortex_right 80.79 23 Gigantocellular_reticular_nucleus_left—piriform_cortex_left −63.63

9 Hippocampus_right—piriform_cortex_left −80.58 24 Cerebellar_cortex_left—hippocampus_left 61.36

10 Cerebellar_white_matter_right—piriform_cortex_left 79.61 25 Cerebellar_white_matter_right—corpus_callosum_left 61.18

11 Piriform_cortex_right—cerebellar_white_matter_left 78.76 26 Cerebellar_cortex_right—striatum_left 61.04

12 Piriform_cortex_right—hippocampus_left −77.31 27 Cerebellar_white_matter_left—piriform_cortex_left 60.3

13 Cerebellar_cortex_right—hippocampus_left 76.73 28 Cerebellar_white_matter_right—piriform_cortex_right 60.19

14 Corpus_callosum_right—cerebellar_cortex_left 76.46 29 Striatum_right—cerebellar_cortex_left 59.53

15 Cerebellar_white_matter_right—cerebellar_cortex_left −74.67 30 Corpus_callosum_left—cerebellar_cortex_left 58.95

FIGURE 5 | Scatter plot of the top three principal components for the connectome TNPCA analysis. The two genotypes are shown in green: APOE3HN, and purple:
APOE4HN. Sex information is also indicated, although sex was not used as a predictor (female: disk, male: bar).

p < 0.006); 2 and 5 (5.2, p < 0.0001). For genotype APOE4HN
these differences were significant between days 1 and 4 (t = 3.8,
p < 0.01); 1 and 5 (t = 5.8, p < 0.0001); 2 and 4 (t = 3.8, p < 0.01);
2 and 5 (t = 5.7, p < 0.0001); 3 and 5 (t = 3.3, p < 0.04). No
differences were noted between days 4 and 5.

We have measured the percent time spent in the target
quadrant during learning trials and found a significant effect of
day [F(4,92) = 14.3, p < 0.0001] and genotype [F(1,23) = 15.8,
p < 0.0006], with a possible interaction term (p < 0.1). At
day 3 the difference between genotypes was largest (t = 3.5,
p = 0.02). For the percent distance swam in the target
quadrant during the learning trials we found a significant
main effect for day [F(4,83.7) = 13.8, p < 0.0001], for
genotype [F(1,21.7) = 15.7, p < 0.0007] and a significant
interaction [F(4,83.7) = 3.6, p < 0.01]. The differences with
genotype were significant for days 3 (t = 3.6, p < 0.02);
and persisted for day 4 (t = 3.9, p < 0.008). Differences
subsided by day 5.

The first probe trial was performed on the third day and
indicated a significant effect of quadrant only (p < 0.0001).

APOE3HN mice had a significant preference for the SW quadrant
relative to the SE (t = 3.9, p = 0.006), NE (t = 5.3, p < 0.0001), NW
(t = 4.1, p = 0.003), but not for SE. APOE4HN mice preferred
the target SW quadrant over SE (t = 4, p = 0.004) and NE
quadrants (t = 4.3, p = 0.001), but only reached a trend for
NW (2.8, p = 0.1).

The first probe distance swam in the target quadrant
provided a more sensitive marker for the memory deficits,
showing significant genotype (p < 0.003), and quadrant effects
(p < 0.0001). Genotypes had significant differences, with
APOE3HN mice swimming longer in the SW than APOE4HN
mice (t = 3.74, p = 0.008). APOE3HN preferred the SW relative
to NE (t = 6.9, p < 0.0001), NW (t = 5.4, p < 0.0001), SE (t = 4.9,
p = 0.0002). APOE4HN also preferred the SW over NE (t = 4.2,
p = 0.002), and differences reached a trend relative to SE (t = 3,
p = 0.07), but they made no distinction relative to NW.

The second probe swim times performed on the fifth day
also showed an effect of the quadrant (p < 0.0001), but not for
genotype. APOE3HN mice preferred the SW to NE (t = 3.8,
p < 0.006), NW (t = 4.3, p = 0.03), SE (4.3, p = 0.06). APOE4HN
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FIGURE 6 | The piriform cortex-hippocampal interhemispheric connections through the top 6 bundles were ranked according to size (yellow for the first and largest
bundle, orange for the second, red for the third, brown for the fourth, green for the fifth, blue for the sixth. The interhemispheric connections appeared stronger in the
APOE3HN mice relative to APOE4HN mice (A) and (B), according to the size based ranking for the major sub-bundles. This indicated different connectivity patterns
for the two genotypes. Differences in fiber length distributions between the two genotypes are shown in (C), and in FA distributions in (D) using histogram densities.
These indicate a slight shift toward longer length (C), but lower FA values in APOE4HN mice, which may suggest dismyelination (D). After establishing spatial
correspondence through an affine bundle centroid registration, we detected that differences along the bundle containing all connections between the piriform cortex
and hippocampus were not uniform (E). We identified the top 3 sub-bundles accounting for the largest difference between the genotypes (F–H). FA appeared in
general lower for APE4HN mice in sections of two of these subbundles (F,H), but higher in one subbundle (G).

FIGURE 7 | The 2nd ranked connection discriminating between the genotypes involved intrahemispheric cerebellar connections between white and gray matter.
APOE4HN (B) showed consistent deficiencies relative to APOE3HN (A) carriers in fiber length and FA distributions (C,D). These differences were evident in whole
bundle (E) and subbundle analyses (F–H).
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FIGURE 8 | The interhemispheric hippocampal cerebellar connections showed significant differences between APOE3HN (A) and APOE4HN (B) mice in length (C)
and FA (D,E). The top three subbundles with significant differences between genotypes showed lower FA for APOE4HN mice relative to APOE3HN in the largest
subbundle (F), but higher FA for the 2nd and 6th spatially matched subbundles (G,H), and also higher variability for the APOE4HN genotype.

mice also preferred the SW to the NE (t = 3.8, p < 0.0001), NW
(t = 4.8, p < 0.002), SE (p = 3.1, p = 0.05).

The second probe swim distance showed a significant effect
of quadrant (p < 0.004), and genotype (p < 0.0001). Between
genotypes the swim distance in SW was not significantly different.
APOE3HN mice swan longer distance in the SW relative to
NE (t = 5.9, p < 0.0001), NW (t = 5.2, p = 0.0001), SE (4.6,
p = 0.0004). APOE4HN mice also preferred the SW to the NE
(t = 6.3, p < 0.0001), NW (t = 5.6, p < 0.0001), SE (p = 5,
p = 0.0001) (Figure 2C).

During the NOR APOE4HN and APOE3HN mice showed
no location preference for the sites of the two objects presented.
The immediate recognition index was not different between
genotypes. After 90 min, however, APOE4HN mice showed
more similar preferences for the familiar and novel objects
(RI = 0.44 ± 0.07 (SE), CI = [0.28. 0.60]) relative to APOE3HN
mice (0.65 ± 0.06 (SE), CI = [0,53 0.78]). This indicated that
APOE4HN mice did not remember the familiar object used
during the acquisition trial. APOE3HN mice had a higher
recognition index compared to APOE4HN mice at 24 h after the
initial trial (t = 2.3, p = 0.04)].

Volume Loss
The total brain volume for APOE4HN mice was 6% smaller
relative to APOE3HN controls. An ROI (region of interest)
analysis for the 332 brain parcelation revealed significant atrophy
occurred for regions shown in Table 1 and Figure 3.

The largest volume loss in APOE4HN mice relative to
the APOE3HN controls was in the range of ∼10% and
occurred for the cingulate cortex (areas 25, 29b, and 32),

the ventral intermediate entorhinal cortex and the temporal
association cortex. The accumbens, amygdalo-piriform
transition area, and secondary visual cortex were 7% or
smaller in APOE4HN mice relative to APOE3HN mice.
Finally, the cerebellar cortex, middle cerebellar peduncle and
pontine nuclei were ∼4% smaller, while the piriform cortex
was 2% smaller.

Microstructural Integrity
Regional analyses for FA did not survive multiple comparison
correction, but there was a trend for the medial lemniscus to
have higher FA in APOE4HN carriers (p corrected = 0.1). The
cerebral peduncle had a 6% lower FA in APOE4HN mice (p
corrected = 0.1). Similarly, the axial diffusivity differences did not
survive the multiple correction, and the longitudinal fasciculus
of pons in APOE4HN mice had a 4% lower axial diffusivity (p
uncorrected = 0.02), and the cerebellar white matter had 6%
larger radial diffusivity (p uncorrected = 0.02).

Voxel Based Analyses
Voxel based analyses indicated significant volume (Figure 4A)
and FA (Figure 4B) reductions occurred in APOE4 carriers
relative to APOE3 carriers. Areas of atrophy included
the olfactory cortices, hippocampus, subiculum, cingulate
cortex, amygdala and entorhinal cortex, as well as the
cerebellum. Sensory motor cortex areas also suffered
atrophy. Areas with FA reductions were less extensive
than those with volume atrophy and were noted in the
olfactory/piriform and cingulate cortices, hippocampus
and cerebellum.
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FIGURE 9 | Within genotype, between sex (A: female; B: male) analyses for the hippocampal-cerebellar interhemispheric connections. APOE3HN females had
longer connections compared to males and the opposite was true for APOE4HN mice (C). Differences in FA over the whole set of streamlines (D) were subtler in
terms of effect sizes, but clearly evident in our along the bundle analysis. APOE3HN males had overall higher FA values than females, and the opposite was true for
APOE4HN mice (E). The top subbundles with significant genotype differences (F) had also higher FA for APOE3HN males compared to females (bundle 1), while
APOE4HN females had higher FA compared to males. The 2nd ranked bundle showed higher FA in females compared to males of both genotypes, with a more
accentuated difference for APOE4HN mice (H). The 3rd ranked subbundle did not show sex differences for APOE3HN mice, while APOE4HN males showed higher
FA compared to females of the same genotype.
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FIGURE 10 | Intrahemispheric connections between the hippocampus and piriform cortex. The first panel compares the two genotypes; the second panel
compares the two sexes, within the APOE3HN genotype; the third panel compare the two sexes, within the APOE4HN genotype. Fiber length and FA distributions
are shown in Panels 1–3, C,D. Qualitatively males of the two genotypes presented more similar, consistent bundle FA shapes, while females showed more variability
between the genotypes (panels 2E,3E). Overall, females had lower FA along the entire bundle set in both APOE3HN (panel 2E) and APOE4HN mice (panel 3E).
Interestingly, APOE3HN females had larger FA than males for the largest subbundle (panel 2F). However, FA was lower along the same subbundle in APOE4HN
females relative to males of the same genotype (panel 3F), and differences were larger relative to those between males and females of APOE3HN genotype. These
patterns varied by subbundle, and spatially, along the bundles.
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Connectopathies
The tensor network analysis revealed the top connected
subnetwork (Table 2) differentiating the two genotypes. The
top 30 resulting connected subnetworks included predominantly
interhemispheric connections, and 7 distinct anatomical regions:
the hippocampus, piriform cortex, cerebellum (white matter
and gray matter), the caudate putamen/striatum, gigantoreticular
nucleus and the corpus callosum. Intrahemispheric connections
pointed to a role for the cerebellum. The three most frequent
major structures included the piriform cortex, the hippocampus,
and the cerebellum.

Figure 5 shows the scatter plot for the top three principal
components, which explained 61% percent of the variation, while
the top 15 explained 91% of the variation between genotypes.
We selected examined the same graphs to identify whether
sex differences were also apparent within genotypes, but these
differences were less clear in our small sample.

We selected examples among the top ranked connections,
featuring the most frequent regions. We observed that the
interhemispheric connectivity between the hippocampus and
piriform cortex (ranked 9) was stronger in APOE3HN mice
relative to APOE4HN mice, as illustrated qualitatively in
Figures 6A,B showing the top 6 largest bundles, ranked
according to their size. Figures 6C–E compare the distributions
of fiber length, FA, and FA along the whole bundle set for the
two genotypes. Figures 6F–H compare the FA distribution along
spatially matched subbundles between genotypes, indicating that
FA is non-uniform along the bundles.

The second ranked connection pertained to the intracerebellar
connectivity, and APOE4HN mice had consistently shorter
connections, and lower FA along the bundles; both when
analyzing the connectivity of the two nodes, as well as along the
significant sub bundles (Figure 7).

The third example shows the interhemispheric connection
between the hippocampus and cerebellum (Figure 8), which was
the top ranked connection discriminating between genotypes.
Distinct bundles showed larger FA in APOE4HN (overall, and
in subbundles 2 and 6), while the largest subbundle (1) showed
higher FA for the first portion of the bundle but lower FA for
the second half.

A further analysis of the hippocampal-cerebellar
interhemispheric connections revealed within genotype,
between sex differences in the length and FA distributions in
both APOE3HN, and APOE4HN mice, as well as in the spatially
characteristic patterns along the bundles (Figure 9). Sex based
differences based on fiber length were smaller in APOE3HN
mice, compared to those observed in APOE4HN models. The
males appeared to have higher FA along the whole bundle relative
to the females in APOE3HN mice, but the opposite was seen in
APOE4HN mice. The spatial distribution of these effects was
not uniform throughout the brain or along subbundles. This
illustrates that sex specific differences may be harder to detect in
the absence of detailed bundle analytics performed in spatially
aligned bundles.

We have examined the intrahemispheric connections
between the hippocampus and piriform cortex (Figure 10),

and observed larger variability within the APOE4HN genotype
relative to APOE3HN, as indicated by the width of the confidence
intervals (particularly in panel 1G). Qualitatively males of the
two genotypes presented more similar/or consistent bundle FA
shapes, and females showed more variability in the FA curve
shape between the genotypes (panel 2E, and 3E, arrows). Overall,
females had lower FA along the entire bundle set in both
APOE3HN (panel 2E) and APOE4HN mice (panel 3E). However,
we observed lower FA values along the largest subbundle in
APOE4HN females relative to males of the same genotype
(panel 3F), and larger differences relative to those between
males and females of APOE3HN genotype (where females had
larger FA overall). We noted a spatially varying pattern of FA
changes along bundles, possibly denoting different myelination,
or microenvironment properties.

Together, differences in behavioral responses, morphometry,
FA and connectivity denote that APOE4HN and APOE3HN
mice may use different strategies for learning and memory; and
that an association of multiple factors probably contributed to
the observed behavioral impairment. We have found that the
bundle analysis may confer increased sensitivity to genotype
and sex differences, by investigating changes beyond the level
of associating the connectivity between two regions with a
single entry in the connectome matrix. Our along the bundle
analyses revealed rather than a uniform effect, a spatially
varying pattern of FA changes along bundles, possibly denoting
increased sensitivity to local connectivity, myelination, or
microenvironment properties.

DISCUSSION

There is a rapid growth in the number of people affected by
Alzheimer’s disease, yet we do not know its etiology or have
effective treatments. To examine factors which contribute to the
switch from normal to pathological aging we focused on the
APOE polymorphic alleles. The causes for increased risk, or
conversely resilience, conferred by the major APOE alleles are not
known. The APOE4/4 genotype is the main genetic risk for late
onset Alzheimer’s disease (AD), and is associated with a 30–55%
risk of developing mild cognitive impairment or AD by age 85,
compared to 10–15% for the APOE3/3 genotype.

To help understand the mechanisms through which APOE
genes and their products differentially modulate the brain
and its circuits, we implemented a multi-disciplinary approach
using homozygous targeted replacement APOE3 and APOE4
mice expressing the major human APOE isoforms, under
the control of the mouse endogenous ApoE promoter. To
model the human immune response to aging we used double-
transgenic mice that express human NOS2 gene products.
This modification enables NO production and immune activity
regulated by NO to better mimic the human response. Mice
were characterized with a cognitive behavioral battery for
memory alterations typical of AD, and with MRI to determine
selective vulnerability of associated brain networks. Our imaging
measures were based on volume and DWI; and our analyses
of brain connections provided insight into networks properties.
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We aimed to reveal how APOE genotypes differentially confer
vulnerability or resilience to select brain circuits during aging,
and for different sexes. Identification of vulnerable networks
may help understand the etiology of neurodegenerative disease,
and facilitate targeted interventions. Monitoring such changes
with sensitive biomarkers may help stratify patients, and assess
response to therapies.

Our behavioral tests determined that APOE4HN mice have
deficits in the learning and memory function as tested in the
MWM during learning trials and during the first probe tests at
3 days, but not at 5 days. The NOR also indicated deficits as
the recognition index was lower when tested at 24 h, but not
90 min after the initial objects presentations. These deficits in
long term memory for APOE4HN mice suggest perturbations in
brain networks involved in memory function.

APOE4HN had 6% smaller brains when compared to age
matched APOE3HN controls, and the regions accounting
for these differences included the entorhinal and temporal
association cortex, the cingulate cortex and amygdala
(McGaugh et al., 1996), suggesting alterations in emotional
memory in addition to the demonstrated spatial and object
recognition memory effects we have measured. Interestingly,
the amygdalopiriform transition area, and the accumbens were
also smaller in APOE4HN mice. Sensory and motor areas
such as the olfactory areas/the piriform cortex, the visual and
motor cortex areas, and the cerebellum and its connections
also suffered atrophy. These regional changes point to spatially
extensive network alterations in APOE4HN mice. Voxel based
analyses confirmed these findings and added information due to
increased sensitivity to smaller clusters of atrophy in the primary
motor cortex, striatum, septum, subiculum, and the mediodorsal
thalamic nuclei. We found changes in the volume of the pons and
cerebellum, which have been traditionally thought to be involved
only in late stages of AD, but have also been shown in age related
tauopathy, independently of Aβ presence (Josephs et al., 2017).
Fractional anisotropy and connectivity also helped distinguish
APOE4 from APOE3 carriers. Interestingly, hyper functional
connectivity (Wang et al., 2017) in MCI APOE4 carriers may
suggest a compensatory role for the cerebellum at early stages.
When present, cerebellar pathology has been associated with
increased rates of cognitive dysfunction (Liang and Carlson,
2019), and to be predictive of conversion from MCI to AD.
Moreover, in cases of accelerated neurodegeneration, such as
chronic traumatic encephalopathy (CTE) following repeated
traumatic brain injury (TBI), the cerebellum appears to be one of
the most vulnerable brain regions and exhibiting pathology early
on (Liang and Carlson, 2019).

This is in contrast with the traditional view associating the
cerebellum exclusively with motor coordination and learning, but
supported by more recent studies, which have revealed a role for
the cerebellum in cognitive functions such as attention, language,
working memory, emotion, and in visuospatial navigation
(Timmann and Daum, 2007; Baillieux et al., 2008; Timmann
et al., 2010). Viral tracer studies have recently demonstrated
previously unknown connections between the cerebellum and
hippocampus – in particular a polysynaptic circuit from
the cerebellar fastigial nucleus with a thalamic relay in the

LDDM/LDVL and VL, which in turn synapses on the subiculum,
retrosplenial cortex, and rhinal cortex, which all project to
the hippocampus (Bohne et al., 2019). These connections are
indicative of a role in spatial navigation. Our studies support that
APOE4 carriers have differences in such pathways connecting
the cerebellum with the hippocampus and also with the piriform
cortex, and these differences co-exist with alterations in spatial
learning and memory, as well as remote memory for object
recognition. Our study suggests that more attention needs
to be given to understanding the role of the cerebellum in
neurodegenerative diseases, and associated cognitive deficits.

White matter tracts with reduced volume included the
corpus callosum, anterior commissure and the middle cerebellar
peduncles. FA reductions, commonly seen as indicators of altered
microstructural integrity in white matter tracts, were found
mostly in the corpus callosum and the cerebellar white matter.
In addition hippocampal projection pathways had lower FA, and
we noted FA reductions in CA1 areas, where from projections
connect to the subiculum and the entorhinal cortex, but also
to the basolateral amygdala (BLA), which sends projections to
the medial frontal cortex, and the accumbens (also the bed
nucleus of stria terminalis, and central amygdaloid nucleus)
(Mandyam, 2013).

The complexity of these relationships and the extent of
the networks involved demands the development of integrative
methods followed by dimensionality reduction strategies. Here
we have used a recently developed method (Zhang et al., 2019)
for assembling structural connectomes into tensor networks,
and mapping those into a reduced dimensional space to
identify significant subnetworks associated with traits. This relies
on a generalization of principal component analysis. In our
case the top 15 principal components explained 91% of the
variance. The tensor network principal component analysis
helped reveal the top 30 connections, including seven unique
structures that best distinguished amongst our two genotypes.
A significant portion of these connections were interhemispheric.
We found that the pairwise connectivity between two nodes,
most often used in standard connectometry studies contain rich
information that can be further exploited to reveal genotype
and sex differences. The histogram based analyses for tract
length and FA were supplemented by bundle specific analyses
on spatially clustered sub-bundles, and illustrated different
wiring patterns and properties in APOE4HN and APOE3HN,
as well as between sexes within each genotype. We paid
particular attention to the interhemispheric connections between
the hippocampus and piriform cortex, the cerebellum and
hippocampus, and the intrahemispheric cerebellar connections.
Prompted by the frequency of appearance for the piriform cortex
and hippocampus in the top list of connections we also examined
the properties of their intrahemispheric connections (Figure 10),
and these confirmed the male associated differences between
genotypes, while showing a stronger tendency for lower FA along
these projections for APOE4HN mice.

The main limitations of this study come from the small sample
size, and the fact that we pooled our bundles for statistical
analysis rather than stratifying them by animal. We argue this
provides a first step approach to study differences with genotypes
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in animal cohorts which provide virtually genetically identical
replicates. Also, formalin fixation may affect tissue properties
and cause shrinkage, and we have tried to control these factors
by preserving the same interval between animal sacrifice and
imaging. Further studies should include more replicates of each
sex to infer sex specific interactions between vulnerable networks
and APOE alleles.

We note that APOE-HN mice do not express mutated APP
leading to prevalent amyloid pathology, therefore our study
could not address the mechanism of interaction between the
various APOE alleles and Aß. However, the literature suggests
that APOE4 exerts an effect on the pathogenesis on AD
through Aß and also Aß independent pathways (Huang, 2010).
While the deposition of Aβ is apoE isoform-specific, it is not
clear whether and how they influence the accumulation and
progression of tau pathology (Balu et al., 2019). APOE isoforms
also affect neuroinflammation, vascular function, metabolism,
synaptic plasticity, and transcription regulation (Liao et al., 2017).
In addition to the human APOE alleles, our mouse models have
a murine NO synthase 2 knockout background (mNos2−/−)
(Colton et al., 2006, 2014). In place of the mouse Nos2 gene
these express a functional human NOS2 gene (Vitek et al., 2006).
These modifications lead to reduced immune-activated NOS2
expression and iNOS production compared to wild type rodents.
This allows to model the human innate immune response, in
particular with respect to the redox microenvironment, and NO
production (Hoos et al., 2014). Mouse models on this genetic
background expressing APP mutations present multiple AD like
phenotypes (Wilcock et al., 2008; Colton et al., 2014; Kan et al.,
2015; Badea et al., 2016). Here we assessed the differential effects
of the interaction of the humanized NOS background with
APOE3 and APOE4 alleles.

Our current study cannot rule out developmental effects
in our mice, however, human studies point to APOE4
associated differences in asymptomatic and young carriers
(Reiter et al., 2012; Piers, 2018), which may change in time
(Koelewijn et al., 2019). Further studies should explore in
more detail the relation between behavioral, imaging, and
connectome markers.

Our findings parallel other investigations in the study of
connectivity alterations associated with APOE status in human
carriers and mouse models (Heise et al., 2014; Wiesmann et al.,
2016; Luo et al., 2017; Korthauer et al., 2018). These studies
support the presence of alterations in both functional and
structural connectomes, and report separately such biomarkers.
They generally point to a role for the hippocampus and its
connection, and vascular function through perfusion changes,
which changes may affect cognition. The importance of
multimodal approaches (Wiesmann et al., 2016) and developing
a framework for integrating such biomarkers has long been
recognized (Madden et al., 2009), and connectomes present
such an opportunity.

We argue that unique entries in a connectome contain rich
information which can be further exploited at finer scales,
and perhaps using different modalities. In our analyses we
found significant differences in the size based ranking of the
subbundles, indicating different wiring patterns in mice with

different APOE alleles, and perhaps compensatory mechanisms –
which are not evident at the level of whole bundle/pairwise
connectivity analysis. The high resolution imaging allowed
us to infer subdivisions of the bundles, based on spatial
geometric relationships, and these remain to be validated using
complementary methods. APOE4HN mice had consistently
lower FA along the cerebellar connections, while the patterns for
the interhemispheric hippocampal-cerebellar and hippocampal-
piriform connections varied by subbundles, and position along
the bundle, with lower FA for the largest subbundle in
APOE4 carriers, but higher FAs were also observed. We
observed frequently higher variability in APOE4HN mice, and
in APOE4HN females compared to males. An examination of
sex based differences in the hippocampal cerebellar connections
indicated more consistency between the males of APOE4HN and
APOE3HN genotypes, with females showing more differences
with genotype in the FA curve shape (Figure 9E), and females
of the same genotype showing more variability (Figures 9E–G).
We note that the connections we analyzed run also through gray
matter, rather than just white matter. Thus the associated FA
values may be affected by aging and pathology, which led to
increased FA values in gray matter.

We identified changes in volume and FA in areas which
have been associated with amyloid deposition in AD patients,
such as the entorhinal cortex, hippocampus, cingulate cortex
and amygdala. However, our animal models do not have APP
mutations predisposing them to abundant amyloid deposition,
which suggests that the regions we have identified may be part of a
vulnerable brain network prone to the development, propagation
and deposition of misfolded proteins, proteinopathies, or
involved in other pathological processes as well. While some of
the significant differences in the connectome identified decreased
FA along the tracts connecting these regions, the reverse was
also noted. Such findings have also been reported in human
APOE4 carriers, particularly at younger ages, and the effects
are not uniform throughout the brain. We believe that FA
may show different patterns, not only between genotypes or
sexes, but even along bundles and these differences can be due
to changes in the local brain microenvironment, toxicity, or
myelination. Compensatory mechanisms can also play a role. In
Figure 6 we note that the subbundle 5 passes largely through gray
matter, so we may observe changes due to gliosis in the vicinity
of such bundles.

We also found changes in the striatum gigantocellular
reticular nuclei, cerebellum and cortical motor related regions.
These results support the role of APOE4 (Serrano-Pozo et al.,
2011) as a risk factor for Parkinson’s disease (Pankratz et al.,
2006), where alpha synuclein may also be preferentially deposited
in the CA2–CA3 regions of the hippocampus, insula, amygdala
and cingulate cortex (Harding and Halliday, 2001; Bertrand
et al., 2004). This points to shared mechanisms and vulnerable
networks across neurodegenerative conditions such as AD
and PD. Approximately 25% of AD patients develop PD,
and 50% of PD patients develop AD after 65 years of age
(Hansen et al., 1990). Moreover, 70% of LOAD patients display
α-synuclein-positive LB-like inclusions in the amygdala and
limbic structures (Trojanowski et al., 1998; Hamilton, 2000).
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Identifying differences between these vulnerable networks, based
on multivariate biomarkers may help stratify patients, as
e.g., dementia with Lewy bodies can be distinguished from
Parkinson’s disease dementia based on the presence of Aβ

deposits in the striatum (Duda et al., 2002) and hippocampus
(Masliah et al., 1993).

We have shown that behavioral and imaging markers
corroborate to help identify vulnerable networks in novel
mouse models of pathological aging, relying on the genetic risk
factor conferred by APOE4 alleles. We have also tried to gain
insight into the rich information behind one single entry in a
connectome. Imaging and DWI based connectomics provided
multiple sensitive biomarkers to monitor the integrity of these
networks or their failure in aging and disease. We hope that
future work will address the mechanism underlying the switch
from normal to pathological aging, and will help monitor the
effects of interventions.
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Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-
invasive window into brain activity. A collection of associated methods aims to
replicate observations made in humans and to identify the mechanisms underlying the
distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies
have developed rapidly over the past years, fueled by the development of resting-state
fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons
between sites remain hampered by lack of standardization. Recently, we highlighted
that mouse resting-state functional connectivity converges across centers, although
large discrepancies in sensitivity and specificity remained. Here, we explore past and
present trends within the animal fMRI community and highlight critical aspects in study
design, data acquisition, and post-processing operations, that may affect the results
and influence the comparability between studies. We also suggest practices aimed
to promote the adoption of standards within the community and improve between-
lab reproducibility. The implementation of standardized animal neuroimaging protocols
will facilitate animal population imaging efforts as well as meta-analysis and replication
studies, the gold standards in evidence-based science.
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INTRODUCTION

A detailed understanding of the mammalian brain structure
and function is one of the greatest challenges of modern
neuroscience. Approaching the complexity of the organ and
the levels of organization of neuronal circuits across several
orders of magnitudes, both spatially and temporally, requires
the collective scientific efforts from multiple teams across several
disciplines. Neuroimaging, especially by means of magnetic
resonance imaging (MRI), is playing a preponderant role
in mapping the human and animal brain, due to its non-
invasiveness, excellent soft-tissue contrast, and multiple readouts.
The human neuroimaging research has accelerated over the past
decade, fueled by numerous discoveries about brain structure
and function and its relation to disorders. In turn, this has led
to population imaging efforts aimed to describe variations in
brain structure and function, and their relation to behavioral
traits, genetic polymorphisms, and pathology. For instance, since
its original description in 1995 (Biswal et al., 1995), resting-
state functional connectivity (RS-FC) has been at the center
of numerous population imaging initiatives, such as the 1,000
Functional Connectomes Project (Biswal et al., 2010), the WU-
Minn Human Connectome Project (Van Essen and Ugurbil, 2012;
Van Essen et al., 2013), and the UK Biobank (Miller et al.,
2016). In addition to providing an important baseline of healthy
cohorts, these initiatives are complemented with population
imaging dedicated to specific psychiatric and neurological
disorders, such as the Alzheimer’s Disease Neuroimaging
Initiative (Petersen et al., 2010; Weiner et al., 2012), the Autism
Brain Imaging Data Exchange (Di Martino et al., 2014), or
Attention-Deficit Hyperactivity Disorder (HD-200 Consortium,
2012). Collectively, these resources have significantly advanced
our understanding of neuro- and psychopathologies, as well
as providing an understanding of disorder spectrums at a
population level.

In contrast to the above, functional neuroimaging studies
in animals have remained mostly confined to single centers,
often relying on lab-specific acquisition and processing protocols.
There has been little pressure toward standardization within the
community, and results from different centers have remained
inherently difficult to compare, due to discrepancies related
to animal housing and preparation, recording hardware, and
analysis methodologies. It is now emerging that these preparation
divergences are at the stem of a number of dissensions within the
animal functional neuroimaging community, such as the nature
of unilateral vs. bilateral resting-state networks (RSN) in mice
(Jonckers et al., 2011; Grandjean et al., 2014; Mechling et al.,
2014; Sforazzini et al., 2014), the bilateral BOLD response to non-
noxious paw electrical stimulation in mice (Bosshard et al., 2010;
Schroeter et al., 2014; Shim et al., 2018), the indirect artifacts
emerging in optogenetics fMRI (ofMRI) through either heating
or vascular photoactivation (Christie et al., 2013; Rungta et al.,
2017; Schmid et al., 2017), or the spatial extent of distributed
networks of translational relevance, such as the rodent “default
mode network” (DMN) reviewed in Gozzi and Schwarz (2016).
Only recently did efforts emerge to combine and compare
structural and/or functional MRI from multiple centers in

monkeys (Milham et al., 2018) and in mice (Figure 1; Grandjean
et al., 2019a). These initial studies provide solid grounds for the
development of replication studies, meta-analyses, and multi-
center consortia, the gold standards in evidence-based science.

Presently, we aim to describe the current trends in the
field and to examine how these impact the results and
their comparability with the rest of the literature. While
recommendations to enhance reproducibility exists for human
neuroimaging (Poldrack et al., 2008), a large number of
acquisition and data processing aspects remain specific to animal
imaging. We systematically assessed the animal fMRI literature
for data acquisition and analysis procedures to provide an
overview of the collective directions taken within the animal
imaging community. We then reviewed the major considerations
taking place in the study design, and how these impact results
and their interpretability. Finally, we use this information to
provide a road map toward the adoption of standards that will
enable animal population studies to inform on the functional
mammalian brain.

METHODS

We searched the Pubmed database1 on February 11, 2019 for
the terms “functional magnetic resonance imaging,” “functional
MRI,” or “fMRI” within the abstract or title, excluding
studies in human and reviews, from 1990 onward, using
the following command. “Search ((fMRI[Title/Abstract]) OR
functional MRI[Title/Abstract]) OR functional magnetic resonance
imaging[Title/Abstract] Sort by: Best Match Filters: Abstract;
Publication date from 1990/01/01 to 2019/12/31; Other Animals.”
The query returned 2279 entries. The title and abstract from these
were manually screened to exclude studies that did not contain
primary research using MRI to assess brain function in animals.
In total, 868 research article were considered relevant and could
be readily accessed. We recorded the type of study: resting-state
or paradigm free RS-FC recordings, pharmacological-evoked,
opto-/chemogenetic neuromodulation, deep-brain stimulation
(DBS), or stimulus-evoked (including blocks- or events-related
designs with sensory stimulation, gas challenge, etc.). We
recorded animals species, including strain, gender (male, female,
both, N/A), number of animals used, animal preparation (awake,
anesthetized free-breathing, anesthetized ventilated), anesthetic
used for maintenance during fMRI, field strength, fMRI sequence
and contrast, pre-processing softwares, and noted if the datasets
were made available by the authors or in online repositories. The
resulting table is made available in the Supplementary Material.

RESULTS AND DISCUSSION

Experimental Design
Animal fMRI presents the opportunity for new and creative
directions in study design, but care must be taken to ensure that
experimental changes in the fMRI signal are sufficiently robust

1https://www.ncbi.nlm.nih.gov/pubmed/
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FIGURE 1 | (A) A seed-based analysis of the anterior cingulate area in 98 resting-state fMRI scans reveals the topological distribution of the mouse default-mode
network. The regions co-activating with the seed include the dorsal striatum, dorsal thalamus, retrosplenial, and posterior parietal areas. (B) The reproducibility of the
default-mode network was assessed in 17 independent datasets consisting of 15 scans each. Overlapping one-sample t-test maps are summarized in a
color-coded overlay. 12/17 datasets present converging topological features, the remaining five failed to present evidence of distal connectivity relative to the seed.
Adapted with permission from Grandjean et al. (2019a).

for detection and that results are not contaminated by procedural
artifacts. Here we highlight evidence supporting standards and
reporting strategies to optimize data quality, interpretation, and
reproducibility for several common animal fMRI paradigms.

Stimulus-Evoked fMRI
In animal studies, stimulus-evoked fMRI usually refers to
externally applied stimuli during fMRI (e.g., electrical forepaw
stimulation), but many principles of study design can be applied
to internally delivered stimuli as well, such as with deep-brain
stimulation (DBS) and optogenetics. Stimuli can be applied in
a block or event-related design. The former alternates between
regular stimulation and no-stimulation conditions, while the
latter uses brief stimuli presented at varying intervals (Amaro and
Barker, 2006). Block designs are best suited to test frequency-
related responses and enhance detection power, while event-
related designs are best for determining accurate response-time
courses and/or frequency-independent functional connectivity
(Amaro and Barker, 2006; Van der Linden et al., 2007; Maus
and van Breukelen, 2013; Allen et al., 2015; Schlegel et al., 2015;
Soares et al., 2016).

Stimulus frequency has a large influence on stimulus-evoked
fMRI results. In general, higher frequencies will increase the
stimulus input per unit time, thus potentially boosting signal
and ability to detect evoked responses (Amaro and Barker,
2006; Kim et al., 2010; Maus and van Breukelen, 2013), but
excessive electrical or optical stimulation can cause tissue damage
(Kiyatkin, 2007; Lai et al., 2015; Acker et al., 2016; Cogan et al.,
2016), heating and related artifacts (Zeuthen, 1978; Kiyatkin,
2007; Cardin et al., 2010; Christie et al., 2013; Lai et al., 2015;
Stujenske et al., 2015; Acker et al., 2016), and non-specific effects
(Tuor et al., 2002; Christie et al., 2013; Schroeter et al., 2014;
Shih et al., 2014; Schlegel et al., 2015; Rungta et al., 2017).
Stimuli may also change basic physiology and therefore alter
the fMRI response (Tuor et al., 2002; Ray et al., 2011; Tsubota
et al., 2012; Li et al., 2013; Schroeter et al., 2014; Shih et al.,
2014; Reimann C. et al., 2018), thereby occluding signal from
the stimulus itself. These findings highlight the importance of

carefully monitoring physiology (see below) and establishing
frequency-response curves for the stimuli of choice.

Functional Connectivity MRI
Animal fMRI data acquired in the absence of stimulation or
modulation, RS-FC, is commonly used to probe synchronization
of spontaneously fluctuating signals between combinations of
anatomically, functionally, or procedurally defined brain regions
(Lowe et al., 2000; Lu et al., 2007; Zhao et al., 2008; van Meer
et al., 2010, 2012; Lu and Stein, 2014; Pan et al., 2015; Guadagno
et al., 2018; Grandjean et al., 2019a). The use of RS-FC in animal
models has rapidly increased over the past decade (Figure 2).
To collect the most robust and interpretable RS-FC data, a
few principles have been proposed. Recent evidence suggests
that brain network components exhibit non-stationary properties
(Hutchison et al., 2013a; Keilholz et al., 2013; Liu and Duyn,
2013; Liang et al., 2015a; Pan et al., 2015; Gutierrez-Barragan
et al., 2018), therefore repetition time should be sufficiently
short (e.g., 1 s) to properly sampled the fluctuations and to
detect these changes, and scan length should produce enough
frames (a minimum of about 300) to account for a large
number of temporal clusters (Majeed et al., 2011; Hutchison
et al., 2013b; Jonckers et al., 2015). Critical aspects for such
analyses are detailed in a later section. Furthermore, if brain
modulation/stimulation is included, additional time should be
added during the transition periods to and from resting-state
to allow for stable connectivity, and subsequent resting periods
following each manipulation should be grouped separately to
account for potential neuroadaptations (Pawela et al., 2008; Zhao
et al., 2008; Jonckers et al., 2015; Albaugh et al., 2016; Chan et al.,
2017; Decot et al., 2017; Chen et al., 2018). Importantly, due to the
nature of the signal fluctuations on which RS-FC relies, special
care must be ensured with regard to physiology and anesthesia to
ensure maximal detection. The effects of animal preparations are
further discussed below.

Optogenetics
Many recent stimulus-evoked animal fMRI studies take
advantage of the readily MR-compatible optogenetics toolkit
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FIGURE 2 | Study design in animal fMRI over time. Stimulus-evoked fMRI
(events or blocks related) remain the major component within animal literature.
From 2006 and 2010, resting-state fMRI and opto-/chemogenetic fMRI,
respectively, have represented an increasing proportion of the animal fMRI
studies.

(Figure 2; Desai et al., 2011; Abe et al., 2012; Scott and Murphy,
2012; Kahn et al., 2013; Iordanova et al., 2015; Lemieux et al.,
2015; Liang et al., 2015b; Takata et al., 2015; Weitz et al.,
2015; Albaugh et al., 2016; Chai et al., 2016; Ryali et al., 2016;
Yu et al., 2016; Hinz et al., 2017; Lohani et al., 2017; Albers
et al., 2018; Brocka et al., 2018; Choe et al., 2018; Leong et al.,
2018; Grandjean et al., 2019b). Optogenetics allows for robust
stimulation of specific cellular and/or anatomical populations
(Zhang et al., 2010; Fenno et al., 2011; Boyden, 2015; Deisseroth,
2015; Griessner et al., 2018), but despite these advantages
this relatively new technique adds layers of complexity over
DBS, thereby requiring more rigorous methodology and
additional controls.

The light-activated channels/pumps expressed in
optogenetics, also known as “opsins,” provide a great deal
of experimental flexibility (Fenno et al., 2011; Deisseroth, 2015;
Guru et al., 2015). There are several opsins to choose from for
optical excitation of cells, including the commonly used ChR2
(Nagel et al., 2003; Boyden et al., 2005; Zhang et al., 2006; Atasoy
et al., 2008; Cardin et al., 2010) variants activated by penetrating
red-shifted light (Zhang et al., 2008; Lin et al., 2013; Klapoetke
et al., 2014) and ultra-fast variants capable of frequencies up
to 200 Hz (Lin et al., 2009; Gunaydin et al., 2010; Hight et al.,
2015). If stable excitation over even longer periods is required
in fMRI, issues with a continuous light application can be
avoided by using step-function opsins which are temporarily
activated by a single pulse of light (Berndt et al., 2009; Ferenczi
et al., 2016). Notably, there are also several opsins for cellular
inhibition (Zhang et al., 2007; Berndt et al., 2014; Chuong et al.,
2014), but their application for fMRI is limited as they require
longer periods of illumination prone to heat-related artifacts,
and anesthetized or sedated animals have low baseline levels of
activity (Lahti et al., 1999; Brevard et al., 2003; Sicard et al., 2003).

Injection of viral constructs or expression of foreign genes
can potentially change brain function (Liu et al., 1999; Klein
et al., 2006; Zimmermann et al., 2008; Lin, 2011; Miyashita et al.,
2013), and light can induce heating and related MRI artifacts,

tissue damage, and non-specific effects (Elias et al., 1987; Christie
et al., 2013; Stujenske et al., 2015; Schmid et al., 2016; Rungta
et al., 2017) thus it is critical to characterize opsin expression and
activation of the light source with light delivery to empty-vector
(e.g., EYFP) controls. It follows that histological confirmation
of fiber placement and construct co-localization with targeted
promoters is required (Bernstein and Boyden, 2011; Witten et al.,
2011; Madisen et al., 2012; Zeng and Madisen, 2012; Allen et al.,
2015; Gompf et al., 2015; Lin et al., 2016; Decot et al., 2017).
In addition, given the spatial nature of fMRI, the reporting of
single-point measurements of light power should be avoided
in favor of irradiance (mW/mm2; Aravanis et al., 2007; Huber
et al., 2008; Kahn et al., 2011; Yizhar et al., 2011; Schmid et al.,
2017). Finally, light stimulation at frequencies at or below 20 Hz
can produce a visual response by activating the visual-related
network, requiring light masking or careful control comparison
to view experimental effects (Ferenczi et al., 2016; Lin et al., 2016;
Decot et al., 2017; Schmid et al., 2017).

Chemogenetics
Chemogenetics, initially termed “pharmacogenetics,” utilizes
pharmacologically inert ligands to stimulate genetically encoded
designer receptors, with the aim to produce drug-like sustained
activation or inhibition of specific neuronal populations. Initial
attempts to combine this approach with fMRI have involved
the regional re-expression of pharmacologically targetable
endogenous G-coupled protein receptors (e.g., Htr1a, Gozzi
et al., 2012). The recent development of a modular set of
evolved G protein-coupled receptors, termed Designer Receptors
Exclusively Activated by Designer Drugs (DREADDs) has greatly
expanded the capabilities of this approach (Armbruster et al.,
2007; Alexander et al., 2009; Lee et al., 2014; English and
Roth, 2015; Roth, 2016; Sciolino et al., 2016; Smith et al., 2016;
Zhu et al., 2016; Aldrin-Kirk et al., 2018). Like optogenetics,
chemogenetics is readily MRI compatible (Giorgi et al., 2017;
Roelofs et al., 2017; Chen et al., 2018; Griessner et al., 2018;
Markicevic et al., 2018). Despite its potential, there is, however,
an ongoing debate about the specificity of chemogenetics ligands
both in neurobehavioral studies (MacLaren et al., 2016; Gomez
et al., 2017; Mahler and Aston-Jones, 2018; Manvich et al.,
2018) and in chemo-fMRI applications (Giorgi et al., 2017),
thereby requiring rigorous methodology to control for potential
off-target effects.

Both hM3Dq and hM4Di DREADDs are classically activated
with infusion of the effector clozapine-N-oxide (CNO)
(Armbruster et al., 2007; Alexander et al., 2009; Roth, 2016;
Smith et al., 2016; Giorgi et al., 2017; Markicevic et al., 2018),
but new evidence suggests that CNO does not cross the blood-
brain barrier and instead is back-metabolized in vivo into its
precursor, clozapine (Gomez et al., 2017; Mahler and Aston-
Jones, 2018; Manvich et al., 2018). Importantly, unlike CNO,
clozapine is a psychoactive drug, that possesses an affinity for
many endogenous receptors. As a result, the use of high CNO
doses may result in a plethora of undesirable off-target effects
(Ashby and Wang, 1996; Selent et al., 2008; MacLaren et al.,
2016; Roth, 2016), including unspecific fMRI response (Giorgi
et al., 2017). Overall, it is apparent that chemogenetics effects
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cannot be interpreted without proper non-DREADD expressing
controls. Specifically, the effect of effector administration
should be compared between DREADD expressing, and non-
DREADD expressing animals and/or hemispheres. Finally,
as with optogenetics, validation of DREADD expression and
co-localization with target promoters is essential for data
interpretation (Farrell et al., 2013; Smith et al., 2016; Giorgi et al.,
2017; Gomez et al., 2017; Roelofs et al., 2017; Aldrin-Kirk et al.,
2018; Chen et al., 2018; Markicevic et al., 2018).

Pharmacological fMRI
Modulating the brain with pharmacological agents during animal
fMRI has a wide variety of traditional applications such as
studying the global effects of compounds and their target
neurotransmitter systems (Mueggler et al., 2001; Shah et al.,
2004; Ferrari et al., 2012; Razoux et al., 2013; van der Marel
et al., 2013; Jonckers et al., 2015). This approach does not
require surgical methods, and is apt for identifying global or
regional changes in function associated with new or existing drug
therapies for neurotransmitter-related brain disorders (Leslie
and James, 2000; Martin and Sibson, 2008; Canese et al.,
2011; Bifone and Gozzi, 2012; Klomp et al., 2012; Minzenberg,
2012; Medhi et al., 2014), or to map the effect of exogenously
administered neuromodulators. In addition, pharmacological
challenges can be used to probe how targets and neurotransmitter
systems modulate BOLD responses evoked by other stimuli or
pharmacological agents (Marota et al., 2000; Hess et al., 2007;
Schwarz et al., 2007; Knabl et al., 2008; Rauch et al., 2008; Shih
et al., 2012a; Squillace et al., 2014; Shah et al., 2016; Decot et al.,
2017; Bruinsma et al., 2018; Griessner et al., 2018). However,
functional imaging with pharmacological agents may not be
ideal for dynamic or repetitive studies as effects are dependent
on diffusion and receptor kinetics (Steward et al., 2005; Ferris
et al., 2006; Mandeville et al., 2013; Bruinsma et al., 2018), and
subject to receptor desensitization and downregulation (Chen
et al., 1999; Arey, 2014; Berg and Clarke, 2018); which in some
instances may be species-specific (Knabl et al., 2008).

It is important to consider dose-response effects and the
pharmacokinetics of each drug used in the experimental design.
Ideally several doses of drug, and sufficiently long time series
should be included in order to interpret the results according
to dose-response and absorption/elimination functions (Leslie
and James, 2000; Marota et al., 2000; Mueggler et al., 2001;
Steward et al., 2005; Ferris et al., 2006; Rauch et al., 2008;
Jenkins, 2012; Minzenberg, 2012; Jonckers et al., 2015; Shah
et al., 2015; Bruinsma et al., 2018). Indeed, many pharmacological
agents have known systemic effects which can influence animal
physiology and the BOLD signal (Shah et al., 2004; Wang et al.,
2006; Martin and Sibson, 2008; Ferrari et al., 2012; Klomp
et al., 2012), and some drugs have direct effects on the vascular
endothelium in the brain, which could alter properties of the
hemodynamic response (Luo et al., 2003; Gozzi et al., 2007;
Shih et al., 2012b). It is imperative to closely control and
monitor animal physiology, and use appropriate doses in order
to control for unwanted side effects. Importantly, vehicle controls
are necessary for any pharmacological fMRI study, as increased
blood flow/volume and increased blood pressure from systemic

infusions can alter the MRI signal (Kalisch et al., 2001; Tuor et al.,
2002; Gozzi et al., 2007; Reimann H. M. et al., 2018).

Species, Sample Size, and Gender
Distribution
We assessed studies performed using animals, i.e., all species
except homo sapiens. The rat and specifically the Sprague–
Dawley strain was the most common species and strain used in
fMRI studies, representing 55% of the total studies considered
presently (Figures 3A,B). Non-human primate (NHP) studies
were second and mostly relied on the macaques (23%). Studies
involving medium-sized domestic mammals (cats, dogs, sheeps,
pigs, and rabbits) presented 9% of the total literature considered.
Studies on males (54%) had a higher incidence than studies in
females (14%). A sizable number of studies (22%) omitted to
specify the gender. This gender bias reflects a greater trend found
throughout neuroscience and other biomedical disciplines (Beery
and Zucker, 2011) and should require a greater consideration
within the animal neuroimaging community. Finally, the total
number of animals was assessed within the studies considered.
It should be noted that this was done irrespective of the number
of groups. There, we found that nearly half the studies were
carried out on ten or fewer subjects (Figure 3C). This was
particularly marked in studies with NHP (Percentiles 25, 50,
75 = [2, 3, 5]). While sample size depends on the goals of each
study and appropriate power calculation, it remains unclear how
group sizes were determined in most of these studies. The small
group sizes reported here are consistent with general trends
in neuroscience toward underpowered studies. Button et al.
(2013) estimated that the median power level in neuroscience
was at 21%. Hence these trends need to be carefully taken into
consideration in the initial stages of study design so that the
required animals are used to their full potential.

The wide range of experimental animals available for
research offers unique opportunities to study evolutionary
trends on distributed neuronal networks. To date, however,
interspecies comparisons have remained a difficult task. fMRI
has provided numerous descriptions of the network organization
in mammals. Specifically, RSNs have been mainly studied in
mammals to develop translational models of human diseases
and to understand the mechanisms underlying their functional
alterations. RSNs’ organization has been described in numerous
mammalian species (usually under anesthesia) including rodents
(Hutchison et al., 2010; Jonckers et al., 2011; Sforazzini et al.,
2014; Grandjean et al., 2017b), ferrets (Zhou et al., 2016), rabbits
(Schroeder et al., 2016), dogs (Kyathanahally et al., 2015), prairie
vole (Ortiz et al., 2018), and NHP (Vincent et al., 2007; Hutchison
et al., 2010; Mantini et al., 2011; Belcher et al., 2013). Particularly
active at rest, one of the most widely investigated networks
is the DMN (Raichle, 2015; Buckner and DiNicola, 2019).
This network comprises distributed polymodal cortices that are
thought to be involved in memory consolidation and higher
cognitive functions. Homologs of the human DMN (Raichle
et al., 2001) have been identified in a variety of species including
NHP (Vincent et al., 2007; Mantini et al., 2011), rats (Lu et al.,
2012), mice (Sforazzini et al., 2014; Stafford et al., 2014) and
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FIGURE 3 | Species distribution and sample size. (A) Animal representation in the documented studies. (B) Animal species occurrence in the literature over time.
Rats and non-human primate (NHP) represent the major species used, however, since 2008, mice have been used in a growing proportion of animal fMRI studies.
(C) Number of animals used per fMRI study irrespective of number of groups or classes. NHP studies are carried out with fewer animals (Percentiles25,50,75 = [2, 3,
5]), whereas studies involving mice involved larger number of animals (Percentiles25,50,75 = [17, 24, 34]).

rabbits (Schroeder et al., 2016). The hypothesis of two separated
DMNs (anterior and a posterior) has been evoked in dogs
(Kyathanahally et al., 2015) and ferrets (Zhou et al., 2016).

The description of each species’ functional architectures has
been based on a variety of acquisitions, analyses, and anesthesia
or awake protocols. This lack of interspecies standardization is
often justified by the variety of brain sizes, different response
to anesthesia, and anatomical organizations observed within
mammals. Throughout evolution, brain regions could have
duplicated, fused, reorganized or expanded (Hutchison and
Everling, 2012). A few studies have compared the connectivity
between different species and with similar approaches. Using
ICA, Jonckers et al. found that the extracted components,
i.e., functional network regions, were more unilateral in mice
compared to rats (Jonckers et al., 2011), however, this effect failed
to be replicated in numerous follow-up studies in mice (e.g.,
Grandjean et al., 2014; Sforazzini et al., 2014). In mouse lemur
primates and humans, the cortical large-scale networks repertoire
presents important similarities but the regional organization
into networks highlighted compositional and structural
divergences (Garin et al., 2019). Strong interhemispheric
functional connectivity (FC) between homotopic regions has
been consistently observed in humans and primates suggesting a
phylogenetically preserved mammalian characteristic (Hutchison
and Everling, 2012). However, lateralized networks (i.e., fronto-
parietal resting-state network) remain a phenomenon which
has only been demonstrated in humans. According to the few
comparative studies on mammals functional organization,
humans seem to display the strongest variety of functional
networks. The complexity and diversity of the animal behaviors
are probably related to this large repertoire of networks. This
complexity is also reflected by the white matter fiber tracts
network (Nadkarni et al., 2018). Moreover, direct evidence
is in favor of a close relationship between the structural and
functional organization in humans (Damoiseaux and Greicius,
2009), in primates (Miranda-Dominguez et al., 2014) and in mice
(Stafford et al., 2014; Grandjean et al., 2017b). However, a recent
systematic review showed that structure-function correlations
in mammalian brains depend on the connectivity measures,
which differ across methods and scales (Straathof et al., 2019).

The structure-function correspondence observed in multiple
species is an important step in favor of the neural origin
underlying the BOLD signal and provides a key to understanding
neural network development through the evolution of complex
brain structure.

Other universal properties of the brain topology have also
emerged recently with graph analysis. One of them is the small-
world feature which maximizes the efficiency of information
transferred within a network. This network property has been
found in multiple species including humans (Bullmore and
Sporns, 2009), NHP (Barttfeld et al., 2015; Garin et al., 2019),
rodents (Mechling et al., 2014), and ferrets (Zhou et al.,
2016). Moreover, graph-based approaches have clearly revealed a
modular nature of human (Sporns and Betzel, 2016), and rodent
(Liska et al., 2015) rsfMRI networks, along with evidence of
strongly functionally interconnected polymodal areas, exhibiting
hub-like properties (Buckner et al., 2009; Liska et al., 2015).
Concerning highly connected regions in human, macaque and
mouse lemur, the posterior cingulate cortex was found to
be critical in these three species with its major functional
hubs located in the DMN (Garin et al., 2019). Interestingly,
these areas seem to be instead shifted anteriorly in rodents,
in which the anterior cingulate and prefrontal areas exhibit
robust hub-like properties (Liska et al., 2015; Gozzi and
Schwarz, 2016; Garin et al., 2019). This finding is consistent
with rodent species lacking an evolutionary homolog of the
primate posterior cingulate cortex (Vogt and Paxinos, 2014).
Determining the fine-grained topology and contribution of
regions critical for network organization and stability across
species and evolution could highlight functional patterns that
are especially relevant for network stability. Despite the lack of
consensus concerning a standardized methodology in mammals
fMRI, cross-species studies could provide essential clues toward a
better understanding of brain physiology and evolution.

Animal Preparation and Anesthesia
Animal Preparation Impact on Motion and Stress
Functional MRI traditionally relies on temporal changes
in hemodynamic parameters, e.g., blood oxygenation level-
dependent contrast (BOLD), cerebral blood volume (CBV),
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or cerebral blood flow (CBF). Functional MRI signals inform
on neuronal activity through the evaluation of hemodynamic
response i.e., the adaptability of local capillaries to deliver oxygen
to active neurons at a greater rate than to inactive neurons. BOLD
signal, the most commonly used fMRI parameter, is dependent
on the relative levels of oxyhemoglobin and deoxyhemoglobin
(oxygenated or deoxygenated blood), which is modulated by
local blood volumes and flow. In addition, fMRI acquisitions
are highly sensitive to subject movement, specifically at tissue
boundaries. In humans, several studies showed that small head
motions can produce spurious but spatially structured patterns
which drastically impacts RS-FC (Power et al., 2014).

In animals, as well, it is critical to control for head motion.
As animals are non-compliant species, the most widely used
method to control for head stability is to anesthetize the animals
and to stabilize the head with bite bar and ear bars (78%,
Figure 4A). However, training for awake restraint techniques has
been developed in rodents and primates (22%, Figure 4A). These
procedures may include acclimation in a scanner environment
with an increase of the exposure periods of time. Atraumatic
devices such as cylindrical head-holder or flat ear bars can be
used to fix the head (Liang et al., 2011). Moreover, head fixes
attached to the skull with dental cement provide alternatives that
do not require lengthy animal training (Yoshida et al., 2016). In
primates, individualized plastic helmets have been constructed
based on 3D anatomical images for better stabilization of the head
(Belcher et al., 2013). The quality of the mechanical set-up to
fix the head is critical: according to Kalthoff et al. (2011), even
with carefully fixed heads, motion remains the main source of
noise in rat fMRI at 11.75T and it contributes to 30% of the non-
neuronal signal variance (60% being attributed to residual noise).
This residual motion is related to respiration that represents 5%
of the total variance of RS-FC signal (Kalthoff et al., 2011). It
can be minimized by artificially ventilating and paralyzing the
animal, a process that results in excellent control of the motion
artifacts (Ferrari et al., 2012). Beyond motion, either spontaneous
or related to ventilation, cardiac motion induces low-frequency
BOLD fluctuations and is another source of noise for fMRI
signal interpretation (Murphy et al., 2013). In some instances,
cardiac responses can eclipse the neuronal response, especially
in response to potentially stressful stimuli (Schroeter et al.,
2014). Hence decisions to mitigate these strong confounding
sources and variations between laboratories remain a major
obstacle toward the standardization in animal imaging protocols,
decisively more so than in human corresponding experiments.

Impact of Anesthesia on Animal Physiology
The global BOLD signal is modulated by heart rate, arterial CO2
concentration, and temperature. Different anesthetics modulate
various targets in the brain and have different impact on
peripheral receptors acting on respiratory or cardiac regulation.
Thus, they have different impact on BOLD signal and other
hemodynamic readouts. For example, mechanically ventilated
rats, for which arterial blood gases (PaCO2, PaO2) and pH were
maintained constant, showed decreased T2∗ contrast between
veins and parenchyma when anesthetized with isoflurane 2%
as compared to medetomidine or ketamine/xylazine. This was

FIGURE 4 | Animal preparation and anesthesia trends. (A) Animal fMRI relies
mainly on anesthesia to help restrain animals. NHP remain the major species
acclimated to awake fMRI. (B) Isoflurane is the principal anesthetic used for
maintenance during fMRI recordings. However, the distribution of other agents
change with species. (C) Medetomidine is growing to become the second
most used agent behind isoflurane.

explained by increased CBF and vasodilatation in animals
under isoflurane (Ciobanu et al., 2012). The use of mechanical
ventilation has the advantage of avoiding hypercapnia (increased
paCO2) which has an impact on fMRI reproducibility (Biswal
et al., 1997; Ramos-Cabrer et al., 2005). Hypercapnia also leads to
vasodilation and increased CBF (Xu et al., 2011). The modulation
of CBF could explain the decrease of the BOLD response
specificity to neuronal activity induced by stimuli (Uhrig et al.,
2018). Interestingly, Uhrig et al. showed different impacts of
various anesthetics on blood oxygenation in different brain
regions. For example, ketamine leads to higher oxygenation in
the cortex as compared to the thalamus while the opposite
occurs for propofol (Uhrig et al., 2014). This variability may
affect the ability to detect networks connecting these regions.
The impact of anesthesia on other physiological parameters, such
as body temperature and peripheral cardiovascular activity can
modulate the quality of the measured functional connectivity.
Both these parameters represent strong benefits to be registered
and kept stable to assure normal physiological conditions during
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the acquisition. The body temperature is usually controlled
with a heating cradle, pad or any additional heating system,
leading to stable reported temperatures. In light of the above,
controlling for the temperature, the paCO2 and the movement
parameters remains essential in assuring the animal stability
and the quality of the data. Finally, anesthesia can tightly
impact CBF autoregulation in response to peripheral blood
pressure changes (Gozzi et al., 2007). Peripheral blood pressure
recordings, and the presence of autoregulation, are parameters
of critical importance for studies of neuromodulation using
drugs, optogenetics and/or chemogenetics-fMRI (e.g., Giorgi
et al., 2017), as well as in the case of somatosensory stimulation
(Schroeter et al., 2014). This is because transmitter-induced
peripherally evoked blood pressure changes, in the absence of
physiological CBF autoregulation, can give rise to seemingly
regionalized fMRI responses (Gozzi et al., 2007; Reimann H.
M. et al., 2018). Future research is required to understand to
which extent commonly used anesthetic regimens in rodents do
preserve CBF autoregulation. While technically challenging, and
invasive, blood pressure recordings can be carried out via femoral
arterial cannulation (Ferrari et al., 2015), hence making it possible
to understand whether peripheral cardiovascular response and
central fMRI activity are temporally correlated.

Several anesthetics are used for animal studies (Figure 4B).
They have been classified into several classes according to their
targets: GABAA receptors, NMDA receptors, two-pore-domain
K+ channels, and other modes of actions. GABAA receptors
are the most widely used targets for anesthetics. They are
chloride channels that hyperpolarize neurons, making them less
excitable and thus inhibiting the possibility of an action potential.
Widely used anesthetics as isoflurane, propofol and barbiturates
are GABAA receptors agonists (Franks, 2008; Garcia et al.,
2010). Each drug within this category displays a subtly unique
pharmacological characteristic. For example, isoflurane and
sevoflurane have opposite metabolic activities on cerebral blood
flow and glucose consumption in various brain regions (Lenz
et al., 1998). α-chloralose is widely used in the context of BOLD
fMRI because it provides robust metabolic and hemodynamic
responses to functional stimulation and is also expected to act
on GABAA receptors (Garrett and Gan, 1998). NMDA receptors
are other widely used targets. The use of antagonists for these
receptors, such as ketamine, is supposed to block excitatory
synaptic activity probably leading to anesthesia. This latter may
be related to the fact that ketamine binds preferentially to
the NMDA receptors on GABAergic interneurons. Ketamine,
however, leads to a “dissociative anesthesia” during which
the perception of pain is dissociated from the perception of
noxious stimuli. Besides, it has psychotomimetic effects at low
concentrations, leading to auditory and visual hallucinations
(Franks, 2008). Ketamine and other NMDAr antagonists increase
regional brain activity and cerebral blood volume, mainly
in the anterior cingulate, the thalamus, the putamen, and
the frontal cortex (Långsjö et al., 2003; Gozzi et al., 2008;
Bonhomme et al., 2012). Two-pore-domain K+ channels are
targeted by volatile anesthetics (isoflurane, halothane, nitrous
oxide) which have different affinities for subfamilies (TREK-1
or TASK) of these receptors (Patel et al., 1999). These channels

modulate the potassium conductance that contributes to the
resting membrane potential in neurons. Their opening, therefore,
facilitates a hyperpolarizing current, which reduces neuronal
excitability and anesthetizes. Among other targets, α2-adrenergic
receptor agonists are targeted by xylazine, medetomidine,
dexmedetomidine (Sinclair, 2003). The activity of these drugs is
related to their action on receptors located in the locus coeruleus
and its projections. At this level, they reduce the release of
norepinephrine, a neurotransmitter that is necessary for arousal.
The anesthesia induced by these compounds resembles the state
of non-REM sleep, i.e., the first four of the five stages of the sleep
cycle (Franks, 2008).

Impact of Anesthetics on Neuronal Network
Organization in Rodents
In rodents, isoflurane and medetomidine are currently the
most commonly used anesthetics (Figures 4B,C). Importantly,
isoflurane is almost systematically used for anesthesia induction,
specifically in rodents. Variations in the induction time may
lead to a lasting effect on brain function, even though
anesthesia is switched to another agent (Magnuson et al.,
2014). In addition to their different mechanisms of action
(GABAA receptors agonist for isoflurane and α2 adrenergic
receptor agonists for medetomidine), they have opposite vaso-
properties (vasodilatation for isoflurane and vasoconstriction
for medetomidine) which could impact neurovascular coupling
differently. In rodents, isoflurane seems to preserve the
interhemispheric and cortico-cortical FC but only at low doses
(∼1%) (Wang et al., 2011; Grandjean et al., 2014; Uhrig et al.,
2014; Bukhari et al., 2017). Medium to high doses induce burst-
suppression effects which are reflected in an increase in the
global signal (Liu et al., 2011, 2013; Grandjean et al., 2014).
Medetomidine seems to present opposite effects such as a cortico-
cortical disruption and a pronounced striatal FC (Grandjean
et al., 2014; Bukhari et al., 2017; Paasonen et al., 2018). The
effect of isoflurane and medetomidine and other anesthetics on
the thalamo-cortical FC is still debated. Several studies suggested
that a combination of isoflurane and medetomidine (med/iso) at
low doses is the best compromise (Table 1, med/iso) to preserve
FC and to recapitulate network properties of the awake state
(Grandjean et al., 2014). However, this combination appears to
inhibit thalamo-frontal cortical connectivity, when compared to
connectomic estimates of the mouse connectome (Grandjean
et al., 2017b). A number of studies in control and transgenic
mouse models have been carried out with low doses of halothane
(Sforazzini et al., 2014; Liska et al., 2015, 2018; Bertero et al.,
2018; Gutierrez-Barragan et al., 2018; Pagani et al., 2019). This
inhalational anesthetic produces stable and long-lasting RS-
FC correlation recapitulating patterns of connectivity observed
with med/iso combination (Grandjean et al., 2017b), with the
advantage of robustly preserving thalamo-frontal connectivity,
an effect that makes it especially apt for the investigation
of prefrontal circuitry and the rodent default mode network
(Bertero et al., 2018). However, the hepatotoxic properties of this
compound have led its banning in most countries, preventing
widespread use of this anesthetic regimen. Other anesthetics used
in rodents (propofol, urethane, α-chloralose) are presented in
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TABLE 1 | Anesthetics effects on the functional connectivity in rodents.

Anesthetics Doses Comparison Effects Studies Species

Isoflurane 1% vs. the awake state Preserve interhemispheric FC Jonckers et al. (2014) Mice

vs. anesthetics Cortical and thalamo-cortical FC preserved but disruption of striatal FC Grandjean et al. (2014)

Cortico-cortical FC preserved but disruption of thalamo-cortical FC Bukhari et al. (2017)

1–2% Increasing doses Disruption of interhemispheric FC with increasing doses Bukhari et al. (2018)

1.3% vs. the awake state Cortico-cortical and striatal FC increase Paasonen et al. (2018) Rats

Medetomidine 0.1 mg/kg vs. anesthetics Disruption of thalamo-cortical FC but pronounced striatal FC Grandjean et al. (2014) Mice

Thalamo-cortical FC preserved but disruption cortico-cortical FC Bukhari et al. (2017) Mice

vs. the awake state Cortico-cortical FC decreased Paasonen et al. (2018) Rats

Med/iso 0.05 mg/kg;
0.5%

vs. anesthetics Preserved FC Grandjean et al. (2014) Mice

Bukhari et al. (2017)

0.06 mg/kg;
0.5%

vs. the awake state Thalamo-cortical and intra-subcortical FC decrease Paasonen et al. (2018) Rats

Urethane 2.5 g/kg vs. the awake state Disruption of interhemispheric FC Jonckers et al. (2014) Mice

1.5 g/kg vs. anesthetics Cortical and thalamo-cortical FC preserved but disruption of striatal FC Grandjean et al. (2014)

1.25 g/kg vs. the awake state Replication of the awake state Paasonen et al. (2018) Rats

α-chloralose 120 mg/kg vs. the awake state Disruption of interhemispheric FC Jonckers et al. (2014) Mice

60 mg/kg vs. the awake state Cortico-cortical FC suppression Paasonen et al. (2018) Rats

Review of five studies between 2014 and 2018.

Table 1. They are not further discussed here as they showed
ambiguous effects on RS-FC and are no longer recommended.
Notably, RSNs in mice were shown to converge in a multi-center
comparison (Figure 1; Grandjean et al., 2019a), irrespective
of anesthesia regimen, indicating to some extent that network
properties are retained between different conditions.

Impact of Anesthetics on Neuronal Network
Organization in Primates
In primates, isoflurane is the most used anesthetic (Vincent
et al., 2007; Hutchison et al., 2013b; Miranda-Dominguez et al.,
2014; Grayson et al., 2016). As in rodents, lower dose and
shorter anesthesia duration are associated with an increased
ability to detect RS-FC (Table 2; Barttfeld et al., 2015; Uhrig et al.,
2018). Also, one should keep in mind that a direct comparison
of the impact of anesthetics on cerebral networks is difficult
because anesthesia depth also modulates networks and can lead
to misinterpretation of the results.

Data Acquisition
Contrary to human fMRI, which is carried mostly at 1.5T,
3T, and in rarer cases at 7T, animal fMRI is carried at a
variety of field strengths, with 7T and 9.4T being the most
frequently encountered field strength (26 and 25% respectively,
Figure 5A). The availability of ultra-high field strength small-
bore systems in rodents further increase this range, with
fMRI being recorded as high as 15.2T (Jung et al., 2019).
While fewer animal MRI system vendors exist compared to
human systems, this apparent similarity is compounded with
a greater range of coil designs, including home-made coils or
cryogenic coils (Baltes et al., 2011), which provide an additional
source of variation among the animal studies. Whilst these
factors are determined by the center where the acquisitions
are performed, even greater variability comes in in the form

of sequence parameters and the resulting contrasts across the
different studies. This is exemplified in a report by Grandjean
et al. which indicated cortical signal-to-noise ratios ranging
from 20 to 400 in mice fMRI acquired at different centers
(Grandjean et al., 2019a).

Neuronal activity induces vasodilation in surrounding
capillaries and arterioles, which may propagate further up- and
downstream toward arteries and draining veins. The resulting
increase in CBF and CBV and blood oxygenation forms the basis
of imaging strategies for fMRI. The most commonly used fMRI
method is based on the BOLD contrast (Ogawa et al., 1990).
BOLD contrast results from the paramagnetic properties of
deoxyhemoglobin, which causes magnetic susceptibility effects
inside blood vessels as well as in their surrounding tissue that
can be detected with T2- or T2∗-weighted sequences (Norris,
2006; Kim and Ogawa, 2012). Deoxyhemoglobin concentration
increases dramatically from the arterial (<5%) to the venous side
(∼40%) of the vascular tree due to the extraction of oxygen in the
capillaries (Vovenko and Sokolova, 1998), which makes BOLD
imaging particularly sensitive to capillaries, venules and veins.
In healthy brain tissue, the neuronal activity typically induces
an increase in CBF with resultant increased oxygen delivery
that exceeds the decrease in oxygen due to capillary oxygen
extraction. As a result, deoxyhemoglobin concentration in the
capillaries and veins decreases, giving rise to a positive BOLD
response in T2- or T2∗-weighted images.

The most frequently used BOLD-weighted fMRI sequence in
rodents is T2∗-weighted gradient echo (GE) echo planar imaging
(EPI) (Figure 5B). GE-EPI provides a relatively high contrast-
to-noise ratio (CNR), which increases with field strength. At
field strengths ≥ 7T, the intravascular contribution to the GE
BOLD signal is negligible and signal changes scale almost linearly
with echo time (TE) (Yacoub et al., 2003; Han et al., 2019). For
optimal BOLD CNR, TE is typically set equal to the average
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TABLE 2 | Anesthetics effects on the functional connectivity in primates.

Anesthetics Doses Comparison Effects Studies Species

Isoflurane 1–2.75% Increasing doses Disruption of interhemispheric FC after 1.5% Hutchison et al. (2014) Macaca fascicularis

0.89–1.19% Duration effect Reduction of the DMN FC with a prolonged administration Li and Zhang (2018) Macaca mulatta

Ketamine 20 mg/kg vs. the awake state Preservation of positive FC but average positive FC reduced Uhrig et al. (2018) Macaca mulatta

Sevoflurane 2.2–4.4 vol% vs. the awake state Average positive FC reduced Uhrig et al. (2018) Macaca mulatta

Review of five studies between 2014 and 2018.

gray matter tissue T2∗ value (for an overview of brain tissue
T2 and T2∗ values we refer to Uludağ et al. (2009) and Han
et al. (2019). The disadvantage of using GE-EPI for rodent fMRI,
however, is its sensitivity to susceptibility artifacts, which are
most prominent near air cavities such as the ear canals and
around the olfactory bulb, particularly at long TE and high field
strength. Furthermore, GE-EPI is highly sensitive to large veins
(Uludağ et al., 2009), which makes this sequence spatially non-
specific as neurovascular coupling occurs at the level of the
capillaries. This has been clearly demonstrated by fMRI studies
in rats subjected to electrical stimulation of the forepaws, where
the highest GE-EPI BOLD response is observed in the outer
layer of the somatosensory cortex where pial vessels are located
(Mandeville and Marota, 1999; Han et al., 2019), while neuronal
activation mostly occurs in deeper cortical layers. The relative
contribution of capillaries to the BOLD signal increases with field

FIGURE 5 | Data acquisition. (A) There is a general trend toward higher
strength of the main magnetic field in animal fMRI over time. In the past
decade, the majority of studies were performed on 7T and 9.4T systems.
(B) The acquisitions relied mainly on gradient echo EPI for the acquisition,
while older studies either used FLASH or RARE sequences. (C) BOLD is the
most commonly used contrast in animal studies. The availability of iron
nanoparticles in animal studies explains the relative high incidence of CBV
contrasts.

strength but remains dominated by the macrovasculature even at
15.2T (Han et al., 2019).

Spatial specificity for neuronal activity can be increased by
using spin-echo (SE) EPI for BOLD fMRI (Norris, 2012; Han
et al., 2019). SE BOLD is particularly sensitive to small vessels,
as signal around large vessels is largely refocused by the 180◦
pulse. The relative contribution of the microvasculature increases
with field strength and TE, and may be further increased
by introducing diffusion gradients that reduce the remaining
intravascular contribution from large vessels (Kim and Ogawa,
2012). To maintain spatial specificity, EPI train length should
be reduced to a minimum to avoid introducing T2∗ effects
(Goense and Logothetis, 2006). In the absence of intravascular
contributions to the SE BOLD signal, CNR increases almost
linearly with TE, achieving the best contrast when TE equals
gray matter tissue T2. SE-EPI images show reduced sensitivity
to susceptibility artifacts compared to GE-EPI. However, SE-EPI
also comes with lower BOLD CNR, and longer acquisition times.

Since BOLD contrast depends on the TE of the sequence,
multi-echo GE sequences have been proposed for BOLD fMRI
data acquisition. In multi-echo EPI (ME-EPI), one excitation
pulse is followed by acquisition at multiple TEs (Speck and
Hennig, 1998). Short TE results in high signal intensity, minimal
signal dropout but low CNR, whereas longer TE results in lower
signal intensities, more signal dropout but higher CNR. The
multi-echo approach has two main applications. First, images
acquired at different TE can be combined to optimize the BOLD
contrast per region (Posse et al., 1999; Poser et al., 2006), since
T2∗ varies across the brain (Hagberg et al., 2002; Peters et al.,
2007). Second, identifying TE-dependent and TE-independent
signals can help to separate BOLD T2∗ signal fluctuations and
noise (Kundu et al., 2012). The shortened T2∗ at high field
strength, often used for preclinical imaging, provides less time
for image acquisition at additional TEs and limits the time
between adjacent TEs. Still, ME-EPI at three different TEs
without acceleration is feasible for fMRI in rodents at 9.4T and
11.7T, with a TR of 1.5–3 s and acceptable spatial resolution
(Kundu et al., 2014; Grandjean et al., 2017a,b).

Beside EPI, the balanced steady-state free precession (bSSFP)
sequence enables acquiring BOLD-like contrast images at short
TE (=TR/2), making these images relatively insensitive to signal
dropouts and artifacts often seen in GE-EPI. The origin of the
bSSFP contrast is, however, complex since it does not only
depend on T1 and T2 but also on the flip angle, repetition time
and off-resonance values (Miller, 2012). Functional MRI using
bSSFP sequences can be performed in the so-called transition-
band or the pass-band (Miller, 2012). Functional transition-band
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bSSFP is sensitive to alterations in voxel off-resonances induced
by changes in deoxyhemoglobin concentration. At short TE it
provides T2-weighted contrast (Scheffler et al., 2001), whereas
at long TE the image contrast is mainly T2∗-weighted (Miller
et al., 2007). Larger signal increases in response to neuronal
activation have been measured compared to GE-EPI (Scheffler
et al., 2001; Miller et al., 2006). However, transition-band SSFP
is also sensitive to field inhomogeneities due to its sensitivity to
off-resonances, making whole-brain coverage from anterior to
posterior difficult to achieve (Miller, 2012). Furthermore, it is
sensitive to physiological and time-varying noise (Miller, 2012).
Pass-band bSSFP has been more widely used for fMRI (Miller and
Jezzard, 2008; Scheffler and Ehses, 2016). Similar to transition-
band bSSFP, its contrast origin shifts from BOLD T2 effects at
short TE to BOLD T2∗ effects at long TE. However, the pass-
band SSFP sequence is less sensitive to field inhomogeneities, and
sensitivity to physiological noise can be lower than with GE-EPI
(Miller et al., 2007). At short TE, an additional advantage is the
suppression of BOLD sensitivity in large draining veins, making
the sequence more selective to microvasculature contribution
compared to GE-EPI (Báez-Yánez et al., 2017). However, bSSFP
sequences have lower BOLD CNR than conventional GE-EPI at
short TE (Miller et al., 2007; Zhong et al., 2007), and at long
TE, banding-artifacts appear due to field inhomogeneities and
macrovascular contributions increase. Consequently, the use of
this sequence has so far remained marginal (Figure 5B).

Although BOLD contrast is mostly used for fMRI, alternative
methods that directly measure CBV or CBF, are available
(Figure 5C). CBV can be measured with the use of exogenous
iron oxide-based contrast agents (Mandeville et al., 1998; Chen
et al., 2001). Iron oxide nanoparticles used for CBV contrast
exhibit strong r2 and r2∗ relaxivity, do not cross the intact blood-
brain barrier, and have a long blood circulation half-life in the
order of hours (Chen et al., 2001). Intravenous administration
of nanoparticulate iron oxide introduces magnetic susceptibility
effects within the vasculature and its surrounding tissue, which,
at sufficiently high dose, are much larger than the effects of
deoxyhemoglobin. As a result, intravascular T2∗-weighted signal
becomes negligible, while the extravascular T2∗-weighted signal
becomes highly sensitive to changes in CBV (Mandeville, 2012).
An increase in CBV, as induced by neuronal activation, increases
magnetic susceptibility within the imaging voxel, giving rise to
negative CBV-dependent contrast in T2∗-weighted images. CBV-
dependent contrast is independent of field strength and most
optimal when iron oxide injection causes a drop of 40–60% in
signal intensity with respect to baseline (Mandeville, 2012). Since
baseline signal intensity is strongly dependent on TE, contrast
dose should be adjusted to the TE as well. A relatively high dose of
contrast agent allows the use of short TE with the advantage of a
reduction in susceptibility artifacts (Mandeville et al., 2004). The
most commonly used imaging sequence for CBV contrast is GE-
EPI, which, in contrast to BOLD GE-EPI, is particularly sensitive
to changes in small vessels (arterioles, capillaries and venules).
This, which is due to the strong magnetic susceptibility effects
of the iron oxide, causes the extravascular signal from tissue
surrounding large vessels to be largely eliminated. CBV-weighted
fMRI is therefore considered more spatially specific to neuronal

activity than GE BOLD fMRI. This has been clearly demonstrated
in rats subjected to electrical forepaw, in which a spatial shift
in the maximum contrast-to-noise ratio was observed from the
cortical surface with GE BOLD fMRI to deeper layers of the
somatosensory cortex with GE CBV-weighted fMRI (Mandeville
and Marota, 1999; Keilholz et al., 2006). SE-EPI is typically
not used for CBV-weighted fMRI as CNR is lower than with
GE-EPI, and CBV changes in small vessels are underestimated
(Mandeville et al., 2007).

Cerebral blood flow can be measured non-invasively with
Arterial Spin Labelling (ASL), which uses radiofrequency pulse(s)
to magnetically label the blood water in major arteries by
inverting the longitudinal magnetization (Williams et al., 1992).
After a waiting period, the labeled blood water exchanges with
brain tissue water, leading to T1 shortening in the imaging plane.
Subtracting a second scan without labeling results in an image
with only the signal from the labeled inflowing spins. There are
two main types of ASL: continuous ASL (cASL) and pulsed ASL
(pASL) (Borogovac and Asllani, 2012). cASL sequences include a
long labeling pulse and provide high signal-to-noise ratio but low
labeling efficiency. In comparison, pASL involves short inversion
pulses with high labeling efficiency but low signal-to-noise ratio.
A practical advantage of pASL is that short inversion pulses
are more easily implemented in ASL protocols. To combine the
higher labeling efficiency of pASL and higher sensitivity of cASL,
pseudo-continuous ASL (pCASL) was developed (Silva and Kim,
1999; Wu et al., 2007; Dai et al., 2008; Borogovac and Asllani,
2012), and further optimized with multi-phase image acquisitions
to tackle rodent-related difficulties with variations in labeling
efficiency across different vessels to prevent erroneous calculation
of CBF (Larkin et al., 2018). Since EPI is the main read-out for
ASL, the presence of a BOLD effect should be taken into account
in ASL-based fMRI studies (Lu et al., 2006). Compared to BOLD
fMRI, ASL-based fMRI provides about one-third of the contrast-
to-noise ratio (Lu et al., 2003), has low temporal resolution
and is more challenging to implement (Detre and Wang, 2002).
On the other hand, ASL provides stable noise levels – enabling
measurement of slow variations in brain function (Aguirre et al.,
2002; Wang et al., 2003) – shows less intersubject variability
(Tjandra et al., 2005), and is more sensitive to arterioles and
microvasculature than to large draining veins (Silva et al., 1999;
Tjandra et al., 2005).

By far the majority of rodent fMRI studies are executed
with one of the abovementioned fMRI approaches that
are based on the hemodynamic response to neuronal
activation. Alternative fMRI methods aimed at more specific
detection of neuronal responses have been developed, such
as manganese-enhanced fMRI (Lin and Koretsky, 1997) and
diffusion-weighted fMRI (Tsurugizawa et al., 2013) but these
approaches have been hampered by non-uniform or limited
sensitivity, low temporal resolution and uncertainties about
the underlying mechanisms (Rudrapatna et al., 2012; Silva,
2012). Correspondingly, the application of these methods has
so far remained marginal (Figure 5C). Recent developments
in diffusion-weighted fMRI in rodents are likely to give
rise to a renewed interest in the method (Abe et al., 2017;
Nunes et al., 2019).
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Data Analysis
Pre-processing
Image pre- and post-processing are an integral part of every fMRI
study. Pre-processing refers to a number of steps to correct for
artifacts and normalize data, e.g., motion correction, temporal
filtering and co-registration to a reference template. A number
of dedicated software packages are designed, usually for human
studies, to carry out these functions. With differences in the
precision and performance of the various tools available, e.g.,
motion correction (Morgan et al., 2007) or registration (Klein
et al., 2009), the user selection of tools within data analysis is
a non-negligible source of bias and variability between studies.
Interestingly, an analysis in human fMRI revealed that 223
unique analysis pipelines were used to process data in 241
studies, implying that nearly every study is carried out with an
individualized pipeline (Carp, 2012). Efforts to develop unified
open-source pre-processing pipelines for human fMRI, e.g.,
fMRIPrep (Esteban et al., 2019), have yet to reach widespread
adoption. In animals, we observed that a large number of
studies relied on custom made pre-processing functions (26%,
Figure 6A). SPM was the most common software package used
for the analysis (27%). The preponderance of custom made
software, as well as the combination of functions from several
software suits in animal fMRI research, may be explained by
the fact that specific functions were designed for the human
brain. The pervasive use of ad hoc pipelines, encouraged by the
lack of dedicated animal pipelines, is a major obstacle to results
comparisons between centers.

Templates and Atlas Selection
Registration of fMRI results to a common reference space is
an integral part of the pre-processing and enables unbiased
group-level statistical analysis at a voxel-wise level. In human
neuroimaging, standard space and coordinate systems are
routinely used to report results in both figures and tables. In
animals, we found that the vast majority of the studies did not
register fMRI data to standard space (64%) while 24% relied on

FIGURE 6 | Software used for data analysis of animal fMRI and functional
connectivity analysis. (A) Custom made software or combination of existing
software pipelines remained the most common approach to animal fMRI data
processing, while SPM was the most used software package used.
(B) Resting-state fMRI in animals is mainly analyzed with seed-based analysis.

ad hoc templates. While this step ensures optimal registration
due to similar image contrast, resolution, and orientation, this
adds extra challenges in comparing across studies. Contrary to
the ubiquitous Montreal Neurological Institute reference space
in human (Mazziotta et al., 2001), animal templates have failed
to reach a consensus yet, despite efforts to implement standards
such as the Waxholm space (Johnson et al., 2010). This is
exemplified by the various templates used in animal studies.
In rats, five studies relied on (Schweinhardt et al., 2003), nine
used (Schwarz et al., 2006), five used (Valdés-Hernández et al.,
2011), and two used (Nie et al., 2013). In NHP, ten studies
were normalized to Van Essen et al. (2012), ten used (Saleem
and Logothetis, 2012), six used (McLaren et al., 2009), and six
normalized to Rohlfing et al. (2012). In mice, seven studies
were normalized to Janke and Ullmann (2015), four studies
used (Lein et al., 2007), and two used (Dorr et al., 2008). More
importantly, none of the studies reported three-dimensional
coordinates for clusters or slice positions, rendering the precise
comparison between studies impractical. Registration between
rodent or NHP brains is, however, a computationally much easier
challenge than between human brains due to the simpler and
less idiosyncratic cortical folding (NHP) or lissencephalic cortex
(rodents). The choice of atlases and the level of parcellations also
have large implications for network analysis and graph theory
metrics (see below).

Regional and Network Level Analysis of
Resting-State fMRI
Stimulus-evoked, pharmacological, DBS, and opto-
/chemogenetics fMRI studies are almost systematically analyzed
with voxel-wise statistics where the time series at every voxel
is assessed with an independent model, usually a model of the
hemodynamic response to the stimulus/injection paradigms.
This is often complemented with ROI analysis of the evoked
response. In comparison, RS-FC is paradigm free, hence often
relies on intrinsic models to infer connectivity or associated
metrics. Consequently, there are several analysis methods that
have been developed primarily in the human literature but which
can easily be applied to animals as well (Figure 6B). Approaches
range from hypothesis-driven (e.g., seed-based analysis) to
data-driven (e.g., Independent Component Analysis, ICA) and
can be applied at the level of networks or of particular ROI.
Some metrics describe the relationship between areas; others
are based on features of the low-frequency BOLD fluctuations
from a single region. Here we provide a brief overview of some
prominent methods and reflect on their interpretations.

Seed-Based Correlation
Seed-based correlation is the most intuitive of the analytical
methods and the most commonly used in animals (Figure 6B).
A seed region can be defined based on function or anatomy
and range in size from a few voxels to a parcel from a brain
atlas. The time courses from each voxel in the seed are averaged
together, and then the correlation is calculated between the
averaged seed time course and the time course from every
other voxel in the brain. The resulting correlation values can be
displayed at the location of each voxel, producing a correlation
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map (Pawela et al., 2008; Williams et al., 2010; Kalthoff et al.,
2011; Liang et al., 2013; Sforazzini et al., 2014; Zerbi et al., 2015;
Paasonen et al., 2018). Average values can then be measured for
ROIs. Alternatively, the signal from the desired target area can
be measured and correlated with the seed time course to directly
examine the connection from a particular pair of areas. Seed-
based correlation is a low-level metric and thus relatively easy
to interpret and to assess for quality. Reference maps for several
seeds in the mouse brain are provided in Grandjean et al. (2019a).
As with any measurement, it can be affected by the relative levels
of signal and noise. While correlation is robust to differences in
amplitude in the two signals, a reduction in BOLD amplitude can
go hand in hand with an increase in non-neural noise, which does
affect correlation values (Keilholz et al., 2016).

Independent Component Analysis
Independent Component Analysis is a data-driven way to
identify networks within the brain. It is widely used in the human
neuroimaging community and does not rely on the definition of
a seed. Instead, it identifies a number of statistically independent
networks that can be mapped spatially to the brain (Hutchison
et al., 2010; Lu et al., 2012; Jonckers et al., 2014; Sforazzini
et al., 2014). One of the challenges of the technique is that it
is not immediately apparent how many components should be
used. As more components are included, the resulting networks
fragment into separate areas, and it may sometimes be necessary
to combine components to recompose the full network structure.
Accordingly, distributed networks of the rodent brain that are
robustly identified using seed-based mapping, such as the DMN
(Sforazzini et al., 2014), are only detectable with low-dimensional
ICA, and are typically segregated into functional sub-portions
when a more canonical number of components is selected. As
such, the choice of component number is one of the sources
of variability across experiments, but it is at least somewhat
mitigated by the observation that the same networks can typically
be detected in most studies, despite the occasional fragmentation.
Other choices that contribute to variability across studies include
whether ICA is performed on the entire group of animals at once,
or on subgroups (e.g., mutant vs. wild type mice). If performed
on the whole group, a single set of components is obtained and
its strength can be examined in each group. One risk of this
approach is that the component structure might be driven by one
of the subgroups. If ICA is performed on subgroups, multiple
sets of components are obtained with different spatial extents
and strengths, making comparisons more difficult. ICA provides
spatial maps of components and can be considered a mid-level
parameter. Additional analysis is needed to examine the strength
of the connectivity within or between networks obtained from
ICA and is often calculated using correlation. Strict criterion for
the identification should be encouraged, such as those proposed
in Zerbi et al. (2015), to promote comparable classifications
between studies.

Amplitude of Low Frequency Fluctuations
The amplitude of low-frequency fluctuations (ALFF; Zang et al.,
2007) and fractional ALFF (Zou et al., 2008) represent the
amplitude of the BOLD fluctuations within specific frequency

bands, e.g., the 0.01–0.08 Hz range. For fALFF, the amplitude
of the fluctuations in the range of interest is normalized by the
amplitude of the full frequency range. Both of these measures
give an estimate of the strength of the BOLD fluctuations used
to map RS-FC, and may include both neural contributions and
vascular effects like cerebrovascular reactivity (Golestani et al.,
2016). ALFF and fALFF are low-level parameters. In rodents, they
are most commonly used to compare across experimental groups
(Yao et al., 2012; Chang et al., 2018; Wen et al., 2018).

Regional Homogeneity
Regional Homogeneity (ReHo) is a measure of the local
correlation between adjacent voxels (Zang et al., 2004). Similarly
to ALFF, and contrary to the majority of the other methods
described here, ReHo is a measure that informs on the local signal
coherence strength, but not of distal connectivity. The method
has been effectively applied in rodents (Wu et al., 2017; Li et al.,
2018) and NHP (Rao et al., 2017), such as to describe anesthesia
effects on the mouse brain (Wu et al., 2017). ReHo is also a
low-level parameter and is relatively simple to interpret.

Whole Brain Analysis
When pursuing a whole brain analysis of RS-FC data, the
first question to be answered is that of parcelation. In theory,
an analysis could also be performed using each voxel as
an independent region, but the signal is noisy and spatially
redundant. It is generally agreed upon to group voxels in some
way to reduce the dimensionality of the ensuing analysis. The
choice of the atlas is often dictated by the level of detail achieved.
Parcelation by atlas is an anatomical approach, even though
the atlas may be derived from functional information. Another
possibility is to perform a functional parcelation, either by
clustering or by using a dimensionality reduction algorithm like
ICA (Jonckers et al., 2014; Medda et al., 2016). These approaches
incorporate information carried by the resting BOLD signal
instead of relying on spatial alignment. Following parcelation,
other analysis methods are typically applied. One common
approach is to calculate the correlation between the average time
courses of every possible pairs of ROI. This is similar to seed-
based correlation except that the regions of the atlas are used as
seeds and targets. Partial volume effects can, therefore, distort
the results. The correlation values for the whole brain are often
displayed as matrices, where each line shows the correlation for
a given ROI with all other possible ROIs. It is then possible to
test correlation matrices for differences across groups (although
correction for multiple comparisons is essential) or to calculate
additional summary metrics using graph theory approaches,
described in the next section.

Graph Theory
The brain can be viewed as a network, with ROI serving as nodes
that are connected by edges whose weight is determined by a
measure of RS-FC, usually correlation. From this perspective,
an entire arsenal of graph-theoretical metrics can be used to
describe the network of the brain. These range from mid-level
metrics such as degree (the number of edges that connect to a
node) to high-level metrics such as modularity that describe the
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community structure of the brain. For an overview, see Bullmore
and Sporns (2009). High-level metrics provide a convenient
summary of the large-scale functional architecture of the rodent
functional connectome, amenable to cross-species translation
(Stafford et al., 2014; Liska et al., 2015; Bertero et al., 2018).
They, however, can be influenced by low-level parameters,
such as global correlations, and arbitrary parameters such as
matrix sparsity whose effects cascade through the analysis and
complicate interpretation.

Non-stationary Analysis
In recent years, interest has grown in examining fMRI data
beyond the stationary assumptions made by several of the
methods described above, also referred to as dynamic functional
connectivity. The simplest approach is to use a windowed version
of the image time series to calculate the metrics described above
(e.g., correlation) (Keilholz et al., 2013). The window is moved
along the time series and the calculation is repeated at different
time points. A number of studies have examined the effects
of window size, shape, and step size, but the ideal parameters
remain difficult to pin down (Hindriks et al., 2015; Leonardi
and Van De Ville, 2015; Shakil et al., 2016, 2018; Grandjean
et al., 2017a). Windows can be applied to the time courses
from a particular ROI or from the whole brain, where they are
often summarized as a series of matrices (Allen et al., 2014).
Other methods can be used to look at the co-occurrence of the
individual events that drive RS-FC (Petridou et al., 2013; Liu et al.,
2018) or at large-scale repeated patterns of activity (Majeed et al.,
2011; Grandjean et al., 2017a; Belloy et al., 2018), offering the
possibility of mapping RS-FC non-correlative terms. There are
major methodological considerations to such analysis (Laumann
et al., 2017; Liégeois et al., 2017). Yet, some of the crucial
confounds, specifically head motion, are less applicable to animal
studies in anesthetized or paralyzed animals. It emerges that non-
stationary patterns are reproducible in both human and rodent
datasets (Abrol et al., 2017; Grandjean et al., 2017a; Gutierrez-
Barragan et al., 2018). These represent promising emerging
methods to investigate the RS-FC signal beyond the stationary
hypothesis which characterizes the methods discussed above.

Functional Connectivity Metrics and Interpretation
Choices of anesthesia and pre-processing pipeline have the
greatest effect on the ability to compare results from different
studies (Pan et al., 2015). However, the wide variety of analysis
methods available also plays a role in our interpretation of
the results. While the choice of analysis is ultimately dictated
by the question of interest, there are steps that can be
taken to promote standardization across studies. For example,
reporting baseline metrics like correlation along with higher-
level metrics like modularity would assist with interpretation and
comparison to other studies. In human neuroimaging, a test–
retest examination of varying RS-FC methods has highlighted
reliable methods (Zuo and Xing, 2014), including dual-regression
(Filippini et al., 2009). There are a few explicit examinations
of test–retest reproducibility in rodents that undergo the same
experimental protocols, providing insight into the level of
reproducibility that might be expected. Zerbi et al. (2015) found

an R2 value of ∼ 0.7 for optimally processed data from mice
under medetomidine/isoflurane combination (Zerbi et al., 2015).
Kalthoff et al. (2013) showed that the spatial localization of
ICA components shares a common core, particularly under
medetomidine sedation. Converging ICA and seed-based maps
derived from multiple-datasets are available in the mouse
as quality assurance references (Grandjean et al., 2019a).
Nevertheless, substantial variability in the correlation coefficients
from different studies is present, depending on pre-processing
steps, ROI definition, and other factors.

Statistics and Resource Sharing
The statistical analysis carried out by the neuroimaging
community has been under increasing scrutiny following reports
of inflated false-positive rates in the parametric statistical
models traditionally used (Eklund et al., 2016). To assess the
emergence of non-parametric voxel-wise statistics, we recorded
the occurrence of non-parametric statistics. We found only
12 mentions of such tests out of 868 studies. This low
incidence is indicative of comparable trends in the corresponding
human neuroimaging field. Differences between studies are
accentuated as voxel-wise statistics in animal studies have been
corrected with varying degrees of stringency, such as correcting
by arbitrary ad hoc cluster size or p-value threshold. These
render the comparison between studies opaque. To overcome
these limitations and to permit meta-analysis, NeuroVault
(Gorgolewski et al., 2015) offers a resource to publish statistical
maps prior to statistical thresholds, leaving the users to explore,
reinterpret, and repurpose these results. Unfortunately, such
resources are not yet available to animal neuroimaging studies.
The advent of RS-FC and network analysis is another source
of dissension in the statistical analysis. With fine-grain ROI
sets, the number of edges increases dramatically, hence the
number of univariate tests and the need to correct for multiple
comparisons. There, no consensus currently exists to effectively
account for multiple comparisons and the heightened level of
false positives ensuing.

The growth of the human neuroimaging community has
been fueled by large datasets made publicly available in online
repositories (Nichols et al., 2017). Making raw data available
is becoming a requirement by the funding bodies, academic
center, and the journals. In spite of these requirements, we
only found 15 mentions of data availability, among 868 studies,
seven of which upon reasonable request to the senior author.
Publication of datasets on established repositories ensures lasting
availability of the dataset and unbiased distribution. Databases
such as XNAT2 (Herrick et al., 2016) and Openneuro3 (Poldrack
et al., 2013) are becoming increasingly user-friendly, including
standardized formats that allow for the easy organization and
retrieval of functional and anatomical data (Gorgolewski et al.,
2016). Importantly, potential reticence in human neuroimaging
to share material to protect subject privacy do not apply in
animal research. Importantly, shared material allows for in-depth
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scrutiny of published results and hence strengthen the trust in the
published results and facilitate meta-analysis.

CONCLUSION AND OUTLOOK

With this study, we describe the general trends in animal
functional neuroimaging and reflect on emerging collective
efforts driving toward larger multi-center studies and a desire for
the adoption of standards and good practices in the field. Several
issues highlighted above are specific to the animal imaging
field, such as those related to opto-/chemo-fMRI study designs,
anesthesia, and data preprocessing. Others are shared with the
human neuroimaging field, including acquisition sequences and
data analysis methods, but still contain specific considerations for
the animal imaging community. A general consensus on several
acquisition procedures within the community is unlikely to be
reached, especially on contentious topics such as anesthesia and
animal preparation. Nonetheless, we report general trends which
indicate some degrees of consensus. For instance, isoflurane
and medetomidine and/or their combination represent an
increasing proportion of the studies performed in anesthetized
rodents, supported with increasing evidence from the literature.
Sequences and contrasts are also reaching consensus, as the
overwhelming majority of the studies were acquired using GE-
EPI and BOLD contrast, predominantly at high fields such as 7T
and 9.4T. Importantly, a number of aspects emerge which are
currently lacking within our community and which could easily
be implemented to greatly ameliorate how results are interpreted.
While modest, these first steps will be necessary for the adoption
of standards, replication studies, and meta-analysis.

Firstly, the systematic sharing of raw datasets upon publication
is the easiest milestone to be achieved within our community. It
is often requested by both funding agencies and publishers alike.
Yet, less than 1% of the studies were published with its raw data.
This represents a severe loss to our community as it prevents
the repurposing of material and the critical re-assessment of past
results. Arguably, a number of debates regarding methodological
aspects of fMRI acquisitions would find a rapid resolution if
the material were accessible by the community for in-depth
scrutiny. Moreover, a number of variations in data processing
highlighted above would be rendered moot as the material could
be re-analyzed with other pipelines to confirm or compare results.

The second aspect within acceptable reach in the animal
neuroimaging community is the adoption of common references
spaces and the reporting of accurate coordinates in both figures
and tables, as is common practice in human studies. Despite
several templates being available for mice, rats, and NHP (Bakker
et al., 2015), no consensus has yet emerged. The reliance on ad hoc
templates further hinders the adoption of standard templates.
While Paxinos and Franklin mice (Paxinos and Franklin, 2012)

and Paxinos and Watson rats atlases (Paxinos and Watson, 1982)
are systematically referred to, activation clusters have not been
reported with respect to their three-dimensional coordinates
reported in these atlases. Hence, the adoption of exact three-
dimensional coordinate systems, together with tools to convert
from one system to another would greatly ameliorate how
results in animal neuroimaging studies are reported, and would
also among other enable meta-analyses. This should also be
accompanied with easily accessible, fully validated open-source
data processing toolboxes tailored for animal fMRI data, similarly
to what is available in human neuroimaging (Esteban et al., 2019).

Finally, contentious areas, specifically anesthesia and
animal preparations, should be approached jointly by multiple
laboratories to ensure that the manipulations lead to reproducible
results between centers, and to generate a nucleus around which
a consensus can emerge. Such efforts will be necessary for the
emergence of animal population imaging studies centered on
brain function. Such efforts, likewise to human neuroimaging
is expected to dramatically accelerate our understanding of
the mammalian brain, its evolution, and the pathological
mechanisms which affects its function.

AUTHOR CONTRIBUTIONS

JG designed the study and collected and processed the data. All
authors contributed to the manuscript preparation.

FUNDING

FM was supported by the University of Manchester and
A∗STAR Research Attachment Programme (ARAP), which was
co-funded through the University of Manchester, Faculty of
Biology, Medicine and Health, Doctoral Academy, and Singapore
Bioimaging Consortium (SBIC), A∗STAR, Singapore. JG wishes
to acknowledge the SBIC core funds. AG was supported
by the European Research Council (ERC, DISCONN, GA
802371), the Simons Foundation (SFARI 400101), the Brain
and Behavior Foundation (NARSAD, Independent Investigator
Grant 25861), and the NIH (1R21MH116473-01A1). MS and RD
were supported by the Netherlands Organization for Scientific
Research (NWO-VICI 016.130.662). GT was supported by the
National Institute of Mental Health of the National Institutes of
Health under award number R01MH111417.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2019.00078/full#supplementary-material

REFERENCES
Abe, Y., Sekino, M., Terazono, Y., Ohsaki, H., Fukazawa, Y., Sakai, S., et al. (2012).

Opto-fMRI analysis for exploring the neuronal connectivity of the hippocampal
formation in rats. Neurosci. Res. 74, 248–255. doi: 10.1016/j.neures.2012.08.007

Abe, Y., Tsurugizawa, T., and Le Bihan, D. (2017). Water diffusion closely
reveals neural activity status in rat brain loci affected by anesthesia. PLoS Biol.
15:e2001494. doi: 10.1371/journal.pbio.2001494

Abrol, A., Damaraju, E., Miller, R. L., Stephen, J. M., Claus, E. D., Mayer, A. R.,
et al. (2017). Replicability of time-varying connectivity patterns in large resting

Frontiers in Neuroinformatics | www.frontiersin.org 15 January 2020 | Volume 13 | Article 7853

https://www.frontiersin.org/articles/10.3389/fninf.2019.00078/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2019.00078/full#supplementary-material
https://doi.org/10.1016/j.neures.2012.08.007
https://doi.org/10.1371/journal.pbio.2001494
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00078 January 14, 2020 Time: 15:32 # 16

Mandino et al. Animal Functional Magnetic Resonance Imaging

state fMRI samples. Neuroimage 163, 160–176. doi: 10.1016/j.neuroimage.2017.
09.020

Acker, L., Pino, E. N., Boyden, E. S., and Desimone, R. (2016). FEF inactivation with
improved optogenetic methods. Proc. Natl. Acad. Sci. U.S.A. 113, E7297–E7306.
doi: 10.1073/pnas.1610784113

Aguirre, G. K., Detre, J. A., Zarahn, E., and Alsop, D. C. (2002). Experimental
design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage
15, 488–500. doi: 10.1006/nimg.2001.0990

Albaugh, D. L., Salzwedel, A., Van Den Berge, N., Gao, W., Stuber, G. D., and
Shih, Y.-Y. I. (2016). Functional magnetic resonance imaging of electrical and
optogenetic deep brain stimulation at the rat nucleus accumbens. Sci. Rep.
6:31613. doi: 10.1038/srep31613

Albers, F., Schmid, F., Wachsmuth, L., and Faber, C. (2018). Line scanning
fMRI reveals earlier onset of optogenetically evoked BOLD response in rat
somatosensory cortex as compared to sensory stimulation. Neuroimage 164,
144–154. doi: 10.1016/j.neuroimage.2016.12.059

Aldrin-Kirk, P., Heuer, A., Rylander Ottosson, D., Davidsson, M., Mattsson, B., and
Björklund, T. (2018). Chemogenetic modulation of cholinergic interneurons
reveals their regulating role on the direct and indirect output pathways from
the striatum. Neurobiol. Dis. 109, 148–162. doi: 10.1016/j.nbd.2017.10.010

Alexander, G. M., Rogan, S. C., Abbas, A. I., Armbruster, B. N., Pei, Y., Allen, J. A.,
et al. (2009). Remote control of neuronal activity in transgenic mice expressing
evolved G protein-coupled receptors. Neuron 63, 27–39. doi: 10.1016/j.neuron.
2009.06.014

Allen, B. D., Singer, A. C., and Boyden, E. S. (2015). Principles of designing
interpretable optogenetic behavior experiments. Learn. Mem. 22, 232–238. doi:
10.1101/lm.038026.114

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun,
V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state.
Cerebral. Cortex 24, 663–676. doi: 10.1093/cercor/bhs352

Amaro, E. Jr., and Barker, G. J. (2006). Study design in fMRI: basic principles. Brain
Cogn. 60, 220–232. doi: 10.1016/j.bandc.2005.11.009

Aravanis, A. M., Wang, L.-P., Zhang, F., Meltzer, L. A., Mogri, M. Z., Schneider,
M. B., et al. (2007). An optical neural interface: in vivo control of rodent motor
cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4,
S143–S156. doi: 10.1088/1741-2560/4/3/S02

Arey, B. J. (2014). “An historical introduction to biased signaling,” in Biased
Signaling in Physiology, Pharmacology and Therapeutics, ed. B. J. Arey,
(Amsterdam: Elsevier), 1–39. doi: 10.1016/b978-0-12-411460-9.00001-x

Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S., and Roth, B. L. (2007).
Evolving the lock to fit the key to create a family of G protein-coupled
receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. U.S.A. 104,
5163–5168. doi: 10.1073/pnas.0700293104

Ashby, C. R. Jr., and Wang, R. Y. (1996). Pharmacological actions of the atypical
antipsychotic drug clozapine: a review. Synapse 24, 349–394. doi: 10.1002/(sici)
1098-2396(199612)24:4<349::aid-syn5>3.0.co;2-d

Atasoy, D., Aponte, Y., Su, H. H., and Sternson, S. M. (2008). A FLEX switch targets
Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit
mapping. J. Neurosci. 28, 7025–7030. doi: 10.1523/JNEUROSCI.1954-08.2008

Báez-Yánez, M. G., Ehses, P., Mirkes, C., Tsai, P. S., Kleinfeld, D., and Scheffler, K.
(2017). The impact of vessel size, orientation and intravascular contribution on
the neurovascular fingerprint of BOLD bSSFP fMRI. Neuroimage 163, 13–23.
doi: 10.1016/j.neuroimage.2017.09.015

Bakker, R., Tiesinga, P., and Kötter, R. (2015). The scalable brain Atlas: instant web-
based access to public brain atlases and related content. Neuroinformatics 13,
353–366. doi: 10.1007/s12021-014-9258-x

Baltes, C., Bosshard, S., Mueggler, T., Ratering, D., and Rudin, M. (2011). Increased
blood oxygen level-dependent (BOLD) sensitivity in the mouse somatosensory
cortex during electrical forepaw stimulation using a cryogenic radiofrequency
probe. NMR Biomed. 24, 439–446. doi: 10.1002/nbm.1613

Barttfeld, P., Uhrig, L., Sitt, J. D., Sigman, M., Jarraya, B., and Dehaene, S. (2015).
Signature of consciousness in the dynamics of resting-state brain activity. Proc.
Natl. Acad. Sci. U.S.A. 112, 887–892. doi: 10.1073/pnas.1418031112

Beery, A. K., and Zucker, I. (2011). Sex bias in neuroscience and biomedical
research. Neurosci. Biobehav. Rev. 35, 565–572. doi: 10.1016/j.neubiorev.2010.
07.002

Belcher, A. M., Yen, C. C., Stepp, H., Gu, H., Lu, H., Yang, Y., et al. (2013). Large-
scale brain networks in the awake, truly resting marmoset monkey. J. Neurosci.
33, 16796–16804. doi: 10.1523/JNEUROSCI.3146-13.2013

Belloy, M. E., Shah, D., Abbas, A., Kashyap, A., Roßner, S., Van der Linden, A.,
et al. (2018). Quasi-periodic patterns of neural activity improve classification of
Alzheimer’s disease in mice. Sci. Rep. 8:10024. doi: 10.1038/s41598-018-28237-9

Berg, K. A., and Clarke, W. P. (2018). Making sense of pharmacology: inverse
agonism and functional selectivity. Int. J. Neuropsychopharmacol. 21, 962–977.
doi: 10.1093/ijnp/pyy071

Berndt, A., Lee, S. Y., Ramakrishnan, C., and Deisseroth, K. (2014). Structure-
guided transformation of channelrhodopsin into a light-activated chloride
channel. Science 344, 420–424. doi: 10.1126/science.1252367

Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P., and Deisseroth, K. (2009).
Bi-stable neural state switches. Nat. Neurosci. 12, 229–234. doi: 10.1038/nn.
2247

Bernstein, J. G., and Boyden, E. S. (2011). Optogenetic tools for analyzing
the neural circuits of behavior. Trends Cogn. Sci. 15, 592–600. doi:
10.1016/j.tics.2011.10.003

Bertero, A., Liska, A., Pagani, M., Parolisi, R., Masferrer, M. E., Gritti, M., et al.
(2018). Autism-associated 16p11.2 microdeletion impairs prefrontal functional
connectivity in mouse and human. Brain 141, 2055–2065. doi: 10.1093/brain/
awy111

Bifone, A., and Gozzi, A. (2012). Neuromapping techniques in drug discovery:
pharmacological MRI for the assessment of novel antipsychotics. Expert Opin.
Drug Discov. 7, 1071–1082. doi: 10.1517/17460441.2012.724057

Biswal, B., Hudetz, A. G., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. (1997).
Hypercapnia reversibly suppresses low-frequency fluctuations in the human
motor cortex during rest using echo–planar MRI. J. Cereb. Blood Flow Metab.
17, 301–308. doi: 10.1097/00004647-199703000-00007

Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S. (1995). Functional
connectivity in the motor cortex of resting human brain using echo-planar MRI.
Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010).
Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A.
107, 4734–4739. doi: 10.1073/pnas.0911855107

Bonhomme, V., Boveroux, P., Brichant, J. F., Laureys, S., and Boly, M. (2012).
Neural correlates of consciousness during general anesthesia using functional
magnetic resonance imaging (fMRI). Arch. Ital. Biol. 150, 155–163. doi: 10.
4449/aib.v150i2.1242

Borogovac, A., and Asllani, I. (2012). Arterial Spin Labeling (ASL) fMRI:
advantages, theoretical constrains, and experimental challenges in
neurosciences. Int. J. Biomed. Imaging 2012, 818456. doi: 10.1155/2012/818456

Bosshard, S. C., Baltes, C., Wyss, M. T., Mueggler, T., Weber, B., and Rudin, M.
(2010). Assessment of brain responses to innocuous and noxious electrical
forepaw stimulation in mice using BOLD fMRI. Pain 151, 655–663. doi: 10.
1016/j.pain.2010.08.025

Boyden, E. S. (2015). Erratum: optogenetics and the future of neuroscience. Nat.
Neurosci. 18:1862. doi: 10.1038/nn1215-1862b

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005).
Millisecond-timescale, genetically targeted optical control of neural activity.
Nat. Neurosci. 8, 1263–1268. doi: 10.1038/nn1525

Brevard, M. E., Duong, T. Q., King, J. A., and Ferris, C. F. (2003). Changes in MRI
signal intensity during hypercapnic challenge under conscious and anesthetized
conditions. Magn. Reson. Imaging 21, 995–1001. doi: 10.1016/s0730-725x(03)
00204-2

Brocka, M., Helbing, C., Vincenz, D., Scherf, T., Montag, D., Goldschmidt,
J., et al. (2018). Contributions of dopaminergic and non-dopaminergic
neurons to VTA-stimulation induced neurovascular responses in brain
reward circuits. Neuroimage 177, 88–97. doi: 10.1016/j.neuroimage.2018.
04.059

Bruinsma, T. J., Sarma, V. V., Oh, Y., Jang, D. P., Chang, S.-Y., Worrell, G. A., et al.
(2018). The relationship between dopamine neurotransmitter dynamics and the
Blood-Oxygen-Level-Dependent (BOLD) signal: a review of pharmacological
functional magnetic resonance imaging. Front. Neurosci. 12:238. doi: 10.3389/
fnins.2018.00238

Buckner, R. L., and DiNicola, L. M. (2019). The brain’s default network: updated
anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608.
doi: 10.1038/s41583-019-0212-7

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al.
(2009). Cortical hubs revealed by intrinsic functional connectivity: mapping,
assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29,
1860–1873. doi: 10.1523/JNEUROSCI.5062-08.2009

Frontiers in Neuroinformatics | www.frontiersin.org 16 January 2020 | Volume 13 | Article 7854

https://doi.org/10.1016/j.neuroimage.2017.09.020
https://doi.org/10.1016/j.neuroimage.2017.09.020
https://doi.org/10.1073/pnas.1610784113
https://doi.org/10.1006/nimg.2001.0990
https://doi.org/10.1038/srep31613
https://doi.org/10.1016/j.neuroimage.2016.12.059
https://doi.org/10.1016/j.nbd.2017.10.010
https://doi.org/10.1016/j.neuron.2009.06.014
https://doi.org/10.1016/j.neuron.2009.06.014
https://doi.org/10.1101/lm.038026.114
https://doi.org/10.1101/lm.038026.114
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1016/j.bandc.2005.11.009
https://doi.org/10.1088/1741-2560/4/3/S02
https://doi.org/10.1016/b978-0-12-411460-9.00001-x
https://doi.org/10.1073/pnas.0700293104
https://doi.org/10.1002/(sici)1098-2396(199612)24:4<349::aid-syn5>3.0.co;2-d
https://doi.org/10.1002/(sici)1098-2396(199612)24:4<349::aid-syn5>3.0.co;2-d
https://doi.org/10.1523/JNEUROSCI.1954-08.2008
https://doi.org/10.1016/j.neuroimage.2017.09.015
https://doi.org/10.1007/s12021-014-9258-x
https://doi.org/10.1002/nbm.1613
https://doi.org/10.1073/pnas.1418031112
https://doi.org/10.1016/j.neubiorev.2010.07.002
https://doi.org/10.1016/j.neubiorev.2010.07.002
https://doi.org/10.1523/JNEUROSCI.3146-13.2013
https://doi.org/10.1038/s41598-018-28237-9
https://doi.org/10.1093/ijnp/pyy071
https://doi.org/10.1126/science.1252367
https://doi.org/10.1038/nn.2247
https://doi.org/10.1038/nn.2247
https://doi.org/10.1016/j.tics.2011.10.003
https://doi.org/10.1016/j.tics.2011.10.003
https://doi.org/10.1093/brain/awy111
https://doi.org/10.1093/brain/awy111
https://doi.org/10.1517/17460441.2012.724057
https://doi.org/10.1097/00004647-199703000-00007
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.4449/aib.v150i2.1242
https://doi.org/10.4449/aib.v150i2.1242
https://doi.org/10.1155/2012/818456
https://doi.org/10.1016/j.pain.2010.08.025
https://doi.org/10.1016/j.pain.2010.08.025
https://doi.org/10.1038/nn1215-1862b
https://doi.org/10.1038/nn1525
https://doi.org/10.1016/s0730-725x(03)00204-2
https://doi.org/10.1016/s0730-725x(03)00204-2
https://doi.org/10.1016/j.neuroimage.2018.04.059
https://doi.org/10.1016/j.neuroimage.2018.04.059
https://doi.org/10.3389/fnins.2018.00238
https://doi.org/10.3389/fnins.2018.00238
https://doi.org/10.1038/s41583-019-0212-7
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00078 January 14, 2020 Time: 15:32 # 17

Mandino et al. Animal Functional Magnetic Resonance Imaging

Bukhari, Q., Schroeter, A., Cole, D. M., and Rudin, M. (2017). Resting State fMRI
in mice reveals anesthesia specific signatures of brain functional networks and
their interactions. Front. Neural Circuits 11:5. doi: 10.3389/fncir.2017.00005

Bukhari, Q., Schroeter, A., and Rudin, M. (2018). Increasing isoflurane dose
reduces homotopic correlation and functional segregation of brain networks in
mice as revealed by resting-state fMRI. Sci. Rep. 8:10591. doi: 10.1038/s41598-
018-28766-3

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
doi: 10.1038/nrn2575

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson,
E. S. J., et al. (2013). Power failure: why small sample size undermines the
reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376. doi: 10.1038/
nrn3475

Canese, R., Marco, E. M., De Pasquale, F., Podo, F., Laviola, G., and Adriani,
W. (2011). Differential response to specific 5-Ht(7) versus whole-serotonergic
drugs in rat forebrains: a phMRI study. Neuroimage 58, 885–894. doi: 10.1016/
j.neuroimage.2011.06.089

Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al.
(2010). Targeted optogenetic stimulation and recording of neurons in vivo using
cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254.
doi: 10.1038/nprot.2009.228

Carp, J. (2012). The secret lives of experiments: methods reporting in the fMRI
literature. Neuroimage 63, 289–300. doi: 10.1016/j.neuroimage.2012.07.004

Chai, Y., Bi, G., Wang, L., Xu, F., Wu, R., Zhou, X., et al. (2016).
Direct detection of optogenetically evoked oscillatory neuronal electrical
activity in rats using SLOE sequence. Neuroimage 125, 533–543. doi:
10.1016/j.neuroimage.2015.10.058

Chan, R. W., Leong, A. T. L., Ho, L. C., Gao, P. P., Wong, E. C., Dong, C. M.,
et al. (2017). Low-frequency hippocampal–cortical activity drives brain-wide
resting-state functional MRI connectivity. Proc. Natl. Acad. Sci. U.S.A. 114,
E6972–E6981. doi: 10.1073/pnas.1703309114

Chang, W.-T., Puspitasari, F., Garcia-Miralles, M., Yeow, L. Y., Tay, H.-C.,
Koh, K. B., et al. (2018). Connectomic imaging reveals Huntington-related
pathological and pharmaceutical effects in a mouse model. NMR Biomed.
31:e4007. doi: 10.1002/nbm.4007

Chen, Y. C., Mandeville, J. B., Nguyen, T. V., Talele, A., Cavagna, F., and Jenkins,
B. G. (2001). Improved mapping of pharmacologically induced neuronal
activation using the IRON technique with superparamagnetic blood pool
agents. J. Magn. Reson. Imaging 14, 517–524. doi: 10.1002/jmri.1215

Chen, Y. I., Brownell, A. L., Galpern, W., Isacson, O., Bogdanov, M., Beal, M. F.,
et al. (1999). Detection of dopaminergic cell loss and neural transplantation
using pharmacological MRI. PET and behavioral assessment. Neuroreport 10,
2881–2886. doi: 10.1097/00001756-199909290-00001

Chen, Y.-W., Das, M., Oyarzabal, E. A., Cheng, Q., Plummer, N. W., Smith,
K. G., et al. (2018). Genetic identification of a population of noradrenergic
neurons implicated in attenuation of stress-related responses. Mol. Psychiatry
24, 710–725. doi: 10.1038/s41380-018-0245-8

Choe, K. Y., Sanchez, C. F., Harris, N. G., Otis, T. S., and Mathews, P. J. (2018).
Optogenetic fMRI and electrophysiological identification of region-specific
connectivity between the cerebellar cortex and forebrain. Neuroimage 173,
370–383. doi: 10.1016/j.neuroimage.2018.02.047

Christie, I. N., Wells, J. A., Southern, P., Marina, N., Kasparov, S., Gourine,
A. V., et al. (2013). fMRI response to blue light delivery in the naïve brain:
implications for combined optogenetic fMRI studies. Neuroimage 66, 634–641.
doi: 10.1016/j.neuroimage.2012.10.074

Chuong, A. S., Miri, M. L., Busskamp, V., Matthews, G. A. C., Acker, L. C.,
Sørensen, A. T., et al. (2014). Noninvasive optical inhibition with a red-shifted
microbial rhodopsin. Nat. Neurosci. 17, 1123–1129. doi: 10.1038/nn.3752

Ciobanu, L., Reynaud, O., Uhrig, L., Jarraya, B., and Le Bihan, D. (2012). Effects
of anesthetic agents on brain blood oxygenation level revealed with ultra-high
field MRI. PLoS One 7:e32645. doi: 10.1371/journal.pone.0032645

Cogan, S. F., Ludwig, K. A., Welle, C. G., and Takmakov, P. (2016). Tissue damage
thresholds during therapeutic electrical stimulation. J. Neural Eng. 13:021001.
doi: 10.1088/1741-2560/13/2/021001

Dai, W., Garcia, D., de Bazelaire, C., and Alsop, D. C. (2008). Continuous flow-
driven inversion for arterial spin labeling using pulsed radio frequency and
gradient fields. Magn. Reson. Med. 60, 1488–1497. doi: 10.1002/mrm.21790

Damoiseaux, J. S., and Greicius, M. D. (2009). Greater than the sum of its parts: a
review of studies combining structural connectivity and resting-state functional
connectivity. Brain Struct. Funct. 213, 525–533. doi: 10.1007/s00429-009-
0208-6

Decot, H. K., Namboodiri, V. M. K., Gao, W., McHenry, J. A., Jennings, J. H.,
Lee, S.-H., et al. (2017). Coordination of brain-wide activity dynamics by
dopaminergic neurons. Neuropsychopharmacology 42, 615–627. doi: 10.1038/
npp.2016.151

Deisseroth, K. (2015). Optogenetics: 10 years of microbial opsins in neuroscience.
Nat. Neurosci. 18, 1213–1225. doi: 10.1038/nn.4091

Desai, M., Kahn, I., Knoblich, U., Bernstein, J., Atallah, H., Yang, A., et al. (2011).
Mapping brain networks in awake mice using combined optical neural control
and fMRI. J. Neurophysiol. 105, 1393–1405. doi: 10.1152/jn.00828.2010

Detre, J. A., and Wang, J. (2002). Technical aspects and utility of fMRI using
BOLD and ASL. Clin. Neurophysiol. 113, 621–634. doi: 10.1016/s1388-2457(02)
00038-x

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K.,
et al. (2014). The autism brain imaging data exchange: towards a large-scale
evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19,
659–667. doi: 10.1038/mp.2013.78

Dorr, A. E., Lerch, J. P., Spring, S., Kabani, N., and Henkelman, R. M. (2008).
High resolution three-dimensional brain atlas using an average magnetic
resonance image of 40 adult C57Bl/6J mice. Neuroimage 42, 60–69. doi: 10.
1016/j.neuroimage.2008.03.037

Eklund, A., Nichols, T. E., and Knutsson, H. (2016). Cluster failure: why fMRI
inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad.
Sci. U.S.A. 113, 7900–7905. doi: 10.1073/pnas.1602413113

Elias, Z., Powers, S. K., Atstupenas, E., and Tony Brown, J. (1987). Hyperthermia
from interstitial laser irradiation in normal rat brain. Lasers Surg. Med. 7,
370–375. doi: 10.1002/lsm.1900070413

English, J. G., and Roth, B. L. (2015). Chemogenetics-a transformational and
translational platform. JAMA Neurol. 72, 1361–1366. doi: 10.1001/jamaneurol.
2015.1921

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe,
A., et al. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI.
Nat. Methods 16, 111–116. doi: 10.1038/s41592-018-0235-4

Farrell, M. S., Pei, Y., Wan, Y., Yadav, P. N., Daigle, T. L., Urban, D. J., et al.
(2013). A Gαs DREADD mouse for selective modulation of cAMP production
in striatopallidal neurons. Neuropsychopharmacology 38, 854–862. doi: 10.1038/
npp.2012.251

Fenno, L., Yizhar, O., and Deisseroth, K. (2011). The development and application
of optogenetics. Annu. Rev. Neurosci. 34, 389–412. doi: 10.1146/annurev-
neuro-061010-113817

Ferenczi, E. A., Zalocusky, K. A., Liston, C., Grosenick, L., Warden, M. R., Amatya,
D., et al. (2016). Prefrontal cortical regulation of brainwide circuit dynamics and
reward-related behavior. Science 351:aac9698. doi: 10.1126/science.aac9698

Ferrari, L., Turrini, G., Crestan, V., Bertani, S., Cristofori, P., Bifone, A., et al.
(2012). A robust experimental protocol for pharmacological fMRI in rats and
mice. J. Neurosci. Methods 204, 9–18. doi: 10.1016/j.jneumeth.2011.10.020

Ferris, C. F., Febo, M., Luo, F., Schmidt, K., Brevard, M., Harder, J. A., et al.
(2006). Functional magnetic resonance imaging in conscious animals: a new
tool in behavioural neuroscience research. J. Neuroendocrinol. 18, 307–318.
doi: 10.1111/j.1365-2826.2006.01424.x

Ferrari, M., Kruzliak, P., and Spiliopoulos, K. (2015). An insight into short- and
long-term mechanical circulatory support systems. Clin. Res. Cardiol. 104,
95–111. doi: 10.1007/s00392-014-0771-6

Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B.,
Smith, S. M., et al. (2009). Distinct patterns of brain activity in young carriers
of the APOE-epsilon4 allele. Proc. Natl. Acad. Sci. U.S.A. 106, 7209–7214. doi:
10.1073/pnas.0811879106

Franks, N. P. (2008). General anaesthesia: from molecular targets to neuronal
pathways of sleep and arousal. Nat. Rev. Neurosci. 9, 370–386. doi: 10.1038/
nrn2372

Garcia, P., Kolesky, S., and Jenkins, A. (2010). General anesthetic actions
on GABAA receptors. Curr. Neuropharmacol. 8, 2–9. doi: 10.2174/
157015910790909502

Garin, C. M., Nadkarni, N. A., Landeau, B., Chételat, G., Picq, J.-L., Bougacha,
S., et al. (2019). Resting state cerebral networks in mouse lemur primates:

Frontiers in Neuroinformatics | www.frontiersin.org 17 January 2020 | Volume 13 | Article 7855

https://doi.org/10.3389/fncir.2017.00005
https://doi.org/10.1038/s41598-018-28766-3
https://doi.org/10.1038/s41598-018-28766-3
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn3475
https://doi.org/10.1038/nrn3475
https://doi.org/10.1016/j.neuroimage.2011.06.089
https://doi.org/10.1016/j.neuroimage.2011.06.089
https://doi.org/10.1038/nprot.2009.228
https://doi.org/10.1016/j.neuroimage.2012.07.004
https://doi.org/10.1016/j.neuroimage.2015.10.058
https://doi.org/10.1016/j.neuroimage.2015.10.058
https://doi.org/10.1073/pnas.1703309114
https://doi.org/10.1002/nbm.4007
https://doi.org/10.1002/jmri.1215
https://doi.org/10.1097/00001756-199909290-00001
https://doi.org/10.1038/s41380-018-0245-8
https://doi.org/10.1016/j.neuroimage.2018.02.047
https://doi.org/10.1016/j.neuroimage.2012.10.074
https://doi.org/10.1038/nn.3752
https://doi.org/10.1371/journal.pone.0032645
https://doi.org/10.1088/1741-2560/13/2/021001
https://doi.org/10.1002/mrm.21790
https://doi.org/10.1007/s00429-009-0208-6
https://doi.org/10.1007/s00429-009-0208-6
https://doi.org/10.1038/npp.2016.151
https://doi.org/10.1038/npp.2016.151
https://doi.org/10.1038/nn.4091
https://doi.org/10.1152/jn.00828.2010
https://doi.org/10.1016/s1388-2457(02)00038-x
https://doi.org/10.1016/s1388-2457(02)00038-x
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1016/j.neuroimage.2008.03.037
https://doi.org/10.1016/j.neuroimage.2008.03.037
https://doi.org/10.1073/pnas.1602413113
https://doi.org/10.1002/lsm.1900070413
https://doi.org/10.1001/jamaneurol.2015.1921
https://doi.org/10.1001/jamaneurol.2015.1921
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/npp.2012.251
https://doi.org/10.1038/npp.2012.251
https://doi.org/10.1146/annurev-neuro-061010-113817
https://doi.org/10.1146/annurev-neuro-061010-113817
https://doi.org/10.1126/science.aac9698
https://doi.org/10.1016/j.jneumeth.2011.10.020
https://doi.org/10.1111/j.1365-2826.2006.01424.x
https://doi.org/10.1007/s00392-014-0771-6
https://doi.org/10.1073/pnas.0811879106
https://doi.org/10.1073/pnas.0811879106
https://doi.org/10.1038/nrn2372
https://doi.org/10.1038/nrn2372
https://doi.org/10.2174/157015910790909502
https://doi.org/10.2174/157015910790909502
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00078 January 14, 2020 Time: 15:32 # 18

Mandino et al. Animal Functional Magnetic Resonance Imaging

from multilevel validation to comparison with humans. bioRxiv [Preprint].
doi: 10.1101/599423

Garrett, K. M., and Gan, J. (1998). Enhancement of gamma-aminobutyric acidA
receptor activity by alpha-chloralose. J. Pharmacol. Exp. Ther. 285, 680–686.

Giorgi, A., Migliarini, S., Galbusera, A., Maddaloni, G., Mereu, M., Margiani, G.,
et al. (2017). Brain-wide mapping of endogenous serotonergic transmission via
chemogenetic fMRI. Cell Rep. 21, 910–918. doi: 10.1016/j.celrep.2017.09.087

Goense, J. B. M., and Logothetis, N. K. (2006). Laminar specificity in monkey
V1 using high-resolution SE-fMRI. Magn. Reson. Imaging 24, 381–392. doi:
10.1016/j.mri.2005.12.032

Golestani, A. M., Wei, L. L., and Chen, J. J. (2016). Quantitative mapping of
cerebrovascular reactivity using resting-state BOLD fMRI: validation in healthy
adults. Neuroimage 138, 147–163. doi: 10.1016/j.neuroimage.2016.05.025

Gomez, J. L., Bonaventura, J., Lesniak, W., Mathews, W. B., Sysa-Shah, P.,
Rodriguez, L. A., et al. (2017). Chemogenetics revealed: DREADD occupancy
and activation via converted clozapine. Science 357, 503–507. doi: 10.1126/
science.aan2475

Gompf, H. S., Budygin, E. A., Fuller, P. M., and Bass, C. E. (2015). Targeted genetic
manipulations of neuronal subtypes using promoter-specific combinatorial
AAVs in wild-type animals. Front. Behav. Neurosci. 9:152. doi: 10.3389/fnbeh.
2015.00152

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff,
E. P., et al. (2016). The brain imaging data structure, a format for organizing
and describing outputs of neuroimaging experiments. Sci. Data 3:160044. doi:
10.1038/sdata.2016.44

Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwarz, Y., Ghosh, S. S., Maumet,
C., et al. (2015). NeuroVault.org: a web-based repository for collecting and
sharing unthresholded statistical maps of the human brain. Front. Neuroinform.
9:8. doi: 10.3389/fninf.2015.00008

Gozzi, A., Ceolin, L., Schwarz, A., Reese, T., Bertani, S., Crestan, V., et al. (2007). A
multimodality investigation of cerebral hemodynamics and autoregulation in
pharmacological MRI. Magn. Reson. Imaging 25, 826–833. doi: 10.1016/j.mri.
2007.03.003

Gozzi, A., Jain, A., Giovannelli, A., Bertollini, C., Crestan, V., Schwarz, A. J.,
et al. (2012). A neural switch for active and passive fear. Neuron 73:854. doi:
10.1016/j.neuron.2012.02.007

Gozzi, A., Large, C. H., Schwarz, A., Bertani, S., Crestan, V., and Bifone, A.
(2008). Differential Effects of Antipsychotic and Glutamatergic Agents on the
phMRI Response to Phencyclidine. Neuropsychopharmacology 33, 1690–1703.
doi: 10.1038/sj.npp.1301547

Gozzi, A., and Schwarz, A. J. (2016). Large-scale functional connectivity networks
in the rodent brain. Neuroimage 127, 496–509. doi: 10.1016/j.neuroimage.2015.
12.017

Grandjean, J., Canella, C., Anckaerts, C., Ayrancı , G., Bougacha, S., Bienert, T.,
et al. (2019a). Common functional networks in the mouse brain revealed
by multi-centre resting-state fMRI analysis. bioRxiv [Preprint]. doi: 10.1101/
393389

Grandjean, J., Corcoba, A., Kahn, M. C., Upton, A. L., Deneris, E. S., Seifritz, E.,
et al. (2019b). A brain-wide functional map of the serotonergic responses to
acute stress and fluoxetine. Nat. Commun. 10:350. doi: 10.1038/s41467-018-
08256-w

Grandjean, J., Preti, M. G., Bolton, T. A. W., Buerge, M., Seifritz, E., Pryce, C. R.,
et al. (2017a). Dynamic reorganization of intrinsic functional networks in the
mouse brain.Neuroimage 152, 497–508. doi: 10.1016/j.neuroimage.2017.03.026

Grandjean, J., Zerbi, V., Balsters, J. H., Wenderoth, N., and Rudin, M. (2017b).
Structural basis of large-scale functional connectivity in the mouse. J. Neurosci.
37, 8092–8101. doi: 10.1523/JNEUROSCI.0438-17.2017

Grandjean, J., Schroeter, A., Batata, I., and Rudin, M. (2014). Optimization of
anesthesia protocol for resting-state fMRI in mice based on differential effects of
anesthetics on functional connectivity patterns.Neuroimage 102(Pt 2), 838–847.
doi: 10.1016/j.neuroimage.2014.08.043

Grayson, D. S., Bliss-Moreau, E., Machado, C. J., Bennett, J., Shen, K., Grant, K. A.,
et al. (2016). The Rhesus monkey connectome predicts disrupted functional
networks resulting from pharmacogenetic inactivation of the amygdala. Neuron
91, 453–466. doi: 10.1016/j.neuron.2016.06.005

Griessner, J., Pasieka, M., Böhm, V., Grössl, F., Kaczanowska, J., Pliota, P., et al.
(2018). Central amygdala circuit dynamics underlying the benzodiazepine

anxiolytic effect. Mol. Psychiatry doi: 10.1038/s41380-018-0310-3 [Epub ahead
of print].

Guadagno, A., Kang, M. S., Devenyi, G. A., Mathieu, A. P., Rosa-Neto, P.,
Chakravarty, M., et al. (2018). Reduced resting-state functional connectivity
of the basolateral amygdala to the medial prefrontal cortex in preweaning
rats exposed to chronic early-life stress. Brain Struct. Funct. 223, 3711–3729.
doi: 10.1007/s00429-018-1720-3

Gunaydin, L. A., Yizhar, O., Berndt, A., Sohal, V. S., Deisseroth, K., and Hegemann,
P. (2010). Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392. doi: 10.
1038/nn.2495

Guru, A., Post, R. J., Ho, Y.-Y., and Warden, M. R. (2015). Making sense of
optogenetics. Int. J. Neuropsychopharmacol. 18:yv079. doi: 10.1093/ijnp/pyv079

Gutierrez-Barragan, D., Albert Basson, M., Panzeri, S., and Gozzi, A. (2018).
Oscillatory brain states govern spontaneous fMRI network dynamics. bioRxiv
[Preprint]. doi: 10.1101/541060

Hagberg, G. E., Indovina, I., Sanes, J. N., and Posse, S. (2002). Real-time
quantification of T(2)(∗) changes using multiecho planar imaging and
numerical methods. Magn. Reson. Med. 48, 877–882. doi: 10.1002/mrm.10283

Han, S., Son, J. P., Cho, H., Park, J., and Kim, S. (2019). Gradient-echo and spin-
echo blood oxygenation level–dependent functional MRI at ultrahigh fields of
9.4 and 15.2 Tesla. Magn. Reson. Med. 81, 1237–1246. doi: 10.1002/mrm.27457

HD-200 Consortium, (2012). The ADHD-200 consortium: a model to advance
the translational potential of neuroimaging in clinical neuroscience. Front. Syst.
Neurosci. 6:62. doi: 10.3389/fnsys.2012.00062

Herrick, R., Horton, W., Olsen, T., McKay, M., Archie, K. A., and Marcus, D. S.
(2016). XNAT Central: open sourcing imaging research data. Neuroimage 124,
1093–1096. doi: 10.1016/j.neuroimage.2015.06.076

Hess, A., Sergejeva, M., Budinsky, L., Zeilhofer, H. U., and Brune, K. (2007).
Imaging of hyperalgesia in rats by functional MRI. Eur. J. Pain 11, 109–109.
doi: 10.1016/j.ejpain.2006.01.005

Hight, A. E., Kozin, E. D., Darrow, K., Lehmann, A., Boyden, E., Brown, M. C., et al.
(2015). Superior temporal resolution of Chronos versus channelrhodopsin-2
in an optogenetic model of the auditory brainstem implant. Hear. Res. 322,
235–241. doi: 10.1016/j.heares.2015.01.004

Hindriks, R., Woolrich, M., Luckhoo, H., Joensson, M., Mohseni, H., Kringelbach,
M. L., et al. (2015). Role of white-matter pathways in coordinating alpha
oscillations in resting visual cortex. Neuroimage 106, 328–339. doi: 10.1016/j.
neuroimage.2014.10.057

Hinz, R., Peeters, L., Li, C., Van Der Linden, A., and Keliris, G. (2017). A
comparison of BOLD response between optogenetic and visual stimulation of
the lateral Geniculate Nucleus. Front. Neurosci. 11:59. doi: 10.3389/conf.fnins.
2017.94.00059

Huber, D., Petreanu, L., Ghitani, N., Ranade, S., Hromádka, T., Mainen, Z.,
et al. (2008). Sparse optical microstimulation in barrel cortex drives learned
behaviour in freely moving mice. Nature 451, 61–64. doi: 10.1038/nature06445

Hutchison, R. M., and Everling, S. (2012). Monkey in the middle: why non-human
primates are needed to bridge the gap in resting-state investigations. Front.
Neuroanat. 6:29. doi: 10.3389/fnana.2012.00029

Hutchison, R. M., Hutchison, M., Manning, K. Y., Menon, R. S., and
Everling, S. (2014). Isoflurane induces dose-dependent alterations in
the cortical connectivity profiles and dynamic properties of the brain’s
functional architecture. Hum. Brain Mapp. 35, 5754–5775. doi: 10.1002/hbm.
22583

Hutchison, R. M., Mirsattari, S. M., Jones, C. K., Gati, J. S., and Leung, L. S. (2010).
Functional networks in the anesthetized rat brain revealed by independent
component analysis of resting-state FMRI. J. Neurophysiol. 103, 3398–3406.
doi: 10.1152/jn.00141.2010

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D.,
Corbetta, M., et al. (2013a). Dynamic functional connectivity: promise, issues,
and interpretations. Neuroimage 80, 360–378. doi: 10.1016/j.neuroimage.2013.
05.079

Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S., and Menon, R. S.
(2013b). Resting-state networks show dynamic functional connectivity in awake
humans and anesthetized macaques. Hum. Brain Mapp. 34, 2154–2177. doi:
10.1002/hbm.22058

Iordanova, B., Vazquez, A. L., Poplawsky, A. J., Fukuda, M., and Kim, S.-G. (2015).
Neural and hemodynamic responses to optogenetic and sensory stimulation

Frontiers in Neuroinformatics | www.frontiersin.org 18 January 2020 | Volume 13 | Article 7856

https://doi.org/10.1101/599423
https://doi.org/10.1016/j.celrep.2017.09.087
https://doi.org/10.1016/j.mri.2005.12.032
https://doi.org/10.1016/j.mri.2005.12.032
https://doi.org/10.1016/j.neuroimage.2016.05.025
https://doi.org/10.1126/science.aan2475
https://doi.org/10.1126/science.aan2475
https://doi.org/10.3389/fnbeh.2015.00152
https://doi.org/10.3389/fnbeh.2015.00152
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.3389/fninf.2015.00008
https://doi.org/10.1016/j.mri.2007.03.003
https://doi.org/10.1016/j.mri.2007.03.003
https://doi.org/10.1016/j.neuron.2012.02.007
https://doi.org/10.1016/j.neuron.2012.02.007
https://doi.org/10.1038/sj.npp.1301547
https://doi.org/10.1016/j.neuroimage.2015.12.017
https://doi.org/10.1016/j.neuroimage.2015.12.017
https://doi.org/10.1101/393389
https://doi.org/10.1101/393389
https://doi.org/10.1038/s41467-018-08256-w
https://doi.org/10.1038/s41467-018-08256-w
https://doi.org/10.1016/j.neuroimage.2017.03.026
https://doi.org/10.1523/JNEUROSCI.0438-17.2017
https://doi.org/10.1016/j.neuroimage.2014.08.043
https://doi.org/10.1016/j.neuron.2016.06.005
https://doi.org/10.1038/s41380-018-0310-3
https://doi.org/10.1007/s00429-018-1720-3
https://doi.org/10.1038/nn.2495
https://doi.org/10.1038/nn.2495
https://doi.org/10.1093/ijnp/pyv079
https://doi.org/10.1101/541060
https://doi.org/10.1002/mrm.10283
https://doi.org/10.1002/mrm.27457
https://doi.org/10.3389/fnsys.2012.00062
https://doi.org/10.1016/j.neuroimage.2015.06.076
https://doi.org/10.1016/j.ejpain.2006.01.005
https://doi.org/10.1016/j.heares.2015.01.004
https://doi.org/10.1016/j.neuroimage.2014.10.057
https://doi.org/10.1016/j.neuroimage.2014.10.057
https://doi.org/10.3389/conf.fnins.2017.94.00059
https://doi.org/10.3389/conf.fnins.2017.94.00059
https://doi.org/10.1038/nature06445
https://doi.org/10.3389/fnana.2012.00029
https://doi.org/10.1002/hbm.22583
https://doi.org/10.1002/hbm.22583
https://doi.org/10.1152/jn.00141.2010
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1002/hbm.22058
https://doi.org/10.1002/hbm.22058
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00078 January 14, 2020 Time: 15:32 # 19

Mandino et al. Animal Functional Magnetic Resonance Imaging

in the rat somatosensory cortex. J. Cereb. Blood Flow Metab. 35, 922–932.
doi: 10.1038/jcbfm.2015.10

Janke, A. L., and Ullmann, J. F. P. (2015). Robust methods to create ex vivo
minimum deformation atlases for brain mapping. Methods 73, 18–26. doi:
10.1016/j.ymeth.2015.01.005

Jenkins, B. G. (2012). Pharmacologic magnetic resonance imaging (phMRI):
imaging drug action in the brain. Neuroimage 62, 1072–1085. doi: 10.1016/j.
neuroimage.2012.03.075

Johnson, G. A., Badea, A., Brandenburg, J., Cofer, G., Fubara, B., Liu, S., et al.
(2010). Waxholm space: an image-based reference for coordinating mouse
brain research. Neuroimage 53, 365–372. doi: 10.1016/j.neuroimage.2010.06.
067

Jonckers, E., Delgado y Palacios, R., Shah, D., Guglielmetti, C., Verhoye, M.,
and Van der Linden, A. (2014). Different anesthesia regimes modulate the
functional connectivity outcome in mice. Magn. Reson. Med. 72, 1103–1112.
doi: 10.1002/mrm.24990

Jonckers, E., Shah, D., Hamaide, J., Verhoye, M., and Van der Linden, A.
(2015). The power of using functional fMRI on small rodents to study brain
pharmacology and disease. Front. Pharmacol. 6:231. doi: 10.3389/fphar.2015.
00231

Jonckers, E., Van Audekerke, J., De Visscher, G., Van der Linden, A., and Verhoye,
M. (2011). Functional connectivity fMRI of the rodent brain: comparison of
functional connectivity networks in rat and mouse. PLoS One 6:e18876. doi:
10.1371/journal.pone.0018876

Jung, W. B., Shim, H.-J., and Kim, S.-G. (2019). Mouse BOLD fMRI at ultrahigh
field detects somatosensory networks including thalamic nuclei. Neuroimage
195, 203–214. doi: 10.1016/j.neuroimage.2019.03.063

Kahn, I., Desai, M., Knoblich, U., Bernstein, J., Henninger, M., Graybiel, A. M., et al.
(2011). Characterization of the functional MRI response temporal linearity via
optical control of neocortical pyramidal neurons. J. Neurosci. 31, 15086–15091.
doi: 10.1523/jneurosci.0007-11.2011

Kahn, I., Knoblich, U., Desai, M., Bernstein, J., Graybiel, A. M., Boyden, E. S.,
et al. (2013). Optogenetic drive of neocortical pyramidal neurons generates
fMRI signals that are correlated with spiking activity. Brain Res. 1511, 33–45.
doi: 10.1016/j.brainres.2013.03.011

Kalisch, R., Elbel, G. K., Gössl, C., Czisch, M., and Auer, D. P. (2001). Blood
pressure changes induced by arterial blood withdrawal influence bold signal in
anesthesized rats at 7 Tesla: implications for pharmacologic mri. Neuroimage
14, 891–898. doi: 10.1006/nimg.2001.0890

Kalthoff, D., Po, C., Wiedermann, D., and Hoehn, M. (2013). Reliability and
spatial specificity of rat brain sensorimotor functional connectivity networks
are superior under sedation compared with general anesthesia. NMR Biomed.
26, 638–650. doi: 10.1002/nbm.2908

Kalthoff, D., Seehafer, J. U., Po, C., Wiedermann, D., and Hoehn, M. (2011).
Functional connectivity in the rat at 11.7T: impact of physiological noise in
resting state fMRI. Neuroimage 54, 2828–2839. doi: 10.1016/j.neuroimage.2010.
10.053

Keilholz, S. D., Billings, J. C. W., Kai, W., Abbas, A., Hafeneger, C., Wen-Ju Pan,
et al. (2016). Multiscale network activity in resting state fMRI. Conf. Proc. IEEE
Eng. Med. Biol. Soc. 2016, 61–64. doi: 10.1109/EMBC.2016.7590640

Keilholz, S. D., Magnuson, M. E., Pan, W.-J., Willis, M., and Thompson, G. J.
(2013). Dynamic properties of functional connectivity in the rodent. Brain
Connect. 3, 31–40. doi: 10.1089/brain.2012.0115

Keilholz, S. D., Silva, A. C., Raman, M., Merkle, H., and Koretsky, A. P. (2006).
BOLD and CBV-weighted functional magnetic resonance imaging of the rat
somatosensory system. Magn. Reson. Med. 55, 316–324. doi: 10.1002/mrm.
20744

Kim, S.-G., and Ogawa, S. (2012). Biophysical and physiological origins of blood
oxygenation level-dependent fMRI signals. J. Cereb. Blood Flow Metab. 32,
1188–1206. doi: 10.1038/jcbfm.2012.23

Kim, T., Masamoto, K., Fukuda, M., Vazquez, A., and Kim, S.-G. (2010).
Frequency-dependent neural activity, CBF, and BOLD fMRI to somatosensory
stimuli in isoflurane-anesthetized rats. Neuroimage 52, 224–233. doi: 10.1016/j.
neuroimage.2010.03.064

Kiyatkin, E. A. (2007). Physiological and pathological brain hyperthermia. Prog.
Brain Res. 162, 219–243. doi: 10.1016/S0079-6123(06)62012-8

Klapoetke, N. C., Murata, Y., Kim, S. S., Pulver, S. R., Birdsey-Benson, A., Cho,
Y. K., et al. (2014). Addendum: independent optical excitation of distinct neural
populations. Nat. Methods 11:972. doi: 10.1038/nmeth0914-972

Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M.-
C., et al. (2009). Evaluation of 14 nonlinear deformation algorithms applied
to human brain MRI registration. Neuroimage 46, 786–802. doi: 10.1016/j.
neuroimage.2008.12.037

Klein, R. L., Dayton, R. D., Leidenheimer, N. J., Jansen, K., Golde, T. E., and
Zweig, R. M. (2006). Efficient neuronal gene transfer with AAV8 leads to
neurotoxic levels of Tau or green fluorescent proteins. Mol. Ther. 13, 517–527.
doi: 10.1016/j.ymthe.2005.10.008

Klomp, A., Tremoleda, J. L., Schrantee, A., Gsell, W., and Reneman, L. (2012). The
use of pharmacological-challenge fMRI in pre-clinical research: application to
the 5-HT system. J. Vis. Exp. 62:3956. doi: 10.3791/3956

Knabl, J., Witschi, R., Hösl, K., Reinold, H., Zeilhofer, U. B., Ahmadi, S., et al.
(2008). Reversal of pathological pain through specific spinal GABAA receptor
subtypes. Nature 451, 330–334. doi: 10.1038/nature06493

Kundu, P., Inati, S. J., Evans, J. W., Luh, W.-M., and Bandettini, P. A. (2012).
Differentiating BOLD and non-BOLD signals in fMRI time series using multi-
echo EPI. Neuroimage 60, 1759–1770. doi: 10.1016/j.neuroimage.2011.12.028

Kundu, P., Santin, M. D., Bandettini, P. A., Bullmore, E. T., and Petiet, A.
(2014). Differentiating BOLD and non-BOLD signals in fMRI time series
from anesthetized rats using multi-echo EPI at 11.7 T. Neuroimage 102(Pt 2),
861–874. doi: 10.1016/j.neuroimage.2014.07.025

Kyathanahally, S. P., Jia, H., Pustovyy, O. M., Waggoner, P., Beyers, R.,
Schumacher, J., et al. (2015). Anterior-posterior dissociation of the default mode
network in dogs. Brain Struct. Funct. 220, 1063–1076. doi: 10.1007/s00429-013-
0700-x

Lahti, K. M., Ferris, C. F., Li, F., Sotak, C. H., and King, J. A. (1999). Comparison
of evoked cortical activity in conscious and propofol-anesthetized rats using
functional MRI. Magn. Reson. Med. 41, 412–416. doi: 10.1002/(sici)1522-
2594(199902)41:2<412::aid-mrm28>3.3.co;2-v

Lai, H.-Y., Albaugh, D. L., Kao, Y.-C. J., Younce, J. R., and Shih, Y.-Y. I. (2015).
Robust deep brain stimulation functional MRI procedures in rats and mice
using an MR-compatible tungsten microwire electrode. Magn. Reson. Med. 73,
1246–1251. doi: 10.1002/mrm.25239

Långsjö, J. W., Kaisti, K. K., Aalto, S., Hinkka, S., Aantaa, R., Oikonen, V., et al.
(2003). Effects of subanesthetic doses of ketamine on regional cerebral blood
flow, oxygen consumption, and blood volume in humans. Anesthesiology 99,
614–623. doi: 10.1097/00000542-200309000-00016

Larkin, J. R., Simard, M. A., Khrapitchev, A. A., Meakin, J. A., Okell, T. W.,
Craig, M., et al. (2018). Quantitative blood flow measurement in rat brain with
multiphase arterial spin labelling magnetic resonance imaging. J. Cereb. Blood
Flow Metab. 39, 1557–1569. doi: 10.1177/0271678X18756218

Laumann, T. O., Snyder, A. Z., Mitra, A., Gordon, E. M., Gratton, C., Adeyemo,
B., et al. (2017). On the stability of BOLD fMRI correlations. Cereb. Cortex 27,
4719–4732. doi: 10.1093/cercor/bhw265

Lee, H.-M., Giguere, P. M., and Roth, B. L. (2014). DREADDs: novel tools for drug
discovery and development. Drug Discov. Today 19, 469–473. doi: 10.1016/j.
drudis.2013.10.018

Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., et al.
(2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature
445, 168–176. doi: 10.1038/nature05453

Lemieux, L., Whittingstall, K., and Uludağ, K. (2015). “Combining fMRI with other
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Large-scale research integration is contingent on seamless access to data in

standardized formats. Standards enable researchers to understand external experiment

structures, pool results, and apply homogeneous preprocessing and analysis workflows.

Particularly, they facilitate these features without the need for numerous potentially

confounding compatibility add-ons. In small animal magnetic resonance imaging, an

overwhelming proportion of data is acquired via the ParaVision software of the Bruker

Corporation. The original data structure is predominantly transparent, but fundamentally

incompatible with modern pipelines. Additionally, it sources metadata from free-field

operator input, which diverges strongly between laboratories and researchers. In

this article we present an open-source workflow which automatically converts and

reposits data from the ParaVision structure into the widely supported and openly

documented Brain Imaging Data Structure (BIDS). Complementing this workflow we also

present operator guidelines for appropriate ParaVision data input, and a programmatic

walk-through detailing how preexisting scans with uninterpretable metadata records can

easily be made compliant after the acquisition.

Keywords: MRI/fMRI, small animal imaging, repositing, FOSS, Bruker, ParaVision, Python

1. INTRODUCTION

Magnetic resonance imaging (MRI), and functional MRI (fMRI) are highly popular methods in
the field of neuroscience. Their high tissue penetration makes them eminently suited for reporting
features at the whole-brain level in vivo. High assay coverage is particularly relevant for an organ as
holistic in its function as the brain, as it facilitates the interrogation of not only sensitivity but also
regional specificity. However, MRI methods generate signal via nuclear spin polarization—which
is commonly very weak—and characteristically posses low intrinsic sensitivity. Additionally, fMRI
methods rely on highly indirect measures of neuronal activity, and are consequently susceptible to
numerous confounding factors.

In animal fMRI in particular, subject preparation, and more specifically cerebrovascular
parameters (Schroeter et al., 2016) and anesthesia (Schlegel et al., 2015; Bukhari et al., 2018) are
widely known drivers of result variability. In order to integrate data which may be thus strongly
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confounded—as well as in order to clarify the confounds
themselves (Grandjean et al., 2019)—it is vital that data is
shared in a raw state, i.e., having undergone no or as little
processing as possible. Raw data sharing increases transparency
and reproducibility, as data can be assumed to be free from
undocumented “fixes.” Such attempts at ex post facto data
improvement may not just include data matrix manipulations,
but also outlier (subject or session) filtering. While valid
rationales for both outlier filtering and data editing exist,
these processes are best performed in a transparent and well-
documented fashion, leaving the raw data untouched as an
ultimate recourse.

As published data is intended for reuse, it is reasonable to
assume that it may be employed to explore hypotheses other than
those under the constraints of which it was originally acquired.
In such cases, it is vital that the shared entry and feature pool
be as inclusive as possible. It is likely, above all in the effort of
methodological comparison and improvement, that what is an
artifact or outlier for the interrogation of a narrow hypothesis,
may constitute a strong driver of the effect of another hypothesis.
Therefore, it is the best choice for small animal MRI researchers
to publish data in as raw a form as possible.

The documentation of directed information processing is
known as data provenance, and in the effort of establishing a
point of recourse it is helpful to map out data traces to the
earliest record or earliest record in digital form. In Figure 1, a
simplified summary of data provenance is showcased, based on
themost common features of small animalMRI.While the rawest
data is in theoretical terms the best possible recourse, the extent
of this overview illustrates that the choice of a raw data origin
point is also constrained by the scope of a researcher’s work.
Particularly the first step, reconstructing volumetric information
from the time domain k-space record, is commonly not covered
by modern MRI pipelines, and instead left to the original
acquisition software.

Whether directly from the k-space file or from the
reconstructed image, the data needs to be converted into a
standard, vendor-independent form. Standards are a cornerstone
of scientific collaboration, as they concomitantly enable
result comparability and data integration. They can, however,
also be potentially restrictive, since a standard may impose
artificial limitations on features or artificial requirements not
pertinent to a particular study. Such limitations may materialize
in negative restrictions on software tools (e.g., proprietary

FIGURE 1 | Data provenance flowchart, with the leftmost data being the rawest. Folder nodes represent data states on disk, with nodes suitable as raw data

recourse highlighted with the word raw in parentheses. The introduction of a standardized conversion process (red arrow edge) would permit the creation of a 3D

format representation usable as raw data recourse, as well as the sharing of Bruker acquisition system volumetric reconstruction data (also highlighted in red).

standards may preclude data processing with non-proprietary
tools), restrictions on hypotheses (e.g., data organized by one
hierarchical principle may lead to loss or obfuscation of certain
category correspondence relationships), or positive restrictions
of technologies (e.g., data available in highly specific formats
might require usage of and familiarity with highly specialized
tools)—with the latter restriction being particularly relevant in
database standards.

In order to access the benefits and mitigate the pitfalls of
standards compliance, data should be migrated to a form which
is openly and thoroughly documented, and easily accessible for
user manipulation. In the field of small animal MRI, the vast
majority acquisition devices (∼80%) are produced by the Bruker
Corporation, and thus the largest segment of data is initially
formatted according to the ParaVision standard. This standard is
largely transparent, with most metadata stored in plain-text files.
The data, however, are stored in a binary format, which strongly
diverges from the de facto standard of NIfTI (Cox et al., 2004),
and for which extensive documentation is not openly available.
Conversion tools from the ParaVision standard to NIfTI exist
(Ferraris et al., 2017; Rorden and Naveaum, 2018), and have
more recently also been made available from the manufacturer
(presently only in closed-source form and only in ParaVision
360, without backward compatibility). Contingent on the scope
limitations of the NIfTI format itself, these tools can however
not repackage themajority ofmetadata represented in ParaVision
standard plain-text files. This situation exemplifies how the utility
of standards is not only contingent on their suitability for use
as a common origin format, but also on their flexibility to
accommodate all relevant information.

The Brain Imaging Data Structure (BIDS) standard
(Gorgolewski et al., 2016), is a prominent candidate for
repositing small animal magnetic resonance imaging data. It is
thoroughly tested and well-adopted in the field of human MRI,
and its extensible and permissive nature makes it easily adaptable
to small animal data—as well as generally accommodating for
broad swathes of eclectic use cases. The standard builds upon
the NIfTI format (Cox et al., 2004), one of the most widely used
formats for high-level neuroimaging analysis, which is compact,
as it offers on-the-fly lossless compression, and general-purpose,
as its header only contains the minimal amount of metadata
required for spatiotemportal image representation. In addition,
BIDS offers an extendable specification for metadata, stored in
sidecar text files. This separation of minimal and full metadata
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space makes BIDS easily and incrementally accessible for new
users and portable to further modalities, as the core requirements
can rapidly be met and further relevant metadata fields can be
processed and added as they become required for analysis. The
standard’s usage of plain-text metadata files also makes them
accessible to ubiquitous, minimal, and Free and Open Source
(FOSS) tools, e.g., the Standard GNU Utilities, or equivalent
core utility implementations. Particularly, the representation
of metadata as text allows data set versions with increments in
metadata availability to be compared via diff-type commands
(Hunt and MacIlroy, 1976), which is less feasible for binary data.
The format is organized around a simple directory hierarchy,
with key metadata fields captured in the file and path names.
This makes BIDS data intuitive to access from both a console
and a graphical user interface.

Given varying specifications, it is common for standards to
not map fully onto each other (e.g., one metadata field may not
have a clear correspondence relationship in both standards). As
data conversion is always based only on the most recent parent
format, this means that the risk of data (or more specifically,
metadata) loss or obfuscation grows with each transition to a
new standard. Thus, in the example of Figure 1, collaborative
potential is best served if both the “3D Format” representation
is infused with sufficient and sufficiently accessible metadata, and
the original “Volumetric Reconstruction” is rendered shareable.

Both these goals can be attained by the introduction of
an automated open-source workflow which can perform the
standard transition. As such, all metadata fields which are
identified as equivalent between the ParaVision and BIDS
standards can be made accessible in the final form. Conversely, if
ParaVision standard data is automatically interpretable as input
for a concatenation of processing workflows, this original form
can also serve as a shareable raw data recourse.

2. THE WORKFLOW

The workflow, entitled bru2bids (Bruker ParaVision to BIDS),
is distributed as part of SAMRI (Ioanas et al., 2019b), a
free and open source workflow package of the ETH and
University of Zurich Institute for Biomedical Engineering. This
repositing workflow can be used stand-alone, but also serves as
a gateway to all the further workflows included in the SAMRI
package (encompassing dedicated solutions for all analysis
steps showcased in Figure 1). As such, the ParaVision-to-BIDS
workflow not only permits users to convert data into a format
which is more widely supported and flexible, but also easily
links to reference implementations for BIDS-based small animal
processing functionalities (e.g., registration; Ioanas et al., 2019c).

The workflow reposits data and metadata from the ParaVision
standard into a BIDS-compliant form, notifying the user of
BIDS validation possibilities upon completion. The repositing
process automatically handles the conversion of data from
ParaVision volumetric reconstruction files (2dseq) to NIfTI
files. Additionally, it assigns metadata from the specific
ParaVision text files to either the NIfTI header, the BIDS
metadata files, or the BIDS directory hierarchy, as applicable. A

simplified overview of this process is presented in Figure 2A. A
more extensive break-down of metadata sourcing—showing the
actual input and output files, and highlighting metadata fields
represented in the data paths—is laid out in Figure 2B.

The repositing functionality described herein can be accessed
from both Bash and Python, via SAMRI bru2bids or
samri.pipelines.reposit.bru2bids(), respectively.
Invocation variants are illustrated in Figure 3, and link to the
same code implementation. The bru2bids function is highly
parameterized, with the same parameter set available in either
Bash or Python. A full list of parameters can be obtained by
executing the SAMRI bru2bids -help command from the
console. The current parameter listing for Bash is presented
under Figure S1.

Notable parameters include the functional, diffusion-
weighted, and structural scan specification. These three
selectors each use an input dictionary (pairs of one key, which
is a BIDS metadata string, and a list of accepted values),
to identify which scans are to be reposited. Examples of
such dictionaries are given in Figure 3, where scans with
an “EPI” acquisition field are categorized as functional, and
files with a “TurboRARE” acquisition field are categorized as
structural. The repositing pipeline is run sequentially for all
scan categories, as separate processes are required for each scan
type (examples of the internal processing nodes are shown in
Figure 6). Further parameters not included in the workflow
to date, such as magnetic resonance spectroscopy (MRS) data
selection, can easily be implemented, given the availability and
familiarity with enough example data, by copying and editing
the process instructions from present parameters inside the
samri.pipelines.reposit.bru2bids() function.

2.1. Operator Guidelines
The process of scan categorization and metadata sourcing
for BIDS conversion is contingent on the presence of
operator input records interpretable by the workflow. As
the ParaVision metadata files contain free-field input, adherence
to aminimal set of guidelines is necessary to ensure unambiguous
error-free conversion.

The acquisition of data in the Bruker ParaVision graphical
user interface is commenced by creating a new study in the
“Study Registration” window (Figure S2). In this window the
operator should fill in the “Animal ID” entry corresponding
to the intended BIDS subject identifier (i.e., the sub field in
the resulting path and file names), and the “Study Name” entry
corresponding to the intended BIDS session identifier (i.e., the
ses field in the resulting path and file names). Notably, the
values for both of these fields should be BIDS-compliant—
meaning that they should contain only alphanumeric characters,
necessarily excluding underscores and hyphens, which are used
in the BIDS standard as field separators.

Once the study is created, scans should be renamed in
the graphical user interface (before or after acquisition) to
contain the additional relevant metadata information according
to the BIDS standard. Thus, a resting-state scan acquired with
an EPI sequence resolving BOLD contrast should contain the
following string in the “Instruction Name” column of the
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FIGURE 2 | The Paravision-to-BIDS repositing process automatically interprets the source data structure and determines corresponding variables in the BIDS

standard. Depicted are color-coded overviews of data and metadata streams during the SAMRI bru2bids repositing process, with the data matrix content coded in

gray, the subject field in red, the session field in green, the task field in blue, the acquisition field in ochre, and the modality suffix in purple. (A) Processing flowchart,

breaking down the Bruker to BIDS repositing step (highlighted in Figure 1) to depict data-metadata integration, and downstream metadata encoding in the BIDS

directory hierarchy and corresponding metadata files. (B) Directory tree overview of Bruker to BIDS repositing. Depicted are source and result directories, with arrows

indicating which files the most relevant BIDS variable fields are sourced from. Date information is coded in cyan, and is sourced directly from the ParaVision scan

directory name. The conversion presented herein shows the mouse data form the test data collection, and is performed given the instructions in Figure 3A: note that

no BIDS entries from the 4007 and SN9879 subject directories were processed (as well as from any of the other species). This is happening by design and because

no entries in any of the other scans match the selection criteria.

FIGURE 3 | Both Bash and Python can be used to access the repositing functionality. As the Bash binding is auto-generated from the Python function, features

become available synchronously, and inspection can be coherently performed regardless of the invocation language. Both code snippets specify the exact same

instructions regarding the data source: they indicate that ParaVision standard data from /usr/share/samri_bindata/ is to be reposited into a BIDS standard

form, categorizing scans with an “EPI” acquisition string as functional, and files with a “TurboRARE” acquisition string as structural. Both of the above invocations are

included in the package test suite. (A) Bash invocation, repositing data into a BIDS directory located under /var/tmp/samri_testing/bash. (B) Python

invocation, repositing data into a BIDS directory located under /var/tmp/samri_testing/pytest.

ParaVision interface: acq-seEPI_task-rest_bold. The
format is composed out of the BIDS short identifier (e.g., acq
for acquisition), followed by a hyphen and the desired metadata
field value (e.g., seEPI for spin-echo echo-planar imaging). The
level of detail in these fields is at the discretion of the operator,
as per the flexible nature of the standard. If recognizing the EPI
variant at-a-glance is deemed irrelevant for the data at hand, this

field may simply be assigned a value of EPI, or could conversely
be expanded to include an arbitrary amount of additional detail.
Pairs of BIDS short identifiers and desired values should be
separated by underscores, with the modality suffix appended at
the end after a final underscore separator.

Additional BIDS fields such as the run ordinal number (e.g.,
run-0, as seen in Figure 2B), are automatically determined by
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the bru2bids workflow. The modality suffix, if not explicitly
specified by the operator, can also be automatically assigned in
a small number of cases where it is unambiguous (e.g., a scan
with a FLASH acquisition but with no operator defined modality
will be assigned a T1w modality suffix, and similarly, one with a
TruboRARE acquisition will be assigned a T2w suffix).

Entering metadata in this fashion during scanner operation
creates records which can directly serve as input for analysis
workflows, and are thus immediately ready for sharing
or analysis. Examples for such interpretable metadata
scans are available in the SAMRI ParaVision testing data
archive, and the example strings specified in this section are
sourced from the rat data identified in the archive by the
20171106_184345_21_1_1 directory name.

2.2. Preexisting Data Compliance
Preexisting data sets—acquired with operator metadata input
divergent from the recommended guidelines—can also be
redressed, via a small number of plain text editing operations.
Performing such edits is highly recommended, as it is still easier
than manually repositing data in the BIDS standard, and also
permits direct ParaVision data sharing, as shown in Figure 1.

The relevant parts of a ParaVision scan directory which
need to be edited are single lines in the subject and
Scanprogram.scanProgram files. Editing the subject
identifier in the ParaVision directory name is also advisable,
though only for ease of overview—since the subject field is not
read from the directory name by the repositing workflow.

Before editing, value names for all available metadata fields
must be chosen, such as respect the constraints of the BIDS
standard. This means that subject, session, task, and all other
desired identifiers need to contain only alphanumeric characters
(digits 0 through 9, and lower and uppercase letters). Once
all identifiers are properly chosen, they can be replaced or
retroactively entered into the ParaVision metadata fields.

The subject file defines both the subject and the session
of the scan. To enter the subject identifier, the line below the
line containing the string ##$SUBJECT_id= must be edited.
This following line should contain the subject identifier between
greater than and less than characters, e.g., for a subject identified

as Mc365A, the line should read <Mc365A>. Analogously, to
enter the session identifier, the line below the line containing the
string ##$SUBJECT_study_name= needs to be edited to read
e.g., <R02> for a session identified as R02 within the study, as
shown in Figure 4B.

The Scanprogram.scanprogram file is used to define
other BIDS metadata fields. Within this file, individual lines
containing the string (E (with the open box character
representing a space) are used both to record the ParaVision
“Instruction Name” and to establish correspondence with the
respective numbered ParaVision scan directory. On such lines,
after the open <displayName> tag, and up to the space
character before the open parenthesis, an arbitrary sequence of
BIDS short identifiers and value pairs, separated by underscores,
can be inserted—as shown in Figure 4A.

Examples for manually redressed data are included in the
SAMRI ParaVision testing data archive, and are in their end
form indistinguishable from data acquired along the lines
of the operator recommendations. In Figure 5, we show the
changes which were required to render mouse lemur testing data
compliant with the repositing workflow.

2.3. Package Management
The workflow becomes available upon installation of the SAMRI
software package. The dependency list of the package is
documented inside the SAMRI repository and version archive
(Ioanas et al., 2019b) in accordance with the Package Manager
Specification (Bennett et al., 2017). Automatic installation of the
entire dependency stack has been made available for package
managers conforming to this specification (Ioanas et al., 2017),
including the standard package manager of Gentoo Linux and its
derivatives (Ioanas et al., 2017). The package design is based on
the widely-adopted Python setuptools functionality, and is
thus easily accessible to maintainers using further distributions.

3. RESULTS

To demonstrate the capabilities of the workflow, we have
compiled a versioned reference archive of multi-species small
animal MRI data. The resulting package, samri_bindata

FIGURE 4 | Editing operations on only up to four lines are required to render preexisting data compatible with repositing via the workflow at hand. Depicted are file

differences for the 20171024_165248_MD1704_Mc285AB_P02_1_1 testing dataset scan, in a patch syntax. The line numbers identifying the position of the text

segment (before and after editing) are highlighted between arobase characters and in cyan. Deleted and added lines are highlighted in red or green, and prefixed with

a minus or plus, respectively. Conserved lines are printed in black. (A) A total of two lines need to be edited in the ScanProgram.scanProgram file in order to

render acquisition, task, and contrast automatically interpretable. (B) A total of two lines need to be edited in the subject file in order to make session and subject

information automatically interpretable.
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FIGURE 5 | The workflow can automatically select, convert, and reposit ParaVision data from a general collection directory into dedicated shareable data sets,

formatted for the BIDS standard. The left column shows the contents of the source directory, analogous to a collection directory on a server or scanner, and packaged

by us as samri_bindata. The right column contains the Bash commands needed to produce dedicated mouse, rat, and lemur data sets (in that order). Below each

Bash command shell, the resulting BIDS directory contents are shown. Directories are highlighted in blue. As ParaVision provides no way of integrating stimulatioin

information, the workflow creates empty events files (*_events.tsv), which the user can fill with the appropriate stimulation content, delete, or simply ignore (if

empty the files carry no meaning in BIDS).
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(Ioanas et al., 2019a), includes multi-center ParaVision standard
scans from mice, rats, and mouse lemurs, and serves as testing
data for the SAMRI package, including the repositing workflow.
The data in this archive is based on scans acquired with
originally compliant operator input, as well as on preexisting
scans rendered compliant ex post facto, as detailed in this article.

In Figure 5, we test the capability of the workflow to correctly
and automatically source specified datasets from a diverse
collection, and reposit them in the BIDS standard. The resulting
three separate and shareable BIDS data sets pass the BIDS
validator with no errors. The commands listed in this section are
included in the SAMRI test suite, and monitored for continued
quality assurance.

4. METHODS FOR IMPLEMENTATION

The data of our reference ParaVision testing archive,
samri_bindata (Ioanas et al., 2019a), were acquired at
three separate centers, using three different scanner types,
and in two rodent species (mouse and rat) and one primate
species (mouse lemur)—with ParaVision 6.0.1. Mouse data
were acquired at the Animal Imaging Center of the ETH and
University of Zurich, using a Bruker Biospec 70/16 system,
or a Bruker Biospec 94/30 system. Rat data were acquired
at the Neurotechnology Group of the University of Zurich
Neuroinformatics Institute, using a Bruker PharmaScan 70/16
system. Mouse lemur data were acquired at the Molecular

Imaging Research Center (MIRCen) of the Commissariat à
l’Énergie Atomique et aux Énergies Alternatives (CEA), using a
11.7 Tesla Bruker BioSpec system.

The workflow is implemented as a function in the
Python programming language, and uses the Nipype package
(Gorgolewski et al., 2011) for workflow execution, overview
generation, parallelization, and access to non-Python tools.
Bash bindings are auto-generated based on the Python function
definition and documentation string by the Argh package.

Data conversion from the ParaVision 2dseq format
to NIfTI is performed by the Bru2 function from the
Bru2Nii package (Rorden and Naveaum, 2018). Preliminary
to workflow execution, ParaVision metadata parsing and
BIDS metadata assignment is performed by Python utility
functions implemented in the SAMRI package. These
functions iterate through the lines of the relevant metadata
files: subject and ScanProgram.scanProgram, falling
back to <scan_number>/acqp if the scan program file
is corrupted. Metadata detection is performed via regular
expressions, to afford a maximum of flexibility, and avoid
dependency on more convoluted higher-level tools.

The processed metadata is recorded in a Pandas Dataframe
(McKinney, 2010), which is both used internally and written
to disk in the “work directory” to permit debugging. This
record is then divided along the lines of the supported scan
categories (structural, functional, and diffusion-weighted), and
the resulting selections are used to initiate the respective
workflow iterations, as seen in Figure 6. Following successful

FIGURE 6 | Dedicated workflows are set up for each scan category. Depicted are directed acyclic graphs, as produced by the workflow engine, Nipype. The

bru2bids function iteratively executes e.g., structural (A) and functional (B) repositing workflows, contingent on data availability. Node names specify the source

code identifiers, with the text in parentheses indicating, which modules they are implemented in: utility and extra_interfaces are modules of the SAMRI

package, and io is a module of the Nipype package. (A) Structural scan category repositing graph. The get_s_scan node queries the base Pandas Dataframe for

scan entries selected as structural, and computes data descriptors, which are further piped in the following fashion: (1) the metadata_file node, responsible for

creating a JSON BIDS metadata file is supplied with (i) a bundled subject and session identifier, (ii) the exact ParaVision scan path including the numbered

subdirectory, and (iii) the computed BIDS output metadata file name; (2) the s_bru2nii node, responsible for creating a BIDS-named NIfTI data file is supplied with (i)

the exact scan path including the numbered subdirectory and (ii) the computed BIDS output file name; (3) the datasink node, responsible for creating a BIDS-style

directory hierarchy is supplied with a bundled subject and session identifier. (B) Functional scan category repositing graph. The get_f_scan node queries the base

Pandas Dataframe for scan entries selected as functional, and computes data descriptors, which are further piped in the following fashion: (1) the metadata_file

node, responsible for creating a JSON BIDS metadata file is supplied with (i) a bundled subject and session identifier, (ii) the exact ParaVision scan path including the

numbered subdirectory, and (iii) the computed BIDS output metadata file name; (2) the f_bru2nii node, responsible for creating a BIDS-named NIfTI data file is

supplied with (i) the exact scan path, and (ii) the BIDS output file name; (3) the events_file node, responsible for creating a BIDS-style events file is supplied with (i)

the exact scan path, (ii) the task identifier, (iii) the BIDS output event file name, (iv) the metadata file (to query delay entries), and (v) the functional file path (to determine

the repetition time necessary to perform eventfile adjustments in light of the metadata); (4) the datasink node, responsible for creating a BIDS-style directory

hierarchy is supplied with a bundled subject and session identifier.

Frontiers in Neuroinformatics | www.frontiersin.org 7 February 2020 | Volume 14 | Article 569

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Ioanas et al. Automated Preclinical fMRI Repositing Workflow

workflow execution, the BIDS standard *_sessions.tsv file
is separately generated, recording the onset acquisition times for
each session.

The guidelines regarding operator input and preexisting
data compliance presented in this document are based on the
ParaVison 6.x release series. The parsing functionality of the
workflow in the current SAMRI version (0.4.1) is based on the
ParaVison 6.x release series and the BIDS 1.x specification.

5. DISCUSSION

The bru2bids workflow presented herein is a significant
first step in rendering data in the Bruker ParaVision standard
automatically interpretable for high-level analysis pipelines.
This is done by repositing the ParaVision data according to
the BIDS standard, which offers superior legibility, as well
as integration with community analysis tools, specifically with
tools adapted from human fMRI. The BIDS reposited data
form can serve as a mere intermediary, facilitating data usage
with standardized workflows, but can also be used in and of
itself as raw data recourse—if data management expediency is
prioritized over the larger pool of accessible information in the
full ParaVision standard.

To demonstrate and persistently track compliance, we release
a versioned archive of Bruker ParaVision testing data, diverse
in terms of both animal species and acquisition protocols.
We test the performance of the workflow on the dataset, and
report compliance with the target standard. These demonstrated
capabilities of the workflow are rendered accessible to the
community by procedural instructions addressed to Bruker
MRI scanner operators. Additional accessibility is conferred by
a detailed walk-through, which allows custodians of Bruker
ParaVision data to render preexisting records compatible as a
workflow input. Further, we describe the general principles of
the software implementation, which in conjunction with the
documentation internal to the software enable collaborators to
inspect, debug, augment, or create derivations based on our work.

The demonstrated performance of this workflow, its position
at the transition from the most popular small animal MRI
acquisition format into the most popular MRI data sharing

format, as well as its transparent free and open source
nature, make the SAMRI’s bru2bids a strong foundation
for the rapid and collaborative improvement of fMRI data
analysis methodology.
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Similarly to human population imaging, there are several well-founded motivations for
animal population imaging, the most notable being the improvement of the validity of
statistical results by pooling a sufficient number of animal data provided by different
imaging centers. In this paper, we demonstrate the feasibility of such a multicenter
animal study, sharing raw data from forty rats and processing pipelines between four
imaging centers. As specific use case, we focused on T1 and T2 mapping of the healthy
rat brain at 7T. We quantitatively report about the variability observed across two MR
data providers and evaluate the influence of image processing steps on the final maps,
using three fitting algorithms from three centers. Finally, to derive relaxation times from
different brain areas, two multi-atlas segmentation pipelines from different centers were
performed on two different platforms. Differences between the two data providers were
2.21% for T1 and 9.52% for T2. Differences between processing pipelines were 1.04%
for T1 and 3.33% for T2. These maps, obtained in healthy conditions, may be used in
the future as reference when exploring alterations in animal models of pathology.

Keywords: MRI, brain imaging, rat, quantitative imaging, digital atlas

INTRODUCTION

In the clinical domain, multicenter studies are common. Their main objective is to gather data
from a sufficient number of patients in a reasonable period of time to improve the statistical
power and consequently the robustness of the reported results. Multicenter studies also set the
basis for developing and validating quantitative and reproducible imaging biomarkers. Similarly,
there are several well-founded motivations for animal population imaging: optimization of costs,
reduction of experimentation duration, and improvement of quality of science, notably by the use
of sufficiently large animal cohorts for ensuring the validity of statistical results [see the special Lab
Animal focus on reproducibility in animal research (Prescott and Lidster, 2017)]. This domain is
still in its infancy, and we may expect it to develop in the near future. Consequently, only few tools
are available to facilitate preclinical data pooling. Moreover, there is a clear lack of large actions
for standardization of image acquisition conditions and post-processing techniques. Finally, there
are no reliable commonly adopted preclinical imaging biomarkers for differentiating normal vs.
pathological conditions. The aim of the present work was to assess the feasibility of multicenter
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preclinical studies in order to define robust biomarkers. We thus
considered a specific use case: quantitative T1 and T2 mapping of
the healthy rat brain at 7T.

The T1 and T2 relaxation times are tissue- and region-
dependent. As they may reflect micro-anatomical alterations,
they are biomarkers for various pathologies (Deoni, 2010).
To map these relaxation times, series of weighted images are
acquired with varying acquisition parameters such as echo time
(TE), inversion time (TI) or flip angle. Voxel-per-voxel fitting
of a model equation (with generally two or three parameters)
to these series is then used to calculate relaxation time maps
(Guilfoyle et al., 2003; de Graaf et al., 2006; Wright et al.,
2008). Alternatively, newer fingerprinting methods based on the
use of dictionaries currently emerge (Gao et al., 2015). A large
number of monocentric studies measured T1 and T2 in rodents,
at different magnetic fields and using different acquisition
protocols. They show that T1 relaxation time increases with
magnetic field while T2 relaxation time decreases (de Graaf
et al., 2006; van de Ven et al., 2007; Wright et al., 2008). Some
studies also reported regional values (Cremillieux et al., 1998;
Barbier et al., 2005; Del Bigio et al., 2011; Gigliucci et al., 2014;
Suleymanova et al., 2014; Koundal et al., 2015; Liachenko and
Ramu, 2017; Behroozi et al., 2018), but no consensus has been
reached yet about values of reference for specific rat brain regions.
To define such reference maps, a large number of brain structures
or regions should be considered and a sufficient number of
animals should be included to reflect inter-individual variability.
In this context, a multicenter study is relevant.

For Human studies, to facilitate data storage, data sharing
and data processing with specific pipelines, several infrastructures
have been proposed such as COINS (Landis et al., 2016),
LORIS + BRAIN (Das et al., 2016) or LONI (Rex et al., 2003)
for Neuroimaging multicenter studies [see recent works in this
field (Dojat et al., 2017)]. These infrastructures support the
“Open Science” approach, an international action to improve the
use of resources, to ease study replication, and to strengthen
the validity of scientific results (NAP, 2018). This promotes
studies on very large cohorts (e.g., Adhikari et al., 2019), the
development of reference databases [see for Alzheimer disease
(Li et al., 2017), Parkinson disease (Chahine et al., 2018) or
Human connectome project (Hodge et al., 2016)] and fair and
robust comparison of image processing solutions (Commowick
et al., 2018). Here, we propose to use an extension of the
SHAring NeurOImaging Resources environment (Barillot et al.,
2016) for storing preclinical imaging data (Small Animal Shanoir,
SAS)1 in conjunction with the VIP2 architecture, a platform
dedicated to the execution of image processing pipelines (Glatard
et al., 2013). We quantitatively report about the variability
observed across two data provider centers and evaluate different
image processing pipelines. We finally discuss the feasibility
of small animal population studies. To promote data sharing
in the preclinical domain, raw and processed datasets as
well as processing pipelines have been made available (see
section “Discussion”).

1https://shanoir-ng-dev.irisa.fr/
2https://www.creatis.insa-lyon.fr/vip/

MATERIALS AND METHODS

Distribution of Tasks Between Centers
Two centers, GIN (C1) and CRMBM (C2) hosted the animals and
performed brain MRI acquisitions. Three centers C2, MIRCen
(C3) and ICube (C4) provided processing pipelines.

Animals
Twenty Sprague Dawley rats (male, Janvier Labs, Paris France,
mean weight 279 ± 40 g [(min: 249.5 g, max: 314 g), details in
Supplementary Table S1] were scanned in two imaging centers
(C1 and C2). Animals were anesthetized with isoflurane [2% in
air at C2 and 2% in a mixture of Air and O2 (7:3) at C1] that
was delivered via a nose cone during the experiment. Animals
were positioned in prone position on an animal bed (Bruker
Biospin, Ettlingen, Germany). Breath rate was monitored using
a pneumatic pillow sensor placed under the abdomen. Body
temperature was measured with a rectal probe and maintained
in the normal range at 36.2 ± 1.4◦C using a heated blanket. To
control acquisition reproducibility, three rats were scanned twice,
one rat (Subject 32, S32) at C2 at a 2-day interval and two rats
(Subject 21, S21 and Subject 22, S22) at C1 at a 3-day interval.
All experiments were approved by the local ethics committee of
each center and were in full compliance with the guidelines of
the European Union (EUVD 86/609/EEC) for the care and use
of the laboratory animals. Experiments were performed under
permits from the French Ministry of Agriculture (n◦ 380945 and
A3851610008 for experimental and animal care facilities for C1
and G130555 for C2).

MRI Protocol
Acquisitions were performed on 7T horizontal Bruker scanners
using the same MR sequences and parameters at data provider
centers C1 and C2 (aC1 and aC2, respectively, see details in
Table 1). Preliminary in vitro experiments were performed at
C1 and C2 in order to select the best sequences to use, with the
objective to minimize acquisition time and geometric artifacts,
and to maximize spatial resolution. A 3D MDEFT sequence
(with Inversion Preparation as MPRAGE) was chosen for T1
mapping (REF)3. Multi-Slice Multi-Echo (MSME) was chosen for
T2 mapping. For T1 mapping, the MPRAGE sequence was run
seven times with incremental inversion times (TI) and for T2
mapping, a 3D MSME sequence with 28 echo times (TE) was
used (DiFrancesco et al., 2008; Liu et al., 2011). Main sequence
parameters are shown in Table 1. Total experiment duration per
animal was about 2 h.

Data Processing and Analysis
Figure 1 illustrates the complete image processing workflow.
Several preprocessing steps were performed using SPM124 and
MATLAB R2015a. Briefly, Bruker files were first converted
into NIFTI images using home-made software. All anatomical
images were rigidly realigned on a study-specific rat template.

3https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085577/
4http://www.fil.ion.ucl.ac.uk/spm
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TABLE 1 | Equipment characteristics, Fitting and Segmentation methods. In the model equations, A, B, T1 and T2 are the parameters to be estimated.

Acquisition GIN (aC1) CRMBM (aC2)

Scanner model Bruker BioSpin MRI GmbH – Biospec 70/20 7.0T Bruker BioSpin MRI GmbH – Pharmascan B-C 70/16US 7.0T

Transmitting coil Linear Volumetric Coil 72 mm Quadrature Resonator 72 mm

Receiving coil Rat Head Coil (Surface) 1 channel GIN coil

Gradient system BGA12S2 (110 mm, max 660 mT/m, slew rate 4570 T/m/s) BGA 9SHP (90 mm, max 750 mT/m, slew rate 6840 T/m/s)

T1 mapping MPRAGE sequence; TI = 247, 408, 674, 1112, 1838, 3030, and 5000 ms; TR = 6500 ms

T2 mapping 3D MSME; TE = (8:224 ms); TR = 600 ms

FOV: 2.7 cm × 2.7 cm × 2.8 cm, matrix size: 128 × 128 × 66, spatial resolution: 211 µm × 211 µm × 424 µm

Fitting GIN (fC1) CRMBM (fC2) MIRCen (fC3)

Software MATLAB R2015a ImageJ v1.51 BrainVISA/Python

Equation T1 y =
∣∣∣∣A.

(
1− 2B. exp

(
−

TI
T1

))∣∣∣∣ y =
∣∣∣∣A.

(
1− 2B. exp

(
−

TI
T1

))∣∣∣∣ y =
∣∣∣∣A.

(
1− 2B. exp

(
−

TI
T1

))∣∣∣∣
Equation T2 y =

∣∣∣∣A. exp
(
−

TE
T2

)∣∣∣∣ y =
∣∣∣∣A. exp

(
−

TE
T2

)∣∣∣∣ y =
∣∣∣∣A. exp

(
−

TE
T2

)∣∣∣∣
Segmentation ICube (sC4) MIRCEN (sC3)

Brain masking Matlab/spm12

Bias field correction N4

Registration Non-rigid [ANTS (Avants et al., 2010)] Rigid + Block-Matching affine (Lebenberg et al., 2010)

Number of atlases 11 12

Probability rule Majority voting

See text for details.

FIGURE 1 | Processing workflow: the processing steps performed using SPM12 are shown in green. Three different fitting procedures and two implementations of
the multi-atlas segmentation method were introduced. The inserted MR images are representative of the imaging processing outputs.

Tissue segmentation was performed for each animal (Ashburner
and Friston, 2005) based on our study-specific, tissue prior,
template. Using the Dartel registration algorithm (Ashburner,
2007) adapted to rat images, these tissue images were non-
rigidly registered.

The individual deformation field was then applied to the
corresponding individual anatomical and relaxometry images,
and all these images were averaged to compute anatomical and

relaxometry mean templates. Additionally, T1 and T2 weighted
raw images were separately processed using three different fitting
pipelines. The differences between these pipelines developed at
C1, C2, and C3 (fC1, fC2 and fC3, respectively), are summarized
in Table 1. All algorithms performed non-linear pixel-per-pixel
fitting for each voxel independently. Negative values and values
greater than 3000 ms for T1 and 300 ms for T2 were discarded.
The optimization algorithm was Levenberg-Marquardt for fC1
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and fC3 and the Simplex algorithm provided with ImageJ for fC2
(Nelder and Mead, 1965). The three T2 estimation procedures
rely on the same model equations.

Rat brain parcelation was performed using two multi-atlas
approaches similar to the one proposed by Lancelot et al.
(2014), for a precise and reproducible delineation of brain
structures in preclinical in vivo imaging. A maximum probability
automatic delineation was obtained by the fusion of several
manually delineated images placed in a common space and
constituting the multi-atlas dataset. This dataset was registered
to the native space of the MR image to segment. At each
voxel, the most likely label in the dataset was selected by
a maximum probability rule. Two versions of this approach
were implemented and executed, one at C3 (sC3) using
BrainVISA5 and one at C4 (sC4) using VIP (Glatard et al.,
2013), which differ in some aspects as detailed in Table 1.
Twenty-nine brain regions were defined (see Figure 2). MR
data initially stored in the SAS database were automatically
sent to the VIP processing platform and processed results
were seamlessly stored [see more details and the Figure 8 in
Commowick et al. (2018) for database and computing platform
integration with Shanoir].

The twelve pipelines combining data acquisition (aC1 and
aC2), fitting (fC1, fC2, and fC3) and segmentation (sC3 and sC4)
were compared. The processing pipelines and data are available
on request (see section “Discussion”). Statistical analysis was
performed with MS Excel 2010 and Real Statistics6. Because most
of the samples did not present a normal distribution (Shapiro–
Wilk test), non-parametric tests were performed.

RESULTS

Inter-Subject Data Variability
For each individually segmented rat brain, we computed the
mean T1 and T2 values for the 29 regions (13 in each hemisphere
and 3 non-lateralized regions). Figure 2 shows these values
for each region of the left hemisphere and for each rat,
computed using the fC1 fitting pipeline and the sC4 multi-
atlas segmentation.

We note that for both T1 and T2 values, the largest
dispersion is for the ventricles (lateral, 3rd and 4th ventricles).
On average, the differences between the minimum and maximum
values of each region are 170 ms for T1 and 11 ms for T2
(left hemisphere regions, excluding ventricles). We obtained
similar results for the right hemisphere (169 and 9.3 ms,
respectively) and with the other pipelines (e.g., Supplementary
Figure S1 for an example using the fC2 fitting pipeline and the
sC3 multi-atlas).

Inter-Center Acquisition Reproducibility
We studied the differences between T1 and T2 values computed
from data acquired at aC1 and aC2 using the same pipelines.

5http://brainvisa.info/
6Real Statistics Resource Pack software (Release 5.4). Copyright (2013 – 2018)
Charles Zaiontz. www.real-statistics.com

Between the two centers, the differences (see Supplementary
Figure S2) were significant for T2 (Mann–Whitney test p < 2
10−4, with 9% mean error), but not for T1 (Mann–Whitney test
p = 0.02, with 2% mean error).

Control of Intra-Center Acquisition
Reproducibility
We studied the scan-rescan differences for each subject (see
Supplementary Figure S3). The differences were less than two
standard deviations in all ROIs of all subjects, except in the
left lateral ventricle (S32), the right olfactory bulb (S21) and
the 3rd and 4th ventricles (S22). For T2, large differences were
found in the left lateral ventricle (S32), and in the 3rd and
4th ventricles (S21 and S22). A Wilcoxon statistical test was
run to compare the results between the first and second MR
acquisition for T1 and T2, for each rat, and for different pipeline
combinations. Differences were not statistically significant. The
parameters of the linear regression between the results from
the scan-rescan experiment for each subject were close to the
identity curve with a R2 coefficient for T1 equal to (0.89, 0.89,
and 0,94) and for T2 (0.88, 0.97, and 0.99) for rats S32, S32, and
S22, respectively.

Fitting Pipeline Comparison
To compare results obtained with the three fitting pipelines,
regressions were computed and indicated good consistency
(see Figure 3, Top). The linear regression parameters were
y = 0.99x + 5.11 (R2 = 0.99) for T1 (C2f) vs. T1 (C1f),
y = 0.92x + 111.9 (R2 = 0.98) for T1 (C3f) vs. T1 (C1f), and
y = 0.93x+ 101.94 (R2 = 0.99) for T1 (C3f) vs. T1 (C2f).

Similar results were obtained for T2 (see Supplementary
Figure S4) and using two different segmentation pipelines (see
Supplementary Figure S4). A Wilcoxon statistical test was run
for each pair of pipelines. Differences were not statistically
significant (mean error to identity for T2: 3.33%, for T1 1.04%).

Segmentation Pipeline Comparison
To compare results obtained using the two segmentation
pipelines, regressions were computed. As for the fitting pipelines,
Figure 3 (bottom) shows a good concordance between the
methods. The linear regression parameters were y = 1.012x-16.92
(R2 = 0.99) for T1 (C3s) vs. T1 (C4s) and y = 1.0583x-2.9489
(R2 = 0.99) for T2 (C3s) vs. T2 (C4s).

P-values obtained with a Wilcoxon test were 0.823 and 0.994
for T1 and T2, respectively. These values were obtained via
the two implementations of the same multi-atlas segmentation
method (mean error to identity of 0.24% for T1 and 0.81% for
T2). Similar results were obtained when using the two other
fitting methods (e.g., Supplementary Figure S4 for fC2).

Comparison With Literature
Figure 4 shows the T1 and T2 values obtained in this study
and those reported in literature. When literature only reported
one cortical ROI, that value was replicated for all cortical
ROIs of this study.
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FIGURE 2 | Individual relaxation times for 16 regions of interest for the left hemisphere including 3 regions overlappping the two hemispheres. Top: Individual T1
values. Bottom: Individual T2 values. Green circles for aC1 values; purple circles for aC2 values and corresponding mean values indicated with a red mark and
dash-line. The fC1 fitting pipeline and the sC4 multi-atlas segmentation were used.

DISCUSSION

In this study, we report a multicenter T1 and T2 mapping
of the rat brain at 7 Tesla. Four centers were involved: two
contributed to data acquisition, and two centers provided two
multi-atlas segmentation pipelines to derive relaxation times
per brain region. To facilitate the pooling of the preclinical
MR datasets, we used the SHAring NeurOImaging Resources
(Shanoir) environment, initially developed for the web-
oriented management of collaborative neuroimaging projects in
Humans, and recently extended for preclinical studies (Small
Animal Shanoir, SAS).

Data Pooling
We successfully combined MR data acquired on forty rats in
two different centers. We took advantage of the fact that the

fleet of MR scanners for preclinical studies tends to be more
uniform across labs than Human imaging systems. Indeed, the
MR scanners in both centers were from the same manufacturer
(Bruker Biospin) and, as indicated in Table 1, there were
very few differences between the two systems. The acquisition
sequence parameters could thus be set identical in both centers.
Consequently, Figure 3 shows a small dispersion of individual T1
and T2 values in brain regions, except for the ventricles (lateral
and 3rd and 4th ventricles). Moreover, we noted a good intra-
center reproducibility for T1 and T2 values obtained on three rats.
There was no significant difference in the scan-rescan experiment
of each rat. Good reproducibility was also obtained when using
different processing solutions (Supplementary Figure S3). The
observed differences for ventricles could be a consequence of the
small number of voxels of these structures compared to other
regions (3500 and around 11000 voxels for lateral and 3rd and
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FIGURE 3 | Comparison of pipelines. Top: Fitting pipelines. Bland-Altman representation of difference between T1 relaxation times for all regions of interest (n = 29),
averaged across all animals (n = 40) and obtained with three different fitting pipelines. Left: T1 differences for fC1 minus fC2; Middle: T1 differences for fC1 minus
fC3; Right: T1 differences for fC2 minus fC3. The sC4 was used for segmentation. Solid line: Mean difference. Dash-lines: ± two standard deviations. Bottom:
Segmentation pipelines: Bland-Altman graph of the T1 (left) and T2 (right) differences measured for all regions of interest (n = 29), averaged all animals (n = 40) and
obtained with two different segmentation pipelines (one point per region of interest). The fC1 fitting pipeline was used. Solid line: mean difference. Dash-lines: ± two
standard deviations.

4th ventricles, respectively, versus 33000 voxels on average for the
other structures) and to the large differences in relaxation times
between brain tissue and cerebrospinal fluid. Moreover, in T1-
weighted images, the contrast between ventricles and tissue was
low. This made the registration process more prone to errors.
Also, small movements of the cerebrospinal fluid in the ventricles
during acquisition may lead to a biased estimation of relaxation
times in these regions, especially for T2, which exhibits the
largest difference between tissue and ventricles. Moreover, for
some rats (n = 3), ventricles were found dilated. Such dilation
may impact the global results. T1 values computed from data
acquired at C1 or C2 using different fitting and segmentation
pipelines were not different (see Supplementary Figure S4),
except for fC3 fitting algorithm (p < 0.01). T2 differences were
significantly different for all conditions. We cannot rule out
a potential effect of the anesthesia conditions, since the gas

mixture was slightly different between the two centers (2% in
air at C2 vs. 2% in a mixture of Air and O2 (7:3). However,
no T2 differences were found in an additional experiment in
which the effect of breathing air or 100% O2 as carrier gas was
tested. Another potential source of T2 difference between C1
and C2 may be that despite standard spoiling settings in the
sequence, the T2 measurements may be affected by the presence
of residual stimulated echo signal. Given the different transmit
coils (single-channel for C1 and quadrature for C2), these signals
may differ between C1 and C2 and account for differences
found in T2 values.

Finally, we note that, in literature, T2 values generally
seem more variable between centers than T1 values (see
Figure 4). After examining multicenter data quality, we searched
for possible differences when processing data with software
developed in different centers.
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FIGURE 4 | Relaxation values for this study and five published studies (see References list for details) in 29 regions of interest. Left: T1 relaxation values. Scale:
500 ms/division. Right: T2 relaxation. Scale: 15 ms/division. The orange line indicates results from this study. Dash lines indicate ± one standard deviation from our
results. 1: 3rd and 4th ventricles, 2: Amygdala L, 3: Amygdala R, 4: Brain stem, 5: Caudate-putamen L, 6: Caudate-putamen R, 7: Cerebellar white matter, 8:
Cerebellum L, 9: Cerebellum R, 10: Cingulate cortex L, 11: Cingulate cortex R, 12: Cortical white matter L, 13: Cortical white matter R, 14: Frontal cortex L, 15:
Frontal cortex R, 16: Hippocampus L, 17: Hippocampus R, 18: Lateral ventricle L, 19: Lateral ventricle R, 20: Occipital cortex L, 21: Occipital cortex R, 22: Olfactory
bulb L, 23: Olfactory bulb R, 24: Parietal cortex L, 25: Parietal cortex R, 26: Temporal cortex L, 27: Temporal cortex R, 28: Thalamus L, 29: Thalamus R.

Image Processing Pipeline Comparison
The goal of this comparison was to explore whether data
processing could be distributed to different centers using the
solution locally developed rather than benchmarking them for
selecting the best one. For relaxometry mapping, two main steps
are required: fitting the raw data to extract relaxation times
and segmenting the brain to compute mean values per brain
area. Fitting data is clearly a simple mathematical operation. No
consensus currently exists for this operation, and, as indicated in
Table 1, differences exist in available solutions hosted in our three
centers. Advantageously, the differences in fitting equation and
in optimization methods did not impact the final results, neither
for T1 nor for T2. Note that differences generated by the use of
different fitting parameters were lower than those between the
data acquisition centers and even those between data acquired at
the same center.

For brain segmentation, we adopted a multi-atlas procedure.
Multi-atlas techniques outperform single atlas approaches
in accounting for individual structural variability (Wang
et al., 2014). Here, we considered two implementations on
two different platforms, BrainVISA and VIP, of the multi-
atlas approach proposed in Lancelot et al. (2014) for rats.
As mentioned in Table 1, some preprocessing steps differ:
the registration [ANTS (Avants et al., 2010) vs. block-
matching combined to Free Form Deformation (Lebenberg
et al., 2010)] and the number of atlases used (11 vs. 12).
Comparison of the parcelations obtained using the two methods
revealed no differences in terms of parcel volume and DICE
score. DICE were higher than 0.8 but for ventricles (see
Supplementary Figure S5), suggesting and excellent overlap
between parcelations. Differences were not significant when
comparing T1 and T2 values obtained with the two multi-atlas
segmentation procedures.

Reference Maps
Publicly available quantitative reference maps for longitudinal
(T1) and transverse (T2) relaxation times are valuable for
investigating and monitoring deviations from normality in
animal models of pathologies. Both T1 and T2 values have been
reported in literature based on a limited number of animals.
We extended these works by using a larger number of animals
(n = 40) and by providing values in additional regions. Figure 4
shows the T1 and T2 values obtained in this study together with
literature values. There is a good agreement between all T1 values.
This is consistent with the low dispersion found between the two
data providers (2%). The dispersion of literature values is larger
for T2, especially when older studies are included. Similarly, we
found a larger 9.5% dispersion between T2 values from our two
data providers. Altogether, the values reported in this study are in
good agreement with several recent publications (Del Bigio et al.,
2011; Gigliucci et al., 2014; Suleymanova et al., 2014; Koundal
et al., 2015; Liachenko and Ramu, 2017).

Limitations
Data came from only two providers running similar MR systems
from the same manufacturer. This is, however, very common in
the preclinical imaging community. Data were acquired in only
one animal strain (Sprague Dawley) and at one age (young adult).
These two factors may indeed modify relaxation times (Knight
et al., 2016; Liu et al., 2018). Additional changes in values may also
occur in case of physiological changes (perfusion, oxygenation,
temperature). In addition, our reference maps could be refined
by including even more individuals and data could be reanalyzed
to further limit the impact of stimulated echoes in T2 estimates,
a potential source of bias. However, data acquired and processed
with the same methods as those used in the study would remain
comparable to the reference maps available from this study.
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Clinical multicenter imaging studies are frequent and rely on a wide range of existing
tools for sharing data and processing pipelines. This is not the case for preclinical
(small animal) studies. Animal population imaging is still in infancy, especially because
a complete standardization and control of initial conditions in animal models across
labs is still difficult and few studies aim at standardization of acquisition and post-
processing techniques. Clearly, there is a need of appropriate tools for the management
and sharing of data, post-processing and analysis methods dedicated to small animal
imaging. Solutions developed for Human imaging studies cannot be directly applied to
this specific domain. In this paper, we present the Small Animal Shanoir (SAS) solution
for supporting animal population imaging using tools compatible with open data. The
integration of automated workflow tools ensures accessibility and reproducibility of
research outputs. By sharing data and imaging processing tools, hosted by SAS, we
promote data preparation and tools for reproducibility and reuse, and participation in
multicenter or replication “open science” studies contributing to the improvement of
quality science in preclinical domain. SAS is a first step for promoting open science
for small animal imaging and a contribution to the valorization of data and pipelines
of reference.

Keywords: MRI, data sharing, open science, population imaging, image processing

INTRODUCTION

Recently, the validity of the published results in life sciences has been questioned (Button et al.,
2013; Ingre, 2013). The poor replication of research findings is directly linked to an endemic
low statistical power of the majority of biological studies. It is now well recognized that data
sharing should be promoted to improve the robustness and the replicability of the scientific
results (Poldrack et al., 2017). Technical solutions should be proposed to support a more “open
science” approach, making data discoverable, accessible, interpretable, and reusable, as captured
in the FAIR Guiding Principles (Findability, Accessibility, Interoperability, and Reusability)
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(Wilkinson et al., 2016). For human population imaging, large
data repositories exist, such as ADNI for Alzheimer disease,
PPMI for Parkinson disease, centerTBI for brain trauma,
United Kingdom Biobank for various diseases or ConnectomeDB
for the Human Connectome Project, extensively used by
researchers all over the world and leading to new findings.
Additionally, data analysis plays an important role. For such large
datasets, image processing pipelines should be constructed based
on the best algorithms available and their performance should be
objectively compared to diffuse the more relevant solutions. Also,
provenance of processed data should be secured (Mackenzie-
Graham et al., 2008). Specific architectures (e.g., COINS, LONI)
are now available mainly for human population imaging [see
(Kennedy et al., 2019) and other recent works here].

Similarly, to human population imaging, there are several
well-founded motivations for animal population imaging:
optimization of costs and subject participation, improvement
of quality of science (use of sufficiently large animal cohorts
for ensuring statistical result validity, e.g., drug development
process) and enhancement of research discovery [see the special
Lab Animal focus on reproducibility in animal research (Prescott
and Lidster, 2017)]. However, at the difference of Human
imaging, where the issues with large cohorts are well-known
and solutions have been proposed, sharing small animal imaging
data and corresponding image processing pipelines is a recent
preoccupation. Some efforts are performed especially toward
the construction of animal atlases (Sunkin et al., 2013; Bjerke
et al., 2018; Wang et al., 2018). Despite of some attempts (Lee
et al., 2010), there is a clear miss of appropriate infrastructure
for facilitating sharing data and processing tools for animal
population imaging. Indeed, solutions developed for Human
studies can only be reused in part and should be adapted and
extended to take into account the specificities of animal studies:
for instance, with the introduction, in the data model, of new
concepts for strain and anesthetic, or of a specific converter
for raw data (e.g., mainly Bruker files). Moreover, population
imaging infrastructures for clinical or preclinical purposes, have
to handle, presently or in a close future, very large datasets
while providing a fast and robust data access via an efficient web
interface. Today the proposed solutions do not really address
this issue because internal mechanisms for scalability are missing.
Presently, as an example, we currently handle clinical studies with
up to 3000 subjects with around 4Tb of data and we are now
just at the emergence of the population imaging studies, recently
boosted by the introduction in life science domain of efficient
machine learning approaches, avid of large mass of data.

In this paper, we present the Small Animal Shanoir (SAS)
solution. SAS is an extension of the Shanoir data management
system for Human brain imaging repositories (Barillot et al.,
2016) with the integration of dedicated microservices for small
animal imaging studies. SAS was developed under the hospices
of the national infrastructure project France Life Imaging,
with the goal of coordinating research activities in France
in in vivo imaging and combining the skills to push the
current technological barriers. The specific action “Information
Analysis and Management” (FLI-IAM) was devoted to the
development of a federated infrastructure for the management

of in vivo imaging data and processing tools. FLI-IAM is
partner of OpenAIRE-connect, an H2020 European project
promoting Open Science.1 The paper is organized as follows:
firstly, the global architecture of FLI-IAM is presented, then SAS
and the notion of micro-service are introduced, illustrated by
the description of a selection of representative micro-services;
then current applications are briefly presented followed by the
discussion section.

ARCHITECTURE OVERVIEW

The goal of the architecture is to federate different systems that
have their specific data model which does not necessary fulfill
the XNAT reference scheme. For this purpose, we chose to
use the core ontology OntoNeurolog, accessible via BioPortal.2

This ontology is based at the upper level on the DOLCE
foundational ontology and described in details in Temal et al.
(2008); Gibaud et al. (2011); Batrancourt et al. (2015). All specific
data models including XNAT are mapped to this core ontology.
The technical architecture of FLI-IAM is shown in Figure 1. The
FLI-IAM architecture is web-oriented and constructed on three
main functionalities: (1) query and retrieval of data and image
processing pipelines (via the web portal), (2) storage of data and
associated metadata (via the image archive module), and (3) the
execution of the selected pipelines on the selected data (via the
computing platforms module).

The data transfer module (DTM) is used to exchange data
between the image archive and the computing platforms. The
architecture was successfully used for hosting two MICCAI
Human imaging challenges on Multiple Sclerosis (Commowick
et al., 2018) and PET tumor segmentation (Hatt et al., 2018).

FLI-IAM Web Portal
The web portal of FLI-IAM3 guides the user to the resource
or service adapted to his/her needs. Therefore, an overview
of all resources and services available is proposed. After
registration and authentication, the candidate accesses to the
set of components: the image archive via the common catalog
graphical interface, the computing platforms via the CARMIN
client (see below) and the DTM via the DTM client. Technically
the FLI-IAM web portal is based on Liferay Portal Server
v6.2, Community Edition, a Java Enterprise application server
that provides a full content management system and a market
place with multiple extensions. For the MICCAI challenges the
portal was used to inform about the challenge rules, register as
candidate, with a process specifically integrated for this purpose,
and give access to the data.

FLI-IAM Authentication Process
Security is a sensitive aspect for all web-oriented data
management systems. OpenID Connect (OIDC) is the

1OpenAire aims at developing a technical infrastructure for an interoperable
European network of research repositories through the establishment of common
guidelines and shared metadata standards.
2https://bioportal.bioontology.org/ontologies/ONL-DP
3https://portal.fli-iam.irisa.fr/home
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FIGURE 1 | The FLI-IAM architecture. Three major blocks compose the core of this distributed web architecture: the web portal (in blue), the image archive (in
orange) and the computing platforms (in green). The data transfer module (in blue) ensures data exchange between these three modules. The API-CARMIN allows
the seamless connection of data and pipelines. The user submits a query via the web portal (e.g., selecting images following criteria and choosing the execution of
an imaging processing pipeline). The user’s identification can be done via a Renater account or realized via OpenID connect implemented using Keycloak. Presently,
four databases and four computing platforms are federated by the infrastructure. The integration of a new database is realized by the introduction of a connector that
maps its data model to the common catalog. Each database manages autonomously multicenter imaging studies. Several instances of each database can be
managed be the infrastructure. Pipelines can be executed on high performance computing cluster (HPC) or on a local machine. This DTM module ensures the
transfer of data between a database (dedicated clients in orange) and the corresponding computing resource via the API-CARMIN. A local file system and database
are used for a temporarily storage. Each platform (database or computing resource) can be configured with its web address and each transfer can be started and
monitored. For each transfer between two platforms, a communication channel (protocol) can be chosen. A scheduler assures long-time data transfers. The
architecture is part of the H2020 European OpenAire project for open science promotion.

authentication protocol used by the FLI-IAM infrastructure,
implemented in Keycloak, to verify the identity of a user based
on the authentication performed by an authorization server,
as well as to obtain basic profile information about the user
in an interoperable and REST-like manner (see Figure 1).
All components in FLI-IAM delegate the authentication to
Keycloak that allows single sign-on with identity and access
management to applications and services. In line with GDPR, all
user passwords are exclusively stored in Keycloak and only the
current user has knowledge of his/her password. For academic
researchers who have a Renater account, a connection between
FLI-IAM Keycloak with Renater is always possible with the
SAML authentication provider.

Common Catalog
FLI-IAM portal users can execute cross-database searches to find
published datasets and studies in the different databases using the
common catalog. A free search-field and a search result display

page are provided within the graphical user interface of the portal
(see Figure 2) thanks to the search engine Apache Solr.

A specific workflow for the combination of metadata has been
developed for the whole interrogation of the set of databases.
Imaging studies, associated meta-data and corresponding images
are hosted within each instance of the federated databases.
Each database manages independently its users, access rights
and roles for the hosted studies. The Principal Investigator
(PI) of a study has the responsibility to place metadata into
the common catalog of the FLI-IAM infrastructure for sharing
the study publicly or with specific user groups, using access
control lists. Users of the portal can then identify the origin
of the datasets and ask the corresponding PI for data access.
Technically a common search index has been defined and four
mapping plugins have been developed, used for the connection
to the common catalog of the corresponding database instance.
Once a PI has allowed data sharing of a study, a nightly
job updates the common catalog. When he/she decides the
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FIGURE 2 | User’s interface for either a specific search query or to display all images available for one user. In this example, no specific query is addressed and the
interface shows all the available studies. An expanded view on T1-weighted images for the MICCAI MS challenge is displayed.

sharing ending, the corresponding datasets are deleted from
the search index.

FLI-IAM Image Archive
The FLI-IAM infrastructure federates currently four imaging
databases. Their main features are described in Table 1. CATI-DB
and Shanoir manage various large mono- or multicenter brain
studies, while ArchiMed (Micard et al., 2016) collects imaging
data from various clinical research projects. Presently, each
database is hosted on an independent hardware infrastructure
and could be hosted in a future central FLI-IAM hardware
infrastructure. Each database has its independent workflow to
import images. The federative architecture is constructed for a
seamless integration of new databases.

For a common interrogation of the federated databases, an
excerpt of the common catalog is presented in Table 2.

Computing Platforms
As shown in Figure 1, beside databases, FLI-IAM integrates
four computing platforms: BrainVisa, medInria, Virtual Imaging
Platform (Glatard et al., 2013) and Boutiques (Glatard et al.,
2018). The former, BrainVisa is a neuroimaging software
platform for mass data analysis, providing image processing

tools such as Morphologist for brain segmentation and
sulcal morphometry, and an interactive 3D neuroimaging
data visualizer (Anatomist). medInria is a multi-platform
medical image processing and visualization software. Through
a graphical user interface, medInria offers processing tools
for medical images, such as 2D/3D/4D image visualization,
image registration, diffusion MR processing and fiber tracking.
VIP is a web portal for the execution of medical image
processing pipelines for massive data analysis and simulation. It
leverages resources available in the biomed virtual organization
of the European Grid Infrastructure to offer an open service
to academic researchers worldwide. Boutiques represents the
app store of FLI-IAM. Boutiques allows automatic publication,
integration and execution of applications across computational
platforms. Boutiques applications are described in a JSON file and
enable the simulation, validation, evaluation, and application-
specific monitoring of command-line tools. Providers can
integrate their application into a Docker or Singularity container,
describe it and share it via Boutiques. Each computing platform
can be used and installed independently. Note that Boutiques is
integrated into VIP.

FLI-IAM provides an integration layer with two features:
(1) an authentication using OpenID Connect and (2) a unified
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TABLE 1 | Main characteristics of the four databases currently hosted by FLI-IAM.

Database Who Key concepts Modalities Browser Add. Info Open source

ArchiMed CIC-IT, Nancy, Inserm, Fr Centralized server, Model close to
DICOM/PACS, Desktop client, PAAS

MRI, CT No Link Not yet

CATI-DB CATI, Paris, CEA, Fr Centralized file-system (NFS) with
meta-data server, Model oriented on
processing, Perfectly adapted into
CATI-infrastructure, SAAS (turn-key)

MRI, PET/SPECT No Link Yes, access
registration

Shanoir Empenn, Rennes, Inria, Fr Centralized server, Ontology based,
Model remains fix, Web client, PAAS

MRI, PET, CT, EEG Yes Link Yes, on GitHub

XNAT NRG Lab, Washington,
University School of Medicine,
US

Centralized server, Schema based,
Default model to customize, Web client,
PAAS

MRI, PET, CT Yes Link Yes, on
Bitbucket

PAAS, Platform As A Service; SAAS, Software As A Service. MRI, Magnetic Resonance Imaging; CT, Computed Tomography, PET, Position Emission Tomography:
SPECT, Single-Photon Emission Computed Tomography; EEG, Electro-Encephalography.

TABLE 2 | Common catalog. A common catalog is required for querying the different databases accessible via the federated platform.

Common catalog ArchiMed CATI-DB Shanoir XNAT

study_name study_code Study.name Study_Name projectData.name

center_name institution_name Center.name Center_Id experimentData.acquisitionSite

manufacturer manufacturer +

manufacturer_model
unknown Manufacturer_Name +

Manufacturer_Model
imageSessionData.scanner

principal_investigator study_investigator Study.main_investigator Investigator_Id experimentData.investigator

subject_identifier unknown in db,
examCode used

Subject.code_in_study Subject_Name subjectData.ID

series_modality file_type_acronym Fileset.attribute.modality Dataset_Ref_Dataset
_Modality_Type_Id

imageScanData.modality

series_protocol serie_desc Fileset.attribute.sequence Dataset_Name imageScanData.series_description

series_creation_date serie_date_time Assessment.date Dataset_Creation_Date imageSessionData.date

The table above describes the structure of the common index and the mapping of each database into the common catalog.

remote access via the REST-API, CARMIN. Using such an
environment, the same client can remotely use each platform
implementing the interface. For example, this allows the FLI-
IAM web portal, via the CARMIN client (JavaScript library),
to access to a list of pipelines provided by VIP, send data and
execute a pipeline. Moreover, the same CARMIN client can be
integrated into each of the database instances present in the
FLI-IAM image archive for its connection to any computing
platform. Note that CARMIN is also implemented in CBrain, a
Canadian infrastructure used for managing very large imaging
medical projects. Thus, the users of the FLI-IAM web portal have
potentially access to CBrain and vice versa.

Data Transfer Module
The DTM connects the image archive with the computing
platforms. It transfers primarily images from one database
(source) to one computing platform (destination), but can as
well transfer images between databases or between computing
platforms. Additionally, DTM can call a computing platform, e.g.,
VIP, to start processing pipelines with a given pipeline identifier,
check for computation results and import the processed images
back into one of the databases (see Figure 1). Therefore, it
integrates four client libraries (one for each database), a SFTP
client and a CARMIN client. The DTM is completely configurable

on using its web interface and has been used for the MICCAI 2016
challenges. A MySQL database is used to maintain state and all
transferred data are temporarily stored in a local file system.

SMALL ANIMAL SHANOIR

Small Animal Shanoir is built on the top of a recent version
of Shanoir, called Shanoir-NG, which relies on recent web
technologies, such as Single-Page-Applications (SPAs) and
micro-services, with the double objective of reinforcing the
flexibility and scalability of the architecture.

Single-Page Application
Shanoir-NG has been developed as SPA for two major reasons:
first to give the user the feeling of interacting with a desktop
application rather than with a web application; second to support
as many browsers as possible, even mobile browsers. This is based
on the assumption, that modern modular SPAs could be more
easily adapted to reduced screen sizes and other requirements
of mobile applications. Technically SPAs rewrite parts of a page
rather than loading the entire page and the application code
is completely loaded when the application starts. Appropriate
resources are dynamically loaded and added to the page as
necessary, usually in response to actions of the user. Angular five
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has been chosen as front-end technology after an evaluation of
different frameworks available yet.

Micro-Service Architecture
Inspired by the multi-agent architecture (Minsky, 1986), the
micro-service architecture4 considers the application as a suite
of independent services; each service running with its own
process and communicating with lightweight mechanisms, often
an HTTP resource API. The main advantage of adopting a micro-
architecture is the scalability in case of evolving computational
load or availability of hardware resources. Moreover, the strong
independency of services allows for their development and
deployment separately from the others ensuring a continuous
service delivery. Each micro-service can be developed using
the more efficient language for its functionality with its own
memory management, as long as the common external interface
policy is respected.

The strong independency of services requires the
improvement of the control at the global level of the architecture.
Some control concerns are particularly important for our
applications: for instance, how does react a micro-service when
another depending service is no more available? Or how each
micro-service is informed about changes in its environment or
security policy? Some inconsistencies have to be tolerated for
a short period of time and handled afterward, when a micro-
service, stopped for a while, is back to function. Specific errors
or activity tracing mechanisms have to be introduced to trace the
service states, user actions and other events.

As a Cloud-native application, each micro-service is
integrated in a Docker container. For instance, the DTM micro-
service described above runs its own Docker container, provides
a REST-API and an Angular five front-end to configure available
platforms, connection settings (channels) or initiate/monitor
transfers. The entire Shanoir-NG architecture is deployed using
a Docker Compose script that initiates and runs each Docker
container encapsulating a micro-service.

Based on the application specifications, we have to define
how to distribute the different functionalities into a reasonable
collection of micro-services, while preserving a good integration.
Figure 1 in Supplementary Material shows the current
architecture. Six key services have been identified so far Users,
Studies, Import, Datasets, Preclinical and Dicomifier. The two-
latter specific for small animal applications are detailed below.

Preclinical Micro-Services
For preclinical applications, the initial OntoNeurolog ontology
was extended by the preclinical working group of FLI-IAM
(SAIN) to introduce several concepts related to animal study
for facilitating their sharing (see Figure 3). Thus, concepts
have been added to describe the subject (specie, strain,
provider, type [transgenic or not], and stabling), the model
of pathology under study and the administered therapy. The
experimental conditions are also described (type of anesthetic,
physiological measurements: e.g., blood gas, temperature, SaO2,

4https://martinfowler.com/microservices/

heart rate, . . .). The ontology is represented in OWL using
Protégé (Musen, 2015).

The ontological preclinical model has been translated into
a relational database model and integrated into the preclinical
microservice. It manages its own graphical user interface (GUI)
and database and was added to Shanoir-NG. Figures 4, 5 show
the corresponding dedicated interface.

Dicomifier Micro-Service
Dicomifier is a generic and open-source converter designed
to process both preclinical and clinical imaging data and to
be easily extensible to account for the wealth of meta-data
associated with medical images. This micro-service converts the
current imaging data formats, Bruker and DICOM files. The
former is largely used in preclinical imaging centers because
the same manufacturer (Bruker Biospin) designs the preclinical
MR scanners. The converter is modular: one part handles the
conversion from the Bruker format to the DICOM format and
another part handles the conversion from the DICOM format
(either native or converted from the Bruker format) to NIfTI.
This design allows future extensions, e.g., conversion from NIfTI
to DICOM to store segmentation results in a PACS. Similar
concepts guiding the hierarchy of data exist in both Bruker and
DICOM formats: patient (or subject), study (i.e., a set of exams
performed for a single goal) and series (single or multiple 2D
or 3D images from one acquisition). However, implementation
of those concepts in both formats differs, and, in addition to
the file-format difference, data alignment is an integral part of
the conversion. The Bruker-DICOM alignment is a mapping
process in which a pre-defined, modality-specific, set of DICOM
elements is extracted from the Bruker-format exam. The mapping
may be a direct one, i.e., mapping a single Bruker element
to a single DICOM element without additional transforms, or
a more complex one, using data from multiple Bruker fields,
transforming them, and storing them in disjoint DICOM fields.

Regarding the NIfTI conversion, we leverage the multi-
dimensional capabilities of NIfTI to store images per-series,
following the dimensions given by the DICOM files. For instance,
a diffusion MRI acquisition with multiple b-values would appear
as a five-dimensional dataset. The fixed-size header of the NIfTI
format cannot accommodate the wide range of meta-data stored
in the DICOM format, although this data may nevertheless be
required for further processing, e.g., in parametric MRI. We
chose to store the metadata in the widespread JSON format, for
its seamless handling by many software libraries while remaining
human-readable. For native DICOM files, i.e., not converted
from Bruker, a normalization step is also applied to parse
the data from vendor-specific fields, when the syntax of those
fields is known.

Current SAS Applications
In vivo T1 and T2 relaxation times extracted from MR imaging
data are tissue dependent and their modifications may be
characteristic of specific anatomical regions and pathological
situations. Recently, we used the SAS infrastructure to produce
quantitative 3D T1 and T2 maps for the healthy rat brain at 7T.
Such maps were defined based on data acquired at two different
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FIGURE 3 | Ontology extension for preclinical study. Specific concepts are introduced extending the OntoNeurolog ontology expressed in OWL and represented
using Protégé (https://protege.stanford.edu/about.php).

FIGURE 4 | SAS, GUI for animal studies, information about the subject. Pathologies and therapies can be added and managed.
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FIGURE 5 | SAS, GUI for animal studies, details about the experimental conditions. Anesthetic, physiological, and blood gas data can be added and managed.

centers on twenty Sprague-Dawley rats at GIN (Grenoble, Fr)
and twenty Sprague-Dawley rats at CRMBM (Marseille, Fr).
We used three different fitting algorithms from three difference
centers (CRMBM, MRICen (Fontenay-aux-roses, Fr) and Icube
(Strasbourg, Fr) to compute the T1 and T2 values in each voxel
and to evaluate the influence of image processing steps on the
final maps. To derive relaxation time values per brain area, two
multi-atlas segmentation pipelines from MIRCen and Icube were
executed. All data were stored on SAS and image processing
pipelines were embedded into Docker containers and executed
on the VIP processing platform. With the DTM, processed data
were stored in SAS for each individual.

This work investigated the influence of data acquisition
centers (n = 2) and image processing pipelines (n = 3) on
the production of T1 and T2 brain maps. Figure 6 shows the
reproducibility of the T1 and T2 relaxometry values computed
from two MR acquisitions for each rat in each center (intra-
reproducibility) and the coherency between the values obtained
between the centers (inter-reproducibility).

It showed the coherence of the final computed maps when the
acquisition sequence parameters are optimized and harmonized
between centers (Deruelle et al., 2020). Using SAS, the study

demonstrates the feasibility of pooling animal data from different
centers. The use of a distributed computing architecture for
image storage and for processing pipeline execution paves the
way for future multi-center preclinical studies. The quantitative
reference maps produced for longitudinal (T1) and transverse
(T2) relaxation times obtained on 40 rats (to our knowledge the
largest number to date) are valuable to investigate and monitor
deviations from normality in animal model of pathologies.
A similar study at different magnetic field on mice is
undergoing with the same infrastructure involving more data
providers (12 centers).

DISCUSSION

Similarly to human research, sharing (data and tools)
requirements will necessarily grow up in the next future for
preclinical (animal) studies. The design of SAS was motivated
by the needs of the preclinical research community. The
problem of replication and reproducibility in preclinical studies
is now well documented (Sena et al., 2010; Begley and Ellis,
2012; Tsilidis et al., 2013) and can negatively impacted the
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FIGURE 6 | Reproducibility of the relaxometry maps. T1 (left) and T2 (right) values for the 29 regions of interest from data acquired at CRMBM (in blue) for one rat
(S32) and at GIN for two rats (S21 and S22) in red and green, respectively. The pipelines were provided by CRMBM (fitting) and Icube (segmentation). Dashed line:
linear regression, corresponding equation are indicated with the same color code as values, R2: correlation coefficient. Bold line identity curve.

translation to human studies, leading to waste of resources,
unnecessary risks for volunteers and slowing down new
therapies development. The first cause of non-reproducibility
is the weakness of experimental design including low power
(Begley and Ioannidis, 2015).

With SAS, we show that animal population imaging is
feasible and that research in this field can be conducted using
tools compatible with open sharing and use of automated
workflow tools to ensure accessibility and reproducibility of
research outputs. Our first preliminary experiments (see §3.5)
demonstrate the strong interest of the community to promote the
federation of multiple sources of information, processing tools
and diffusion of knowledge distributed in various centers for
preclinical studies. We will promote data preparation and tools
for reproducibility and reuse and participation in multicenter or
replication studies. Thanks to the FLI-IAM architecture used,
we will diffuse our results beyond the national community.
Indeed, a recent external survey (30 interviews) indicated that
the primary application domain for such an infrastructure
was preclinical imaging where solution is missing. Note that
developing such a platform requires some efforts: from 2016, up
to 15 computer engineers were employed for Shanoir-NG and
SAS developments.

Moreover, FLI-IAM is partner of OpenAIRE-connect, for
connection with European large scale open science projects.
Additionally, SAS will contribute to the promotion of this
platform and in return will be internationally visible: data
and tools will be interoperable and queryable via international
platforms. In using SAS, users strongly advocate for the diffusion
of acquired and processed data and dissemination of imaging
processing pipelines. They promote Open Science by Design
(Committee on Toward an Open Science Enterprise et al., 2017),
meaning that research conducted openly and transparently leads
to better science. SAS is a first step for promoting Open science
for small animal imaging and a contribution to the valorization
of data and pipelines of reference. SAS will also be a good starting
point for launching specific working group for animal MR studies

at the European (RDA) or International (INCF, ISMRM) levels
creating a culture that actively supports Open science by Design.

Extensions and Future Plans
As a cloud platform, multiple extensions are already defined in
the roadmap of Shanoir-NG. From the operational point of view
the following extensions will have to be addressed: continuous
delivery, automatic service discovery, data replication, backup
and constant monitoring. The usage of smaller, in terms
of memory usage, Docker container base images should be
evaluated to optimize the memory footprint of the entire
application. With the extension of the number of micro-services,
the use of new container management platforms such as Apache
Mesos or Kubernetes should be envisaged. From the functional
point of view, we plan extensions for massive data import and
download and management of BIDS format.

Finally, our next step is to connect SAS, a tool dedicated for
small animal imaging, to other complementary environments
dedicated to genetics or biology. The idea is to seamlessly
integrate SAS with the open science community and to provide
researchers a tool for easy sharing in a controlled way.

Shanoir-NG and its extension SAS are open-source software,
published under the GNU General Public License (GPL),
version 3. The source code is freely available on GitHub under5.
The current implementation of SAS is available at6. Developer
documentation is centralized in the GitHub Wiki7 with code8 and
general user information can be found under http://shanoir.org.
The development of Shanoir-NG is driven by a roadmap that
is defined by the members of the consortium Shanoir within
InriaSoft. Contributions are integrated in form of pull requests.
The source code of Dicomifier is available at9.

5https://github.com/fli-iam/shanoir-ng
6https://shanoir-ng-dev.irisa.fr
7https://github.com/fli-iam/shanoir-ng/wiki
8https://github.com/fli-iam/shanoir-ng/tree/appning
9https://github.com/lamyj/dicomifier
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OpenID Connect (OIDC) is an authentication layer on the
top of the authorization framework OAuth 2.0, a standardized
protocol controlled by the OpenID Foundation. This protocol is
implemented in Keycloak, an open source software product that
implements the OpenID Connect protocol and then is used as the
central authorization server.

Renater is a highly fast and secured academic European
network for internet access and associated services.

SAML (Security Assertion Markup Language) defines a
protocol for security information exchange. It is based on XML
and proposes a unique (single sign-on) identifier.

Apache Solr is a search and navigation platform built on the
open-source HTTP server, Apache.

Docker allows to define containers in a standardized way
that encapsulate code and the associated dependencies for an
execution on different computing environments.

Singularity is an alternative solution to Docker.
CARMIN (Common API for Research Medical Imaging

Network) defines a REST-API for exchanging data and
remotely calling pipelines provided by computing platforms.
The REST-API is specified using the OpenAPI initiative (OAI)
available on SwaggerHub.
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Small-mammal neuroimaging offers incredible opportunities to investigate structural and

functional aspects of the brain. Many tools have been developed in the last decade to

analyse small animal data, but current softwares are less mature than the available tools

that process human brain data. The Python package Sammba-MRI (SmAll-MaMmal

BrAin MRI in Python; http://sammba-mri.github.io) allows flexible and efficient use

of existing methods and enables fluent scriptable analysis workflows, from raw data

conversion to multimodal processing.

Keywords: processing pipeline, MRI, registration, small animal neuroimaging, Python

1. INTRODUCTION

The use of magnetic resonance imaging (MRI) methods in animals provides considerable benefits
for improving our understanding of brain structure and function in health and diseases. The
greatest advantages of preclinical MRI include group homogeneity and the opportunity to acquire
a high amount of information repeated as needed. This added value, together with practical
and ethical considerations, resulted in an increase of the use of small-mammal MRI in research.
In human brain imaging, a large variety of high level software solutions is available for MRI
preprocessing and analysis (e.g., SPM1, FSL2, or AFNI3). Less Free and Open Source Software
(FOSS) are already available to analyse animal MRI. Atlas-based Imaging Data Analysis of
structural and functional mouse brain MRI (AIDAmri) (Pallast et al., 2019) package allows
registration of functional and diffusion mouse brain MRI with the Allen Mouse Brain Atlas (Allen
Institute for Brain Science, 2004; Lein et al., 2007). The SAMRI (Small Animal Magnetic Resonance
Imaging) package provides fMRI preprocessing, metadata parsing, and data analysis functions
optimized for mouse brains (Ioanas et al., 2020). Today, there is still a need for other efficient
and collaborative tools that would facilitate the adoption and dissemination of standardized
pre-processing strategies for small animal MRI. Sammba-MRI was designed to process MR images,
including anatomical, functional, and perfusion images. It allows to preprocess image dataset
(conversion to NIfTI, bias correction), register images to templates or atlases, and perform
perfusion measures.

1https://www.fil.ion.ucl.ac.uk/spm/software/
2http://freesurfer.net/
3https://afni.nimh.nih.gov/
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2. WORKFLOW

2.1. Tools: Python Ecosystem and
Neuroimaging Software Packages
With its FOSS dependency stack and its growing neuroimaging
community Python has been naturally the language of choice for
our package. The scientific Python libraries used inSammba-MRI
are NumPy (Oliphant, 2006), SciPy (Millman and Aivazis, 2011),
the neuroimaging data analysis tools nibabel4, Nilearn (Abraham
et al., 2014) and Nipype (Gorgolewski et al., 2011). Visualization
functionality depends on Matplotlib (Hunter, 2007) or Graphviz
(Gansner and North, 2000), but neither is required to perform
MRI data processing.

Via Nipype, we utilize basic MRI preprocessing functions
from AFNI (Cox, 1996), FSL (Jenkinson et al., 2012) and ANTs
(Avants et al., 2009) packages. The dependency on the efficient
but non open-source brain segmentation RATs tool (Oguz et al.,
2014) is optional.

More specifically, Sammba-MRI and the examples provided
in its manual depends on the following libraries: Nipype ≥ 1.0.4;
Nilearn ≥ 0.4.0; Numpy ≥ 1.14; SciPy ≥ 0.19; Nibabel ≥ 2.0.2;
Sklearn ≥ 0.19; matplotlib ≥ 1.5.1; nose ≥ 1.2.1; doctest-ignore-
unicode; DICOM ToolKit package as well as FSL (version 5.0),
AFNI, ANTs, and RATS.

2.2. Code Design
Sammba-MRI is developed within GitHub development
platform5. Coding guidelines follow the model of Nilearn and
other successfully adopted packages (e.g., Scikit-learn Pedregosa
et al., 2011) to make the codebase understandable and easily
maintainable6. Objects are used with parsimony: the different
registration classes share all the same interface, and the brain
extraction classes comply to the Nipype BaseInterface.

Effort is made to keep the code uniformly formatted and
to use consistent naming for the functions and parameters
following the coding conventions of Nilearn. Preprocessing
building blocks and pipelines are automatically tested on light
MRI data samples to ensure code quality. Finally, the user is
guided through Sammba-MRI with extensive documentation
including installation instructions, application programming
interface (API) reference, pipeline graphs, and practical examples
based on publicly available small animal neuroimaging datasets.

An overview of the modules used to manipulate images is
presented in Figure 1. These modules are implemented either
as “stand-alone” (i.e., bias_correction) or as ready-to-use
pipelines (i.e., TemplateRegistrator).

2.3. DICOM to NIfTI Conversion
Sammba-MRI allows to convert Bruker DICOM (digital
imaging and communications in medicine) files to the standard
Neuroimaging Informatics Technology Initiative format
(NIfTI-1) and extracts extensive information using DCMTK
package (Eichelberg et al., 2004). Bruker files conversion is an
active development field, with various available tools handling

4https://nipy.org/nibabel/
5https://github.com/sammba-mri/sammba-mri
6http://gael-varoquaux.info/programming/software-design-for-maintainability.

html

DICOM (e.g., dicomifier7) or not (e.g., bru2nii8, Bruker2nifti9,
bruker2nifti10). Finally, ParaVision 360 with the latest patch
1.1 can export the NIFTI format since February 2019. Our
implementation is meant to be a light helper function, allowing
to handle the conversion on the fly. It has been tested only for
Paravision 6 and a limited number of imaging sequences.

2.4. Bias Field Correction
Intensity non-uniformity modeling is essential in preclinical
studies because the intensity gradient corrupting MR images
becomes particularly pronounced at high field strengths (Boyes
et al., 2008). Sammba-MRI relies on AFNI’s 3dUnifize
to correct for intensity bias in anatomical images, and on
N4BiasFieldCorrection function of the ANTs package
(Tustison et al., 2010) for the other modalities. 3dUnifize
is also used to aid brain extraction, as detailed in the
following paragraph.

2.5. Skull-Stripping
Skull-stripping is a critical early step in processing MR images
from small animals. Various automatic rodent-specific softwares
(Chou et al., 2011; Oguz et al., 2014) or adaptations of
human algorithms (Wood et al., 2013; AFNI’s 3dskullstrip -
rat) are freely available for research purposes. We choose
to rely on the LOGISMOS-based graph segmentation (Yin
et al., 2010) based on grayscale mathematical morphology
RATS software (Oguz et al., 2014) because of its good
performance across a wide range of datasets (Sargolzaei et al.,
2018). An alternative to the free but non-open source RATS
tool is also available, based on an adaptation of the human
histogram-based brain extraction method of Nilearn. This
method can be used in any pipeline by setting the parameter
use_rats_tool to False. Because intensity inhomogeneity
can hamper the performance of automatic skull-stripping,
prior bias field correction is usually recommended (Sled
et al., 1998) and is performed by default with 3dUnifize.
The helper function brain_segmentation_report from
Sammba-MRI segmentation module allows to efficiently
tune the initial intensity threshold used in bias correction by
producing for a given set of thresholds 5 informative measures
characterizing the extracted mask to bypass time consuming
repetitive visual checks. The returned features consist of the total
volume of the extractedmask, its anteroposterior length, its right-
left width, and its inferior-superior height as well as the sample
Pearson’s product-moment correlation coefficient between the
brain mask image and its reflection with respect to the estimated
mid-sagittal plane (Powell et al., 2016).

2.6. Registrations
Several registration algorithms are implemented within
Sammba-MRI. First, rigid-body registration can be performed
to roughly align individual images from the same modality
or from different modalities. It minimizes normalized mutual
information between brain extracted images. This registration

7https://github.com/lamyj/dicomifier
8https://github.com/neurolabusc/Bru2Nii
9https://github.com/CristinaChavarrias/Bruker2nifti
10https://github.com/SebastianoF/bruker2nifti
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FIGURE 1 | Sammba-MRI workflow. Anatomical, functional, or perfusion images are imported from MRI local scanners or databases. They are analyzed using

different preprocessing, segmentation and registration modules. Each function (green) and python-scripts (red) of Sammba-MRI are presented. Library dependencies

are specified with color codes.

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2020 | Volume 14 | Article 2494

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Celestine et al. Sammba-MRI

is finally estimated and applied to the whole head images.
Second, linear registration estimates linear transforms between
a source image and a reference image. It relies on AFNI’s
3dAllineate function. Linear registration is more efficient when
performed on brain-extracted rather than on whole head
images. Third, non-linear registration (piecewise polynomial C1

diffeomorphism) between a source image and a reference image
can also performed. It relies on AFNI’s 3dQwarp and iterations
toward patch size reduction until a maximum refinement “level”
is reached. Unlike linear registration, it is more efficient when
computed using whole head images.

2.6.1. Group-Wise Registration and Study-Template
Group-wise registration aims to align all images from different
animals within a common space, resulting in an average brain
(study template) that represents the commonalities among
individual brain anatomies of a particular population. Using a
study template eliminates possible bias toward external features
and improves subsequent analyses (De Feo and Giove, 2019).
Sammba-MRI implements the multi-level, iterative scheme
proposed by Kovačević et al. (2005) to create a fine anatomical
template from individual anatomical MRI scans. A first rough
template is obtained by averaging bias corrected head images
centered on their respective brain mask centroids. Then the
individual images are registered to this template. This process
of successive averaging/registration is iterated while increasing
the number of degrees of freedom of the estimated transform
and updating the target template (see Nadkarni et al., 2019 for
a detailed description of the pipeline).

2.6.2. Inter-Modality Registration
Several multimodal images can be recorded from a single animal,
including structural imaging with different contrasts, blood-
oxygenation-level-dependent (BOLD) and arterial spin labeling
(ASL) MRI. BOLD imaging is largely used to investigate brain
function in response to specific tasks or in the absence of explicit
tasks (i.e., in resting state conditions) (Glover, 2011). ASL is
an attractive method to image the vascular system by directly
measuring blood flow (Kober et al., 2008).

In addition to the inherent difficulties in intermodality
registration (Ashburner and Friston, 1997), severe image artifacts
can corrupt BOLD or ASL scans resulting in a low signal-
to-noise ratio (SNR). For instance, the echo planar imaging
(EPI) technique widely used in functional and perfusion imaging
suffers from non-linear geometric and intensity distortions
caused by static magnetic field inhomogeneity that worsen at
higher field strengths (Hong et al., 2015).

Thus a specific module called _coregister_epi was
developed to register anatomical and EPI scans from individual
animals. Anatomical images are first reoriented to match EPI
images. Next, the reoriented anatomical images and the EPI scans
are split into 2D slices along the z-direction (according to the slice
geometry of EPI). Each EPI slice then undergoes a non-linear
registration to match the corresponding anatomical slice. This
per-slice registration corrects for EPI distortion while being more
conservative than a global 3D non-linear registration.

3. PIPELINES

Sammba-MRI proposes two ready-to-use pipelines to perform
spatial registrations to a population or standard reference
template as well as inter-modalities registration between
anatomical, functional, or perfusion images. These pipelines have
been tested throughout the different stages of their development
process on various datasets from mice, rats and mouse lemurs
and used in several publications from our lab (Garin et al.,
2018, 2019; Nadkarni et al., 2019). The two pipelines are called
Coregistrator and TemplateRegistrator.

All pipelines start with bias field correction for the individual
images, involve skull-stripping and specific registration
algorithms depending on image modality.

3.1. Registration Between Anatomical
Images and Another
Modality:Coregistrator
Intra-subject registration between an anatomical scan
and another modality (BOLD or ASL) is handled in the
individual space through the Coregistrator class from the
registrationmodule (Figure 2).

from sammba.registration import
Coregistrator

coregistrator = Coregistrator(
brain volume=400)

Multimodal processing slightly differs between modality.
Thus, user can choose modality of interest and the critical
parameters that lead to the best registration.

BOLD scans are preprocessed using the same usual steps
for human data with optional slice timing correction, bias field
correction, realignment to the first volume and computation
of the temporal mean of all the volumes. The corresponding
structural scan is then registered to the average BOLD scan. Since
this is a critical step, the user can choose either to pursue with
human-like pipeline by estimating a rigid body functional-to-
structural transform and applying its inverse to the structural
image, or to assume that the head motion between the two
scans is negligible. In all cases, it is better to only reorient the
anatomical image to match the modality of interest. Finally, per-
slice-based registration is performed as described in section 2.6.2.

coregistrator.fit_anat(
'mouse01_t1.nii.gz')

coregistrator.fit_modality(
'mouse01_t2.nii.gz',
'func',
slice_timing=True ,
reorient_only=True)

Sammba-MRI was also designed to analyse ASL scans
to perform perfusion measures. This analysis relies
on Bruker-FAIR (Flow-sensitive Alternating Inversion
Recovery) EPI sequences. Quantitative CBF maps are first
estimated using perf_fair_nii_proc function from
the modality_processor module. Then Sammba-MRI
allows to preprocess functional ASL scans with the equilibrium
magnetization maps (M0) used as the representative volume for
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FIGURE 2 | Sammba-MRI pipelines. Color box represents spaces in which individual images are registered. Registration between individual modalities is performed

by Coregistrator class (green arrow). Registration of individual modality images to a reference standard template space is performed by TemplateRegistrator class

(blue arrow).

registration. The M0 volume is aligned to the anatomical, first
with a rigid body registration and then on a per-slice basis.

coregistrator.fit_anat(
'mouse01_t1.nii.gz')

coregistrator.fit_modality(
'mouse01_t2.nii.gz',
'perf',
reorient_only=True)

3.2. Template-Based Multi-Modal
Processing: TemplateRegistrator
Multimodal images (anatomical, functional, or perfusion
MRI) can be handled in the template space through the
TemplateRegistrator class. This pipeline matches
individual images to a reference template, a necessary step for
group studies (Figure 2).

3.2.1. Template Matching
Sammba-MRI proposes to download reference templates both
for mouse and rat brains. The user needs to specify the path to the
template of his choice to the TemplateRegistrator class
from the registrationmodule.

from sammba.registration import
TemplateRegistrator
registrator=TemplateRegistrator(
'dorr_t2.nii.gz' ,
brain_volume=400)
registrator.fit('mouse01_t1.nii.gz')

3.2.2. BOLD and ASL Preprocessing
BOLD and ASL preprocessing can also be performed
in template space with TemplateRegistrator. The

structural-to-template warp, the functional-to-structural rigid
body transform and the perslice functional-to-structural warps
are combined and applied in a one-big-step transformation
to the functional data to minimize interpolation errors.
The TemplateRegistrator class encompasses an
inverse_transform_towards_modality method to
bring an image from the reference space to the individual’s space.

4. RESULTS

Sammba-MRI is available through the GitHub platform11 and
was tested using different image datasets.

4.1. Group-Wise Registration, Registration
of Anatomical Images to a Common
Space, and Template Creation
First, we evaluated group-wise registration and template creation
using a dataset of in vivo T2-weighted images of 10 Sprague-
Dawley rat brains (Lancelot et al., 2014). The scans were acquired
using a 7.0 T Bruker scanner at 100 × 100 × 500 µm resolution
using 30 different slices. We used anats_to_common to
register images from the different animals and create a group
average template (Figure 3).

For comparison purposes, the registration between images
from each animal was also performed using algorithms from
SPM812 with the SPMMouse toolbox13 (Sawiak et al., 2009),
a reference method for image-registrations. The brain images
were segmented into gray (GM) and white matter (WM) tissue

11https://sammba-mri.github.io/introduction.html#installation
12www.fil.ion.ucl.ac.uk/spm
13http://spmmouse.org
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FIGURE 3 | Rat templates issued from Sammba-MRI (A) or SPM-based (B)

registrations. These templates were calculated from anatomical images of 10

animals. Visual observation suggests similar quality of the two templates.

FIGURE 4 | Mouse lemur template from 34 animals. Coronal section of the

mouse lemur MRI template (level of hippocampus).

probability maps using locally developed priors, then spatially
transformed to a standard space. Priors were based on 100
× 100 × 100 µm resolution images and 134 slices. Affine
regularization was set for an average-sized template, with a bias
non-uniformity FWHM cut off of 10mm, a 5mm basis-function
cut off and sampling distance of 0.3 mm. The resulting GM and
WM portions were output in rigid template space, and DARTEL
(Ashburner, 2007) was used to create non-linearly registered
maps for each animal and common templates for the cohort
of animals. The deformation fields were applied to the MR
images of each animal and the resulting images were averaged
to create a template. Figure 3 shows the template obtained with
SPM/Dartel. No obvious difference could be identified between
the two templates.

Sammba-MRI adapts to different small animal species.
Figure 4 shows a template of mouse lemurs as another example
(Nadkarni et al., 2018).

4.2. Validation of Template Matching
The Sprague-Dawley dataset is associated to brain segmentations
into 28 regions for each animal (Lancelot et al., 2014). It also
includes a study-template and an atlas based on segmentation of
this template into 28 regions. Each image of the 12 individual
animal was registered to the template using Sammba-MRI
and the deformation fields were applied to the segmented
images of each animal. We then measured the regional
overlap between each region of the transformed atlases of each
animal and the template-segmentation using Dice similarity

coefficient (2 |A∩B|
|A|+|B| ).

FIGURE 5 | Dice coefficients obtained after registering individual images to a

rat brain templates with Sammba-MRI and SPM/Dartel. (Top) Comparisons

showing 27 brains regions. Bars represents standard error of the mean.

(Bottom) Individual measures for four different brain regions.

The deformation fields calculated with SPM were also
applied to the MR and segmented images of each animal.
We also measured the regional overlap between each
region of the SPM-transformed segmentations of each
animal and the template-segmentation also using Dice
similarity coefficient.

Figure 5 shows that Dice coefficients obtained with Sammba-
MRI were highly correlated with those obtained using SPM
mouse and outperformed those of SPM in several cases (points
above the line). Regions with lower Dice values correspond
to ventricles.

4.3. fMRI and Perfusion Modalities
Resting state fMRI allows to study temporally synchronized
BOLD oscillations reflecting functionally connected brain
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FIGURE 6 | ICA bilateral components. IC 1: Barrel field (i) cortex, IC 5: Lateral striatum, IC 9: Dorsal striatum (i), IC 10: Visual cortex, IC1 3: Hippocampus, IC 16:

Dorsal striatum (ii), IC 17: Barrel field (ii) cortex, IC 21: Ventral striatum, IC 26: Supplementary cortex.

networks. As in human resting state fMRI, spatial networks
can be extracted using Independent Components Analysis
(ICA) (Zerbi et al., 2015; Grandjean et al., 2020). We
preprocessed the publicly shared functional data from 15
mice (2–3 months old) from (Zerbi et al., 2015) paper with
Sammba-MRI and performed a group ICA (Varoquaux et al.,
2010) with 30 components. Relevant bilateral regions related
to somatosensory, hippocampal, visual, basal ganglia, and

sensorimotor networks were obtained without additional data
post-processing (Figure 6).

To illustrate the perfusion processing pipeline, we used
perfusion FAIR images from 30 C57BL/6J mice (6–8 months)
to quantify CBF. Figure 7 shows regional absolute CBF values.
Perfusion values of 152±22 and 143±26 ml/100g/min in the
hippocampus and temporal cortex, respectively. These values
are lower than those reported by Kober et al. (208±20 and
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FIGURE 7 | CBF from 30 C57BL/6J mice. Boxplot shows median,

interquartile range, upper and lower adjacent values for six brain region. Each

dot represents regional CBF in ml/100g/min from one animal.

243±35 ml/100g/min in the hippocampus and cortex) with FAIR
method (Kober et al., 2008). They are higher than those (118±6
ml/100g/min in the cortex) reported with the same method by
(Zheng et al., 2010).

5. BIG DATA, REPRODUCIBILITY,
COLLABORATION

The package design facilitates big data exploration: the user
is able to run an entire analysis in a single Python script.
Rerunning pipelines are optimized through Nipype caching
mechanism and long lasting steps (non-linear warping, perfusion
fitting) are executed in parallel. We believe that reproducibility
in the neuroimaging field is not possible without making
the acquired images and the preprocessing code available to
the community. For this reason, Sammba-MRI promotes the
sharing of MRI data by providing utility functions to download
public small animal brain MRI datasets and relies on it for
demonstrating the package capabilities. In order to encourage
external contributions, our library source code is hosted on
the open collaborative GitHub platform and distributed under
the CeCILL v2.1 license, a FOSS license adapted to both
international and French legal matters allowing anyone to make
changes and redistribute it. Sammba-MRI supports GNU/Linux
and Mac OS X operating systems (OS), used by over 70% of
neuroimagers (Hanke and Halchenko, 2011). So far, Sammba-
MRI is designed for advanced users but documentation is
provided to help novices.

6. CONCLUSION

By efficiently combining different existing human and animal
neuroimaging tools, Sammba-MRI allows to tackle common
processing issues in a fully automated fashion. High quality
spatial registration can be easily performed, including template
matching, between modalities registration as well as the creation
of cohort-specific templates. Sammba-MRI also implements
functional and perfusion MRI preprocessing methods and
cerebral blood flow estimation for FAIR perfusion images.
Emphasis is put on code readability and ease of use to favor
contributions from the community.
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With recent technological advances in microscopy and image acquisition of tissue
sections, further developments of tools are required for viewing, transforming, and
analyzing the ever-increasing amounts of high-resolution data produced. In the field of
neuroscience, histological images of whole rodent brain sections are commonly used
for investigating brain connections as well as cellular and molecular organization in
the normal and diseased brain, but present a problem for the typical neuroscientist
with no or limited programming experience in terms of the pre- and post-processing
steps needed for analysis. To meet this need we have designed Nutil, an open access
and stand-alone executable software that enables automated transformations, post-
processing, and analyses of 2D section images using multi-core processing (OpenMP).
The software is written in C++ for efficiency, and provides the user with a clean and easy
graphical user interface for specifying the input and output parameters. Nutil currently
contains four separate tools: (1) A transformation toolchain named “Transform” that
allows for rotation, mirroring and scaling, resizing, and renaming of very large tiled tiff
images. (2) “TiffCreator” enables the generation of tiled TIFF images from other image
formats such as PNG and JPEG. (3) A “Resize” tool completes the preprocessing
toolset and allows downscaling of PNG and JPEG images with output in PNG format.
(4) The fourth tool is a post-processing method called “Quantifier” that enables the
quantification of segmented objects in the context of regions defined by brain atlas
maps generated with the QuickNII software based on a 3D reference atlas (mouse
or rat). The output consists of a set of report files, point cloud coordinate files for
visualization in reference atlas space, and reference atlas images superimposed with
color-coded objects. The Nutil software is made available by the Human Brain Project
(https://www.humanbrainproject.eu) at https://www.nitrc.org/projects/nutil/.

Keywords: image processing, rodent atlas, brain, QuickNII, QUINT, workflow

INTRODUCTION

The process of changing data from one “raw” format to another to make the data suitable for
analysis – often referred to as data wrangling or data transformation – is generally required
when employing standardized analytical pipelines. A common example is the pre-processing of
magnetic resonance data, involving a set of operations to “clean” the raw images before they can
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be analyzed and interpreted. In basic neuroscience, two-
dimensional (2D) images depicting rodent histological brain
sections are typical output of animal model studies designed
to investigate brain structure, function, and disease. Large
series of these images, generated with a broad repertoire
of experimental techniques, serve as the starting point for
quantification and mapping of features such as the distribution
of molecules, presence of particular cell types, or connections
between anatomical regions. The images commonly require
transformation prior to analysis, but due to the sheer size and
number of image files, transformations are difficult to execute and
replicate for biological researchers with limited coding ability.
Typically, researchers need access to technology packages such
as Adobe PhotoshopTM, GIMP1, or NIH ImageJ (Schneider et al.,
2012), but these all have their own limitations such as file
size restrictions or lack of parallel processing support. Some
basic scripting ability and access to data analysis software such
as ImageMagick (The ImageMagick Development Team, 2020),
R (Chambers, 2008) or Matlab (MATLAB, 2010) are useful.
However, even with these tools and skills, transformations can be
time consuming when applied to hundreds of images for whole
brain comparative studies.

With image pre-processing required for most analytic
pipelines (Yates et al., 2019), there is a need for access
to user-friendly tools that can perform the most commonly
required transformations. Furthermore, for brain microscopy
data, researchers typically endeavor to spatially analyze features
in the images by sorting outputs according to anatomical brain
region. In light of published 3D reference atlases for mouse
and rat brains (Lein et al., 2007; Oh et al., 2014; Papp et al.,
2014; Kjonigsen et al., 2015), and software for generating brain
atlas maps that are customized to match the proportions and
cutting plane of the sections (Puchades et al., 2019), we have
created a pre- and post-processing toolbox for histological brain
section images that aims to meet both these needs. An early beta
version of the tool was an integral part of the QUINT workflow
for quantification and spatial analysis of labeling in rodent
brain sections (Yates et al., 2019), see https://www.youtube.
com/watch?v=yPkAbSfla_c. Nutil has since been expanded and
improved considerably with the present manuscript describing
the full range of Nutil functionalities. Based on feedback
from our users, we have implemented a proper graphical
user interface (GUI) for entering analysis parameters and for
selecting different options like i.e., object splitting or customized
atlas regions. Nutil can also be used independently of the
QUINT workflow to preprocess images in preparation for other
downstream processes. It enables automated transformations
such as rotation and scaling, cropping, resizing, and renaming;
in addition to analytical post-processing of segmentations that
are generated from the brain section images, based on input
from customized reference atlas maps (Figure 1). Nutil is
designed specifically for operations on very large images and is
therefore optimized for speed, memory usage and parallelization.
The toolbox is intended for use in combination with one
of the open source image analysis tools that are currently

1www.gimp.org

available, e.g., NIH ImageJ (Schneider et al., 2012) or ilastik
(Berg et al., 2019).

OVERVIEW OF FUNCTIONALITY

Nutil aims to both simplify and streamline the mechanism of
pre-and-post processing 2D brain image data. Nutil is developed
as a stand-alone application for Windows with a GUI requiring
little-to-no experience to execute. The user specifies the input
and output parameters for the operations in a template in the
GUI, which is saved as a text file (in.NUT format) prior to
initiating the operation. Pre-processing operations include 2D
transformations of extremely large tiled TIFF files (rotation,
flipping, and scaling), in addition to renaming, copying, and
downsizing (Transform). The tiled TIFF format was selected for
the Transform operation as it allows for optimal memory usage,
as well as being an output file type of microscope scanners. Some
users may need to convert their images to tiled TIFF format to
enable transformation with Nutil Transform, and so an image
format converter (JPEG/PNG to tiled TIFF format) is included in
the Nutil software (TiffCreator). To complete the set, Nutil also
includes a resizing operation (Resize) that enables downscaling
of PNG and JPEG images to PNG format. Post-processing with
Nutil (Quantifier) is based on analysis of segmented images in
the context of brain regions defined by a 3D reference atlas such
as the Allen Adult Mouse brain reference atlas (Lein et al., 2007;
Oh et al., 2014) or the Waxholm Space Atlas of the Sprague
Dawley rat brain (Papp et al., 2014; Kjonigsen et al., 2015; Osen
et al., 2019). All functions operate in batch mode, and operate in
parallel on multiple CPUs.

Transform
The Nutil Transform function is seemingly straight-forward,
since in reality it only applies a generic 2D TSR (Translation,
Scaling, and Rotation) matrix to an image. However, due to the
sheer size of the image files to be transformed, Nutil has been
designed with several optimization methods to prevent memory
problems and to increase execution speed. For example, a single
image of size 70,000 × 50,000 pixels takes up almost 10 GB of
memory, with a need for additional copies to be stored in memory
during rotation. Even worse, if the user were to perform eight
transformations on multiple cores, the amount of RAM required
would exceed 160 GB.

In order to solve the memory problem, Nutil Transform
(rotate, flipping, and renaming) operates on tiled TIFF files
only, with a separate TiffCreator tool included for converting
JPEG/PNG images to the required tiled TIFF format. Tiled TIFF
files are effectively compressed (JPEG/LZW) folders of smaller-
sized images (tiles) that collectively make up the entire image.
By operating (loading/releasing) on these tiles instead of an
entire image, memory consumption is greatly reduced; however,
this comes at the expense of increased code complexity, with
a requirement to keep track of/sort stacks of recently used
tiles. To enhance execution speed, Nutil is written in C++,
which is highly optimized for low-level execution of memory-
intensive parallel code.
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FIGURE 1 | The QUINT workflow utilizes three software tools to extract, quantify and spatially analyze labeled features in series of images of histological mouse or rat
brain sections. Initially, the Nutil Transform operation is used to correct the orientation and serial order of the images, to rename the files, and to downscale the
images. The images are then registered to a reference atlas with QuickNII, and segmented with an image analysis software such as ilastik. The atlas maps and
segmentations are post-processed with Nutil Quantifier to extract quantifications per atlas region and coordinates for visualization in reference atlas space. Image
Credit for 2D section images: Allen Institute.

Nutil performs two kinds of downsampling of TIFF
images: original scanner images that are large (usually around
30,000 × 18,000 and up to 80,000 × 70,000 pixels) to about
1–25% of the original area, and original images to very small
thumbnails. Nutil does not currently support any form of
antialiasing when downsampling TIFF images, only pointwise
sampling. In its most basic form, single pixels are selected as
representative for the area. Supplementary File 1 summarizes
Nutil operating times for image transformations in batch mode
on several platforms.

Pseudocode Block
1. Read input list of files with their corresponding 2D

transform parameters.
2. For each input file, verify that parameters are correct and

image files exist.
3. For each file (in separate threads) do:

a. Open the input TIFF file, verify that it is indeed tiled.
b. Calculate new file resolution and boundaries – rotating

an image will alter the resolution.
c. Perform 2D transformation on each separate tile,

keep an optimized list of recently accessed tiles for
speed improvements. Also, simultaneously calculate
new bounding boxes for the rotated image (auto-
cropping step).

d. Save the rotated image to a temporary file,
close file handle.

e. Create a new file with auto-cropped boundaries
calculated in (c) and start copying from the temporary
file to the final image.

f. If the thumbnails creation option is toggled, open the
finished auto-cropped image and downsize it. Save as

a.png (or.jpg) in a separate thumbnail folder. No anti-
aliasing step is performed here.

TiffCreator
Even though the tiled TIFF format is useful, very few image
services exist that are able to efficiently convert images to tiled
TIFF format. Standard image software such as GIMP and Adobe
Photoshop are certainly able to load tiled TIFFs (that are not
too large), but are unable to save them. The conversion tool
in ImageMagick can successfully create images, but require the
knowledge of command line parameters in addition to being
slow and non-parallelized. The Nutil TiffCreator function solves
this problem by producing tiled TIFF files from JPEG or PNG
images, and employs the support of multiple CPUs for efficient,
parallelized operations. TiffCreator lets the user specify the input
directory containing JPEG/PNG files and the output directory, in
addition to some TIFF-specific parameters (size of sub-tiles, etc.).

Pseudocode Block
1. Read input directory and create a list of all image files.
2. For each file in the list

a. Load the image
b. Convert to a tiled TIFF format
c. Save the tiled TIFF

Resize
The Nutil Resize operation is a helpful post processing operation
that allows the user to downscale PNG and JPEG files in bulk.
An input directory, output directory, compression type and resize
factor are specified in the GUI, and the program automatically
identifies and transforms all files from the source directory to
the target directory. The resize factor can be either a fixed-
width number or a percentage of the original size. Nutil does
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not currently support enlargement of images as this serves no
purpose in the context of histological image analysis. As with the
other operations in Nutil, Resize operates in parallel and utilizes
all (or as many as specified) cores on the system it is running.

Pseudocode Block
For each file in the list

1. Open the file
2. Resize the file (using either bilinear filtering or no filtering)
3. Save the file

Quantifier
Quantifier is a post processing operation for the extraction,
quantification and spatial analysis of labeling in 2D rodent
brain section images (for example, immunohistochemical
labeling). Nutil contains all the necessary label files for analysis
of features in the following atlases: Allen brain atlas Common
Coordinate Framework v3, 2015 and 2017 versions ( R©2004
Allen Institute for Brain Science. Allen Mouse Brain Atlas.
Available from: http://download.alleninstitute.org/informatics-
archive/current-release/mouse_ccf/annotation/) (Lein et al.,
2007; Oh et al., 2014) and the Waxholm Space Atlas of
the Sprague Dawley rat brain v2 and v3 (Available from:
https://www.nitrc.org/projects/whs-sd-atlas) (Papp et al., 2014;
Kjonigsen et al., 2015; Osen et al., 2019). To run Quantifier,
Nutil requires segmentations that are generated from the brain
section images, with the labeling of interest displayed in a unique
RGB color (Red Green Blue color model) and reference atlas
maps customized to match the proportions and cutting plane
of the sections (generated with the QuickNII software, available
from: https://www.nitrc.org/projects/quicknii) (Puchades et al.,
2019). Quantifications may be performed on the entire image
or in regions defined by masks. Nutil quantifies labeling in
each parcellated brain region, extracts spatial coordinates for
visualization in 3D reference atlas space, and generates output
including: reports (in CSV or HTML format), coordinates (in
JSON format), and reference atlas map images superimposed
with the extracted features that are color-coded according to
their assigned anatomical location (Yates et al., 2019).

Quantifier starts by applying a breadth-first search (BFS)
method to identify areas of interest in a series of images as
specified by colors defined in the Nutil GUI. This method
proceeds by separating foreground areas (of interest) from
background areas, before calculating various statistical measures
(area, centroid, shape). When this process is complete, Quantifier
continues by anchoring each identified object to a specific brain
region by looking up the individual pixel coordinates in the
anchoring map provided by the QuickNII output data. If an area
overlaps N regions of the brain, the area is either assigned to one
of the regions at random (with object splitting switched OFF) or
split into N distinct areas with IDs coupled to their respective
regions (with object splitting switched ON). In addition, various
filters can be applied such as minimum and maximum object
size, which are useful for removing noise. Functionality tailored
specifically for connectivity data has been implemented, with
support for masks to enable differentiation of connections in
the right and left hemispheres. The object splitting feature was

also implemented for connectivity data as connections typically
span multiple atlas regions. With object splitting switched ON
each object pixel is registered to its respective atlas region.
However, users will typically want to switch this feature OFF for
small objects such as cells, to enable accurate counting. Object
splitting invalidates the object counts as objects are split at
region boundaries.

The output results are assembled based on information
provided in the Nutil GUI, which includes the option to define
customized regions (ensembles of reference brain region IDs)
together with a name (“Cortex”) and color (“red”) (via an
Excel template; see Supplementary File 2). This enables the
user to constrain the output data to specific areas of the brain
(e.g., “Amygdala,”, “Hippocampus,” “Primary Somatosensory
Cortex”). Report outputs are written as a series of files in CSV
or HTML format containing report information per section, and
for all sections combined (global information), and are organized
first by all the regions listed in the relevant reference atlas (e.g.,
Allen adult mouse brain reference atlas) and second by the
optional user-defined custom regions. Moreover, Nutil generates
3D point clouds, colorized based on report specifications that
may be visualized in the online MeshView atlas viewer2. The point
clouds are exported in a simple JSON-formatted text file that is
compatible with Python, containing a raw list of 3D coordinates
collected together with color-coding based on the input report.
Support for specifying the required point cloud density has been
implemented to enable the extraction of coordinates for datasets
with very large objects (such as those typical of connectivity
data, where a user may, for example, request extraction of one
coordinate per 5th object pixel).

Pseudocode Block
1. For each input file, verify that parameters are correct and

that the files in the file list exist.
2. Create output directories.
3. For each slice (in separate threads) do:
4. Open segmented image.
5. Apply masks, calculate some statistics.
6. Perform a breadth-first algorithm that counts the number

of areas, and place them into an object list.
7. Open the corresponding atlas slice and assign each area to

a unique atlas ID.
8. Calculate various area statistics.
9. Create a visual.png file by merging the segmented image

file with the atlas image file, and add label text and colors to
the identified areas.

10. When all threads have completed, combine areas into
one object and calculate both individual slice and
global statistics.

11. Write reports:
12. Individual slice reports.
13. Combined area reports.
14. Write 3D data (perform an inverse matrix operation to get

back to atlas space).
15. Clean up memory and temporary files.

2https://www.nitrc.org/projects/meshview
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TECHNICAL SPECIFICATIONS

Nutil is written in C++ using standard Qt3 libraries, and is
optimized for parallel operations on multiple CPUs. Nutil is
downloaded as a zip archive file and can be extracted and
run anywhere on the computer. No installation executable is
necessary, and the directory can be moved around the file system
as required. Settings data are stored in the local program folder.
Nutil does not currently utilize any GPU extensions. The external
libraries that are used in Nutil are:

1. Libtiff for fast and efficient TIFF file handling4

2. LibXLNT for Excel file I/O5

Hosting and Updates
Nutil is available from two locations:

1. Windows binaries (no installer required): https://www.
nitrc.org/projects/nutil/

2. Source code: https://github.com/leuat/nutil/

Hardware Requirements
Nutil is a stand-alone program that can be executed on either
a server, desktop or laptop computer. Nutil will employ all the
cores that are available to your current system. While there
are no specific hardware limitations, the processing time is
dependent on the system’s compute power. The more cores and
memory you have available, the faster the operations will be
performed. However, running Nutil on a single-core laptop is
also possible. This way, we allow the user to not be constrained
by any hardware restrictions, as Nutil should be able to run on
almost any computer.

USE CASES

Use Case Material
Three mouse brain image series were exported from the Allen
Brain Atlas Data Portal with a Python script. The images
were exported in JPEG format, and served as the test series
for the TiffCreator, Transform, and Quantifier functions. The
first series (use case A) included 20 sagittal mouse brain
sections from the left hemisphere labeled for parvalbumin by
in situ hybridization, and may be viewed here: http://mouse.
brain-map.org/experiment/show/75457579 (Specimen 06-0419,
Probe RP_060523_03_E07; R©2004 Allen Institute for Brain
Science). The second in situ hybridization series (use case B)
include 57 coronal sections labeled for parvalbumin6 (Specimen
335-1125, Probe 071204_01_E06; R©2004 Allen Institute for
Brain Science. Allen Mouse Brain Atlas. Available from:
mouse.brain-map.org) (Lein et al., 2007; Oh et al., 2014).
The third series (use case C) was a connectivity dataset

3https://www.qt.io/
4http://www.libtiff.org/
5https://github.com/tfussell/xlnt/
6http://mouse.brain-map.org/experiment/show/79556738

displaying projections from the primary somatosensory mouth
area. Nine images were selected for the use case and can
be viewed here: https://connectivity.brain-map.org/projection/
experiment/112936582 (Mouse strain: C57BL/6J, Tracer type:
EGFP; R©2011 Allen Institute for Brain Science. Allen Mouse Brain
Connectivity Atlas).

TiffCreator and Transform
TiffCreator enables batch conversion of JPEG/PNG images to
the tiled TIFF format that is compatible with the Transform
function. Transform then allows the user to perform a variety
of image pre-processing steps such as scaling, rotation, and
renaming, which are prerequisites for analysis by the method
described in the other use cases (illustrated in Figure 2), but
also for analysis by other means. For both TiffCreator and
Transform, all the input and output parameters were entered in
the Nutil GUI, and the desired operation run in batch mode.
As Nutil Transform operates on tiled TIFF images only, the first
operation for all the use cases was to convert the JPEG images
to tiled TIFF using TiffCreator. Next, Transform was used to
rename the files – to make them compatible with QuickNII and
Nutil Quantifier – and to create the thumbnails required for
registration to reference atlas space. As the images were well-
organized and small in size, conversion from tiled TIFF to PNG
was the only additional step required before segmentation with
ilastik (Berg et al., 2019).

Note that all Nutil Transform operations – such as rotation,
scaling and thumbnail creation – may be implemented in one
process or separately. The thumbnail feature is particularly
useful for visualizing the result of a transformation without
having to open large images, as it allows the application of a
resize factor with image export in PNG format, in addition to
export of the original size transformed images. For rotation,
the user may choose any angle and define the background
color (i.e., black or white) in the new image. The rotation
feature includes an auto-cropping function, which ensures the
removal of redundant pixels. The Nutil GUI has an inbuilt
user manual, accessible via help buttons. A user manual is
also part of the Nutil software package and will be updated
with new releases.

Quantifier: In situ Hybridization Dataset
(Use Cases A and B)
Quantifier allows the quantification and spatial analysis of
labeling in series of mouse or rat brain section images based
on input from segmentations and customized atlas maps, both
generated from the section images (Figure 3). Quantifier was
used to extract, quantify and assign anatomical location to
parvalbumin positive cells that were extracted from the image
series that is described in section “Use Case Material”. The
images were pre-processed with Nutil TiffCreator and Transform
as described above. For the sagittal parvalbumin example,
derived input files (customized atlas maps and segmentations)
and output files (Csv reports, point cloud, and atlas map
images with superimposed features) are available for download

Frontiers in Neuroinformatics | www.frontiersin.org 5 August 2020 | Volume 14 | Article 37105

https://www.nitrc.org/projects/nutil/
https://www.nitrc.org/projects/nutil/
https://github.com/leuat/nutil/
http://mouse.brain-map.org/experiment/show/75457579
http://mouse.brain-map.org/experiment/show/75457579
mouse.brain-map.org
https://www.qt.io/
http://www.libtiff.org/
https://github.com/tfussell/xlnt/
http://mouse.brain-map.org/experiment/show/79556738
https://connectivity.brain-map.org/projection/experiment/112936582
https://connectivity.brain-map.org/projection/experiment/112936582
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-14-00037 August 20, 2020 Time: 20:10 # 6

Groeneboom et al. Nutil Image Processing Toolbox

FIGURE 2 | The Nutil Transform operation takes series of images as input, and outputs copies of the images that have been formatted based on parameters defined
by the user in the Nutil GUI. Nutil Transform includes the option to rotate and mirror, rename, crop, resize, and convert file type. Image Credit for 2D section images:
Allen Institute.

FIGURE 3 | The Nutil Quantifier operation takes atlas maps and segmentations as input, and outputs reports with quantifications per atlas region, atlas maps with
superimposed color-coded objects and point clouds for visualization in reference atlas space. The Nutil GUI supports specification of parameters such as color for
extraction, minimum and maximum object size, and coordinate file requirements. The GUI includes an in build user manual accessible via help buttons.

from the EBRAINS KnowledgeGraph database (DOI: 10.25493/
6DYS-M3W)7.

7https://kg.ebrains.eu/search/instances/Dataset/8e8ac473-08fc-4510-bf81-
e6d94c9c15d6

To generate the atlas maps, the mouse brain section images
were registered to Allen Adult Mouse Brain Reference Atlas
space (Common Coordinate Framework version 3, 2015) with
the QuickNII software version 2.1 (Available from: https://www.
nitrc.org/projects/quicknii) (Figure 3, Input 1). In a parallel
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FIGURE 4 | By processing several image series with the QUINT workflow, point clouds representing labeled features can be covisualized in reference atlas space
allowing comparisons of expression patterns. Here, parvalbumin positive cells are extracted from two mouse brain section series: one cut in the sagittal plane (A)
and the other in the coronal plane (B). The cells are covisualized in Allen Adult Mouse Brain Reference atlas space with the MeshView atlas viewer. Likewise, the
connectivity use case (C) displays projections from the primary somatosensory mouth area, labeling in all brain areas is quantified and visualized in 3D with
differential color coding dependent on the brain region (neocortex, red; corpus callosum, pink; striatum, black). Image Credit for 2D section images: Allen Institute.
Series: http://mouse.brain-map.org/experiment/show/75457579, http://mouse.brain-map.org/experiment/show/79556738,
https://connectivity.brain-map.org/projection/experiment/112936582.

procedure, the section images were classified with the Pixel
Classification workflow in the ilastik software to identify the
parvalbumin positive cells (version 1.3.2rc1; available from:
https://www.ilastik.org). Segmentations were generated in PNG
format, with RGB color value (0, 0, 0) (black) applied to the class
representing the positive cells (Figure 3, Input 2). The Quantifier
template in the Nutil GUI was populated with the input and
output directories, as well as parameters such as minimum
and maximum object size and coordinate file requirements.
Object splitting was switched OFF. Quantifier was subsequently
applied to all the images in batch mode. The point cloud was
visualized with the MeshView Atlas Viewer (AMBA version 3
2015, available from: https://www.nitrc.org/projects/meshview).
The same procedure was repeated for use case B, and the datasets
were co-visualized in 3D (Figure 4). The processing of the dataset
with Nutil Quantifier on a standard laptop with 2 to 4 cores and
16 GB of memory took less than 10 min, including selection of
the files and analysis parameters in the GUI interface.

Quantifier: Connectivity Dataset (Use
Case C)
The connectivity dataset was preprocessed with Nutil Transform,
segmented with ilastik and registered to Allen Adult Mouse Brain
Reference Atlas space (Common Coordinate Framework version
3, 2015) with QuickNII in the same way as described for the
in situ hybridization datasets. The dataset was processed with

Nutil Quantifier with object splitting switched ON, with masks
to differentiate connections in the right and left hemisphere and
with a reduced point cloud density to enable visualization in
3D (Figure 4).

Quantifier Validation
To validate the use case output, we compared the results obtained
with Nutil Quantifier for the in situ hybridization dataset with
the raw expression values provided by the Allen Brain Institute
for the same dataset and brain regions. Despite considerable
differences in quantification methods (Bohland et al., 2010) and
minor differences in the atlas registration, the outputs were
comparable as demonstrated in Supplementary File 3.

A proper validation of Nutil Quantifier was done with a
synthetic dataset of two sections, each with a set number of
objects of known size (in pixels) and anatomical location. This
dataset confirms that the quantification data delivered by Nutil
Quantifier are correct (Supplementary File 4). Further validation
is provided in Yates et al. (2019).

DISCUSSION

With the development of microscopes and scanners for whole
section imaging and volumetric data acquisition, scientists
are able to collect high-resolution images of different organs
including the brain. The sheer size of these images has
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necessitated the development of new software tools for viewing,
transforming and analyzing imaging data; but are typically only
available commercially, and often with restrictions in terms of
functionality that do not promote optimal analysis. For human
brains, methods for 2D image reconstruction from multiple
blocks have allowed researchers to conduct multimodal imaging
studies (Hashimoto et al., 2016). There are also some open-
access tools such as “HistoStitcher” (Chappelow et al., 2011)
that enable specific pre-processing operations like reassembly
of tissue fragments. Most pre-processing steps may be done
with scripts, many available online; however, for a neuroscientist
with limited programming experience, pre-processing can be
a slow and painful process. There is a need for open-access
tools that operate without the need for coding expertise
with functionality tailored specifically for series of histological
brain section images.

With Nutil, neuroscientists will find a user-friendly and
convenient tool, specifically designed with serial rodent brain
sections in mind. It enables image transformations in an
automated batch operation, making downstream image analysis
accessible to the wider community. In a separate post-processing
operation, Nutil allows the quantification and spatial analysis
of labeling in 2D image series of rodent brain sections, when
used in combination with QuickNII (Puchades et al., 2019) – an
open-access software for registering section images to reference
atlases – in addition to an image segmentation tool such as
NIH ImageJ (Schneider et al., 2012) or ilastik (Berg et al., 2019).
Several groups have developed custom codes and workflows
along the same lines, for the analysis of whole brain volumes
by registration to reference atlases. In a recent study, Kim
et al. (2017) used the 3D Allen mouse reference atlas (Lein
et al., 2007; Oh et al., 2014) for quantification of several
interneuronal types in serial two-photon tomography data. By
registering all datasets to the same reference space, they were
able to discover sex differences in specific atlas sub-regions.
Other studies rely on block-face photography (Vandenberghe
et al., 2016) or 3D reconstruction (Majka et al., 2012). Likewise,
Nutil has the potential to contribute to discoveries based on
histological experimental data without the need for 3D volumes
or 3D reconstruction. Several other groups have proposed tools
for analysis of 2D mouse brain section images, without the
need for 3D reconstruction (Furth et al., 2018; Xiong et al.,
2018); however, the requirement for coding knowledge restricts
the accessibility of these methods. The AIDAhisto tool enable
atlas based quantifications but lack multi-angle adjustment
(Pallast et al., 2019).

In contrast to the cited studies, Nutil Quantifier may be
applied to both mouse and rat brain data, as both mouse and
rat brain reference atlases are inbuilt in the Nutil software, with
QuickNII versions available for both species. Nutil Quantifier
supports quantification of both small objects such as cells,
typical of immunohistochemistry and in situ hybridization data,
and the exploration of large objects that span multiple atlas
regions, such as those typical of connectivity data. There is also
a feature for combining masks with the atlas maps, to allow
comparative analysis of right and left hemisphere expression.
As the TiffCreator, Transform, Resize, and Quantifier operations

run independently, TiffCreator, Transform, and Resize may be
used to process any type of image, and can be incorporated
into workflows that do not include the Quantifier operation.
However, the pre-processing package is ideally suited for use with
Quantifier; with all operations running on multiple CPUs, which
drastically increases processing speed, making them ideal for
batch processing of section images. By combining information
from segmented images with corresponding atlas maps produced
with QuickNII (Puchades et al., 2019; Yates et al., 2019), several
datasets may be analyzed and then compared (Figure 4), offering
new analytical possibilities as discussed in depth in Bjerke et al.
(2018). The present developments are part of a larger European
effort to establish tools and services for neuroscience research
(Amunts et al., 2019).
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